Oracle® C++ Call Interface
Programmer's Guide

12c¢ Release 2 (12.2)
E85620-01
June 2017

ORACLE"

Oracle C++ Call Interface Programmer's Guide, 12¢ Release 2 (12.2)
E85620-01

Copyright © 1999, 2017, Oracle and/or its affiliates. All rights reserved.
Primary Author: Rod Ward

Contributors: Sandeepan Banerjee, Subhranshu Banerjee, Kalyanji Chintakayala, Krishna lItikarlapalli,
Shankar lyer, Maura Joglekar, Toliver Jue, Ravi Kasamsetty, Srinath Krishnaswamy, Shoaib Lari, Geoff Lee,
Roza Leyderman, Chetan Maiya, Kuassi Mensah, Vipul Modi, Rajendra Pingte, John Stewart, Rekha Vallam,
Krishna Verma

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface
Audience x|
Documentation Accessibility X
Related Documents Xl
Conventions xli
Changes in This Release for Oracle C++ Call Interface
Programmer's Guide
Changes in Oracle Database 12c Release 2 (12.2) xlii
1 Introduction to OCCI
1.1 Overview of OCCI 1-1
1.1.1 About Benefits of OCCI 1-2
1.1.2 About Building a C++ Application with OCCI 1-2
1.1.3 About Functionality of OCCI 1-3
1.1.4 About Procedural and Nonprocedural Elements 1-3
1.2 About Processing SQL Statements 1-4
1.2.1 About Data Definition Language Statements 1-4
1.2.2 About Control Statements 1-5
1.2.3 About Data Manipulation Language Statements 1-5
1.2.4 About Queries 1-5
1.3 Overview of PL/SQL 1-6
1.4 About Special OCCI/SQL Terms 1-7
1.5 About Object Support 1-7
1.5.1 About Client-Side Object Cache 1-8
1.5.2 About Run-time Environment for Objects 1-8
1.5.3 About Associative and Navigational Interfaces 1-8
1.5.4 About Interoperability with C (OCI) 1-9
1.55 About the Metadata Class 1-9
1.5.6 About the Object Type Translator Utility 1-9
1.6 About Additional Support 1-10

ORACLE

1.6.1 Building OCCI Demos 1-10
1.6.2 About OCCI on the Oracle Technology Network 1-11
2 Installation and Upgrading

2.1 About Installing Oracle C++ Call Interface 2-1
2.2 About Upgrading Considerations 2-1
2.3 About Determining the Oracle Database Versions 2-1
2.3.1 Determining the Oracle Client Version During Compilation 2-1
2.3.2 About Determining the Oracle Client and Server Versions at Run Time 2-2

2.4 About the Instant Client 2-2
2.4.1 About Benefits of Instant Client 2-2
2.4.2 About Installing the Instant Client 2-2
2.4.2.1 About the Oracle Technology Network 2-3

2.4.2.2 About the Complete Client Installation 2-4

2.4.2.3 Running Oracle Universal Installer 2-4

2.4.2.4 About the Instant Client CD 2-4

2.4.3 About Using the Instant Client 2-5
2.4.4 Patching Instant Client Shared Libraries on UNIX 2-5
2.4.5 Regenerating the Data Shared Library and Zip Files 2-5
2.4.6 About Database Connection Names for Instant Client 2-6
2.4.7 Setting Environment Variables for OCCI Instant Client 2-6

2.5 About Instant Client Light (English) 2-7
2.5.1 About Globalization Settings for Instant Client Light (English) 2-7
2.5.2 About Using Instant Client Light (English) 2-8
2.5.3 About Installing Instant Client Light (English) 2-8
2.5.3.1 Downloading from Oracle Technology Network 2-9

2.5.3.2 About Using the Client Admin Install 2-9

2.5.3.3 Installing with Oracle Universal Installer 2-9

2.6 About Using OCCI with Microsoft Visual C++ 2-9

3 Accessing Oracle Database Using C++

3.1 About Connecting to a Database 3-1
3.1.1 Creating and Terminating an Environment 3-1
3.1.2 Opening and Closing a Connection 3-2
3.1.3 About Support for Pluggable Databases 3-3

3.2 About Pooling Connections 3-3
3.2.1 About Using Connection Pools 3-4
3.2.1.1 Creating a Connection Pool 3-4

3.2.1.2 Creating Proxy Connections 3-5

ORACLE

3.2.2 Using Stateless Connection Pooling
3.2.3 About Database Resident Connection Pooling
3.2.3.1 Administrating Database Resident Connection Pools
3.2.3.2 Using Database Resident Connection Pools
3.3 About Executing SQL DDL and DML Statements
3.3.1 Creating a Statement Object
3.3.2 Creating a Statement Object that Executes SQL Commands
3.3.2.1 Creating a Database Table
3.3.2.2 Inserting Values into a Database Table
3.3.3 Reusing the Statement Object
3.3.4 Terminating a Statement Object
3.4 About Types of SQL Statements in the OCCI Environment
3.4.1 About Standard Statements
3.4.2 Using Parameterized Statements
3.4.3 Using Callable Statements
3.4.3.1 Using Callable Statements that Use Array Parameters
3.4.4 About Streamed Reads and Writes
3.4.4.1 Binding Data in Streaming Mode; SELECT/DML and PL/SQL
3.4.4.2 Fetching Data in Streaming Mode: PL/SQL
3.4.4.3 About Fetching Data in Streaming Mode: ResultSet
3.4.4.4 Working with Multiple Streams
3.4.5 About Modifying Rows lteratively
3.4.5.1 Setting the Maximum Number of Iterations
3.4.5.2 Setting the Maximum Parameter Size
3.4.5.3 Executing an Iterative Operation
3.5 About Executing SQL Queries
3.5.1 Using the Result Set
3.5.2 About Specifying the Query
3.5.3 About Optimizing Performance by Setting Prefetch Count
3.6 About Executing Statements Dynamically
3.6.1 About Statement Status Definitions
3.6.1.1 UNPREPARED
3.6.1.2 PREPARED
3.6.1.3 RESULT_SET_AVAILABLE
3.6.1.4 UPDATE_COUNT_AVAILABLE
3.6.1.5 NEEDS_STREAM_DATA
3.6.1.6 STREAM_DATA_AVAILABLE
3.7 About Using Larger Row Count and Error Code Range Data Types
3.7.1 Using Larger Row Count in SELECT Operations

3.7.2 Using Larger Row Count in INSERT, UPDATE, and DELETE
Operations

ORACLE

3-6

3-9
3-10
3-11
3-13
3-13
3-13
3-13
3-14
3-14
3-14
3-15
3-15
3-15
3-16
3-16
3-17
3-18
3-18
3-19
3-19
3-20
3-20
3-21
3-21
3-21
3-22
3-23
3-23
3-23
3-24
3-24
3-24
3-25
3-25
3-25
3-26
3-26
3-26

3-27

3.8 About Committing a Transaction 3-28
3.9 Caching Statements 3-28
3.10 About Handling Exceptions 3-31
3.10.1 About Handling Null and Truncated Data 3-32

4 Object Programming
4.1 Overview of Object Programming 4-1
4.2 About Working with Objects in C++ with OCCI 4-2
4.2.1 About Persistent Objects 4-2
4.2.2 About Transient Objects 4-3
4.2.3 About Values 4-4
4.3 About Representing Objects in C++ Applications 4-4
4.3.1 Creating Persistent and Transient Objects 4-4
4.3.2 Creating Object Representations using the OTT Utility 4-5
4.4 About Developing a C++ Application using OCCI 4-6
4.4.1 Developing Basic Object Program Structure 4-6
4.4.2 About Basic Object Operational Flow 4-7
4.4.2.1 About Initializing OCCI in Object Mode 4-7
4.4.2.2 About Pinning anObject 4-9
4.4.2.3 About Operating on an Object in Cache 4-9
4.4.2.4 About Flushing Changes to the Object 4-9
4.4.2.5 About Deletion of an Object 4-9
4.5 Migrating C++ Applications to Oracle Using OCCI 4-10
4.6 Overview of Associative Access 4-10
4.6.1 Using SQL to Access Objects 4-10
4.6.2 Inserting and Modifying Values 4-11
4.7 Overview of Navigational Access 4-11
4.7.1 Retrieving an Object Reference (REF) from the Database Server 4-11
4.7.2 Pinning an Object 4-12
4.7.3 Manipulating Object Attributes 4-13
4.7.4 About Marking Objects and Flushing Changes 4-13
4.7.5 Marking an Object as Modified (Dirty) 4-13
4.7.6 About Recording Changes in the Database 4-13
4.7.7 Collecting Garbage in the Object Cache 4-14
4.7.8 About Ensuring Transactional Consistency of References 4-15
4.8 Overview of Complex Object Retrieval 4-15
4.8.1 Retrieving Complex Objects 4-16
4.8.2 About Prefetching Complex Objects 4-17
4.9 Working with Collections 4-17
4.9.1 Fetching Embedded Objects 4-18
ORACLE Vi

4.9.2 About Nullness 4-19

4,10 About Using Object References 4-19
4.11 About Deleting Objects from the Database 4-19
4.12 About Type Inheritance 4-20
4.12.1 About Substitutability 4-21
4.12.2 Declaring NOT INSTANTIABLE Types and Methods 4-21
4.12.3 About OCCI Support for Type Inheritance 4-22
4.12.3.1 About Connection::getMetaData() 4-22
4.12.3.2 About Bind and Define Functions 4-22

4.12.4 About OTT Support for Type Inheritance 4-22
4,13 A Sample OCCI Application 4-23

5 Data Types

5.1 Overview of Oracle Data Types 5-1
5.1.1 About OCCI Type and Data Conversion 5-1

5.2 Internal Data Types 5-2
5.2.1 Character Strings and Byte Arrays 5-4
5.2.2 Universal Rowid (UROWID) 5-4

5.3 External Data Types 5-4
5.3.1 Description of External Data Types 5-8
5.3.1.1 BFILE 5-9

5.3.1.2 BDOUBLE 5-9

5.3.1.3 BFLOAT 5-10

5.3.1.4 BLOB 5-10

5.3.1.5 CHAR 5-10

5.3.1.6 CHARZ 5-10

5.3.1.7 CLOB 5-11

5.3.1.8 DATE 5-11

5.3.1.9 FLOAT 5-12
5.3.1.10 INTEGER 5-12
5.3.1.11 INTERVAL DAY TO SECOND 5-12
5.3.1.12 INTERVAL YEAR TO MONTH 5-13
5.3.1.13 LONG 5-13
5.3.1.14 LONG RAW 5-13
5.3.1.15 LONG VARCHAR 5-13
5.3.1.16 LONG VARRAW 5-14
5.3.1.17 NCLOB 5-14
5.3.1.18 NUMBER 5-14
5.3.1.19 OCCI BFILE 5-15
5.3.1.20 OCCIBLOB 5-15

ORACLE vii

5.3.1.21 OCCIBYTES 5-15
5.3.1.22 OCCI CLOB 5-15
5.3.1.23 OCCI DATE 5-15
5.3.1.24 OCCI INTERVALDS 5-15
5.3.1.25 OCCI INTERVALYM 5-16
5.3.1.26 OCCI NUMBER 5-16
5.3.1.27 OCCI POBJECT 5-16
5.3.1.28 OCCI REF 5-16
5.3.1.29 OCCI REFANY 5-16
5.3.1.30 OCCI STRING 5-16
5.3.1.31 OCCI TIMESTAMP 5-17
5.3.1.32 OCCI VECTOR 5-17
5.3.1.33 RAW 5-17
5.3.1.34 REF 5-17
5.3.1.35 ROWID 5-17
5.3.1.36 STRING 5-17
5.3.1.37 TIMESTAMP 5-18
5.3.1.38 TIMESTAMP WITH LOCAL TIME ZONE 5-18
5.3.1.39 TIMESTAMP WITH TIME ZONE 5-18
5.3.1.40 UNSIGNED INT 5-18
5.3.1.41 VARCHAR 5-19
5.3.1.42 VARCHAR2 5-19
5.3.1.43 VARNUM 5-19
5.3.1.44 VARRAW 5-19
5.3.1.45 NATIVE DOUBLE 5-20
5.3.1.46 NATIVE FLOAT 5-20

5.4 Data Conversions 5-20
5.4.1 Data Conversions for LOB Data Types 5-22
5.4.2 Data Conversions for Date, Timestamp, and Interval Data Types 5-22

6 Metadata

6.1 Overview of Metadata 6-1
6.2 Using Identity Column Metadata 6-2
6.3 About Describing Database Metadata 6-3
6.3.1 Using Metadata (Code Examples) 6-4

6.4 Attribute Reference Information 6-7
6.4.1 Parameter Attributes 6-8
6.4.2 Table and View Attributes 6-8
6.4.3 Procedure, Function, and Subprogram Attributes 6-9
6.4.4 Package Attributes 6-10

ORACLE

viii

6.4.5 Type Attributes 6-10

6.4.6 Type Attribute Attributes 6-12
6.4.7 Type Method Attributes 6-13
6.4.8 Collection Attributes 6-14
6.4.9 Synonym Attributes 6-14
6.4.10 Sequence Attributes 6-15
6.4.11 Column Attributes 6-15
6.4.12 Argument and Result Attributes 6-16
6.4.13 List Attributes 6-18
6.4.14 Schema Attributes 6-18
6.4.15 Database Attributes 6-18

7 Programming with LOBs

7.1 Overview of LOBs 7-1
7.1.1 Introducing Internal LOBs 7-1
7.1.2 Introducing External LOBs 7-2
7.1.3 About Storing LOBs 7-2

7.2 Creating LOBs in OCCI Applications 7-2

7.3 Restricting the Opening and Closing of LOBs 7-3

7.4 About Reading and Writing LOBs 7-4
7.4.1 Reading LOBs 7-4
7.4.2 Writing LOBs 7-6
7.4.3 About Enhancing the Performance of LOB Reads and Writes 7-7

7.4.3.1 About Using the getChunkSize() Method 7-7
7.4.4 Updating LOBs 7-7
7.4.5 About Reading and Writing Multiple LOBs 7-8

7.4.5.1 About Using the Interfaces for Reading and Writing Multiple LOBs 7-8

7.5 Using Objects with LOB Attributes 7-9

7.6 About Using SecureFiles 7-10
7.6.1 About Using SecureFile Compression 7-10
7.6.2 About Using SecureFiles Encryption 7-10
7.6.3 About Using SecureFiles Deduplication 7-10
7.6.4 About Combining SecureFiles Compression, Encryption, and

Deduplication 7-10
7.6.5 SecureFiles LOB Types and Constants 7-11

8 Object Type Translator Utility

8.1 Overview of the Object Type Translator Utility 8-1
8.2 Using the OTT Utility 8-2
8.3 Creating Types in the Database 8-2

ORACLE iX

8.4 About Invoking the OTT Utility 8-3

8.4.1 Specifying OTT Parameters 8-3
8.4.1.1 About Setting Parameters on the Command Line 8-3

8.4.1.2 About Setting Parameters in the INTYPE File 8-4

8.4.1.3 About Setting Parameters in the Configuration File 8-4

8.4.2 Invoking the OTT Utility on the Command Line 8-4
8.4.2.1 Elements Used on the OTT Command Line 8-5

8.4.3 OTT Ultility Parameters 8-5
8.4.3.1 ATTRACCESS 8-6

8.4.3.2 CASE 8-6

8.4.3.3 CODE 8-7

8.4.3.4 CONFIG 8-7

8.4.3.5 CPPFILE 8-7

8.4.3.6 ERRTYPE 8-7

8.4.3.7 HFILE 8-8

8.4.3.8 INTYPE 8-8

8.4.3.9 MAPFILE 8-8
8.4.3.10 MAPFUNC 8-8
8.4.3.11 OUTTYPE 8-9
8.4.3.12 SCHEMA_NAMES 8-9
8.4.3.13 TRANSITIVE 8-10
8.4.3.14 UNICODE 8-11
8.4.3.15 USE_MARKER 8-12
8.4.3.16 USERID 8-12

8.4.4 Where OTT Parameters Can Appear 8-13
8.4.5 File Name Comparison Restriction 8-13
8.4.6 Using the OTT Command on Microsoft Windows 8-14

8.5 About Using the INTYPE File 8-14
8.5.1 Using the INTYPE File 8-14
8.5.2 Structure of the INTYPE File 8-15
8.5.2.1 INTYPE File Type Specifications 8-16

8.5.3 Using Nested include File Generation 8-17

8.6 Using OTT Utility Data Type Mappings 8-19
8.6.1 Default Name Mapping 8-24

8.7 Overview of the OUTTYPE File 8-25
8.8 Using the OTT Ultility and OCCI Applications 8-26
8.9 Generating C++ Classes Generated by the OTT Utility 8-27
8.9.1 Map Registry Function 8-28
8.9.2 Extending C++ Classes 8-28
8.9.3 Carrying Forward User Added Code 8-29
8.9.3.1 How to Use Properties of OTT Markers 8-30

ORACLE X

8.9.3.2 Using OTT Markers 8-31

o Globalization and Unicode Support
9.1 Overview of Globalization and Unicode Support 9-1
9.2 Specifying Charactersets 9-1
9.3 Data Types for Globalization and Unicode Support 9-2
9.3.1 Using the UString Data Type 9-2
9.3.2 Using Multibyte and UTF16 data 9-3
9.3.3 Using CLOB and NCLOB Data Types 9-3
9.4 About Using Objects and OTT Support 9-4

10 Oracle Streams Advanced Queuing
10.1 Overview of Oracle Streams Advanced Queuing 10-1
10.2 About AQ Implementation in OCCI 10-2
10.2.1 Message 10-3
10.2.2 Agent 10-3
10.2.3 Producer 10-3
10.2.4 Consumer 10-4
10.2.5 Listener 10-4
10.2.6 Subscription 10-4
10.3 About Creating Messages 10-4
10.3.1 About Message Payloads 10-5
10.3.1.1 RAW 10-5
10.3.1.2 AnyData 10-5
10.3.1.3 Using User-defined Types as Payloads 10-5
10.3.2 Message Properties 10-6
10.3.2.1 Correlation 10-6
10.3.2.2 Sender 10-6
10.3.2.3 Delay and Expiration 10-6
10.3.2.4 Recipients 10-6
10.3.2.5 Priority and Ordering 10-7
10.4 Enqueuing Messages 10-7
10.5 Dequeuing Messages 10-7
10.5.1 About Dequeuing Options 10-8
10.5.1.1 Correlation 10-8
10.5.1.2 Mode 10-8
10.5.1.3 Navigation 10-8
10.6 Listening for Messages 10-9
10.7 About Registering for Notification 10-9
ORACLE Xi

10.7.1 Publish-Subscribe Notifications 10-9
10.7.1.1 How to Use Direct Registration 10-10
10.7.1.2 Using Open Registration 10-11
10.7.2 About Notification Callback 10-12
10.8 About Message Format Transformation 10-13
11 Oracle XA Library
11.1 Developing Applications with XA and OCCI 11-1
11.2 APIs for XA Support 11-2
12 Optimizing Performance of C++ Applications
12.1 About Transparent Application Failover 12-1
12.1.1 Using Transparent Application Failover 12-3
12.1.2 About Objects and Transparent Application Failover 12-3
12.1.3 Using Connection Pooling and Transparent Application Failover 12-3
12.2 About Connection Sharing 12-6
12.2.1 Introduction to Thread Safety 12-6
12.2.2 Implementing Thread Safety 12-7
12.2.3 About Serialization 12-7
12.2.3.1 Automatic Serialization 12-7
12.2.3.2 Application-Provided Serialization 12-8
12.2.4 Operating System Considerations 12-8
12.3 About Application-Managed Data Buffering 12-9
12.3.1 Using the setDataBuffer() Method 12-9
12.3.2 Using the executeArrayUpdate() Method 12-10
12.4 Using the Array Fetch Using next() Method 12-11
12.5 Modifying Rows lteratively 12-12
12.6 About Run-time Load Balancing of the Stateless Connection Pool 12-12
12.6.1 API Support 12-13
12.7 About Fault Diagnosability 12-13
12.7.1 Using ADR Base Location 12-14
12.7.2 Using ADRCI 12-16
12.7.3 Controlling ADR Creation and Disabling Fault Diagnosability 12-18
12.8 Using Client Result Cache 12-18
12.9 About Client-Side Deployment Parameters and Auto Tuning 12-19
13 OCCI Application Programming Interface
13.1 OCCI Classes and Methods 13-1
13.1.1 Using OCCI Classes 13-2
ORACLE Xil

13.1.2

OCCI Support for Windows NT and z/OS

13.1.2.1 Working with Collections of Refs
13.2 Common OCCI Constants
13.3 Agent Class

13.3.1
13.3.2
13.3.3
13.3.4
13.3.5
13.3.6
13.3.7
13.3.8
13.3.9
13.3.10

Agent()
getAddress()
getName()
getProtocol()
isNull()
operator=()
setAddress()
setName()
setNull()
setProtocol()

13.4 AnyData Class

13.4.1
13.4.2
13.4.3
13.4.4
13.45
13.4.6
13.4.7
13.4.8
13.4.9
13.4.10
13.4.11
13.4.12
13.4.13
13.4.14
13.4.15
13.4.16
13.4.17
13.4.18
13.4.19
13.4.20
13.4.21
13.4.22
13.4.23
13.4.24
13.4.25
13.4.26

ORACLE

AnyData()
getAsBDouble()
getAsBfile()
getAsBFloat()
getAsBytes()
getAsDate()
getAsintervalDS()
getAsinterval YM()
getAsNumber()
getAsObject()
getAsRef()
getAsString()
getAsTimestamp()
getType()
isNull()
setFromBDouble()
setFromBfile()
setFromBFloat()
setFromBytes()
setFromDate()
setFromintervalDS()
setFrominterval YM()
setFromNumber()
setFromObject()
setFromRef()
setFromString()

13-3
13-4
13-5
13-5
13-6
13-6
13-6
13-6
13-7
13-7
13-7
13-7
13-8
13-8
13-8
13-11
13-11
13-11
13-12
13-12
13-12
13-12
13-12
13-12
13-13
13-13
13-13
13-13
13-13
13-13
13-13
13-14
13-14
13-14
13-15
13-15
13-15
13-15
13-16
13-16
13-16

Xiii

13.4.27
13.4.28

setFromTimestamp()
setNull()

13.5 BatchSQLException Class

1351
13.5.2
13.5.3

getException()
getFailedRowCount()
getRowNum()

13.6 Bfile Class

13.6.1
13.6.2
13.6.3
13.6.4
13.6.5
13.6.6
13.6.7
13.6.8
13.6.9
13.6.10
13.6.11
13.6.12
13.6.13
13.6.14
13.6.15
13.6.16
13.6.17
13.6.18
13.6.19
13.6.20

Bfile()
close()
closeStream()
fileExists()
getDirAlias()
getFileName()
getStream()
getUStringDirAlias()
getUStringFileName()
isInitialized()
isNull()
isOpen()
length()
open()
operator=()
operator==()
operator!=()
read()
setName()
setNull()

13.7 Blob Class

13.7.1
13.7.2
13.7.3
13.7.4
13.7.5
13.7.6
13.7.7
13.7.8
13.7.9
13.7.10
13.7.11
13.7.12
13.7.13

ORACLE

Blob()
append()
close()
closeStream()
copy()
getChunkSize()
getContentType()
getOptions()
getStream()
isInitialized()
isNull()
isOpen()
length()

13-17
13-17
13-17
13-17
13-18
13-18
13-18
13-19
13-20
13-20
13-20
13-20
13-21
13-21
13-21
13-21
13-21
13-22
13-22
13-22
13-22
13-22
13-23
13-23
13-23
13-24
13-24
13-24
13-26
13-26
13-26
13-27
13-27
13-28
13-28
13-28
13-28
13-29
13-29
13-29
13-29

Xiv

13.7.14 open()
13.7.15 operator=()
13.7.16 operator==()
13.7.17 operator!= ()
13.7.18 read()
13.7.19 setContentType()
13.7.20 setEmpty()
13.7.21 setNull()
13.7.22 setOptions()
13.7.23 trim()
13.7.24 write()
13.7.25 writeChunk()

13.8 Bytes Class
13.8.1 Bytes()
13.8.2 byteAt()
13.8.3 getBytes()
13.8.4 isNull()
13.8.5 length()
13.8.6 operator=()
13.8.7 setNull()

13.9 Clob Class
13.9.1 Clob()
13.9.2 append()
13.9.3 close()
13.9.4 closeStream()
13.9.5 copy()
13.9.6 getCharSetForm()
13.9.7 getCharSetld()
13.9.8 getCharSetldUString()
13.9.9 getChunkSize()
13.9.10 getContentType()
13.9.11 getOptions()
13.9.12 getStream()
13.9.13 isInitialized()
13.9.14 isNull()
13.9.15 isOpen()
13.9.16 length()
13.9.17 open()
13.9.18 operator=()
13.9.19 operator==()
13.9.20 operator!=()

ORACLE

13-29
13-30
13-30
13-30
13-30
13-31
13-31
13-32
13-32
13-32
13-32
13-33
13-33
13-34
13-34
13-35
13-35
13-35
13-35
13-36
13-36
13-38
13-38
13-38
13-38
13-39
13-39
13-40
13-40
13-40
13-40
13-40
13-40
13-41
13-41
13-41
13-41
13-41
13-42
13-42
13-42

XV

13.9.21
13.9.22
13.9.23
13.9.24
13.9.25
13.9.26
13.9.27
13.9.28
13.9.29
13.9.30
13.9.31

read()
setCharSetld()
setCharSetldUString()
setCharSetForm()
setContentType()
setEmpty()
setNull()
setOptions()

trim()

write()
writeChunk()

13.10 Connection Class

13.10.1
13.10.2
13.10.3
13.10.4
13.10.5
13.10.6
13.10.7
13.10.8
13.10.9
13.10.10
13.10.11
13.10.12
13.10.13
13.10.14
13.10.15
13.10.16
13.10.17
13.10.18
13.10.19
13.10.20
13.10.21
13.10.22
13.10.23
13.10.24
13.10.25
13.10.26
13.10.27
13.10.28
13.10.29

ORACLE

changePassword()
commit()
createStatement()
flushCache()
getClientCharSet()
getClientCharSetUString()
getClientNCHARCharSet()
getClientNCHARCharSetUString()
getClientVersion()
getLTXID()
getMetaData()
getOClServer()
getOCIServiceContext()
getOCISession()
getServerVersion()
getServerVersionUString()
getStmtCacheSize()
getTag()
isCached()
pinVectorOfRefs()
postToSubscriptions()
readVectorOfBfiles()
readVectorOfBlobs()
readVectorOfClobs()
registerSubscriptions()
rollback()
setStmtCacheSize()
setTAFNotify()
terminateStatement()

13-43
13-43
13-44
13-44
13-44
13-45
13-45
13-45
13-46
13-46
13-47
13-47
13-49
13-50
13-50
13-51
13-51
13-51
13-51
13-51
13-51
13-52
13-52
13-53
13-53
13-53
13-53
13-54
13-54
13-54
13-54
13-55
13-55
13-56
13-56
13-57
13-58
13-58
13-58
13-59
13-59

XVi

13.10.30
13.10.31
13.10.32

unregisterSubscription()
writeVectorOfBlobs()
writeVectorOfClobs()

13.11 ConnectionPool Class

13.11.1
13.11.2
13.11.3
13.11.4
13.11.5
13.11.6
13.11.7
13.11.8
13.11.9
13.11.10
13.11.11
13.11.12
13.11.13
13.11.14
13.11.15

createConnection()
createProxyConnection()
getBusyConnections()
getincrConnections()
getMaxConnections()
getMinConnections()
getOpenConnections()
getPoolName()
getStmtCacheSize()
getTimeOut()
setErrorOnBusy()
setPoolSize()
setStmtCacheSize()
setTimeOut()
terminateConnection()

13.12 Consumer Class

13.12.1
13.12.2
13.12.3
13.12.4
13.12.5
13.12.6
13.12.7
13.12.8
13.12.9
13.12.10
13.12.11
13.12.12
13.12.13
13.12.14
13.12.15
13.12.16
13.12.17
13.12.18
13.12.19
13.12.20
13.12.21

ORACLE

Consumer()
getConsumerName()
getCorrelationld()
getDequeueMode()
getMessageldToDequeue()
getPositionOfMessage()
getQueueName()
getTransformation()
getVisibility()

getWaitTime()

isNull()

operator=()

receive()

setAgent()

setConsumerName()

setCorrelationld()

setDequeueMode()

setMessageldToDequeue()

setNull()

setPositionOfMessage()

setQueueName()

13-60
13-60
13-61
13-62
13-62
13-63
13-64
13-64
13-64
13-64
13-65
13-65
13-65
13-65
13-65
13-65
13-66
13-66
13-66
13-67
13-68
13-69
13-69
13-69
13-70
13-70
13-70
13-70
13-70
13-70
13-71
13-71
13-71
13-71
13-72
13-72
13-72
13-73
13-73
13-73
13-73

XVii

13.12.22
13.12.23
13.12.24

setTransformation()
setVisibility()
setWaitTime()

13.13 Date Class

13.13.1
13.13.2
13.13.3
13.13.4
13.13.5
13.13.6
13.13.7
13.13.8
13.13.9
13.13.10
13.13.11
13.13.12
13.13.13
13.13.14
13.13.15
13.13.16
13.13.17
13.13.18
13.13.19
13.13.20
13.13.21
13.13.22
13.13.23

Date()
addDays()
addMonths()
daysBetween()
fromBytes()
fromText()
getDate()
getSystemDate()
isNull()
lastDay()
nextDay()
operator=()
operator==()
operator!=()
operator>()
operator>=()
operator<()
operator<=()
setDate()
setNull()
toBytes()
toText()
toZone()

13.14 Environment Class

13.14.1
13.14.2
13.14.3
13.14.4
13.14.5
13.14.6
13.14.7
13.14.8
13.14.9
13.14.10
13.14.11
13.14.12
13.14.13

ORACLE

createConnection()
createConnectionPool()
createEnvironment()
createStatelessConnectionPool()
enableSubscription()
disableSubscription()
getCacheMaxSize()
getCacheOptSize()
getCacheSortedFlush()
getCurrentHeapSize()
getLDAPAdminContext()
getLDAPAuthentication()
getLDAPHost()

13-74
13-74
13-74
13-74
13-76
13-77
13-77
13-77
13-77
13-78
13-79
13-79
13-79
13-80
13-80
13-80
13-81
13-81
13-81
13-82
13-82
13-82
13-83
13-83
13-84
13-84
13-84
13-85
13-87
13-88
13-89
13-90
13-91
13-91
13-91
13-91
13-92
13-92
13-92
13-92
13-92

XViii

13.14.14 getLDAPPort() 13-92

13.14.15 getMap() 13-92
13.14.16 getNLSLanguage() 13-93
13.14.17 getNLSTerritory() 13-93
13.14.18 getOCIEnvironment() 13-93
13.14.19 getXAConnection() 13-93
13.14.20 getXAEnvironment() 13-93
13.14.21 releaseXAConnection() 13-94
13.14.22 releaseXAEnvironment() 13-94
13.14.23 setCacheMaxSize() 13-94
13.14.24 setCacheOptSize() 13-94
13.14.25 setCacheSortedFlush() 13-95
13.14.26 setLDAPAdminContext() 13-95
13.14.27 setLDAPAuthentication() 13-95
13.14.28 setLDAPHostAndPort() 13-96
13.14.29 setLDAPLoginNameAndPassword() 13-96
13.14.30 setNLSLanguage() 13-96
13.14.31 setNLSTerritory() 13-97
13.14.32 terminateConnection() 13-97
13.14.33 terminateConnectionPool() 13-97
13.14.34 terminateEnvironment() 13-97
13.14.35 terminateStatelessConnectionPool() 13-98
13.15 IntervalDS Class 13-98
13.15.1 IntervalDS() 13-100
13.15.2 fromText() 13-101
13.15.3 fromUText() 13-101
13.15.4 getDay() 13-102
13.15.5 getFracSec() 13-102
13.15.6 getHour() 13-102
13.15.7 getMinute() 13-102
13.15.8 getSecond() 13-102
13.15.9 isNull() 13-102
13.15.10 operator*() 13-103
13.15.11 operator*=() 13-103
13.15.12 operator=() 13-103
13.15.13 operator==() 13-103
13.15.14 operator!=() 13-104
13.15.15 operator/() 13-104
13.15.16 operator/=() 13-104
13.15.17 operator>() 13-105
13.15.18 operator>=() 13-105

ORACLE XixX

13.15.19 operator<()
13.15.20 operator<=()
13.15.21 operator-()
13.15.22 operator-=()
13.15.23 operator+()
13.15.24 operator+=()
13.15.25 set()
13.15.26 setNull()
13.15.27 toText()
13.15.28 toUText()
13.16 IntervalYM Class
13.16.1 IntervalYM()
13.16.2 fromText()
13.16.3 fromUText()
13.16.4 getMonth()
13.16.5 getYear()
13.16.6 isNull()
13.16.7 operator*()
13.16.8 operator*=()
13.16.9 operator=()
13.16.10 operator==()
13.16.11 operator!=()
13.16.12 operator/()
13.16.13 operator/=()
13.16.14 operator>()
13.16.15 operator>=()
13.16.16 operator<()
13.16.17 operator<=()
13.16.18 operator-()
13.16.19 operator-=()
13.16.20 operator+()
13.16.21 operator+=()
13.16.22 set()
13.16.23 setNull()
13.16.24 toText()
13.16.25 toUText()
13.17 Listener Class
13.17.1 Listener()
13.17.2 getAgentList()
13.17.3 getTimeOutForListen()
13.17.4 listen()
ORACLE

13-105
13-106
13-106
13-106
13-107
13-107
13-107
13-108
13-108
13-108
13-109
13-110
13-111
13-112
13-112
13-112
13-112
13-112
13-113
13-113
13-113
13-114
13-114
13-114
13-115
13-115
13-115
13-116
13-116
13-116
13-117
13-117
13-117
13-118
13-118
13-118
13-118
13-119
13-119
13-119
13-120

XX

13.17.5
13.17.6

setAgentList()
setTimeOutForListen()

13.18 Map Class

13.18.1

put()

13.19 Message Class

13.19.1
13.19.2
13.19.3
13.19.4
13.19.5
13.19.6
13.19.7
13.19.8
13.19.9
13.19.10
13.19.11
13.19.12
13.19.13
13.19.14
13.19.15
13.19.16
13.19.17
13.19.18
13.19.19
13.19.20
13.19.21
13.19.22
13.19.23
13.19.24
13.19.25
13.19.26
13.19.27
13.19.28
13.19.29

Message()
getAnyData()
getAttemptsToDequeue()
getBytes()
getCorrelationld()
getDelay()
getExceptionQueueName()
getExpiration()
getMessageEnqueuedTime()
getMessageState()
getObject()
getOriginalMessageld()
getPayloadType()
getPriority()
getSenderld()
isNull()
operator=()
setAnyData()
setBytes()
setCorrelationld()
setDelay()
setExceptionQueueName()
setExpiration()
setNull()
setObject()
setOriginalMessageld()
setPriority()
setRecipientList()
setSenderld()

13.20 MetaData Class

13.20.1
13.20.2
13.20.3
13.20.4
13.20.5
13.20.6

ORACLE

MetaData()
getAttributeCount()
getAttributeld()
getAttributeType()
getBoolean()
getint()

13-120
13-120
13-120
13-121
13-122
13-123
13-124
13-124
13-124
13-124
13-124
13-124
13-124
13-125
13-125
13-125
13-125
13-125
13-125
13-126
13-126
13-126
13-126
13-126
13-127
13-127
13-127
13-128
13-128
13-128
13-128
13-129
13-129
13-129
13-130
13-138
13-138
13-138
13-139
13-139
13-139

XXi

13.20.7 getMetaData() 13-140

13.20.8 getNumber() 13-140
13.20.9 getRef() 13-140
13.20.10 getString() 13-141
13.20.11 getTimeStamp() 13-141
13.20.12 getUInt() 13-141
13.20.13 getUString() 13-141
13.20.14 getVector() 13-142
13.20.15 operator=() 13-142
13.21 NotifyResult Class 13-142
13.21.1 getConsumerName() 13-143
13.21.2 getMessage() 13-143
13.21.3 getMessageld() 13-143
13.21.4 getPayload() 13-143
13.21.5 getQueueName() 13-143
13.22 Number Class 13-143
13.22.1 Number() 13-147
13.22.2 abs() 13-148
13.22.3 arcCos() 13-148
13.22.4 arcSin() 13-148
13.22.5 arcTan() 13-148
13.22.6 arcTan2() 13-148
13.22.7 ceil() 13-149
13.22.8 cos() 13-149
13.22.9 exp() 13-149
13.22.10 floor() 13-149
13.22.11 fromBytes() 13-149
13.22.12 fromText() 13-150
13.22.13 hypCos() 13-150
13.22.14 hypSin() 13-151
13.22.15 hypTan() 13-151
13.22.16 intPower() 13-151
13.22.17 isNull() 13-151
13.22.18 In() 13-151
13.22.19 log() 13-151
13.22.20 operator++() 13-152
13.22.21 operator--() 13-152
13.22.22 operator*() 13-152
13.22.23 operator/() 13-153
13.22.24 operator%() 13-153
13.22.25 operator+() 13-153

ORACLE XXii

13.22.26 operator-()
13.22.27 operator-()
13.22.28 operator<()
13.22.29 operator<=()
13.22.30 operator>()
13.22.31 operator>=()
13.22.32 operator==()
13.22.33 operator!=()
13.22.34 operator=()
13.22.35 operator*=()
13.22.36 operator/=()
13.22.37 operator%=()
13.22.38 operator+=()
13.22.39 operator-=()
13.22.40 operator char()
13.22.41 operator signed char()
13.22.42 operator double()
13.22.43 operator float()
13.22.44 operator int()
13.22.45 operator long()
13.22.46 operator long double()
13.22.47 operator short()
13.22.48 operator unsigned char()
13.22.49 operator unsigned int()
13.22.50 operator unsigned long()
13.22.51 operator unsigned short()
13.22.52 power()
13.22.53 prec()
13.22.54 round()
13.22.55 setNull()
13.22.56 shift()
13.22.57 sign()
13.22.58 sin()
13.22.59 squareroot()
13.22.60 tan()
13.22.61 toBytes()
13.22.62 toText()
13.22.63 trunc()

13.23 PObject Class
13.23.1 PObject()
13.23.2 flush()

ORACLE

13-154
13-154
13-154
13-155
13-155
13-155
13-156
13-156
13-156
13-157
13-157
13-157
13-158
13-158
13-158
13-158
13-158
13-159
13-159
13-159
13-159
13-159
13-159
13-159
13-160
13-160
13-160
13-160
13-161
13-161
13-161
13-161
13-161
13-162
13-162
13-162
13-162
13-163
13-163
13-164
13-165

XXiii

13.23.3 getConnection()
13.23.4 getRef()
13.23.5 getSQLTypeName()
13.23.6 isLocked()
13.23.7 isNull()
13.23.8 lock()
13.23.9 markDelete()
13.23.10 markModified()
13.23.11 operator=()
13.23.12 operator delete()
13.23.13 operator new()
13.23.14 pin()
13.23.15 setNull()
13.23.16 unmark()
13.23.17 unpin()

13.24 Producer Class
13.24.1 Producer()
13.24.2 getQueueName()
13.24.3 getRelativeMessageld()
13.24.4 getSequenceDeviation()
13.24.5 getTransformation()
13.24.6 getVisibility()
13.24.7 isNull()
13.24.8 operator=()
13.24.9 send()
13.24.10 setNull()
13.24.11 setQueueName()
13.24.12 setRelativeMessageld()
13.24.13 setSequenceDeviation()
13.24.14 setTransformation()
13.24.15 setVisibility()

13.25 Ref Class
13.25.1 Ref()
13.25.2 clear()
13.25.3 getConnection()
13.25.4 isClear()
13.25.5 isNull()
13.25.6 markDelete()
13.25.7 operator->()
13.25.8 operator*()
13.25.9 operator==()

ORACLE

13-165
13-165
13-165
13-165
13-166
13-166
13-166
13-166
13-166
13-167
13-167
13-168
13-168
13-168
13-168
13-169
13-170
13-170
13-170
13-171
13-171
13-171
13-171
13-171
13-171
13-172
13-172
13-172
13-173
13-173
13-173
13-174
13-175
13-175
13-175
13-175
13-176
13-176
13-176
13-176
13-176

XXIV

13.25.10 operator!=() 13-177

13.25.11 operator=() 13-177
13.25.12 ptr() 13-177
13.25.13 setLock() 13-178
13.25.14 setNull() 13-178
13.25.15 setPrefetch() 13-178
13.25.16 unmarkDelete() 13-179
13.26 RefAny Class 13-179
13.26.1 RefAny() 13-180
13.26.2 clear() 13-180
13.26.3 getConnection() 13-180
13.26.4 isNull() 13-180
13.26.5 markDelete() 13-181
13.26.6 operator=() 13-181
13.26.7 operator==() 13-181
13.26.8 operator!=() 13-181
13.26.9 unmarkDelete() 13-182
13.27 ResultSet Class 13-182
13.27.1 cancel() 13-185
13.27.2 closeStream() 13-185
13.27.3 getBDouble() 13-185
13.27.4 getBfile() 13-185
13.27.5 getBFloat() 13-186
13.27.6 getBlob() 13-186
13.27.7 getBytes() 13-186
13.27.8 getCharSet() 13-186
13.27.9 getCharSetUString() 13-187
13.27.10 getClob() 13-187
13.27.11 getColumnListMetaData() 13-187
13.27.12 getCurrentStreamColumn() 13-188
13.27.13 getCurrentStreamRow() 13-188
13.27.14 getCursor() 13-188
13.27.15 getDatabaseNCHARParam() 13-188
13.27.16 getDate() 13-189
13.27.17 getDouble() 13-189
13.27.18 getFloat() 13-189
13.27.19 getint() 13-190
13.27.20 getintervalDS() 13-190
13.27.21 getintervalYM() 13-190
13.27.22 getMaxColumnSize() 13-190
13.27.23 getNumArrayRows() 13-191

ORACLE' v

13.27.24 getNumber()
13.27.25 getObject()
13.27.26 getRef()
13.27.27 getRowid()
13.27.28 getRowPosition()
13.27.29 getStatement()
13.27.30 getStream()
13.27.31 getString()
13.27.32 getTimestamp()
13.27.33 getUInt()
13.27.34 getUString()
13.27.35 getVector()
13.27.36 getVectorOfRefs()
13.27.37 isNull()
13.27.38 isTruncated()
13.27.39 next()
13.27.40 preTruncationLength()
13.27.41 setBinaryStreamMode()
13.27.42 setCharacterStreamMode()
13.27.43 setCharSet()
13.27.44 setCharSetUsString()
13.27.45 setDatabaseNCHARParam()
13.27.46 setDataBuffer()
13.27.47 setErrorOnNull()
13.27.48 setErrorOnTruncate()
13.27.49 setPrefetchMemorySize()
13.27.50 setPrefetchRowCount()
13.27.51 setMaxColumnSize()
13.27.52 status()

13.28 SQLException Class
13.28.1 SQLException()
13.28.2 getErrorCode()
13.28.3 getMessage()
13.28.4 getNLSMessage()
13.28.5 getNLSUStringMessage()
13.28.6 getUStringMessage()
13.28.7 getXAErrorCode()
13.28.8 isRecoverable()
13.28.9 setErrorCix()
13.28.10 what()

13.29 StatelessConnectionPool Class

ORACLE

13-191
13-191
13-191
13-192
13-192
13-192
13-192
13-193
13-193
13-193
13-193
13-194
13-196
13-197
13-197
13-197
13-198
13-198
13-198
13-199
13-199
13-199
13-200
13-201
13-201
13-202
13-202
13-202
13-203
13-203
13-203
13-204
13-204
13-204
13-204
13-205
13-205
13-205
13-205
13-206
13-206

XXVi

13.29.1 getAnyTaggedConnection() 13-207

13.29.2 getAnyTaggedProxyConnection() 13-208
13.29.3 getBusyConnections() 13-209
13.29.4 getBusyOption() 13-210
13.29.5 getConnection() 13-210
13.29.6 getincrConnections() 13-211
13.29.7 getMaxConnections() 13-212
13.29.8 getMinConnections() 13-212
13.29.9 getOpenConnections() 13-212
13.29.10 getPoolName() 13-212
13.29.11 getProxyConnection() 13-212
13.29.12 getStmtCacheSize() 13-214
13.29.13 getTimeOut() 13-214
13.29.14 releaseConnection() 13-214
13.29.15 setBusyOption() 13-215
13.29.16 setPoolSize() 13-215
13.29.17 setTimeOut() 13-216
13.29.18 setStmtCacheSize() 13-216
13.29.19 terminateConnection() 13-216
13.30 Statement Class 13-217
13.30.1 addlteration() 13-221
13.30.2 closeResultSet() 13-221
13.30.3 closeStream() 13-221
13.30.4 disableCaching() 13-222
13.30.5 execute() 13-222
13.30.6 executeArrayUpdate() 13-222
13.30.7 executeQuery() 13-223
13.30.8 executeUpdate() 13-223
13.30.9 getAutoCommit() 13-224
13.30.10 getBatchErrorMode() 13-224
13.30.11 getBDouble() 13-224
13.30.12 getBfile() 13-224
13.30.13 getBFloat() 13-224
13.30.14 getBlob() 13-225
13.30.15 getBytes() 13-225
13.30.16 getCharSet() 13-225
13.30.17 getCharSetUString() 13-226
13.30.18 getClobh() 13-226
13.30.19 getConnection() 13-226
13.30.20 getCurrentlteration() 13-226
13.30.21 getCurrentStreamlteration() 13-226

ORACLE XXVii

13.30.22 getCurrentStreamParam() 13-227

13.30.23 getCursor() 13-227
13.30.24 getDatabaseNCHARParam() 13-227
13.30.25 getDate() 13-227
13.30.26 getDMLRowCounts() 13-228
13.30.27 getDouble() 13-228
13.30.28 getFloat() 13-228
13.30.29 getint() 13-229
13.30.30 getintervalDS() 13-229
13.30.31 getintervalYM() 13-229
13.30.32 getMaxlterations() 13-229
13.30.33 getMaxParamSize() 13-230
13.30.34 getNumber() 13-230
13.30.35 getObject() 13-230
13.30.36 getOCIStatement() 13-230
13.30.37 getRef() 13-231
13.30.38 getResultSet() 13-231
13.30.39 getRowCountsOption() 13-231
13.30.40 getRowid() 13-231
13.30.41 getSQL() 13-231
13.30.42 getSQLUString() 13-232
13.30.43 getStream() 13-232
13.30.44 getString() 13-232
13.30.45 getTimestamp() 13-232
13.30.46 getUb8RowCount() 13-233
13.30.47 getUInt() 13-233
13.30.48 getUpdateCount() 13-233
13.30.49 getUString() 13-233
13.30.50 getVector() 13-234
13.30.51 getVectorOfRefs() 13-236
13.30.52 isNull() 13-237
13.30.53 isTruncated() 13-237
13.30.54 preTruncationLength() 13-237
13.30.55 registerOutParam() 13-237
13.30.56 setAutoCommit() 13-239
13.30.57 setBatchErrorMode() 13-239
13.30.58 setBDouble() 13-239
13.30.59 setBfile() 13-239
13.30.60 setBFloat() 13-240
13.30.61 setBinaryStreamMode() 13-240
13.30.62 setBlob() 13-241

ORACLE XXViii

13.30.63 setBytes()
13.30.64 setCharacterStreamMode()
13.30.65 setCharSet()
13.30.66 setCharSetUString()
13.30.67 setClob()
13.30.68 setDate()
13.30.69 setDatabaseNCHARParam()
13.30.70 setDataBuffer()
13.30.71 setDataBufferArray()
13.30.72 setDouble()
13.30.73 setErrorOnNull()
13.30.74 setErrorOnTruncate()
13.30.75 setFloat()
13.30.76 setint()
13.30.77 setintervalDS()
13.30.78 setintervalYM()
13.30.79 setMaxlterations()
13.30.80 setMaxParamSize()
13.30.81 setNull()
13.30.82 setNumber()
13.30.83 setObject()
13.30.84 setPrefetchMemorySize()
13.30.85 setPrefetchRowCount()
13.30.86 setRef()
13.30.87 setRowCountsOption()
13.30.88 setRowid()
13.30.89 setSQL()
13.30.90 setSQLUString()
13.30.91 setString()
13.30.92 setTimestamp()
13.30.93 setUInt()
13.30.94 setUString()
13.30.95 setVector()
13.30.96 setVectorOfRefs()
13.30.97 status()
13.31 Stream Class

13.31.1 readBuffer()
13.31.2 readLastBuffer()
13.31.3 writeBuffer()
13.31.4 writeLastBuffer()
13.31.5 status()

ORACLE

13-241
13-241
13-242
13-242
13-243
13-243
13-243
13-244
13-245
13-247
13-247
13-247
13-248
13-248
13-248
13-249
13-249
13-249
13-250
13-250
13-251
13-251
13-251
13-252
13-252
13-253
13-253
13-253
13-254
13-254
13-254
13-255
13-255
13-263
13-264
13-264
13-265
13-265
13-265
13-266
13-266

XXiX

13.32 Subscription Class

13.32.1
13.32.2
13.32.3
13.32.4
13.32.5
13.32.6
13.32.7
13.32.8
13.32.9
13.32.10
13.32.11
13.32.12
13.32.13
13.32.14
13.32.15
13.32.16
13.32.17
13.32.18
13.32.19
13.32.20
13.32.21
13.32.22
13.32.23

Subscription()
getCallbackContext()
getDatabaseServersCount()
getDatabaseServerNames()
getNotifyCallback()
getPayload()
getSubscriptionName()
getSubscriptionNamespace()
getRecipientName()
getPresentation()
getProtocol()
isNull()
operator=()
setCallbackContext()
setDatabaseServerNames()
setNotifyCallback()
setNull()
setPayload()
setPresentation()
setProtocol()
setSubscriptionName()
setSubscriptionNamespace()
setRecipientName()

13.33 Timestamp Class

13.33.1
13.33.2
13.33.3
13.33.4
13.33.5
13.33.6
13.33.7
13.33.8
13.33.9
13.33.10
13.33.11
13.33.12
13.33.13
13.33.14
13.33.15
13.33.16

ORACLE

Timestamp()
fromText()
getDate()
getTime()
getTimeZoneOffset()
intervalAdd()
intervalSub()
isNull()
operator=()
operator==()
operator!=()
operator>()
operator>=()
operator<()
operator<=()
setDate()

13-266
13-268
13-268
13-268
13-269
13-269
13-269
13-269
13-269
13-270
13-270
13-270
13-270
13-270
13-271
13-271
13-271
13-272
13-272
13-272
13-272
13-273
13-273
13-273
13-274
13-275
13-278
13-279
13-279
13-280
13-280
13-280
13-281
13-281
13-281
13-282
13-282
13-282
13-283
13-283
13-283

XXX

13.33.17 setNull() 13-284
13.33.18 setTime() 13-284
13.33.19 setTimeZoneOffset() 13-284
13.33.20 subDS() 13-285
13.33.21 subYM() 13-285
13.33.22 toText() 13-285
Index
ORACLE XXXi

List of Examples

1-1
1-2
1-3
1-4
1-5
1-6
1-7
1-8
1-9
1-10
2-1
2-2
2-3
2-4
3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10
3-11
3-12
3-13
3-14
3-15
3-16
3-17
3-18
3-19
3-20
3-21

Creating a Table

Specifying Access to a Table

Creating an Object Table

Inserting Data Through Input Bind Variables

Inserting Objects into the Oracle Database

Using the Simple SELECT Statement

Using the SELECT Statement with Input Variables

Using PL/SQL to Obtain an Output Variable

Using PL/SQL to Insert Partial Records into Placeholders

Using SQL to Extract Partial Records

How to Determine the Major Client Version and Set Performance Features
How to Regenerate the Data Shared Library Files

How to set the ORA_TZFILE Environment Variable

Installing Instant Client Light (English) through Oracle Universal Installer
How to Create an OCCI Environment

How to Terminate an OCCI Environment

How to Use Environment Scope with Blob Objects

How to Create an Environment and then a Connection to the Database
How to Terminate a Connection to the Database and the Environment
The createConnectionPool() Method

How to Create a Connection Pool

The createProxyConnection() Method

How to Use a StatelessConnectionPool

How to Create and Use a Homogeneous Stateless Connection Pool
How to Create and Use a Heterogeneous Stateless Connection Pool
How to Administer the Database Resident Connection Pools

How to Get a Connection from a Database Resident Connection Pool
Using Client-Side Pool and Server-Side Pool

How to Create a Statement

How to Create a Database Table Using the executeUpdate() Method
How to Add Records Using the executeUpdate() Method

How to Specify a SQL Statement Using the setSQL() Method

How to Reset a SQL Statement Using the setSQL() Method

How to Terminate a Statement Using the terminateStatement() Method

How to Use setxxx() Methods to Set Individual Column Values

ORACLE

1-4
1-4
1-4
1-5
1-5
1-5
1-6
1-6
1-6
1-7
2-2
2-6
2-7
2-9
3-2
3-2
3-2
33
33
35
35
35
3-7
3-7
3-8

3-11

3-12

3-12

3-13

3-13

3-14

3-14

3-14

3-14

3-15

XXXIi

3-22 How to Specify the IN Parameters of a PL/SQL Stored Procedure
3-23 How to Specify OUT Parameters of a PL/SQL Stored Procedure
3-24 How to Bind Data in a Streaming Mode

3-25 How to Fetch Data in a Streaming Mode Using PL/SQL

3-26 How to Read and Write with Multiple Streams

3-27 How to Execute an Iterative Operation

3-28 How to Fetch Data in Streaming Mode Using ResultSet

3-29 SELECT with getUb8RowCount(); simple

3-30 SELECT with getUb8RowCount(); with prefetch

3-31 SELECT with getUb8RowCount(); array fetch with prefetch

3-32 INSERT with getUb8RowCount(); simple

3-33 INSERT with getUb8RowCount(); with iterations

3-34 UPDATE with getUb8RowCount()

3-35 Statement Caching without Connection Pooling

3-36 Statement Caching with Connection Pooling

4-1 Creating Standalone Objects

4-2 Creating Embedded Objects

4-3 Two Methods for Operator new() in the Object Type Translator Utility
4-4 How to Dynamically Create a Transient Object

4-5 How to Create a Transient Object as a Local Variable

4-6 How to Create a Persistent Object

4-7 How to Create a Transient Object

4-8 How to Declare a Custom Type in the Database

4-9 How to Create a VARRAY Collection

4-10 OTT Support Inheritance

4-11 Listing of demo2.sql for a Sample OCCI Application

4-12 Listing of demo2.typ for a Sample OCCI Application

4-13 Listing of OTT Command that Generates Files for a Sample OCCI Application
4-14 Listing of mappings.h for a Sample OCCI Application

4-15 Listing of mappings.cpp for a Sample OCCI Application

4-16 Listing of demo2.h for a Sample OCCI Application

4-17 Listing of demo2.cpp for a Sample OCCI Application

4-18 Listing of myDemao.h for a Sample OCCI Application

4-19 Listing for myDemo.cpp for a Sample OCCI Application

4-20 Listing of main.cpp for a Sample OCCI Application

5-1 Definition of the BDOUBLE Data Type

5-2 Definition of the BFLOAT Data Type

ORACLE

XXXiii

6-1 How to use Identity Column Metadata

6-2 How to Obtain Metadata About Attributes of a Simple Database Table
6-3 How to Obtain Metadata from a Column Containing User-Defined Types
6-4 How to Obtain Object Metadata from a Reference

6-5 How to Obtain Metadata About a Select List from a ResultSet Object
7-1 How to Read Non-Streamed BLOBs

7-2 How to Read Non-Streamed BFILESs

7-3 How to Read Streamed BLOBs

7-4 How to Write Non-Streamed BLOBs

7-5 How to Write Streamed BLOBs

7-6 Updating a CLOB Value

7-7 Updating a BFILE Value

7-8 How to Use a Persistent Object with a BLOB Attribute

7-9 How to Use a Persistent Object with a BFILE Attribute

8-1 How to Use the OTT Utility

8-2 Object Creation Statements of the OTT Utility

8-3 How to Invoke the OTT Utility to Generate C++ Classes

8-4 How to use the SCHEMA_ NAMES Parameter in OTT Ultility

8-5 How to Define a Schema for Unicode Support in OTT

8-6 How to Use UNICODE=ALL Parameter in OTT

8-7 How to Use UNICODE=ONLYCHAR Parameter in OTT

8-8 How to Create a User Defined INTYPE File Using the OTT Utility
8-9 Listing of ott95a.h

8-10 Listing of ott95b.h

8-11 How to Represent Object Attributes Using the OTT Utility

8-12 How to Map Object Data Types Using the OTT Utility

8-13 OUTTYPE File Generated by the OTT Utility

8-14 How to Generate C++ Classes Using the OTT Utility

8-15 How to Extend C++ Classes Using the OTT Utility

9-1 How to Use Globalization and Unicode Support

9-2 Using wstring Data Type

9-3 Binding UTF8 Data Using the string Data Type

9-4 Binding UTF16 Data Using the UString Data Type

9-5 Using CLOB and NCLOB Data Types

10-1 Creating an Agent

10-2 Setting the Agent on the Consumer

10-3 Creating an AnyData Message with a String Payload
ORACLE

6-2
6-4
6-5
6-6
6-7
7-4
7-5
7-5
7-6
7-6
7-7
7-8
7-9
7-9
8-2
8-2
8-5
8-9

8-11

8-11

8-12

8-15

8-18

8-19

8-20

8-21

8-25

8-28

8-29
9-1
9-2
9-3
9-3
9-3

10-3

10-4

10-5

XXXIV

10-4 Determining the Type of the Payload in an AnyData Message

10-5 Creating an User-defined Payload

10-6 Specifying the Correlation identifier

10-7 Specifying the Sender identifier

10-8 Specifying the Delay and Expiration times of the message

10-9 Specifying message recipients

10-10 Specifying the Priority of a Message

10-11 Creating a Producer, Setting Visibility, and Enqueuing the Message
10-12 Creating a Consumer, Naming the Consumer, and Receiving a Message
10-13 Receiving a Message

10-14 Specifying dequeuing options

10-15 Listening for messages

10-16 How to Register for Notifications; Direct Registration

10-17 How to Use Open Registration with LDAP

11-1 How to Use Transaction Managers with XA

12-1 How to Enable TAF for Connection Pooling

12-2 How to Insert Records Using the addlteration() method

12-3 How to Insert Records Using the executeArrayUpdate() Method
12-4 How to use Array Fetch with a ResultSet

12-5 How to Modify Rows lIteratively and Handle Errors

12-6 How to Use ADRCI for OCCI Application Incidents

12-7 How to Use ADRCI for Instant Client

12-8 How to Enable and Use the Client Result Cache

13-1 Converting From an SQL Pre-Defined Type To AnyData Type

13-2 Creating an SQL Pre-Defined Type From AnyData Type

13-3 Converting From a User-Defined Type To AnyData Type

13-4 Converting From a User-Defined Type To AnyData Type

13-5 How to Get a Date from Database and Use it in Standalone Calculations
13-6 How to Use an Empty IntervalDS Object through Direct Assignment
13-7 How to Use an Empty IntervalDS Object Through *Text() Methods
13-8 How to Use an Empty IntervalYM Object Through Direct Assignment
13-9 How to Use an IntervalYM Object Through ResultSet and toText() Method
13-10 How to Retrieve and Use a Number Object

13-11 Using Default Timestamp Constructor

13-12 Using fromText() method to Initialize a NULL Timestamp Instance
13-13 Comparing Timestamps Stored in the Database

ORACLE

10-5
10-5
10-6
10-6
10-6
10-6
10-7
10-7
10-8
10-8
10-8
10-9
10-10
10-11
11-1
12-4
12-11
12-11
12-11
12-12
12-16
12-17
12-18
13-8
13-8
13-9
13-9
13-75
13-98
13-99
13-109
13-109
13-144
13-277
13-277
13-277

XXXV

List of Figures

1-1 The OCCI Development Process 1-2
4-1 Basic Object Operational Flow 4-7
8-1 The OTT Utility with OCCI 8-26

ORACLE XXXVi

List of Tables

3-1 Normal Data - Not Null and Not Truncated

3-2 Null Data

3-3 Truncated Data

5-1 Summary of Oracle Internal Data Types

5-2 External Data Types and Corresponding C++ and OCCI Types
5-3 Format of the DATE Data Type

5-4 VARNUM Examples

5-5 Data Conversions Between External and Internal Data Types
5-6 Data Conversions for LOBs

5-7 Data Conversions for Date, Timestamp, and Interval Data Types
6-1 Attribute Groupings

6-2 Attributes that Belong to All Elements

6-3 Attributes that Belong to Tables or Views

6-4 Attributes Specific to Tables

6-5 Attributes that Belong to Procedures or Functions

6-6 Attributes that Belong to Package Subprograms

6-7 Attributes that Belong to Packages

6-8 Attributes that Belong to Types

6-9 Attributes that Belong to Type Attributes

6-10 Attributes that Belong to Type Methods

6-11 Attributes that Belong to Collection Types

6-12 Attributes that Belong to Synonyms

6-13 Attributes that Belong to Sequences

6-14 Attributes that Belong to Columns of Tables or Views

6-15 Attributes that Belong to Arguments / Results

6-16 Values for ATTR_LIST _TYPE

6-17 Attributes Specific to Schemas

6-18 Attributes Specific to Databases

7-1 Values of Type LobOptionType

7-2 Values of Type LobOptionValue

8-1 Summary of OTT Utility Parameters

8-2 C++ Object Data Type Mappings for Object Type Attributes
10-1 Notification Result Attributes; ANONYMOUS and AQ Namespace
13-1 Summary of OCCI Classes

13-2 Enumerated Values Used by All OCCI Classes
ORACLE

3-32
3-33
3-33

5-2

5-5
5-11
5-19
5-21
5-22
5-22

6-3

6-8

6-9

6-9

6-9
6-10
6-10
6-10
6-12
6-13
6-14
6-15
6-15
6-15
6-16
6-18
6-18
6-19
7-11
7-11

8-6
8-20

10-13

13-1
13-5

XXXVil

13-3

13-4

13-5

13-6

13-7

13-8

13-9

13-10
13-11
13-12
13-13
13-14
13-15
13-16
13-17
13-18
13-19
13-20
13-21
13-22
13-23
13-24
13-25
13-26
13-27
13-28
13-29
13-30
13-31
13-32
13-33
13-34
13-35
13-36
13-37
13-38
13-39

Summary of Agent Methods

OCCI Data Types supported by AnyData Class
Summary of AnyData Methods

Summary of BatchSQLEXxception Methods
Summary of Bfile Methods

Summary of Blob Methods

Summary of Bytes Methods

Summary of Clob Methods

Enumerated Values Used by Connection Class
Summary of Connection Methods

Summary of ConnectionPool Methods
Enumerated Values Used by Consumer Class
Summary of Consumer Methods

Summary of Date Methods

Enumerated Values Used by Environment Class
Summary of Environment Methods

Fields of IntervalDS Class

Summary of IntervalDS Methods

Fields of IntervalYM Class

Summary of IntervalYM Methods

Summary of Listener Methods

Summary of Map Methods

Enumerated Values Used by Message Class
Summary of Message Methods

Enumerated Values Used by MetaData Class
Summary of MetaData Methods

Summary of NotifyResult Methods

Summary of Number Methods

Enumerated Values Used by PObject Class
Summary of PObject Methods

Enumerated Values Used by Producer Class
Summary of Producer Methods

Enumerated Values Used by Ref Class
Summary of Ref Methods

Summary of RefAny Methods

Enumerated Values Used by ResultSet Class

Summary of ResultSet Methods

ORACLE

13-5
13-10
13-10
13-17
13-19
13-25
13-34
13-36
13-48
13-48
13-62
13-67
13-67
13-75
13-85
13-86
13-98
13-99

13-109
13-110
13-118
13-121
13-122
13-122
13-130
13-137
13-142
13-145
13-164
13-164
13-169
13-169
13-174
13-174
13-179
13-182
13-182

XXXVl

13-40
13-41
13-42
13-43
13-44
13-45
13-46
13-47
13-48
13-49
13-50

Summary of SQLException

Enumerated Values Used by StatelessConnectionPool Class
Summary of StatelessConnectionPool Methods

Enumerated Values used by the Statement Class

Statement Methods

Enumerated Values Used by Stream Class

Summary of Stream Methods

Enumerated Values Used by Subscription Class

Summary of Subscription Methods

Fields of Timestamp and Their Legal Ranges

Summary of Timestamp Methods

ORACLE

13-203
13-206
13-207
13-217
13-217
13-264
13-264
13-266
13-267
13-274
13-274

XXXIX

Preface

Preface

Audience

The Oracle C++ Call Interface (OCCI) is an application programming interface (API)
that allows applications written in C++ to interact with one or more Oracle database
servers. OCCI gives your programs the ability to perform the full range of database
operations that are possible with an Oracle database server, including SQL statement
processing and object manipulation.

The Oracle C++ Call Interface Programmer's Guide is intended for programmers,
system analysts, project managers, and other Oracle users who perform, or are
interested in learning about, the following tasks:

« Design and develop database applications in the Oracle environment.
e Convert existing database applications to run in the Oracle environment.
e Manage the development of database applications.

To use this document, you need a basic understanding of object-oriented
programming concepts, familiarity with the use of Structured Query Language (SQL),
and a working knowledge of application development using C++.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=accé&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents

ORACLE

For more information, see these Oracle resources:

* Oracle C++ Call Interface product information page for white papers, additional
examples, and so on, at Oracle Technology Network

e Discussion forum for all Oracle C++ Call Interface related information is at
Community — Get Started

* Demos at $ORACLE_HOVE/ r dbns/ dermo

x|

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Conventions

The following text conventions are used in this document:

ORACLE

Preface

Oracle Database Concepts

Oracle Database SQL Language Reference

Oracle Database Object-Relational Developer's Guide

Oracle Database SecureFiles and Large Objects Developer's Guide
Oracle Database New Features Guide

Oracle Call Interface Programmer's Guide

Oracle Database Administrator’'s Guide

Oracle Database Advanced Queuing User's Guide

Oracle Database Globalization Support Guide

Many of the examples in this book use the sample schemas of the seed database,
which is installed by default when you install Oracle. Refer to Oracle Database
Sample Schemas for information on how these schemas were created and how
you can use them yourself.

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated

with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for

which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code

in examples, text that appears on the screen, or text that you enter.

xli

Changes in This Release for Oracle C++ Call Interface Programmer's Guide

Changes in This Release for Oracle C++
Call Interface Programmer's Guide

This preface contains:Changes in Oracle Database 12c¢ Release 2 (12.2)

Changes in Oracle Database 12¢ Release 2 (12.2)

The following are changes in Oracle C++ Call Interface Programmer's Guide for
Oracle Database 12c Release 2 (12.2).

This section includes the following topics:

New Features

New Features

There are no new features in this release.

ORACLE xlii

Introduction to OCCI

This chapter provides an overview of Oracle C++ Call Interface (OCCI) and introduces
terminology used in discussing OCCI. You are provided with the background
information needed to develop C++ applications that run in an Oracle environment.

This chapter contains these topics:

* Overview of OCCI

e About Processing SQL Statements
e Overview of PL/SQL

e About Special OCCI/SQL Terms

e About Object Support

e About Additional Support

1.1 Overview of OCCI

ORACLE

Oracle C++ Call Interface (OCCI) is an Application Programming Interface (API) that
provides C++ applications access to data in an Oracle database. OCCI enables C++
programmers to use the full range of Oracle database operations, including SQL
statement processing and object manipulation.

OCCI provides for:

» High performance applications through the efficient use of system memory and
network connectivity

» Scalable applications that can service an increasing number of users and requests

» Comprehensive support for application development by using Oracle database
objects, including client-side access to Oracle database objects

» Simplified user authentication and password management
* n-tiered authentication

* Consistent interfaces for dynamic connection management and transaction
management in two-tier client/server environments or multitiered environments

» Encapsulated and opaque interfaces

OCCI provides a library of standard database access and retrieval functions in the
form of a dynamic run-time library (OCCI classes) that can be linked in a C++
application at run time. This eliminates the requirement to embed SQL or PL/SQL
within third-generation language (3GL) programs.

This section discusses the following topics:

* About Benefits of OCCI

e About Building a C++ Application with OCCI
* About Functionality of OCCI

1-1

Chapter 1
Overview of OCCI

» About Procedural and Nonprocedural Elements

1.1.1 About Benefits of OCCI

OCCI provides these significant advantages over other methods of accessing an
Oracle database:

* Leverages C++ and the Object Oriented Programming paradigm
* |seasytouse
* Is easy to learn for those familiar with JDBC

» Has a navigational interface to manipulate database objects of user-defined types
as C++ class instances

Note that OCCI does not support nonblocking mode.

1.1.2 About Building a C++ Application with OCCI

ORACLE

As Figure 1-1 shows, you compile and link an OCCI program in the same way that you
compile and link an application that does not use the database.

Figure 1-1 The OCCI Development Process

Source Files 17 OCCI Header Files

L Host Language Compiler

Object Files OCGCI Library
Host Linker

- -~ @
Applicati —p Oracle
pplication Shace

N~ =

Oracle supports most popular third-party compilers. The details of linking an OCCI
program vary from system to system. On some platforms, it may be necessary to
include other libraries, in addition to the OCCI library, to properly link your OCCI
programs.

1-2

Chapter 1
Overview of OCCI

¢ See Also:

Your operating system-specific Oracle documentation and the Oracle
Database Installation Guide for more information about compiling and linking
an OCCI application for your specific platform

1.1.3 About Functionality of OCCI

OCCI provides the following functionality:

* APIs to design scalable, multithreaded applications that can support large
numbers of users securely

» SQL access functions, for managing database access, processing SQL
statements, and manipulating objects retrieved from an Oracle database server

» Data type mapping and manipulation functions, for manipulating data attributes of
Oracle types

* Advanced Queuing for message management

» XA compliance for distributed transaction support

e Statement caching of SQL and PL/SQL queries

» Connection pooling for managing multiple connections

* Globalization and Unicode support to customize applications for international and
regional language requirement

* Object Type Translator Utility

* Transparent Application Failover support

1.1.4 About Procedural and Nonprocedural Elements

ORACLE

Oracle C++ Call Interface (OCCI) enables you to develop scalable, multithreaded
applications on multitiered architectures that combine nonprocedural data access
power of structured query language (SQL) with procedural capabilities of C++.

In a nonprocedural language program, the set of data to be operated on is specified,
but what operations may performed, or how the operations can be carried out, is not
specified. The nonprocedural nature of SQL makes it an easy language to learn and
use to perform database transactions. It is also the standard language used to access
and manipulate data in modern relational and object-relational database systems.

In a procedural language program, the execution of most statements depends on
previous or subsequent statements and on control structures, such as loops or
conditional branches, which are not available in SQL. The procedural nature of these
languages makes them more complex than SQL, but it also makes them very flexible
and powerful.

The combination of both nonprocedural and procedural language elements in an OCCI
program provides easy access to an Oracle database in a structured programming
environment.

OCCI supports all SQL data definition, data manipulation, query, and transaction
control facilities that are available through an Oracle database server. For example, an

1-3

Chapter 1
About Processing SQL Statements

OCCI program can run a query against an Oracle database. The queries can require
the program to supply data to the database by using input (bind) variables, as follows:

SELECT name FROM enpl oyees WHERE enpl oyee_id = : enpnum

In this SQL statement, enpnumis a placeholder for a value that is supplied by the
application.

In an OCCI application, you can also take advantage of PL/SQL, Oracle's procedural
extension to SQL. The applications you develop can be more powerful and flexible
than applications written in SQL alone. OCCI also provides facilities for accessing and
manipulating objects in an Oracle database server.

1.2 About Processing SQL Statements

One of the main tasks of an OCCI application is to process SQL statements. Different
types of SQL statements require different processing steps in your program. It is
important to take this into account when coding your OCCI application. Oracle
recognizes several types of SQL statements:

* About Data Definition Language Statements
* About Control Statements
» About Data Manipulation Language Statements

e About Queries

1.2.1 About Data Definition Language Statements

ORACLE

Data Definition Language (DDL) statements manage schema objects in the database.
These statements create new tables, drop old tables, and establish other schema
objects. They also control access to schema objects. Example 1-1 illustrates how to
create a table, and Example 1-2 shows how to grant and revoke privileges on this
table.

DDL statements also allow you to work with objects in the Oracle database, as in
Example 1-3, which illustrates how to create an object table.

Example 1-1 Creating a Table

CREATE TABLE enpl oyee_i nfornmation (
enpl oyee_i d NUVBER(6),
ssn NUMBER(9),
dependents NUVBER(1),
mai | _address VARCHAR(60))

Example 1-2 Specifying Access to a Table

GRANT UPDATE, | NSERT, DELETE ON enpl oyee_information TO donna
REVOKE UPDATE ON enpl oyee_i nformation FROM janie

Example 1-3 Creating an Object Table

CREATE TYPE person_info_type AS OBJECT (
enpl oyee_i d NUVBER(6),
ssn NUMBER(9),
dependents NUMBER(1),
mai | _address VARCHAR(60))

1-4

Chapter 1
About Processing SQL Statements

CREATE TABLE person_info_table OF person_info_type

1.2.2 About Control Statements

OCCI applications treat transaction control, connection control, and system control
statements (for example, DML statements).

See Also:

Oracle Database SQL Language Reference for information about control
statements.

1.2.3 About Data Manipulation Language Statements

Data Manipulation Language (DML) statements can change data in database tables.
For example, DML statements insert new rows into a table, update column values in
existing rows, delete rows from a table, lock a table in the database, and explain the
execution plan for a SQL statement.

DML statements may require an application to supply data to the database by using
input bind variables, as in Example 1-4. This statement can be executed several times
with different bind values, or several rows can be added through array insert in a
single round-trip to the server.

DML statements also enable you to work with objects in the Oracle Database, as in
Example 1-5, which shows the insertion of an instance of a type into an object table.

Example 1-4 Inserting Data Through Input Bind Variables

I NSERT | NTO departments VALUES(:1,:2,:3)

Example 1-5 Inserting Objects into the Oracle Database

I NSERT | NTO person_i nfo_table
VALUES (person_info_type('450987','123456789','3",' 146 Wnfield Street'))

1.2.4 About Queries

ORACLE

Queries are statements that retrieve data from tables in a database. A query can
return zero, one, or many rows of data. All queries begin with the SQL keyword SELECT,
as in Example 1-6:

Queries can require the program to supply data to the database server by using input
bind variables, as in Example 1-7:

In this SQL statement, enp_i d is a placeholder for a value that is supplied by the
application.

Example 1-6 Using the Simple SELECT Statement

SELECT department _nanme FROM departments
VWHERE departnent _id = 30

1-5

Chapter 1
Overview of PL/SQL

Example 1-7 Using the SELECT Statement with Input Variables

SELECT first_nane, |ast_name
FROM enpl oyees
WHERE enpl oyee_id = :enmp_id

1.3 Overview of PL/SQL

ORACLE

PL/SQL is Oracle's procedural extension to the SQL language. PL/SQL processes
tasks that are more complicated than simple queries and SQL data manipulation
language statements. PL/SQL allows several constructs to be grouped into a single
block and executed as a unit. Among these are the following constructs:

e One or more SQL statements

* Variable declarations

* Assignment statements

e Procedural control statements (I F... THEN... ELSE statements and loops)
* Exception handling

In addition to calling PL/SQL stored procedures from an OCCI program, you can use
PL/SQL blocks in your OCCI program to perform the following tasks:

e Call other PL/SQL stored procedures and stored functions.

e Combine procedural control statements with several SQL statements, to be
executed as a unit.

e Access special PL/SQL features such as records, tables, cursor FOR loops, and
exception handling.

e Use cursor variables.
e Access and manipulate objects in an Oracle database.

A PL/SQL procedure or function can also return an output variable. This is called an
out bind variable, as in Example 1-8:

Here, the first parameter is an input variable that provides the ID number of an
employee. The second parameter, or the out bind variable, contains the return value of
employee name.

PL/SQL can also be used to issue a SQL statement to retrieve values from a table of
employees, given a particular employee number. Example 1-9 demonstrates the use
of placeholders in PL/SQL statements.

Note that the placeholders in this statement are not PL/SQL variables. They represent
input and output parameters passed to and from the database server when the
statement is processed. These placeholders must be specified in your program.

Example 1-8 Using PL/SQL to Obtain an Output Variable
GET_EMPLOYEE_NAME(: 1, :2);

Example 1-9 Using PL/SQL to Insert Partial Records into Placeholders

SELECT | ast_nane, first_nanme, salary, commi ssion_pct
INTO :enp_l ast, :enp_first, :sal, :comm
FROM enpl oyees
WHERE enpl oyee_id = :enp_id;

1-6

Chapter 1
About Special OCCI/SQL Terms

1.4 About Special OCCI/SQL Terms

This guide uses special terms to refer to the different parts of a SQL statement.
Consider Example 1-10:

This example contains these parts:

e A SQL command: SELECT

e Three select-list items: first_nane, | ast_nane, and emai |

e A table name in the FROMclause: enpl oyees

¢ Two column names in the WHERE clause: depart nent _i d and comni ssi on_pct
* A numeric input value in the WHERE clause: 40

* A placeholder for an input bind variable in the WHERE clause: : base

When you develop your OCCI application, you call routines that specify to the
database server the value of, or reference to, input and output variables in your
program. In this guide, specifying the placeholder variable for data is called a bind
operation. For input variables, this is called an in bind operation. For output
variables, this is called an out bind operation.

Example 1-10 Using SQL to Extract Partial Records

SELECT first_nane, |ast_nane, emil
FROM enpl oyees
VHERE departnment _id = 80
AND commi ssi on_pct > :base;

1.5 About Object Support

OCCI has facilities for working with object types and objects. An object type is a
user-defined data structure representing an abstraction of a real-world entity. For
example, the database might contain a definition of a per son object. That object type
might have attributes, such as first_nane, | ast _nane, and age, which represent a
person's identifying characteristics.

The object type definition serves as the basis for creating objects, which represent
instances of the object type. By using the object type as a structural definition, a per son
object could be created with the attributes John, Boni vent o, and 30. Object types may
also contain methods, or programmatic functions that represent the behavior of that
object type.

See Also:

e Oracle Database Concepts

e Oracle Database Object-Relational Developer's Guidefor a more detailed
explanation of object types and objects

ORACLE r

Chapter 1
About Object Support

OCCI provides a comprehensive API for programmers seeking to use the Oracle
database server's object capabilities. These features can be divided into several major
categories, which are discussed in subsequent topics:

» About Client-Side Object Cache

e About Run-time Environment for Objects

» About Associative and Navigational Interfaces
* About Interoperability with C (OCI)

* About the Metadata Class

* About the Object Type Translator Utility

1.5.1 About Client-Side Object Cache

The object cache is a client-side memory buffer that provides lookup and memory
management support for objects. It stores and tracks objects which have been fetched
by an OCCI application from the server to the client side. The client-side object cache
is created when the OCCI environment is initialized in obj ect mode. Multiple
applications running against the same server have their own object cache. The client-
side object cache tracks the objects that are currently in memory, maintains references
to objects, manages automatic object swapping and tracks the meta-attributes or type
information about objects. The client-side object cache provides the following benefits:

* Improved application performance by reducing the number of client/server round-
trips required to fetch and operate on objects

* Enhanced scalability by supporting object swapping from the client-side cache
* Improved concurrency by supporting object-level locking

* Automatic garbage collection when cache thresholds are exceeded

1.5.2 About Run-time Environment for Objects

OCCI provides a run-time environment for objects that offers a set of methods for
managing how Oracle objects are used on the client side. These methods provide the
necessary functionality for performing these tasks:

» Connecting to an Oracle database server to access its object functionality
» Allocating the client-side object cache and tuning its parameters

* Retrieving error and warning messages

» Controlling transactions that access objects in the database

» Associatively accessing objects through SQL

» Describing a PL/SQL procedure or function whose parameters or result are of
Oracle object type

1.5.3 About Associative and Navigational Interfaces

ORACLE

Applications that use OCCI can access objects in the database through several types
of interfaces, such as SQL SELECT, | NSERT, and UPDATE statements, and C++ pointers
and references that access objects in the client-side object cache by traversing the
corresponding references.

1-8

Chapter 1
About Object Support

OCCI provides a set of methods to support object manipulation by using SQL SELECT,

| NSERT, and UPDATE statements. To access Oracle objects, these SQL statements use a
consistent set of steps as if they were accessing relational tables. OCCI provides
methods to access objects by using SQL statements for:

* Binding object type instances and references as input and output variables of SQL
statements and PL/SQL stored procedures

» Executing SQL statements that contain object type instances and references
» Fetching object type instances and references

* Retrieving column values from a result set as objects

» Describing a select-list item of an Oracle object type

OCCI provides a seamless interface for navigating objects, enabling you to manipulate
database objects in the same way that you would operate on transient C++ objects.
You can dereference the overloaded arrow (- >) operator on an object reference to
transparently materialize the object from the database into the application space.

1.5.4 About Interoperability with C (OCI)

The OCCI application can retrieve the underlying OCI handles and descriptors by
calling get OCl xxx() methods on the OCCI class instances. These handles can be used
to call OCI functions.

Note that the application must be aware that if any properties are changed on the OCI
handles, the corresponding OCCI instances may or may not reflect this.

This interoperability between OCCI and OCI is not supported if the application uses
OCI functions for any object-related functionality.

1.5.5 About the Metadata Class

Each Oracle data type is represented in OCCI by a C++ class. The class exposes the
behavior and characteristics of the data type by overloaded operators and methods.
For example, the Oracle data type NUMBER is represented by t he Number class. OCCI
provides a metadata class that enables you to retrieve metadata describing database
objects, including object types.

1.5.6 About the Object Type Translator Utility

ORACLE

The Object Type Translator (OTT) utility translates schema information about Oracle
object types into client-side language bindings. That is, OTT translates object type
information into declarations of host language variables, such as structures and
classes. OTT takes an i nt ype file that contains information about Oracle database
schema objects as input. OTT generates an out t ype file and the necessary header and
implementation files that must be included in a C++ application that runs against the
object schema.

In summary, OCCI supports object handling in an Oracle database by:

* Improving application developer productivity by eliminating the requirement to
write the host language variables that correspond to schema objects

e Maintaining SQL as the data definition language of choice by providing the ability
to automatically map Oracle database schema objects created by SQL to host

1-9

Chapter 1
About Additional Support

language variables; this allows Oracle to support a consistent, enterprise-wide
model of the user's data

Facilitating schema evolution of object types by regenerating included header files
when the schema is changed, allowing Oracle applications to support schema
evolution

Executing SQL statements that manipulate object data and schema information
Passing object references and instances as input variables in SQL statements

Declaring object references and instances as variables to receive the output of
SQL statements

Fetching object references and instances from a database

Describing properties of SQL statements that return object instances and
references

Describing PL/SQL procedures or functions with object parameters or results

Extending commit and rollback calls to synchronize object and relational
functionality

Advanced queuing of objects

OTT is typically invoked from the command line by specifying the intype file, the
outtype file, and the specific database connection.

1.6 About Additional Support

This section discusses how to build the OCCI examples that ship with Oracle
Database, and additional resources:

Building OCCI Demos
About OCCI on the Oracle Technology Network

1.6.1 Building OCCI Demos

You must install the demonstration programs as described in Oracle Database
Examples Installation Guide. Parts of these demos are used as examples in this book.
To build the examples, see the following steps:

ORACLE

1.

Navigate to the demo directory.

On Windows, this directory is ORACLE_HOME\ r dbis\ deno.

On Linux and UNIX, this directory is ORACLE_HOVE/ r dbis/ deno.

Ensure that this directory contains the file deno_r dbns. nk.

Create the OCCI demo using the nake command.

e To make all the demos at the same time, use the following parameters:
make -f demo_rdbms. mk occi denos

e To make only one demo, use parameters:
make -f deno_rdbns. nk denoname

e To make a single demo with objects, use parameters:

make -f demo_rdbns. nk buil docci EXE=denpname OBJS=denpnane. o

1-10

Chapter 1
About Additional Support

* To make a single demo with static libraries, use parameters:
make -f demo_rdbns. mk buil docci _static EXE=demonane OBJS=denonane. o

* For more options, examine the demo_r dbns. nk file.

1.6.2 About OCCI on the Oracle Technology Network

You can find additional information on OCCI, including a forum, downloads, and white
papers, at: Oracle Technology Network — Oracle C_++_Call Interface.

ORACLE 1-11

Installation and Upgrading

This chapter provides an overview of installation and upgrading for Oracle C++ Call
Interface (OCCI).

This chapter contains these topics:

e About Installing Oracle C++ Call Interface

e About Upgrading Considerations

e About Determining the Oracle Database Versions
* About the Instant Client

e About Instant Client Light (English)

e About Using OCCI with Microsoft Visual C++

2.1 About Installing Oracle C++ Call Interface

OCCl is installed as part of the Oracle Database. To determine additional configuration
requirements, you should refer to the Oracle Database Installation Guide and the
Oracle Database Client Installation Guide that is specific to your platform.

2.2 About Upgrading Considerations

To use the new features available in this release, you must recompile and relink all
OCCI applications, including classes generated through the Object Type Translator
Utility, when upgrading from an earlier Oracle Client release.

2.3 About Determining the Oracle Database Versions

When an application uses several separate code paths with different server versions
or client patchsets, you can verify these options both during compilation and at run
time.

This sections includes the following topics:
* Determining the Oracle Client Version During Compilation

* About Determining the Oracle Client and Server Versions at Run Time

2.3.1 Determining the Oracle Client Version During Compilation

The OCCI header files define 0CCI _MAJOR VERSI ON and OCCl _M NOR_VERSI ON macros.
Example 2-1 illustrates one way to use these macros:

ORACLE 2-1

Chapter 2
About the Instant Client

Example 2-1 How to Determine the Major Client Version and Set Performance
Features

#if (0OCCI _MAJOR VERSION > 9)
env->set CacheSort edFl ush(true); // benefit of performance, if available
#endi f

2.3.2 About Determining the Oracle Client and Server Versions at Run
Time

During run time, you can check both the client and server versions of the current
Connecti on by using the getClientVersion(), getServerVersion(), and
getServerVersionUString() methods.

2.4 About the Instant Client

The Instant Client feature makes it extremely easy and fast to deploy OCCI based
customer application by eliminating the need for ORACLE_HOME. The storage space
requirements are an additional benefit; Instant Client shared libraries occupy about
one-fourth of the disk space required for a full client installation.

This section includes the following topics:

* About Benefits of Instant Client

* About Installing Instant Client Light (English)

e About Using the Instant Client

e Patching Instant Client Shared Libraries on UNIX

* Regenerating the Data Shared Library and Zip Files
* About Database Connection Names for Instant Client

e Setting Environment Variables for OCCI Instant Client

2.4.1 About Benefits of Instant Client

* Installation involves copying only four files.

* Storage space requirement for the client is minimal

* No loss of functionality or performance exists for deployed applications
« Simplified packaging with ISV applications

The OCCI Instant Client capability simplifies OCCI installation. Even though OCCI is
independent of ORACLE_HOME setting in the Instant Client mode, applications that rely on
ORACLE_HOME settings can continue operation by setting it to the appropriate value. The
activation of the Instant Client mode is only dependent on the ability to load the Instant
Client data shared library. In particular, this feature allows interoperability with Oracle
applications that use ORACLE_HOME for their data, but use a newer release of Oracle
Client.

2.4.2 About Installing the Instant Client

OCCI requires only four shared libraries (or dynamic link libraries, as they are called
on some operating systems) to be loaded by the dynamic loader of the operating

ORACLE 2-2

Chapter 2
About the Instant Client

system. Oracle Database 12c¢ Release 1 (12.1) library names are used; the number
part of library names changes to remain consistent with future release numbers.

For clarity and ease of development, the library structure is changed starting with
Oracle Database 12c¢ Release 1 (12.1). The client shared library, |'i bcl ntsh. so. 12. 1,
depends on | i bcl nt sheore. so. 12. 1. The |i bel nt sheore. so. 12. 1 library contains the
NLS and CORE functionality. Both of these libraries must be installed in the same
directory.

e OCl Instant Client Data Shared Library (I i boci ei . so on Linux and UNIX and
oraoci ei 11. dl I on Windows); correct installation of this file determines if you are
operating in Instant Client mode

e Client Code Library (libcl ntsh. so. 11. 1 on Linux and UNIX and oci . dl | on
Windows)

e Security Library (1ibnnz11. so on Linux and UNIX and or annzsbb11.dl | on
Windows)

* OCCI Library (i bocci . so. 11. 1 on Linux and UNIX and oraocci 11.dlI 1 on
Windows)

Note:

The |i bcl nt sheore. so. 12. 1 file must now reside in the same library as the data
shared library.

This section includes the following topics:

* About the Oracle Technology Network
» About the Complete Client Installation
* Running Oracle Universal Installer

e About the Instant Client CD

2.4.2.1 About the Oracle Technology Network

ORACLE

The Instant Client libraries are also available on the Oracle Technology Network
(OTN) Web site at:

http:// ww. oracl e. conl technol ogy/tech/oci/instantclient/

If these four libraries are accessible through the directory on the Operating System
Library Path variable (LD_LI BRARY_PATH on Linux and UNIX, and PATH on Windows), then
OCCI operates in the Instant Client mode. In this mode, there is no dependency on
ORACLE_HOME and none of the other code and data files provided in ORACLE_HOME are
needed by OCCI.

If you are installing Instant Client from the Oracle Technology Network,

1. Download and install the Instant Client libraries to an empty directory, such as
instantclient 12 1.

2. Set the operating system shared library path environment variable
(LD_LI BRARY_PATH on Linux and UNIX and PATH on Windows) to the directory used in
step 1, instantclient_12_1.

2-3

http://www.oracle.com/technology/tech/oci/instantclient/

Chapter 2
About the Instant Client

This section includes the following topic: About the Instant Client SDK.

2.4.2.1.1 About the Instant Client SDK

Instant Client can also be downloaded as an SDK package. The SDK contains all
necessary header files and a makefile for developing OCCI applications in an Instant
Client environment. Once developed, these applications can be deployed in any client
environment. The SDK has these additional features:

It contains C++ demonstration programs.

It includes libraries required to link applications on Windows, and a Make. bat file is
provided to build demos.

The Makefile deno. nk is provided to build the demos for Linux and UNIX. The
instantclient_12_1 directory must be on the LD LI BRARY_PATH before linking the
application. These programs require symbolic links for the Client Code Library and
the OCCI library, 1i bel ntsh. so. 12. 1 and | i bocci . so. 12. 1 respectively, in the
instantclient_12 1 directory. The demo Makefile, deno. nk, generates these before
the link step. These symbolic links can also be created in a shell script:

cd instantclient_12 1
In-s libclntsh.so.11.1 libclntsh.so
In -s libocci.so.11.1 libocci.so

The SDK also contains the Object Type Translator (OTT) utility and its classes to
generate the application header files.

2.4.2.2 About the Complete Client Installation

If you performed a complete client installation by choosing the Admin option,

On Linux or UNIX platforms, the i boci ei . so library can be copied from
the $ORACLE_HOME/ i nstant cl i ent directory. All the other libraries can be copied from
the $ORACLE_HOME/ | i b directory in a full Oracle installation.

On Windows, the oraoci ei 11. dI | library can be copied from the ORACLE_HOMVE
\instantclient directory. All other Windows libraries can be copied from the
ORACLE_HOME\ bi n directory.

2.4.2.3 Running Oracle Universal Installer

If you did not install the database, you can install these libraries by choosing the
Instant Client option from the Oracle Universal Installer. After completing these steps,
you can begin running OCCI applications.

1.
2.

Install the Instant Client shared libraries to a directory such asinstantclient_12_1.

Set the operating system shared library path environment variable to the directory
from step 1. For example, on Linux or UNIX, set the LD LI BRARY_PATH to
instantclient_12_1. On Windows, set PATHto locate the instantclient_12_1
directory.

2.4.2.4 About the Instant Client CD

You can also install Instant Client from the Instant Client CD. You must install Instant
Client either in an empty directory or on a different system.

ORACLE

2-4

Chapter 2
About the Instant Client

There should be only one set of Oracle libraries on the operating system Library Path
variable; if you have several directories or copies of Instant Client libraries, only one
directory should be on the operating system Library Path.

Similarly, if you also have an installation on an ORACLE_HOMVE of the same system, do not
place both the ORACLE_ HOME/ | i b and Instant Client directory on the operating system
Library Path, regardless of the order in which they appear on the Library Path. Only
one of ORACLE_HOWE/ | i b directory (for non-Instant Client operation) or Instant Client
directory (for Instant Client operation) should be on the operating system Library Path
variable.

2.4.3 About Using the Instant Client

The Instant Client feature is designed for running production applications. For
development, use either the Instant Client SDK or a full installation to access OCCI
header files, makefiles, demonstration programs, and so on.

2.4.4 Patching Instant Client Shared Libraries on UNIX

This feature is not available on Windows platforms.

Because Instant Client is primarily a deployment feature, one of its design objectives is
to reduce the number and size of necessary files. Therefore, Instant Client deployment
does not include all files for patching shared libraries. You should use the OPATCH utility
on an ORACLE_HOME-based full client to patch the Instant Client shared libraries. The
OPATCH utility stores the patching information of the ORACLE_HOME installation in

l'i bel ntsh. so. 11. 1 for Linux and UNIX. This information can be retrieved using the
genezi utility:

genezi -v

If the genezi utility is not installed on the system that deploys Instant Client, you can
copy it from the ORACLE_HOME/ bi n directory of the ORACLE_HOME system.

After applying the patch in an ORACLE_HOME environment, copy the files listed in"About
Installing the Instant Client" to the Instant Client directory. Instead of copying individual
files, you can generate Instant Client *. zi p files, as described in "Regenerating the
Data Shared Library and Zip Files". Then, instead of copying individual files, you can
instead copy the zip files to the target system and unzip them.

2.4.5 Regenerating the Data Shared Library and Zip Files

ORACLE

This feature is not available on Windows platforms.

The Instant Client Data Shared Library, | i boci ei . so, can be regenerated in a Client
Admin Install of ORACLE_HOME. Executing Example 2-2 creates a new | i boci ei . so file
based on current file in ORACLE_HOME and place it in the ORACLE_HOVE/ r dbns/ i nstal | /
instantclient directory; the make targetilibociei generates |ibociei.so.

This location of the regenerated data shared library, | i boci ei . so, is different from the
original location of ORACLE_HOVE/ i nst ant cl i ent

The script in Example 2-2 also creates a directory for About Instant Client Light
(English)

2-5

Chapter 2
About the Instant Client

Example 2-2 How to Regenerate the Data Shared Library Files

mkdir -p $ORACLE_HOME/ rdbms/install/instantclient/light
cd $ORACLE_HOVE/ rdbrs/1i b
meke -f ins_rdbns.nk ilibociei

2.4.6 About Database Connection Names for Instant Client

All Oracle net naming methods that do not require use of ORACLE_HOME or TNS_ADM N to
locate configuration files such as t nsnanes. ora or sqgl net . ora work in the Instant Client
mode.

The connect Stri ng parameter in the createConnection() call can be specified in the
following formats:

e As an SQL Connect URL string, of the form:

[/host: [port][/service nane]

such as:
/I myserver111: 5521/ bj ava2l
e As an Oracle Net keyword-value pair. For example:

(DESCR! PTI ON=(ADDRESS=(PROTOCOL=t ¢p) (HOST=nyser ver 111) (PORT=5521))
(CONNECT DATA=(SERVI CE_NAME=bj ava21)))

e As a connection name that is resolved through Directory Naming when the site is
configured for LDAP server discovery.

e As an entry in the t nsnanes. or a file.

If the TNS_ADM N environment variable is not set, and TNSNAMES entries such as i nst 1
are used, then the ORACLE_HOME variable must be set and the configuration files are
expected to be in the $ORACLE_HOME/ net wor k/ adni n directory.

Naming methods that require TNS_ADM N to locate configuration files continue to
work if the TNS_ADM N environment variable is set.

The ORACLE_HOME variable in this case is only used for locating Oracle Net
configuration files, and no other component of OCCI Client Code Library uses the
value of ORACLE_HOME.

The empty connect Stri ng parameter of createConnection() is supported by setting the
environment variable (TWO_TASK on Linux and UNIX, and LOCAL on Windows) to one of
the values described earlier.

See Also:

Oracle Database Net Services Administrator's Guide for more information on
the connect descriptor.

2.4.7 Setting Environment Variables for OCCI Instant Client

The ORACLE_HOME environment variable no longer determines the location of
Globalization Support, CORE, and error message files. An OCCI-only application
should not require ORACLE_HOME to be set. However, if it is set, it does not have an

ORACLE 2-6

Chapter 2
About Instant Client Light (English)

impact on OCCI's operation. OCCI always obtains its data from the Data Shared
Library. If the Data Shared Library is not available, only then is ORACLE_HOME used and a
full client installation is assumed. When set, ORACLE_HOME should be a valid operating
system path name that identifies a directory.

Environment variables ORA_NLS33, ORA NLS32, and ORA _NLS are ignhored in the Instant
Client mode.

In the Instant Client mode, if the ORA_TZFI LE variable is not set, then the larger, default,
timezlrg_n. dat file (where n is the version number of the file) from the Data Shared
Library is used. If using the smaller ti nezone_n. dat file from the Data Shared Library,
then set the ORA_TZFI LE environment variable to the name of the file without any
absolute or relative path names, as shown in Example 2-3.

If OCCI is not operating in the Instant Client mode because the Data Shared Library is
not available, the ORA TZFI LE variable, if set, names a complete path name.

If TNSNAMES entries are used, then TNS_ADM N directory must contain the TNSNAMVES
configuration files. If TNS_ADM N is not set, the ORACLE_HOVE/ net wor k/ adni n directory must
contain Oracle Net Services configuration files.

Example 2-3 How to set the ORA_TZFILE Environment Variable
On Linux and UNIX:

setenv ORA TZFILE tinmezone_n. dat

On Windows:

set ORA TZFILE tinmezone_n. dat

2.5 About Instant Client Light (English)

Instant Client Light (English) further reduces installation space requirements of the
client installation over Instant Client by another 63 MB. Specifically, the installation of
the Instant Client Light (English) shared library, | i boci i cus. so on Linux and UNIX and
oraociicusll.dll for Windows, occupies 4 MB on UNIX platforms, when the full Instant
Client shared library, libociei.so, occupies 67 MB of disk space.

Instant Client Light (English), as the name implies, is geared toward applications that
require English-only error messages and use either US7ASCI |, WESDEC, or a Unicode
characterset. Instant Client Light (English) also has no restrictions on the TERRI TORY
field of the NLS_LANG setting. As a result, applications that meet these characterset and
territory criteria can significantly reduce its footprint if they operate in the Instant Client
Light (English) environment.

This section includes the following topics:

* About Globalization Settings for Instant Client Light (English)
* About Using Instant Client Light (English)

* About Installing Instant Client Light (English)

2.5.1 About Globalization Settings for Instant Client Light (English)

Instant Client Light (English) supports the following character sets:

ORACLE .

Chapter 2
About Instant Client Light (English)

* Single-byte character sets include US7ASC! | , WESDEC, WVESMSW N1252, and
VE8| SCB859P1.

* Unicode character sets include UTF8, AL16UTF16, and AL32UTF8.

Instant Client Light (English) returns an error message if the application attempts to
use a character set or a national character set not listed here, either on the client or on
the database. The possible error messages, listed here, are only available in English:

* ORA-12734 Instant Client Light: unsupported client national character set
(NLS_LANG value set)

* ORA-12735 Instant Client Light: unsupported client character set (NLS_LANG
value set)

* ORA-12736 Instant Client Light: unsupported server national character set
(NLS_LANG value set)

* ORA-12737 Instant Client Light: unsupported server character set (NLS_LANG
value set)

When setting NLS_LANG parameters, use the following:

Anerican_territory.charset

where territory is any valid Territory that can be specified through NLS_LANG, and
charset is a character set listed in this section.

See Also:

Oracle Database Globalization Support Guide for more information about NLS
settings.

2.5.2 About Using Instant Client Light (English)

To determine whether to operate in the Instant Client mode, OCCI applications look for
the Data Shared Library on the LD_LI BRARY_PATH for Linux and UNIX and PATH on
Windows. If this library is not found, OCCI attempts to load the Instant Client Light
(English) Data Shared Library, I i boci i cus. so for Linux and UNIX and oraoci i cus11.dl |
on Windows. If neither is found, a full ORACLE_HOME installation is assumed.

2.5.3 About Installing Instant Client Light (English)

ORACLE

Note that all Instant Client and Instant Client Light (English) files should always be
copied or installed into an empty directory to ensure that there are no incompatible
binaries in the final installation.

There are three ways to install Instant Client Light (English) as described in the
following topics:

* Downloading from Oracle Technology Network
e About Using the Client Admin Install

* Installing with Oracle Universal Installer

2-8

Chapter 2
About Using OCCI with Microsoft Visual C++

2.5.3.1 Downloading from Oracle Technology Network

When installing Instant Client Light (English) from Oracle Technology Network (OTN),
download and unzip the basi clite. zi p package instead of the usual basi c. zi p
package. You must ensure that the i nstantclient _12_1 directory is empty before
unzipping the libraries. The downloadable package is at the following URL on OTN:

Oracle Instant Cient

2.5.3.2 About Using the Client Admin Install

Instead of copying the Instant Client Data Shared Library from the ORACLE_HOVE/
instantclient directory, use the Instant Client Light (English) Data Shared Library,
l'ibociicus.so for Linux and UNI X and oraociicusll.dl | for Windows, from the
ORACLE_HOME/ i nstant client/light directory. In other words, the Instant Client directory
on the LD _LI BRARY_PATH for Linux and UNIX and PATH for Windows should contain the
smaller Instant Client Light (English) Data Shared Libraries.

2.5.3.3 Installing with Oracle Universal Installer

If the Instant Client option is selected from the Oracle Universal Installer (OUI), the full
Instant Client is installed by default, but the libraries for Instant Client Light (English)
are also installed. To operate in Instant Client Light (English) mode, the Instant Client
Light (English) Data Shared Library must replace the Instant Client library. Therefore,
you must place libociicus.so on the LD _LI BRARY_PATH for Linux and UNIX, and
oraociicusll.dll on the PATHfor Windows. This design ensures that the Instant Client
Light (English) is not enabled by default.

The Instant Client Light (English) Data Shared Library is initially placed in the
ORACLE_HOME/ i nstantclient/light directory. You must move it to the base directory of
the installation, ORACLE_HOME i nst ant cl i ent, and remove the Instant Client Data Shared
Library in that directory.

Example 2-4 Installing Instant Client Light (English) through Oracle Universal
Installer

If the OUI has installed the Instant Client in ny_orai c_12_1 directory on the

LD_LI BRARY_PATH, then the following commands would ensure operation in the Instant
Client Light (English) mode. Note that to avoid use of incompatible binary files, all
Instant Client files should be copied and installed in an empty directory.

cd ny_oraic_12_1
rmlibociei.so
mv light/libociicus.so .

2.6 About Using OCCI with Microsoft Visual C++

ORACLE

The Oracle Database 12¢ Release 1 (12.1) includes OCCI libraries for developing
applications with Microsoft Visual C++ version 10.0 (.NET 2010 SP1 10.0), Microsoft
Visual C++ version 11.0 (.NET 2012 11.0), Microsoft Visual C++ version 12.0 ((NET
2013 12.0), and Intel 12.1 C compilers with Microsoft Visual Studio 2010 STLs.
Microsoft Visual C++ version 8.0 and version 9.0 are no longer supported.

Microsoft Visual C++ version 10.0 libraries are installed in the following default
locations:

2-9

ORACLE

Chapter 2
About Using OCCI with Microsoft Visual C++

ORACLE_BASE\ ORACLE_HOME\ bi n\ or aocci 12. dI |
ORACLE_BASE\ ORACLE_HOME\ oci \ I i b\ nsvc\oraocci 12.1i b

Copies of these two files are also installed under the directory:

ORACLE_BASE\ ORACLE_HOME\ oci \ | i b\ msvc\vcl0

Microsoft Visual C++ 2012 OCCI libraries are installed in the following default location:

ORACLE_BASE\ ORACLE_HOME\ oci \ | i b\ msvc\vell

When developing OCCI applications with MSVC++ 2012, ensure that the OCCI
libraries are correctly selected from this directory for linking and executing.

Microsoft Visual C++ 2013 OCCI libraries are installed in the following default location:

ORACLE_BASE\ ORACLE_HOME\ oci \ | i b\ msvc\vcl2

When developing OCCI applications with MSVC++ 2013, ensure that the OCCI
libraries are correctly selected from this directory for linking and executing.

Applications should link with the appropriate OCCI library. You must ensure that the
corresponding DLL is located in the Windows system PATH.

Applications that link to MSVCRTD. DLL, a debug version of Microsoft C-Runtime, / Mdd
compiler flag, should link with these specific OCCI libraries: oraocci 12d. | i b and
oraocci 12d.dl | .

All Instant Client packages contain the versions of the OCCI DLLs that are compatible
with Microsoft Visual C++ version 10.0.

2-10

Accessing Oracle Database Using C++

This chapter describes the basics of developing C++ applications using Oracle C++
Call Interface (OCCI) to work with data stored in relational databases.

This chapter contains these topics:

About Connecting to a Database

About Pooling Connections

About Executing SQL DDL and DML Statements

About Types of SQL Statements in the OCCI Environment

About Executing SQL Queries

About Executing Statements Dynamically

About Using Larger Row Count and Error Code Range Data Types
About Committing a Transaction

Caching Statements

About Handling Exceptions

3.1 About Connecting to a Database

You have several different options for how your application connects to the database.

This section includes the following topics:

Creating and Terminating an Environment
Opening and Closing a Connection

About Support for Pluggable Databases

3.1.1 Creating and Terminating an Environment

All OCCI processing takes place inside the Envi ronnent class. An OCCI environment

ORACLE

provides application modes and user-specified memory management functions.

Example 3-1 illustrates how to create an OCCI environment.

All OCCI objects created with the creat exxx() methods (connections, connection
pools, statements) must be explicitly terminated. When appropriate, you must also

explicitly terminate the environment. Example 3-2 shows how you terminate an OCCI
environment.

In addition, an OCCI environment should have a scope that is larger than the scope of
the following object types created inside that environment: Agent , Byt es, Dat e, Message,
I nterval DS, I nterval YM Subscri ption, and Ti mest anp. This rule does not apply to BFi | e,
Bl ob, and O ob objects, as demonstrated in Example 3-3.

3-1

Chapter 3
About Connecting to a Database

If the application requires access to objects in the global scope, such as static or
global variables, these objects must be set to NULL before the environment is
terminated. In the preceding example, if b was a global variable, a b. set Nul | () call has
to be made before the t er mi nat eEnvi ronment () call.

You can use the mode parameter of the creat eEnvi ronnent () method to specify that
your application:

* Runs in a threaded environment (THREADED MUTEXED or THREADED UNMUTEXED)
» Uses objects (OBJECT)

The mode can be set independently in each environment.
Example 3-1 How to Create an OCCI Environment

Envi ronnent *env = Environnent:: createEnvironnent();

Example 3-2 How to Terminate an OCCI Environment

Envi ronnent : : t erni nat eEnvi ronnent (env);

Example 3-3 How to Use Environment Scope with Blob Objects

const string userNane = "HR';
const string password = "password";
const string connectString = "";

Environnent *env = Environnent::createEnvironnent();
{
Connection *conn = env->creat eConnecti on(
user Nane, password, connectString);
Statenent *stnt = conn->createSt at ement (
" SELECT bl obcol FROM nytable");
Resul t Set *rs = stnt->execut eQuery();
rs->next();
Blob b = rs->getBlob(1);
cout << "Length of BLOB: " << h.length();

stnt->cl oseResul t Set (rs);
conn->term nateStatenent (stnt);
env- >t er mi nat eConnecti on(conn);

}

Envi ronnent: : t erni nat eEnvi ronnent (env);

3.1.2 Opening and Closing a Connection

ORACLE

The Envi ronnent class is the factory class for creating Connect i on objects. You first
create an Envi ronnent instance, and then use it to enable users to connect to the
database through the creat eConnecti on() method.

Example 3-4 creates an environment instance and then uses it to create a database
connection for a database user HR with the appropriate password.

You must use the ter ni nat eConnecti on() method shown in the following code example
to explicitly close the connection at the end of the working session. In addition, the
OCCI environment should be explicitly terminated.

You should remember that all objects (Ref s, Bf i | es, Producer s, Consuner s, and So on)
created or named within a Connect i on instance must be within the inner scope of that
instance; the scope of these objects must be explicitly terminated before the

3-2

Chapter 3
About Pooling Connections

Connecti on is terminated. Example 3-5 demonstrates how to terminate the connection
and the environment.

Example 3-4 How to Create an Environment and then a Connection to the
Database

Envi ronnent *env
Connection *conn

Envi ronnent : : creat eEnvi ronment () ;
env->creat eConnecti on("HR', "password");

Example 3-5 How to Terminate a Connection to the Database and the
Environment

env- >t er m nat eConnect i on(conn);
Envi ronnent : : t erni nat eEnvi ronnent (env);

3.1.3 About Support for Pluggable Databases

The multitenant architecture enables an Oracle database to contain a portable
collection of schemas, schema objects, and nonschema objects that appear to an
Oracle client as a separate database. A multitenant container database (CDB) is an
Oracle database that includes one or more pluggable databases (PDBSs).

OCCI clients can connect to a PDB using a service whose pluggable database
property has been set to the relevant PDB.

¢ See:

Oracle Database Administrator’'s Guide for more information about PDBs and
for more details about configuring the services to connect to various PDBs

¢ See:

Oracle Call Interface Programmer’s Guide for information about restrictions
while working with PDBs

3.2 About Pooling Connections

ORACLE

This section discusses how to use the connection pooling feature of OCCI. The
information covered includes the following topics:

e About Using Connection Pools
* Using Stateless Connection Pooling

The primary difference between the two is that St at el essConnect i onPool s are used for
applications that do not depend on state considerations; these applications can benefit
from performance improvements available through use of pre-authenticated
connections.

3-3

Chapter 3
About Pooling Connections

3.2.1 About Using Connection Pools

For many middle-tier applications, connections to the database should be enabled for
a large number of threads. Because each thread exists for a relatively short time,
opening a connection to the database for every thread would be inefficient use of
connections, and would result in poor performance.

By employing the connection pooling feature, your application can create a small set
of connections available to a large number of threads, enabling you to use database
resources very efficiently.

This section includes the following topics:
e Creating a Connection Pool

e Creating Proxy Connections

3.2.1.1 Creating a Connection Pool

ORACLE

To create a connection pool, you use the createConnectionPool() method, as
demonstrated in Example 3-6.

The following parameters are used in Example 3-6:

* pool User Nane: The owner of the connection pool
* pool Password: The password to gain access to the connection pool

e connect String: The database name that specifies the database server to which the
connection pool is related

e minConn: The minimum number of connections to be opened when the connection
pool is created

e mxConn: The maximum number of connections that can be maintained by the
connection pool. When the maximum number of connections are open in the
connection pool, and all the connections are busy, an OCCI method call that
needs a connection waits until it gets one, unless set Error OnBusy() was called on
the connection pool

e incrConn: The additional number of connections to be opened when all the
connections are busy and a call needs a connection. This increment is
implemented only when the total number of open connections is less than the
maximum number of connections that can be opened in that connection pool.

Example 3-7 demonstrates how you can create a connection pool.

You can also configure all these attributes dynamically. This lets you design an
application that has the flexibility of reading the current load (number of open
connections and number of busy connections) and tune these attributes appropriately.
In addition, you can use the set Ti meCut () method to time out the connections that are
idle for more than the specified time. The OCCI terminates idle connections
periodically to maintain an optimum number of open connections.

There is no restriction that one environment must have only one connection pool.
There can be multiple connection pools in a single OCCI environment, and these can
connect to the same or different databases. This is useful for applications requiring
load balancing.

3-4

Chapter 3
About Pooling Connections

Example 3-6 The createConnectionPool() Method

virtual ConnectionPool * createConnectionPool (
const string &pool User Nane,
const string &pool Password,
const string &connectString ="",
unsi gned int mnConn =0,
unsi gned int maxConn =1,
unsigned int incrConn =1) = 0;

Example 3-7 How to Create a Connection Pool

const string connectString = "";
unsigned int maxConn = 5;
unsigned int mnConn = 3;
unsigned int incrConn = 2;

ConnectionPool *connPool = env->creat eConnecti onPool (
pool User Nane,
pool Passwor d,
connect String,
m nConn,
maxConn,
i ncr Conn) ;

3.2.1.2 Creating Proxy Connections

If you authorize the connection pool user to act as a proxy for other connections, then
no password is required to log in database users who use connections in the
connection pool.

A proxy connection can be created by using either of the following two versions of the
createProxyConnection() method, demonstrated in Example 3-8.

or

Connect i onPool - >cr eat ePr oxyConnect i on(
const string &usernane,
string roles[],
int nunRol es,
Connection: : ProxyType proxyType = Connecti on:: PROXY_DEFAULT);

The following parameters are used in the previous method example:

* roles[]: The roles array specifies a list of roles to be activated after the proxy
connection is activated for the client

e Connection::ProxyType proxyType = Connecti on: : PROXY_DEFAULT: The enumeration
Connect i on: : ProxyType lists constants representing the various ways of achieving
proxy authentication. PROXY_DEFAULT is used to indicate that nane represents a
database username and is the only proxy authentication mode currently
supported.

Example 3-8 The createProxyConnection() Method

Connect i onPool - >cr eat ePr oxyConnect i on(
const string &usernane,
Connection: : ProxyType proxyType = Connection: : PROXY_DEFAULT);

ORACLE 3-5

Chapter 3
About Pooling Connections

3.2.2 Using Stateless Connection Pooling

ORACLE

Stateless Connection Pooling is specifically designed for use in applications that
require short connection times and do not deal with state considerations. The primary
benefit of Stateless Connection Pooling is increased performance, since the time
consuming connection and authentication protocols are eliminated.

Stateless Connection Pools create and maintain a group of stateless, authenticated
connection to the database that can be used by multiple threads. Once a thread
finishes using its connection, it should release the connection back to the pool. If no
connections are available, new ones are generated. Thus, the number of connections
in the pool can increase dynamically.

Some connections in the pool may be tagged with specific properties. The user may
request a default connection, set certain attributes, such as Globalization Support
settings, then tag it and return it to the pool. When a connection with same attributes is
needed, a request for a connection with the same tag can be made, and one of
several connections in the pool with the same tag can be reused. The tag on a
connection can be changed or reset.

Proxy connections may also be created and maintained through the Stateless
Connection Pooling interface.

Stateless connection pooling improves the scalability of the mid-tier applications by
multiplexing the connections. However, connections from a St at el essConnect i onPool
should not be used for long transactions, as holding connections for long periods leads
to reduced concurrency.

Note:

* OCCI does not check for the correctness of the connection-tag pair. You
are responsible for ensuring that connections with different client-side
properties do not have the same tag.

* Your application should commit or rollback any open transactions before
releasing the connection back to the pool. If this is not done, Oracle
automatically commits any open transactions when the connection is
released.

There are two types of stateless connection pools:

* A homogeneous pool is one in which all the connections are authenticated with
the username and password provided at the time of creation of the pool.
Therefore, all connections have the same authentication context. Proxy
connections are not allowed in such pools.

» Different connections can be authenticated by different usernames in
heterogeneous pools. Proxy connections can also exist in heterogeneous pools,
provided the necessary privileges for creating them are granted on the server.
Additionally, heterogeneous pools support external authentication.

Example 3-9 illustrates a basic usage scenario for connection pools. Example 3-10
presents the usage scenario for creating and using a homogeneous stateless
connection pool, while Example 3-11 covers the use of heterogeneous pools.

3-6

ORACLE

Chapter 3
About Pooling Connections

Example 3-9 How to Use a StatelessConnectionPool

Because the pool size is dynamic, in response to changing user requirements, up to
the specified maximum number of connections. Assume that a stateless connection
pool is created with the following parameters:

e ninConn = 5
e incrConn = 2
e mxConn = 10
Five connections are opened when the pool is created:
e openConn = 5

Using get [AnyTagged] [Proxy] Connecti on() methods, the user consumes all 5 open
connections:

5

e openConn

* busyConn 5

When the user wants another connection, the pool opens 2 new connections and
returns one of them to the user.

e openConn = 7

* busyConn 6

The upper limit for the number of connections that can be pooled is maxConn specified
at the time of creation of the pool.

The user can also modify the pool parameters after the pool is created using the call to
set Pool Si ze() method.

If a heterogeneous pool is created, the i ncr Conn and mi nConn arguments are ignored.

Example 3-10 How to Create and Use a Homogeneous Stateless Connection
Pool

To create a homogeneous stateless connection pool, follow these basic steps and
pseudocode commands:

1. Create a stateless connection pool in the HOMOGENEOQUS mode of the Envi ronnent with
a createStatelessConnectionPool() call.

St at el essConnect i onPool *scp =
env- >creat eSt at el essConnect i onPool (
usernane, passwd, connectString, maxCon, ninCon, incrCon,
St at el essConnect i onPool : : HOVOGENEQUS) ;

2. Get a new or existing connection from the pool by calling the getConnection()
method.

Connection *conn=scp- >get Connecti on(tag);

During the execution of this call, the pool is searched for a connection with a
matching tag. If such a connection exists, it is returned to the user. Otherwise, an
untagged connection authenticated by the pool username and password is
returned.

Alternatively, you can obtain a connection with getAnyTaggedConnection() call. It
returns a connection with a non-matching tag if neither a matching tag or NULL tag

3-7

ORACLE

Chapter 3
About Pooling Connections

connections are available. You should verify the tag returned by a getTag() call on
Connect i on.

Connection *conn=scp- >get AnyTaggedConnecti on(tag);
string tag=conn->get Tag();

Use the connection.

Release the connection to the St at el essConnect i onPool through the
releaseConnection() call.

scp- >rel easeConnection(conn, tag);

An empty tag, "", untags the Connecti on.

You have an option of retrieving the connection from the St at el essConnect i onPool
using the same t ag parameter value in a getConnection() call.

Connection *conn=scp->get Connecti on(tag);

Instead of returning the Connecti on to the St at el essConnect i onPool , you may want
to destroy it using the terminateConnection() call.
scp- >t erm nat eConnecti on(conn);

Destroy the pool through aterminateStatelessConnectionPool() call on the
Envi ronment object.

env- >t erm nat eSt at el essConnect i onPool (scp);

Example 3-11 How to Create and Use a Heterogeneous Stateless Connection
Pool

To create a heterogeneous stateless connection pool, follow these basic steps and
pseudocode commands:

1.

Create a stateless connection pool in the HETEROGENEQUS mode of the Envi r onnent
with a createStatelessConnectionPool() call.

St at el essConnecti onPool *scp =
env- >creat eSt at el essConnect i onPool (
usernane, passwd, connectString, maxCon, ninCon, incrCon,
St at el essConnect i onPool : : HETEROGENEQUS) ;

If you are enabling external authentication, you must also activate the
USES_EXT_AUTH mode in the createStatelessConnectionPool() call.

St at el essConnect i onPool *scp =
env- >creat eSt at el essConnect i onPool (
usernanme, passwd, connectString, maxCon, ninCon, incrCon,
St at el essConnect i onPool : : Pool Type(
St at el essConnect i onPool : : USES_EXT_AUTH|
St at el essConnect i onPool : : HETEROGENEQUS)) ;

Get a new or existing connection from the pool by calling the getConnection()
method of the St at el essConnect i onPool that is overloaded for the heterogeneous
pool option.

Connection *conn=scp->get Connecti on(usernane, passwd, tag);
During the execution of this call, the heterogeneous pool is searched for a
connection with a matching tag. If such a connection exists, it is returned to the

user. Otherwise, an appropriately authenticated untagged connection with a NULL
tag is returned.

3-8

Chapter 3
About Pooling Connections

Alternatively, you can obtain a connection with getAnyTaggedConnection() call
that has been overloaded for heterogeneous pools. It returns a connection with a
non-matching tag if neither a matching tag or NULL tag connections are available.
You should verify the tag returned by a getTag() call on Connecti on.

Connection *conn=scp- >get AnyTaggedConnecti on(username, passwd, tag);
string tag=conn->get Tag();

You may also want to use proxy connections by getProxyConnection() or
getAnyTaggedProxyConnection() calls on the St at el essConnect i onPool .

Connection *pconn = scp->get ProxyConnection(proxyName, roles{},
nuRol es, tag, proxyType);
Connection *pconn = scp->get AnyTaggedPr oxyConnecti on(proxyName, tag,
proxyType);

If the pool supports external authentication, use the following getConnection() call:
Connection *conn=scp->get Connection();
3. Use the connection.

4. Release the connection to the St at el essConnect i onPool through the
releaseConnection() call.

scp- >rel easeConnection(conn, tag);

An empty tag, "", untags the Connecti on.

You have an option of retrieving the connection from the St at el essConnect i onPool
using the same t ag parameter value in a getConnection() call.

Connection *conn=scp->get Connection(tag);

Instead of returning the Connecti on to the St at el essConnect i onPool , you may want
to destroy it using the terminateConnection() call.

scp- >t er mi nat eConnect i on(conn);

5. Destroy the pool through a terminateStatelessConnectionPool() call on the
Envi ronment object.

env- >t erm nat eSt at el essConnect i onPool (scp);

3.2.3 About Database Resident Connection Pooling

ORACLE

Enterprise-level applications must typically handle a high volume of simultaneous user
sessions that are implemented as persistent connections to the database. The
memory overhead of creating and managing these connections has significant
implications for the performance of the database.

Database Resident Connection Pooling solves the problem of too many persistent
connections by providing a pool of dedicated servers for handling a large set of
application connections, thus enabling the database to scale to tens of thousands of
simultaneous connections. It significantly reduces the memory footprint on the
database tier and increases the scalability of both the database and middle tiers.
Database Resident Connection Pooling is designed for architectures with multi-
process application servers and multiple middle tiers that cannot accommodate
connection pooling in the middle tier.

3-9

Chapter 3
About Pooling Connections

Database Resident Connection Pooling architecture closely follows the default
dedicated model for connecting to an Oracle Database instance; however, it removes
the overhead of assigning a specific server to each connection. On the server tier,
most connections are inactive at any given time, and each of these connections
consumes memory. Therefore, database systems that support high connection
volumes face the risk of quickly exhausting all available memory. Database Resident
Connection Pooling allows a connection to use a dedicated server, which combines an
Oracle server process and a user session. Once the connection becomes inactive, it
returns its resources to the pool, for use by similar connections.

In multithreaded middle tiers that are capable of comprehensive connection pooling,
the issue of unused connections is somewhat different. As the number of middle tiers
increases, each middle tier privately holds several connections to the database; these
connections cannot be shared with other middle tiers. Locating the connection pool on
the database instead enables the sharing of connections across similar clients.

Database Resident Connection Pooling supports password-based authentication,
statement caching, tagging, and Fast Application Notification. You can also use client-
side stateless connection pooling with the database resident connection pooling.

Note that clients that hold connections from the database resident connection pool are
persistently connected to a background Connection Broker process. The Connection
Broker implements the pool functionality and multiplexes inbound client connections to
a pool of dedicated server processes. Clients that do not use the connection pool use
dedicated server processes instead.

See Also:

* Oracle Database Concepts for details about the architecture of Database
Resident Connection Pooling

» Oracle Database Administrator’s Guide for details on configuring
Database Resident Connection Pooling

* Oracle Database PL/SQL Packages and Types Reference, for the
DBMS_CONNECTI ON_POOL package

This section includes the following topics:
* Administrating Database Resident Connection Pools

» Using Database Resident Connection Pools

3.2.3.1 Administrating Database Resident Connection Pools

ORACLE

To implement database resident connection pooling, it must first be enabled on the
system by a user with SYSDBA privileges. See Example 3-12 for steps necessary to
initiate and maintain a database resident connection pool.

Note that in Oracle RAC configurations, the database resident connection pool starts
on all configured nodes. If the pool is not stopped, the starting configuration is
persistent across instance restarts: the pool is started automatically when the instance
comes up.

3-10

Chapter 3
About Pooling Connections

Example 3-12 How to Administer the Database Resident Connection Pools
A user with SYSDBA privileges must perform the next steps.

1. Connect to the database.
SQLPLUS / AS SYSDBA

2. [Optional] Configure the parameters of the database resident connection pool. The
default values of a pool are set in the following way:

DBMS_CONNECTI ON_POOL. CONFI GURE_POOL(' SYS_DEFAULT_CONNECTI ON_POOL'
M N=>10,
MAX=>200) ;

3. [Optional] Alter specific parameters of the database resident connection pool
without affecting other parameters.

DBVS_CONNECTI ON_POOL. ALTER PARAM ' SYS_DEFAULT_CONNECTI ON_POOL'
" | NACTI VI TY_TI MEQUT'
10);

4. Start the connection pool. After this step, the connection pool is available to all
qualified clients.

DBMS_CONNECTI ON_POOL. START_POOL(' SYS_DEFAULT_CONNECTI ON_POOL') ;
5. [Optional] Change the parameters of the database resident connection pool.

DBVS_CONNECTI ON_POOL. ALTER PARAM ' SYS_DEFAULT_CONNECTI ON_POOL'
" MAXSI ZE',
20);

6. [Optional] The configuration of the connection pool can be reset to default values.
DBMS_CONNECTI ON_POOL. RESTORE_DEFAULTS (' SYS_DEFAULT_CONNECTI ON_POOL') ;

7. Stop the pool. Note that pool information is persistent: stopping the pool does not
destroy the pool name and configuration parameters.

DBMS_CONNECTI ON_POCL. STOP_POOL() ;

3.2.3.2 Using Database Resident Connection Pools

ORACLE

To use database resident connection pooling, you must specify the connection class
and connection purity. If the application requests a connection that cannot be
potentially tainted with prior connection state, it must specify purity as NEW Oracle
recommends this approach if clients from different geographic locale settings share
the same database instance. When the application can use a previously used
connection, the purity should be set to SELF. In conjunction with connection class and
purity specifications, you can also use an application-specific tags to choose a
previously used connection that has the desired state. The default connection pool
name, as demonstrated in Example 3-12, is SYS_DEFAULT_CONNECTI ON_PQOQL.

This feature overloads StatelessConnectionPool Class and Environment Class
interfaces for retrieving a connection (get Connection() and get ProxyConnecti on()) by
adding the parameters that specify connection class and purity. Every connection
request outside of a client-side connection pool has a default purity of NEwW Connection
requests inside a client-side connection pool have a default purity of SELF.

3-11

ORACLE

Chapter 3
About Pooling Connections

Example 3-13 How to Get a Connection from a Database Resident Connection
Pool

connl = env->createConnection (/*usernane */"hr",
[*passwor d*/ "password", /* database*/ "instl_cnon",
/* connection class */"TESTCC', /* purity */Connection:: SELF);
stm1 = connl->createStatement ("sel ect count(*) fromenp");
rs=stnt 1- >execut eQuery();
while (rs->next())

{
int num= rs->getint(1);
sprintf((char *)tmp, "%!", num;
cout << tnp << endl;

}

stnt 1- >cl oseResul t Set (rs);
connl->term nateSt at enent (stnt1);
env->t er m nat eConnecti on(connl);

Example 3-14 Using Client-Side Pool and Server-Side Pool

St at el essConnect i onPool *scPool ;
QOCCl Connection *connl, *conn2;
scPool = env->createStat el essConnect i onPool
(pool User Nanme, pool Password, connect String, maxConn,
m nConn, incrConn, Statel essConnecti onPool : : HOMOGENEQUS) ;

connl= scPool - >get Connection(/* Connection class name */"TESTCC',
/* Purity */ Connection:: SELF);

/* or, for proxy coonnections */

conn2= scPool - >get ProxyConnection(/* username*/ "HR PROXY",

/*Connection class */"TESTCC', /* Purity */Connection:: SELF);

/* or, for getting a tagged connection */

conn3 = scPool - >get Connection(/*connection class */"TESTCC',
[*purity*/ Connection:: SELF,
[*tag*/ "TESTTAG');

/* Rel easing a tagged connection is done presently */

scPool - >rel easeConnection(conn3, "TESTTAG');

[* To specify purity as new */
connd = scPool - >get Connection(/* connection class */"TESTCC',/* purity of new */
Connection:: NEW;

/* CGet a connection using username and password */
conn5 = scPool - >get Connection (username, password,"TESTCC', Connection:: SELF);

/* Using rol es when asking for a connection */
conné = scPool - >get ProxyConnection (username, roles, nRoles,"TESTCC',
Connection:: SELF);

/* The other code continues as is...witing for clarity */

stmt 1=connl- >createStatenment ("INSERT I NTO enp values (:cl, :c2)");
stm1->setint(1, thrid);
stm1->setString(2, "Test");
int count = stntl->executeUpdate ();
connl->comit();
connl->terminateStatement (stntl);
/* Rel ease the connection */
scPool - >rel easeConnection (connl);

3-12

Chapter 3
About Executing SQL DDL and DML Statements

env- >t erm nat eSt at el essConnecti onPool (scPool);

3.3 About Executing SQL DDL and DML Statements

SQL is the industry-wide language for working with relational databases. In OCCI you
execute SQL commands through the St at enent class.

This section includes the following topics:

» Creating a Statement Object

» Creating a Statement Object that Executes SQL Commands
* Reusing the Statement Object

* Terminating a Statement Object

3.3.1 Creating a Statement Object

To create a Statenent object, call the creat eSt at enent () method of the Connecti on
object, as demonstrated in Example 3-15,

Example 3-15 How to Create a Statement

Statement *stnt = conn->createStatenent();

3.3.2 Creating a Statement Object that Executes SQL Commands

Once you have created a St at ement object, execute SQL commands by calling the
execute(), executeUpdate() , executeArrayUpdate() , or executeQuery() methods on
the Statenent object. These methods are used for the following purposes:

» execute() executes all nonspecific statement types

e executeUpdate() executes DML and DDL statements

e executeArrayUpdate() executes multiple DML statements
e executeQuery() executes a query

This section includes the following topics:

e Creating a Database Table

e Inserting Values into a Database Table

3.3.2.1 Creating a Database Table

ORACLE

Example 3-16 demonstrates how you can create a database table using the
executeUpdate() method.

Example 3-16 How to Create a Database Table Using the executeUpdate()
Method

st nt - >execut eUpdat e(" CREATE TABLE shoppi ng_basket
(item number VARCHAR2(30), quantity NUVBER(3))");

3-13

Chapter 3
About Executing SQL DDL and DML Statements

3.3.2.2 Inserting Values into a Database Table

Similarly, you can execute a SQL | NSERT statement by invoking the executeUpdate()
method, as demonstrated in Example 3-17.

The executeUpdate() method returns the number of rows affected by the SQL
statement.

See Also:

$ORACLE_HOVE/ r dbns/ deno for a code example that demonstrates how to perform
insert, select, update, and delete operations on table rows.

Example 3-17 How to Add Records Using the executeUpdate() Method

st nt - >execut eUpdat e(" | NSERT | NTO shoppi ng_basket
VALUES(' MANGO , 3)");

3.3.3 Reusing the Statement Object

You can reuse a St at ement object to execute SQL statements multiple times. To
repeatedly execute the same statement with different parameters, you should specify
the statement by the setSQL() method of the St at enent object, as demonstrated in
Example 3-18.

You may now execute this | NSERT statement as many times as required. If at a later
time you want to execute a different SQL statement, you simply reset the statement
object, as demonstrated in Example 3-19.

By using the setSQL() method, OCCI statement objects and their associated
resources are not allocated or freed unnecessarily. To retrieve the contents of the
current statement object at any time, use the getSQL() method.

Example 3-18 How to Specify a SQL Statement Using the setSQL() Method
st ->set SQL(" I NSERT | NTO shoppi ng_basket VALUES(:1,:2)");

Example 3-19 How to Reset a SQL Statement Using the setSQL() Method

st ->set SQL("SELECT * FROM shoppi ng_basket WHERE quantity >= :1");

3.3.4 Terminating a Statement Object

ORACLE

You should explicitly terminate and deallocate a St at enent object using the
terminateStatement() method, as demonstrated in Example 3-20.

Example 3-20 How to Terminate a Statement Using the terminateStatement()
Method

Connection::conn->term nat eSt at enent (Statenent *stnt);

3-14

Chapter 3
About Types of SQL Statements in the OCCI Environment

3.4 About Types of SQL Statements in the OCCI
Environment

There are three types of SQL statements in the OCCI environment:

* About Standard Statements use SQL commands with specified values
» Using Parameterized Statements have parameters, or bind variables
» Using Callable Statements call stored PL/SQL procedures and functions

The methods of the Statement Class are subdivided into those applicable to all
statements, to parameterized statements, and to callable statements. Standard
statements are a superset of parameterized statements, and parameterized
statements are a superset of callable statements.

This section also includes the following topics:
* About Streamed Reads and Writes

e About Modifying Rows lIteratively

3.4.1 About Standard Statements

Both Example 3-16 and Example 3-17 demonstrate standard statements in which
you must explicitly define the values of the statement. In Example 3-16, the CREATE
TABLE statement specifies the name of the table shoppi ng_basket . In Example 3-17, the
| NSERT statement stipulates the values that are inserted into the table, (' MANGO , 3).

3.4.2 Using Parameterized Statements

ORACLE

You can execute the same statement with different parameters by setting placeholders
for the input variables of the statement. These statements are referred to as
parameterized statements because they can accept parameter input from a user or a
program.

If you want to execute an | NSERT statement with different parameters, you must first
specify the statement by the setSQL() method of the St at enent object, as
demonstrated in Example 3-18.

You then call the set xxx() methods to specify the parameters, where xxx stands for the
type of the parameter. Provided that the value of the statement object is "1 NSERT | NTO
shoppi ng_basket VALUES(:1,:2)", as specified in Example 3-18, you can use the code in
Example 3-21 to invoke the setString() method and setint() method to input the values
of these types into the first and second parameters, and the executeUpdate() method
to insert the new row into the table.You can reuse the statement object by re-setting
the parameters and again calling the executeUpdate() method. If your application is
executing the same statement repeatedly, you should avoid changing the input
parameter types because this initiates a rebind operation, and affects application
performance.

Example 3-21 How to Use setxxx() Methods to Set Individual Column Values

stnt->setString(l, "Banana"); Il value for first paranmeter
stnt->setInt(2, 5); Il value for second paraneter
st nt - >execut eUpdat e() ; Il execute statenent

3-15

Chapter 3
About Types of SQL Statements in the OCCI Environment

stm->setString(l, "Apple"); Il value for first parameter
stnt->setint(2, 9); /1l value for second paraneter
st nt - >execut eUpdat e() ; Il execute statement

3.4.3 Using Callable Statements

PL/SQL stored procedures, as their name suggests, are procedures that are stored on
the database server for reuse by an application. In OCCI, a callable statement is a
call to a procedure which contains other SQL statements.

If you want to call a procedure count Groceri es(), that returns the quantity of a specified
kind of fruit, you must first specify the input parameters of a PL/SQL stored procedure
through the set XXX() methods of the Stat enent class, as demonstrated in

Example 3-22.

However, before calling a stored procedure, you must specify the type and size of any
QUT parameters by calling the registerOutParam() method, as demonstrated in
Example 3-23. For | N QUT parameters, use the set XXX() methods to pass in the
parameter, and get XXX() methods to retrieve the results.

You now execute the statement by calling the procedure:

st nt - >execut eUpdat e() ; /1 call the procedure

Finally, you obtain the output parameters by calling the relevant get xxx() method:

quantity = stnt->getint(2); /1 get value of the second (QUT) paraneter

Example 3-22 How to Specify the IN Parameters of a PLISQL Stored Procedure
stnt->set SQL("BEGA N count Groceries(:1, :2); END:");

int quantity;
stm->setString(1l, "Apple"); [/ specify the first (IN) paraneter of procedure

Example 3-23 How to Specify OUT Parameters of a PL/ISQL Stored Procedure

st ->regi sterCQut Param(2, Type::OCClIINT, sizeof(quantity));
/'l specify type and size of the second (OUT) paranmeter

This section includes the following topic: Using Callable Statements that Use Array
Parameters.

3.4.3.1 Using Callable Statements that Use Array Parameters

ORACLE

A PL/SQL stored procedure executed through a callable statement can have array of
values as parameters. The number of elements in the array and the dimension of
elements in the array are specified through the set Dat aBuf f er Array() method.

The following example shows the set Dat aBuf f er Array() method:

voi d set Dat aBuf f er Array(
unsi gned i nt param ndex,
void *buffer,
Type type,
ub4 arraySi ze,
ub4 *arraylLength,
sb4 el ement Si ze,
ub2 *el ement Lengt h,

3-16

Chapter 3
About Types of SQL Statements in the OCCI Environment

sh2 *ind = NULL,
ub2 *rc = NULL);

The following parameters are used in the previous method example:

e parani ndex: Parameter number

* buffer: Data buffer containing an array of values

e Type: Type of data in the data buffer

e arraySize: Maximum number of elements in the array
e arrayLength: Number of elements in the array

* elenentSize: Size of the current element in the array

e el enentLengt h: Pointer to an array of lengths. el enent Lengt h[i] has the current
length of the i th element of the array

e ind: Indicator information

* rc: Returns code

3.4.4 About Streamed Reads and Writes

ORACLE

OCCI supports a streaming interface for insertion and retrieval of very large columns
by breaking the data into a series of small chunks. This approach minimizes client-side
memory requirements. This streaming interface can be used with parameterized
statements such as SELECT and various DML commands, and with callable statements
in PL/SQL blocks. The data types supported by streams are BLOB, CLOB, LONG, LONG RAW
RAW and VARCHAR2.

Streamed data is of three kinds:

* A writable stream corresponds to a bind variable in a SELECT/DML statement or an
I Nargument in a callable statement.

* Areadable stream corresponds to a fetched column value in a SELECT statement
or an OUT argument in a callable statement.

» A bidirectional stream corresponds to an | N OUT bind variable.

Methods of the Stream Class support the stream interface.

The getStream() method of the Statement Class returns a stream object that supports
reading and writing for DML and callable statements:

» For writing, it passes data to a bind variable or to an I Nor | N QUT argument
* For reading, it fetches data from an QUT or | N QUT argument

The getStream() method of the ResultSet Class returns a stream object that can be
used for reading data.

The stat us() method of these classes determines the status of the streaming
operation.

This section includes the following topics:

e Binding Data in Streaming Mode; SELECT/DML and PL/SQL
e Fetching Data in Streaming Mode: PL/SQL

e About Fetching Data in Streaming Mode: ResultSet

3-17

Chapter 3
About Types of SQL Statements in the OCCI Environment

* Working with Multiple Streams

3.4.4.1 Binding Data in Streaming Mode; SELECT/DML and PL/SQL

To bind data in a streaming mode, follow these steps and review Example 3-24:

1. Create a SELECT/DM. or PL/SQL statement with appropriate bind placeholders.

2. Call the setBinaryStreamMode() or setCharacterStreamMode() method of the
Statement Class for each bind position that is used in the streaming mode. If the
bind position is a PL/SQL I Nor | N OUT argument type, indicate this by calling the
three-argument versions of these methods and setting the i nArg parameter to TRUE.

Note:

For set Bi narySt reanMbde(), the si ze parameter is limited to 32KB (32,768
bytes).

3. Execute the statement; the status() method of the Statement Class returns
NEEDS_STREAM DATA.

Obtain the stream object through a getStream() method of the Statement Class.
Use writeBuffer() and writeLastBuffer() methods of the Stream Class to write data.

Close the stream with closeStream() method of the Statement Class.

N o g &

After all streams are closed, the status() method of the Statement Class changes
to an appropriate value, such as UPDATE_COUNT_AVAI LABLE.

Example 3-24 How to Bind Data in a Streaming Mode

Statenment *stnt = conn->createStat ement (

"Insert Into testtab(longcol) values (:1)"); //longcol is LONG type col um
st nt->set Char act er St reanvbde(1, 100000);
st nt - >execut eUpdat e() ;

Stream *instream = stnt->get Strean(1);
char buffer[1000];

instream >writeBuffer(buffer, len); /[lwite data
instream >witelastBuffer(buffer, len); Il repeat
stnt->cl oseStrean(instrean); [lstnt->status() is

/| UPDATE_COUNT_AVAI LABLE
Statenent *stnt = conn->createStatenment ("BEG N testproc(:1); END;");
[/if the argument type to testproc is INor INQUT then pass TRUE to

/[set Charact er Streamvbde or set Bi naryStreanibde
stnt->set Bi narySt rean\bde(1, 32768, TRUE);

3.4.4.2 Fetching Data in Streaming Mode: PL/SQL

ORACLE

To fetch data from a streaming mode, follow these steps and review Example 3-25:

1. Create a SELECT/DML statement with appropriate bind placeholders.

2. Call the setBinaryStreamMode() or setCharacterStreamMode() method of the
Statement Class for each bind position into which data is retrieved from the
streaming mode.

3-18

Chapter 3
About Types of SQL Statements in the OCCI Environment

3. Execute the statement; the status() method of the Statement Class returns
STREAM DATA_AVAI LABLE.

4. Obtain the stream object through a getStream() method of the Statement Class.
5. Use readBuffer() and readLastBuffer() methods of the Stream Class to read data.
6. Close the stream with closeStream() method of the Statement Class.

Example 3-25 How to Fetch Data in a Streaming Mode Using PL/SQL

Statenent *stnt = conn->createStatenent ("BEG N testproc(:1); END,");
/largument 1 is OUT type

st nt - >set Char act er St reamvbde(1, 100000);

st nt - >execute();

Stream *outarg = stnt->get Strean(1);
/luse Stream:readBuffer/readlLastBuffer to read data

3.4.4.3 About Fetching Data in Streaming Mode: ResultSet

About Executing SQL Queries and Example 3-28 provide an explanation of how to use
the streaming interface with result sets.

3.4.4.4 Working with Multiple Streams

ORACLE

If you must work with multiple read and write streams, you must ensure that the read
or write of one stream is completed before reading or writing on another stream. To
determine stream position, use the getCurrentStreamParam() method of the
Statement Class or the getCurrentStreamColumn() method of the ResultSet Class.
The status() method of the Stream Class returns READY_FOR _READ if there is data in the
stream available for reading, or it returns | NACTI VE if all the data has been read, as
described in Table 13-45. The application can then read the next streaming column.
Example 3-26 demonstrates how to read and write with two concurrent streams. Note
that it is not possible to use these streaming interfaces with the set Dat aBuf f er ()
method in the same St at enent and Resul t Set objects.

See Also:

"About Application-Managed Data Buffering"

Example 3-26 How to Read and Write with Multiple Streams

Statement *stnt = conn->createSt at ement (
“Insert into testtab(longcoll, longcol2) values (:1,:2)");
//1ongcol 1 AND | ongcol 2 are 2 colums inserted in streaning node

st nt - >set Bi narySt r eamrvbde(1, 100000);
st nt - >set Bi narySt reamrvbde(2, 32768);
st - >execut eUpdat e() ;

Stream *col 1
Stream *col 2

stnt->get Strean(1);
stnt->get Strean(2);

col 1->witeBuffer(buffer, Ien); [/first stream
[/conplete witing coll stream

3-19

Chapter 3
About Types of SQL Statements in the OCCI Environment

col 1->witelastBuffer(buffer, len); [/finish first streamand nove to col 2
col 2->writeBuffer(buffer, len); //second stream

[lreading nultiple streanms

stm = conn->createStatenent("select longcol 1, Iongcol2 fromtesttab");
Resul t Set *rs = stnt->executeQuery();

rs->set Bi narySt reamvbde(1, 100000);

rs->set Bi narySt reamvbde(2, 100000);

while (rs->next())
{
Stream *s1 = rs->get Strean(1)
while (sl->status() == Stream :READY_FOR_READ)
{
s1->readBuf fer (buffer, size); I/ process
[/first streaming colum done
rs->cl oseStrean(sl);

/I move onto next col um. rs->getCurrentStreanCol um() returns 2

Stream *s2 = rs->get Strean(2)
while (s2->status() == Stream : READY_FOR_READ)
{
s2->readBuf fer (buffer, size); I/ process
//close the stream
rs->cl oseStrean(s2);

}

3.4.5 About Modifying Rows Iteratively

While you can issue the execut eUpdat e method repeatedly for each row, OCCI provides
an efficient mechanism for sending data for multiple rows in a single network round-
trip. Use the addl teration() method of the St atement class to perform batch operations
that modify a different row with each iteration.

To execute | NSERT, UPDATE, and DELETE operations iteratively, you must:

e Set the maximum number of iterations

* Set the maximum parameter size for variable length parameters
This section includes the following topics:

e Setting the Maximum Number of Iterations

e Setting the Maximum Parameter Size

* Executing an lterative Operation

3.4.5.1 Setting the Maximum Number of Iterations

ORACLE

For iterative execution, first specify the maximum number of iterations that would be
done for the statement by calling the set MaxI terati ons() method:

St at ement - >set Maxl terations(int naxlterations);

You can retrieve the current maximum iterations setting by calling the
get Max!I terations() method.

3-20

Chapter 3
About Executing SQL Queries

3.4.5.2 Setting the Maximum Parameter Size

If the iterative execution involves variable-length data types, such as string and Byt es,
then you must set the maximum parameter size so that OCCI can allocate the
maximum size buffer:

St at ement - >set MaxPar antSi ze(i nt paraneterlndex, int maxParanSize);

You do not have to set the maximum parameter size for fixed-length data types, such
as Nunber and Dat e, or for parameters that use the set Dat aBuf f er () method.

You can retrieve the current maximum parameter size setting by calling the
get MaxPar ansi ze() method.

3.4.5.3 Executing an Iterative Operation

Once you have set the maximum number of iterations and (if necessary) the maximum
parameter size, iterative execution using a parameterized statement is straightforward,
as shown in Example 3-27.

Iterative execution is designed only for use in | NSERT, UPDATE and DELETE operations that
use either standard or parameterized statements. It cannot be used for callable
statements and queries. Note that the data type cannot be changed between
iterations. For example, if you use setInt () for parameter 1, then you cannot use

set String() for the same parameter in a later iteration

As shown in the example, you call the addi teration() method after each iteration
except the last, after which you invoke execut eUpdat e() method. Of course, if you did
not have a second row to insert, then you would not have to call the addl teration()
method or make the subsequent calls to the set xxx() methods.

In order to get the number of rows affected by each iteration in the DML execution in
Example 3-27, use setRowCountsOption() to enables the feature, followed by
getDMLRowCounts() to return the vector of the number of rows. For the total number
of rows affected, you can use the return value of executeUpdate() , or call
getUb8RowCount().

Example 3-27 How to Execute an Iterative Operation

st ->set SQL("I NSERT I NTO basket tab VALUES(:1, :2)");

stm->setString(l, "Apples"); // value for first paraneter of first row
stnt->setint(2, 6); /1 value for second paraneter of first row
stnt->addl teration(); /1 add the iteration

stm->setString(l, "Oranges"); // value for first parameter of second row
stnt->setint(1, 4); /1 value for second paraneter of second row

st nt - >execut eUpdat e() ; /1 execute statenment

3.5 About Executing SQL Queries

SQL query statements allow your applications to request information from a database
based on any constraints specified. A result set is returned by the query.

This section includes the following topics:

ORACLE 3-21

Chapter 3
About Executing SQL Queries

* Using the Result Set
» About Specifying the Query
* About Optimizing Performance by Setting Prefetch Count

3.5.1 Using the Result Set

ORACLE

Execution of a database query puts the results of the query into a set of rows called
the result set. In OCCI, a SQL SELECT statement is executed by the execut eQuery
method of the Stat ement class. This method returns an Resul t Set object that represents
the results of a query.

Resul t Set *rs = stnt->execut eQuery("SELECT * FROM basket _tab");

Once you have the data in the result set, you can perform operations on it. For
example, suppose you wanted to print the contents of this table. The next () method of
the Resul t Set is used to fetch data, and the get xxx() methods are used to retrieve the
individual columns of the result set, as shown in the following code example:

cout << "The basket has:" << endl;

while (rs->next())

{ string fruit = rs->getString(1); /1 get the first colum as string
int quantity = rs->getint(2); /1 get the second colum as int
cout << quantity << " " << fruit << endl;

}

The next () and status() methods of the Resul t Set class return St at us, as defined in
Table 13-38.

If data is available for the current row, then the status is DATA AVAI LABLE. After all the
data has been read, the status changes to END_OF_FETCH. If there are any output
streams to be read, then the status is STREAM DATA AVAI LABLE, until all the streamed
data are read successfully.

Example 3-28 illustrates how to fetch streaming data into a result set, while section
"About Streamed Reads and Writes" provides the general background.

Example 3-28 How to Fetch Data in Streaming Mode Using ResultSet

char buffer[4096];
Resul t Set *rs = stnt->execut eQuery

(" SELECT col 1, col 2 FROM tabl WHERE col 1 = 11");
rs->set Charact er St reanrvbde(2, 10000);

while (rs->next ())

{

unsigned int length = 0;

unsigned int size = 500;

Stream *stream = rs->get Stream (2);

while (stream>status () == Stream : READY_FOR_READ)

{

length += stream>readBuffer (buffer +length, size);

}

cout << "Read " << length << " bytes into the buffer" << endl;
}

3-22

Chapter 3
About Executing Statements Dynamically

3.5.2 About Specifying the Query

The I N bind variables can be used with queries to specify constraints in the WHERE
clause of a query. For example, the following program prints only those items that
have a minimum quantity of 4:

st ->set SQL("SELECT * FROM basket _tab WHERE quantity >= :1");
int mnimmuantity = 4;

stmt->setlnt(1, mninmmuantity); Il set first paranmeter
Result Set *rs = stnt->executeQuery();

cout << "The basket has:" << endl;

while (rs->next())
cout << rs->getint(2) << " " << rs->getString(1l) << endl;

3.5.3 About Optimizing Performance by Setting Prefetch Count

Although the Resul t Set method retrieves data one row at a time, the actual fetch of
data from the server need not entail a network round-trip for each row queried. To
maximize the performance, you can set the number of rows to prefetch in each round-
trip to the server.

You effect this either by setting the number of rows to be prefetched through the
set Pref et chRowCount () method, or by setting the memory size to be used for
prefetching through the set Pref et chMenorySi ze() method.

If you set both of these attributes, then the specified number of rows are prefetched
unless the specified memory limit is reached first. If the specified memory limit is
reached first, then the prefetch returns as many rows as can fit in the memory space
defined by the call to the set Pref et chMenor ySi ze() method.

By default, prefetching is turned on and the database fetches an extra row all the time.
To turn prefetching off, set both the prefetch row count and memory size to 0.

Prefetching is not in effect if LONG, LOB or Opaque Type columns (such as XM.Type) are
part of the query.

3.6 About Executing Statements Dynamically

ORACLE

When you know that you must execute a DML operation, you use the execut eUpdat e
method. Similarly, when you know that you must execute a query, you use
execut eQuery() method.

If your application must allow for dynamic events and you cannot be sure of which
statement must be executed at run time, then OCCI provides the execut e() method.
Invoking the execut e() method returns one of the following statuses:

« UNPREPARED

PREPARED

e RESULT_SET_AVAILABLE

« UPDATE_COUNT_AVAILABLE
* NEEDS_STREAM_DATA

« STREAM_DATA_AVAILABLE

3-23

Chapter 3
About Executing Statements Dynamically

While invoking the execut e() method returns one of these statuses, you can further
'interrogate’ the statement by using the st atus() method.

Statement stnt = conn->createStatement();
Statement::Status status = stnt->status(); /1l status is UNPREPARED

stnt->set SQL("select * fromenp");
status = stnt->status(); Il status is PREPARED

If a statement object is created with a SQL string, then it is created in a PREPARED state.
For example:

Statement stnt = conn->createStatenment("insert into foo(id) values(99)");
Statement:: Status status = stnt->status();// status is PREPARED
status = stnt->execute(); I/ status is UPDATE_COUNT_AVAI LABLE

When you set another SQL statement on the Statement, the status changes to
PREPARED. For example:

stnt->set SQL("sel ect * fromenp"); Il status is PREPARED
status = stnt->execute(); Il status is RESULT_SET_AVAI LABLE

This section includes the following topic: About Statement Status Definitions.

3.6.1 About Statement Status Definitions

This section describes the possible values of St at us related to a statement object:

« UNPREPARED

* PREPARED

* RESULT_SET_AVAILABLE

« UPDATE_COUNT_AVAILABLE
* NEEDS_STREAM_DATA

« STREAM_DATA_AVAILABLE

3.6.1.1 UNPREPARED

If you have not used the set SQL() method to attribute a SQL string to a statement
object, then the statement is in an UNPREPARED state.

Statement stnt = conn->createStatement();
Statement::Status status = stnt->status(); // status is UNPREPARED

3.6.1.2 PREPARED

ORACLE

If a Statement is created with an SQL string, then it is created in a PREPARED state. For
example:

Statenent stnt = conn->createStatenent ("I NSERT | NTO denp_tab(id) VALUES(99)");
Statement::Status status = stm->status(); /] status is PREPARED

Setting another SQL statement on the St at ement changes the status to PREPARED. For
example:

status = stnt->execute(); /1l status is UPDATE_COUNT_AVAI LABLE
stnt->set SQL("SELECT * FROM deno_tab"); // status is PREPARED

3-24

Chapter 3
About Executing Statements Dynamically

3.6.1.3 RESULT_SET_AVAILABLE

A status of RESULT_SET_AVAI LABLE indicates that a properly formulated query has been
executed and the results are accessible through a result set.

When you set a statement object to a query, it is PREPARED. Once you have executed
the query, the statement changes to RESULT_SET_AVAI LABLE. For example:

stnt->set SQL(" SELECT * from EMP"); Il status is PREPARED
status = stnt->execute(); /1 status is RESULT_SET_AVAI LABLE

To access the data in the result set, issue the following statement:

Resul t Set *rs = Statenent->getResult Set();

3.6.1.4 UPDATE_COUNT_AVAILABLE

When a DDL or DML statement in a PREPARED state is executed, its state changes to
UPDATE_COUNT_AVAI LABLE, as shown in the following code example:

Statenent stnt = conn->createStatenent ("I NSERT | NTO deno_tab(id) VALUES(99)");
Statemt:: Status status = stnt->status(); // status is PREPARED
status = stnt->execute(); Il status is UPDATE_COUNT_AVAI LABLE

This status refers to the number of rows affected by the execution of the statement. It
indicates that:

* The statement did not include any input or output streams.
* The statement was not a query but either a DDL or DML statement.
You can obtain the number of rows affected by issuing the following statement:

st nt - >get Ub8RowCount () ;

Note that a DDL statement results in an update count of zero (0). Similarly, an update
that does not meet any matching conditions also produces a count of zero (0). In such
a case, you cannot determine the kind of statement that has been executed from the
reported status.

3.6.1.5 NEEDS_STREAM_DATA

ORACLE

If there are any output streams to be written, the execute does not complete until all
the stream data is completely provided. In this case, the status changes to
NEEDS_STREAM DATA to indicate that a stream must be written. After writing the stream,
call the status() method to find out if more stream data should be written, or whether
the execution has completed.

In cases where your statement includes multiple streamed parameters, use the
getCurrentStreamParam() method to discover which parameter must be written.

If you are performing an iterative or array execute, the getCurrentStreamlteration()
method reveals to which iteration the data is to be written.

Once all the stream data has been processed, the status changes to either
RESULT_SET_AVAI LABLE or UPDATE_COUNT_AVAI LABLE.

3-25

Chapter 3
About Using Larger Row Count and Error Code Range Data Types

3.6.1.6 STREAM_DATA_AVAILABLE

This status indicates that the application requires some stream data to be read in QUT
or | N QUT parameters before the execution can finish. After reading the stream, call the
st at us method to find out if more stream data should be read, or whether the execution
has completed.

In cases in which your statement includes multiple streamed parameters, use the
get Current St reanPar an{) method to discover which parameter must be read.

If you are performing an iterative or array execute, then the
getCurrent Stream terati on() method reveals from which iteration the data is to be
read.

Once all the stream data has been handled, the status changes to
UPDATE_COUNT _REMOVE_AVAI LABLE.

The Resul t Set class also has readable streams and it operates similar to the readable
streams of the St at ement class.

3.7 About Using Larger Row Count and Error Code Range
Data Types

Starting with Oracle Database Release 12c¢, Oracle C++ Call Interface supports larger
row count and error code range data types. The method that returns the larger row
count is getUb8RowCount() in Statement Class.

This has two benefits:

» Applications running a statement that affects more than UBAMAXVAL rows may
now see the precise value for the number of rows affected.

* Oracle Database can correctly return newer error codes (above ORA- 65535) to
application clients, starting with Oracle Database Release 12c. Older clients
receive an informative message that indicates error code overflow.

This section contains the following topics:
e "Using Larger Row Count in SELECT Operations"
* "Using Larger Row Count in INSERT, UPDATE, and DELETE Operations"

3.7.1 Using Larger Row Count in SELECT Operations

ORACLE

Method getUb8RowCount() returns the number of rows processed after executing the
SELECT statement, as ub8 type. The examples in this section illustrate how to use
getUb8RowCount() in various SELECT scenarios.

e Inthe simplest scenario in Example 3-29, the number of rows affected is the same
as the number fetched.

e When the prefetch option is set, as demonstrated by Example 3-30, it includes the
number of rows prefetched.

e When using an array fetching mechanism in Example 3-31 by invoking the
setDataBuffer() interface, getUb8RowCount() returns the total number of rows
fetched into user buffers, independent of prefetch option.

3-26

Chapter 3
About Using Larger Row Count and Error Code Range Data Types

Example 3-29 SELECT with getUb8RowCount(); simple
The number of rows affected is the number of rows already fetched.

oraub8 | argeRowCount = 0;

Statement *stnt = conn->createStatenment (" SELECT sal ary FROM enpl oyees");
Resul t Set *rs = stnt->executeQuery ();

rs->next();

| ar geRowCount = st it - >get Ub8RowCount () ;

Example 3-30 SELECT with getUb8RowCount(); with prefetch

Here the number of rows affected is the same as those fetched in previous iterations,
plus the number of rows prefetched in the next () call.

oraub8 | argeRowCount = 0;

Statement *stnt = conn->createStatenment (" SELECT sal ary FROM enpl oyees");
stm -> setPrefetchRowCount (prefetch_count);

Resul t Set *rs = stnt->executeQuery ();

rs->next();

| ar geRowCount = st nt - >get Ub8RowCount () ;

Example 3-31 SELECT with getUb8RowCount(); array fetch with prefetch

Here number of rows affected, value of | ar geRowCount , is the number of rows fetched
into user buffer in previous iterations, plus the number of rows fetched in either
next (max) or next () call. It is independent of the value of prefetch.

oraub8 | argeRowCount = 0;

Statement *stnt=conn->creat eSt at ement (" SELECT col 1 FROM t abl e1");
int mx = 20;

int prefetch_count = 10;

ub2 I engt hCL[max];

ub4 ci[mex];
for (i =0; i <mx, ++) {
cl[i] =0
lengthCl[i] = sizeof (cl[i]);
}

stm -> setPrefet chRowCount (prefetch_count);

Resul t Set *rs = stnt->executeQuery();

rs->setDataBuffer (1, cl, OCCIINT, sizeof (ub4), lengthCl);
rs->next (mx);

| ar geRowCount = st nt - >get Ub8RowCount () ;

3.7.2 Using Larger Row Count in INSERT, UPDATE, and DELETE

Operations

ORACLE

For | NSERT, UPDATE, and DELETE statements, method getUb8RowCount() returns the
number of rows processed by the most recent statement.

Example 3-32 INSERT with getUb8RowCount(); simple
The value of | ar geRowCount is the number of rows inserted, which is 1.

oraub8 | argeRowCount = 0;
Statement *stnt = conn->createStatement ("I NSERT INTO tablel values (:1)");
stnt - >set Nunber (1, 100);

3-27

Chapter 3
About Committing a Transaction

st nt - >execut eUpdat e() ;
| ar geRowCount = st nt - >get Ub8RowCount () ;

Example 3-33 INSERT with getUb8RowCount(); with iterations
Here the value of | ar geRowCount is equal to nax.

int max;

oraub8 | argeRowCount = 0;

Statement *stnt=conn->createStatenent ("I NSERT INTO tablel values (:1)");
stnt->set Maxlterations (max);

for(i =0; i < mx-1; i++) {
stnt->set Nunmber (1, 100);
stnt->addlteration ();

}

stnt->set Nunber (1, 100);
st nt - >execut eUpdat e() ;
| ar geRowCount = st nt - >get Ub8RowCount () ;

Example 3-34 UPDATE with getUb8RowCount()
Here the value of | ar geRowCount is the number of rows updated.

oraub8 | argeRowCount = 0;
Statenment *stnt=conn- >creat eSt at enent (
"UPDATE tablel SET COL1 = COL1+100 WHERE COL1=:1");
stnt->set Nunber (1, 200);
st nt - >execut eUpdat e() ;
| ar geRowCount = st nt - >get Ub8RowCount () ;

3.8 About Committing a Transaction

All SQL DML statements are executed in the context of a transaction. An application
causes the changes made by these statement to become permanent by either
committing the transaction, or undoing them by performing a rollback. While the SQL
COW T and ROLLBACK statements can be executed with the execut eUpdat e() method, you
can also call the Connection:: comit() and Connection::rol | back() methods.

If you want the DML changes that were made to be committed immediately, you can
turn on the auto commit mode of the St at enent class by issuing the following
statement:

St at ement : : set Aut oCommi t (TRUE) ;

Once auto commit is in effect, each change is automatically made permanent. This is
similar to issuing a commit right after each execution.

To return to the default mode, auto commit off, issue the following statement:

St atement : : set Aut oConmi t (FALSE) ;

3.9 Caching Statements

The statement caching feature establishes and manages a cache of statements within
a session. It improves performance and scalability of application by efficiently using
prepared cursors on the server side and eliminating repetitive statement parsing.

ORACLE 3-28

ORACLE

Chapter 3
Caching Statements

Statement caching can be used with connection and session pooling, and also without
connection pooling. Please review Example 3-35 and Example 3-36 for typical usage
scenarios.

Example 3-35 Statement Caching without Connection Pooling

These steps and accompanying pseudocode implement the statement caching feature
without use of connection pools:

1.

6.

Create a Connect i on by making a createConnection() call on the Envi r onnent
object.

Connection *conn = env->creat eConnecti on(
usernane, password, connecstr);

Enable statement caching on the Connecti on object by using a nonzero si ze
parameter in the setStmtCacheSize() call.

conn- >set St nt CacheSi ze(10) ;
Subsequent calls to getStmtCacheSize() would determine the size of the cache,

while setStmtCacheSize() call changes the size of the statement cache, or
disables statement caching if the si ze parameter is set to zero.

Create a Stat ement by making a createStatement() call on the Connecti on object;
the Statenent is returned if it is in the cache, or a new St at ement with a NULL tag is
created for the user.

Statenent *stnmt = conn->createStatenment(sql);

To retrieve a previously cached tagged statement, use the alternate form of the
createStatement() method:

Statement *stnt = conn->createStatement(sql, tag);

Use the statement to execute SQL commands and obtain results.

Return the statement to cache.

conn->terni nateSt at ement (stnt, tag);

If you do not want to cache this statement, use the disableCaching() call and an
alternate from of terminateStatement():

st nt - >di sabl eCachi ng();
conn- >t erm nat eSt at ement (stnt);

If you must verify whether a statement has been cached, issue an isCached() call
on the Connect i on object.

You can choose to tag a statement at release time and then reuse it for another
statement with the same tag. The tag is used to search the cache. An untagged
statement, where tag is NULL, is a special case of a tagged statement. Two
statements are considered different if they only differ in their tags, and if only one
of them is tagged.

Terminate the connection.

Example 3-36 Statement Caching with Connection Pooling

These steps and accompanying pseudocode implement the statement caching feature
with connection pooling.

3-29

ORACLE

Chapter 3
Caching Statements

Statement caching is enabled only for connection created after the set St nt CacheSi ze()

call.

If statement cac.hing is not enabled at the pool level, it can still be implemented for
individual connections in the pool.

1.

Create a Connecti onPool by making a call to the createConnectionPool() of the
Envi ronment object.

ConnectionPool *conPool = env->creat eConnecti onPool (
username, password, connecstr,
m nConn, maxConn, incrConn);

If using a St at el essConnect i onPool , call createStatelessConnectionPool() instead.
Subsequent operations are the same for Connecti onPool and
St at el essConnect i onPool objects.

Statel ess ConnectionPool *conPool = env->createStatel essConnectionPool (
username, password, connecstr,
m nConn, maxConn, incrConn, node);

Enable statement caching for all Connect i ons in the Connecti onPool by using a
nonzero si ze parameter in the setStmtCacheSize() call.

conPool - >set St nt CacheSi ze(10) ;
Subsequent calls to getStmtCacheSize() would determine the size of the cache,

while setStmtCacheSize() call changes the size of the statement cache, or
disables statement caching if the si ze parameter is set to zero.

Get a Connect i on from the pool by making a createConnection() call on the
Connect i onPool object; the Statenent is returned if it is in the cache, or a new
Stat enent with a NULL tag is created for the user.

Connection *conn = conPool - >creat eConnecti on(user nane, password, connecstr);

To retrieve a previously cached tagged statement, use the alternate form of the
createStatement() method:

Statement *stnt = conn->createStatement(sql, tag);

Create a Stat enent by making a createStatement() call on the Connecti on object;
the Statenent is returned if it is in the cache, or a new Stat ement with a NULL tag is
created for the user.

Statenent *stmt = conn->createStatenment(sql);

To retrieve a previously cached tagged statement, use the alternate form of the
createStatement() method:

Statement *stnt = conn->createStatement(sql, tag);
Use the statement to execute SQL commands and obtain results.
Return the statement to cache.

conn->terninateStatement (stnt, tag);

If you do not want to cache this statement, use the disableCaching() call and an
alternate from of terminateStatement():

st nt - >di sabl eCachi ng() ;
conn- >t erm nat eSt at enent (stnt);

3-30

Chapter 3
About Handling Exceptions

If you must verify whether a statement has been cached, issue an isCached() call
on the Connect i on object.

7. Release the connection terminateConnection().

conPool - >t er m nat eConnect i on(conn);

3.10 About Handling Exceptions

ORACLE

Each OCCI method can generate an exception if it is not successful. This exception is
of type SQLExcepti on. OCCI uses the C++ Standard Template Library (STL), so any
exception that can be thrown by the STL can also be thrown by OCCI methods.

The STL exceptions are derived from the standard exception class. The
exception: : what () method returns a pointer to the error text. The error text is
guaranteed to be valid during the catch block

The SQLExcept i on class contains Oracle specific error numbers and messages. It is
derived from the standard exception class, so it too can obtain the error text by using
the exception: : what () method.

In addition, the SQLExcepti on class has two methods it can use to obtain error
information. The get Error Code() method returns the Oracle error number. The same
error text returned by exception: : what () can be obtained by the get Message() method.
The get Message() method returns an STL string so that it can be copied like any other
STL string.

Based on your error handling strategy, you may choose to handle OCCI exceptions
differently from standard exceptions, or you may choose not to distinguish between the
two.

If you decide that it is not important to distinguish between OCCI exceptions and
standard exceptions, your catch block might look similar to the following:

catch (exception &excp)

{
}

cerr << excp.what() << endl;

Should you decide to handle OCCI exceptions differently than standard exceptions,
your catch block might look like the following:

catch (SQ.Exception &sql Excp)
{

}
catch (exception &excp)

{
}

cerr <<sqgl Excp.getErrorCode << ": " << sql Excp. get Error Message() << endl;

cerr << excp.what() << endl;

In the preceding catch block, SQL exceptions are caught by the first block and non-
SQL exceptions are caught by the second block. If the order of these two blocks were
to be reversed, SQL exceptions would never be caught. Since SQLExcept i on is derived
from the standard exception, the standard exception catch block would handle the
SQL exception as well.

3-31

Chapter 3
About Handling Exceptions

¢ See Also:

» Description of a special feature for handling errors that arise during batch
updates, described in section "Modifying Rows Iteratively" in Optimizing
Performance of C++ Applications

e Oracle Database Error Messages Referencefor more information about
Oracle error messages.

This section includes the following topic: About Handling Null and Truncated Data.

3.10.1 About Handling Null and Truncated Data

In general, OCCI does not cause an exception when the data value retrieved by using
the get xxx() methods of the Resul t Set class or Stat enent class is NULL or truncated.
However, this behavior can be changed by calling the set Error OnNul | () method or

set Error OnTruncat e() method. If the set Errorxxx() methods are called with
causeExcept i on=TRUE, then an SQLExcept i on is raised when a data value is NULL or
truncated.

The default behavior is not to raise an SQLExcepti on. A column or parameter value can
also be NULL, as determined by a call to i sNul | () for a Resul t Set or Stat ement object
returning TRUE:

rs->i sNul | (col uml ndex);
st ->i sNul | (parant ndex) ;

If the column or parameter value is truncated, it also returns TRUE as determined by a
i sTruncated() call on a Resul t Set or St atement object:

rs->i sTruncat ed(col uml ndex) ;
st nt->i sTruncat ed(par am ndex) ;

For data retrieved through the set Dat aBuf f er () method and set Dat aBuf f er Array()
method, exception handling behavior is controlled by the presence or absence of
indicator variables and return code variables as shown in Table 3-1, Table 3-2, and
Table 3-3.

Table 3-1 Normal Data - Not Null and Not Truncated

|
Return Code Indicator - not provided Indicator - provided

Not provided error = 0 error =0

indicator = 0

Provided error = 0 error =0

return code = 0 indicator = 0
return code = 0

ORACLE 3-32

ORACLE

Table 3-2 Null Data

Chapter 3
About Handling Exceptions

Indicator - provided

Return Code Indicator - not provided
Not provided SQLEXcept i on

error = 1405
Provided SQLEXcept i on

error = 1405

return code = 1405

error =0
indicator = -1

error =0
indicator = -1
return code = 1405

Table 3-3 Truncated Data

Indicator - provided

Return Code Indicator - not provided
Not provided SQLExcepti on
error = 1406

Provided error = 24345

return code = 1405

SQLException
error = 1406
indicator = data_len

error = 24345
indicator = data_len
return code = 1406

In Table 3-3, dat a_| en is the actual length of the data that has been truncated if this
length is less than or equal to SB2MAXVAL. Otherwise, the indicator is set to - 2.

3-33

Object Programming

This chapter provides information on how to implement object-relational programming
using the Oracle C++ Call Interface (OCCI).

This chapter contains these topics:

* Overview of Object Programming

e About Working with Objects in C++ with OCCI

* About Representing Objects in C++ Applications
* About Developing a C++ Application using OCCI
e Migrating C++ Applications to Oracle Using OCCI
* Overview of Associative Access

* Overview of Navigational Access

e Overview of Complex Object Retrieval

* Working with Collections

* About Using Object References

* About Deleting Objects from the Database

* About Type Inheritance

A Sample OCCI Application

4.1 Overview of Object Programming

OCCI supports both the associative and navigational style of data access.
Traditionally, third-generation language (3GL) programs manipulate data stored in a
database by using the associative access based on the associations organized by
relational database tables. In associative access, data is manipulated by executing
SQL statements and PL/SQL procedures. OCCI supports associative access to
objects by enabling your applications to execute SQL statements and PL/SQL
procedures on the database server without incurring the cost of transporting data to
the client.

Object-oriented programs that use OCCI can also make use of nhavigational access
that is a key aspect of this programming paradigm. Object relationships between
objects are implemented as references (REFs). Typically, an object application that
uses navigational access first retrieves one or more objects from the database server
by issuing a SQL statement that returns REFs to those objects. The application then
uses those REFs to traverse related objects, and perform computations on these other
objects as required. Navigational access does not involve executing SQL statements,
except to fetch the references of an initial set of objects. By using the OCCI APIs for
navigational access, your application can perform the following functions on Oracle
objects:

» Creating, accessing, locking, deleting, copying and flushing objects

ORACLE 4-1

Chapter 4
About Working with Objects in C++ with OCCI

* Getting references to objects and navigating through the references

This chapter gives examples that show you how to create a persistent object, access
an object, modify an object, and flush the changes to the database server. It discusses
how to access the object using both navigational and associative approaches.

4.2 About Working with Objects in C++ with OCCI

Many of the programming principles that govern a relational OCCI applications are
identical for object-relational applications. An object-relational application uses the
standard OCCI calls to establish database connections and process SQL statements.
The difference is that the SQL statements that are issued retrieve object references,
which can then be manipulated with OCCI object functions. An object can also be
directly manipulated as a value (without using its object reference).

Instances of an Oracle type are categorized into persistent objects and transient
objects based on their lifetime. Instances of persistent objects can be further divided
into standalone objects and embedded objects depending on whether they are
referenced by way of an object identifier.

This section discusses the following topics:

* About Persistent Objects
e About Transient Objects

e About Values

4.2.1 About Persistent Objects

ORACLE

A persistent object is an object which is stored in an Oracle database. It may be
fetched into the object cache and modified by an OCCI application. The lifetime of a
persistent object can exceed that of the application which is accessing it. There are
two types of persistent objects:

» A standalone instance is stored in a database table row, and has a unique object
identifier. An OCCI application can retrieve a reference to a standalone object, pin
the object, and navigate from the pinned object to other related objects.
Standalone objects may also be referred to as referenceable objects.

It is also possible to select a persistent object, in which case you fetch the object
by value instead of fetching it by reference.

* An embedded instance is not stored in a database table row, but rather is
embedded within another object. Examples of embedded objects are objects
which are attributes of another object, or objects that exist in an object column of a
database table. Embedded objects do not have object identifiers, and OCCI
applications cannot get REFs to embedded instances.

Embedded objects may also be referred to as nonreferenceable objects or value
instances. You may sometimes see them referred to as values, which is not to be
confused with scalar data values. The context should make the meaning clear.

Users do not have to explicitly delete persistent objects that have been materialized
through references.

Users should delete persistent objects created by application when the transactions
are rolled back

4-2

Chapter 4
About Working with Objects in C++ with OCCI

The SQL examples, Example 4-1 and Example 4-2, demonstrate the difference
between these two types of persistent objects.

Example 4-1 Creating Standalone Objects

Objects that are stored in the object table person_t ab are standalone objects. They
have object identifiers and can be referenced. They can be pinned in an OCCI

application.
CREATE TYPE person_t AS OBJECT
(name var char 2(30),
age nunber (3));

CREATE TABLE person_tab OF person_t;

Example 4-2 Creating Embedded Objects

Objects which are stored in the manager column of the depart nent table are embedded
objects. They do not have object identifiers, and they cannot be referenced. Therefore,
they cannot be pinned in an OCCI application, and they also never have to be
unpinned. They are always retrieved into the object cache by value.

CREATE TABLE depart nent
(dept no nunber,
deptnanme varchar2(30),
manager person_t);

The Array Pin feature allows a vector of references to be dereferenced in one round-
trip to return a vector of the corresponding objects. A new global method,

pi nVect or Of Ref s() , takes a vector of Ref s and populates a vector of PQvj ect s in a single
round-trip, saving the cost of pinning n- 1 references in n- 1 round-trips.

4.2.2 About Transient Objects

A transient object is an instance of an object type. Its lifetime cannot exceed that of the
application. The application can also delete a transient object at any time.

The Object Type Translator (OTT) utility generates two oper at or new methods for each
C++ class, as demonstrated in Example 4-3Example 4-3:

Example 4-4 demonstrates how to dynamically create a transient object. Transient
objects cannot be converted to persistent objects. Their role is fixed at the time they
are instantiated, and it is your responsibility to free memory by deleting transient
objects.

A transient object can also be created on the stack as a local variable, as
demonstrated in Example 4-5. The latter approach guarantees that the transient object
is destroyed when the scope of the variable ends.

See Also:

e Oracle Database Conceptsfor more information about objects

ORACLE 4.3

Chapter 4
About Representing Objects in C++ Applications

Example 4-3 Two Methods for Operator new() in the Object Type Translator
Utility
class Person : public PObject {
public:
dvoi d *operator new(size_t size); /'l creates transient instance

dvoi d *operator new(size_t size, Connection &conn, string table);
/'l creates persistent instance

}
Example 4-4 How to Dynamically Create a Transient Object

Person *p = new Person();

Example 4-5 How to Create a Transient Object as a Local Variable

Person p;

4.2.3 About Values

In this manual, a value refers to either:

e A scalar value which is stored in a non-object column of a database table. An
OCCI application can fetch values from a database by issuing SQL statements.

* An embedded (nonreferenceable) object.

The context should make it clear which meaning is intended.

It is possible to SELECT a referenceable object into the object cache, rather than pinning
it, in which case you fetch the object by value instead of fetching it by reference.

4.3 About Representing Objects in C++ Applications

Before an OCCI application can work with object types, those types must exist in the
database. Typically, you create types with SQL DDL statements, such as CREATE TYPE.

This section discusses the following topics:

* Creating Persistent and Transient Objects

» Creating Object Representations using the OTT Ultility

4.3.1 Creating Persistent and Transient Objects

ORACLE

This section discusses how persistent and transient objects are created.

Before you create a persistent object, you must have created the environment and
opened a connection.

A persistent object is created in the database only when one of the following occurs:
e The transaction is committed (Connection: : comit())

* The object cache is flushed (Connecti on: : fl ushCache())

* The object itself is flushed (PObj ect : : fl ush())

Example 4-6 shows how to create a persistent object, addr, in the database table,
addr _t ab.

4-4

Chapter 4
About Representing Objects in C++ Applications

Example 4-7 shows hot to create an instance of the transient object ADDRESS.

Example 4-6 How to Create a Persistent Object

CREATE TYPE ADDRESS AS OBJECT (
state CHAR(2),
zi p_code CHAR(5));
CREATE TABLE ADDR TAB of ADDRESS;
ADDRESS *addr = new(conn, "ADDR TAB') ADDRESS("CA", "94065");

Example 4-7 How to Create a Transient Object

ADDRESS *addr _trans = new ADDRESS("MD', "94111");

4.3.2 Creating Object Representations using the OTT Utility

ORACLE

When your C++ application retrieves instances of object types from the database, it
must have a client-side representation of the objects. The Object Type Translator
(OTT) utility generates C++ class representations of database object types for you.
Example 4-8 shows the declaration of a custom type in the database, and the
corresponding C++ class that the OTT utility generates.

These class declarations in Example 4-8 are automatically written by OTT to a header
file that you name. This header file is included in the source files for an application to
provide access to objects. Instances of a PObj ect (and also instances of classes
derived from Pbj ect S) can be either transient or persistent. The methods writ eSQL()
and readSQ.() are used internally by the OCCI object cache to linearize and
delinearize the objects and are not to be used or modified by OCCI clients.

¢ See Also:

Object Type Translator Utility for more information about the OTT utility

Example 4-8 How to Declare a Custom Type in the Database

CREATE TYPE address AS OBJECT (state CHAR(2), zip_code CHAR(5));

The OTT utility produces the following C++ class:
class ADDRESS : public PQbject {

prot ect ed:
string state;
string zip;

public:
voi d *operator new(size_t size);
voi d *operator new(size_t size,
const Connection* conn,
const stringé& table);
string getSQ.TypeName() const;
voi d get SQLTypeNane(oracl e: : occi::Environment *env, void **schemaNane,
unsi gned int &schenaNaneLen, void **typeName,
unsi gned i nt & ypeNaneLen) const;
ADDRESS(voi d *ctx) : PObject(ctx) { };
static void *readSQ(void *ctx);
virtual void readSQ(AnyData& stream;

4-5

Chapter 4
About Developing a C++ Application using OCCI

static void witeSQ(void *obj, void *ctx);
virtual void witeSQ(AnyData& strean;

}

4.4 About Developing a C++ Application using OCCI

This section discusses the steps involved in developing a basic OCCI object

application.

This section discusses the following topics:

e Developing Basic Object Program Structure

e About Basic Object Operational Flow

4.4.1 Developing Basic Object Program Structure

The basic structure of an OCCI application that uses objects is similar to a relational
OCCI application, the difference being object functionality. The steps involved in an
OCCI object program include:

1. Initialize the Envi ronnent . Initialize the OCCI programming environment in object
mode. Your application must include C++ class representations of database
objects in a header file. You can create these classes by using the Object Type
Translator (OTT) utility, as described in Object Type Translator Utility.

2. Establish a Connection. Use the environment handle to establish a connection to
the database server.

3. Prepare a SQL statement. This is a local (client-side) step, which may include
binding placeholders. In an object-relational application, this SQL statement
should return a reference (REF) to an object.

4. Access the object.

a. Associate the prepared statement with a database server, and execute the
statement.

b. By using navigational access, retrieve an object reference (REF) from the
database server and pin the object. You can then perform some or all of the
following:

Manipulate the attributes of an object and mark it as dirty (modified)
Follow a reference to another object or series of objects

Access type and attribute information

Navigate a complex object retrieval graph

Flush modified objects to the database server

c. By using associative access, you can fetch an entire object by value by using
SQL. Alternately, you can select an embedded (nonreferenceable) object. You
can then perform some or all of the following:

Insert values into a table

Modify existing values

5. Commit the transaction. This step implicitly writes all modified objects to the
database server and commits the changes.

ORACLE

4-6

Chapter 4
About Developing a C++ Application using OCCI

Free statements and handles; the prepared statements should not be used or
executed again.

See Also:

e Accessing Oracle Database Using C++ for information about using OCCI
to connect to a database server, process SQL statements, and allocate
handles

e Object Type Translator Utility for information about the OTT utility

e OCCI Application Programming Interface for descriptions of OCCI
relational functions and the Connect class and the get Met aDat a() method

4.4.2 About Basic Object Operational Flow

Figure 4-1 shows a simple program logic flow for how an application might work with
objects. For simplicity, some required steps are omitted.

Figure 4-1 Basic Object Operational Flow

Initialize OCCl in
Object Mode

v

Pi f (Brings object into
in Object client-side cache)

Operate on Object
in Cache

v

Mark Object
as Dirtied

v

Flush Changes
to Object

v

Refresh Object

The steps shown in Figure 4-1 are discussed in the following sections:

About Initializing OCCI in Object Mode

About Pinning anObject

About Operating on an Object in Cache
About Flushing Changes to the Object

About Deletion of an Object

4.4.2.1 About Initializing OCCI in Object Mode

If your OCCI application accesses and manipulates objects, then it is essential that
you specify a value of OBJECT for the node parameter of the creat eEnvi r onment ()

ORACLE

4-7

Chapter 4
About Developing a C++ Application using OCCI

method, the first call in any OCCI application. Specifying this value for node indicates to
OCCI that your application works with objects. This notification has the following
important effects:

* The object run-time environment is established.
* The object cache is set up.

Note that ithe node parameter is not set to OBJECT, any attempt to use an object-related
function results in an error.

The following code example demonstrates how to specify the OBJECT node when
creating an OCCI environment:

Envi ronnent *env;
Connection *con;
Statenent *stnt;

env
con

= Environnent:: creat eEnvi ronnment (Envi ronnent : : OBJECT) ;

= Connection(userNane, password, connectString);

Your application does not have to allocate memory when database objects are loaded
into the object cache. The object cache provides transparent and efficient memory
management for database objects. When database objects are loaded into the object
cache, they are transparently mapped into the host language (C++) representation.

The object cache maintains the association between the object copy in the object
cache and the corresponding database object. Upon commi t, changes made to the
object copy in the object cache are automatically propagated back to the database.

The object cache maintains a look-up table for mapping references to objects. When
an application dereferences a reference to an object and the corresponding object is
not yet cached in the object cache, the object cache automatically sends a request to
the database server to fetch the object from the database and load it into the object
cache. Subsequent dereferences of the same reference are faster since they are to
the object cache itself and do not incur a round-trip to the database server.

Subsequent dereferences of the same reference fetch from the cache instead of
requiring a round-trip. The exception to this is in a dereferencing operation that occurs
just after a commit. In this case, the latest object copy from the server is returned. This
ensures that the latest object from the database is cached after each transaction.

The object cache maintains a pin count for each persistent object in the object cache.
When an application dereferences a reference to an object, the pin count of the object
is incremented. The subsequent dereferencing of the same reference to the object
does not change the pin count. Until the reference to the object goes out of scope, the
object continues to be pinned in the object cache and be accessible by the OCCI
client.

The pin count functions as a reference count for the object. The pin count of the object
becomes zero (0) only when there are no more references referring to this object,
during which time the object becomes eligible for garbage collection. The object cache
uses a least recently used algorithm to manage the size of the object cache. This
algorithm frees objects with a pin count of O when the object cache reaches the
maximum size.

ORACLE 4-8

Chapter 4
About Developing a C++ Application using OCCI

4.4.2.2 About Pinning anObject

In most situations, OCCI users do not have to explicitly pin or unpin the objects
because the object cache automatically keeps track of the pin counts of all the objects
in the cache. As explained earlier, the object cache increments the pin count when a
reference points to the object and decrements it when the reference goes out of scope
or no longer points to the object.

But there is one exception. If an OCCI application uses Ref <T>:: ptr() method to get a
pointer to the object, then the pi n and unpi n methods of the PObj ect class can be used
by the application to control pinning and unpinning of the objects in the object cache.

4.4.2.3 About Operating on an Object in Cache

Note that the object cache does not manage the contents of object copies; it does not
automatically refresh object copies. Your application must ensure the validity and
consistency of object copies.

4.4.2.4 About Flushing Changes to the Object

Whenever changes are made to object copies in the object cache, your application is
responsible for flushing the changed object to the database.

Memory for the object cache is allocated on demand when objects are loaded into the
object cache.

The client-side object cache is allocated in the program's process space. This object
cache is the memory for objects that have been retrieved from the database server
and are available to your application.

If you initialize the OCCI environment in object mode, your application allocates
memory for the object cache, whether the application actually uses object calls.

There is only one object cache allocated for each OCCI environment. All objects
retrieved or created through different connections within the environment use the
same physical object cache. Each connection has its own logical object cache.

4.4.2.5 About Deletion of an Object

ORACLE

For objects retrieved into the cache by dereferencing a reference, you should not
perform an explicit delete. For such objects, the pin count is incremented when a
reference is dereferenced for the first time and decremented when the reference goes
out of scope. When the pin count of the object becomes 0, indicating that all
references to that object are out of scope, the object is automatically eligible for
garbage collection and subsequently deleted from the cache.

For persistent objects that have been created by calling the new operator, you must call
a del et e if you do not commit the transaction. Otherwise, the object is garbage
collected after the commit. This is because when such an object is created using new,
its pin count is initially 0. However, because the object is dirty it remains in the cache.
After a commit, it is no longer dirty and thus garbage collected. Therefore, a delete is
not required.

4-9

Chapter 4
Migrating C++ Applications to Oracle Using OCCI

If a commit is not performed, then you must explicitly call del et e to destroy that object.
You can do this if there are no references to that object. For transient objects, you
must delete explicitly to destroy the object.

You should not call a delete operator on a persistent object. A persistent object that is
not marked/dirty is freed by the garbage collector when its pin count is 0. However, for
transient objects you must delete explicitly to destroy the object.

4.5 Migrating C++ Applications to Oracle Using OCCI

This section describes how to migrate existing C++ applications using OCCI.
The steps of migration are:

Determine object model and class hierarchy

Use JDeveloper9i to map to Oracle object schema

Generate C++ header files using Oracle Type Translator

Modify old C++ access classes as required to work with new object type definitions

A S

Add functionality for transient and persistent object management, as required.

4.6 Overview of Associative Access

You can employ SQL within OCCI to retrieve objects, and to perform DML operations.
This section discusses the following topics:

* Using SQL to Access Objects

* Inserting and Modifying Values

¢ See Also:

Complete code listing of the demonstration programs

4.6.1 Using SQL to Access Objects

ORACLE

In the previous sections we discussed navigational access, where SQL is used only to
fetch the references of an initial set of objects and then navigate from them to the
other objects. Here we discuss how to fetch the objects using SQL.

The following example shows how to use the Resul t Set : : get Obj ect () method to fetch
objects through associative access where it gets each object from the table, addr _t ab,
using SQL:

string sel _addr_val = "SELECT VALUE(address) FROM ADDR_TAB address";
Resul t Set *rs = stnt->execut eQuery(sel _addr_val);
while (rs->next())

{
ADDRESS *addr _val = rs->get Chject(1);

4-10

Chapter 4
Overview of Navigational Access

cout << "state: " << addr_val->getState();

}

The objects fetched through associative access are termed value instances and they
behave just like transient objects. Methods such as nar kModi fi ed(), fl ush(), and
mar kDel et ed() are applicable only for persistent objects.

Any changes made to these objects are not reflected in the database.

Since the object returned is a value instance, it is the user's responsibility to free
memory by deleting the object pointer.

4.6.2 Inserting and Modifying Values

We have just seen how to use SQL to access objects. OCCI also provides the ability
to use SQL to insert new objects or modify existing objects in the database server
through the Stat enent : : set Obj ect method interface.

The following example creates a transient object Addr ess and inserts it into the
database table addr _t ab:

ADDRESS *addr _val = new address("NVv', "12563"); // new a transient instance
stmt->set SQL(" I NSERT | NTO ADDR TAB val ues(:1)");

stnt->set Ovj ect (1, addr_val);

st nt - >execute();

4.7 Overview of Navigational Access

By using navigational access, you engage in a series of operations.
This section discusses the following topics:

e Retrieving an Object Reference (REF) from the Database Server
e Pinning an Object

e Manipulating Object Attributes

e About Marking Objects and Flushing Changes

e Marking an Object as Modified (Dirty)

e About Recording Changes in the Database

e Collecting Garbage in the Object Cache

e About Ensuring Transactional Consistency of References

See Also:

Complete code listing of the demonstration programs

4.7.1 Retrieving an Object Reference (REF) from the Database Server

To work with objects, your application must first retrieve one or more objects from the
database server. You accomplish this by issuing a SQL statement that returns
references (REFS) to one or more objects.

ORACLE 4-11

Chapter 4
Overview of Navigational Access

It is also possible for a SQL statement to fetch value instances, rather than REFs, from
a database.

The following SQL statement retrieves a REF to a single object addr ess from the
database table addr _t ab:

string sel addr = "SELECT REF(address)
FROM addr _tab address
VWHERE zi p_code = '94065'";

The following code example illustrates how to execute the query and fetch the REF from
the result set.

Resul t Set *rs = stnt->execut eQuery(sel _addr);
rs->next();
Ref <address> addr _ref = rs->getRef(1);

At this point, you could use the object reference to access and manipulate the object
or objects from the database.

See Also:

"About Executing SQL DDL and DML Statements" for general information
about preparing and executing SQL statements

4.7.2 Pinning an Object

ORACLE

This section deals with a simple pin operation involving a single object at a time. For
information about retrieving multiple objects through complex object retrieval, see the
section Overview of Complex Object Retrieval.

Upon completion of the fetch step, your application has a REF to an object. The actual
object is not currently available to work with. Before you can manipulate an object, it
must be pinned. Pinning an object loads the object into the object cache, and enables
you to access and modify the object's attributes and follow references from that object
to other objects. Your application also controls when modified objects are written back
to the database server.

OCCI requires only that you dereference the REF in the same way you would
dereference any C++ pointer. Dereferencing the REF transparently materializes the
object as a C++ class instance.

Continuing the Addr ess class example from the previous section, assume that the user
has added the following method:

string Address::getState()
{

}

return state;

To dereference this REF and access the object's attributes and methods:

string state = addr_ref->getState(); /1 -> pins the object

The first time Ref <T> (addr _ref) is dereferenced, the object is pinned, which is to say
that it is loaded into the object cache from the database server. From then on, the

4-12

Chapter 4
Overview of Navigational Access

behavior of operator -> on Ref <T> is just like that of any C++ pointer (T *). The object
remains in the object cache until the REF (addr _ref) goes out of scope. It then becomes
eligible for garbage collection.

Now that the object has been pinned, your application can modify that object.

4.7.3 Manipulating Object Attributes

Manipulating object attributes is no different from that of accessing them as shown in
the previous section. Let us assume the Address class has the following user defined
method that sets the st at e attribute to the input value:

voi d Address::setState(string new state)

{
}

The following example shows how to modify the state attribute of the object, addr :

state = new state,

addr _ref->set State("PA");

As explained earlier, the first invocation of the operator - > on Ref <T> loads the object, if
it is not in the object cache.

4.7.4 About Marking Objects and Flushing Changes

In the example in the previous section, an attribute of an object was changed. This
change exists only in the client-side cache; you must implement specific programmatic
steps to write the changes to the database.

4.7.5 Marking an Object as Modified (Dirty)

The first step is to indicate that the object has been modified. This is done by calling
the mar kModi fi ed() method on the object (derived method of PObj ect). This method
marks the object as dirty (modified).

Continuing the previous example, after object attributes are manipulated, the object
referred to by addr _ref can be marked dirty as follows:

addr _ref->markMdi fied();

4.7.6 About Recording Changes in the Database

ORACLE

Objects that have had their dirty flag set must be flushed to the database server for the
changes to be recorded in the database. This can be done in three ways:

* Flush a single object marked dirty by calling the method f | ush, a derived method
of Pbj ect .

* Flush the entire object cache using the Connecti on: : fl ushCache() method. In this
case, OCCI traverses the dirty list maintained by the object cache and flushes all
the dirty objects.

e Commit a transaction by calling the Connecti on: : commi t () method. Doing so also
traverses the dirty list and flushes the objects to the database server. The dirty list
includes newly created persistent objects.

4-13

Chapter 4
Overview of Navigational Access

4.7.7 Collecting Garbage in the Object Cache

The object cache has two important associated parameters:

* The maximum cache size percentage
e The optimal cache size

These parameters refer to levels of cache memory usage, and they help determine
when the cache automatically 'ages out' eligible objects to free up memory.

If the memory occupied by the objects currently in the cache reaches or exceeds the
maximum cache size, the cache automatically begins to free (or age out) unmarked
objects which have a pin count of zero. The cache continues freeing such objects until
memory usage in the cache reaches the optimal size, or until it runs out of objects
eligible for freeing. Note that the cache can grow beyond the specified maximum
cache size.

The maximum object cache size (in bytes) is computed by incrementing the optimal
cache size (opti mal _si ze) by the maximum cache size percentage
(max_si ze_per cent age), as follows:

Maxi mum cache size = optinmal _size + optimal _size * max_size_percentage / 100;
The default value for the maximum cache size percentage is 10%. The default value
for the optimal cache size is 8MB. When a persistent object is created through the

overloaded Pvj ect : : new() operator, the newly created object is marked dirty and its
pin count is set to 0.

These parameters can be set or retrieved using the following member functions of the
Environment class:

* void setCacheMaxSi ze(unsi gned int nmaxSize);
° unsigned int getCacheMaxSize() const;
e void setCachept Si ze(unsigned int OptSize);
° unsigned int getCacheOptSize() const;

"About Pinning anObject" describes how pin count of an object functions as a
reference count and how an unmarked object with a 0 pin count can become eligible
for garbage collection. For a newly created persistent object, the object is unmarked
after the transaction is committed or aborted, and if the object has a 0 pin count.
Because nothing is referencing this object, it becomes a candidate for ageing out.

If you are working with several object that have a large number of string or collection
attributes, most of the memory is allocated from the C++ heap; this is because OCCI
uses STLs. You should therefore set the cache size to a low value to avoid high
memory use before garbage collection activates.

¢ See Also:

OCCI Application Programming Interface for details.

ORACLE 4-14

Chapter 4
Overview of Complex Object Retrieval

4.7.8 About Ensuring Transactional Consistency of References

As described in the previous section, dereferencing a Ref <T> for the first time results in
the object being loaded into the object cache from the database server. From then on,
the behavior of operator - > on Ref <T> equals any C++ pointer, and it provides access
to the object copy in the cache. But when the transaction commits or aborts, the object
copy in the cache can no longer be valid because it could be modified by any other
client. Therefore, after the transaction ends, when the Ref <T> is again dereferenced,
the object cache recognizes the fact that the object is no longer valid and fetches the
most recent copy from the database server.

4.8 Overview of Complex Object Retrieval

In the examples discussed earlier, only a single object was fetched or pinned at a time.
In these cases, each pin operation involved a separate database server round-trip to
retrieve the object.

Object-oriented applications often model their problems as a set of interrelated objects
that form graphs of objects. These applications process objects by starting with some
initial set of objects and then using the references in these objects to traverse the
remaining objects. In a client/server setting, each of these traversals could result in
costly network round-trips to fetch objects.

The performance of such applications can be increased with complex object retrieval
(COR). This is a prefetching mechanism in which an application specifies some criteria
(content and boundary) for retrieving a set of linked objects in a single network round-
trip. Using COR does not mean that these prefetched objects are pinned. They are
fetched into the object cache, so that subsequent pin calls are local operations.

A complex object is a set of logically related objects consisting of a root object, and a
set of objects each of which is prefetched based on a given depth level. The root
object is explicitly fetched or pinned. The depth level is the shortest number of
references that have to be traversed from the root object to a given prefetched object
in a complex object.

An application specifies a complex object by describing its content and boundary. The
fetching of complex objects is constrained by an environment's prefetch limit, the
amount of memory in the object cache that is available for prefetching objects.

The use of complex object retrieval does not add functionality; it only improves
performance, and so its use is optional.

This section discusses the following topics:

* Retrieving Complex Objects

* About Prefetching Complex Objects

See Also:

Complete code listing of the demonstration programs

ORACLE 4-15

Chapter 4
Overview of Complex Object Retrieval

4.8.1 Retrieving Complex Objects

ORACLE

An OCCI application can achieve COR by setting the appropriate attributes of a Ref <T>
before dereferencing it using the following methods:

Il prefetch attributes of the specified type nane up to the specified depth
Ref <T>::set Prefetch(const string & ypeName, unsigned int depth);

/] prefetch all the attribute types up to the specified depth.

Ref <T>:: set Pref et ch(unsi gned int depth);

The application can also choose to fetch all objects reachable from the root object by
way of REFs (transitive closure) to a certain depth. To do so, set the level parameter
to the depth desired. For the preceding two examples, the application could also
specify (PO obj ect REF, OCCI _MAX_PREFETCH DEPTH) and (PO object REF, 1) respectively
to prefetch required objects. Doing so results in many extraneous fetches but is quite
simple to specify, and requires only one database server round-trip.

As an example for this discussion, consider the following type declaration:

CREATE TYPE customer(...);

CREATE TYPE line_iten(...);

CREATE TYPE line_itemvarray as VARRAY(100) of REF line_item
CREATE TYPE pur chase_order AS OBJECT

(po_nunber NUMBER,
cust REF cust oner,
rel ated_orders REF purchase_order,
line_itens line_itemvarray);

The purchase_order type contains a scalar value for po_nunber, a VARRAY of | i ne_i t ens,
and two references. The first is to a cust oner type and the second is to a
pur chase_order type, indicating that this type can be implemented as a linked list.

When fetching a complex object, an application must specify the following:

» Areference to the desired root object

* One or more pairs of type and depth information to specify the boundaries of the
complex object. The type information indicates which REF attributes should be
followed for COR, and the depth level indicates how many levels deep those links
should be followed.

In the case of the purchase_or der object in the preceding example, the application must
specify the following:

e The reference to the root purchase_or der object

* One or more pairs of type and depth information for cust oner, pur chase_or der, or
line_item

An application prefetching a purchase order needs access to the customer information
for that purchase order. Using simple navigation, this would require two database
server accesses to retrieve the two objects.

Through complex object retrieval, cust omer can be prefetched when the application
pins the purchase_order object. In this case, the complex object would consist of the
pur chase_or der object and the cust omer object it references.

4-16

Chapter 4
Working with Collections

In the previous example, if the application wanted to prefetch a purchase order and the
related customer information, the application would specify the pur chase_or der object
and indicate that cust oner should be followed to a depth level of one as follows:

Ref <PURCHASE_ORDER> por ef ;
poref . set Pref et ch(" CUSTOVER', 1) ;

If the application wanted to prefetch a purchase order and all objects in the object
graph it contains, the application would specify the pur chase_or der object and indicate
that both cust omer and pur chase_or der should be followed to the maximum depth level
possible as follows:

Ref <PURCHASE_ORDER> por ef ;
por ef . set Pref et ch(" CUSTOMER', OCCl _MAX_PREFETCH_DEPTH);
por ef . set Pref et ch(" PURCHASE_ORDER', OCClI _MAX_PREFETCH DEPTH) ;

where OCCl _MAX_PREFETCH_DEPTH specifies that all objects of the specified type reachable
through references from the root object should be prefetched.

If an application wanted to prefetch a purchase order and all the line items associated
with it, the application would specify the purchase_order object and indicate that
l'ine_i tems should be followed to the maximum depth level possible as follows:

Ref <PURCHASE_ORDER> por ef ;
poref.setPrefetch("LINE_| TEM', 1);

4.8.2 About Prefetching Complex Objects

After specifying and fetching a complex object, subsequent fetches of objects
contained in the complex object do not incur the cost of a network round-trip, because
these objects have been prefetched and are in the object cache. Keep in mind that
excessive prefetching of objects can lead to a flooding of the object cache. This
flooding, in turn, may force out other objects that the application had pinned, leading to
a performance degradation instead of performance improvement.

Note that if there is insufficient memory in the object cache to hold all prefetched
objects, some objects may not be prefetched. The application then incurs a network
round-trip when those objects are accessed later.

You must have the READ or SELECT privilege for all prefetched objects. Objects in the
complex object for which the application does not have READ or SELECT privilege cannot
prefetched.

An entire vector of Ref s can be prefetched into object cache in a single round-trip by
using the global pinVectorOfRefs() method of the Connection Class. This method
reduces the number of round-trips for an n-sized vector of Ref s from n to 1, and tracks
the newly pinned objects through an QUT parameter vector.

4.9 Working with Collections

ORACLE

Oracle supports two kinds of collections - variable length arrays (ordered collections)
and nested tables (unordered collections). OCCI maps both of them to a Standard
Template Library (STL) vector container, giving you the full power, flexibility, and
speed of an STL vector to access and manipulate the collection elements.

Example 4-9 shows the SQL DDL to create a VARRAY and an object that contains an
attribute of type VARRAY, and the resulting C++ declaration that OTT generates.

4-17

Chapter 4
Working with Collections

¢ See Also:

Complete code listing of the demonstration programs

Example 4-9 How to Create a VARRAY Collection

CREATE TYPE ADDR LI ST AS VARRAY(3) OF REF ADDRESS;
CREATE TYPE PERSON AS OBJECT (name VARCHARZ(20), addr | ADDR LIST):

Here is the C++ class declaration generated by OTT:

class PERSON : public PObject
{
protected:
string nang;
vect or< Ref< ADDRESS > > addr_1;

public:

voi d *operator new(size_t size);

voi d *operator new(size_t size,

const Connection* conn,

const string& table);

string getSQ.TypeNane() const;

voi d get SQLTypeNane(oracl e: : occi :: Environnment *env, void **schemaNane,
unsi gned int &schemaNanelLen, void **typeNane,
unsi gned int & ypeNaneLen) const;

PERSON (void *ctx) : PQoject(ctx) { };

static void *readSQL(void *ctx);

virtual void readSQ.(AnyData& strean);

static void witeSQ(void *obj, void *ctx);

virtual void witeSQ(AnyData& stream;

}

This section includes the following topics:
* Fetching Embedded Objects

e About Nullness

4.9.1 Fetching Embedded Objects

ORACLE

If your application must fetch an embedded object, which is an object stored in a
column of a regular table rather than an object table, you cannot use the REF retrieval
mechanism. Embedded instances do not have object identifiers, so it is not possible to
get a reference to them. Therefore, they cannot serve as the basis for object
navigation. There are still many situations, however, in which an application fetches
embedded instances.

For example, assume that an addr ess type has been created.

CREATE TYPE address AS OBJECT

(streetl var char 2(50),
street2 var char 2(50),
city var char 2(30),
state char(2),
zip nunber (5));

You could then use that type as the data type of a column in another table:

4-18

Chapter 4
About Using Object References

CREATE TABLE clients
(name var char 2(40),
addr address);

Your OCCI application could then issue the following SQL statement:

SELECT addr FROM clients
WHERE name=' BEAR BYTE DATA MANAGEMENT' ;

This statement would return an embedded addr ess object from the cl i ent s table. The
application could then use the values in the attributes of this object for other
processing. The application should execute the statement and fetch the object in the
same way as described in the section "Overview of Associative Access".

4.9.2 About Nullness

If a column in a row of a database table has no value, then that column is said to be
NULL, or to contain a NULL. Two different types of NULLS can apply to objects:

e Any attribute of an object can have a NULL value. This indicates that the value of
that attribute of the object is not known.

* An object may be atomically NULL. Therefore, the value of the entire object is
unknown.

Atomic NULLness is different from nonexistence. An atomically NULL object still exists, its
value is just not known. It may be thought of as an existing object with no data.

For every type of object attribute, OCCI provides a corresponding class. For instance,
NUMBER attribute type maps to the Nunber class, REF maps to Ref Any, and so on. Each
and every OCCI class that represents a data type provides two methods:

e isNull() — returns whether the object is NULL
e setNull() — sets the object to NULL

Similarly, these methods are inherited from the PObj ect class by all the objects and can
be used to access and set atomically NULL information about them.

4.10 About Using Object References

OCCI provides the application with the flexibility to access the contents of the objects
using their pointers or their references. OCCI provides the PObj ect : : get Ref () method
to return a reference to a persistent object. This call is valid for persistent objects only.

4.11 About Deleting Objects from the Database

ORACLE

OCCI users can use the overloaded PObj ect: : operat or new() to create the persistent
objects. However, to delete the object from the database server, it is best to call

ref .markDelete() directly on the Ref ; this prevents the object from getting into the client
cache. If the object is in the client cache, it can be removed by an obj .markDelete()
call on the object. The object marked for deletion is permanently removed when the
transaction commits.

4-19

Chapter 4
About Type Inheritance

4.12 About Type Inheritance

Type inheritance of objects has many similarities to inheritance in C++ and Java. You
can create an object type as a subtype of an existing object type. The subtype is said
to inherit all the attributes and methods (member functions and procedures) of the
supertype, which is the original type. Only single inheritance is supported; an object
cannot have multiple supertypes. The subtype can add new attributes and methods to
the ones it inherits. It can also override (redefine the implementation) of any of its
inherited methods. A subtype is said to extend (that is, inherit from) its supertype.

See Also:

Oracle Database Object-Relational Developer's Guide for a more complete
discussion of this topic

As an example, a type Person_t can have a subtype St udent _t and a subtype

Enpl oyee_t. In turn, Student _t can have its own subtype, Part Ti meSt udent _t. A type
declaration must have the flag NOT FI NAL so that it can have subtypes. The default is
FI NAL, which means that the type can have no subtypes.

All types discussed so far in this chapter are FI NAL. All types in applications developed
before Oracle Database release 8.1.7 are FI NAL. A type that is FI NAL can be altered to
be NOT FINAL. A NOT FI NAL type with no subtypes can be altered to be FI NAL. Person_ t
is declared as NOT FI NAL for our example:

CREATE TYPE Person_t AS OBJECT
(ssn NUMBER
nane VARCAHR2(30),
address VARCHAR2(100)) NOT FI NAL;

A subtype inherits all the attributes and methods declared in its supertype. It can also
declare new attributes and methods, which must have different names than those of
the supertype. The keyword UNDER identifies the supertype, like this:

CREATE TYPE Student _t UNDER Person_t
(deptid NUMBER,
mej or VARCHAR2(30)) NOT FINAL;

The newly declared attributes depti d and maj or belong to the subtype Student _t. The
subtype Enpl oyee_t is declared as, for example:

CREATE TYPE Enpl oyee_t UNDER Person_t
(enpid NUMBER
myr VARCHAR2(30));

See Also:

e "About OTT Support for Type Inheritance" for the classes generated by
OTT for this example.

ORACLE 4-20

Chapter 4
About Type Inheritance

Subtype Student _t can have its own subtype, such as Part Ti meSt udent _t :

CREATE TYPE Part Ti meSt uden_t UNDER Student _t (numhours NUMBER) ;

This section includes the following topics:

* About Substitutability

* Declaring NOT INSTANTIABLE Types and Methods
* About OCCI Support for Type Inheritance

e About OTT Support for Type Inheritance

4.12.1 About Substitutability

The benefits of polymorphism derive partially from the property substitutability.
Substitutability allows a value of some subtype to be used by code originally written for
the supertype, without any specific knowledge of the subtype being needed in
advance. The subtype value behaves to the surrounding code just like a value of the
supertype would, even if it perhaps uses different mechanisms within its
specializations of methods.

Instance substitutability refers to the ability to use an object value of a subtype in a
context declared in terms of a supertype. REF substitutability refers to the ability to use
a REF to a subtype in a context declared in terms of a REF to a supertype.

REF type attributes are substitutable, that is, an attribute defined as REF T can hold a
REF to an instance of T or any of its subtypes.

Object type attributes are substitutable, that is, an attribute defined to be of (an object)
type T can hold an instance of T or any of its subtypes.

Collection element types are substitutable, that is, if we define a collection of elements
of type T, then it can hold instances of type T and any of its subtypes. Here is an
example of object attribute substitutability:

CREATE TYPE Book_t AS OBJECT
(title VARCHAR2(30),
aut hor Person_t /* substitutable */);

Thus, a Book_t instance can be created by specifying a title string and a Person_t (or
any subtype of Person_t) object:

Book_t (' My Oracl e Experience',
Enpl oyee_t (12345, 'Joe', 'SF, 1111, NULL))

4.12.2 Declaring NOT INSTANTIABLE Types and Methods

ORACLE

A type can be declared NOT | NSTANTI ABLE, which means that there is no constructor
(default or user defined) for the type. Thus, it is not be possible to construct instances
of this type. The typical usage would be to define instantiable subtypes for such a type.
Here is how this property is used:

CREATE TYPE Address_t AS OBJECT(...) NOT | NSTANTI ABLE NOT FI NAL;
CREATE TYPE USAddress_t UNDER Address_t(...);
CREATE TYPE | ntl| Address_t UNDER Address_t(...);

A method of a type can be declared to be NOT | NSTANTI ABLE. Declaring a method as NOT
| NSTANTI ABLE means that the type is not providing an implementation for that method.

4-21

Chapter 4
About Type Inheritance

Further, a type that contains any NOT | NSTANTI ABLE methods must necessarily be
declared as NOT | NSTANTI ABLE. For example:

CREATE TYPE T AS OBJECT
(x NUMBER

NOT | NSTANTI ABLE MEMBER FUNCTI ON funcl() RETURN NUMVBER
) NOT | NSTANTI ABLE;

A subtype of NOT | NSTANTI ABLE can override any of the NOT | NSTANTI ABLE methods of the
supertype and provide concrete implementations. If there are any NOT | NSTANTI ABLE
methods remaining, the subtype must also necessarily be declared as NOT

| NSTANTI ABLE.

A NOT | NSTANTI ABLE subtype can be defined under an instantiable supertype. Declaring
a NOT | NSTANTI ABLE type to be FI NAL is not useful and is not allowed.

4.12.3 About OCCI Support for Type Inheritance

The following calls support type inheritance:
» About Connection::getMetaData()

e About Bind and Define Functions

4.12.3.1 About Connection::getMetaData()

This method provides information specific to inherited types. Additional attributes have
been added for the properties of inherited types. For example, you can get the
supertype of a type.

4.12.3.2 About Bind and Define Functions

The set Ref (), set bj ect () and set Vect or () methods of the St at ement class are used to
bind REF, object, and collections respectively. All these functions support REF, instance,
and collection element substitutability. Similarly, the corresponding get xxx() methods
to fetch the data also support substitutability.

4.12.4 About OTT Support for Type Inheritance

Class declarations for objects with inheritance are similar to the simple object
declarations except that the class is derived from the parent type class and only the
fields corresponding to attributes not in the parent class are included. The structure for
these declarations is listed in Example 4-10:

In this structure, all variables are the same as in the simple object case.
par ent Typenane refers to the name of the parent type, that is, the class nhame of the
type from which typename inherits.

Example 4-10 OTT Support Inheritance

class <typenane> : public <parent Typenane>

{
prot ect ed:
<OCCl typel> <attribut enamel>;

<OCCl typen> <attri but enamen>;

ORACLE 4-22

Chapter 4
A Sample OCCI Application

public:

voi d *operator new(size_t size);

voi d *operator new(size_t size, const Connection* conn,
const string& table);

string getSQTypeNane() const;

voi d get SQLTypeNane(oracl e: : occi :: Environment *env, void **schemaNane,
unsi gned int &schenaNaneLen, void **typeName,
unsi gned i nt & ypeNaneLen) const;

<typename> (void *ctx) : <parentTypename>(ctx) { };

static void *readSQL(void *ctx);

virtual void readSQ(AnyData& stream;

static void witeSQ(void *obj, void *ctx);

virtual void witeSQ(AnyData& strean;

}

4.13 A Sample OCCI Application

ORACLE

This section describes a sample OCCI application that uses some features discussed
in this chapter.

Example 4-11 Listing of demo2.sql for a Sample OCCI Application

drop tabl e ADDR TAB

iirop tabl e PERSON TAB

iirop type STUDENT

iirop type PERSON

iirop type ADDRESS_TAB

iirop type ADDRESS

iirop type FULLNAME

/CREATE TYPE FULLNAME AS OBJECT (first_name CHAR(20), |ast_name CHAR(20))
/CREATE TYPE ADDRESS AS OBJECT (state CHAR(20), zip CHAR(20))

iZREATE TYPE ADDRESS TAB AS VARRAY(3) OF REF ADDRESS

iZREATE TYPE PERSON AS OBJECT (id NUMBER, name FULLNAME, curr_addr REF ADDRESS,
prev_addr_| ADDRESS TAB) NOT FI NAL

/CREATE TYPE STUDENT UNDER PERSON (school _nane CHAR(20))

iZREATE TABLE ADDR TAB OF ADDRESS

iZREATE TABLE PERSON_TAB OF PERSON

/

Example 4-12 Listing of demo2.typ for a Sample OCCI Application

TYPE FULLNAME GENERATE CFul | Nane as MyFul | Name
TYPE ADDRESS CGENERATE CAddress as M/Address
TYPE PERSON GENERATE CPerson as MyPerson

TYPE STUDENT GENERATE CStudent as MyStudent

4-23

ORACLE

Chapter 4
A Sample OCCI Application

Example 4-13 Listing of OTT Command that Generates Files for a Sample OCCI
Application

OTT attempts to connect with user name denousr ; the system prompts for the
password.

ott userid=denousr intype=denn2.typ code=cpp hfile=denp2.h
cppfil e=denp2. cpp mapfil e=mappi ngs. cpp attraccess=private

Example 4-14 Listing of mappings.h for a Sample OCCI Application

#i fndef MAPPI NGS_CRACLE
define MAPPI NGS_ORACLE

#ifndef OCCl _ORACLE
include <occi.h>
#endi f

#i fndef DEMO2_ORACLE
include "denp2. h"
#endi f

voi d mappi ngs(oracl e::occi:: Environnment* envOCCl _);
#endi f

Example 4-15 Listing of mappings.cpp for a Sample OCCI Application

#i fndef MAPPI NGS_ORACLE
include "mappings. h"
#endi f

voi d mappi ngs(oracle::occi:: Environnment* envOCCl)

{
oracl e::occi::Mp *mapOCCl _ = envOCCl _- >get Map()
mapOCCl _- >put ("HR FULLNAME", &CFul | Name: : readSQL, &CFul | Nane::writeSQL)
mapOCCl _- >put ("HR ADDRESS', &CAddress::readSQ., &CAddress::writeSQ)
mapOCCl _- >put (" HR. PERSON', &CPerson::readSQL, &CPerson::witeSQL);
mapOCCl _- >put ("HR STUDENT", &CStudent::readSQL, &CStudent::writeSQ)

}

Example 4-16 Listing of demo2.h for a Sample OCCI Application

#i fndef DEMOX2_ORACLE
define DEM®2_ORACLE

#i fndef OCCI _ORACLE
include <occi.h>
#endi f

usi ng namespace std
usi ng namespace oracle:: occi

class MyFul | Nane;

class MyAddress

cl ass MyPerson

[* Changes ended here */

/* GENERATED DECLARATI ONS FOR THE FULLNAME OBJECT TYPE. */
class CFul I Nane : public oracle::occi::PCbject {

private:

4-24

ORACLE

Chapter 4
A Sample OCCI Application

OCCl _STD_NAMESPACE: : string FI RST_NAME;
OCCl _STD_NAMESPACE: : string LAST_NAME;

public: OCCl _STD_NAMESPACE: : string getFirst_name() const;

b

voi d setFirst_name(const OCCl _STD NAMESPACE: :string &val ue);

OCCl _STD _NAMESPACE: : string getlLast_nane() const;

voi d setLast_name(const OCCl _STD NAMESPACE::string &val ue);

voi d *operator new(size_t size);

voi d *operator new(size_t size, const oracle::occi::Connection * sess,
const OCCl _STD_NAMESPACE: : string& table);

voi d *operator new(size_t, void *ctxOCO);

voi d *operator new(size_t size, const oracle::occi::Connection *sess,
const OCCl _STD_NAMESPACE: : string &t abl eNane,
const OCCl _STD_NAMESPACE: : string &t ypeNane,
const OCCl _STD_NAMESPACE: : string &t abl eSchens,
const OCCl _STD_NAMESPACE: : string & ypeSchem);

string getSQ.TypeName() const;

voi d get SQLTypeNanme(oracl e:: occi:: Environnment *env, void **schemaNane,
unsi gned i nt &schenaNaneLen, void **typeName,
unsi gned i nt & ypeNaneLen) const;

CFul | Name() ;

CFul I Name(void *ctxOCCl) : oracle::occi::Pject (ctxocd) { };

static void *readSQ(void *ctxOCCl);

virtual void readSQ.(oracle:: occi::AnyData& strean0CC);

static void witeSQ(void *obj OCCl _, void *ctxOCO);

virtual void witeSQ. (oracle::occi::AnyData& streanOCC _);

~CFul I Nare();

| * GENERATED DECLARATI ONS FOR THE ADDRESS OBJECT TYPE. */
class CAddress : public oracle::occi::Pject {

private:

OCCl _STD_NAMESPACE: : string STATE;
OCCl _STD _NAMESPACE: : string ZI P,

public:

OCCl _STD _NAMESPACE: : string get State() const;

voi d set State(const OCCl _STD NAMESPACE::string &val ue);

OCCl _STD _NAMESPACE: : string getZip() const;

voi d setZip(const OCCl _STD NAMESPACE: :string &val ue);

voi d *operator new(size_t size);

voi d *operator new(size_t size, const oracle::occi::Connection * sess,
const OCCl _STD_NAMESPACE: : string& table);

voi d *operator new(size_t, void *ctxOCO);

voi d *operator new(size_t size, const oracle::occi::Connection *sess,
const OCCl _STD_NAMESPACE: : string &t abl eNane,
const OCCl _STD_NAMESPACE: : string & ypeNane,
const OCCl _STD_NAMESPACE: : string &t abl eSchens,
const OCCl _STD_NAMESPACE: : string & ypeSchems);

string getSQ.TypeName() const;

voi d get SQLTypeNanme(oracl e:: occi:: Environnment *env, void **schemaNane,
unsi gned i nt &schenaNaneLen, void **typeName,
unsi gned i nt & ypeNaneLen) const;

CAddress();

CAddress(void *ctxOCCl _) : oracle::occi::PGject (ctxOCC_) { };

static void *readSQ(void *ctxOCCl);

virtual void readSQ.(oracle:: occi::AnyData& streanOCC);

static void witeSQ(void *obj OCCl _, void *ctxOCO);

virtual void witeSQ.(oracle::occi::AnyData& streanOCC _);

~CAddress();

4-25

ORACLE

Chapter 4
A Sample OCCI Application

b

/* GENERATED DECLARATI ONS FOR THE PERSON OBJECT TYPE. */
class CPerson : public oracle::occi::Pject {

private:
oracl e::occi::Number |D;
M/Ful | Nane * NAME;
oracle::occi::Ref< MAddress > CURR_ADDR;
OCCl _STD _NAMESPACE: : vector< oracle:: occi::Ref< M/Address > > PREV_ADDR L;

public: oracl e::occi::Nunber getld() const;

voi d setld(const oracle::occi::Nunmber &val ue);

M/Ful | Nane * get Name() const;

voi d set Name(M/Ful | Name * val ue);

oracl e::occi::Ref< MyAddress > getCurr_addr() const;

voi d set Curr_addr (const oracle::occi::Ref< M/Address > &val ue);

OCCl _STD_NAMESPACE: : vect or <or acl e: : occi : : Ref < MyAddr ess>>&
get Prev_addr _| ();

const OCCl _STD_NAMESPACE: : vect or <or acl e: : occi : : Ref <MyAddr ess>>&
getPrev_addr | () const;

voi d setPrev_addr_| (const OCCl _STD NAMESPACE: : vect or
<oracl e::occi::Ref< MAddress > > &val ue);

voi d *operator new(size_t size);

voi d *operator new(size_t size, const oracle::occi::Connection * sess,
const OCCl _STD_NAMESPACE: : string& table);

voi d *operator new(size_t, void *ctxOCO);

voi d *operator new(size_t size, const oracle::occi::Connection *sess,
const OCCl _STD_NAMESPACE: : string &t abl eNane,
const OCCl _STD_NAMESPACE: : string &t ypeNane,
const OCCl _STD_NAMESPACE: : string &t abl eSchens,
const OCCl _STD_NAMESPACE: : string & ypeSchems);

string getSQ.TypeName() const;

voi d get SQLTypeNanme(oracl e:: occi:: Environnment *env, void **schemaNane,
unsi gned i nt &schenaNaneLen, void **typeName,
unsi gned i nt & ypeNaneLen) const;

CPerson();

CPerson(void *ctxQOCC _) : oracle::occi::PCject (ctxOCC_) { };

static void *readSQ(void *ctxOCCl);

virtual void readSQ.(oracle:: occi::AnyData& streanOCC);

static void witeSQ(void *obj OCCl _, void *ctxOCO);

virtual void witeSQ. (oracle::occi::AnyData& streanCC _);

~CPerson();

1

| * GENERATED DECLARATI ONS FOR THE STUDENT OBJECT TYPE. */
/* changes to the generated file - declarations for the MyPerson class. */
class MyPerson : public CPerson {

public:
MyPer son(Nunber id_i, MyFullNanme *name_i, const Ref<M/Address>& addr_i) ;
MyPer son(voi d *ctxOCCl _);
voi d nove(const Ref <M/Address>& new_addr);
voi d displaylnfo();
MyPerson() ;
¥

/* changes end here */
class CStudent : public MyPerson {

private:
OCCl _STD _NAMESPACE: : string SCHOOL_NAME;

4-26

ORACLE

Chapter 4
A Sample OCCI Application

public:

b

OCCl _STD_NAMESPACE: : string get School _name() const;

voi d set School _nane(const OCCl _STD NAMESPACE: : string &val ue);\

voi d *operator new(size_t size);

voi d *operator new(size_t size, const oracle::occi::Connection * sess,\
const OCCl _STD_NAMESPACE: : string& table);

voi d *operator new(size_t, void *ctxOCO);

voi d *operator new(size_t size, const oracle::occi::Connection *sess,
const OCCl _STD_NAMESPACE: : string &t abl eNane,
const OCCl _STD_NAMESPACE: : string & ypeNane,
const OCCl _STD_NAMESPACE: : string &t abl eSchens,
const OCCl _STD_NAMESPACE: : string & ypeSchems);

string getSQ.TypeName() const;

voi d get SQLTypeNanme(oracl e:: occi:: Environnment *env, void **schemaNane,
unsi gned int &schenaNaneLen, void **typeName,
unsi gned i nt & ypeNanelLen) const;

CSt udent () ;

CSt udent (voi d *ctxOCCl _) : MyPerson (ctxOCCl) { };

static void *readSQ(void *ctxOCCl);

virtual void readSQ.(oracle:: occi::AnyData& strean0CC);

static void witeSQ(void *obj OCCl _, void *ctxOCO);

virtual void witeSQ.(oracle::occi::AnyData& streanOCC _);

~CSt udent () ;

/*changes made to the generated file */
[* declarations for the M/Ful | Name class. */
class MyFull Name : public CFul | Name

{

b

/1
cl

{

b

cl

{

b

public:
MyFul | Name(string first_name, string |ast_nane);
voi d displaylnfo();
MyFul | Name(voi d *ctxOCCl);

declarations for the M/Address cl ass.
ass MyAddress : public CAddress
public:
MyAddress(string state_i, string zip_i);
voi d displaylnfo();
MyAddr ess(voi d *ctxOCCl _);

ass MyStudent : public CStudent
public :
MySt udent (voi d *ctxOCll) ;

/* changes end here */
#endi f

Example 4-17 Listing of demo2.cpp for a Sample OCCI Application

#i f ndef DEMO2_ORACLE

#

include "demn2. h"

#endi f

/* GENERATED METHOD | MPLEMENTATI ONS FOR THE FULLNAME OBJECT TYPE. */
OCCl _STD NAMESPACE: : string CFul | Name: : get First_nane() const

return FI RST_NAME;

4-27

ORACLE

Chapter 4
A Sample OCCI Application

}
voi d CFul | Nane: : set Fi rst_name(const OCCl _STD NAMESPACE: : string &val ue)
{
FI RST_NAME = val ue;
}
OCCl _STD _NAMESPACE: : string CFul | Nane: : get Last _nane() const
{
return LAST_NAME;
}
voi d CFul | Nane: : set Last _nanme(const OCCl _STD NAMESPACE: : string &val ue)
{
LAST_NAME = val ue;
}
voi d *CFul | Nane: : operator new(size_t size)
{
return oracle::occi::PCject::operator newsize);
}

voi d *CFul | Nane: : operator new(size_t size, const oracle::occi::Connection *
sess, const OCCl _STD NAMESPACE: :stringé& table)
{
return oracle::occi::PQbject::operator newsize, sess, table,
(char *) "HR FULLNAME");

}
voi d *CFul | Nane: : operator new(size_t size, void *ctxOCCl)
{
return oracle::occi::PCbject::operator newsize, ctx0CO _);
}

voi d *CFul | Nane: : operator new(size_t size,
const oracle::occi::Connection *sess,
const OCCl _STD NAMESPACE: : string &t abl eName,
const OCCl _STD _NAMESPACE: : string &t ypeNane,
const OCCl _STD_NAMESPACE: : string &t abl eSchem,
const OCCl _STD NAMESPACE: : string & ypeSchems)
{
return oracle::occi::PQbject::operator newsize, sess, tableNane,
typeName, tabl eSchem, typeSchens);

}
OCCl _STD_NAMESPACE: : string CFul | Name: : get SQLTypeNanme() const
{
return OCCI _STD NAMESPACE: : string("HR FULLNANE"):
}

voi d CFul | Nane: : get SQLTypeName(oracl e: : occi : : Envi ronnent *env,
void **schemaName, unsigned int &chemaNanelLen, void **typeNane,
unsi gned int & ypeNaneLen) const
{
PQbj ect : : get SQLTypeNane(env, &CFul | Nane:: readSQL, schenaNane,
schemaNaneLen, typeNane, typeNanelLen);
}

CFul | Nane: : CFul | Nane()

{
}

4-28

ORACLE

Chapter 4
A Sample OCCI Application

voi d *CFul | Nane: : readSQL(voi d *ctxOCCl)

{
MyFul | Name *obj OCCl _ = new(ctxOCCl _) MyFul | Nane(ctxOCCl);
oracl e::occi::AnyData streamOCCl _(ctxOCC);

try
{
if (streamOCCl _.isNull())
obj OCCl _->set Nul I () ;
el se
obj OCCl _- >readSQL(streanCC);
1

catch (oracle::occi::SQException& excep)

del ete ohj OCCl _;
excep. setErrorCtx(ctx0CCl _);
return (void *)NULL;
1
return (void *)obj OCC _;
}

voi d CFul | Nane: : readSQL(oracl e: : occi : : AnyDat a& streamOCCl _)
{

FI RST_NAME = streanOCCl _. get String();

LAST_NAME = streamOCCl _.getString();

}

voi d CFul | Nane: :writeSQ.(void *objectOCCl _, void *ctxOCC){
CFul I Name *obj OCCl _ = (CFul | Name *) objectOCO _;
oracl e::occi::AnyData streamOCCl _(ctxOCO);

try

if (objOCCl _->isNull())
streamOCCl _. set Nul | ();

el se
obj OCCl _->writeSQ(streamoCC);

1
catch (oracle::occi::SQException& excep)
{
excep. setErrorCtx(ctx0CCl _);
1
return;
}
voi d CFul | Nane: :writeSQ.(oracle::occi:: AnyData& streanOCCl)
{
streanOCCl _. set String(FI RST_NAME);
streamOCCl _. set String(LAST_NAME) ;
}
CFul | Nane: : ~CFul | Nane()
{
int i;
}

| * GENERATED METHOD | MPLEMENTATI ONS FOR THE ADDRESS OBJECT TYPE. */
OCCl _STD _NAMESPACE: : string CAddress::getState() const

{
return STATE;

4-29

ORACLE

Chapter 4
A Sample OCCI Application

}
voi d CAddress::setState(const OCCl _STD_NAMESPACE: :string &val ue)
{
STATE = val ue;
}
OCCl _STD_NAMESPACE: : string CAddress::getZip() const
{
return ZI P,
}
voi d CAddress:: setZip(const OCCl _STD NAMESPACE: :string &val ue)
{
ZIP = val ue;
}
voi d *CAddress::operator new(size_t size)
{
return oracle::occi::PCject::operator newsize);
}

voi d *CAddress::operator new(size_t size,
const oracle::occi::Connection * sess,
const OCCl _STD NAMESPACE: : string& table)

{
return oracle::occi::PQbject::operator new size, sess, table,
(char *) "HR ADDRESS');
}
voi d *CAddress::operator new(size_t size, void *ctxOCCl)
{
return oracle::occi::PQbject::operator newsize, ctx0Cl _);
}

voi d *CAddress::operator new(size_t size,
const oracle::occi::Connection *sess,
const OCCl _STD NAMESPACE: : string &t abl eName,
const OCCl _STD _NAMESPACE: : string &t ypeNane,
const OCCl _STD_NAMESPACE: : string &t abl eSchems,
const OCCl _STD _NAMESPACE: : string & ypeSchems)
{
return oracle::occi::PQbject::operator newsize, sess, tableNang,
typeName, tabl eSchema, typeSchens);
}

OCCl _STD_NAMESPACE: : string CAddress:: get SQLTypeNane() const
{

}

return OCCI_STD NAVESPACE: : string("HR ADDRESS');

voi d CAddress: : get SQLTypeName(or acl e: : occi : : Envi ronnent *env,
voi d **schemaNane,
unsi gned int &schenaNaneLen,
voi d **typeNane,
unsi gned int & ypeNanmeLen) const
{
PQbj ect : : get SQLTypeNane(env, &CAddress::readSQ., schemaNane,
schemaNanmeLen, typeNane, typeNanelLen);

4-30

ORACLE

Chapter 4
A Sample OCCI Application

CAddr ess: : CAddr ess()

{
}

voi d *CAddress::readSQL(voi d *ctxOCCl _)

{
MyAddress *obj OCCl _ = new(ctxOCCl _) MyAddress(ctxOCCl _);
oracl e::occi::AnyData streamOCCl _(ctxOCCO);

try
{
if (streamOCCl _.isNull())
obj OCCl _->set Nul I () ;
el se
obj OCCl _- >readSQL(streanCC);
1

catch (oracle::occi::SQException& excep)

del ete ohj OCC _;
excep. setErrorCtx(ctx0CCl _);
return (void *)NULL;

1

return (void *)obj OCC _;
}
voi d CAddress::readSQ.(oracle::occi:: AnyData& streanOCCl)
{

STATE = streanOCCl _. get String();
ZIP = streamOCCl _. get String();

}

voi d CAddress::witeSQ(void *objectOCC _, void *ctxOCCl)
{

CAddress *obj OCCl _ = (CAddress *) objectOCCl _;

oracl e::occi::AnyData streamOCCl _(ctxOCC);

try

if (objOCCl _->isNull())
streamOCCl _. set Nul | ();

el se
obj OCCl _->writeSQ(streamoCC);

1

catch (oracle::occi::SQException& excep)

{

excep. setErrorCtx(ctx0CCl _);

1

return;
}
voi d CAddress::witeSQ.(oracle::occi::AnyData& streamOCCl)
{

streanOCCl _. set Stri ng(STATE);
streanOCCl _. set String(Zl P);

}

CAddr ess: : ~CAddr ess()
{
int i;

}

4-31

ORACLE

Chapter 4
A Sample OCCI Application

/* GENERATED METHOD | MPLEMENTATI ONS FOR THE PERSON OBJECT TYPE. */
oracl e::occi::Number CPerson::getld() const

{
return | D
}
voi d CPerson::setld(const oracle::occi::Nunber &val ue)
{
ID = val ue;
}
M/Ful | Nane * CPerson:: get Name() const
{
return NAME;
}
voi d CPerson:: set Name(MyFul | Nane * val ue)
{
NAME = val ue;
}
oracl e:: occi::Ref< M/Address > CPerson::getCurr_addr() const
{
return CURR_ADDR;
}
voi d CPerson::setCurr_addr(const oracle::occi::Ref< MAddress > &val ue)
{
CURR_ADDR = val ue;
}

OCCl _STD_NAMESPACE: : vector< oracle::occi::Ref< M/Address > >&
CPerson: : get Prev_addr _| ()

{
return PREV_ADDR L;

}

const OCCl _STD NAMESPACE: : vector< oracle::occi::Ref< M/Address > >&
CPerson: : getPrev_addr I () const

{
return PREV_ADDR L;

}

voi d CPerson::setPrev_addr_| (const OCCl _STD NAMESPACE: : vector<
oracl e::occi::Ref< MyAddress > > &val ue)

{
PREV_ADDR L = val ue;
}
voi d *CPerson::operator newsize_t size)
{
return oracle::occi::PQject::operator newsize);
}

voi d *CPerson::operator new(size_t size,
const oracle::occi::Connection * sess,
const OCCl _STD NAMESPACE: : string& table)
{
return oracle::occi::PQbject::operator newsize, sess, table,
(char *) "HR PERSON');

4-32

Chapter 4
A Sample OCCI Application

voi d *CPerson::operator new(size_t size, void *ctxOCC)
{
return oracle::occi::PCbject::operator newsize, ctx0Cd _);

}

voi d *CPerson::operator new(size_t size,
const oracle::occi::Connection *sess,
const OCCl _STD NAMESPACE: : string &t abl eName,
const OCCl _STD _NAMESPACE: : string &t ypeNang,
const OCCl _STD_NAMESPACE: : string &t abl eSchem,
const OCCl _STD NAMESPACE: : string & ypeSchems)
{
return oracle::occi::PQbject::operator newsize, sess, tableNang,
typeName, tabl eSchema, typeSchens);

}
OCCl _STD_NAMESPACE: : string CPerson:: get SQLTypeNane() const
{
return OCCl _STD_NAMESPACE: : string("HR PERSON');
}

voi d CPerson:: get SQLTypeNane(oracl e:: occi:: Environnent *env,
voi d **schemaNare,
unsi gned int &schemaNaneLen,
voi d **typeNane,
unsi gned int & ypeNaneLen) const
{
PQhj ect : : get SQLTypeNane(env, &CPerson::readSQ., schemaNane,
schemaNaneLen, typeNane, typeNanelLen);

}

CPer son: : CPerson()

{ NAME = (MyFul | Nane *) 0;

}

}/oi d *CPerson: :readSQ.(voi d *ctxOCC)

MyPerson *obj OCCl _ = new(ctxOCCl _) MyPerson(ctxQCCl _);
oracl e::occi::AnyData streamOCCl _(ctxOCC);
try
{
if (streamOCCl _.isNull())
obj OCCl _->setNul | ();
el se
obj OCCl _- >readSQL(streanCC);
1

catch (oracle::occi::SQException& excep)

del ete ohj OCCl _;
excep. setErrorCtx(ctx0CCl _);
return (void *)NULL;

1

return (void *)obj OCC _;
}
voi d CPerson::readSQ.(oracle::occi::AnyData& streamOCCl _)
{

ID = streanmOCCl _. get Nunber ();
NAME = (MyFul | Nane *) streamOCCl _. get Obj ect (&WFul | Nane: : readSQL) ;
CURR_ADDR = streamOCCl _. get Ref ();

ORACLE 4-33

ORACLE

Chapter 4
A Sample OCCI Application

oracle::occi::getVector f Ref s(strean0CCl _, PREV_ADDR L);
}

voi d CPerson::witeSQ(void *objectOCC _, void *ctxOCCl)
{

CPerson *obj OCCl _ = (CPerson *) objectOCO _;

oracl e::occi::AnyData streamOCCl _(ctxOCC);

try

if (objOCCl _->isNull())
streamOCCl _. set Nul | ();

el se
obj OCCl _->writeSQ(streamoCCd);

1

catch (oracle::occi::SQException& excep)

{

excep. setErrorCtx(ctx0CCl _);

1

return;
}
voi d CPerson::witeSQ.(oracle::occi::AnyData& streanOCCl)
{

streanOCCl _. set Nunber (1D);

streamOCCl _. set Qbj ect (NAME) ;

st reanOCCl _. set Ref (CURR_ADDR) ;

oracle::occi::setVectorf Refs(strean0CCl _, PREV_ADDR L);

}
CPer son: : ~CPer son()
{
int i;
del ete NAME;
}

| * GENERATED METHOD | MPLEMENTATI ONS FOR THE STUDENT OBJECT TYPE. */
OCCl _STD_NAMESPACE: : string CStudent::get School _nane() const
{

}

voi d CStudent:: set School _name(const OCCl _STD NAMESPACE: :string &val ue)

return SCHOOL_NAME;

SCHOOL_NAME = val ue;

}
voi d *CStudent::operator new(size_t size)
{
return oracle::occi::PQject::operator newsize);
}

voi d *CStudent::operator new(size_t size,
const oracle::occi::Connection * sess,
const OCCl _STD NAMESPACE: : string& table)
{

return oracle::occi::PQbject::operator newsize, sess, table,
(char *) "HR STUDENT");

}

voi d *CStudent::operator new(size_t size, void *ctxOCCl)

{

4-34

ORACLE

Chapter 4
A Sample OCCI Application

return oracle::occi::PChject::operator newsize, ctx0Cd _);

}

voi d *CStudent::operator new(size_t size,
const oracle::occi::Connection *sess,
const OCCl _STD NAMESPACE: : string &t abl eName,
const OCCl _STD _NAMESPACE: : string &t ypeNane,
const OCCl _STD_NAMESPACE: : string &t abl eSchem,
const OCCl _STD _NAMESPACE: : string & ypeSchems)
{
return oracle::occi::PQbject::operator newsize, sess, tableNang,
typeName, tabl eSchema, typeSchens);

}
OCCl _STD_NAMESPACE: : string CStudent::get SQLTypeNane() const
{
return OCOl _STD NANMESPACE: : string("HR STUDENT");
}

voi d CStudent:: get SQLTypeNarme(oracl e:: occi:: Environnent *env,
voi d **schemaNane,
unsi gned int &schenaNaneLen,
voi d **typeNane,
unsi gned i nt & ypeNanmeLen) const
{
PQhj ect : : get SQLTypeNane(env, &CStudent::readSQ., schemaNane,
schemaNaneLen, typeNane, typeNanelLen);
}

CSt udent : : CSt udent ()

{

}

voi d *CStudent::readSQL(void *ctxOCCl _)

{
MySt udent *obj OCCl _ = new(ctxOCCl _) MyStudent (ctxOCCl _);
oracl e::occi::AnyData streamOCCl _(ctxOCC);

try
{
if (streamOCCl _.isNull())
obj OCCl _->set Nul I () ;
el se
obj OCCl _- >readSQL(streanCCl);
1

catch (oracle::occi::SQException& excep)

del ete ohj OCC _;
excep. setErrorCtx(ctx0CCl _);
return (void *)NULL;

1
return (void *)obj OCC _;
}
voi d CStudent::readSQ.(oracle::occi:: AnyData& streanOCCl)
{
CPerson: : readSQL(streamCCl _);
SCHOOL_NAME = streamOCCl _. get String();
}
voi d CStudent::witeSQ(void *objectOCC _, void *ctxOCC)
{

4-35

ORACLE

Chapter 4
A Sample OCCI Application

CStudent *obj OCCl _ = (CStudent *) objectOCC _;
oracl e::occi::AnyData streamOCCl _(ctxOCC);
try

if (objOCCl _->isNull())
streamOCCl _. set Nul | ();

el se
obj OCCl _->writeSQ(streamoCCd);

1
catch (oracle::occi::SQException& excep)
{
excep. setErrorCtx(ctx0CCl _);
1
return;
}
voi d CStudent::witeSQ.(oracle::occi::AnyData& streamOCCl)
{
CPerson: :writeSQ(streanCC);
streanOCCl _. set St ri ng(SCHOOL_NAME) ;
}
CSt udent : : ~CSt udent ()
{
int i;
}

Let us assume OTT generates FULL_NAME, ADDRSESS, PERSON, and PFGRFDENT class
declarations in demo2. h. The following sample OCCI application extends the classes
generated by OTT, as specified in deno2. t yp file in Example 4-12, and adds some
user-defined methods. Note that these class declarations have been incorporated into
deno2. h to ensure correct compilation.

Example 4-18 Listing of myDemo.h for a Sample OCCI Application

#i f ndef MYDEMO_ORACLE
#define MYDEMO_CRACLE

#include <string>

#i f ndef DEM®2_ORACLE
#incl ude <demo2. h>
#endi f

usi ng namespace std;
usi ng namespace oracle::occi;

/] declarations for the M/Full Name cl ass.

class MyFull Nane : public CFul | Name

{ public:
MyFul | Nane(string first_nanme, string |ast_name);
voi d displaylnfo();

|3

/'l declarations for the M/Address class.
class MyAddress : public CAddress
{ public:
M/Address(string state_i, string zip_i);
voi d displaylnfo();
|3

4-36

ORACLE

Chapter 4
A Sample OCCI Application

/'l declarations for the M/Person class.

class MyPerson : public CPerson

{ public:
MyPer son(Nunber id_i, MyFullnanme *name_i

const Ref <MyAddress>& addr _i);

voi d nove(const Ref <MyAddress>& new_addr);
voi d displaylnfo();

b

#endi f

Example 4-19 Listing for myDemo.cpp for a Sample OCCI Application

#i fndef DEMO2_ORACLE
#i ncl ude <demn2. h>
#endi f

usi ng namespace std;

[* initialize MFull Name */
MyFul | Nane: : MyFul | Name(string first_name, string |ast_nane)
{

set First_nane(first_nane);
set Last _nane(l ast _nane);

}

/* display all the information in MyFul | Name */

voi d MyFul | Nare: : di spl ayl nf o()

{
cout << "FIRST NAME is" << getFirst_name() << endl;
cout << "LAST NAME is" << getlast_name() << endl;

}

MyFul | Nane: : MyFul | Name(voi d *ct xOCCl _): CFul | Nanme(ct xOCCl _)

{
}

/* METHOD | MPLEMENTATI ONS FOR MyAddress CLASS. */

[* initialize M/Address */
MyAddr ess: : MyAddress(string state_i, string zip_i)
{

setState(state_i);

setZip(zip_i);

/* display all the information in M/Address */
voi d MyAddress: : di splayl nfo()

{
cout << "STATE is" << getState() << endl;

cout << "ZIP is" << getZip() << endl;

}

MyAddr ess: : MyAddress(voi d *ctxOCCl _) : CAddress(ctxOCC)

{
}

/* METHOD | MPLEMENTATI ONS FOR MyPerson CLASS. */

[* initialize MyPerson */
MyPer son: : MPer son(Number id_i, MFullNanme* name_i,

4-37

ORACLE

Chapter 4
A Sample OCCI Application

const Ref <MyAddress>& addr _i)

setld(id.i);

set Name(nanme_i);

set Curr_addr (addr _i);
}

MyPer son: : MyPer son(voi d *ctxOCCl _) : CPerson(ctxQCCl)
{
}

/* nmove Person fromcurr_addr to new_ addr */
voi d MyPerson:: move(const Ref <MyAddress>& new_addr)

/| append curr_addr to the vector //
get Prev_addr _| (). push_back(get Curr_addr());
set Curr_addr (new_addr);

[l mark the object as dirty
t hi s->mar kModi fi ed();
}

[* display all the information of MyPerson */
voi d MyPerson: : di spl ayl nfo()

{
cout << "IDis" << (int)getld() << endl;
get Nane() - >di spl ayl nfo();
/1 de-referencing the Ref attribute using -> operator
get Curr_addr () ->di spl ayl nfo();
cout << "Prev Addr List: " << endl;
for (int i =0; i < getPrev_addr_I().size(); i++)
{
Il access the collection elenments using [] operator
(getPrev_addr_I ())[i]->displaylnfo();
}
}
MyPer son: : MyPer son()
{
}
MySt udent : : MySt udent (voi d *ctxOCCl () : CStudent(ctxOCCl)
{
}

Example 4-20 Listing of main.cpp for a Sample OCCI Application

#i fndef DEMO2_ORACLE
#incl ude <demo2. h>
#endi f

#i f ndef MAPPI NGS_ORACLE
#i ncl ude <mappi ngs. h>
#endi f

#incl ude <iostrean»

usi ng nanmespace std;

usi ng namespace: : oracl e;

int main()

4-38

Chapter 4
A Sample OCCI Application

Environnment *env = Environnent:: creat eEnvironnent (Envi ronment : : OBJECT) ;
mappi ngs(env);

try {
Connection *conn = Connection("HR', "password");

[* Call the OIT generated function to register the nappings */

/* create a persistent object of type ADDRESS in the database table,
ADDR_TAB */

MyAddress *addrl = new(conn, "ADDR TAB') MyAddress("CA", "94065");

conn->comi t () ;

Statement *st = conn->createStatenent("select ref(a) fromaddr_tab a");
Resul t Set *rs = st->executeQuery();
Ref <MyAddress> r1;
if (rs->next())
rl = rs->getRef(1);
st->cl oseResul t Set (rs);
conn- >t er m nat eSt at enent (st);

M/Ful | Nane * nanel = new MyFul | Nane("Joe", "Black");

/* create a persistent object of type Person in the database table
PERSON_TAB */

My/Person *personl = new(conn, "PERSON TAB') MPerson(1, nanel,r1l);

conn->commi t () ;

/* selecting the inserted information */
Statenment *stnt = conn->createStatement();
Resul t Set *resultSet =
st nt - >execut eQuery(" SELECT REF(a) from person_tab a where id = 1");

if (resultSet->next())

{
Ref <MyPerson> j oe_ref = (Ref<MyPerson>) resultSet->get Ref (1);
j oe_ref->displaylnfo();
/* create a persistent object of type ADDRESS in the database table
ADDR_TAB */
MyAddress *new_addr1 = new(conn, "ADDR TAB"') MyAddress("PA", "92140");
j oe_ref->nove(new_addr 1- >get Ref ()) ;
j oe_ref->displaylnfo();
}

/* commt the transaction which results in the newy created object
new_addr and the dirty object joe to be flushed to the server.
Note that joe was marked dirty in nove(). */

conn->commi t () ;

conn->term nat eStat enent (stnt);
env- >t ermi nat eConnecti on(conn);

}

catch (exception &)

{

cout << x.what () << endl;

}

Envi ronnent : : t er ni nat eEnvi ronnent (env);

ORACLE 4-39

Chapter 4
A Sample OCCI Application

return 0,

}

ORACLE 4-40

Data Types

This chapter is a reference for Oracle data types used by Oracle C++ Interface
applications. This information helps you to understand the conversions between
internal and external representations of data that occur when you transfer data
between your application and the database server.

This chapter contains these topics:
e Overview of Oracle Data Types
e Internal Data Types
* External Data Types

e Data Conversions

5.1 Overview of Oracle Data Types

Accurate communication between your C++ program and the Oracle database server
is critical. OCCI applications can retrieve data from database tables by using SQL
gueries or they can modify existing data with SQL | NSERT, UPDATE, and DELETE functions.
To facilitate communication between the host language C++ and the database server,
you must be aware of how C++ data types are converted to Oracle data types and
back again.

In the Oracle database, values are stored in columns in tables. Internally, Oracle
represents data in particular formats called internal data types. NUVBER, VARCHAR2, and
DATE are examples of Oracle internal data types.

OCCI applications work with host language data types, or external data types,
predefined by the host language. When data is transferred between an OCCI
application and the database server, the data from the database is converted from
internal data types to external data types.

This section includes the following topic: About OCCI Type and Data Conversion.

5.1.1 About OCCI Type and Data Conversion

ORACLE

OCCI defines an enumerator called Type that lists the possible data representation
formats available in an OCCI application. These representation formats are called
external data types. When data is sent to the database server from the OCCI
application, the external data type indicates to the database server what format to
expect the data. When data is requested from the database server by the OCCI
application, the external data type indicates the format of the data to be returned.

For example, on retrieving a value from a NUMBER column, the program may be set to
retrieve it in OCCl I NT format (a signed integer format into an integer variable). Or, the
client might be set to send data in 0CCl FLOAT format (floating-point format) stored ina C
++ float variable to be inserted in a column of NUMBER type.

5-1

Chapter 5
Internal Data Types

An OCCI application binds input parameters to a St at enent , by calling a set xxx()
method (the external dat at ype is implicitly specified by the method name), or by
calling the regi st er Qut Paran{(), set Dat aBuf f er (), or set Dat aBuf f er Array() method (the
external data type is explicitly specified in the method call). Similarly, when data values
are fetched through a Resul t Set object, the external representation of the retrieved
data must be specified. This is done by calling a get xxx() method (the ext er nal

dat at ype is implicitly specified by the method name) or by calling the set Dat aBuf fer ()
method (the external data type is explicitly specified in the method call).

Note that there are more external data types than internal data types. In some cases,
a single external data type maps to a single internal data type; in other cases, many
external data types map to a single internal data type. The many-to-one mapping
provides you with added flexibility.

¢ See Also:

External Data Types

5.2 Internal Data Types

ORACLE

The internal (built-in) data types provided by Oracle are listed in this section. A brief
summary of internal Oracle data types, including description, code, and maximum
size, appears in Table 5-1.

Table 5-1 Summary of Oracle Internal Data Types
|

Internal Data Type Maximum Size
BFI LE 4 gigabytes
BI NARY_DOUBLE 8 bytes
BI NARY_FLOAT 4 bytes
CHAR 2,000 bytes
DATE 7 bytes

11 bytes

I NTERVAL DAY TO SECOND REF

I NTERVAL YEAR TO MONTH REF 5 bytes

2 gigabytes (2731-1 bytes)

LONG
LONG RAW 2 gigabytes (2731-1 bytes)
NCHAR 2,000 bytes

5-2

ORACLE

Chapter 5
Internal Data Types

Table 5-1 (Cont.) Summary of Oracle Internal Data Types

Internal Data Type

Maximum Size

NUVBER

NVARCHAR2

RAW

REF

BLOB

CLOB

NCLOB

RON' D

TI MESTAWP

TI MESTAMP W TH LOCAL TI ME ZONE

TI MESTAMP W TH TI ME ZONE

UROW D

User-defined type (object type, VARRAY,
nested table)

VARCHAR2

21 bytes

32,767 bytes

2000 bytes (standard), 32,767 bytes (extended)

Not Applicable

4 gigabytes

4 gigabytes

4 gigabytes

10 bytes

11 bytes

7 bytes

13 bytes

4000 bytes

Not Applicable

4000 bytes (standard), 32,767 bytes extended

See Also:

e Oracle Database Concepts

e Oracle Database SQL Language Reference

This section includes the following topics:

e Character Strings and Byte Arrays

e Universal Rowid (UROWID)

5-3

Chapter 5
External Data Types

5.2.1 Character Strings and Byte Arrays

You can use five Oracle internal data types to specify columns that contain either
characters or arrays of bytes: CHAR, VARCHAR2, RAW LONG, and LONG RAW

CHAR, VARCHAR?, and LONG columns normally hold character data. RAWand LONG RAWhold
bytes that are not interpreted as characters, for example, pixel values in a bitmapped
graphics image. Character data can be transformed when passed through a gateway
between networks. For example, character data passed between systems by using
different languages (where single characters may be represented by differing numbers
of bytes) can be significantly changed in length. Raw data is never converted in this
way.

The database designer is responsible for choosing the appropriate Oracle internal data
type for each column in a table. You must be aware of the many possible ways that
character and byte-array data can be represented and converted between variables in
the OCCI program and Oracle database tables.

5.2.2 Universal Rowid (UROWID)

The universal rowid (URON D) is a data type that can store both the logical and the
physical rowid of rows in Oracle tables and in foreign tables, such as DB2 tables
accessed through a gateway. Logical rowi d values are primary key-based logical
identifiers for the rows of index-organized tables.

To use columns of the UROW D data type, the value of the COWPATI BLE initialization
parameter must be set to 8. 1 or higher.

The following OCCl _SQLT types can be bound to universal rowi ds:
e 00C_SQLT_CHR (VARCHAR?)

e 0OCl_SQLT_VCS (VARCHAR)

e (OCCl_SQLT_STR(NULL terminated string)

+ 000 _SQLT_LVC (long VARCHAR)

e 0OCl_SQLT_AFC (CHAR)

e 0OCl_SQLT_AVC (CHAR?)

e (OCCl_SQLT_VST (string)

e OCCl _SQLT_RDD (ROW D descriptor)

5.3 External Data Types

ORACLE

OCCI application communicate with the Oracle database server by using external data
types. Specifically, external data types are mapped to C++ data types.

Table 5-2 lists the Oracle external data types, the C++ equivalent (what the Oracle
internal data type is usually converted to), and the corresponding OCCI type. Note the
following conditions:

e In C++ Data Type column, n stands for variable length and depends on program
requirements or operating system.

* The usage of types in Stat enent class methods is as follows:

5-4

Chapter 5

External Data Types

— setDataBuffer() and set Dat aBuf f er Array(): Only types of the form
OCCl _SQLT_xxx (for example, OCCI _SQLT_I NT) in the occi Common. h file are

permitted.

— registerQutParan(): Only types of the form OCCl xxx (for example, OCCl DOUBLE,
OCCl CURSCR, and so on) on the occi Comon. h file are permitted. However, there
are some exceptions: OCCl ANYDATA, OCCl METADATA, OCCl STREAM, and OCCl BOOL are

not permitted.

In the Resul t Set class, only types of the form 0CCl _SQLT_xxx (for example,
OCCl _SQLT_I NT) in the occi Common. h file are permitted for use in set Dat aBuf fer () and
set Dat aBuf fer Array() methods.

The TI MESTAMP and TI MESTAMP W TH TI ME ZONE data types are collectively known as
datetimes. The | NTERVAL YEAR TO MONTH and | NTERVAL DAY TO SECOND are collectively

known as intervals.

Table 5-2 External Data Types and Corresponding C++ and OCCI Types

External Data Type C++ Type OCCI Type Usage Notes
16 bit signed | NTEGER si gned short, 0cCl | NT Usteo\é\?thssf; Daxa\Buf fer(),
signed int se aBufferArray().
32 bit signed | NTEGER signed int, signed OOCHINT Use with set Dat aBuf fer (),
| set DataBufferArray().
ong
8 bit signed | NTECER . Use with set Dat aBuffer (),
d ch OCCl | NT
S! gned char set DataBufferArray().
BFI LE Bfile 0CCl BFI LE Use with r egi ser Qut Paran() .
FBFI LE Use with set Dat aBuf fer (),
OCl LobLocat OCCl _SQLT_FILE
obtocator -SAT set DataBufferArray().
BLOB Use with set Dat aBuf f er (),
OCl LobLocat OCCl _SQLT_BLOB
obtocator -SAT set DataBufferArray().
BLOB Bl ob 00Cl BLOB Use with r egi ser Qut Paran() .
BOOL bool 000l BOOL Use with r egi ser Qut Paran() .
BYTES Byt es 00CI BYTES Use with r egi ser Qut Paran() .
CHAR Use with set Dat aBuf f er (),
h OCCl _SQLT_AFC
char[n} -SAT set DataBufferArray().
CHAR string 000! CHAR Use with r egi ser Qut Paran() .
CLOB Use with set Dat aBuf f er (),
OCl LobLocat OCCl _SQLT_CLOB
obtocator -SAT set DataBufferArray().
CHARZ Use with set Dat aBuf f er (),
h +1 OCCl _SQLT_RDD
char[n+1] -SAT set DataBufferArray().
CLCB dob 00Cl CLOB Use with r egi ser Qut Parant() .
ORACLE 5-5

Chapter 5
External Data Types

Table 5-2 (Cont.) External Data Types and Corresponding C++ and OCCI Types

External Data Type C++ Type OCCI Type Usage Notes
CURSCR Resul t Set 000! CURSCR Use with r egi ser Qut Paran() .
DATE Use with set Dat aBuf f er ()
har[7 OCCl _SQLT_DAT '
char[7] SSAT_ set Dat aBuf fer Array() .
DATE Dat e 00CI DATE Use with r egi ser Qut Paran() .
DOUBLE doubl e 00C! DOUBLE Use with r egi ser Qut Paran() .
FLOAT Use with set Dat aBuf f er ()
float, doubl OCCl FLOAT '
oa oubre set Dat aBuf fer Array() .
FLOAT f1 oat 000l ELOAT Use with r egi ser Qut Paran() .
I NT int 00Cl | NT Use with r egi ser Qut Paran() .
I NTERVAL DAY TO Use with set Dat aBuf f er ()
har[11 OCCl _SQLT_I NTERVAL_DS '
SECOND char [11} -SQT - set Dat aBuf ferArray().
I NTERVAL YEAR TO Use with set Dat aBuf f er ()
char[5 OCCl _SQLT_| NTERVAL_YM '
MONTH (5] SSAT_ - set Dat aBuf fer Array() .
| NTERVALDS Interval DS 00C! | NTERVALDS Use with r egi ser Qut Paran() .
| NTERVALYM Interval YM 000! | NTERVALYM Use with r egi ser Qut Paran() .
LONG Use with set Dat aBuf f er ()
h OCCl _SQLT_LNG '
char[n] SSAT_ set Dat aBuf fer Array() .
LONG RAW . Use with set Dat aBuf fer (),
unsi gned char[n] OCCl _SQLT_LBI set Dat aBuf f er Ar ray()
LONG VARCHAR char[n 00 SQLT LVC UsteD\;\;ltthfe]E DaxBuf fer(),
+si ezeof (i nteger)] se aBufferArray().
LONG VARRAW unsi gned char[n 00 SQLT LVB UsteD\;\;ltthfe]E DaxlBuffer(),
+si ezeof (i nteger)] se aBufferArray().
VMETADATA Vbt aDat a 00C! METADATA Use with r egi ser Qut Paran() .
NAMED DATA TYPE Use with set Dat aBuf f er ()
struct OCCl _SQLT_NTY '
! SSAT_ set Dat aBuf fer Array() .
NATI VE DOUBLE doubl e 00C! BDOUBLE Use with set Dat aBuf fer (),
set Dat aBuf fer Array() .
NATI VE DOUBLE Bdoubl e, doubl e 00C! BDOUBLE Use with r egi ser Qut Paran() .
NATI VE FLOAT f1 oat 00C! BELOAT Use with set Dat aBuf fer (),

ORACLE

set Dat aBuf fer Array() .

5-6

Chapter 5
External Data Types

Table 5-2 (Cont.) External Data Types and Corresponding C++ and OCCI Types

External Data Type C++ Type OCCI Type Usage Notes
NATI VE FLOAT BFl oat, float 00C! BELOAT Use with r egi ser Qut Paran() .
null terminated STRI NG Use with set Dat aBuf f er ()
h +1 0CCl _SQLT_STR '
char[n+1] SSAT_ set Dat aBuf fer Array() .
NUVBER . Use with set Dat aBuf fer (),
unsi gned char[21] OCCl _SQLT_Num set Dat aBuf f er Ar ray()
NUVBER Nunber 000 NUVBER Use with r egi ser Qut Paran() .
POBJECT User defined types 000! POBJECT Use with r egi ser Qut Paran() .
generated by OTT
utility.
RAW . Use with set Dat aBuf fer (),
h T_BIN
unsi gned char [} 0Ca _SQLT_ set Dat aBufferArray().
REF Use with set Dat aBuf fer (),
| Ref T_REF
i ke 0Ca _SQLT_ set Dat aBufferArray().
REF Ref 00Cl REF Use with r egi ser Qut Paran() .
REFANY Ref Any 000! REFANY Use with r egi ser Qut Paran() .
RON D ' Use with set Dat aBuf fer (),
| TRD
Ot Rovi d 0Ca _SQLT_ set Dat aBufferArray().
RON D Byt es 00Cl ROW D Use with r egi ser Qut Paran() .
ROWN D descriptor ' Use with set Dat aBuf fer (),
| T_RDD
Ot Rovi d 0Ca _SQLT_ set Dat aBufferArray().
STRI NG STL string 000l STRI NG Use with r egi ser Qut Paran() .
TI MESTAMP Use with set Dat aBuf fer (),
har[11 T_TI MESTAMP
char [11} oCa _SQLT_ S set Dat aBufferArray().
TI MESTAMP Ti mest anp 00C! TI MESTAMP Use with r egi ser Qut Paran() .
TI MESTAMP W TH LOCAL Use with set Dat aBuf fer (),
har[7 T_TI MESTAMP_LTZ
TI ME ZONE char [7] oCa _SQLT_ S - set Dat aBufferArray().
TI MESTAMP W TH TI ME Use with set Dat aBuf fer (),
har[1 T_TI MESTAMP_TZ
ZONE char [13] oCa _SQLT_ S - set Dat aBufferArray().
UNSI GNED | NT . . Use with set Dat aBuf fer (),
| GNED_| NT
unsi gned int 0T INS| GED_ set Dat aBufferArray().
UNSI GNED | NT unsi gned i nt 0OC UNSI GNED | NT Use with r egi ser Qut Paran() .
VARCHAR char[n 000 SQLT VCS UsteD\E/i\?tthfe]E DaxlBuf fer(),
+si zeof (short se aBufferArray().
integer)]
ORACLE 5.7

Chapter 5
External Data Types

Table 5-2 (Cont.) External Data Types and Corresponding C++ and OCCI Types

External Data Type C++ Type OCCI Type Usage Notes
VARCHAR2 Use with set Dat aBuf f er ()
h 0CCl _SQLT_CHR '
char[n] ST set Dat aBuf fer Array() .
VARNUM Use with set Dat aBuf f er ()
har[22 OCCl _SQLT_VNU '
char[22] ST set Dat aBuf fer Array() .
VARRAW unsi gned char[n 00 _SQLT VB Use with set Dat aBuf fer (),
+si zeof (short set Dat aBuf fer Array() .
integer)]
VECTOR STL vect or 000l VECTOR Use with r egi ser Qut Paran() .

5.3.1 Description of External Data Types

ORACLE

This section includes the following topic: Description of External Data Types.

This section provides a description for each of the external data types:

BFILE

BDOUBLE
BFLOAT

BLOB

CHAR

CHARZ

CLOB

DATE

FLOAT

INTEGER
INTERVAL DAY TO SECOND
INTERVAL YEAR TO MONTH
LONG

LONG RAW
LONG VARCHAR
LONG VARRAW
NCLOB
NUMBER

OCCI BFILE
OCCI BLOB
OCCI BYTES

5-8

5.3.1.1 BFILE

OCCI CLOB

OCCI DATE

OCCI INTERVALDS
OCCI INTERVALYM
OCCI NUMBER
OCCI POBJECT
OCCI REF

OCCI REFANY
OCCI STRING
OCCI TIMESTAMP
OCCI VECTOR
RAW

REF

ROWID

STRING
TIMESTAMP

TIMESTAMP WITH LOCAL TIME ZONE
TIMESTAMP WITH TIME ZONE

UNSIGNED INT
VARCHAR
VARCHAR2
VARNUM
VARRAW
NATIVE DOUBLE
NATIVE FLOAT

Chapter 5
External Data Types

The external data type BFI LE allows read-only byte stream access to large files on the
file system of the database server. A BFI LE is a large binary data object stored in
operating system files outside database tablespaces. These files use reference
semantics. The Oracle server can access a BFI LE provided the underlying server
operating system supports stream-mode access to these operating system files.

5.3.1.2 BDOUBLE

The BDoubl e interface in OCCI encapsulates the native double data and the NULL
information of a column or object attribute of the type bi nary_doubl e. The OCCI
methods in AnyData Class, ResultSet Class and Statement Class, and the global
methods that take these class objects as parameters, use the following definition for
the BDOUBLE data type:

ORACLE

5-9

Chapter 5
External Data Types

Example 5-1 Definition of the BDOUBLE Data Type

struct BDoubl e

doubl e val ue;
bool isNull;

BDoubl ¢()

isNull = fal se;
value = 0.;

}
b

5.3.1.3 BFLOAT

The BFl oat interface in OCCI encapsulates the native float data and the NULL
information of a column or object attribute of the type bi nary_fl oat. The OCCI methods
in AnyData Class, ResultSet Class and Statement Class, and the global methods that
take these class objects as parameters, use the following definition for the BFLOAT data

type:
Example 5-2 Definition of the BFLOAT Data Type

struct BFl oat

{

float val ue;
bool isNull;

BFl oat ()
{

isNull = fal se;
value = 0.;

}
b

5.3.1.4 BLOB

The external data type BLOB stores unstructured binary large objects. A BLOB can be
thought of as a bitstream with no character set semantics. BLOBS can store up to 4
gigabytes of binary data.

BLOB data types have full transactional support. Changes made through OCCI
participate fully in the transaction. BLOB value manipulations can be committed or rolled
back. You cannot save a BLOB locator in a variable in one transaction and then use it in
another transaction or session.

5.3.1.5 CHAR

The external data type CHAR is a string of characters, with a maximum length of 2000
characters. Character strings are compared by using blank-padded comparison
semantics.

5.3.1.6 CHARZ

The external data type CHARZ is similar to the CHAR data type, except that the string must
be NULL terminated on input, and Oracle places a NULL terminator character at the end

ORACLE 5-10

Chapter 5
External Data Types

of the string on output. The NULL terminator serves only to delimit the string on input or
output. It is not part of the data in the table.

5.3.1.7 CLOB

The external data type CLOB stores fixed-width or varying-width character data. A CLOB
can store up to 4 gigabytes of character data. CLOBs have full transactional support.
Changes made through OCCI participate fully in the transaction. CLOB value
manipulations can be committed or rolled back. You cannot save a CLOB locator in a
variable in one transaction and then use it in another transaction or session.

5.3.1.8 DATE

The external data type DATE can update, insert, or retrieve a date value using the
Oracle internal seven byte date binary format, as listed in Table 5-3:

Table 5-3 Format of the DATE Data Type
|

Example Byte 1: Byte 2: Byte 3: Byte 4: Byte 5: Byte 6: Byte 7:
Century Year Month Day Hour Minute Second

1: 01-JUN-2000, 3:17PM 120 100 6 1 16 18 1

2: 01-JAN-4712 BCE 53 88 1 1 1 1 1

5.3.1.8.1 Example 1, 01-JUN-2000, 3:17PM:

The century and year bytes (1 and 2) are in excess-100 notation. Dates BCE
(Before Common Era) are less than 100. Dates in the Common Era (CE), 0 and
after, are greater than 100. For dates 0 and after, the first digit of both bytes 1 and
2 signifies that it is of the CE.

For byte 1, the second and third digits of the century are calculated as the year (an
integer) divided by 100. With integer division, the fractional portion is discarded.
The following calculation is for the year 1992: 1992 / 100 = 19.

For byte 1, 119 represents the twentieth century, 1900 to 1999. A value of 120
would represent the twenty-first century, 2000 to 2099.

For byte 2, the second and third digits of the year are calculated as the year
modulo 100: 1992 % 100 = 92.

For byte 2, 192 represents the ninety-second year of the current century. A value of
100 would represent the zeroth year of the current century.

The year 2000 would yield 120 for byte 1 and 100 for byte 2.

For bytes 3 through 7, valid dates begin at 01-JAN of the year. The month byte
ranges from 1 to 12, the date byte ranges from 1 to 31, the hour byte ranges from 1
to 24, the minute byte ranges from 1 to 60, and the second byte ranges from 1 to
60.

5.3.1.8.2 Example 2, 01-JAN-4712 BCE:

ORACLE

For years before 0 CE, centuries and years are represented by the difference
between 100 and the number.

For byte 1, 01-JAN-4712 BCE is century 53: 100 - 47 = 53.

5-11

Chapter 5
External Data Types

* For byte 2, 01-JAN-4712 BCE is year 88: 100 - 12 = 88.

If no time is specified for a date, the time defaults to midnight and bytes 5 through 6
are setto1: 1,1, 1.

When you enter a date in binary format by using the external data type DATE, the
database does not perform consistency or range checking. All data in this format must
be validated before input.

There is little need for the external data type DATE. It is more convenient to convert DATE
values to a character format, because most programs deal with dates in a character
format, such as DD- MON YYYY. Instead, you may use the Dat e data type.

When a DATE column is converted to a character string in your program, it is returned in
the default format mask for your session, or as specified in the I NI T. ORA file.

This data type is different from OCCI DATE which corresponds to a C++ Dat e data type.

5.3.1.9 FLOAT

The external data type FLOAT processes numbers with fractional parts. The number is
represented in the host system's floating-point format. Normally, the length is 4 or 8
bytes.

The internal format of an Oracle number is decimal. Most floating-point
implementations are binary. Oracle, therefore, represents numbers with greater
precision than floating-point representations.

5.3.1.10 INTEGER

The external data type | NTEGER is used for converting numbers. An external integer is a
signed binary number. Its size is operating system-dependent. If the number being
returned from Oracle is not an integer, then the fractional part is discarded, and no
error is returned. If the number returned exceeds the capacity of a signed integer for
the system, then Oracle returns an overflow on conversion error.

A rounding error may occur when converting between FLOAT and NUMBER. Using a FLOAT
as a bind variable in a query may return an error. You can work around this by
converting the FLOAT to a string and using the OCCI type OCCl _SQLT_CHR or the OCCI
type OCCl _SQLT_STR for the operation.

5.3.1.11 INTERVAL DAY TO SECOND

The external data type | NTERVAL DAY TO SECOND stores the difference between two
datetime values in terms of days, hours, minutes, and seconds. Specify this data type
as follows:

| NTERVAL DAY [(day_precision)]
TO SECOND [(fractional _seconds_preci sion)]

This example uses the following placeholders:

e day_precisi on: Number of digits in the DAY datetime field. Accepted values are 1 to
9. The default is 2.

e fractional _seconds_precisi on: Number of digits in the fractional part of the SECOND
datetime field. Accepted values are 0 to 9. The default is 6.

ORACLE 5-12

Chapter 5
External Data Types

To specify an | NTERVAL DAY TO SECOND literal with nondefault day and second precision,
you must specify the precisions in the literal. For example, you might specify an
interval of 100 days, 10 hours, 20 minutes, 42 seconds, and 22 hundredths of a second
as follows:

I NTERVAL ' 100 10:20:42.22" DAY(3) TO SECOND(2)

You can also use abbreviated forms of the | NTERVAL DAY TO SECOND literal. For example:

° INTERVAL '90' M NUTE maps to | NTERVAL ' 00 00: 90: 00. 00" DAY TO SECOND(2)

« INTERVAL ' 30:30' HOUR TO M NUTE maps to | NTERVAL ' 00 30:30:00.00' DAY TO
SECOND(2)

* |INTERVAL '30" SECOND(2,2) maps to | NTERVAL ' 00 00: 00: 30. 00" DAY TO SECONI(2)

5.3.1.12 INTERVAL YEAR TO MONTH

The external data type | NTERVAL YEAR TO MONTH stores the difference between two
datetime values by using the YEAR and MONTH datetime fields. Specify | NTERVAL YEAR TO
MONTH as follows:

I NTERVAL YEAR [(year_precision)] TO MONTH

The placeholder year _preci si on is the number of digits in the YEAR datetime field. The
default value of year _preci si on is 2. To specify an | NTERVAL YEAR TO MONTH literal with a
nondefault year _preci si on, you must specify the precision in the literal. For example,

the following | NTERVAL YEAR TO MONTH literal indicates an interval of 123 years, 2 months:

I NTERVAL ' 123-2' YEAR(3) TO MONTH
You can also use abbreviated forms of the | NTERVAL YEAR TO MONTH literal. For example,

e INTERVAL '10° MONTHmMapsto | NTERVAL ' 0-10" YEAR TO MONTH
° INTERVAL '123" YEAR(3) mapsto | NTERVAL '123-0" YEAR(3) TO MONTH

5.3.1.13LONG

The external data type LONG stores character strings longer than 4000 bytes and up to 2
gigabytes in a column of data type LONG. Columns of this type are only used for storage
and retrieval of long strings. They cannot be used in methods, expressions, or WHERE
clauses. LONG column values are generally converted to and from character strings.

5.3.1.14 LONG RAW

The external data type LONG RAWis similar to the external data type RAW except that it
stores up to 2 gigabytes.

5.3.1.15 LONG VARCHAR

The external data type LONG VARCHAR stores data from and into an Oracle LONG column.
The first four bytes contain the length of the item. The maximum length of a LONG
VARCHAR is 2 gigabytes.

ORACLE 5-13

Chapter 5
External Data Types

5.3.1.16 LONG VARRAW

The external data type LONG VARRAWStore data from and into an Oracle LONG RAWcolumn.
The length is contained in the first four bytes. The maximum length is 2 gigabytes.

5.3.1.17 NCLOB

The external data type NCLOB is a national character version of a CLOB. It stores fixed-
width, multibyte national character set character (NCHAR), or varying-width character set
data. An NCLOB can store up to 4 gigabytes of character text data.

NCLOBs have full transactional support. Changes made through OCCI participate fully in
the transaction. NCLOB value manipulations can be committed or rolled back. You
cannot save an NCLOB locator in a variable in one transaction and then use it in another
transaction or session.

You cannot create an object with NCLOB attributes, but you can specify NCLOB
parameters in methods.

5.3.1.18 NUMBER

You should not have to use NUMBER as an external data type. If you do use it, Oracle
returns numeric values in its internal 21-byte binary format and expects this format on
input. The following discussion is included for completeness only.

Oracle stores values of the NUMBER data type in a variable-length format. The first byte
is the exponent and is followed by 1 to 20 mantissa bytes. The high-order bit of the
exponent byte is the sign bit; it is set for positive numbers and it is cleared for negative
numbers. The lower 7 bits represent the exponent, which is a base-100 digit with an
offset of 65.

To calculate the decimal exponent, add 65 to the base-100 exponent and add another
128 if the number is positive. If the number is negative, you do the same, but
subsequently the bits are inverted. For example, -5 has a base-100 exponent = 62
(0x3e) . The decimal exponent is thus (~0x3e) - 128-65 = 0Oxcl-128-65 = 193-128-65 = 0.

Each mantissa byte is a base-100 digit, in the range 1 to 100. For positive numbers, the
digit has 1 added to it. So, the mantissa digit for the value 5 is 6. For negative numbers,
instead of adding 1, the digit is subtracted from 101. So, the mantissa digit for the
number -5 is: 101-5 = 96. Negative numbers have a byte containing 102 appended to
the data bytes. However, negative numbers that have 20 mantissa bytes do not have
the trailing 102 byte. Because the mantissa digits are stored in base-100, each byte
can represent two decimal digits. The mantissa is normalized; leading zeroes are not
stored.

Up to 20 data bytes can represent the mantissa. However, only 19 are guaranteed to
be accurate. The 19 data bytes, each representing a base-100 digit, yield a maximum
precision of 38 digits for an internal data type NUVBER.

Note that this data type is different from 0CCI NUMBER which corresponds to a C++
Nunber data type.

ORACLE 5-14

Chapter 5
External Data Types

5.3.1.19 OCCI BFILE

See Also:

OCCI Application Programming Interface, Bfile Class

5.3.1.20 OCCI BLOB

See Also:

OCCI Application Programming Interface, Blob Class

5.3.1.21 OCCI BYTES

See Also:

OCCI Application Programming Interface, Bytes Class

5.3.1.22 OCCI CLOB

See Also:

OCCI Application Programming Interface, Clob Class

5.3.1.23 OCCI DATE

See Also:

OCCI Application Programming Interface, Date Class

5.3.1.24 OCCI INTERVALDS

See Also:

OCCI Application Programming Interface, IntervalDS Class

ORACLE 5-15

Chapter 5
External Data Types

5.3.1.25 OCCI INTERVALYM

See Also:

OCCI Application Programming Interface, IntervalYM Class

5.3.1.26 OCCI NUMBER

See Also:

OCCI Application Programming Interface, Number Class

5.3.1.27 OCCI POBJECT

See Also:

OCCI Application Programming Interface, PObject Class

5.3.1.28 OCCI REF

See Also:

OCCI Application Programming Interface, Ref Class

5.3.1.29 OCCI REFANY

See Also:

OCCI Application Programming Interface, RefAny Class

5.3.1.30 OCCI STRING

The external data type OCCI STRI NG corresponds to an STL string.

ORACLE 5-16

Chapter 5
External Data Types

5.3.1.31 OCCI TIMESTAMP

See Also:

OCCI Application Programming Interface, Timestamp Class

5.3.1.32 OCCI VECTOR

The external data type OCCI VECTCR is used to represent collections, for example, a
nested table or VARRAY. CREATE TYPE num type as VARRAY OF NUMBER(10) can be
represented in a C++ application as vect or <i nt >, vect or <Nunber >, and so on.

5.3.1.33 RAW

The external data type RAWis used for binary data or byte strings that are not to be
interpreted or processed by Oracle. RAWcould be used, for example, for graphics
character sequences. The maximum length of a RAWcolumn is 2000 bytes. If the
init.ora parameter max_string_si ze = standard (default value), the maximum length of
a RAWcan be 2000 bytes. If the i nit. ora parameter max_string_si ze = extended, the
maximum length of a RAWcan be 32767 bytes. See the i ni t. ora parameter
MAX_STRING_SIZE in Oracle Database Reference for more information about
extended data types.

When RAWdata in an Oracle table is converted to a character string, the data is
represented in hexadecimal code. Each byte of RAwWdata is represented as two
characters that indicate the value of the byte, ranging from 00 to FF. If you input a
character string by using RAW then you must use hexadecimal coding.

5.3.1.34 REF

The external data type REF is a reference to a named data type. To allocate a REF for
use in an application, declare a variable as a pointer to a REF.

5.3.1.35 ROWID

The external data type RON D identifies a particular row in a database table. The ROW D
is often returned from a query by issuing a statement similar to the following example:

SELECT RON'D, varl, var2 FROM db;

You can then use the returned RON D in further DELETE statements.

If you are performing a SELECT for an UPDATE operation, then the ROW D is implicitly
returned.

5.3.1.36 STRING

The external data type STRI NG behaves like the external data type VARCHAR? (data type
code 1), except that the external data type STRI NG must be NULL-terminated.

ORACLE 5-17

Chapter 5
External Data Types

Note that this data type is different from OCCI STRI NG which corresponds to a C++ STL
string data type.

5.3.1.37 TIMESTAMP

The external data type TI MESTAWP is an extension of the DATE data type. It stores the
year, month, and day of the DATE data type, plus hour, minute, and second values.
Specify the TI MESTAVP data type as follows:

TI MESTAMP [(fractional _seconds_precision)]

The placeholder fractional _seconds_preci si on optionally specifies the number of digits
in the fractional part of the SECOND datetime field and can be a number in the range 0 to
9. The default is 6. For example, you specify TI MESTAMP(2) as a literal as follows:

TI MESTAMWP ' 1997-01-31 09: 26: 50. 10’

Note that this data type is different from OCCl Tl MESTAMP.

5.3.1.38 TIMESTAMP WITH LOCAL TIME ZONE

The external data type TI MESTAMP W TH Tl ME ZONE (TSTZ) is a variant of TI MESTAMWP that
includes an explicit time zone displacement in its value. The time zone displacement is
the difference (in hours and minutes) between local time and Coordinated Universal
Time (UTC), formerly Greenwich Mean Time. Specify the TI MESTANMP W TH TI ME ZONE data
type as follows:

TI MESTAMP(fractional _seconds_precision) WTH TI ME ZONE

The placeholder fractional _seconds_pr eci si on optionally specifies the number of digits
in the fractional part of the SECOND datetime field and can be a number in the range 0 to
9. The default is 6.

Two TI MESTAMP W TH Tl ME ZONE values are considered identical if they represent the
same instant in UTC, regardless of the TI ME ZONE offsets stored in the data.

5.3.1.39 TIMESTAMP WITH TIME ZONE

The external data type TI MESTAMP W TH Tl ME ZONE is a variant of TI MESTAWP that includes a
time zone displacement in its value. The time zone displacement is the difference (in
hours and minutes) between local time and Coordinated Universal Time (UTC),
formerly Greenwich Mean Time. Specify the TI MESTAMP W TH Tl ME ZONE data type as
follows:

TI MESTAMP [(fractional _seconds_precision)] WTH TI ME ZONE

The placeholder fracti onal _seconds_pr eci si on optionally specifies the number of digits
in the fractional part of the SECOND datetime field and can be a number in the range 0
to 9. The default is 6. For example, you might specify TI MESTAMP(0) W TH TI ME ZONE as a
literal as follows:

TI MESTAWP ' 1997-01-31 09: 26: 50+02. 00'

5.3.1.40 UNSIGNED INT

The external data type UNSI GNED | NT is used for unsigned binary integers. The size in
bytes is operating system dependent. The host system architecture determines the

ORACLE 5-18

Chapter 5
External Data Types

order of the bytes in a word. If the number being output from Oracle is not an integer,
the fractional part is discarded, and no error is returned. If the number to be returned
exceeds the capacity of an unsigned integer for the operating system, Oracle returns
an overflow on conversion error.

5.3.1.41 VARCHAR

The external data type VARCHAR store character strings of varying length. The first two
bytes contain the length of the character string, and the remaining bytes contain the
actual string. The specified length of the string in a bind or a define call must include
the two length bytes, meaning the largest VARCHAR string is 65533 bytes long, not 65535.
For converting longer strings, use the LONG VARCHAR external data type.

5.3.1.42 VARCHAR2

The external data type VARCHAR? is a variable-length string of characters up to 4000
bytes. If the i ni t. ora parameter max_string_si ze = standard (default value), the
maximum length of a VARCHAR2 can be 4000 bytes. If the i ni t. ora parameter
max_string_si ze = extended, the maximum length of a VARCHAR2 can be 32767 bytes.
See theinit.ora parameter MAX_STRING_SIZE in Oracle Database Reference for
more information about extended data types.

5.3.1.43 VARNUM

The external data type VARNUMIis similar to the external data type NUMBER, except that the
first byte contains the length of the number representation. This length value does not
include the length byte itself. Reserve 22 bytes to receive the longest possible VARNUM
You must set the length byte when you send a VARNUMvalue to the database.

Table 5-4 VARNUM Examples

Decimal Value Length Byte Exponent Byte Mantissa Bytes = Terminator
Byte
0 1 128 NA? NA
5 2 193 6 NA
-5 3 62 96 102
2767 3 194 28, 68 NA
- 2767 4 61 74, 34 102
100000 2 195 11 NA
1234567 5 196 2, 24, 46, 68 NA

1 NA means not applicable.

5.3.1.44 VARRAW

ORACLE

The external data type VARRAWIS similar to the external data type RAW except that the
first two bytes contain the length of the data. The specified length of the string in a bind
or a define call must include the two length bytes. So the largest VARRAWString that can
be received or sent is 65533 bytes, not 65535. For converting longer strings, use the
LONG VARRAWdata type.

5-19

Chapter 5
Data Conversions

5.3.1.45 NATIVE DOUBLE

This external data type implements the IEEE 754 standard double-precision floating
point data type. It is represented in the host system's native floating point format. The
data type is stored in the Oracle Server in a byte comparable canonical format, and
requires 8 bytes for storage, including the length byte. It is an alternative to Oracle
NUMBER and has the following advantages over NUMVBER:

* Fewer bytes used in storage
* Matches data types used by RDBMS Clients

* Supports a wider range of values used in scientific calculations.

5.3.1.46 NATIVE FLOAT

This external data type implements the IEEE 754 single-precision floating point data
type. It is represented in the host system's native floating point format. The data type is
stored in the Oracle Server in a byte comparable canonical format, and requires 4
bytes for storage, including the length byte. It is an alternative to Oracle NUMBER and
has the following advantages over NUVBER:

* Fewer bytes used in storage
* Matches data types used by RDBMS Clients

e Supports a wider range of values used in scientific calculations

5.4 Data Conversions

ORACLE

Table 5-5 lists the supported conversions from Oracle internal data types to external
data types, and from external data types to internal column representations.

Note the following conditions:

* A REF stored in the database is converted to OCCl _SQLT_REF on output.
e An QCC _SQLT_REF is converted to the internal representation of a REF on input.

* A named data type stored in the database is converted to OCCl _SQLT_NTY (and
represented by a C structure in the application) on output.

e AnQCC _SQT_NTY (represented by a C structure in an application) is converted to
the internal representation of the corresponding data type on input.

» LOBs and BFI LEs are represented by descriptors in OCCI applications, so there
are no input or output conversions.

Also note that in Table 5-5, conversions have the following numeric codes:

1. The data type must be in Oracle ROWN D format for input; it is returned in Oracle
ROW D format on output.

2. The data type must be in Oracle DATE format for input; it is returned in Oracl e DATE
format on output.

3. The data type must be in hexadecimal format for input; it is returned in
hexadecimal format on output.

4. The data type must represent a valid number for output.

5-20

Table 5-5 Data Conversions Between External and Internal Data Types

5.
6.

The length must be less than or equal to 2000 characters.

Chapter 5
Data Conversions

The data type must be stored in hexadecimal format on output; it is in hexadecimal

format on output.

NAl Internal Data Types

External Data VARCHAR NUMBE LON ROWI DAT RA LONG CHAR BFLOA BDOUBL
Types 2 R G D E W RAW T E
CHAR 110 110 o ot 1oz o3 135 110 110 110
CHARZ 11O 110 /o 1ot /o2 /0% 35 110 NA NA
DATE 110 NA | NA /IO NA NA 110 NA NA
DECI MAL 1104 110 | NA NA NA NA I/0* NA NA
FLOAT 1104 110 [NA NA NA NA I/0* 1/0 110
| NTEGER 1104 110 | NA NA NA NA I10* 110 110
LONG 110 110 Ilo 1ot 1oz o3 1035 110 110 1o
LONG RAW (ol NA 156 NA NA 1/O /O ol NA NA
LONG VARCHAR 110 110 o 1ot 1oz o3 1035 110 110 110
LONG VARRAW 1108 NA >6 NA NA /O /O /0% NA NA
NUNMBER 1104 110 | NA NA NA NA I10* 110 110
000 Booubl 110 1/0 | NA NA NA NA 110 110 110
000 BFl oat 110 1/0 | NA NA NA NA 110 110 110
QoCCl Bytes /08 NA 156 NA NA 1/O /O /05 NA NA
OocCl Date 1102 NA [NA /O NA NA o) NA NA
ooa Nunber 1104 110 | NA NA NA NA I10* 110 110
oCCl Timestanp NA NA NA NA NA NA NA NA NA NA
RAW 1108 NA 56 NA NA /O 1/O /08 NA NA
RON D [NA [110 NA NA NA | NA NA
STL string I/O 110 11O l/ot 1102 /0% /03 - 1/104 1/104
STRING 110 110 /o 1ot 1oz o3 1035 110 110 110
UNSI GNED 1104 110 [NA NA NA NA I/0* 1/0 110
VARCHAR I/0 110 o 1ot /o2 103 103 NA 110 I/0
VARCHAR2 11O 110 o 1ot /02 1/0% /035 110 110 110
VARNUM 1104 110 | NA NA NA NA I10* /0 110
VARRAW 1108 NA 56 NA NA /O 1/O /0% NA NA

1 NA means not applicable.

2 /O = Conversion is valid for input and output, unless otherwise specified.

ORACLE

This section includes the following topics:

Data Conversions for LOB Data Types

5-21

5.4.1 Data Conversions for LOB Data Types

» Data Conversions for Date, Timestamp, and Interval Data Types

Table 5-6 Data Conversions for LOBs

Chapter 5
Data Conversions

I
EXTERNAL DATATYPES

INTERNAL DATATYPES

cLoB BLOB
VARCHAR l/ot NAZ?
CHAR 110 NA
LONG 110 NA
LONG VARCHAR 110 NA
STL String 110 NA
RAW NA 110
VARRAW NA 110
LONG RAW NA 110
LONG VARRAW NA 110
OCCl Bytes NA I/0

1 |/O = Conversion is valid for input and output.
2 NA means not applicable.

¢ See Also:

Oracle Database SecureFiles and Large Objects Developer's Guide for an
introduction to LOB data types.

5.4.2 Data Conversions for Date, Timestamp, and Interval Data Types

You can also use a character data type for the host variable used in a fetch or insert
operation from or to a datetime or interval column. Oracle performs the conversion
between the character data type and datetime/interval data type for you.

Table 5-7 Data Conversions for Date, Timestamp, and Interval Data Types

External Types

Internal Types

NAl VARCHAR, DATE TS TSTZ TSLTZ INTERVAL YEAR INTERVAL DAY
CHAR TO MONTH TO SECOND
VARCHAR2, CHAR 1102 6] 110 11O 11O 11O 110
STL String 110 110 I/0 110 110 110 110
DATE 110 110 110 110 110 NA NA
OCCl Date 110 110 110 110 110 NA NA
ANS| DATE 110 110 110 110 110 NA NA
ORACLE 5-22

Chapter 5
Data Conversions

Table 5-7 (Cont.) Data Conversions for Date, Timestamp, and Interval Data Types

External Types

Internal Types

NAl VARCHAR, DATE TS TSTZ TSLTZ INTERVAL YEAR INTERVAL DAY
CHAR TO MONTH TO SECOND

TI MESTAMP (TS) I/O I/O 1/0 I/O I/O NA NA

OCCl Ti mest anp I/0 le] 1/0 I/O I/0 NA NA

TI MESTAMP WTH TIME /O I/0 1/0 I/0 1/0 NA NA

ZONE (TSTZ)

TI MESTAMP W TH I/0 I/10 1/0 I/0 I/0 NA NA

LOCAL TIME ZONE

(TSLTZ)

| NTERVAL YEAR TO /0 NA NA NA NA 110 NA

MONTH

OCCl Interval YM I/0 NA NA NA NA 110 NA

| NTERVAL DAY TO /0 NA NA NA NA NA /0

SECOND

OCCl Interval DS /0 NA NA NA NA NA /0

1 NA means not applicable.

2 1/O = Conversion is valid for input and output.

ORACLE

These consideration apply when converting between Date, Timestamp and Interval
data types:

When assigning a source with time zone to a target without a time zone, the time
zone portion of the source is ignored. On assigning a source without a time zone
to a target with a time zone, the time zone of the target is set to the session's
default time zone.

When assigning an Oracle DATE to a TI MESTAMP, the TI ME portion of the DATE is
copied over to the TI MESTAMP. When assigning a Tl MESTAMP to Oracle DATE, the TI ME
portion of the result DATE is set to zero. This is done to encourage migration of
Oracle DATE to ANSI compliant DATETI ME data types.

(When assigning an ANSI DATE to an Oracle DATE or a TI MESTAWP, the TI ME portion of
the Oracle DATE and the TI MESTAMP are set to zero. When assigning an Oracle DATE
or a TI MESTAWP to an ANSI DATE, the TI ME portion is ignored.

When assigning a DATETI ME to a character string, the DATETI M is converted using
the session's default DATETI ME format. When assigning a character string to a
DATETI M, the string must contain a valid DATETI M value based on the session's
default DATETI ME format.

When assigning a character string to an | NTERVAL, the character string must be a
valid | NTERVAL character format.

When converting from TSLTZ to CHAR, DATE, Tl MESTAMP and TSTZ, the value is adjusted
to the session time zone.

When converting from CHAR, DATE, and TI MESTAMP to TSLTZ, the session time zone is
stored in memory.

When assigning TSLTZ to ANSI DATE, the time portion is 0.

5-23

Chapter 5
Data Conversions

* When converting from TSTZ, the time zone that the time stamp is in is stored in
memory.

e When assigning a character string to an interval, the character string must be a
valid interval character format.

ORACLE 5-24

Metadata

This chapter describes how to retrieve metadata about result sets or the database as a
whole.

This chapter contains these topics:

* Overview of Metadata

e Using Identity Column Metadata

* About Describing Database Metadata

e Attribute Reference Information

6.1 Overview of Metadata

ORACLE

Database objects have various attributes that describe them; you can obtain
information about a particular schema object by performing a DESCRI BE operation. The
result can be accessed as an object of the Met adat a class by passing object attributes
as arguments to the various methods of the Met adat a class.

You can perform an explicit DESCRI BE operation on the database as a whole, on the
types and properties of the columns contained in a Resul t Set class, or on any of the
following schema and subschema objects, such as tables, types, sequences, views,
type attributes, columns, procedures, type methods, arguments, functions, collections,
results, packages, synonyms, and lists

You must specify the type of the attribute you are looking for. By using the
get AttributeCount (), getAttributeld(), and get AttributeType() methods of the
Met aDat a class, you can scan through each available attribute.

All DESCR! BE information is cached until the last reference to it is deleted. Users are in
this way prevented from accidentally trying to access DESCRI BE information that is freed.

You obtain metadata by calling the get Met aDat a() method on the Connecti on class in

case of an explicit describe, or by calling the get Col unmLi st Met aDat a() method on the
Resul t Set class to get the metadata of the result set columns. Both methods return a
Met aDat a object with the describing information. The Met aDat a class provides the

get xxx() methods to access this information.

¢ See Also:
Table 13-27

When performing DESCRI BE operations, be aware of the following issues:

e The ATTR TYPECCDE returns type codes that represent the type supplied when you
created a new type by using the CREATE TYPE statement. These type codes are of

6-1

Chapter 6
Using Identity Column Metadata

the enumerated type TypeCode, which are represented by OCCl _TYPECODE constants.
Internal PL/SQL types (boolean, indexed table) are not supported

e The ATTR DATA TYPE returns types that represent the data types of the database
columns. These values are of enumerated type Type. For example, LONG types
return OCCl_SQLT_LNG types.

6.2 Using Identity Column Metadata

ORACLE

Starting with Oracle Database Release 12c, columns may be created as identity
columns. When new rows are inserted into tables, the values for these columns are
generated automatically.

This feature adds a new Col umAttrid enumto the MetaData Class (see Table 13-27),
and an overloaded form of getBoolean() method in the MetaData Class. Example 6-1
shows how to use this feature.

For more information, see Oracle Database SQL Translation and Migration Guide, and
Oracle Database SQL Language Reference. Additionally, see the changes to Oracle
Database Reference:

e A new | DENTI TY_COLUW column for views ALL_TAB_COLUWNS, DBA TAB_COLUMWNS,
USER TAB_COLUWNS, ALL_TAB COLS, DBA TAB COLS, and USER TAB COLS

* A new HAS_| DENTI TY column for views ALL_TABLES, DBA TABLES, and USER TABLES

« The new views ALL_TAB_| DENTI TY_COLS, DBA_TAB_| DENTI TY_COLS, and
USER_TAB_| DENTI TY_COLS, which display a table's identity column properties

Example 6-1 How to use Identity Column Metadata

vect or <Met aDat a> v1;

Met aData netaData = conn->get Met aDat a(t abl eNane) ;

col umCount = netaDat a. get | nt (Met aDat a: : ATTR_NUM COLS);
cout << "Number of Colums : " << col umCount << endl;

vl = netaData. get Vector (MetabDat a: : ATTR_LI ST_COLUWNS) ;

for(int i=0; i <vl.size(); i+t {

MetaData nmd = vi[i];
col Nanes[i] = nd. get String(MetaData:: ATTR_NAVE);
size[i] = nd. getlnt(MetaData:: ATTR_DATA Sl ZE);
precision[i] = nd. getlnt(MetaData::ATTR_PREC SI ON);
scale[i] = nd. getlnt(MetaData::ATTR_SCALE);
if (nd.getBool ean(MetaData:: ATTR I S_NULL))
strcpy (isnull[i], "YES');
el se
strepy (isnull[i], "NO');
i f (nd. get Bool ean(Met aDat a: : ATTR_COL_I S_I DENTI TY))
strcpy (isldentity[i], "YES");
el se
strcpy (isldentity[i], "NO');

if (nd.getBool ean(MetaDat a:: ATTR COL_I S_GEN_ALWAYS))
strcpy (isGenAlways[i], "YES');

el se
strcpy (isGenAlways[i], "NO');

6-2

Chapter 6
About Describing Database Metadata

i f (nd. get Bool ean(Met aData: : ATTR COL_I S_GEN BY_DEF_ON_NULL))
strcpy (isGenOnNull[i], "YES');

el se
strepy (isGenOnNull[i], "NO');

}

cout << "\n columNane isNull isldentity isCGenAlways" << " isGenOnNull "
<< endl ;

COUE K mm e e e " << endl;

for(int i=0; i < columCount; ++i) {

cout << " " << col Names[i] << " ",
printf("9%0s%0s%2s%2s\n", isnull[i], isldentity[i], isCGenAl ways[i],
isGenOnNul I [i]);

}

6.3 About Describing Database Metadata

ORACLE

Describing database metadata is equivalent to an explicit DESCRI BE operation. The
object to describe must be an object in the schema. In describing a type, you call the
get Met aDat a() method from the connection, passing the name of the object or a Ref Any
object. You must first initialize the environment in the OBJECT mode. The get Met aDat a()
method returns an object of type Met aDat a. Each type of Met aDat a object has a list of
attributes that are part of the describe tree. The describe tree can then be traversed
recursively to point to subtrees that contain more information. More information about
an object can be obtained by calling the get xxx() methods.

If you must construct a browser that describes the database and its objects
recursively, then you can access information regarding the number of attributes for
each object in the database (including the database), the attribute ID listing, and the
attribute types listing. By using this information, you can recursively traverse the
describe tree from the top node (the database) to the columns in the tables, the
attributes of a type, the parameters of a procedure or function, and so on.

For example, consider the typical case of describing a table and its contents. You call
the get Met aDat a() method from the connection, passing the name of the table to be
described. The Met aDat a object returned contains the table information. Because you
are aware of the type of the object you want to describe (table, column, type,
collection, function, procedure, and so on), you can obtain the attribute list. You can
retrieve the value into a variable of the type specified in the table by calling the
corresponding get xxx() method.

Table 6-1 Attribute Groupings
|

Attribute Type Description

Parameter Attributes Attributes belonging to all
elements

Table and View Attributes Attributes belonging to

tables and views

Procedure, Function, and Subprogram Attributes Attributes belonging to
procedures, functions, and
package subprograms

Package Attributes Attributes belonging to
packages

6-3

Chapter 6
About Describing Database Metadata

Table 6-1 (Cont.) Attribute Groupings

Attribute Type Description

Type Attributes Attributes belonging to
types

Type Attribute Attributes Attributes belonging to
type attributes

Type Method Attributes Attributes belonging to
type methods

Collection Attributes Attributes belonging to
collection types

Synonym Attributes Attributes belonging to
synonyms

Sequence Attributes Attributes belonging to
sequences

Column Attributes Attributes belonging to
columns of tables or views

Argument and Result Attributes Attributes belonging to
arguments / results

List Attributes Attributes that designate
the list type

Schema Attributes Attributes specific to
schemas

Database Attributes Attributes specific to
databases

This section includes the following topic: Using Metadata (Code Examples).

6.3.1 Using Metadata (Code Examples)

ORACLE

This section provides code examples for using metadata:
* Example 6-2
* Example 6-3
* Example 6-4
* Example 6-5

Example 6-2 How to Obtain Metadata About Attributes of a Simple Database
Table

This example demonstrates how to obtain metadata about attributes of a simple
database table:

/* Create an environment and a connection to the HR database */

[* Call the getMetaData method on the Connection object obtainedv*/
Met aDat a enpt ab_net aData = connecti on- >get Met aDat a(
"EMPLOYEES", MetaData:: PTYPE TABLE);
/* Now that you have the netadata information on the EMPLOYEES tabl e,
call the getxxx nmethods using the appropriate attributes */

6-4

ORACLE

Chapter 6
About Describing Database Metadata

[* Call getString */
cout <<" Schenma: " <<
(enpt ab_net aDat a. get St ri ng(Met aDat a: : ATTR_OBJ_SCHEMA)) <<endl ;

i f (enpt ab_net aDat a. get I nt (
enpt ab_net aDat a: : ATTR_PTYPE) ==Met aDat a: : PTYPE_TABLE)
cout <<"EMPLOYEES is a tabl e"<<endl;
el se
cout <<"EMPLOYEES is not a table"<<endl;

/[* Call getlnt to get the number of colums in the table */
i nt col umCount =enpt ab_net aDat a. get | nt (Met aDat a: : ATTR_NUM COLS) ;
cout <<"Number of Col ums: "<<col umCount <<end! ;

[* Call getTinestanp to get the tinestanp of the table object */

Timestanp tstanp = enptab_net aDat a. get Ti nest anp(Met aDat a: : ATTR_TI MESTAWP) ;

/* Now that you have the value of the attribute as a Tinestanp object,
you can call nethods to obtain the conmponents of the timestanp */

int year;

unsi gned int nonth, day;

tstanp. get Dat a(year, nonth, day);

/* Call getVector for attributes of list type, such as ATTR LI ST_COLUWNS */
vect or <Met aDat a>l i st OF Col umms;
|'i st OF Col umms=enpt ab_net aDat a. get Vect or (Met aDat a: : ATTR_LI ST_COLUMNS) ;

/* Each of the list elements represents a col unmm netadata,
S0 now you can access the colum attributes*/
for (int i=0;i<listCfColums.size();i++
{
Met aDat a col umbj =l i st Of Col umsJ[i];
cout <<"Col um Nane: "<<(col um®Qbj . get Stri ng(Met aDat a: : ATTR_NAME)) <<end| ;
cout <<"Data Type: "<<(col umbj . get | nt(MetaDat a: : ATTR_DATA TYPE)) <<endl ;

/* and so on to obtain metadata on other colum specific attributes */

}

Example 6-3 How to Obtain Metadata from a Column Containing User-Defined
Types

This example demonstrates how to obtain metadata from a column that contains user-
defined types database table.

/* Create an environnent and a connection to the HR database */

/* Call the getMetaData method on the Connection object obtained */
Met aDat a custtab_netaData = connection->get Met aDat a(
"CUSTOVERS", MetaData:: PTYPE TABLE);

/* Have netadata information on CUSTOMERS table; call the getxxx nethods */

[* Call getString */

cout <<" Schenm: "<<(custtab_net aDat a. get Stri ng(Met aDat a: : ATTR_OBJ_SCHEMA))
<<end| ;

i f(custtab_netaData. getlnt(custtab_netaData:: ATTR_PTYPE) ==Met aDat a: : PTYPE_TABLE)

cout <<"CUSTOMERS is a table"<<endl;
el se
cout <<"CUSTOMERS is not a table"<<endl

6-5

ORACLE

Chapter 6
About Describing Database Metadata

/* Call getVector to obtain Iist of colums in the CUSTOMERS table */
vect or <Met aDat a>l i st OF Col ums;
|'i st OF Col ums=custtab_met aDat a. get Vect or (Met aDat a: : ATTR_LI ST_COLUWNS) ;

[* Assuming netadata for colum cust_address_typ is fourth element in list*/
Met aDat a cust omer _addr ess=l i st Of Col urms[3] ;

[* otain the metadata for the customer_address attribute */
int typcode = custoner_address. getlnt(MtaData:: ATTR_TYPECODE) ;
i f(typcode==0CCl _TYPECODE_OBJECT)

cout <<"cust omer _address is an object type"<<endl;
el se

cout <<"cust onmer _address is not an object type"<<endl;

string object Nanme=cust oner _addr ess. get String(Met aDat a: : ATTR_OBJ_NAME) ;

/* Now that you have the name of the address object,
the netadata of the attributes of the type can be obtained by using
get MetaData on the connection by passing the object nane

*|

Met aDat a address = connection->get Met aDat a(obj ect Nane) ;

/* Call getVector to obtain the Iist of the address object attributes */
vector<Met aData> attributeList =
addr ess. get Vect or (Met aDat a: : ATT_LI ST_TYPE_ATTRS) ;

/* and so on to obtain netadata on other address object specific attributes */

Example 6-4 How to Obtain Object Metadata from a Reference

This example demonstrates how to obtain metadata about an object when using a
reference to it:

Type ADDRESS(street VARCHAR2(50), city VARCHAR2(20));
Tabl e Person(id NUVBER, addr REF ADDRESS);

/* Create an environnent and a connection to the HR database */

/* Call the getMetaData method on the Connection object obtained */
Met aDat a perstab_netaData = connection->get Met aDat a(
"Person", MetaData:: PTYPE_TABLE);

/* Now that you have the netadata information on the Person table,
call the getxxx methods using the appropriate attributes */
[* Call getString */
cout <<" Schenm: "<<(per st ab_net aDat a. get Stri ng(Met aDat a: : ATTR_OBJ_SCHEMA)) <<endl ;

i f (perstab_netaDat a. get | nt (perstab_met aDat a: : ATTR_PTYPE) ==Met aDat a: : PTYPE_TABLE)
cout<<"Person is a tabl e"<<endl;

el se
cout<<"Person is not a table"<<endl;

[* Call getVector to obtain the Iist of colums in the Person table*/
vect or <Met aDat a>l i st Of Col ums;
|'i st OF Col ums=per st ab_nmet aDat a. get Vect or (Met aDat a: : ATTR_LI ST_COLUWNS) ;

/* Each of the list elements represents a col um netadata,

so now get the data type of the colum by passing ATTR DATA TYPE
to getint */

6-6

Chapter 6
Attribute Reference Information

for(int i=0;i<nunCols;i++)
{
int dataType=col List[i].getlnt(MetaData::ATTR_DATA TYPE);
[* If the data type is a reference, get the Ref and obtain the netadata
about the object by passing the Ref to getMetaData */
i f (dat aType==SQLT_REF)
Ref Any ref Tdo=col Li st[i].get Ref (MetaData:: ATTR_REF_TDO) ;

/* Now you can obtain the netadata about the object as shown
Met aDat a t do_net aDat a=connect i on- >get Met aDat a(r ef Tdo) ;

/* Now that you have the netadata about the TDO, you can obtain the netadata
about the object */

}

Example 6-5 How to Obtain Metadata About a Select List from a ResultSet
Object

This example demonstrates how to obtain metadata about a select list from a
Resul t Set .

/* Create an environment and a connection to the database */
/* Create a statement and associate it with a select clause */
string sql Stnt="SELECT * FROM EMPLOYEES';

Statement *stnt=conn->createStatenent(sql Stnt);

/* Execute the statement to obtain a ResultSet */
Resul t Set *rset =stnt - >execut eQuery();

[* (otain the metadata about the select list */
vect or <Met aDat a>cnd=r set - >get Col unmLi st Met aDat a() ;

/* The netadata is a colum list and each elenent is a col um netaData */
int dataType=cnd[i].getlnt(MetaData:: ATTR_DATA TYPE);

The get Met aDat a method is called for the ATTR_COLLECTI ON_ELEMENT attribute only.

6.4 Attribute Reference Information

ORACLE

This section describes the following attributes that belong to schema and subschema
objects:

¢ Parameter Attributes

* Table and View Attributes

e Procedure, Function, and Subprogram Attributes
e Package Attributes

e Type Attributes

e Type Attribute Attributes

e Type Method Attributes

* Collection Attributes

e Synonym Attributes

e Sequence Attributes

6-7

Chapter 6
Attribute Reference Information

Column Attributes

Argument and Result Attributes
List Attributes

Schema Attributes

Database Attributes

6.4.1 Parameter Attributes

All elements have some attributes specific to that element and some generic
attributes. Table 6-2 describes the attributes that belong to all elements:

Table 6-2 Attributes that Belong to All Elements
]

Attribute Description Attribute Data Type
ATTR GBJ_ID Object or schema ID unsi gned i nt
ATTR_OBJ_NAME Object, schema, or database name string
ATTR_OBJ_SCHEMA Schema where object is located string
ATTR_OBJ_PTYPE Type of information described by the parameter. i nt

ATTR_TI MESTAMP

Possible values are:

PTYPE_TABLE, Table

PTYPE VI EW View

PTYPE_PRCC, Procedure

PTYPE_FUNC, Function

PTYPE_PKG Package

PTYPE_TYPE, Type

PTYPE_TYPE_ATTR, Attribute of a type
PTYPE_TYPE_COLL, Collection type information
PTYPE_TYPE_METHOD, A method of a type
PTYPE_SYN, Synonym

PTYPE_SEQ Sequence

PTYPE_COL, Column of a table or view
PTYPE_ARG, Argument of a function or procedure
PTYPE_TYPE_ARG Argument of a type method
PTYPE_TYPE_RESULT, Results of a method
PTYPE_SCHEMA, Schema

PTYPE_DATABASE, Database

The TI MESTAMP of the object this description is based Ti mest anp
on (Oracle DATE format).

The sections that follow list attributes specific to different types of elements.

6.4.2 Table and View Attributes

ORACLE

A parameter for a table or view (type PTYPE_TABLE or PTYPE_VI EW has the following type-
specific attributes described in Table 6-3:

6-8

Chapter 6
Attribute Reference Information

Table 6-3 Attributes that Belong to Tables or Views
]

Attribute Description Attribute Data Type
ATTR_OBJI D Object ID unsi gned int
ATTR_NUM COLS Number of columns i nt

ATTR_LI ST_COLUWS Column list (type PTYPE_LI ST) vect or <Met aDat a>
ATTR_REF_TDO REF to the object type that is being described Ref Any

ATTR_| S_TEMPORARY Identifies whether the table or view is temporary bool

ATTR_| S_TYPED Identifies whether the table or view is typed bool

ATTR_DURATI ON Duration of a temporary table. Values can be: i nt

e DURATI ON_SESSI ON (session)
e DURATI ON_TRANS (transaction)
e DURATI ON_NULL (table not temporary)

The additional attributes belonging to tables are described in Table 6-4.

Table 6-4 Attributes Specific to Tables
|

Attribute Description Attribute Data
Type

ATTR _DBA Data block address of the segment unsi gned int
header

ATTR_TABLESPACE Tablespace the table resides on i nt

ATTR_CLUSTERED Identifies whether the table is clustered bool

ATTR_PARTI TI ONED Identifies whether the table is partitioned bool

ATTR_| NDEX_ONLY Identifies whether the table is index only bool

6.4.3 Procedure, Function, and Subprogram Attributes

A parameter for a procedure or function (type PTYPE_PRCC or PTYPE_FUNC) has the type-
specific attributes described in Table 6-5.

Table 6-5 Attributes that Belong to Procedures or Functions
|

Attribute Description Attribute Data Type

ATTR_LI ST_ARGUMENTS Argument list; refer to List vect or <Met aDat a>
Attributes .

ATTR_I S_I N\VOKER_RI GHTS Identifies whether the procedure or i nt

function has invoker's rights.

The additional attributes belonging to package subprograms are described in
Table 6-6.

ORACLE 6-9

Chapter 6
Attribute Reference Information

Table 6-6 Attributes that Belong to Package Subprograms
|

Attribute Description Attribute Data
Type

ATTR_NAME Name of procedure or function string

ATTR_OVERLQAD | D Overloading ID number (relevant in case i nt

the procedure or function is part of a
package and is overloaded). Values
returned may be different from direct
query of a PL/SQL function or
procedure.

6.4.4 Package Attributes

A parameter for a package (type PTYPE_PKG) has the type-specific attributes described
in Table 6-7.

Table 6-7 Attributes that Belong to Packages
|

Attribute Description Attribute Data Type

ATTR_LI ST_SUBPROGRAMS Subprogram list; refer to List vect or <Met aDat a>
Attributes.

ATTR_I S_I NVOKER_RI GHTS Identifies whether the package bool

has invoker's rights

6.4.5 Type Attributes

A parameter for a type (type PTYPE_TYPE) has attributes described in Table 6-8.

Table 6-8 Attributes that Belong to Types

___|
Attribute Description Attribute Data Type

ATTR_REF_TDO Returns the in-memory ref Ref Any
of the type descriptor
object for the type, if the
column type is an object

type.
ATTR_TYPECODE Type code. Can be: i nt
e OCCl _TYPECODE_OBJEC
T
« OCCl _TYPECODE_NAMED
COLLECTI ON

ATTR_COLLECTI ON_TYPECODE Type code of collection if i nt
type is collection; invalid
otherwise. Can be:

e OCCl _TYPECODE_VARRA
Y
« OCCl _TYPECODE_TABLE

ORACLE 6-10

ORACLE

Chapter 6
Attribute Reference Information

Table 6-8 (Cont.) Attributes that Belong to Types

Attribute

Description Attribute Data Type

ATTR_VERSI ON

ATTR |'S_FI NAL_TYPE

ATTR_I'S_I NSTANTI ABLE_TYPE

ATTR |'S_SUBTYPE

ATTR SUPERTYPE_SCHEMA_NAME

ATTR_SUPERTYPE_NANE
ATTR |'S_| NVOKER Rl GHTS

ATTR |'S_| NCOVPLETE_TYPE

ATTR |'S_SYSTEM TYPE

ATTR | S_PREDEFI NED_TYPE

ATTR |'S_TRANSI ENT_TYPE

ATTR |'S_SYSTEM GENERATED_TYPE

ATTR HAS NESTED_TABLE

ATTR_HAS LOB

ATTR HAS FILE

ATTR_COLLECTI ON_ELEMENT

ATTR_NUM TYPE_ATTRS
ATTR LI ST_TYPE_ATTRS

ATTR_NUM TYPE_METHODS
ATTR LI ST_TYPE_METHODS

ATTR_MAP_NETHOD

A NULL-terminated string string
containing the user-
assigned version

Identifies whether thisisa bool
final type

Identifies whether this is bool
an instantiable type

Identifies whether thisis a bool
subtype

Name of the schema string
containing the supertype

Name of the supertype string

Identifies whether this type bool
is invoker's rights

Identifies whether this type bool
is incomplete

Identifies whether thisis a bool
system type

Identifies whether thisis a bool
predefined type

Identifies whether thisisa bool
transient type

Identifies whether thisis a bool
system-generated type

Identifies whether this type bool
contains a nested table
attribute

Identifies whether this type bool
contains a LOB attribute

Identifies whether this type bool
contains a FI LE attribute

Handle to collection Met aDat a
element

Refer to Collection
Attributes

Number of type attributes unsi gned i nt

List of type attributes vect or <Met aDat a>
Refer to List Attributes

Number of type methods unsi gned i nt

List of type methods vect or <Met aDat a>
Refer to List Attributes

Map method of type Met aDat a

Refer to Type Method

Attributes

6-11

Chapter 6

Attribute Reference Information

Table 6-8 (Cont.) Attributes that Belong to Types
|

Attribute

Description

Attribute Data Type

ATTR ORDER_METHOD

Order method of type;
refer to Type Method
Attributes

Met aDat a

6.4.6 Type Attribute Attributes

A parameter for an attribute of a type (type PTYPE_TYPE_ATTR) has the attributes

ORACLE

described in Table 6-9.

Table 6-9 Attributes that Belong to Type Attributes
|

Attribute

Description

Attribute Data
Type

ATTR DATA SI ZE

ATTR TYPECCDE
ATTR DATA TYPE
ATTR NAME

ATTR_PREC! SI ON

ATTR_SCALE

ATTR TYPE_NAME

ATTR_SCHEMA_NAME

ATTR_REF_TDO

ATTR CHARSET | D

ATTR_CHARSET_FORM

ATTR_FSPRECI SI ON

Maximum size of the type attribute. This
length is returned in bytes and not characters
for strings and raws. Returns 22 for NUVBER.

Type code
Data type of the type attribute

A pointer to a string that is the type attribute
name

Precision of numeric type attributes. If the
precision is nonzero and scale is - 127, then it
is a FLOAT; otherwise a NUMBER(p, s). If
precision is 0, then NUMBER(p, s) can be
represented simply by NUVBER.

Scale of numeric type attributes. If the
precision is nonzero and scale is - 127, then it
is a FLOAT; otherwise a NUMBER(p, s). If
precision is 0, then NUMBER(p, s) can be
represented simply as NUVBER.

A string that is the type name. The returned
value contains the type name if the data type
is SQLT_NTY or SQLT_REF. If the data type is
SQLT_NTY, then the name of the named data
type's type is returned. If the data type is
SQLT_REF, then the type name of the named
data type pointed to by the REF is returned.

String with the schema name under which the
type has been created

Returns the in-memory REF of the TDO for the
type, if the column type is an object type.

Character set ID, if the type attribute is of a
string or character type

Character set form, if the type attribute is of a
string or character type

i nt

i nt
int

string

int

string

string

Ref Any

i nt

i nt

The fractional seconds precision of a datetime i nt

or interval

6-12

Chapter 6

Attribute Reference Information

Table 6-9 (Cont.) Attributes that Belong to Type Attributes
|

Attribute

Description

Attribute Data
Type

ATTR_LFPRECI SI ON

The leading field precision of an interval

i nt

6.4.7 Type Method Attributes

A parameter for a method of a type (type PTYPE_TYPE_METHOD) has the attributes

described in Table 6-10.

Table 6-10 Attributes that Belong to Type Methods
]

Attribute

Description

Attribute Data Type

ATTR NAME
ATTR_ENCAPSULATI ON

ATTR LI ST_ARGUVENTS
ATTR_|'S_CONSTRUCTCR

ATTR | S _DESTRUCTCR

ATTR | S_OPERATCR

ATTR |'S_SELFI SH
ATTR |'S_MAP

ATTR | S_ORDER

ATTR | S_RNDS

ATTR |'S_RNPS

ATTR |'S_WNDS

ATTR | S_WNPS

ATTR |'S_FI NAL_METHOD
ATTR |'S_| NSTANTI ABLE_METHOD

ATTR_I S_OVERRI DI NG_METHOD

Name of method (procedure or function)

Encapsulation level of the method; can
be:

« OCCl _TYPEENCAP_PRI VATE
.« 0CCl_TYPEENCAP_PUBLI Q)

Argument list

Identifies whether the method is a
constructor

Identifies whether the method is a
destructor

Identifies whether the method is an
operator

Identifies whether the method is selfish

Identifies whether the method is a map
method

Identifies whether the method is an order
method

Identifies whether "Read No Data State"
is set for the method

Identifies whether "Read No Process
State" is set for the method

Identifies whether "Write No Data State"
is set for the method

Identifies whether "Write No Process
State" is set for the method

Identifies whether this is a final method

Identifies whether this is an instantiable
method

Identifies whether this is an overriding
method

string

int

vect or <Met aDat a>

bool

bool

bool

bool

bool

bool

bool

bool

bool

bool

bool

bool

bool

ORACLE

6-13

Chapter 6
Attribute Reference Information

6.4.8 Collection Attributes

A parameter for a collection type (type PTYPE_COLL) has the attributes described in
Table 6-11.

Table 6-11 Attributes that Belong to Collection Types
|

Attribute Description Attribute Data
Type
ATTR_DATA_SI ZE Maximum size of the type attribute. This int

length is returned in bytes and not characters
for strings and raws. Returns 22 for NUMBER.

ATTR_TYPECODE Typecode. i nt
ATTR_DATA TYPE The data type of the type attribute. i nt
ATTR_NUM_ELEMENTS Number of elements in an array; only valid for unsi gned i nt
collections that are arrays.
ATTR_NAME A pointer to a string that is the type attribute string
name
ATTR_PRECI SI ON Precision of numeric type attributes. If the i nt

precision is nonzero and scale is - 127, then it
is a FLOAT; otherwise a NUMBER(p, s). If
precision is 0, then NUMBER(p, s) can be
represented simply as NUMBER.

ATTR_SCALE Scale of numeric type attributes. If the i nt
precision is nonzero and scale is - 127, then it
is a FLOAT; otherwise a NUMBER(p, s). If
precision is 0, then NUMBER(p, s) can be
represented simply as NUMBER.

ATTR_TYPE_NAME String that is the type name. The returned string
value contains the type name if the data type
is SQLT_NTY or SQLT_REF. If the data type is
SQLT_NTY, then the name of the named data
type's type is returned. If the data type is
SQLT_REF, then the type name of the named
data type pointed to by the REF is returned

ATTR_SCHEMA_NAME String with the schema name under which the string
type has been created

ATTR_REF_TDO Returns the in memory REF of the TDOfor the Ref Any
type.

ATTR _CHARSET I D Typecode. i nt

ATTR_CHARSET_FORM The data type of the type attribute. i nt

6.4.9 Synonym Attributes

A parameter for a synonym (type PTYPE_SYN) has the attributes described in Table 6-12.

ORACLE 6-14

Chapter 6

Attribute Reference Information

Table 6-12 Attributes that Belong to Synonyms

Attribute Description Attribute Data
Type
ATTR_OBJI D Object ID unsi gned int

ATTR_SCHEMA_NANE

ATTR NAME

ATTR_LI NK

Null-terminated string containing the schema
name of the synonym translation

Null-terminated string containing the object
name of the synonym translation

Null-terminated string containing the database
link name of the synonym translation

string

string

string

6.4.10 Sequence Attributes

A parameter for a sequence (type PTYPE_SEQ) has the attributes described in

6.4.11 Column Attributes

ORACLE

Table 6-13.

Table 6-13 Attributes that Belong to Sequences

Attribute Description Attribute Data
Type
ATTR_OBJI D Object ID unsi gned int
ATTR M N Minimum value (in Oracle number format) Nunber
ATTR_MAX Maximum value (in Oracle number format) Nunber
ATTR_I NCR Increment (in Oracle number format) Nunber
ATTR_CACHE Number of sequence numbers cached; zero if the Nunber
sequence is not a cached sequence (in Oracle
number format)
ATTR_ORDER Identifies whether the sequence is ordered bool
ATTR_HW MARK High-water mark (in Oracle number format) Nunber

A parameter for a column of a table or view (type PTYPE_COL) has the attributes
described in Table 6-14.

Table 6-14 Attributes that Belong to Columns of Tables or Views

Attribute

Description

Attribute Data
Type

ATTR DATA SI ZE

ATTR DATA TYPE
ATTR NAME
ATTR_PREC! SI ON

Maximum size of the column. This length is
returned in bytes and not characters for strings
and raws. Returns 22 for NUMBER..

The data type of the column.
Pointer to a string that is the column name.

Returns the precision.

int

Type
string

int

6-15

Attribute

Chapter 6
Reference Information

Table 6-14 (Cont.) Attributes that Belong to Columns of Tables or Views
|

Attribute Description Attribute Data
Type

ATTR_SCALE Scale of numeric columns. If the precision is int

nonzero and scale is - 127, then it is a FLOAT;

otherwise a NUMBER(p, s). If precision is 0, then

NUMBER(p, s) can be represented simply as

NUMBER.
ATTR_I S_NULL Returns FALSE if null values are not permitted for bool

ATTR TYPE_NAME

ATTR_SCHEMA_NANE

ATTR REF_TDO

ATTR_CHARSET | D

ATTR CHARSET_FORM

the column.

Returns a string that is the type name. The
returned value contains the type name if the

string

data type is OCCl _SQLT_NTY or OCCl _SQLT_REF. If

the data type is OCCl _SQLT_NTY, then the name

of the named data type's type is returned. If the

data type is OCCl _SQLT_REF, then the type name
of the named data type pointed to by the REF is

returned.

Returns a string with the schema name under
which the type has been created.

The REF of the TDO for the type, if the column
type is an object type.

Character set ID for character column. If not set,

string

Ref Any

int

the character set ID defaults to the character set

ID set in the direct path context.

Character set form of the column. Setting this
attribute specifies the use of the database or
national character set on the client side.

int

6.4.12 Argument and Result Attributes

A parameter for an argument or a procedure or function type (type PTYPE_ARG), for a
type method argument (type PTYPE_TYPE_ARG), or for method results (type
PTYPE_TYPE_RESULT) has the attributes described in Table 6-15.

ORACLE

Table 6-15 Attributes that Belong to Arguments / Results

Attribute Description Attribute Data
Type

ATTR_NAME Returns a pointer to a string which is the string
argument name

ATTR_PCSI TI ON Position of the argument in the argument list. i nt
Always returns 0.

ATTR_TYPECCDE Typecode. int

ATTR _DATA TYPE Data type of the argument. i nt

ATTR _DATA SI ZE Size of the data type of the argument. This int

length is returned in bytes and not
characters for strings and raws. Returns 22
for NUMBER.

6-16

ORACLE

Chapter 6

Attribute Reference Information

Table 6-15 (Cont.) Attributes that Belong to Arguments / Results
|

Attribute

Description

Attribute Data
Type

ATTR_PRECI SI ON

ATTR_SCALE

ATTR_LEVEL

ATTR HAS_DEFAULT
ATTR LI ST_ARGUVENTS

ATTR_| OMODE

ATTR_RADI X
ATTR 'S NULL

ATTR TYPE_NAVE

ATTR_SCHEMA_NANE

ATTR_SUB_NAME

ATTR_LI NK

ATTR REF_TDO

ATTR_CHARSET | D

Precision of numeric arguments. If the
precision is nonzero and scale is - 127, then
it is a FLOAT; otherwise a NUMBER(p, s). If
precision is 0, then NUMBER(p, s) can be
represented simply as NUMBER.

Scale of numeric arguments. If the precision
is nonzero and scale is - 127, then itis a
FLQAT; otherwise a NUMBER(p, s). If
precision is 0, then NUMBER(p, s) can be
represented simply as NUVBER.

Data type levels. This attribute always
returns 0.

Indicates whether an argument has a default

The list of arguments at the next level (when
the argument is of a record or table type)

Indicates the argument mode; valid values
are:

« 0for I N(OCO _TYPEPARAM I N)
- 1for OUT (OCCI_TYPEPARAM OUT)
- 2for | N/ OUT (OCCI _TYPEPARAM | NOUT)

Returns a radix (if number type)

Returns FALSE if NULL values are not
permitted for the column.

Returns a string that is the type name (or the
package name for local package types). The
returned value contains the type name if the
data type is SQLT_NTY or SQLT_REF. If the
data type is SQLT_NTY, then the name of the
named data type's type is returned. If the
data type is SQLT_REF, then the type name of
the named data type pointed to by the REF is
returned.

For SQLT_NTY or SQLT_REF, returns a string
with the schema name under which the type
was created (or for local package types, the
package name).

For SQLT_NTY or SQLT_REF, returns a string
with the type name.

For SQLT_NTY or SQLT_REF, returns a string
with the database link name of the database
on which the type exists. This can happen
only for package-ocal types, when the
package is remote.

Returns the REF of the TDO for the type, if
the argument type is an object.

Returns the character set ID if the argument
is of a string or character type.

int

int

int

int

vect or <Met aDat a>

int

int

bool

string

string

string

string

Ref Any

int

6-17

Chapter 6
Attribute Reference Information

Table 6-15 (Cont.) Attributes that Belong to Arguments / Results
|

Attribute Description Attribute Data
Type
ATTR_CHARSET _FORM Returns the character set form if the int

argument is of a string or character type.

6.4.13 List Attributes

A list type of attribute can be described for all the elements in the list. In case of a
function argument list, position 0 has a parameter for return values (PTYPE_ARG).

The list is described iteratively for all the elements. The results are stored in a C++
vect or <Met aDat a>. Call the get Vect or () method to describe list type of attributes.
Table 6-16 displays the list attributes.

Table 6-16 Values for ATTR_LIST _TYPE
]

Possible Values Description

ATTR_LI ST_COLUWS Column list

ATTR_LI ST_ARGUMENTS Procedure or function arguments list
ATTR LI ST_SUBPROGRAMS Subprogram list

ATTR_LI ST_TYPE_ATTRI BUTES Type attribute list

ATTR_LI ST_TYPE_METHODS Type method list

ATTR_LI ST_OBJECTS Object list within a schema

ATTR LI ST_SCHEMAS Schema list within a database

6.4.14 Schema Attributes

A parameter for a schema type (type PTYPE_SCHEMA) has the attributes described in
Table 6-17.

Table 6-17 Attributes Specific to Schemas
|

Attribute Description Attribute Data
Type
ATTR LI ST_OBJECTS List of objects in the schema string

6.4.15 Database Attributes

A parameter for a database (type PTYPE_DATABASE) has the attributes described in
Table 6-18.

ORACLE 6-18

Chapter 6

Attribute Reference Information

Table 6-18 Attributes Specific to Databases
]

Attribute Description Attribute Data Type
ATTR_VERSI ON Database version string
ATTR _CHARSET_I D Database character set ID from the server i nt
handle
ATTR_NCHARSET | D Database native character set ID from the int

ATTR LI ST_SCHEMAS

ATTR _MAX_PROC LEN
ATTR_MAX_COLUWN_LEN
ATTR_CURSCR_COMM T_BEHAVI OR

ATTR_MAX_CATALOG NAMELEN

ATTR_CATALOG LOCATI ON

ATTR_SAVEPO NT_SUPPORT

ATTR _NOWAI T_SUPPORT

ATTR_AUTOCOW T_DDL

ATTR_LOCKI NG_MODE

server handle

List of schemas (type PTYPE_SCHEMA) in
the database

Maximum length of a procedure name
Maximum length of a column name

How a COW T operation affects cursors
and prepared statements in the database;
values are:

e OCCl _CURSOR_OPEN for preserving
cursor state as before the commit
operation

e (OCCl _CURSOR_CLOSED for cursors that
are closed on COW T, although the
application can execute the
statement for the second time without
preparing it again

Maximum length of a catalog (database)

name

Position of the catalog in a qualified table;

values are:

e OCCl _CL_START

e OCCl_CL_END

Identifies whether the database supports

savepoints; values are:

e OCCl _SP_SUPPORTED

e OCCl _SP_UNSUPPORTED

Identifies whether the database supports

the nowait clause; values are:

e OCCl _NW SUPPORTED

e OCCl _NW UNSUPPORTED

Identifies whether the autocommit mode

is required for DDL statements; values

are:

e (OCCl _AC_DDL

e OCCl _NO_AC DDL

Locking mode for the database; values

are:

e OCCl _LOCK_| MVEDI ATE

e (OCCl _LOCK_DELAYED

vect or <Met aDat a>

unsi gned int
unsi gned int

i nt

i nt

i nt

i nt

i nt

int

int

ORACLE

6-19

Programming with LOBs

This chapter provides an overview of LOBs and their use in OCCI.
This chapter contains these topics:

* Overview of LOBs

e Creating LOBs in OCCI Applications

* Restricting the Opening and Closing of LOBs

* About Reading and Writing LOBs

e Using Objects with LOB Attributes

e About Using SecureFiles

See also:

Oracle Database SecureFiles and Large Objects Developer's Guide for
extensive information about LOBs

7.1 Overview of LOBs

Oracle C++ Call Interface includes classes and methods for performing operations on
large objects, LOBs. LOBs are either internal or external depending on their location
with respect to the database.

This section includes the following topics:
* Introducing Internal LOBs

* Introducing External LOBs

e About Storing LOBs

7.1.1 Introducing Internal LOBs

ORACLE

Internal LOBs are stored inside database tablespaces in a way that optimizes space
and enables efficient access. Internal LOBs use copy semantics and participate in the
transactional model of the server. You can recover internal LOBs after transaction or
media failure, and any changes to an internal LOB value can be committed or rolled
back. There are three SQL data types for defining instances of internal LOBs:

e BLOB: A LOB whose value is composed of unstructured binary (raw) data

e CLOB: A LOB whose value is composed of character data that corresponds to the
database character set defined for the Oracle database

* NCLOB: A LOB whose value is composed of character data that corresponds to the
national character set defined for the Oracle database

7-1

Chapter 7
Creating LOBs in OCCI Applications

The copy semantics for LOBs dictate that when you insert or update a LOB with a LOB
from another row in the same table, both the LOB locator and the LOB value are
copied. In other words, each row has a copy of the LOB value.

7.1.2 Introducing External LOBs

BFI LEs are large binary (raw) data objects data stored in operating system files outside
database tablespaces; therefore, they are referred to as external LOBs. These files
use reference semantics, where only the locator for the LOB is reproduced when
inserting or updating in the same table. Apart from conventional secondary storage
devices such as hard disks, BFI LES may also be located on tertiary block storage
devices such as CD-ROMs, PhotoCDs and DVDs. The BFI LE data type allows read-
only byte stream access to large files on the file system of the database server. Oracle
can access BFI LEs if the underlying server operating system supports stream mode
access to these files.

External LOBs do not participate in transactions. Any support for integrity and
durability must be provided by the underlying file and operating systems. An external
LOB must reside on a single device; it may not be striped across a disk array.

7.1.3 About Storing LOBs

The size of the LOB value, among other things, dictates where it is stored. The LOB
value is either stored inline with the row data or outside the row.

* Locator storage: a LOB locator, a pointer to the actual location of the LOB value,
is stored inline with the row data and indicates where the LOB value is stored.

For internal LOBs, the LOB column stores a locator to the LOB value stored in a
database tablespace. Each internal LOB column and attribute for a particular row
has its own unique LOB locator and a distinct copy of the LOB value stored in the
database tablespace.

For external LOBs, the LOB column stores a locator to the external operating
system file that houses the BFI LE. Each external LOB column and attribute for a
given row has its own BFI LE locator. However, two different rows can contain a
BFI LE locator that points to the same operating system file.

* Inline storage: Data stored in a LOB is termed the LOB value. The value of an
internal LOB may or may not be stored inline with the other row data. If you do not
set DI SABLE STORAGE | N ROW and if the internal LOB value is less than
approximately 4, 000 bytes, then the value is stored inline.Otherwise, it is stored
outside the row.

Since LOBs are intended to be large objects, inline storage is only relevant if your
application mixes small and large LOBs.The LOB value is automatically moved out
of the row once it extends beyond approximately 4, 000 bytes.

7.2 Creating LOBs in OCCI Applications

Follow these steps to use LOBs in your application:

e |nitialize a new LOB locator in the database.

e Assign a value to the LOB. In case of BFI LES, assign a reference to a valid external
file.

ORACLE 7-2

Chapter 7
Restricting the Opening and Closing of LOBs

To access and manipulate LOBs, see the OCCI classes that implement the
methods for using LOBs in an application. All are detailed in OCCI Application
Programming Interface:

— Bfile Class contains the APIs for BFI LEs, as summarized in Table 13-7.
— Blob Class contains the APIs for BLOBs, as summarized in Table 13-8.

— Clob Class contains the APIs for CLOBs and NCLOBSs, as summarized in
Table 13-10.

Whenever you want to modify an internal LOB column or attribute using write,
copy, trim, and similar operations, you must lock the row that contains the target
LOB. Use a SELECT. . . FOR UPDATE statement to select the LOB locator.

A transaction must be open before a LOB write command succeeds. Therefore,
you must write the data before committing a transaction (since COW T closes the
transaction). Otherwise, you must lock the row again by reissuing the

SELECT. . . FOR UPDATE statement. Each of the LOB class implementations in OCCI
have open() and cl ose() methods. To check whether a LOB is open, call the

i sOpen() method of the class.

The methods open(), cl ose() and i sQpen() should also be used to mark the
beginning and end of a series of LOB operations. Whenever a LOB modification is
made, it triggers updates on extensible indexes. If these modifications are made
within open() . .. cl ose() code blocks, the individual triggers are disabled until after
the cl ose() call, and then all are issued at the same time. This implementation
enables the efficient processing of maintenance operations, such as updating
indexes, when the LOBs are closed. However, this also means that extensive
indexes are not valid during the execution of the open(). .. cl ose() code block.

Note that for internal LOBSs, the concept of openness is associated with the LOB
and not the LOB locator. The LOB locator does not store any information about
whether the LOB to which it refers is open. It is possible for multiple LOB locators
to point to the same open LOB. However, for external LOBs, openness is
associated with a specific external LOB locator. Therefore, multiple open() calls
can be made on the same BFI LE using different external LOB locators.

7.3 Restricting the Opening and Closing of LOBs

The definition of a transaction within which an open LOB value must be closed is one
of the following:

ORACLE

Between SET TRANSACTI ONand COWM T
Between DATA MODI FYI NG DM. and COW T
Between SELECT. . . FOR UPDATE and COWM T

Within an autonomous transaction block

The LOB opening and closing mechanism has the following restrictions:

An application must close all previously opened LOBs before committing a
transaction. Failing to do so results in an error. If a transaction is rolled back, then
all open LOBs are discarded along with the changes made, so associated triggers
are not fired.

While there is no limit to the number of open internal LOBS, there is a limit on the
number of open files. Note that assigning an opened locator to another locator
does not count as opening a new LOB.

7-3

Chapter 7
About Reading and Writing LOBs

e ltis an error to open or close the same internal LOB twice within the same
transaction, either with different locators or with the same locator.

e ltis an error to close a LOB that has not been opened.

7.4 About Reading and Writing LOBs

There are two general methods for reading and writing LOBs: non-streamed, and
streamed.

This section includes the following topics:

* Reading LOBs

* Writing LOBs

* About Enhancing the Performance of LOB Reads and Writes
* Updating LOBs

* About Reading and Writing Multiple LOBs

7.4.1 Reading LOBs

Example 7-1 illustrates how to get data from a non-NULL internal LOB, using a non-
streamed method. This method requires that you keep track of the read offset and the
amount remaining to be read, and pass these values to the read() method.

Example 7-2 is similar as it demonstrates how to read data from a BFI LE, where the
BFI LE locator is not NULL, by using a non-streamed read.

In contrast to Example 7-1 and Example 7-2, the streamed reading demonstrated in
Example 7-3 on a non-NULL BLOB does not require keeping track of the offset.

Example 7-1 How to Read Non-Streamed BLOBs

Resul t Set *rset =stnt->execut eQuery(" SELECT ad_conposite FROM print_nedi a
VWHERE product _i d=6666");
whi | e(rset->next())

Bl ob bl ob=rset - >get Bl ob(1);
i f(blob.isNull())

cerr <<"Null Bl ob"<<endl
el se

{
bl ob. open(OCCl _LOB_READONLY) ;
const unsigned int BUFSI ZE=100;
char buffer[BUFSI ZE] ;
unsi gned int readAnt =BUFSI ZE;
unsi gned int of fset =1;

I/reading readAnt bytes fromoffset 1
bl ob. read(readAnt, buf f er, BUFSI ZE, of f set) ;

/1 process information in buffer
bl ob. cl ose();

}
}

stnt->cl oseResul t Set (rset);

ORACLE 7-4

Chapter 7
About Reading and Writing LOBs

Example 7-2 How to Read Non-Streamed BFILESs

Resul t Set *rset=stnt->execut eQuery(" SELECT ad_graphic FROM print_nedi a
WHERE product _i d=6666") ;
whi | e(rset->next())

Bfile file=rset->getBfile(l);
if(bfile.isNull())
cerr <<"Null Bfile"<<endl;
el se
{
I1display the directory alias and the file nane of the BFILE
cout <<"File Nane:"<<bfile.getFileName()<<endl;
cout <<"Directory Alias:"<<bfile.getDirAias()<<endl;

if(bfile.fileExists())

{
unsi gned int length=bfile.length();
char *buffer=new char[length];
bfile.read(length, buffer, length, 1);
Ilread all the contents of the BFILE into buffer, then process
del ete[] buffer;
1
el se

cerr <<"File does not exist"<<endl;
}
1
stnt->cl oseResul t Set (rset);

Example 7-3 How to Read Streamed BLOBs

Resul t Set *rset=stnt->execut eQuery("SELECT ad_conposite FROM print_nedi a
VHERE product _i d=6666");
whi | e(rset->next())

{
Bl ob bl ob=rset->get Bl ob(1);

i f(blob.isNull())
cerr <<"Null Bl ob"<<endl;
el se

{
Stream *instreanrbl ob. get Streanm(1, 0);

//reading fromoffset 1 to the end of the BLOB

unsi gned int size=bl ob. get ChunkSi ze();
char *buffer=new char|size];

whi | e((unsi gned int |ength=instream >readBuffer(buffer,size))!=-1)

{

//process "length" bytes read into buffer

}
delete[] buffer;

bl ob. cl oseStrean(instrean;

}
}

st ->cl oseResul t Set (rset);

ORACLE e

Chapter 7
About Reading and Writing LOBSs

7.4.2 Writing LOBs

ORACLE

Example 7-4 demonstrates how to write data to an internal non-NULL LOB by using a
non-streamed write. The wri t eChunk() method is enclosed by the open() and cl ose()
methods; it operates on a LOB that is currently open and ensures that triggers do not
fire for every chunk read. The wite() method can be used for the w it eChunk()
method; however, the wite() method implicitly opens and closes the LOB.

Example 7-5 demonstrates how to write data to an internal LOB that is populated by
using a streamed write.

Example 7-4 How to Write Non-Streamed BLOBs

Resul t Set *rset =stnt->execut eQuery("SELECT ad_conposite FROM print_nedi a
VHERE product i d=6666 FOR UPDATE");
whi | e(rset->next())

{

Bl ob bl ob=rset->get Bl ob(1);

i f(blob.isNull())
cerr <<"Null Blob"<<endl;

el se

{
bl ob. open(OCCl _LOB_READWRI TE) ;
const unsigned int BUFSI ZE=100;
char buf f er [BUFSI ZE] ;
unsi gned i nt writeAnt =BUFSI ZE;
unsi gned int of fset=1,
[/witing witeAnmt bytes fromoffset 1
/lcontents of buffer are replaced after each witeChunk(),
[/typically with an fread()
whi | e(<fread "BUFSI ZE' bytes into buffer succeeds>)
{

bl ob. writeChunk(witeAnt, buffer, BUFSIZE, offset);
offset += writeAnt;

1
bl ob. wri t eChunk(<remaining ant>, buffer, BUFSIZE, offset);
bl ob. cl ose();

}

}

st ->cl oseResul t Set (rset);
conn->comi t();

Example 7-5 How to Write Streamed BLOBs

Resul t Set *rset =stnt->execut eQuery("SELECT ad_conposite FROM print_nedi a
WHERE product _i d=6666 FOR UPDATE");
whi | e(rset->next())
{
Bl ob bl ob=rset->get Bl ob(1);
i f(blob.isNull())
cerr <<"Null Bl ob"<<endl;
el se
{
char buf f er [BUFSI ZE] ;
Stream *out st reanrbl ob. get Strean(1, 0);

7-6

Chapter 7
About Reading and Writing LOBs

[lwiting frombuffer beginning at offset 1 until

/la witelLastBuffer() nethod is issued.

Ilcontents of buffer are replaced after each witeBuffer(),

[/typically with an fread()

whi | e(<fread "BUFSI ZE' bytes into buffer succeeds>)
ostream >wr it eBuf f er (buf fer, BUFSI ZE) ;

ostream >writelLast Buf fer(buffer, <remaining ant>);

bl ob. cl oseStrean{out strean;

}
}

st ->cl oseResul t Set (rset);
conn->comi t ();

7.4.3 About Enhancing the Performance of LOB Reads and Writes

Reading and writing of internal LOBs can be improved by using either get ChunkSi ze()
method.

This section includes the following topic: About Using the getChunkSize() Method.

7.4.3.1 About Using the getChunkSize() Method

The get ChunkSi ze() method returns the usable chunk size in bytes for BLOBs, and in
characters for CLOBs and NCLOBs. Performance improves when a read or a write begins
on a multiple of the usable chunk size, and the request size is also a multiple of the
usable chunk size. You can specify the chunk size for a LOB column when you create
a table that contains the LOB.

Calling the get ChunkSi ze() method returns the usable chunk size of the LOB. An
application can batch a series of write operations until an entire chunk can be written,
rather than issuing multiple LOB write calls that operate on the same chunk

To read through the end of a LOB, use the read() method with an amount of 4 GB.
This avoids the round-trip involved with first calling the get Lengt h() method because
the read() method with an amount of 4 GB reads until the end of the LOB is reached.

For LOBs that store variable width characters, the Get ChunkSi ze() method returns the
number of Unicode characters that fit in a LOB chunk.

7.4.4 Updating LOBs

ORACLE

To update a value of a LOB in the database, you must assign the new value to the
LOB, execute a SQL UPDATE command in the database, and then commit the
transaction. Example 7-6 demonstrates how to update an existing CLOB (in this case, by
setting it to empty), while Example 7-7 demonstrates how to update a BFI LE.

Example 7-6 Updating a CLOB Value

C ob clob(conn);

cl ob. set Enpty();

st nt - >set SQL(" UPDATE print_nedia SET ad_conposite = :1
VHERE product _i d=6666") ;

stnt->setCob(1, clob);

st nt - >execut eUpdat e() ;

conn->comit();

7-7

Chapter 7
About Reading and Writing LOBs

Example 7-7 Updating a BFILE Value

Bfile bfile(conn);

bfile.setNane("MEDIA DIR', "ingl.jpg");

st nt->set SQL(" UPDATE print_nedia SET ad_graphic = :1
VWHERE product _i d=6666") ;

stnt->setBfile(l, bfile);

st nt - >execut eUpdat e() ;

conn->comi t();

7.4.5 About Reading and Writing Multiple LOBs

As of Oracle Database 10g Release 2, OCCI has new interfaces that enhance
application performance while reading and writing multiple LOBs, such as Bfi | es, Bl obs,
C obs and N obs.

These interfaces have several advantages over the standard methods for reading and
writing a single LOB at a time:

* Reading and writing multiple LOBs through OCCI in a single server round-trip
improves performance by decreasing I/O time between the application and the
back end.

* The new APIs provide support for LOBs that are larger than the previous limit of
4 GB. The new interfaces accept the or aub8 data type for amount, offsets, buffer
and length parameters. These parameters are mapped to the appropriate 64-bit
native data type, which is determined by the compiler and the operating system.

» For O ob-related methods, the user can specify the data amount read or written in
terms of character counts or byte counts.

New APIs for this features are described in OCCI Application Programming Interface,
section on Connection Class, and include readVectorOfBfiles(), readVectorOfBlobs(),
readVectorOfClobs() (overloaded to support general charactersets, and the UTF16
characterset in particular), writeVectorOfBlobs(), and writeVectorOfClobs()
(overloaded to support general charactersets, and the UTF16 characterset in particular).

This section includes the following topic: About Using the Interfaces for Reading and
Writing Multiple LOBs.

7.4.5.1 About Using the Interfaces for Reading and Writing Multiple LOBs

ORACLE

Each of the readVect or Of xxx() and writeVect or O xxx() interface uses the following
parameters:

e conn, a Connect i on class object
e vec, a vector of LOB objects: Bfi | e, Bl ob, Cl ob, or NC! ob
* byteAnts, array of amounts, in bytes, for reading or writing

e charAnts, array of amounts, in characters, for reading or writing (only applicable for
C obs and N obs)

e offsets, array of offsets, in bytes for Bf i | es and Bl obs, and in characters for d obs
and NJ obs

e buffers, array of buffer pointers

* bufferLengths, array of buffer lengths.

7-8

7.5 Using

ORACLE

Chapter 7
Using Objects with LOB Attributes

If there are errors in either reading or writing of one of the LOBs in the vector, the
whole operation is cancelled. The byt eAnt s or char Ant s parameters should be checked
to determine the actual number of bytes or characters read or written.

Objects with LOB Attributes

An OCCI application can use the operator new() to create a persistent object with a
LOB attribute. By default, all LOB attributes are constructed by using the default
constructor, and are initialized to NULL.

Example 7-8 demonstrates how to create and use persistent objects with internal LOB
attributes. Example 7-9 demonstrates how to create and use persistent objects with
external LOB attributes.

Example 7-8 How to Use a Persistent Object with a BLOB Attribute

1. Create a persistent object with a BLOB attribute:

Person *p=new(conn, "PERSON_TAB") Per son();
p->i myBl ob = Bl ob(conn);

2. Either initialize the Bl ob object to empty:
p- >i myBl ob. set Enpty();

Or set it to some existing value
3. Mark the Bl ob object as dirty:
p- >mar kMbdi fi ed();
4. Flush the object:
p->flush();

5. Repin the object after obtaining a REF to it, thereby retrieving a refreshed version of
the object from the database and acquiring an initialized LOB:

Ref <Person> r = p->getRef();
delete p;
p=r.ptr();

6. Write the data:

p->ingBlob.wite(...);
Example 7-9 How to Use a Persistent Object with a BFILE Attribute
1. Create a persistent object with a BFI LE attribute:

Person *p=new(conn, " PERSON_TAB") Per son();
p->i myBFi | e = BFile(conn);

2. Initialize the Bfi | e object:
p->set Nane(directory_alias, file_name);
3. Mark the Bfil e object as dirty:
p- >mar kMbdi fied();
4. Flush the object:
p->flush();
5. Read the data:

7-9

Chapter 7
About Using SecureFiles

p->ingBfile.read(...);

7.6 About Using SecureFiles

Introduced with Oracle Database 11g Release 1, SecureFiles LOBs add powerful new
features for LOB compression, encryption, and deduplication.

See Also:

Oracle Database SecureFiles and Large Objects Developer's Guide

This section includes the following topics:

* About Using SecureFile Compression

* About Using SecureFiles Encryption

* About Using SecureFiles Deduplication

* About Combining SecureFiles Compression, Encryption, and Deduplication

* SecureFiles LOB Types and Constants

7.6.1 About Using SecureFile Compression

SecureFiles compression enables server-side compression of LOB data, transparent
to the application. Using SecureFiles compression saves storage space with minimal
impact on reading and updating performance for SecureFiles LOB data.

7.6.2 About Using SecureFiles Encryption

SecureFiles introduce a new encryption capability for LOB data and extend
Transparent Data Encryption by enabling efficient random read and write access to
encrypted SecureFiles LOBs.

7.6.3 About Using SecureFiles Deduplication

SecureFiles deduplication allows the Oracle Database to automatically detect
duplicate LOB data, and to conserve space by storing a single copy of the SecureFiles
LOB.

7.6.4 About Combining SecureFiles Compression, Encryption, and
Deduplication

You can combine compression, encryption and deduplication in any combination.
Oracle Database applies these features according to the following rules:

« Deduplicate detection, if enabled, is performed before compression and
encryption. This prevents potentially unnecessary and expensive compression and
encryption operations on duplicate SecureFiles LOBs.

ORACLE 7-10

Chapter 7
About Using SecureFiles

» Compression is performed before encryption, to allow for the highest possible

compression ratios.

7.6.5 SecureFiles LOB Types and Constants

The following types for SecureFiles LOBs enable additional flexibility for compression,
encryption, and deduplication. Table 7-1 lists options for the LobQpt i onType, while
Table 7-2 lists options for the LobQpt i onVal ue.

ORACLE

Table 7-1 Values of Type LobOptionType

Value

Description

0CCI_LOB_OPT_COVPRESS

0CCI_LOB_CPT_ENCRYPT

OCCl_LOB_OPT_DEDUPLI CATE

Compression option type

Encryption option type

Deduplicate option type

Table 7-2 Values of Type LobOptionValue

Value

Description

0CCl_LOB_COVPRESS_OFF

0CCl_LOB_COMPRESS_ON

0CCl_LOB_ENCRYPT_CFF

0CCl_LOB_ENCRYPT_ON

0CCl_LOB_DEDUPLI CATE_OFF

OCCl _LOB_DEDUPLI CATE_ON

Turns off SecureFiles compression

Turns on SecureFiles compression

Turns off SecureFiles encryption

Turns on SecureFiles encryption

Turns off SecureFiles deduplication

Turns off LOB deduplication

7-11

Object Type Translator Utility

This chapter discusses the Object Type Translator (OTT) utility, which is used to map
database object types, LOB types, and named collection types to C++ class
declarations for use in OCCI applications.

This chapter contains these topics:

e Overview of the Object Type Translator Utility
e Using the OTT Utility

e Creating Types in the Database

e About Invoking the OTT Utility

e About Using the INTYPE File

e Using OTT Utility Data Type Mappings

* Overview of the OUTTYPE File

e Using the OTT Utility and OCCI Applications
e Carrying Forward User Added Code

See Also:

$ORACLE_HOME/ r dbns/ dermo for a complete code listing of the demonstration
program used in this chapter, and the class and method implementation
generated by the OTT utility.

8.1 Overview of the Object Type Translator Utility

ORACLE

The Object Type Translator (OTT) utility assists in the development of applications that
make use of user-defined types in an Oracle database server.

You can create object types using the SQL CREATE TYPE statement. The definitions of
these types are stored in the database, and can be subsequently used to create
database tables. Once these tables are populated, an OCCI programmer can access
objects stored in the tables.

An application that accesses object data must be able to represent the data in a host
language format. This is accomplished by representing object types classes in C++.

You could code structures or classes manually to represent database object types, but
this is time-consuming and error-prone. The OTT ultility simplifies this step by
automatically generating the appropriate classes for C++.

For OCCI, the application must include and link the following files:

e Include the header file containing the generated class declarations

8-1

Chapter 8
Using the OTT Utility

* Include the header file containing the prototype for the function to register the
mappings

* Link with the C++ source file containing the static methods to be called by OCCI
while instantiating the objects

» Link with the file containing the function to register the mappings with the
environment and call this function

8.2 Using the OTT Utility

To translate database types to C++ representation, you must explicitly invoke the OTT
utility. OCCI programmers must register the mappings with the environment. This
function is generated by the OTT utility.

On most operating systems, the OTT utility is invoked on the command line. It takes as
input an | NTYPE file, and generates an QUTTYPE file, one or more C++ header files that
contain the prototype information, and additional C++ method files that register
generated mappings.

See Also:

Extending C++ Classes for a complete C++ example

Example 8-1 How to Use the OTT Utility

The following command invokes the OTT utility and generates C++ classes. OTT
attempts to connect with user name denousr ; the system prompts for the password.

ott userid=denousr intype=denoin.typ outtype=denoout.typ code=cpp
hfil e=dermo. h cppfil e=deno. cpp mapfil e=Regi st er Mappi ngs. cpp

OTT utility uses the denvi n. t yp file as the | NTYPE file, and the denoout . t yp file as the
QUTTYPE file. The resulting declarations are output to the file deno. h in C++, specified by
the CODE=cpp parameter, the method implementations written to the file deno. cpp, and
the functions to register mappings is written to Regi st er Mappi ngs. cpp with its prototype
written to Regi st er Mappi ngs. h.

8.3 Creating Types in the Database

ORACLE

The first step in using the OTT utility is to create object types or named collection
types and store them in the database. This is accomplished by the SQL CREATE TYPE
statement.

Example 8-2 Object Creation Statements of the OTT Utility

CREATE TYPE FULL_NAME AS OBJECT (first_nanme CHAR(20), last_name CHAR(20));

CREATE TYPE ADDRESS AS OBJECT (state CHAR(20), zip CHAR(20));

CREATE TYPE ADDRESS TAB AS VARRAY(3) OF REF ADDRESS;

CREATE TYPE PERSON AS OBJECT (id NUMBER, name FULL_NAME, curr_addr REF ADDRESS,
prev_addr_1 ADDRESS TAB) NOT FI NAL;

CREATE TYPE STUDENT UNDER PERSON (school _name CHAR(20));

8-2

Chapter 8
About Invoking the OTT Utility

8.4 About Invoking the OTT Utility

After creating types in the database, the next step is to invoke the OTT utility.
This section includes the following topics:

e Specifying OTT Parameters

* Invoking the OTT Utility on the Command Line

e OTT Utility Parameters

* Where OTT Parameters Can Appear

* File Name Comparison Restriction

e Using the OTT Command on Microsoft Windows

8.4.1 Specifying OTT Parameters

You can specify OTT parameters either on the command line or in a configuration file.
Certain parameters can also be specified in the | NTYPE file.

If you specify a parameter in multiple locations, then its value on the command line
takes precedence over its value in the I NTYPE file. The value in the | NTYPE file takes
precedence over its value in a user-defined configuration file, which takes precedence
over its value in the default configuration file.

Parameter precedence then is as follows:

1. OTT command line

2. Value in I NTYPE file

3. User-defined configuration file
4. Default configuration file

For global options (that is, options on the command line or options at the beginning of
the | NTYPE file before any TYPE statements), the value on the command line overrides
the value in the | NTYPE file. (The options that can be specified globally in the | NTYPE file
are CASE, | NI TFI LE, | Nl TFUNC, MAPFI LE and MAPFUNC, but not HFI LE or CPPFI LE.) Anything in
the | NTYPE file in a TYPE specification applies to a particular type only and overrides
anything on the command line that would otherwise apply to the type. So if you enter
TYPE person HFI LE=p. h, then it applies to per son only and overrides the HFl LE on the
command line. The statement is not considered a command line parameter.

This section includes the following topics:
* About Setting Parameters on the Command Line
e About Setting Parameters in the INTYPE File

* About Setting Parameters in the Configuration File

8.4.1.1 About Setting Parameters on the Command Line

Parameters (also called options) set on the command line override any parameters or
option set elsewhere.

ORACLE 8-3

Chapter 8
About Invoking the OTT Utility

8.4.1.2 About Setting Parameters in the INTYPE File

The | NTYPE file gives a list of types for the OTT utility to translate.

The parameters CASE, CPPFI LE, HFI LE, | NI TFI LE, | NI TFUNC, MAPFI LE, and MAPFUNC can
appear in the | NTYPE file.

8.4.1.3 About Setting Parameters in the Configuration File

A configuration file is a text file that contains OTT parameters. Each nonblank line in
the file contains one parameter, with its associated value or values. If multiple
parameters are on the same line, then only the first one is used. No blank space is
allowed on any nonblank line of a configuration file.

A configuration file can be named on the command line. In addition, a default
configuration file is always read. This default configuration file must always exist, but
can be empty. The name of the default configuration file is ot t cf g. ¢f g, and the location
of the file is operating system-specific.

See Also:

Your operating system-specific documentation for more information about the
location of the default configuration file.

8.4.2 Invoking the OTT Utility on the Command Line

ORACLE

On most platforms, the OTT utility is invoked on the command line. You can specify
the input and output files and the database connection information at the command
line, among other things.

See Also:

Your operating system-specific documentation to see how to invoke the OTT
utility on your operating system

Note:

No spaces are permitted around the equals sign (=) on the OTT command
line.

An OTT command line statement consists of the command OTT, followed by a list of
OTT utility parameters.

The HrFI LE parameter is almost always used. If omitted, then HFI LE must be specified
individually for each type in the | NTYPE file. If the OTT utility determines that a type not
listed in the | NTYPE file must be translated, then an error is reported. Therefore, it is

8-4

Chapter 8
About Invoking the OTT Utility

safe to omit the HFI LE parameter only if the | NTYPE file was previously generated as an
OTT QUTTYPE file.

If the | NTYPE file is omitted, then the entire schema is translated. See the parameter
descriptions in the following section for more information.

Example 8-3 How to Invoke the OTT Utility to Generate C++ Classes

OTT attempts to connect with user name denousr ; the system prompts for the
password.

ott userid=denmousr intype=denpin.typ outtype=denoout.typ code=cpp
hfile=demo. h cppfil e=deno. cpp mapfil e=Regi st er Mappi ngs. cpp

This section includes the following topic: Elements Used on the OTT Command Line.

8.4.2.1 Elements Used on the OTT Command Line

Elements used on the OTT command line are:

e OTT command that invokes the OTT utility. It must be the first item on the
command line.

« USERID parameter

* INTYPE parameter

e OUTTYPE parameter.
e CODE parameter.

* HFILE parameter.

e CPPFILE parameter.
* MAPFILE parameter.

8.4.3 OTT Utility Parameters

ORACLE

To generate C++ using the OTT utility, the CODE parameter must be set to CODE=CPP.
Once CODE=CPP is specified, you are required to specify the CPPFI LE and MAPFI LE
parameters to define the filenames for the method implementation file and the
mappings registration function file. The name of the mapping function is derived by the
OTT utility from the MAPFI LE or you may specify the name with the MAPFUNC parameter.
ATTRACCESS is also an optional parameter that can be specified to change the generated
code. These parameters control the generation of C++ classes.

* Enter parameters on the OTT command line where par anet er is the literal
parameter string and val ue is a valid parameter setting. The literal parameter string
is not case sensitive:

par amet er =val ue
e Separate command line parameters by using either spaces or tabs.

« Parameters can also appear within a configuration file, but, in that case, no
whitespace is permitted within a line, and each parameter must appear on a
separate line. Additionally, the parameters CASE, CPPFI LE, HFI LE, | NI TFI LE, | NTFUNC,
MAPFI LE, and MAPFUNC can appear in the | NTYPE file.

Table 8-1 lists all OTT Utility parameters:

8-5

ORACLE

Chapter 8
About Invoking the OTT Utility

Table 8-1 Summary of OTT Utility Parameters

Parameter Description

ATTRACCESS Specifies whether the access to type attributes is PROTECTED or
PRI VATE.

CASE Affects the letter case of generated C++ identifiers

CODE Specifies the target language for the translation. Use CPP.

CONFIG Specifies the name of the OTT configuration file that lists
commonly used parameter specifications.

CPPFILE Specifies the name of the C++ source file into which the method
implementations are written.

ERRTYPE Specifies the name of the error message output file.

HFILE Specifies the name of the C++ header file to which the generated
C++ classes are written.

INTYPE Specifies the name of the | NTYPE file.

MAPFILE Specifies the name of the mapping file and the corresponding
header file generated by the OTT utility.

MAPFUNC Specifies the name of the function used to register generated
mappings.

OUTTYPE Specifies the name of the QUTTYPE file.

SCHEMA_NAMES

Controls the qualifying the database name of a type from the
default schema

TRANSITIVE Indicates whether to translate type dependency that are not
explicitly listed in the INTYPE.

UNICODE Indicates whether the application should provide UTF16 support
generate USt ri ng types.

USE_MARKER Indicates whether OTT markers should be supported to carry
forward user added cod

USERID Specifies the database connection information that the OTT utility
uses.

8.4.3.1 ATTRACCESS

This parameter specifies access to type attributes:

e PROTECTED is the default.

* PRI VATE indicates that the OTT utility generates accessory and mutator methods for
each type attribute, get XXX() and set XXX() .

8.4.3.2 CASE

This parameter affects the letter case of generated C++ identifiers. The valid values of

CASE are:

* SAME is the case of letters remains unchanged when converting database type and
attribute names to C++ identifiers.

° LOAER indicates that all uppercase letters are converted to lowercase.

8-6

Chapter 8
About Invoking the OTT Utility

* UPPERindicates that all lowercase letters are converted to uppercase.

e (OPPCSI TE indicates that all uppercase letters are converted to lowercase, and all
lowercase letters are converted to uppercase.

This parameter affects only those identifiers (attributes or types not explicitly listed) not
mentioned in the | NTYPE file. Case conversion takes place after a legal identifier has
been generated.

Case insensitive SQL identifiers not mentioned in the | NTYPE file appear in uppercase if
CASE=SAME, and in lowercase if CASE=OPPCSI TE. A SQL identifier is case insensitive if it
was not quoted when it was declared.

8.4.3.3 CODE

This parameter specifies the host language to be output by the OTT utility. CODE=CPP
must be specified for the OTT utility to generate C++ code for OCCI applications.

8.4.3.4 CONFIG

This parameter specifies the name of the OTT configuration file that lists commonly
used parameter specifications. Parameter specifications are also read from a system
configuration file found in an operating system-dependent location. All remaining
parameter specifications must appear either on the command line or in the I NTYPE file.

The CONFI G parameter can only be specified on the OTT command line. It is not
allowed in the CONFI Gfile.

8.4.3.5 CPPFILE

This parameter specifies the name of the C++ source file that contains the method
implementations generated by the OTT utility. The methods generated in this file are
called by OCCI while instantiating the objects and are not to be called directly in the an
application.

This parameter is required under the following conditions:

* Atype not mentioned in the | NTYPE file must be generated and two or more
CPPFI LEs are being generated. In this case, the unmentioned type goes in the
CPPFI LE specified on the command line.

* The I NTYPE parameter is not specified, and you want the OTT utility to translate all
the types in the schema.

This parameter is optional when the CPPFI LE is specified for individual types in the
| NTYPE file.

8.4.3.6 ERRTYPE

ORACLE

This parameter specifies the name of the error message output file. Information and
error messages are sent to the standard output regardless of whether the ERRTYPE
parameter is specified. Essentially, the ERRTYPE file is a copy of the | NTYPE file with error
messages added. In most cases, an error message includes a pointer to the text that
caused the error.

8-7

Chapter 8
About Invoking the OTT Utility

If the filename specified for the ERRTYPE parameter on the command line does not
include an extension, a platform-specific extension, like .TLS or .tI s, is added
automatically.

8.4.3.7 HFILE

This parameter specifies the name of the header (. h) file to be generated by the OTT
utility. The HFI LE specified on the command line contains the declarations of types that
are mentioned in the | NTYPE file but whose header files are not specified there.

This parameter is required unless the header file for each type is specified individually
in the | NTYPE file. This parameter is also required if a type not mentioned in the | NTYPE
file must be generated because other types require it, and these other types are
declared in two or more different files.

If the filename specified for the HFl LE parameter on the command line or in the | NTYPE
file does not include an extension, a platform-specific extension, like . Hor . h, is added
automatically.

8.4.3.8 INTYPE

This parameter specifies the name of the file from which to read the list of object type
specifications. The OTT utility translates each type in the list. If the | NTYPE parameter is
not specified, all types in the user's schema is translated.

If the filename specified for the | NTYPE parameter on the command line does not
include an extension, a platform-specific extension, like . TYP or . typ, is automatically
added.

I NTYPE= may be omitted if USERI D and | NTYPE are the first two parameters, in that order,
and USERI D= is omitted.

The | NTYPE file can be thought of as a makefile for type declarations. It lists the types
for which C++ classes are needed.

¢ See Also:

"Structure of the INTYPE File" for more information about the format of the
| NTYPE file

8.4.3.9 MAPFILE

This parameter specifies the name of the mapping file (XXX. cpp) and corresponding
header file (XXX. h) that are generated by the OTT utility. The XXX. cpp file contains the
implementation of the functions to register the mappings, while the XxX. h file contains
the prototype for the function.

This parameter may be specified either on the command line or in the | NTYPE file.

8.4.3.10 MAPFUNC

This parameter specifies the name of the function to be used to register the mappings
generated by the OTT utility.

ORACLE 8-8

Chapter 8
About Invoking the OTT Utility

If this parameter is omitted, then the name of the function to register the mappings is
derived from the filename specified in the MAPFI LE parameter.

This parameter may be specified either on the command line or in the | NTYPE file.

8.4.3.11 OUTTYPE

This parameter specifies the name of the file into which the OTT utility writes type
information for all the object data types it processes. This file includes all types
explicitly named in the | NTYPE file, and may include additional types that are translated
because they are used in the declarations of other types that must be translated. This
file may be used as an | NTYPE file in a future invocation of the OTT utility.

If the | NTYPE and QUTTYPE parameters refer to the same file, then the new | NTYPE
information replaces the old information in the | NTYPE file. This provides a convenient
way for the same | NTYPE file to be used repeatedly in the cycle of altering types,
generating type declarations, editing source code, precompiling, compiling, and
debugging.

If the filename specified for the QUTTYPE parameter on the command line or in the
I NTYPE file does not include an extension, a platform-specific extension, like. TYP
or . typ, is automatically added.

8.4.3.12 SCHEMA_NAMES

ORACLE

This parameter offers control in qualifying the database name of a type from the
default schema that is named in the OUTTYPE file. The QUTTYPE file generated by the
OTT utility contains information about the types processed by the OTT utility, including
the type names. Valid values include:

* ALWAYS (default) indicates that all type names in the QUTTYPE file are qualified with a
schema name.

* | F_NEEDED indicates that the type names in the OUTTYPE file that belong to the default
schema are not qualified with a schema name. Type names belonging to other
schemas are qualified with the schema name.

e FROM.I NTYPE indicates that a type mentioned in the INTYPE file is qualified with a
schema name in the QUTTYPE file only if it was qualified with a schema name in the
I NTYPE file. A type in the default schema that is not mentioned in the | NTYPE file but
generated because of type dependency is written with a schema name only if the
first type encountered by the OTT utility that depends on it is also written with a
schema name. However, a type that is not in the default schema to which the OTT
utility is connected is always written with an explicit schema name.

The name of a type from a schema other that the default schema is always qualified
with a schema name in the OUTTYPE file.

The schema name, or its absence, determines in which schema the type is found
during program execution.

Example 8-4 How to use the SCHEMA_NAMES Parameter in OTT Utility

Consider an example where the SCHEMA_NAMES parameter is set to FROM | NTYPE, and the
| NTYPE file contains the following:

TYPE Person
TYPE | oe. Dept
TYPE sam Conpany

8-9

Chapter 8
About Invoking the OTT Utility

If the OTT utility and the application both connect to schema joe, then the application
uses the same type (j oe. Person) that the OTT utility uses. If the OTT utility connects to
schema j oe but the application connects to schema nmary, then the application uses the
type nmary. Person. This behavior is appropriate only if the same CREATE TYPE Person
statement has been executed in schema j oe and schema nary.

On the other hand, the application uses type j oe. Dept regardless of which schema the
application is connected to. If this is the behavior you want, then be sure to include
schema names with your type names in the | NTYPE file.

In some cases, the OTT ultility translates a type that the user did not explicitly name.
For example, consider the following SQL declarations:

CREATE TYPE Address AS OBJECT
(
street VARCHAR2(40) ,
city VARCHAR(30)
state CHAR(2),
zi p_code CHAR(10)

)s

CREATE TYPE Person AS OBJECT
(

nane CHAR(20),
age NUNMBER,
addr ADDRESS

)s

Suppose that the OTT utility connects to schema j oe, SCHEMA_NAVES=FROM | NTYPE is
specified, and the user's | NTYPE files include either TYPE Person or TYPE j oe. Person. The
I NTYPE file does not mention the type j oe. Addr ess, which is used as a nested object
type in type j oe. Per son.

e If Type Person appears in the I NTYPE file, then TYPE Person and TYPE Address
appears in the QUTTYPE file.

e If TYPE j oe. Person appears in the | NTYPE file, then TYPE | oe. Per son and TYPE
j oe. Addr ess appear in the QUTTYPE file.

* Ifthe joe. Address type is embedded in several types translated by the OTT utility,
but it is not explicitly mentioned in the | NTYPE file, then the decision of whether to
use a schema name is made the first time the OTT utility encounters the
embedded j oe. Addr ess type. If, for some reason, the user wants type j oe. Addr ess
to have a schema name but does not want type Per son to have one, then you must
explicitly request this in the | NTYPE file: TYPE j oe. Addr ess.

In the usual case in which each type is declared in a single schema, it is safest for you
to qualify all type names with schema names in the | NTYPE file.

8.4.3.13 TRANSITIVE

ORACLE

This parameter indicates whether type dependencies not explicitly listed in the | NTYPE
file are to be translated. Valid values are:

* TRUE (default): types needed by other types and not mentioned in the | NTYPE file are
generated

e FALSE: types not mentioned in the | NTYPE file are not generated, even if they are
used as attribute types of other generated types.

8-10

Chapter 8
About Invoking the OTT Utility

8.4.3.14 UNICODE

This parameter specifies whether the application provides unicode (UTF16) support.

NONE (default)

ALL: All CHAR (CHAR/VARCHAR) and NCHAR (NCHAR/NVARCHAR?) type attributes are declared
as Ustring type in the OTT generated C++ class files. The corresponding

get XXX() /set XXX() return values or parameters are UStri ng types. The generated
persistent operator new would also take only UStri ng arguments.

This setting is necessary when both the client characterset and the national
characterset is UTF16.

ONLYNCHAR: Similar to the ALL option, but only NCHAR type attributes are declared as
UStri ng.

This setting is necessary when the application sets only the Environment's national
characterset to UTF16.

Example 8-5 How to Define a Schema for Unicode Support in OTT

create type CitiesList as varray(100) of varchar2(100);

create type Country as object

(

CNo Nunber (10),

CNanme Var char 2(100),

CNat i onal Nane Nvar char 2(100),
MainCities CtiesList);

Example 8-6 How to Use UNICODE=ALL Parameter in OTT

class Country : public oracle::occi::PQbject

{

ORACLE

private:
oracl e::occi::Nunber CNO
oracle::occi::UString CNAME;
oracle::occi::UString CNATI ONALNAME;
OCCl _STD _NAMESPACE: : : vector< oracle::occi::UString > MAINCl Tl ES;

public:

oracl e::occi:: Nunber getCno() const;
voi d set Cno(const oracle::occi::Nunber &val ue);

oracle::occi::UString getCname() const;
voi d set Cname(const oracle::occi::UString &al ue);

oracle::occi::UString getCnational nanme() const;
voi d set Cnati onal name(const oracle::occi::UString &val ue);

OCCl _STD_NAMESPACE: : vector< oracle::occi::UString >& get Maincities();
const OCCl _STD_NAMESPACE: : vector< oracle::occi::UString >&
getMaincities() const;
voi d set Maincities(const OCCl _STD NAMESPACE: :vector< oracle::occi::UString
> &val ue);

8-11

Chapter 8
About Invoking the OTT Utility

Example 8-7 How to Use UNICODE=ONLYCHAR Parameter in OTT

class Country : public oracle::occi::Pject

{

private:

oracl e::occi::Number CNG,

oracl e::occi::string CNAME

oracle::occi::UString CNATI ONALNAME;

OCCl _STD NAMESPACE: : vector< std::string > MAINCI TI ES;

public:

oracle::occi::Nunber getCno() const;
voi d set Cno(const oracl e::occi::Nunber &val ue);

oracle::occi::string getCnane() const;
voi d set Cnane(const OCCl _STD_NAMESPACE: : string &val ue);

oracle::occi::UString getCnational name() const;
voi d set Cnational nane(const oracle::occi::UString &val ue);

OCCl _STD NAMESPACE: : vect or < OCCl _STD NAMESPACE: : string>&
getMaincities();
const OCCl _STD NAMESPACE: : vect or< OCCl _STD NAMESPACE::string >&
getMaincities() const;
voi d set Maincities(const OCCl _STD NAMESPACE: : vect or
< OCCl _STD NAMESPACE: :string > &val ue);

8.4.3.15 USE_MARKER

This parameter indicates whether to support OTT markers for carrying forward user
added code. Valid values are:

FALSE (default): User-supplied code is not carried forward, even if the code is
added between OTT_USERCODE_START and OTT_USERCODE_END markers.

TRUE: User-supplied code, between the markers OIT_USER CODESTART and
OTT_USERCODE_END, is carried forward when the same file is generated again.

8.4.3.16 USERID

This parameter specifies the Oracle username and optional database name (Oracle
Net database specification string). If the database name is omitted, the default
database is assumed.

ORACLE

USERI D=user name[@hb_nane]

If this is the first parameter, then USERI D= may be omitted as shown:

OTT username ...

Note that the system prompts you for the password that corresponds to the user id.

This parameter is optional. If omitted, the OTT utility automatically attempts to connect
to the default database as user OPS$user name, where user nane is the user's operating
system username.

8-12

Chapter 8
About Invoking the OTT Utility

8.4.4 Where OTT Parameters Can Appear

Supply OTT parameters on the command line, in a CONFI G file named on the command
line, or both. Some parameters are also allowed in the | NTYPE file.

The OTT utility is invoked as follows:

OIT paraneters

You can name a configuration file on the command line with the CONFI G parameter as
follows:

CONFI G=fi | enane

If you name this parameter on the command line, then additional parameters are read
from the configuration file named fi | enane.

In addition, parameters are also read from a default configuration file that resides in an
operating system-dependent location. This file must exist, but can be empty. If you
choose to enter data in the configuration file, note that no white space is allowed on a
line and parameters must be entered one to a line.

If the OTT utility is executed without any arguments, then an online parameter
reference is displayed.

The types for the OTT utility to translate are named in the file specified by the | NTYPE
parameter. The parameters CASE, CPPFI LE, HFI LE, | NI TFI LE, | Nl TFUNC, MAPFI LE, and
MAPFNC may also appear in the | NTYPE file. QUTTYPE files generated by the OTT utility
include the CASE parameter, and include the I NI TFI LE, and | Nl TFUNC parameters if an
initialization file was generated or the MAPFI LE and MAPFUNC parameters if C++ codes
was generated. The QUTTYPE file and the CPPFI LE for C++ specify the HFI LE individually
for each type.

The case of the OTT command is operating system-dependent.

8.4.5 File Name Comparison Restriction

ORACLE

Currently, the OTT utility determines if two files are the same by comparing the
filenames provided by the user either on the command line or in the I NTYPE file. But
one potential problem can occur when the OTT utility must know if two filenames refer
to the same file. For example, if the OTT-generated file foo.h requires a type
declaration written to f ool. h, and another type declaration written to / privat e/ snit h/
fool. h, then the OTT utility should generate one #i ncl ude if the two files are the same,
and two #i ncl udes if the files are different. In practice, though, it concludes that the two
files are different, and generates two #i ncl udes as follows:

#i f ndef FOOL_ORACLE

#include "fool. h"

#endi f

#i f ndef FOOL_ORACLE

#include "/private/smth/fool.h"
#endi f

If fool. h and /private/smith/fool. h are different files, then only the first one is
included. If fool. h and / private/snith/fool. h are the same file, then a redundant
#i ncl ude is written.

8-13

Chapter 8
About Using the INTYPE File

Therefore, if a file is mentioned several times on the command line or in the | NTYPE file,
then each mention of the file should use the same filename.

8.4.6 Using the OTT Command on Microsoft Windows

OTT executable on Microsoft Windows in the current release is ot t. bat, instead of
ott.exe as in the earlier releases. This may break Windows batch scripts, as the
scripts exit immediately after executing ott. To fix this problem, OTT should be invoked
as follows, in Windows batch scripts:

call ott [argunents]

Note:

ORACLE_HOME\ preconp\ adni n\ ot t . exe can be used until the scripts are fixed, as
an intermediate solution. However, this intermediate solution will not be
provided in future releases.

8.5 About Using the INTYPE File

When you run the OTT utility, the I NTYPE file tells the OTT utility which database types
should be translated. The | NTYPE file also controls the naming of the generated
structures or classes. You can either create an | NTYPE file or use the QUTTYPE file of a
previous invocation of the OTT utility. If you do not use an | NTYPE file, then all types in
the schema to which the OTT utility connects are translated.

This section includes the following topics:
* Using the INTYPE File
e Structure of the INTYPE File

» Using Nested include File Generation

8.5.1 Using the INTYPE File

ORACLE

The OTT utility may have to translate additional types that are not listed in the | NTYPE
file. This is because the OTT utility analyzes the types in the | NTYPE file for type
dependencies before performing the translation, and it translates other types as
necessary. For example, if the ADDRESS type were not listed in the | NTYPE file, but the
Per son type had an attribute of type ADDRESS, then the OTT utility would still translate
ADDRESS because it is required to define the Per son type.

You may indicate whether the OTT utility should generate required object types that
are not specified in the | NTYPE file. Set TRANSI TI VE=FALSE so the OTT utility does not to
generate required object types. The default is TRANSI TI VE=TRUE.

A normal case insensitive SQL identifier can be spelled in any combination of
uppercase and lowercase in the | NTYPE file, and is not quoted.

Use quotation marks, such as TYPE "Person" to reference SQL identifiers that have
been created in a case sensitive manner, for example, CREATE TYPE "Person". A SQL
identifier is case sensitive if it was quoted when it was declared. Quotation marks can
also be used to refer to a SQL identifier that is an OTT-reserved word, for example,

8-14

Chapter 8
About Using the INTYPE File

TYPE "CASE". In this case, the quoted hame must be in uppercase if the SQL identifier
was created in a case insensitive manner, for example, CREATE TYPE Case. If an OTT-
reserved word is used to refer to the name of a SQL identifier but is not quoted, then
the OTT utility reports a syntax error in the | NTYPE file.

¢ See Also:

e "Structure of the INTYPE File" for a more detailed specification of the
structure of the | NTYPE file and the available options.

e "CASE" for further information regarding the CASE parameter

Example 8-8 How to Create a User Defined INTYPE File Using the OTT Utility

CASE=LONER
TYPE enpl oyee
TRANSLATE SALARY$ AS sal ary
DEPTNO AS depart ment

TYPE ADDRESS

TYPE item

TYPE "Person"

TYPE PURCHASE_ORDER AS p_o

* Inthe first line, the CASE parameter indicates that generated C identifiers should be
in lowercase. However, this CASE parameter is only applied to those identifiers that
are not explicitly mentioned in the I NTYPE file. Thus, enmpl oyee and ADDRESS would
always result in C structures enpl oyee and ADDRESS, respectively. The members of
these structures are named in lowercase.

* The lines that begin with the TYPE keyword specify which types in the database
should be translated. In this case, the EMPLOYEE, ADDRESS, | TEM, PERSON, and
PURCHASE_ORDER types are set to be translated.

e The TRANSLATE. . . AS keywords specify that the name of an object attribute should
be changed when the type is translated into a C structure. In this case, the SALARY$
attribute of the enpl oyee type is translated to sal ary.

* The AS keyword in the final line specifies that the name of an object type should be
changed when it is translated into a structure. In this case, the purchase_or der
database type is translated into a structure called p_o.

8.5.2 Structure of the INTYPE File

ORACLE

The I NTYPE and QUTTYPE files list the types translated by the OTT utility and provide all
the information needed to determine how a type or attribute name is translated to a
legal C or C++ identifier. These files contain one or more type specifications, and may
also contain specifications of CASE, CPPFI LE, HFI LE, | NI TFI LE, | NIl TFUNC, MAPFI LE, or
MAPFUNC.

If the CASE, I NI TFI LE, I Nl TFUNC, MAPFI LE, or MAPFUNC options are present, then they must
precede any type specifications. If these options appear both on the command line
and in the | NTYPE file, then the value on the command line is used.

8-15

Chapter 8
About Using the INTYPE File

¢ See Also:

"Overview of the OUTTYPE File" for an example of a simple user-defined
I NTYPE file and of the full QUTTYPE file that the OTT ultility generates from it

This section includes the following topic: INTYPE File Type Specifications.

8.5.2.1 INTYPE File Type Specifications

ORACLE

A type specification in the | NTYPE file names an object data type that is to be translated.
The following is an example of a user-created | NTYPE file:

TYPE enpl oyee
TRANSLATE SALARY$ AS sal ary
DEPTNO AS depart nent
TYPE ADDRESS
TYPE PURCHASE_ORDER AS p_o

The structure of a type specification is as follows:

TYPE type_nane

[GENERATE type_i dentifier]

[AS type_identifier]

[VERSION [=] version_string]

[HFILE [=] hfile_name]

[CPPFILE [=] cppfile_nane]

[TRANSLATE{ menber _name [AS identifier]}...]

The t ype_nane syntax follows this form:

[schema_nane. | type_nanme

In this syntax, schema_nane is the name of the schema that owns the given object data
type, and type_nane is the name of the type. The default schema, if one is not
specified, is that of the userID invoking the OTT utility. To use a specific schema, you
must use schema_name.

The components of the type specification are:

* type_nane: Name of the object data type.

e type_identifier: C/C++ identifier used to represent the class. The GENERATE
clause is used to specify the name of the class that the OTT utility generates. The
AS clause specifies the name of the class that you write. The GENERATE clause is
typically used to extend a class. The AS clause, when optionally used without the
GENERATE clause, specifies the name of the C structure or the C++ class that
represents the user-defined type.

e version_string: Version string of the type that was used when the code was
generated by the previous invocation of the OTT utility. The version string is
generated by the OTT utility and written to the QUTTYPE file, which can later be used
as the I NTYPE file in later invocations of the OTT utility. The version string does not
affect how the OTT utility operates, but can be used to select which version of the
object data type is used in the running program.

8-16

Chapter 8
About Using the INTYPE File

* hfile_nanme: Name of the header file into which the declarations of the
corresponding class are written. If you omit the HFI LE clause, then the file specified
by the command line HFI LE parameter is used.

e cppfile_name: Name of the C++ source file into which the method implementations
of the corresponding class is written. If you omit the CPPFI LE clause, the file
specified by the command line CPPFI LE parameter is used.

» nenber _nane: Name of an attribute (data member) that is to be translated to the
identifier.

e identifier: C/C++ identifier used to represent the attribute in the program. You
can specify identifiers in this way for any number of attributes. The default name
mapping algorithm is used for the attributes not mentioned.

An object data type may be translated for one of two reasons:

e It appears in the | NTYPE file.

* ltis required to declare another type that must be translated, and the TRANSI TI VE
parameter is set to TRUE.

If a type that is not mentioned explicitly is necessary to types declared in exactly one
file, then the translation of the required type is written to the same files as the explicitly
declared types that require it.

If a type that is not mentioned explicitly is necessary to types declared in multiple files,
then the translation of the required type is written to the global HFI LE file.

You may indicate whether the OTT utility should generate required object types that
are not specified in the | NTYPE file. Set TRANSI TI VE=FALSE so the OTT utility does not to
generate required object types. The default is TRANSI TI VE=TRUE.

8.5.3 Using Nested include File Generation

ORACLE

HFI LE files generated by the OTT utility #i ncl ude other necessary files, and #define a
symbol constructed from the name of the file. This symbol #defi ne can then be used to
determine if the related HFI LE file has been included. Consider, for example, a
database with the following types:

create type px1 AS OBJECT (col 1 nunmber, col 2 integer);
create type px2 AS OBJECT (col 1l px1);
create type px3 AS OBJECT (col 1 px1);

The | NTYPE file contains the following information:
CASE=| ower

type pxl

hfile tott95a.h
type px3

hfile tott95b.h

You invoke the OTT utility as follows:

>ott hr intype=tott95i.typ outtype=tott950.typ code=cpp
Enter password: password

The OTT utility then generates the following two header files, named t ot t 95a. h and
tott95h. h. They are listed in

8-17

ORACLE

Chapter 8
About Using the INTYPE File

In the tot t 95b. h file, the symbol TOTT95B_ORACLE is #def i ne d at the beginning of the file.
This enables you to conditionally #i ncl ude this header file in another file, using the
following construct:

#i fndef TOTT95B ORACLE
#include "tott95b. h"
#endi f

By using this technique, you can #i ncl ude t ot t 95b. h in, say f oo. h, without having to
know whether some other file #i ncl uded in f oo. h also #i ncl udes t ot t 95b. h.

Next, the file t ot t 95a. h is included because it contains the declaration of struct px1,
that t ot t 95b. h requires. When the | NTYPE file requests that type declarations be written
to multiple files, the OTT utility determines which other files each HFl LE must #i ncl ude,
and generates each necessary #i ncl ude.

Note that the OTT utility uses quotes in this #i ncl ude. When a program including
tott95b. h is compiled, the search for t ot t 95a. h begins where the source program was
found, and thereafter follows an implementation-defined search rule. If tott 95a. h
cannot be found in this way, then a complete filename (for example, a UNIX absolute
path name beginning with a slash character (/)) is necessary in the | NTYPE file to
specify the location of t ot t 95a. h.

Example 8-9 Listing of ott95a.h

#ifndef TOTT95A ORACLE
define TOTT95A_CRACLE

#ifndef OCCl _ORACLE
include <occi.h>
#endi f

/**/

/1 generated declarations for the PXL object type.

/**/

class px1 : public oracle::occi::Pject {

pr ot ect ed:
oracl e::occi::Nunber col 1;
oracl e::occi::Nunber col 2;

public:

voi d *operator new(size_t size)

voi d *operator new(size_t size, const oracle::occi::Connection * sess
const OCCl _STD_NAMESPACE: : string& tabl e)

voi d *operator new(size_t, void *ctxOCCO);

voi d *operator new(size_t size, const oracle::occi::Connection *sess
const OCCl _STD_NAMESPACE: : string &t abl eNanme
const OCCl _STD_NAMESPACE: : string &t ypeNane,
const OCCl _STD_NAMESPACE: : string &t abl eSchema
const OCCl _STD_NAMESPACE: : string &t ypeSchens)

voi d get SQLTypeNane(oracl e: : occi:: Environment *env, void **schemaNane
unsi gned int &schemaNanelLen, void **typeName
unsi gned int & ypeNanmeLen) const

px1();

px1(void *ctxOCCl _) : oracle::occi::PCbject (ctxOCC_) { };

static void *readSQ(void *ctxOCCl _)

virtual void readSQ.(oracle::occi::AnyData& streanmDCCl _)

static void witeSQ(void *obj OCCl _, void *ctxOCCl _)

virtual void witeSQ(oracle::occi::AnyData& streamOCCl);

8-18

8.6 Using

ORACLE

Chapter 8

Using OTT Utility Data Type Mappings

~px1();
b

#endi f

Example 8-10 Listing of ott95b.h

#i fndef TOTT95B ORACLE
define TOTT95B_ORACLE

#i fndef OCCI _ORACLE
include <occi.h>
#endi f

#i fndef TOTT95A ORACLE
include "tott95a.h"
#endi f

/**/

/1 generated declarations for the PX3 object type.

/**/

class px3 : public oracle::occi::PQject {

protected:
px1 * col 1;

public:
voi d *operator new(size_t size);
voi d *operator new(size_t size, const oracle::occi::Connection * sess,
const OCCl _STD NAMESPACE: : string& table);
voi d *operator new(size_t, void *ctxOCC _);
voi d *operator new(size_t size, const oracle::occi::Connection *sess,
const OCCl _STD NAMESPACE: : string &t abl eNane,
const OCCl _STD NAMESPACE: :string &t ypeNane,
const OCCl _STD NAMESPACE: : string &t abl eSchens,
const OCCl _STD NAMESPACE: : string &t ypeSchemm);
voi d get SQLTypeNane(oracl e: : occi:: Environment *env, void **schemaNane,
unsi gned int &schemaNanelLen, void **typeNane,
unsi gned int & ypeNaneLen) const;
px3();
px3(void *ctxOCCl _) : oracle::occi::POject (ctx0CC _) { };
static void *readSQL(void *ctxOCCl _);
virtual void readSQ.(oracle::occi::AnyData& streanCCl _);
static void witeSQ(void *obj OCCl _, void *ctxOCC _);
virtual void witeSQ.(oracle::occi::AnyData& streanOCC _);
~px3();
|
#endi f

OTT Utility Data Type Mappings

When the OTT utility generates a C++ class from a database type, the structure or
class contains one element corresponding to each attribute of the object type. The
data types of the attributes are mapped to types that are used in Oracle object data
types. The data types found in Oracle include a set of predefined, primitive types and

provide for the creation of user-defined types, like object types and collections.

8-19

ORACLE

Chapter 8
Using OTT Utility Data Type Mappings

The set of predefined types includes standard types that are familiar to most
programmers, including number and character types. It also includes large object data

types (for example, BLOB or CLCB).

Table 8-2 C++ Object Data Type Mappings for Object Type Attributes

Object Attribute Types C++ Mapping
BFI LE Bfile

BLOB Bl ob

Bl NARY_DOUBLE BDoubl e

Bl NARY_FLOAT BFl oat
CHAR(n), CHARACTER(n) string
CLOB Cob

DATE Dat e

DEC, DEC(n), DEC(n,n) Nunber

DECI MAL, DECI MAL(n), DECI MAL(n, n) Nunber
FLOAT, FLQOAT(n), DOUBLE PRECI SI ON Nunber

I'NT, |NTEGER, SMALLINT Nunber

| NTERVAL DAY TO SECOND I nterval DS
| NTERVAL YEAR TO MONTH I nterval YM

Nested Object Type

NESTED TABLE

NUMBER, NUMBER(n), NUNMBER(N, n)
NUMERI C, NUMERI C(n), NUMERI C(n, n)
RAW

REAL

REF

TI MESTAWP, TI MESTAMP W TH TI ME ZONE, TI MESTAWP

W TH LOCAL TI ME ZONE
VARCHAR(n)
VARCHAR2(n)

VARRAY

C++ name of the nested object type
vector<attribute_type>

Nunber

Nurber

Byt es

Nunber

Ref <attribute_type>

Ti mest anp

string
string

vector<attribute_type>

Example 8-11 How to Represent Object Attributes Using the OTT Utility

Oracle also includes a set of predefined types that are used to represent object type
attributes in C++ classes. Consider the following object type definition, and its
corresponding OTT-generated structure declarations:

CREATE TYPE enpl oyee AS OBJECT
(nanme VARCHAR2(30) ,
enpno NUVBER,
dept no NUMBER,
hiredate DATE,
sal ary NUMBER

8-20

Chapter 8
Using OTT Utility Data Type Mappings

The OTT utility, assuming that the CASE parameter is set to LOAER and there are no
explicit mappings of type or attribute names, produces the following output:

#i fndef DATATYPES_CRACLE
define DATATYPES_ORACLE

#i fndef OCCl _ORACLE
include <occi.h>
#endi f

/**/

/1 generated declarations for the EMPLOYEE obj ect type.

/**/

class enployee : public oracle::occi::Pject {

prot ect ed:
OCCl _STD_NAMESPACE: : string NAME;
oracl e::occi:: Number EMPNO
oracl e::occi::Number DEPTNO oracl e::occi::Date H REDATE;
oracl e::occi::Number SALARY;

public:

voi d *operator new(size_t size);

voi d *operator new(size_t size, const oracle::occi::Connection * sess,
const OCCl _STD_NAMESPACE: : string& table);

voi d *operator new(size_t, void *ctxOCCO);

voi d *operator new(size_t size, const oracle::occi::Connection *sess,
const OCCl _STD_NAMESPACE: : string &t abl eNane,
const OCCl _STD_NAMESPACE: : string & ypeNane,
const OCCl _STD_NAMESPACE: : string &t abl eSchens,
const OCCl _STD NAMESPACE: : string & ypeSchems);

voi d get SQLTypeNanme(oracl e: : occi:: Environnment *env, void **schemaNane,
unsi gned int &schenaNaneLen, void **typeName,
unsi gned i nt & ypeNanelLen) const;

enpl oyee();

enpl oyee(voi d *ctxOCCl _) : oracle::occi::PGject (ctxOCC_) { };

static void *readSQL(void *ctxOCCl _);

virtual void readSQ.(oracle:: occi::AnyData& strean0CC);

static void witeSQ(void *obj OCCl _, void *ctxOCC _);

virtual void witeSQ.(oracle::occi::AnyData& streanCC _);

~enpl oyee();

b
#endi f

Table 8-2 lists the mappings from types that can be used as attributes to object data
types that are generated by the OTT utility.

Example 8-12 How to Map Object Data Types Using the OTT Utility
The example assumes that the following database types are created:

CREATE TYPE ny_varray AS VARRAY(5) of integer;

CREATE TYPE obj ect _type AS OBJECT
(obj ect _name VARCHAR2(20));

CREATE TYPE ot her _type AS OBJECT
(obj ect _nunber NUMBER);

ORACLE 8-21

ORACLE

CREATE TYPE ny_tabl e AS TABLE OF obj ect _type;

CREATE TYPE many_types AS OBJECT

(

t he_var char VARCHAR2(30) ,
the_char CHAR(3),
t he_bl ob BLOB,
the_cl ob CLOB,
t he_obj ect obj ect _type,
anot her _ref REF ot her _type,
the_ref REF many_types,
the_varray ny_varray,
the_table ny_table,
the_date DATE,
the_num NUMBER,
the_raw RAW 255)

)s

An | NTYPE file exists, and includes the following:

CASE = LOAER
TYPE many_t ypes

Chapter 8
Using OTT Utility Data Type Mappings

The following is an example of the OTT type mappings for C++, given the types
created in the example in the previous section, and an | NTYPE file that includes the

following:

CASE = LOAER
TYPE many_types

#i fndef MYFI LENAME_ORACLE
#define MYFI LENAME_ORACLE

#i fndef OCCl _ORACLE

#i ncl ude <occi . h>

#endi f

/**/

Il generated declarations for the OBJECT_TYPE object type.

/**/

class object_type :

{

prot ect ed:

OCCl _STD _NAMESPACE: : string obj ect _nane;

public:

void *operator new(size_t size);

public oracle::occi::Pject

void *operator new(size_t size, const oracle::occi::Connection * sess,
const OCCl _STD NAMESPACE: : string& table);

voi d get SQLTypeNane(oracl e: : occi:: Environment *env, void **schemaNane,
unsi gned int &schenmaNaneLen, void **typeNane,
unsi gned int & ypeNanelLen) const;

obj ect _type();

obj ect _type(void *ctxOCCl _) : oracle::occi::PCject (ctxOCC_) { };

static void *readSQ.(void *ctxOCO _);

virtual void readSQ.(oracle::occi::AnyData& strean0CC);

static void witeSQ(void *obj OCCl _, void *ctxOCO);

virtual void witeSQ(oracle::occi::AnyData& streamCCl _);

8-22

Chapter 8
Using OTT Utility Data Type Mappings

/**/

/1 generated declarations for the OTHER TYPE object type.

/**/

class other_type : public oracle::occi::PObject

{
prot ect ed:
oracle::occi::Nunber object_nunber;
public:
voi d *operator new(size_t size);
voi d *operator new(size_t size, const oracle::occi::Connection * sess,
const OCCl _STD_NAMESPACE: : string& table);
voi d get SQLTypeNane(oracl e: : occi:: Environment *env, void **schemaNane,
unsi gned int &schenaNaneLen, void **typeName,
unsi gned i nt & ypeNaneLen) const;
other_type();
other_type(void *ctxQOCCl) : oracle::occi::Pbject (ctx0Cl) { };
static void *readSQ.(void *ctxOCO _);
virtual void readSQ.(oracle::occi::AnyData& streanOCC) ;
static void witeSQ(void *obj OCC _, void *ctxOCO);
virtual void witeSQ(oracle::occi::AnyData& streanCCl _);
¥

/**/

/1 generated declarations for the MANY_TYPES object type.

/**/

class many_types : public oracle::occi::PObject

{
prot ect ed:
OCCl _STD _NAMESPACE: : string the_varchar;
OCCl _STD _NAMESPACE: : string the_char;
oracl e::occi::Blob the_blob;
oracle::occi::Cob the_clob;
obj ect _type * the_object;
oracle::occi::Ref< other_type > another_ref;
oracle::occi::Ref< many_types > the_ref;
OCCl _STD_NAMESPACE: : vect or< oracl e:: occi:: Number > the_varray;
OCCl _STD_NAMESPACE: : vector< object _type * > the_tabl e;
oracle::occi::Date the_date;
oracl e::occi:: Number the_num
oracle::occi::Bytes the_raw
public:
void *operator new(size_t size);
void *operator new(size_t size, const oracle::occi::Connection * sess,
const OCCl _STD_NAMESPACE: : string& table);
voi d get SQLTypeNanme(oracl e: : occi:: Environment *env, void **schemaNane,
unsi gned int &schenaNaneLen, void **typeName,
unsi gned i nt & ypeNaneLen) const;
many_types();
many_types(void *ctxOCCl _) : oracle::occi::Pject (ctx0Cd) { };
static void *readSQ.(void *ctx0CO _);
virtual void readSQ.(oracle::occi::AnyData& streanOCC) ;
static void witeSQ(void *obj OCCl _, void *ctxOCO);
virtual void witeSQ(oracle::occi::AnyData& streanOCCl _);
¥
#endi f

ORACLE 8-23

Chapter 8
Using OTT Utility Data Type Mappings

The OTT utility generates the following C++ class declarations (comments are not part
of the OTT output, and are added only to clarify the example):

For C++, when TRANSI TI VE=TRUE, the OTT utility automatically translates any types that
are used as attributes of a type being translated, including types that are only being
accessed by a pointer or REF in an object type attribute. Even though only the

many_t ypes object was specified in the | NTYPE file for the C++ example, a class
declaration was generated for all the object types, including the ot her _t ype object,
which was only accessed by a REF in the many_t ypes object.

This section includes the following topic: Default Name Mapping.

8.6.1 Default Name Mapping

ORACLE

When the OTT utility creates a C or C++ identifier name for an object type or attribute,
it translates the name from the database character set to a legal C or C++ identifier.
First, the name is translated from the database character set to the character set used
by the OTT utility. Next, if a translation of the resulting name is supplied in the | NTYPE
file, that translation is used. Otherwise, the OTT ultility translates the name character-
by-character to the compiler character set, applying the character case specified in the
CASE parameter. The following text describes this in more detail.

When the OTT utility reads the name of a database entity, the name is automatically
translated from the database character set to the character set used by the OTT utility.
In order for the OTT utility to read the name of the database entity successfully, all the
characters of the name must be found in the OTT character set, although a character
may have different encodings in the two character sets.

The easiest way to guarantee that the character set used by the OTT utility contains all
the necessary characters is to make it the same as the database character set. Note,
however, that the OTT character set must be a superset of the compiler character set.
That is, if the compiler character set is 7-bit ASCII, then the OTT character set must
include 7-bit ASCII as a subset, and if the compiler character set is 7-bit EBCDIC, then
the OTT character set must include 7-bit EBCDIC as a subset. The user specifies the
character set that the OTT utility uses by setting the NLS_LANG environment variable, or
by some other operating system-specific mechanism.

Once the OTT utility has read the name of a database entity, it translates the name
from the character set used by the OTT ultility to the compiler's character set. If a
translation of the name appears in the | NTYPE file, then the OTT utility uses that
translation.

Otherwise, the OTT utility attempts to translate the name as follows:

1. Ifthe OTT character set is a multibyte character set, all multibyte characters in the
name that have single-byte equivalents are converted to those single-byte
equivalents.

2. The name is converted from the OTT character set to the compiler character set.
The compiler character set is a single-byte character set such as US7ASCI | .

3. The case of letters is set according to how the CASE parameter is defined, and any
character that is not legal in a C or C++ identifier, or that has no translation in the
compiler character set, is replaced by an underscore character (). If at least one
character is replaced by an underscore, then the OTT utility gives a warning
message. If all the characters in a name are replaced by underscores, the OTT
utility gives an error message.

8-24

Chapter 8
Overview of the OUTTYPE File

Character-by-character name translation does not alter underscores, digits, or single-
byte letters that appear in the compiler character set, so legal C or C++ identifiers are
not altered.

Name translation may, for example, translate accented single-byte characters such as
o with an umlaut or an a with an accent grave to o or a, with no accent, and may
translate a multibyte letter to its single-byte equivalent. Name translation typically fails
if the name contains multibyte characters that lack single-byte equivalents. In this
case, the user must specify name translations in the | NTYPE file.

The OTT utility does not detect a naming clash caused by two or more database
identifiers being mapped to the same C name, nor does it detect a naming problem
where a database identifier is mapped to a C keyword.

8.7 Overview of the OUTTYPE File

ORACLE

The QUTTYPE file is named on the OTT command line. When the OTT utility generates a
C++ header file, it also writes the results of the translation into the OQUTTYPE file. This file
contains an entry for each of the translated types, including its version string and the
header file to which its C++ representation was written.

The QUTTYPE file from one OTT utility run can be used as the | NTYPE file for a
subsequent invocation of the OTT utility.

The OTT utility analyzes the types in the | NTYPE file for type dependencies before
performing the translation, and translates other types as necessary.

You may indicate whether the OTT utility should generate required object types that
are not specified in the | NTYPE file. Set TRANSI Tl VE=FALSE so the OTT utility does not
generate required object types. The default is TRANSI TI VE=TRUE.

Example 8-13 OUTTYPE File Generated by the OTT Utility

In this | NTYPE file, the programmer specifies the case for OTT-generated C++
identifiers, and provides a list of types that should be translated. In two of these types,
naming conventions are specified. This is what the QUTTYPE file looks like after running
the OTT utility:

The following example shows what t:

CASE = LOAER
TYPE EMPLOYEE AS enpl oyee
VERSI ON = "$8. 0"
HFI LE = denp. h
TRANSLATE SALARY$ AS sal ary
DEPTNO AS depart ment
TYPE ADDRESS AS ADDRESS
VERSI ON = "$8. 0"
HFI LE = denp. h
TYPE ITEMAS item
VERSI ON = "$8. 0"
HFI LE = denp. h
TYPE "Person" AS Person
VERSI ON = "$8. 0"
HFI LE = denp. h
TYPE PURCHASE_ORDER AS p_o
VERSI ON = "$8. 0"
HFI LE = denp. h

8-25

8.8 Using

ORACLE

Chapter 8
Using the OTT Utility and OCCI Applications

When examining the contents of the QUTTYPE file, you might discover types listed that
were not included in the | NTYPE file specification. For example, consider the case
where the | NTYPE file only specified that the per son type was to be translated:

CASE = LOAER
TYPE PERSON

If the definition of the person type includes an attribute of type addr ess, then the QUTTYPE
file includes entries for both PERSON and ADDRESS. The per son type cannot be translated
completely without first translating addr ess.

the OTT Utility and OCCI Applications

The OTT utility generates objects and maps SQL data types to C++ classes. The OTT
utility also implements a few methods called by OCCI when instantiating objects and a
function that is called in the OCCI application to register the mappings with the
environment. These declarations are stored in a header file that you include (#i ncl ude)
in your OCCI application. The prototype for the function that registers the mappings is
written to a separate header file, which you also include in your OCCI application. The
method implementations are stored in a C++ source code file (with extension . cpp) that
is linked with the OCCI application. The function that registers the mappings is stored
in a separate C++ (xxx. cpp) file that is also linked with the application.

Figure 8-1 shows the steps involved in using the OTT utility with OCCI. These steps
are described following the figure.

Figure 8-1 The OTT Utility with OCCI

SQL DDL INTYPE file
Type "
Definitions l
v v
Database
Server OUTTYPE file CPPFILE file MAPFILE file HFILE file
OCCl
source
OCCl library _>‘ Linker < Object file
v
Executable

8-26

Chapter 8
Generating C++ Classes Generated by the OTT Utility

1. Create the type definitions in the database by using the SQL DLL.

2. Create the | NTYPE file that contains the database types to be translated by the OTT
utility.

3. Specify that C++ should be generated and invoke the OTT utility.
The OTT utility then generates the following files:

e A header file (with the extension . h) that contains C++ class representations of
object types; the filename is specified on the OTT command line by the HFI LE
parameter.

e A header file that contains the prototype of the function (MAPFUNC) that registers
the mappings.

* A C++ source file (with the extension . cpp) that contains the static methods
called by OCCI while instantiating the objects; the filename is specified on the
OTT command line by the CPPFI LE parameter. Do not call these methods
directly from your OCCI application.

» Afile that contains the function used to register the mappings with the
environment (with the extension . cpp); the filename is specified on the OTT
command line by the MAPFI LE parameter.

« Afile (QUTTYPE file) that contains an entry for each of the translated types,
including the version string and the file into which it is written; the filename is
specified on the OTT command line by the QUTTYPE parameter.

4. Write the OCCI application and include the header files created by the OTT utility
in the OCCI source code file.

The application declares an environment and calls the function MAPFUNC to register
the mappings.

5. Compile the OCCI application to create the OCCI object code, and link the object
code with the OCCI libraries to create the program executable.

8.9 Generating C++ Classes Generated by the OTT Utility

ORACLE

When the OTT utility generates a C++ class from a database object type, the class
declaration contains one element corresponding to each attribute of the object type.
The data types of the attribute are mapped to types that are used in Oracle object data
types, as defined in Table 8-2.

For each class, two new operators, readSQ.() and writeSQ.() methods are generated.
They are used by OCCI to marshall and unmarshall objects.

By default, the C++ classes generated by the OTT utility for an object type are derived
from the PObj ect class, so the generated constructor in the class also derives from the
PQoj ect class. For inherited database types, the class is derived from the parent type
class as is the generated constructor and only the elements corresponding to
attributes not in the parent class are included.

Class declarations that include the elements corresponding to the database type
attributes and the method declarations are included in the header file generated by the
OTT utility. The method implementations are included in the CPPFI LE file generated by
the OTT utility.

8-27

Chapter 8
Generating C++ Classes Generated by the OTT Utility

Example 8-14 How to Generate C++ Classes Using the OTT Utility
This example demonstrates how to generate C++ classes using the OTT utility:

1. Define the types:

CREATE TYPE FULL_NAME AS OBJECT (first_name CHAR(20),
| ast _name CHAR(20));
CREATE TYPE ADDRESS AS OBJECT (state CHAR(20), zip CHAR(20));
CREATE TYPE ADDRESS_TAB AS VARRAY(3) of REF ADDRESS;
CREATE TYPE PERSON AS OBJECT (id NUMBER nanme FULL_NAME,
curr_addr REF ADDRESS, prev_addr_| ADDRESS TAB) NOT Fl NAL;
CREATE TYPE STUDENT UNDER PERSON (school _nane CHAR(20));

2. Provide an | NTYPE file:

CASE = SAME

MAPFI LE = Regi st er Mappi ngs_3. cpp

TYPE FULL_NAME AS Ful | Name
TRANSLATE first_nane as FirstNane

| ast _nane as Last Nane

TYPE ADDRESS

TYPE PERSON

TYPE STUDENT

3. Invoke the OTT utility:

ott userid=denousr intype=denoin_3.typ outype=denpout_3.typ
code=cpp hfile=demo_3.h cppfil e=demo_3. cpp

This section includes the following topics:
* Map Registry Function
* Extending C++ Classes

e Carrying Forward User Added Code

8.9.1 Map Registry Function

One function to register the mappings with the environment is generated by the OTT
utility. The function contains the mappings for all the types translated by the invocation
of the OTT utility. The function name is either specified in the MAPFUNC parameter or, if
that parameter is not specified, derived from MAPFI LE parameter. The only argument to
the function is the pointer to Envi r onment .

The function uses the provided Envi ronnent to get Map and then registers the mapping
of each translated type.

8.9.2 Extending C++ Classes

To enhance the functionality of a class generated by the OTT utility, you can derive
new classes. You can also add methods to a class, but Oracle does not recommend
doing so due to an inherent risk.

ORACLE 8-28

Chapter 8
Generating C++ Classes Generated by the OTT Utility

¢ See Also:

"Carrying Forward User Added Code" for details on how to use OTT markers
to retain code you want to add in OTT generated files

To generate both CAddress and MyAddr ess classes from the SQL object type ADDRESS,
M/Addr ess class can be derived from CAddress class. The OTT utility must then alter the
code it generates in the following ways:

* By using the MAddress class instead of the CAddr ess class to represent attributes
whose database type is ADDRESS

* By using the MAddress class instead of the CAddr ess class to represent vector and
REF elements whose database type is ADDRESS

* By using the MAddress class instead of the CAddr ess class as the base class for
database object types that are inherited from ADDRESS. Even though a derived class
is a subtype of MyAddr ess, the readSQ.() and writeSQ.() methods called are those of
the CAddress class.

Note:

When a class is both extended and used as a base class for another
generated class, the inheriting type class and the inherited type class must be
generated in separate files.

Example 8-15 How to Extend C++ Classes Using the OTT Utility

To use the OTT utility to generate the CAddr ess class, which is derived from MyAddr ess
class), the following clause must be specified in the TYPE statement:

TYPE ADDRESS CGENERATE CAdress AS MyAddress

Given the database types FULL_NAME, ADDRESS, PERSON, and PFGRFDENT as they were
created before and changing the | NTYPE file to include the GENERATE. . . AS clause:

CASE = SAME
MAPFI LE = Regi st er Mappi ngs_5. cpp

TYPE FULL_NAVE GENERATE CFul | Name AS MyFul | Name
TRANSLATE first_name as FirstName
| ast _nane as Last Nane

TYPE ADDRESS GENERATE CAddress AS M/Address

TYPE PERSON GENERATE CPerson AS MyPerson
TYPE STUDENT GENERATE CStudent AS MyStudent

8.9.3 Carrying Forward User Added Code

To extend the functionality of OTT generated code, at times programmers may want to
add code in the OTT generated file. The way OTT can distinguish between OTT
generated code and code added by the user is by looking for some predefined

ORACLE 8-29

Chapter 8
Generating C++ Classes Generated by the OTT Utility

markers (tags). OTT recognizes OTT_USERCODE_START as the start of user code marker,
and OTT_USERCODE_END as the end of user code marker.

For OTT marker support, a user block is defined as

OIT_USERCCODE_START + user added code + OTT_USERCODE_END

OTT marker support enables carrying forward the user added blocks in *.h and *.cpp
files.

This section includes the following topics:
* How to Use Properties of OTT Markers
e Using OTT Markers

8.9.3.1 How to Use Properties of OTT Markers

These items describe the properties of OTT Markers Support:

1. User must use the command line option USE_MARKER=TRUE from the very first time
OTT is invoked to generate a file.

2. User should treat markers like other C++ statements; a marker defined by OTT in
the generated file as follows when the command line option USE_MARKER=TRUE is
used:

#i fndef OI'T_USERCCDE_START
#define OTT_USERCCDE START
#endi f

#i fndef OTT_USERCCDE END
#define OTT_USERCCDE END
#endi f

3. The markers, OTT_USERCODE_START and OTT_USERCODE_END, must be preceded and
followed by white space.

4. OTT copies the text or code given within markers verbatim, along with the
markers, while generating the code next time.

User modified code:

[l --- nodified generated code
OTT_USERCODE_START

[l --- including "nyful | nane. h"
#i f ndef MYFULLNAME_ORACLE
#include "nyful | nane. h"

#endi f

OTT_USERCODE_END

Il --- end of code addition

O NO O WN -

Carried forward code:

OTT_USERCODE_START

[l --- including "nyful | nane. h"
#i fndef MYFULLNAME_ORACLE
#include "nyful | nane. h"

#endi f

OTT_USERCODE_END

o O WN

5. OTT does not carry forward user-added code properly if the database TYPE or
I NTYPE file undergoes changes as shown in the following cases:

ORACLE 8-30

Chapter 8
Generating C++ Classes Generated by the OTT Utility

» If user modifies the case of the type name, OTT fails to determine the class
name with which the code was associated earlier, as the case of the class
name is modified by the user in the | NTYPE file.

CASE=UPPER CASE=LO/ER

TYPE enpl oyee TYPE enpl oyee

TRANSLATE SALARY$ AS sal ary TRANSLATE SALARY$ AS sal ary

DEPTNO AS depart nent DEPTNO AS depart nent

TYPE ADDRESS TYPE ADDRESS

TYPE item TYPE item

TYPE " Person” TYPE " Person”

TYPE PURCHASE_ORDER AS p_o TYPE PURCHASE_ORDER AS p_o

e If user asks to generate the class with a different name (GENERATE AS clause of
I NTYPE file), OTT fails to determine the class name with which the code was
associated earlier as the class name was modified by the user in the | NTYPE

file.

CASE=LONER CASE=LOVER

TYPE enpl oyee TYPE enpl oyee

TRANSLATE SALARY$ AS sal ary TRANSLATE SALARY$ AS sal ary
DEPTNO AS depart nent DEPTNO AS depart nent

TYPE ADDRESS TYPE ADDRESS

TYPE item TYPE item

TYPE " Person" TYPE " Person"

TYPE PURCHASE_ORDER AS p_o TYPE PURCHASE_ORDER AS

pur chase_or der

6. If OTT encounters an error while parsing an . h or . cpp file, it reports the error and
leaves the file having error as it is so that the user can go back and correct the
error reported, and rerun OTT.

7. OTT flags an error if:

e itdoes not find a matching OTT_USERCODE_END for OTT_USERCODE_START
encountered

* markers are nested (OTT finds next OTT_USERCODE_START before
OTT_USERCODE_END is found for the previous OTT_USERCODE_START)

e OIT_USERCODE_END is encountered before OTT_USERCODE_START

8.9.3.2 Using OTT Markers

The user must use command line option USE_MARKER=TRUE to turn on marker support.
There are two general ways in which OTT markers can carry forward user added
code:

1. User code added in .h file.

* User code added in global scope. This is typically the case when user must
include different header files, forward declaration, and so on. Refer to the code
example provided later.

* User code added in class declaration. At any point of time OTT generated
class declaration has private scope for data members and public scope for
methods, or protected scope for data members and public scope for methods.
User blocks can be added after all OTT generated declarations in either
access specifiers.

How to Add User Code to a Header File Using OTT Utility

ORACLE 8-31

ORACLE

Chapter 8
Generating C++ Classes Generated by the OTT Utility

#i f ndef OTT_USERCODE_START
#define OTT_USERCCDE_START
#endi f

#i f ndef OTT_USERCODE_END
#define OIT_USERCCDE_END
#endi f

#ifndef OCCI _ORACLE
#incl ude <occi.h>
#endi f

OI'T_USERCCDE_START /] user added code
OTT_USERCODE_END

#ifndef ... /1 OTT generated include
#include "
#endi f

OI'T_USERCCDE_START /] user added code
OTT_USERCODE_END

class <class_name_1> : public oracle::occi::Pject
{ protected:

/1 OTT generated data nembers

OTT_USERCODE_START /1 user added code for data nenber / nethod
/1 declaration / inline nethod
OTT_USERCODE_END

public:
voi d *operator new(size_t size);

OTT_USERCODE_START // user added code for data nenber / method
/] declaration / inline nethod definition

OTT_USERCODE_END
)

OI'T_USERCCDE_START /] user added code
OTT_USERCODE_END

class <class_name_2> : public oracle::occi::Pject

{

b

OI'T_USERCCDE_START /] user added code
.O:I';F_USER(IDE_END

#endi f /] end of .h file

User code added in .cpp file. OTT supports adding a new user defined method
within OTT markers. The user block must be added at the beginning of the file, just
after the includes and before the definition of OTT-generated methods. If there are
multiple OTT-generated i ncl udes, user code can also be added between OTT
generated includes. User code added in any other part of a xxx. cpp file is not
carried forward.

8-32

ORACLE

Chapter 8
Generating C++ Classes Generated by the OTT Utility

How to Add User Code to the Source File Using the OTT Utility

#i fndef OTT_USERCODE_START

#define OTT_USERCODE_START

#endi f

#i fndef OTT_USERCODE_END

#define OTT_USERCODE_END

#endi f
OTT_USERCODE_START /'l user added code
OTT_USERCODE_END
OTT_USERCODE_START /1 user added code

OTT_USERCODE_END
/***

| generated nethod inplementations for the ... object type.

/***/

voi d *<cl ass_name_1>::operator new(size_t size)

{

}
Il end of .cpp file

return oracle::occi::Poject::operator newsize);

8-33

Globalization and Unicode Support

This chapter describes OCCI support for multibyte and Unicode charactersets.
This chapter contains these topics:

e Overview of Globalization and Unicode Support

» Specifying Charactersets

» Data Types for Globalization and Unicode Support

e About Using Objects and OTT Support

9.1 Overview of Globalization and Unicode Support

OCCI now enables application development in all Oracle supported multibyte and
Unicode charactersets. The UTF16 encoding of Unicode is fully supported. Application
programs can specify their charactersets when the OCCI Environment is created.
OCCI interfaces that take character string arguments (such as SQL statements, user
names, error messages, object names, and so on) have been extended to handle data
in any characterset. Character data from relational tables or objects can be in any
characterset. OCCI can be used to develop multi-lingual, global and Unicode
applications.

9.2 Specifying Charactersets

ORACLE

OCCI applications must specify the client characterset and client national characterset
when initializing the OCCI Environment. The client characterset specifies the
characterset for all SQL statements, object/user names, error messages, and data of
all CHAR data type (CHAR, VARCHAR2, LONG) columns/attributes. The client national
characterset specifies the characterset for data of all NCHAR data type (NCHAR, NVARCHAR?)
columns/attributes.

A new creat eEnvi ronnment () interface that takes the client characterset and client
national characterset is now provided. This allows OCCI applications to set
characterset information dynamically, independent of the NLS_LANG and NLS_CHAR
initialization parameter.

Note that if an application specifies OCCl UTF16 as the client characterset (first
argument), then the application should use only the UTF16 interfaces of OCCI. These
interfaces take UStri ng argument types.

The charactersets in the OCCI Environment are client-side only. They indicate the
charactersets the OCCI application uses to interact with Oracle. The database
characterset and database national characterset are specified when the database is
created. Oracle converts all data from the client characterset/national characterset to
the database characterset/national characterset before the server processes the data.

Example 9-1 How to Use Globalization and Unicode Support

Environnent *env = Environment: creat eEnvironnent ("JA16SJI S", " UTF8");

9-1

Chapter 9
Data Types for Globalization and Unicode Support

This statement creates an OCCI Envi ronnent with JA16SJ1 S as the client characterset
and UTF8 as the client national characterset.

Any valid Oracle characterset name (except AL16UTF16) can be passed to
creat eEnvi ronnment () . An OCCI specific string OCCl UTF16 (in uppercase) can be passed
to specify UTF16 as the characterset.

Envi ronnent *env
Envi ronnent *env

Envi ronnent : : cr eat eEnvi ronnent (" OCCl UTF16", " OCCl UTF16") ;
Envi ronnent : : creat eEnvi ronnent (" US7ASCI | ", " OCCl UTF16");

9.3 Data Types for Globalization and Unicode Support

The data types used for supporting globalization and use of unicode include:
* Using the UString Data Type

e Using Multibyte and UTF16 data

e Using CLOB and NCLOB Data Types

9.3.1 Using the UString Data Type

UString is a data type that enables applications and the OCCI library to pass and
receive Unicode data in UTF- 16 encoding. USt ri ng is templated from the C++ STL
basi c_string with Oracle's ut ext data type.

typedef basic_string<utext> UString;

Oracle's ut ext data type is a 2 byte short data type and represents Unicode characters
in the UTF-16 encoding. A Unicode character's codepoint can be represented in 1
utext or 2 utexts (2 or 4 bytes). Characters from European and most Asian scripts are
represented in a single utext. Supplementary characters defined in the Unicode 3.1
standard are represented with 2 ut ext elements.

In Microsoft Windows platforms, UStri ng is equivalent to the C++ standard wst ri ng
data type. This is because the wchar _t data type is type defined to a 2 byte short in
these platforms, which is same as Oracle's ut ext , allowing applications to use a

wst ring type variable where a USt ri ng would be normally required. Consequently,
applications can also pass wide-character string literals, created by prefixing the literal
with the letter 'L', to OCCI Unicode APIs.

OCCI applications should use the UStri ng data type for data in UTF16 characterset
Example 9-2 Using wstring Data Type

[/bind Unicode data using wstring data type
//binding the Euro synbol, UTF16 codepoint 0x20AC
wchar _t eurochars[] = {0x20AC, 0x00};

wstring eurostr(eurochars);

stm->setUString(1, eurostr);

[/ Call the Unicode version of createConnection by

/I passing widechar literals
Connection *conn = Connection(L"HR', L"password", L"");

ORACLE 9-2

Chapter 9
Data Types for Globalization and Unicode Support

9.3.2 Using Multibyte and UTF16 data

For data in multibyte charactersets like JA16SJ1 S and UTF8, applications should use the
C++ string type. The existing OCCI APIs that take st ri ng arguments can handle data
in any multibyte characterset. Due to the use of string type, OCCI supports only byte
length semantics for multibyte characterset stri ngs.

Example 9-3 Binding UTF8 Data Using the string Data Type

//bind UTF8 data

//binding the Euro synbol, UTF8 codepoint : 0xE282AC
char eurochars[] = {0xE2, 0x82, OxAC, 0x00};

string eurostr(eurochars)
stm->setString(l,eurostr);//use the string interface

For Unicode data in the UTF16 characterset, the OCCI specific data type: UStri ng and
the OCCI UTF16 interfaces must be used.

Example 9-4 Binding UTF16 Data Using the UString Data Type

//bind Unicode data using UString data type

//binding the Euro synbol, UTF16 codepoint 0x20AC

utext eurochars[] = {0x20AC, 0x00};

UString eurostr(eurochars);

st ->set UString(1,eurostr);//use the UString interface

9.3.3 Using CLOB and NCLOB Data Types

ORACLE

Oracle provides the CLOB and NCLOB data types for storing and processing large
amounts of character data. CLOBs represent data in the database characterset and
NCLOBs represent data in the database national characterset. CLOBs and NCLOBs can be
used as column types in relational tables and as attributes in object types.

The OCCI T ob class is used to work with both CLOB and NCLOB data types. If the
database type is NCLOB, then the O ob set Char Set For () method should be called with
OCCl _SQLCS_NCHAR before reading/writing from the LOB.

The OCCI ¢ ob class has support for multibyte and UTF16 charactersets. By default,
the d ob interfaces assume the data is encoded in the client-side characterset (for both
CLOBs and NCLCBs). To specify a different characterset or to specify the client-side
national characterset for a NCLOB, call the set Char Set 1 d() or set Char Set | dUSt ri ng()
methods with the appropriate characterset. The OCCI specific string 'OCCIUTF16' can
be passed to indicate UTF16 as the characterset.

To read or write data in multibyte charactersets, use the existing read and write
interfaces that take a char buffer. New overloaded interfaces that take utext buffers for
UTF16 data have been added to the Clob Class asread(), wite() and writeChunk()
methods. The arguments and return values for these methods are either bytes or
characters, depending on the characterset of the LOB.

Example 9-5 Using CLOB and NCLOB Data Types

[lclient characterset - ZHT16BI G5, national characterset - UTF16

Environnent *env = Environnent::createEnvironment ("ZHT16BI G&", " OCCl UTF16") ;...
C ob ncl obvar;

[/for NCLOBs, nust call setCharSet Form nethod.

ncl obvar . set Char Set For m(OCCl _SQLCS_NCHAR) ;. . .

[1if reading/witing data in UTF16 for this NCLOB, still nust

9-3

Chapter 9
About Using Objects and OTT Support

[lexplicitly call setCharSetld
ncl obvar . set Char Set | d(" OCCl UTF16")

9.4 About Using Objects and OTT Support

ORACLE

Multibyte and UTF16 charactersets are supported for handling character data in object
attributes. All CHAR data type (CHAR or VARCHAR?) attributes hold data in the client-side
characterset, while all NCHAR data type (NCHAR or NVARCHAR?) attributes hold data in the
client-side national characterset. A member variable of USt ri ng data type represents
an attribute in UTF16 characterset.

See Also:

e OCCI Application Programming Interface: two new versions of operator
new() that have been added to the PObject Class for object support

e Object Type Translator Utility: a new UNICODE parameter that has been
added for OTT utility support.

9-4

Oracle Streams Advanced Queuing

This chapter describes the OCCI implementation of Oracle Streams Advanced
Queuing (AQ) for messages.

This chapter contains these topics:

e Overview of Oracle Streams Advanced Queuing
* About AQ Implementation in OCCI

* About Creating Messages

* Enqueuing Messages

* Dequeuing Messages

* Listening for Messages

* About Registering for Notification

* About Message Format Transformation

See Also:

* Oracle Database Advanced Queuing User's Guide for basic concepts of
Advanced Queuing

* OCCI Application Programming Interface

10.1 Overview of Oracle Streams Advanced Queuing

Oracle Streams is a new information sharing feature that provides replication,
message queuing, data warehouse loading, and event notification. It is also the
foundation behind Oracle Streams Advanced Queuing (AQ).

Advanced Queuing is the integrated message queuing feature that exposes message
gueuing capabilities of Oracle Streams. AQ enables applications to:

« Perform message queuing operations similar to SQL operations from the Oracle
database

e Communicate asynchronously through messages in AQ queues

* Integrate with database for unprecedented levels of operational simplicity,
reliability, and security to message queuing

e Audit and track messages

e Supports both synchronous and asynchronous modes of communication

ORACLE 10-1

Chapter 10
About AQ Implementation in OCCI

¢ See Also:

Oracle Technology Network — Advanced Queueing for more information
about Advanced Queuing.

The advantages of using AQ in OCCI applications include:

» Create applications that communicate with each other in a consistent, reliable,
secure, and autonomous manner

e Store messages in database tables, bringing the reliability and recoverability of the
database to your messaging infrastructure

* Retain messages in the database automatically for auditing and business
intelligence

» Create applications that leverage messaging without having to deal with a different
security, data type, or operational mode

* Leverage transactional characteristics of the database

Since traditional messaging solutions have single subscriber queues, a queue must be
created for each pair of applications that communicate with each other. The publish/
subscribe protocol of the AQ makes it easy to add additional applications (subscribers)
to a conversation between multiple applications.

10.2 About AQ Implementation in OCCI

ORACLE

OCCI AQ is a set of interfaces that allows messaging clients to access the Advanced
Queuing feature of Oracle for enterprise messaging applications. Currently, OCCI AQ
supports only the operational interfaces and not the administrative interface, but
administrative operations can be accessed through embedded PL/SQL calls.

See Also:

Package DBMS_AQADMin Oracle Database PL/SQL Packages and Types
Reference for administrative operations in AQ support through PL/SQL

The AQ feature can be used with other interfaces available through OCCI for sending,
receiving, publishing, and subscribing in a message-enabled database. Synchronous

and asynchronous message consumption is available based on a message selection

rule.

Enqueuing refers to sending a message to a queue and dequeuing refers to receiving
one. A client application can create a message, set the desired properties on it and
enqueue it by storing the message in the queue, a table in the database. When
dequeuing a message, an application can either dequeue it synchronously by calling
receive methods on the queue, or asynchronously by waiting for a notification from the
database.

The AQ feature is implemented through the following abstractions:

+ Message

10-2

Chapter 10
About AQ Implementation in OCCI

* Agent

e Producer
e Consumer
e Listener

e Subscription

10.2.1 Message

A message is the basic unit of information being inserted into and retrieved from a
gueue. A message consists of control information and payload data. The control
information represents message properties used by AQ to manage messages. The
payload data is the information stored in the queue and is transparent to AQ.

See Also:

Message Class documentation in OCCI Application Programming Interface

10.2.2 Agent

An Agent represents and identifies a user of the queue, either producer or consumer of
the message, either an end-user or an application. An Agent is identified by a name, an
address and a protocol. The name can be either assigned by the application, or be the
application itself. The address is determined in terms of the communication protocol. If
the protocol is 0 (default), the address is of the form[schena.] queuenanme[@bl i nk], a
database link.

Agent s on the same queue must have a unique combination of name, address, and
protocol. Example 10-1 demonstrates an instantiation of a new Agent object in a client
program.

See Also:

Agent Class documentation in OCCI Application Programming Interface

Example 10-1 Creating an Agent

Agent agt(env, "Billing_app", "billqueue", 0);

10.2.3 Producer

A client uses a Producer object to enqueue Messages into a queue. It is also used to
specify various enqueue options.

ORACLE 10-3

Chapter 10
About Creating Messages

See Also:

Producer Class documentation in OCCI Application Programming Interface

10.2.4 Consumer

A client uses a Consumer object to dequeue Messages that have been delivered to a
gueue. It also specifies various dequeuing options.

Before a consumer can receive messages,

See Also:

Consumer Class documentation in OCCI Application Programming Interface

Example 10-2 Setting the Agent on the Consumer

Consumer cons(conn);

cons. set Agent (ag) ;
cons. recei ve();

10.2.5 Listener

A Li stener listens for Messages for registered Agent s at specified queues.

See Also:

Listener Class documentation in OCCI Application Programming Interface

10.2.6 Subscription

A Subscri ption encapsulates the information and operations necessary for registering
a subscriber for notifications.

10.3 About Creating Messages

As mentioned previously, a Message is a basic unit of information that contains both the
properties of the message and its content, or payload. Each message is enqueued by
the Producer and dequeued by the Consuner objects.

This section includes the following topics:
* About Message Payloads

* Message Properties

ORACLE 10-4

Chapter 10
About Creating Messages

10.3.1 About Message Payloads

OCCI supports three types of message payloads:
* RAW

* AnyData

* Using User-defined Types as Payloads

10.3.1.1 RAW

RAWpayloads are mapped as objects of the Bytes Class in OCCI.

10.3.1.2 AnyData

The AnyDat a type models self-descriptive data encapsulation; it contains both the type
information and the actual data value. Data values of most SQL types can be
converted to AnyDat a, and then be converted to the original data type. AnyDat a also
supports user-defined data types. The advantage of using AnyDat a payloads is that it
ensures both type preservation after an enqueue and dequeue process, and that it
allows the user to use a single queue for all types used in the application.

Example 10-3 demonstrates how to create an AnyDat a message. Example 10-4 shows
how to retrieve the original data type from the message.

Example 10-3 Creating an AnyData Message with a String Payload

AnyDat a any(conn);

any. setFronBtring("iteml");
Message nes(env);

mes. set AnyDat a(any) ;

Example 10-4 Determining the Type of the Payload in an AnyData Message
TypeCode tc = any. get Type();

10.3.1.3 Using User-defined Types as Payloads

ORACLE

OCCI supports enqueuing and dequeuing of user-defined types as payloads.
Example 10-5 demonstrates how to create a payload with a user-defined Enpl oyee
object.

Example 10-5 Creating an User-defined Payload

/] Assuming type Enployee (nane varchar2(25),

1 deptid nunber(10),

1 manager varchar2(25))
Enpl oyee *enp = new Enpl oyee();

enp. set Nane(" Scott");

enp. set Depti d(10);

enp. set Manager (" Janes");

Message nes(env);

mes. set Cbj ect (enp) ;

10-5

Chapter 10
About Creating Messages

10.3.2 Message Properties

Aside from payloads, the user can specify several additional message properties, such
as:

e Correlation

* Sender

» Delay and Expiration
* Recipients

* Priority and Ordering

10.3.2.1 Correlation

Applications can specify a correlation identifier of the message during the enqueuing
process, as demonstrated in Example 10-6. This identifier can then be used by the
dequeuing application.

Example 10-6 Specifying the Correlation identifier

mes. set Correl ationld("eng_corr_di");

10.3.2.2 Sender

Applications can specify the sender of the message, as demonstrated in
Example 10-7. The sender identifier can then be used by the receiver of the message.

Example 10-7 Specifying the Sender identifier
mes. set Sender 1 d(agt);

10.3.2.3 Delay and Expiration

Time settings control the delay and expiration times of the message in seconds, as
demonstrated in Example 10-8.

Example 10-8 Specifying the Delay and Expiration times of the message

mes. set Del ay(10);
mes. set Expirati onTi ne(60);

10.3.2.4 Recipients

ORACLE

The agents for whom the message is intended can be specified during message
encoding, as demonstrated in Example 10-9. This ensures that only the specified
recipients can access the message.

Example 10-9 Specifying message recipients

vect or <Agent > agt _|ist;
for (i=0; i<numcrecipients; i++)

agt _|ist.push_back(Agent (nane, address, protocol));
mes. set Reci pi ent Li st (agt _list);

10-6

Chapter 10
Enqueuing Messages

10.3.2.5 Priority and Ordering

By assigning a priority level to a message, the sender can control the order in which
the messages are dequeued by the receiver. Example 10-10 demonstrates how to set
the priority of a message.

Example 10-10 Specifying the Priority of a Message

mes. setPriority(3);

10.4 Enqueuing Messages

Messages are enqueued by the Producer. The Producer Class is also used to specify
engqueue options. A Producer object can be created on a valid connection where
enqueuing is performed, as illustrated in Example 10-11.

The transactional behavior of the enqueue operation can be defined based on
application requirements. The application can make the effect of the enqueue
operation visible externally either immediately after it is completed, as in
Example 10-11, or only after the enclosing transaction has been committed.

To enqueue the message, use the send() method, as demonstrated in Example 10-11.
A client may retain the Message object after it is sent, modify it, and send it again.

Example 10-11 Creating a Producer, Setting Visibility, and Enqueuing the
Message

Producer prod(conn);
prod. set Vi sibility(Producer::ENQ | MVEDI ATE);
Message nes(env);

mes. set Byt es(obj); Il obj represents the content of the message
prod. send(nes, queueNane); Il queueNanme is the nane of the queue

10.5 Dequeuing Messages

ORACLE

Messages delivered to a queue are dequeued by the Consuner. The Consumer Class is
also used to specify dequeue options. A Consuner object can be created on a valid
connection to the database where a queue exists, as demonstrated in Example 10-12.

In applications that support multiple consumers in the same queue, the name of the
consumer has to be specified as a registered subscriber to the queue, as shown in
Example 10-12.

To dequeue the message, use the recei ve() method, as demonstrated in
Example 10-12. The t ypeNane and schemaNane parameters of the recei ve() method
specify the type of payload and the schema of the payload type.

When the queue payload type is either RAW or AnyData, schenaName and t ypeNane are
optional, but you must specify these parameters explicitly when working with user-
defined payloads. This is illustrated in Example 10-13.

10-7

Chapter 10
Dequeuing Messages

Example 10-12 Creating a Consumer, Naming the Consumer, and Receiving a
Message

Consuner cons(conn);

/1 Name nust be registered with the queue through adnministrative interface
cons. set Consuner Name("Bi | | App");

cons. set QueueNane(queueNane) ;

Message nmes = cons.recei ve(Message: : OBJECT, "BILL_TYPE', "BILL_PROCESSCR');

/1 obj is is assigned the content of the message
obj = mes. get Object();

Example 10-13 Receiving a Message

//receiving a RAW nmessage
Message nmes = cons.receive(Message: : RAW;

//receiving an ANYDATA nmessage
Message nmes = cons.recei ve(Message: : ANYDATA) ;

This section includes the following topic: About Dequeuing Options.

10.5.1 About Dequeuing Options

The dequeuing application can specify several dequeuing options before it begins to
receive messages. These include:

e Correlation
e Mode

e Navigation

10.5.1.1 Correlation

The message can be dequeued based on the value of its correlation identifier using
the set Correl ati onl d() method, as shown in Example 10-14.

10.5.1.2 Mode

Based on application requirements, the user can choose to only browse through
messages in the queue, remove the messages from the queue, or lock messages
using the set DequeueMbde() method, as shown in Example 10-14.

10.5.1.3 Navigation

Messages enqueued in a single transaction can be viewed as a single group by
implementing the set Posi ti onOf Message() method, as shown in Example 10-14.

Example 10-14 Specifying dequeuing options
cons. setCorrelationld(corrld);
cons. set DequeueMbde(deghbde) ;

cons. set Posi ti onOf Message(Consuner : : DEQ NEXT_TRANSACTI ON) ;

ORACLE 10-8

Chapter 10
Listening for Messages

10.6 Listening for Messages

The Listener listens for messages on queues on behalf of its registered clients. The
Listener Class implements the |i sten() method, which is a blocking call that returns
when a queue has a message for a registered agent, or throws an error when the time
out period expires. Example 10-15 illustrates the listening protocol.

Example 10-15 Listening for messages
Li stener listener(conn);

vect or <Agent > agt Li st

for(int i=0; i<numagents; i++)

agt Li st. push_back(Agent(nane, address, protocol);

|'i stener.setAgentList(agtList);
|'i stener.setTi meQut ForListen(10);

Agent agt (env);

tryf{

agt = listener.listen();
}
catch{

cout <<e. get Message() <<endl ;
}

10.7 About Registering for Notification

The Subscription Class implements the publish-subscribe notification feature. It allows
an OCCI AQ application to receive client notifications directly, register an e-mail
address to which notifications can be sent, register an HTTP URL to which
notifications can be posted, or register a PL/SQL procedure to be invoked on a
notification. Registered clients are notified asynchronously when events are triggered
or on an explicit AQ enqueue. Clients do not have to be connected to a database.

An OCCI application can do all of the following:

* Register interest in notification in the AQ namespace, and be notified when an
engueue occurs.

* Register interest in subscriptions to database events, and receive notifications
when these events are triggered.

* Manage registrations, such as disable registrations temporarily, or dropping
registrations entirely.

» Post (or send) notifications to registered clients.
This section includes the following topics:
* Publish-Subscribe Notifications

* About Message Format Transformation

10.7.1 Publish-Subscribe Notifications

Notifications can work in several ways. They can be:

ORACLE 10-9

Chapter 10
About Registering for Notification

received directly by the OCCI application

sent to a pre-specified e-mail address

sent to a pre-defined HTTP URL

invoke a pre-specified database PL/SQL procedure

Registered clients are notified asynchronously when events are triggered, or on an
explicit AQ enqueue. Clients do not have to be connected to a database for
notifications to work. Registration can be accomplished either as:

How to Use Direct Registration

Using Open Registration

10.7.1.1 How to Use Direct Registration

ORACLE

You can register directly with the database. This is relatively simple, and the
registration takes effect immediately. Example 10-16 outlines the required steps to
successfully register for direct event notification. It is assumed that the appropriate
event trigger or queue is in existence, and that the initialization parameter COVPATI BLE is
set to 8. 1 or higher.

Example 10-16 How to Register for Notifications; Direct Registration

1.
2.
3.

Create the environment in Envi ronnent : : EVENTS mode.

Create the Subscri ption object.

Set these Subscri pti on attributes.

The namespace can be set to these options:

To receive notifications from AQ queues, namespace must be set to
Subscri ption: : NS_AQ. The subscription name is then either of the form
SCHEMA. QUEUE when registering on a single consumer queue, or

SCHEMA. QUEUE: CONSUMER_NAME when registering on a multiconsumer queue.

To receive notifications from other applications that use conn-
>post ToSubscri ption() method, namespace must be set to
Subscri ption: : NS_ANONYMOUS

The protocol can be set to these options:

If an OCCI client must receive an event notification, this attribute should be set
to Subscri ption: : PROTO CBK. You also must set the notification callback and the
subscription context before registering the Subscri pti on. The notification
callback is called when the event occurs.

For an e-mail naotification, set the protocol to Subscri ption: : PROTO MAI L. You
must set the recipient name before subscribing to avoid an application error.

For an HTTP URL noatification, set the protocol to Subscri ption:: HTTP. You
must set the recipient name before subscribing to avoid an application error.

To invoke PL/SQL procedures in the database on event natification, set
protocol to Subscri ption: : PROTO SERVER. You must set the recipient name
before subscribing to avoid an application error.

Register the subscriptions using connect i on- >r egi st er Subscri ptions().

10-10

Chapter 10
About Registering for Notification

10.7.1.2 Using Open Registration

ORACLE

You can also register through an intermediate LDAP that sends the registration
request to the database. This is used when the client cannot have a direct database
connection; for example, the client wants to register for an open event while the
database is down. This approach is also used when a client wants to register for the
same event(s) in multiple databases, concurrently.

Example 10-17 outlines the LDAP open registration using the Oracle Enterprise
Security Manager (OESM). Open registration has these prerequisites:

e The client must be an enterprise user
— In each enterprise domain, create an enterprise role ENTERPRI SE_AQ USER ROLE

— For each database in the enterprise domain, add a global role
GLOBAL_AQ USER ROLE to enterprise the role ENTERPRI SE_AQ USER ROLE.

— For each enterprise domain, add an enterprise role ENTERPRI SE_AQ USER ROLE to
the privilege group cn=0r acl eDBAQUser s under cn=or acl econt ext in the
administrative context

— For each enterprise user that is authorized to register for events in the
database, grant enterprise the role ENTERPRI SE_AQ USER ROLE

e The compatibility of the database must be 9.0 or higher
e LDAP_REG STRATI ON_ENABLED must be set to TRUE (default is FALSE):
ALTER SYSTEM SET LDAP_REG STRATI ON_ENABLED=TRUE

e LDAP_REG SYNC | NTERVAL must be set to the ti me_interval (in seconds) to refresh
registrations from LDAP (default is 0, do not refresh):

ALTER SYSTEM SET LDAP_REG SYNC | NTERVAL = tine_interval

To force a database refresh of LDAP registration information immediately, issue this
command:

ALTER SYSTEM REFRESH LDAP_REG STRATI ON

Open registration takes effect when the database accesses LDAP to pick up new
registrations. The frequency of pick-ups is determined by the value of
REG_SYNC_| NTERVAL.

Clients can temporarily disable subscriptions, re-enable them, or permanently
unregister from future notifications.

Example 10-17 How to Use Open Registration with LDAP
1. Create the environment in Envi ronnent : : EVENTS| Envi r onnent : : USE_LDAP mode.
2. Set the Environnent object for accessing LDAP:

* The host and port on which the LDAP server is residing and listening

* The authentication method; only simple username and password
authentication is currently supported

* The username (distinguished name) and password for authentication with the
LDAP server

¢ The administrative context for Oracle in the LDAP server

10-11

Chapter 10
About Registering for Notification

3. Create the Subscri pti on object.

4. Set the distinguished names of the databases in which the client wants to receive
notifications on the Subscri pti on object.

5. Setthese Subscri ption attributes.
The namespace can be set to these options:

* To receive notifications from AQ queues, namespace must be set to
Subscri ption:: NS_AQ. The subscription name is then either of the form
SCHEMA. QUEUE when registering on a single consumer queue, or
SCHEMA. QUEUE: CONSUMER_NAME when registering on a multiconsumer queue.

e To receive notifications from other applications that use conn-
>post ToSubscri ption() method, nanespace must be set to
Subscri ption: : NS_ANONYMOUS

The prot ocol can be set to these options:

e If an OCCI client must receive an event notification, this attribute should be set
to Subscri ption: : PROTO CBK. You also must set the notification callback and the
subscription context before registering the Subscri ption. The notification
callback is called when the event occurs.

e For an e-mail notification, set the protocol to Subscri ption: : PROTO MAI L. You
must then set the recipient name to the e-mail address to which the
notifications must be sent.

* For an HTTP URL notification, set the protocol to Subscri ption:: HTTP. You
must set the recipient name to the URL to which the notification must be
posted.

e Toinvoke PL/SQL procedures in the database on event notification, set
protocol to Subscri ption: : PROTO SERVER. You must set the recipient name to the
database procedure invoked on notification.

6. Register the subscription: envi ronnent - >r egi st er Subscri ptions().

10.7.2 About Notification Callback

ORACLE

The client must register a notification callback. This callback is invoked only when
there is some activity on the registered subscription. In the Streams AQ namespace,
this happens when a message of interest is enqueued.

The callback must return 0, and it must have the following specification:

typedef unsigned int (*callbackfn) (Subscription &ub, NotifyResult *nr);

where:

* The sub parameter is the Subscri pti on object which was used when the callback
was registered.

* The nr parameter is the Noti f yResul t object holding the notification info.

Ensure that the subscription object used to register for notifications is not destroyed
until it explicitly unregisters the subscription.

The user can retrieve the payload, message, message id, queue name and consumer
name from the Noti f yResul t object, depending on the source of notification. These
results are summarized in Table 10-1. Only a bytes payload is currently supported,

10-12

Chapter 10
About Message Format Transformation

and you must explicitly dequeue messages from persistent queues in the AQ
namespace. If notifications come from non-persistent queues, messages are available
to the callback directly; only RAWpayloads are supported. If notifications come from
persistent queues, the message has to be explicitly dequeued; all payload types are
supported.

Table 10-1 Notification Result Attributes; ANONYMOUS and AQ Namespace

__|
Notification Result ANONYMOUS AQ Namespace, AQ Namespace, Non-

Attribute Namespace Persistent Queue Persistent Queue
payload valid invalid invalid

message invalid invalid valid

messagelD invalid valid valid

consumer name invalid valid valid

gueue name invalid valid valid

10.8 About Message Format Transformation

Applications often use data in different formats, and this requires a type
transformation. A transformation is implemented as a SQL function that takes the
source data type as input and returns an object of the target data type.Transformations
can be applied when message are enqueued, dequeued, or when they are propagated
to a remote subscriber.

See Also:

The following chapters of the Oracle Database Advanced Queuing User's
Guide for information of format transformation:

e Oracle Streams AQ Administrative Interface
e Oracle Streams AQ Administrative Interface: Views

e Oracle Streams AQ Operational Interface: Basic Operations

ORACLE 10-13

Oracle XA Library

The Oracle XA library is an external interface that allows transaction managers other
than the Oracle server to coordinate global transactions. The XA library supports non-
Oracle resource managers in distributed transactions. This is particularly useful in
transactions between several databases and resources.

The implementation of the Oracle XA library conforms to the X/Open Distributed
Transaction Processing (DTP) software architecture's XA interface specification. The
Oracle XA Library is installed as part of the Oracle Database Enterprise Edition.

This chapter contains these topics:

» Developing Applications with XA and OCCI
* APIs for XA Support

¢ See Also:

° http://ww. opengroup. org

* Oracle Database Development Guide for more details on the Oracle XA
library and architecture

* OCCI Application Programming Interface

11.1 Developing Applications with XA and OCCI

ORACLE

For connection, disconnection, and transaction control on Oracle databases,

applications must interface with a transaction manager. OCCI has APIs for interacting
with Envi ronnent and Connect i on objects within XA and make them available for Oracle
database access, such as SELECT queries, DML statements, object access, and so on.

Example 11-1 How to Use Transaction Managers with XA

/* Transaction manager opens connection to the Oracle server*/
t popen("oracl e_xa+acc=p/ HR/ passwor d+sest mr10", 1, TMNOFLAGS);
/* Transaction manager issues XA conmands to start a global transaction*/

t pbegin();

/* Access the underlying Oracle database using OCCl */
Environnment *xaenv = Environnment:: get XAEnvi r onnent (
"oracl e_xatacc=p/ HR/ passwor d+sest n=10");
Connection *xaconn = xaenv->get XAConnect i on(
"oracl e_xatacc=p/ HR/ passwor d+sest n=10");

/* Use the Environnment & Connection objects */

Statement *stnt = xaconn->createStat enent (
"Update Enp set sal = sal * 0.2");

11-1

http://www.opengroup.org

Chapter 11
APIs for XA Support

/* Rel ease the Environnent & Connection objects */
xaenv->r el easeXAConnect i on(xaconn);
Envi ronnent : : rel easeXAEnvi r onnent (xaenv) ;

11.2 APIs for XA Support

ORACLE

The following methods of the Environment Class support use of XA libraries:
* getXAConnection()

* releaseXAEnvironment()

* releaseXAConnection()

* releaseXAEnvironment()

In addition, the getXAErrorCode() method of SQLException Class is necessary for XA
enabled applications to determine if thrown exceptions are due to an SQL error (XA_OK)
or an XA error (an XA error code).

11-2

Optimizing Performance of C++
Applications

This chapter describes a few suggestions that lead to better performance for your
OCCI custom applications.

This chapter contains these topics:

* About Transparent Application Failover

e About Connection Sharing

* About Application-Managed Data Buffering

e Using the Array Fetch Using next() Method

* Modifying Rows lteratively

* About Run-time Load Balancing of the Stateless Connection Pool
e About Fault Diagnosability

e Using Client Result Cache

* About Client-Side Deployment Parameters and Auto Tuning

See Also:

* OCCI Application Programming Interface

12.1 About Transparent Application Failover

ORACLE

OCCI Transparent Application Failover (TAF) enables OCCI to be more robust in
handling database instance failures in distributed applications at run time. If a server
node becomes unavailable, applications automatically reconnect to another surviving
node.

TAF occurs when the client application, during a roundtrip operation, detects that the
database instance is down. It establishes a connection to the backup database
configured for TAF. This backup can be another node in an Oracle RAC configuration,
a hot standby database, or the same database instance itself.

The OCCI/OCI API responsible for the roundtrip on the failed connection will typically
return one of the following errors:

e (ORA-25401: can not continue fetches
e (ORA-25402: transaction nust roll back

* ORA-25408: can not safely replay call

12-1

Chapter 12
About Transparent Application Failover

The new connection is may be used for subsequent application requests and for any
ongoing work that must be restarted.ldle connections in the application are not
affected.

Some design options should be considered when including Transparent Application
Failover in an application:

e Because of the delays inherent to failover processing, the design of the application
may include a notice to the user that a failover is in progress and that normal
operation should resume shortly.

e If the session on the initial instance received ALTER SESSI ON commands before the
failover began, they are not automatically replayed on the second instance.

Consequently, the developer may want to replay these ALTER SESSI ON commands
on the second instance.

It is the user's responsibility to track changes to the SESSI ON parameters.

To address these problems, the application can register a failover callback function.
After a failover, the callback function is invoked at different times while reestablishing
the user's session.

* The first call to the callback function occurs when Oracle first detects an instance
connection loss. This callback is intended to allow the application to inform the
user of an upcoming delay.

» If failover is successful, a second call to the callback function occurs when the
connection is reestablished and usable. At this time the client may want to replay
ALTER SESSI ON commands and inform the user that failover has happened. Note
that you must keep track of SESSI ON parameter changes and then replay them after
the failover is complete.

If failover is unsuccessful, then the callback function is called to inform the
application that failover cannot take place.

* Aninitial attempt at failover may not always successful. The failover callback
should return FO RETRY to indicate that the failover should be attempted again.

See Also:

— Definition of Fai | Over Type and Fai | Over Event Type in Table 13-11 in OCCI
Application Programming Interface

— Oracle Database Net Services Administrator's Guide for more detailed
information about application failover.

This section includes the following topics:
* Using Transparent Application Failover
* About Objects and Transparent Application Failover

* Using Connection Pooling and Transparent Application Failover

ORACLE 12-2

Chapter 12
About Transparent Application Failover

12.1.1 Using Transparent Application Failover

To enable TAF, the connect string has to be configured for failover and registered on
Connect i on (created from Envi ronnent, Connect i onPool and St at el essConnect i onPool). TO
register the callback function, use the Connection Class interface setTAFNotify():

voi d Connection::set TAFNoti fy(
int (*notifyFn)(
Envi ronnent *env,
Connection *conn,
void *ctx,
Fai | Over Type foType,
Fai | Over Event Type foEvent),
voi d *ctxTAF);

Note that TAF support for Connect i onPool s does not include BACKUP and PRECONNECT
clauses; these should not be used in the connect string.

12.1.2 About Objects and Transparent Application Failover

Transparent application failover works with the OCCI navigational and associative
access models and the object cache. In a non-Oracle RAC setup, you must ensure
that the object type definitions and object OIDs in primary and backup instances are
identical.

If the application receives ORA- 25402: transaction nust roll back error after the
failover, then it must initiate a rollback to correctly reset the object cache on the client.
If a transaction has not started before the failover, the application should still initiate a
rollback after the failover to refresh the objects on the client object cache from the new
instance.

12.1.3 Using Connection Pooling and Transparent Application Failover

ORACLE

If the transparent application failover feature is activated, connections created in a
connection pool are also failed over. The application failover callback must be
specified for each connection obtained from the connection pool; these connections
are failed over when used after the primary instance failure.

Note that connections in a custom connection pool must be explicitly cleaned and
repaired. Consider an application that has 500 connections in a pool; 10 of the
connections are busy (doing a round-trip) and 490 are free or idle. If the database
instance fails, then TAF will work on 10 active connections, and client requests on
these connections must be restarted. When each of the other 490 connections are
picked up by the application, TAF is performed and OCCI returns one of error codes
ORA- 25401, ORA- 24502, or ORA- 25408, forcing a restart of the user request. The application
can avoid these errors on the 490 idle connections by repairing or purging these
connections by using the knowledge that TAF was previously activated on 10
connections in the connection pool.

To repair connections in OCCI, use the Connection Class interface
getServerVersion(), a light-weight, data-neutral database call for starting TAF on
connections to failed instances:

string getServerVersion() const;

12-3

ORACLE

Chapter 12
About Transparent Application Failover

In the OCCI TAF callback, applications may invoke getServerVersion() on idle
connections in the custom pool, to start and complete failover for these connections.

Example 12-1 demonstrates how to use OCCI for TAF callbacks and for repairing bad
connections. Note that the example does not show custom pool data structure or
mutexing and concurrency control.

Note that TAF behavior is the same for standalone connections and connections in a
custom connection pool.

Example 12-1 How to Enable TAF for Connection Pooling

#i ncl ude <occi.h>
#incl ude <iostreanp
#incl ude <time. h>

usi ng nanmespace std;
usi ng namespace oracle::occi;

[/ Application custom pool of 3 connections
Envi ronnent *env;

Connection *connl, *conn2, *conn3;

bool connifree, conn2free, conn3free;

bool repairing = fal se;

int taf _callback(Environnent *env, Connection *conn, void *ctx,
Connection:: Fai | Over Type foType, Connection:: Fail Over Event Type foEvent)

{

cout << "TAF cal | back for connection " << conn << endl;

i f(foEvent == Connection:: FO ERROR)

{
cout << "Retrying" << endl;
return FO_RETRY;
}
if (foEvent == Connection:: FO END)
{

cout << "TAF conplete for connnection " << conn << endl;
if (repairing == fal se)

{ . .

repairing = true;

cout << "repairing other idle connections" << endl;

/lignore errors during TAF
try
{

1
catch (...)

if (connlfree) connl->get ServerVersion();

if (conn2free) conn2->get ServerVersion();

catch (...)

try

12-4

ORACLE

Chapter 12
About Transparent Application Failover

if (conn3free) conn3->get ServerVersion();

}éatch (...)
{
1
repairing = fal se;
it
MIif
return 0; //continue failover
}
mai n()
{
try
{

env = Environnent:: createEnvironnent (Envi ronment : : THREADED MUTEXED) ;
//open 3 connecti ons;
connl = env->createConnection("hr", "password","instl failback");
conn2 = env->createConnection("hr", "password","instl failback");
conn3 = env->createConnection("hr", "password","instl failback");

/lall connections are 'free'
connlfree = conn2free = conn3free = true;

//set TAF cal |l backs on all connection

connl->set TAFNoti fy(taf _cal | back, NULL);
conn2->set TAFNot i fy(taf _cal | back, NULL) ;
conn3->set TAFNot i fy(taf _cal | back, NULL) ;

/luse 1 connection

connlfree=fal se;

cout << "Using connl" << endl;

Statement *stnt = connl->createStatenent ("select * from enployees");
Resul t Set *rs = stnt->executeQuery();

while (rs->next())

{
}

stnt->cl oseResul t Set (rs);
connl->termnateStatement(stnt);

cout << (rs->getString(2)) << endl;

cout << "Shutdown and restart the database" << endl;
string buf;
cin > buf;

Statement *stnt2,
try
{

cout << "Trying a update on EMP table" << endl;
stnt2 = connl->createStatenent ("del ete from enpl oyees");
st nt 2- >execut eUpdat e() ;

}
catch (SQLException &ex)

{
cout << "Update EMPLOYEES returned error : " << ex.getMessage() << endl;

cin > buf;

}

cout << "Done" << endl;
env- >t er m nat eConnecti on(connl);

12-5

Chapter 12
About Connection Sharing

env- >t erm nat eConnect i on(conn2) ;
env- >t er m nat eConnect i on(conn3);
Envi ronnent : : t erni nat eEnvi ronnent (env) ;

cat ch(SQLException &ex)

{

cout << ex.getMessage() << endl;
}

}

12.2 About Connection Sharing

This section covers the following topics:

* Introduction to Thread Safety
* Implementing Thread Safety
* About Serialization

* Operating System Considerations

12.2.1 Introduction to Thread Safety

ORACLE

Threads are lightweight processes that exist within a larger process. Threads each
share the same code and data segments, but have their own program counters,
system registers, and stack. Global and static variables are common to all threads,
and a mutual exclusivity mechanism may be required to manage access to these
variables from multiple threads within an application.

Once spawned, threads run asynchronously to one another. They can access
common data elements and make OCCI calls in any order. Because of this shared
access to data elements, a mechanism is required to maintain the integrity of data
being accessed by multiple threads. The mechanism to manage data access takes the
form of mutexes (mutual exclusivity locks), which ensure that no conflicts arise
between multiple threads that are accessing shared resources within an application. In
OCCI, mutexes are granted on an OCCI environment basis.

This thread safety feature of the Oracle database server and OCCI library enables
developers to use OCCI in a multithreaded application with these added benefits:

* Multiple threads of execution can make OCCI calls with the same result as
successive calls made by a single thread.

* When multiple threads make OCCI calls, there are no side effects between
threads.

» Even if you do not write a multithreaded program, you do not pay any performance
penalty for including thread-safe OCCI calls.

» Use of multiple threads can improve program performance. You can discern gains
on multiprocessor systems where threads run concurrently on separate
processors, and on single processor systems where overlap can occur between
slower operations and faster operations.

In addition to client/server applications, where the client can be a multithreaded
program, thread safety is typically used in three-tier or client/agent/server
architectures. In this architecture, the client is concerned only with presentation
services. The agent (or application server) processes the application logic for the client

12-6

Chapter 12
About Connection Sharing

application. Typically, this relationship is a many-to-one relationship, with multiple
clients sharing the same application server.

The server tier in the three-tier architecture is an Oracle database server. The
applications server (agent) supports multithreading, with each thread serving a
separate client application. In an Oracle environment, this middle-tier application
server is an OCCI or precompiler program.

12.2.2 Implementing Thread Safety

To take advantage of thread safety by using OCCI, an application must be running in a
thread-safe operating system. Then the application must inform OCCI that the
application is running in multithreaded mode by specifying THREADED_MUTEXED or
THREADED UNMUTEXED for the mode parameter of the creat eEnvi ronnent () method. For
example, to turn on mutual exclusivity locking, issue the following statement:

Environnent *env = Environnent:: creat eEnvironnent (
Envi ronnent : : THREADED_MUTEXED) ;

Note that once creat eEnvi ronnent is called with THREADED MUTEXED or
THREADED UNMUTEXED, all subsequent calls to the creat eEnvi ronnent method must also be
made with THREADED MJUTEXED or THREADED UNMUTEXED modes.

If a multithreaded application is running in a thread-safe operating system, then the
OCCI library manages mutexes for the application on a for each-OCCI-environment
basis. However, you can override this feature and have your application maintain its
own mutex scheme. This is done by specifying a mode value of THREADED UNMUTEXED to
the creat eEnvi ronnment () method.

Applications that run on non-thread-safe platforms should not pass a value of
THREADED MUJTEXED or THREADED UNMUTEXED to the cr eat eEnvi ronment () method.

If an application is single threaded, regardless of whether the platform is thread safe,
the application should pass a value of Envi ronment : : DEFAULT to the creat eEnvi r onment ()
method. This is also the default value for the mode parameter. Single threaded
applications which run in THREADED_MUTEXED mode may incur performance degradation.

OCCI does not support nonblocking mode.

12.2.3 About Serialization

As an application programmer, you have two basic options regarding concurrency in a
multithreaded application:

e Automatic Serialization, in which you use OTIS's transparent mechanisms

e Application-Provided Serialization, in which you manage the contingencies
involved in maintaining multiple threads

12.2.3.1 Automatic Serialization

ORACLE

In cases where there are multiple threads operating on objects (connections and
connection pools) derived from an OCCI environment, you can elect to let OCCI
serialize access to those objects. The first step is to pass a value of THREADED MUTEXED
to the creat eEnvi ronment method. At this point, the OCCI library automatically acquires
a mutex on thread-safe objects in the environment.

12-7

Chapter 12
About Connection Sharing

When the OCCI environment is created with THREADED _MUTEXED mode, then only the

Envi ronment , Map, Connect i onPool , St at el essConnect i onPool and Connect i on objects are
thread-safe. That is, if two threads make simultaneous calls on one of these objects,
then OCCI serializes them internally. However, note that all other OCCI objects, such
as Statenent, Resul t Set, SQLExcepti on, Stream and so on, are not thread-safe as,
applications should not operate on these objects simultaneously from multiple threads.

Note that the bulk of processing for an OCCI call happens on the server, so if two
threads that use OCCI calls go to the same connection, then one of them could be
blocked while the other finishes processing at the server.

12.2.3.2 Application-Provided Serialization

In cases where there are multiple threads operating on objects derived from an OCCI
environment, you can chose to manage serialization. The first step is to pass a value
of THREADED_UNMUTEXED for the cr eat eEnvi ronment mode. In this case the application must
mutual exclusively lock OCCI calls made on objects derived from the same OCCI
environment. This has the advantage that the mutex scheme can be optimized based
on the application design to gain greater concurrency.

When an OCCI environment is created in this mode, OCCI recognizes that the
application is running in a multithreaded application, but that OCCI need not acquire its
internal mutexes. OCCI assumes that all calls to methods of objects derived from that
OCCI environment are serialized by the application. You can achieve this two different
ways:

» Each thread has its own environment. That is, the environment and all objects
derived from it (connections, connection pools, statements, result sets, and so on)
are not shared across threads. In this case your application need not apply any
mutexes.

» If the application shares an OCCI environment or any object derived from the
environment across threads, then it must serialize access to those objects (by
using a mutex, and so on) such that only one thread is calling an OCCI method on
any of those objects.

In both cases, no mutexes are acquired by OCCI. You must ensure that only one
OCCI call is in process on any object derived from the OCCI environment at any given
time when THREADED UNMUTEXED is used.

OCCI is optimized to reuse objects as much as possible. Since each environment has
its own heap, multiple environments result in increased consumption of memory.
Having multiple environments may imply duplicating work regarding connections,
connection pools, statements, and result set objects. This results in further memory
consumption.

Having multiple connections to the server results in more resource consumption on
both the server and the network. Having multiple environments normally entails more
connections.

12.2.4 Operating System Considerations

ORACLE

Some operating systems provide facilities for spawning processes that allow child
processes to reuse states created by their parent process.

After a parent process spawns a child process, the child process must not use the
database connection created by the parent. Because SQL*Net expects only one user

12-8

Chapter 12
About Application-Managed Data Buffering

process to use a particular connection to the database, attempts by the child process
to use the same database connection as the parent may cause undesired connection
interference, and result in intermittent ORA- 03137 errors.

When the application requires multiple concurrent connections, Oracle recommends
using threads on platforms that support threading. Oracle supports concurrent
connections in both single-threaded and multi-threaded applications.

See "Introduction to Thread Safety" and "Implementing Thread Safety" for more
information about threads.

For improving performance with many concurrently opened connections, see "About
Pooling Connections".

12.3 About Application-Managed Data Buffering

When you provide data for bind parameters by the set xxx methods in parameterized
statements, the values are copied into an internal data buffer, and the copied values
are then provided to the database server for insertion. To reduce overhead of copying
string type data that is available in user buffers, use the setDataBuffer() and next()
methods of the ResultSet Class and the execute() method of the Statement Class.

This section includes the following topics:
* Using the setDataBuffer() Method
* Using the executeArrayUpdate() Method

12.3.1 Using the setDataBuffer() Method

ORACLE

For high performance applications, OCCI provides the set Dat aBuf f er method whereby
the data buffer is managed by the application. The following example shows the
setDataBuffer() method:

voi d set DataBuffer(int paran ndex,
void *buffer,

Type type,

sh4 size,

ub2 *length,

sb2 *ind = NULL,
ub2 *rc = NULL);

The following parameters are used in the previous method example:

e parani ndex: Parameter number

e huffer: Data buffer containing data

* type: Type of the data in the data buffer

* size: Size of the data buffer

* length: Current length of data in the data buffer

e ind: Indicator information. This indicates whether the data is NULL or not. For
parameterized statements, a value of - 1 means a NULL value is to be inserted. For
data returned from callable statements, a value of - 1 means NULL data is retrieved.

12-9

Chapter 12
About Application-Managed Data Buffering

* rc: Return code. This variable is not applicable to data provided to the St at enent
method. However, for data returned from callable statements, the return code
specifies parameter-specific error numbers.

Not all data types can be provided and retrieved by the set Dat aBuf f er () method. For
instance, C++ Standard Library strings cannot be provided with the set Dat aBuf f er ()
interface.

¢ See Also:

Table 5-2 in Data Types for specific cases

There is an important difference between the data provided by the set xxx() methods
and set Dat aBuf f er () method. When data is copied in the set xxx() methods, the
original can change once the data is copied. For example, you can use a

set String(strl) method, then change the value of str1 before execute. The value of
str1 that is used is the value at the time set String(str1) is called. However, for data
provided by the set Dat aBuf f er () method, the buffer must remain valid until the
execution is completed.

If iterative executes or the execut eArrayUpdat e() method is used, then data for multiple
rows and iterations can be provided in a single buffer. In this case, the data for the ith
iteration is atbuffer + (i-1) *size address and the length, indicator, and return codes
areat*(length +i),*(ind +i),and*(rc + i) respectively.

This interface is also meant for use with array executions and callable statements that
have array or QUT bind parameters.

The same method is available in the Resul t Set class to retrieve data without re-
allocating the buffer for each fetch.

12.3.2 Using the executeArrayUpdate() Method

ORACLE

If all data is provided with the set Dat aBuf f er () methods or output streams (that is, no
set xxx() methods besides set Dat aBuf fer () or get Strean() are called), then there is a
simplified way of doing iterative execution.

In this case, you should not call set MaxI terations() and set MaxPar ansi ze() . Instead,
call the set Dat aBuf fer () or get Strean() method for each parameter with the appropriate
size arrays to provide data for each iteration, followed by the execut eArr ayUpdat e(i nt
arrayLengt h) method. The arrayLengt h parameter specifies the number of elements
provided in each buffer. Essentially, this is same as setting the number of iterations to
arrayLengt h and executing the statement.

Since the stream parameters are specified only once, they can be used with array
executes as well. However, if any set xxx() methods are used, then the addl teration()
method is called to provide data for multiple rows. To compare the two approaches,
consider Example 12-2 that inserts two employees in the enpl oyees table:

However, if the first parameter could also be provided through the set Dat aBuf fer ()
interface, then, instead of the addI terati on() method, you would use the
execut eArrayUpdat e() method, as shown in Example 12-3:

12-10

Chapter 12
Using the Array Fetch Using next() Method

Example 12-2 How to Insert Records Using the addIteration() method

Statenment *stnt = conn->createStatenment (

"insert into departments (departnent_id, departnment_name) values(:1, :2)");
char dnames[][100] = {"Community Qutreach", "University Recruiting"};
ub2 dnanelLen[2];

for (int i =0; i <2; i++)

dnanelLen[i] = strlen(dnanes[i] + 1);
stnt->set Maxlterations(2); Il set maxi num nunber of iterations
stmt->setlnt(1, 7369); Il specify data for the first row

stnt->set DataBuffer (2, dnames, OOCI_SQLT STR, si zeof (dnanes[0]), dnanelLen);
stnt->addl teration();

stnmt->setlnt(1, 7654); Il specify data for the second row
Il a setDatBuffer is unnecessary for the second
/1 bind paraneter as data provided through
Il setDataBuffer is specified only once.

st nt - >execut eUpdat e() ;

Example 12-3 How to Insert Records Using the executeArrayUpdate() Method

Statement *stnmt = conn->createSt at ement (

"insert into departnments (departmnent_id, department_nanme) values(:1, :2)");
char dnames[][100] = {"Comunity Qutreach", "University Recruiting"};
ub2 dnanelLen[2];

for (int i =0; i <2; i+4)
dnameLen[i] = strlen(dnames[i] + 1);

int ids[2] = {7369, 7654};

ub2 idLen[2] = {sizeof(ids[0]), sizeof(ids[1])};

st ->set DataBuffer(1, ids, OCCIINT, sizeof(ids[0]), idLen);

st - >set Dat aBuf fer (2, dnames, OCCl _SQLT_STR, sizeof (dnames[0]), dnanmeLen);

st nt - >execut eArrayUpdat e(2) ; /1 data for two rows is inserted.

12.4 Using the Array Fetch Using next() Method

If the application is fetching data with only the set Dat aBuf fer () interface or the stream
interface, then an array fetch can be executed. The array fetch is implemented through
the next () method of the Resul t Set class. You must process the results obtained
through next() before calling it again.

This causes up to nurRows amount of data to be fetched for each column. The buffers
specified with the set Dat aBuf f er () interface should large enough to hold at least
nunRows of data.

Example 12-4 How to use Array Fetch with a ResultSet

Resul t Set *resul t Set = stnt->executeQuery(...);

resul t Set->set DataBuffer(...);

while (resultSet->next(nunRows) == DATA AVAI LABLE)
process(resul t Set - >get NumAr r ayRows());

ORACLE 12-11

Chapter 12
Modifying Rows lteratively

12.5 Modifying Rows Iteratively

To process batch errors, specify that the St at enent object is in a bat chvbde of execution
using the setBatchErrorMode() method. Once the bat chMbde is set and a batch update
runs, any resulting errors are reported through the BatchSQLException Class.

The Bat chSQLExcept i on class provides methods that handle batch errors. Example 12-5
illustrates how batch handling can be implemented within any OCCI application.

Example 12-5 How to Modify Rows Iteratively and Handle Errors

1. Create the Statement object and set its batch error mode to TRUE.

Statement *stnt = conn->createStatenent ("...");
st nt - >set Bat chError Mode (true);

2. Perform programmatic changes necessary by the application.

3. Update the statement.

try {
updat eCount = stnt->executeUpdate ();

}
4. Catch and handle any errors generated during the batch insert or update.

catch (BatchSQLException &bat chEx)

{
cout <<"Bat ch Exception: "<<batchEx.what ()<<endl;

int errCount = batchEx. get Fai | edRowCount ();
cout << "Nunmber of rows failed " << errCount <endl;
for (int i =0; i <errCount; i++)
{
SQLException err = batchEx. get Exception(i);
unsi gned i nt row ndex = bat chEx. get RowNun{(i);
cout<<"Row " << rowl ndex << " failed because of "
<< err.getErrorCode() << endl;

}

Il take recovery action on the failed rows

}

5. Catch and handle other errors generated during the statement update. Note that
statement-level errors are still thrown as instances of a SQLExcept i on.

catch(SQ.Exception &ex) // to catch other SQLExceptions.
{

}

cout << "SQLException: " << e.what() << endl;

12.6 About Run-time Load Balancing of the Stateless
Connection Pool

ORACLE

Run-time load balancing in a stateless connection pool dynamically routs connection
requests to the least loaded instance of the database. This is achieved by use of
service metrics, which are distributed by the Oracle RAC load-balancing advisory.

The feature modifies the stateless connection pool in the following ways:

e The pool receives periodic notifications about the instance load.

12-12

Chapter 12
About Fault Diagnosability

* When a request for a connection is received, the pool picks the best possible
connection for the type of request, based on the load of the instance.

* The stateless connection pool periodically terminates connections of overloaded
instances, maintaining the connection topology that corresponds to the instance
load.

* Since the connections to overloaded instances may be terminated, the pool
creates new connections to maintain the concurrency requirement. These new
connections are created using the connect-time load balancing of the Oracle RAC
listener.

Run-time load balancing is turned on by default when the OCCI environment is
created in THREADED MUTEXED and EVENTS modes, and when the server is configured to
issue event notifications.

See Also:

Oracle Call Interface Programmer's Guide

This section includes the following topic: APl Support.

12.6.1 API Support

New NO_RLB option for the Pool Type attribute of the StatelessConnectionPool Class
disables run-time load balancing.

12.7 About Fault Diagnosability

Fault diagnosability captures diagnostic data, such as dump files or core dump files,
on the OCCI client when a problem incident occurs. For each incident, the fault
diagnosability feature creates an Automatic Diagnostic Repository (ADR) subdirectory
for storing this diagnostic data. For example, if either a Linux or a UNIX application
fails with a null pointer reference, then the core file appears in the ADR home directory
(if it exists), not in the operating system directory. This section discusses the ADR
subdirectory structure and the utility to manage its output, the ADR Command
Interpreter (ADRCI).

An ADR home is the root directory for all diagnostic data for an instance of a product,
such as OCCI, and a particular operating system user. All ADR homes appear under
the same root directory, the ADR base.

ORACLE 12-13

Chapter 12
About Fault Diagnosability

See Also:
Oracle Database Administrator’'s Guide
This section includes the following topics:
» Using ADR Base Location
* Using ADRCI
» Controlling ADR Creation and Disabling Fault Diagnosability

12.7.1 Using ADR Base Location

The location of the ADR base is determined in the following order:

ORACLE

1.

In the sql net. or a file (on Windows, in the %@NS_ADM N%directory, or on Linux or
UNIX, in the $TNS_ADM N directory).

If there is no TNS_ADM N directory, then sql net. ora is stored in the current directory.
If the ADR base is listed in the sql net . ora file, it is a statement of the type:

ADR_BASE=/ di r ect ory/ adr

where:

* The adr argument is a directory that must exist and be writable by all operating
system users who execute OCCI applications and want to share the same
ADR base.

e Thedirectory argument is the path name

If ADR BASE is set, and if all users share a single sql net . or a file, then OCCI stops
searching when directory adr does not exist or if it is not writable. If ADR_BASE is not
set, then OCCI continues the search, testing for the existence of other specific
directories.

For example, if sgl net . or a contains the entry ADR BASE=/ hone/ chuck/t est then:
* ADR base is:

[home/ chuck/ t est / or adi ag_chuck
e ADR home may be:

[home/ chuck/ t est / or adi ag_chuck/ di ag/ cl i ent s/ user _chuck/ host _4144260688_11

If the Oracle base exists (on Windows: %0RACLE BASE% or on Linux and
UNIX: $ORACLE_BASE), the client subdirectory also exists because it is created by the
Oracle Universal Installer when the database is installed.

For example, if $ORACLE_BASE is / hone/ chuck/ obase , then:
* ADR base is:
/'hone/ chuck/ obase
 ADR home may be:
[hone/ chuck/ obase/ di ag/ cl i ent s/ user _chuck/ host _4144260688_11

12-14

ORACLE

Chapter 12
About Fault Diagnosability

If the Oracle home exists (on Windows: %ORACLE_HOVE% or on Linux and
UNIX: $ORACLE_HOME), the client subdirectory also exists because it is created by the
Oracle Universal Installer when the database is installed.

For example, if $ORACLE_HOMVE is / ade/ chuck_| 1/ oracl e , then:
* ADR base is:
[ade/ chuck_| 1/ oracl e/l og
e ADR home may be:
[ade/ chuck_| 1/ oracl e/l og/ di ag/ cl i ent s/ user _chuck/ host _4144260688_11
On the operating system home directory.
e On Windows, the operating system home directory is %JSERPROFI LE%
The location of folder Oracl e is at:

C:\Docunents and Settings\chuck

If the application runs as a service, the home directory option is skipped.
e On Linux and UNIX, the operating system home directory is $HOME.
The location may be:
[hone/ chuck/ or adi ag_chuck
For example, in an Instant Client, if $HOME is / hone/ chuck, then:
* ADR base is:
/ hone/ chuck/ or adi ag_chuck
* ADR home may be:
[hone/ chuck/ or adi ag_chuck/ di ag/ cl i ent s/ user _chuck/ host _4144260688_11

See Also:

"About the Instant Client"

In the temporary directory.
* On Windows, the temporary directories are searched in the following order:
- WMP%
— YWEMP%
— 9JSERPROFI LE%
— Windows system directory
e On Linux and UNIX, the temporary directory is in / var/t np.
For example, in an Instant Client, if $HOME is not writable, then:
* ADR base is:
[var/tnp/ oradi ag_chuck
* ADR home may be:
[var/tnp/ oradi ag_chuck/ di ag/ cl i ent s/ user _chuck/ host _4144260688_11

12-15

Chapter 12
About Fault Diagnosability

If none of these directory choices are available and writable, ADR is not created and
diagnostics are not stored.

See Also:

Oracle Database Net Services Reference

12.7.2 Using ADRCI

ADRCI is a command-line tool that enables you to view diagnostic data within the
ADR, and to package incident and problem information into a zip file that can be
shared with Oracle Support. ADRCI can be used either interactively and through a
script.

A problem is a critical error in OCI or the client. Each problem has a problem key. An
incident is a single occurrence of a problem, and it is identified by a uniqgue numeric
incident ID. Each incident has a problem key which has a set of attributes: the ORA
error number, error parameter values, and similar information. Two incidents have the
same root cause if their problem keys match.

The following examples demonstrate how to use ADRCI on a Linux operating system.
Note that ARDCI commands are case-insensitive. All user input is in bold typeface.

See Also:

e Oracle Database Utilitiesfor an introduction to the ADRCI

e "About the Instant Client"

Example 12-6 How to Use ADRCI for OCCI Application Incidents

To launch ADRCI in a Linux system, use the adrci command. Once ADRCI starts, find
out the particulars of the show base command with hel p, and then determine the base
of a particular client using the - product client option (necessary for OCCI
applications). To set the ADRCI base, use the set base command. Once ADRCI starts,
then the default ADR base is for the rdbns server. The $ORACLE_HOME is set to / ade/
chuck_| 3/ oracl e. To view the incidents, use the show i nci dents command. to exit
ADRCI, use the quit command.

% adr ci
ADRCl : Rel ease 11.2. - on Wed Novenber 25 16:16:55 2008
Copyright (c) 1982, 2008, Oracle. Al rights reserved.
adrci > hel p show base

Usage: SHOW BASE [-product <product_name>]

Purpose: Show the current ADR base setting.

Options:

ORACLE 12-16

Chapter 12
About Fault Diagnosability

[-product <product_name>]: This option allows users to show the
given product's ADR Base | ocation. The current registered products are
"CLI ENT" and "ADRCI".

Exanpl es:
show base -product client
show base

adrci > show base -product client
ADR base is "/ade/ chuck_| 3/ oracl e/l og"

adrci > hel p set base
Usage: SET BASE <base_str>

Purpose: Set the ADR bhase to use in the current ADRCI session.
If there are valid ADR honmes under the base, all homes
are added to the current ADRCI session.

Argunents:
<base_str>: It is the ADR base directory, which is a system dependent
directory path string.

Not es:
On platforms that use "." to signify current working directory,
it can be used as base_str.

Exanpl e:
set base /net/sttttdl/scratch/sonmeone/ vi ew storage/ someone_vl/1og
set base .

adrci > set base /ade/ chuck_| 3/oracl e/l og

adrci > show incidents

.aa‘rci > quit

Example 12-7 How to Use ADRCI for Instant Client

Because Instant Client does not use $ORACLE_HOMVE, the default ADR base is the user's
home directory.

adrci > show base -product client

ADR base is "/hone/ chuck/ oradi ag_chuck"
adrci > set base /hone/ chuck/ or adi ag_chuck
adrci> show incidents

ADR Home = /hone/ chuck/ oradi ag_chuck/ di ag/ cli ents/user_chuck/host 4144260688 _11:

LR RS RS EEEEEEE RS EEEEEE SRR R EREEREEREEREEREEEEEEREREREEEEEEEEEEEEEEEEEES

INCIDENT_ID PROBLEM KEY CREATE_TI ME

1 oci 24550 [6] 2007-05-01 17:20:02. 803697
-07:00
1 rows fetched

adrci > quit

ORACLE 12-17

Chapter 12
Using Client Result Cache

12.7.3 Controlling ADR Creation and Disabling Fault Diagnosability

To disable the fault diagnosability feature, you must turn off the capture of diagnostics.
Edit the sql net . or a file by changing the values of the DI AG ADR_ENABLED and

DI AG DDE_ENABLED parameters to either FALSE or OFF; the default values are either TRUE or
ON.

To turn off the OCCI signal handler and to re-enable standard operating system failure
processing, edit the sql net . or a file by adding the corresponding parameter:
Dl AG_SI GHANDLER _ENABLED=FALSE.

¢ See Also:

Oracle Call Interface Programmer's Guide

12.8 Using Client Result Cache

ORACLE

The Client Result Cache improves the response times of queries that are executed
repeatedly. This feature uses client memory to cache results of SQL queries executed
and fetched from the database. Subsequent execution of the same query fetches the
results from the client cache, reducing server CPU usage. Because database round-
trips are eliminated, applications have improved response times.

OCCI applications may transparently use the Client Result Cache feature by enabling

OCCI statement caching. Note that SELECT queries that must be cached are annotated

with a/*+ result _cache */ hint. Example 12-8 shows how to create a OCCI Statement
object that uses such a SELECT query.

For usage guidelines, cache consistency, and restrictions, see Oracle Call Interface
Programmer's Guide.

Example 12-8 How to Enable and Use the Client Result Cache

Connection *conn;
Statenent *stnt;
Resul t Set *rs;

//enabl e OCCl Statement Caching
conn- >set St nt CacheSi ze(20) ;

/1 Specify the hint in the SELECT query
stm = conn->createStatenment("select /*+ result_cache */ * from products \
where product _id = :1");

/1the following execute fetches rows fromthe client cache if
/lthe query results are cached. If this is the first execute
/lof the query, the results fetched fromthe server are
//cached on the client side.

rs = stnt->executeQuery();

12-18

Chapter 12
About Client-Side Deployment Parameters and Auto Tuning

12.9 About Client-Side Deployment Parameters and Auto
Tuning

Starting with Oracle Database Release 12¢ Release 1 (12.1), Oracle provides
oraaccess. xm , a client-side configuration file that can be used to configure selected
properties, allowing the application behavior to be changed during deployment without
modifying the source code.

Note:

Do not use the prefetch deployment parameter if the OCCI application is
already using the set Pref et chRowCount () or set Pref et chMenorySi ze() methods.

¢ See:

Oracle Call Interface Programmer's Guide for more information about client-
side deployment parameters and auto tuning

ORACLE 12-19

OCCI Application Programming Interface

This chapter describes the OCCI classes and methods for C++.

¢ See Also:

e Format Models in Oracle Database SQL Language Reference

e Table A-1 in Oracle Database Globalization Support Guide

13.1 OCCI Classes and Methods

Table 13-1 provides a brief description of all the OCCI classes. This section is followed
by detailed descriptions of each class and its methods.

ORACLE

Table 13-1 Summary of OCCI Classes

Class

Description

Agent Class
AnyData Class

BatchSQLEXxception Class

Bfile Class
Blob Class
Bytes Class

Clob Class
Connection Class
ConnectionPool Class

Consumer Class

Date Class

Environment Class

IntervalDS Class

IntervalYM Class

Represents an agent in the Advanced Queuing context.

Provides methods for the Object Type Translator (OTT)
utility, read and write SQL methods for linearization of
objects, and conversions to and from other data types.

Provides methods for handling batch processing errors;
extends the SQLException Class.

Provides access to a SQL BFI LE value.
Provides access to a SQL BLOB value.

Examines individual bytes of a sequence for comparing
bytes, searching bytes, and extracting bytes.

Provides access to a SQL CLOB value.
Represents a connection with a specific database.
Represents a connection pool with a specific database.

Supports dequeuing of Messages and controls the
dequeuing options.

Specifies abstraction for SQL DATE data items. Also
provides formatting and parsing operations to support the
OCCI escape syntax for date values.

Provides an OCCI environment to manager memory and
other resources of OCCI objects. An OCCI driver manager
maps to an OCCI environment handle.

Represents a time period in terms of days, hours, minutes,
and seconds.

Represents a time period in terms of year and months.

13-1

ORACLE

Chapter 13
OCCI Classes and Methods

Table 13-1 (Cont.) Summary of OCCI Classes
|

Class

Description

Listener Class

Map Class

Message Class

MetaData Class

NotifyResult Class

Number Class
PObject Class

Producer Class
Ref Class

RefAny Class

ResultSet Class

SQLException Class

StatelessConnectionPool Class

Statement Class

Stream Class

Subscription Class

Timestamp Class

Listens on behalf of one or more agents on one or more
queues.

Used to store the mapping of the SQL structured type to C
++ classes.

A unit that is enqueued or dequeued.

Used to determine types and properties of columns in a
Resul t Set, that of existing schema objects in the
database, or the database as a whole.

Used to hold natification information from the Streams AQ
callback function.

Models the numeric data type.

When defining types, enables specification of persistent or
transient instances. Class instances derived from PQbj ect
can be either persistent or transient. If persistent, a class
instance derived from PQbj ect inherits from the PObj ect
class; if transient, there is no inheritance.

Supports enqueuing options and enqueues Messages.

The mapping in C++ for the SQL REF value, which is a
reference to a SQL structured type value in the database.

The mapping in C++ for the SQL REF value, which is a
reference to a SQL structured type value in the database.

Provides access to a table of data generated by executing
an OCCI St at enent .

Provides information on database access errors.

Represents a pool of stateless, authenticated connections
to the database.

Used for executing SQL statements, including both query
statements and insert / update / delete statements.

Used to provide streamed data (usually of the LONG data
type) to a prepared DML statement or stored procedure
call.

Encapsulates the information and operations necessary for
registering a subscriber for notification.

Specifies abstraction for SQL TIMESTAMP data items.
Also provides formatting and parsing operations to support
the OCCI escape syntax for time stamp values.

13.1.1 Using OCCI Classes

OCCI classes are defined in the oracl e: : occi hamespace. An OCCI class name within
the oracl e: : occi namespace can be referred to in one of three ways:

* Use the scope resolution operator (: :) for each OCCI class name.

e Use the usi ng declaration for each OCCI class name.

* Use the usi ng directive for all OCCI class name.

13-2

Chapter 13
OCCI Classes and Methods

Using Scope Resolution Operator for OCCI

The scope resolution operator (: :) is used to explicitly specify the oracl e: : occi
namespace and the OCCI class name. To declare nyConnecti on, a Connecti on object,
using the scope resolution operator, you would use the following syntax:

oracl e:: occi:: Connection nmyConnecti on;

Using Declaration in OCCI

The usi ng declaration is used when the OCCI class name can be used in a compilation
unit without conflict. To declare the OCCI class name in the oracl e: : occi hamespace,
you would use the following syntax:

using oracle::occi::Connection;

Connecti on now refers to oracl e: : occi : : Connecti on, and nyConnect i on can be declared
as Connection myConnection;.

Using Directive in OCCI

The usi ng directive is used when all OCCI class names can be used in a compilation
unit without conflict. To declare all OCCI class names in the oracl e: : occi hamespace,
you would use the following syntax:

using oracle::occi;

Then, just as with the usi ng declaration, the following declaration would now refer to
the OCCI class Connecti on as Connection myConnecti on; .

Using Advanced Queuing in OCCI

The Advanced Queuing classes Producer, Consumer, Message, Agent, Li st ener,
Subscri ption and Noti fyResul t are defined in oracl e: : occi : : ag hamespace.

13.1.2 OCCI Support for Windows NT and z/OS

When building OCCI application on Windows, a preprocessor definition for W N32COWON
has to be added.

The following global methods are designed for accessing collections of Ref s in
ResultSet Class and Statement Class on Windows NT and z/OS. While method
names changed, the number of parameters and their types remain the same.

e Use getVector O Ref s() instead of get Vect or () on Windows NT and z/OS.
e Use setVector O Ref s() instead of set Vect or () on Windows NT and z/OS.

Applications on Windows NT and z/OS should be calling these new methods only for
retrieving and inserting collections of references. Applications not running on Windows
NT or z/OS can use either set of accessors. However, Oracle recommends the use of
the new methods for any vector operations with Ref s.

This section includes the following topic: Working with Collections of Refs.

ORACLE 13-3

Chapter 13
OCCI Classes and Methods

13.1.2.1 Working with Collections of Refs

Collections of Refs can be fetched and inserted using methods of the following
classes:

13.1.2.1.1 ResultSet Class

Fetching Collection of Refs
Use the following version of getVectorOfRefs() to return a column of references:

voi d get Vect or Of Ref s(
Resul t Set *rs,
unsi gned int index,
vect or <Ref <T> > &vect);

13.1.2.1.2 Statement Class

ORACLE

Fetching Collection of Refs
Use getVectorOfRefs() to return a collection of references from a column:

voi d get Vect or Of Ref s(
Statenent *stnt,
unsi gned int index,
vect or <Ref <T> > &vect);

Inserting a Collection of Refs
Use setVectorOfRefs() to insert a collection of references into a column:

tenplate <class T>

voi d set Vect or Of Ref s(
Statenent *stnt,
unsi gned i nt param ndex,
const vector<Ref <T> > &vect,
const string &sqltype);

Inserting a Collection of Refs: Multibyte Support
The following method is necessary for multibyte support:

voi d set Vect or Of Ref s(
Statement *stnt,
unsi gned i nt param ndex,
const vect or <Ref <T> > &vect,
const string &schenaNane,
const string & ypeNane);

Inserting a Collection of Refs: UString (UTF16) Support
The following method is necessary for USt ri ng support:

tenpl ate <class T>

voi d set Vect or Of Ref s(
Statement *stnt,
unsi gned i nt param ndex,
const vector <Ref <T> > &vect,

13-4

Chapter 13
Common OCCI Constants

const UString &schemaNane,
const UString & ypeName);

13.2 Common OCCI Constants

Table 13-2 defines the common constants used by all OCCI classes. Constants that
are defined for use within specific classes are summarized at the beginning of class-
specific sections.

Table 13-2 Enumerated Values Used by All OCCI Classes

Attribute Options

e (OCCl _LOCK_NONE clears the lock setting on the Ref object.

e OCC _LOCK Xindicates that the object should be locked, and to wait for
the lock to be available if the object is locked by another session.

e OCC _LOCK_X_NOMI T indicates that the object should be locked, and
returns an error if it is locked by another session.
OCCl _SQLCS_I MPLI Cl T indicates that the local database character set
must be used.

« (OCC _SQLCS_NCHAR indicates that the local database NCHAR set must be
used.

e OCCl _SQLCS_EXPLI C T indicates that the character set is specified
explicitly.

e OCC _SQLCS_FLEXI BLE means that the character set is a PL/SQL
flexible parameter.
OCCl _SUCCESS indicates that the call has been made successfully
(transaction failover mode).

» FO_RETRY indicates that the call should be retried (transaction failover
mode).

LockOpti ons

Char Set Form

Ret urnSt at us

13.3 Agent Class

ORACLE

The Agent class represents an agent in the Advanced Queuing context.

Table 13-3 Summary of Agent Methods

Method Summary

Agent() Agent class constructor.
getAddress() Returns the address of the Agent .
getName() Returns the name of the Agent .
getProtocol() Returns the protocol of the Agent .
isNull() Tests whether the Agent object is NULL.
operator=() Assignment operator for Agent .
setAddress() Sets address of the Agent object.
setName() Sets name of the Agent object.
setNull() Sets Agent object to NULL.
setProtocol() Sets protocol of the Agent object.

13-5

13.3.1 Agent()

Agent class constructor.

Chapter 13
Agent Class

Syntax

Description

Agent (

const Environnent *env);

Agent (

const Agent & agent);

Agent (

const Environment *env,
const string& name,

Creates an Agent object initialized to its default
values.

Copy constructor.

Creates an Agent object with specified Agent 's name,
address, and protocol.

const string& address,
unsi gned int protocol = 0);

Parameter Description
env Environment
name Name

agent Original agent
addr ess Address

pr ot ocol Protocol

13.3.2 getAddress()

Returns a string containing Agent 's address.

Syntax

string getAddress() const;

13.3.3 getName()

Returns a string containing Agent's name.

Syntax

string getNane() const;

13.3.4 getProtocol()

Returns a numeric code representing Agent 's protocol.

ORACLE

13-6

Chapter 13
Agent Class

Syntax

unsigned int getProtocol () const;

13.3.5 isNull()

Tests whether the Agent object is NULL. If the Agent object is NULL, then TRUE is
returned; otherwise, FALSE is returned.

Syntax

bool isNull() const;

13.3.6 operator=()

Assignment operator for Agent class.

Syntax

voi d operat or=(
const Agent & agent);

Parameter Description

agent The original Agent object.

13.3.7 setAddress|()

Sets the address of the Agent object.

Syntax

voi d set Address(
const string& addr);

Parameter Description

addr The name of the Agent object.

13.3.8 setName()

Sets the name of the Agent object.

Syntax

voi d set Namg(
const string& name);

Parameter Description

name The name of the Agent object.

ORACLE 13-7

Chapter 13
AnyData Class

13.3.9 setNull()

Sets the Agent object to NULL. Unless operating in an inner scope, this call should be
made before terminating the Connecti on used to create this Agent .

Syntax

void setNull();

13.3.10 setProtocol()

Sets the protocol of the Agent object.

Syntax

voi d setProtocol (
unsigned int protocol = 0);

Parameter Description

pr ot ocol The protocol of the Agent object.

13.4 AnyData Class

ORACLE

The AnyDat a class models self-descriptive data by encapsulating the type information
with the actual data. AnyDat a is used primarily with OCCI Advanced Queuing feature, to
represent and enqueue data and to receive messages from queues as AnyDat a
instances.

Most SQL and user-defined types can be converted into an AnyDat a type using the

set Fromkxx() methods. An AnyDat a object can be converted into most SQL and user-
defined types using get Asxxx() methods. SYS. ANYDATA type models AnyDat a both in SQL
and PL/SQL. See Table 13-4 for supported data types.

The getType() call returns the TypeCode represented by an AnyDat a object, while the
isNull() call determines if AnyDat a contains a NULL value. The setNull() method sets the
value of AnyDat a to NULL.

To use the OCCI AnyDat a type, the environment has to be initiated in OBJECT mode.
Example 13-1 Converting From an SQL Pre-Defined Type To AnyData Type
This example demonstrates how to convert types from st ri ng to AnyDat a.

Connection *conn;

AnyDat a any(conn);
string str("Hello Wrld");
any. set FronBtring(str);

Example 13-2 Creating an SQL Pre-Defined Type From AnyData Type

This example demonstrates how to convert an AnyDat a object back to a stri ng object.
Note the use of getType() and isNull() methods to validate AnyDat a before conversion.

13-8

Chapter 13
AnyData Class

Connection *conn;
string str;
i f('any.isNULL())
{ if(any.getType()==0CCl _TYPECODE_VARCHAR?)
{
str = any.getAsString();
cout <<str;

Example 13-3 Converting From a User-Defined Type To AnyData Type
This example demonstrates how to convert from a user-defined type to AnyDat a type.

Connection *conn;

/1 Assume an OBJECT of type Person with the follow ng defined fields
/| CREATE TYPE person as OBJECT (

/1 FRI ST_NAVE VARCHAR2(20),

/1 LAST_NAME VARCHAR2(25),

/1 EMAI L VARCHAR2(25)

/1 SALARY NUMBER(8, 2)

I,

/1 Assune relevant classes have been generated by OIT.

Person *pers new Person("Steve", "Addans",

"st eve. addans@nyconpany. conf, 50000. 00);
AnyDat a anyQhj (conn);
anyQbj . set Fronthj ect (pers);

Example 13-4 Converting From a User-Defined Type To AnyData Type

This example demonstrates how to convert an AnyDat a object back to a user-defined
type. Note the use of getType() and isNull() methods to validate AnyDat a before
conversion.

Connection *conn;

/1 Assume an OBJECT of type Person with the follow ng defined fields
/| CREATE TYPE person as OBJECT (

/1 FRI ST_NAME VARCHAR2(20),

/1 LAST_NAMVE VARCHAR(25),

/1 EMAI L VARCHAR2(25),

/1 SALARY NUMBER(8, 2)

I,

Il Assume relevant classes have been generated by OTT.

Person *pers = new Person();

[f('anyQoj.isNull())

{ if(anyQbj.get Type()==0CCl _TYPECODE_OBJECT)
pers = any(bj . get Astoj ect();

}

ORACLE 13-9

ORACLE

Chapter 13
AnyData Class

Table 13-4 OCCI Data Types supported by AnyData Class
|

Data Type TypeCode

BDoubl e OCCl _TYPECCDE_BDOUBLE
BFile OCCl _TYPECCDE_BFI LE

BFl oat OCCl _TYPECCDE_BFLOAT

Byt es OCCl_TYPECCDE_RAW

Dat e OCCl_TYPECODE_DATE

I nterval DS OCCl _TYPECODE_| NTERVAL_DS
I nterval YM OCCl _TYPECCDE_| NTERVAL_YM
Nurber OCCl _TYPECCDE_NUMBERB

PChj ect OCCl _TYPECCDE_OBJECT

Ref OCCl_TYPECODE_REF

string OCCl _TYPECODE_VARCHAR2

Ti neSt anp OCCl _TYPECCDE_TI MESTAMP

Table 13-5 Summary of AnyData Methods
|

Method Summary

AnyData() AnyDat a class constructor.
getAsBDouble() Converts an AnyDat a object into BDoubl e.
getAsBfile() Converts an AnyDat a object into Bf i | e.
getAsBFloat() Converts an AnyDat a object into BFl oat .
getAsBytes() Converts an AnyDat a object into Byt es.
getAsDate() Converts an AnyDat a object into Dat e.

getAsintervalDS()
getAsintervalYM()
getAsNumber()
getAsObject()
getAsRef()
getAsString()

Converts an AnyDat a object into | nt erval DS.
Converts an AnyDat a object into | nt er val YM
Converts an AnyDat a object into Nunber .
Converts an AnyDat a object into PQbj ect .
Converts an AnyDat a object into Ref Any.

Converts an AnyDat a object into a namespace string.

13-10

Chapter 13
AnyData Class

Table 13-5 (Cont.) Summary of AnyData Methods

Method Summary

getAsTimestamp() Converts an AnyDat a object into Ti mest anp.

getType() Retrieves the DataType held by the AnyDat a object. See
Table 13-4.

isNull() Tests whether AnyDat a object is NULL.

setFromBDouble() Converts a BDoubl e into Anydat a.

setFromBfile()
setFromBFloat()
setFromBytes()
setFromDate()
setFromintervalDS()
setFrominterval YM()
setFromNumber()
setFromObject()
setFromRef()
setFromString()
setFromTimestamp()
setNull()

Converts a Bf i | e into Anydat a.
Converts a BFl oat into Anydat a.
Converts a Byt es into Anydat a.
Converts a Dat e into Anydat a.
Converts an | nt er val DS into Anydat a.
Converts an | nt er val YMinto Anydat a.
Converts a Nunber into Anydat a.
Converts a PObj ect into Anydat a.
Converts a Ref Any into Anydat a.
Converts a namespace stri ng into Anydat a.
Converts a Ti nest anp into Anydat a.
Sets AnyDat a object to NULL.

13.4.1 AnyData()

AnyDat a constructor.

Syntax

AnyDat a(
const Connection *conn);

Parameter Description

The connection.

conn

13.4.2 getAsBDouble()

Converts an AnyDat a object into BDoubl e.

Syntax

BDoubl e get AsBDoubl e() const;

13.4.3 getAsBfile()

Converts an AnyDat a object into Bfi | e.

ORACLE

13-11

Syntax

Bfile getAsBfile() const;

13.4.4 getAsBFloat()

Converts an AnyDat a object into BFl oat .

Syntax

BFl oat get AsBFl oat () const;

13.4.5 getAsBytes()

Converts an AnyDat a object into Bytes.

Syntax

Byt es get AsBytes() const;

13.4.6 getAsDate()

Converts an AnyDat a object into Dat e.

Syntax

Date getAsDate() const;

13.4.7 getAsintervalDS()

Converts an AnyDat a object into | nt er val DS.

Syntax

Interval DS get Asl nterval DS() const;

13.4.8 getAsinterval YM()

Converts an AnyDat a object into I nt erval YM

Syntax

Interval YS get Aslnterval YM) const;

13.4.9 getAsNumber()

Converts an AnyDat a object into Nurber .

Syntax
Nunber get AsNunber () const;

ORACLE

Chapter 13
AnyData Class

13-12

13.4.10 getAsObject()

Converts an AnyDat a object into PObj ect .

Syntax

Poj ect* get AsChj ect () const;

13.4.11 getAsRef()

Converts an AnyDat a object into Ref Any.

Syntax

Ref Any get AsRef () const;

13.4.12 getAsString()

Converts an AnyDat a object into a namespace string.

Syntax

string getAsString() const;

13.4.13 getAsTimestamp()

Converts an AnyDat a object into Ti mest anp.

Syntax

Ti mestanp get AsTi mestanp() const;

13.4.14 getType()

Chapter 13
AnyData Class

Retrieves the data type held by the AnyDat a object. Refer to Table 13-4 for valid values

for TypeCode.

Syntax
TypeCode get Type();

13.4.15 isNull()

Tests whether the AnyDat a object is NULL. If the AnyDat a object is NULL, then TRUE is

returned; otherwise, FALSE is returned.

Syntax

bool isNull() const;

13.4.16 setFromBDouble()

Converts a BDoubl e into AnyDat a.

ORACLE

13-13

Chapter 13
AnyData Class

Syntax

voi d set FronBDoubl e(
const BDoubl e& bdoubl e);

Parameter Description
The BDoubl e that is converted into AnyDat a.

bdoubl e

13.4.17 setFromBfile()

Converts a Bfi | e into AnyDat a.

Syntax

voi d set FronBfil e(
const Bfile& bfile);

Parameter Description

biile The Bf i | e that is converted into AnyDat a.

13.4.18 setFromBFloat()

Converts a BFl oat into AnyDat a.

Syntax

voi d set FronBFl oat (
const BFl oat& bfloat);

Parameter Description

bf | oat The BFl oat that is converted into AnyDat a.

13.4.19 setFromBytes()

Converts a Byt es into AnyDat a.

Syntax

voi d set FronmByt es(
const Bytesé& bytes);

Parameter Description

byt es The Byt es that is converted into AnyDat a.

ORACLE 13-14

Chapter 13
AnyData Class

13.4.20 setFromDate()

Converts a Dat e into AnyDat a.

Syntax

voi d set FronDat e(
const Date& date);

Parameter Description

dat e The Dat e that is converted into AnyDat a.

13.4.21 setFromintervalDS()

Converts an I nt erval DS into AnyDat a.

Syntax

voi d set From nt erval DS(
const Interval DS& interval ds);

Parameter Description

i nvterval ds The | nt erval DS that is converted into AnyDat a.

13.4.22 setFromintervalYM()

Converts an I nt erval YMinto AnyDat a.

Syntax

voi d set From nterval YM
const Interval YM& intervalym;

Parameter Description

i nval ym The | nt er val YMthat is converted into AnyDat a.

13.4.23 setFromNumber()

Converts a Nunber into AnyDat a.

Syntax

voi d set FromNunber (
const Nunber & nunj;

ORACLE 13-15

Chapter 13
AnyData Class

Parameter Description
The Nunber that is converted into AnyDat a.

num

13.4.24 setFromObject()

Converts a PObj ect into AnyDat a.

Syntax

voi d set Fronmbj ect (
const PQbject* objptr);

Parameter Description
The POoj ect that is converted into AnyDat a.

obj ptr

13.4.25 setFromRef()

Converts a PObj ect into AnyDat a.

Syntax

voi d set FronRef (
const Ref Any& ref
const string & ypeNane,
const string &schenma);

Parameter Description

rof The Ref Any that is converted into AnyDat a.
typeNane The name of the type.

schema The name of the schema where the type is defined.

13.4.26 setFromString()

Converts a namespace st ring into AnyDat a.

Syntax

voi d set FronBtring(
string& str);

Parameter Description

str The namespace st ri ng that is converted into AnyDat a.

ORACLE 13-16

Chapter 13
BatchSQLException Class

13.4.27 setFromTimestamp()

Converts a Ti mest anp into AnyDat a.

Syntax

voi d set Fronili mest anp(
const Timestanp& tinestanp);

Parameter Description

ti mest anp The Ti nest anp that is converted into AnyDat a.

13.4.28 setNull()
Sets AnyDat a obj ect to NULL.

Syntax

voi d setNull ();

13.5 BatchSQLException Class

The Bat chSQLExcept i on class provides methods for handling batch processing errors.
Because Bat chSQLExcept i on class is derived from the SQLException Class, all

Bat chSQLExcept i on instances support all methods of SQLExcept i on, in addition to the
methods summarized in Table 13-6.

See Also:

"Modifying Rows Iteratively" section in Optimizing Performance of C++
Applications.

Table 13-6 Summary of BatchSQLEXxception Methods

Method Summary

getException() Returns the exception.

getFailedRowCount() Returns the number of rows with failed inserts or
updates.

getRowNum() Returns the number of the row that has an insert or

updated error

13.5.1 getException()

Returns the exception that matches the specified i ndex.

ORACLE 13-17

Chapter 13
Bfile Class

Syntax

SQLException get SQLException (
unsigned int index) const;

Parameter Description

i ndex The index into the list of errors returned by the batch process.

13.5.2 getFailedRowCount()

Returns the number of rows for which the statement insert or update failed.

Syntax

unsi gned int getFai | edRowCount () const;

13.5.3 getRowNum()

Returns the number of the row with an error, matching the specified i ndex.

Syntax

unsi gned int get RowNun(
unsigned int index) const;

Parameter Description

i ndex The index into the list of errors returned by the batch process.

13.6 Bfile Class

ORACLE

The Bfi | e class defines the common properties of objects of type BFI LE. ABFILEis a
large binary file stored in an operating system file outside of the Oracle database. A
Bfi | e object contains a logical pointer to a BFI LE, not the BFI LE itself.

Methods of the Bfi | e class enable you to perform specific tasks related to Bfil e
objects.

Methods of the Resul t Set and St at enent classes, such as getBfi | e() and setBfile(),
enable you to access an SQL BFI LE value.

The only methods valid on a NULL Bfi | e object are setName(), isNull(), and
operator=() .

A Bfil e object can be initialized by:

* The setName() method. The BFI LE can then be modified by inserting this BFI LE into
the table and then retrieving it using SELECT. . . FOR UPDATE. The write() method
modifies the BFI LE; however, the modified data is flushed to the table only when
the transaction is committed. Note that an | NSERT operation is not required.

* Assigning an initialized Bfi | e object to it.

13-18

ORACLE

See Also:

Chapter 13
Bfile Class

In-depth discussion of LOBs in the introductory chapter of Oracle Database
SecureFiles and Large Objects Developer's Guide,

Table 13-7 Summary of Bfile Methods
|

Method Summary
Bfile() Bfi | e class constructor.
close() Closes a previously opened BFI LE.

closeStream()
fileExists()
getDirAlias()
getFileName()
getStream()
getUStringDirAlias()

getUsStringFileName()

isInitialized()
isNull()
isOpen()
length()
open()
operator=()
operator==()
operator!=()
operator==()
setName()
setNull()

Closes the stream obtained from the BFI LE.
Tests whether the BFI LE exists.

Returns the directory object of the BFI LE.
Returns the name of the BFI LE.

Returns data from the BFI LE as a St r eamobject.

Returns a USt ri ng containing the directory object
associated with the BFI LE.

Returns a USt ri ng containing the file name associated
with the BFI LE.

Tests whether the Bf i | e object is initialized.

Tests whether the Bf i | e object is atomically NULL.
Tests whether the BFI LE is open.

Returns the number of bytes in the BFI LE.

Opens the BFI LE with read-only access.

Assigns a BFI LE locator to the Bf i | e object.

Tests whether two Bf i | e objects are equal.

Tests whether two Bf i | e objects are not equal.
Reads a specified portion of the BFI LE into a buffer.
Sets the directory object and file name of the BFI LE.

Sets the Bf i | e object to atomically NULL.

13.6.1 Bfile()

Bfi | e class constructor.

Syntax Description
Bile(): Creates a NULL Bf i | e object.
Bl e Creates an uninitialized Bfi | e object.

const Connection *connectionp);

13-19

Chapter 13
Bfile Class

Syntax Description

Bl e Creates a copy of a Bf i | e object.

const Bfile &srcBfile);

Parameter Description

. The connection pointer
connectionp p

srcBfile The source Bf i | e object

13.6.2 close()

Closes a previously opened Bfil e.

Syntax

void close();

13.6.3 closeStream()

Closes the stream obtained from the Bfil e.

Syntax

voi d cl oseSt rean
Stream *strean);

Parameter Description

stream The stream to be closed.

13.6.4 fileExists()

Tests whether the BFI LE exists. If the BFI LE exists, then TRUE is returned; otherwise,
FALSE is returned.

Syntax

bool fileExists() const;

13.6.5 getDirAlias()

Returns a string containing the directory object associated with the BFI LE.

Syntax

string getDirAlias() const;

ORACLE 13-20

Chapter 13
Bfile Class

13.6.6 getFileName()

Returns a string containing the file name associated with the BFI LE.

Syntax

string getFileName() const;

13.6.7 getStream()

Returns a Stream object read from the BFI LE. If a stream is open, it is disallowed to
open another stream on the Bfi | e object. The stream must be closed before
performing any Bfi | e object operations.

Syntax

Streant get Strean
unsi gned int offset
unsi gned int anount

1,
0);

Parameter Description

The starting position at which to begin reading data from the BFI LE. If of f set is

of f set p . . D .
not specified, the data is written from the beginning of the BLOB. Valid values are
numbers greater than or equal to 1.

anount The total number of bytes to be read from the BFI LE; if amount is 0, the data is

read in a streamed mode from input of f set until the end of the BFI LE.

13.6.8 getUStringDirAlias()

Returns a USt ri ng containing the directory object associated with the BFI LE. Note the
USt ri ng object is in UTF16 character set. The environment associated with BFI LE
should be associated with UTF16 characterset.

Syntax
UString getUStringDirAlias() const;

13.6.9 getUStringFileName()

Returns a Ust ri ng containing the file name associated with the BFI LE. Note the UStri ng
object is in UTF16 characterset. The environment associated with BFI LE should be
associated with UTF16 characterset.

Syntax
UString getUStringFileNane() const;

13.6.10 islnitialized()

Tests whether the Bfi | e object has been initialized. If the Bfi | e object has been
initialized, then TRUE is returned; otherwise, FALSE is returned.

ORACLE 13-21

Chapter 13
Bfile Class

Syntax

bool islnitialized() const;

13.6.11 isNull(

Tests whether the Bfi | e object is atomically NULL. If the Bf i | e object is atomically NULL,
then TRUE is returned; otherwise, FALSE is returned.

Syntax

bool isNull() const;

13.6.12 isOpen()

Tests whether the BFI LE is open. The BFI LE is considered to be open only if it was
opened by a call on this Bfi | e object. (A different Bfi | e object could have opened this
file as multiple open() calls can be performed on the same file by associating the file
with different Bfi | e objects). If the BFI LE is open, then TRUE is returned; otherwise, FALSE
is returned.

Syntax

bool isQOpen() const;

13.6.13 length()

Returns the number of bytes (inclusive of the end of file marker) in the BFI LE.

Syntax

unsigned int Iength() const;

13.6.14 open()

Opens an existing BFI LE for read-only access. This function is meaningful the first time
it is called for a Bfi | e object.

Syntax

voi d open();

13.6.15 operator=()

Assigns a Bfi | e object to the current Bf i | e object. The source Bf i | e object is assigned
to this Bfi | e object only when this Bfi | e object gets stored in the database.

Syntax

Bfi | e& operat or =(
const Bfile &srcBfile);

ORACLE 13-22

Chapter 13
Bfile Class

Parameter Description

sreBfile The Bf i | e object to be assigned to the current Bf i | e object.

13.6.16 operator==()

Compares two Bf i | e objects for equality. The Bfi | e objects are equal if they both refer
to the same BFI LE. If the Bf i | e objects are NULL, then FALSE is returned. If the Bfi | e
objects are equal, then TRUE is returned; otherwise, FALSE is returned.

Syntax

bool operat or==(
const Bfile &srcBfile) const;

Parameter Description

sreBfile The Bf i | e object to be compared with the current Bf i | e object.

13.6.17 operator!=()

Compares two Bf i | e obj ects for inequality. The Bfi | e objects are equal if they both
refer to the same BFI LE. If the Bf i | e objects are not equal, then TRUE is returned,;
otherwise, FALSE is returned.

Syntax

bool operator!=(
const Bfile &srcBfile) const;

Parameter Description

SrcBfile The Bf i | e object to be compared with the current Bf i | e object.

13.6.18 read()

Reads a part or all of the BFI LE into the buffer specified, and returns the number of
bytes read.

Syntax

unsi gned int read(
unsigned int ant,
unsi gned char *buffer,
unsi gned int bufsize,
unsigned int offset = 1) const;

ORACLE 13-23

Chapter 13
Blob Class

Parameter Description

The number of bytes to be read. Valid values are numbers greater

ant than or equal to 1.

buf f er The buffer that the BFI LE data is to be read into. Valid values are
numbers greater than or equal to ant .

buf fsi ze The size of the buffer that the BFI LE data is to be read into. Valid
values are numbers greater than or equal to ant .

of f set The starting position at which to begin reading data from the BFI LE.

If of f set is not specified, the data is written from the beginning of
the BFI LE.

13.6.19 setName()

Sets the directory object and file name of the BFI LE.

Syntax Description

Sets the directory object and file name of

voi d set Name(the BFI LE

const string &dirAlias,
const string &fileName);

Sets the directory object and file name of
the BFI LE (Unicode support). The client
Envi ronnent should be initialized in
OCCIUTIF16 mode.

voi d set Name(
const UString &dirAlias,
const UString &fileNane);

Parameter Description

dirAias The directory object to be associated with the BFI LE.

£i1eNane The file name to be associated with the BFI LE.

13.6.20 setNull()

13.7 Blob

ORACLE

Sets the Bfi | e obj ect to atomically NULL.

Syntax

void setNull();

Class

The Bl ob class defines the common properties of objects of type BLOB. A BLOB is a large
binary object stored as a column value in a row of a database table. A Bl ob object
contains a logical pointer to a BLOB, not the BLOB itself.

Methods of the Bl ob class enable you to perform specific tasks related to Bl ob objects.

13-24

ORACLE

Chapter 13
Blob Class

Methods of the Resul t Set and St at enent classes, such as get Bl ob() and set Bl ob(),
enable you to access an SQL BLOB value.

The only methods valid on a NULL Bl ob object are setName(), isNull(), and operator=() .

An uninitialized Bl ob object can be initialized by:

e The setEmpty() method. The BLOB can then be modified by inserting this BLOB into
the table and then retrieving it using SELECT. . . FOR UPDATE. The write() method
modifies the BLOB; however, the modified data is flushed to the table only when the
transaction is committed. Note that an update is not required.

e Assigning an initialized Bl ob object to it.

See Also:

e In-depth discussion of LOBs in Oracle Database SecureFiles and Large
Objects Developer's Guide

Table 13-8 Summary of Blob Methods
|

Method Summary

Bloh() Bl ob class constructor.

append() Appends a specified BLOB to the end of the current BLOB.
close() Closes a previously opened BLOB.

closeStream()

copy()

getChunkSize()

getContentType()
getOptions()

getStream()
isInitialized()
isNull()
isOpen()
length()
open()
operator=()
operator==()
operator!= ()
read()
setContentType()
setEmpty()
setNull()

Closes the St r eamobject obtained from the BLOB.

Copies a specified portion of a BFI LE or BLOB into the
current BLOB.

Returns the smallest data size to perform efficient writes to
the BLOB.

Returns the content type of the Bl ob.

Returns the BLOB's LobOpt i onVal ue for a specified
LobOpt i onType.

Returns data from the BLOB as a St r eamobject.
Tests whether the Bl ob object is initialized

Tests whether the Bl ob object is atomically NULL.
Tests whether the BLOB is open.

Returns the number of bytes in the BLOB.

Opens the BLOB with read or read/write access.
Assigns a BLOB locator to the Bl ob object.

Tests whether two Bl ob objects are equal.

Tests whether two Bl ob objects are not equal.
Reads a portion of the BLOB into a buffer.

Sets the content type of the Bl ob.

Sets the Bl ob object to empty.

Sets the Bl ob object to atomically NULL.

13-25

Chapter 13
Blob Class

Table 13-8 (Cont.) Summary of Blob Methods

___|
Method Summary

setOptions() Specifies a LobOpt i onVal ue for a particular
LobOpt i onType. Enables advanced compression,
encryption and deduplication of BLOBs.

trim() Truncates the BLOB to a specified length.
write() Writes a buffer into an unopened BLOB.
writeChunk() Writes a buffer into an open BLOB.

13.7.1 Blob()

Bl ob class constructor.

Syntax Description
Creates a NULL Bl ob object.

Bl ob();

Bl ob(Creates an uninitialized Bl ob object.

const Connection *connectionp);

Bl ob(Creates a copy of a Bl ob object.

const Blob &srcBlob);

Parameter Description

. Th nnection pointer
connect i onp e connection pointe

srcBl ob The source Bl ob object.

13.7.2 append()

Appends a BLOB to the end of the current BLOB.

Syntax

voi d append(
const Blob &srcBlob);

Parameter Description

srcBl ob The BLOB object to be appended to the current BLOB object.

13.7.3 close()

Closes a BLOB.

ORACLE 13-26

Chapter 13
Blob Class

Syntax

voi d close();

13.7.4 closeStream()

Closes the Stream object obtained from the BLOB.

Syntax

voi d cl oseSt rean
Stream *strean;

Parameter Description

stream The St reamto be closed.

13.7.5 copy()

ORACLE

Copies a part or all of a BFI LE or BLOB into the current BLOB.

Syntax Description

voi d copy(Copies a part of a BFI LE into the current BLOB.

const Bfile &srcBfile,
unsi gned int nunBytes,

unsigned int dstOffset = 1,
unsigned int srcOffset = 1);
voi d copy(Copies a part of a BLOB into the current BLOB.
const Bl ob &srcBl ob, If the destination BLOB has deduplication
unsi gned int nunBytes, enabled, and the source and destination BLOBs
unsigned int dstOffset = 1, are in the same column, the new BLOB is
unsigned int srcOffset = 1); created as copy-on-write. All other settings are
inherited from the source BLOB. If the
destination BLOB has deduplication disabled, it
is a completely new copy of the BLOB.
Parameter Description
SreBfile The BFI LE from which the data is to be copied.
srcBl ob The BLOB from which the data is to be copied.
The number of bytes to be copied from the source BFI LE or BLOB. Valid
nunByt es
values are numbers greater than 0.
dst Of f set The starting position at which to begin writing data into the current BLOB.
Valid values are numbers greater than or equal to 1.
sreOf fset The starting position at which to begin reading data from the source BFI LE

or BLOB. Valid values are numbers greater than or equal to 1.

13-27

Chapter 13
Blob Class

13.7.6 getChunkSize()

Returns the smallest data size to perform efficient writes to the BLOB.

Syntax

unsi gned int get ChunkSi ze() const;

13.7.7 getContentType()

Returns the content type of the Bl ob. If a content type has not been assigned, returns a
NULL string.

Syntax

string get Content Type();

13.7.8 getOptions()

Returns the BLOB's LobQpt i onVal ue for a specified LobOpt i onType.

Throws an exception if attempting to retrieve a value for an option that is not
configured on the database column or partition that stores the BLOB.
Syntax

LobOpti onVal ue get Opti ons(
LobOpti onType opt Type);

Parameter Description

The LobOpt i onType setting requested. These may be combined using

opt Type o : .
pLIYP bitwise or (]) to avoid server round trips. See Table 7-1 and Table 7-2

13.7.9 getStream()

ORACLE

Returns a St reamobject from the BLOB. If a stream is open, it is disallowed to open
another stream on Bl ob obj ect, so the user must always close the stream before
performing any Bl ob object operations.

Syntax

Streant get Strean(
unsi gned int of fset
unsi gned i nt anount

1,
0);

Parameter Description

The starting position at which to begin reading data from the BLOB. If of f set is

of f set o . ; c .
not specified, the data is written from the beginning of the BLOB. Valid values are
numbers greater than or equal to 1.

amount The total number of bytes to be read from the BLOB; if anount is 0, the data is

read in a streamed mode from input of f set until the end of the BLCB.

13-28

Chapter 13
Blob Class

13.7.10 isInitialized()

Tests whether the Bl ob object is initialized. If the Bl ob object is initialized, then TRUE is
returned; otherwise, FALSE is returned.

Syntax

bool islnitialized() const;

13.7.11 isNull()

Tests whether the Bl ob object is atomically NULL. If the Bl ob object is atomically NULL,
then TRUE is returned; otherwise, FALSE is returned.

Syntax

bool isNull() const;

13.7.12 isOpen()

Tests whether the BLOB is open. If the BLOB is open, then TRUE is returned; otherwise,
FALSE is returned.

Syntax

bool isQOpen() const;

13.7.13 length()

Returns the number of bytes in the BLOB.

Syntax

unsigned int Iength() const;

13.7.14 open()

ORACLE

Opens the BLOB in read/write or read-only mode.

Syntax

voi d open(
LobOpenMde mode = OCCl _LOB_READWRI TE) ;

Parameter Description

The mode the BLOB is to be opened in. Valid values are:
o OCCl_LOB _READWRI TE
e 0OCCl _LOB_READONLY

mode

13-29

Chapter 13
Blob Class

13.7.15 operator=()

Assigns a BLOB to the current BLCB. The source BLOB gets copied to the destination BLOB
only when the destination BLOB gets stored in the table.

Syntax

Bl ob& operat or =(
const Blob &srcBlob);

Parameter Description

srcBl ob The source BLOB from which to copy data.

13.7.16 operator==()

Compares two Bl ob obj ect s for equality. Two Bl ob obj ect s are equal if they both refer
to the same BLOB. Two NULL Bl ob obj ects are not considered equal. If the Bl ob objects
are equal, then TRUE is returned; otherwise, FALSE is returned.

Syntax

bool operat or==(
const Blob &srcBlob) const;

Parameter Description

srcBl ob The source BLOB to be compared with the current BLCB.

13.7.17 operator!= ()

Compares two Bl ob obj ect s for inequality. Two Bl ob obj ect s are equal if they both
refer to the same BLOB. Two NULL Bl ob objects are not considered equal. If the Bl ob
objects are not equal, then TRUE is returned; otherwise, FALSE is returned.

Syntax

bool operator!=(
const Blob &srcBlob) const;

Parameter Description

srcBl ob The source BLOB to be compared with the current BLCB.

13.7.18 read()

Reads a part or all of the BLOB into a buffer. The actual number of bytes read is
returned.

ORACLE 13-30

Chapter 13
Blob Class

Syntax

unsi gned int read(
unsigned int ant,
unsi gned char *buffer,
unsi gned int bufsize,
unsigned int offset = 1) const;

Parameter Description

ant The number of bytes to be read. Valid values are numbers greater than or
equal to 1.

buf f er The buffer that the BLOB data is to be read into. Valid values are numbers
greater than or equal to ant .

buf fsi ze The size of the buffer that the BLOB data is to be read into. Valid values are
numbers greater than or equal to ant .

of f set The starting position at which to begin reading data from the BLCB. If of f set is

not specified, the data is written from the beginning of the BLOB.

13.7.19 setContentType()

Sets the content type of the Bl ob. If the Bl ob is not a SecureFile, throws an exception.

Syntax

voi d set Cont ent Type(
const string contenttype);

Parameter Description

cont ent t ype The content type of the Bl ob; an ASCIlI Mime compliant string.

13.7.20 setEmpty()

Sets the Bl ob object to empty.

Syntax Description

voi d set Enpty(): Sets the Bl ob object to empty.

Sets the Bl ob object to empty and initializes
the connection pointer to the passed
parameter.

voi d set Enpt y(
const Connection* connectionp);

Parameter Description

connecti onp The new connection pointer for the BLOB object.

ORACLE 13-31

Chapter 13
Blob Class

13.7.21 setNull()

Sets the Bl ob object to atomically NULL.

Syntax

void setNull();

13.7.22 setOptions()

Specifies a LobOpt i onVal ue for a particular LobOpti onType. Enables advanced
compression, encryption and deduplication of BLOBs. See Table 7-1 and Table 7-2.

Throws an exception if attempting to set or un-set an option that is not configured on
the database column or partition that stores the BLCB.

Throws an exception if attempting to turn off encryption in an encrypted BLOB column.

Syntax

voi d set Options(
LobOpti onType opt Type,
LobOpt i onVal ue opt Val ue);

Parameter Description

The LobOpt i onType setting being specified. These may be combined
opt Type . L : .

using bitwise or (|) to avoid server round trips.
opt Val ue The LobOpt i onVal ue setting for the LobOpt i onType specified by the

opt Type parameter

13.7.23 trim()

Truncates the BLOB to the new length specified.

Syntax

void trim
unsi gned int new en);

Parameter Description

The new length of the BLOB. Valid values are numbers less than or

newl en
equal to the current length of the BLOB.

13.7.24 write()

Writes data from a buffer into a BLOB. This method implicitly opens the BLOB, copies the
buffer into the BLOB, and implicitly closes the BLOB. If the BLOB is open, use writeChunk()
instead. The actual number of bytes written is returned.

ORACLE 13-32

Syntax

Chapter 13
Bytes Class

unsigned int wite(
unsigned int ant,
unsi gned char *buffer,
unsi gned int bufsize,
unsigned int offset = 1);

Parameter

Description

ant

buf fer

buf fsi ze

of f set

The number of bytes to be written to the BLOB.

The buffer containing the data to be written to the BLCB.

The size of the buffer containing the data to be witten to the BLOB.
Valid values are numbers greater than or equal to ant .

The starting position at which to begin writing data into the BLOB. If of f set is
not specified, the data is written from the beginning of the BLOB. Valid values
are numbers greater than or equal to 1.

13.7.25 writeChunk()

Writes data from a buffer into a previously opened BLOB. The actual number of bytes
written is returned.

Syntax

unsi gned int witeChunk(
unsi gned i nt anount,
unsi gned char *buffer,
unsi gned int bufsize,
unsigned int offset = 1);

Parameter

Description

ant

buf f er

buf f si ze

of f set

The number of bytes to be written to the BLOB.

The buffer containing the data to be written to the BLOB.

The size of the buffer containing the data to be written to the BLOB. Valid
values are numbers greater than or equal to ant .

The starting position at which to begin writing data into the BLOB. If of f set is
not specified, the data is written from the beginning of the BLOB. Valid values
are numbers greater than or equal to 1.

13.8 Bytes Class

Methods of the Byt es class enable you to perform specific tasks related to Byt es

objects.

ORACLE

13-33

Chapter 13
Bytes Class

Table 13-9 Summary of Bytes Methods
|

Method

Summary

Bytes()
byteAt()
getBytes()
isNull()
length()
operator=()
setNull()

Byt es class constructor.

Returns the byte at the specified position of the Byt es object.
Returns a byte array from the Byt es object.

Tests whether the Byt es object is NULL.

Returns the number of bytes in the Byt es object.
Assignment operator for Byt es class.

Sets the Byt es object to NULL.

13.8.1 Bytes()

Byt es class constructor.

Syntax

Description

Byt es(

Creates a Byt es object.

Environnment *env = NULL);

Byt es(

unsi gned char *val ue,

Creates a Byt es object that contains a subarray of
bytes from a character array.

unsi gned int count
unsigned int offset = 0,
const Environment *env = NULL);

Byt es(

Creates a copy of a Byt es object, use the syntax

const Bytes &e);

Parameter

Description

env

val ue

count

of f set

Environment

Initial value of the new object

The size of the subset of the character array that is copied into the new bytes
object

The first position from which to begin copying the character array

The source Byt es object.

13.8.2 byteAt()

Returns the byte at the specified position in the Byt es object.

ORACLE

13-34

Chapter 13
Bytes Class

Syntax

unsi gned char byt eAt (
unsigned int index) const;

Parameter Description

The position of the byte to be returned from the Byt es object; the

| ndex first byte of the Byt es object is at 0.

13.8.3 getBytes()

Copies bytes from a Byt es object into the specified byte array.

Syntax

voi d get Byt es(
unsi gned char *dst,
unsi gned int count,

unsigned int srcBegin = 0,

unsigned int dstBegin = 0) const;
Parameter Description
dst The destination buffer into which data from the Byt es object is to be written.
count The number of bytes to copy.

. The starting position at which data is to be read from the Byt es object; the
srcBegin i . . L
position of the first byte in the Byt es object is at 0.

dst Begin The starting position at which data is to be written in the destination buffer; the

position of the first byte in dst is at 0.

13.8.4 isNull()

Tests whether the Byt es object is atomically NULL. If the Byt es object is atomically NULL,
then TRUE is returned; otherwise FALSE is returned.

Syntax

bool isNull() const;

13.8.5 length()

This method returns the length of the Byt es object.

Syntax

unsigned int length() const;

13.8.6 operator=()

Assignment operator for Byt es class.

ORACLE 13-35

Chapter 13
Clob Class

Syntax

voi d operat or=(
const Bytes& bytes);

Parameter Description

byt es The original Byt es.

13.8.7 setNull()

This method sets the Byt es object to atomically NULL.

Syntax

voi d setNull ();

13.9 Clob Class

The d ob class defines the common properties of objects of type CLOB. A C ob is a large
character object stored as a column value in a row of a database table. A d ob object
contains a logical pointer to a CLOB, not the CLOB itself.

Methods of the T ob class enable you to perform specific tasks related to C ob objects,
including methods for getting the length of a SQL CLOB, for materializing a CLOB on the
client, and for extracting a part of the CLOB.

The only methods valid on a NULL CLOB object are setName(), isNull(), and operator=() .

Methods in the Resul t Set and St at enent classes, such as get ¢ ob() and set d ob(),
enable you to access an SQL CLOB value.

An uninitialized CLOB object can be initialized by:

e The setEmpty() method. The CLOB can then be modified by inserting this CLOB into
the table and retrieving it using SELECT. . . FOR UPDATE. The write() method modifies
the CLOB; however, the modified data is flushed to the table only when the
transaction is committed. Note that an i nsert is not required.

* Assigning an initialized d ob object to it.

¢ See Also:

* In-depth discussion of LOBs in the introductory chapter of Oracle Database
SecureFiles and Large Objects Developer's Guide,

Table 13-10 Summary of Clob Methods

. __|
Method Summary

Clob() d ob class constructor.

ORACLE 13-36

ORACLE

Chapter 13
Clob Class

Table 13-10 (Cont.) Summary of Clob Methods
|

Method Summary
append() Appends a d ob at the end of the current d ob.
close() Closes a previously opened C ob.

closeStream()

copy()

getCharSetForm()
getCharSetld()
getCharSetldUString()

getChunkSize()

getContentType()

getOptions()

getStream()
isInitialized()
isNull()
isOpen()
length()
open()
operator=()
operator==()
operator!=()
read()

setCharSetld()
setCharSetldUString()

setCharSetForm()
setContentType()

setEmpty()
setNull()
setOptions()

trim()
write()
writeChunk()

Closes the St r eamobject obtained from the current C ob.

Copies all or a portion of a O ob or BFI LE into the current
d ob.

Returns the character set form of the Cl ob.
Returns the character set ID of the C ob.

Retrieves the characterset name associated with the d ob;
USt ri ng version.

Returns the smallest data size to perform efficient writes to
the CLCB.

Returns the content type of the C ob.

Returns the CLOB's LobOpt i onVal ue for a specified
LobOpti onType.

Returns data from the CLOB as a St r eamobject.
Tests whether the C ob object is initialized.

Tests whether the C ob object is atomically NULL.
Tests whether the O ob is open.

Returns the number of characters in the current CLCB.
Opens the CLOB with read or read/write access.
Assigns a CLOB locator to the current Cl ob object.
Tests whether two C ob objects are equal.

Tests whether two O ob objects are not equal.
Reads a portion of the CLOB into a buffer.

Sets the character set ID associated with the C ob.

Sets the character set ID associated with the O ob; used
when the environment character set is UTF16.

Sets the character set form associated with the O ob.
Sets the content type of the O ob.

Sets the O ob object to empty.

Sets the O ob object to atomically NULL.

Specifies a LobOpt i onVal ue for a particular
LobOpt i onType. Enables advanced compression,
encryption and deduplication of CLOBs.

Truncates the O ob to a specified length.
Writes a buffer into an unopened CLOB.

Writes a buffer into an open CLOB.

13-37

Chapter 13
Clob Class

13.9.1 Clob()

C ob class constructor.

Syntax Description
Qob(): Creates a NULL O ob object.
a ob Creates an uninitialized Cl ob object.

const Connection *connectionp);

a ob(Creates a copy of a Cl ob object.

const Clob *srcCob);

Parameter Description

. nnection pointer
connectionp Connection pointe

srcd ob The source C ob object

13.9.2 append()

Appends a CLOB to the end of the current CLCB.

Syntax

voi d append(
const Clob &srcCob);

Parameter Description

The CLOB to be appended to the current CLOB.

srcC ob

13.9.3 close()

Closes a CLOB.

Syntax

void close();

13.9.4 closeStream()

Closes the st reamobject obtained from the CLOB.

Syntax

voi d cl oseSt rean
Stream *strean;

ORACLE 13-38

Chapter 13
Clob Class

Parameter

Description

stream

The Stream object to be closed.

13.9.5 copy()

Copies a part or all of a BFI LE or CLOB into the current CLCB.

OCCI does not perform any characterset conversions when loading data from a Bfi |l e
into a d ob; therefore, ensure that the contents of the Bfi | e are character data in the
server's C ob storage characterset.

Syntax

Description

voi d copy(

Copies a BFI LE into the current CLOB.

const Bfile &srcBfile,
unsi gned int nunBytes,

unsigned int dstOffset = 1,
unsigned int srcOffset = 1);

voi d copy(Copies a CLOB into the current CLOB.
const Clob &srcC ob, If the destination CLOB has deduplication
unsi gned int nunBytes, enabled, and the source and destination CLOBs
unsigned int dstOffset = 1, are in the same column, the new CLOB is
unsigned int srcOffset = 1); created as copy-on-write. All other settings are

inherited from the source CLB. If the
destination CLOB has deduplication disabled, it
is a completely new copy of the CLOB.

Parameter

Description

srcBfile

srcCob

nunByt es

dst Of f set

srcOf f set

The BFI LE from which the data is to be copied.

The CLOB from which the data is to be copied.

The number of bytes to be copied from the source BFI LE or CLOB. Valid
values are numbers greater than 0.

The starting position at which data is to be is at 0.

The starting position at which to begin writing data into the current CLOB Valid
values are numbers greater than or equal to 1 written in the destination buffer;
the position of the first byte.

The starting position at which to begin reading data from the source BFI LE or
CLOB. Valid values are numbers greater than or equal to 1.

13.9.6 getCharSetForm()

Returns the character set form of the CLOB.

Syntax

Char Set For m get Char Set Forn{) const;

ORACLE

13-39

Chapter 13
Clob Class

13.9.7 getCharSetld()

Returns the character set ID of the CLOB, in string form.

Syntax

string getCharSetld() const;

13.9.8 getCharSetldUString()

Retrieves the characterset name associated with the d ob; USt ri ng version.

Syntax
UString get CharSet|dUString() const;

13.9.9 getChunkSize()

Returns the smallest data size to perform efficient writes to the CLOB.

Syntax

unsi gned int getChunkSize() const;

13.9.10 getContentType()

Returns the content type of the C ob. If a content type has not been assigned, returns a
NULL string.

Syntax

string get Content Type();

13.9.11 getOptions()

Returns the CLOB's LobOpt i onVal ue for a specified LobOpt i onType.

Throws an exception if attempting to retrieve a value for an option that is not
configured on the database column or partition that stores the CLCB.

Syntax

LobOpt i onVal ue get Options(
LobOpti onType opt Type);

Parameter Description

The LobOpt i onType setting requested. These may be combined using

tT o . .
optType bitwise or (|) to avoid server round trips. See Table 7-1 and Table 7-2

13.9.12 getStream()

Returns a Streamobject from the CLOB. If a stream is open, it is disallowed to open
another stream on CLOB object, so the user must always close the stream before

ORACLE 13-40

Chapter 13
Clob Class

performing any d ob object operations. The client's character set id and form is used by
default, unless they are explicitly set through setCharSetld() and setEmpty() calls.

Syntax

Streant get Strean(

unsigned int offset = 1,
unsigned int amount = 0);
Parameter Description

The starting position at which to begin reading data from the CLOB. If of f set is

of f set . . . D .
not specified, the data is written from the beginning of the CLOB. Valid values
are numbers greater than or equal to 1.

amount The total number of consecutive characters to be read. If anobunt is 0, the data

is read from the of f set value until the end of the CLOB.

13.9.13 isInitialized()

Tests whether the O ob obj ect is initialized. If the d ob object is initialized, TRUE is
returned; otherwise, FALSE is returned.

Syntax

bool islnitialized() const;

13.9.14 isNull()

Tests whether the d ob object is atomically NULL. If the C ob object is atomically NULL,
TRUE is returned; otherwise, FALSE is returned.

Syntax

bool isNull() const;

13.9.15 isOpen()

Tests whether the CLOB is open. If the CLOB is open, TRUE is returned; otherwise, FALSE is
returned.

Syntax

bool isOpen() const;

13.9.16 length()

Returns the number of characters in the CLOB.

Syntax

unsigned int Iength() const;

13.9.17 open()

Opens the CLOB in read/ wri t e or read-only mode.

ORACLE 13-41

Chapter 13
Clob Class

Syntax

voi d open(
LObOpenMode node = OCCl _LOB_READWRI TE) ;

Parameter Description

The nmode the CLOB is to be opened in. Valid values are:
« OCCl_LCB READMRI TE
« 0OCI _LOB_READONLY

mode

13.9.18 operator=()

Assigns a CLOB to the current CLOB. The source CLOB gets copied to the destination CLOB
only when the destination CLOB gets stored in the table.

Syntax

Cl ob& operat or =(
const Clob &srcCob);

Parameter Description

srcd ob The C ob from which the data must be copied.

13.9.19 operator==()

Compares two d ob objects for equality. Two O ob objects are equal if they both refer to
the same CLOB. Two NULL C ob objects are not considered equal. If the Bl ob objects are
equal, then TRUE is returned; otherwise, FALSE is returned.

Syntax

bool operat or==(
const Cob &srcC ob) const;

Parameter Description

sred ob The O ob object to be compared with the current Cl ob object.

13.9.20 operator!=()

ORACLE

Compares two d ob obj ect s for inequality. Two d ob objects are equal if they both refer
to the same CLOB. Two NULL Cl ob objects are not considered equal. If the O ob objects
are not equal, then TRUE is returned; otherwise, FALSE is returned.

Syntax

bool operator!=(
const O ob &srcdob) const;

13-42

Chapter 13
Clob Class

Parameter Description

srcd ob The O ob object to be compared with the current C ob object.

13.9.21 read()

Reads a part or all of the CLOB into a buffer.

Returns the actual number of characters read for fixed-width charactersets, such as
UTF16, or the number of bytes read for multibyte charactersets, including UTF8.

The client's character set id and form is used by default, unless they are explicitly set
through setCharSetld(), setCharSetldUString() and setCharSetForm() calls.

Note that for the second version of the method, the return value represents either the
number of characters read for fixed-width charactersets (UTF16), or the number of
bytes read for multibyte charactersets (including UTF8).

Syntax Description

unsi gned i nt read(Reads a part or all of the CLOB into a buffer.

unsigned int ant,

unsi gned char *buffer,

unsi gned int bufsize,
unsigned int offset=1) const;

Reads a part or all of the CLOB into a buffer;
globalization enabled. Should be called
after setting character set to OCCIUTF16
using set Char Set 1 d() method.

unsi gned int read(
unsigned int ant,
unsi gned utext *buffer,
unsi gned int bufsize,
unsigned int offset=1) const;

Parameter Description

ant The number of bytes to be read. from the CLCB.

buf f er The buffer that the CLOB data is to be read into.

buf f si ze The size of the buffer. Valid values are numbers greater than or
equal to ant .

of f set The starting position at which to begin reading data from the CLCB. If

of f set is not specified, the data is written from the beginning of the
CLOB. Valid values are numbers greater than or equal to 1.

13.9.22 setCharSetld()

ORACLE

Sets the Character set Id associated with C ob. The characterset id set is used for
read/write and getStream() operations. If no value is set explicitly, the default client's
character set id is used. List of character sets supported is given in Globalization
Support Guide Appendix A.

13-43

Chapter 13
Clob Class

Syntax

voi d set Char Set | d(
const string &charset);

Parameter Description

Oracle supported characterset name, such as ES8DEC, ZHT16BI G5, or

char set 000 UTF16.

13.9.23 setCharSetldUString()

Sets the characterset id associated with ¢ ob; used when the environment's
characterset is UTF16. The char set id set is used for read, write and getStream()
operations.

Syntax

voi d set Char Set | dUSSt ri ng(
const string &charset);

Parameter Description

Oracle supported characterset name, such as WESDEC, ZHT16BI G5,

char set . .
or OCCl UTF16 in UStri ng (UTF16 characterset).

13.9.24 setCharSetForm()

Sets the character set form associated with the CLOB. The charset form set is used for
read, write and getStream() operations. If no value is set explicitly, by default,
0CCl_SQLCS_| MPLI CI T is used.

Syntax

voi d set Char Set For n(
Char Set Form csfrm) ;

Parameter Description

The charset form for d ob.
csfrm

13.9.25 setContentType()

Sets the content type of the d ob. If the d ob is not a SecureFile, throws an exception.

Syntax

voi d set Cont ent Type(
const string contenttype);

ORACLE 13-44

Chapter 13
Clob Class

Parameter Description

cont ent t ype The content type of the O ob; an ASCIlI Mime compliant string.

13.9.26 setEmpty()

Sets the d ob object to empty.

Syntax Description

voi d set Enpty(); Sets the O ob object to empty.

Sets the O ob object to empty and initializes the

voi d set Enpt ; .
L y(connection pointer to the passed parameter.

const Connection* connectionp);

Parameter Description

connect i onp The new connection pointer for the Cl ob object.

13.9.27 setNull()

Sets the d ob object to atomically NULL.

Syntax

void setNull();

13.9.28 setOptions()

Specifies a LobOpt i onVal ue for a particular LobOpti onType. Enables advanced
compression, encryption and deduplication of CLOBs. See Table 7-1 and Table 7-2.

Throws an exception if attempting to set or un-set an option that is not configured on
the database column or partition that stores the CLOB.

Throws an exception if attempting to turn off encryption in an encrypted CLOB column.

Syntax

voi d set Options(
LobOpti onType opt Type,
LobOpt i onVal ue opt Val ue);

Parameter Description

The LobOpt i onType setting being specified. These may be combined
opt Type . L : .

using bitwise or (|) to avoid server round trips.
opt Val ue The LobOpt i onVal ue setting for the LobOpt i onType specified by the

opt Type parameter

ORACLE 13-45

Chapter 13
Clob Class

13.9.29 trim()

Truncates the CLOB to the new | ength specifi ed.

Syntax

void trim
unsi gned int new en);

Parameter Description

The new length of the CLOB. Valid values are numbers less than or equal to the

w
newen current length of the CLOB.

13.9.30 write()

ORACLE

Writes data from a buffer into a CLOB.

This method implicitly opens the CLOB, copies the buffer into the CLOB, and implicitly
closes the CLOB. If the CLOB is open, use writeChunk() instead. The actual number of
characters written is returned. The client's character set id and form is used by default,
unless they are explicitly set through setCharSetld() and setCharSetForm() calls.

Syntax Description

unsi gned i nt write(Writes data from a buffer into a CLOB.

unsigned int ant,

unsi gned char *buffer,
unsi gned int bufsize,
unsigned int offset=1);

Writes data from a UTF16 buffer into a CLOB;
globalization enabled. Should be called after setting
character set to OCCIUTF16 using
setCharSetldUString() method.

unsigned int wite(
unsigned int ant,
utext *buffer,
unsi gned int bufsize,
unsigned int offset=1);

Parameter Description
ant The amount parameter represents:
e number of characters written for fixed-width charactersets (UTF16)
* number of bytes written for multibyte charactersets (including UTF8)
buf f er The buffer containing the data to be written to the CLOB.
buf f si ze The size of the buffer containing the data to be written to the CLOB. Valid
values are numbers greater than or equal to ant .
of f set The starting position at which to begin writing data into the CLOB. If of f set is

not specified, the data is written from the beginning of the CLOB. Valid values
are numbers greater than or equal to 1.

13-46

Chapter 13
Connection Class

13.9.31 writeChunk()

Writes data from a buffer into a previously opened CLOB. Returns the actual number of
characters. The client's character set id and form is used by default, unless they are
explicitly set through setCharSetld() and setCharSetForm() calls.

Syntax Description

Writes data from a buffer into a previously

unsi gned int witeChunk(opened CLOB

unsigned int ant,

unsi gned char *buffer,
unsi gned int bufsize,
unsigned int offset=1);

Writes data from a UTF16 buffer into a
CLOB; globalization enabled. Should be
called after setting characterset to

OCCl UTF16 using setCharSetldUString()
method.

unsi gned int witeChunk(
unsigned int ant,
utext *buffer,
unsi gned int bufsize,
unsigned int offset=1);

Parameter Description

The amount parameter represents either a number of characters written for
fixed-width charactersets (UTF16) or a number of bytes written for multibyte
charactersets (including UTF8)

amt

The buffer containing the data to be written to the CLOB.

buf f er

buffsi ze The size of the buffer containing the data to be written to the CLOB. Valid
values are numbers greater than or equal to ant .

of fset The starting position at which to begin writing data into the CLCB. If of f set is

not specified, the data is written from the beginning of the CLOB. Valid values
are numbers greater than or equal to 1.

13.10 Connection Class

The Connecti on class represents a connection with a specific database. Inside the
connection, SQL statements are executed and results are returned.

ORACLE 13-47

ORACLE

Chapter 13
Connection Class

Table 13-11 Enumerated Values Used by Connection Class

Attribute

Options

Fai | Over Event Type

Fai | Qver Type

ProxyType

FO BEG Nindicates that a lost connection has been detected;
failover is starting.

FO_END indicates that a failover completed successfully; the
Connect i on is ready for use.

FO_ABORT indicates that the failover was unsuccessful; it is not
be attempted again.

FO_REAUTH indicates that the user session has been
reauthenticated.

FO_ERRCR indicates that a failover was unsuccessful; the
application can handle the error and retry failover.

FO_NONE indicates that the user requested no protection for
failover.

FO_SESSI ON indicates that the user requested only session
failover.

FO_SELECT indicates that the use requested select failover.

PROXY_DEFAULT is the database user name.

Table 13-12 Summary of Connection Methods

Method Summary

changePassword() Changes the password for the current user.

commit() Commits changes made since the previous commit or
rollback and release any database locks held by the
session.

createStatement() Creates a St at enent object to execute SQL statements.

flushCache() Flushes the object cache associated with the connection.

getClientCharSet()
getClientCharSetUString()

getClientNCHARCharSet()

Returns the default client character set.

Returns the globalization enabled client character set in
UString.

Returns the default client NCHAR character set.

getClientNCHARCharSetUString() Returns the globalization enabled client NCHAR character

getClientVersion()
getLTXID()

getMetaData()

getOCIServer()

getOClServiceContext()

getOClSession()

setin UStri ng.
Returns the version of the client used.

Returns logical transaction id that may be used in various
calls of package DBVS_APP_CONT.

Returns the metadata for an object accessible from the
connection.

Returns the OCI server context associated with the
connection.

Returns the OCI service context associated with the
connection.

Returns the OCI session context associated with the
connection.

13-48

Method

Chapter 13
Connection Class

Table 13-12 (Cont.) Summary of Connection Methods
|

Summary

getServerVersion()

getServerVersionUString()

getStmtCacheSize()
getTag()

isCached()
pinVectorOfRefs()

postToSubscriptions()
readVectorOfBfiles()
readVectorOfBlobs()
readVectorOfClobs()
registerSubscriptions()
rollback()

setStmtCacheSize()

setTAFNotify()

terminateStatement()

unregisterSubscription()
writeVectorOfBlobs()
writeVectorOfClobs()

Returns the version of the Oracle server used, as stri ng.

Returns the version of the Oracle server used, as a
USt ring.

Retrieves the size of the statement cache.
Returns the tag associated with the connection.
Determines if the specified statement is cached.

Pins an entire vector of Ref objects into object cache in a
single round trip; pinned objects are available through an
QUT parameter vector.

Posts notifications to subscriptions.

Reads multiple Bf i | es in a single server round-trip.
Reads multiple Bl obs in a single server round-trip.
Reads multiple C obs in a single server round-trip.
Registers several Subscri pti ons for notification.

Rolls back all changes made since the previous commit
or rollback and release any database locks held by the
session.

Enables or disables statement caching.

Registers failover callback function on the Connecti on
object.

Closes a St at enment object and free all resources
associated with it.

Unregisters a Subscri pti on, turns off its natifications.
Writes multiple Bl obs in a single server round-trip.

Writes multiple d obs in a single server round-trip.

13.10.1 changePassword()

ORACLE

Changes the password of the user currently connected to the database.

Syntax

Description

voi d changePasswor d(
const string &user,

const string &ol dPassword,
const string &ewPasswor d) =0;

voi d changePasswor d(

const UString &user,
const UString &ol dPassword,
const UString &newPasswor d) =0;

Changes the password of the user.

Changes the password of the user (Unicode
support). The client Envi r onnent should be
initialized in OCCIUTIF16 mode.

13-49

Chapter 13
Connection Class

Parameter Description

user The user currently connected to the database.
ol dPassvor d The current password of the user.

newPasswor d The new password of the user.

13.10.2 commit()

Commits all changes made since the previous commit or rollback, and releases any
database locks currently held by the session.

Syntax

void commit()=0;

13.10.3 createStatement()

ORACLE

Creates a St at ement object with the SQL statement specified.

Note that for the caching-enabled version of this method, the cache is initially
searched for a statement with a matching t ag, which is returned. If no match is found,
the cache is searched again for a statement that matches the sql parameter, which is
returned. If no match is found, a new statement with a NULL t ag is created and
returned. If the sql parameter is empty and the t ag search fails, this call generates an
ERROR.

Also note that non-caching versions of this method always create and return a new
statement.

Syntax Description

Searches the cache for a specified SQL
statement and returns it; if not found,
creates a new statement.

Statenent* createStatenent (
const string &sql="")=0;

Searches the cache for a statement with a
matching tag; if not found, creates a new
statement with the specified SQL content.

Statenent* createStatenent (
const string &sql,
const string &t ag)=0;

Searches the cache for a specified SQL
statement and returns it; if not found,
creates a new statement. Globalization
enabled.

Statenent* createStatenent(
const UString &sql)=0;

Searches the cache for a matching tag and
returns it; if not found, creates a new
statement with the specified SQL content.
Globalization enabled.

Statenent* createStatenent(
const Ustring &sql,
const Ustring &t ag)=0;

13-50

Chapter 13
Connection Class

Parameter Description

sql The SQL string to be associated with the statement object.

The tag whose associated statement must be retrieved from the

tag cache. Ignored if statement caching is disabled.

13.10.4 flushCache()

Flushes the object cache associated with the connection.

Syntax
voi d flushCache()=0;

13.10.5 getClientCharSet()

Returns the session's character set.

Syntax

string getdientCharSet() const=0;

13.10.6 getClientCharSetUString()

Returns the globalization enabled client character set in UStri ng.

Syntax
UString getdientCharSetUString() const=0;

13.10.7 getClientNCHARCharSet()

Returns the session's NCHAR character set.

Syntax
string getd ient NCHARChar Set () const =0;

13.10.8 getClientNCHARCharSetUString()

Returns the globalization enabled client NCHAR character set in UStri ng.

Syntax
UString getdient NCHARChar Set UString() const =0;

13.10.9 getClientVersion()

Returns the version of the client library the application is using at run time.

ORACLE 13-51

Chapter 13
Connection Class

This is used by applications to determine the version of the OCCI client at run time,
and if the application uses several separate code paths that use several different client
patchsets.

The values of parameters maj or Ver si on and ni nor Ver si on use macros
OCCl _MAJOR_VERSI ON and OCCl _M NOR_VERSI ON, respectively. These macros define the
major and minor versions of the OCCI client library. Compares the versions returned.

Syntax

voi d get d i ent Version(
int &maj or Version,
i nt & nor Version,
int &updat eNum
int &patchNunber,
int &port Updat eNum

Parameter Description

. . The major version of the client library.
mej or Ver si on

. . The minor version of the client library.
m nor Ver si on

The update number.

updat eNum
pat ch\unber The number of the patch applied to the library.
port Updat eNurber The number of the port-specific port update applied to the library.

13.10.10 getLTXID()

Returns logical transaction id that may be used in various calls of package
DBMS_APP_CONT.

Syntax

Bytes getLTXID() const =0

13.10.11 getMetaData()

ORACLE

Returns metadata for an object in the database.

Syntax Description

Returns metadata for
an object in the
database.

Met aDat a get Met aDat a(
const string &object,
Met aDat a: : Par anifype prnt yp=Met aDat a: : PTYPE_UNK) const =0;

Returns metadata for a
globalization enabled
object in the database.

Met aDat a get Met aDat a(
const UString &object,
Met aDat a: : Par anifype prnt yp=Met aDat a: : PTYPE_UNK) const =0;

13-52

Chapter 13
Connection Class

Syntax Description

Returns metadata for
an object in the
database through a

Met aDat a get Met aDat a(
const RefAny &ref) const=0;

reference.
Parameter Description
object The SQL string to be associated with the statement object.
prmtyp The type of the schema object being described, as defined by the
enumerated Par anType of the MetaData class, Table 13-27
ref A REF to the Type Descriptor Object (TDO) of the type to be
described.

13.10.12 getOClServer()

Returns the OCI server context associated with the connection.

Syntax
OCl Server* get OCl Server() const=0;

13.10.13 getOClServiceContext()

Returns the OCI service context associated with the connection.

Syntax

OCl SveCt x* get OCl Servi ceCont ext () const =0;

13.10.14 getOClSession()

Returns the OCI session context associated with the connection.

Syntax
OCl Sessi on* get OCl Sessi on() const =0;

13.10.15 getServerVersion()

Returns the version of the database server, as a string, used by the current
Connect i on object. This can be used when an application uses several separate code
paths and connects to several different server versions.

Syntax

string get ServerVersion() const;

ORACLE 13-53

Chapter 13
Connection Class

13.10.16 getServerVersionUString()

Returns the version of the database server, as a UStri ng, used by the current
Connect i on object. This can be used when an application uses several separate code
paths and connects to several different server versions.

Syntax

UString get ServerVersionUString() const;

13.10.17 getStmtCacheSize()

Retrieves the size of the statement cache.

Syntax

unsi gned int get Stnt CacheSi ze() const=0;

13.10.18 getTag()

Returns the tag associated with the connection. Valid only for connections from a
stateless connection pool.

Syntax

string getTag() const=0;

13.10.19 isCached()

Determines if the specified statement is cached.

Syntax Description

Searches the cache for a statement with
a matching tag. If the tag is not specified,
the cache is searched for a matching
SQL statement.

bool isCached(
const string é&sql,
const string & ag="")=0;

Searches the cache for a statement with
a matching tag. If the tag is not specified,
the cache is searched for a matching
SQL statement. Globalization enabled.

bool isCached(
const Ustring &sql,
const Ustring &tag)=0;

Parameter Description
sql The SQL string to be associated with the statement object.
tag The tag whose associated statement must be retrieved from the

cache. Ignored if statement caching is disabled.

ORACLE 13-54

Chapter 13
Connection Class

13.10.20 pinVectorOfRefs()

Pins an entire vector of Ref objects into object cache in a single round-trip. Pinned
objects are available through an QUT parameter vector.

Syntax Description

tenplate <class T> void pi nVect or OF Ref s(Returns the objects.

const Connection *conn,

vector <Ref<T>> & vect,

vector <T*> &vect Obj,

LockOptions | ockOpt =OCCI _LOCK_NONE) ;

Does not explicitly return the objects; an
application must dereference a particular Ref
object by a ptr () call, which returns a
previously pinned object.

tenplate <class T> void pi nVect or OF Ref s(
const Connection *conn,
vector <Ref<T>> & vect,
LockOptions | ockOpt =OCCI _LOCK_NONE) ;

Parameter Description

conn Connection

Vector of Ref objects that are pinned.

vect

vect Cbj Vector that contains objects after the pinning operation is complete; an QUT
parameter.

| ockOpt Lock option used during the pinning of the array, as defined by LockOpt i ons

in Table 13-2. The only supported value is OCCl _LOCK_NONE.

13.10.21 postToSubscriptions()

Posts notifications to subscriptions.

The Subscri ption object must have a valid subscription name, and the namespace
should be set to NS_ANONYMOUS. The payload must be set before invoking this call;
otherwise, the payload is assumed to be NULL and is not delivered.

The caller has to preserve the payload until the posting call is complete. This call
provides a best-effort guarantee; a naotification is sent to registered clients at most
once.This call is primarily used for light-weight notification and is useful for dealing with
several system events. If the application needs more rigid guarantees, it can use the
Oracle Streams Advanced Queuing functionality.

Syntax

voi d post ToSubscri ptions(
const vector<ag:: Subscription>& sub)=0;

ORACLE 13-55

Chapter 13
Connection Class

Parameter Description

sub The vector of subscriptions that receive postings.

13.10.22 readVectorOfBfiles()

Reads multiple Bf i | es in a single server round-trip. All Bf i | es must be open for
reading.

Syntax

voi d readVect or OF Bf i | es(
const Connection *conn,
vector<Bfile> &vec,
oraub8 *byteAnts,
oraub8 *of fsets,
unsi gned char *buffers[],
oraub8 *buf f erLengt hs);

Parameter Description
conn Connection.
vec Vector of Bf i | e objects; each Bf i | e must be open for reading.

Array of amount of bytes to read from the individual Bf i | es. The actual

byt eAnt A L
yteams number of bytes read from each Bf i | e is returned in this array.
of fsets Array of offsets, starting position where reading from the Bf i | es starts.
buffers Array of pointers to buffers into which the data is read.
buf f er Lengt hs Array of sizes of each buffer, in bytes.

13.10.23 readVectorOfBlobs()

Reads multiple BLOBs in a single server round-trip.

Syntax

voi d readVect or O Bl obs(
const Connection *conn,
vect or <Bl ob> &vec,
oraub8 *byteAnts,
oraub8 *of fsets,
unsi gned char *buffers[],
oraub8 *bufferLengths);

ORACLE 13-56

Chapter 13
Connection Class

Parameter Description
conn Connection.
vec Vector of Bl ob objects.
Array of amount of bytes to read from the individual Bl obs. The actual
byt eAnt s . o
number of bytes read from each Bl ob is returned in this array.
of fsets Array of offsets, starting position where reading from the Bl obs starts.
buffers Array of pointers to buffers into which the data is read.
buf f er Lengt hs Array of sizes of each buffer, in bytes.

13.10.24 readVectorOfClobs()

Reads multiple C obs in a single server round-trip. All obs should be in the same
characterset form and belong to the same characterset ID.

ORACLE

Syntax

Description

voi

Vo

d readVect or O O obs(
const Connection *conn,
vect or <d ob> &vec,

oraub8 *byteAnts,

araub8 *charAnts,

oraub8 *of fsets,

unsi gned char *buffers[],
oraub8 *buf ferLengt hs);

d readVect or O O obs(
const Connection *conn,
vect or <d ob> &vec,
oraub8 *byteAnts,
araub8 *charAnts,
oraub8 *of fsets,

utext *buffers[],
oraub8 *buf f erLengt hs);

General form of the method.

Form of the method used with ut ext
buffers, when data is in UTF16
characterset encoding.

Parameter Description

conn Connection.

vec Vector of O ob objects.

byt eAnt s Array of amount of bytes to read from the individual C obs. Only used if

the char Ant s is NULL, or 0 for any d ob index. Returns the number of
bytes read for each d ob.

13-57

Chapter 13
Connection Class

Parameter Description
Array of amount of characters to read from individual Cl obs. Returns

char Ant s the number of characters read for each C ob.

of f set s Array of offsets, starting position where reading from the C obs starts, in
characters.

buff er s Array of pointers to buffers into which the data is read.

but f er Lengt hs Array of sizes of each buffer, in bytes.

13.10.25 registerSubscriptions()

Registers Subscri pt i ons for notification.

New client processes and existing processes that restart after a shut down must
register for all subscriptions of interest. If the client stays up during a server shut down
and restart, this client continues to receive notifications for DI SCONNECTED registrations,
but not for CONNECTED registrations because they are lost during the server down time.

Syntax

voi d regi sterSubscriptions(
const vector<ag:: Subscription>& sub)=0;

Parameter Description

sub Vector of subscriptions that are registered for notification.

13.10.26 rollback()

Drops all changes made since the previous commit or rollback, and releases any
database locks currently held by the session.

Syntax
voi d rol | back()=0;

13.10.27 setStmtCacheSize()

Enables or disables statement caching. A nonzero value enables statement caching,
with a cache of specified size. A zero value disables caching.

Syntax

voi d set Stnt CacheSi ze(
unsi gned i nt cacheSi ze) =0;

ORACLE 13-58

Chapter 13
Connection Class

Parameter Description

cacheSi ze The maximum number of statements in the cache.

13.10.28 setTAFNotify()

Registers the failover callback function on the Connect i on object for which failover is
configured and must be detected.

The failover callback should return OCClI _SUCCESS to indicate that OCCI can continue
with default processing. The failover event, f oEvent, is defined in Table 13-11. When
the foEvent is FO ERRCR, the callback function may return either FO RETRY to indicate that
failover must be attempted again, or OCCI _SUCCESS to end failover attempts.

Syntax

voi d set TAFNot i fy(
int (*notifyFn)(
Envi ronnent *env,
Connection *conn,
voi d *ctx,
Fai | Qver Type foType,
Fai | Qver Event Type foEvent),
voi d *ct xTAF)

Parameter Description

not i fyFn The user defined callback function invoked during failover events.

env Envi ronment object from which the failing Connect i on was created.

conn The failing Connect i on on which the callback function is registered.

ctx Context supplied by the user when registering the callback.

foType The configured Fai | Over Type, values FO_SESSI ON or FO_SELECT, as defined in
y Table 13-11.

foEvent Failover event type that is triggering the callback; the Fai | Over Event Type,

values FO_BEG N, FO_END, FO_ABORT and FO_ERROR as defined in Table 13-11.
ot XTAF User context passed back to the callback function at invocation.

13.10.29 terminateStatement()

Closes a St at enent object.

ORACLE 13-59

Chapter 13
Connection Class

Syntax Description

Closes a St at enent object and frees all

voi d terninateStatenent) o
(resources associated with it.

Statenent *stnt)=0;

Releases statement back to the cache after

voi rmn n - . :
o d terninat est at ement (adding an optional tag, a stri ng.

Statenent *stnt,
const string &t ag)=0;

Releases statement back to the cache after

voi rmn n - . .
o d terninat eSt at ement (adding an optional tag, a UStri ng.

Statement* stnt,
const UString &ag) = 0;

Parameter Description

stnt The St at enent to be closed.

tag The tag associated with the statement, either a string ora UStri ng.

13.10.30 unregisterSubscription()
Unregisters a Subscri pti on, turning off its notifications.

Syntax

voi d unregi sterSubscription(
const aq: : Subscri ption& sub)=0;

Parameter Description

sub Subscri pti on whose notifications is turned off.

13.10.31 writeVectorOfBlobs()

Writes multiple Bl obs in a single server round-trip.

Syntax

voi d witeVector OBl obs(
const Connection *conn,
vect or <Bl ob> &vec,
oraub8 *byteAnts,
oraub8 *of fsets,
unsi gned char *buffers[],
oraub8 *bufferLengths);

Parameter Description

conn Connection.

ORACLE 13-60

Chapter 13
Connection Class

Parameter Description

vec Vector of Bl ob objects.

byt eAnt s Array of amount of bytes to write to the individual Bl obs.

of fsets Array of offsets, starting position where writing to the Bl obs starts.
buffers Array of pointers to buffers from which the data is written.

buf f er Lengt hs Array of sizes of each buffer, in bytes.

13.10.32 writeVectorOfClobs()

Writes multiple ¢ obs in a single server round-trip. All d obs should be in the same
characterset form and belong to the same characterset ID.

ORACLE

Syntax

Description

voi d writeVectorOf O obs(

General form of the method.

const Connection *conn,
vect or <O ob> &vec,
oraub8 *byteAnts,
araub8 *charAnts,
oraub8 *offsets,

voi

unsi gned char *buffers[],
oraub8 *buf ferLengt hs);

d writeVector O d obs(
const Connection *conn,

Form of the method used with ut ext
buffers, when data is in UTF16
characterset encoding.

vect or <O ob> &vec,

oraub8 *byteAnts,
araub8 *charAnts,
oraub8 *of fsets,
utext *buffers[],
oraub8 *buf ferLengt hs);

Parameter Description

conn Connection.

vec Vector of O ob objects.

byt eAnt s Array of amount of bytes to write to the individual O obs. Only used if the
char Ant s is NULL or 0 for any O ob index. Returns the number of bytes
written for each C ob.

char Ant s Array of amount of characters to write to individual Cl obs. Returns the

number of characters read for each d ob.

13-61

Chapter 13
ConnectionPool Class

Parameter Description

of fsets Array of offsets, starting position where writing to the O obs starts, in
characters.

buffers Array of pointers to buffers from which the data is written.

buf f er Lengt hs Array of sizes of each buffer, in bytes.

13.11 ConnectionPool Class

The ConnectionPool class represents a pool of connections for a specific database.

Table 13-13 Summary of ConnectionPool Methods

Method

Summary

createConnection()

createProxyConnection()

getBusyConnections()

getincrConnections()

getMaxConnections()

getMinConnections()

getOpenConnections()

getPoolName()
getStmtCacheSize()
getTimeOut()

setErrorOnBusy()

setPoolSize()

setStmtCacheSize()
setTimeOut()

terminateConnection()

Creates a pooled connection.
Creates a proxy connection.

Returns the number of busy connections in the connection
pool.

Returns the number of incremental connections in the
connection pool.

Returns the maximum number of connections in the
connection pool.

Returns the minimum number of connections in the
connection pool.

Returns the number of open connections in the connection
pool.

Returns the name of the connection pool.
Retrieves the size of the statement cache.

Returns the time out period for a connection in the
connection pool.

Specifies that a SQLExcept i on should be generated when
all connections in the connection pool are busy and no
further connections can be opened.

Sets the minimum, maximum, and incremental number of
pooled connections for the connection pool.

Enables or disables statement caching.

Sets the time out period, in seconds, for a connection in
the connection pool.

Destroys the connection.

13.11.1 createConnection()

Creates a pooled connection.

ORACLE 13-62

Chapter 13
ConnectionPool Class

Syntax

Description

Connection* createConnecti on(
const string &userNarme,
const string &password)=0;

Connection* createConnecti on(
const UString &usernane,
const UString &password)=0;

Creates a pooled connection. If the user Nane and
passwor d are both NULL, the connection is externally
authenticated.

Creates a globalization enabled pooled connection.

Parameter Description

The name of the user with which to connect.

user Nane

password

The password of the user.

13.11.2 createProxyConnection()

Creates a proxy connection from the connection pool.

Syntax

Description

Connection* createProxyConnecti on(
const string &nane,
Connection: : ProxyType

Creates a proxy connection.

proxyType=Connect i on: : PROXY_DEFAULT) =0;

Connection* createProxyConnecti on(
const UString &nane,
Connecti on: : ProxyType

Creates a globalization enabled proxy
connection.

proxyType=Connect i on: : PROXY_DEFAULT) =0;

Connection* createProxyConnecti on(
const string &nane,
string roles[],
int nunRol es,
Connecti on: : ProxyType

Creates a proxy connection for several
roles.

proxyType=Connect i on: : PROXY_DEFAULT) =0;

Connection* createProxyConnecti on(
const UString &nane,
string roles[],
unsi gned int nunRol es,
Connecti on: : ProxyType

Creates a globalization enabled proxy
connection for several roles.

proxyType=Connect i on: : PROXY_DEFAULT) =0;

ORACLE

13-63

Chapter 13
ConnectionPool Class

Parameter Description

nane The user name to connect with.

rol es The roles to activate on the database server.

nunRol es The number of roles to activate on the database server.

or oxy Type The type of proxy authentication to perform, Pr oxyType, defined in

Table 13-11. Valid values are:
e PROXY_DEFAULT representing a database user name.

13.11.3 getBusyConnections()

Returns the number of busy connections in the connection pool. When using database
resident connection pooling, this is the number of persistent connections to the
Connection Broker.

Syntax

unsi gned i nt getBusyConnections() const=0;

13.11.4 getincrConnections()

Returns the number of incremental connections in the connection pool. When using
database resident connection pooling, this is the number of persistent connections to
the Connection Broker.

Syntax

unsi gned i nt getlncrConnections() const=0;

13.11.5 getMaxConnections()

Returns the maximum number of connections in the connection pool. When using
database resident connection pooling, this is the number of persistent connections to
the Connection Broker.

Syntax

unsi gned i nt get MaxConnections() const=0;

13.11.6 getMinConnections()

ORACLE

Returns the minimum number of connections in the connection pool. When using
database resident connection pooling, this is the number of persistent connections to
the Connection Broker.

Syntax

unsi gned int getM nConnections() const=0;

13-64

Chapter 13
ConnectionPool Class

13.11.7 getOpenConnections()

Returns the number of open connections in the connection pool. When using database
resident connection pooling, this is the number of persistent connections to the
Connection Broker.

Syntax

unsi gned i nt get OpenConnections() const=0;

13.11.8 getPoolName()

Returns the name of the connection pool.

Syntax

string get Pool Name() const=0;

13.11.9 getStmtCacheSize()

Retrieves the size of the statement cache.

Syntax

unsi gned int getStnt CacheSi ze() const=0;

13.11.10 getTimeQOut()

Returns the time out period of a connection in the connection pool.

Syntax

unsi gned int getTimeQut() const=0;

13.11.11 setErrorOnBusy()

Specifies that a SQLExcept i on is to be generated when all connections in the connection
pool are busy and no further connections can be opened.

Syntax

voi d set Error OnBusy() =0;

13.11.12 setPoolSize()

Sets the minimum, maximum, and incremental number of pooled connections for the
connection pool.

Syntax

voi d set Pool Si ze(
unsigned int mnConn = 0,
unsi gned int maxConn = 1,
unsi gned int incrConn = 1)=0;

ORACLE 13-65

Chapter 13
ConnectionPool Class

Parameter Description

i nConn The minimum number of connections for the connection pool.
The maximum number of connections for the connection pool.

maxConn

i ner Conn The incremental number of connections for the connection pool.

13.11.13 setStmtCacheSize()

Enables or disables statement caching. A nonzero value enables statement caching,
with a cache of specified size. A zero value disables caching.
Syntax

voi d set Stnt CacheSi ze(
unsi gned i nt cacheSi ze) =0;

Parameter Description

cacheSi ze The size of the statement cache.

13.11.14 setTimeOut()

Sets the time out period for a connection in the connection pool. OCCI terminates any
connections related to this connection pool that have been idle for longer than the time
out period specified.

If this attribute is not set, the least recently used sessions are timed out when pool
space is required. Oracle only checks for timed out sessions when it releases a
session back to the pool.

Syntax

voi d set Ti meQut (
unsi gned int connTi meCut = 0)=0;

Parameter Description

connTi mecut The timeout period in number of seconds.

13.11.15 terminateConnection()

Terminates the pooled connection or proxy connection.

Syntax

voi d terninateConnection(
Connection *connection)=0;

ORACLE 13-66

Chapter 13
Consumer Class

Parameter Description

connect i on The pooled connection or proxy connection to terminate.

13.12 Consumer Class

The Consuner class supports dequeuing of Messages and controls the dequeuing
options.

Table 13-14 Enumerated Values Used by Consumer Class

|
Attribute Options

+ DEQ BROWSE indicates that the message should be read without
acquiring a lock; equivalent to a SELECT.

» DEQ _LOCKED indicates that the message should be read. Get its
write lock, which lasts s for the duration of the transaction;
equivalent to a SELECT FOR UPDATE.

- DEQ REMOVE indicates that the message should be read. Update
or delete it; the message can be retained in the queue table
based on the retention properties. This is the default setting.

» DEQ REMOVE_NODATA indicates that the receipt of the message
should be confirmed, but its actual content should not be
delivered.

* DEQ_FI RST_MsSGindicates that the first available message on the
gueue that matches the search criteria must be retrieved. Resets
the position to the beginning of the queue.

e DEQ NEXT_TRANSACTI ON indicates that the next available
message on the queue that matches the search criteria must be
retrieved. If the previous message belongs to a message group,
AQ retrieves the next available message that matches the
search criteria and belongs to the message group. This is the
default setting.

« DEQ NEXT_MsGindicates that the remainder of the current
transaction group, if any, should be skipped. The first message
of the next transaction group may then be retrieved. This option
can only be used if message grouping is enabled for the current
queue.

- DEQ_| MVEDI ATE indicates that the dequeued message is not part
of the current transaction. It constitutes a transaction on its own.

* DEQ_ON_COW T indicates that the dequeue is part of the current
transaction. This is the default setting.
DEQ WAI T_FOREVER indicates that the consumer waits for the
Message indefinitely.

* DEQ_NO WAI T indicates that there should be not wait if there are
no messages on the queue.

DequeMbde

Navi gati on

Visibility

DequeVi t Opt i on

Table 13-15 Summary of Consumer Methods

|
Method Description

Consumer() Consumer class constructor.

ORACLE 13-67

Chapter 13
Consumer Class

Table 13-15 (Cont.) Summary of Consumer Methods

Method

Description

getConsumerName()

getCorrelationld()

getDequeueMode()
getMessageldToDequeue()
getQueueName()
getPositionOfMessage()

getTransformation()

getVisibility()

getWaitTime()

isNull()
operator=()
receive()

setAgent()

setConsumerName()

setCorrelationld()

setDequeueMode()

setMessageldToDequeue()
setNull()

setPositionOfMessage()

setQueueName()

setTransformation()

setVisibility()

setWaitTime()

Retrieves the name of the Consuner .

Retrieves she correlation id of the message that is to be
dequeued.

Retrieves the dequeue mode of the Consuner.
Retrieves the id of the message that is dequeued.

Gets the name of the queue used by the consumer.
Retrieves the position of the Message that is dequeued.

Retrieves the transformation applied before a Message
is dequeued.

Retrieves the transactional behavior of the dequeue
operation.

Retrieves the specified behavior of the Consunmer when
waiting for a Message with matching search criteria.

Tests whether the Consuner object is NULL.
Assignment operator for the Consuner class.
Receives and dequeues a Message

Sets the Agent 's name and address (queue name) on
the consumer.

Sets the Consuner name.

Specifies the correlation identifier of the message to be
dequeued.

Specifies the locking behavior associated with
dequeuing.

Specifies the identifier of the Message to be dequeued.

Nullifies the Consuner ; frees the memory associated
with this object.

Specifies position of the Message to be retrieved.

Specifies the name of a queue before dequeuing
Messages.

Specifies transformation applied before dequeuing a
Message.

Specifies if Message should be dequeued as part of the
current transaction.

Specifies wait conditions if there are no Messages with
matching criteria.

13.12.1 Consumer()

Consumer class constructor.

ORACLE 13-68

Chapter 13
Consumer Class

Syntax Description

Creates a new Consuner object with the

Consurer (specified Connect i on handle.

const Connection *conn);

Creates a new Consuner object with
specified Connect i on and properties of
the specified Agent .

Consuner (
const Connection *conn
const Agent & agent);

Creates a new Consuner object with

Consuner o .
(specified Connect i on and queue.

const Connection *conn,
const string& queue);

Consuner (Copy constructor.

const Consuner& consuner);

Parameter Description

conn The connection in which the Consuner is created.
agent Agent assigned to the Consuner .

queue Queue at which the Consuner retrieves messages.
J— Original Consuner object.

13.12.2 getConsumerName()

Retrieves the name of the Consuner.

Syntax

string get Consuner Nanme() const;

13.12.3 getCorrelationld()

Retrieves she correlation id of the message that is to be dequeued

Syntax

string geCorrelationld() const;

13.12.4 getDequeueMode()

Retrieves the dequeue mode of the Consuner . DequeueMbde is defined in Table 13-14.

Syntax

DequeueMbde get DequeueMbde() const;

ORACLE 13-69

Chapter 13
Consumer Class

13.12.5 getMessageldToDequeue()

Retrieves the id of the message that is dequeued.

Syntax

Byt es get MessageToDequeue() const;

13.12.6 getPositionOfMessage()

Retrieves the position, or navigation, of the message that is dequeued. Navi gati on is
defined in Table 13-14.

Syntax

Navi gation get PositionCf Message() const;

13.12.7 getQueueName()

Gets the name of the queue used by the consumer.
Syntax

string get QueueNane() const;

13.12.8 getTransformation()

Retrieves the transformation applied before a Message is dequeued.

Syntax

string getTransformation() const;

13.12.9 getVisibility()

Retrieves the transactional behavior of the dequeue operation, or visibility. Visibility
is defined in Table 13-14.

Syntax
Visibility getVisibility() const;

13.12.10 getWaitTime()

Retrieves the specified behavior of the Consumer when waiting for a Message with
matching search criteria. DequeWi t Opt i on is defined in Table 13-14.

Syntax

DequeVMi t Option get Vi t Ti me() const;

ORACLE 13-70

13.12.11 isNull()

Chapter 13
Consumer Class

Tests whether the Consuner object is NULL. If the Consuner object is NULL, TRUE is

returned; otherwise, FALSE is returned.

Syntax

bool isNull() const;

13.12.12 operator=()

Assignment operator for Consuner class.

Syntax

voi d operat or =(
const Consuner& consuner);

Parameter Description

The original Consuner .

consuner

13.12.13 receive()

Receives and dequeues a Message.

Syntax

Message recei ve(
Message: : Payl oadType pType,
const string& type="",
const string& schema="");

The type of payload expected. Payload Type is defined in

The type of the payload when t ype is OBJECT.

The schema in which the type is defined when pType is OBJECT.

Parameter Description
pType Table 13-14.
type

schema

13.12.14 setAgent()

Sets the Agent 's name and address (queue name) on the consumer.

Syntax

voi d set Agent (
const Agent & agent);

ORACLE

13-71

Chapter 13
Consumer Class

Parameter Description

agent Name of the Agent .

13.12.15 setConsumerName()

Sets the Consumer name. Only messages with matching consumer name can be
accessed. If a queue is not set up for multiple consumer, this option should be set to
NULL.

Syntax

voi d set Consuner Naneg(
const string& name);

Parameter Description

name Name of the Consuner .

13.12.16 setCorrelationld()

Specifies the correlation identifier of the message to be dequeued. Special pattern
matching characters, such as the percent sign (%) and the underscore() can be used.
If several messages satisfy the pattern, the order of dequeuing is undetermined.

Syntax

voi d setCorrelationld
const string& id);

Parameter Description

id The identifier of the Message.

13.12.17 setDequeueMode()

Specifies the locking behavior associated with dequeuing.

Syntax

voi d set DequeueMbde(
DequeueMde node);

Parameter Description

mode Behavior of enqueuing. DequeMde is defined in Table 13-14.

ORACLE 13-72

Chapter 13
Consumer Class

13.12.18 setMessageldToDequeue()

Specifies the identifier of the Message to be dequeued.

Syntax

voi d set Messagel dToDequeue(
const Bytes& nsgid);

Parameter Description
Identifier of the Message to be dequeued.

msgid

13.12.19 setNull()

Nullifies the Consurer ; frees the memory associated with this object.

Syntax

voi d setNull ();

13.12.20 setPositionOfMessage()

Specifies position of the Message to be retrieved.

Syntax

voi d set PositionCOf Message(
Navi gation pos);

Parameter Description
Position of the message, Navi gati on, is defined in Table 13-14.

pos

13.12.21 setQueueName()

Specifies the name of a queue before dequeuing Messages. Typically used when
dequeuing multiple messages from the same queue.
Syntax

voi d set QueueName(
const string& queue);

Parameter Description
The name of a valid queue in the database.

queue

ORACLE 13-73

Chapter 13
Date Class

13.12.22 setTransformation()

Specifies transformation applied before dequeuing the Message.

Syntax
voi d set Transfor mati on(
string &f Name);
Parameter Description
f Narre SQL transformation function.

13.12.23 setVisibility()

Specifies if Message should be dequeued as part of the current transaction. Visibility
parameter is ignored when in DEQ BROASE mode.
Syntax

void setVisibility(
Visibility option);

Parameter Description
Visibility option being set, defined in Table 13-14.

option

13.12.24 setWaitTime()

Specifies wait conditions if there are no Messages with matching criteria. The wai t
parameter is ignored if messages in the same group are being dequeued.
Syntax

voi d set Wit Ti me(
DequeVi t Option wait);

Parameter Description
Waiting conditions. DequeWi t Opt i on is defined in Table 13-14.

wai t

13.13 Date Class

The Date class specifies the abstraction for a SQL DATE data item. The Date class also
adds formatting and parsing operations to support the OCCI escape syntax for date
values.

Since the SQL standard DATE is a subset of Oracle Date, this class can be used to
support both.

ORACLE 13-74

ORACLE

Chapter 13
Date Class

Objects from the Date class can be used as standalone class objects in client side
numeric computations and also used to fetch from, and set to, the database.

Example 13-5 How to Get a Date from Database and Use it in Standalone
Calculations

This example demonstrates a Date column value being retrieved from the database, a
bind using a Date object, and a computation using a standalone Date object.

/* Create a connection */
Environnent *env = Environnent:: createEnvi ronnent (Environment : : DEFAULT) ;
Connection *conn = Connection(user, passwd, db);

/* Create a statement and associate a DM. statenent to it */
string sql Stnt = "SELECT job-id, start_date from JOB_H STORY

where end_date = :x";
Statenent *stnt = conn->createStatenent(sql Stnt);

/[* Create a Date object and bind it to the statenent */
Date edate(env, 2000, 9, 3, 23, 30, 30);
stnt->setDate(1, edate);

Resul t Set *rset = stnt->executeQuery();

/* Fetch a date fromthe database */
whi | e(rset->next())
{
Date sd = rset->getDate(2);
Date tenp = sd; | *assi gnnent operator */
/* Methods on Date */
tenp. get Date(year, nonth, day, hour, minute, second);
t enp. set Mont hs(2) ;
Interval DS inter = tenp.daysBetween(sd);

Table 13-16 Summary of Date Methods
|

Method Summary

Date() Dat e class constructor.

addDays() Returns a Dat e object with n days added.

addMonths() Returns a Dat e object with n months added.

daysBetween() Returns the number of days between the current Dat e
object and the date specified.

fromBytes() Convert an external Byt es representation of a Dat e object
to a Dat e object.

fromText() Convert the date from a given input string with format and
NLS parameters specified.

getDate()() Returns the date and time components of the Dat e object.

getSystemDate() Returns a Dat e object containing the system date.

isNull() Returns TRUE if Dat e is NULL; ot herwi se returns fal se.

lastDay() Returns a Dat e that is the last day of the month.

nextDay() Returns a Dat e that is the date of the next day of the week.

operator=() Assigns the values of a date to another.

13-75

Chapter 13
Date Class

Table 13-16 (Cont.) Summary of Date Methods
|

Method Summary

operator==() Returns TRUE if a and b are the same, f al se otherwise.

operator!=() Returns TRUE if a and b are unequal, f al se otherwise.

operator>() Returns TRUE if a is past b, f al se otherwise.

operator>=() Returns TRUE if a is pastb or equal to b, fal se
otherwise.

operator=() Returns TRUE if a is before b, f al se otherwise.

operator>() Returns TRUE if a is before b, or equal to b, f al se
otherwise.

setDate() Sets the date from the date components input.

setNull() Sets the object state to NULL.

toBytes() Converts the Dat e object into an external Byt es
representation.

toText() Returns the Dat e object as a string.

toZone() Returns a Dat e object converted from one time zone to
another.

13.13.1 Date()

Dat e class constructor.

Syntax Description

Creates a NULL Dat e object.

Date();

Dat e Creates a copy of a Dat e object.

const Date &srcDate);

Creates a Dat e object using integer parameters.

Dat e(
const Environment *envp,
int year = 1,

unsigned int nmonth =
unsigned int day = 1,
unsigned int hour =0,
unsigned int mnute = 0,
unsi gned int seconds = 0);

1

Parameter Description

year -4712 to 9999, except 0
month 1to 12

day 1to 31

minutes 0to 59

seconds 0to 59

ORACLE 13-76

Chapter 13
Date Class

13.13.2 addDays()

Adds a specified number of days to the Dat e object and returns the new date.

Syntax

Dat e addDays(
int val) const;

Parameter Description

val The number of days to be added to the current Dat e object.

13.13.3 addMonths()

Adds a specified number of months to the Dat e object and returns the new date.

Syntax

Dat e addMont hs(
int val) const;

Parameter Description

val The number of months to be added to the current Dat e object.

13.13.4 daysBetween()

Returns the number of days between the current Dat e object and the date specifi ed.

Syntax

Interval DS daysBet ween(
const Date &date) const;

Parameter Description

dat e The date to be used to compute the days between.

13.13.5 fromBytes()

Converts a Byt es object to a Dat e object.

Syntax

voi d fronBytes(
const Bytes &byteStream
const Environnent *envp = NULL);

ORACLE 13-77

Chapter 13
Date Class

Parameter Description

byteStream

The OCCI environment.

envp

Dat e in external format in the form of Bytes.

13.13.6 fromText()

Sets Dat e object to value represented by a string or UStri ng.

The value is interpreted based on the fnt and nl sParamparameters. In cases where
nl sPar amis not passed, the Globalization Support settings of the envp parameter are

used.
See Also:
Oracle Database SQL Language Reference for information on TO DATE
Syntax Description

voi d fronflext (
const string &datestr,
const string &nt ="",
const string &l sParam="",
const Environnment *envp = NULL);

voi d fronfext (
const UString &datestr,
const UString &fnt,
const UString &nl sParam
const Environnment *envp = NULL);

Sets Dat e object to value represented by a
string.

Sets Dat e object to value represented by a
USt ri ng; globalization enabled.

Parameter Description

The OCCI environment.

envp

datestr

fm

nl sParam

The date string to be converted to a Dat e object.

The format string; default is DD- MON- YY.

The NLS parameters string. If nl sPar amis specified, this determines

the NLS parameters to be used for the conversion. If nl sPar amis
not specified, the NLS parameters are picked up from envp.

ORACLE

13-78

13.13.7 getDate()

Chapter 13
Date Class

Returns the date in the form of the date components year, month, day, hour, minute,

seconds.

Syntax

voi d get Dat e(
int &ear,
unsi gned i nt
unsi gned i nt
unsi gned i nt
unsi gned i nt
unsi gned i nt

&mont h,

&day,

&hour,

&mn,

&seconds) const;

Parameter

Description

year

mont h

day

hour

seconds

The year component of the date.

The month component of the date.

The day component of the date.

The hour component of the date.

The minutes component of the date.

The seconds component of the date.

13.13.8 getSystemDate()

Returns the system date.

Syntax

static Date get SystenDat e(
const Environnent *envp);

Parameter

Description

envp

The environment in which the system date is returned.

13.13.9 isNull()

Tests whether the Dat e is NULL. If the Dat e is NULL, TRUE is returned; otherwise, FALSE is

returned.

Syntax

bool isNull() const;

ORACLE

13-79

Chapter 13
Date Class

13.13.10 lastDay()

Returns a date representing the last day of the current month.

Syntax

Date | astDay() const;

13.13.11 nextDay()

Returns a date representing the day after the day of the week specified.

See Also:

Oracle Database SQL Language Reference for information on TO DATE

Syntax Description

Returns a date representing the day after the day of

Dat e next Day(the week specified.

const string &ow) const;

Returns a date representing the day after the day of
the week specified.; globalization enabled. The
parameter should be in the character set associated
with the environment from which the date was
created.

Dat e next Day(
const UString &dow) const;

Parameter Description

dow A string representing the day of the week.

13.13.12 operator=()

Assigns the date object on the right side of the equal (=) sign to the date object on the
left side of the equal (=) sign.

Syntax

Dat e& operat or =(
const Date &d);

Parameter Description

date The date object that is assigned.

ORACLE 13-80

Chapter 13
Date Class

13.13.13 operator==()

Compares the dates specified. If the dates are equal, TRUE is returned; otherwise, FALSE
is returned.

Syntax

bool operat or==(
const Date &first,
const Date &second);

Parameter Description

first The first date to be compared.

second The second date to be compared.

13.13.14 operator!=()

Compares the dates specified. If the dates are not equal then TRUE is returned;
otherwise, FALSE is returned.

Syntax

bool operator!=(
const Date &first,
const Date &second);

Parameter Description

first The first date to be compared.

second The second date to be compared.

13.13.15 operator>()

Compares the dates specified. If the first date is in the future relative to the second
date then TRUE is returned; otherwise, FALSE is returned. If either date is NULL then FALSE
is returned. If the dates are of different type, then FALSE is returned.

Syntax

bool operat or >(
const Date &first,
const Date &second);

Parameter Description

first The first date to be compared.

ORACLE 13-81

Chapter 13
Date Class

Parameter Description

second The second date to be compared.

13.13.16 operator>=()

Compares the dates specified. If the first date is in the future relative to the second
date or the dates are equal then TRUE is returned; otherwise, FALSE is returned. If either
date is NULL then FALSE is returned. If the dates are of a different type, then FALSE is
returned.

Syntax

bool oper at or >=(
const Date &first,
const Date &second);

Parameter Description

first The first date to be compared.

second The second date to be compared.

13.13.17 operator<()

Compares the dates specified. If the first date precedes the second date, then TRUE is
returned; otherwise, FALSE is returned. If either date is NULL then FALSE is returned. If the
dates are of a different type, then FALSE is returned.

Syntax

bool operat or <(
const Date &first,
const Date &second);

Parameter Description

first The first date to be compared.

second The second date to be compared.

13.13.18 operator<=()

Compares the dates specified. If the first date precedes the second date or the dates
are equal then TRUE is returned; otherwise, FALSE is returned. If either date is NULL then
FALSE is returned. If the dates are of a different type, then FALSE is returned.

ORACLE 13-82

Syntax

Chapter 13
Date Class

bool oper at or <=(
const Date &first,
const Date &second);

Parameter

Description

first

second

The first date to be compared.

The second date to be compared.

13.13.19 setDate()

Sets the date to the values specified.

Syntax

voi d set Dat e(

int year = 1,

unsigned int month = 1,
unsigned int day = 1,
unsigned int hour =0,
unsigned int mnute = 0,
unsi gned int seconds = 0);

Parameter

Description

year

mont h

day

hour

seconds

The argument specifying the year value. Valid values are - 4713 through 9999.

The argument specifying the month value. Valid values are 1 through 12.

The argument specifying the day value. Valid values are 1 through 31.

The argument specifying the hour value. Valid values are 0 through 23.

The argument specifying the minutes value. Valid values are 0 through 59.

The argument specifying the seconds value. Valid values are 0 through 59.

13.13.20 setNull()

Sets the Dat e to atomically NULL.

Syntax

void setNull();

ORACLE

13-83

Chapter 13
Date Class

13.13.21 toBytes()

Returns the date in Byt es representation.

Syntax

Bytes toBytes() const;

13.13.22 toText()

Returns a string or UStri ng with the value of this date formatted using fnt and
nl sParam

The value is interpreted based on the fnt and nl sPar amparameters. In cases where
nl sPar amis not passed, the Globalization Support settings of the envp parameter are

used.
See Also:
Oracle Database SQL Language Reference for information on TO DATE
Syntax Description

Returns a st ri ng with the value of
this date formatted using f nt and
nl sParam

string toText(
const string &mnmt ="",
const string &l sParam= "") const;

Returns a USt ri ng with the value of
this date formatted using f nt and
nl sParam

UString toText(
const UString &fnt,
const UString &nl sParanm const;

Parameter Description
The format string; default is DD- MON- YY.

fnt

The NLS parameters string. If nl sPar amis specified, this determines the NLS
parameters to be used for the conversion. If nl sPar amis not specified, the NLS
parameters are picked up from envp.

nl sParam

13.13.23 toZone()

Returns Dat e value converted from one time zone to another.

Syntax

Date toZone(
const string &zonel,
const string &one2) const;

ORACLE 13-84

Chapter 13
Environment Class

Parameter Description
sonel A string representing the time zone to be converted from.
70ne2 A string representing the time zone to be converted to.

Valid time zone codes are:

Zone code Value

AST, ADT Atlantic Standard or Daylight Time
BST, BDT Bering Standard or Daylight Time
CST, CDT Central Standard or Daylight Time
EST, EDT Eastern Standard or Daylight Time
Gvr Greenwich Mean Time

HST, HDT Alaska-Hawaii Standard Time or Daylight Time
MST, NDT Mountain Standard or Daylight Time
NST Newfoundland Standard Time

PST, PDT Pacific Standard or Daylight Time
YST, YDT Yukon Standard or Daylight Time

13.14 Environment Class

The Environment class provides an OCCI environment to manage memory and other
resources for OCCI objects.

ORACLE

The application can have multiple OCCI environments. Each environment would have
its own heap and thread-safety mutexes.

Table 13-17 Enumerated Values Used by Environment Class

Attribute

Options

Mode

DEFAULT is used for creating an Environment object; it has no thread safety
or object support.

OBJECT is for creating an Environment object; it uses object features.
SHARED is for creating an Environment object.

NO_USERCALLBACKS is for creating an Environment object; it does not support
user callbacks.

THREADED MUTEXED is a thread safe mode for creating an Environment object,
mutexed internally by OCCI.

THREADED_UNMUTEXED is a thread safe mode for creating an Environment
object; the client is responsible for mutexing.

EVENTS supports registration for event notification used in Oracle Streams
Advanced Queuing.

USE_LDAP supports registration with LDAP.

13-85

ORACLE

Chapter 13
Environment Class

Table 13-18 Summary of Environment Methods

Method

Summary

createConnection()
createConnectionPool()

createEnvironment()

createStatelessConnectionPool()

enableSubscription()
disableSubscription()
getCacheMaxSize()
getCacheOptSize()
getCacheSortedFlush()
getClientVersion()
getCurrentHeapSize()

getLDAPAdminContext()

getLDAPAuthentication()

getLDAPHost()
getLDAPPort()

getMap()()
getNLSLanguage()
getNLSTerritory()
getOCIEnvironment()

getXAConnection()
getXAEnvironment()

releaseXAConnection()

releaseXAEnvironment()

setCacheMaxSize()

setCacheOptSize()

setCacheSortedFlush()

setLDAPAdminContext()
setLDAPAuthentication()
setLDAPHostAndPort()

setLDAPLoginNameAndPassword()

Establishes a connection to the specified database.
Creates a connection pool.

Creates an Envi ronnment object.

Creates a stateless connection pool.

Enables subscription notification

Disables subscription natification

Retrieves the Cache Max heap size.

Retrieves the cache optimal heap size.

Retrieves the setting of the cache sorting flag.
Returns the version of the client library.

Returns the current amount of memory allocated to all
objects in the current environment.

Returns the administrative context when using LDAP
open notification registration.

Returns the authentication mode when using LDAP open
notification registration.

Returns the host on which the LDAP server runs.
Returns the port on which the LDAP server is listening.
Returns the Map for the current environment.

Returns the NLS Language for the current environment.
Returns the NLS Territory for the current environment.

Returns the OCI environment associated with the current
environment.

Creates an XA connection to a database.
Creates an XA Envi ronnent object.

Releases all resources allocated by a
getXAConnection() call.

Releases all resources allocated by a
getXAEnvironment() call.

Specifies the maximum size for the client-side object
cache as a percentage of the optimal size.

Specifies the optimal size for the client-side object cache
in bytes.

Specifies whether to sort cache in table order before
flushing.

Specifies the administrative context for the LDAP client.
Specifies the LDAP authentication mode.
Specifies the LDAP server host and port.

Specifies the login name and password when connecting
to an LDAP server.

13-86

Chapter 13
Environment Class

Table 13-18 (Cont.) Summary of Environment Methods

Method Summary

setNLSLanguage() Specifies the NLS Language for the current
environment.

setNLSTerritory() Specifies the NLS Territory for the current environment.

terminateConnection()

terminateConnectionPool()

terminateEnvironment()

terminateStatelessConnectionPool()

Closes the connection pool and free all related
resources.

Closes the connection pool and free all related
resources.

Destroys the environment.

Closes the stateless connection pool and free all related
resources.

13.14.1 createConnection()

This method establishes a connection to the database specified.

Syntax

Description

Connection * createConnection(
const string &userName,
const string &password,

const string &connect String="")=0;

Connection * createConnection(
const UString &userNane,
const UString &password,

const UString &connect String)=0

Connection * createConnection(
const string &userName,
const string &password,
const string &connect String,
const string &connectiond ass,
const

Connection * createConnection(
const UString &userNane,
const UString &password,
const UString &connect String,
const UString &connectionC ass
const

Creates a default connection; if
the user Nane and passwor d are
NULL, the connection may be
authenticated externally.

Creates a connection (Unicode
support). The client Envi r onment
should be initialized in

OCCl UTI F16 mode.

Creates a connection for
database resident connection
pooling.

Connection::Purity &purity)=0;

Creates a connection for
database resident connection
pooling (Unicode support). The
client Envi ronnent should be
initialized in OCCl UTI F16 mode.

Connection::Purity &purity)=0;

Parameter Description
user Nane The name of the user with which to connect.
passwor d The password of the user.

ORACLE

13-87

Chapter 13
Environment Class

Parameter

Description

connect String

purity

connectiond ass

The database to which the connection is made.

The purity of the connection used for database resident connection
pooling; either SELF or NEW

The connection class used for database resident connection pooling.

13.14.2 createConnectionPool()

Creates a connection pool based on the parameters specified.

Syntax

Description

Connect i onPool *
const string
const string
const string
unsi gned int
unsi gned int
unsi gned int

Connect i onPool *

const UString &pool User Nane,
const UString &pool Password,

cr eat eConnect i onPool (Creates a default connection pool.

&pool User Nane,
&pool Passwor d,
&connect String = "",

m nConn = 0,
maxConn = 1,
i ncrConn = 1)=0;

Creates a connection pool (Unicode
support). The client Envi r onnent
should be initialized in OCCI UTI F16

creat eConnect i onPool (

const UString &connect String, mode.
unsi gned int nminConn = 0,
unsigned int maxConn = 1,
unsigned int incrConn = 1)=0;
Parameter Description
pool User Narre The pool user name.

pool Password

connect String

m nConn

maxConn

i ncr Conn

The pool password.

The connection string for the server

The minimum number of connections in the pool. The minimum number
of connections are opened by this method. Additional connections are
opened only when necessary. Generally, m nConn should be set to the
number of concurrent statements the application is expected to run.

The maximum number of connections in the pool. Valid values are 1
and greater.

The increment by which to increase the number of connections to be
opened if the current number of connections is less than maxConn. Valid
values are 1 and greater.

ORACLE

13-88

Chapter 13
Environment Class

13.14.3 createEnvironment()

ORACLE

Creates an Envi ronnent object. It is created with the specified memory management
functions specified in the set Mem\vgr Functi ons() method. If no memory manager
functions are specified, then OCCI uses its own default functions. An Envi r onnent
object must eventually be closed to free all the system resources it has acquired.

If the Mbde is specified is either THREADED MUTEXED or THREADED UNMUTEXED as defined in
Table 13-17, then all three memory management functions must be thread-safe.

Syntax Description

static Environment * createEnvironnent (Creates a default environment.

Mode node = DEFAULT,
void *ctxp = 0,
void *(*mal ocfp) (void *ctxp,

size_t size) =0,
void *(*ral ocfp)(void *ctxp,

void *menptr,

size_t newsize) =0,
void (*nfreefp)(void *ctxp,

void *menptr) = 0);

Creates an environment with the
specified character set and NCHAR
character set ids (Unicode support).
The client Envi ronnent should be
initialized in OCCl UTI F16 mode.

static Environment * createEnvironnent (
const string &charset,
const string &ncharset,
Mode node = DEFAULT,
void *ctxp = 0,
void *(*mal ocfp) (void *ctxp,
size_t size) =0,
void *(*ral ocfp)(void *ctxp,
void *menptr,
size_t newsize) =0,
void (*nfreefp)(void *ctxp,
void *menptr) = 0);

Parameter Description
Values are defined as part of Mode in Table 13-17: DEFAULT,

d
ode THREADED_MUTEXED, THREADED UNMUTEXED, OBJECT.
ctxp Context pointer for user-defined memory management function.
size The size of the memory allocated by user-defined memory allocation
function.
nevsi ze The new size of the memory to be reallocated.
renpt r The existing memory that must be reallocated to new size.
mal ocf p User-defined memory allocation function.

13-89

Chapter 13
Environment Class

Parameter Description

ral ocfp User-defined memory reallocation function.

nfreef p User-defined memory free function.

char set Character set id that replaces the one specified in NLS_LANG.
nchar set Character set id that replaces the one specified in NLS_NCHAR.

13.14.4 createStatelessConnectionPool()

Creates a St at el essConnect i onPool object with specified pool attributes.

ORACLE

Syntax

Description

St at el essConnect i onPool * creat eSt at el essConnect i onPool (

Support for stri ng.

const string &pool User Nare,
const string &pool Password,
const string connectString="",
unsi gned int maxConn=1,
unsi gned int m nConn=0,
unsi gned int incrConn=1,
St at el essConnect i onPool : : Pool Type
pType=St at el essConnect i onPool : : HETEROGENEQUS) ;

St at el essConnect i onPool * creat eSt at el essConnect i onPool (

Support for USt ri ng.

const UString &pool User Nane,

const UString &pool Password,

const UString &connect String,

unsigned int maxConn = 1,

unsigned int mnConn = 0,

unsigned int incrConn = 1,

St at el essConnect i onPool : : Pool Type

pType=St at el essConnect i onPool : : HETEROGENEQUS) ;

Parameter

Description

pool User Nane

pool Password

connect String

maxConn

m nConn

The pool user name.

The pool password.

The connection string for the server.

The maximum number of connections that can be opened the pool;

additional sessions cannot be open.

The number of connections initially created in a pool. This parameter is
considered only if the Pool Type is set to HOMOGENEQUS, as defined in
Table 13-41 .

13-90

Chapter 13
Environment Class

Parameter Description

i ner Conn The number of connections by which to increment the pool if all open
connections are busy, up to a maximum open connections specified by
maxConn parameter. This parameter is considered only if the Pool Type
is set to HOMOGENEQUS, as defined in Table 13-41 .

pType The Pool Type of the connection pool, defined in Table 13-41 .

13.14.5 enableSubscription()

Enables subscription notification.

Syntax

voi d enabl eSubscri ption(
const ag:: Subscription &sub);

Parameter Description

sub The Subscription.

13.14.6 disableSubscription()

Disables subscription notification.

Syntax

voi d di sabl eSubscri pti on(
Subscription &subscr);

Parameter Description

subscr The Subscription.

13.14.7 getCacheMaxSize()

Retrieves the maximum size of the cache.

Syntax

unsi gned int getCacheMaxSize() const;

13.14.8 getCacheOptSize()

Retrieves the Cache optimal heap size.

Syntax

unsi gned i nt get CacheOpt Si ze() const;

ORACLE 13-91

Chapter 13
Environment Class

13.14.9 getCacheSortedFlush()

Retrieves the current setting of the cache sorting flag; TRUE or FALSE.

Syntax

bool get CacheSortedFl ush() const;

13.14.10 getCurrentHeapSize()

Returns the amount of memory currently allocated to all objects in this environment.

Syntax

unsi gned int getCurrentHeapSi ze() const;

13.14.11 getLDAPAdminContext()

Returns the administrative context when using LDAP open notification registration.

Syntax

string get LDAPAdm nCont ext () const;

13.14.12 getLDAPAuthentication()

Returns the authentication mode when using LDAP open naotification registration.

Syntax

unsigned int get LDAPAut hentication() const;

13.14.13 getLDAPHost()

Returns the host on which the LDAP server runs.

Syntax

string get LDAPHost () const;

13.14.14 getLDAPPort()

Returns the port on which the LDAP server is listening.

Syntax

unsi gned int getLDAPPort() const;

13.14.15 getMap()

Returns a pointer to the map for this environment.

ORACLE 13-92

Chapter 13
Environment Class

Syntax

Map *get Map() const;

13.14.16 getNLSLanguage()

Returns the NLS Language for the current environment.

Syntax

string getNLSLanguage() const;

13.14.17 getNLSTerritory()

Returns the NLS Territory for the current environment.

Syntax

string getNLSTerritory() const;

13.14.18 getOCIEnvironment()

Returns a pointer to the OCI environment associated with this environment.

Syntax

COCl Env *get OCl Envi ronment () const;

13.14.19 getXAConnection()

Returns a pointer to an OCCI Connection object that corresponds to the one opened
by the XA library.

Syntax

Connection* get XAConnect i on(
const string &dbnane);

Parameter Description

The database name; same as the optional dbnane provided in the Open

dbnane . . .
String (and used in connection to the Resource Manager).

13.14.20 getXAEnvironment()

Returns a pointer to an OCCI Environment object that corresponds to the one opened
by the XA library.

Syntax

Envi ronnent *get XAEnvi r onnent (
const string &dbnane);

ORACLE 13-93

Chapter 13
Environment Class

Parameter Description

The database name; same as the optional dbnane provided in the Open
String (and used in connection to the Resource Manager).

dbnane

13.14.21 releaseXAConnection()

Release/deallocate all resources allocated by the getXAConnection() method.

Syntax

voi d rel easeXAConnecti on(
Connection* conn);

Parameter Description
The connection returned by the getXAConnection() method.

conn

13.14.22 releaseXAEnvironment()

Release/deallocate all resources allocated by the getXAEnvironment() method.

Syntax

voi d rel easeXAEnvi ronnent (
Environnent* env);

Parameter Description

env The environment returned by the getXAEnvironment() method.

13.14.23 setCacheMaxSize()

Sets the maximum size for the client-side object cache as a percentage of the optimal
size. The default value is 10%.
Syntax

voi d set CacheMaxSi ze(
unsi gned int naxSize);

Parameter Description

. The value of the maximum size, as a percentage.
maxSi ze ’ P 9

13.14.24 setCacheOptSize()

Sets the optimal size for the client-side object cache in bytes. The default value is
8MB.

ORACLE 13-94

Chapter 13
Environment Class

Syntax

voi d set CacheOpt Si ze(
unsi gned int optSize);

Parameter Description

opt Si ze The value of the optimal size, in bytes.

13.14.25 setCacheSortedFlush()

Sets the cache flushing protocol. By default, objects in cache are flushed in the order
they are modified; f| ag=FALSE. To improve server-side performance, set f| ag=TRUE, SO
that the objects in cache are sorted in table order before flushing from client cache.

Syntax
voi d set CacheSort edFl ush(
bool flag);
Parameter Description
1 ag FALSE (default): no sorting; TRUE: sorting in table order

13.14.26 setLDAPAdmInContext()

Sets the administrative context of the client. This is usually the root of the Oracle
RDBMS LDAP schema in the LDAP server.
Syntax

voi d set LDAPAdm nCont ext (
const string &ctx);

Parameter Description

ctx The client context

13.14.27 setLDAPAuthentication()

Specifies the authentication mode. Currently the only supported value is 0x1: Simple
authentication; username/password authentication.

Syntax

voi d set LDAPAut henti cati on(
unsi gned i nt node);

ORACLE 13-95

Chapter 13
Environment Class

Parameter Description

mode The authentication mode

13.14.28 setLDAPHostAndPort()

Specifies the host on which the LDAP server is running, and the port on which it is
listening for requests.

Syntax

voi d set LDAPHost AndPor t (
const string &host,
unsi gned int port);

Parameter Description
host The host for LDAP
port The port for LDAP

13.14.29 setLDAPLoginNameAndPassword()

Specifies the login distinguished name and password used when connecting to an
LDAP server.

Syntax

voi d set LDAPLogi nNameAndPasswor d(
const string & ogin,
const &passwd);

Parameter Description

| ogi n The login name

passwd The login password

13.14.30 setNLSLanguage()

Specifies the NLS Language for the current environment. The setting is effective for
the connections created after this method has been called. The setting overrides the
value set through the process environment variable NLS_LANG.

Syntax

voi d set NLSLanguage(
const string & ang);

ORACLE 13-96

Chapter 13
Environment Class

Parameter Description

| ang The language of the current environment

13.14.31 setNLSTerritory()

Specifies the NLS Territory for the current environment. The setting is effective for the
connections created after this method has been called. The setting overrides the value
set through the process environment variable NLS_LANG.

Syntax

voi d set NLSTerritory(
const string &Terr);

Parameter Description

Terr The territory of the current environment

13.14.32 terminateConnection()

Closes the connection to the environment, and frees all related system resources.

Syntax

voi d terninat eConnecti on(
Connection *connection);

Parameter Description

connect i on A pointer to the connection instance to be terminated.

13.14.33 terminateConnectionPool()

Closes the connections in the connection pool, and frees all related system resources.

Syntax

voi d terninateConnecti onPool (
Connect i onPool *pool Poi nter);

Parameter Description

pool Poi nt er A pointer to the connection pool instance to be terminated.

13.14.34 terminateEnvironment()

Closes the environment, and frees all related system resources.

ORACLE 13-97

Chapter 13
IntervalDS Class

Syntax

voi d terninateEnvironnent (
Envi ronnent *env);

Parameter Description

env Environment to be closed.

13.14.35 terminateStatelessConnectionPool()

Destroys the specified St at el essConnect i onPool .

Syntax

voi d terni mateSt at el essConnect i onPool (
St at el essConnect i onPool * pool Poi nter,
St at el essConnect i onPool : : Dest royMyde node=St at el essConnect i onPool : : DEFAULT) ;

Parameter Description

pool Poi nt er The St at el essConnect i onPool to be destroyed.

mode Dest royMde as defined Table 13-41: DEFAULT or SPF_FORCE.

13.15 IntervalDS Class

ORACLE

The IntervalDS class encapsulates time interval calculations in terms of days, hours,
minutes, seconds, and fractional seconds. Leading field precision is determined by
number of decimal digits in day input. Fraction second precision is determined by
number of fraction digits on input.

Table 13-19 Fields of IntervalDS Class

Field Type Description

day int Day component. Valid values are - 10"9 through 10"9.

hour i nt Hour component. Valid values are - 23 through 23.

m nute i nt Minute component. Valid values are - 59 through 59.

second i nt Second component. Valid values are - 59 through 59.

fs i nt Fractional second component. Constructs a NULL | nt er val DS

object. ANULL i nt erval DS can be initialized by assignment or
calling f roniText method. Methods that can be called on NULL
i nt erval DS objects are setName() and isNull().

Example 13-6 How to Use an Empty IntervalDS Object through Direct
Assighment

This example demonstrates how the default constructor creates a NULL value, and how
you can assign a non NULL value to a day-second interval and then perform operations
on it.

13-98

ORACLE

Chapter 13
IntervalDS Class

Envi ronnent *env = Environnent::createEnvironnent();

/] Create a NULL day-second interval
Interval DS ds;
if(ds.isNull())

cout << "\nds is null";

/1 Assign a non-NULL val ue to ds
I nterval DS anot her DS(env, "10 20:14:10.2");
ds = anot her DS;

/1 Now al| operations on Interval DS are valid
int DAY = ds. getDay();

Example 13-7 How to Use an Empty IntervalDS Object Through *Text()
Methods

This example demonstrates how to create a NULL day-second interval, initialize the
day-second interval by using the fronfext () method, add to the day-second interval by
using the += operator, multiply by using the * operator, compare 2 day-second
intervals, and convert a day-second interval to a string by using the t oText method:

Environnent *env = Environnent:: createEnvironnent();

/] Create a null day-second interval
Interval DS dsl

Il Initialize a null day-second interval by using the fronfext nethod
dsl. fronfext ("20 10:20:30.9","", env);

Interval DS addWth(env, 2,1);
dsl += addWth; [lcall += operator

Interval DS nmul Ds1=ds1 * Nunber(env, 10);
[lcall * operator
i f (ds1==nul Ds1) /lcall == operator

string strds=dsl.toText(2,4); /12 is leading field precision
/14 is the fractional field precision

Table 13-20 Summary of IntervalDS Methods
|

Method Summary

IntervalDS() I nt erval DS class constructor.

fromText() Returns an | nt er val DS converted from a st ri ng.
fromUText() Returns an | nt er val DS converted from a USt ri ng.
getDay() Returns day interval values.

getFracSec() Returns fractional second interval values.
getFracSec() Returns hour interval values.

getMinute() Returns minute interval values.

getSecond() Returns second interval values.

isNull() Returns true if I nt erval DS is NULL, f al se otherwise.
operator*() Returns the product of two | nt er val DS values.

13-99

Chapter 13
IntervalDS Class

Table 13-20 (Cont.) Summary of IntervalDS Methods
|

Method

Summary

operator*=()
operator=()
operator==()
operator!=()
operator/()
operator/=()
operator>()
operator>=()
operator<()
operator<=()
operator-()
operator- =()
operator+()
operator+=()
set()
setNull()
toText()
toUText()

Multiplication assignment.

Simple assignment.

Checks if a and b are equal.

Checks if a and b are not equal.

Returns an I nt er val DS with value (a / b).
Division assignment.

Checks if a is greater than b

Checks if a is greater than or equal to b.
Checks if a is less than b.

Checks if a is less than or equal to b.
Returns an | nt er val DS with value (a - b).
Subtraction assignment.

Returns the sum of two | nt er val DS values.
Addition assignment.

Sets day-second interval.

Sets day-second interval to NULL.

Converts to a st ri ng representation for the interval.

Converts to a USt ri ng representation for the interval.

13.15.1 IntervalDS()

I nt erval DS class constructor.

Syntax Description
| . Constructs a NULL | nt er val DS object. A NULL | nt erval DS
nterval DS() ; o . .
can be initialized by assignment or calling fromText() method.
Methods that can be called on NULL I nt er val DS objects are
setName() and isNull().
I nt er val DS(Cor_wstructs an | nt er val DS object within a specified
const Environment *env, Environment .
int day = 0,
int hour =0,
int mnute =0,
int second = 0,
int fs =0);
I nt er val DS(Constructs an | nt er val YMobject from src.

const Interval DS &src);

ORACLE

13-100

Chapter 13
IntervalDS Class

Parameter Description

env The Envi ronnent .

day The day field of | nt er val DS.

hour The hour field of I nt er val DS.

ni nut e The ni nut e field of | nt er val DS.

second The second field of I nt er val DS.

fs The f s field of | nt er val DS.

sre The source that the | nt er val DS object is copied from.

13.15.2 fromText()

Creates the interval from the string specified. The string is converted using the nl s
parameters associated with the relevant environment. The nl s parameters are picked
up from env. If env is NULL, the nl s parameters are picked up from the environment
associated with the instance, if any.

Syntax

voi d fronfext (
const string & npstr,
const string &nl sParam="",
const Environment *env = NULL);

Parameter Description

i npstr Input string representing a day second interval of the form 'days
hours:minutes:seconds', for example, '10 20:14:10.2'
The NLS parameter string. If nl sPar amis specified, this determines the NLS

nl sParam . . o
parameters to be used for the conversion. If nl sPar amis not specified, the
NLS parameters are picked up from envp.

env Environment whose NLS parameters are used.

13.15.3 fromUText()

ORACLE

Creates the interval from the USt ri ng specified.

Syntax

voi d fromJText (
const UString & npstr,
const Environment *env=NULL);

13-101

Chapter 13
IntervalDS Class

Parameter Description

Input USt ri ng representing a day second interval of the form 'days

i npstr
pst hours:minutes:seconds', for example, '10 20:14:10.2"

env The Envi ronnent .

13.15.4 getDay()

Returns the day component of the interval.

Syntax

int getDay() const;

13.15.5 getFracSec()

Returns the fractional second component of the interval.

Syntax

int getFracSec() const;

13.15.6 getHour()

Returns the hour component of the interval.

Syntax

int getHour() const;

13.15.7 getMinute()

Returns the minute component of this interval.

Syntax

int getMnute() const;

13.15.8 getSecond()

Returns the seconds component of this interval.

Syntax

int getSecond() const;

13.15.9 isNull()

Tests whether the interval is NULL. If the interval is NULL then TRUE is returned;
otherwise, FALSE is returned.

ORACLE 13-102

Chapter 13
IntervalDS Class

Syntax

bool isNull() const;

13.15.10 operator*()

Multiplies an interval by a specified value and returns the result.

Syntax

const Interval DS operat or*(
const Interval DS & nterval,
const Nunber &val);

Parameter Description

interval Interval to be multiplied.

val Value by which interval is to be multiplied.

13.15.11 operator*=()

Assigns the product of I nterval DS and a to | nt erval DS.

Syntax

I nterval DS& oper at or *=(
const Interval DS &f actor);

Parameter Description

factor A day second interval.

13.15.12 operator=()

Assigns the specified value to the interval.

Syntax

I nterval DS& oper at or =(
const Interval DS &src);

Parameter Description

sre Value to be assigned.

13.15.13 operator==()

Compares the intervals specified. If the intervals are equal, then TRUE is returned;
otherwise, FALSE is returned. If either interval is NULL then SQLEXxception is thrown.

ORACLE 13-103

Chapter 13
IntervalDS Class

Syntax

bool operat or==(
const Interval DS &first,
const Interval DS &second);

Parameter Description

first The first interval to be compared.

second The second interval to be compared.

13.15.14 operator!=()

Compares the intervals specified. If the intervals are not equal then TRUE is returned,;
otherwise, FALSE is returned. If either interval is NULL then SQLEXxception is thrown.

Syntax

bool operator!=(
const Interval DS &first,
const Interval DS &second);

Parameter Description

first The first interval to be compared.

second The second interval to be compared.

13.15.15 operator/()

Returns the result of dividing an interval by a constant value.

Syntax

const Interval DS operator/(
const Interval DS &di vi dend,
const Number &factor);

Parameter Description
di vi dend The interval to be divided.
fact or Value by which interval is to be divided.

13.15.16 operator/=()

Assigns the quotient of I nterval DS and val to I nterval DS.

ORACLE 13-104

Chapter 13
IntervalDS Class

Syntax

I nterval DS& operat or/ =(
const Interval DS &f actor);

Parameter Description

factor A day second interval.

13.15.17 operator>()

Compares the intervals specified. If the first interval is greater than the second interval
then TRUE is returned; otherwise, FALSE is returned. If either interval is NULL then
SQLException is thrown.

Syntax

bool operat or >(
const Interval DS &first,
const Interval DS &second);

Parameter Description

first The first interval to be compared.

second The second interval to be compared.

13.15.18 operator>=()

Compares the intervals specified. If the first interval is greater than or equal to the
second interval then TRUE is returned; otherwise, FALSE is returned. If either interval is
NULL then SQLException is thrown.

Syntax

bool operat or >=(
const Interval DS &first,
const Interval DS &first);

Parameter Description

first The first interval to be compared.

second The second interval to be compared.

13.15.19 operator<()

Compares the intervals specified. If the first interval is less than the second interval
then TRUE is returned; otherwise, FALSE is returned. If either interval is NULL then
SQLEXxception is thrown.

ORACLE 13-105

Chapter 13
IntervalDS Class

Syntax

bool operat or <(
const Interval DS &first,
const Interval DS &second);

Parameter Description

first The first interval to be compared.

second The second interval to be compared.

13.15.20 operator<=()

Compares the intervals specified. If the first interval is less than or equal to the second
interval then TRUE is returned; otherwise, FALSE is returned. If either interval is NULL then
SQLException is thrown.

Syntax

bool operat or <=(
const Interval DS &first,
const Interval DS &second);

Parameter Description

first The first interval to be compared.

second The second interval to be compared.

13.15.21 operator-()

Returns the difference between the intervals first and second.

Syntax

const Interval DS operator-(
const Interval DS &first,
const Interval DS &second);

Parameter Description

first The first interval to be compared.

second The second interval to be compared.

13.15.22 operator-=()

Assigns the difference between I nt erval DS and val to I nterval DS.

ORACLE 13-106

Syntax

I nterval DS& oper at or - =(
const Interval DS &val);

Chapter 13
IntervalDS Class

Parameter Description

val A day second interval.

13.15.23 operator+()

Returns the sum of the intervals specified.

Syntax

const Interval DS oper at or +(
const Interval DS &first,
const Interval DS &second);

Parameter Description

first

second

The first interval to be compared.

The second interval to be compared.

13.15.24 operator+=()

Assigns the sum of I nterval DS and val to I nterval DS.

Syntax

I nterval DS& oper at or +=(
const Interval DS &val);

Parameter Description

val A day second interval.

13.15.25 set()

Sets the interval to the values specified.

Syntax

voi d set(
int day,
int hour,
int mnute,
int second,
int fracsec);

ORACLE

13-107

Chapter 13
IntervalDS Class

Parameter Description

day Day component.

hour Hour component.

nin Minute component.

second Second component.

fracsec Fractional second component.

13.15.26 setNull()

Sets the I nterval DS to NULL.

Syntax

void setNull();

13.15.27 toText()

Converts to a stri ng representation for the interval.

Syntax

string toText(
unsigned int |fprec,
unsigned int fsprec,

const string &nlsParam= "") const;
Parameter Description
| fprec Leading field precision.
fsprec Fractional second precision.
nl sParam The NLS parameters string. If nl sPar amis specified, this determines

the NLS parameters to be used for the conversion. If nl sPar amis
not specified, the NLS parameters are picked up from envp.

13.15.28 toUText()

Converts to a Ust ri ng representation for the interval.

Syntax

UString toUText (
unsigned int |fprec,

unsigned int fsprec) cosnt;

ORACLE

13-108

Chapter 13
IntervalYM Class

Parameter Description
| fprec Leading field precision.
fsprec Fractional second precision.

13.16 IntervalYM Class

ORACLE

I nt erval YMsSupports the SQL standard data type Year-Month Interval.

Leading field precision is determined by number of decimal digits on input.

Table 13-21 Fields of IntervalYM Class

Field Type Description
year int Year component. Valid values are - 10”9 through 10"9.
mont h i nt Month component. Valid values are - 11 through 11.

Example 13-8 How to Use an Empty IntervalYM Object Through Direct
Assighment

This example demonstrates that the default constructor creates a NULL value, and how
you can assign a non NULL value to a year-month interval and then perform operations
on it:

Envi ronnent *env = Environment:: creat eEnvironnent ();

/] Create a NULL year-nonth interval
I nterval YM ym
if(ymisNull())

cout << "\n ymis null";

/'l Assign a non-NULL value to ym
I nterval YM anot her YM env, "10-30");
ymeanot her YM

/1 Now al| operations on YMare valid
int yr = ymgetVYear();

Example 13-9 How to Use an IntervalYM Object Through ResultSet and toText()
Method

This example demonstrates how to get the year-month interval column from a result
set, add to the year-month interval by using the += operator, multiply by using the *
operator, compare 2 year-month intervals, and convert a year-month interval to a
string by using the t oText () method.

/1 SELECT WARRANT_PERI CD f r om PRODUCT_| NFORMATI ON
//obtain result set
resul tset->next();

//get interval value fromresultset
Interval YMyml = resul tset->getlnterval YM1);

13-109

Chapter 13
IntervalYM Class

Interval YM addWth(env, 10, 1);
yml += addWth; [lcall += operator

Interval YM nul YmL = ynl * Nunber(env, 10);
i f(ymi<nul Ynt) I/ conpari son

[lcall * operator

string strym= ynil. toText(3); /13 is the leading field precision

Table 13-22 Summary of IntervalYM Methods
|

Method Summary

Interval YM() I nt er val YMclass constructor.

fromText() Converts a string into an | nt erval YM
fromUText() Converts a UStri ng into an | nt erval YM
getMonth() Returns month interval value.

getYear() Returns year interval value.

isNull() Checks if the interval is NULL.

operator*() Returns the product of two | nt er val YMvalues.

operator*=()
operator=()
operator==()
operator!=()
operator/()
operator/=()
operator>()
operator>=()
operator<()
operator<=()
operator-()
operator- =()
operator+()
operator+=()
set()
setNull()
toText()
toUText()

Multiplication assignment.

Simple assignment.

Checks if a and b are equal.

Checks if a and b are not equal.

Returns an i nt erval with value (a/b).
Division assignment.

Checks if a is greater than b.

Checks if a is greater than or equal to b.
Checks if a is less than b.

Checks if a is less than or equal to b.
Returns an i nt erval with value (a - b).
Subtraction assignment.

Returns the sum of two | nt er val YMvalues.
Addition assignment.

Sets the interval to the values specified.
Sets the interval to NULL.

Converts to a st ri ng representation of the interval.

Converts to a USt ri ng representation of the interval.

13.16.1 Interval YM()

IntervalYM class constructor.

ORACLE

13-110

Chapter 13
IntervalYM Class

Syntax Description
. Constructs a NULL | nt er val YMobject. A NULL | nt er val YMcan
Interval YM); A . :
be initialized by assignment or calling operator*() method.
Methods that can be called on NULL I nt er val YMobjects are
setName() and isNull().
I nterval YM gregtes an 1 nt er val YMobject within the specified
const Environment *env, nvironment .
int year
int month = 0);
I nt erval DS(Copy constructor.

const Interval YM &src);

Parameter Description

env The Envi ronnent .

year The year field of the | nt er val YMobject.

mont h The nont h field of the | nt er val YMobject.

sre The source that the | nt er val YMobject is copied from.

13.16.2 fromText()

This method initializes the interval to the values ini npstr. The string is interpreted
using the NLS parameters set in the environment.

ORACLE

The NLS parameters are picked up from env. If env is NULL, the NLS parameters are
picked up from the environment associated with the instance, if any.

Syntax

voi d fronlext (

const string & npStr,
const string &nl sParam= "",
const Environment *env = NULL);

Parameter Description

i npSt 1 Input string representing a year month interval of the form 'year-month'.
The NLS parameters string. If nl sPar amis specified, this determines the

nl sPar am : .
NLS parameters to be used for the conversion. If nl sPar amis not
specified, the NLS parameters are picked up from envp.

env Environment whose NLS parameters are used.

13-111

Chapter 13
IntervalYM Class

13.16.3 fromUText()

Creates the interval from the USt ri ng specified.

Syntax

voi d fromJText (
const UString & npStr,
const Environment *env=NULL);

Parameter Description
i npSt r Input USt ri ng representing a year month interval of the form 'year-month'.
env The Envi ronnent .

13.16.4 getMonth()

This method returns the month component of the interval.

Syntax

int getMnth() const;

13.16.5 getYear()

This method returns the year component of the interval.

Syntax

int getYear() const;

13.16.6 isNull()

This method tests whether the interval is NULL. If the interval is NULL then TRUE is
returned; otherwise, FALSE is returned.

Syntax

bool isNull() const;

13.16.7 operator*()

This method multiplies the interval by a factor and returns the result.

Syntax

const I nterval YM operat or*(
const Interval DS & nterval
const Number é&val);

ORACLE 13-112

Chapter 13
IntervalYM Class

Parameter Description

i nterval Interval to be multiplied.

val Value by which interval is to be multiplied.

13.16.8 operator*=()

This method multiplies the interval by a specified value.
Syntax

I nterval YM& operat or *=(
const Nunmber &factor);

Parameter Description

fact or Value to be multiplied.

13.16.9 operator=()

This method assigns the specified value to the interval.

Syntax

I nterval YM& oper at or =(
const Interval YM &src);

Parameter Description

sre Value to be assigned.

13.16.10 operator==()

This method compares the intervals specified. If the intervals are equal then TRUE is
returned; otherwise, FALSE is returned. If either interval is NULL then SQLException is
thrown.

Syntax

bool operat or==(
const Interval YM &first,
const Interval YM &second);

Parameter Description

first The first interval to be compared.

second The second interval to be compared.

ORACLE 13-113

Chapter 13
IntervalYM Class

13.16.11 operator!=()

This method compares the intervals specified. If the intervals are not equal then TRUE is
returned; otherwise, FALSE is returned. If either interval is NULL then SQLEXxception is
thrown.

Syntax

bool operator!=(
const Interval YM&first,
const Interval YM &second);

Parameter Description

first The first interval to be compared.

second The second interval to be compared.

13.16.12 operator/()

This method returns the result of dividing the interval by a factor.

Syntax

const Interval YM operator/(
const | nterval YM &di vi dend,
const Number &factor);

Parameter Description
di vi dend The interval to be divided.
fact or Value by which interval is to be divided.

13.16.13 operator/=()

This method divides the interval by a factor.

Syntax

I nterval YM& operator/=(
const Nunmber &factor);

Parameter Description

A day second interval.
factor

ORACLE 13-114

Chapter 13
IntervalYM Class

13.16.14 operator>()

This method compares the intervals specified. If the first interval is greater than the
second interval then TRUE is returned; otherwise, FALSE is returned. If either interval is
NULL then SQLEXxception is thrown.

Syntax

bool operat or >(
const Interval YM &first,
const Interval YM &second);

Parameter Description

first The first interval to be compared.

second The second interval to be compared.

13.16.15 operator>=()

This method compares the intervals specified. If the first interval is greater than or
equal to the second interval then TRUE is returned; otherwise, FALSE is returned. If either
interval is NULL then SQLEXxception is thrown.

Syntax

bool operat or >=(
const Interval YM &first,
const Interval YM &second);

Parameter Description

first The first interval to be compared.
The second interval to be compared.

second

13.16.16 operator<()

This method compares the intervals specified. If the first interval is less than the
second interval then TRUE is returned; otherwise, FALSE is returned. If either interval is
NULL then SQLException is thrown.

Syntax

bool operat or <(
const Interval YM &first,
const Interval YM &second);

ORACLE 13-115

Chapter 13
IntervalYM Class

Parameter Description

first The first interval to be compared.

second The second interval to be compared.

13.16.17 operator<=()

This method compares the intervals specified. If the first interval is less than or equal
to the second interval then TRUE is returned; otherwise, FALSE is returned. If either
interval is NULL then SQLEXxception is thrown

Syntax

bool operat or <=(
const Interval YM&first,
const Interval YM &second);

Parameter Description

first The first interval to be compared.

second The second interval to be compared.

13.16.18 operator-()

This method returns the difference between the intervals specified.

Syntax

const I nterval YM operator-(
const Interval YM &first,
const Interval YM &second);

Parameter Description

first The first interval to be compared.

second The second interval to be compared.

13.16.19 operator.-=()

This method computes the difference between itself and another interval.

Syntax

I nterval YM& oper at or - =(
const Interval YM &val);

ORACLE 13-116

Chapter 13
IntervalYM Class

Parameter Description

val A day second interval.

13.16.20 operator+()

This method returns the sum of the intervals specified.

Syntax

const I nterval YM oper at or +(
const Interval YM&first,
const Interval YM &second);

Parameter Description

first The first interval to be compared.

second The second interval to be compared.

13.16.21 operator+=()

This method assigns the sum of I nterval YM and val to I nterval YM

Syntax

I nterval YM& oper at or +=(
const Interval YM &val);

Parameter Description

val A day second interval.

13.16.22 set()

This method sets the interval to the values specified.

Syntax

voi d set(
int year,
int month);

Parameter Description

year Year component. Valid values are - 10"9 through 10"9.

mont h Month component. Valid values are - 11 through 11.

ORACLE 13-117

Chapter 13
Listener Class

13.16.23 setNull()

This method sets the interval to NULL.

Syntax

void setNull();

13.16.24 toText()

This method returns the string representation of the interval.

Syntax

string toText (
unsigned int |fprec,

const string &nlsParam="") const;
Parameter Description
I prec Leading field precision.
nl sPar am The NLS parameters string. If nl sPar amis specified, this determines

the NLS parameters to be used for the conversion. If nl sPar amis
not specified, the NLS parameters are picked up from envp.

13.16.25 toUText()

Converts to a Ust ri ng representation for the interval.

Syntax

UString toUText (
unsigned int |fprec) cosnt;

Parameter Description

| fprec Leading field precision.

13.17 Listener Class

The Li stener class encapsulates the ability to listen for Messages, on behalf of
registered Agent s, at specified queues.

Table 13-23 Summary of Listener Methods
|

Method Summary
Listener() Li stener class constructor.
getAgentList() Retrieves the list of Agent s for which the Li st ener

provides its services.

ORACLE 13-118

Chapter 13
Listener Class

Table 13-23 (Cont.) Summary of Listener Methods
|

Method Summary

getTimeOutForListen() Retrieves the time out for a call.

listen() Listens for Messages and returns the name of the Agent
for whom a Message is intended.

setAgentList() Specifies the list of Agent s for which the Li st ener

setTimeOutForListen()

provides its services.

Specifies the time out for a listen() call.

13.17.1 Listener()

Li stener class constructor.

Syntax

Description

Li st ener (
const Connection* conn);

Li st ener (
const Connection* conn
vect or <Agent > &agl i st,
int waitTinme=0);

Creates a Li st ener object.

Creates a Li st ener object and sets the list
of Agent s on behalf of which it listens on
queues. Also sets the waiting time; default:
no waiting.

Parameter Description

conn The connection of the new Li st ener object.

agli st The list of agents on behalf of which the Li st ener object waits on queues;
clients of this Li st ener .

wai t Ti e The time to wait on queues for messages of interest for the clients; in

seconds.

13.17.2 getAgentList()

Retrieves the list of Agent s for which the Li st ener provides its services.

Syntax

vect or <Agent > get Agent Li st() const;

13.17.3 getTimeOutForListen()

Retrieves the time out for a call.

Syntax

int getTi meQut ForListen() const;

ORACLE

13-119

Chapter 13
Map Class

13.17.4 listen()

Listens for Messages on behalf of specified Agent s for the amount of time specified by a
previous setTimeOutForListen() call. Returns the Agent for which there is a Message.

Note that this is a blocking call. Before this call, complete the following steps:

e Registers each Agent listener through a setAgentList() call.

e Make a blocking call to setTimeOutForListen() that returns when a Message for one
of the Agent s on the list arrives. If no Messages arrive before the wait time expires,
the call returns an error.

Syntax

Agent listen();

13.17.5 setAgentList()

Specifies the list of Agent s for which the Li st ener provides its services.

Syntax

voi d set Agent Li st (
vect or <Agent >& agLi st);

Parameter Description
The list of Agent s.

agLi st

13.17.6 setTimeOutForListen()

Specifies the time out for a listen() call.

Syntax

voi d set Ti meQut For Li st en(
int waitTine);

Parameter Description

The time interval, in seconds, during which the Li st ener is waiting for

wai t Ti me -
Messages at specified queues.

13.18 Map Class

The Map class is used to store the mapping of the SQL structured type to C++ classes.

For each user defined type, the Object Type Translator (OTT) generates a C++ class
declaration and implements the static methods readSQ.() and witeSQ.(). The
readSQL() method is called when the object from the server appears in the application
as a C++ class instance. The witeSQL() method is called to marshal the object in the
application cache to server data when it is being written / flushed to the server. The

ORACLE 13-120

Chapter 13
Map Class

readSQL() and witeSQL() methods generated by OTT are based upon the OCCI
standard C++ mappings.

If you want to override the standard OTT generated mappings with customized
mappings, you must implement a custom C++ class along with the readSQ.() and
writeSQL() methods for each SQL structured type you must customize. In addition, you
must add an entry for each such class into the Map member of the Envi ronnent .

Table 13-24 Summary of Map Methods

__|
Method Summary

put() Adds a map entry for the type t ype_nane.

13.18.1 put()

ORACLE

Adds a map entry for the type, type_nane, that must be customized; you must
implement the t ype_nane C++ class.

You must then add this information into a map object, which should be registered with
the connection if the user wants the standard mappings to overridden.This registration
can be done by calling the this method after the environment is created passing the
environment.

Syntax Description

Registers a type and its corresponding C++

void put(readSQ. and wri t eSQL functions.

const string &chemaType,
void *(*rSQ.)(void *),
void (*wSQ.) (void *, void *));

Registers a type and its corresponding C++

voi d put (; oo X
const string& schane, readSQt_ and wri t eSQL functions; multibyte
const string& typNane, support.
void *(*rsQ.)(void *),
void (*wSQL)(void *, void *));

voi d put (Registers a type and its corresponding C++
const UString& schhame, readSQt_ and wri t eSQL functions; unicode
const UString& typNane, support.
void *(*rsQ.)(void *),
void (*wSQL)(void *, void *));

Parameter Description

schemaType The schema and typename, separated by ".", like HR TYPEL

schNane Name of the schema

typNane Name of the type

13-121

Chapter 13
Message Class

Parameter Description
DAL The readSQL function pointer of the C++ class that corresponds to the type
wsaQL The wri t eSQL function pointer of the C++ class that corresponds to the type

13.19 Message Class

A message is the unit that is enqueued dequeued. A Message object holds both its
content, or payload, and its properties. This class provides methods to get and set

ORACLE

message properties.

Table 13-25 Enumerated Values Used by Message Class

Attribute

Options

MessageSt at e

MSG_WAI TI NG indicates that the message delay time has not been
reached

e MSG_READY indicates that the message is ready to be processed

e MSG_PROCESSED indicates that the message has been processed,
and is being retained

« MSG_EXPI REDindicates that the message has been moved to the
exception queue.

Payl oadType

* RAW
ANYDATA
« OBJECT

Table 13-26 Summary of Message Methods

Method Summary
Message() Message class constructor.
getAnyData() Retrieves AnyDat a payload of the message.

getAttemptsToDequeue()

getBytes()
getCorrelationld()
getDelay()
getExceptionQueueName()

getExpiration()
getMessageEnqueuedTime()
getMessageState()
getObject()
getOriginalMessageld()

getPayloadType()

Retrieves the number of attempts made to dequeue the
message.

Retrieves Byt es payload of the message.
Retrieves the identification string.
Retrieves delay with which message was enqueued.

Retrieves name of queue to which Message is moved
when it cannot be processed.

Retrieves the expiration of the message.

Retrieves time at which message was enqueued.
Retrieves state of the message at time of enqueuing.
Retrieves object payload of the message.

Retrieves the Id of the message that generated this
message on the last queue.

Retrieves the type of the payload.

13-122

ORACLE

Chapter 13
Message Class

Table 13-26 (Cont.) Summary of Message Methods
|

Method Summary

getPriority() Retrieves the priority of the message.
getSenderld() Retrieves the agent who send the Message.
isNull() Tests whether the Message object is NULL.
operator=() Assignment operator for Message.
setAnyData() Specifies AnyDat a payload of the message.
setBytes() Specifies Byt es payload of the message.

setCorrelationld()

setDelay()

setExceptionQueueName()

setExpiration()

setNull()

setObject()
setOriginalMessageld()
setPriority()
setRecipientList()

setSenderld()

Specifies the identification string.

Specifies the number of seconds to delay the enqueued
Message.

Specifies the name of the queue to which the Message
object is moved if it cannot be precessed.

Specifies the duration of time that Message can be
dequeued before it expires.

Sets the Message object to NULL.

Specifies object payload of the message.

Specifies id of last queue that generated the Message.
Specifies priority of the Message object.

Specifies the list of agents for whom the message is
intended.

Specifies the sender of the Message.

13.19.1 Message()

Message class constructor.

Syntax

Description

Message(

const Environnent *env);

Message(
const Message& nes);

Creates a Message object within the
specified Envi r onnent .

Copy constructor.

Parameter Description
env The environment of the Message.
es The original Message.

13-123

Chapter 13
Message Class

13.19.2 getAnyData()

Retrieves the AnyDat a payload of the Message.

Syntax

AnyDat a get AnyData() const;

13.19.3 getAttemptsToDequeue()

Retrieves the number of attempts made to dequeue the message. This property
cannot be retrieved while enqueuing.

Syntax

int getAttenptsToDequeue() const;

13.19.4 getBytes()

Retrieves Byt es payload of the Message.

Syntax

Bytes getBytes() const;

13.19.5 getCorrelationld()

Retrieves the identification string.

Syntax

string getCorrelationld() const;

13.19.6 getDelay()

Retrieves the delay (in seconds) with which the Message was enqueued.
Syntax

int getDelay() const;

13.19.7 getExceptionQueueName()

Retrieves the name of the queue to which the Message is moved, in cases when the
Message cannot be processed successfully.

Syntax

string get ExceptionQueueName() const;

13.19.8 getExpiration()

Retrieves the expiration time of the Message (in seconds). This is the duration for which
the message is available for dequeuing.

ORACLE 13-124

Chapter 13
Message Class

Syntax
int getExpiration() const;
13.19.9 getMessageEnqueuedTime()

Retrieves the time at which the message was enqueued, in Dat e format. This value is
determined by the system, and cannot be set by the user.

Syntax

Dat e get MessageEnqueuedTi me() const;

13.19.10 getMessageState()

Retrieves the state of the message at the time of enqueuing. This parameter cannot
be set an enqueuing time. MessageSt at e is defined in Table 13-25.

Syntax

MessageSt at e get MessageState() const;

13.19.11 getObject()

Retrieves object payload of the Message.

Syntax
Phj ect* get Object();

13.19.12 getOriginalMessageld()

Retrieves the original message Id. When a message is propagated from one queue to
another, gets the ID to the last queue that generated this message.

Syntax

Bytes get Ori gi nal Messagel d() const;

13.19.13 getPayloadType()

Retrieves the type of the payload, as defined for Payl oadType in Table 13-25.

Syntax

Payl oadType get Payl oadType() const;

13.19.14 getPriority()

Retrieves the priority of the Message.

Syntax

int getPriority() const;

ORACLE 13-125

Chapter 13
Message Class

13.19.15 getSenderld()

Retrieves the agent who send the Message.

Syntax

Agent get Senderld() const;

13.19.16 isNull()

Tests whether the Message object is NULL. If the Message object is NULL, then TRUE is
returned; otherwise, FALSE is returned.

Syntax

bool isNull() const;

13.19.17 operator=()

Assignment operator for Message.

voi d operat or =(
const Messageé& mes);

Parameter Description

riginal m .
es Original message

13.19.18 setAnyData()

Specifies AnyDat a payload of the Message.

Syntax

voi d set AnyDat a(
const AnyDat a& anydata);

Parameter Description

anydata Data content of the Message.

13.19.19 setBytes()

Specifies Byt es payload of the Message.

Syntax

voi d setBytes(
const Bytesé& bytes);

ORACLE 13-126

Chapter 13
Message Class

Parameter Description

byt es Data content of the Message.

13.19.20 setCorrelationid()

Specifies the identification string. This parameter is set at enqueuing time by the
Producer. Messages can be dequeued with this id. The id can contain wildcard

characters.
Syntax

void setCorrel ationld(
const string& id);

Parameter Description
The id; upper limit of 128 bytes.

id

13.19.21 setDelay()

Specifies the time (in seconds) to delay the enqueued Message. After the delay ends,
the Message is available for dequeuing.

Note that dequeuing by nsgi d overrides the delay specification. A Message enqueued
with delay is in the WAl TI NG state. Delay is set by the producer of the Message.

Syntax
voi d set Del ay(
int delay);
Parameter Description
del ay The delay.

13.19.22 setExceptionQueueName()

ORACLE

Specifies the name of the queue to which the Message object is moved if it cannot be
processed successfully. The queue name must be valid.

Note that if the exception queue does not exist at the time of the move, the Message is
moved to the default exception queue associated with the queue table; a warning is
logged in the alert log.

Also note that if the default exception queue is used, the parameter returns a NULL
value at enqueuing time; the attribute must refer to a valid queue name.

13-127

Chapter 13
Message Class

Syntax

voi d set Excepti onQueueNang(
const string& queue);

Parameter Description

queue The name of the exception queue.

13.19.23 setExpiration()

Specifies the duration time (in seconds) that the Message object is available for
dequeuing. A Message expires after this time.

Syntax
voi d set Expiration(
int exp);
Parameter Description
exp The duration of expiration.

13.19.24 setNull()

Sets the Message object to NULL. Before the Connecti on is destroyed by the
terminateConnection() call of the Environment Class, all Message objects must be set to
NULL.

Syntax

void setNull();

13.19.25 setObject()

Specifies object payload of the Message.

Syntax

voi d set bj ect (
PQbj ect & pobj);

Parameter Description

pobj Content of the data

13.19.26 setOriginalMessageld()

Sets the Id of the last queue that generated the message, when a message is
propagated from one queue to another.

ORACLE 13-128

Chapter 13
Message Class

Syntax

voi d set Ori gi nal Messagel d(
const Bytes& queue);

Parameter Description

queue The last queue.

13.19.27 setPriority()

Specifies the priority of the Message object. This property is set during enqueuing time,
and can be negative. Default is 0.

Syntax
voi d setPriority(
int priority);
Parameter Description
priority The priority of the Message.

13.19.28 setRecipientList()

Specifies the list of Agent s for whom the Message is intended. These recipients are not
identical to subscribers of the queue. The property is set during enqueuing. All Agent s
in the list must be valid. The recipient list overrides the default subscriber list.

Syntax

voi d set Reci pi ent Li st (
vect or <Agent >& agent Li st);

Parameter Description

agent Li st The list of Agent s.

13.19.29 setSenderld()

Specifies the sender of the Message.

Syntax

voi d set Sender | d(
const Agent & sender);

Parameter Description
Sender id.

sender

ORACLE 13-129

13.20 MetaData Class

A Met aDat a object can be used to describe the types and properties of the columns in a
Resul t Set or the existing schema objects in the database. It also provides information
about the database as a whole. The enumerated values of MetaData are in

Table 13-27, and the summary of its methods is in Table 13-28.

Chapter 13
MetaData Class

Table 13-27 Enumerated Values Used by MetaData Class

Attribute

Options

Par anfType

Attrld common to
all parameters

Attrld for Tables
and Views

ORACLE

The parameter types for objects are:

PTYPE_ARG s the argument of a function or procedure.
PTYPE_CQL is the column of a table or view.
PTYPE_DATABASE is the database.

PTYPE_FUNC is the function.

PTYPE_PKGis the package.

PTYPE_PRCC is the procedure.

PTYPE_SCHEMA is the schema.

PTYPE_SEQis the sequence.

PTYPE_SYNis the synonym.

PTYPE_TABLE is the table.

PTYPE_TYPE is the type.

PTYPE_TYPE_ARGis the argument of a type method.
PTYPE_TYPE_ATTRis the attribute of a type.
PTYPE_TYPE_CCLL is the collection type information.
PTYPE_TYPE_METHOD is the method of a type.
PTYPE_TYPE_RESULT is the results of a method.
PTYPE_UNK is the object of an unknown type.
PTYPE_VI EWis the view.

Attributes of all parameters:

ATTR_OBJ_I Dis the object or schema id.

ATTR_OBJ_NAME is either the database name, or the object name in a
schema.

ATTR_OBJ_SCHEMA is the name of the schema describing the object.
ATTR_PTYPE is the type of information described by a parameter,

Par aniType

ATTR_TI MESTAMP is the timestamp of an object.

Parameters for a table or view (Par aniType of PTYPE_TABLE and
PTYPE_VI EW have the following type-specific attributes:

ATTR_OBJI Dis the object id

ATTR_NUM CQOLS is the number of columns

ATTR_LI ST_COLUMNS is the column list

ATTR_REF_TDOis the REF to the TDO of the base type in case of
extent tables

ATTR_| S_TEMPORARY indicates the table is temporary

ATTR_I S_TYPED indicates the table is typed

ATTR_DURATI ONis the duration of a temporary table. Values can be
DURATION_SESSION, DURATION_TRANS, and
DURATION_NULL, as defined for attribute At tr Val ues

13-130

ORACLE

Chapter 13
MetaData Class

Table 13-27 (Cont.) Enumerated Values Used by MetaData Class

___|
Attribute Options

Attrld for Tables Parameters for a tables only (Par aniType of PTYPE_TABLE):

only .

ATTR_RDBA indicates the data block address of the segment header
ATTR_TABLESPACE indicates the tablespace the table resides in
ATTR_CLUSTERED indicates the table is clustered

ATTR_PARTI TI ONED indicates the table is partitioned

ATTR_I NDEX_ONLY indicates the table is index-only

Attrld for Functions Parameters for functions and procedures (Par aniType of PTYPE_FUNC and
and Procedures PTYPE_PRCC, respectively):

ATTR_LI ST_ARGUMENTS indicates the argument list

ATTR_I S_I NVOKER_RI GHTS indicates the procedure or function has
invoker's rights

ATTR_NAME indicates the name of the procedure or function
ATTR_OVERLQAD | Dindicates the overloading ID number, relevant
when the procedure or function is part of a class and it is
overloaded; values returned may be different from direct query of a
PL/SQL function or procedure

Attrld for Packages Parameters for packages (Par ant ype of PTYPE_PKG):

ATTR_LI ST_SUBPROGRAMS indicates the subprogram list
ATTR_I S_I NVOKER_RI GHTS indicates the procedure or function has
invoker's rights

13-131

ORACLE

Chapter 13
MetaData Class

Table 13-27 (Cont.) Enumerated Values Used by MetaData Class

___|
Options

Attribute

Attrld for Types

Parameter is for types (Par aniType of PTYPE_TYPE):

ATTR_REF_TDOindicates the in-memory REF of the type descriptor for
the type, if the column type is an object type. If space has not been
reserved, then it is allocated implicitly in the cache. The caller can
then pin the object.

ATTR_TYPECODE indicates the data type code

ATTR_COLLECTI ON_TYPECODE indicates the typecode of collection, if
type is collection

ATTR_|I S_| NCOWPLETE_TYPE indicates that this is an incomplete type
ATTR_| S_SYSTEM TYPE indicates that this is a system generated type
ATTR_| S_PREDEFI NED_TYPE indicates that this is a predefined type
ATTR_|I S_TRANSI ENT_TYPE indicates that this is a transient type
ATTR_|I S_SYSTEM GENERATED_TYPE indicates that this is a system
generated type

ATTR_HAS_NESTED TABLE indicates that this type contains a nested
table attribute

ATTR_HAS_L OB indicates that this type contains a LOB attribute
ATTR_HAS_FI LE indicates that this type contains a BFI LE attribute

ATTR_COLLECTI ON_ELEMENT indicates a reference to a collection
element

ATTR_NUM TYPE_ATTRS indicates the number of type attributes
ATTR_LI ST_TYPE_ATTRS indicates the list of type attributes
ATTR_NUM TYPE_METHCDS indicates the number of type methods
ATTR_LI ST_TYPE_METHODS indicates the list of type methods
ATTR_MAP_METHOD indicates the map method of the type
ATTR_ORDER_METHQOD indicates the order method of the type
ATTR_I S_I NVOKER_RI GHTS indicates the type has invoker's rights
ATTR_NAME indicates the type attribute name

ATTR_SCHEMA_NAME indicates the schema where the type is created
ATTR_I S_FI NAL_TYPE indicates this is a final type

ATTR_I S_I NSTANTI ABLE_TYPE indicates this is an instantiable type
ATTR_I S_SUBTYPE indicates this is a subtype

ATTR_SUPERTYPE_SCHEMA NAME indicates the name of the schema
that contains the supertype

ATTR_SUPERTYPE_NAME indicates the name of the supertype

13-132

Chapter 13
MetaData Class

Table 13-27 (Cont.) Enumerated Values Used by MetaData Class
|

Attribute Options
Attrld for Type Parameter is for attributes of types (Par anifype of PTYPE_TYPE_ATTR):
Attributes .

ATTR_DATA _SI ZE indicates the maximum size of the type attribute
ATTR_TYPECODE indicates the data type code

ATTR_DATA TYPE indicates the data type of the type attribute
ATTR_NAME indicates the name of the procedure or function
ATTR_PREC! SI ON indicates the precision of numeric type attributes.
ATTR_SCALE indicates the scale of the numeric type attributes
ATTR_TYPE_NAME indicates a type name

ATTR_SCHEMA_NAME indicates the name of the schema where the
type has been created

ATTR_REF_TDOindicates the in-memory REF of the type, if the column

type is an object type. If the space has not been reserved, it is
allocated implicitly in the cache. The caller can then pin the object.

ATTR_CHARSET I Dindicates the characterset ID
ATTR_CHARSET_FORMindicates the characterset form
ATTR_FSPRECI SI ON indicates the fractional seconds precision of a
Ti nest anp, I nterval DS or I nt erval YM

ATTR_LFPRECI SI ON indicates the leading field precision of an
Interval DS or | nterval YM

Attrld for Type Parameter is for methods of types (Par aniType of PTYPE_METHCD):

Methods .

ORACLE

ATTR_NAME indicates the name of the procedure or function
ATTR_ENCAPSULATI ON indicates the method's level of encapsulation
ATTR_LI ST_ARGUMENTS indicates the argument list

ATTR_| S_CONSTRUCTCR indicates the method is a constructor
ATTR_|I S_DESTRUCTCR indicates the method is a destructor

ATTR_| S_OPERATCR indicates the method is an operator

ATTR_| S_SELFI SHindicates the method is selfish

ATTR_I S_MAP indicates the method is a map method

ATTR_| S _ORDER indicates the method is an order method

ATTR_| S_RNDS indicates that the method is in "read no data" state
ATTR_|I S_RNPS indicates that the method is in a "read no process"
state

ATTR_I' S_WADS indicates that the method is in "write no data" state
ATTR_I S_WNPS indicates that the method is in "write no process”
state

ATTR_I S_FI NAL_METHOD indicates that this is a final method

ATTR_I S_I NSTANTI ABLE_METHOD indicates that this is an instantiable
method

ATTR_| S_OVERRI DI NG_METHOD indicates that this is an overriding
method

13-133

ORACLE

Chapter 13
MetaData Class

Table 13-27 (Cont.) Enumerated Values Used by MetaData Class

___|
Options

Attribute

Attrld for
Collections

Attrld for
Synonyms

Attrid for
Sequences

Parameter is for collections (Par anifype of PTYPE_TYPE_COLL):

ATTR _DATA Sl ZE indicates ...

ATTR_TYPECODE indicates ...

ATTR_DATA _TYPE indicates the data type of the type attribute
ATTR_NUM ELEMS indicates the number of elements in a collection
ATTR_NAME indicates the name of the type attribute

ATTR_PREC! SI ON indicates the precision of a numeric attribute
ATTR_SCALE indicates the scale of a numeric attribute
ATTR_TYPE_NAME indicates the type name

ATTR_SCHEMA NAME indicates the schema where the type has been
created

ATTR_REF_TDO indicates the in-memory REF of the type, if the column
type is an object type. If the space has not been reserved, it is
allocated implicitly in the cache. The caller can then pin the object.

ATTR_CHARSET_| Dindicates the characterset id
ATTR_CHARSET_FORMindicates the characterset form

ATTR_I S_I DENTI TY indicates that the column may be auto-
incremented

Parameter is for synonyms (Par anilype of PTYPE_SYN):

ATTR_OBJI D indicates the object id

ATTR_SCHEMA NAME indicates the schema name of the synonym
translation

ATTR_NAME indicates a NULL-terminated object name of the synonym
translation

ATTR_LI NK indicates a NULL- terminated database link name of the
synonym installation

Parameter is for sequences (Par aniType of PTYPE_SEQ):

ATTR_OBJI Dindicates the object id

ATTR_M Nindicates the minimum value

ATTR_MAX indicates the maximum value

ATTR_I NCR indicates the increment

ATTR_CACHE indicates the number of sequence numbers cached; O if
the sequence is not cached

ATTR_ORDER indicates whether the sequence is ordered

ATTR_HW MARK indicates the "high-water mark"

13-134

ORACLE

Chapter 13
MetaData Class

Table 13-27 (Cont.) Enumerated Values Used by MetaData Class
|

Attribute

Options

Attrld for Columns

Attrld for
Arguments and
Results

Parameter is for columns of tables or views (Par aniType of PTYPE_COL):

e ATTR_CHAR_USED indicates the type of length semantics of the
column. 0 means byte-length semantics and 1 means character-
length semantics.

e ATTR_CHAR SI ZE indicates the column character length, or number
of characters allowed in a column

e ATTR_DATA S| ZE indicates the maximum size of a column, or
number of bytes allowed in a column

e ATTR _DATA TYPE indicates the data type of the column

e ATTR _NAME indicates the column name

e ATTR_PREC SI ONindicates the precision of numeric columns

e ATTR_SCALE indicates the scale of numeric columns

e ATTR_I S_NULL indicates 0 if NULL values are not permitted for the
column

e ATTR_TYPE_NAME indicates a type name

e ATTR_SCHEMA_NAME indicates the schema where the type was
created

e ATTR_REF_TDOindicates the REF for the type, if the column is of
object type

e ATTR_CHARSET | Dindicates the characterset ID

e ATTR_CHARSET_FORMindicates the characterset form

Parameter for arguments of a procedure or function (PTYPE_ARG), a

method (PTYPE_TYPE_ARG), or a result (PTYPE_TYPE_RESULT)

e ATTR_NAME indicates the argument name

e ATTR_POCSI Tl ON indicates the position of the argument in the list

e ATTR_TYPECCDE indicates the typecode

e ATTR_DATA TYPE indicates the data type

e ATTR_DATA_SI ZE indicates the size of the data type

e ATTR_PRECI SI ONindicates the precision of a numeric argument

e ATTR_SCALE indicates the scale of a numeric argument

e ATTR_LEVEL indicates the data type level

e ATTR_HAS_DEFAULT indicates whether an argument has a default

e ATTR_LI ST_ARGUMENTS indicates the list of arguments at the next
level, for records or table types

e ATTR_| OMODE indicates the argument mode: 0 for I N, 1 for OUT, 2 for
I N oUT

e ATTR_RADI X indicates the radix of a number type

e ATTR_I S_NULL indicates 0 if NULL values are not permitted

e ATTR_TYPE_NAME indicates the type name

e ATTR_SCHEMA NAME indicates the schema name where the type was
created

e ATTR_SUB_NAME indicates the type name for package local types

e« ATTR LI NKindicates a NULL- terminated database link name where
the type is defined, for package local types when the package is
remote

e ATTR_REF_TDOis the REF to the TDO of the type if the argument is an
object

e ATTR_CHARSET_I Dindicates the characterset ID

e ATTR CHARSET FORMindicates the characterset form

13-135

Chapter 13
MetaData Class

Table 13-27 (Cont.) Enumerated Values Used by MetaData Class

___|
Attribute Options

Attrld for Schemas Parameter is for schemas (Par aniType of PTYPE_SCHEMA):

ATTR_LI ST_OBJECTS indicates the list of objects in the schema

Attrld for Lists Parameter is for list of columns, arguments or subprograms:

ATTR_LI ST_COLUWNS indicates a column list

ATTR_LI ST_ARGUMENTS indicates a procedure or function argument
list

ATTR_LI ST_SUBPROGRAMS indicates a subprogram list

ATTR_LI ST_TYPE_ATTRI BS indicates a type attribute list
ATTR_TYPE_METHODS indicates a type method list
ATTR_TYPE_OBJECTS indicates a list of objects in a schema

ATTR_LI ST_SCHEMAS indicates a list of schemas in a database

Attrld for Parameter is for list of columns, arguments or subprograms (Par aniType
Databases of PTYPE_DATABASE):

ORACLE

ATTR_VERSI ON indicates the database version

ATTR_CHARSET_| Dindicates the characterset ID of the database
ATTR_NCHARSET | D indicates the national characterset of the
database

ATTR_LI ST_SCHEMAS indicates the list of schemas, PTYPE_SCHEMA
ATTR_MAX_PROCC_LEN indicates the maximum length of a procedure
name

ATTR_MAX_COLUWN_LEN indicates the maximum length of a column
name

ATTR_CURSOR_COWMM T_BEHAVI OR indicates how a commit affects
cursors and prepared statements. Values can be CURSOR_OPEN
and CURSER_CLOSED, as defined for attribute Att r Val ues
ATTR_MAX_CATALOG_NAMELEN indicates the maximum length of a
database (catalog) name

ATTR_CATALOG_LCCATI ON indicates the position of the catalog in a
qualified table. Values can be CL_START and CL_END, as defined
for attribute At t r Val ues

ATTR_SAVEPQO NT_SUPPORT indicates whether the database supports
savepoints. Values can be SP_SUPPORTED and
SP_UNSUPPORTED, as defined for attribute Att r Val ues
ATTR_NOWAI T_SUPPORT indicates whether the database supports the
"no wait" condition. Values can be NW_SUPPORTED and
NW_UNSUPPORTED, as defined for attribute At t r Val ues
ATTR_AUTOCOW T_DDL indicates if an autocommit mode is required
for DDL statements. Values can be AC_DDL and NO_AC_DDL, as
defined for attribute At tr Val ues

ATTR_LOCKI NG_MZDE indicates the locking mode for the database.
Values can be LOCK_IMMEDIATE and LOCK_DELAYED, as
defined for attribute At tr Val ues

13-136

Chapter 13
MetaData Class

Table 13-27 (Cont.) Enumerated Values Used by MetaData Class

___|
Attribute Options

Attribute values are returned on executing a get xxx() method and

passing in an attribute, for which these are the results:

e DURATI ON_SESSI ONis the duration of a temporary table: session.

« DURATI ON_TRANS is the duration of a temporary table: transaction.

e DURATI ON_NULL is the duration of a temporary table: table not
temporary.

e TYPEENCAP_PRI VATE is the encapsulation level of the method:
private.

e TYPEENCAP_PUBLI Cis the encapsulation level of the method: public.

e TYPEPARAM | Nis the argument mode: | N.

e TYPEPARAM QUT is the argument mode: OUT.

e TYPEPARAM | NOUT is the argument mode: | N OUT.

e CURSOR_COPENis the effect of COW T operation on cursors and

prepared statements in the database: preserve cursor state as
before the COW T operation.

e CURSER_CLCSEDis the effect of COMM T operation on cursors and
prepared statements in the database: cursors are closed on COM T,
but the application can still rerun the statement without preparing it
again.

e CL_START is the position of the catalog in a qualified table: start.

e CL_ENDis the position of the catalog in a qualified table: end.

e SP_SUPPORTED is the database supports savepoints.

e SP_UNSUPPORTED is the database does not support savepoints.

¢ NW SUPPORTED is the database supports nowait clause.

« NW UNSUPPORTED is the database does not supports nowait clause.

e AC_DDL is the autocommit mode required for DDL statements.

* NO_AC DDL is the autocommit mode not required for DDL
statements.

e LOCK_I MVEDI ATE is the locking mode for the database: immediate.

e LOCK_DELAYED is the locking mode for the database: delayed.

Col umAttrid Attributes for column identity enable automatic increment support.
Possible values are:

AttrVal ues

e ATTR_COL_I S_I DENTI TY is t r ue when column is an identity column.

e ATTR COL_I S_GEN ALWAYSiis t r ue when the column is always
generated.

e ATTR_COL_I S_GEN_BY_DEF_ON_NULL is t r ue when the identity column
is generated by default on nul | .

Table 13-28 Summary of MetaData Methods
|

Method Description

MetaData() Met aDat a class constructor.

getAttributeCount() Gets the count of the attribute as a Met aDat a object
getAttributeld() Gets the ID of the specified attribute
getAttributeType() Gets the type of the specified attribute.
getBoolean() Gets the value of the attribute as a C++ bool ean.

ORACLE 13-137

Chapter 13
MetaData Class

Table 13-28 (Cont.) Summary of MetaData Methods
|

Method Description
getint() Gets the value of the attribute as a C++ i nt.
getMetaData() Gets the value of the attribute as a Met aDat a object
getNumber() Returns the specified attribute as a Nunber object.
getRef() Gets the value of the attribute as a Ref <T>.
getString() Gets the value of the attribute as a string.
getTimeStamp() Gets the value of the attribute as a Ti mest anp object
getUInt() Gets the value of the attribute as a C++ unsi gned int.
getUString() Returns the value of the attribute as a USt ri ng in the
character set associated with the metadata.
getVector() Gets the value of the attribute as an C++ vector.
operator=() Assigns one metadata object to another.

13.20.1 MetaData()

Met aDat a class constructor.

Syntax

Met aDat a(
const MetaData &omd);

Parameter Description

e The source that the Met aDat a object is copied from.

13.20.2 getAttributeCount()

This method returns the number of attributes related to the metadata object.

Syntax

unsigned int getAttributeCount() const;

13.20.3 getAttributeld()

This method returns the attribute ID, such as ATTR_NUM COLS, of the attribute
represented by the attribute number specified.

Syntax

Attrid getAttributeld(
unsigned int attributeNun) const;

ORACLE 13-138

Chapter 13
MetaData Class

Parameter Description

attribut eNum The number of the attribute for which the attribute ID is to be returned.

13.20.4 getAttributeType()

This method returns the attribute type, such as NUMBER or | NT, of the attribute
represented by attribute number specified.

Syntax

Type get AttributeType(
unsigned int attributeNum) const;

Parameter Description

attribut eNum The number of the attribute for which the attribute type is to be returned.

13.20.5 getBoolean()

This method returns the value of the attribute as a C++ bool ean. If the value is a SQL
NULL, the result is FALSE. The overloaded version returns the value of the column
attribute.

Syntax Description

Returns the value of the

bool get Bool ean(attribute

MetaData:: Attrld attributeld) const;

Returns the value of the

bool get Bool ean(column attribute

Met aDat a: : Col umAttrid col Attributeld) const;

Parameter Description
The attribute 1D

attributeld

col Attributel d The column attribute ID

13.20.6 getint()

This method returns the value of the attribute as a C++ int. If the value is SQL NULL,
the result is 0.

Syntax

int getlnt(
MetaData:: Attrid attributeld) const;

ORACLE 13-139

Chapter 13
MetaData Class

Parameter Description

attributeld The attribute ID

13.20.7 getMetaData()

This method returns a Met aDat a instance holding the attribute value. A metadata
attribute value can be retrieved as a Met aDat a instance. This method can only be called
on attributes of the metadata type.

Syntax

Met aDat a get Met aDat a(
MetaData:: Attrid attributeld) const;

Parameter Description

attributeld The attribute ID

13.20.8 getNumber()

This method returns the value of the attribute as a Nunber object. If the value is a SQL
NULL, the result is NULL.

Syntax

Nunber get Nunber (
MetaData:: Attrid attributeld) const;

Parameter Description

attributel d The attribute ID

13.20.9 getRef()

This method returns the value of the attribute as a Ref Any, or Ref to a TDO. If the value is
SQL NULL, the result is NULL.

Syntax

Ref Any get Ref (
MetaData:: Attrid attributeld) const;

Parameter Description

attributeld The attribute ID

ORACLE 13-140

Chapter 13
MetaData Class

13.20.10 getString()

This method returns the value of the attribute as a string. If the value is SQL NULL, the
result is NULL.

Syntax

string getString(
MetaData:: Attrid attributeld) const;

Parameter Description

The attribute ID

attributeld

13.20.11 getTimeStamp()

This method returns the value of the attribute as a Ti nest anp object. If the value is a
SQL NULL, the result is NULL.

Syntax

Ti mestanp get Ti mest anp(
MetaData:: Attrid attributeld) const;

Parameter Description

attributeld The attribute ID

13.20.12 getUInt()

This method returns the value of the attribute as a C++ unsigned i nt. If the value is a
SQL NULL, the result is 0.

Syntax

unsi gned int getU nt(
MetaData:: Attrld attributeld) const;

Parameter Description
The attribute ID

attributeld

13.20.13 getUString()

Returns the value of an attribute as a UsSt ri ng in the character set associated with the
metadata.

ORACLE 13-141

Chapter 13
NotifyResult Class

Syntax

UString getUString(
MetaData:: Attrid attributeld) const;

Parameter Description
The attribute ID

attributeld

13.20.14 getVector()

This method returns a C++ vector containing the attribute value. A collection attribute
value can be retrieved as a C++ vector instance. This method can only be called on
attributes of a list type.

Syntax

vect or <Met aDat a> get Vect or (
MetaData:: Attrid attributeld) const;

Parameter Description

The attribute ID

attributeld

13.20.15 operator=()

This method assigns one Met aDat a object to another. This increments the reference
count of the Met aDat a object that is assigned.

Syntax

voi d operat or =(
const MetaData &omd);

Parameter Description

o MetaData object to be assigned

13.21 NotifyResult Class

A NotifyResult object holds the natification information in the Streams AQ notification
callback. It is created by OCCI before invoking a user-callback, and is destroyed after
the user-callback returns.

Table 13-29 Summary of NotifyResult Methods
|

Method Summary
getConsumerName() Returns the name of the notification consumer.
getMessage() Returns the message.

ORACLE 13-142

Chapter 13
Number Class

Table 13-29 (Cont.) Summary of NotifyResult Methods

Method Summary

getMessageld() Returns the message ID.
getPayload() Returns the payload.
getQueueName() Returns the name of the queue.

13.21.1 getConsumerName()

Gets the name of the consumer for which the message has been enqueued. In a
single consumer queue, this is a empty string.

string get ConsunerNanme() const;

13.21.2 getMessage()

Gets the message which has been enqueued into the non-persistent queue.

Message get Message() const;

13.21.3 getMessageld()

Gets the id of the message which has been enqueued.

Byt es get Messagel d() const;

13.21.4 getPayload()

Gets the payload in case of a notification from NS_ANONYMOUS namespace.

Byt es get Payl oad() const;

13.21.5 getQueueName()

Gets the name of the queue on which the enqueue has happened

string get QueueNane() const;

13.22 Number Class

The Nunber class handles limited-precision signed base 10 numbers. A Nunber
guarantees 38 decimal digits of precision. All positive numbers in the range displayed
here can be represented to a full 38-digit precision:

107-130

and

9. 99999999999999999999999999999999999999* 107125

The range of representable negative numbers is symmetrical.

ORACLE 13-143

ORACLE

Chapter 13
Number Class

The number zero can be represented exactly. Also, Oracle numbers have
representations for positive and negative infinity. These are generally used to indicate
overflow.

The internal storage type is opaque and private. Scale is not preserved when Nunber
instances are created.

Nunber does not support the concept of NaN and is not IEEE-754-85 compliant. Nunber
does support +Infinity and -Infinity.

Objects from the Nunber class can be used as standalone class objects in client side
numeric computations. They can also be used to fetch from and set to the database.

Example 13-10 How to Retrieve and Use a Number Object

This example demonstrates a Nunber column value being retrieved from the database,
a bind using a Nunber object, and a comparison using a standalone Nunber object.

/* Create a connection */
Environnent *env = Environnent:: creat eEnvironnment (Envi ronment : : DEFAULT) ;
Connection *conn = Connection(user, passwd, db);

/* Create a statenent and associate a select clause with it */
string sql Stnt = "SELECT departnent _i d FROM DEPARTMVENTS";
Statement *stnt = conn->createStatenent(sql Stnt);

/* Run the statement to get a result set */
Resul t Set *rset = stnt->executeQuery();
whi | e(rset->next())

{
Number deptld = rset->get Nunber(1);
/* Display the departnment id with the format string 9,999 */
cout << "Departnent |d" << deptld.toText(env, "9,999");
/* Use the nunber obtained as a bind value in the follow ng query */
stnt->set SQL(" SELECT * FROM EMPLOYEES WHERE department _id = :x");
stnt->set Nunber (1, deptld);
Resul t Set *rset2 = stnt->executeQuery();
}

/* Using a Nunber object as a standal one and the operations on them */

/* Create a nunber to a double value */
doubl e val ue = 2345. 123;
Number nul (val ue);

/* Some common Nunber nethods */

Nunber abs = nul.abs(); /* absol ute value */
Nunber sqrt = nul.squareroot(); /* square root */
Envi ronnent *env = Environnent:: createEnvironnent();

[/create a null year-nonth interval
I nterval YM ym
if(ymisNull())

cout << "\n ymis null";

//assign a non null value to ym

I nterval YM anot her YM env, "10-30");
ym = anot her YM

13-144

ORACLE

Chapter 13
Number Class

//now all operations are valid on ym

int yr = ymgetVYear();

Table 13-30 Summary of Number Methods
|

Method Summary

Number() Nunber class constructor.

abs() Returns the absolute value of the number.

arcCos() Returns the arcCosine of the number.

arcSin() Returns the arcSine of the number.

arcTan() Returns the arcTangent of the number.

arcTan2() Returns the arcTangent2 of the input number y and this
number Xx.

ceil() Returns the smallest integral value not less than the value of
the number.

cos() Returns the cosine of the number.

exp() Returns the natural exponent of the number.

floor() Returns the largest integral value not greater than the value
of the number.

fromBytes() Returns a Number derived from a Byt es object.

fromText() Returns a Number from a given number string, format string
and NLS parameters specified.

hypCos() Returns the hyperbolic cosine of the number.

hypSin() Returns the hyperbolic sine of the number.

hypTan() Returns the hyperbolic tangent of the number.

intPower() Returns the number raised to the integer value specified.

isNull() Checks if Nunber is NULL.

In() Returns the natural logarithm of the number.

log() Returns the logarithm of the number to the base value
specified.

operator++() Increments the nunber .

operator- - ()
operator*()
operator/()
operator%()
operator+()
operator-()
operator-()
operator<()
operator<=()
operator>()

operator>=()

operator=()

Decrements the nunber .

Returns the product of two Nunber s.

Returns the quotient of two Nunber s.

Returns the modulo of two Nunber s.

Returns the sum of two Nurber s.

Returns the negated value of Nunber .

Returns the difference between two Nunber s.

Checks if a number is less than an other number.

Checks if a number is less than or equal to an other number.
Checks if a number is greater than an other number.

Checks if a number is greater than or equal to an other
number.

Assigns one number to another.

13-145

ORACLE

Chapter 13
Number Class

Table 13-30 (Cont.) Summary of Number Methods

Method

Summary

operator==()
operator!=()

operator*=()

operator/=()
operator%=()
operator+=()

operator- =()

operator char()

operator signed char()
operator double()
operator float()

operator int()

operator long()

operator long double()
operator short()
operator unsigned char()
operator unsigned int()
operator unsigned long()

operator unsigned short()

power()

prec()
round()

setNull()
shift()

sign()

sin()
squareroot()
tan()
toBytes()
toText()

trunc()

Checks if two numbers are equal.

Checks if two numbers are not equal.

Multiplication assignment.

Division assignment.

Modulo assignment.

Addition assignment.

Subtraction assignment.

Returns Number converted to native char.

Returns Nunber converted to native signed char.
Returns Nunber converted to a native double.

Returns Nunber converted to a native float.

Returns Number converted to native integer.

Returns Nunber converted to native long.

Returns Nurmber converted to a native long double.
Returns Nurmber converted to native short integer.
Returns Number converted to an unsigned native char.
Returns Nunber converted to an unsigned native integer.
Returns Nurmber converted to an unsigned native long.

Returns Nunmber converted to an unsigned native short
integer.

Returns Nunber raised to the power of another number
specified.

Returns Nunber rounded to digits of precision specified.

Returns Nurmber rounded to decimal place specified.
Negative values are allowed.

Sets Nunber to NULL.

Returns a Nunber that is equivalent to the passed value *
10”n, where n may be positive or negative.

Returns the sign of the value of the passed value: -1 for the
passed value < 0, 0 for the passed value == 0, and 1 for the
passed value > 0.

Returns sine of the number.

Returns the square root of the number.

Returns tangent of the number.

Returns a Byt es object representing the Nunber .

Returns the number as a string formatted based on the
format and NLS parameters.

Returns a Nunber with the value truncated at n decimal
place(s). Negative values are allowed.

13-146

13.22.1 Number()

Nunber class constructor.

Chapter 13
Number Class

Syntax Description
Nunber () ; Default constructor.
Nunber (Creates a copy of a Nunber .

const Number &srcNum;

Nunmber (
 ong doubl e &val);

Nunmber (
doubl e val);

Nunmber (
float val);

Nunmber (
long val);

Nunmber (
int val);

Nunmber (
shot val);

Nunmber (
char val);

Nunmber (
signed char val);

Nunmber (
unsigned | ong val);

Nunmber (
unsigned int val);

Nunmber (
unsi gned short val);

Nunmber (
unsi gned char val);

Translates a native long double into a Nunber . The Nunber is
created using the precision of the platform-specific constant
LDBL_DI G.

Translates a native double into a Nunber . The Nunber is
created using the precision of the platform-specific constant
DBL_DI G.

Translates a native float into a Nunber . The Nunber is
created using the precision of the platform-specific constant
FLT DI G

Translates a native long into a Nunber .

Translates a native int into a Nunber .

Translates a native short into a Nunber .

Translates a native char into a Nurber .

Translates a native signed char into a Nurber .

Translates an native unsigned long into a Nunber .

Translates a native unsigned int into a Nunber .

Translates a native unsigned short into a Nunber .

Translates the unsigned character array into a Nunber .

ORACLE

13-147

Chapter 13
Number Class

Parameter Description

sreNum The source Nunber copied into the new Nurber object.

val The value assigned to the Nunber object.

13.22.2 abs()

This method returns the absolute value of the Nunber object.

Syntax

const Nunmber abs() const;

13.22.3 arcCos()

This method returns the arccosine of the Nunber object.

Syntax

const Number arcCos() const;

13.22.4 arcSin()

This method returns the arcsine of the Number object.

Syntax

const Nunmber arcSin() const;

13.22.5 arcTan()

This method returns the arctangent of the Number object.

Syntax

const Number arcTan() const;

13.22.6 arcTan2()

This method returns the arctangent of the Nunber object with the parameter specified. It
returns atan2 (val, x) where val is the parameter specified and x is the current
number object.

Syntax

const Number arcTan2(
const Number &val) const;

ORACLE 13-148

Chapter 13
Number Class

Parameter Description

val Number parameter val to the arcTangent function at an2(val , x) .

13.22.7 ceil()

This method returns the smallest integer that is greater than or equal to the Nunber
object.

Syntax

const Number ceil () const;

13.22.8 cos()

This method returns the cosine of the Nunber object.

Syntax

const Number cos() const;

13.22.9 exp()

This method returns the natural exponential of the Nunber object.

Syntax

const Nunmber exp() const;

13.22.10 floor()

This method returns the largest integer that is less than or equal to the Nunber object.

Syntax

const Number floor() const;

13.22.11 fromBytes()

This method returns a Nunber object represented by the byte string specified.

Syntax

voi d fronBytes(
const Bytes &str);

Parameter Description

str A byte string.

ORACLE 13-149

Chapter 13
Number Class

13.22.12 fromText()

Sets Nunber object to value represented by a string or UStri ng.

The value is interpreted based on the fnt and nl sParamparameters. In cases where
nl sPar amis not passed, the Globalization Support settings of the envp parameter are

used.
See Also:
Oracle Database SQL Language Reference for information on TO NUMBER
Syntax Description

Sets Nunber object to value represented by a

voi d fronflext (string

const Environment *envp,
const string &nunber,

const string & nt,

const string &l sParam= "");

Sets Nunber object to value represented by a

voi d fronflext (UStri ng

const Environment *envp,
const UString &nunber,
const UString &fnt,

const UString &nlsParam;

Parameter Description

envp The OCCI environment.

nunber The number string to be converted to a Nunber object.
fnt The format string.

nl sPar am The NLS parameters string. If nl sPar amis specified, this

determines the NLS parameters to be used for the conversion. If
nl sPar amis not specified, the NLS parameters are picked up from
envp.

13.22.13 hypCos()

This method returns the hypercosine of the Nunber object.

Syntax
const Nunmber hypCos() const;

ORACLE 13-150

Chapter 13
Number Class

13.22.14 hypSin()

This method returns the hypersine of the Nunber object.

Syntax

const Number hypSin() const;

13.22.15 hypTan()

This method returns the hypertangent of the Nunber object.

Syntax

const Number hypTan() const;

13.22.16 intPower/()

This method returns a Nunber whose value is the number object raised to the power of
the value specified.

Syntax

const Number i nt Power (
int val) const;

Parameter Description

val Power to which the number is raised.

13.22.17 isNull(

This method tests whether the Nunber object is NULL. If the Number object is NULL, then
TRUE is returned; otherwise, FALSE is returned.

Syntax

bool isNull() const;

13.22.18 In()

This method returns the natural logarithm of the Nunber object.

Syntax

const Number In() const;

13.22.19 log()

This method returns the logarithm of the Nunber object with the base provided by the
parameter specified.

ORACLE 13-151

Chapter 13
Number Class

Syntax

const Number | og(
const Nunber &val) const;

Parameter Description

val The base to be used in the logarithm calculation.

13.22.20 operator++()

Unary oper at or ++() . This is a postfix operator.

Syntax Description

Nunber & oper at or ++() This method returns the Nunber object incremented by 1.

This method returns the Nunber object incremented by the

const Number operat or ++(. o
integer specified.

int incr);

Parameter Description

i ner The number by which the Nunber object is incremented.

13.22.21 operator.-- ()

Unary operator--(). This is a prefix operator.

Syntax Description

Nunber & oper at or - () This method returns the Nunber object decremented by 1.

This method returns the Nunber object decremented by the

const Number operator--(. e
integer specified.

int decr);

Parameter Description

decr The number by which the Number object is decremented.

13.22.22 operator*()

This method returns the product of the parameters specified.

Syntax

Nurmber oper at or *(
const Nunber &first,

ORACLE 13-152

Chapter 13
Number Class

const Nunber &second);

Parameter Description

first First multiplicand.

second Second multiplicand.

13.22.23 operator/()

This method returns the quotient of the parameters specified.

Syntax

Nunber operator/(
const Nunmber ÷nd,
const Nunber &divisor);

Parameter Description

di vi dend The number to be divided.

di vi sor The number by which to divide.

13.22.24 operator%!)

This method returns the remainder of the division of the parameters specified.

Syntax

Nunber oper at or %
const Nunber ÷nd,
const Nunber ÷r);

Parameter Description

di vi dend The number to be divided.

di vi zor The number by which to divide.

13.22.25 operator+()

This method returns the sum of the parameters specified.

Syntax

Nurmber oper at or +(
const Nunber &first,
const Number &second);

ORACLE 13-153

Chapter 13
Number Class

Parameter Description

first First number to be added.

second Second number to be added.

13.22.26 operator-()

Unary operat or - () . This method returns the negated value of the Nunber object.

Syntax

const Nunmber operator-();

13.22.27 operator-()

This method returns the difference between the parameters specified.

Syntax

Number operat or - (
const Nunber &subtrahend,
const Nunber &subtractor);

Parameter Description

subt rahend The number to be reduced.

subt ract or The number to be subtracted.

13.22.28 operator<()

This method checks whether the first parameter specified is less than the second
parameter specified. If the first parameter is less than the second parameter, then TRUE
is returned; otherwise, FALSE is returned. If either parameter equals infinity, then FALSE
is returned.

Syntax

bool operat or <(
const Number &first,
const Nunber &second);

Parameter Description

first First number to be compared.

second Second number to be compared.

ORACLE 13-154

Chapter 13
Number Class

13.22.29 operator<=()

This method checks whether the first parameter specified is less than or equal to the
second parameter specified. If the first parameter is less than or equal to the second
parameter, then TRUE is returned; otherwise, FALSE is returned. If either par anmet er
equals infinity, then FALSE is returned.

Syntax

bool operat or <=(
const Nunber &first,
const Number é&second);

Parameter Description

first First number to be compared.

second Second number to be compared.

13.22.30 operator>()

This method checks whether the first parameter specified is greater than the second
parameter specified. If the first parameter is greater than the second parameter, then
TRUE is returned; otherwise, FALSE is returned. If either parameter equals infinity, then
FALSE is returned.

Syntax

bool operat or >(
const Nunber &first,
const Number é&second);

Parameter Description

first First number to be compared.

Second number to be compared.
second

13.22.31 operator>=()

ORACLE

This method checks whether the first parameter specified is greater than or equal to
the second parameter specified. If the first parameter is greater than or equal to the
second parameter, then TRUE is returned; otherwise, FALSE is returned. If either
parameter equals infinity, then FALSE is returned.

Syntax

bool operat or >=(
const Nunber &first,
const Number é&second);

13-155

Chapter 13
Number Class

Parameter Description

first First number to be compared.

second Second number to be compared.

13.22.32 operator==()

This method checks whether the parameters specified are equal. If the parameters are
equal, then TRUE is returned; otherwise, FALSE is returned. If either parameter equals
+infinity or -infinity, then FALSE is returned.

Syntax

bool operat or==(
const Number &first,
const Nunber &second);

Parameter Description

first First number to be compared.

second Second number to be compared.

13.22.33 operator!=()

This method checks whether the first parameter specified equals the second
parameter specified. If the parameters are not equal, TRUE is returned; otherwise, FALSE
is returned.

Syntax

bool operator!=(
const Nunber &first,
const Nunber &second);

Parameter Description

first First number to be compared.

second Second number to be compared.

13.22.34 operator=()

This method assigns the value of the parameter specified to the Number object.

ORACLE 13-156

Chapter 13
Number Class

Syntax

Nunber & oper at or =(
const Nunber &nunj;

Parameter Description

num A parameter of type Nunber .

13.22.35 operator*=()

This method multiplies the Nunber object by the parameter specified, and assigns the
product to the Nunber object.

Syntax

Nunber & oper at or * =(
const Nunber &nunj;

Parameter Description

num A parameter of type Nunber .

13.22.36 operator/=()

This method divides the Nunber object by the parameter specified, and assigns the
guotient to the Number object.

Syntax

Nunber & oper at or/ =(
const Nunmber &nunj;

Parameter Description

num A parameter of type Nunber .

13.22.37 operator%=()

This method divides the Nunber object by the parameter specified, and assigns the
remainder to the Nunber object.

Syntax

Nunber & oper at or %=(
const Nunmber &nunj;

Parameter Description

num A parameter of type Nunber .

ORACLE 13-157

Chapter 13
Number Class

13.22.38 operator+=()

This method adds the Number object and the parameter specified, and assigns the
sum to the Number object.

Syntax

Nunber & oper at or +=(
const Number &nunj;

Parameter Description

num A parameter of type Nunber .

13.22.39 operator.=()

This method subtracts the parameter specified from the Nunber object, and assigns the
difference to the Nunber object.

Syntax

Nunber & oper at or - =(
const Nunber &numj;

Parameter Description

num A parameter of type Nunber .

13.22.40 operator char()

This method returns the value of the Number object converted to a native char.
Syntax

operator char() const;

13.22.41 operator signed char()
This method returns the value of the Number object converted to a native si gned char.

Syntax

operator signed char() const;

13.22.42 operator double()

This method returns the value of the Nunber object converted to a native doubl e.

Syntax

operator double() const;

ORACLE 13-158

Chapter 13
Number Class

13.22.43 operator float()

This method returns the value of the Nunber object converted to a native f| oat .

Syntax

operator float() const;

13.22.44 operator int()

This method returns the value of the Nunber object converted to a native int.

Syntax

operator int() const;

13.22.45 operator long()

This method returns the value of the Nunber object converted to a native | ong.

Syntax

operator long() const;

13.22.46 operator long double()

This method returns the value of the Number object converted to a native | ong doubl e.

Syntax

operator |ong double() const;

13.22.47 operator short()

This method returns the value of the Nunber object converted to a native short integer.

Syntax

operator short() const;

13.22.48 operator unsigned char()

This method returns the value of the Nunber object converted to a native unsi gned char.

Syntax

operator unsigned char() const;

13.22.49 operator unsigned int()

This method returns the value of the Nunber object converted to a native unsi gned int.

ORACLE 13-159

Chapter 13
Number Class

Syntax

operator unsigned int() const;

13.22.50 operator unsigned long()

This method returns the value of the Number object converted to a native unsi gned | ong.

Syntax

operator unsigned |ong() const;

13.22.51 operator unsigned short()

This method returns the value of the Nunber object converted to a native unsi gned short
integer.

Syntax

operator unsigned short() const;

13.22.52 power()

This method returns the value of the Number object raised to the power of the value
provided by the parameter specified.

Syntax

const Number power (
const Nunber &val) const;

Parameter Description

val The power to which the number has to be raised.

13.22.53 prec()

This method returns the value of the Nunber object rounded to the digits of precision
provided by the parameter specified.

Syntax

const Number prec(
int digits) const;

Parameter Description

digits The number of digits of precision.

ORACLE 13-160

Chapter 13
Number Class

13.22.54 round()

This method returns the value of the Number object rounded to the decimal place
provided by the parameter specified.

Syntax

const Number round(
int decPlace) const;

Parameter Description

decPl ace The number of digits to the right of the decimal point.

13.22.55 setNull()

This method sets the value of the Nunber object to NULL.

Syntax

void setNull ();

13.22.56 shift()

This method returns the Number object multiplied by 10 to the power provided by the
parameter specified.

Syntax

const Number shift(
int val) const;

Parameter Description

val An integer value.

13.22.57 sign()

This method returns the sign of the value of the Nunber object. If the Nunber object is
negative, then create a Dat e object using integer parameters is returned. If the Nunber
object equals 0, then create a Dat e object using integer parameters is returned. If the
Nunber object is positive, then 1 is returned.

Syntax

const int sign() const;

13.22.58 sin()

This method returns the sin of the Nunber object.

ORACLE 13-161

Chapter 13
Number Class

Syntax

const Nunber sin() const;

13.22.59 squareroot()

This method returns the square root of the Number object.

Syntax

const Number squareroot() const;

13.22.60 tan()

This method returns the tangent of the Nunber object.

Syntax

const Number tan() const;

13.22.61 toBytes()

This method converts the Nunber object into a Byt es object. The bytes representation is
assumed to be in length excluded format, that is, the Byt e. | engt h() method gives the
length of valid bytes and the 0th byte is the exponent byte.

Syntax

Bytes toBytes() const;

13.22.62 toText()

Convert the Nunber object to a formatted string or UStri ng based on the parameters
specified.

See Also:

Oracle Database SQL Language Referencefor information on TO NUMBER

Syntax Description

Convert the Nunber object to a
formatted st ri ng based on the
parameters specified.

string toText(
const Environnent *envp,
const string & nt,
const string &nl sParam =

) const;

Convert the Nunber object to a
USt ri ng based on the parameters
specified.

UString toText(
const Environnent *envp,
const UString &fnt,
const UString &nl sParanm const;

ORACLE 13-162

Chapter 13
PObject Class

Parameter Description

envp The OCCI environment.

ft The format string.

nl sPar am The NLS parameters string. If nl sPar amis specified, this

determines the NLS parameters to be used for the conversion. If
nl sPar amis not specified, the NLS parameters are picked up from
envp.

13.22.63 trunc()

This method returns the Nunber object truncated at the number of decimal places
provided by the parameter specified.

Syntax

const Number trunc(
int decPlace) const;

Parameter Description

The number of places to the right of the decimal place at which the

Pl i
decPl ace value is to be truncated.

13.23 PObject Class

OCCI provides object navigational calls that enable applications to perform any of the
following on objects:

» Creating, accessing, locking, deleting, copying, and flushing objects
* Getting references to the objects

This class enables the type definer to specify when a class can have persistent or
transient instances. Instances of classes derived from PQvj ect are either persistent or
transient. For example, class A that is persistent-capable inherits from the PQuj ect
class:

class A: PObject { ... }

The only methods valid on a NULL PObj ect are setName(), isNull(), and operator=().

Some methods, such as lock(), apply only for persistent instances, not for transient
instances.

ORACLE 13-163

ORACLE

Chapter 13
PObject Class

Table 13-31 Enumerated Values Used by PObject Class

___|
Options

Attribute

LockOption

Unpi nOpt i on

OCCl _LOCK_WAI T instructs the cache to pin the object only after
acquiring a lock; if the object is locked by another user, the pin call
with this option waits until it can acquire the lock before returning to
the caller; equivalent to SELECT FOR UPDATE

OCCl _LOCK_NOWAI T instructs the cache to pin the object only after
acquiring a lock; does not wait if the object is currently locked by
another user; equivalent to SELECT FOR UPDATE W TH NOWAI T

OCCl _PI NCOUNT_RESET resets the object's pin count to 0

OCCl _PI NCOUNT_DECR decrements the object's pin count by 1

Table 13-32 Summary of PObject Methods

Method Summary

PObject() Pbj ect class constructor.

flush() Flushes a modified persistent object to the database
server.

getConnection() Returns the connection from which the PChj ect object was
instantiated.

getRef() Returns a reference to a given persistent object.

getSQLTypeName() Returns the Oracle database typename for this class.

isLocked() Tests whether the persistent object is locked.

isNull() Tests whether the object is NULL.

lock() Lock a persistent object on the database server. The

markDelete()
markModified()
operator=()

operator delete()

operator new()
pin()
setNull()

unmark()

unpin()

default mode is to wait for the lock if not available.
Marks a persistent object as deleted.

Marks a persistent object as modified or dirty.
Assigns one PQbj ect to another.

Remove the persistent object from the application cache
only.

Creates a new persistent / transient instance.
Pins an object.

Sets the object value to NULL.

Unmarks an object as dirty.

Unpins an object. In the default mode, the pin count of the
object is decremented by one.

13.23.1 PObject()

PQoj ect class constructor.

13-164

Chapter 13
PObject Class

Syntax Description
PQhj ect () Creates a NULL PQbj ect.
PQhj ect (Creates a copy of Pbj ect .

const PObject &ohj);

Parameter Description

obj The source object.

13.23.2 flush()

This method flushes a modified persistent object to the database server.

Syntax
void flush();

13.23.3 getConnection()

Returns the connection from which the persistent object was instantiated.

Syntax

const Connection *get Connection() const;

13.23.4 getRef()

This method returns a reference to the persistent object.

Syntax

Ref Any get Ref () const;

13.23.5 getSQLTypeName()

Returns the Oracle database typename for this class.

Syntax

string get SQLTypeNane() const;

13.23.6 isLocked)()

This method test whether the persistent object is locked. If the persistent object is
locked, then TRUE is returned; otherwise, FALSE is returned.

Syntax

bool isLocked() const;

ORACLE 13-165

Chapter 13
PObject Class

13.23.7 isNull()

This method tests whether the persistent object is NULL. If the persistent object is NULL,
then TRUE is returned; otherwise, FALSE is returned.

Syntax

bool isNull() const;

13.23.8 lock()

Locks a persistent object on the database server.

Syntax

voi d | ock(
PObj ect : : LockOption | ock_option);

Parameter Description

| ock_opt i on Locking options; see Table 13-31.

13.23.9 markDelete()

This method marks a persistent object as deleted.

Syntax

voi d markDel ete();

13.23.10 markModified()

This method marks a persistent object as modified or dirty.

Syntax
voi d mark_Modified();

13.23.11 operator=()

This method assigns the value of a persistent object this PQuj ect object. The nature
(transient or persistent) of the object is maintained. NULL information is copied from the
source instance.

Syntax

Phj ect & oper at or =(
const PCbjecté& obj);

Parameter Description

obj The object from which the assigned value is obtained.

ORACLE 13-166

Chapter 13
PObject Class

13.23.12 operator delete()

Deletes a persistent or transient object. The delete operator on a persistent object
removes the object from the application cache only. To delete the object from the
database server, invoke the markDelete() method.

Syntax

voi d operator del ete(
voi d *obj,
size_t size);

Parameter Description

obj

si ze

The pointer to object to be deleted

(Optional) Size is implicitly obtained from the object

13.23.13 operator new()

This method creates a hew object. A persistent object is created if the connection and
table name are provided. Otherwise, a transient object is created.

ORACLE

Syntax

Description

voi d *operator new
size t size);

voi d *operator new
size_t size,

const
const
const

Vo

const
const
const
const
const

Vo

const
const
const
const
const

d *operator new
size_t size,

d *operator new
size_t size,

Creates a default new object, with a size
specification only

Used for creating transient objects when
client side characterset is multibyte.

Connection *conn,
string& tabl eNane,
char *typeNane);

Used for creating persistent objects when
client side characterset is multibyte.

Connection *conn,
string& tabl eNane,
string& typeNane,
string& schTabl eNane="",
string& schTypeNane="");

Used for creating persistent objects when
client side characterset is unicode

Connection *conn, (UTF16).

UString& tabl eNane,
UString& typeNane,
UString& schTabl eName="",
UString& schTypeName="");

13-167

Chapter 13
PObject Class

Parameter Description

si 78 size of the object

conn The connection to the database in which the persistent object is to

be created.
t abl eNarre The name of the table in the database server.
The SQL type name corresponding to this C++ class. The format is
t ypeNanme
<schemanane>. <t ypenanme>.
schTabl eNane The schema table name.
schTypeNane The schema type name.

13.23.14 pin()

This method pins the object and increments the pin count by one. If the object is
pinned, it is not freed by the cache even if there are no references to this object
instance.

Syntax

void pin();

13.23.15 setNull()

This method sets the object value to NULL.

Syntax

voi d setNull ();

13.23.16 unmark()

This method unmarks a persistent object as modified or deleted.

Syntax

voi d unmark();

13.23.17 unpin()

ORACLE

This method unpins a persistent object. In the default mode, the pin count of the object
is decremented by one. When this method is invoked with OCCl _PI NCOUNT_RESET, the pin
count of the object is reset. If the pin count is reset, this method invalidates all the
references (Ref s) pointing to this object. The cache sets the object eligible to be freed,
if necessary, reclaiming memory.

13-168

Chapter 13
Producer Class

Syntax

voi d unpi n(
Unpi nOpti on node=0CCl _PI NCOUNT_DECR) ;

Parameter Description

Specifies whether the Unpi nOpt i on mode, or the pin count, should
be decremented or reset to 0. See Table 13-31. Valid values are
OCCl _PI NCOUNT_RESET and OCCl _PI NCOUNT_DECR.

mode

13.24 Producer Class

The Producer enqueues Messages into a queue and defines the enqueue options.

Table 13-33 Enumerated Values Used by Producer Class

|
Attribute Options

ENQ BEFORE indicates that the message is enqueued before the

En n
queueSequence message specified by the related message id.
« ENQ_TOPR indicates that the message is enqueued before any other
messages.
Visibility « ENQ_| MEDI ATE indicates that the enqueue is not part of the current

transaction. The operation constitutes a transaction of its own.

* ENQ ON_COW T indicates that the enqueue is part of the current
transaction. The operation is complete when the transaction
commits. This is the default setting.

Table 13-34 Summary of Producer Methods
|

Method Summary

Producer() Producer class constructor.

getQueueName() Retrieves the name of a queue on which the Messages is
enqueued.

getRelativeMessageld() Retrieves the Message id that is referenced in a sequence
deviation operation.

getSequenceDeviation() Retrieves information regarding whether the Message
should be dequeued ahead of other Messages in the
queue.

getTransformation() Retrieves the transformation applied before a Message is
enqueued.

getVisibility() Retrieves the transactional behavior of the enqueue
request.

isNull() Tests whether the Producer is NULL.

send() Enqueues and sends a Message.

operator=() Assignment operator for Producer .

setNull() Frees memory if the scope of the Producer extends

beyond the Connecti on on which it was created.

ORACLE 13-169

Chapter 13
Producer Class

Table 13-34 (Cont.) Summary of Producer Methods
|

Method Summary

setQueueName() Specifies the name of a queue on which the Messages is
enqueued.

setRelativeMessageld() Specifies the Message id to be referenced in the sequence
deviation operation.

setSequenceDeviation() Specifies whether Message should be dequeued before
other Messages in the queue.

setTransformation() Specifies transformation applied before enqueuing a
Message.

setVisibility() Specifies transaction behavior of the enqueue request.

13.24.1 Producer()

Producer object constructor.

Syntax Description

Creates a Producer object with the

Producer - ;
(specified Connect i on.

const Connection *conn);

Creates a Producer object with the
specified Connect i on and queue
name.

Producer (
const Connection *conn,
const string& queue);

Parameter Description
conn The connection of the new Producer object.
queue The queue that is used by the new Producer object.

13.24.2 getQueueName()

Retrieves the name of a queue on which the Messages are enqueued.

Syntax

string get QueueNane() cosnt;

13.24.3 getRelativeMessageld()

Retrieves the Message id that is referenced in a sequence deviation operation. Used
only if a sequence deviation is specified; ignored otherwise.

Syntax

Byt es getRel ati veMessagel d() const;

ORACLE 13-170

Chapter 13
Producer Class

13.24.4 getSequenceDeviation()

Retrieves information regarding whether the Message should be dequeued ahead of
other Messages in the queue. Valid return values are ENQ BEFORE and ENQ TCP, as defined
in Table 13-33.

Syntax

EnqueueSequence get SequenceDevi ation() const;

13.24.5 getTransformation()

Retrieves the transformation applied before a Message is enqueued.

Syntax

string getTransformation() const;

13.24.6 getVisibility()

Retrieves the transactional behavior of the enqueue request. Visi bil ity is defined in
Table 13-33.

Syntax
Visibility getVisibility() const;

13.24.7 isNull()

Tests whether the Producer is NULL. If the Producer is NULL, then TRUE is returned;
otherwise, FALSE is returned.

Syntax

bool isNull() const;

13.24.8 operator=()

The assignment operator for Producer .

Syntax

voi d operat or =(
const Producer& prod);

Parameter Description

orod The original Pr oducer

13.24.9 send()

Enqueues and sends a Message.

ORACLE 13-171

Chapter 13
Producer Class

Syntax Description

Used when queueName has been previously set by the

B
ytes send(setQueueName() method.

Message& nsg);

Bytes send(Enqueue the Message to the specified queueNane.

Message& nsg,
string& queue);

Parameter Description
5g The Message that is enqueued.
queue The name of a valid queue in the database.

13.24.10 setNull()

Frees memory associated with the Producer. Unless working in inner scope, this call
should be made before terminating the Connecti on.

Syntax

void setNull();

13.24.11 setQueueName()

Specifies the name of a queue on which the Messages are enqueued. Typically used
when enqueuing multiple messages to the same queue.

Syntax

voi d set QueueName(
const string& queue);

Parameter Description

The name of a valid queue in the database, to which the Messages

ueue
a are enqueued.

13.24.12 setRelativeMessageld()

ORACLE

Specifies the Message id to be referenced in the sequence deviation operation. If the
sequence deviation is not specified, this parameter is ignored. Can be set for each
enqueuing of a Message.

Syntax

voi d set Rel ativeMessagel d(
const Bytes& negid);

13-172

Chapter 13
Producer Class

Parameter Description

i d The id of the relative Message.

13.24.13 setSequenceDeviation()

Specifies whether Message being enqueued should be dequeued before other
Message(s) in the queue. Can be set for each enqueuing of a Message.
Syntax

voi d set SequenceDevi at i on(
EnqueueSequence option);

Parameter Description

opti on The enqueue sequence being set, defined in Table 13-33.

13.24.14 setTransformation()

Specifies transformation function applied before enqueuing the Message.

Syntax

voi d set Transformati on(
string &f Nane);

Parameter Description

f Nane SQL transformation function.

13.24.15 setVisibility()

Specifies transaction behavior of the enqueue request. Can be set for each enqueuing
of a Message.
Syntax

void setVisibility(
Visibility option);

Parameter Description

opti on Visibility option being set, defined in Table 13-33.

ORACLE 13-173

Chapter 13
Ref Class

13.25 Ref Class

ORACLE

The mapping in the C++ programming language of an SQL REF value, which is a
reference to an SQL structured type value in the database.

Each REF value has a unique identifier of the object it refers to. An SQL REF value
may be used instead of the SQL structured type it references; it may be used as either
a column value in a table or an attribute value in a structured type.

Because an SQL REF value is a logical pointer to an SQL structured type, a Ref object
is by default also a logical pointer; thus, retrieving an SQL REF value as a Ref object
does not materialize the attributes of the structured type on the client.

The only methods valid on a NULL Ref object are isNull(), and operator=().

A Ref object can be saved to persistent storage and is de-referenced through
operator*(), operator->() or ptr() methods. T must be a class derived from Pbj ect . In
the following sections, T+ and PQuj ect * are used interchangeably.

Table 13-35 Enumerated Values Used by Ref Class

]
Attribute Options

e (OCCl _LOCK_NONE clears the lock setting on the Ref object.

e OCCl _LOCK Xindicates that the object should be locked, and to wait
for the lock to be available if the object is locked by another session.

e (OCCl _LOCK_X_NOWAI T indicates that the object should be locked, and
returns an error if it is locked by another session.
OCCl _MAX PREFETCH DEPTH indicates that the fetch should be done
to maximum depth.

LockOpti ons

Pref et chOpti on

Table 13-36 Summary of Ref Methods
|

Method Summary

Ref() Ref object constructor.

clear() Clears the reference.

getConnection() Returns the connection this ref was created from.

isClear() Checks if the Ref is cleared.

isNull() Checks if the Ref is NULL.

markDelete() Marks the referred object as deleted.

operator->() Dereferences the Ref and pins the object if necessary.

operator*() Dereferences the Ref and pins or fetches the object if
necessary.

operator==() Checks if the Ref and the pointer refer to the same object.

operator!=() Checks if the Ref and the pointer refer to different objects.

operator=() Assignment operator.

ptr() Returns a pointer to a PQbj ect . Dereferences the Ref and
pins or fetches the object if necessary.

setlLock() Sets the lock option for the object referred from this.

13-174

Chapter 13
Ref Class

Table 13-36 (Cont.) Summary of Ref Methods

Method Summary

setNull() Sets the Ref to NULL.

setPrefetch() Sets the prefetch options for complex object retrieval.
unmarkDelete() Unmarks for delete the object referred by this.

13.25.1 Ref()

Ref object constructor.

Syntax Description
Ref (): Creates a NULL Ref.
Ref (Creates a copy of Ref.

const Ref<T> &src);

Parameter Description

sre The Ref that is being copied.

13.25.2 clear()

This method clears the Ref object.

Syntax

void clear();

13.25.3 getConnection()

Returns the connection from which the Ref object was instantiated.

Syntax

const Connection *get Connection() const;

13.25.4 isClear()

This method checks if Ref object is cleared.

Syntax

bool isCear() const;

ORACLE 13-175

Chapter 13
Ref Class

13.25.5 isNull()

This method tests whether the Ref object is NULL. If the Ref object is NULL, then TRUE is
returned; otherwise, FALSE is returned.

Syntax

bool isNull() const;

13.25.6 markDelete()

This method marks the referenced object as deleted.

Syntax

voi d markDel ete();

13.25.7 operator->()

This method dereferences the Ref object and pins, or fetches the referenced object if
necessary. This might result in prefetching a graph of objects if prefetch attributes of
the referenced object are set.

Syntax Description
Dereferences and pins or fetches a non-const Ref object.

T *operator->();

const T *operator->() const: Dereferences and pins or fetches a const Ref object.

13.25.8 operator()

This method dereferences the Ref object and pins or fetches the referenced object if
necessary. This might result in prefetching a graph of objects if prefetch attributes of
the referenced object are set. The object does not have to be deleted. Destructor
would be automatically called when it goes out of scope.

Syntax Description

T& operator*(); Dereferences and pins or fetches a non-const Ref object.

const T& operator*() const: Dereferences and pins or fetches a const Ref object.

13.25.9 operator==()

This method tests whether two Ref objects are referencing the same object. If the Ref
objects are referencing the same object, then TRUE is returned; otherwise, FALSE is
returned.

ORACLE 13-176

Chapter 13
Ref Class

Syntax

bool operator == (
const Ref<T> &ref) const;

Parameter Description

of The Ref object of the object to be compared.

13.25.10 operator!=()

This method tests whether two Ref objects are referencing the same object. If the Ref
objects are not referencing the same object, then TRUE is returned; otherwise, FALSE is
returned.

Syntax

bool operator!= (
const Ref<T> &ref) const;

Parameter Description

 of The Ref object of the object to be compared.

13.25.11 operator=()

Assigns the Ref or the object to a Ref . For the first case, the Ref s are assigned and for
the second case, the Ref is constructed from the object and then assigned.

Syntax Description

Ref <T>& oper at or =(Assigns a Ref to a Ref .

const Ref<T> &src);

Ref <T>& oper at or =(Assigns a Ref to an object.

const T *)obj;

Parameter Description
sre The source Ref object to be assigned.
obj The source object pointer whose Ref object is to be assigned.

13.25.12 ptr()

Returns a pointer to a PObj ect . This operator dereferences the Ref and pins or fetches
the object if necessary. This might result in prefetching a graph of objects if prefetch
attributes of the Ref are set.

ORACLE 13-177

Chapter 13
Ref Class

Syntax Description

T *ptr(): Returns a pointer of a non-const Ref object.

const T *ptr() const: Returns a pointer of a const Ref object.

13.25.13 setLock()

This method specifies how the object should be locked when dereferenced.

Syntax

voi d set Lock(l ockOptions);

Argument Description
The lock options as defined by LockOpt i ons in Table 13-35 .

[ockOpti ons

13.25.14 setNull()

This method sets the Ref object to NULL.

Syntax

voi d setNull ();

13.25.15 setPrefetch()

Sets the prefetching options for complex object retrieval. This method specifies depth
up to which all objects reachable from this object through Ref s (transitive closure)
should be prefetched. If only selected attribute types are to be prefetched, then the
first version of the method must be used. This method specifies which Ref attributes of
the object it refers to should be followed for prefetching of the objects (complex object
retrieval) and how many levels deep those links should be followed.

Syntax Description

Sets the prefetching options for complex object

voi d setPref et ch(retrieval, using type name and depth.

const string & ypeNane,
unsi gned int depth);

Sets the prefetching options for complex object

voi d set Pref et ch(retrieval, using depth only.

unsi gned int depth);

Sets the prefetching options for complex object

voi d setPref et ch(retrieval, using schema, type name, and depth.

const string &schNane,
const string & ypeNang,
unsi gned int depth);

ORACLE 13-178

Chapter 13
RefAny Class

Syntax

Description

voi d setPrefetch(

const UString &schNarme,
const UString &t ypeNane,

unsi gned int depth);

Sets the prefetching options for complex object
retrieval, using schema, type name, and depth, and
USt ri ng support.

Parameter Description

t ypeNare Type of the Ref attribute to be prefetched.

schNane Schema name of the Ref attribute to be prefetched.

dept h Depth level to which the links should be followed; can use

Pref et chOpti on as defined in Table 13-35 .

13.25.16 unmarkDelete()

This method unmarks the referred object as dirty and available for deletion.

Syntax

voi d unmarkDel ete();

13.26 RefAny Class

The Ref Any class is designed to support a reference to any type. Its primary purpose is
to handle generic references and allow conversions of Ref in the type hierarchy. A

Ref Any object can be used as an intermediary between any two types, Ref <x> and

Ref <y>, where x and y are different types.

Table 13-37 Summary of RefAny Methods

Method Summary

RefAny() Constructor for Ref Any class.

clear() Clears the reference.

getConnection() Returns the connection this ref was created from.
isNull() Checks if the Ref Any object is NULL.

markDelete()
operator=()
operator==()
operator!=()

unmarkDelete()

Marks the object as deleted.

Assignment operator for Ref Any.

Checks if this Ref Any object equals a specified Ref Any.
Checks if not equal.

Unmarks the object as deleted.

ORACLE

13-179

Chapter 13
RefAny Class

13.26.1 RefAny()

A Ref <T> can always be converted to a Ref Any; there is a method to perform the
conversion in the Ref <T> template. Each Ref <T> has a constructor and assignment
operator that takes a reference to Ref Any.

Syntax Description
Creates a NULL Ref Any.

Ref Any() ;

Ref Any(Creates a Ref Any from a session pointer and a reference.

const Connection *sessptr,
const OCl Ref *ref);

Ref Any(Creates a Ref Any as a copy of another Ref Any object.

const Ref Any& src);

Parameter Description

sessptr Session pointer

 of A reference

sre The source Ref Any object to be assigned

13.26.2 clear()

This method clears the reference.

Syntax

void clear();

13.26.3 getConnection()

Returns the connection from which this reference was instantiated.

Syntax

const Connection* get Connection() const;

13.26.4 isNull()

Returns TRUE if the object pointed to by this ref is NULL else FALSE.

Syntax

bool isNull() const;

ORACLE 13-180

Chapter 13
RefAny Class

13.26.5 markDelete()

This method marks the referred object as deleted.

Syntax

voi d markDel ete();

13.26.6 operator=()

Assignment operator for Ref Any.

Syntax

Ref Any& oper at or =(
const Ref Anyé& src);

Parameter Description

sre The source RefAny object to be assigned.

13.26.7 operator==()

Compares this ref with a Ref Any object and returns TRUE if both the refs are referring to
the same object in the cache, otherwise it returns FALSE.

Syntax

bool operator== (
const Ref Any &ref AnyR) const;

Parameter Description

r ef AnyR Ref Any object to which the comparison is made.

13.26.8 operator!=()

Compares this ref with the RefAny object and returns TRUE if both the refs are not
referring to the same object in the cache, otherwise it returns FALSE.

Syntax

bool operator!= (
const RefAny é&ref AnyR) const;

Parameter Description

r ef AnyR Ref Any object to which the comparison is made.

ORACLE 13-181

Chapter 13
ResultSet Class

13.26.9 unmarkDelete()

This method unmarks the referred object as dirty.

Syntax

voi d unmarkDel ete();

13.27 ResultSet Class

ORACLE

A Resul t Set provides access to a table of data generated by executing a St at enent .
Table rows are retrieved in sequence. Within a row, column values can be accessed in
any order.

A Resul t Set maintains a cursor pointing to its current row of data. Initially the cursor is
positioned before the first row. The next method moves the cursor to the next row.

The get xxx() methods retrieve column values for the current row. You can retrieve
values using the index number of the column. Columns are numbered beginning at 1.
For the get xxx() methods, OCCI attempts to convert the underlying data to the
specified C++ type and returns a C++ value. SQL types are mapped to C++ types with
the Resul t Set : : get xxx() methods.

The number, types and properties of a Resul t Set's columns are provided by the
Met aDat a object returned by the getColumnListMetaData() method.

Table 13-38 Enumerated Values Used by ResultSet Class

__|
Attribute Options

DATA_AVAI LABLE indicates that data for one or more rows was successfully
fetched from the server; up to the requested number of rows (nunRows) were
returned. When in streamed mode, use the getNumArrayRows() method to
determine the exact number of rows retrieved when nunRows is greater than 1.
* STREAM DATA_AVAI LABLE indicates that the application should call the
getCurrentStreamColumn() method and read stream.
e END_OF_FETCH indicates that no data was available for fetching.

St atus

Table 13-39 Summary of ResultSet Methods
|

Method Description

cancel() Cancels the Resul t Set .

closeStream() Closes the specified St r eam

getBDouble() Returns the value of a column in the current row as a
BDoubl e.

getBfile() Returns the value of a column in the current row as a
Bfile.

getBFloat() Returns the value of a column in the current row as a
BFl oat .

getBlob() Returns the value of a column in the current row as a
Bl ob object.

13-182

ORACLE

Chapter 13
ResultSet Class

Table 13-39 (Cont.) Summary of ResultSet Methods
|

Method Description

getBytes() Returns the value of a column in the current row as a
Byt es array.

getCharSet() Returns the character set in which data would be
fetched.

getCharSetUString() Returns the character set in which data would be
fetched as a USt ri ng.

getClob() Returns the value of a column in the current row as a

getColumnListMetaData()

getCurrentStreamColumn()

getCurrentStreamRow()

getCursor()
getDate()

getDatabaseNCHARParam()

getDouble()

getFloat()

getint()

getintervalDS()

getinterval YM()

getMaxColumnSize()

getNumArrayRows()

getNumber()

getObject()

getRef()

getRowid()

getRowPosition()

getStatement()

getStream()getStream()

d ob object.

Returns the describe information of the result set
columns as a Met aDat a object.

Returns the column index of the current readable
Stream

Returns the current row of the Resul t Set being
processed.

Returns the nested cursor as a Resul t Set .

Returns the value of a column in the current row as a
Dat e object.

Returns whether data is in NCHAR character set or not.

Returns the value of a column in the current row as a C
++ double.

Returns the value of a column in the current row as a C
++ float.

Returns the value of a column in the current row as a C
++ int.

Returns the value of a column in the current row as a
| nt erval DS.

Returns the value of a column in the current row as a
I nterval YM

Returns the value set by set MaxCol umSi ze() .

Returns the actual number of rows fetched in the last
array fetch.

Returns the value of a column in the current row as a
Nunber object.

Returns the value of a column in the current row as a
PQbj ect .

Returns the value of a column in the current row as a
Ref .

Returns the current RON D for a SELECT FOR UPDATE
statement.

Returns the row id of the current row position.
Returns the St at enent of the Resul t Set .

Returns the value of a column in the current row as a
Stream

13-183

ORACLE

Chapter 13
ResultSet Class

Table 13-39 (Cont.) Summary of ResultSet Methods
|

Method Description

getString() Returns the value of a column in the current row as a
string.

getTimestamp() Returns the value of a column in the current row as a
Ti mest anp object.

getUInt() Returns the value of a column in the current row as a C
++ unsigned int

getUstring() Returns the value of a column in the current row as a
UString.

getVector() Returns the specified collection parameter as a vector.

getVectorOfRefs() Returns the column in the current position as a vector
of Ref s.

isNull() Checks whether the value is NULL.

isTruncated() Checks whether truncation has occurred.

next() Makes the next row the current row in a Resul t Set .

preTruncationLength() Returns the actual length of the parameter before

setBinaryStreamMode()

setCharacterStreamMode()

setCharSet()

setCharSetUString()

setDatabaseNCHARParam()

setDataBuffer()

setErrorOnNull()

setErrorOnTruncate()

setPrefetchMemorySize()

setPrefetchRowCount()

setMaxColumnSize()

status()

truncation.

Specifies that a column is to be returned as a binary
stream.

Specifies that a column is to be returned as a character
stream.

Specifies the character set in which the data is to be
returned.

Specifies the character set in which the data is to be
returned.

If the parameter is going to be retrieved from a column
that contains data in the database's NCHAR character
set, then OCCI must be informed by passing a true
value.

Specifies the data buffer into which data is to be
fetched, or the gather and scatter binds and defines
made.

Enables Or Disables exception when NULL value is
read.

Enables Or Disables exception when truncation occurs.

Sets the amount of memory that is used internally by
OCCI to store data fetched during each round trip to the
server.

Sets the number of rows that are fetched internally by
OCCI during each round trip to the server.

Specifies the maximum amount of data in bytes to read
from a column. It should be based on the environment's
character set, in which the env has been created.

Returns the current status of the Resul t Set .

13-184

Chapter 13
ResultSet Class

13.27.1 cancel()

This method cancels the result set.

Syntax

voi d cancel ();

13.27.2 closeStream()

This method closes the stream specified by the parameter st ream

Syntax

voi d cl oseSt rean
Stream *strean;

Parameter Description

stream The St reamto be closed.

13.27.3 getBDouble()

This method returns the value of a column in the current row as a BDoubl e. If the value
is SQL NULL, the result is NULL.

Syntax

BDoubl e get BDoubl e(
unsi gned int col | ndex);

Parameter Description

col I ndex Column index, first column is 1, second is 2, and so on.

13.27.4 getBfile()

This method returns the value of a column in the current row as a Bfi | e. Returns the
column value; if the value is SQL NULL, the result is NULL.

Syntax

Bfile getBfile(
unsi gned int col | ndex);

Parameter Description

Column index, first column is 1, second is 2, and so on.
col I ndex

ORACLE 13-185

Chapter 13
ResultSet Class

13.27.5 getBFloat()

This method returns the value of a column in the current row as a BFl oat . If the value is
SQL NULL, the result is NULL.

Syntax

BFl oat get BFl oat (
unsi gned int col | ndex);

Parameter Description

Column index, first column is 1, second is 2, and so on.
col I ndex

13.27.6 getBlob()

Get the value of a column in the current row as an Bl ob. Returns the column value; if
the value is SQL NULL, the result is NULL.

Syntax

Bl ob get Bl ob(
unsi gned int col I ndex);

Parameter Description

Column index, first column is 1, second is 2, and so on.
col I ndex

13.27.7 getBytes()

Get the value of a column in the current row as a Byt es array. The bytes represent the
raw values returned by the server. Returns the column value; if the value is SQL NULL,
the result is NULL array

Syntax

Byt es get Byt es(
unsi gned int col I ndex);

Parameter Description

Column index, first column is 1, second is 2, and so on.
col I ndex

13.27.8 getCharSet()

Gets the character set in which data would be fetched, as a string.

ORACLE 13-186

Chapter 13
ResultSet Class

Syntax

string get Char Set (
unsi gned int col I ndex) const;

Parameter Description

Column index, first column is 1, second is 2, and so on.
col I ndex

13.27.9 getCharSetUString()

Gets the character set in which data would be fetched, as a string.

Syntax

UString get Char Set UStri ng(
unsi gned int col I ndex) const;

Parameter Description

Column index, first column is 1, second is 2, and so on.
col I ndex

13.27.10 getClob()

Get the value of a column in the current row as a d ob. Returns the column value; if the
value is SQL NULL, the result is NULL.
Syntax

Cl ob get d ob(
unsi gned int col I ndex);

Parameter Description

Column index, first column is 1, second is 2, and so on.
col I ndex

13.27.11 getColumnListMetaData()

The number, types and properties of a Resul t Set's columns are provided by the

get Met aDat a method. Returns the description of a Resul t Set 's columns. This method
returns the value of the given column as a PObj ect . The type of the C++ object is the C
++ P(bj ect type corresponding to the column's SQL type registered with Envi ronnent 's
map. This method is used to materialize data of SQL user-defined types.

Syntax

vect or <Met aDat a> get Col urmLi st Met aDat a() const;

ORACLE 13-187

Chapter 13
ResultSet Class

13.27.12 getCurrentStreamColumn()

If the result set has any input St reamparameters, this method returns the column index
of the current input St reamthat must be read. If no output St reammust be read, or there
are no input St reamcolumns in the result set, this method returns 0. Returns the
column index of the current input St r eamcolumn that must be read.

Syntax

unsi gned i nt get Current StreanCol um() const;

13.27.13 getCurrentStreamRow()

If the result has any input St reans, this method returns the current row of the result set
that is being processed by OCCI. If this method is called after all the rows in the set of
array of rows have been processed, it returns 0. Returns the row number of the current
row that is being processed. The first row is numbered 1 and so on.

Syntax

unsigned int getCurrent StreanRow() const;

13.27.14 getCursor()

Get the nested cursor as an Resul t Set . Data can be fetched from this result set. A
nested cursor results from a nested query with a CURSOR(SELECT. . .) clause:

SELECT | ast _name,
CURSOR(SELECT depart ment _name FROM depart ment s)
FROM enpl oyees WHERE | ast _nane = ' JONES'

Note that if there are multiple REF CURSCRs being returned, data from each cursor must
be completely fetched before retrieving the next REF CURSOR and starting fetch on it.
Returns A Resul t Set for the nested cursor.

Syntax

Resul t Set * get Cursor(
unsi gned int col | ndex);

Parameter Description

Column index, first column is 1, second is 2, and so on.
col I ndex

13.27.15 getDatabaseNCHARParam()

Returns whether data is in NCHAR character set or not.

Syntax

bool get Dat abaseNCHARPar anf(
unsigned int param ndex) const;

ORACLE 13-188

Chapter 13
ResultSet Class

Parameter Description

par am ndex Parameter index, first parameter is 1, second is 2, and so on.

13.27.16 getDate()

Get the value of a column in the current row as a Dat e object. Returns the column
value; if the value is SQL NULL, the result is NULL.
Syntax

Date get Dat e(
unsi gned int col | ndex);

Parameter Description

Column index, first column is 1, second is 2, and so on.
col I ndex

13.27.17 getDouble()

Gets the value of a column in the current row as a C++ double. Returns the column
value; if the value is SQL NULL, the result is 0.
Syntax

doubl e get Doubl e(
unsi gned int col I ndex);

Parameter Description

lumn index, fir lumnis 1 ndis 2, an n.
col I ndex Colu dex, first column is 1, second is 2, and so o

13.27.18 getFloat()

Get the value of a column in the current row as a C++ float. Returns the column value;
if the value is SQL NULL, the result is 0.

Syntax

float getFloat(
unsi gned int col I ndex);

Parameter Description

Column index, first column is 1, second is 2, and so on.
col I ndex

ORACLE 13-189

Chapter 13
ResultSet Class

13.27.19 getint()

Get the value of a column in the current row as a C++ int. Returns the column value; if
the value is SQL NULL, the result is 0.

Syntax

int getlnt(
unsi gned int col I ndex);

Parameter Description

lumn index, fir lumnis 1 ndis 2, an n.
col I ndex Colu dex, first colu s 1, second is 2, and so 0

13.27.20 getintervalDS()

Get the value of a column in the current row as a | nt er val DS object. Returns the
column value; if the value is SQL NULL, the result is NULL.

Syntax

I nterval DS get | nterval DS(
unsi gned int col I ndex);

Parameter Description

lumn index, fir lumnis 1 ndis 2, an n.
col I ndex Colu dex, first column is 1, second is 2, and so o

13.27.21 getinterval YM()

Get the value of a column in the current row as a | nt er val YMobject. Returns the
column value; if the value is SQL NULL, the result is NULL.

Syntax

I nterval YM get | nterval YM
unsi gned int col | ndex);

Parameter Description

Column index, first column is 1, second is 2, and so on.
col I ndex

13.27.22 getMaxColumnSize()

Get the value set by setMaxColumnSize() .

Syntax

unsi gned i nt get MaxCol umSi ze(
unsi gned int col I ndex) const;

ORACLE 13-190

Chapter 13
ResultSet Class

Parameter Description

col I ndex Column index, first column is 1, second is 2, and so on.

13.27.23 getNumArrayRows()

Returns the actual number of rows fetched in the last array fetch. Used in conjunction
with the next() method. This method cannot be used for non-array fetches.

Syntax

unsigned int get NumArrayRows() const;

13.27.24 getNumber()

Get the value of a column in the current row as a Nunber object. Returns the column
value; if the value is SQL NULL, the result is NULL.
Syntax

Nurmber get Nunber (
unsi gned int col I ndex);

Parameter Description

Column index, first column is 1, second is 2, and so on.
col I ndex

13.27.25 getObject()

Returns a pointer to a PObj ect holding the column value.

Syntax

Phj ect * get Qhj ect (
unsi gned int col | ndex);

Parameter Description

col I ndex Column index; first column is 1, second is 2, and so on.

13.27.26 getRef()

Get the value of a column in the current row as a Ref Any. Retrieving a Ref value does
not materialize the data to which Ref refers. Also the Ref value remains valid while the
session or connection on which it is created is open. Returns a Ref Any holding the
column value.

ORACLE 13-191

Chapter 13
ResultSet Class

Syntax

Ref Any get Ref (
unsi gned int col | ndex);

Parameter Description

Column index, first column is 1, second is 2, and so on.
col I ndex

13.27.27 getRowid()

Get the current row id for a SELECT. . . FOR UPDATE statement. The row id can be bound to
a prepared DELETE statement and so on. Returns current rowi d for a
SELECT. . . FOR UPDATE statement.

Syntax

Byt es get Rowi d(
unsi gned int col I ndex);

Parameter Description

lumn index, fir lumnis 1 ndis 2, an n.
col I ndex Colu dex, first column is 1, second is 2, and so o

13.27.28 getRowPosition()

Get the rowi d of the current row position.

Syntax

Byt es get RowPosition() const;

13.27.29 getStatement()

This method returns the st at enent of the Resul t Set .

Syntax

Statement* get Statenent() const;

13.27.30 getStream()

This method returns the value of a column in the current row as a Stream

Syntax

Stream * get Stream
unsi gned int col I ndex);

ORACLE 13-192

Chapter 13
ResultSet Class

Parameter Description

col I ndex Column index, first column is 1, second is 2, and so on.

13.27.31 getString()

Get the value of a column in the current row as a string. Returns the column value; if
the value is SQL NULL, the result is an empty string.

Syntax

string getString(
unsi gned int col I ndex);

Parameter Description

lumn index, fir lumnis 1 ndis 2, an n.
col I ndex Colu dex, first colu s 1, second is 2, and so 0

13.27.32 getTimestamp()

Get the value of a column in the current row as a Timestamp object. Returns the
column value; if the value is SQL NULL, the result is NULL.

Syntax

Ti mest anp get Ti mest anp(
unsi gned int col I ndex);

Parameter Description

Column index, first column is 1, second is 2, and so on.
col I ndex

13.27.33 getUInt()

Get the value of a column in the current row as a C++ i nt. Returns the column value; if
the value is SQL NULL, the result is 0.
Syntax

unsi gned int getU nt(
unsi gned int col I ndex);

Parameter Description

Column index, first column is 1, second is 2, and so on.
col I ndex

13.27.34 getUString()

Returns the value as a UStri ng.

ORACLE 13-193

Chapter 13
ResultSet Class

This method should be called only if the environment's character set is UTF16, or if
set Char set () method has been called to explicitly retrieve UTF16 data.
Syntax

UString getUString(
unsi gned int col I ndex);

Parameter Description

lumn index; fir lumnis 1 ndis 2, an n.
col I ndex Colu dex; first colu s 1, second is 2, and so o

13.27.35 getVector()

This method returns the column in the current position as a vector. The column should
be a collection type (varray or nested table). The SQL type of the elements in the
collection should be compatible with the data type of the objects in the vector.

Syntax Description

voi d get Vect of (Used for BDoubl e vectors.

Resul t Set *rs,
unsi gned int col I ndex,
vect or <BDoubl e> &vect);

Used for Bf i | e vectors.

voi d get Vector (
Resul t Set *rs,
unsi gned int col I ndex,

vector<Bfil e> &vect);

Used for BFl oat vectors.

voi d get Vector (
Resul t Set *rs,
unsi gned int col I ndex,

vect or <BFl oat > &vect);

Used for Bl ob vectors.

voi d get Vect or (
Resul t Set *rs,
unsi gned int col I ndex,

vect or <Bl ob> &vect);

Used for vectors of Bytes Class.

voi d get Vector (
Resul t Set *rs,
unsi gned int col I ndex,

vect or <Byt es> &vect);

Used for d ob vectors.

voi d get Vect or (
Resul t Set *rs,
unsi gned int col I ndex,

vect or <Cl ob> &vect);

ORACLE 13-194

Chapter 13
ResultSet Class

Syntax

Description

ORACLE

voi d get Vector (
Resul t Set *rs,
unsi gned int col I ndex,
vect or <Date> &vect);

voi d get Vector (
Resul t Set *rs,
unsi gned int col I ndex,
vect or <doubl e> &vect);

voi d get Vector (
Resul t Set *rs,
unsi gned int col I ndex,
vector<fl oat> &vect);

voi d get Vector (
Resul t Set *rs,
unsi gned int col I ndex,
vector<int> &vect);

voi d get Vector (
Result Set *rs,
unsi gned int col I ndex,
vect or<l nterval DS> &vect);

voi d get Vector (
Resul t Set *rs,
unsi gned int col I ndex,
vector<l nterval YM> &vect);

voi d get Vector (
Resul t Set *rs,
unsi gned int col I ndex,
vect or <Nunber > &vect);

voi d get Vector (
Resul t Set *rs,
unsi gned int col I ndex,
vect or <Ref <T>> &vect);

voi d get Vector (
Resul t Set *rs,
unsi gned int col I ndex,
vect or <Ref Any> &vect);

voi d get Vector (
Resul t Set *rs,
unsi gned int col I ndex,
vector<string> &ect);

Used for vectors of Date Class.

Used for vectors of doubl e type.

Used for vectors of f | oat type.

Used for vectors of i nt type.

Used for vectors of IntervalDS Class.

Used for vectors of IntervalYM Class.

Used for vectors of Number Class.

Available only on platforms where partial ordering
of function templates is supported. This function
may be deprecated in the future.
getVectorOfRefs() can be used instead.

Used for vectors of RefAny Class.

Used for vectors of st ri ng type.

13-195

Chapter 13
ResultSet Class

Syntax Description

Intended for use on platforms where partial

i Vi . . .
voi d get Vector (ordering of function templates is supported.

Resul t Set *rs,
unsi gned int col I ndex,
vector<T *> &vect);

Intended for use on platforms where partial
ordering of function templates is not supported,
such as Windows NT and z/OS.

voi d get Vector (
Resul t Set *rs,
unsi gned int col I ndex,
vect or<T> &vect);

voi d get Vect or (Used for vectors of Timestamp Class.

Resul t Set *rs,
unsi gned int col I ndex,
vect or <Ti nest anp> &vect);

voi d get Vect or (Used for vectors of unsi gned i nt type.

Result Set *rs,
unsi gned int col I ndex,
vect or <unsi gned i nt> &vect);

Used for vectors of USt ri ng Class; globalization

voi d get Vect or (enabled

Resul t Set *rs,
unsi gned int col I ndex,
vector<UString> &vect);

Parameter Description

‘s The result set

col I ndex Column index, first column is 1, second is 2, and so on.

vect The reference to the vector (OUT parameter).

13.27.36 getVectorOfRefs()

Returns the column in the current position as a vector of REFs. The column should be a
collection type (varray or nested table) of REFs. It is recommend to use this function
instead of specialized method getVector() for Ref <T>.

Syntax

voi d get Vect or OF Ref s(
Resul t Set *rs,
unsi gned int col I ndex,
vector< Ref<T> > &vect);

ORACLE 13-196

Chapter 13
ResultSet Class

Parameter Description

‘s The result set

col I ndex Column index, first column is 1, second is 2, and so on.

vect The reference to the vector of REFs (OQUT parameter).

13.27.37 isNull()

A column may have the value of SQL NULL; i sNul | () reports whether the last column
read had this special value. Note that you must first call get xxx() on a column to try to
read its value and then call i sNul | () to find if the value was the SQL NULL. Returns TRUE
if last column read was SQL NULL.

Syntax

bool i sNull(
unsigned int col I ndex) const;

Parameter Description

Column index, first column is 1, second is 2, and so on.
col I ndex

13.27.38 isTruncated()

This method checks whether the value of the parameter is truncated. If the value of the
parameter is truncated, then TRUE is returned; otherwise, FALSE is returned.

Syntax

bool isTruncat ed(
unsi gned i nt param ndex) const;

Parameter Description

par am ndex Parameter index, first parameter is 1, second is 2, and so on.

13.27.39 next()

ORACLE

This method fetches a specified number of rows, nunRows, from a previously executed
query, and reports the St at us of this fetch as defined in Table 13-38.

For non-streamed mode, next() only returns the status of DATA AVAI LABLE or
END OF FETCH.

* When fetching one row at a time (nunmRows=1), process the data using get xxx()
methods.

13-197

Chapter 13
ResultSet Class

* When fetching several rows at once (nunRows>1), as in an Array Fetch, you must
use the setDataBuffer() method to specify the location of your preallocated buffers
before invoking next().

Up to nunRows data records would populate the buffers specified by the setDataBuffer()
call. To determine exactly how many records were returned, use the
getNumArrayRows() method.

Syntax

Status next(
unsi gned i nt nunmRows =1);

Parameter Description

NUNROWS Number of rows to fetch for array fetches.

13.27.40 preTruncationLength()

Returns the actual length of the parameter before truncation.

Syntax

int preTruncationLengt h(
unsi gned i nt param ndex) const;

Parameter Description

par ani ndex Parameter index, first parameter is 1, second is 2, and so on.

13.27.41 setBinaryStreamMode()

Defines that a column is to be returned as a binary stream by the get St reammethod.

Syntax

voi d set Bi narySt reamvbde(
unsigned int col | ndex,
unsigned int size);

Parameter Description
col I ndex Column index, first column is 1, second is 2, and so on.
si 78 The amount of data to be read as a binary stream.

13.27.42 setCharacterStreamMode()

Defines that a column is to be returned as a character stream by the getStream()
method.

ORACLE 13-198

Chapter 13
ResultSet Class

Syntax

voi d set Charact er St reamvbde(
unsi gned int col I ndex,
unsi gned int size);

Parameter Description

Column index, first column is 1, second is 2, and so on.
col I ndex
si ze The amount of data to be read as a character stream.

13.27.43 setCharSet()

Overrides the default character set for the specified column. Data is converted from
the database character set to the specified character set for this column.

Syntax

voi d set Char Set (
unsi gned int col I ndex,
string charSet);

Parameter Description
col I ndex Column index, first column is 1, second is 2, and so on.
char Set Desired character set, as a string.

13.27.44 setCharSetUString()

Specifies the character set value as a UStri ng in which the data is returned.

Syntax

UString set Char Set USt ri ng(
unsi gned int col I ndex,
const UString &charSet);

Parameter Description
col I ndex Column index, first column is 1, second is 2, and so on.
char Set Desired character set, as a string.

13.27.45 setDatabaseNCHARParam()

If the parameter is going to be retrieved from a column that contains data in the
database's NCHAR character set, then OCCI must be informed by passing a TRUE value.
A FALSE can be passed to restore the default.

ORACLE 13-199

Chapter 13
ResultSet Class

Syntax

voi d set Dat abaseNCHARPar an{
unsi gned i nt param ndex,

bool i sNCHAR);
Parameter Description
par am ndex Parameter index, first parameter is 1, second is 2, and so on.
i SNCHAR TRUE or FALSE.

13.27.46 setDataBuffer()

Specifies a data buffer where data would be fetched or bound. The buf fer parameter
is a pointer to a user allocated data buffer. The current length of data must be
specified in the | engt h parameter. The amount of data should not exceed the si ze
parameter. Finally, t ype is the data type of the data. Only non OCCI and non C++
specific types can be used, such as STL string. OCCI classes like Byt es and Dat e
cannot be used.

If setDataBuffer() is used to fetch data for array fetches, it should be called only once
for each result set. Data for each row is assumed to be at buffer (i- 1)location, where
i is the row number. Similarly, the length of the data would be assumed to be at
(length+(i-1)).

For more information on the version of this method that uses 32K | engt h parameter,
see Oracle Database SQL Language Reference.

Syntax Description

Uses ub2 | engt h buffer. This limits VARCHAR2 and
NVARCHAR? length to 4, 000 bytes, and RAWdata types to

voi d set Dat aBuf f er (
unsi gned int col I ndex,

voi d *buffer, 2,000 bytes.
Type type,
sh4 size = 0,

ub2 *length = NULL,
sh2 *ind = NULL,
ub2 *rc = NULL);

Uses ub4 | engt h buffer (32K). This increases the length

voi d set Dat aBuf f er (
unsi gned int col I ndex, of VARCHAR2, NVARCHAR2 and RAWdata types.
void *buffer,
Type type,
sh4 size = 0,
ub4 *length = NULL,
sh2 *ind = NULL,
ub2 *rc = NULL);
Parameter Description
col | ndex Column index, first column is 1, second is 2, and so on.

ORACLE 13-200

Chapter 13
ResultSet Class

Parameter Description

Pointer to user-allocated buffer. For array fetches, it should have

ff) .) .

buf fer nunRows * size bytes in it. For gather or scatter binds and defines,
this structure stores the address of OCl | OvVec and the number of
QCl | Ovec elements that start at that address.

type Type of the data that is provided (or retrieved) in the buffer.

si ze Size of the data buffer. For array fetches, it is the size of each
element of the data items.

| engt h Pointer to the length of data in the buffer; for array fetches, it should
be an array of length data for each buffer element; the size of the
array should be equal to arrayLengt h.

i nd Pointer to an indicator variable or array (I NOUT).

re Pointer to array of column level return codes (QUT).

13.27.47 setErrorOnNull()

This method enables/disables exceptions for reading of NULL values on col | ndex
column of the result set.

Syntax

voi d setErrorOnNul | (
unsi gned int col I ndex,
bool causeException);

Parameter Description

col I ndex Column index, first column is 1, second is 2, and so on.

causeExcept i on Enable exceptions if TRUE. Disable if FALSE.

13.27.48 setErrorOnTruncate()

This method enables/disables exceptions when truncation occurs.

Syntax

voi d set ErrorOnTruncat e(
unsi gned i nt param ndex,
bool causeException);

Parameter Description

par am ndex Parameter index, first parameter is 1, second is 2, and so on.

ORACLE 13-201

Chapter 13
ResultSet Class

Parameter Description
Enable exceptions if TRUE. Disable if FALSE.

causeException

13.27.49 setPrefetchMemorySize()

Sets the amount of memory that is used internally by OCCI to store data fetched
during each round trip to the server. A value of 0 means that the amount of data
fetched during the round trip is constrained by the Fet chRowCount parameter. If both
parameters are nonzero, the smaller of the two is used.

Syntax

voi d set PrefetchMenorySi ze(
unsigned int bytes);

Parameter Description

byt es Number of bytes used for storing data fetched during each server round trip.

13.27.50 setPrefetchRowCount()

Sets the number of rows that are fetched internally by OCCI during each round trip to
the server. A value of 0 means that the amount of data fetched during the round trip is
constrained by the Fet chMenor ySi ze parameter. If both parameters are nonzero, the
smaller of the two is used. If both of these parameters are zero, row count internally
defaults to 1 row and that is the value returned from the get Fet chRowCount () method.

Syntax

voi d set Pref et chRowCount (
unsigned int rowCount);

Parameter Description

r owCount Number of rows to fetch for each round trip to the server.

13.27.51 setMaxColumnSize()

Specifies the maximum amount of data in bytes to read from a column. It should be
based on the environment's character set, in which the env has been created.
Syntax

voi d set MaxCol urmSi ze(
unsi gned int col I ndex,
unsigned int max);

ORACLE 13-202

Chapter 13
SQLException Class

Parameter Description
col I ndex Column index, first column is 1, second is 2, and so on.
rax The maximum amount of data in bytes to be read.

13.27.52 status()

Returns the current St at us of the result set, as defined in Table 13-38. This method

can be called repeatedly.

Syntax

Status status() const;

13.28 SQLException Class

The SQLExcept i on class provides information on generated errors, their codes and

associated messages.

Table 13-40 Summary of SQLException

Method Description

SQLException() SQLExcept i on constructor.

getErrorCode() Returns the database error code.

getMessage() Returns the error message st ri ng for this exception.
getNLSMessage() Returns the error message st ri ng for this exception

getNLSUStringMessage()

getUStringMessage()
getXAErrorCode()

isRecoverable()

setErrorCtx()
what()

(Unicode support).

Returns the error message USt ri ng for this exception
(Unicode support).

Returns the error message USt ri ng for this exception.
Returns the error message string for this exception.

Determines whether an application can failover and
recover from an error.

Sets the error context.

Returns the error message associated with the
SQLExcepti on.

13.28.1 SQLException()

This is the SQLExcept i on constructor.

Syntax

Description

SQLException();

ORACLE

Constructs a NULL SQLExcepti on object.

13-203

Chapter 13
SQLException Class

Syntax Description

Constructs an SQLExcept i on object as a copy of another

SQExcepti on(SQLExcept i on object.

const SQLException &e);

Parameter Description

e The SQLExcepti on to be copied.

13.28.2 getErrorCode()

Gets the database error code.

Syntax

int getErrorCode() const;

13.28.3 getMessage()

Returns the error message string of this SQLExcept i on if it was created with an error
message string. Returns NULL if the SQLExcept i on was created with no error message.

Syntax

string get Message() const;

13.28.4 getNLSMessage()

Returns the error message st ring of this SQL.Excepti on if it was created with an error
message string. Passes the globalization enabled environment. Returns a NULL string
if the SQLExcept i on was created with no error message. The error message is in the
character set associated with the environment.

Syntax

string get NLSMessage(
Environnent *env) const;

Parameter Description

env The globalization enabled environment.

13.28.5 getNLSUStringMessage()

ORACLE

Returns the error message USt ri ng of this SQLExcept i on if it was created with an error
message UStri ng. Passes the globalization enabled environment. Returns a NULL

Ust ri ng if the SQLExcept i on was created with no error message. The error message is
in the character set associated with the environment.

13-204

Chapter 13
SQLException Class

Syntax

UString get NLSUStri ngMessage(
Environnent *env) const;

Parameter Description

env The globalization enabled environment.

13.28.6 getUStringMessage()

Returns the error message USt ri ng of this SQLExcept i on if it was created with an error
message UStri ng. Returns a NULL UStri ng if the SQLExcept i on was created with no error
message. The error message is in the character set associated with the environment.

Syntax

UString getUStringMessage() const;

13.28.7 getXAErrorCode()

Determine if the thrown exception is due to an XA or an SQL error.

Used by C++ XA applications with dynamic registration. Returns an XA error code if
the exception is due to XA, or XA K otherwise.
Syntax

i nt get XAErr or Code(
const string &dbnane) const;

Parameter Description

The database name; same as the optional dbnane provided in the Open

dbnane) .
String and used when connecting to the Resource Manager.

13.28.8 isRecoverable()

Determines whether an application can failover and recover from an error. Returns
TRUE if recoverable.

For example, an application may recover from ORA- 03113, but not from ORA- 942.

Syntax

bool isRecoverable();

13.28.9 setErrorCtx()

Sets the pointer to the error context.

ORACLE 13-205

Syntax

voi d setError Ctx(
void *ctx);

Chapter 13
StatelessConnectionPool Class

Parameter

Description

ctx

The pointer to the error context.

13.28.10 what()

Standard C++ compliant function; returns the error message associated with the

SQLExcepti on.

Syntax

const char *what () const throw();

13.29 StatelessConnectionPool Class

This class represents a pool of stateless, authenticated connections to the database.

Table 13-41 Enumerated Values Used by StatelessConnectionPool Class

|
Options

Attribute

Pool Type

BusyOpti on

Dest r oyMode

HETEROGENEQUS is the default state; connections with different
authentication contexts can be created in the same pool. This pool
type also supports external authentication.

HOMOGENEQUS indicates that all connections in the pool are
authenticated with the username and password provided during
pool creation. No proxy connections can be created. ni nConn and
i ncr Conn values are considered only in these HOMOGENEQUS pools.
NO_RLB turns off run-time load balancing in the connection pool. Can
be used with both HETEROGENEQUS and HOMOGENEQUS pools.
USES_EXT_AUTH indicates that the connections in the pool support
external authentication. Can only be used with HETEROGENEQUS
pools.

WAl T indicates that the thread waits and blocks until the connection
becomes free.

NOWAI T throws and error.

FORCEGET indicates that a new connection is created, even when
maximum number of connections is opened and all are busy.

DEFAULT indicates that if are still active busy connections in the pool,
ORA24422 error is thrown

SPD_FORCE indicates that any busy connections in the pool are
forcefully terminated and the pool is destroyed; the user loses
memory corresponding to the number of connections forcefully
terminated.

ORACLE

13-206

13.29.1 getAnyTaggedConnection()

ORACLE

Chapter 13
StatelessConnectionPool Class

Table 13-42 Summary of StatelessConnectionPool Methods

Method

Description

getAnyTaggedConnection()

getAnyTaggedProxyConnection()

getBusyConnections()

getBusyOption()

getConnection()

getincrConnections()

getMaxConnections()

getMinConnections()

getOpenConnections()

getPoolName()
getProxyConnection()
getTimeOut()

releaseConnection()

setBusyOption()

setPoolSize()

setTimeOut()

terminateConnection()

Returns a pointer to the connection object, without the
restriction of a matching tag.

Returns a proxy connection from a connection pool.

Returns the number of busy connections in the
connection pool.

Returns the behavior of the stateless connection pool
when all the connections in the pool are busy and the
number of connections have reached maximum

Returns a pointer to the Connect i on object.

Returns the number of incremental connections in the
connection pool.

Returns the maximum number of connections in the
connection pool.

Returns the minimum number of connections in the
connection pool.

Returns the number of open connections in the
connection pool.

Returns the name of the connection pool.
Returns a proxy connection from a connection pool.

Returns the timeout period of a connection in the
connection pool.

Releases the connection back to the pool with an
optional tag.

Specifies the behavior of the stateless connection pool
when:

« all the connections in the pool are busy, and

e the number of connections have reached
maximum.

Sets the maximum, minimum, and incremental number

of pooled connections for the connection pool.

Sets the timeout period of a connection in the
connection pool.

Closes the connection and remove it from the pool.

Returns a pointer to the connection object, without the restriction of a matching tag.

This method works in an environment with enabled database resident connection

pooling.

During the execution of this call, the pool is first searched based on the tag provided. If
a connection with the specified tag exists, it is returned to the user. If a matching
connection is not available, an appropriately authenticated untagged connection (with
a NULL tag) is returned. In cases where an undated connection is not free, an
appropriately authenticated connection with a different tag is returned.

13-207

Chapter 13
StatelessConnectionPool Class

A get Tag() call to the Connecti on verifies that the connection tag is received.

Syntax Description

Returns a pointer to the connection object from a
homogeneous stateless connection pool, without
the restriction of a matching tag; st ri ng support.

Connection *get AnyTaggedConnect i on(
string & ag="")=0;

Returns a pointer to the connection object from a
homogeneous stateless connection pool, without
the restriction of a matching tag; USt ri ng support.

Connect i on* get AnyTaggedConnect i on(
const UString &t ag)=0;

Returns a pointer to the connection object from a
heterogeneous stateless connection pool, without
the restriction of a matching tag; st ri ng support.

Connection *get AnyTaggedConnect i on(
const string &userNnane,
const string &password,
const string & ag="")=0;

Returns a pointer to the connection object from a
heterogeneous stateless connection pool, without
the restriction of a matching tag; USt ri ng support.

Connect i on* get AnyTaggedConnect i on(
const UString &userNane,
const UString &Password,
const UString &tag)=0 ;

Parameter Description

user Nare The database username

passwor d The database password.

tag User-defined type of connection requested. This parameter can be ignored if a

default connection is requested.

13.29.2 getAnyTaggedProxyConnection()

Returns a proxy connection from a connection pool.

This method works in an environment with enabled database resident connection
pooling.

During the execution of this call, the pool is first searched based on the tag provided. If
a connection with the specified tag exists, it is returned to the user. If a matching
connection is not available, an appropriately authenticated connection with a different
tag is returned. In cases where an undated connection is not free, an appropriately
authenticated connection with a different tag is returned.

Restrictions for matching the tag may be removed by passing an empty tag argument
parameter.

A get Tag() call to the connection verifies the connection tag received.

ORACLE 13-208

Chapter 13
StatelessConnectionPool Class

Syntax

Description

Connection *get AnyTaggedPr oxyConnecti on(
const string &nane,
string roles[],
unsi gned int nunRol es,
const string tag="",
Connecti on: : ProxyType

proxyType=Connect i on: : PROXY_DEFAULT) ;

Connect i on* get AnyTaggedPr oxyConnecti on(
const UString &nane,
string roles[],
unsi gned int nunRol es,
const UString &tag,
Connecti on: : ProxyType
proxyType = Connecti on:: PROXY_DEFAULT);

Connection *get AnyTaggedPr oxyConnecti on(
const string &nane,
const string tag="",
Connecti on: : ProxyType

proxyType=Connect i on: : PROXY_DEFAULT) ;

Connect i on* get AnyTaggedPr oxyConnecti on(
const UString &nane,
const UString &tag,
Connection: : ProxyType
proxyType = Connecti on:: PROXY_DEFAULT);

Get a proxy connection with role
specifications from a connection pool;
includes support for roles and string
support.

Get a proxy connection with role
specifications from a connection pool;
includes support for roles and USt ri ng
support.

Get a proxy connection with role
specifications from a connection pool;
string support.

Get a proxy connection within role
specifications from the connection pool;
USt ri ng support.

Parameter Description

nane The username.

rol es The roles to activate on the database server

nunRol es The number of roles to activate on the database server

tag User defined tag associated with the connection.

or oxy Type The type of proxy authentication to perform; Pr oxyType is defined in

Table 13-11.

13.29.3 getBusyConnections()

Returns the number of busy connections in the connection pool. When using database
resident connection pooling, this is the number of persistent connections to the

ORACLE

Connection Broker.

Syntax

unsi gned i nt getBusyConnections() const=0;

13-209

13.29.4 getBusyOption()

Chapter 13
StatelessConnectionPool Class

Returns the behavior of the stateless connection pool when all the connections in the
pool are busy, and when the number of connections have reached maximum. The
return values are defined for BusyQpti on in Table 13-41.

Syntax
BusyOption get BusyOption()=0;

13.29.5 getConnection()

Returns a pointer to the connection object of a St at el essConnect i onPool .

This method works in an environment with enabled database resident connection

pooling.

Syntax

Description

Connection *get Connecti on() =0;

Connection *get Connecti on(
string & ag="")=0;

Connect i on* get Connecti on(
const UString &t ag)=0;

Connection *get Connecti on(
const string &userNanme,
const string &password,
const string &ag="")=0;

Connection* get Connecti on(
const UString &userNane,
const UString &password,
const UString &t ag)=0;

Connection *get Connecti on(
const string &connectiond ass,
const Connection::Purity &purity)=0;

Connect i on* get Connecti on(
const UString &connectiond ass,
const Connection::Purity &purity)=0;

ORACLE

Returns a connection that can be
authenticated externally.

Returns an authenticated
connection, with a connection pool
username and password; st ri ng
support.

Returns an authenticated
connection, with a connection pool
username and password; UStri ng
support.

Returns a pointer to the connection
object from a heterogeneous
stateless connection pool; stri ng
support.

Returns a pointer to the connection
object from a heterogeneous
stateless connection pool; USt ri ng
support.

Returns a pointer to the connection
object from a database resident
connection pool; stri ng support.

Returns a pointer to the connection
object from a database resident
connection pool; USt ri ng support.

13-210

Chapter 13
StatelessConnectionPool Class

Syntax

Description

Con

Con

Con

Con

nection *get Connecti on(
const string &userNarme,
const string &password,
const string &connectiond ass,

const Connection::Purity &purity)=0;

nection* get Connecti on(
const UString &userNane,
const UString &password,
const UString &connectiond ass,

const Connection::Purity &purity)=0;

nection *get Connecti on(

const string &connectiond ass,
const Connection::Purity &purity,
const string &t ag)=0;

nection* get Connecti on(

const UString &connectiond ass,
const Connection::Purity &purity,
const UString &t ag)=0;

Returns a pointer to the connection
object from a database resident
connection pool; user name and
password authentication; stri ng
support.

Returns a pointer to the connection
object from a database resident
connection pool; user name and
password authentication; USt ri ng
support.

Returns a tagged connection object
from a database resident
connection pool; st ri ng support.

Returns a tagged connection object
from a database resident
connection pool; USt ri ng support.

Parameter Description

user Nane The database username.

passwor d The database password.

tag The user defined tag associated with the connection. During the
call, the pool is first searched based on the tag provided. If a
connection with the specified tag exists it is returned; otherwise a
new connection is created and returned.

connecti ondl ass The class of connection used by database resident connection pool.

pur

ity

The purity of connection used by database resident connection
pool; either SELF or NEW

13.29.6 getincrConnections()

ORACLE

Syntax

unsigned int getlncrConnections() const=0;

Returns the number of incremental connections in the connection pool. This call is
useful only in cases of homogeneous connection pools. When using database resident
connection pooling, this is the number of persistent connections to the Connection
Broker.

13-211

Chapter 13
StatelessConnectionPool Class

13.29.7 getMaxConnections()

Returns the maximum number of connections in the connection pool. When using
database resident connection pooling, this is the number of persistent connections to
the Connection Broker.

Syntax

unsi gned i nt get MaxConnections() const=0;

13.29.8 getMinConnections()

Returns the minimum number of connections in the connection pool. When using
database resident connection pooling, this is the number of persistent connections to
the Connection Broker.

Syntax

unsi gned i nt get M nConnections() const=0;

13.29.9 getOpenConnections()

Returns the number of open connections in the connection pool. When using database
resident connection pooling, this is the number of persistent connections to the
Connection Broker.

Syntax

unsi gned int get OpenConnections() const=0;

13.29.10 getPoolName()

Returns the name of the connection pool.

Syntax

string get Pool Name() const =0;

13.29.11 getProxyConnection()

ORACLE

Returns a proxy connection from a connection pool.

This method works in an environment with enabled database resident connection
pooling.

13-212

ORACLE

Chapter 13
StatelessConnectionPool Class

Syntax

Description

Connection *get ProxyConnecti on(
const string &userNarme,
string roles[],
unsi gned int nunRol es,
const string& tag="",
Connect i on: : ProxyType

proxyType=Connect i on: : PROXY_DEFAULT) =0;

Connect i on* get ProxyConnecti on(
const UString &userNane,
UString roles[],
unsi gned int nunRol es,
const UString &t ag,
Connecti on: : ProxyType
proxyType = Connecti on:: PROXY_DEFAULT);

Connection *get ProxyConnecti on(
const string &userNarme,
const string &connectiond ass,
const Connection::Purity &purity)=0;

Connection *get ProxyConnecti on(
const UString &userNane,
const UString &connectiond ass,
const Connection::Purity &purity)=0;

Connection *get ProxyConnecti on(
const string &userNarme,
string roles[],
unsi gned int nunRol es,
const string &connectiond ass,
const Connection::Purity &purity)=0;

Connect i on* get ProxyConnecti on(
const UString &userNane,
UString roles[],
unsi gned int nunRol es,
const UString &connectiond ass,
const Connection::Purity &purity)=0;

Connection *get ProxyConnecti on(
const string &userNarme,
const string& tag="",
Connection: : ProxyType

proxyType=Connect i on: : PROXY_DEFAULT) =0;

Connect i on* get ProxyConnecti on(
const UString &userNane,
const UString &t ag,
Connect i on: : ProxyType
proxyType = Connecti on:: PROXY_DEFAULT)

Get a proxy connection with
role specifications from a
connection pool; support for
roles and stri ng support.

Get a proxy connection with
role specifications from a
connection pool; support for
roles and USt ri ng support.

Get a proxy connection from a
database resident connection
pool; string support.

Get a proxy connection from a
database resident connection
pool; USt ri ng support.

Get a proxy connection with
role specifications from a
connection pool; support for
roles and database resident
connection pooling; string
support.

Get a proxy connection with
role specifications from a
connection pool; support for
roles and database resident
connection pooling; UStri ng
support.

Get a proxy connection
without role specifications
from a connection pool;
string support.

Get a proxy connection
without role specifications
from a connection pool;
USt ri ng support.

13-213

Chapter 13
StatelessConnectionPool Class

Parameter Description

user Nane The user name.

rol es The roles to activate on the database server.

nunRol es The number of roles to activate on the database server.

tag The user defined tag associated with the connection. During the
execution of this call, the pool is first searched based on the tag
provided. If a connection with the specified tag exists it is returned;
otherwise, a new connection is created and returned.

or oxy Type The type of proxy authentication to perform; Pr oxyType is defined in

Table 13-11.

. The class of connection used by database resident connection pool.
connectiond ass y P

urit The purity of connection used by database resident connection
purtty pool; either SELF or NEW

13.29.12 getStmtCacheSize()

Retrieves the size of the statement cache.

Syntax

unsigned int getStntCacheSi ze() const=0;

13.29.13 getTimeOut()

Returns the timeout period of a connection in the connection pool.

Syntax

unsigned int getTimeQut() const=0;

13.29.14 releaseConnection()

Releases the connection back to the pool with an optional tag.

This method works in an environment with enabled database resident connection
pooling.

Syntax Description

voi d rel easeConnecti on(Support for stri ng tag.

Connection *connection,
const string& tag="");

ORACLE 13-214

Chapter 13
StatelessConnectionPool Class

Syntax Description

voi d rel easeConnecti on(Support for UStri ng tag.

Connection *connection,
const UString &t ag);

Parameter Description
connect i on The connection to be released.
tag The user defined tag associated with the connection. The default of

this parameter is " ", which untags the connection.

13.29.15 setBusyOption()

Specifies the behavior of the stateless connection pool when all the connections in the
pool are busy, and when the number of connections have reached maximum.

Syntax

voi d set BusyQpti on(
BusyOption busyOpti on) =0;

Parameter Description

Valid values are defined in BusyQpt i on in Table 13-41.

busyQOption

13.29.16 setPoolSize()

Sets the maximum, minimum, and incremental number of pooled connections for the
connection pool.

Syntax

voi d set Pool Si ze(
unsi gned i nt maxConn=1,
unsi gned i nt m nConn=0,
unsi gned int incrConn=1)=0;

Parameter Description
The maximum number of connections in the connection pool.
maxConn P
i nConn The minimum number of connections, in homogeneous pools only.
i ner Conn The incremental number of connections, in homogeneous pools only.

ORACLE 13-215

Chapter 13
StatelessConnectionPool Class

13.29.17 setTimeOut()

Sets the time out period of a connection in the connection pool. OCCI terminates any
connections related to this connection pool that have been idle for longer than the
timeout period specified.

If this attribute is not set, the least recently used connection is timed out when pool
space is required. Oracle only checks for timed out connections when it releases a
connection back to the pool.

Syntax

voi d set Ti meQut (
unsi gned i nt connTi meQut =0) =0;

Parameter Description

connTi meQut The time out period, given in seconds.

13.29.18 setStmtCacheSize()

Enables or disables statement caching. A nonzero value enables statement caching,
with a cache of specified size. A zero value disables caching.

If the user changes the cache size of individual connections and subsequently returns
the connection back to the pool with a tag, the cache size does not revert to the one
set for the pool. If the connection is untagged, the cache size is reset to equal the
cache size specified for the pool.

Syntax

voi d set Stnt CacheSi ze(
unsigned int cacheSi ze) =0;

Parameter Description

cacheSi ze The size of the statement cache

13.29.19 terminateConnection()

Closes the connection and removes it from the pool.

This method works in an environment with enabled database resident connection
pooling.

Syntax

voi d terninateConnection(
Connection *connection)=0;

ORACLE 13-216

Chapter 13
Statement Class

Parameter Description

connect i on The connection to be terminated

13.30 Statement Class

A Statement object is used for executing SQL statements. The statement may be a
guery returning result set, or a non-query statement returning an update count. Non-
qguery SQL can be insert, update, or delete statements. Non-query SQL statements
can also be DML statements (such as create, grant, and so on) or stored procedure
calls.

A query, insert / update / delete, or stored procedure call statements may have | N bind
parameters, while a stored procedure call statement may have either OUT bind
parameters or bind parameters that are both | N and OUT, referred to as | NOUT
parameters.

The St atement class methods are divided into three categories:

e Statenent methods applicable to all statements
* Methods applicable to prepared statements with | N bind parameters

* Methods applicable to callable statements with QUT or | N OUT bind parameters.

Table 13-43 Enumerated Values used by the Statement Class

|
Attribute Options

» NEEDS_STREAM DATA indicates that output St r eans must be written for the
streamed | N bind parameters. If there are multiple streamed parameters,
call the getCurrentStreamParam() method to find out the bind parameter
that needs the stream. If the statement is executed iteratively, call
getCurrentlteration() to find the iteration for the stream that must to be
written.

* PREPARED indicates that the St at enent is set to a query.

e RESULT_SET_AVAI LABLE indicates that the getResultSet() method must be
called to get the result set.

e STREAM DATA AVAI LABLE indicates that the input St r eans must be read for
the streamed QUT bind parameters. If there are multiple streamed
parameters, call the getCurrentStreamParam() method to find out the bind
parameter that needs the stream. If the statement is executed iteratively,
call getCurrentlteration() to find the iteration for the stream that must be
read.

e UPREPARED indicates that the St at enent object is not set to a query.

e UPDATE_COUNT_AVAI LABLE indicates that the getUb8RowCount() method
must be called to find out the update count.

Stat us

Table 13-44 Statement Methods

|
Method Description

addlteration() Adds an iteration for execution.

ORACLE 13-217

ORACLE

Chapter 13
Statement Class

Table 13-44 (Cont.) Statement Methods
|

Method

Description

closeResultSet()

closeStream()
disableCaching()
execute()

executeArrayUpdate()

executeQuery()
executeUpdate()
getAutoCommit()
getBatchErrorMode()
getBDouble()

getBfile()
getBFloat()
getBlob()
getBytes()

getCharSet()

getCharSetUString()

getClob()

getConnection()

getCurrentlteration()

getCurrentStreamliteration()

getCurrentStreamParam()

getCursor()

getDatabaseNCHARParam()
getDate()
getDMLRowCounts()

getDouble()
getBFloat()
getFloat()

Immediately releases a result set's database and OCCI
resources instead of waiting for automatic release.

Closes the stream specified by the parameter st r eam
Disables statement caching.
Runs the SQL statement.

Runs insert, update, and delete statements that use only
the set Dat aBuf f er () or stream interface for bind
parameters.

Runs a SQL statement that returns a single Resul t Set .
Runs a SQL statement that does not return a Resul t Set .
Returns the current auto-commit state.

Returns the state of the batch error mode.

Returns the value of an IEEE754 DOUBLE as a BDoubl e
object.

Returns the value of a BFI LE as a Bf i | e object.
Returns the value of a | EEE754 FLOAT as a BFl oat object.
Returns the value of a BLOB as a Bl ob object.

Returns the value of a SQL Bl NARY or VARBI NARY
parameter as Byt es.

Returns the characterset that is in effect for the specified
parameter, as a stri ng.

Returns the characterset that is in effect for the specified
parameter, as a USt ri ng.

Returns the value of a CLOB as a O ob object.

Returns the connection from which the St at enent object
was instantiated.

Returns the iteration number of the current iteration that is
being processed.

Returns the current iteration for which stream data is to be
read or written.

Returns the parameter index of the current output Stream
that must be read or written.

Returns the REF CURSCR value of an OUT parameter as a
Resul t Set .

Returns whether data is in NCHAR character set.
Returns the value of a parameter as a Dat e object

Returns the row counts affected by each iteration of the
current DML statement when it executes with multiple
iterations.

Returns the value of a parameter as a C++ double.
Returns the value of a parameter as an IEEE754 float.

Returns the value of a parameter as a C++ float.

13-218

ORACLE

Method

Chapter 13
Statement Class

Table 13-44 (Cont.) Statement Methods
|

Description

getint()
getintervalDS()
getintervalYM()
getMaxlIterations()
getMaxParamSize()
getNumber()
getObject()
getOClIStatement()

getRef()
getResultSet()
getRowCountsOption()
getRowid()

getSQL()
getSQLUString()

getStream()
getString()
getTimestamp()
getUb8RowCount()
getUInt()

getUpdateCount()
getUstring()
getVector()
getVectorOfRefs()

isNull()
isTruncated()

preTruncationLength()

registerOutParam()
setAutoCommit()
setBatchErrorMode()
setBDouble()

setBfile()

setBFloat()
setBinaryStreamMode()

Returns the value of a parameter as a C++ int.

Returns the value of a parameter as a | nt er val DS object.
Returns the value of a parameter as a | nt er val YMobject.
Returns the current limit on maximum number of iterations.
Returns the current max parameter size limit.

Returns the value of a parameter as a Nunber object.
Returns the value of a parameter as a PQbj ect .

Returns the OCI statement handle associated with the
St at ement .

Returns the value of a REF parameter as Ref Any
Returns the current result as a Resul t Set .
Determines if the DML row counts option is enabled.
Returns the row id parameter value as a Byt es object.

Returns the current SQL string associated with the
St at ement object.

Returns the current SQL string associated with the
St at enent object; globalization enabled.

Returns the value of the parameter as a stream.

Returns the value of the parameter as a string.

Returns the value of the parameter as a Ti mest anp object.
Returns the number of rows processed.

Returns the value of the parameter as a C++ unsigned
integer.

Returns the number of rows processed.
Returns the value of a USt ri ng.
Returns the specified parameter as a vector.

Returns the column in the current position as a vector of
REFs.

Checks whether the parameter is NULL.
Checks whether the value is truncated.

Returns the actual length of the parameter before
truncation.

Registers the type and max size of the OUT parameter.
Specifies auto commit mode.

Enables or disables the batch error processing mode.
Sets a parameter to an IEEE double value.

Sets a parameter to a Bf i | e value.

Sets a parameter to an IEEE float value.

Specifies that a column is to be returned as a binary
stream.

13-219

ORACLE

Chapter 13
Statement Class

Table 13-44 (Cont.) Statement Methods
|

Method Description
setBlob() Sets a parameter to a Bl ob value.
setBytes() Sets a parameter to a Byt es array.

setCharacterStreamMode()

setCharSet()
setCharSetUString()
setClob()

setDate()
setDatabaseNCHARParam()

setDataBuffer()

setDataBufferArray()

setDouble()
setErrorOnNull()
setErrorOnTruncate()
setFloat()

setint()
setintervalDS()
setintervalYM()

setMaxlterations()

setMaxParamSize()

setNull()

setNumber()

setObject()
setPrefetchMemorySize()

setPrefetchRowCount()

setRef()

setRowCountsOption()

setRowid()
setSQL()
setSQLUString()

setString()

setTimestamp()

Specifies that a column is to be returned as a character
stream.

Specifies the characterset as a string.
Specifies the character set as a USt ri ng.
Sets a parameter to a C ob value.

Sets a parameter to a Dat e value.

Sets to true if the data is to be in the NCHAR character set
of the database; set to false to restore the default.

Specifies a data buffer where data would be available for
reading or writing.

Specifies an array of data buffers where data would be
available for reading or writing.

Sets a parameter to a C++ double value.

Enables Or Disables exceptions for reading of NULL values.
Enables Or Disables exception when truncation occurs.
Sets a parameter to a C++ float value.

Sets a parameter to a C++ int value.

Sets a parameter to a | nt er val DS value.

Sets a parameter to a | nt er val YMvalue.

Sets the maximum number of invocations that area made
for the DML statement.

Sets the maximum amount of data that can sent or
returned from the parameter.

Sets a parameter to SQL NULL.
Sets a parameter to a Nunber value.
Sets the value of a parameter using an object.

Sets the amount of memory that is used internally by OCCI
to store data fetched during each round trip to the server.

Sets the number of rows that are fetched internally by
OCCI during each round trip to the server.

Sets the value of a parameter to a reference.

Set f | ag to TRUE to enable return of DML row counts per
iteration when invoking getDMLRowCounts().

Sets a row id bytes array for a bind position.
Associates new SQL string with St at enment object.

Associates new SQL string with St at ement object;
globalization enabled.

Sets a parameter for a specified index.

Sets a parameter to a Ti mest anp value.

13-220

Chapter 13
Statement Class

Table 13-44 (Cont.) Statement Methods
|

Method Description

setUInt() Sets a parameter to a C++ unsigned int value.

setUString() Sets a parameter for a specified index; globalization
enabled.

setVector() Sets a parameter to a vector of unsigned int.

setVectorOfRefs() Sets a parameter to a vector; is necessary when the type

is a collection of REFs.

status() Returns the current status of the statement. This is useful
when there is streamed data to be written.

13.30.1 addlteration()

After specifying set parameters, an iteration is added for execution.

Syntax

void addlteration();

13.30.2 closeResultSet()

Immediately releases the specified resul t Set's database and OCCI resources when
the result set is not needed.
Syntax

voi d cl oseResul t Set (
Resul t Set *resul t Set);

Parameter Description

The result set to be closed; may be a result of getResultSet() ,
executeQuery() , or getCursor() calls on the current statement, or by a
getCursor() call of another result set on the same statement.

resul t Set

13.30.3 closeStream()

Closes the stream specified by the parameter stream

Syntax

voi d cl oseSt rean
Stream *strean;

Parameter Description

stream The stream to be closed.

ORACLE 13-221

Chapter 13
Statement Class

13.30.4 disableCaching()

Disables statement caching. Used if a user wants to destroy a statement instead of
caching it. Effective only if statement caching is enabled.

Syntax
voi d di sabl eCaching();

13.30.5 execute()

Executes an SQL statement that may return either a result set or an update count. The
statement may have read-able streams which may have to be written, in which case
the results of the execution may not be readily available. The returned value St at us is
defined in Table 13-43.

If output streams are used for QUT bind variables, they must be completely read in
order. The getCurrentStreamParam() method would indicate which stream must be
read. Similarly, getCurrentlteration() would indicate the iteration for which data is
available.

Syntax Description

Status execut e(Executes the SQL Statement.

const string &sqgl="");

Status execut e(Executes the SQL Statement; globalization enabled.

const UString &sql);

Parameter Description

The SQL statement to be executed. This can be NULL if the
executeArrayUpdate() method was used to associate the sql with the
statement.

sql

13.30.6 executeArrayUpdate()

ORACLE

Executes insert/update/delete statements which use only the setDataBuffer() or
stream interface for bind parameters. The bind parameters must be arrays of size
arraylLengt h parameter. The statement may have writable streams which may have to
be written. The returned value St at us is defined in Table 13-43.

If output streams are used for OUT bind variables, they must be completely read in
order. The getCurrentStreamParam() method would indicate which stream must be
read. Similarly, getCurrentlteration() would indicate the iteration for which data is
available.

Note that you cannot perform array executes for queries or callable statements.

Syntax

Status execut eArrayUpdat e(
unsigned int arraylLength);

13-222

Chapter 13
Statement Class

Parameter

Description

arraylLength

The number of elements provided in each buffer of bind variables.

13.30.7 executeQuery()

Runs a SQL statement that returns a Resul t Set . Should not be called for a statement
which is not a query, has streamed parameters. Returns a Resul t Set that contains the
data produced by the query.

Syntax

Description

Resul t Set* execut eQuer y(

Executes the SQL Statement that returns a Resul t Set .

const string &sql="");

Resul t Set* execut eQuer y(
const UString &sql);

Executes the SQL Statement that returns a Resul t Set ;
globalization enabled.

Parameter

Description

sql

The SQL statement to be executed. This can be NULL if the
executeArrayUpdate() method was used to associate the sql with
the statement.

13.30.8 executeUpdate()

Executes a non-query statement such as a SQL | NSERT, UPDATE, DELETE statement, a
DDL statement such as CREATE/ALTER and so on, or a stored procedure call. Returns

ORACLE

either the row count for |
nothing.

NSERT, UPDATE or DELETE or 0 for SQL statements that return

If the number of rows processed as a result of this call exceeds UB4AMAXVAL, it may throw
an exception. In such scenarios, use execute() instead, followed by
getUb8RowCount() to obtain the number of rows processed.

Syntax

Description

unsi gned i nt execut eUpdat e(
const string &sql="");

unsi gned i nt execut eUpdat e(

const UString &sql);

Executes a non-query statement.

Executes a non-query statement; globalization
enabled.

Parameter

Description

sql

The SQL statement to be executed. This can be NULL if the
executeArrayUpdate() method was used to associate the sql with
the statement.

13-223

Chapter 13
Statement Class

13.30.9 getAutoCommit()

Returns the current auto-commit state.

Syntax

bool getAutoConmit() const;

13.30.10 getBatchErrorMode()

Returns the state of the batch error mode; TRUE if the batch error mode is enabled,
FALSE otherwise.

Syntax

bool getBat chErrorMde() const;

13.30.11 getBDouble()

Returns the value of an IEEE754 DOUBLE column, which has been defined as an oUT
bind. If the value is SQL NULL, the result is 0.
Syntax

BDoubl e get BDoubl e(
unsi gned int paranm ndex) = 0;

Parameter Description

par am ndex Parameter index; first parameter is 1, second is 2, and so on.

13.30.12 getBfile()

Returns the value of a BFI LE parameter as a Bf i | e object.

Syntax

Bfile getBfile(
unsi gned i nt param ndex);

Parameter Description

par am ndex Parameter index; first parameter is 1, second is 2, and so on.

13.30.13 getBFloat()

Gets the value of an IEEE754 FLOAT column, which has been defined as an OUT bind. If
the value is SQL NULL, the result is 0.

ORACLE 13-224

Chapter 13
Statement Class

Syntax

BFl oat get BFl oat (
unsi gned i nt paran ndex) = 0;

Parameter Description

par am ndex Parameter index; first parameter is 1, second is 2, and so on.

13.30.14 getBlob()

Returns the value of a BLOB parameter as a Bl ob.

Syntax

Bl ob get Bl ob(
unsi gned int param ndex);

Parameter Description

par am ndex Parameter index; first parameter is 1, second is 2, and so on.

13.30.15 getBytes()

Returns the value of n SQL BI NARY or VARBI NARY parameter as Byt es; if the value is SQL
NULL, the result is NULL.

Syntax

Byt es get Byt es(
unsi gned i nt param ndex);

Parameter Description

par am ndex Parameter index; first parameter is 1, second is 2, and so on.

13.30.16 getCharSet()

Returns the characterset that is in effect for the specified parameter, as a stri ng.

Syntax

string get Char Set (
unsi gned int param ndex) const;

Parameter Description

par am ndex Parameter index; first parameter is 1, second is 2, and so on.

ORACLE 13-225

Chapter 13
Statement Class

13.30.17 getCharSetUString()

Returns the character set that is in effect for the specified parameter, as a UStri ng.

Syntax

UString get Char Set UStri ng(
unsi gned int param ndex) const;

Parameter Description

par am ndex Parameter index; first parameter is 1, second is 2, and so on.

13.30.18 getClob()

Get the value of a CLOB parameter as a C ob. Returns the parameter value.

Syntax

Cl ob get d ob(
unsi gned int param ndex);

Parameter Description

par ani ndex Parameter index; first parameter is 1, second is 2, and so on.

13.30.19 getConnection()

Returns the connection from which the St at enent object was instantiated.

Syntax

Connection* get Connection() const;

13.30.20 getCurrentlteration()

If the prepared statement has any output St reans, this method returns the current
iteration of the statement that is being processed by OCCI. If this method is called
after all the invocations in the set of iterations has been processed, it returns 0.
Returns the iteration number of the current iteration that is being processed. The first
iteration is numbered 1 and so on. If the statement has finished execution, a 0 is
returned.

Syntax

unsigned int getCurrentlteration() const;

13.30.21 getCurrentStreamiteration()

Returns the current parameter stream for which data is available.

ORACLE 13-226

Chapter 13
Statement Class

Syntax

unsigned int getCurrentStreamteration() const;

13.30.22 getCurrentStreamParam()

Returns the parameter index of the current output St reamparameter that must be
written. If the prepared statement has any output St r eamparameters, this method
returns the parameter index of the current output St reamthat must be written. If no
output St reammust be written, or there are no output St reamparameters in the
prepared statement, this method returns 0.

Syntax

unsigned int getCurrent StreanParan() const;

13.30.23 getCursor()

Gets the REF CURSCR value of an QUT parameter as a Resul t Set . Data can be fetched
from this result set. The QUT parameter must be registered as CURSCR with the
registerOutParam() method. Returns a Resul t Set for the QUT parameter value.

Note that if there are multiple REF CURSORs being returned due to a batched call, data
from each cursor must be completely fetched before retrieving the next REF CURSCR and
starting fetch on it.

Syntax

Resul t Set * get Cursor(
unsi gned i nt param ndex);

Parameter Description

par am ndex Parameter index; first parameter is 1, second is 2, and so on.

13.30.24 getDatabaseNCHARParam()

Returns whether data is in NCHAR character set or not.

Syntax

bool get Dat abaseNCHARPar an(
unsi gned i nt param ndex) const;

Parameter Description

par ant ndex Parameter index; first parameter is 1, second is 2, and so on.

13.30.25 getDate()

Get the value of a SQL DATE parameter as a Dat e object. Returns the parameter value;
if the value is SQL NULL, the result is NULL.

ORACLE 13-227

Chapter 13
Statement Class

Syntax

Date get Dat e(
unsi gned i nt param ndex) const;

Parameter Description

par am ndex Parameter index; first parameter is 1, second is 2, and so on.

13.30.26 getDMLRowCounts()

Returns the row counts affected by each iteration of the current DML statement when
it executes with multiple iterations.

Use this method in conjunction with getRowCountsOption() and
setRowCountsOption().

Syntax
vect or <or aub8> get DMLRowCount s() ;

13.30.27 getDouble()

Get the value of a DOUBLE parameter as a C++ doubl e. Returns the parameter value; if
the value is SQL NULL, the result is O.
Syntax

doubl e get Doubl e(
unsi gned i nt param ndex);

Parameter Description

par am ndex Parameter index; first parameter is 1, second is 2, and so on.

13.30.28 getFloat()

Get the value of a FLOAT parameter as a C++ f| oat . Returns the parameter value; if the
value is SQL NULL, the result is 0.
Syntax

float getFloat(
unsi gned int param ndex);

Parameter Description

par am ndex Parameter index; first parameter is 1, second is 2, and so on.

ORACLE 13-228

Chapter 13
Statement Class

13.30.29 getint()

Get the value of an | NTEGER parameter as a C++ int. Returns the parameter value; if
the value is SQL NULL, the result is 0.

Syntax

unsi gned int getlnt(
unsi gned i nt paran ndex);

Parameter Description

par ani ndex Parameter index; first parameter is 1, second is 2, and so on.

13.30.30 getintervalDS()

Get the value of a parameter as a | nt er val DS object.

Syntax

I nterval DS get | nterval DS(
unsi gned i nt param ndex);

Parameter Description

par am ndex Parameter index; first parameter is 1, second is 2, and so on.

13.30.31 getinterval YM()

Get the value of a parameter as a | nt er val YMobject.

Syntax

Interval YM get | nterval YM
unsi gned int param ndex);

Parameter Description

par am ndex Parameter index; first parameter is 1, second is 2, and so on.

13.30.32 getMaxlterations()

Gets the current limit on maximum number of iterations. Default is 1. Returns the
current maximum number of iterations.

Syntax

unsigned int getMxlterations() const;

ORACLE 13-229

Chapter 13
Statement Class

13.30.33 getMaxParamSize()

The naxPar anfi ze limit (in bytes) is the maximum amount of data sent or returned for
any parameter value; it only applies to character and binary types. If the limit is
exceeded, the excess data is silently discarded. Returns the current max parameter
size limit.

Syntax

unsi gned i nt get MaxPar anSi ze(
unsi gned i nt param ndex) const;

Parameter Description

par ani ndex Parameter index; first parameter is 1, second is 2, and so on.

13.30.34 getNumber()

Gets the value of a NUMERI C parameter as a Number object. Returns the parameter
value; if the value is SQL NULL, the result is NULL.

Syntax

Nunber get Nunber (
unsi gned int param ndex);

Parameter Description

par am ndex Parameter index; first parameter is 1, second is 2, and so on.

13.30.35 getObject()

Gets the value of a parameter as a POvj ect . This method returns an PQoj ect whose
type corresponds to the SQL type that was registered for this parameter using
registerOutParam(). Returns A Pbj ect holding the QUT parameter value.

This method may be used to read database-specific, abstract data types.

Syntax

Phj ect * get Qbj ect (
unsi gned i nt param ndex);

Parameter Description

par am ndex Parameter index; first parameter is 1, second is 2, and so on.

13.30.36 getOClStatement()

Get the OCI statement handle associated with the St at enent .

ORACLE 13-230

Chapter 13
Statement Class

Syntax

OCl Stmt * getOCl Statement () const;

13.30.37 getRef()

Get the value of a REF parameter as Ref Any. Returns the parameter value.

Syntax

Ref Any get Ref (
unsi gned int param ndex);

Parameter Description

par am ndex Parameter index; first parameter is 1, second is 2, and so on.

13.30.38 getResultSet()

Returns the current result as a Resul t Set .

Syntax

Resul t Set * getResultSet();

13.30.39 getRowCountsOption()

Determines if the DML row counts option is enabled.

If TRUE, DML statements can be executed to return the row counts for each iteration
using the method getDMLRowCounts().

Syntax
bool get RowCount sOption();

13.30.40 getRowid()

Get the rowi d parameter value as a Byt es.

Syntax

Byt es get Rowi d(
unsi gned i nt param ndex);

Parameter Description

par am ndex Parameter index; first parameter is 1, second is 2, and so on.

13.30.41 getSQL()

Returns the current SQL string associated with the Statement object.

ORACLE 13-231

Chapter 13
Statement Class

Syntax
string getSQ.() const;

13.30.42 getSQLUString()

Returns the current SQL USt ri ng associated with the Statement object; globalization
enabled.

Syntax
UString get SQLUString() const;

13.30.43 getStream()

Returns the value of the parameter as a stream.

Syntax

Stream * get Stream
unsi gned i nt param ndex);

Parameter Description

par am ndex Parameter index; first parameter is 1, second is 2, and so on.

13.30.44 getString()

Get the value of a CHAR, VARCHAR, or LONGVARCHAR parameter as an string. Returns the
parameter value; if the value is SQL NULL, the result is empty string.
Syntax

string getString(
unsi gned i nt param ndex);

Parameter Description

par am ndex Parameter index; first parameter is 1, second is 2, and so on.

13.30.45 getTimestamp()

Get the value of a SQL TI MESTAWP parameter as a Ti nest anp object. Returns the
parameter value; if the value is SQL NULL, the result is NULL

Syntax

Ti mest anp get Ti mest anp(
unsi gned i nt param ndex);

ORACLE 13-232

Chapter 13
Statement Class

Parameter Description

par am ndex Parameter index; first parameter is 1, second is 2, and so on.

13.30.46 getUb8RowCount()

Returns the number of rows affected by the execution of a DML statement.

This method enables a return of a large number of rows than was possible before
Oracle Database Release 12c.

Syntax

oraub8 get Ub8RowCount ();

13.30.47 getUInt()

Get the value of a BI G NT parameter as a C++ unsigned int. Returns the parameter
value; if the value is SQL NULL, the result is 0.
Syntax

unsi gned int getU nt(
unsi gned i nt param ndex);

Parameter Description

par am ndex Parameter index; first parameter is 1, second is 2, and so on.

13.30.48 getUpdateCount()

Returns the number of rows affected, if DML statement is executed.

Note: This method has been deprecated. Use get Ub8RowCount () instead.

Syntax

unsi gned int get UpdateCount () const;

13.30.49 getUString()

ORACLE

Returns the value as a UString.

This method should be called only if the environment's character set is UTF16, or if
set Char set () method has been called to explicitly retrieve UTF16 data.

Syntax

UString getUString(
unsi gned i nt param ndex);

13-233

Chapter 13
Statement Class

Parameter Description

par am ndex Parameter index; first parameter is 1, second is 2, and so on.

13.30.50 getVector()

Returns the column in the current position as a vector. The column at the position,
specified by index, should be a collection type (varray or nested table). The SQL type
of the elements in the collection should be compatible with the type of the vector.

Syntax Description

Used for vectors of USt ri ng C ass; globalization

voi d get Vector (enabled

Statenent *stnt,
unsi gned int param ndex,
std::vector<UString> &vect);

voi d get Vect or (Used for BDoubl e vectors.

Statenent *stnt,
unsi gned int param ndex,
vect or <BDoubl e> &vect);

voi d get Vect of (Used for vectors of Bfile Class.

Statenent *stnt,
unsi gned int param ndex,
vect or <BFi | e> &vect);

voi d get Vect of (Used for BFl oat vectors.

Statenent *stnt,
unsi gned int param ndex,
vect or <BFl oat > &vect);

voi d get Vect of (Used for vectors of Blob Class.

Statenent *stnt,
unsi gned int param ndex,
vect or <Bl ob> &vect);

voi d get Vect of (Used for vectors of Bytes Class.

Statenent *stnt,
unsi gned int param ndex,
vect or <Byt es> &vect);

voi d get Vect of (Used for d ob vectors.

Statenent *stnt,
unsi gned int param ndex,
vect or <Cl ob> &vect);

voi d get Vect of (Used for vectors of Date Class.

Statenent *stnt,
unsi gned int param ndex,
vect or <Dat e> &vect);

ORACLE 13-234

Chapter 13
Statement Class

Syntax

Description

ORACLE

voi d get Vector(
Statement *stnt,
unsi gned int param ndex,
vect or <doubl e> &vect);

voi d get Vector (
Statement *stnt,
unsi gned int param ndex,
vector<fl oat> &vect);

voi d get Vector (
Statement *stnt,
unsi gned int param ndex,
vector<int> &vect);

voi d get Vector(
Statement *stnt,
unsi gned int param ndex,
vect or<l nterval DS> &vect);

voi d get Vector(
Statement *stnt,
unsi gned int param ndex,
vect or<l nterval YM> &vect);

voi d get Vector(
Statement *stnt,
unsi gned int param ndex,
vect or <Nunber > &vect);

voi d get Vector(
Statement *stnt,
unsi gned int param ndex,
vect or <Ref Any> &vect);

voi d get Vector(
Statement *stnt,
unsi gned int param ndex,
vector<string> &ect);

voi d get Vector (
Statement *stnt,
unsi gned int param ndex,
vector<T *> &vect);

voi d get Vector (
Statement *stnt,
unsi gned int param ndex,
vect or<T> &vect);

Used for vectors of doubl e C ass.

Used for vectors of f | oat C ass.

Used for vectors of i nt d ass.

Used for vectors of IntervalDS Class.

Used for vectors of IntervalYM Class.

Used for vectors of Number Class.

Used for vectors of RefAny Class.

Used for vectors of string C ass.

Intended for use on platforms where partial

ordering of function templates is supported.

Intended for use on platforms where partial
ordering of function templates is not supported,
such as Windows NT and z/OS. For OUT binds.

13-235

Chapter 13
Statement Class

Syntax Description

voi d get Vect or (Used for vectors of Timestamp Class.

Statenment *stnt,
unsi gned int param ndex,
vect or <Ti nest anp> &vect);

Available only on platforms where partial

i Vi - . .
voi d get Vector (ordering of function templates is supported.

Statenent *stnt,
unsi gned int param ndex,
vector<u <Ref<T> > &vect);

voi d get Vect or (Used for on vectors of unsi gned int C ass.

Statement *stnt,
unsi gned int param ndex,
vect or <unsi gned i nt> &vect);

Parameter Description

stnt The statement.

par am ndex Parameter index.

vect Reference to the vector (QUT parameter) into which the values should be

retrieved.

13.30.51 getVectorOfRefs()

This method returns the column in the current position as a vector of REFs. The column
should be a collection type (varray or nested table) of REFs. Used with QUT binds.

Syntax

voi d get Vect or Of Ref s(
Statenment *stnt,
unsi gned int col I ndex,
vector< Ref<T> > &vect);

Parameter Description

stnt The statement object.

col I ndex Column index; first column is 1, second is 2, and so on.
vect The reference to the vector of REFs (QUT parameter). It is

recommended to use get Vect or Of Ref s() instead of specialized
get Vect or () function for Ref <T>.

ORACLE 13-236

Chapter 13
Statement Class

13.30.52 isNull()

An QUT parameter may have the value of SQL NULL; i sNul | () reports whether the last
value read has this special value. Note that you must first call getxxx() on a parameter
to read its value and then call i shul | () to see if the value was SQL NULL. Returns TRUE
if the last parameter read was SQL NULL.

Syntax

bool i sNull(
unsi gned int param ndex) const;

Parameter Description

par ani ndex Parameter index; first parameter is 1, second is 2, and so on.

13.30.53 isTruncated()

This method checks whether the value of the parameter is truncated. If the value of the
parameter is truncated, then TRUE is returned; otherwise, FALSE is returned.

Syntax

bool isTruncat ed(
unsi gned int param ndex) const;

Parameter Description

par am ndex Parameter index; first parameter is 1, second is 2, and so on.

13.30.54 preTruncationLength()

Returns the actual length of the parameter before truncation.

Syntax

int preTruncati onLengt h(
unsi gned i nt param ndex) const;

Parameter Description

par am ndex Parameter index; first parameter is 1, second is 2, and so on.

13.30.55 registerOutParam()

This method registers the t ype of each out parameter of a PL/SQL stored procedure.
Before executing a PL/SQL stored procedure, you must explicitly call this method to
register the type of each out parameter. This method should be called for out
parameters only. Use the set xxx() method for infout parameters.

ORACLE 13-237

Chapter 13
Statement Class

* When reading the value of an out parameter, you must use the get xxx() method
that corresponds to the parameter's registered SQL type. For example, use get I nt
or get Number when OCCI | NT or OCCl Nurber is the type specified.

e If a PL/SQL stored procedure has an out parameter of t ype RON D, the type
specified in this method should be 0CCl STRI NG. The value of the out parameter can
then be retrieved by calling the get String() method.

« If a PL/SQL stored procedure has an in/out parameter of type RON D, call the
methods set String() and get String() to set the type and retrieve the value of the

| NOUT parameter.

Syntax

Description

voi d regi sterQut Paran(
unsi gned int param ndex,

Type type,

Registers the t ype of each out
parameter of a PL/SQL stored
procedure.

unsi gned int naxSize=0,
const string &sqltype="");

Vo

d regi sterQut Param

unsi gned int param ndex,
Type type,

unsi gned int maxSize,
const string typName,

Registers the t ype of each out
parameter of a PL/SQL stored
procedure; stri ng support.

const string &schNane);

Vo

d regi sterQut Param

unsi gned int param ndex,
Type type,

unsi gned int maxSize,

Registers the t ype of each out
parameter of a PL/SQL stored
procedure; globalization enabled, or
USt ri ng support.

const UString & ypNarme,
const UString &schName);

Parameter

Description

par am ndex

type

maxSi ze

sql type

t ypNane

schName

Parameter index; first parameter is 1, second is 2, and so on.

SQL type code defined by t ype; only data types corresponding to
OCCI data types such as Dat e, Byt es, and so on.

The maximum size of the retrieved value. For data types of
OCClI BYTES and OCCl STRI NG, maxSi ze should be greater than 0.

The name of the type in the data base (used for types which have
been created with CREATE TYPE).

The name of the type.

The schema name.

ORACLE

13-238

Chapter 13
Statement Class

13.30.56 setAutoCommit()

A Statement can be in auto-commit mode. In this case any statement executed is also
automatically committed. By default, the auto-commit mode is turned-off.

Syntax

voi d set Aut oCommi t (
bool autoCommit);

Parameter Description

aut oConi t TRUE enables auto-commit; FALSE disables auto-commit.

13.30.57 setBatchErrorMode()

Enables or disables the batch error processing mode.

Syntax

virtual void setBatchErrorMde(
bool bat chErrorMde);

Parameter Description

bat chErr or Mbde TRUE enables batch error processing; FALSE disables batch error processing.

13.30.58 setBDouble()

Sets an IEEE754 double as a bind value to a St at enent object at the position specified
by par anl ndex attribute.

Syntax

voi d set BDoubl e(
unsi gned int param ndex,
const BDoubl e &dval);

Parameter Description
par am ndex Parameter index; first parameter is 1, second is 2, and so on.
dval The parameter value.

13.30.59 setBfile()

Sets a parameter to a Bf i | e value.

ORACLE 13-239

Chapter 13
Statement Class

Syntax

voi d setBfile(
unsi gned i nt param ndex,
const Bfile &val);

Parameter Description
par am ndex Parameter index; first parameter is 1, second is 2, and so on.
val The parameter value.

13.30.60 setBFloat()

Sets an IEEE754 float as a bind value to a St at enent object at the position specified by
the par anl ndex attribute.

Syntax

voi d set BFl oat (
unsi gned i nt param ndex,
const BFloat &fval);

Parameter Description
par ani ndex Parameter index; first parameter is 1, second is 2, and so on.
fval The parameter value.

13.30.61 setBinaryStreamMode()

Defines that a column is to be returned as a binary stream.

Syntax Description

voi d set Bi narySt r eamde Sets column returned to be a binary stream.

unsi gned int col I ndex,
unsigned int size);

Sets column returned to be a binary stream; used

voi d set B naryStreamhbde(with PL/SQL I Nor | N OQUT arguments in the bind

unsi gned int col I ndex,

unsi gned int size position.
bool inArg);
Parameter Description
col I ndex Column index; first column is 1, second is 2, and so on.

ORACLE 13-240

Chapter 13
Statement Class

Parameter Description

The amount of data to be read or returned as a binary St ream This is limited
to 32KB (32,768 bytes).

Pass TRUE if the bhind position is a PL/SQL | Nor | N OUT argument

si ze

i nArg

13.30.62 setBlob()

Sets a parameter to a Bl ob value.

Syntax

voi d set Bl ob(
unsi gned i nt param ndex,
const Blob &val);

Parameter Description
par ani ndex Parameter index; first parameter is 1, second is 2, and so on.
val The parameter value.

13.30.63 setBytes()

Sets a parameter to a Byt es array.

Syntax

voi d set Byt es(
unsi gned i nt param ndex,
const Bytes &val);

Parameter Description
par ani ndex Parameter index; first parameter is 1, second is 2, and so on.
val The parameter value.

13.30.64 setCharacterStreamMode()

Defines that a column is to be returned as a character stream.

Syntax Description

voi d set Char act er St r eanhbde Sets column returned to be a character stream.

unsi gned int col I ndex,
unsi gned int size);

ORACLE 13-241

Chapter 13
Statement Class

Syntax Description

Sets column returned to be a character stream; used
with PL/SQL I Nor I N QUT arguments in the bind
position.

voi d set Charact er St reamvbde(
unsi gned int col I ndex,
unsigned int size,
bool inArg);

Parameter Description

col I ndex Column index; first column is 1, second is 2, and so on.

si 78 The amount of data to be read or returned as a character St ream

inArg Pass TRUE if the bind position is a PL/SQL | Nor | N QUT argument

13.30.65 setCharSet()

Overrides the default character set for the specified parameter. Data is assumed to be
in the specified character set and is converted to database character set. For OUT
binds, this specifies the character set to which database characters are converted to.

Syntax

voi d set Char Set (
unsi gned i nt param ndex,
string &char Set);

Parameter Description
par ani ndex Parameter index; first parameter is 1, second is 2, and so on.
char Set Selected character set, as a string.

13.30.66 setCharSetUString()

Overrides the default character set for the specified parameter. Data is assumed to be
in the specified character set and is converted to database character set. For QUT
binds, this specifies the character set to which database characters are converted to.

Syntax

voi d set Char Set UStri ng(
unsi gned i nt param ndex,
const UStringé& charSet);

Parameter Description

par ani ndex Parameter index; first parameter is 1, second is 2, and so on.

ORACLE 13-242

Chapter 13
Statement Class

Parameter Description

char Set Selected character set, as a UStri ng.

13.30.67 setClob()

Sets a parameter to a d ob value.

Syntax

voi d set d ob(
unsi gned i nt param ndex,
const Clob é&val);

Parameter Description
par ani ndex Parameter index; first parameter is 1, second is 2, and so on.
val The parameter value.

13.30.68 setDate()

Sets a parameter to a Dat e value.

Syntax

voi d set Dat e(
unsi gned i nt param ndex,
const Date &val);

Parameter Description
par ani ndex Parameter index; first parameter is 1, second is 2, and so on.
val The parameter value.

13.30.69 setDatabaseNCHARParam()

If the parameter is going to be inserted in a column that contains data in the

database's NCHAR character set, then OCCI must be informed by passing a TRUE value.
A FALSE can be passed to restore the dafault.Returns returns the character set that is in

effect for the specified parameter.

Syntax

voi d set Dat abaseNCHARPar an{
unsi gned i nt param ndex,
bool i SNCHAR);

ORACLE

Chapter 13
Statement Class

Parameter Description

par am ndex Parameter index; first parameter is 1, second is 2, and so on.

TRUE if this parameter contains data in Database's NCHAR character

'S set; FALSE otherwise

13.30.70 setDataBuffer()

Specifies a data buffer where data would be available. Also used for OUT bind
parameters of callable statements.

The buffer parameter is a pointer to a user allocated data buffer. The current length of
data must be specified in the | engt h parameter. The amount of data should not exceed
the si ze parameter. Finally, t ype is the data type of the data.

Note that not all t ypes can be supplied in the buffer. For example, all OCCI allocated
types (such as Byt es, Dat e and so on) cannot be provided by the setDataBuffer()
interface. Similarly, C++ Standard Library strings cannot be provided with the
setDataBuffer() interface either. The type can be any of OCI data types such VARCHAR?,
CSTRI NG, CHARZ and so on.

If setDataBuffer() is used to specify data for iterative or array executes, it should be
called only once in the first iteration only. For subsequent iterations, OCCI would
assume that data is at buffer +(i*si ze) location where i is the iteration number.
Similarly the length of the data would be assumed to be at (1 engt h+i).

For more information on the version of this method that uses 32K | engt h parameter,
see Oracle Database SQL Language Reference.

Syntax Description

Uses ub2 | engt h buffer. This limits VARCHAR2 and NVARCHAR2
length to 4, 000 bytes, and RAWdata types to 2, 000 bytes.

voi d set Dat aBuf f er (
unsi gned int param ndex,
voi d *buffer,
Type type,
sh4 size,
ub2 *length,
sb2 *ind = NULL,
ub2 *rc= NULL);

Uses ub4 | engt h buffer (32K). This increases the length of

voi d set Dat aBuf fer (VARCHAR?, NVARCHAR? and RAWdata types.

unsi gned int param ndex,
voi d *buffer,

Type type,

sh4 size,

ub4 *length,

sh2 *ind = NULL,

ub2 *rc= NULL);

ORACLE 13-244

Chapter 13
Statement Class

Parameter

Description

par am ndex

buf f er

type

si ze

I ength

ind

Parameter index; first parameter is 1, second is 2, and so on.

Pointer to user-allocated buffer. For iterative or array executes, it should
have nuniterations() size bytes in it. For array fetches, it should have
nunRows * size bytes in it. For gather or scatter binds and defines, this
structure stores the address of OCl | Ovec and the number of OCl | OVec
elements that start at that address.

Type of the data that is provided (or retrieved) in the buffer.

Size of the data buffer; for iterative and array executes, it is the size of each
element of the data items. For gather or scatter binds and defines, it is the
size of the OCl | OVecAr ray to which the buf f er points; the mode must be set
to | OVEC.

Pointer to the length of data in the buffer; for iterative and array executes, it
should be an array of length data for each buffer element; the size of the
array should be equal to arrayLengt h() .

Indicator. For iterative and array executes, an indicator for every buffer
element.

Returns code; for iterative and array executes, a return code for every buffer
element.

13.30.71 setDataBufferArray()

Specifies an array of data buffers where data would be available for reading or writing.
Used for I N, QUT, and | N OQUT bind parameters for stored procedures which read/write

array parameters.

» A stored procedure can have an array of values for I N, | N OUT, or QUT parameters.
In this case, the parameter must be specified using the setDataBufferArray()
method. The array is specified just as for the setDataBuffer() method for iterative
or array executes, but the number of elements in the array is determined by
*arraylLengt h parameter.

* For OuT and | N OUT parameters, the maximum number of elements in the array is
specified (and returned) by the arraySi ze parameter. The client must ensure that it
has allocated size *arraySi ze bytes for the buf f er. For iterative prepared
statements, the number of elements in the array is determined by the number of
iterations, and for array executes the number of elements in the array is
determined by the arrayLengt h parameter of the executeArrayUpdate() method.
However, for array parameters of stored procedures, the number of elements in
the array must be specified in the arrayLengt h parameter of the
setDataBufferArray() method because each parameter may have a different size

array.

e This is different from prepared statements where for iterative and array executes,
the number of elements in the array for each parameter is the same and is
determined by the number of iterations of the statement, but a callable statement
is executed only once, and each of its parameter can be a varying length array
with possibly a different length.

* For more information on the version of this method that uses 32K el enent Lengt h
parameter, see Oracle Database SQL Language Reference.

ORACLE

13-245

Chapter 13
Statement Class

Syntax

Description

voi d set Dat aBuf fer Array(
unsi gned int param ndex,
void *buffer,
Type type,
ub4 arraySi ze,
ub4 *arraylLength,
sh4 el enent Si ze,
ub2 *el ement Lengt h,
sh2 *ind = NULL,
ub2 *rc = NULL);

voi d set Dat aBuf ferArray(
unsi gned i nt param ndex,
void *buffer,
Type type,
ub4 arraySi ze,
ub4 *arraylLength,
sh4 el enent Si ze,
ub4 *el ement Lengt h,
sb2 *ind = NULL,
ub2 *rc = NULL);

Uses ub2 el ement Lengt h buffer. This limits VARCHAR2 and
NVARCHAR2 length to 4, 000 bytes, and RAWdata types to
2,000 bytes.

Uses ub4 el ement Lengt h buffer (32K). This increases the
length of VARCHAR2, NVARCHAR2 and RAWdata types.

Parameter Description

par am ndex Parameter index; first parameter is 1, second is 2, and so on.
Pointer to user-allocated buffer. It should have si ze* arraySi ze bytes

buf f er L . . ;
in it. For gather or scatter binds and defines, this structure stores the
address of OCl | Ovec and the number of OCl | Ovec elements that start at
that address.

type Type of the data that is provided (or retrieved) in the buffer.

arraySi ze Maximum number of elements in the array.

arrayLengt h Pointer to number of current elements in the array.

el enent Si ze Size of the data buffer for each element. For iterative and array

executes, it is the size of each element of the data items. When using
gather or scatter binds and defines, it is the size of the OCl | OVecArr ay;
the mode must be set to | OVEC.

el enent Lemgt h

ind

rcs

Pointer to an array of lengths. el enent Lengt h[i] has the current length
of the i th element of the array.

Pointer to an array of indicators. An indicator for every buffer element.

Pointer to an array of return codes.

ORACLE

13-246

Chapter 13
Statement Class

13.30.72 setDouble()

Sets a parameter to a C++ double value.

Syntax

voi d set Doubl e(
unsi gned i nt param ndex,

doubl e val);
Parameter Description
par am ndex Parameter index; first parameter is 1, second is 2, and so on.
val The parameter value.

13.30.73 setErrorOnNull()

Enables/disables exceptions for reading of NULL values on paramindex parameter of
the statement. If exceptions are enabled, calling a get xxx() on paranmi ndex parameter
would result in an SQLExcept i on if the parameter value is NULL. This call can also be
used to disable exceptions.

Syntax

voi d setErrorOnNul | (
unsi gned int param ndex,
bool causeException);

Parameter Description

par am ndex Parameter index; first parameter is 1, second is 2, and so on.

causeExcept i on Enable exceptions if TRUE. Disable if FALSE.

13.30.74 setErrorOnTruncate()

This method enables/disables exceptions when truncation occurs.

Syntax

voi d set ErrorOnTruncat e(
unsi gned int param ndex,
bool causeException);

Parameter Description

par am ndex Parameter index; first parameter is 1, second is 2, and so on.

causeExcept i on Enable exceptions if TRUE. Disable if FALSE.

ORACLE 13-247

Chapter 13
Statement Class

13.30.75 setFloat()

Sets a parameter to a C++ float value.

Syntax

voi d setFl oat (
unsi gned i nt param ndex,

float val);
Parameter Description
par am ndex Parameter index; first parameter is 1, second is 2, and so on.
val The parameter value.

13.30.76 setint()

Sets a parameter to a C++ int value.

Syntax
voi d setlnt(
unsi gned i nt param ndex,
int val);
Parameter Description
par ani ndex Parameter index; first parameter is 1, second is 2, and so on.
val The parameter value.

13.30.77 setintervalDS()

Sets a parameter to a I nt erval DS value.

Syntax

voi d set | nterval DS(
unsi gned int param ndex,
const Interval DS &val);

Parameter Description
par am ndex Parameter index; first parameter is 1, second is 2, and so on.
val The parameter value.

ORACLE 13-248

Chapter 13
Statement Class

13.30.78 setintervalYM()

Sets a parameter to a I nterval value.

Syntax

voi d setlnterval YM
unsi gned i nt param ndex,
const Interval YM &val);

Parameter Description

par ant ndex Parameter index; first parameter is 1, second is 2, and so on.

val The parameter value.

13.30.79 setMaxIterations()

Sets the maximum number of invocations that are made for the DML statement. This
must be called before any parameters are set on the prepared statement. The larger
the iterations, the larger the numbers of parameters sent to the server in one round
trip. However, a large number causes more memory to be reserved for all the
parameters. Note that this is just the maximum limit. Actual number of iterations
depends on the number of calls to addlteration().

Syntax

voi d set Maxlterations(
unsigned int maxlterations);

Parameter Description

mex! t er ati ons Maximum number of iterations allowed on this statement.

13.30.80 setMaxParamSize()

ORACLE

This method sets the maximum amount of data to be sent or received for the specified
parameter. It only applies to character and binary data. If the maximum amount is
exceeded, the excess data is discarded. This method can be very useful when working
with a LONG column. It can be used to truncate the LONG column by reading or writing it
into a string or Byt es data type.

If the getSQL() or setBytes() method has been called to bind a value to an | NOUT
parameter of a PL/SQL procedure, and the size of the QUT value is expected to be
greater than the size of the | Nvalue, then setMaxParamSize() should be called.

Syntax

voi d set MaxPar anti ze(
unsi gned int param ndex,
unsigned int naxSize);

13-249

Chapter 13
Statement Class

Parameter Description

par am ndex

maxSi ze

Parameter index; first parameter is 1, second is 2, and so on.

The new maximum parameter size limit; must be >0.

13.30.81 setNull()

Sets a parameter to SQL NULL. Note that you must specify the parameter's SQL type.

Syntax

Description

void set Nul | (
unsi gned int param ndex,

Type type);

void set Nul | (
unsi gned int param ndex,
Type type,
const string & ypeName,
const string &schenmaNanme = "")

void set Nul | (
unsi gned int param ndex,
Type type,
UString &t ypeNane,
UString &schemaNane);

Sets the value of a parameter to NULL
using an object.

Sets the value of a parameter to NULL
for object and collection types,

OCCl POBJECT and OCCl VECTOR. Uses
the appropriate schema and type
name of the object or collection type.
Support for st ri ng.

Sets the value of a parameter to NULL
for object and collection types,

OCCl POBJECT and OCCl VECTOR. Uses
the appropriate schema and type
name of the object or collection type.
Support for USt ri ng.

Parameter Description
par am ndex

type SQL type.

t ypeNanme

schemaNanme

Parameter index; first parameter is 1, second is 2, and so on.

Type name of the object or collection.

Name of the schema where the object or collection is defined.

13.30.82 setNumber()

ORACLE

Sets a parameter to a Nunber value.

Syntax

voi d set Nunber (
unsi gned i nt param ndex,
const Nunmber é&val);

13-250

Chapter 13
Statement Class

Parameter Description
par am ndex Parameter index; first parameter is 1, second is 2, and so on.
val The parameter value.

13.30.83 setObject()

Sets the value of a parameter using an object; use the C++.lang equivalent objects for
integral values. The OCCI specification specifies a standard mapping from C++ bj ect
types to SQL types. The given parameter C++ object is converted to the
corresponding SQL type before being sent to the database.

Syntax

voi d set bj ect (
unsi gned i nt param ndex,

PQbj ect* val);
Parameter Description
par am ndex Parameter index; first parameter is 1, second is 2, and so on.
val The object containing the input parameter value.
sql typ The SQL type name of the object to be set.

13.30.84 setPrefetchMemorySize()

Sets the amount of memory that is used internally by OCCI to store data fetched
during each round trip to the server. A value of 0 means that the amount of data
fetched during the round trip is constrained by the Fet chRowCount parameter. If both
parameters are nonzero, the smaller of the two is used.

Syntax

voi d set PrefetchMenorySi ze(
unsigned int bytes);

Parameter Description

byt es Number of bytes used for storing data fetched during each server round trip.

13.30.85 setPrefetchRowCount()

Sets the number of rows that are fetched internally by OCCI during each round trip to
the server. A value of 0 means that the amount of data fetched during the round trip is
constrained by the Fet chMenor ySi ze parameter. If both parameters are nonzero, the

ORACLE 13-251

Chapter 13
Statement Class

smaller of the two is used. If both of these parameters are zero, row count internally
defaults to 1 row and that is the value returned from the get Fet chRowCount () method.

Syntax

voi d set Pref et chRowCount (
unsi gned int rowCount);

Parameter Description

r owCount

Number of rows to fetch for each round trip to the server.

13.30.86 setRef()

Sets the value of a parameter to a reference. A Ref <T> instance is implicitly converted

to a Ref Any object during this call.

Syntax

Description

voi d set Ref (
unsi gned int param ndex,
const Ref Any &ref Any);

voi d set Ref (
unsi gned int param ndex,
const Ref Any &ref Any,
const string & ypNane,
const string &chName = "");

voi d set Ref (
unsi gned int param ndex,
const Ref Any &ref Any,
const UString &t ypName,
const UString &schNane);

Sets the value of a parameter to a reference.

Sets the value of a parameter to a reference.
If the St at enent represents a callable PL/SQL
method, pass the schema name and type
name of the object represented by the Ref .
Support for string.

Sets the value of a parameter to a reference.
If the St at enent represents a callable PL/SQL
method, pass the schema name and type
name of the object represented by the Ref .
Support for USt ri ng.

Parameter Description

par an ndex Parameter index; first parameter is 1, second is 2, and so on.
r ef Any The reference.

t ypNare The type of the object [optional].

schNane The schema where the object type is defined [optional].

13.30.87 setRowCountsOption()

Set fl ag to TRUE to enable return of DML row counts per iteration when invoking

getDMLRowCounts().

ORACLE

13-252

Chapter 13
Statement Class

This option should be set before the statement executes. By default, the DML row
counts per iteration are not returned.

Syntax
voi d set RowCount sOpti on(
bool flag);
Parameter Description
1 ag TRUE to return DML row counts, FALSE otherwise

13.30.88 setRowid()

Sets a Rowi d bytes array for a bind position.

Syntax

voi d set Rowi d(
unsi gned i nt param ndex,
const Bytes &val);

Parameter Description
par ani ndex Parameter index; first parameter is 1, second is 2, and so on.
val The parameter value.

13.30.89 setSQL()

A new SQL string can be associated with a St at ement object using this call. Resources
associated with the previous SQL statement are freed. In particular, a previously

obtained result set is invalidated. If an empty SQL string, "", is used when the
Statenent is created, a set SQ. method with the proper SQL string must be performed
first.

Syntax

voi d set SQL(

const string &sgl);

Parameter Description

sql Any SQL statement.

13.30.90 setSQLUString()

Associate an SQL statement with this object. Unicode support: the client Envi r onment
should be initialized in OCCIUTIF16 mode.

ORACLE 13-253

Chapter 13
Statement Class

Syntax

voi d set SQLUSt ri ng(
const UString &sql);

Parameter Description

A SQL statement in same character set as the connection source of the

|
54 statement.

13.30.91 setString()

Sets a parameter for a specified index.

Syntax

voi d set String(
unsi gned i nt param ndex,
const string &val);

Parameter Description
par ani ndex Parameter index; first parameter is 1, second is 2, and so on.
val The parameter value.

13.30.92 setTimestamp()

Sets a parameter to a Ti nest anp value.

Syntax

voi d set Ti mest amp(
unsi gned i nt param ndex,
const Timestanp &val);

Parameter Description

par am ndex Parameter index; first parameter is 1, second is 2, and so on.

val The parameter value.

13.30.93 setUInt()

Sets a parameter to a C++ unsigned int value.

Syntax

voi d set Ul nt(
unsi gned int param ndex,
unsigned int val);

ORACLE 13-254

Chapter 13
Statement Class

Parameter Description

par am ndex Parameter index; first parameter is 1, second is 2, and so on.

val The parameter value.

13.30.94 setUString()

Sets a parameter for a specified index; globalization enabled.

Syntax

voi d set UString(
unsi gned i nt param ndex,
const UString &val);

Parameter Description
par am ndex Parameter index; first parameter is 1, second is 2, and so on.
val The parameter value.

13.30.95 setVector()

Sets a parameter to a vector. This method is necessary when the type is a collection
type, varrays or nested tables. The SQL Type of the elements in the collection should
be compatible with the type of the vector. For example, if the collection is a varray of
VARCHAR2, use vect or<string>.

Syntax Description

Intended for use on platforms
where partial ordering of function
templates is not supported, such
as Windows NT and z/OS.
Multibyte support.

voi d set Vector(
Statenent *stnt,
unsi gned int param ndex,
const vector< T > &vect,
const string &schemaNane,
const string & ypeName);

Intended for use on platforms
where partial ordering of function
templates is supported. Multibyte
support.

voi d set Vector(

Statenent *stnt,

unsi gned int param ndex,
const vector<T* > &vect,
const string &schemaNane,

const string & ypeName);

Sets a BDoubl e vector.

voi d set Vector(

Statenent *stnt,

unsi gned int param ndex,
const vect or <BDoubl e> &vect

const string &sqltype);

ORACLE 13-255

Chapter 13
Statement Class

Syntax

Description

voi d set Vector(
Statement *stnt,
unsi gned int param ndex,
const vector<Bfile> &vect,
const string &schenmaNane,
const string & ypeName);

voi d set Vector(

Statement *stnt,

unsi gned int param ndex,
const vector<Bfile> &vect,
const UString &schemaNane,

const UString & ypeNane);

voi d set Vector(

Statement *stnt,

unsi gned int param ndex,
const vect or <BFl oat > &vect

const string &sqltype);

voi d set Vector(

Statement *stnt,

unsi gned int param ndex,
const vector<Bl ob> &vect,
const string &schenmaNane,

const string & ypeName);

voi d set Vector(

Statement *stnt,

unsi gned int param ndex,
const vector<Bl ob> &vect,
const UString &schemaNane,

const UString & ypeNane);

voi d set Vector(

Statement *stnt,

unsi gned int param ndex,
const vector<Bytes> &vect,

const string &sqltype);

voi d set Vector(

Statement *stnt,

unsi gned int param ndex,
const vector<Bytes> &vect,
const string &schenmaNane,

const string & ypeNanme);

ORACLE

Sets a const Bfil e vector;
multibyte support.

Sets a const BFi | e vector; UTF16
support.

Sets a BFl oat vector.

Sets a const Bl ob vector;
multibyte support.

Sets a const Bl ob vector; UTF16
support.

Sets a const Byt es vector.

Sets a const Byt es vector;
multibyte support.

13-256

Chapter 13
Statement Class

Syntax

Description

ORACLE

voi d set Vector(
Statenent *stnt,
unsi gned int param ndex,
const vector<Bytes> &vect,
const Ustring &schemaNane,
const Ustring & ypeNane);

voi d set Vector(

Statement *stnt,

unsi gned int param ndex,
const vector<C ob> &vect,
const string &schenmaNane,

const string & ypeName);

voi d set Vector(

Statement *stnt,

unsi gned int param ndex,
const vector<C ob> &vect,
const UString &schemaNane,

const UString & ypeNane);

voi d set Vector(

Statement *stnt,

unsi gned int param ndex,
const vector<Date> &vect,
const string &schenmaNane,

const string & ypeNanme);

voi d set Vector(

Statement *stnt,

unsi gned int param ndex,
const vector<Date> &vect,
const UString &schemaNane,

const UString & ypeNane);

voi d set Vector(

Statement *stnt,

unsi gned int param ndex,
const vector<doubl e> &vect,
const string &schenmaNane,

const string & ypeName);

voi d set Vector(

Statement *stnt,

unsi gned int param ndex,
const vector<doubl e> &vect,
const UString &schemaNane,

const UString & ypeNane);

Sets a const Byt es vector; UTF16
support.

Sets a const C ob vector;
multibyte support.

Sets a const C ob vector; UTF16
support.

Sets a const Dat e vector;
multibyte support.

Sets a const Dat e vector; UTF16
support.

Sets a const doubl e vector;
multibyte support.

Sets a const doubl e vector;
UTF16 support.

13-257

Chapter 13
Statement Class

Syntax

Description

ORACLE

voi d set Vector(
Statement *stnt,
unsi gned int param ndex,
const vector<float> &vect,
const string &schenmaNane,
const string & ypeName);

voi d set Vector(

Statement *stnt,

unsi gned int param ndex,
const vector<float> &vect,
const UString &schemaNane,

const UString & ypeNane);

voi d set Vector(

Statement *stnt,

unsi gned int param ndex,
const vector<int> &ect,
const string &schenmaNane,

const string & ypeNanme);

voi d set Vector(

Statement *stnt,

unsi gned int param ndex,
const vector<int> &ect,
const UString &schemaNane,

const UString & ypeNane);

voi d set Vector(
Statement *stnt,

unsi gned int param ndex,

const vector<|nterval DS> &vect,

const string &schenmaNane,
const string & ypeName);

voi d set Vector(
Statement *stnt,

unsi gned int param ndex,

const vector<|nterval DS> &vect,

const UString &schemaNane,
const UString & ypeNane);

voi d set Vector(
Statement *stnt,

unsi gned int param ndex,

const vector<Interval YM> &vect,

const string &schenmaNane,
const string & ypeName);

Sets a const float vector;
multibyte support.

Sets a const float vector; UTF16
support.

Sets a const i nt vector; multibyte
support.

Sets a const int vector; UTF16
support.

Sets a const | nterval DS vector;
multibyte support.

Sets a const | nterval DS vector;
UTF16 support.

Sets a const | nterval YMvector;
multibyte support.

13-258

Chapter 13
Statement Class

Syntax

Description

voi d set Vector(
Statenent *stnt,
unsi gned int param ndex,
const vector<Interval YM> &vect,
const UString &schemaNane,
const UString & ypeNane);

voi d set Vector(

Statement *stnt,

unsi gned int param ndex,
const vector <Nunber > &vect,
const string &schenmaNane,

const string & ypeName);

voi d set Vector(

Statement *stnt,

unsi gned int param ndex,
const vect or <Nunber > &vect,
const UString &schemaNane,

const UString & ypeNane);

voi d set Vector(

Statement *stnt,

unsi gned int param ndex,
const vect or <Ref Any> &vect,
const string &schenmaNane,

const string & ypeNanme);

voi d set Vector(

Statement *stnt,

unsi gned int param ndex,
const vect or <Ref Any> &vect,
const UString &schemaNane,

const UString & ypeNane);

voi d set Vector(

Statement *stnt,

unsi gned int param ndex,
const vector<string> &vect,
const string &schenmaNane,

const string & ypeName);

voi d set Vector(

Statement *stnt,

unsi gned int param ndex,
const vector<string> &vect,
const UString &schemaNane,

const UString & ypeNane);

ORACLE

Sets a const | nterval YMvector;
UTF16 support

Sets a const Nunber vector;
multibyte support.

Sets a const Nunber vector;
UTF16 support.

Sets a const Ref Any vector;
multibyte support.

Sets a const Ref Any vector;
UTF16 support.

Sets aconst string vector;
multibyte support.

Sets aconst string vector;
UTF16 support.

13-259

ORACLE

Chapter 13
Statement Class

Syntax

Description

voi d set Vector(
Statenent *stnt,
unsi gned int param ndex,
const vect or <Ti mest anp> &vect,
const string &schenmaNane,
const string & ypeName);

voi d set Vector(

Statement *stnt,

unsi gned int param ndex,

const vect or <Ti nest anp> &vect,
const UString &schemaNane,

const UString & ypeNane);

voi d set Vector(

Statenent *stnt,

unsi gned int paramn ndex,

const vector<unsi gned int> &vect,
const string &schenmaNane,

const string & ypeNanme);

voi d set Vector(

Statenent *stnt,

unsi gned int param ndex,

const vector<unsi gned int> &vect,
const UString &schemaNane,

const UString & ypeNane);

voi d set Vector(

Statement *stnt,

unsi gned int param ndex,
vector<Bfile> &vect,

string &sqltype);

voi d set Vector(

Statement *stnt,

unsi gned int param ndex,
vect or <Bl ob> &vect,

string &sqltype);

voi d set Vector(

Statement *stnt,

unsi gned int param ndex,
vect or<Cl ob> &vect,

string &sqgltype);

voi d set Vector(

Statement *stnt,

unsi gned int param ndex,
vect or <Dat e> &vect,

string &sqgltype);

Sets a const Ti nest anp vector;
multibyte support.

Sets a const Ti nest anp vector;
UTF16 support.

Sets a const unsi gned int
vector; multibyte support.

Sets a const unsi gned int
vector; UTF16 support.

Sets a Bfi | e vector.

Sets a Bl ob vector.

Sets a C ob vector.

Sets a Dat e vector.

13-260

Chapter 13
Statement Class

Syntax

Description

voi d set Vector(
Statement *stnt,
unsi gned int param ndex,
vect or <doubl e> &vect,
string &sqltype);

voi d set Vector(

Statement *stnt,

unsi gned int param ndex,
vect or<f| oat> &vect,

string &sqltype);

voi d set Vector(

Statement *stnt,

unsi gned int param ndex,
vector<int> &vect,

string &sqltype);

voi d set Vector(

Statement *stnt,

unsi gned int param ndex,
vector<lnterval DS> &vect,

string &sqltype);

voi d set Vector(

Statement *stnt,

unsi gned int param ndex,
vector<lnterval Y &vect,

string &sqltype);

voi d set Vector(

Statement *stnt,

unsi gned int param ndex,
vect or <Nunber > &vect,

string &sqltype);

voi d set Vector(

Statement *stnt,

unsi gned int param ndex,
vect or <Ref Any> &vect,

string &sqltype);

voi d set Vector(

Statement *stnt,

unsi gned int param ndex,
vector<string> &vect,

string &sqltype);

ORACLE

Sets a doubl e vector.

Sets afl oat vector.

Sets ani nt vector.

Sets an | nt er val DS vector.

Sets an | nt er val YMvector.

Sets a Nunber vector.

Sets a Ref Any vector.

Sets a string vector.

13-261

ORACLE

Chapter 13
Statement Class

Syntax

Description

voi d set Vector(
Statement *stnt,
unsi gned int param ndex,
vect or <Ti nest anp> &vect,
string &sqltype);

voi d set Vector(
Statenent *stnt,
unsi gned int param ndex,
vect or <unsi gned int> &vect,
string &sqltype);

tenplate <class T>

voi d set Vector(
Statement *stnt,
unsi gned int param ndex,
const vector< T* > &vect,
const string &sqltype);

tenplate <class T>

voi d set Vector(
Statement *stnt,
unsi gned int param ndex,
const vector<T> &vect,
const string &sqgltype);

tenplate <class T>

voi d set Vector(
Statement *stnt,
unsi gned int param ndex,
vect or <Ref <T>> &vect,
string &sqltype);

Sets a Ti nest anp vector.

Sets an unsi gned i nt vector.

Intended for use on platforms
where partial ordering of function
templates is not supported.

Intended for use on platforms
where partial ordering of function
templates is supported.

Available only on platforms where
partial ordering of function
templates is supported.
setVectorOfRefs() can be used
instead.

Parameter Description

stmt

par am ndex

The vector to be set.

vect

sql type

Statement on which parameter is to be set.

Parameter index; first parameter is 1, second is 2, and so on.

Sqltype of the collection in the database. For example, CREATE TYPE
num col I AS VARRAY OF NUMBER. And the column/parameter type is

num col | . The sqltype would be num col | .

schemaNane

t ypeNane Type

Name of the schema used

13-262

13.30.96 setVectorOfRefs()

Sets a parameter to a vector; is necessary when the type is a collection of REFs or

ORACLE

nested tables of REFs.

Chapter 13
Statement Class

Syntax

Description

tenplate <class T> void setVector Of Ref s(

Statenent *stnt, unsigned int parani ndex,

const vector<Ref <T> > &vect,
const string &sqltype);

tenplate <class T> void setVectorOf Refs(
Statenent *stnt,
unsi gned int param ndex,
const vector<Ref <T> > &vect,
const string &sqltype);

tenplate <class T> void setVector Of Ref s(
Statenent *stnt,
unsi gned int param ndex,
const vect or <Ref <T>> &vect,
const string &schenaNane,
const string & ypeName);

tenplate <class T> void setVector Of Ref s(
Statenent *stnt,
unsi gned int param ndex,
const vect or <Ref <T> &vect,
const UString &schenmaNang,
const UString &t ypeNane);

tenplate <class T> void setVector(
Statenment *stnt,

unsi gned int parani ndex,

const vector<T* > &vect,

const UString &schemaNaneg,

const UString & ypeName);

Sets a parameter to a vector;
is necessary when the type
is a collection of REFs are
varrays or nested tables of
REFs.

Used for multibyte support.

Used for multibyte support.

Used for UTF16 support on
platforms where partial
ordering of function
templates is not supported,
such as Windows NT and
z/OS.

Used for UTF16 support on
platforms where partial
ordering of function
templates is supported.

Parameter index; first parameter is 1, second is 2, and so on.

Sqltype of the parameter or column. Use setVectorOfRefs() instead
of specialized function setVector() for Ref <T>.

Parameter Description

st Statement on which parameter is to be set.
par am ndex

vect Vector to be set.

sql type

schemaName Name of the schema used

13-263

Chapter 13
Stream Class

Parameter Description

Type

t ypeNanme

13.30.97 status()

Returns the current status of the statement. Useful when there is streamed data to be
written (or read). Other methods such as getCurrentStreamParam() and
getCurrentlteration() can be called to find out the streamed parameter that must be
written and the current iteration number for an iterative or array execute. The status()
method can be called repeatedly to find out the status of the execution.

The returned value, Status, is defined in Table 13-43.

Syntax

Status status() const;

13.31 Stream Class

ORACLE

You use a Streamto read or write streamed data (usually LONG).

* Avread-able Streamis used to obtain streamed data from a result set or QUT bind
variable from a stored procedure call. A read-able Streammust be read completely
until the end of data is reached or it should be closed to discard any unwanted
data.

A write-able Streamis used to provide streamed data (usually LONG) to
parameterized statements including callable statements.

Table 13-45 Enumerated Values Used by Stream Class

]
Attribute Options

READY_FOR_READ indicates that the St r eamis ready for read operations

Stat us
* READY_FOR WRI TE indicates that the St r eamis ready for write operations
* | NACTI VE indicates that the St reamis not available for ready or write
operations

Table 13-46 Summary of Stream Methods
|

Method Summary

readBuffer() Reads the stream and returns the amount of data read
from the Stream object.

readLastBuffer() Reads last buffer from Stream.

writeBuffer() Writes data from buffer to the stream.

writeLastBuffer() Writes the last data from buffer to the stream.

status() Returns the current status of the stream.

13-264

Chapter 13
Stream Class

13.31.1 readBuffer()

Reads data from St ream The size parameter specifies the maximum number of byte
characters to read. Returns the amount of data read from the Streamobject. -1 means
end of data on the stream.

Syntax

virtual int readBuffer(
char *buffer,
unsigned int size) = 0;

Parameter Description
buf f er Pointer to data buffer; must be allocated and freed by caller.
size Specifies the number of bytes to be read.

13.31.2 readLastBuffer()

Reads the last buffer from the Stream It can also be called top discard unread data.
The size parameter specifies the maximum number of byte characters to read.
Returns the amount of data read from the St reamobject; - 1 means end of data on the
stream.

Syntax

virtual int readLastBuffer(
char *buffer,
unsigned int size) = 0;

Parameter Description
buf f er Pointer to data buffer; must be allocated and freed by caller.
size Specifies the number of bytes to be read.

13.31.3 writeBuffer()

Writes data from buffer to the stream. The amount of data is determined by si ze.

Syntax

virtual void witeBuffer(
char *buffer,
unsigned int size) = 0;

Parameter Description

Pointer to data buffer.

buf fer

ORACLE 13-265

Chapter 13
Subscription Class

Parameter Description

si 78 Specifies the number of char s to be written.

13.31.4 writeLastBuffer()

This method writes the last data buffer to the stream. It can also be called to write the
last chunk of data. The amount of data written is determined by size.

Syntax

virtual void witeLastBuffer(
char *buffer,
unsigned int size) = 0;

Parameter Description
buf f er Pointer to data buffer.
si ze Specifies the number of bytes to be written.

13.31.5 status()

Returns the current St at us, as defined in Table 13-45 .

Syntax

virtual Status status() const;

13.32 Subscription Class

The subscription class encapsulates the information and operations necessary for
registering a subscriber for notification.

Table 13-47 Enumerated Values Used by Subscription Class

|
Attribute Options

e PRES_DEFAULT indicates that the event notification should be in
default format.

e PRES_XM indicates that the event notification should be in XML
format.

Presentation

ORACLE 13-266

ORACLE

Chapter 13
Subscription Class

Table 13-47 (Cont.) Enumerated Values Used by Subscription Class

___|
Options

Attribute

Pr ot ocol

PROTO_CBK indicates that the client receives notifications through the
default system protocol.

PROTO_MAI L indicates that the client receives notifications through e-
mail, like xyz@r acl e. com The database does not check if the e-
mail is valid.

PROTO_SERVER indicates that the client receives notifications through
an invoked PL/SQL procedure in the database, like

schema. procedur e. The subscriber must have the appropriate
permissions on the procedure.

PROTO_HTTP indicates that the client receives notifications through an
HTTP URL, like http://ww. or acl e. com 80. The database does
not check if the URL is valid.

NS_ANONYMOUS indicates that the registrations are made in an

Nanespace

anonymous namespace.
e NS_AQindicates that the registrations are made in the Oracle
Streams Advanced Queuing nhamespace.

Table 13-48 Summary of Subscription Methods

Method

Summary

Subscription()
getCallbackContext()

getDatabaseServersCount()

getDatabaseServerNames()

getNotifyCallback()
getPayload()

getSubscriptionName()
getSubscriptionNamespace()
getRecipientName()
getPresentation()
getProtocol()

isNull()

operator=()
setCallbackContext()
setDatabaseServerNames()

setNotifyCallback()
setNull()

setSubscriptionName()

setSubscriptionNamespace()

Subscri pti on class constructor.
Retrieves the callback context.

Retrieves the number of database servers in which the
client is interested for the registration.

Returns the names of all the database servers where the
client registered an interest for notification.

Returns the pointer to the registered callback function.

Retrieves the payload that has been set on the
Subscri pti on object before posting.

Retrieves the name of the Subscri pti on.
Retrieves the namespace of the Subscri pti on.
Retrieves the name of the Subscri pti on recipient.
Retrieves the notification presentation mode.
Retrieves the notification protocol.

Determines if the Subscri ption is NULL.
Assignment operator for Subscri pti on.

Registers a callback function for OCI protocol.

Specifies the database server distinguished names from
which the client receives notifications.

Specifies the context passed to user callbacks

Specifies the Subscri pti on object to NULL and frees the
memory associated with the object.

Specifies the name of the subscription.

Specifies the namespace in which the subscription is used.

13-267

Chapter 13
Subscription Class

Table 13-48 (Cont.) Summary of Subscription Methods

Method Summary

setPayload() Specifies the buffer content of the notification.

setRecipientName() Specifies the name of the recipient of the natification.

setPresentation() Specifies the presentation mode in which the client
receives notifications.

setProtocol() Specifies the protocol in which the client receives
notifications.

setSubscriptionName() Specifies the name of the subscription.

setSubscriptionNamespace() Specifies the namespace where the subscription is used.

setRecipientName() Specifies the name of the recipient of the notification.

13.32.1 Subscription()

Subscri ption class constructor.

Syntax Description

Creates a Subscri pti on within a

Subscription e .
P (specified Envi r onnent .

const Environnent *env);

Subscri ption(Copy constructor.

const Subscription& sub);

Syntax

Subscription(const Subscription& sub);

Parameter Description
env The Envi ronment .
sub The original Subscri pti on.

13.32.2 getCallbackContext()

Retrieves the callback context.

Syntax

voi d* get Cal | backCont ext () const;

13.32.3 getDatabaseServersCount()

Returns the number of database servers in which the client is interested for the
registration.

ORACLE 13-268

Chapter 13
Subscription Class

Syntax

unsi gned i nt get Dat abaseServersCount () const;

13.32.4 getDatabaseServerNames()

Returns the names of all the database servers where the client registered an interest
for notification.

Syntax

vect or<string> get Dat abaseServer Nanes() const;

13.32.5 getNotifyCallback()

Returns the pointer to the callback function registered for this Subscri pti on.

Syntax

unsigned int (*getNotifyCallback() const)(
Subscri ption& sub,
NotifyResult *nr);

Parameter Description

sub The Subscri ption.

nr The NotifyResult.

13.32.6 getPayload()

Retrieves the payload that has been set on the Subscri pti on object before posting.

Syntax

Byt es get CPayl oad() const;

13.32.7 getSubscriptionName()

Retrieves the name of the subscription.
Syntax

string get SubscriptionNanme() const;

13.32.8 getSubscriptionNamespace()

Retrieves the namespace of the subscription. The subscription name must be
consistent with its namespace. Valid Nanespace values are NS_AQ and NS_ANONYMOUS, as
defined in Table 13-47.

ORACLE 13-269

Chapter 13
Subscription Class

Syntax

Nanespace get Subscri pti onNanespace() const;

13.32.9 getRecipientName()

Retrieves the name of the recipient of the notification. Possible return values are E-
mail address, the HTTP url and the PL/SQL procedure, depending on the protocol.

Syntax

string getRecipientName() const;

13.32.10 getPresentation()

Retrieves the presentation mode in which the client receives notifications. Valid
Present ati on values are defined in Table 13-47.

Syntax

Presentation getPresentation() const;

13.32.11 getProtocol()

Retrieves the protocol in which the client receives notifications. Valid Prot ocol values
are defined in Table 13-47.

Syntax

Protocol getProtocol () const;

13.32.12 isNull()

Returns TRUE if Subscri ption is NULL or FALSE otherwise.

Syntax

bool isNull() const;

13.32.13 operator=()

ORACLE

Assignment operator for Subscri pti on.

Syntax

voi d operat or =(
const Subscription& sub);

Parameter Description

sub The original Subscri pti on.

13-270

Chapter 13
Subscription Class

13.32.14 setCallbackContext()

Registers a notification callback function when the protocol is PROTO CBK, as defined in
Table 13-47. Context registration is also included in this call.

Syntax
voi d set Cal | backCont ext (
void *ctx);
Parameter Description
ctx The context set.

13.32.15 setDatabaseServerNames()

Specifies the list of database server distinguished names from which the client
receives notifications.
Syntax

voi d set Dat abaseSer ver Names(
const vector<string>& dbsrv);

Parameter Description

dbsrv The list of database distinguished names

13.32.16 setNotifyCallback()

Sets the context that the client wants to get passed to the user callback. If the protocol
is set to PROTO_CBK or not specified, this attribute must be set before registering the
subscription handle.

Syntax

voi d set NotifyCall back(
unsi gned int (*call back) (
Subscri ption& sub,
NotifyResult *nr));

Parameter Description

The user callback function.
cal I back
sub The Subscri pti on object.

nr The Noti fyResul t object.

ORACLE 13-271

Chapter 13
Subscription Class

13.32.17 setNull()

Sets the Subscri pti on object to NULL and frees the memory associated with the object.

Syntax

void setNull();

13.32.18 setPayload()

Sets the buffer content that corresponds to the payload to be posted to the
Subscri ption.

Syntax

voi d set Payl oad(
const Bytes& payl oad);

Parameter Description

payl oad Content of the natification.

13.32.19 setPresentation()

Sets the presentation mode in which the client receives notifications.

Syntax

voi d set Presentation(
Presentation pres);

Parameter Description

ores Presentation mode, as defined in Table 13-47.

13.32.20 setProtocol()

Sets the Prot ocol in which the client receives event notifications, as defined in
Table 13-47.

Syntax

voi d setProtocol (
Protocol prot);

Parameter Description

or ot Protocol mode

ORACLE 13-272

Chapter 13
Subscription Class

13.32.21 setSubscriptionName()

Sets the name of the subscription. All subscriptions are identified by a subscription
name, which consists of a sequence of bytes of specified length.

If the namespace is NS_AQ, the subscription name is:

e SCHEMA. QUEUE when registering on a single consumer queue

e SCHEMA. QUEUE: CONSUMER NAME when registering on a multiconsumer queue

Syntax

voi d set Subscri pti onNamg(
const string& nane);

Parameter Description

nane Subscription name.

13.32.22 setSubscriptionNamespace()

Sets the namespace where the subscription is used. The subscription name must be
consistent with its namespace. Default value is NS_AQ.
Syntax

voi d set Subscri pti onNamespace(
Nanespace naneSpace);

Parameter Description

Namespace in which the subscription is used, as defined in

nanespace Table 13-47.

13.32.23 setRecipientName()

Sets the name of the recipient of the notification.

Syntax

voi d set Reci pi ent Name(
const string& name);

Parameter Description

nane Name of the notification recipient.

ORACLE 13-273

Chapter 13
Timestamp Class

13.33 Timestamp Class

ORACLE

This class supports the SQL standard TI MESTAMP W TH TI ME ZONE and TI MESTAMP W THOUT
TIME ZONE types, and works with all database TI MESTAMVP types: Tl MESTAMP, TI NESTAMP
W TH TI ME ZONE, and TI MESTAMP W TH LOCAL TI ME ZONE.

Ti mest anp time components, such as hour, minute, second and fractional section are in
the time zone specified for the Ti nest anp. This is new behavior for the 10g release;
previous versions supported GMT values of time components. Time components were
only converted to the time zone specified by Ti nest anp when they were stored in the
database. For example, the following Timestamp() call constructs a Ti mest anp value
13-Nov 2003 17:24:30.0 in timezone +5: 30.

Timestanp ts(env, 2003, 11, 13, 17, 24, 30, 0, 5, 30);
The behavior of this call in previous releases would interpret the timestamp
components as GMT, resulting in a timestamp value of 13- Nov 2003 11:54:30.0 in

timezone +5: 30. Users were forced to convert the timestamps to GMT before invoking
the constructor. Note that for GMT timezone, both hour and minute equal 0.

This behavior change also applies to setDate() and setTime() methods.
The fields of Ti nest anp class and their legal ranges are provided in Table 13-49. An

SQLExcept i on occurs if a parameter is out of range.

Table 13-49 Fields of Timestamp and Their Legal Ranges
|

Field Type Minimum Value Maximum value
year int -4713 9999

mont h unsigned int 1 12

day unsigned int 1 31

hour unsigned int 0 23

mn unsigned int 0 59

sec unsigned int 0 61

t zhour int -12 14

tzmn int -59 59

Table 13-50 Summary of Timestamp Methods
|

Method Summary
Timestamp() Ti mest anp class constructor.
fromText() Sets the time stamp from the

values provided by the string.

getDate() Gets the date from the
Ti mest anp object.

getTime() Gets the time from the
Ti meSt anp object.

getTimeZoneOffset() Returns the time zone hour
and minute offset value.

13-274

ORACLE

Table 13-50 (Cont.) Summary of Timestamp Methods

Chapter 13
Timestamp Class

Method Summary

intervalAdd() Returns a Ti nest anp object
with value (this + interval).

intervalSub() Returns a Ti mest anp object
with value (this - interval).

isNull() Checks if Ti mest anp is NULL.

operator=()
operator==()

operator!=()

operator>()

operator>=()

operator<()

operator<=()

setDate()

setNull()

setTime()

setTimeZoneOffset()

subDS()

subYM()

toText()

Simple assignment.
Checks if a and b are equal.

Checks if a and b are not
equal.

Checks if a is greater than b.

Checks if a is greater than or
equal to b.

Checks if a is less than b.

Checks if a is less than or
equal to b.

Sets the year, month, day
components contained for
this timestamp.

Sets the value of Timestamp
to NULL

Sets the day, hour, minute,
second and fractional second
components for this
timestamp.

Sets the hour and minute
offset for time zone.

Returns a | nt erval DS
representing this - val .

Returns a | nterval YM
representing this - val .

Returns a string
representation for the
timestamp in the format
specified.

13.33.1 Timestamp()

Ti mest anp class constructor.

13-275

ORACLE

Chapter 13
Timestamp Class

Syntax Description

Ti mest anp(Returns a default Ti nest anp object. Time
const Environnent *env components are understood to be in the
int year=1 ' specified time zone.

unsi gned int nonth=1,
unsigned int day=1,
unsi gned int hour=0,
unsigned int nin=0,
unsigned int sec=0,
unsigned int fs=0,
int tzhour=0,

int tzm n=0);

Ti mestanmp();

Ti mest amp(
const Environment *env,
int year,
unsi gned int nonth,
unsigned int day,
unsi gned int hour,
unsigned int mn,
unsigned int sec,
unsigned int fs,
const string &t imezone);

Ti mest amp(
const Environment *env,
int year,
unsi gned int nonth,
unsigned int day,
unsi gned int hour,
unsigned int mn,
unsigned int sec,
unsigned int fs,
const UString &tinezone);

Ti mest amp(
const Timestanp &src);

Returns a NULL Ti mest anp object. A NULL
timestamp can be initialized by assignment
or calling the fromText() method. Methods
that can be called on NULL timestamp objects
are setNull(), isNull() and operator=() .

Multibyte support. The timezone can be
passed as region, "US/Eastern”, or as an
offset from GMT, "+05:30". If an empty string
is passed, then the time is considered to be
in the current session's time zone. Used for
constructing values for TI MESTAMP W TH
LOCAL TI ME ZONE types.

UTF16 (UStri ng) support. The timezone can
be passed as region, "US/Eastern”, or as an
offset from GMT, "+05:30". If an empty string
is passed, then the time is considered to be
in the current session's time zone. Used for
constructing values for TI MESTAMP W TH
LOCAL TI ME ZONE types.

Copy constructor.

Parameter Description

year Year component.
mont h Month component.
day Day component.

13-276

ORACLE

Chapter 13
Timestamp Class

Parameter Description

hour Hour component.

ni nut e Minute component.

second Second component.

fs Fractional second component.

t zhour Time zone difference hour component.
tzmn Timezone difference minute component.
src The original Ti mezone.

Example 13-11 Using Default Timestamp Constructor

This example demonstrates that the default constructor creates a NULL value, and how
you can assign a non-NULL value to a Ti mest anp and perform operations on it:

Environnent *env = Environnent:: createEnvironnent ();

[lcreate a null timestanp
Tinestanp ts;
if(ts.isNull())

cout << "\ntsis Null";

/lassign a non null value to ts
Ti mestanp not Nul | Ts(env, 2000, 8, 17, 12, 0, 0, 0, 5, 30);
ts = notNul | Ts;

//now all operations are valid on ts
int yr;

unsigned int nth, day;
ts.getDate(yr, nth, day);

Example 13-12 Using fromText() method to Initialize a NULL Timestamp
Instance

The following code example demonstrates how to use the fromText() method to
initialize a NULL timestamp:

Envi ronnent *env = Environnent:: createEnvironnent();

Ti mestanp tsi;
tsl. fronfext ("01:16:17.12 04/03/1825", "hh:m:ssxff dd/myyyy", "", env);

Example 13-13 Comparing Timestamps Stored in the Database

The following code example demonstrates how to get the timestamp column from a
result set, check whether the timestamp is NULL, get the timestamp value in string
format, and determine the difference between 2 timestamps:

13-277

Chapter 13
Timestamp Class

Timestanp reft(env, 2001, 1, 1);
Resul t Set *rs=st nt->execut eQuer y(

"sel ect order_date fromorders where customer_id=1");
rs->next();

[lretrieve the tinestanp colum fromresult set
Ti mest anp ts=rs->get Ti mestanp(1);

/'l check timestanmp for null
if('ts.isNull())
{

string tsstr=ts.toText(//get the tinmestanp value in string fornmat
"dd/ miyyyy hh:m:ss [tzh:tzn{",0);
if(reft<ts |/ conpare timestanps

Interval DS ds=reft.subDS(ts); //get difference between tinestanps

}
13.33.2 fromText()

Sets the timestamp value from the string. The string is expected to be in the format
specified. If nl sPar amis specified, this determines the NLS parameters to be used for
the conversion. If nl sParamis not specified, the NLS parameters are picked up from the
environment which has been passed. In case environment is not passed, Globalization
Support parameters are obtained from the environment associated with the instance, if
any.

Sets Ti nest anp object to value represented by a string or Ustri ng.

The value is interpreted based on the fnt and nl sPar amparameters. In cases where
nl sPar amis not passed, the Globalization Support settings of the envp parameter are

used.
See Also:
Oracle Database SQL Language Reference for information on TO DATE
Syntax Description

Sets Ti mest anp object to value represented by

voi d fronfext (astring

const string & imestmpStr,
const string & nt,

const string &l sParam="",
const Environment *env = NULL);

Sets Ti mest anp object to value represented by

id fronfext) o
vor ronirext (a USt ri ng; globalization enabled.

const UString ×tnpStr,
const UString &fnt,

const UString &nl sParam

const Environment *env = NULL);

ORACLE 13-278

Chapter 13
Timestamp Class

Parameter

Description

timestnpStr

fmt

nl sParam

env

The timestamp st ring or USt ri ng to be converted to a Ti mest anp object.

The format string.

The NLS parameters string. If nl sPar amis specified, this determines the
NLS parameters to be used for the conversion. If nl sParamis not
specified, the NLS parameters are picked up from envp.

The OCCI environment. In globalization enabled version of the method,
used to determine NLS_CALENDAR for interpreting ti nest anpStr. If env is
not passed, the environment associated with the object controls the
setting. Should be a non-NULL value if called on a NULL Ti nest anp object.

13.33.3 getDate()

Returns the year, month and day values of the Ti nest anp.

Syntax

voi d get Dat e(
int &ear,
unsi gned i nt
unsi gned i nt

&nont h,
&day) const;

Parameter

Description

year

mont h

day

Year component.

Month component.

Day component.

13.33.4 getTime()

Returns the hour, minute, second, and fractional second components

Syntax

voi d get Ti mg(
unsi gned i nt
unsi gned i nt
unsi gned i nt
unsi gned i nt

&hour,

&m nut e,
&second,
&fs) const;

Parameter

Description

hour

m nut e

ORACLE

Hour component.

Minute component.

13-279

Chapter 13
Timestamp Class

Parameter Description
second Second component.
fs Fractional second component.

13.33.5 getTimeZoneOffset()

Returns the time zone offset in hours and minutes.

Syntax

voi d get Ti meZoneOf f set (
int &hour,
int &mnute) const;

Parameter Description

hour Time zone hour.

i nut e Time zone minute.

13.33.6 intervalAdd()

Adds an interval to timestamp.

Syntax Description

const Timestanp interval Add(Adds an IntervalDS interval to the timestamp.

const Interval DS& val) const;

const Timestanp interval Add(Adds an IntervalYM interval to the timestamp.

const Interval YM& val) const;

Parameter Description

Interval to be added.
val

13.33.7 intervalSub()

Subtracts an interval from a timestamp and returns the result as a timestamp. Returns
a Ti mest anp with the value of this - val .

ORACLE 13-280

Chapter 13
Timestamp Class

Syntax Description

Subtracts an | nt er val DS interval to the

const Timestanp interval Sub(fimestamp

const Interval DS& val) const;

Subtracts an | nt er val YMinterval to the

const Timestanp interval sUB(fimestamp

const Interval YM& val) const;

Parameter Description

val Interval to be subtracted.

13.33.8 isNull()

Returns TRUE if Ti nest anp iS NULL or FALSE otherwise.

Syntax

bool isNull() const;

13.33.9 operator=()

Assigns a given timestamp object to this object.

Syntax

Ti mestanp & oper at or =(
const Timestanp &src);

Parameter Description

sre Value to be assigned.

13.33.10 operator==()

Compares the timestamps specified. If the timestamps are equal, returns TRUE, FALSE
otherwise. If either a or b is NULL then FALSE is returned.

Syntax

bool operat or==(
const Tinestanp &first,
const Tinestanp &second);

Parameter Description

first First timestamp to be compared.

second Second timestamp to be compared.

ORACLE 13-281

Chapter 13
Timestamp Class

13.33.11 operator!=()

Compares the timestamps specified. If the timestamps are not equal then TRUE is
returned; otherwise, FALSE is returned. If either timestamp is NULL then FALSE is
returned.

Syntax

bool operator!=(
const Timestanp & irst,
const Timestanp &second);

Parameter Description

first First timestamp to be compared.

second Second timestamp to be compared.

13.33.12 operator>()

Returns TRUE if fi rst is greater than second, FALSE otherwise. If either is NULL then FALSE
is returned.

Syntax

bool operat or >(
const Timestanp & irst,
const Timestanp &second);

Parameter Description

first First timestamp to be compared.

second Second timestamp to be compared.

13.33.13 operator>=()

Compares the timestamps specified. If the first timestamp is greater than or equal to
the second timestamp then TRUE is returned; otherwise, FALSE is returned. If either
timestamp is NULL then FALSE is returned.

Syntax

bool operat or >=(
const Timestanp &first,
const Timestanp &second);

Parameter Description

first First timestamp to be compared.

ORACLE 13-282

Chapter 13
Timestamp Class

Parameter Description

second Second timestamp to be compared.

13.33.14 operator<()

Returns TRUE if fi rst is less than second, FALSE otherwise. If either a or b is NULL then
FALSE is returned.

Syntax

bool operat or <(
const Tinestanp &first,
const Tinestanp &second);

Parameter Description

first First timestamp to be compared.

second Second timestamp to be compared.

13.33.15 operator<=()

Compares the timestamps specified. If the first timestamp is less than or equal to the
second timestamp then TRUE is returned; otherwise, FALSE is returned. If either
timestamp is NULL then FALSE is returned.

Syntax

bool operat or <=(
const Timestanp &first,
const Tinestanp &second);

Parameter Description

first First timestamp to be compared.

second Second timestamp to be compared.

13.33.16 setDate()

Sets the year, month, day components contained for this timestamp

Syntax

voi d set Dat e(
int year,
unsi gned i nt month,
unsi gned int day);

ORACLE 13-283

Chapter 13
Timestamp Class

Parameter Description

year Year component. Valid values are -4713 through 9999.
mont h Month component. Valid values are 1 through 12.

day Day component. Valid values are 1 through 31.

13.33.17 setNull()

Sets the timestamp to NULL.

Syntax
void setNull();

13.33.18 setTime()

Sets the day, hour, minute, second and fractional second components for this
timestamp.

Syntax

voi d set Ti me(
unsi gned int hour,
unsigned int mnute,
unsi gned i nt second,
unsigned int fs);

Parameter Description

hour Hour component. Valid values are 0 through 23.
minute Minute component. Valid values are 0 through 59.
second Second component. Valid values are 0 through 59.
fs Fractional second component.

13.33.19 setTimeZoneOffset()

Sets the hour and minute offset for time zone.

Syntax
voi d set Ti meZoneOf f set (
int hour,
int mnute);
Parameter Description
hour Time zone hour. Valid values are -12 through 12.
minute Time zone minute. Valid values are -59 through 59.

ORACLE 13-284

Chapter 13
Timestamp Class

13.33.20 subDS()

Computes the difference between this timestamp and the specified timestamp and
return the difference as an I nterval DS.
Syntax

const Interval DS subDS(
const Timestanp& val) const;

Parameter Description

val Timestamp to be subtracted.

13.33.21 subYM()

Computes the difference between timestamp values and return the difference as an
I nterval YM

Syntax

const Interval YM subYM
const Timestanp& val) const;

Parameter Description

val Ti mest anp to be subtracted.

13.33.22 toText()

Returns a string or UString representation for the timestamp in the format specified.

If nl sParamis specified, this determines the NLS parameters used for the conversion. If
nl sPar amis not specified, the NLS parameters are picked up from the environment
associated with the instance, if any.

See Also:

Oracle Database SQL Language Reference for information on TO DATE

Syntax Description

Returns a string representation for the

string toText . . o
g (timestamp in the format specified.

const string & nt,
unsi gned int fsprec,
const string &nlsParam= "") const;

ORACLE 13-285

Chapter 13
Timestamp Class

Syntax Description

Returns a USt ri ng representation for the
timestamp in the format specified,;
globalization enabled.

UString toText(
const UString &fnt,
unsigned int fsprec,
const UString &nlsParam const;

Parameter Description

ft The format string.

fsprec The precision for the fractional second component of Ti mest anp.

nl sPar am The NLS parameters string. If nl sPar amis specified, this determines the

NLS parameters to be used for the conversion. If nl sPar amis not
specified, the NLS parameters are picked up from envp.

ORACLE 13-286

Index

A

ADR, 12-13

ADRC utility, 12-16

base location, 12-14
ADR Command Interpreter, 12-13
ADRCI, 12-13, 12-16
Agent class, 13-5

methods, 13-5
AnyData class, 13-8

methods, 13-8

supported data type, 13-8

usage examples, 13-8
application managed data buffering, 12-9
application-provided serialization, 12-8
associative access

overview, 4-10
atomic null, 4-19
attributes, 1-7
automatic diagnostic repository (ADR), 12-13
automatic serialization, 12-7

B

BatchSQLEXxception
methods, 13-17
BatchSQLException class, 13-17
Bfile class, 13-18
methods, 13-18
BFILEs
external data type, 5-9
bind operations
in bind operations, 1-7
out bind operations, 1-7
Blob class, 13-24
methods, 13-24
BLOBs
external data type, 5-10
Bytes class, 13-33
methods, 13-33

C

callable statements, 3-16
with arrays as parameters, 3-16

ORACLE

CASE OTT parameter, 8-6
CHAR
external data type, 5-10
classes
Agent class, 13-5
AnyData class, 13-8
BatchSQLException class, 13-17
Bfile class, 13-18
Blob class, 13-24
Bytes class, 13-33
Clob class, 13-36
Connection class, 13-47
ConnectionPool class, 13-62
Consumer class, 13-67
Date class, 13-74
Environment class, 13-85
IntervalDS class, 13-98
IntervalYM class, 13-109
Listener class, 13-118
Map class, 13-120
Message class, 13-122
Metadata class, 13-130
NotifyResult class, 13-142
Number class, 13-143
PObiject class, 13-163
Producer class, 13-169
Ref class, 13-174
RefAny class, 13-179
ResultSet class, 3-22, 13-182
SQLException class, 13-203
StatelessConnectionPool class, 13-206
Statement class, 13-217
Stream class, 13-264
Subscription class, 13-266
Timestamp class, 13-274
Client Result Cache, 12-18
hint, 12-18
Clob class, 13-36
methods, 13-36
CLOBs
external data type, 5-11
CODE OTT parameter, 8-7
collections
working with, 4-17
committing a transaction, 3-28

Index-1

complex object retrieval
complex object, 4-15
depth level, 4-15
implementing, 4-16
overview, 4-15
prefetch limit, 4-15
root object, 4-15
complex objects, 4-15
prefetching, 4-17
retrieving, 4-16
CONFIG OTT parameter, 8-7
configuration files
and the OTT utility, 8-3
connecting to a database, 3-1
Connection class, 13-47
methods, 13-47
connection pool
createConnectionPool method, 3-4
creating, 3-4
connection pooling, 3-3
transparent application failover, 12-3
ConnectionPool class, 13-62
methods, 13-62
Consumer class, 13-67
methods, 13-67
control statements, 1-5

D

DATE (continued)
external data type (continued)
data conversion, 5-22
Date class, 13-74
methods, 13-74
usage examples, 13-74
DDL statements
executing, 3-13
depth level, 4-15
DML statements
executing, 3-13

E

Index

data buffering, 12-9
data conversion
Date, 5-22
DATE data type, 5-22
internal data type, 5-20
Interval, 5-22
INTERVAL data type, 5-22
LOB data type, 5-22
LOBs, 5-22
Timestamp, 5-22
TIMESTAMP data type, 5-22
data type
AnyData, 13-8
external data type, 5-1, 5-4
internal data type, 5-2
internal data types, 5-1
OTT mappings, 8-19
overview, 5-1
data types, 5-1
database
connecting to, 3-1
database resident connection pooling, 3-9
administration, 3-10
using, 3-11
DATE
external data type, 5-11

ORACLE

elements, 1-3
embedded objects, 4-2

creating, 4-2

fetching, 4-18

prefetching, 4-18
Environment class, 13-85

methods, 13-85
ERRTYPE OTT parameter, 8-7
examples

Date class, 13-74

IntervalDS class, 13-98

IntervalYM class, 13-109

Number class, 13-143
exception handling, 3-31
executing SQL queries, 3-21
executing statements dynamically, 3-23
external data type, 5-8

BFILE, 5-9

BLOB, 5-10

CHAR, 5-10

CHARZ, 5-10

CLOB, 5-11

DATE, 5-11

FLOAT, 5-12

INTEGER, 5-12

INTERVAL DAY TO SECOND, 5-12

INTERVAL YEAR TO MONTH, 5-13

LONG, 5-13

LONG RAW, 5-13

LONG VARCHAR, 5-13

LONG VARRAW, 5-14

NCLOB, 5-14

NUMBER, 5-14

OCCI BFILE, 5-15

OCCI BLOB, 5-15

OCCI BYTES, 5-15

OCCI CLOB, 5-15

OCCI DATE, 5-15

OCCI INTERVALDS, 5-15

OCCI INTERVALYM, 5-16

OCCI NUMBER, 5-16

Index-2

external data type (continued)

F

OCCI POBJECT, 5-16

OCCI REF, 5-16

OCCI REFANY, 5-16

OCCI STRING, 5-16

OCCI TIMESTAMP, 5-17

OCCI VECTOR, 5-17

RAW, 5-17

REF, 5-17

ROWID, 5-17

STRING, 5-17

TIMESTAMP, 5-18

TIMESTAMP WITH LOCAL TIME ZONE,
5-18

TIMESTAMP WITH TIME ZONE, 5-18

UNSIGNED INT, 5-18

VARCHAR, 5-19

VARCHARZ2, 5-19

VARNUM, 5-19

VARRAW, 5-19

fault diagnosability, 12-13
Fault Diagnosability

disabling, 12-18

fields

IntervalDS class, 13-98
IntervalYM class, 13-109
Timestamp fields, 13-274

FLOAT

H

external data type, 5-12

Instant Client (continued)
SDK, 2-4
using, 2-5
Instant Client Light (English), 2-7
character sets, 2-7
errors, 2-8
globalization settings, 2-7
installation, 2-8
Client Admin Install, 2-9
Oracle Universal Installer, 2-9
OTN download, 2-9
using, 2-8
INTEGER
external data type, 5-12
internal data type, 5-2
INTERVAL DAY TO SECOND
external data type, 5-12
INTERVAL YEAR TO MONTH
external data type, 5-13
IntervalDS class, 13-98
fields, 13-98
methods, 13-98
usage examples, 13-98
IntervalYM class, 13-109
fields, 13-109
methods, 13-109
usage examples, 13-109
INTYPE file
structure of, 8-15
INTYPE OTT parameter, 8-8

L

Index

HFILE OTT parameter, 8-8

identity column metadata, 6-2
index-organized table, 5-4
Instant Client, 2-2

benefits, 2-2
connection names, 2-6
database connection, 2-6
environment variables, 2-6
Solaris, 2-7
Windows, 2-7
installation, 2-2
libraries, 2-5
Data Shared Library, 2-5
patching, 2-5
regenerating, 2-5
patching libraries, 2-5

ORACLE

Listener class, 13-118

methods, 13-118
LOBs

external data type

data conversion, 5-22

LONG

external data type, 5-13
LONG RAW

external data type, 5-13
LONG VARCHAR

external data type, 5-13

M

manipulating object attributes, 4-13
Map class, 13-120
methods, 13-120, 13-121
Message class, 13-122
methods, 13-122
metadata
argument and result attributes, 6-16
attribute groupings, 6-3

Index

metadata (continued) methods (continued)
attribute groupings (continued) Date methods, 13-74
argument and result attributes, 6-3 Environment class, 13-85
collection attributes, 6-3 execute method, 3-13
column attributes, 6-3 executeArrayUpdate method, 3-13, 12-10
database attributes, 6-3 executeQuery method, 3-13
list attributes, 6-3 IntervalDS methods, 13-98
package attributes, 6-3 IntervalYM class, 13-109
parameter attributes, 6-3 Listener methods, 13-118
procedure, function, and subprogram Map methods, 13-120, 13-121
attributes, 6-3 Message methods, 13-122
schema attributes, 6-3 MetaData class, 13-130
sequence attributes, 6-3 NotifyResult methods, 13-142
synonym attributes, 6-3 Number class, 13-143
table and view attributes, 6-3 PObject methods, 13-163
type attribute attributes, 6-3 Producer methods, 13-169
type attributes, 6-3 Ref methods, 13-174
type method attributes, 6-3 RefAny methods, 13-179
attributes, 6-7 ResultSet methods, 13-182
code example, 6-4 setDataBuffer method, 12-9
collection attributes, 6-14 SQLException methods, 13-203
column attributes, 6-15 StatelessConnectionPool, 13-206
database attributes, 6-18 Statement, 13-217
describing database objects, 6-3 Stream methods, 13-264
list attributes, 6-18 Subscription methods, 13-266
overview, 6-1 terminateConnection method, 3-3
package attributes, 6-10 terminateEnvironment method, 3-3
parameter attributes, 6-8 terminateStatement method, 3-14
procedure, function, and subprogram Timestamp methods, 13-274
attributes, 6-9 modifying rows iteratively, 12-12
schema attributes, 6-18
sequence attributes, 6-15 N
synonym attributes, 6-14
table and view attributes, 6-8 navigationa| access
type attribute attributes, 6-12 overview, 4-11
type attributes, 6-10 NCLOBs
type methods attributes, 6-13 external data type, 5-14
MetaData class, 13-130 NEEDS_STREAM_DATA status, 3-24, 3-25
methods, 13-130 nonprocedural elements, 1-3
methods, 1-7 nonreferenceable objects, 4-2
Agent methods, 13-5 NotifyResult class, 13-142
AnyData methods, 13-8 methods, 13-142
BatchSQLException methods, 13-17 nullness, 4-19
Bfile methods, 13-18 NUMBER
Blob methods, 13-24 external data type, 5-14
Bytes methods, 13-33 Number class, 13-143
Clob methods, 13-36 methods, 13-143
Connection methOdS, 13-47 usage examp|e5, 13-143
ConnectionPool methods, 13-62
Consumer methods, 13-67
createConnection method, 3-3 O
createCon_nectionPooI method, 3-4 object cache, 4-8, 4-9
createEnvironment method, 3-2 flushing, 4-9

createProxyConnection method, 3-5

object mode, 4-7
createStatement method, 3-13

object programming

ORACLE Index-4

object programming (continued)
overview, 4-1
using OCCI, 4-1

object references
see also REF, 4-11
using, 4-19

Object Type Translator utility
see OTT utility, 1-7

object types, 1-7

objects

OCCI classes (continued)

IntervalYM class, 13-109
Listener class, 13-118
Map class, 13-120
Message class, 13-122
MetaData class, 13-130
NotifyResult class, 13-142
Number class, 13-143
PObiject class, 13-163
Producer class, 13-169

access using SQL, 4-10

attributes, 1-7

client-side, 1-8

dirty, 4-13

environment, 1-8

flushing, 4-13

freeing, 4-19

in OCCl, 4-2

inserting, 4-11

interfaces, 1-8
associative, 1-8
navigational, 1-8

manipulating attributes, 4-13

marking, 4-13

Metadata Class, 1-9

methods, 1-7

modifying, 4-11

object cache, 1-8

object types, 1-7

pinned, 4-12

pinning, 4-9, 4-12

recording database changes, 4-13

run-time environment, 1-8

transparent application failover, 12-3
OCCI

benefits, 1-2

building applications, 1-2
functionality, 1-3

object mode, 4-7
overview, 1-1

special SQL terms, 1-7

OCCI classes

Agent class, 13-5

AnyData class, 13-8
BatchSQLException class, 13-17
Bfile class, 13-18

Blob class, 13-24

Bytes class, 13-33

Clob class, 13-36
Connection class, 13-47
ConnectionPool class, 13-62
Consumer class, 13-67

Data class, 13-74
Environment class, 13-85
IntervalDS class, 13-98

ORACLE

Ref class, 13-174

RefAny class, 13-179
ResultSet class, 13-182
SQLException class, 13-203

StatelessConnectionPool class, 13-206

Statement class, 13-217
Stream class, 13-264
Subscription class, 13-266
Timestamp class, 13-274
OCCI environment
connection pool, 3-4
creating, 3-1
opening a connection, 3-2, 3-3
scope, 3-1, 3-2
terminating, 3-1
OCCI program
example of, 4-23
OCCI program development, 4-6
operational flow, 4-7
program structure, 4-6
OCCI types
data conversion, 5-1
optimizing performance, 3-23
setting prefetch count, 3-23

OTT parameter TRANSITIVE, 8-10

OTT parameters
CASE, 8-6
CODE, 8-7
CONFIG, 8-7
ERRTYPE, 8-7
HFILE, 8-8
INTYPE, 8-8
OUTTYPE, 8-9
SCHEMA_NAMES, 8-9
USERID, 8-12
where they appear, 8-13
OTT utility
benefits, 1-9

creating types in the database, 8-2

default name mapping, 8-24
description, 1-9
parameters, 8-5
using, 8-2
out bind variables, 1-6
OUTTYPE OTT parameter, 8-9

Index

P

parameterized statements, 3-15
performance
optimizing
executeArrayUpdate method, 12-10
setDataBuffer method, 12-9
performance tuning, 12-1
application managed data buffering, 12-9
array fetch using next() method, 12-11
connection sharing, 12-6
data buffering, 12-9
reading and writing multiple LOBs, 7-8
shared server environments, 12-6
thread safety, 12-6
thread safety, 12-6
transparent application failover, 12-1
persistent objects, 4-2
creating, 4-4
standalone objects, 4-2
types
embedded objects, 4-2
nonreferenceable objects, 4-2
referenceable objects, 4-2
standalone objects, 4-2
pinning objects, 4-9, 4-12
PL/SQL
out bind variables, 1-6
overview, 1-6
pluggable databases
OCCI support for, 3-3
PObiject class, 13-163
methods, 13-163
prefetch count
set, 3-23
prefetch limit, 4-15
PREPARED status, 3-24
procedural elements, 1-3
Producer class, 13-169
methods, 13-169
proxy connections, 3-5
using createProxyConnection method, 3-5

Q

queries, 1-5
how to specify, 3-23

R

RAW
external data type, 5-17
REF
external data type, 5-17
retrieving a reference to an object, 4-11

ORACLE

Ref class, 13-174
methods, 13-174
RefAny class, 13-179
methods, 13-179
referenceable objects, 4-2
relational programming
using OCCI, 3-1
RESULT_SET_AVAILABLE status, 3-24, 3-25
ResultSet class, 3-22, 13-182
methods, 13-182
root object, 4-15
ROWID
external data type, 5-17
rows
iterative modification, 12-12
modify, 12-12

S

Index

SCHEMA_NAMES OTT parameter, 8-9
shared connections
using, 12-6
shared server environments
application-provided serialization, 12-8
automatic serialization, 12-7
concurrency, 12-8
thread safety, 12-6
implementing, 12-7
SQL statements
control statements, 1-5
DML statements, 1-5
processing of, 1-4
queries, 1-5
types
callable statements, 3-15, 3-16
parameterized statements, 3-15
standard statements, 3-15
SQLException class, 13-203
methods, 13-203
sglnet.ora, 12-18
standalone objects, 4-2
creating, 4-2
standard statements, 3-15
StatelessConnectionPool class, 13-206
methods, 13-206
statement caching, 3-28
Statement class, 13-217
methods, 13-217
statement handles
creating, 3-13
reusing, 3-14
terminating, 3-14
status
NEEDS_STREAM_DATA, 3-24, 3-25
PREPARED, 3-24

Index-6

status (continued)
RESULT_SET_AVAILABLE, 3-24, 3-25
STREAM_DATA_AVAILABLE, 3-24, 3-26
UNPREPARED, 3-24
UPDATE_COUNT_AVAILABLE, 3-24, 3-25
Stream class, 13-264
methods, 13-264
STREAM_DATA_AVAILABLE status, 3-24, 3-26
streamed reads, 3-17
streamed writes, 3-17
STRING
external data type, 5-17
Subscription class, 13-266
methods, 13-266
substitutability, 4-21

T

table
index-organized, 5-4
thread safety, 12-6
implementing, 12-7
TIMESTAMP
external data type, 5-18
Timestamp class
methods, 13-274
TIMESTAMP WITH LOCAL TIME ZONE
external data type, 5-18
TIMESTAMP WITH TIME ZONE
external data type, 5-18
transient objects, 4-2, 4-3
creating, 4-3, 4-4
TRANSITIVE OTT parameter, 8-10

ORACLE

transparent application failover, 12-1
connection pooling, 12-3
objects, 12-3
using, 12-3

type inheritance, 4-20, 4-22

U

Index

UNPREPARED status, 3-24
UNSIGNED INT
external data type, 5-18
UPDATE_COUNT_AVAILABLE status, 3-24,
3-25
USERID OTT parameter, 8-12

V

values

in context of this document, 4-4

in object applications, 4-4
VARCHAR

external data type, 5-19
VARCHAR2

external data type, 5-19
VARNUM

external data type, 5-19
VARRAW

external data type, 5-14, 5-19

X

XA library, 11-1

	Contents
	List of Examples
	List of Figures
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	Changes in This Release for Oracle C++ Call Interface Programmer's Guide
	Changes in Oracle Database 12c Release 2 (12.2)
	New Features

	1 Introduction to OCCI
	1.1 Overview of OCCI
	1.1.1 About Benefits of OCCI
	1.1.2 About Building a C++ Application with OCCI
	1.1.3 About Functionality of OCCI
	1.1.4 About Procedural and Nonprocedural Elements

	1.2 About Processing SQL Statements
	1.2.1 About Data Definition Language Statements
	1.2.2 About Control Statements
	1.2.3 About Data Manipulation Language Statements
	1.2.4 About Queries

	1.3 Overview of PL/SQL
	1.4 About Special OCCI/SQL Terms
	1.5 About Object Support
	1.5.1 About Client-Side Object Cache
	1.5.2 About Run-time Environment for Objects
	1.5.3 About Associative and Navigational Interfaces
	1.5.4 About Interoperability with C (OCI)
	1.5.5 About the Metadata Class
	1.5.6 About the Object Type Translator Utility

	1.6 About Additional Support
	1.6.1 Building OCCI Demos
	1.6.2 About OCCI on the Oracle Technology Network

	2 	 	Installation and Upgrading
	2.1 About Installing Oracle C++ Call Interface
	2.2 About Upgrading Considerations
	2.3 About Determining the Oracle Database Versions
	2.3.1 Determining the Oracle Client Version During Compilation
	2.3.2 About Determining the Oracle Client and Server Versions at Run Time

	2.4 About the Instant Client
	2.4.1 About Benefits of Instant Client
	2.4.2 About Installing the Instant Client
	2.4.2.1 About the Oracle Technology Network
	2.4.2.1.1 About the Instant Client SDK

	2.4.2.2 About the Complete Client Installation
	2.4.2.3 Running Oracle Universal Installer
	2.4.2.4 About the Instant Client CD

	2.4.3 About Using the Instant Client
	2.4.4 Patching Instant Client Shared Libraries on UNIX
	2.4.5 Regenerating the Data Shared Library and Zip Files
	2.4.6 About Database Connection Names for Instant Client
	2.4.7 Setting Environment Variables for OCCI Instant Client

	2.5 About Instant Client Light (English)
	2.5.1 About Globalization Settings for Instant Client Light (English)
	2.5.2 About Using Instant Client Light (English)
	2.5.3 About Installing Instant Client Light (English)
	2.5.3.1 Downloading from Oracle Technology Network
	2.5.3.2 About Using the Client Admin Install
	2.5.3.3 Installing with Oracle Universal Installer

	2.6 About Using OCCI with Microsoft Visual C++

	3 	Accessing Oracle Database Using C++
	3.1 About Connecting to a Database
	3.1.1 Creating and Terminating an Environment
	3.1.2 Opening and Closing a Connection
	3.1.3 About Support for Pluggable Databases

	3.2 About Pooling Connections
	3.2.1 About Using Connection Pools
	3.2.1.1 Creating a Connection Pool
	3.2.1.2 Creating Proxy Connections

	3.2.2 Using Stateless Connection Pooling
	3.2.3 About Database Resident Connection Pooling
	3.2.3.1 Administrating Database Resident Connection Pools
	3.2.3.2 Using Database Resident Connection Pools

	3.3 About Executing SQL DDL and DML Statements
	3.3.1 Creating a Statement Object
	3.3.2 Creating a Statement Object that Executes SQL Commands
	3.3.2.1 Creating a Database Table
	3.3.2.2 Inserting Values into a Database Table

	3.3.3 Reusing the Statement Object
	3.3.4 Terminating a Statement Object

	3.4 About Types of SQL Statements in the OCCI Environment
	3.4.1 About Standard Statements
	3.4.2 Using Parameterized Statements
	3.4.3 Using Callable Statements
	3.4.3.1 Using Callable Statements that Use Array Parameters

	3.4.4 About Streamed Reads and Writes
	3.4.4.1 Binding Data in Streaming Mode; SELECT/DML and PL/SQL
	3.4.4.2 Fetching Data in Streaming Mode: PL/SQL
	3.4.4.3 About Fetching Data in Streaming Mode: ResultSet
	3.4.4.4 Working with Multiple Streams

	3.4.5 About Modifying Rows Iteratively
	3.4.5.1 Setting the Maximum Number of Iterations
	3.4.5.2 Setting the Maximum Parameter Size
	3.4.5.3 Executing an Iterative Operation

	3.5 About Executing SQL Queries
	3.5.1 Using the Result Set
	3.5.2 About Specifying the Query
	3.5.3 About Optimizing Performance by Setting Prefetch Count

	3.6 About Executing Statements Dynamically
	3.6.1 About Statement Status Definitions
	3.6.1.1 UNPREPARED
	3.6.1.2 PREPARED
	3.6.1.3 RESULT_SET_AVAILABLE
	3.6.1.4 UPDATE_COUNT_AVAILABLE
	3.6.1.5 NEEDS_STREAM_DATA
	3.6.1.6 STREAM_DATA_AVAILABLE

	3.7 About Using Larger Row Count and Error Code Range Data Types
	3.7.1 Using Larger Row Count in SELECT Operations
	3.7.2 Using Larger Row Count in INSERT, UPDATE, and DELETE Operations

	3.8 About Committing a Transaction
	3.9 Caching Statements
	3.10 About Handling Exceptions
	3.10.1 About Handling Null and Truncated Data

	4 	Object Programming
	4.1 Overview of Object Programming
	4.2 About Working with Objects in C++ with OCCI
	4.2.1 About Persistent Objects
	4.2.2 About Transient Objects
	4.2.3 About Values

	4.3 About Representing Objects in C++ Applications
	4.3.1 Creating Persistent and Transient Objects
	4.3.2 Creating Object Representations using the OTT Utility

	4.4 About Developing a C++ Application using OCCI
	4.4.1 Developing Basic Object Program Structure
	4.4.2 About Basic Object Operational Flow
	4.4.2.1 About Initializing OCCI in Object Mode
	4.4.2.2 About Pinning anObject
	4.4.2.3 About Operating on an Object in Cache
	4.4.2.4 About Flushing Changes to the Object
	4.4.2.5 About Deletion of an Object

	4.5 Migrating C++ Applications to Oracle Using OCCI
	4.6 Overview of Associative Access
	4.6.1 Using SQL to Access Objects
	4.6.2 Inserting and Modifying Values

	4.7 Overview of Navigational Access
	4.7.1 Retrieving an Object Reference (REF) from the Database Server
	4.7.2 Pinning an Object
	4.7.3 Manipulating Object Attributes
	4.7.4 About Marking Objects and Flushing Changes
	4.7.5 Marking an Object as Modified (Dirty)
	4.7.6 About Recording Changes in the Database
	4.7.7 Collecting Garbage in the Object Cache
	4.7.8 About Ensuring Transactional Consistency of References

	4.8 Overview of Complex Object Retrieval
	4.8.1 Retrieving Complex Objects
	4.8.2 About Prefetching Complex Objects

	4.9 Working with Collections
	4.9.1 Fetching Embedded Objects
	4.9.2 About Nullness

	4.10 About Using Object References
	4.11 About Deleting Objects from the Database
	4.12 About Type Inheritance
	4.12.1 About Substitutability
	4.12.2 Declaring NOT INSTANTIABLE Types and Methods
	4.12.3 About OCCI Support for Type Inheritance
	4.12.3.1 About Connection::getMetaData()
	4.12.3.2 About Bind and Define Functions

	4.12.4 About OTT Support for Type Inheritance

	4.13 A Sample OCCI Application

	5 Data Types
	5.1 Overview of Oracle Data Types
	5.1.1 About OCCI Type and Data Conversion

	5.2 Internal Data Types
	5.2.1 Character Strings and Byte Arrays
	5.2.2 Universal Rowid (UROWID)

	5.3 External Data Types
	5.3.1 Description of External Data Types
	5.3.1.1 BFILE
	5.3.1.2 BDOUBLE
	5.3.1.3 BFLOAT
	5.3.1.4 BLOB
	5.3.1.5 CHAR
	5.3.1.6 CHARZ
	5.3.1.7 CLOB
	5.3.1.8 DATE
	5.3.1.8.1 Example 1, 01-JUN-2000, 3:17PM:
	5.3.1.8.2 Example 2, 01-JAN-4712 BCE:

	5.3.1.9 FLOAT
	5.3.1.10 INTEGER
	5.3.1.11 INTERVAL DAY TO SECOND
	5.3.1.12 INTERVAL YEAR TO MONTH
	5.3.1.13 LONG
	5.3.1.14 LONG RAW
	5.3.1.15 LONG VARCHAR
	5.3.1.16 LONG VARRAW
	5.3.1.17 NCLOB
	5.3.1.18 NUMBER
	5.3.1.19 OCCI BFILE
	5.3.1.20 OCCI BLOB
	5.3.1.21 OCCI BYTES
	5.3.1.22 OCCI CLOB
	5.3.1.23 OCCI DATE
	5.3.1.24 OCCI INTERVALDS
	5.3.1.25 OCCI INTERVALYM
	5.3.1.26 OCCI NUMBER
	5.3.1.27 OCCI POBJECT
	5.3.1.28 OCCI REF
	5.3.1.29 OCCI REFANY
	5.3.1.30 OCCI STRING
	5.3.1.31 OCCI TIMESTAMP
	5.3.1.32 OCCI VECTOR
	5.3.1.33 RAW
	5.3.1.34 REF
	5.3.1.35 ROWID
	5.3.1.36 STRING
	5.3.1.37 TIMESTAMP
	5.3.1.38 TIMESTAMP WITH LOCAL TIME ZONE
	5.3.1.39 TIMESTAMP WITH TIME ZONE
	5.3.1.40 UNSIGNED INT
	5.3.1.41 VARCHAR
	5.3.1.42 VARCHAR2
	5.3.1.43 VARNUM
	5.3.1.44 VARRAW
	5.3.1.45 NATIVE DOUBLE
	5.3.1.46 NATIVE FLOAT

	5.4 Data Conversions
	5.4.1 Data Conversions for LOB Data Types
	5.4.2 Data Conversions for Date, Timestamp, and Interval Data Types

	6 Metadata
	6.1 Overview of Metadata
	6.2 Using Identity Column Metadata
	6.3 About Describing Database Metadata
	6.3.1 Using Metadata (Code Examples)

	6.4 Attribute Reference Information
	6.4.1 Parameter Attributes
	6.4.2 Table and View Attributes
	6.4.3 Procedure, Function, and Subprogram Attributes
	6.4.4 Package Attributes
	6.4.5 Type Attributes
	6.4.6 Type Attribute Attributes
	6.4.7 Type Method Attributes
	6.4.8 Collection Attributes
	6.4.9 Synonym Attributes
	6.4.10 Sequence Attributes
	6.4.11 Column Attributes
	6.4.12 Argument and Result Attributes
	6.4.13 List Attributes
	6.4.14 Schema Attributes
	6.4.15 Database Attributes

	7 Programming with LOBs
	7.1 Overview of LOBs
	7.1.1 Introducing Internal LOBs
	7.1.2 Introducing External LOBs
	7.1.3 About Storing LOBs

	7.2 Creating LOBs in OCCI Applications
	7.3 Restricting the Opening and Closing of LOBs
	7.4 About Reading and Writing LOBs
	7.4.1 Reading LOBs
	7.4.2 Writing LOBs
	7.4.3 About Enhancing the Performance of LOB Reads and Writes
	7.4.3.1 About Using the getChunkSize() Method

	7.4.4 Updating LOBs
	7.4.5 About Reading and Writing Multiple LOBs
	7.4.5.1 About Using the Interfaces for Reading and Writing Multiple LOBs

	7.5 Using Objects with LOB Attributes
	7.6 About Using SecureFiles
	7.6.1 About Using SecureFile Compression
	7.6.2 About Using SecureFiles Encryption
	7.6.3 About Using SecureFiles Deduplication
	7.6.4 About Combining SecureFiles Compression, Encryption, and Deduplication
	7.6.5 SecureFiles LOB Types and Constants

	8 Object Type Translator Utility
	8.1 Overview of the Object Type Translator Utility
	8.2 Using the OTT Utility
	8.3 Creating Types in the Database
	8.4 About Invoking the OTT Utility
	8.4.1 Specifying OTT Parameters
	8.4.1.1 About Setting Parameters on the Command Line
	8.4.1.2 About Setting Parameters in the INTYPE File
	8.4.1.3 About Setting Parameters in the Configuration File

	8.4.2 Invoking the OTT Utility on the Command Line
	8.4.2.1 Elements Used on the OTT Command Line

	8.4.3 OTT Utility Parameters
	8.4.3.1 ATTRACCESS
	8.4.3.2 CASE
	8.4.3.3 CODE
	8.4.3.4 CONFIG
	8.4.3.5 CPPFILE
	8.4.3.6 ERRTYPE
	8.4.3.7 HFILE
	8.4.3.8 INTYPE
	8.4.3.9 MAPFILE
	8.4.3.10 MAPFUNC
	8.4.3.11 OUTTYPE
	8.4.3.12 SCHEMA_NAMES
	8.4.3.13 TRANSITIVE
	8.4.3.14 UNICODE
	8.4.3.15 USE_MARKER
	8.4.3.16 USERID

	8.4.4 Where OTT Parameters Can Appear
	8.4.5 File Name Comparison Restriction
	8.4.6 Using the OTT Command on Microsoft Windows

	8.5 About Using the INTYPE File
	8.5.1 Using the INTYPE File
	8.5.2 Structure of the INTYPE File
	8.5.2.1 INTYPE File Type Specifications

	8.5.3 Using Nested include File Generation

	8.6 Using OTT Utility Data Type Mappings
	8.6.1 Default Name Mapping

	8.7 Overview of the OUTTYPE File
	8.8 Using the OTT Utility and OCCI Applications
	8.9 Generating C++ Classes Generated by the OTT Utility
	8.9.1 Map Registry Function
	8.9.2 Extending C++ Classes
	8.9.3 Carrying Forward User Added Code
	8.9.3.1 How to Use Properties of OTT Markers
	8.9.3.2 Using OTT Markers

	9 Globalization and Unicode Support
	9.1 Overview of Globalization and Unicode Support
	9.2 Specifying Charactersets
	9.3 Data Types for Globalization and Unicode Support
	9.3.1 Using the UString Data Type
	9.3.2 Using Multibyte and UTF16 data
	9.3.3 Using CLOB and NCLOB Data Types

	9.4 About Using Objects and OTT Support

	10 Oracle Streams Advanced Queuing
	10.1 Overview of Oracle Streams Advanced Queuing
	10.2 About AQ Implementation in OCCI
	10.2.1 Message
	10.2.2 Agent
	10.2.3 Producer
	10.2.4 Consumer
	10.2.5 Listener
	10.2.6 Subscription

	10.3 About Creating Messages
	10.3.1 About Message Payloads
	10.3.1.1 RAW
	10.3.1.2 AnyData
	10.3.1.3 Using User-defined Types as Payloads

	10.3.2 Message Properties
	10.3.2.1 Correlation
	10.3.2.2 Sender
	10.3.2.3 Delay and Expiration
	10.3.2.4 Recipients
	10.3.2.5 Priority and Ordering

	10.4 Enqueuing Messages
	10.5 Dequeuing Messages
	10.5.1 About Dequeuing Options
	10.5.1.1 Correlation
	10.5.1.2 Mode
	10.5.1.3 Navigation

	10.6 Listening for Messages
	10.7 About Registering for Notification
	10.7.1 Publish-Subscribe Notifications
	10.7.1.1 How to Use Direct Registration
	10.7.1.2 Using Open Registration

	10.7.2 About Notification Callback

	10.8 About Message Format Transformation

	11 Oracle XA Library
	11.1 Developing Applications with XA and OCCI
	11.2 APIs for XA Support

	12 Optimizing Performance of C++ Applications
	12.1 About Transparent Application Failover
	12.1.1 Using Transparent Application Failover
	12.1.2 About Objects and Transparent Application Failover
	12.1.3 Using Connection Pooling and Transparent Application Failover

	12.2 About Connection Sharing
	12.2.1 Introduction to Thread Safety
	12.2.2 Implementing Thread Safety
	12.2.3 About Serialization
	12.2.3.1 Automatic Serialization
	12.2.3.2 Application-Provided Serialization

	12.2.4 Operating System Considerations

	12.3 About Application-Managed Data Buffering
	12.3.1 Using the setDataBuffer() Method
	12.3.2 Using the executeArrayUpdate() Method

	12.4 Using the Array Fetch Using next() Method
	12.5 Modifying Rows Iteratively
	12.6 About Run-time Load Balancing of the Stateless Connection Pool
	12.6.1 API Support

	12.7 About Fault Diagnosability
	12.7.1 Using ADR Base Location
	12.7.2 Using ADRCI
	12.7.3 Controlling ADR Creation and Disabling Fault Diagnosability

	12.8 Using Client Result Cache
	12.9 About Client-Side Deployment Parameters and Auto Tuning

	13 OCCI Application Programming Interface
	13.1 OCCI Classes and Methods
	13.1.1 Using OCCI Classes
	13.1.2 OCCI Support for Windows NT and z/OS
	13.1.2.1 Working with Collections of Refs
	13.1.2.1.1 ResultSet Class
	13.1.2.1.2 Statement Class

	13.2 Common OCCI Constants
	13.3 Agent Class
	13.3.1 Agent()
	13.3.2 getAddress()
	13.3.3 getName()
	13.3.4 getProtocol()
	13.3.5 isNull()
	13.3.6 operator=()
	13.3.7 setAddress()
	13.3.8 setName()
	13.3.9 setNull()
	13.3.10 setProtocol()

	13.4 AnyData Class
	13.4.1 AnyData()
	13.4.2 getAsBDouble()
	13.4.3 getAsBfile()
	13.4.4 getAsBFloat()
	13.4.5 getAsBytes()
	13.4.6 getAsDate()
	13.4.7 getAsIntervalDS()
	13.4.8 getAsIntervalYM()
	13.4.9 getAsNumber()
	13.4.10 getAsObject()
	13.4.11 getAsRef()
	13.4.12 getAsString()
	13.4.13 getAsTimestamp()
	13.4.14 getType()
	13.4.15 isNull()
	13.4.16 setFromBDouble()
	13.4.17 setFromBfile()
	13.4.18 setFromBFloat()
	13.4.19 setFromBytes()
	13.4.20 setFromDate()
	13.4.21 setFromIntervalDS()
	13.4.22 setFromIntervalYM()
	13.4.23 setFromNumber()
	13.4.24 setFromObject()
	13.4.25 setFromRef()
	13.4.26 setFromString()
	13.4.27 setFromTimestamp()
	13.4.28 setNull()

	13.5 BatchSQLException Class
	13.5.1 getException()
	13.5.2 getFailedRowCount()
	13.5.3 getRowNum()

	13.6 Bfile Class
	13.6.1 Bfile()
	13.6.2 close()
	13.6.3 closeStream()
	13.6.4 fileExists()
	13.6.5 getDirAlias()
	13.6.6 getFileName()
	13.6.7 getStream()
	13.6.8 getUStringDirAlias()
	13.6.9 getUStringFileName()
	13.6.10 isInitialized()
	13.6.11 isNull()
	13.6.12 isOpen()
	13.6.13 length()
	13.6.14 open()
	13.6.15 operator=()
	13.6.16 operator==()
	13.6.17 operator!=()
	13.6.18 read()
	13.6.19 setName()
	13.6.20 setNull()

	13.7 Blob Class
	13.7.1 Blob()
	13.7.2 append()
	13.7.3 close()
	13.7.4 closeStream()
	13.7.5 copy()
	13.7.6 getChunkSize()
	13.7.7 getContentType()
	13.7.8 getOptions()
	13.7.9 getStream()
	13.7.10 isInitialized()
	13.7.11 isNull()
	13.7.12 isOpen()
	13.7.13 length()
	13.7.14 open()
	13.7.15 operator=()
	13.7.16 operator==()
	13.7.17 operator!= ()
	13.7.18 read()
	13.7.19 setContentType()
	13.7.20 setEmpty()
	13.7.21 setNull()
	13.7.22 setOptions()
	13.7.23 trim()
	13.7.24 write()
	13.7.25 writeChunk()

	13.8 Bytes Class
	13.8.1 Bytes()
	13.8.2 byteAt()
	13.8.3 getBytes()
	13.8.4 isNull()
	13.8.5 length()
	13.8.6 operator=()
	13.8.7 setNull()

	13.9 Clob Class
	13.9.1 Clob()
	13.9.2 append()
	13.9.3 close()
	13.9.4 closeStream()
	13.9.5 copy()
	13.9.6 getCharSetForm()
	13.9.7 getCharSetId()
	13.9.8 getCharSetIdUString()
	13.9.9 getChunkSize()
	13.9.10 getContentType()
	13.9.11 getOptions()
	13.9.12 getStream()
	13.9.13 isInitialized()
	13.9.14 isNull()
	13.9.15 isOpen()
	13.9.16 length()
	13.9.17 open()
	13.9.18 operator=()
	13.9.19 operator==()
	13.9.20 operator!=()
	13.9.21 read()
	13.9.22 setCharSetId()
	13.9.23 setCharSetIdUString()
	13.9.24 setCharSetForm()
	13.9.25 setContentType()
	13.9.26 setEmpty()
	13.9.27 setNull()
	13.9.28 setOptions()
	13.9.29 trim()
	13.9.30 write()
	13.9.31 writeChunk()

	13.10 Connection Class
	13.10.1 changePassword()
	13.10.2 commit()
	13.10.3 createStatement()
	13.10.4 flushCache()
	13.10.5 getClientCharSet()
	13.10.6 getClientCharSetUString()
	13.10.7 getClientNCHARCharSet()
	13.10.8 getClientNCHARCharSetUString()
	13.10.9 getClientVersion()
	13.10.10 getLTXID()
	13.10.11 getMetaData()
	13.10.12 getOCIServer()
	13.10.13 getOCIServiceContext()
	13.10.14 getOCISession()
	13.10.15 getServerVersion()
	13.10.16 getServerVersionUString()
	13.10.17 getStmtCacheSize()
	13.10.18 getTag()
	13.10.19 isCached()
	13.10.20 pinVectorOfRefs()
	13.10.21 postToSubscriptions()
	13.10.22 readVectorOfBfiles()
	13.10.23 readVectorOfBlobs()
	13.10.24 readVectorOfClobs()
	13.10.25 registerSubscriptions()
	13.10.26 rollback()
	13.10.27 setStmtCacheSize()
	13.10.28 setTAFNotify()
	13.10.29 terminateStatement()
	13.10.30 unregisterSubscription()
	13.10.31 writeVectorOfBlobs()
	13.10.32 writeVectorOfClobs()

	13.11 ConnectionPool Class
	13.11.1 createConnection()
	13.11.2 createProxyConnection()
	13.11.3 getBusyConnections()
	13.11.4 getIncrConnections()
	13.11.5 getMaxConnections()
	13.11.6 getMinConnections()
	13.11.7 getOpenConnections()
	13.11.8 getPoolName()
	13.11.9 getStmtCacheSize()
	13.11.10 getTimeOut()
	13.11.11 setErrorOnBusy()
	13.11.12 setPoolSize()
	13.11.13 setStmtCacheSize()
	13.11.14 setTimeOut()
	13.11.15 terminateConnection()

	13.12 Consumer Class
	13.12.1 Consumer()
	13.12.2 getConsumerName()
	13.12.3 getCorrelationId()
	13.12.4 getDequeueMode()
	13.12.5 getMessageIdToDequeue()
	13.12.6 getPositionOfMessage()
	13.12.7 getQueueName()
	13.12.8 getTransformation()
	13.12.9 getVisibility()
	13.12.10 getWaitTime()
	13.12.11 isNull()
	13.12.12 operator=()
	13.12.13 receive()
	13.12.14 setAgent()
	13.12.15 setConsumerName()
	13.12.16 setCorrelationId()
	13.12.17 setDequeueMode()
	13.12.18 setMessageIdToDequeue()
	13.12.19 setNull()
	13.12.20 setPositionOfMessage()
	13.12.21 setQueueName()
	13.12.22 setTransformation()
	13.12.23 setVisibility()
	13.12.24 setWaitTime()

	13.13 Date Class
	13.13.1 Date()
	13.13.2 addDays()
	13.13.3 addMonths()
	13.13.4 daysBetween()
	13.13.5 fromBytes()
	13.13.6 fromText()
	13.13.7 getDate()
	13.13.8 getSystemDate()
	13.13.9 isNull()
	13.13.10 lastDay()
	13.13.11 nextDay()
	13.13.12 operator=()
	13.13.13 operator==()
	13.13.14 operator!=()
	13.13.15 operator>()
	13.13.16 operator>=()
	13.13.17 operator<()
	13.13.18 operator<=()
	13.13.19 setDate()
	13.13.20 setNull()
	13.13.21 toBytes()
	13.13.22 toText()
	13.13.23 toZone()

	13.14 Environment Class
	13.14.1 createConnection()
	13.14.2 createConnectionPool()
	13.14.3 createEnvironment()
	13.14.4 createStatelessConnectionPool()
	13.14.5 enableSubscription()
	13.14.6 disableSubscription()
	13.14.7 getCacheMaxSize()
	13.14.8 getCacheOptSize()
	13.14.9 getCacheSortedFlush()
	13.14.10 getCurrentHeapSize()
	13.14.11 getLDAPAdminContext()
	13.14.12 getLDAPAuthentication()
	13.14.13 getLDAPHost()
	13.14.14 getLDAPPort()
	13.14.15 getMap()
	13.14.16 getNLSLanguage()
	13.14.17 getNLSTerritory()
	13.14.18 getOCIEnvironment()
	13.14.19 getXAConnection()
	13.14.20 getXAEnvironment()
	13.14.21 releaseXAConnection()
	13.14.22 releaseXAEnvironment()
	13.14.23 setCacheMaxSize()
	13.14.24 setCacheOptSize()
	13.14.25 setCacheSortedFlush()
	13.14.26 setLDAPAdminContext()
	13.14.27 setLDAPAuthentication()
	13.14.28 setLDAPHostAndPort()
	13.14.29 setLDAPLoginNameAndPassword()
	13.14.30 setNLSLanguage()
	13.14.31 setNLSTerritory()
	13.14.32 terminateConnection()
	13.14.33 terminateConnectionPool()
	13.14.34 terminateEnvironment()
	13.14.35 terminateStatelessConnectionPool()

	13.15 IntervalDS Class
	13.15.1 IntervalDS()
	13.15.2 fromText()
	13.15.3 fromUText()
	13.15.4 getDay()
	13.15.5 getFracSec()
	13.15.6 getHour()
	13.15.7 getMinute()
	13.15.8 getSecond()
	13.15.9 isNull()
	13.15.10 operator*()
	13.15.11 operator*=()
	13.15.12 operator=()
	13.15.13 operator==()
	13.15.14 operator!=()
	13.15.15 operator/()
	13.15.16 operator/=()
	13.15.17 operator>()
	13.15.18 operator>=()
	13.15.19 operator<()
	13.15.20 operator<=()
	13.15.21 operator-()
	13.15.22 operator-=()
	13.15.23 operator+()
	13.15.24 operator+=()
	13.15.25 set()
	13.15.26 setNull()
	13.15.27 toText()
	13.15.28 toUText()

	13.16 IntervalYM Class
	13.16.1 IntervalYM()
	13.16.2 fromText()
	13.16.3 fromUText()
	13.16.4 getMonth()
	13.16.5 getYear()
	13.16.6 isNull()
	13.16.7 operator*()
	13.16.8 operator*=()
	13.16.9 operator=()
	13.16.10 operator==()
	13.16.11 operator!=()
	13.16.12 operator/()
	13.16.13 operator/=()
	13.16.14 operator>()
	13.16.15 operator>=()
	13.16.16 operator<()
	13.16.17 operator<=()
	13.16.18 operator-()
	13.16.19 operator-=()
	13.16.20 operator+()
	13.16.21 operator+=()
	13.16.22 set()
	13.16.23 setNull()
	13.16.24 toText()
	13.16.25 toUText()

	13.17 Listener Class
	13.17.1 Listener()
	13.17.2 getAgentList()
	13.17.3 getTimeOutForListen()
	13.17.4 listen()
	13.17.5 setAgentList()
	13.17.6 setTimeOutForListen()

	13.18 Map Class
	13.18.1 put()

	13.19 Message Class
	13.19.1 Message()
	13.19.2 getAnyData()
	13.19.3 getAttemptsToDequeue()
	13.19.4 getBytes()
	13.19.5 getCorrelationId()
	13.19.6 getDelay()
	13.19.7 getExceptionQueueName()
	13.19.8 getExpiration()
	13.19.9 getMessageEnqueuedTime()
	13.19.10 getMessageState()
	13.19.11 getObject()
	13.19.12 getOriginalMessageId()
	13.19.13 getPayloadType()
	13.19.14 getPriority()
	13.19.15 getSenderId()
	13.19.16 isNull()
	13.19.17 operator=()
	13.19.18 setAnyData()
	13.19.19 setBytes()
	13.19.20 setCorrelationId()
	13.19.21 setDelay()
	13.19.22 setExceptionQueueName()
	13.19.23 setExpiration()
	13.19.24 setNull()
	13.19.25 setObject()
	13.19.26 setOriginalMessageId()
	13.19.27 setPriority()
	13.19.28 setRecipientList()
	13.19.29 setSenderId()

	13.20 MetaData Class
	13.20.1 MetaData()
	13.20.2 getAttributeCount()
	13.20.3 getAttributeId()
	13.20.4 getAttributeType()
	13.20.5 getBoolean()
	13.20.6 getInt()
	13.20.7 getMetaData()
	13.20.8 getNumber()
	13.20.9 getRef()
	13.20.10 getString()
	13.20.11 getTimeStamp()
	13.20.12 getUInt()
	13.20.13 getUString()
	13.20.14 getVector()
	13.20.15 operator=()

	13.21 NotifyResult Class
	13.21.1 getConsumerName()
	13.21.2 getMessage()
	13.21.3 getMessageId()
	13.21.4 getPayload()
	13.21.5 getQueueName()

	13.22 Number Class
	13.22.1 Number()
	13.22.2 abs()
	13.22.3 arcCos()
	13.22.4 arcSin()
	13.22.5 arcTan()
	13.22.6 arcTan2()
	13.22.7 ceil()
	13.22.8 cos()
	13.22.9 exp()
	13.22.10 floor()
	13.22.11 fromBytes()
	13.22.12 fromText()
	13.22.13 hypCos()
	13.22.14 hypSin()
	13.22.15 hypTan()
	13.22.16 intPower()
	13.22.17 isNull()
	13.22.18 ln()
	13.22.19 log()
	13.22.20 operator++()
	13.22.21 operator--()
	13.22.22 operator*()
	13.22.23 operator/()
	13.22.24 operator%()
	13.22.25 operator+()
	13.22.26 operator-()
	13.22.27 operator-()
	13.22.28 operator<()
	13.22.29 operator<=()
	13.22.30 operator>()
	13.22.31 operator>=()
	13.22.32 operator==()
	13.22.33 operator!=()
	13.22.34 operator=()
	13.22.35 operator*=()
	13.22.36 operator/=()
	13.22.37 operator%=()
	13.22.38 operator+=()
	13.22.39 operator-=()
	13.22.40 operator char()
	13.22.41 operator signed char()
	13.22.42 operator double()
	13.22.43 operator float()
	13.22.44 operator int()
	13.22.45 operator long()
	13.22.46 operator long double()
	13.22.47 operator short()
	13.22.48 operator unsigned char()
	13.22.49 operator unsigned int()
	13.22.50 operator unsigned long()
	13.22.51 operator unsigned short()
	13.22.52 power()
	13.22.53 prec()
	13.22.54 round()
	13.22.55 setNull()
	13.22.56 shift()
	13.22.57 sign()
	13.22.58 sin()
	13.22.59 squareroot()
	13.22.60 tan()
	13.22.61 toBytes()
	13.22.62 toText()
	13.22.63 trunc()

	13.23 PObject Class
	13.23.1 PObject()
	13.23.2 flush()
	13.23.3 getConnection()
	13.23.4 getRef()
	13.23.5 getSQLTypeName()
	13.23.6 isLocked()
	13.23.7 isNull()
	13.23.8 lock()
	13.23.9 markDelete()
	13.23.10 markModified()
	13.23.11 operator=()
	13.23.12 operator delete()
	13.23.13 operator new()
	13.23.14 pin()
	13.23.15 setNull()
	13.23.16 unmark()
	13.23.17 unpin()

	13.24 Producer Class
	13.24.1 Producer()
	13.24.2 getQueueName()
	13.24.3 getRelativeMessageId()
	13.24.4 getSequenceDeviation()
	13.24.5 getTransformation()
	13.24.6 getVisibility()
	13.24.7 isNull()
	13.24.8 operator=()
	13.24.9 send()
	13.24.10 setNull()
	13.24.11 setQueueName()
	13.24.12 setRelativeMessageId()
	13.24.13 setSequenceDeviation()
	13.24.14 setTransformation()
	13.24.15 setVisibility()

	13.25 Ref Class
	13.25.1 Ref()
	13.25.2 clear()
	13.25.3 getConnection()
	13.25.4 isClear()
	13.25.5 isNull()
	13.25.6 markDelete()
	13.25.7 operator->()
	13.25.8 operator*()
	13.25.9 operator==()
	13.25.10 operator!=()
	13.25.11 operator=()
	13.25.12 ptr()
	13.25.13 setLock()
	13.25.14 setNull()
	13.25.15 setPrefetch()
	13.25.16 unmarkDelete()

	13.26 RefAny Class
	13.26.1 RefAny()
	13.26.2 clear()
	13.26.3 getConnection()
	13.26.4 isNull()
	13.26.5 markDelete()
	13.26.6 operator=()
	13.26.7 operator==()
	13.26.8 operator!=()
	13.26.9 unmarkDelete()

	13.27 ResultSet Class
	13.27.1 cancel()
	13.27.2 closeStream()
	13.27.3 getBDouble()
	13.27.4 getBfile()
	13.27.5 getBFloat()
	13.27.6 getBlob()
	13.27.7 getBytes()
	13.27.8 getCharSet()
	13.27.9 getCharSetUString()
	13.27.10 getClob()
	13.27.11 getColumnListMetaData()
	13.27.12 getCurrentStreamColumn()
	13.27.13 getCurrentStreamRow()
	13.27.14 getCursor()
	13.27.15 getDatabaseNCHARParam()
	13.27.16 getDate()
	13.27.17 getDouble()
	13.27.18 getFloat()
	13.27.19 getInt()
	13.27.20 getIntervalDS()
	13.27.21 getIntervalYM()
	13.27.22 getMaxColumnSize()
	13.27.23 getNumArrayRows()
	13.27.24 getNumber()
	13.27.25 getObject()
	13.27.26 getRef()
	13.27.27 getRowid()
	13.27.28 getRowPosition()
	13.27.29 getStatement()
	13.27.30 getStream()
	13.27.31 getString()
	13.27.32 getTimestamp()
	13.27.33 getUInt()
	13.27.34 getUString()
	13.27.35 getVector()
	13.27.36 getVectorOfRefs()
	13.27.37 isNull()
	13.27.38 isTruncated()
	13.27.39 next()
	13.27.40 preTruncationLength()
	13.27.41 setBinaryStreamMode()
	13.27.42 setCharacterStreamMode()
	13.27.43 setCharSet()
	13.27.44 setCharSetUString()
	13.27.45 setDatabaseNCHARParam()
	13.27.46 setDataBuffer()
	13.27.47 setErrorOnNull()
	13.27.48 setErrorOnTruncate()
	13.27.49 setPrefetchMemorySize()
	13.27.50 setPrefetchRowCount()
	13.27.51 setMaxColumnSize()
	13.27.52 status()

	13.28 SQLException Class
	13.28.1 SQLException()
	13.28.2 getErrorCode()
	13.28.3 getMessage()
	13.28.4 getNLSMessage()
	13.28.5 getNLSUStringMessage()
	13.28.6 getUStringMessage()
	13.28.7 getXAErrorCode()
	13.28.8 isRecoverable()
	13.28.9 setErrorCtx()
	13.28.10 what()

	13.29 StatelessConnectionPool Class
	13.29.1 getAnyTaggedConnection()
	13.29.2 getAnyTaggedProxyConnection()
	13.29.3 getBusyConnections()
	13.29.4 getBusyOption()
	13.29.5 getConnection()
	13.29.6 getIncrConnections()
	13.29.7 getMaxConnections()
	13.29.8 getMinConnections()
	13.29.9 getOpenConnections()
	13.29.10 getPoolName()
	13.29.11 getProxyConnection()
	13.29.12 getStmtCacheSize()
	13.29.13 getTimeOut()
	13.29.14 releaseConnection()
	13.29.15 setBusyOption()
	13.29.16 setPoolSize()
	13.29.17 setTimeOut()
	13.29.18 setStmtCacheSize()
	13.29.19 terminateConnection()

	13.30 Statement Class
	13.30.1 addIteration()
	13.30.2 closeResultSet()
	13.30.3 closeStream()
	13.30.4 disableCaching()
	13.30.5 execute()
	13.30.6 executeArrayUpdate()
	13.30.7 executeQuery()
	13.30.8 executeUpdate()
	13.30.9 getAutoCommit()
	13.30.10 getBatchErrorMode()
	13.30.11 getBDouble()
	13.30.12 getBfile()
	13.30.13 getBFloat()
	13.30.14 getBlob()
	13.30.15 getBytes()
	13.30.16 getCharSet()
	13.30.17 getCharSetUString()
	13.30.18 getClob()
	13.30.19 getConnection()
	13.30.20 getCurrentIteration()
	13.30.21 getCurrentStreamIteration()
	13.30.22 getCurrentStreamParam()
	13.30.23 getCursor()
	13.30.24 getDatabaseNCHARParam()
	13.30.25 getDate()
	13.30.26 getDMLRowCounts()
	13.30.27 getDouble()
	13.30.28 getFloat()
	13.30.29 getInt()
	13.30.30 getIntervalDS()
	13.30.31 getIntervalYM()
	13.30.32 getMaxIterations()
	13.30.33 getMaxParamSize()
	13.30.34 getNumber()
	13.30.35 getObject()
	13.30.36 getOCIStatement()
	13.30.37 getRef()
	13.30.38 getResultSet()
	13.30.39 getRowCountsOption()
	13.30.40 getRowid()
	13.30.41 getSQL()
	13.30.42 getSQLUString()
	13.30.43 getStream()
	13.30.44 getString()
	13.30.45 getTimestamp()
	13.30.46 getUb8RowCount()
	13.30.47 getUInt()
	13.30.48 getUpdateCount()
	13.30.49 getUString()
	13.30.50 getVector()
	13.30.51 getVectorOfRefs()
	13.30.52 isNull()
	13.30.53 isTruncated()
	13.30.54 preTruncationLength()
	13.30.55 registerOutParam()
	13.30.56 setAutoCommit()
	13.30.57 setBatchErrorMode()
	13.30.58 setBDouble()
	13.30.59 setBfile()
	13.30.60 setBFloat()
	13.30.61 setBinaryStreamMode()
	13.30.62 setBlob()
	13.30.63 setBytes()
	13.30.64 setCharacterStreamMode()
	13.30.65 setCharSet()
	13.30.66 setCharSetUString()
	13.30.67 setClob()
	13.30.68 setDate()
	13.30.69 setDatabaseNCHARParam()
	13.30.70 setDataBuffer()
	13.30.71 setDataBufferArray()
	13.30.72 setDouble()
	13.30.73 setErrorOnNull()
	13.30.74 setErrorOnTruncate()
	13.30.75 setFloat()
	13.30.76 setInt()
	13.30.77 setIntervalDS()
	13.30.78 setIntervalYM()
	13.30.79 setMaxIterations()
	13.30.80 setMaxParamSize()
	13.30.81 setNull()
	13.30.82 setNumber()
	13.30.83 setObject()
	13.30.84 setPrefetchMemorySize()
	13.30.85 setPrefetchRowCount()
	13.30.86 setRef()
	13.30.87 setRowCountsOption()
	13.30.88 setRowid()
	13.30.89 setSQL()
	13.30.90 setSQLUString()
	13.30.91 setString()
	13.30.92 setTimestamp()
	13.30.93 setUInt()
	13.30.94 setUString()
	13.30.95 setVector()
	13.30.96 setVectorOfRefs()
	13.30.97 status()

	13.31 Stream Class
	13.31.1 readBuffer()
	13.31.2 readLastBuffer()
	13.31.3 writeBuffer()
	13.31.4 writeLastBuffer()
	13.31.5 status()

	13.32 Subscription Class
	13.32.1 Subscription()
	13.32.2 getCallbackContext()
	13.32.3 getDatabaseServersCount()
	13.32.4 getDatabaseServerNames()
	13.32.5 getNotifyCallback()
	13.32.6 getPayload()
	13.32.7 getSubscriptionName()
	13.32.8 getSubscriptionNamespace()
	13.32.9 getRecipientName()
	13.32.10 getPresentation()
	13.32.11 getProtocol()
	13.32.12 isNull()
	13.32.13 operator=()
	13.32.14 setCallbackContext()
	13.32.15 setDatabaseServerNames()
	13.32.16 setNotifyCallback()
	13.32.17 setNull()
	13.32.18 setPayload()
	13.32.19 setPresentation()
	13.32.20 setProtocol()
	13.32.21 setSubscriptionName()
	13.32.22 setSubscriptionNamespace()
	13.32.23 setRecipientName()

	13.33 Timestamp Class
	13.33.1 Timestamp()
	13.33.2 fromText()
	13.33.3 getDate()
	13.33.4 getTime()
	13.33.5 getTimeZoneOffset()
	13.33.6 intervalAdd()
	13.33.7 intervalSub()
	13.33.8 isNull()
	13.33.9 operator=()
	13.33.10 operator==()
	13.33.11 operator!=()
	13.33.12 operator>()
	13.33.13 operator>=()
	13.33.14 operator<()
	13.33.15 operator<=()
	13.33.16 setDate()
	13.33.17 setNull()
	13.33.18 setTime()
	13.33.19 setTimeZoneOffset()
	13.33.20 subDS()
	13.33.21 subYM()
	13.33.22 toText()

	Index

