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Preface

This preface contains these topics:

• Audience

• Documentation Accessibility

• Related Documents

• Conventions

Audience
This document is intended for database administrators (DBAs) who are responsible for
the operation, maintenance, and performance of Oracle Database. This guide
describes how to use Oracle Database performance tools to optimize database
performance. This guide also describes performance best practices for creating an
initial database and includes performance-related reference information.

See Also:

• Oracle Database SQL Tuning Guide for information about how to optimize
and tune SQL performance

• Oracle Database 2 Day + Performance Tuning Guide to learn how to use
Oracle Enterprise Manager Cloud Control (Cloud Control) to tune database
performance

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.
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Related Documents
Before reading this guide, you should be familiar with the following documents:

• Oracle Database Concepts

• Oracle Database Administrator's Guide

• Oracle Database 2 Day DBA

• Oracle Database 2 Day + Performance Tuning Guide

To learn how to tune data warehouse environments, see Oracle Database Data
Warehousing Guide.

Many of the examples in this book use the sample schemas, which are installed by
default when you select the Basic Installation option during an Oracle Database
installation. To learn how to install and use these schemas, see Oracle Database
Sample Schemas.

To learn about Oracle Database error messages, see Oracle Database Error
Messages. Oracle Database error message documentation is only available in HTML.
When connected to the Internet, you can search for a specific error message using the
error message search feature of the Oracle online documentation.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface
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Changes in This Release for Oracle
Database Performance Tuning Guide

This preface contains:

• Changes in Oracle Database 12c Release 2 (12.2.0.1)

• Changes in Oracle Database 12c Release 1 (12.1.0.2)

• Changes in Oracle Database 12c Release 1 (12.1.0.1)

Changes in Oracle Database 12c Release 2 (12.2.0.1)
The following are changes in Oracle Database Performance Tuning Guide for Oracle
Database 12c Release 2 (12.2.0.1).

New Features
The following features are new in this release:

• Per-process PGA limits

A runaway query consuming excessive amount of PGA memory can create a
serious performance problem in Oracle Database. In a multitenant container
database (CDB), this type of query can affect the performance of all the pluggable
databases (PDBs). To prevent this issue, you can now specify an absolute limit for
the amount of PGA memory that can be used by each session in a particular
consumer group.

See "Sizing the Program Global Area Using the Resource Manager"

• Prespawned server processes

Oracle Database now prespawns pools of server processes when dedicated
broker connection mode is enabled or threaded execution mode is enabled. This
feature improves the client connection performance in these modes of database
operation.

See "Improved Client Connection Performance Due to Prespawned Processes"

• Automatic Workload Repository (AWR) support for multitenant environment

You can now capture Automatic Workload Repository (AWR) data for the PDBs in
a multitenant environment. This feature enables performance tuning of PDBs in a
multitenant environment.

See "Managing Automatic Workload Repository in a Multitenant Environment"

• Automatic Workload Repository (AWR) support for Oracle Active Data Guard
standby databases

Changes in This Release for Oracle Database Performance Tuning Guide
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You can now capture Automatic Workload Repository (AWR) data for Oracle
Active Data Guard standby databases. This feature enables performance tuning of
Oracle Active Data Guard standby databases.

See "Managing Automatic Workload Repository in Active Data Guard Standby
Databases"

• Direct NFS Client performance improvement features - Parallel NFS and Direct
NFS Dispatcher

Parallel NFS is an optional feature of Oracle Direct NFS Client that is introduced in
NFS version 4.1. This feature enables highly scalable distributed NAS storage for
better I/O performance.

The Direct NFS dispatcher feature consolidates the number of TCP connections
that are created from a database instance to an NFS server. In large database
deployments, using Direct NFS dispatcher improves scalability and network
performance.

See "Improving I/O Performance Using Direct NFS Client"

• Service-oriented buffer cache access optimization

Cluster-managed services allocate workloads across various Oracle Real
Application Clusters (Oracle RAC) database instances. These services also
access data from the Oracle RAC database instances and provide it to the
applications requesting the data. The Service-oriented Buffer Cache Access
Optimization feature allows Oracle RAC to cache service-specific data that is
frequently accessed by each of these services, thus improving the data access
time for the services. This data-dependent caching also leads to more consistent
response times when accessing data across Oracle RAC database instances. This
feature is permanently enabled in Oracle RAC.

Changes in Oracle Database 12c Release 1 (12.1.0.2)
The following are changes in Oracle Database Performance Tuning Guide for Oracle
Database 12c Release 1 (12.1.0.2).

New Features
The following features are new in this release:

• In-Memory Column Store

The In-Memory Column Store (IM column store) is an optional area of the SGA
that stores copies of tables, partitions, and other database objects in a columnar
format that is optimized for rapid scans. IM column store accelerates database
performance of analytics, data warehousing, and online transaction processing
(OLTP) applications.

See "Using the In-Memory Column Store to Improve Query Performance".

• Manageability support for In-Memory Column Store

SQL Monitor report, ASH report, and AWR report now show statistics for various
in-memory operations.

• Force full database caching mode

Changes in This Release for Oracle Database Performance Tuning Guide
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Force full database caching mode enables you to cache the entire database in
memory, which may provide substantial performance improvements when
performing full table scans or accessing LOBs.

See "Configuring the Database Caching Mode".

Changes in Oracle Database 12c Release 1 (12.1.0.1)
The following are changes in Oracle Database Performance Tuning Guide for Oracle
Database 12c Release 1 (12.1.0.1).

New Features
The following features are new in this release:

• Real-Time ADDM

Real-Time ADDM helps you to analyze and resolve problems in unresponsive or
hung databases without having to restart the database.

See "Real-Time ADDM Analysis".

• Limiting the size of the Program Global Area (PGA)

The PGA_AGGREGATE_LIMIT initialization parameter enables you to specify a hard limit
on PGA memory usage. Oracle Database ensures that the PGA size does not
exceed this limit by terminating sessions or processes that are consuming the
most PGA memory.

See "Limiting the Size of the Program Global Area".

Other Changes
The following are additional changes in the release:

• New books

Oracle Database Performance Tuning Guide is undergoing a major rewrite for this
release. As a result, the book structure has undergone significant changes. This
book now contains only tuning topics that pertain to the database itself. All SQL-
related tuning topics are moved to Oracle Database SQL Tuning Guide.

Changes in This Release for Oracle Database Performance Tuning Guide
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Part I
Database Performance Fundamentals

This part contains the following chapters:

• Performance Tuning Overview

• Designing and Developing for Performance

• Performance Improvement Methods

• Configuring a Database for Performance



1
Performance Tuning Overview

This chapter provides an introduction to performance tuning and contains the following
sections:

• Introduction to Performance Tuning

• Introduction to Performance Tuning Features and Tools

1.1 Introduction to Performance Tuning
This guide provides information about tuning Oracle Database for performance. Topics
discussed in this guide include:

• Performance Planning

• Instance Tuning

• SQL Tuning

See Also:

Oracle Database 2 Day + Performance Tuning Guide to learn how to use
Oracle Enterprise Manager Cloud Control (Cloud Control) to tune database
performance

1.1.1 Performance Planning
Refer to the topic Database Performance Fundamentals before proceeding with the
other parts of this documentation. Based on years of designing and performance
experience, Oracle has designed a performance methodology. This topic describes
activities that can dramatically improve system performance, such as:

• Understanding Investment Options

• Understanding Scalability

• System Architecture

• Application Design Principles

• Workload Testing, Modeling, and Implementation

• Deploying New Applications

1.1.2 Instance Tuning
Diagnosing and Tuning Database Performance discusses the factors involved in the
tuning and optimizing of an Oracle database instance.
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When considering instance tuning, take care in the initial design of the database to
avoid bottlenecks that could lead to performance problems. In addition, you must
consider:

• Allocating memory to database structures

• Determining I/O requirements of different parts of the database

• Tuning the operating system for optimal performance of the database

After the database instance has been installed and configured, you must monitor the
database as it is running to check for performance-related problems.

1.1.2.1 Performance Principles
Performance tuning requires a different, although related, method to the initial
configuration of a system. Configuring a system involves allocating resources in an
ordered manner so that the initial system configuration is functional.

Tuning is driven by identifying the most significant bottleneck and making the
appropriate changes to reduce or eliminate the effect of that bottleneck. Usually,
tuning is performed reactively, either while the system is in preproduction or after it is
live.

1.1.2.2 Baselines
The most effective way to tune is to have an established performance baseline that
you can use for comparison if a performance issue arises. Most database
administrators (DBAs) know their system well and can easily identify peak usage
periods. For example, the peak periods could be between 10.00am and 12.00pm and
also between 1.30pm and 3.00pm. This could include a batch window of 12.00am
midnight to 6am.

It is important to identify these peak periods at the site and install a monitoring tool that
gathers performance data for those high-load times. Optimally, data gathering should
be configured from when the application is in its initial trial phase during the QA cycle.
Otherwise, this should be configured when the system is first in production.

Ideally, baseline data gathered should include the following:

• Application statistics (transaction volumes, response time)

• Database statistics

• Operating system statistics

• Disk I/O statistics

• Network statistics

In the Automatic Workload Repository, baselines are identified by a range of
snapshots that are preserved for future comparisons. See "Automatic Workload
Repository".

1.1.2.3 The Symptoms and the Problems
A common pitfall in performance tuning is to mistake the symptoms of a problem for
the actual problem itself. It is important to recognize that many performance statistics
indicate the symptoms, and that identifying the symptom is not sufficient data to
implement a remedy. For example:

Chapter 1
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• Slow physical I/O

Generally, this is caused by poorly-configured disks. However, it could also be
caused by a significant amount of unnecessary physical I/O on those disks issued
by poorly-tuned SQL.

• Latch contention

Rarely is latch contention tunable by reconfiguring the instance. Rather, latch
contention usually is resolved through application changes.

• Excessive CPU usage

Excessive CPU usage usually means that there is little idle CPU on the system.
This could be caused by an inadequately-sized system, by untuned SQL
statements, or by inefficient application programs.

1.1.2.4 When to Tune
There are two distinct types of tuning:

• Proactive Monitoring

• Bottleneck Elimination

1.1.2.4.1 Proactive Monitoring
Proactive monitoring usually occurs on a regularly scheduled interval, where several
performance statistics are examined to identify whether the system behavior and
resource usage has changed. Proactive monitoring can also be considered as
proactive tuning.

Usually, monitoring does not result in configuration changes to the system, unless the
monitoring exposes a serious problem that is developing. In some situations,
experienced performance engineers can identify potential problems through statistics
alone, although accompanying performance degradation is usual.

Experimenting with or tweaking a system when there is no apparent performance
degradation as a proactive action can be a dangerous activity, resulting in
unnecessary performance drops. Tweaking a system should be considered reactive
tuning, and the steps for reactive tuning should be followed.

Monitoring is usually part of a larger capacity planning exercise, where resource
consumption is examined to see changes in the way the application is being used, and
the way the application is using the database and host resources.

1.1.2.4.2 Bottleneck Elimination
Tuning usually implies fixing a performance problem. However, tuning should be part
of the life cycle of an application—through the analysis, design, coding, production,
and maintenance stages. Often, the tuning phase is left until the database is in
production. At this time, tuning becomes a reactive process, where the most important
bottleneck is identified and fixed.

Usually, the purpose for tuning is to reduce resource consumption or to reduce the
elapsed time for an operation to complete. Either way, the goal is to improve the
effective use of a particular resource. In general, performance problems are caused by
the overuse of a particular resource. The overused resource is the bottleneck in the
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system. There are several distinct phases in identifying the bottleneck and the
potential fixes. These are discussed in the sections that follow.

Remember that the different forms of contention are symptoms that can be fixed by
making changes in the following places:

• Changes in the application, or the way the application is used

• Changes in Oracle

• Changes in the host hardware configuration

Often, the most effective way of resolving a bottleneck is to change the application.

1.1.3 SQL Tuning
Many application programmers consider SQL a messaging language, because queries
are issued and data is returned. However, client tools often generate inefficient SQL
statements. Therefore, a good understanding of the database SQL processing engine
is necessary for writing optimal SQL. This is especially true for high transaction
processing systems.

Typically, SQL statements issued by online transaction processing (OLTP)
applications operate on relatively few rows at a time. If an index can point to the exact
rows that are required, then Oracle Database can construct an accurate plan to
access those rows efficiently through the shortest possible path. In decision support
system (DSS) environments, selectivity is less important, because they often access
most of a table's rows. In such situations, full table scans are common, and indexes
are not even used. This book is primarily focussed on OLTP applications.

See Also:

• Oracle Database SQL Tuning Guide for detailed information on the process
of tuning and optimizing SQL statements

• Oracle Database Data Warehousing Guide for detailed information on
decision support systems (DSS) and mixed environments

1.1.3.1 Query Optimizer and Execution Plans
When a SQL statement is executed on an Oracle database, the query optimizer
determines the most efficient execution plan after considering many factors related to
the objects referenced and the conditions specified in the query. This determination is
an important step in the processing of any SQL statement and can greatly affect
execution time.

During the evaluation process, the query optimizer reviews statistics gathered on the
system to determine the best data access path and other considerations. You can
override the execution plan of the query optimizer with hints inserted in SQL
statement.

Chapter 1
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1.2 Introduction to Performance Tuning Features and Tools
Effective data collection and analysis is essential for identifying and correcting
performance problems. Oracle Database provides several tools that allow a
performance engineer to gather information regarding database performance. In
addition to gathering data, Oracle Database provides tools to monitor performance,
diagnose problems, and tune applications.

The Oracle Database gathering and monitoring features are mainly automatic,
managed by Oracle background processes. To enable automatic statistics collection
and automatic performance features, the STATISTICS_LEVEL initialization parameter
must be set to TYPICAL or ALL. You can administer and display the output of the
gathering and tuning tools with Oracle Enterprise Manager Cloud Control (Cloud
Control), or with APIs and views. For ease of use and to take advantage of its
numerous automated monitoring and diagnostic tools, Cloud Control is recommended.

See Also:

• Oracle Database 2 Day DBA to learn how to use Cloud Control to manage
Oracle Database

• Oracle Database 2 Day + Performance Tuning Guide to learn how to use
Cloud Control to tune database performance

• Oracle Database PL/SQL Packages and Types Reference for detailed
information on the DBMS_ADVISOR, DBMS_SQLTUNE, DBMS_AUTO_SQLTUNE, and
DBMS_WORKLOAD_REPOSITORY packages

• Oracle Database Reference for information about the STATISTICS_LEVEL
initialization parameter

1.2.1 Automatic Performance Tuning Features
The Oracle Database automatic performance tuning features include:

• Automatic Workload Repository (AWR) collects, processes, and maintains
performance statistics for problem detection and self-tuning purposes. See
"Automatic Workload Repository".

• Automatic Database Diagnostic Monitor (ADDM) analyzes the information
collected by AWR for possible performance problems with the Oracle database.
See "Overview of the Automatic Database Diagnostic Monitor".

• SQL Tuning Advisor allows a quick and efficient technique for optimizing SQL
statements without modifying any statements. See Oracle Database SQL Tuning
Guide.

• SQL Access Advisor provides advice on materialized views, indexes, and
materialized view logs. See Oracle Database SQL Tuning Guide.

• End to End Application tracing identifies excessive workloads on the system by
specific user, service, or application component. See Oracle Database SQL
Tuning Guide.

Chapter 1
Introduction to Performance Tuning Features and Tools

1-5



• Server-generated alerts automatically provide notifications when impending
problems are detected. See Oracle Database Administrator's Guide to learn how
to monitor the operation of the database with server-generated alerts.

• Additional advisors that can be launched from Oracle Enterprise Manager Cloud
Control (Cloud Control), such as memory advisors to optimize memory for an
instance. The memory advisors are commonly used when automatic memory
management is not set up for the database. Other advisors are used to optimize
mean time to recovery (MTTR), shrinking of segments, and undo tablespace
settings. To learn about the advisors available with Cloud Control, see Oracle
Database 2 Day + Performance Tuning Guide.

• The Database Performance page in Cloud Control displays host, instance service
time, and throughput information for real time monitoring and diagnosis. The page
can be set to refresh automatically in selected intervals or manually. To learn
about the Database Performance page, see Oracle Database 2 Day +
Performance Tuning Guide.

1.2.2 Additional Oracle Database Tools
This section describes additional Oracle Database tools that you can use for
determining performance problems.

1.2.2.1 V$ Performance Views
The V$ views are the performance information sources used by all Oracle Database
performance tuning tools. The V$ views are based on memory structures initialized at
instance startup. The memory structures, and the views that represent them, are
automatically maintained by Oracle Database for the life of the instance.

Note:

Oracle recommends using the Automatic Workload Repository to gather
performance data. These tools have been designed to capture all of the data
needed for performance analysis.

See Also:

• " Instance Tuning Using Performance Views" for more information about
diagnosing database performance problems using the V$ performance
views

• Oracle Database Reference for more information about dynamic
performance views
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2
Designing and Developing for Performance

Optimal system performance begins with design and continues throughout the life of
your system. Carefully consider performance issues during the initial design phase so
that you can tune your system more easily during production.

This chapter contains the following sections:

• Oracle Methodology

• Understanding Investment Options

• Understanding Scalability

• System Architecture

• Application Design Principles

• Workload Testing, Modeling, and Implementation

• Deploying New Applications

2.1 Oracle Methodology
System performance has become increasingly important as computer systems get
larger and more complex as the Internet plays a bigger role in business applications.
To accommodate this, Oracle has produced a performance methodology based on
years of designing and performance experience. This methodology explains clear and
simple activities that can dramatically improve system performance.

Performance strategies vary in their effectiveness, and systems with different
purposes—such as operational systems and decision support systems—require
different performance skills. This book examines the considerations that any database
designer, administrator, or performance expert should focus their efforts on.

System performance is designed and built into a system. It does not just happen.
Performance problems are usually the result of contention for, or exhaustion of, some
system resource. When a system resource is exhausted, the system cannot scale to
higher levels of performance. This new performance methodology is based on careful
planning and design of the database, to prevent system resources from becoming
exhausted and causing down-time. By eliminating resource conflicts, systems can be
made scalable to the levels required by the business.

2.2 Understanding Investment Options
With the availability of relatively inexpensive, high-powered processors, memory, and
disk drives, there is a temptation to buy more system resources to improve
performance. In many situations, new CPUs, memory, or more disk drives can indeed
provide an immediate performance improvement. However, any performance
increases achieved by adding hardware should be considered a short-term relief to an
immediate problem. If the demand and load rates on the application continue to grow,
then the chance of the same problem occurring soon is likely.
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In other situations, additional hardware does not improve the system's performance at
all. Poorly designed systems perform poorly no matter how much extra hardware is
allocated. Before purchasing additional hardware, ensure that serialization or single
threading is not occurring within the application. Long-term, it is generally more
valuable to increase the efficiency of your application in terms of the number of
physical resources used for each business transaction.

2.3 Understanding Scalability
The word scalability is used in many contexts in development environments. The
following section provides an explanation of scalability that is aimed at application
designers and performance specialists.

This section covers the following topics:

• What is Scalability?

• System Scalability

• Factors Preventing Scalability

2.3.1 What is Scalability?
Scalability is a system's ability to process more workload, with a proportional increase
in system resource usage.

In a scalable system, if you double the workload, then the system uses twice as many
system resources. This sounds obvious, but due to conflicts within the system, the
resource usage might exceed twice the original workload.

Examples of poor scalability due to resource conflicts include the following:

• Applications requiring significant concurrency management as user populations
increase

• Increased locking activities

• Increased data consistency workload

• Increased operating system workload

• Transactions requiring increases in data access as data volumes increase

• Poor SQL and index design resulting in a higher number of logical I/Os for the
same number of rows returned

• Reduced availability, because database objects take longer to maintain

An application is said to be unscalable if it exhausts a system resource to the point
where no more throughput is possible when its workload is increased. Such
applications result in fixed throughputs and poor response times.

Examples of resource exhaustion include the following:

• Hardware exhaustion

• Table scans in high-volume transactions causing inevitable disk I/O shortages

• Excessive network requests, resulting in network and scheduling bottlenecks

• Memory allocation causing paging and swapping

• Excessive process and thread allocation causing operating system thrashing

Chapter 2
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This means that application designers must create a design that uses the same
resources, regardless of user populations and data volumes, and does not put loads
on the system resources beyond their limits.

2.3.2 System Scalability
Applications that are accessible through the Internet have more complex performance
and availability requirements.

Some applications are designed and written only for Internet use, but even typical
back-office applications—such as a general ledger application—might require some or
all data to be available online.

Characteristics of Internet age applications include the following:

• Availability 24 hours a day, 365 days a year

• Unpredictable and imprecise number of concurrent users

• Difficulty in capacity planning

• Availability for any type of query

• Multitier architectures

• Stateless middleware

• Rapid development timescale

• Minimal time for testing

The following figure illustrates the classic workload growth curve, with demand
growing at an increasing rate. Applications must scale with the increase of workload
and also when additional hardware is added to support increasing demand. Design
errors can cause the implementation to reach its maximum, regardless of additional
hardware resources or re-design efforts.

Figure 2-1    Workload Growth Curve
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Applications are challenged by very short development timeframes with limited time for
testing and evaluation. However, bad design typically means that you must later
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rearchitect and reimplement the system. If you deploy an application with known
architectural and implementation limitations on the Internet, and if the workload
exceeds the anticipated demand, then failure is a real possibility. From a business
perspective, poor performance can mean a loss of customers. If Web users do not get
a response in seven seconds, then the user's attention could be lost forever.

In many cases, the cost of re-designing a system with the associated downtime costs
in migrating to new implementations exceeds the costs of properly building the original
system. The moral of the story is simple: design and implement with scalability in mind
from the start.

2.3.3 Factors Preventing Scalability
When building applications, designers and architects should aim for as close to perfect
scalability as possible. This is sometimes called linear scalability, where system
throughput is directly proportional to the number of CPUs.

In the real world, linear scalability is impossible for reasons beyond a designer's
control. However, making the application design and implementation as scalable as
possible should ensure that current and future performance objectives can be
achieved through expansion of hardware components and the evolution of CPU
technology.

Factors that may prevent linear scalability include:

• Poor application design, implementation, and configuration

The application has the biggest impact on scalability. For example:

– Poor schema design can cause expensive SQL that do not scale.

– Poor transaction design can cause locking and serialization problems.

– Poor connection management can cause poor response times and unreliable
systems.

However, the design is not the only problem. The physical implementation of the
application can be the weak link. For example:

– Systems can move to production environments with bad I/O strategies.

– The production environment could might different execution plans from those
generated in testing.

– Memory-intensive applications that allocate a large amount of memory without
much thought for freeing the memory at run time can cause excessive memory
usage.

– Inefficient memory usage and memory leaks put a high stress on the operating
virtual memory subsystem. This impacts performance and availability.

• Incorrect sizing of hardware components

Bad capacity planning of all hardware components is becoming less of a problem
as relative hardware prices decrease. However, too much capacity can mask
scalability problems as the workload is increased on a system.

• Limitations of software components

All software components have scalability and resource usage limitations. This
applies to application servers, database servers, and operating systems.
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Application design should not place demands on the software beyond what it can
handle.

• Limitations of hardware components

Hardware is not perfectly scalable. Most multiprocessor computers can get close
to linear scaling with a finite number of CPUs, but after a certain point each
additional CPU can increase performance overall, but not proportionately. There
might come a time when an additional CPU offers no increase in performance, or
even degrades performance. This behavior is very closely linked to the workload
and the operating system setup.

Note:

These factors are based on Oracle Server Performance group's experience
of tuning unscalable systems.

2.4 System Architecture
There are two main parts to a system's architecture:

• Hardware and Software Components

• Configuring the Right System Architecture for Your Requirements

2.4.1 Hardware and Software Components
A system architecture mainly contains hardware and software components.

• Hardware Components

• Software Components

2.4.1.1 Hardware Components
Today's designers and architects are responsible for sizing and capacity planning of
hardware at each tier in a multitier environment. It is the architect's responsibility to
achieve a balanced design. This is analogous to a bridge designer who must consider
all the various payload and structural requirements for the bridge. A bridge is only as
strong as its weakest component. As a result, a bridge is designed in balance, such
that all components reach their design limits simultaneously.

The following are the main hardware components of a system.

CPU

There can be one or more CPUs, and they can vary in processing power from simple
CPUs found in hand-held devices to high-powered server CPUs. Sizing of other
hardware components is usually a multiple of the CPUs on the system.

Memory

Database and application servers require considerable amounts of memory to cache
data and avoid time-consuming disk access.
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I/O Subsystem

The I/O subsystem can vary between the hard disk on a client PC and high
performance disk arrays. Disk arrays can perform thousands of I/Os each second and
provide availability through redundancy in terms of multiple I/O paths and hot
pluggable mirrored disks.

Network

All computers in a system are connected to a network, from a modem line to a high
speed internal LAN. The primary concerns with network specifications are bandwidth
(volume) and latency (speed).

2.4.1.2 Software Components
The same way computers have common hardware components, applications have
common functional components. By dividing software development into functional
components, it is possible to better comprehend the application design and
architecture. Some components of the system are performed by existing software
bought to accelerate application implementation, or to avoid re-development of
common components.

The difference between software components and hardware components is that while
hardware components only perform one task, a piece of software can perform the
roles of various software components. For example, a disk drive only stores and
retrieves data, but a client program can manage the user interface and perform
business logic.

Most applications involve the following software components:

User Interface

This component is the most visible to application users, and includes the following
functions:

• Displaying the screen to the user

• Collecting user data and transferring it to business logic

• Validating data entry

• Navigating through levels or states of the application

Business Logic

This component implements core business rules that are central to the application
function. Errors made in this component can be very costly to repair. This component
is implemented by a mixture of declarative and procedural approaches. An example of
a declarative activity is defining unique and foreign keys. An example of procedure-
based logic is implementing a discounting strategy.

Common functions of this component include:

• Moving a data model to a relational table structure

• Defining constraints in the relational table structure

• Coding procedural logic to implement business rules
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Resources for Managing User Requests

This component is implemented in all pieces of software. However, there are some
requests and resources that can be influenced by the application design and some
that cannot.

In a multiuser application, most resource allocation by user requests are handled by
the database server or the operating system. However, in a large application where
the number of users and their usage pattern is unknown or growing rapidly, the system
architect must be proactive to ensure that no single software component becomes
overloaded and unstable.

Common functions of this component include:

• Connection management with the database

• Executing SQL efficiently (cursors and SQL sharing)

• Managing client state information

• Balancing the load of user requests across hardware resources

• Setting operational targets for hardware and software components

• Persistent queuing for asynchronous execution of tasks

Data and Transactions

This component is largely the responsibility of the database server and the operating
system.

Common functions of this component include:

• Providing concurrent access to data using locks and transactional semantics

• Providing optimized access to the data using indexes and memory cache

• Ensuring that data changes are logged in the event of a hardware failure

• Enforcing any rules defined for the data

2.4.2 Configuring the Right System Architecture for Your
Requirements

Configuring the initial system architecture is a largely iterative process. System
architects must satisfy the system requirements within budget and schedule
constraints. If the system requires interactive users transacting business-making
decisions based on the contents of a database, then user requirements drive the
architecture. If there are few interactive users on the system, then the architecture is
process-driven.

Examples of interactive user applications:

• Accounting and bookkeeping applications

• Order entry systems

• Email servers

• Web-based retail applications

• Trading systems

Chapter 2
System Architecture

2-7



Examples of process-driven applications:

• Utility billing systems

• Fraud detection systems

• Direct mail

In many ways, process-driven applications are easier to design than multiuser
applications because the user interface element is eliminated. However, because the
objectives are process-oriented, system architects not accustomed to dealing with
large data volumes and different success factors can become confused. Process-
driven applications draw from the skills sets used in both user-based applications and
data warehousing. Therefore, this book focuses on evolving system architectures for
interactive users.

Note:

Generating a system architecture is not a deterministic process. It requires
careful consideration of business requirements, technology choices, existing
infrastructure and systems, and actual physical resources, such as budget and
manpower.

The following questions should stimulate thought on system architecture, though they
are not a definitive guide to system architecture. These questions demonstrate how
business requirements can influence the architecture, ease of implementation, and
overall performance and availability of a system. For example:

• How many users must the system support?

Most applications fall into one of the following categories:

– Very few users on a lightly-used or exclusive computer

For this type of application, there is usually one user. The focus of the
application design is to make the single user as productive as possible by
providing good response time, yet make the application require minimal
administration. Users of these applications rarely interfere with each other and
have minimal resource conflicts.

– A medium to large number of users in a corporation using shared applications

For this type of application, the users are limited by the number of employees
in the corporation actually transacting business through the system. Therefore,
the number of users is predictable. However, delivering a reliable service is
crucial to the business. The users must share a resource, so design efforts
must address response time under heavy system load, escalation of resource
for each session usage, and room for future growth.

– An infinite user population distributed on the Internet

For this type of application, extra engineering effort is required to ensure that
no system component exceeds its design limits. This creates a bottleneck that
halts or destabilizes the system. These applications require complex load
balancing, stateless application servers, and efficient database connection
management. In addition, use statistics and governors to ensure that the user
receives feedback if the database cannot satisfy their requests because of
system overload.
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• What will be the user interaction method?

The choices of user interface range from a simple Web browser to a custom client
program.

• Where are the users located?

The distance between users influences how the application is engineered to cope
with network latencies. The location also affects which times of the day are busy,
when it is impossible to perform batch or system maintenance functions.

• What is the network speed?

Network speed affects the amount of data and the conversational nature of the
user interface with the application and database servers. A highly conversational
user interface can communicate with back-end servers on every key stroke or field
level validation. A less conversational interface works on a screen-sent and a
screen-received model. On a slow network, it is impossible to achieve high data
entry speeds with a highly conversational user interface.

• How much data will the user access, and how much of that data is largely read
only?

The amount of data queried online influences all aspects of the design, from table
and index design to the presentation layers. Design efforts must ensure that user
response time is not a function of the size of the database. If the application is
largely read only, then replication and data distribution to local caches in the
application servers become a viable option. This also reduces workload on the
core transactional server.

• What is the user response time requirement?

Consideration of the user type is important. If the user is an executive who
requires accurate information to make split second decisions, then user response
time cannot be compromised. Other types of users, such as users performing data
entry activities, might not need such a high level of performance.

• Do users expect 24 hour service?

This is mandatory for today's Internet applications where trade is conducted 24
hours a day. However, corporate systems that run in a single time zone might be
able to tolerate after-hours downtime. You can use this after-hours downtime to
run batch processes or to perform system administration. In this case, it might be
more economic not to run a fully-available system.

• Must all changes be made in real time?

It is important to determine whether transactions must be executed within the user
response time, or if they can be queued for asynchronous execution.

The following are secondary questions, which can also influence the design, but really
have more impact on budget and ease of implementation. For example:

• How big will the database be?

This influences the sizing of the database server. On servers with a very large
database, it might be necessary to have a bigger computer than dictated by the
workload. This is because the administration overhead with large databases is
largely a function of the database size. As tables and indexes grow, it takes
proportionately more CPUs to allow table reorganizations and index builds to
complete in an acceptable time limit.

• What is the required throughput of business transactions?
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• What are the availability requirements?

• Do skills exist to build and administer this application?

• What compromises are forced by budget constraints?

2.5 Application Design Principles
This section describes the following design decisions that are involved in building
applications:

• Simplicity In Application Design

• Data Modeling

• Table and Index Design

• Using Views

• SQL Execution Efficiency

• Implementing the Application

• Trends in Application Development

2.5.1 Simplicity In Application Design
Applications are no different than any other designed and engineered product. Well-
designed structures, computers, and tools are usually reliable, easy to use and
maintain, and simple in concept. In the most general terms, if the design looks correct,
then it probably is. This principle should always be kept in mind when building
applications.

Consider the following design issues:

• If the table design is so complicated that nobody can fully understand it, then the
table is probably poorly designed.

• If SQL statements are so long and involved that it would be impossible for any
optimizer to effectively optimize it in real time, then there is probably a bad
statement, underlying transaction, or table design.

• If there are indexes on a table and the same columns are repeatedly indexed, then
there is probably a poor index design.

• If queries are submitted without suitable qualification for rapid response for online
users, then there is probably a poor user interface or transaction design.

• If the calls to the database are abstracted away from the application logic by many
layers of software, then there is probably a bad software development method.

2.5.2 Data Modeling
Data modeling is important to successful relational application design. You must
perform this modeling in a way that quickly represents the business practices. Heated
debates may occur about the correct data model. The important thing is to apply
greatest modeling efforts to those entities affected by the most frequent business
transactions. In the modeling phase, there is a great temptation to spend too much
time modeling the non-core data elements, which results in increased development
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lead times. Use of modeling tools can then rapidly generate schema definitions and
can be useful when a fast prototype is required.

2.5.3 Table and Index Design
Table design is largely a compromise between flexibility and performance of core
transactions. To keep the database flexible and able to accommodate unforeseen
workloads, the table design should be very similar to the data model, and it should be
normalized to at least 3rd normal form. However, certain core transactions required by
users can require selective denormalization for performance purposes.

Examples of this technique include storing tables pre-joined, the addition of derived
columns, and aggregate values. Oracle Database provides numerous options for
storage of aggregates and pre-joined data by clustering and materialized view
functions. These features allow a simpler table design to be adopted initially.

Again, focus and resources should be spent on the business critical tables, so that
optimal performance can be achieved. For non-critical tables, shortcuts in design can
be adopted to enable a more rapid application development. However, if prototyping
and testing a non-core table becomes a performance problem, then remedial design
effort should be applied immediately.

Index design is also a largely iterative process, based on the SQL generated by
application designers. However, it is possible to make a sensible start by building
indexes that enforce primary key constraints and indexes on known access patterns,
such as a person's name. As the application evolves, and as you perform testing on
realistic amounts of data, you may need to improve the performance of specific
queries by building a better index. Consider the following list of indexing design ideas
when building a new index:

• Appending Columns to an Index or Using Index-Organized Tables

• Using a Different Index Type

• Finding the Cost of an Index

• Serializing within Indexes

• Ordering Columns in an Index

2.5.3.1 Appending Columns to an Index or Using Index-Organized Tables
One of the easiest ways to speed up a query is to reduce the number of logical I/Os by
eliminating a table access from the execution plan. This can be done by appending to
the index all columns referenced by the query. These columns are the select list
columns, and any required join or sort columns. This technique is particularly useful in
speeding up online applications response times when time-consuming I/Os are
reduced. This is best applied when testing the application with properly sized data for
the first time.

The most aggressive form of this technique is to build an index-organized table (IOT).
However, you must be careful that the increased leaf size of an IOT does not
undermine the efforts to reduce I/O.

2.5.3.2 Using a Different Index Type
There are several index types available, and each index has benefits for certain
situations. The following list gives performance ideas associated with each index type.
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B-Tree Indexes

These indexes are the standard index type, and they are excellent for primary key and
highly-selective indexes. Used as concatenated indexes, the database can use B-tree
indexes to retrieve data sorted by the index columns.

Bitmap Indexes

These indexes are suitable for low cardinality data. Through compression techniques,
they can generate a large number of rowids with minimal I/O. Combining bitmap
indexes on non-selective columns allows efficient AND and OR operations with a great
number of rowids with minimal I/O. Bitmap indexes are particularly efficient in queries
with COUNT(), because the query can be satisfied within the index.

Function-based Indexes

These indexes allow access through a B-tree on a value derived from a function on the
base data. Function-based indexes have some limitations with regards to the use of
nulls, and they require that you have the query optimizer enabled.

Function-based indexes are particularly useful when querying on composite columns
to produce a derived result or to overcome limitations in the way data is stored in the
database. An example is querying for line items in an order exceeding a certain value
derived from (sales price - discount) x quantity, where these were columns in the table.
Another example is to apply the UPPER function to the data to allow case-insensitive
searches.

Partitioned Indexes

Partitioning a global index allows partition pruning to take place within an index
access, which results in reduced I/Os. By definition of good range or list partitioning,
fast index scans of the correct index partitions can result in very fast query times.

Reverse Key Indexes

These indexes are designed to eliminate index hot spots on insert applications. These
indexes are excellent for insert performance, but they are limited because the
database cannot use them for index range scans.

2.5.3.3 Finding the Cost of an Index
Building and maintaining an index structure can be expensive, and it can consume
resources such as disk space, CPU, and I/O capacity. Designers must ensure that the
benefits of any index outweigh the negatives of index maintenance.

Use this simple estimation guide for the cost of index maintenance: each index
maintained by an INSERT, DELETE, or UPDATE of the indexed keys requires about three
times as much resource as the actual DML operation on the table. Thus, if you INSERT
into a table with three indexes, then the insertion is approximately 10 times slower
than an INSERT into a table with no indexes. For DML, and particularly for INSERT-heavy
applications, the index design should be seriously reviewed, which might require a
compromise between the query and INSERT performance.
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See Also:

Oracle Database Administrator's Guide to learn how to monitor index usage

2.5.3.4 Serializing within Indexes
Use of sequences, or timestamps, to generate key values that are indexed themselves
can lead to database hotspot problems, which affect response time and throughput.
This is usually the result of a monotonically growing key that results in a right-growing
index. To avoid this problem, try to generate keys that insert over the full range of the
index. This results in a well-balanced index that is more scalable and space efficient.
You can achieve this by using a reverse key index or using a cycling sequence to
prefix and sequence values.

2.5.3.5 Ordering Columns in an Index
Designers should be flexible in defining any rules for index building. Depending on
your circumstances, use one of the following two ways to order the keys in an index:

• Order columns with most selectivity first. This method is the most commonly used
because it provides the fastest access with minimal I/O to the actual rowids
required. This technique is used mainly for primary keys and for very selective
range scans.

• Order columns to reduce I/O by clustering or sorting data. In large range scans,
I/Os can usually be reduced by ordering the columns in the least selective order,
or in a manner that sorts the data in the way it should be retrieved.

2.5.4 Using Views
Views can speed up and simplify application design. A simple view definition can mask
data model complexity from the programmers whose priorities are to retrieve, display,
collect, and store data.

However, while views provide clean programming interfaces, they can cause sub-
optimal, resource-intensive queries. The worst type of view use is when a view
references other views, and when they are joined in queries. In many cases,
developers can satisfy the query directly from the table without using a view. Usually,
because of their inherent properties, views make it difficult for the optimizer to
generate the optimal execution plan.

2.5.5 SQL Execution Efficiency
In the design and architecture phase of any system development, care should be
taken to ensure that the application developers understand SQL execution efficiency.
To achieve this goal, the development environment must support the following
characteristics:

• Good database connection management

Connecting to the database is an expensive operation that is highly unscalable.
Therefore, the number of concurrent connections to the database should be
minimized as much as possible. A simple system, where a user connects at
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application initialization, is ideal. However, in a Web-based or multitiered
application, where application servers are used to multiplex database connections
to users, this can be difficult. With these types of applications, design efforts
should ensure that database connections are pooled and are not reestablished for
each user request.

• Good cursor usage and management

Maintaining user connections is equally important to minimizing the parsing activity
on the system. Parsing is the process of interpreting a SQL statement and creating
an execution plan for it. This process has many phases, including syntax checking,
security checking, execution plan generation, and loading shared structures into
the shared pool. There are two types of parse operations:

– Hard parsing

A SQL statement is submitted for the first time, and no match is found in the
shared pool. Hard parses are the most resource-intensive and unscalable,
because they perform all the operations involved in a parse.

– Soft parsing

A SQL statement is submitted for the first time, and a match is found in the
shared pool. The match can be the result of previous execution by another
user. The SQL statement is shared, which is good for performance. However,
soft parses are not ideal, because they still require syntax and security
checking, which consume system resources.

Because parsing should be minimized as much as possible, application
developers should design their applications to parse SQL statements once and
execute them many times. This is done through cursors. Experienced SQL
programmers should be familiar with the concept of opening and re-executing
cursors.

Application developers must also ensure that SQL statements are shared within
the shared pool. To achieve this goal, use bind variables to represent the parts of
the query that change from execution to execution. If this is not done, then the
SQL statement is likely to be parsed once and never re-used by other users. To
ensure that SQL is shared, use bind variables and do not use string literals with
SQL statements. For example:

Statement with string literals:

SELECT * FROM employees 
  WHERE last_name LIKE 'KING';

Statement with bind variables:

SELECT * FROM employees 
  WHERE last_name LIKE :1;

The following example shows the results of some tests on a simple OLTP
application:

Test                         #Users Supported
No Parsing all statements           270 
Soft Parsing all statements         150
Hard Parsing all statements          60
Re-Connecting for each Transaction   30

These tests were performed on a four-CPU computer. The differences increase as
the number of CPUs on the system increase.
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2.5.6 Implementing the Application
The choice of development environment and programming language is largely a
function of the skills available in the development team and architectural decisions
made when specifying the application. There are, however, some simple performance
management rules that can lead to scalable, high-performance applications.

1. Choose a development environment suitable for software components, and do not
let it limit your design for performance decisions. If it does, then you probably
chose the wrong language or environment.

• User interface

The programming model can vary between HTML generation and calling the
windowing system directly. The development method should focus on
response time of the user interface code. If HTML or Java is being sent over a
network, then try to minimize network volume and interactions.

• Business logic

Interpreted languages, such as Java and PL/SQL, are ideal to encode
business logic. They are fully portable, which makes upgrading logic relatively
easy. Both languages are syntactically rich to allow code that is easy to read
and interpret. If business logic requires complex mathematical functions, then
a compiled binary language might be needed. The business logic code can be
on the client computer, the application server, and the database server.
However, the application server is the most common location for business
logic.

• User requests and resource allocation

Most of this is not affected by the programming language, but tools and fourth
generation languages that mask database connection and cursor
management might use inefficient mechanisms. When evaluating these tools
and environments, check their database connection model and their use of
cursors and bind variables.

• Data management and transactions

Most of this is not affected by the programming language.

2. When implementing a software component, implement its function and not the
functionality associated with other components. Implementing another
component's functionality results in sub-optimal designs and implementations. This
applies to all components.

3. Do not leave gaps in functionality or have software components under-researched
in design, implementation, or testing. In many cases, gaps are not discovered until
the application is rolled out or tested at realistic volumes. This is usually a sign of
poor architecture or initial system specification. Data archival and purge modules
are most frequently neglected during initial system design, build, and
implementation.

4. When implementing procedural logic, implement in a procedural language, such
as C, Java, or PL/SQL. When implementing data access (queries) or data
changes (DML), use SQL. This rule is specific to the business logic modules of
code where procedural code is mixed with data access (nonprocedural SQL) code.
There is great temptation to put procedural logic into the SQL access. This tends
to result in poor SQL that is resource-intensive. SQL statements with DECODE case
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statements are very often candidates for optimization, as are statements with a
large amount of OR predicates or set operators, such as UNION and MINUS.

5. Cache frequently accessed, rarely changing data that is expensive to retrieve on a
repeated basis. However, make this cache mechanism easy to use, and ensure
that it is indeed cheaper than accessing the data in the original method. This is
applicable to all modules where frequently used data values should be cached or
stored locally, rather than be repeatedly retrieved from a remote or expensive data
store.

The most common examples of candidates for local caching include the following:

• Today's date. SELECT SYSDATE FROM DUAL can account for over 60% of the
workload on a database.

• The current user name.

• Repeated application variables and constants, such as tax rates, discounting
rates, or location information.

• Caching data locally can be further extended into building a local data cache
into the application server middle tiers. This helps take load off the central
database servers. However, care should be taken when constructing local
caches so that they do not become so complex that they cease to give a
performance gain.

• Local sequence generation.

The design implications of using a cache should be considered. For example, if a
user is connected at midnight and the date is cached, then the user's date value
becomes invalid.

6. Optimize the interfaces between components, and ensure that all components are
used in the most scalable configuration. This rule requires minimal explanation
and applies to all modules and their interfaces.

7. Use foreign key references. Enforcing referential integrity through an application is
expensive. You can maintain a foreign key reference by selecting the column
value of the child from the parent and ensuring that it exists. The foreign key
constraint enforcement supplied by Oracle—which does not use SQL—is fast,
easy to declare, and does not create network traffic.

8. Consider setting up action and module names in the application to use with End to
End Application Tracing. This allows greater flexibility in tracing workload
problems.

2.5.7 Trends in Application Development
The two biggest challenges in application development today are the increased use of
Java to replace compiled C or C++ applications, and increased use of object-oriented
techniques, influencing the schema design.

Java provides better portability of code and availability to programmers. However,
there are several performance implications associated with Java. Because Java is an
interpreted language, it is slower at executing similar logic than compiled languages,
such as C. As a result, resource usage of client computers increases. This requires
more powerful CPUs to be applied in the client or middle-tier computers and greater
care from programmers to produce efficient code.

Because Java is an object-oriented language, it encourages insulation of data access
into classes not performing the business logic. As a result, programmers might invoke
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methods without knowledge of the efficiency of the data access method being used.
This tends to result in minimal database access and uses the simplest and crudest
interfaces to the database.

With this type of software design, queries do not always include all the WHERE
predicates to be efficient, and row filtering is performed in the Java program. This is
very inefficient. In addition, for DML operations—and especially for INSERTs—single
INSERTs are performed, making use of the array interface impossible. In some cases,
this is made more inefficient by procedure calls. More resources are used moving the
data to and from the database than in the actual database calls.

In general, it is best to place data access calls next to the business logic to achieve the
best overall transaction design.

The acceptance of object-orientation at a programming level has led to the creation of
object-oriented databases within the Oracle Server. This has manifested itself in many
ways, from storing object structures within BLOBs and only using the database
effectively as an indexed card file to the use of the Oracle Database object-relational
features.

If you adopt an object-oriented approach to schema design, then ensure that you do
not lose the flexibility of the relational storage model. In many cases, the object-
oriented approach to schema design ends up in a heavily denormalized data structure
that requires considerable maintenance and REF pointers associated with objects.
Often, these designs represent a step backward to the hierarchical and network
database designs that were replaced with the relational storage method.

In summary, if you are storing your data in your database for the long-term, and if you
anticipate a degree of ad hoc queries or application development on the same
schema, then the relational storage method probably gives the best performance and
flexibility.

2.6 Workload Testing, Modeling, and Implementation
This section describes workload estimation, modeling, implementation, and testing.
This section covers the following topics:

• Sizing Data

• Estimating Workloads

• Application Modeling

• Testing, Debugging, and Validating a Design

2.6.1 Sizing Data
You could experience errors in your sizing estimates when dealing with variable length
data if you work with a poor sample set. As data volumes grow, your key lengths could
grow considerably, altering your assumptions for column sizes.

When the system becomes operational, it becomes more difficult to predict database
growth, especially for indexes. Tables grow over time, and indexes are subject to the
individual behavior of the application in terms of key generation, insertion pattern, and
deletion of rows. The worst case is where you insert using an ascending key, and then
delete most rows from the left-hand side but not all the rows. This leaves gaps and
wasted space. If you have index use like this, then ensure that you know how to use
the online index rebuild facility.
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DBAs should monitor space allocation for each object and look for objects that may
grow out of control. A good understanding of the application can highlight objects that
may grow rapidly or unpredictably. This is a crucial part of both performance and
availability planning for any system. When implementing the production database, the
design should attempt to ensure that minimal space management takes place when
interactive users are using the application. This applies for all data, temp, and rollback
segments.

2.6.2 Estimating Workloads
Considering the number of variables involved, estimation of workloads for capacity
planning and testing purposes is extremely difficult. However, designers must specify
computers with CPUs, memory, and disk drives, and eventually roll out an application.
There are several techniques used for sizing, and each technique has merit. When
sizing, it is best to use the following methods to validate your decision-making process
and provide supporting documentation.

Extrapolating From a Similar System

This is an entirely empirical approach where an existing system of similar
characteristics and known performance is used as a basis system. The specification of
this system is then modified by the sizing specialist according to the known
differences. This approach has merit in that it correlates with an existing system, but it
provides little assistance when dealing with the differences.

This approach is used in nearly all large engineering disciplines when preparing the
cost of an engineering project, such as a large building, a ship, a bridge, or an oil rig. If
the reference system is an order of magnitude different in size from the anticipated
system, then some components may have exceeded their design limits.

Benchmarking

The benchmarking process is both resource and time consuming, and it might not
produce the correct results. By simulating an application in early development or
prototype form, there is a danger of measuring something that has no resemblance to
the actual production system. This sounds strange, but over the many years of
benchmarking customer applications with the database development organization,
Oracle has yet to see reliable correlation between the benchmark application and the
actual production system. This is mainly due to the number of application inefficiencies
introduced in the development process.

However, benchmarks have been used successfully to size systems to an acceptable
level of accuracy. In particular, benchmarks are very good at determining the actual
I/O requirements and testing recovery processes when a system is fully loaded.

Benchmarks by their nature stress all system components to their limits. As the
benchmark stresses all components, be prepared to see all errors in application
design and implementation manifest themselves while benchmarking. Benchmarks
also test database, operating system, and hardware components. Because most
benchmarks are performed in a rush, expect setbacks and problems when a system
component fails. Benchmarking is a stressful activity, and it takes considerable
experience to get the most out of a benchmarking exercise.
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2.6.3 Application Modeling
Modeling the application can range from complex mathematical modeling exercises to
the classic simple calculations performed on the back of an envelope. Both methods
have merit, with one attempting to be very precise and the other making gross
estimates. The downside of both methods is that they do not allow for implementation
errors and inefficiencies.

The estimation and sizing process is an imprecise science. However, by investigating
the process, some intelligent estimates can be made. The whole estimation process
makes no allowances for application inefficiencies introduced by poor SQL, index
design, or cursor management. A sizing engineer should build in margin for application
inefficiencies. A performance engineer should discover the inefficiencies and make the
estimates look realistic. The Oracle performance method describes how to discover
the application inefficiencies.

2.6.4 Testing, Debugging, and Validating a Design
The testing process mainly consists of functional and stability testing. At some point in
the process, performance testing is performed.

The following list describes some simple rules for performance testing an application.
If correctly documented, then this list provides important information for the production
application and the capacity planning process after the application has gone live.

• Use the Automatic Database Diagnostic Monitor (ADDM) and SQL Tuning Advisor
for design validation

• Test with realistic data volumes and distributions

All testing must be done with fully populated tables. The test database should
contain data representative of the production system in terms of data volume and
cardinality between tables. All the production indexes should be built and the
schema statistics should be populated correctly.

• Use the correct optimizer mode

Perform all testing with the optimizer mode that you plan to use in production. All
Oracle Database research and development effort is focused on the query
optimizer. Therefore, the use of the query optimizer is recommended.

• Test a single user performance

Test a single user on an idle or lightly-used database for acceptable performance.
If a single user cannot achieve acceptable performance under ideal conditions,
then multiple users cannot achieve acceptable performance under real conditions.

• Obtain and document plans for all SQL statements

Obtain an execution plan for each SQL statement. Use this process to verify that
the optimizer is obtaining an optimal execution plan, and that the relative cost of
the SQL statement is understood in terms of CPU time and physical I/Os. This
process assists in identifying the heavy use transactions that require the most
tuning and performance work in the future.

• Attempt multiuser testing

This process is difficult to perform accurately, because user workload and profiles
might not be fully quantified. However, transactions performing DML statements
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should be tested to ensure that there are no locking conflicts or serialization
problems.

• Test with the correct hardware configuration

Test with a configuration as close to the production system as possible. Using a
realistic system is particularly important for network latencies, I/O subsystem
bandwidth, and processor type and speed. Failing to use this approach may result
in an incorrect analysis of potential performance problems.

• Measure steady state performance

When benchmarking, it is important to measure the performance under steady
state conditions. Each benchmark run should have a ramp-up phase, where users
are connected to the application and gradually start performing work on the
application. This process allows for frequently cached data to be initialized into the
cache and single execution operations—such as parsing—to be completed before
the steady state condition. Likewise, at the end of a benchmark run, there should
be a ramp-down period, where resources are freed from the system and users
cease work and disconnect.

2.7 Deploying New Applications
The following are the key design decisions involved in deploying applications:

• Rollout Strategies

• Performance Checklist

2.7.1 Rollout Strategies
When new applications are rolled out, two strategies are commonly adopted:

• Big Bang approach - all users migrate to the new system at once

• Trickle approach - users slowly migrate from existing systems to the new one

Both approaches have merits and disadvantages. The Big Bang approach relies on
reliable testing of the application at the required scale, but has the advantage of
minimal data conversion and synchronization with the old system, because it is simply
switched off. The Trickle approach allows debugging of scalability issues as the
workload increases, but might mean that data must be migrated to and from legacy
systems as the transition takes place.

It is difficult to recommend one approach over the other, because each method has
associated risks that could lead to system outages as the transition takes place.
Certainly, the Trickle approach allows profiling of real users as they are introduced to
the new application, and allows the system to be reconfigured while only affecting the
migrated users. This approach affects the work of the early adopters, but limits the
load on support services. This means that unscheduled outages only affect a small
percentage of the user population.

The decision on how to roll out a new application is specific to each business. Any
adopted approach has its own unique pressures and stresses. The more testing and
knowledge that you derive from the testing process, the more you realize what is best
for the rollout.
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2.7.2 Performance Checklist
To assist in the rollout, build a list of tasks that increase the chance of optimal
performance in production and enable rapid debugging of the application. Do the
following:

1. When you create the control file for the production database, allow for growth by
setting MAXINSTANCES, MAXDATAFILES, MAXLOGFILES, MAXLOGMEMBERS, and MAXLOGHISTORY
to values higher than what you anticipate for the rollout. This technique results in
more disk space usage and larger control files, but saves time later should these
need extension in an emergency.

2. Set block size to the value used to develop the application. Export the schema
statistics from the development or test environment to the production database if
the testing was done on representative data volumes and the current SQL
execution plans are correct.

3. Set the minimal number of initialization parameters. Ideally, most other parameters
should be left at default. If there is more tuning to perform, then this appears when
the system is under load.

4. Be prepared to manage block contention by setting storage options of database
objects. Tables and indexes that experience high INSERT/UPDATE/DELETE rates should
be created with automatic segment space management. To avoid contention of
rollback segments, use automatic undo management.

5. All SQL statements should be verified to be optimal and their resource usage
understood.

6. Validate that middleware and programs that connect to the database are efficient
in their connection management and do not logon or logoff repeatedly.

7. Validate that the SQL statements use cursors efficiently. The database should
parse each SQL statement once and then execute it multiple times. The most
common reason this does not happen is because bind variables are not used
properly and WHERE clause predicates are sent as string literals. If you use
precompilers to develop the application, then make sure to reset the parameters
MAXOPENCURSORS, HOLD_CURSOR, and RELEASE_CURSOR from the default values before
precompiling the application.

8. Validate that all schema objects have been correctly migrated from the
development environment to the production database. This includes tables,
indexes, sequences, triggers, packages, procedures, functions, Java objects,
synonyms, grants, and views. Ensure that any modifications made in testing are
made to the production system.

9. As soon as the system is rolled out, establish a baseline set of statistics from the
database and operating system. This first set of statistics validates or corrects any
assumptions made in the design and rollout process.

10. Start anticipating the first bottleneck (which is inevitable) and follow the Oracle
performance method to make performance improvement.
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3
Performance Improvement Methods

This chapter discusses Oracle Database improvement methods and contains the
following sections:

• The Oracle Performance Improvement Method

• Emergency Performance Methods

3.1 The Oracle Performance Improvement Method
Oracle performance methodology helps you to identify performance problems in an
Oracle database. This involves identifying bottlenecks and fixing them. It is
recommended that changes be made to a system only after you have confirmed that
there is a bottleneck.

Performance improvement, by its nature, is iterative. For this reason, removing the first
bottleneck might not lead to performance improvement immediately, because another
bottleneck might be revealed. Also, in some cases, if serialization points move to a
more inefficient sharing mechanism, then performance could degrade. With
experience, and by following a rigorous method of bottleneck elimination, applications
can be debugged and made scalable.

Performance problems generally result from either a lack of throughput, unacceptable
user/job response time, or both. The problem might be localized between application
modules, or it might be for the entire system.

Before looking at any database or operating system statistics, it is crucial to get
feedback from the most important components of the system: the users of the system
and the people ultimately paying for the application. Typical user feedback includes
statements like the following:

• "The online performance is so bad that it prevents my staff from doing their jobs."

• "The billing run takes too long."

• "When I experience high amounts of Web traffic, the response time becomes
unacceptable, and I am losing customers."

• "I am currently performing 5000 trades a day, and the system is maxed out. Next
month, we roll out to all our users, and the number of trades is expected to
quadruple."

From candid feedback, it is easy to set critical success factors for any performance
work. Determining the performance targets and the performance engineer's exit
criteria make managing the performance process much simpler and more successful
at all levels. These critical success factors are better defined in terms of real business
goals rather than system statistics.

Some real business goals for these typical user statements might be:

• "The billing run must process 1,000,000 accounts in a three-hour window."
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• "At a peak period on a Web site, the response time must not exceed five seconds
for a page refresh."

• "The system must be able to process 25,000 trades in an eight-hour window."

The ultimate measure of success is the user's perception of system performance. The
performance engineer's role is to eliminate any bottlenecks that degrade performance.
These bottlenecks could be caused by inefficient use of limited shared resources or by
abuse of shared resources, causing serialization. Because all shared resources are
limited, the goal of a performance engineer is to maximize the number of business
operations with efficient use of shared resources. At a very high level, the entire
database server can be seen as a shared resource. Conversely, at a low level, a
single CPU or disk can be seen as shared resources.

You can apply the Oracle performance improvement method until performance goals
are met or deemed impossible. This process is highly iterative. Inevitably, some
investigations may have little or no impact on database performance. Time and
experience are necessary to develop the skills to accurately and quickly pinpoint
critical bottlenecks. However, prior experience can sometimes work against the
experienced engineer who neglects to use the data and statistics available. This type
of behavior encourages database tuning by myth and folklore. This is a very risky,
expensive, and unlikely to succeed method of database tuning.

The Automatic Database Diagnostic Monitor (ADDM) implements parts of the
performance improvement method and analyzes statistics to provide automatic
diagnosis of major performance issues. Using ADDM can significantly shorten the time
required to improve the performance of a system.

Systems are so different and complex that hard and fast rules for performance
analysis are impossible. In essence, the Oracle performance improvement method
defines a way of working, but not a definitive set of rules. With bottleneck detection,
the only rule is that there are no rules! The best performance engineers use the data
provided and think laterally to determine performance problems.

3.1.1 Steps in the Oracle Performance Improvement Method
1. Perform the following initial standard checks:

a. Get candid feedback from users. Determine the performance project's scope
and subsequent performance goals, and performance goals for the future.
This process is key in future capacity planning.

b. Get a full set of operating system, database, and application statistics from the
system when the performance is both good and bad. If these are not available,
then get whatever is available. Missing statistics are analogous to missing
evidence at a crime scene: They make detectives work harder and it is more
time-consuming.

c. Sanity-check the operating systems of all computers involved with user
performance. By sanity-checking the operating system, you look for hardware
or operating system resources that are fully utilized. List any over-used
resources as symptoms for analysis later. In addition, check that all hardware
shows no errors or diagnostics.

2. Check for the top ten most common mistakes with Oracle Database, and
determine if any of these are likely to be the problem. List these as symptoms for
later analysis. These are included because they represent the most likely
problems. ADDM automatically detects and reports nine of these top ten issues.
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3. Build a conceptual model of what is happening on the system using the symptoms
as clues to understand what caused the performance problems. See "A Sample
Decision Process for Performance Conceptual Modeling".

4. Propose a series of remedy actions and the anticipated behavior to the system,
then apply them in the order that can benefit the application the most. ADDM
produces recommendations each with an expected benefit. A golden rule in
performance work is that you only change one thing at a time and then measure
the differences. Unfortunately, system downtime requirements might prohibit such
a rigorous investigation method. If multiple changes are applied at the same time,
then try to ensure that they are isolated so that the effects of each change can be
independently validated.

5. Validate that the changes made have had the desired effect, and see if the user's
perception of performance has improved. Otherwise, look for more bottlenecks,
and continue refining the conceptual model until your understanding of the
application becomes more accurate.

6. Repeat the last three steps until performance goals are met or become impossible
due to other constraints.

This method identifies the biggest bottleneck and uses an objective approach to
performance improvement. The focus is on making large performance improvements
by increasing application efficiency and eliminating resource shortages and
bottlenecks. In this process, it is anticipated that minimal (less than 10%) performance
gains are made from instance tuning, and large gains (100% +) are made from
isolating application inefficiencies.

3.1.2 A Sample Decision Process for Performance Conceptual
Modeling

Conceptual modeling is almost deterministic. However, as you gain experience in
performance tuning, you begin to appreciate that no real rules exist. A flexible heads-
up approach is required to interpret statistics and make good decisions.

For a quick and easy approach to performance tuning, use ADDM. ADDM
automatically monitors your Oracle system and provides recommendations for solving
performance problems should problems occur. For example, suppose a DBA receives
a call from a user complaining that the system is slow. The DBA simply examines the
latest ADDM report to see which of the recommendations should be implemented to
solve the problem.

The following steps illustrate how a performance engineer might look for bottlenecks
without using automatic diagnostic features. These steps are only intended as a
guideline for the manual process. With experience, performance engineers add to the
steps involved. This analysis assumes that statistics for both the operating system and
the database have been gathered.

1. Is the response time/batch run time acceptable for a single user on an empty or
lightly loaded computer?

If it is not acceptable, then the application is probably not coded or designed
optimally, and it will never be acceptable in a multiple user situation when system
resources are shared. In this case, get application internal statistics, and get SQL
Trace and SQL plan information. Work with developers to investigate problems in
data, index, transaction SQL design, and potential deferral of work to batch and
background processing.
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2. Is all the CPU being utilized?

If the kernel utilization is over 40%, then investigate the operating system for
network transfers, paging, swapping, or process thrashing. Continue to check CPU
utilization in user space to verify if there are any non-database jobs consuming
CPU on the system limiting the amount of shared CPU resources, such as
backups, file transforms, print queues, and so on. After determining that the
database is using most of the CPU, investigate the top SQL by CPU utilization.
These statements form the basis of all future analysis. Check the SQL and the
transactions submitting the SQL for optimal execution. Oracle Database provides
CPU statistics in V$SQL and V$SQLSTATS.

See Also:

Oracle Database Reference for more information about V$SQL and 
V$SQLSTATS

If the application is optimal and no inefficiencies exist in the SQL execution, then
consider rescheduling some work to off-peak hours or using a bigger computer.

3. At this point, the system performance is unsatisfactory, yet the CPU resources are
not fully utilized.

In this case, you have serialization and unscalable behavior within the server. Get
the WAIT_EVENTS statistics from the server, and determine the biggest serialization
point. If there are no serialization points, then the problem is most likely outside
the database, and this should be the focus of investigation. Elimination of
WAIT_EVENTS involves modifying application SQL and tuning database parameters.
This process is very iterative and requires the ability to drill down on the
WAIT_EVENTS systematically to eliminate serialization points.

3.1.3 Top Ten Mistakes Found in Oracle Systems
This section lists the most common mistakes found in Oracle databases. By following
the Oracle performance improvement methodology, you should be able to avoid these
mistakes altogether. If you find these mistakes in your system, then re-engineer the
application where the performance effort is worthwhile.

1. Bad connection management

The application connects and disconnects for each database interaction. This
problem is common with stateless middleware in application servers. It has over
two orders of magnitude impact on performance, and is totally unscalable.

2. Bad use of cursors and the shared pool

Not using cursors results in repeated parses. If bind variables are not used, then
there is hard parsing of all SQL statements. This has an order of magnitude impact
in performance, and it is totally unscalable. Use cursors with bind variables that
open the cursor and execute it many times. Be suspicious of applications
generating dynamic SQL.

3. Bad SQL

Bad SQL is SQL that uses more resources than appropriate for the application
requirement. This can be a decision support systems (DSS) query that runs for
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more than 24 hours, or a query from an online application that takes more than a
minute. You should investigate SQL that consumes significant system resources
for potential improvement. ADDM identifies high load SQL. SQL Tuning Advisor
can provide recommendations for improvement.

4. Use of nonstandard initialization parameters

These might have been implemented based on poor advice or incorrect
assumptions. Most databases provide acceptable performance using only the set
of basic parameters. In particular, parameters associated with SPIN_COUNT on
latches and undocumented optimizer features can cause a great deal of problems
that can require considerable investigation.

Likewise, optimizer parameters set in the initialization parameter file can override
proven optimal execution plans. For these reasons, schemas, schema statistics,
and optimizer settings should be managed as a group to ensure consistency of
performance.

See Also:

• Oracle Database Administrator's Guide for information about
initialization parameters and database creation

• Oracle Database Reference for details on initialization parameters

5. Getting database I/O wrong

Many sites lay out their databases poorly over the available disks. Other sites
specify the number of disks incorrectly, because they configure disks by disk
space and not I/O bandwidth.

6. Online redo log setup problems

Many sites run with too few online redo log files and files that are too small. Small
redo log files cause system checkpoints to continuously put a high load on the
buffer cache and I/O system. If too few redo log files exist, then the archive cannot
keep up, and the database must wait for the archiver to catch up.

7. Serialization of data blocks in the buffer cache due to lack of free lists, free list
groups, transaction slots (INITRANS), or shortage of rollback segments.

This is particularly common on INSERT-heavy applications, in applications that have
raised the block size above 8K, or in applications with large numbers of active
users and few rollback segments. Use automatic segment-space management
(ASSM) and automatic undo management to solve this problem.

8. Long full table scans

Long full table scans for high-volume or interactive online operations could indicate
poor transaction design, missing indexes, or poor SQL optimization. Long table
scans, by nature, are I/O intensive and unscalable.

9. High amounts of recursive (SYS) SQL

Large amounts of recursive SQL executed by SYS could indicate space
management activities, such as extent allocations, taking place. This is unscalable
and impacts user response time. Use locally managed tablespaces to reduce
recursive SQL due to extent allocation. Recursive SQL executed under another
user ID is probably SQL and PL/SQL, and this is not a problem.
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10. Deployment and migration errors

In many cases, an application uses too many resources because the schema
owning the tables has not been successfully migrated from the development
environment or from an older implementation. Examples of this are missing
indexes or incorrect statistics. These errors can lead to sub-optimal execution
plans and poor interactive user performance. When migrating applications of
known performance, export the schema statistics to maintain plan stability using
the DBMS_STATS package.

Although these errors are not directly detected by ADDM, ADDM highlights the
resulting high load SQL.

3.2 Emergency Performance Methods
This section provides techniques for dealing with performance emergencies. You
presumably have a methodology for establishing and improving application
performance. However, in an emergency situation, a component of the system has
changed to transform it from a reliable, predictable system to one that is unpredictable
and not satisfying user requests.

In this case, the performance engineer must rapidly determine what has changed and
take appropriate actions to resume normal service as quickly as possible. In many
cases, it is necessary to take immediate action, and a rigorous performance
improvement project is unrealistic.

After addressing the immediate performance problem, the performance engineer must
collect sufficient debugging information either to get better clarity on the performance
problem or to at least ensure that it does not happen again.

The method for debugging emergency performance problems is the same as the
method described in the performance improvement method earlier in this book.
However, shortcuts are taken in various stages because of the timely nature of the
problem. Keeping detailed notes and records of facts found as the debugging process
progresses is essential for later analysis and justification of any remedial actions. This
is analogous to a doctor keeping good patient notes for future reference.

3.2.1 Steps in the Emergency Performance Method
The Emergency Performance Method is as follows:

1. Survey the performance problem and collect the symptoms of the performance
problem. This process should include the following:

• User feedback on how the system is underperforming. Is the problem
throughput or response time?

• Ask the question, "What has changed since we last had good performance?"
This answer can give clues to the problem. However, getting unbiased
answers in an escalated situation can be difficult. Try to locate some reference
points, such as collected statistics or log files, that were taken before and after
the problem.

• Use automatic tuning features to diagnose and monitor the problem. In
addition, you can use Oracle Enterprise Manager Cloud Control (Cloud
Control) performance features to identify top SQL and sessions.
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2. Sanity-check the hardware utilization of all components of the application system.
Check where the highest CPU utilization is, and check the disk, memory usage,
and network performance on all the system components. This quick process
identifies which tier is causing the problem. If the problem is in the application,
then shift analysis to application debugging. Otherwise, move on to database
server analysis.

3. Determine if the database server is constrained on CPU or if it is spending time
waiting on wait events. If the database server is CPU-constrained, then investigate
the following:

• Sessions that are consuming large amounts of CPU at the operating system
level and database; check V$SESS_TIME_MODEL for database CPU usage

• Sessions or statements that perform many buffer gets at the database level;
check V$SESSTAT and V$SQLSTATS

• Execution plan changes causing sub-optimal SQL execution; these can be
difficult to locate

• Incorrect setting of initialization parameters

• Algorithmic issues caused by code changes or upgrades of all components

If the database sessions are waiting on events, then follow the wait events listed in
V$SESSION_WAIT to determine what is causing serialization. The
V$ACTIVE_SESSION_HISTORY view contains a sampled history of session activity which
you can use to perform diagnosis even after an incident has ended and the system
has returned to normal operation. In cases of massive contention for the library
cache, it might not be possible to logon or submit SQL to the database. In this
case, use historical data to determine why there is suddenly contention on this
latch. If most waits are for I/O, then examine V$ACTIVE_SESSION_HISTORY to
determine the SQL being run by the sessions that are performing all of the inputs
and outputs.

4. Apply emergency action to stabilize the system. This could involve actions that
take parts of the application off-line or restrict the workload that can be applied to
the system. It could also involve a system restart or the termination of job in
process. These naturally have service level implications.

5. Validate that the system is stable. Having made changes and restrictions to the
system, validate that the system is now stable, and collect a reference set of
statistics for the database. Now follow the rigorous performance method described
earlier in this book to bring back all functionality and users to the system. This
process may require significant application re-engineering before it is complete.
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4
Configuring a Database for Performance

This chapter contains an overview of the Oracle methodology for configuring a
database for performance. Although performance modifications can be made to Oracle
Database on an ongoing basis, significant benefits can be gained by proper initial
configuration of the database.

This chapter contains the following sections:

• Performance Considerations for Initial Instance Configuration

• Creating and Maintaining Tables for Optimal Performance

• Performance Considerations for Shared Servers

• Improved Client Connection Performance Due to Prespawned Processes

4.1 Performance Considerations for Initial Instance
Configuration

The initial database instance configuration options that have important performance
impact on the database are:

• Initialization Parameters

• Undo Space

• Redo Log Files

• Tablespaces

Note:

If you use the Database Configuration Assistant (DBCA) to create a database,
then the supplied seed database includes the necessary basic initialization
parameters and meet the performance recommendations that are mentioned in
this document.

See Also:

• Oracle Database Administrator's Guide to learn how to create a database
with the Database Configuration Assistant

• Oracle Database Administrator's Guide to learn how to create a database
with a SQL statement
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4.1.1 Initialization Parameters
A running Oracle database instance is configured using initialization parameters,
which are set in the initialization parameter file. These parameters influence the
behavior of the running instance, including influencing performance. In general, a very
simple initialization file with few relevant settings covers most situations, and the
initialization file should not be the first place you expect to do performance tuning,
except for the few parameters shown in Table 4-2.

Table 4-1 describes the parameters necessary in a minimal initialization file. Although
these parameters are necessary, they have no performance impact.

Table 4-1    Necessary Initialization Parameters Without Performance Impact

Parameter Description

DB_NAME Name of the database. This should match the ORACLE_SID
environment variable.

DB_DOMAIN Location of the database in Internet dot notation.

OPEN_CURSORS Limit on the maximum number of cursors (active SQL
statements) for each session. The setting is application-
dependent; 500 is recommended.

CONTROL_FILES Set to contain at least two files on different disk drives to prevent
failures from control file loss.

DB_FILES Set to the maximum number of files that can assigned to the
database.

See Also:

Oracle Database Administrator's Guide to learn more about these initialization
parameters

Table 4-2 includes the most important parameters to set with performance
implications:

Table 4-2    Important Initialization Parameters With Performance Impact

Parameter Description

COMPATIBLE Specifies the release with which the Oracle database must
maintain compatibility. It lets you take advantage of the
maintenance improvements of a new release immediately in
your production systems without testing the new functionality in
your environment. If your application was designed for a
specific release of Oracle Database, and you are actually
installing a later release, then you might want to set this
parameter to the version of the previous release.
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Table 4-2    (Cont.) Important Initialization Parameters With Performance Impact

Parameter Description

DB_BLOCK_SIZE Sets the size of the Oracle database blocks stored in the
database files and cached in the SGA. The range of values
depends on the operating system, but it is typically 8192 for
transaction processing systems and higher values for database
warehouse systems.

SGA_TARGET Specifies the total size of all SGA components. If SGA_TARGET is
specified, then the buffer cache (DB_CACHE_SIZE), Java pool
(JAVA_POOL_SIZE), large pool (LARGE_POOL_SIZE), and shared
pool (SHARED_POOL_SIZE) memory pools are automatically
sized.

PGA_AGGREGATE_TARGET Specifies the target aggregate PGA memory available to all
server processes attached to the instance.

PROCESSES Sets the maximum number of processes that can be started by
that instance. This is the most important primary parameter to
set, because many other parameter values are deduced from
this.

SESSIONS This is set by default from the value of processes. However, if
you are using the shared server, then the deduced value is
likely to be insufficient.

UNDO_MANAGEMENT Specifies the undo space management mode used by the
database. The default is AUTO. If unspecified, the database uses
AUTO.

UNDO_TABLESPACE Specifies the undo tablespace to be used when an instance
starts.

See Also:

• Oracle Database Reference for information about initialization parameters

• Oracle Streams Concepts and Administration for information about the
STREAMS_POOL_SIZE initialization parameter

4.1.2 Undo Space
The database uses undo space to store data used for read consistency, recovery, and
rollback statements. This data exists in one or more undo tablespaces. If you use the
Database Configuration Assistant (DBCA) to create a database, then the undo
tablespace is created automatically. To manually create an undo tablespace, add the
UNDO TABLESPACE clause to the CREATE DATABASE statement.

To automate the management of undo data, Oracle Database uses automatic undo
management, which transparently creates and manages undo segments.To enable 
automatic undo management, set the UNDO_MANAGEMENT initialization parameter to AUTO
(the default setting). If unspecified, then the UNDO_MANAGEMENT initialization parameter
uses the AUTO setting. Oracle strongly recommends using automatic undo management
because it significantly simplifies database management and eliminates the need for
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any manual tuning of undo (rollback) segments. Manual undo management using
rollback segments is supported for backward compatibility.

The V$UNDOSTAT view contains statistics for monitoring and tuning undo space. Using
this view, you can better estimate the amount of undo space required for the current
workload. Oracle Database also uses this information to help tune undo usage. The
V$ROLLSTAT view contains information about the behavior of the undo segments in the
undo tablespace.

See Also:

• Oracle Database 2 Day DBA and Oracle Enterprise Manager Cloud Control
(Cloud Control) online help to learn about the Undo Management Advisor

• Oracle Database Administrator's Guide for information about managing
undo space using automatic undo management

• Oracle Database Reference for more information about the V$ROLLSTAT view

• Oracle Database Reference for more information about the V$UNDOSTAT view

4.1.3 Redo Log Files
The size of the redo log files can influence performance, because the behavior of the
database writer and archiver processes depend on the redo log sizes. Generally,
larger redo log files provide better performance. Undersized log files increase
checkpoint activity and reduce performance.

Although the size of the redo log files does not affect LGWR performance, it can affect
DBWR and checkpoint behavior. Checkpoint frequency is affected by several factors,
including log file size and the setting of the FAST_START_MTTR_TARGET initialization
parameter. If the FAST_START_MTTR_TARGET parameter is set to limit the instance recovery
time, Oracle Database automatically tries to checkpoint as frequently as necessary.
Under this condition, the size of the log files should be large enough to avoid additional
checkpointing due to under sized log files. The optimal size can be obtained by
querying the OPTIMAL_LOGFILE_SIZE column from the V$INSTANCE_RECOVERY view. You can
also obtain sizing advice on the Redo Log Groups page of Oracle Enterprise
Manager Cloud Control (Cloud Control).

It may not always be possible to provide a specific size recommendation for redo log
files, but redo log files in the range of 100 MB to a few gigabytes are considered
reasonable. Size online redo log files according to the amount of redo your system
generates. A rough guide is to switch log files at most once every 20 minutes.

See Also:

Oracle Database Administrator's Guide for information about managing the
online redo log
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4.1.4 Tablespaces
If you use the Database Configuration Assistant (DBCA) to create a database, then
the seed database automatically includes the necessary tablespaces. If you choose
not to use DBCA, then you must create extra tablespaces after creating the database.

All databases should have several tablespaces in addition to the SYSTEM and SYSAUX
tablespaces. These additional tablespaces include:

• A temporary tablespace, which is used for operations such as sorting

• An undo tablespace to contain information for read consistency, recovery, and
undo statements

• At least one tablespace for application use (in most cases, applications require
several tablespaces)

For extremely large tablespaces with many data files, you can run multiple ALTER
TABLESPACE ... ADD DATAFILE statements in parallel. During tablespace creation, the
data files that make up the tablespace are initialized with special empty block images.
Temporary files are not initialized.

Oracle Database does this to ensure that it can write all data files in their entirety, but
this can obviously be a lengthy process if done serially. Therefore, run multiple CREATE
TABLESPACE statements concurrently to speed up tablespace creation. For permanent
tables, the choice between local and global extent management on tablespace
creation can greatly affect performance. For any permanent tablespace that has
moderate to large insert, modify, or delete operations compared to reads, choose local
extent management.

Permanent Tablespaces - Automatic Segment-Space Management

For permanent tablespaces, Oracle recommends using automatic segment-space
management. Such tablespaces, often referred to as bitmap tablespaces, are locally
managed tablespaces with bitmap segment space management.

See Also:

• Oracle Database Concepts for a discussion of free space management

• Oracle Database Administrator's Guide for more information on creating
and using automatic segment-space management for tablespaces

Temporary Tablespaces

Properly configuring the temporary tablespace helps optimize disk sort performance.
Temporary tablespaces can be dictionary-managed or locally managed. Oracle
recommends the use of locally managed temporary tablespaces with a UNIFORM extent
size of 1 MB.

You should monitor temporary tablespace activity to check how many extents the
database allocates for the temporary segment. If an application extensively uses
temporary tables, as in a situation when many users are concurrently using temporary
tables, then the extent size could be set smaller, such as 256K, because every usage
requires at least one extent. The EXTENT MANAGEMENT LOCAL clause is optional for
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temporary tablespaces because all temporary tablespaces are created with locally
managed extents of a uniform size. The default for SIZE is 1M.

See Also:

• Oracle Database Administrator's Guide for more information on managing
temporary tablespaces

• Oracle Database Concepts for more information on temporary tablespaces

• Oracle Database SQL Language Reference for more information on using
the CREATE and ALTER TABLESPACE statements with the TEMPORARY clause

4.2 Creating and Maintaining Tables for Optimal
Performance

When installing applications, an initial step is to create all necessary tables and
indexes. When you create a segment, such as a table, the database allocates space
for the data. If subsequent database operations cause the data volume to increase
and exceed the space allocated, then Oracle Database extends the segment.

When creating tables and indexes, note the following:

• Specify automatic segment-space management for tablespaces

In this way Oracle Database automatically manages segment space for best
performance.

• Set storage options carefully

Applications should carefully set storage options for the intended use of the table
or index. This includes setting the value for PCTFREE. Note that using automatic
segment-space management eliminates the necessity of specifying PCTUSED.

Note:

Use of free lists is not recommended. To use automatic segment-space
management, create locally managed tablespaces, with the segment space
management clause set to AUTO.

4.2.1 Table Compression
You can store heap-organized tables in a compressed format that is transparent for
any kind of application. Compressed data in a database block is self-contained, which
means that all information needed to re-create the uncompressed data in a block is
available within the block. A block is also compressed in the buffer cache. Table
compression not only reduces the disk storage but also the memory usage, specifically
the buffer cache requirements. Performance improvements are accomplished by
reducing the amount of necessary I/O operations for accessing a table and by
increasing the probability of buffer cache hits.
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Oracle Database has an advanced compression option that enables you to boost the
performance of any type of application workload—including data warehousing and
OLTP applications—while reducing the disk storage that is required by the database.
You can use the advanced compression feature for all types of data, including
structured data, unstructured data, backup data, and network data.

See Also:

Oracle Database Administrator's Guide for information about using table
compression

Estimating the Compression Factor

Table compression works by eliminating column value repetitions within individual
blocks. Duplicate values in all the rows and columns in a block are stored once at the
beginning of the block, in what is called a symbol table for that block. All occurrences
of such values are replaced with a short reference to the symbol table. The
compression is higher in blocks that have more repeated values.

Before compressing large tables you should estimate the expected compression
factor. The compression factor is defined as the number of blocks necessary to store
the information in an uncompressed form divided by the number of blocks necessary
for a compressed storage. The compression factor can be estimated by sampling a
small number of representative data blocks of the table to be compressed and
comparing the average number of records for each block for the uncompressed and
compressed case. Experience shows that approximately 1000 data blocks provides a
very accurate estimation of the compression factor. Note that the more blocks you are
sampling, the more accurate the results become.

Tuning to Achieve a Better Compression Ratio

Oracle Database achieves a good compression factor in many cases with no special
tuning. As a DBA or application developer, you can try to tune the compression factor
by reorganizing the records when the compression takes place. Tuning can improve
the compression factor slightly in some cases and substantially in other cases.

To improve the compression factor you must increase the likelihood of value
repetitions within a data block. The achievable compression factor depends on the
cardinality of a specific column or column pairs (representing the likelihood of column
value repetitions) and on the average row length of those columns. Table compression
not only compresses duplicate values of a single column but tries to use multi-column
value pairs whenever possible. Without a detailed understanding of the data
distribution it is very difficult to predict the most optimal order.

Using Attribute-Clustered Tables

An attribute-clustered table is a heap-organized table that stores data in close
proximity on disk based on user-specified clustering directives. The directives
determine if the data stored in a table is ordered based on specified columns, or on a
special algorithm that permits multicolumn I/O reduction. Attribute clustering is only
available for bulk insert operations—such as the INSERT/*+APPEND*/ or ALTER TABLE ...
MOVE PARTITION commands—and is ignored for conventional DML.
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By reducing physical I/O in conjunction with zone maps, using attribute-clustered
tables can significant reduce the I/O costs of table scans. Furthermore, it can also
improve data compression because data can be more easily compressed when the
same values are closer to each other on disk.

See Also:

• Oracle Database Concepts for information about attribute-clustered tables

• Oracle Database Data Warehousing Guide for information about using
attribute-clustered tables

4.2.2 Reclaiming Unused Space
Over time, it is common for segment space to become fragmented or for a segment to
acquire a lot of free space as the result of update and delete operations. The resulting
sparsely populated objects can suffer performance degradation during queries and
DML operations. If an object does have space available for reclamation, then you can
compact and shrink segments or deallocate unused space at the end of a segment.

Oracle Database provides a Segment Advisor that provides advice on whether an
object has space available for reclamation based on the level of space fragmentation
within an object.

See Also:

Oracle Database Administrator's Guide for a discussion on managing space for
schema objects and the Segment Advisor

4.2.3 Indexing Data
The most efficient time to create indexes is after data has been loaded. In this way,
space management becomes simpler, and no index maintenance takes place for each
row inserted. SQL*Loader automatically uses this technique, but if you are using other
methods to do initial data load, then you may need to create indexes manually.
Additionally, you can perform index creation in parallel using the PARALLEL clause of the
CREATE INDEX statement. However, SQL*Loader is not able to parallelize index creation,
so you must manually create indexes in parallel after loading data.

See Also:

Oracle Database Utilities for information about SQL*Loader

Specifying Memory for Sorting Data

During index creation on tables that contain data, the data must be sorted. This sorting
is done in the fastest possible way, if all available memory is used for sorting. Oracle
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recommends that you enable automatic sizing of SQL working areas by setting the
PGA_AGGREGATE_TARGET initialization parameter.

See Also:

• "Tuning the Program Global Area " for information about PGA memory
management

• Oracle Database Reference for information about the PGA_AGGREGATE_TARGET
initialization parameter

4.3 Performance Considerations for Shared Servers
Using shared servers reduces the number of processes and the amount of memory
consumed on the database host. Shared servers are beneficial for databases where
there are many OLTP users performing intermittent transactions.

Using shared servers rather than dedicated servers is also generally better for
systems that have a high connection rate to the database. With shared servers, when
a connect request is received, a dispatcher is available to handle concurrent
connection requests. With dedicated servers, however, a connection-specific
dedicated server is sequentially initialized for each connection request.

Performance of certain database features can improve when a shared server
architecture is used, and performance of certain database features can degrade
slightly when a shared server architecture is used. For example, a session can be
prevented from migrating to another shared server while parallel execution is active.

A session can remain nonmigratable even after a request from the client has been
processed, because not all the user information has been stored in the UGA. If a
server were to process the request from the client, then the part of the user state that
was not stored in the UGA would be inaccessible. To avoid this situation, individual
shared servers often need to remain bound to a user session.

See Also:

• Oracle Database Administrator's Guide to learn how to manage shared
servers

• Oracle Database Net Services Administrator's Guide to learn how to
configure dispatchers for shared servers

When using some features, you may need to configure more shared servers, because
some servers might be bound to sessions for an excessive amount of time.

This section discusses how to reduce contention for processes used by Oracle
Database architecture:

• Identifying and Reducing Contention Using the Dispatcher-Specific Views

• Identifying Contention for Shared Servers
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4.3.1 Identifying and Reducing Contention Using the Dispatcher-
Specific Views

The following views provide dispatcher performance statistics:

• V$DISPATCHER: general information about dispatcher processes

• V$DISPATCHER_RATE: dispatcher processing statistics

The V$DISPATCHER_RATE view contains current, average, and maximum dispatcher
statistics for several categories. Statistics with the prefix CUR_ are statistics for the
current sample. Statistics with the prefix AVG_ are the average values for the statistics
after the collection period began. Statistics with the prefix MAX_ are the maximum
values for these categories after statistics collection began.

To assess dispatcher performance, query the V$DISPATCHER_RATE view and compare the
current values with the maximums. If your present system throughput provides
adequate response time and current values from this view are near the average and
less than the maximum, then you likely have an optimally tuned shared server
environment.

If the current and average rates are significantly less than the maximums, then
consider reducing the number of dispatchers. Conversely, if current and average rates
are close to the maximums, then you might need to add more dispatchers. A general
rule is to examine V$DISPATCHER_RATE statistics during both light and heavy system use
periods. After identifying your shared server load patterns, adjust your parameters
accordingly.

If necessary, you can also mimic processing loads by running system stress tests and
periodically polling V$DISPATCHER_RATE statistics. Proper interpretation of these statistics
varies from platform to platform. Different types of applications also can cause
significant variations on the statistical values recorded in V$DISPATCHER_RATE.

See Also:

• Oracle Database Reference for detailed information about the V$DISPATCHER
and V$DISPATCHER_RATE views

Reducing Contention for Dispatcher Processes

To reduce contention, consider the following points:

• Adding dispatcher processes

The total number of dispatcher processes is limited by the value of the initialization
parameter MAX_DISPATCHERS. You might need to increase this value before adding
dispatcher processes.

• Enabling connection pooling

When system load increases and dispatcher throughput is maximized, it is not
necessarily a good idea to immediately add more dispatchers. Instead, consider
configuring the dispatcher to support more users with connection pooling.

• Enabling Session Multiplexing
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Multiplexing is used by a connection manager process to establish and maintain
network sessions from multiple users to individual dispatchers. For example,
several user processes can connect to one dispatcher by way of a single
connection from a connection manager process. Session multiplexing is beneficial
because it maximizes use of the dispatcher process connections. Multiplexing is
also useful for multiplexing database link sessions between dispatchers.

See Also:

– Oracle Database Administrator's Guide to learn how to configure
dispatcher processes

– Oracle Database Net Services Administrator's Guide to learn how to
configure connection pooling

– Oracle Database Reference to learn about the DISPATCHERS and
MAX_DISPATCHERS initialization parameters

4.3.2 Identifying Contention for Shared Servers
Steadily increasing wait times in the requests queue indicate contention for shared
servers. To examine wait time data, use the dynamic performance view V$QUEUE. This
view contains statistics showing request queue activity for shared servers. By default,
this view is available only to the user SYS and to other users with SELECT ANY TABLE
system privilege, such as SYSTEM. Table 4-3 lists the columns showing the wait times
for requests and the number of requests in the queue.

Table 4-3    Wait Time and Request Columns in V$QUEUE

Column Description

WAIT Displays the total waiting time, in hundredths of a second, for all
requests that have ever been in the queue

TOTALQ Displays the total number of requests that have ever been in the
queue

Monitor these statistics occasionally while your application is running by issuing the
following SQL statement:

SELECT DECODE(TOTALQ, 0, 'No Requests',
   WAIT/TOTALQ || ' HUNDREDTHS OF SECONDS') "AVERAGE WAIT TIME PER REQUESTS"
  FROM V$QUEUE
 WHERE TYPE = 'COMMON';

This query returns the results of a calculation that show the following:

AVERAGE WAIT TIME PER REQUEST
-----------------------------
.090909 HUNDREDTHS OF SECONDS

From the result, you can tell that a request waits an average of 0.09 hundredths of a
second in the queue before processing.
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You can also determine how many shared servers are currently running by issuing the
following query:

SELECT COUNT(*) "Shared Server Processes"
  FROM V$SHARED_SERVER
 WHERE STATUS != 'QUIT';

The result of this query could look like the following:

Shared Server Processes
-----------------------
10

If you detect resource contention with shared servers, then first ensure that this is not
a memory contention issue by examining the shared pool and the large pool. If
performance remains poor, then you might want to create more resources to reduce
shared server process contention. You can do this by modifying the optional server
process initialization parameters:

• MAX_DISPATCHERS

• MAX_SHARED_SERVERS

• DISPATCHERS

• SHARED_SERVERS

See Also:

Oracle Database Administrator's Guide to learn how to set the shared
server process initialization parameters

4.4 Improved Client Connection Performance Due to
Prespawned Processes

Oracle Database prespawns pools of server processes when dedicated broker
connection mode is enabled or threaded execution mode is enabled. In this case,
whenever a client requests for a database connection, it gets a dedicated connection
to an existing server process from the process pools, thus improving the efficiency of
client connections.

The V$PROCESS_POOL view shows information about these server process pools, and you
can manage these pools using the DBMS_PROCESS package.

See Also:

• Oracle Database Administrator's Guide for more information about
managing prespawned processes in Oracle Database

• Oracle Database PL/SQL Packages and Types Reference for information
about the DBMS_PROCESS package
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Part II
Diagnosing and Tuning Database
Performance

This part contains the following chapters:

• Measuring Database Performance

• Gathering Database Statistics

• Automatic Performance Diagnostics

• Comparing Database Performance Over Time

• Analyzing Sampled Data

• Instance Tuning Using Performance Views



5
Measuring Database Performance

This chapter describes how to measure the performance of Oracle Database using
database statistics.

This chapter contains the following topics:

• About Database Statistics

• Interpreting Database Statistics

5.1 About Database Statistics
Database statistics provide information about the type of database load and the
resources being used by the database. To effectively measure database performance,
statistics must be available.

Oracle Database generates many types of cumulative statistics for the system,
sessions, segments, services, and individual SQL statements. Cumulative values for
statistics are generally accessible using dynamic performance views, or V$ views.
When analyzing database performance in any of these scopes, look at the change in
statistics (delta value) over the period you are interested in. Specifically, focus on the
difference between the cumulative values of a statistic at the start and the end of the
period.

This section describes some of the more important database statistics that are used to
measure the performance of Oracle Database:

• Time Model Statistics

• Active Session History Statistics

• Wait Events Statistics

• Session and System Statistics

See Also:

Oracle Database SQL Tuning Guide for information about optimizer statistics

5.1.1 Time Model Statistics
Time model statistics use time to identify quantitative effects about specific actions
performed on the database, such as logon operations and parsing. The most important
time model statistic is database time, or DB time. This statistic represents the total
time spent in database calls for foreground sessions and is an indicator of the total
instance workload. DB time is measured cumulatively from the time of instance startup
and is calculated by aggregating the CPU and wait times of all foreground sessions
not waiting on idle wait events (non-idle user sessions).
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Note:

Because DB time is calculated by combining the times from all non-idle user
foreground sessions, it is possible that the DB time can exceed the actual time
elapsed after the instance started. For example, an instance that has been
running for 30 minutes could have four active user sessions whose cumulative
DB time is approximately 120 minutes.

When tuning an Oracle database, each component has its own set of statistics. To
look at the system as a whole, it is necessary to have a common scale for
comparisons. Many Oracle Database advisors and reports thus describe statistics in
terms of time.

Ultimately, the objective in tuning an Oracle database is to reduce the time that users
spend in performing an action on the database, or to simply reduce DB time. Time
model statistics are accessible from the V$SESS_TIME_MODEL and V$SYS_TIME_MODEL views.

See Also:

Oracle Database Reference for information about the V$SESS_TIME_MODEL and
V$SYS_TIME_MODEL views

5.1.2 Active Session History Statistics
Any session that is connected to the database and is waiting for an event that does not
belong to the Idle wait class is considered an active session. Oracle Database
samples active sessions every second and stores the sampled data in a circular buffer
in the shared global area (SGA).

The sampled session activity is accessible using the V$ACTIVE_SESSION_HISTORY view.
Each session sample contains a set of rows and the V$ACTIVE_SESSION_HISTORY view
returns one row for each active session per sample, starting with the latest session
sample rows. Because the active session samples are stored in a circular buffer in the
SGA, the greater the system activity, the smaller the number of seconds of session
activity that can be stored. This means that the duration for which a session sample is
displayed in the V$ view is completely dependent on the level of database activity.
Because the content of the V$ view can become quite large during heavy system
activity, only a portion of the session samples is written to disk.

By capturing only active sessions, a manageable set of data can be captured with its
size being directly related to the work being performed, rather than the number of
sessions allowed on the system. Active Session History (ASH) enables you to
examine and perform detailed analysis on both current data in the
V$ACTIVE_SESSION_HISTORY view and historical data in the DBA_HIST_ACTIVE_SESS_HISTORY
view, often avoiding the need to replay the workload to trace additional performance
information. ASH also contains execution plan information for each captured SQL
statement. You can use this information to identify which part of SQL execution
contributed most to the SQL elapsed time. The data present in ASH can be rolled up in
various dimensions that it captures, including:

• SQL identifier of SQL statement
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• SQL plan identifier and hash value of the SQL plan used to execute the SQL
statement

• SQL execution plan information

• Object number, file number, and block number

• Wait event identifier and parameters

• Session identifier and session serial number

• Module and action name

• Client identifier of the session

• Service hash identifier

• Consumer group identifier

You can gather this information over a specified duration into an ASH report.

Active session history sampling is also available for Active Data Guard physical
standby instances and Oracle Automatic Storage Management (Oracle ASM)
instances. On these instances, the current session activity is collected and displayed
in the V$ACTIVE_SESSION_HISTORY view, but not written to disk.

See Also:

• "Analyzing Sampled Data " for information about ASH reports

• Oracle Data Guard Concepts and Administration for information about
Active Data Guard physical standby databases

• Oracle Automatic Storage Management Administrator's Guide for
information about Oracle ASM instances

5.1.3 Wait Events Statistics
Wait events are statistics that are incremented by a server process or thread to
indicate that it had to wait for an event to complete before processing could continue.
Wait event data reveals various symptoms of problems that might be impacting
performance, such as latch contention, buffer contention, and I/O contention.

To enable easier high-level analysis of wait events, Oracle Database groups events
into the following classes:

• Administrative

• Application

• Cluster

• Commit

• Concurrency

• Configuration

• Idle

• Network
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• Other

• Scheduler

• System I/O

• User I/O

The wait classes are based on a common solution that usually applies to fixing a
problem with the particular wait event. For example, exclusive TX locks are generally
an application-level issue and HW locks are generally a configuration issue. The
following list includes common examples of wait events in some of the wait classes:

• Application: locks waits caused by row level locking or explicit lock commands

• Commit: waits for redo log write confirmation after a commit

• Idle: wait events that signify the session is inactive, such as SQL*Net message from
client

• Network: waits for data to be sent over the network

• User I/O: wait for blocks to be read off a disk

Wait event statistics for a database instance include statistics for both background and
foreground processes. Because tuning is typically focused in foreground activities,
overall database instance activity is categorized into foreground and background
statistics in the relevant V$ views to facilitate tuning.

The V$SYSTEM_EVENT view shows wait event statistics for the foreground activities of a
database instance and the wait event statistics for the database instance. The
V$SYSTEM_WAIT_CLASS view shows these foreground and wait event statistics at the
instance level after aggregating to wait classes. V$SESSION_EVENT and
V$SESSION_WAIT_CLASS show wait event and wait class statistics at the session level.

See Also:

Oracle Database Reference for information about wait events

5.1.4 Session and System Statistics
A large number of cumulative database statistics on a system and session level are
accessible using the V$SYSSTAT and V$SESSTAT views.

See Also:

Oracle Database Reference for information about the V$SYSSTAT and V$SESSTAT
views

5.2 Interpreting Database Statistics
When initially examining performance data, you can formulate potential interpretations
of the data by examining the database statistics. To ensure that your interpretation is
accurate, cross-check with other data to establish if a statistic or event is truly relevant.
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Because foreground activities are tunable, it is recommended to first analyze the
statistics from foreground activities before analyzing the statistics from background
activities.

The following sections provide tips for interpreting the various types of database
statistics to measure database performance:

• Using Hit Ratios

• Using Wait Events with Timed Statistics

• Using Wait Events without Timed Statistics

• Using Idle Wait Events

• Comparing Database Statistics with Other Factors

• Using Computed Statistics

5.2.1 Using Hit Ratios
When tuning, it is common to compute a ratio that helps determine if a problem exists.
Such ratios may include the buffer cache hit ratio, the soft-parse ratio, and the latch hit
ratio. Do not use these ratios as definitive identifiers of whether a performance
bottleneck exists. Instead, use them as indicators. To identify whether a performance
bottleneck exists, examine other related performance data. For information about how
to calculate the buffer cache hit ratio, see "Calculating the Buffer Cache Hit Ratio".

5.2.2 Using Wait Events with Timed Statistics
Setting TIMED_STATISTICS to TRUE at the instance level directs the database to gather
wait time for events, in addition to available wait counts. This data is useful for
comparing the total wait time for an event to the total elapsed time between the data
collections. For example, if the wait event accounts for only 30 seconds out of a 2-hour
period, then very little performance improvement can be gained by investigating this
event, even if it is the highest ranked wait event when ordered by time waited.
However, if the event accounts for 30 minutes of a 45-minute period, then the event is
worth investigating. For information about wait events, see "Wait Events Statistics".

Note:

Timed statistics are automatically collected for the database if the initialization
parameter STATISTICS_LEVEL is set to TYPICAL or ALL. If STATISTICS_LEVEL is set to
BASIC, then you must set TIMED_STATISTICS to TRUE to enable collection of timed
statistics. Note that setting STATISTICS_LEVEL to BASIC disables many automatic
features and is not recommended.

If you explicitly set DB_CACHE_ADVICE, TIMED_STATISTICS, or TIMED_OS_STATISTICS,
either in the initialization parameter file or by using ALTER_SYSTEM or ALTER
SESSION, then the explicitly set value overrides the value derived from
STATISTICS_LEVEL.
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See Also:

Oracle Database Reference for information about the STATISTICS_LEVEL
initialization parameter

5.2.3 Using Wait Events without Timed Statistics
If TIMED_STATISTICS is set to FALSE, then the amount of time spent waiting for an event is
not available. Therefore, it is only possible to order wait events by the number of times
each event was waited for. Although the events with the largest number of waits might
indicate a potential bottleneck, they might not be the main bottleneck. This situation
can happen when an event is waited for a large number of times, but the total time
waited for that event is small. Conversely, an event with fewer waits might be a bigger
bottleneck if the wait time accounts for a significant proportion of the total wait time.
Without the wait times to use for comparison, it is difficult to determine whether a wait
event is worth investigating.

5.2.4 Using Idle Wait Events
Oracle Database uses some wait events to indicate whether the Oracle server process
is idle. Typically, these events are of no value when investigating performance
problems, and should be ignored when examining wait events.

5.2.5 Comparing Database Statistics with Other Factors
When evaluating statistics, it is important to consider other factors that may influence
whether the statistic is of value. Such factors may include the user load and hardware
capability. Even an event that had a wait of 30 minutes in a 45-minute period might not
be indicative of a performance problem if you discover that there were 2000 users on
the system, and the host hardware was a 64-node computer.

5.2.6 Using Computed Statistics
When interpreting computed statistics (such as rates, statistics normalized over
transactions, or ratios), verify the computed statistic with the actual statistic counts.
This comparison can confirm whether the derived rates are really of interest because
small statistic counts usually can discount an unusual ratio. For example, on initial
examination, a soft-parse ratio of 50% generally indicates a potential area for tuning.
If, however, there was only one hard parse and one soft parse during the data
collection interval, then the soft-parse ratio would be 50%, even though the statistic
counts show this is not impacting performance. In this case, the ratio is not important
due to the low raw statistic counts.

Chapter 5
Interpreting Database Statistics

5-6



6
Gathering Database Statistics

This chapter describes how to gather database statistics for Oracle Database and
contains the following topics:

• About Gathering Database Statistics

• Managing the Automatic Workload Repository

• Generating Automatic Workload Repository Reports

• Generating Performance Hub Active Report

6.1 About Gathering Database Statistics
Oracle Database automatically persists the cumulative and delta values for most of the
statistics at all levels (except the session level) in the Automatic Workload Repository
(AWR). This process is repeated on a regular time period and the results are captured
in an AWR snapshot. The delta values captured by the snapshot represent the
changes for each statistic over the time period.

A statistical baseline is a collection of statistic rates usually taken over a time period
when the system is performing well at an optimal level. Use statistical baselines to
diagnose performance problems by comparing statistics captured in a baseline to
those captured during a period of poor performance. This enables you to identify
specific statistics that may have increased significantly and could be the cause of the
problem. AWR supports the capture of baseline data by enabling you to specify and
preserve a pair or range of AWR snapshots as a baseline.

A metric is typically the rate of change in a cumulative statistic. You can measure this
rate against a variety of units, including time, transactions, or database calls. For
example, the number database calls per second is a metric. Metric values are exposed
in some V$ views, where the values are the averages over a fairly small time interval,
typically 60 seconds. A history of recent metric values is available through V$ views,
and some data is also persisted by AWR snapshots.

The following sections describe various Oracle Database features that enable you to
more effectively gather database statistics:

• Automatic Workload Repository

• Snapshots

• Baselines

• Space Consumption

• Adaptive Thresholds
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Note:

• Data visibility and privilege requirements may differ when using AWR
features with pluggable databases (PDBs). For information about how
manageability features, including the AWR features, work in a multitenant
container database (CDB), see Oracle Database Administrator's Guide.

• License for Oracle Diagnostic Pack is required to use the AWR features
described in this chapter.

6.1.1 Automatic Workload Repository
AWR collects, processes, and maintains performance statistics for problem detection
and self-tuning purposes. This gathered data is stored both in memory and in the
database, and is displayed in both reports and views.

The statistics collected and processed by AWR include:

• Object statistics that determine both access and usage statistics of database
segments

• Time model statistics based on time usage for activities, displayed in the
V$SYS_TIME_MODEL and V$SESS_TIME_MODEL views

• Some of the system and session statistics collected in the V$SYSSTAT and V$SESSTAT
views

• SQL statements that are producing the highest load on the system, based on
criteria such as elapsed time and CPU time

• Active Session History (ASH) statistics, representing the history of recent sessions
activity

See Also:

• "About Database Statistics" for information about the various types of
database statistics

• Oracle Database Reference for more information about the views
V$SYS_TIME_MODEL, V$SESS_TIME_MODEL, V$SYSSTAT, and V$SESSTAT

6.1.2 Snapshots
Snapshots are sets of historical data for specific time periods that are used for
performance comparisons by Automatic Database Diagnostic Monitor (ADDM). By
default, Oracle Database automatically generates snapshots of the performance data
once every hour and retains the statistics in AWR for 8 days. You can also manually
create snapshots or change the snapshot retention period, but it is usually not
necessary.

AWR compares the difference between snapshots to determine which SQL statements
to capture based on the effect on the system load. This reduces the number of SQL
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statements that must be captured over time. After the snapshots are created, ADDM
analyzes the data captured in the snapshots to perform its performance analysis.

See Also:

"Managing Snapshots" for information about managing snapshots

6.1.3 Baselines
A baseline is a set of snapshots from a specific time period that is preserved for
comparison with other snapshots when a performance problem occurs. The snapshots
contained in a baseline are excluded from the automatic AWR purging process and
are retained indefinitely.

There are several types of available baselines:

• Fixed Baselines

• Moving Window Baselines

• Baseline Templates

6.1.3.1 Fixed Baselines
A fixed baseline corresponds to a fixed, contiguous time period in the past that you
specify. Before creating a fixed baseline, carefully consider the time period you choose
as a baseline, because the baseline should represent the system operating at an
optimal level. In the future, you can compare the baseline with other baselines or
snapshots captured during periods of poor performance to analyze performance
degradation over time.

See Also:

"Managing Baselines" for information about managing fixed baselines

6.1.3.2 Moving Window Baselines
A moving window baseline corresponds to all AWR data that exists within the AWR
retention period. This is useful when using adaptive thresholds because the database
can use AWR data in the entire AWR retention period to compute metric threshold
values.

Oracle Database automatically maintains a system-defined moving window baseline.
The default window size for the system-defined moving window baseline is the current
AWR retention period, which by default is 8 days. If you are planning to use adaptive
thresholds, then consider using a larger moving window—such as 30 days—to
accurately compute threshold values. You can resize the moving window baseline by
changing the number of days in the moving window to a value that is equal to or less
than the number of days in the AWR retention period. Therefore, to increase the size
of a moving window, you must first increase the AWR retention period accordingly.
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See Also:

"Resizing the Default Moving Window Baseline" for information about resizing a
moving window baseline

6.1.3.3 Baseline Templates
Baseline templates enable you to create baselines for a contiguous time period in the
future. There are two types of baseline templates:

• Single Baseline Templates

• Repeating Baseline Templates

See Also:

"Managing Baseline Templates" for information about managing baseline
templates

6.1.3.3.1 Single Baseline Templates
Use a single baseline template to create a baseline for a single contiguous time period
in the future. This is useful if you know beforehand of a time period that you intend to
capture in the future. For example, you may want to capture AWR data during a
system test that is scheduled for the upcoming weekend. In this case, you can create
a single baseline template to automatically capture the time period when the test
occurs.

6.1.3.3.2 Repeating Baseline Templates
Use a repeating baseline template to create and drop baselines based on a repeating
time schedule. This is useful if you want Oracle Database to automatically capture a
contiguous time period on an ongoing basis. For example, you may want to capture
AWR data during every Monday morning for a month. In this case, you can create a
repeating baseline template to automatically create baselines on a repeating schedule
for every Monday, and automatically remove older baselines after a specified
expiration interval, such as one month.

6.1.4 Space Consumption
The space consumed by AWR is determined by several factors:

• Number of active sessions in the database at any given time

• Snapshot interval

The snapshot interval determines the frequency at which snapshots are captured.
A smaller snapshot interval increases the frequency, which increases the volume
of data collected by AWR.

• Historical data retention period
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The retention period determines how long this data is retained before being
purged. A longer retention period increases the space consumed by AWR.

By default, Oracle Database captures snapshots once every hour and retains them in
the database for 8 days. With these default settings, a typical system with an average
of 10 concurrent active sessions can require approximately 200 to 300 MB of space for
its AWR data.

To reduce AWR space consumption, increase the snapshot interval and reduce the
retention period. When reducing the retention period, note that several Oracle
Database self-managing features depend on AWR data for proper functioning. Not
having enough data can affect the validity and accuracy of these components and
features, including:

• Automatic Database Diagnostic Monitor (ADDM)

• SQL Tuning Advisor

• Undo Advisor

• Segment Advisor

If possible, Oracle recommends that you set the AWR retention period large enough to
capture at least one complete workload cycle. If your system experiences weekly
workload cycles—such as OLTP workload during weekdays and batch jobs during the
weekend—then you do not need to change the default AWR retention period of 8
days. However, if your system is subjected to a monthly peak load during month-end
book closing, then you may need to set the retention period to one month.

Under exceptional circumstances, you can disable automatic snapshot collection by
setting the snapshot interval to 0. Under this condition, the automatic collection of the
workload and statistical data is stopped, and most of the Oracle Database self-
management functionality is not operational. In addition, you cannot manually create
snapshots. For this reason, Oracle strongly recommends against disabling automatic
snapshot collection.

See Also:

"Modifying Snapshot Settings" for information about changing the default
values for the snapshot interval and retention period

6.1.5 Adaptive Thresholds
Adaptive thresholds enable you to monitor and detect performance issues, while
minimizing administrative overhead. Adaptive thresholds automatically set warning
and critical alert thresholds for some system metrics using statistics derived from
metric values captured in the moving window baseline. The statistics for these
thresholds are recomputed weekly and might result in new thresholds as system
performance evolves over time. Additionally, adaptive thresholds can compute
different thresholds values for different times of the day or week based on periodic
workload patterns.

For example, many databases support an online transaction processing (OLTP)
workload during the day and batch processing at night. The performance metric for
response time per transaction can be useful for detecting degradation in OLTP
performance during the day. However, a useful OLTP threshold value is usually too
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low for batch workloads, where long-running transactions might be common. As a
result, threshold values appropriate to OLTP might trigger frequent false performance
alerts during batch processing. Adaptive thresholds can detect such a workload
pattern and automatically set different threshold values for daytime and nighttime.

There are two types of adaptive thresholds:

• Percentage of Maximum Thresholds

• Significance Level Thresholds

6.1.5.1 Percentage of Maximum Thresholds
The threshold value for percentage of maximum thresholds is computed as a
percentage multiple of the maximum value observed for the data in the moving window
baseline.

Percentage of maximum thresholds are most useful when a system is sized for peak
workloads, and you want to be alerted when the current workload volume approaches
or exceeds previous high values. Metrics that have an unknown but definite limiting
value are prime candidates for these settings. For example, the redo generated per
second metric is typically a good candidate for a percentage of maximum threshold.

6.1.5.2 Significance Level Thresholds
The threshold value for significance level thresholds is set to a statistical percentile
that represents how unusual it is to observe values above the threshold value based
the data in the moving window baseline.

Significance level thresholds are most useful for metrics that exhibit statistically stable
behavior when the system is operating normally, but might vary over a wide range
when the system is performing poorly. For example, the response time per transaction
metric should be stable for a well-tuned OLTP system, but may fluctuate widely when
performance issues arise. Significance level thresholds are meant to generate alerts
when conditions produce both unusual metric values and unusual system
performance.

Significance level thresholds can be set to one of the following levels:

• High (.95)

Only 5 in 100 observations are expected to exceed this value.

• Very High (.99)

Only 1 in 100 observations are expected to exceed this value.

• Severe (.999)

Only 1 in 1,000 observations are expected to exceed this value.

• Extreme (.9999)

Only 1 in 10,000 observations are expected to exceed this value.

When you specify a significance level threshold, Oracle Database performs an internal
calculation to set the threshold value. In some cases, Oracle Database cannot
establish the threshold value at higher significance levels using the data in the
baseline, and the significance level threshold is not set.
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If you specified a Severe (.999) or Extreme (.9999) significance level threshold and are
not receiving alerts as expected, try setting the significance level threshold to a lower
value, such as Very High (.99) or High (.95). Alternatively, consider using a percentage
of maximum threshold instead. If you change the threshold and find that you are
receiving too many alerts, try increasing the number of occurrences to trigger an alert.

Note:

The primary interface for managing baseline metrics is Oracle Enterprise
Manager Cloud Control (Cloud Control). To create an adaptive threshold for a
baseline metric, use Cloud Control as described in Oracle Database 2 Day +
Performance Tuning Guide.

See Also:

• "Moving Window Baselines" for information about moving window
baselines

• "Managing Baselines" for information about managing baseline metrics

6.2 Managing the Automatic Workload Repository
This section describes how to manage AWR features of Oracle Database and contains
the following topics:

• Enabling the Automatic Workload Repository

• Managing Snapshots

• Managing Baselines

• Managing Baseline Templates

• Transporting Automatic Workload Repository Data

• Using Automatic Workload Repository Views

• Managing Automatic Workload Repository in a Multitenant Environment

• Managing Automatic Workload Repository in Active Data Guard Standby
Databases

See Also:

"Automatic Workload Repository" for a description of AWR

6.2.1 Enabling the Automatic Workload Repository
Gathering database statistics using AWR is enabled by default and is controlled by the
STATISTICS_LEVEL initialization parameter.
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To enable statistics gathering by AWR:

• Set the STATISTICS_LEVEL parameter to TYPICAL or ALL.

The default setting for this parameter is TYPICAL.

Setting STATISTICS_LEVEL to BASIC disables many Oracle Database features, including
AWR, and is not recommended. If STATISTICS_LEVEL is set to BASIC, you can still
manually capture AWR statistics using the DBMS_WORKLOAD_REPOSITORY package.
However, because in-memory collection of many system statistics—such as segments
statistics and memory advisor information—will be disabled, the statistics captured in
these snapshots may not be complete.

See Also:

Oracle Database Reference for information about the STATISTICS_LEVEL
initialization parameter

6.2.2 Managing Snapshots
By default, Oracle Database generates snapshots once every hour, and retains the
statistics in the workload repository for 8 days. When necessary, you can manually
create or drop snapshots and modify snapshot settings.

This section describes how to manage snapshots and contains the following topics:

• User Interfaces for Managing Snapshots

• Creating Snapshots

• Dropping Snapshots

• Modifying Snapshot Settings

See Also:

"Snapshots" for information about snapshots

6.2.2.1 User Interfaces for Managing Snapshots
The primary interface for managing snapshots is Oracle Enterprise Manager Cloud
Control (Cloud Control). Whenever possible, you should manage snapshots using
Cloud Control.

If Cloud Control is unavailable, then manage snapshots using the
DBMS_WORKLOAD_REPOSITORY package in the command-line interface. The DBA role is
required to invoke the DBMS_WORKLOAD_REPOSITORY procedures.
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See Also:

Oracle Database PL/SQL Packages and Types Reference for information
about the DBMS_WORKLOAD_REPOSITORY package

6.2.2.2 Creating Snapshots
By default, Oracle Database automatically generates snapshots once every hour.
However, you may want to manually create snapshots to capture statistics at times
different from those of the automatically generated snapshots.

Creating Snapshots Using the Command-Line Interface

To manually create snapshots, use the CREATE_SNAPSHOT procedure. The following
example shows a CREATE_SNAPSHOT procedure call.

BEGIN
  DBMS_WORKLOAD_REPOSITORY.CREATE_SNAPSHOT ();
END;
/

In this example, a snapshot is created immediately on the local database instance. To
view information about an existing snapshot, use the DBA_HIST_SNAPSHOT view.

Note:

You can specify value for the flush_level parameter of the CREATE_SNAPSHOT
procedure to either TYPICAL or ALL. The default value for the flush level is
TYPICAL.

The flush level signifies the breadth and depth of the AWR statistics to be
captured. If you want to capture all the AWR statistics, then set the flush level
to ALL. If you want to skip few AWR statistics, such as, SQL statistics, segment
statistics, and files and tablespace statistics for performance reasons, then set
the flush level to TYPICAL.

See Also:

• Oracle Database PL/SQL Packages and Types Reference for information
about the DBMS_WORKLOAD_REPOSITORY package

• Oracle Database Reference for information about the DBA_HIST_SNAPSHOT
view
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6.2.2.3 Dropping Snapshots
By default, Oracle Database automatically purges snapshots that have been stored in
AWR for over 8 days. However, you may want to manually drop a range of snapshots
to free up space.

Dropping Snapshots Using the Command-Line Interface

To manually drop a range of snapshots, use the DROP_SNAPSHOT_RANGE procedure. The
following example shows a DROP_SNAPSHOT_RANGE procedure call.

BEGIN
  DBMS_WORKLOAD_REPOSITORY.DROP_SNAPSHOT_RANGE (low_snap_id  => 22, 
                                                high_snap_id => 32, 
                                                dbid         => 3310949047);
END;
/

In the example, snapshots with snapshot IDs ranging from 22 to 32 are dropped
immediately from the database instance with the database identifier of 3310949047. Any
ASH data that were captured during this snapshot range are also purged.

Tip:

To determine which snapshots to drop, use the DBA_HIST_SNAPSHOT view to
review the existing snapshots

See Also:

• Oracle Database PL/SQL Packages and Types Reference for information
about the DBMS_WORKLOAD_REPOSITORY package

• Oracle Database Reference for information about the DBA_HIST_SNAPSHOT
view

6.2.2.4 Modifying Snapshot Settings
You can adjust the interval, retention, and captured Top SQL of snapshot generation
for a specified database ID, but note that this can affect the precision of the Oracle
Database diagnostic tools.

Modifying Snapshot Settings Using the Command-Line Interface

You can modify various snapshot settings using the MODIFY_SNAPSHOT_SETTINGS
procedure:

• The INTERVAL setting affects how often the database automatically generates
snapshots.

• The RETENTION setting affects how long the database stores snapshots in AWR.
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• The TOPNSQL setting affects the number of Top SQL to flush for each SQL criteria
(Elapsed Time, CPU Time, Parse Calls, sharable Memory, and Version Count).

The value for this setting is not affected by the statistics/flush level and overrides
the system default behavior for AWR SQL collection. It is possible to set the value
for this setting to MAXIMUM to capture the complete set of SQL in the shared SQL
area, though doing so (or by setting the value to a very high number) may lead to
possible space and performance issues because there will be more data to collect
and store.

To modify the settings, use the MODIFY_SNAPSHOT_SETTINGS procedure as shown in the
following example:

BEGIN
  DBMS_WORKLOAD_REPOSITORY.MODIFY_SNAPSHOT_SETTINGS( retention => 43200, 
                                                     interval  => 30, 
                                                     topnsql   => 100, 
                                                     dbid      => 3310949047);
END;
/

In this example, the snapshot settings for the database with the database identifier of
3310949047 are modified as follows:

• The retention period is specified as 43200 minutes (30 days).

• The interval between each snapshot is specified as 30 minutes.

• The number of Top SQL to flush for each SQL criteria is specified as 100.

To verify the current settings for your database, use the DBA_HIST_WR_CONTROL view as
shown in the following example:

SQL> select snap_interval, retention from DBA_HIST_WR_CONTROL; 

SNAP_INTERVAL               RETENTION 
--------------------------------------- 
+00000 01:00:00.0        +00008 00:00:00.0 

The snap_interval and retention values are displayed in the format:

+[days] [hours]:[minutes]:[seconds].[nanoseconds] 

See Also:

• Oracle Database PL/SQL Packages and Types Reference for information
about the DBMS_WORKLOAD_REPOSITORY package

• Oracle Database Reference for information about the DBA_HIST_WR_CONTROL
view

6.2.3 Managing Baselines
By default, Oracle Database automatically maintains a system-defined moving window
baseline. When necessary, you can manually create, drop, or rename a baseline and
view the baseline threshold settings. Additionally, you can manually resize the window
size of the moving window baseline.
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This section describes how to manage baselines and contains the following topics:

• User Interface for Managing Baselines

• Creating a Baseline

• Dropping a Baseline

• Renaming a Baseline

• Displaying Baseline Metrics

• Resizing the Default Moving Window Baseline

See Also:

"Baselines" for information about baselines

6.2.3.1 User Interface for Managing Baselines
The primary interface for managing baselines is Oracle Enterprise Manager Cloud
Control (Cloud Control). Whenever possible, manage baselines using Cloud Control.

If Cloud Control is unavailable, then manage baselines using the
DBMS_WORKLOAD_REPOSITORY package in the command-line interface. The DBA role is
required to invoke the DBMS_WORKLOAD_REPOSITORY procedures.

See Also:

• Oracle Database 2 Day + Performance Tuning Guide for more information
about managing baselines using Cloud Control

• Oracle Database PL/SQL Packages and Types Reference for information
about the DBMS_WORKLOAD_REPOSITORY package

6.2.3.2 Creating a Baseline
By default, Oracle Database automatically maintains a system-defined moving window
baseline. However, you may want to manually create a fixed baseline that represents
the system operating at an optimal level, so you can compare it with other baselines or
snapshots captured during periods of poor performance.

To create baselines using command-line interface, use the CREATE_BASELINE procedure
as shown in the following example:

BEGIN
    DBMS_WORKLOAD_REPOSITORY.CREATE_BASELINE (start_snap_id => 270, 
                                              end_snap_id   => 280, 
                                              baseline_name => 'peak baseline', 
                                              dbid          => 3310949047, 
                                              expiration    => 30);
END;
/
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In this example, a baseline is created on the database instance with the database
identifier of 3310949047 with the following settings:

• The start snapshot sequence number is 270.

• The end snapshot sequence number is 280.

• The name of baseline is peak baseline.

• The expiration of the baseline is 30 days.

Oracle Database automatically assigns a unique ID to the new baseline when the
baseline is created.

Tip:

To determine the range of snapshots to include in a baseline, use the
DBA_HIST_SNAPSHOT view to review the existing snapshots

See Also:

• Oracle Database PL/SQL Packages and Types Reference for information
about the DBMS_WORKLOAD_REPOSITORY package

• Oracle Database Reference for information about the DBA_HIST_SNAPSHOT
view

6.2.3.3 Dropping a Baseline
To conserve disk space, consider periodically dropping a baseline that is no longer
being used. The snapshots associated with a baseline are retained indefinitely until
you explicitly drop the baseline or the baseline has expired.

To drop a baseline using command-line interface, use the DROP_BASELINE procedure as
shown in the following example:

BEGIN
  DBMS_WORKLOAD_REPOSITORY.DROP_BASELINE (baseline_name => 'peak baseline',
                                          cascade       => FALSE, 
                                          dbid          => 3310949047);
END;
/

In the example, the baseline peak baseline is dropped from the database instance with
the database identifier of 3310949047 and the associated snapshots are preserved.

Tip:

To determine which baseline to drop, use the DBA_HIST_BASELINE view to review
the existing baselines.
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Tip:

To drop the associated snapshots along with the baseline, set the cascade
parameter to TRUE.

See Also:

Oracle Database PL/SQL Packages and Types Reference for information
about the DBMS_WORKLOAD_REPOSITORY package

6.2.3.4 Renaming a Baseline
To rename a baseline using command-line interface, use the RENAME_BASELINE
procedure. The following example shows a RENAME_BASELINE procedure call.

BEGIN
    DBMS_WORKLOAD_REPOSITORY.RENAME_BASELINE (old_baseline_name => 'peak baseline', 
                                              new_baseline_name => 'peak mondays', 
                                              dbid              => 3310949047);
END;
/

In this example, the name of the baseline on the database instance with the database
identifier of 3310949047 is renamed from peak baseline to peak mondays.

See Also:

Oracle Database PL/SQL Packages and Types Reference for information
about the DBMS_WORKLOAD_REPOSITORY package

6.2.3.5 Displaying Baseline Metrics
When used with adaptive thresholds, a baseline contains AWR data that the database
can use to compute metric threshold values.

To display the summary statistics for metric values in a baseline period using the
command-line interface, use the SELECT_BASELINE_METRICS function:

DBMS_WORKLOAD_REPOSITORY.SELECT_BASELINE_METRICS (baseline_name IN VARCHAR2,
                                                  dbid          IN NUMBER DEFAULT 
NULL,
                                                  instance_num  IN NUMBER DEFAULT 
NULL)
   RETURN awr_baseline_metric_type_table PIPELINED;
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See Also:

• "Adaptive Thresholds" for information about baseline metric thresholds

• Oracle Database PL/SQL Packages and Types Reference for information
about the DBMS_WORKLOAD_REPOSITORY package

6.2.3.6 Resizing the Default Moving Window Baseline
By default, Oracle Database automatically maintains a system-defined moving window
baseline. The default window size for the system-defined moving window baseline is
the current AWR retention period, which by default is 8 days. In certain circumstances,
you may want to modify the window size of the default moving window baseline, such
as increasing its size to more accurately compute threshold values for adaptive
thresholds.

To modify the window size of the default moving window baseline using the command-
line interface, use the MODIFY_BASELINE_WINDOW_SIZE procedure as shown in the
following example:

BEGIN
    DBMS_WORKLOAD_REPOSITORY.MODIFY_BASELINE_WINDOW_SIZE (window_size => 30, 
                                                          dbid        => 3310949047);
END;
/

In this example, the default moving window is resized to 30 days on the database
instance with the database identifier of 3310949047.

Note:

The window size must be set to a value that is equal to or less than the value of
the AWR retention setting. To set a window size that is greater than the current
AWR retention period, you must first increase the value of the retention
parameter as described in "Modifying Snapshot Settings".

See Also:

• "Moving Window Baselines" for information about moving window
baselines

• Oracle Database PL/SQL Packages and Types Reference for information
about the DBMS_WORKLOAD_REPOSITORY package
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6.2.4 Managing Baseline Templates
Baseline templates enable you to automatically create baselines to capture specified
time periods in the future. This section describes how to manage baseline templates
and contains the following topics:

• User Interfaces for Managing Baseline Templates

• Creating a Single Baseline Template

• Creating a Repeating Baseline Template

• Dropping a Baseline Template

See Also:

"Baseline Templates" for information about baseline templates

6.2.4.1 User Interfaces for Managing Baseline Templates
The primary interface for managing baseline templates is Oracle Enterprise Manager
Cloud Control (Cloud Control). Whenever possible, manage baseline templates using
Cloud Control.

If Cloud Control is unavailable, then manage baseline templates using the
DBMS_WORKLOAD_REPOSITORY package in the command-line interface. The DBA role is
required to invoke the DBMS_WORKLOAD_REPOSITORY procedures.

See Also:

Oracle Database 2 Day + Performance Tuning Guide for more information
about managing baseline templates using Cloud Control

6.2.4.2 Creating a Single Baseline Template
You can use a single baseline template to create a baseline during a single, fixed time
interval in the future. For example, you can create a single baseline template to
generate a baseline that is captured on April 2, 2012 from 5:00 p.m. to 8:00 p.m.

To create a single baseline template using command-line interface, use the
CREATE_BASELINE_TEMPLATE procedure as shown in the following example:

BEGIN
    DBMS_WORKLOAD_REPOSITORY.CREATE_BASELINE_TEMPLATE (start_time    => '2012-04-02 
17:00:00 PST', 
                                                       end_time      => '2012-04-02 
20:00:00 PST', 
                                                       baseline_name => 
'baseline_120402', 
                                                       template_name => 
'template_120402', 
                                                       expiration    => 30, 
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                                                       dbid          => 3310949047);
END;
/

In this example, a baseline template named template_120402 is created that will
generate a baseline named baseline_120402 for the time period from 5:00 p.m. to 8:00
p.m. on April 2, 2012 on the database with a database ID of 3310949047. The baseline
will expire after 30 days.

See Also:

Oracle Database PL/SQL Packages and Types Reference for information
about the DBMS_WORKLOAD_REPOSITORY package

6.2.4.3 Creating a Repeating Baseline Template
You can use a repeating baseline template to automatically create baselines that
repeat during a particular time interval over a specific period in the future. For
example, you can create a repeating baseline template to generate a baseline that
repeats every Monday from 5:00 p.m. to 8:00 p.m. for the year 2012.

To create a repeating baseline template using command-line, use the
CREATE_BASELINE_TEMPLATE procedure as shown in the following example:

BEGIN
    DBMS_WORKLOAD_REPOSITORY.CREATE_BASELINE_TEMPLATE (day_of_week => 'monday', 
                                                       hour_in_day => 17,
                                                       duration => 3, expiration => 
30,
                                                       start_time => '2012-04-02 
17:00:00 PST', 
                                                       end_time => '2012-12-31 
20:00:00 PST', 
                                                       baseline_name_prefix => 
'baseline_2012_mondays_', 
                                                       template_name => 
'template_2012_mondays',
                                                       dbid => 3310949047);
END;
/

In this example, a baseline template named template_2012_mondays is created that will
generate a baseline on every Monday from 5:00 p.m. to 8:00 p.m. beginning on April
2, 2012 at 5:00 p.m. and ending on December 31, 2012 at 8:00 p.m. on the database
with a database ID of 3310949047. Each of the baselines will be created with a baseline
name with the prefix baseline_2012_mondays_ and will expire after 30 days.

See Also:

Oracle Database PL/SQL Packages and Types Reference for information
about the DBMS_WORKLOAD_REPOSITORY package

Chapter 6
Managing the Automatic Workload Repository

6-17



6.2.4.4 Dropping a Baseline Template
Periodically, you may want to remove baselines templates that are no longer used to
conserve disk space.

To drop a baseline template using command-line, use the DROP_BASELINE_TEMPLATE
procedure as shown in the following example:

BEGIN
  DBMS_WORKLOAD_REPOSITORY.DROP_BASELINE_TEMPLATE (template_name => 
'template_2012_mondays',
                                                   dbid          => 3310949047);
END;
/

In this example, the baseline template named template_2012_mondays is dropped from
the database instance with the database identifier of 3310949047.

Tip:

To determine which baseline template to drop, use the
DBA_HIST_BASELINE_TEMPLATE view to review the existing baseline templates.

See Also:

Oracle Database PL/SQL Packages and Types Reference for information
about the DBMS_WORKLOAD_REPOSITORY package

6.2.5 Transporting Automatic Workload Repository Data
Oracle Database enables you to transport AWR data between systems. This is useful
in cases where you want to use a separate system to perform analysis of AWR data.
To transport AWR data, first extract the data from the database on the source system,
and then load the data into the database on the target system.

This section contains the following topics:

• Extracting AWR Data

• Loading AWR Data

6.2.5.1 Extracting AWR Data
The awrextr.sql script extracts AWR data for a range of snapshots from the database
into a Data Pump export file. After it is created, you can transport this dump file to
another database where you can load the extracted data. To run the awrextr.sql
script, you must be connected to the database as the SYS user.

To extract AWR data:

1. At the SQL prompt, enter:
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@$ORACLE_HOME/rdbms/admin/awrextr.sql

A list of the databases in the AWR schema is displayed.

2. Specify the database from which AWR data will be extracted:

Enter value for db_id: 1377863381

In this example, the database with the database identifier of 1377863381 is selected.

3. Specify the number of days for which you want to list snapshot IDs.

Enter value for num_days: 2

A list of existing snapshots for the specified time range is displayed. In this
example, snapshots captured in the last 2 days are displayed.

4. Define the range of snapshots for which AWR data will be extracted by specifying
a beginning and ending snapshot ID:

Enter value for begin_snap: 30
Enter value for end_snap: 40

In this example, the snapshot with a snapshot ID of 30 is selected as the
beginning snapshot, and the snapshot with a snapshot ID of 40 is selected as the
ending snapshot.

A list of directory objects is displayed.

5. Specify the directory object pointing to the directory where the export dump file will
be stored:

Enter value for directory_name: DATA_PUMP_DIR

In this example, the directory object DATA_PUMP_DIR is selected.

6. Specify a prefix for the name of the export dump file (the .dmp suffix will be
automatically appended):

Enter value for file_name: awrdata_30_40

In this example, an export dump file named awrdata_30_40 will be created in the
directory corresponding to the directory object you specified:

Dump file set for SYS.SYS_EXPORT_TABLE_01 is:
C:\ORACLE\PRODUCT\12.2.0.1\DB_1\RDBMS\LOG\AWRDATA_30_40.DMP
Job "SYS"."SYS_EXPORT_TABLE_01" successfully completed at 08:58:20

Depending on the amount of AWR data that must be extracted, the AWR extract
operation may take a while to complete. After the dump file is created, you can use
Data Pump to transport the file to another system.

See Also:

Oracle Database Utilities for information about using Data Pump
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6.2.5.2 Loading AWR Data
After the export dump file is transported to the target system, load the extracted AWR
data using the awrload.sql script. The awrload.sql script will first create a staging
schema where the snapshot data is transferred from the Data Pump file into the
database. The data is then transferred from the staging schema into the appropriate
AWR tables. To run the awrload.sql script, you must be connected to the database as
the SYS user.

To load AWR data:

1. At the SQL prompt, enter:

@$ORACLE_HOME/rdbms/admin/awrload.sql

A list of directory objects is displayed.

2. Specify the directory object pointing to the directory where the export dump file is
located:

Enter value for directory_name: DATA_PUMP_DIR

In this example, the directory object DATA_PUMP_DIR is selected.

3. Specify a prefix for the name of the export dump file (the .dmp suffix will be
automatically appended):

Enter value for file_name: awrdata_30_40

In this example, the export dump file named awrdata_30_40 is selected.

4. Specify the name of the staging schema where AWR data will be loaded:

Enter value for schema_name: AWR_STAGE

In this example, a staging schema named AWR_STAGE will be created where AWR
data will be loaded.

5. Specify the default tablespace for the staging schema:

Enter value for default_tablespace: SYSAUX

In this example, the SYSAUX tablespace is selected.

6. Specify the temporary tablespace for the staging schema:

Enter value for temporary_tablespace: TEMP

In this example, the TEMP tablespace is selected.

7. A staging schema named AWR_STAGE will be created where AWR data will be
loaded. After AWR data is loaded into the AWR_STAGE schema, the data will be
transferred into AWR tables in the SYS schema:

Processing object type TABLE_EXPORT/TABLE/CONSTRAINT/CONSTRAINT
Completed 113 CONSTRAINT objects in 11 seconds
Processing object type TABLE_EXPORT/TABLE/CONSTRAINT/REF_CONSTRAINT
Completed 1 REF_CONSTRAINT objects in 1 seconds
Job "SYS"."SYS_IMPORT_FULL_03" successfully completed at 09:29:30
... Dropping AWR_STAGE user
End of AWR Load
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Depending on the amount of AWR data that must be loaded, the AWR load
operation may take a while to complete. After AWR data is loaded, the staging
schema will be dropped automatically.

6.2.6 Using Automatic Workload Repository Views
Typically, you would view AWR data using Oracle Enterprise Manager Cloud Control
(Cloud Control) or AWR reports. However, you can also view historical data stored in
the AWR using the following DBA_HIST views.

Note:

In a multitenant environment, these DBA_HIST views can also be interchanged
with the AWR_ROOT views and AWR_PDB views at the CDB level and the PDB level
respectively. For example, you can use the AWR_PDB_ACTIVE_SESS_HISTORY view
for retrieving the AWR data about the active session history at the PDB level,
which is equivalent to the DBA_HIST_ACTIVE_SESS_HISTORY view in an independent
database in a non-multitenant environment. The AWR_PDB views will not show
any AWR data, if the PDB level snapshots have not been collected.

Table 6-1    DBA_HIST Views

DBA_HIST View Description

DBA_HIST_ACTIVE_SESS_HISTORY Displays the history of the contents of the in-memory active
session history for recent system activity.

DBA_HIST_BASELINE Displays information about the baselines captured on the system,
such as the time range of each baseline and the baseline type.

DBA_HIST_BASELINE_DETAILS Displays details about a specific baseline.

DBA_HIST_BASELINE_TEMPLATE Displays information about the baseline templates used by the
system to generate baselines.

DBA_HIST_CON_SYS_TIME_MODEL Displays historical system time model statistics, including OLAP
timed statistics.

DBA_HIST_CON_SYSMETRIC_HIST Displays the historical information about the system metric values.

DBA_HIST_CON_SYSMETRIC_SUMM Displays history of the statistical summary of all the metric values
in the system metrics for the long duration (60 seconds) group.

DBA_HIST_CON_SYSSTAT Displays historical system statistics, including OLAP kernel
statistics.

DBA_HIST_CON_SYSTEM_EVENT Displays historical information about the total waits for an event.

DBA_HIST_DATABASE_INSTANCE Displays information about the database environment.

DBA_HIST_DB_CACHE_ADVICE Displays historical predictions of the number of physical reads for
the cache size corresponding to each row.

DBA_HIST_DISPATCHER Displays historical information for each dispatcher process at the
time of the snapshot.

DBA_HIST_DYN_REMASTER_STATS Displays statistical information about the dynamic remastering
process.

DBA_HIST_IOSTAT_DETAIL Displays historical I/O statistics aggregated by file type and
function.
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Table 6-1    (Cont.) DBA_HIST Views

DBA_HIST View Description

DBA_HIST_RSRC_PDB_METRIC Displays historical information about the Resource Manager
metrics for pluggable databases (PDBs) for the past one hour.

DBA_HIST_RSRC_METRIC Displays historical information about the Resource Manager
metrics for consumer groups for the past one hour.

DBA_HIST_SHARED_SERVER_SUMMARY Displays historical information for shared servers, such as shared
server activity, common queues and dispatcher queues.

DBA_HIST_SNAPSHOT Displays information on snapshots in the system.

DBA_HIST_SQL_PLAN Displays the SQL execution plans.

DBA_HIST_WR_CONTROL Displays the settings for controlling AWR.

DBA_HIST_WR_SETTINGS Displays the settings and metadata of the AWR.

See Also:

Oracle Database Reference for more information about the DBA_HIST views

6.2.7 Managing Automatic Workload Repository in a Multitenant
Environment

The multitenant database architecture was introduced starting with Oracle Database
12c Release 1 (12.1.0.1). In the multitenant architecture, a container database (CDB)
can include multiple pluggable databases (PDBs).

In Oracle Database 12c Release 1 (12.1.01), a centralized Automatic Workload
Repository (AWR) stores the performance data related to CDB and PDBs in a
multitenant environment. You can take an AWR snapshot only at a CDB-level, that is,
on the CDB root. This AWR snapshot is for the whole database system, that is, it
contains the statistical information about the CDB as well as all the PDBs in a
multitenant environment.

In Oracle Database 12c Release 2 (12.2), CDB root as well as individual PDBs store,
view, and manage AWR data. You can take an AWR snapshot at a CDB-level, that is,
on the CDB root, as well as at a PDB-level, that is, on the individual PDBs.

The CDB administrator is responsible for enforcing security protocols, monitoring
resources, and planning for the whole multitenant deployment. The CDB administrator
does not administer individual PDBs.

The PDB administrator is responsible for managing the applications, monitoring
resources, and troubleshooting performance related issues on individual PDBs.

This section contains the following topics:

• Categorization of AWR Data in a Multitenant Environment

• AWR Data Storage and Retrieval in a Multitenant Environment

• Viewing AWR Data in a Multitenant Environment
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6.2.7.1 Categorization of AWR Data in a Multitenant Environment
The AWR data in a multitenant environment can be categorized as follows:

• General AWR Data

This AWR data has no security implications and is safe to be shared among all the
tenants in a CDB. This data is accessible by all the PDBs and is captured in both
the CDB-level and the PDB-level snapshots. Examples of general AWR data
include statistics names, latch names, and parameter names.

• Database Instance-wide AWR Data

This AWR data is an aggregated data of all the tenants in a CDB. This data
contains the status of the database instance as a whole and is useful only for the
CDB administrator. This data is captured only in the CDB-level snapshots.

• PDB-specific AWR Data

This AWR data has information about all the individual PDBs in a CDB. It shows
container-specific data that represents individual PDB’s contribution to the whole
database instance, therefore this data is useful for both the CDB and the PDB
administrators. This data is captured in both the CDB-level and the PDB-level
snapshots.

6.2.7.2 AWR Data Storage and Retrieval in a Multitenant Environment
This section describes the process of managing snapshots, and exporting and
importing AWR data in a multitenant environment.

Managing Snapshots

In Oracle Database 12c Release 2 (12.2), you can take an AWR snapshot at a CDB-
level, that is, on a CDB root, as well as at a PDB-level, that is, on an individual PDB.
The CDB-level snapshot data is stored in the SYSAUX tablespace of a CDB root. The
PDB-level snapshot data is stored in the SYSAUX tablespace of a PDB.

A CDB-level snapshot contains information about the CDB statistics as well as all the
PDB statistics, such as ASH, SQL statistics, and file statistics. The CDB administrator
can perform CDB-specific management operations, such as setting AWR data
retention period, setting snapshot schedule, taking manual snapshots, and purging
snapshot data for a CDB root.

A PDB-level snapshot contains the PDB statistics and also some global statistics that
can be useful for diagnosing the performance problems related to the PDB. The PDB
administrator can perform PDB-specific management operations, such as setting AWR
data retention period, setting snapshot schedule, taking manual snapshots, and
purging snapshot data for a PDB.

The CDB-level and PDB-level snapshot operations, such as creating snapshots and
purging snapshots, can be performed in either the automatic mode or the manual
mode.

The automatic snapshot operations are scheduled, so that they get executed
automatically at a particular time. The AWR_PDB_AUTOFLUSH_ENABLED initialization
parameter enables you to specify whether to enable or disable automatic snapshots
for all the PDBs in a CDB or for individual PDBs in a CDB. The automatic snapshot
operations are enabled by default for a CDB, but are disabled by default for a PDB. To
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enable automatic snapshots for a PDB, the PDB administrator must connect to that
PDB, set the value for the AWR_PDB_AUTOFLUSH_ENABLED parameter to true, and set the
snapshot generation interval to a value greater than 0.

See Also:

Oracle Database Reference for more information about the
AWR_PDB_AUTOFLUSH_ENABLED initialization parameter

The manual snapshot operations are explicitly initiated by users. The automatic
snapshots and manual snapshots capture the same AWR information. Oracle
recommends to generally use manual snapshots for a PDB. You should enable
automatic snapshots only selectively for a PDB for performance reasons.

The primary interface for managing snapshots is Oracle Enterprise Manager Cloud
Control (Cloud Control). If Cloud Control is not available, then you can use the
procedures in the DBMS_WORKLOAD_REPOSITORY package to manage snapshots. The
Oracle DBA role is required to use the procedures in the DBMS_WORKLOAD_REPOSITORY
package. The SQL procedures to create, drop, and modify snapshots for a CDB root
and a PDB are the same as that for a non-CDB. These SQL procedures perform their
operations on the local database by default, if the target database information is not
provided in their procedure call.

Note:

• The PDB-level snapshots have unique snapshot IDs and are not related to
the CDB-level snapshots.

• The plugging and unplugging operations of a PDB in a CDB do not affect
the AWR data stored on a PDB.

• The CDB administrator can use the PDB lockdown profiles to disable the
AWR functionality for a PDB by executing the following SQL statement on
that PDB:

SQL> alter lockdown profile profile_name disable feature=('AWR_ACCESS');

Once the AWR functionality is disabled on a PDB, snapshot operations
cannot be performed on that PDB.

The AWR functionality can be enabled again for a PDB by executing the
following SQL statement on that PDB:

SQL> alter lockdown profile profile_name enable feature=('AWR_ACCESS');
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See Also:

• "Creating Snapshots"

• "Dropping Snapshots"

• "Modifying Snapshot Settings"

• Oracle Database Security Guide for more information about the PDB
lockdown profiles

Exporting and Importing AWR Data

The process of exporting and importing AWR data for a CDB root and a PDB in a
multitenant environment is similar to the process of exporting and importing AWR data
for a non-CDB.

See Also:

• "Extracting AWR Data" for information about exporting AWR data from an
Oracle database

• "Loading AWR Data" for information about importing AWR data into an
Oracle database

6.2.7.3 Viewing AWR Data in a Multitenant Environment
You can view the AWR data in a multitenant environment using various Oracle
Database reports and views.

AWR Reports

The primary interface for generating AWR reports is Oracle Enterprise Manager Cloud
Control (Cloud Control). Whenever possible, generate AWR reports using Cloud
Control.

See Also:

Oracle Database 2 Day + Performance Tuning Guide for more information
about generating AWR report using Cloud Control

If Cloud Control is unavailable, then you can generate the AWR reports by running
SQL scripts as described below. The DBA role is required to run these scripts.

• You can generate a CDB-specific AWR report from a CDB root that shows the
global system data statistics for the whole multitenant environment. You can
generate this AWR report using the SQL scripts described in the section
"Generating an AWR Report for the Local Database".
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• You can generate a PDB-specific AWR report from a PDB that shows the statistics
related to that PDB. You can generate this AWR report using the SQL scripts
described in the section "Generating an AWR Report for the Local Database".

• You can generate a PDB-specific AWR report from a CDB root that shows the
statistics related to a specific PDB. You can generate this AWR report using the
SQL scripts described in the section "Generating an AWR Report for a Specific
Database".

AWR Views

The following table lists the Oracle Database views for accessing the AWR data stored
on the CDB root and the individual PDBs in a multitenant environment.

See Also:

"Using Automatic Workload Repository Views" for more information about
these AWR views

Table 6-2    Views for Accessing AWR Data in a Multitenant Environment

Views Description

DBA_HIST Views • The DBA_HIST views show the AWR data present only on the CDB root.
• When the DBA_HIST views are accessed from a CDB root, they show all

the AWR data stored on the CDB root.
• When the DBA_HIST views are accessed from a PDB, they show the

subset of the CDB root AWR data, which is specific to that PDB.

DBA_HIST_CON Views • The DBA_HIST_CON views are similar to the DBA_HIST views, but they
provide more fine grained information about each container, and thus,
they have more data than the DBA_HIST views.

• The DBA_HIST_CON views show the AWR data present only on the CDB
root.

• When the DBA_HIST_CON views are accessed from a CDB root, they
show all the AWR data stored on the CDB root.

• When the DBA_HIST_CON views are accessed from a PDB, they show
the subset of the CDB root AWR data, which is specific to that PDB.

AWR_ROOT Views • The AWR_ROOT views are available starting with Oracle Database 12c
Release 2 (12.2) and are available only in the Multitenant environment.

• The AWR_ROOT views are equivalent to the DBA_HIST views.
• The AWR_ROOT views show the AWR data present only on the CDB root.
• When the AWR_ROOT views are accessed from a CDB root, they show all

the AWR data stored on the CDB root.
• When the AWR_ROOT views are accessed from a PDB, they show the

subset of the CDB root AWR data, which is specific to that PDB.

AWR_PDB Views • The AWR_PDB views are available starting with Oracle Database 12c
Release 2 (12.2).

• The AWR_PDB views show the local AWR data present on a CDB root or
a PDB.

• When the AWR_PDB views are accessed from a CDB root, they show the
AWR data stored on the CDB root.

• When the AWR_PDB views are accessed from a PDB, they show the
AWR data stored on that PDB.
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Table 6-2    (Cont.) Views for Accessing AWR Data in a Multitenant Environment

Views Description

CDB_HIST Views • The CDB_HIST views show the AWR data stored on the PDBs.
• When the CDB_HIST views are accessed from a CDB root, they show

the union of the AWR data stored on all the PDBs.
• When the CDB_HIST views are accessed from a PDB, they show the

AWR data stored on that PDB.

6.2.8 Managing Automatic Workload Repository in Active Data Guard
Standby Databases

Starting with Oracle Database 12c Release 2 (12.2), Automatic Workload Repository
(AWR) data can be captured for Active Data Guard (ADG) standby databases. This
feature enables analyzing any performance-related issues for ADG standby
databases.

AWR snapshots for ADG standby databases are called remote snapshots. A database
node, called destination, is responsible for storing snapshots that are collected from
remote ADG standby database nodes, called sources.

A destination can be either an ADG primary database or a non-ADG database. If a
destination is an ADG primary database, then it is also a source database, and its
snapshots are local snapshots.

A source is identified by a unique name or source name by which it is known to a
destination.

You can assign a name to a destination node or a source node during its
configuration. Otherwise, the value of the initialization parameter DB_UNIQUE_NAME is
assigned as a name for a node.

Each source must have two database links, a destination-to-source database link and
a source-to-destination database link. These database links are configured for each
source during the ADG deployment. You must manually reconfigure these database
links after certain ADG events, such as failovers, switchovers, and addition and
removal of hosts, so that the database applications continue functioning properly after
these events.

You can take the remote snapshots either automatically at scheduled time intervals or
manually. The remote snapshots are always started by the destination node. After the
destination initiates the snapshot creation process, sources push their snapshot data
to the destination using database links. The snapshot data or AWR data stored on the
destination can be accessed using AWR reports, Oracle Database import and export
functions, and user-defined queries. The Automatic Database Diagnostic Monitor
(ADDM) application can use the AWR data for analyzing any database performance-
related issues.

Destination Database Responsibilities

A destination database manages the following tasks:

• Registering sources

• Assigning unique identifier for each source
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• Creating database links between destination and sources

• Scheduling and initiating automatic snapshots for sources

• Managing destination workload by coordinating snapshots among sources

• Managing snapshot settings for each source

• Assigning identifiers to newly generated snapshots

• Partitioning the AWR tables

• Storing the performance data in the local AWR

• Purging the AWR data of destination and sources

source Database Responsibilities

A source database manages the following tasks:

• Storing its performance data in the local AWR

• Sending its AWR data to the destination

• Responding to service requests from the destination

• Extracting the AWR data from the destination

Major Steps for Managing AWR in ADG Standby Databases

The following are the major steps for managing AWR in ADG standby databases:

1. Configuring the Remote Management Framework (RMF)

2. Managing Snapshots for Active Data Guard Standby Databases

3. Viewing AWR Data in Active Data Guard Standby Databases

Note:

Before you start configuring AWR for ADG environment, make sure that the
database links for all the ADG standby databases are already configured during
the ADG deployment.

6.2.8.1 Configuring the Remote Management Framework (RMF)
The Remote Management Framework (RMF) is an architecture for enabling capturing
performance statistics (AWR data) for Oracle Database.

Note:

In Oracle Database 12c Release 2 (12.2), RMF can be used only for ADG
standby databases and standalone databases.

The RMF topology is a centralized architecture that consists of all the participating
database nodes along with their metadata and connection information. The RMF
topology has one database node, called destination, which is responsible for storing
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and managing performance data (AWR data) that is collected from the database
nodes, called sources. A candidate destination is a source that can be configured in
such way that it can replace the original destination, when the original destination is
unavailable or is downgraded. A topology can have only one destination, and one or
more candidate destinations.

Each database node in a topology must be assigned a unique name. This can be done
using the procedure DBMS_UMF.configure_node() during configuring a node. If the name
for a node is not provided in this procedure, then the value of the initialization
parameter DB_UNIQUE_NAME is used as the name for a node.

The database nodes in a topology communicate with each other using database links.
The database links between destination to source and source to destination must be
created for each ADG standby database during the ADG deployment.

A service is an application running on a topology. For example, an AWR service
running on a topology enables remote AWR snapshots for all the database nodes in
that topology.

The RMF APIs are the PL/SQL procedures and functions that can be used to
configure the RMF topology. The RMF APIs are declared in the PL/SQL package
DBMS_UMF.

Note:

• The SYS$UMF user is the default database user that has all the privileges to
access the system-level RMF views and tables. All the AWR related
operations in RMF can be performed only by the SYS$UMF user. The SYS$UMF
user is locked by default and it must be unlocked before deploying the RMF
topology.

• You need to provide password for the SYS$UMF user when creating database
links in the RMF topology. If the password for the SYS$UMF user is changed,
all the database links in the RMF topology must be recreated.

See Also:

Oracle Database PL/SQL Packages and Types Reference for more information
about the DBMS_UMF package

Setting Up the RMF Topology

You need to set up the RMF topology for collecting performance statistics for an
Oracle database.

The following are the prerequisites for setting up the RMF topology:

• You must create destination to source and source to destination database links for
all the database nodes to be registered in the RMF topology. This setup should be
done during the ADG deployment.

The following are the steps for setting up the RMF topology:
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1. Configure database nodes to add to the topology.

2. Create the topology.

3. Register database nodes with the topology.

4. (Optional) Register database links between the nodes in the topology. This
configuration is required when a destination becomes unavailable and a candidate
destination needs to connect to the remaining nodes in the topology using
database links.

Example for Setting Up the RMF Topology

In this example, the three database nodes T, S0, and S1 are added to the topology
Topology_1. Node T is the destination node and nodes S0 and S1 are the source nodes.
Node S1 is a candidate destination, that is, when the original destination T is not
available, node S1 becomes the new destination. The AWR service is enabled for all
the sources in the topology.

Assume that the following database links are already created during the ADG
deployment:

• DBLINK_T_to_S0: Database link from T to S0.

• DBLINK_T_to_S1: Database link from T to S1.

• DBLINK_S0_to_T: Database link from S0 to T.

• DBLINK_S0_to_S1: Database link from S0 to S1.

• DBLINK_S1_to_T: Database link from S1 to T.

• DBLINK_S1_to_S0: Database link from S1 to S0.

The following is sample code for setting up the RMF topology:

   /* Configure the nodes T, S0, and S1 by executing these procedures on the 
respective nodes */

   /* Execute this procedure on node T */
   SQL> exec DBMS_UMF.configure_node ('T');

   /* Execute this procedure on node S0 */
   SQL> exec DBMS_UMF.configure_node ('S0', 'DBLINK_S0_to_T');

   /* Execute this procedure on node S1 */
   SQL> exec DBMS_UMF.configure_node ('S1', 'DBLINK_S1_to_T');

   /* Execute all the following procedures on the destination node T */

   /* Create the topology 'Topology_1' */
   SQL> exec DBMS_UMF.create_topology ('Topology_1');

   /* Register the node S0 with the topology 'Topology_1' */
   SQL> exec DBMS_UMF.register_node ('Topology_1',
                                     'S0',
                                     'DBLINK_T_to_S0',
                                     'DBLINK_S0_to_T',
                                     'TRUE'  /* Set it as a source */,
                                     'FALSE' /* Set it as not a candidate 
destination */);

   /* Register the node S1 with the topology 'Topology_1' */
   SQL> exec DBMS_UMF.register_node ('Topology_1',
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                                     'S1',
                                     'DBLINK_T_to_S1',
                                     'DBLINK_S1_to_T', 
                                     'TRUE'  /* Set it as a source */,
                                     'TRUE'  /* Set it as a candidate destination 
*/);

   /* Register the database links between the nodes S0 and S1 in the topology 
'Topology_1'. 
    * When destination T is unavailable at the time of failover, the source S0 can 
connect to
    * the candidate destination S1 using this database link.
    */
   SQL> exec DBMS_UMF.create_link ('Topology_1',
                                   'S0',
                                   'S1',
                                   'DBLINK_S0_to_S1',
                                   'DBLINK_S1_to_S0');

   /* Enable the AWR service on the node S0 in the topology 'Topology_1' */
   SQL> exec DBMS_WORKLOAD_REPOSITORY.register_remote_database(node_name=>'S0');

   /* Enable the AWR service on the node S1 in the topology 'Topology_1' */
   SQL> exec DBMS_WORKLOAD_REPOSITORY.register_remote_database(node_name=>'S1');

Note:

The AWR service can be disabled for a node using the procedure:

SQL> exec DBMS_WORKLOAD_REPOSITORY.unregister_remote_database(node_name)

Managing ADG Role Transition

An ADG role transition occurs when the ADG Primary or original destination fails
(failover event) or when an ADG standby database or candidate destination takes over
the role of the ADG Primary during the maintenance phase (switchover event).

Oracle recommends that you perform the following configuration steps before making
the role change, that is, before making the candidate destination as the new
destination due to the failover or switchover event:

1. Create database links between the sources and the candidate destination. This
configuration must be done for all the sources by executing the following
procedure on each source:

SQL> EXEC DBMS_UMF.CREATE_LINK (topology name, 
                                source name, 
                                candidate destination name,
                                source to candidate destination database link,
                                candidate destination to source database link);
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Note:

Oracle recommends that you create database links among all the nodes in
a topology to avoid any unanticipated issues that may arise at the time of
role change.

2. Take an AWR snapshot on the candidate destination.

Note:

To generate an AWR report for the candidate destination after the role
change, take at least one snapshot for the candidate destination before the
role change.

3. Restart the candidate destination as well as all the sources.

After completing the preceding configuration steps, you can make the role change by
executing the following procedure on the candidate destination:

SQL> EXEC DBMS_UMF.SWITCH_DESTINATION(topology name, force_switch=>FALSE);

Note:

Oracle recommends that you do not take any snapshots for the sources during
the role transition period. After the role change process is complete by
executing the DBMS_UMF.SWITCH_DESTINATION procedure, you can take snapshots
for the sources. If you want to generate AWR reports for the sources after the
role change, then you must choose only those snapshots that were taken after
the role change.

Getting the Details of Registered RMF Topologies

The RMF views described below show the configuration information about all the
registered RMF topologies in a multi-database environment.

Table 6-3    RMF Views

RMF View Description

DBA_UMF_TOPOLOGY Shows all the registered topologies in a multi-database
environment. Each topology has a topology name, a
destination ID, and topology state. To enable RMF, the
topology state of at least one topology should be ACTIVE.

DBA_UMF_REGISTRATION Shows all the registered nodes in all the topologies in a multi-
database environment.

DBA_UMF_LINK Shows all the registered database links in all the topologies in
a multi-database environment.

DBA_UMF_SERVICE Shows all the registered services in all the topologies in a
multi-database environment.
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See Also:

Oracle Database Reference for more information about these RMF views

6.2.8.2 Managing Snapshots for Active Data Guard Standby Databases
The AWR snapshots for ADG standby databases are called remote snapshots. Similar
to local AWR snapshots, remote AWR snapshots can be generated automatically at
scheduled time intervals or can be generated manually. The Push-on-Demand
mechanism is used for generating remote snapshots, where the snapshots generation
process is initiated by the destination, which then instructs the sources to start pushing
the snapshot data to the destination over database links. The destination periodically
initiates automatic snapshots based on the snapshot time interval configured for each
of the sources.

Note:

The destination is responsible for purging the expired remote snapshots based
on the snapshot data or AWR data retention settings for individual sources.
Purging of locally generated snapshots occurs as part of the regularly
scheduled purging process. By default, Oracle Database automatically purges
snapshots that have been stored in AWR for over 8 days. The partitioning of
AWR table for remote snapshots is done in the same way as that of the local
snapshots.

Creating, Modifying, and Deleting Remote Snapshots

The APIs for creating, modifying, and deleting remote snapshots are same as that for
the local snapshots.

Note:

For creating remote snapshots, you can also use the
DBMS_WORKLOAD_REPOSITORY.CREATE_REMOTE_SNAPSHOT API. This API works similar to
the local snapshot creation API DBMS_WORKLOAD_REPOSITORY.CREATE_SNAPSHOT, but
it takes the additional parameter of RMF topology name.
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See Also:

• "Creating Snapshots"

• "Modifying Snapshot Settings"

• "Dropping Snapshots"

• Oracle Database PL/SQL Packages and Types Reference for the syntax of
the DBMS_WORKLOAD_REPOSITORY.CREATE_REMOTE_SNAPSHOT API.

Managing Baselines for Remote Snapshots

The APIs for managing baselines for remote snapshots are same as that for the local
snapshots.

See Also:

"Managing Baselines"

Exporting and Importing Remote Snapshots

Note:

You cannot execute the AWR export and import scripts related to remote
snapshots on an ADG standby database, that is, on a source database. Always
execute these scripts on a destination database.

The process of exporting and importing AWR data for remote snapshots is same as
that for the local snapshots. In Oracle Database 12c Release 2 (12.2), the AWR data
export and import scripts awrextr.sql and awrload.sql use the source name identifier
to distinguish snapshots originating from a particular source. A source name is stored
in a dump file during an export operation and is used as a default source name during
an import operation.

See Also:

"Transporting Automatic Workload Repository Data" for information about
exporting and importing AWR data for local snapshots.

Exporting Remote Snapshots Using the awrextr.sql Script

The process of exporting remote snapshots is similar to exporting local snapshots
using the awrextr.sql script described in the section "Extracting AWR Data" with the
following differences:
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• The default export log file directory is the same as that of the dump file, but you
can also specify any other directory for an export log file.

• The .dmp suffix can be specified to the name of the dump file to export.

• The export script displays the values of SOURCE_DBID and SOURCE_NAME columns of
AWR tables before prompting for the Mapped Database ID value to export.

Importing Remote Snapshots Using the awrload.sql Script

The process of importing remote snapshots is similar to importing local snapshots
using the awrload.sql script described in the section "Loading AWR Data" with the
following differences:

• The default import log file directory is the same as that of the dump file, but you
can also specify any other directory for an import log file. This is particularly useful
when the dump file resides in a read-only directory.

• The .dmp suffix can be specified to the name of the dump file to import.

• The import script uses the values of SOURCE_DBID and SOURCE_NAME columns present
in the dump file to determine the appropriate Mapped Database ID to use for
storing the snapshot data in AWR.

Note:

The snapshot import operation is not affected by the version of the Oracle
database from which the snapshot dump was generated.

6.2.8.3 Viewing AWR Data in Active Data Guard Standby Databases
You can view the AWR data stored in the ADG standby databases using Oracle
supplied AWR views and AWR reports.

Viewing AWR Data Using AWR Views

You can view the historical data stored in AWR using the DBA_HIST views described in
the section "Using Automatic Workload Repository Views".

Note:

In Oracle Database 12c Release 2 (12.2), the view DBA_HIST_DATABASE_INSTANCE
contains the additional field DB_UNIQUE_NAME to support AWR for ADG standby
databases. The field DB_UNIQUE_NAME stores the unique identifier of a source by
which it is known to the destination.

Viewing AWR Data Using AWR Reports

You can view the performance statistics related to ADG standby databases using
AWR reports. The primary interface for generating AWR reports is Oracle Enterprise
Manager Cloud Control (Cloud Control). Whenever possible, generate AWR reports
using Cloud Control. If Cloud Control is unavailable, then generate AWR reports using
the Oracle supplied SQL scripts. The DBA role is required to run these scripts.
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The AWR data can be queried for a particular source using the source name-mapped
database ID pair. The mapped database ID is similar to the database identifier (DBID)
that is used by AWR to identify a database instance and is stored in the DBID column in
the AWR tables. The AWR DBID value is derived as follows for the ADG standby
databases:

• For a destination, the AWR DBID value is the value of V$DATABASE.CON_DBID.

• For a source, the AWR DBID value is the value of DBMS_UMF.GET_NODE_ID_LOCAL() or
the value of the column NODE_ID in the DBA_UMF_REGISTRATION view.

As snapshot IDs are not unique across sources, the pair of snapshot ID-mapped
database ID identifies a snapshot for a particular source.

See Also:

"Generating an AWR Report for a Specific Database" for information about
generating AWR reports using Oracle supplied SQL scripts.

6.3 Generating Automatic Workload Repository Reports
An AWR report shows data captured between two snapshots (or two points in time).
AWR reports are divided into multiple sections. The content of the report contains the
workload profile of the system for the selected range of snapshots. The HTML report
includes links that can be used to navigate quickly between sections.

Note:

If you run a report on a database that does not have any workload activity
during the specified range of snapshots, then calculated percentages for some
report statistics can be less than 0 or greater than 100. This result means that
there is no meaningful value for the statistic.

This section describes how to generate AWR reports and contains the following topics:

• User Interface for Generating an AWR Report

• Generating an AWR Report Using the Command-Line Interface

6.3.1 User Interface for Generating an AWR Report
The primary interface for generating AWR reports is Oracle Enterprise Manager Cloud
Control (Cloud Control). Whenever possible, generate AWR reports using Cloud
Control.

If Cloud Control is unavailable, then generate AWR reports by running SQL scripts.
The DBA role is required to run these scripts.
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See Also:

Oracle Database 2 Day + Performance Tuning Guide for more information
about generating AWR reports using Cloud Control

6.3.2 Generating an AWR Report Using the Command-Line Interface
This section describes how to generate AWR reports by running SQL scripts in the
command-line interface. The DBA role is required to run these scripts. Click on an
appropriate task link in the following table for the detailed steps to generate the
required AWR report.

Table 6-4    SQL Scripts for Generating AWR Reports

Task SQL Script Description

Generating an AWR Report for
the Local Database

awrrpt.sql Generates an AWR report in HTML or text
format that displays statistics from a range of
snapshot IDs in the local database instance.

Generating an AWR Report for
a Specific Database

awrrpti.sql Generates an AWR report in HTML or text
format that displays statistics from a range of
snapshot IDs in a specific database instance.

Generating an AWR Report for
the Local Database in Oracle
RAC

awrgrpt.sql Generates an AWR report in HTML or text
format that displays statistics from a range of
snapshot IDs in the local database instance in
an Oracle RAC environment.

Generating an AWR Report for
a Specific Database in Oracle
RAC

awrgrpti.sql Generates an AWR report in HTML or text
format that displays statistics from a range of
snapshot IDs in a specific database instance in
an Oracle RAC environment.

Generating an AWR Report for
a SQL Statement on the Local
Database

awrsqrpt.sql Generates an AWR report in HTML or text
format that displays statistics for a particular
SQL statement from a range of snapshot IDs in
the local database instance.

Generating an AWR Report for
a SQL Statement on a Specific
Database

awrsqrpi.sql Generates an AWR report in HTML or text
format that displays statistics for a particular
SQL statement from a range of snapshot IDs in
a specific database instance.

6.3.2.1 Generating an AWR Report for the Local Database
The awrrpt.sql SQL script generates an HTML or text report that displays statistics
from a range of snapshot IDs.

To generate an AWR report on the local database instance using the command-
line interface:

1. At the SQL prompt, enter:

@$ORACLE_HOME/rdbms/admin/awrrpt.sql

2. Specify whether you want an HTML or a text report:
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Enter value for report_type: text

In this example, a text report is chosen.

3. Specify the number of days for which you want to list snapshot IDs.

Enter value for num_days: 2

A list of existing snapshots for the specified time range is displayed. In this
example, snapshots captured in the last 2 days are displayed.

4. Specify a beginning and ending snapshot ID for the workload repository report:

Enter value for begin_snap: 150
Enter value for end_snap: 160

In this example, the snapshot with a snapshot ID of 150 is selected as the
beginning snapshot, and the snapshot with a snapshot ID of 160 is selected as the
ending snapshot.

5. Enter a report name, or accept the default report name:

Enter value for report_name: 
Using the report name awrrpt_1_150_160

In this example, the default name is accepted and an AWR report named
awrrpt_1_150_160 is generated.

6.3.2.2 Generating an AWR Report for a Specific Database
The awrrpti.sql SQL script generates an HTML or text report that displays statistics
from a range of snapshot IDs using a specific database instance. This script enables
you to specify a database identifier and instance for which the AWR report will be
generated.

To generate an AWR report on a specific database instance using the command-
line interface:

1. At the SQL prompt, enter:

@$ORACLE_HOME/rdbms/admin/awrrpti.sql

2. Specify whether you want an HTML or a text report:

Enter value for report_type: text

In this example, a text report is chosen.

A list of available database identifiers and instance numbers are displayed:

Instances in this Workload Repository schema
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
   DB Id    Inst Num DB Name      Instance     Host
----------- -------- ------------ ------------ ------------
 3309173529        1 MAIN         main         examp1690
 3309173529        1 TINT251      tint251      samp251

3. Enter the values for the database identifier (dbid) and instance number (inst_num):

Enter value for dbid: 3309173529
Using 3309173529 for database Id
Enter value for inst_num: 1
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Note:

For an ADG standby database, the value for dbid can be determined as
follows:

• For a Destination node, use the value of v$database.con_dbid .

• For a Source node, use the value of dbms_umf.get_node_id_local().

4. Specify the number of days for which you want to list snapshot IDs.

Enter value for num_days: 2

A list of existing snapshots for the specified time range is displayed. In this
example, snapshots captured in the last 2 days are displayed.

5. Specify a beginning and ending snapshot ID for the workload repository report:

Enter value for begin_snap: 150
Enter value for end_snap: 160

In this example, the snapshot with a snapshot ID of 150 is selected as the
beginning snapshot, and the snapshot with a snapshot ID of 160 is selected as the
ending snapshot.

6. Enter a report name, or accept the default report name:

Enter value for report_name: 
Using the report name awrrpt_1_150_160

In this example, the default name is accepted and an AWR report named
awrrpt_1_150_160 is generated on the database instance with a database ID value
of 3309173529.

6.3.2.3 Generating an AWR Report for the Local Database in Oracle RAC
The awrgrpt.sql SQL script generates an HTML or text report that displays statistics
from a range of snapshot IDs using the current database instance in an Oracle Real
Application Clusters (Oracle RAC) environment.

Note:

In an Oracle RAC environment, Oracle recommends generating an HTML
report (instead of a text report) because it is much easier to read.

To generate an AWR report for Oracle RAC on the local database instance using
the command-line interface:

1. At the SQL prompt, enter:

@$ORACLE_HOME/rdbms/admin/awrgrpt.sql

2. Specify whether you want an HTML or a text report:

Enter value for report_type: html
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In this example, an HTML report is chosen.

3. Specify the number of days for which you want to list snapshot IDs.

Enter value for num_days: 2

A list of existing snapshots for the specified time range is displayed. In this
example, snapshots captured in the last day are displayed.

4. Specify a beginning and ending snapshot ID for the workload repository report:

Enter value for begin_snap: 150
Enter value for end_snap: 160

In this example, the snapshot with a snapshot ID of 150 is selected as the
beginning snapshot, and the snapshot with a snapshot ID of 160 is selected as the
ending snapshot.

5. Enter a report name, or accept the default report name:

Enter value for report_name: 
Using the report name awrrpt_rac_150_160.html

In this example, the default name is accepted and an AWR report named
awrrpt_rac_150_160.html is generated.

6.3.2.4 Generating an AWR Report for a Specific Database in Oracle RAC
The awrgrpti.sql SQL script generates an HTML or text report that displays statistics
from a range of snapshot IDs using specific databases instances running in an Oracle
RAC environment. This script enables you to specify database identifiers and a
comma-delimited list of database instances for which the AWR report will be
generated.

Note:

In an Oracle RAC environment, Oracle recommends generating an HTML
report (instead of a text report) because it is much easier to read.

To generate an AWR report for Oracle RAC on a specific database instance
using the command-line interface:

1. At the SQL prompt, enter:

@$ORACLE_HOME/rdbms/admin/awrgrpti.sql

2. Specify whether you want an HTML or a text report:

Enter value for report_type: html

In this example, an HTML report is chosen.

A list of available database identifiers and instance numbers are displayed:

Instances in this Workload Repository schema
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
   DB Id    Inst Num DB Name      Instance     Host
----------- -------- ------------ ------------ ------------
 3309173529        1 MAIN         main         examp1690
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 3309173529        1 TINT251      tint251      samp251
 3309173529        2 TINT251      tint252      samp252

3. Enter the value for the database identifier (dbid):

Enter value for dbid: 3309173529
Using 3309173529 for database Id

4. Enter the value for the instance numbers (instance_numbers_or_all) of the Oracle
RAC instances you want to include in the report:

Enter value for instance_numbers_or_all: 1,2

5. Specify the number of days for which you want to list snapshot IDs.

Enter value for num_days: 2

A list of existing snapshots for the specified time range is displayed. In this
example, snapshots captured in the last 2 days are displayed.

6. Specify a beginning and ending snapshot ID for the workload repository report:

Enter value for begin_snap: 150
Enter value for end_snap: 160

In this example, the snapshot with a snapshot ID of 150 is selected as the
beginning snapshot, and the snapshot with a snapshot ID of 160 is selected as the
ending snapshot.

7. Enter a report name, or accept the default report name:

Enter value for report_name: 
Using the report name awrrpt_rac_150_160.html

In this example, the default name is accepted and an AWR report named
awrrpt_rac_150_160.html is generated on the database instance with a database ID
value of 3309173529.

6.3.2.5 Generating an AWR Report for a SQL Statement on the Local
Database

The awrsqrpt.sql SQL script generates an HTML or text report that displays statistics
of a particular SQL statement from a range of snapshot IDs. Run this report to inspect
or debug the performance of a SQL statement.

To generate an AWR report for a SQL statement on the local database instance
using the command-line interface:

1. At the SQL prompt, enter:

@$ORACLE_HOME/rdbms/admin/awrsqrpt.sql

2. Specify whether you want an HTML or a text report:

Enter value for report_type: html

In this example, an HTML report is chosen.

3. Specify the number of days for which you want to list snapshot IDs.

Enter value for num_days: 1
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A list of existing snapshots for the specified time range is displayed. In this
example, snapshots captured in the previous day are displayed.

4. Specify a beginning and ending snapshot ID for the workload repository report:

Enter value for begin_snap: 146
Enter value for end_snap: 147

In this example, the snapshot with a snapshot ID of 146 is selected as the
beginning snapshot, and the snapshot with a snapshot ID of 147 is selected as the
ending snapshot.

5. Specify the SQL ID of a particular SQL statement to display statistics:

Enter value for sql_id: 2b064ybzkwf1y

In this example, the SQL statement with a SQL ID of 2b064ybzkwf1y is selected.

6. Enter a report name, or accept the default report name:

Enter value for report_name: 
Using the report name awrrpt_1_146_147.html

In this example, the default name is accepted and an AWR report named
awrrpt_1_146_147 is generated.

6.3.2.6 Generating an AWR Report for a SQL Statement on a Specific
Database

The awrsqrpi.sql SQL script generates an HTML or text report that displays statistics
of a particular SQL statement from a range of snapshot IDs using a specific database
instance.This script enables you to specify a database identifier and instance for which
the AWR report will be generated. Run this report to inspect or debug the performance
of a SQL statement on a specific database and instance.

To generate an AWR report for a SQL statement on a specific database instance
using the command-line interface:

1. At the SQL prompt, enter:

@$ORACLE_HOME/rdbms/admin/awrsqrpi.sql

2. Specify whether you want an HTML or a text report:

Enter value for report_type: html

In this example, an HTML report is chosen.

A list of available database identifiers and instance numbers are displayed:

Instances in this Workload Repository schema
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
   DB Id    Inst Num DB Name      Instance     Host
----------- -------- ------------ ------------ ------------
 3309173529        1 MAIN         main         examp1690
 3309173529        1 TINT251      tint251      samp251

3. Enter the values for the database identifier (dbid) and instance number (inst_num):

Enter value for dbid: 3309173529
Using 3309173529 for database Id
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Enter value for inst_num: 1
Using 1 for instance number

4. Specify the number of days for which you want to list snapshot IDs.

Enter value for num_days: 1

A list of existing snapshots for the specified time range is displayed. In this
example, snapshots captured in the previous day are displayed.

5. Specify a beginning and ending snapshot ID for the workload repository report:

Enter value for begin_snap: 146
Enter value for end_snap: 147

In this example, the snapshot with a snapshot ID of 146 is selected as the
beginning snapshot, and the snapshot with a snapshot ID of 147 is selected as the
ending snapshot.

6. Specify the SQL ID of a particular SQL statement to display statistics:

Enter value for sql_id: 2b064ybzkwf1y

In this example, the SQL statement with a SQL ID of 2b064ybzkwf1y is selected.

7. Enter a report name, or accept the default report name:

Enter value for report_name: 
Using the report name awrrpt_1_146_147.html

In this example, the default name is accepted and an AWR report named
awrrpt_1_146_147 is generated on the database instance with a database ID value
of 3309173529.

6.4 Generating Performance Hub Active Report
Performance Hub feature of EM Express provides an active report with a consolidated
view of all performance data for a specified time period. The report is fully interactive;
its contents are saved in a HTML file, which you can access offline using a web
browser.

See Also:

Oracle Database 2 Day DBA for more information about Performance Hub
feature of EM Express

This section describes how to generate Performance Hub active report and contains
the following topics:

• Overview of Performance Hub Active Report

• Command-Line User Interface for Generating a Performance Hub Active Report

• Generating a Performance Hub Active Report Using a SQL Script
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6.4.1 Overview of Performance Hub Active Report
Performance Hub active report enables you to view all performance data available for
a time period that you specify. Different tabs are available in the Performance Hub,
depending on whether real-time or historical data is selected for the time period. When
real-time data is selected, more granular data is presented, because real-time data for
the last hour is displayed. When historical data is selected, more detailed data is
presented, but the data points are averaged out to the Automatic Workload Repository
(AWR) interval for the selected time period.

This section describes Performance Hub active report and contains the following
topics:

• About Performance Hub Active Report Tabs

• About Performance Hub Active Report Types

6.4.1.1 About Performance Hub Active Report Tabs
Performance Hub active report contains interactive tabs that enable you to view and
navigate through performance data categorized into various performance areas.

The tabs contained in a Performance Hub active report include the following:

• Summary

The Summary tab provides an overview of system performance, including
resource consumption, average active sessions, and load profile information. This
tab is available for real-time data as well as historical data.

• Activity

The Activity tab displays ASH analytics. This tab is available for real-time data as
well as historical data.

• Workload

The Workload tab displays metric information about the workload profile, such as
call rates, logon rate, and top SQL. This tab is available for real-time data as well
as historical data.

• RAC

The RAC tab displays metrics specific to Oracle RAC, such as the number of
global cache blocks received and the average block latency. This tab is only
available in Oracle RAC environments. This tab is available for real-time data as
well as historical data.

• Monitored SQL

The Monitored SQL tab displays information about monitored SQL statements.
This tab is available for real-time data as well as historical data.

• ADDM

The ADDM tab displays information for ADDM analysis tasks and Real-Time
ADDM analysis reports. This tab is available for real-time data as well as historical
data.

• Current ADDM Findings
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The Current ADDM Findings tab displays a real-time analysis of system
performance for the past 5 minutes. This tab is only available if the specified time
period for the Performance Hub active report is within the past hour. This tab is
available only for real-time data.

• Database time

The Database Time tab displays wait events by category for various metrics. This
tab is available only for historical data.

• Resources

The Resources tab displays operating system and I/O usage statistics. This tab is
available only for historical data.

• System Statistics

The System Statistics tab displays database and system statistics. This tab is
available only for historical data.

6.4.1.2 About Performance Hub Active Report Types
You can choose the level of details displayed within each tab of the Performance Hub
active report by selecting the report type.

The available report types for the Performance Hub active report include the following:

• Basic

Only the basic information for all the tabs is saved to the report.

• Typical

In addition to the information saved in the basic report type, the SQL Monitor
information for the top SQL statements contained in the Monitored SQL tab and
the ADDM reports are saved to the report.

• All

In addition to the information saved in the typical report type, the SQL Monitor
information for all SQL statements contained in the Monitored SQL tab and all
detailed reports for all tabs are saved to the report.

6.4.2 Command-Line User Interface for Generating a Performance
Hub Active Report

You can generate a Performance Hub active report using the command-line interface
in one of two ways:

• Using a SQL script, as described in "Generating a Performance Hub Active Report
Using a SQL Script".

• Using the DBMS_PERF package, as described in Oracle Database PL/SQL Packages
and Types Reference.
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6.4.3 Generating a Performance Hub Active Report Using a SQL
Script

This section describes how to generate Performance Hub active report by running the
perfhubrpt.sql SQL script in the command-line interface. The DBA role is required to
run this script.

To generate a Performance Hub active report:

1. At the SQL prompt, enter:

@$ORACLE_HOME/rdbms/admin/perfhubrpt.sql

2. Specify the desired report type:

Please enter report type: typical

For information about the available report types, see "About Performance Hub
Active Report Types".

3. Enter the value for the database identifier of the database you want to use:

Please enter database ID: 3309173529

To use the local database, enter a null value (the default value). If you specify a
database identifier for a database other than the local database, then the
Performance Hub active report is generated from imported AWR data.

4. Enter the value for the instance number of the database instance you want to use:

Please enter instance number: all instances

To specify all instances, enter all instances (the default value).

5. Enter the desired time period by specifying an end time and a start time in the
format of dd:mm:yyyy hh:mi:ss:

Please enter end time in format of dd:mm:yyyy hh24:mi:ss: 03:04:2014 17:00:00
Please enter start time in format of dd:mm:yyyy hh24:mi:ss: 03:04:2014 16:00:00

6. Enter a report name, or accept the default report name:

Enter value for report_name: my_perfhub_report.html

In this example, a Performance Hub active report named my_perfhub_report is
generated on all database instances with a database ID value of 3309173529 for the
specified time period from 4:00 p.m. to 5:00 p.m on April 3, 2014.
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7
Automatic Performance Diagnostics

This chapter describes Oracle Database automatic features for performance
diagnosing and tuning.

This chapter contains the following topics:

• Overview of the Automatic Database Diagnostic Monitor

• Setting Up ADDM

• Diagnosing Database Performance Problems with ADDM

• Views with ADDM Information

See Also:

Oracle Database 2 Day + Performance Tuning Guide for information about
using Oracle Enterprise Manager Cloud Control (Cloud Control) to diagnose
and tune the database with the Automatic Database Diagnostic Monitor

7.1 Overview of the Automatic Database Diagnostic Monitor
The Automatic Workload Repository (AWR) stores performance related statics for an
Oracle database. The Automatic Database Diagnostic Monitor (ADDM) is a diagnostic
tool that analyzes the AWR data on a regular basis, locates root causes of any
performance problems, provides recommendations for correcting the problems, and
identifies non-problem areas of the system. Because AWR is a repository of historical
performance data, ADDM can analyze performance issues after the event, often
saving time and resources in reproducing a problem.

In most cases, ADDM output should be the first place that a DBA looks when notified
of a performance problem. ADDM provides the following benefits:

• Automatic performance diagnostic report every hour by default

• Problem diagnosis based on decades of tuning expertise

• Time-based quantification of problem impacts and recommendation benefits

• Identification of root cause, not symptoms

• Recommendations for treating the root causes of problems

• Identification of non-problem areas of the system

• Minimal overhead to the system during the diagnostic process

Tuning is an iterative process, and fixing one problem can cause the bottleneck to shift
to another part of the system. Even with the benefit of ADDM analysis, it can take
multiple tuning cycles to reach acceptable system performance. ADDM benefits apply
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beyond production systems; on development and test systems, ADDM can provide an
early warning of performance issues.

This section contains the following topics:

• ADDM Analysis

• Using ADDM with Oracle Real Application Clusters

• Real-Time ADDM Analysis

• ADDM Analysis Results

• Reviewing ADDM Analysis Results: Example

Note:

Data visibility and privilege requirements may differ when using ADDM features
with pluggable databases (PDBs). For information about how manageability
features—including ADDM features—work in a multitenant container database
(CDB), see Oracle Database Administrator's Guide.

7.1.1 ADDM Analysis
An ADDM analysis can be performed on a pair of AWR snapshots and a set of
instances from the same database. The pair of AWR snapshots define the time period
for analysis, and the set of instances define the target for analysis.

If you are using Oracle Real Application Clusters (Oracle RAC), then ADDM has three
analysis modes:

• Database

In Database mode, ADDM analyzes all instances of the database.

• Instance

In Instance mode, ADDM analyzes a particular instance of the database.

• Partial

In Partial mode, ADDM analyzes a subset of all database instances.

If you are not using Oracle RAC, then ADDM can only function in Instance mode
because only one instance of the database exists.

An ADDM analysis is performed each time an AWR snapshot is taken and the results
are saved in the database. The time period analyzed by ADDM is defined by the last
two snapshots (the last hour by default). ADDM will always analyze the specified
instance in Instance mode. For non-Oracle RAC or single instance environments, the
analysis performed in the Instance mode is the same as a database-wide analysis. If
you are using Oracle RAC, then ADDM also analyzes the entire database in Database
mode, as described in "Using ADDM with Oracle Real Application Clusters". After an
ADDM completes its analysis, you can view the results using Cloud Control, or by
viewing a report in a SQL*Plus session.

ADDM analysis is performed top down, first identifying symptoms, and then refining
them to reach the root causes of performance problems. The goal of the analysis is to
reduce a single throughput metric called DB time. DB time is the fundamental measure
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of database performance, and is the cumulative time spent by the database in
processing user requests. It includes wait time and CPU time of all non-idle user
foreground sessions. DB time is displayed in the V$SESS_TIME_MODEL and
V$SYS_TIME_MODEL views.

See Also:

• Oracle Database Reference for information about the V$SESS_TIME_MODEL
and V$SYS_TIME_MODEL views

• "Time Model Statistics" for a discussion of time model statistics and DB time

• Oracle Database Concepts for information about server processes

By reducing DB time, the database is able to support more user requests using the
same resources, which increases throughput. The problems reported by ADDM are
sorted by the amount of DB time they are responsible for. System areas that are not
responsible for a significant portion of DB time are reported as non-problem areas.

The types of problems that ADDM considers include the following:

• CPU bottlenecks - Is the system CPU bound by Oracle Database or some other
application?

• Undersized Memory Structures - Are the Oracle Database memory structures,
such as the SGA, PGA, and buffer cache, adequately sized?

• I/O capacity issues - Is the I/O subsystem performing as expected?

• High-load SQL statements - Are there any SQL statements which are consuming
excessive system resources?

• High-load PL/SQL execution and compilation, and high-load Java usage

• Oracle RAC specific issues - What are the global cache hot blocks and objects;
are there any interconnect latency issues?

• Sub-optimal use of Oracle Database by the application - Are there problems with
poor connection management, excessive parsing, or application level lock
contention?

• Database configuration issues - Is there evidence of incorrect sizing of log files,
archiving issues, excessive checkpoints, or sub-optimal parameter settings?

• Concurrency issues - Are there buffer busy problems?

• Hot objects and top SQL for various problem areas

Note:

This is not a comprehensive list of all problem types that ADDM considers in its
analysis.

ADDM also documents the non-problem areas of the system. For example, wait event
classes that are not significantly impacting the performance of the system are
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identified and removed from the tuning consideration at an early stage, saving time
and effort that would be spent on items that do not impact overall system performance.

7.1.2 Using ADDM with Oracle Real Application Clusters
If you are using Oracle RAC, then run ADDM in Database analysis mode to analyze
the throughput performance of all instances of the database. In Database mode,
ADDM considers DB time as the sum of the database time for all database instances.
Using the Database analysis mode enables you to view all findings that are significant
to the entire database in a single report, instead of reviewing a separate report for
each instance.

The Database mode report includes findings about database resources (such as I/O
and interconnect). The report also aggregates findings from the various instances if
they are significant to the entire database. For example, if the CPU load on a single
instance is high enough to affect the entire database, then the finding appears in the
Database mode analysis, which points to the particular instance responsible for the
problem.

See Also:

Oracle Real Application Clusters Administration and Deployment Guide for
information about using ADDM with Oracle RAC

7.1.3 Real-Time ADDM Analysis
Introduced in Oracle Enterprise Manager Cloud Control (Cloud Control) 12c, Real-
Time ADDM helps you to analyze and resolve problems in unresponsive or hung
databases that traditionally require you to restart the database. Real-Time ADDM runs
through a set of predefined criteria to analyze the current performance of the
database. After analyzing the problem, Real-Time ADDM helps you to resolve the
identified issues—such as deadlocks, hangs, shared pool contention, and other
exception situations—without having to restart the database.

This section describes Real-Time ADDM and contains the following topics:

• Real-Time ADDM Connection Modes

• Real-Time ADDM Triggers

• Real-Time ADDM Trigger Controls

See Also:

Oracle Database 2 Day + Performance Tuning Guide for information about
using Real-Time ADDM with Cloud Control

7.1.3.1 Real-Time ADDM Connection Modes
Depending on the database state, Real-Time ADDM uses two different types of
connection modes when connecting to the database using Cloud Control:
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• Normal connection

In this mode, Real-Time ADDM performs a normal JDBC connection to the
database. This mode is intended to perform extensive performance analysis of the
database when some connectivity is available.

• Diagnostic connection

In this mode, Real-Time ADDM performs a latch-less connection to the database.
This mode is intended for extreme hang situations when a normal JDBC
connection is not possible.

7.1.3.2 Real-Time ADDM Triggers
Starting with Oracle Database 12c, Real-Time ADDM proactively detects transient
database performance issues. To do this, Real-Time ADDM runs automatically every 3
seconds and uses in-memory data to diagnose any performance spikes in the
database.

Real-Time ADDM triggers an analysis automatically when a performance problem is
detected, as described in the following steps:

1. Every 3 seconds, the manageability monitor process (MMON) performs an action
to obtain performance statistics without lock or latch.

2. The MMON process checks these statistics and triggers a Real-Time ADDM
analysis if any of the issues listed in Table 7-1 are detected.

3. The MMON slave process creates the report and stores it in the AWR.

To view metadata for the report, use the DBA_HIST_REPORTS view.

Table 7-1 lists the issues and conditions that trigger a Real-Time ADDM analysis.

Table 7-1    Triggering Issues and Conditions for Real-Time ADDM

Issue Condition

High load Average active sessions are greater than 3 times the number of
CPU cores

I/O bound I/O impact on active sessions based on single block read
performance

CPU bound Active sessions are greater than 10% of total load and CPU
utilization is greater than 50%

Over-allocated memory Memory allocations are over 95% of physical memory

Interconnect bound Based on single block interconnect transfer time

Session limit Session limit is close to 100%

Process limit Process limit is close to 100%

Hung session Hung sessions are greater than 10% of total sessions

Deadlock detected Any deadlock is detected

See Also:

Oracle Database Reference for information about the DBA_HIST_REPORTS view
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7.1.3.3 Real-Time ADDM Trigger Controls
To ensure that the automatic triggers do not consume too many system resources and
overwhelm the system, Real-Time ADDM employs the following controls:

• Duration between reports

If a Real-Time ADDM report was created in the past 5 minutes by the automatic
trigger, then no new reports will be generated.

• Oracle RAC control

Automatic triggers are local to the database instance. For Oracle RAC, only one
database instance can create a Real-Time ADDM report at a given time because a
lock is required and a query is performed by the MMON slave process before the
report is actually generated.

• Repeated triggers

An automatic trigger for any issue must have an impact of 100% or higher than the
previous report with the same triggering issue within the past 45 minutes. For
example, if a report is triggered for active sessions with an impact of 8 sessions,
then in order for another report to trigger within the next 45 minutes, there must be
at least 16 active sessions. In this case, the reported problem with the database is
becoming more severe over time. On the other hand, if the same report is being
generated once every 45 minutes, then the database is experiencing a persistent
problem that has a consistent impact.

• Newly identified issues

If a new issue is detected (that was not previously detected within the past 45
minutes), then a new report is generated. For example, if a report is triggered for 8
active sessions and a new deadlock issue is detected, then a new report is
generated regardless of the new active sessions load.

7.1.4 ADDM Analysis Results
In addition to problem diagnostics, ADDM recommends possible solutions. ADDM
analysis results are represented as a set of findings. See Example 7-1 for an example
of an ADDM analysis result. Each ADDM finding can belong to one of the following
types:

• Problem findings describe the root cause of a database performance problem.

• Symptom findings contain information that often lead to one or more problem
findings.

• Information findings are used for reporting information that are relevant to
understanding the performance of the database, but do not constitute a
performance problem (such as non-problem areas of the database and the activity
of automatic database maintenance).

• Warning findings contain information about problems that may affect the
completeness or accuracy of the ADDM analysis (such as missing data in AWR).

Each problem finding is quantified by an impact that is an estimate of the portion of DB
time caused by the finding's performance issue. A problem finding can be associated
with a list of recommendations for reducing the impact of the performance problem.
The types of recommendations include:
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• Hardware changes: adding CPUs or changing the I/O subsystem configuration

• Database configuration: changing initialization parameter settings

• Schema changes: hash partitioning a table or index, or using automatic segment-
space management (ASSM)

• Application changes: using the cache option for sequences or using bind variables

• Using other advisors: running SQL Tuning Advisor on high-load SQL or running
Segment Advisor on hot objects

A list of recommendations can contain various alternatives for solving the same
problem; you do not have to apply all the recommendations to solve a specific
problem. Each recommendation has a benefit which is an estimate of the portion of DB
time that can be saved if the recommendation is implemented. Recommendations are
composed of actions and rationales. You must apply all the actions of a
recommendation to gain the estimated benefit. The rationales are used for explaining
why the set of actions were recommended and to provide additional information to
implement the suggested recommendation.

7.1.5 Reviewing ADDM Analysis Results: Example
Consider the following section of an ADDM report in Example 7-1.

Example 7-1    Example ADDM Report

FINDING 1: 31% impact (7798 seconds) 
------------------------------------ 
SQL statements were not shared due to the usage of literals. This resulted in 
additional hard parses which were consuming significant database time.

RECOMMENDATION 1: Application Analysis, 31% benefit (7798 seconds)
  ACTION: Investigate application logic for possible use of bind variables
    instead of literals. Alternatively, you may set the parameter 
    "cursor_sharing" to "force".
  RATIONALE: SQL statements with PLAN_HASH_VALUE 3106087033 were found to be
    using literals. Look in V$SQL for examples of such SQL statements.

In Example 7-1, the finding points to a particular root cause, the usage of literals in
SQL statements, which is estimated to have an impact of about 31% of total DB time in
the analysis period.

The finding has a recommendation associated with it, composed of one action and one
rationale. The action specifies a solution to the problem found and is estimated to have
a maximum benefit of up to 31% DB time in the analysis period. Note that the benefit is
given as a portion of the total DB time and not as a portion of the finding's impact. The
rationale provides additional information on tracking potential SQL statements that
were using literals and causing this performance issue. Using the specified plan hash
value of SQL statements that could be a problem, a DBA could quickly examine a few
sample statements.

When a specific problem has multiple causes, ADDM may report multiple problem and
symptom findings. In this case, the impacts of these multiple findings can contain the
same portion of DB time. Because the performance issues of findings can overlap, the
sum of the impacts of the findings can exceed 100% of DB time. For example, if a
system performs many reads, then ADDM might report a SQL statement responsible
for 50% of DB time due to I/O activity as one finding, and an undersized buffer cache
responsible for 75% of DB time as another finding.
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When multiple recommendations are associated with a problem finding, the
recommendations may contain alternatives for solving the problem. In this case, the
sum of the recommendations' benefits may be higher than the finding's impact.

When appropriate, an ADDM action may have multiple solutions for you to choose
from. In the example, the most effective solution is to use bind variables. However, it is
often difficult to modify the application. Changing the value of the CURSOR_SHARING
initialization parameter is much easier to implement and can provide significant
improvement.

7.2 Setting Up ADDM
Automatic database diagnostic monitoring is enabled by default and is controlled by
the CONTROL_MANAGEMENT_PACK_ACCESS and the STATISTICS_LEVEL initialization parameters.

The CONTROL_MANAGEMENT_PACK_ACCESS parameter should be set to DIAGNOSTIC or
DIAGNOSTIC+TUNING to enable automatic database diagnostic monitoring. The default
setting is DIAGNOSTIC+TUNING. Setting CONTROL_MANAGEMENT_PACK_ACCESS to NONE disables
ADDM.

The STATISTICS_LEVEL parameter should be set to the TYPICAL or ALL to enable
automatic database diagnostic monitoring. The default setting is TYPICAL. Setting
STATISTICS_LEVEL to BASIC disables many Oracle Database features, including ADDM,
and is strongly discouraged.

See Also:

Oracle Database Reference for information about the 
CONTROL_MANAGEMENT_PACK_ACCESS and STATISTICS_LEVEL initialization parameters

ADDM analysis of I/O performance partially depends on a single argument,
DBIO_EXPECTED, that describes the expected performance of the I/O subsystem. The
value of DBIO_EXPECTED is the average time it takes to read a single database block in
microseconds. Oracle Database uses the default value of 10 milliseconds, which is an
appropriate value for most modern hard drives. If your hardware is significantly
different—such as very old hardware or very fast RAM disks—then consider using a
different value.

To determine the correct setting for the DBIO_EXPECTED parameter:

1. Measure the average read time of a single database block read for your hardware.

Note that this measurement is for random I/O, which includes seek time if you use
standard hard drives. Typical values for hard drives are between 5000 and 20000
microseconds.

2. Set the value one time for all subsequent ADDM executions.

For example, if the measured value if 8000 microseconds, you should execute the
following command as SYS user:

EXECUTE DBMS_ADVISOR.SET_DEFAULT_TASK_PARAMETER(
                     'ADDM', 'DBIO_EXPECTED', 8000);
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7.3 Diagnosing Database Performance Problems with
ADDM

To diagnose database performance problems, first review the ADDM analysis results
that are automatically created each time an AWR snapshot is taken. If a different
analysis is required (such as a longer analysis period, using a different DBIO_EXPECTED
setting, or changing the analysis mode), you can run ADDM manually as described in
this section.

ADDM can analyze any two AWR snapshots (on the same database), as long as both
snapshots are still stored in AWR (have not been purged). ADDM can only analyze
instances that are started before the beginning snapshot and remain running until the
ending snapshot. Additionally, ADDM will not analyze instances that experience
significant errors when generating AWR snapshots. In such cases, ADDM will analyze
the largest subset of instances that did not experience these problems.

The primary interface for diagnostic monitoring is Cloud Control. Whenever possible,
run ADDM using Cloud Control, as described in Oracle Database 2 Day +
Performance Tuning Guide. If Cloud Control is unavailable, then run ADDM using the
DBMS_ADDM package. To run the DBMS_ADDM APIs, the user must be granted the ADVISOR
privilege.

This section contains the following topics:

• Running ADDM in Database Mode

• Running ADDM in Instance Mode

• Running ADDM in Partial Mode

• Displaying an ADDM Report

See Also:

Oracle Database PL/SQL Packages and Types Reference for information
about the DBMS_ADDM package

7.3.1 Running ADDM in Database Mode
For Oracle RAC configurations, you can run ADDM in Database mode to analyze all
instances of the databases. For single-instance configurations, you can still run ADDM
in Database mode; ADDM will behave as if running in Instance mode.

To run ADDM in Database mode, use the DBMS_ADDM.ANALYZE_DB procedure:

BEGIN
DBMS_ADDM.ANALYZE_DB (
   task_name           IN OUT VARCHAR2,
   begin_snapshot      IN     NUMBER,
   end_snapshot        IN     NUMBER,
   db_id               IN     NUMBER := NULL);
END;
/
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The task_name parameter specifies the name of the analysis task that will be created.
The begin_snapshot parameter specifies the snapshot number of the beginning
snapshot in the analysis period. The end_snapshot parameter specifies the snapshot
number of the ending snapshot in the analysis period. The db_id parameter specifies
the database identifier of the database that will be analyzed. If unspecified, this
parameter defaults to the database identifier of the database to which you are
currently connected.

The following example creates an ADDM task in database analysis mode, and
executes it to diagnose the performance of the entire database during the time period
defined by snapshots 137 and 145:

VAR tname VARCHAR2(30);
BEGIN
  :tname := 'ADDM for 7PM to 9PM';
  DBMS_ADDM.ANALYZE_DB(:tname, 137, 145);
END;
/

7.3.2 Running ADDM in Instance Mode
To analyze a particular instance of the database, you can run ADDM in Instance
mode. To run ADDM in Instance mode, use the DBMS_ADDM.ANALYZE_INST procedure:

BEGIN
DBMS_ADDM.ANALYZE_INST (
   task_name           IN OUT VARCHAR2,
   begin_snapshot      IN     NUMBER,
   end_snapshot        IN     NUMBER,
   instance_number     IN     NUMBER := NULL,
   db_id               IN     NUMBER := NULL);
END;
/

The task_name parameter specifies the name of the analysis task that will be created.
The begin_snapshot parameter specifies the snapshot number of the beginning
snapshot in the analysis period. The end_snapshot parameter specifies the snapshot
number of the ending snapshot in the analysis period. The instance_number parameter
specifies the instance number of the instance that will be analyzed. If unspecified, this
parameter defaults to the instance number of the instance to which you are currently
connected. The db_id parameter specifies the database identifier of the database that
will be analyzed. If unspecified, this parameter defaults to the database identifier of the
database to which you are currently connected.

The following example creates an ADDM task in instance analysis mode, and
executes it to diagnose the performance of instance number 1 during the time period
defined by snapshots 137 and 145:

VAR tname VARCHAR2(30);
BEGIN
  :tname := 'my ADDM for 7PM to 9PM';
  DBMS_ADDM.ANALYZE_INST(:tname, 137, 145, 1);
END;
/
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7.3.3 Running ADDM in Partial Mode
To analyze a subset of all database instances, you can run ADDM in Partial mode. To
run ADDM in Partial mode, use the DBMS_ADDM.ANALYZE_PARTIAL procedure:

BEGIN
DBMS_ADDM.ANALYZE_PARTIAL (
   task_name           IN OUT VARCHAR2,
   instance_numbers    IN     VARCHAR2,
   begin_snapshot      IN     NUMBER,
   end_snapshot        IN     NUMBER,
   db_id               IN     NUMBER := NULL);
END;
/

The task_name parameter specifies the name of the analysis task that will be created.
The instance_numbers parameter specifies a comma-delimited list of instance numbers
of instances that will be analyzed. The begin_snapshot parameter specifies the
snapshot number of the beginning snapshot in the analysis period. The end_snapshot
parameter specifies the snapshot number of the ending snapshot in the analysis
period. The db_id parameter specifies the database identifier of the database that will
be analyzed. If unspecified, this parameter defaults to the database identifier of the
database to which you are currently connected.

The following example creates an ADDM task in partial analysis mode, and executes it
to diagnose the performance of instance numbers 1, 2, and 4, during the time period
defined by snapshots 137 and 145:

VAR tname VARCHAR2(30);
BEGIN
  :tname := 'my ADDM for 7PM to 9PM';
  DBMS_ADDM.ANALYZE_PARTIAL(:tname, '1,2,4', 137, 145);
END;
/

7.3.4 Displaying an ADDM Report
To display a text report of an executed ADDM task, use the DBMS_ADDM.GET_REPORT
function:

DBMS_ADDM.GET_REPORT (
   task_name           IN VARCHAR2
  RETURN CLOB);

The following example displays a text report of the ADDM task specified by its task
name using the tname variable:

SET LONG 1000000 PAGESIZE 0;
SELECT DBMS_ADDM.GET_REPORT(:tname) FROM DUAL;

Note that the return type of a report is a CLOB, formatted to fit line size of 80. For
information about reviewing the ADDM analysis results in an ADDM report, see
"ADDM Analysis Results".
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7.4 Views with ADDM Information
Typically, you should view output and information from ADDM using Cloud Control or
ADDM reports.

However, you can display ADDM information through the DBA_ADVISOR views. This
group of views includes:

• DBA_ADVISOR_FINDINGS

This view displays all the findings discovered by all advisors. Each finding is
displayed with an associated finding ID, name, and type. For tasks with multiple
executions, the name of each task execution associated with each finding is also
listed.

• DBA_ADDM_FINDINGS

This view contains a subset of the findings displayed in the related
DBA_ADVISOR_FINDINGS view. This view only displays the ADDM findings discovered
by all advisors. Each ADDM finding is displayed with an associated finding ID,
name, and type.

• DBA_ADVISOR_FINDING_NAMES

This view lists all finding names registered with the advisor framework.

• DBA_ADVISOR_RECOMMENDATIONS

This view displays the results of completed diagnostic tasks with
recommendations for the problems identified in each execution. The
recommendations should be reviewed in the order of the RANK column, as this
relays the magnitude of the problem for the recommendation. The BENEFIT column
displays the benefit to the system you can expect after the recommendation is
performed. For tasks with multiple executions, the name of each task execution
associated with each advisor task is also listed.

• DBA_ADVISOR_TASKS

This view provides basic information about existing tasks, such as the task ID, task
name, and when the task was created. For tasks with multiple executions, the
name and type of the last or current execution associated with each advisor task is
also listed.

See Also:

Oracle Database Reference for information about static data dictionary views
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8
Comparing Database Performance Over
Time

This chapter describes how to compare database performance over time using
Automatic Workload Repository (AWR) Compare Periods reports and contains the
following topics:

• About Automatic Workload Repository Compare Periods Reports

• Generating Automatic Workload Repository Compare Periods Reports

• Interpreting Automatic Workload Repository Compare Periods Reports

8.1 About Automatic Workload Repository Compare Periods
Reports

Performance degradation of the database occurs when your database was performing
optimally in the past, but has over time gradually degraded to a point where it
becomes noticeable to the users. AWR Compare Periods report enables you to
compare database performance over time.

An AWR report shows AWR data during a period in time between two snapshots (or
two points in time). An AWR Compare Periods report, on the other hand, shows the
difference between two periods in time (or two AWR reports, which equates to four
snapshots). Using AWR Compare Periods reports helps you to identify detailed
performance attributes and configuration settings that differ between two time periods.

For example, assume that a batch workload runs daily during a maintenance window
between 10:00 p.m. and midnight is showing poor performance and is now completing
at 2 a.m instead. You can generate an AWR Compare Periods report for the time
period from 10:00 p.m. to midnight on a day when performance was good, and another
report for the time period from 10:00 a.m. to 2 a.m. on a day when performance was
poor. You can then compare these reports to identify configuration settings, workload
profile, and statistics that differ between these two time periods. Based on those
differences, you can more easily diagnose the cause of the performance degradation.

The two time periods selected in an AWR Compare Periods report can be of different
durations because the report normalizes the statistics by the amount of time spent on
the database for each time period, and presents statistical data ordered by the largest
difference between the time periods.
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Note:

Data visibility and privilege requirements may differ when using AWR features
with pluggable databases (PDBs). For information about how manageability
features—including AWR features—work in a multitenant container database
(CDB), see Oracle Database Administrator's Guide.

See Also:

• "Automatic Workload Repository" for information about the AWR

• "Generating Automatic Workload Repository Reports" for information about
AWR reports

8.2 Generating Automatic Workload Repository Compare
Periods Reports

If the performance of your database degrades over time, AWR Compare Periods
reports enable you to compare two periods in time to identify key differences that can
help you diagnose the cause of the performance degradation.

AWR Compare Periods reports are divided into multiple sections. The HTML report
includes links that can be used to navigate quickly between sections. The content of
the report contains the workload profile of the system for the selected range of
snapshots.

• User Interfaces for Generating AWR Compare Periods Reports

• Generating an AWR Compare Periods Report Using the Command-Line Interface

8.2.1 User Interfaces for Generating AWR Compare Periods Reports
The primary interface for generating AWR Compare Periods reports is Oracle
Enterprise Manager Cloud Control (Cloud Control). Whenever possible, generate
AWR Compare Periods reports using Cloud Control.

If Cloud Control is unavailable, then generate AWR Compare Periods reports by
running SQL scripts. The DBA role is required to run these scripts.

See Also:

Oracle Database 2 Day + Performance Tuning Guide for information about
generating AWR Compare Periods reports using Cloud Control
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8.2.2 Generating an AWR Compare Periods Report Using the
Command-Line Interface

This topic describes how to generate AWR Compare Periods reports by running SQL
scripts in the command-line interface.

• Generating an AWR Compare Periods Report for the Local Database

• Generating an AWR Compare Periods Report for a Specific Database

• Generating an Oracle RAC AWR Compare Periods Report for the Local Database

• Generating an Oracle RAC AWR Compare Periods Report for a Specific Database

8.2.2.1 Generating an AWR Compare Periods Report for the Local Database
The awrddrpt.sql SQL script generates an HTML or text report that compares detailed
performance attributes and configuration settings between two selected time periods
on the local database instance.

To generate an AWR Compare Periods report on the local database instance
using the command-line interface:

1. At the SQL prompt, enter:

@$ORACLE_HOME/rdbms/admin/awrddrpt.sql

2. Specify whether you want an HTML or a text report:

Enter value for report_type: html

In this example, an HTML report is chosen.

3. Specify the number of days for which you want to list snapshot IDs in the first time
period.

Enter value for num_days: 2

A list of existing snapshots for the specified time range is displayed. In this
example, snapshots captured in the last 2 days are displayed.

4. Specify a beginning and ending snapshot ID for the first time period:

Enter value for begin_snap: 102
Enter value for end_snap: 103

In this example, the snapshot with a snapshot ID of 102 is selected as the
beginning snapshot, and the snapshot with a snapshot ID of 103 is selected as the
ending snapshot for the first time period.

5. Specify the number of days for which you want to list snapshot IDs in the second
time period.

Enter value for num_days2: 1

A list of existing snapshots for the specified time range is displayed. In this
example, snapshots captured in the previous day are displayed.

6. Specify a beginning and ending snapshot ID for the second time period:
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Enter value for begin_snap2: 126
Enter value for end_snap2: 127

In this example, the snapshot with a snapshot ID of 126 is selected as the
beginning snapshot, and the snapshot with a snapshot ID of 127 is selected as the
ending snapshot for the second time period.

7. Enter a report name, or accept the default report name:

Enter value for report_name: 
Using the report name awrdiff_1_102_1_126.txt

In this example, the default name is accepted and an AWR report named
awrdiff_1_102_126 is generated.

8.2.2.2 Generating an AWR Compare Periods Report for a Specific Database
The awrddrpi.sql SQL script generates an HTML or text report that compares detailed
performance attributes and configuration settings between two selected time periods
on a specific database and instance. This script enables you to specify a database
identifier and instance for which AWR Compare Periods report will be generated.

To generate an AWR Compare Periods report on a specific database instance
using the command-line interface:

1. At the SQL prompt, enter:

@$ORACLE_HOME/rdbms/admin/awrddrpi.sql

2. Specify whether you want an HTML or a text report:

Enter value for report_type: text

In this example, a text report is chosen.

3. A list of available database identifiers and instance numbers are displayed:

Instances in this Workload Repository schema
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
   DB Id    Inst Num DB Name      Instance     Host
----------- -------- ------------ ------------ ------------
 3309173529        1 MAIN         main         examp1690
 3309173529        1 TINT251      tint251      samp251

Enter the values for the database identifier (dbid) and instance number (inst_num)
for the first time period:

Enter value for dbid: 3309173529
Using 3309173529 for Database Id for the first pair of snapshots
Enter value for inst_num: 1
Using 1 for Instance Number for the first pair of snapshots

4. Specify the number of days for which you want to list snapshot IDs in the first time
period.

Enter value for num_days: 2

A list of existing snapshots for the specified time range is displayed. In this
example, snapshots captured in the last 2 days are displayed.

5. Specify a beginning and ending snapshot ID for the first time period:
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Enter value for begin_snap: 102
Enter value for end_snap: 103

In this example, the snapshot with a snapshot ID of 102 is selected as the
beginning snapshot, and the snapshot with a snapshot ID of 103 is selected as the
ending snapshot for the first time period.

6. Enter the values for the database identifier (dbid) and instance number (inst_num)
for the second time period:

Enter value for dbid2: 3309173529
Using 3309173529 for Database Id for the second pair of snapshots
Enter value for inst_num2: 1
Using 1 for Instance Number for the second pair of snapshots

7. Specify the number of days for which you want to list snapshot IDs in the second
time period.

Enter value for num_days2: 1

A list of existing snapshots for the specified time range is displayed. In this
example, snapshots captured in the previous day are displayed.

8. Specify a beginning and ending snapshot ID for the second time period:

Enter value for begin_snap2: 126
Enter value for end_snap2: 127

In this example, the snapshot with a snapshot ID of 126 is selected as the
beginning snapshot, and the snapshot with a snapshot ID of 127 is selected as the
ending snapshot for the second time period.

9. Enter a report name, or accept the default report name:

Enter value for report_name: 
Using the report name awrdiff_1_102_1_126.txt

In this example, the default name is accepted and an AWR report named
awrdiff_1_102_126 is generated on the database instance with a database ID value
of 3309173529.

8.2.2.3 Generating an Oracle RAC AWR Compare Periods Report for the Local
Database

The awrgdrpt.sql SQL script generates an HTML or text report that compares detailed
performance attributes and configuration settings between two selected time periods
using the current database identifier and all available database instances in an Oracle
Real Application Clusters (Oracle RAC) environment.

Note:

In an Oracle RAC environment, generate an HTML report (instead of a text
report) because it is much easier to read.
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To generate an AWR Compare Periods report for Oracle RAC on the local
database instance using the command-line interface:

1. At the SQL prompt, enter:

@$ORACLE_HOME/rdbms/admin/awrgdrpt.sql

2. Specify whether you want an HTML or a text report:

Enter value for report_type: html

In this example, an HTML report is chosen.

3. Specify the number of days for which you want to list snapshot IDs in the first time
period.

Enter value for num_days: 2

A list of existing snapshots for the specified time range is displayed. In this
example, snapshots captured in the last 2 days are displayed.

4. Specify a beginning and ending snapshot ID for the first time period:

Enter value for begin_snap: 102
Enter value for end_snap: 103

In this example, the snapshot with a snapshot ID of 102 is selected as the
beginning snapshot, and the snapshot with a snapshot ID of 103 is selected as the
ending snapshot for the first time period.

5. Specify the number of days for which you want to list snapshot IDs in the second
time period.

Enter value for num_days2: 1

A list of existing snapshots for the specified time range is displayed. In this
example, snapshots captured in the previous day are displayed.

6. Specify a beginning and ending snapshot ID for the second time period:

Enter value for begin_snap2: 126
Enter value for end_snap2: 127

In this example, the snapshot with a snapshot ID of 126 is selected as the
beginning snapshot, and the snapshot with a snapshot ID of 127 is selected as the
ending snapshot for the second time period.

7. Enter a report name, or accept the default report name:

Enter value for report_name: 
Using the report name awrracdiff_1st_1_2nd_1.html

In this example, the default name is accepted and an AWR report named
awrrac_1st_1_2nd_1.html is generated.

8.2.2.4 Generating an Oracle RAC AWR Compare Periods Report for a
Specific Database

The awrgdrpi.sql SQL script generates an HTML or text report that compares detailed
performance attributes and configuration settings between two selected time periods
using specific databases and instances in an Oracle RAC environment. This script
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enables you to specify database identifiers and a comma-delimited list of database
instances for which AWR Compare Periods report will be generated.

Note:

In an Oracle RAC environment, you should always generate an HTML report
(instead of a text report) because they are much easier to read.

To generate an AWR Compare Periods report for Oracle RAC on a specific
database using the command-line interface:

1. At the SQL prompt, enter:

@$ORACLE_HOME/rdbms/admin/awrgdrpi.sql

2. Specify whether you want an HTML or a text report:

Enter value for report_type: html

In this example, an HTML report is chosen.

3. A list of available database identifiers and instance numbers are displayed:

Instances in this Workload Repository schema
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
   DB Id    Inst Num DB Name      Instance     Host
----------- -------- ------------ ------------ ------------
 3309173529        1 MAIN         main         examp1690
 3309173529        1 TINT251      tint251      samp251
 3309173529        2 TINT251      tint252      samp252
 3309173529        3 TINT251      tint253      samp253
 3309173529        4 TINT251      tint254      samp254

Enter the values for the database identifier (dbid) and instance number
(instance_numbers_or_all) for the first time period:

Enter value for dbid: 3309173529
Using 3309173529 for Database Id for the first pair of snapshots
Enter value for inst_num: 1,2
Using instances 1 for the first pair of snapshots

4. Specify the number of days for which you want to list snapshot IDs in the first time
period.

Enter value for num_days: 2

A list of existing snapshots for the specified time range is displayed. In this
example, snapshots captured in the last 2 days are displayed.

5. Specify a beginning and ending snapshot ID for the first time period:

Enter value for begin_snap: 102
Enter value for end_snap: 103

In this example, the snapshot with a snapshot ID of 102 is selected as the
beginning snapshot, and the snapshot with a snapshot ID of 103 is selected as the
ending snapshot for the first time period.

6. A list of available database identifiers and instance numbers are displayed:
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Instances in this Workload Repository schema
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
   DB Id    Inst Num DB Name      Instance     Host
----------- -------- ------------ ------------ ------------
 3309173529        1 MAIN         main         examp1690
 3309173529        1 TINT251      tint251      samp251
 3309173529        2 TINT251      tint252      samp252
 3309173529        3 TINT251      tint253      samp253
 3309173529        4 TINT251      tint254      samp254
INSTNUM1
-----------------------------------------------------
1,2

Enter the values for the database identifier (dbid2) and instance numbers
(instance_numbers_or_all2) for the second time period:

Enter value for dbid2: 3309173529
Using 3309173529 for Database Id for the second pair of snapshots
Enter value for instance_numbers_or_all2: 3,4

7. Specify the number of days for which you want to list snapshot IDs in the second
time period.

Enter value for num_days2: 1

A list of existing snapshots for the specified time range is displayed. In this
example, snapshots captured in the previous day are displayed.

8. Specify a beginning and ending snapshot ID for the second time period:

Enter value for begin_snap2: 126
Enter value for end_snap2: 127

In this example, the snapshot with a snapshot ID of 126 is selected as the
beginning snapshot, and the snapshot with a snapshot ID of 127 is selected as the
ending snapshot for the second time period.

9. Enter a report name, or accept the default report name:

Enter value for report_name: 
Using the report name awrracdiff_1st_1_2nd_1.html

In this example, the default name is accepted and an AWR report named
awrrac_1st_1_2nd_1.html is generated.

8.3 Interpreting Automatic Workload Repository Compare
Periods Reports

After generating an AWR Compare Periods report for the time periods you want to
compare, review its contents to identify possible causes of performance degradation
over time.

The content of the AWR Compare Periods report is divided into the following sections:

• Summary of the AWR Compare Periods Report

• Details of the AWR Compare Periods Report

• Supplemental Information in the AWR Compare Periods Report
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8.3.1 Summary of the AWR Compare Periods Report
The report summary is at the beginning of the AWR Compare Periods report, and
summarizes information about the snapshot sets and workloads used in the report.

The report summary contains the following sections:

• Snapshot Sets

• Host Configuration Comparison

• System Configuration Comparison

• Load Profile

• Top 5 Timed Events

8.3.1.1 Snapshot Sets
The Snapshot Sets section displays information about the snapshot sets used for this
report, such as instance, host, and snapshot information.

8.3.1.2 Host Configuration Comparison
The Host Configuration Comparison section compares the host configurations used in
the two snapshot sets. For example, the report compares physical memory and
number of CPUs. Any differences in the configurations are quantified as percentages
differed in the %Diff column.

8.3.1.3 System Configuration Comparison
The System Configuration Comparison section compares the database configurations
used in the two snapshot sets. For example, the report compares the System Global
Area (SGA) and log buffer sizes. Any differences in the configurations are quantified
as percentages differed in the %Diff column.

8.3.1.4 Load Profile
The Load Profile section compares the workloads used in the two snapshot sets. Any
differences in the workloads are quantified as percentages differed in the %Diff
column.

8.3.1.5 Top 5 Timed Events
The Top 5 Timed Events section displays the five timed events or operations that
consumed the highest percentage of total database time (DB time) in each of the
snapshot sets.

8.3.2 Details of the AWR Compare Periods Report
The details section follows the report summary of the AWR Compare Periods report,
and provides extensive information about the snapshot sets and workloads used in the
report.

The report details contains the following sections:
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• Time Model Statistics

• Operating System Statistics

• Wait Events

• Service Statistics

• SQL Statistics

• Instance Activity Statistics

• I/O Statistics

• Advisory Statistics

• Wait Statistics

• Undo Segment Summary

• Latch Statistics

• Segment Statistics

• In-Memory Segment Statistics

• Dictionary Cache Statistics

• Library Cache Statistics

• Memory Statistics

• Streams Statistics

8.3.2.1 Time Model Statistics
The Time Model Statistics section compares time model statistics in the two snapshot
sets. The time model statistics are ordered based on the difference in total DB time
spent on a particular type of operation between the two snapshot sets, and are listed
in descending order. Time model statistics at the top of this section have the greatest
differential between the two snapshot sets, and the related operations may be possible
causes for performance degradation over time.

See Also:

"Time Model Statistics" for information about time model statistics

8.3.2.2 Operating System Statistics
The Operating System Statistics section compares operating system statistics in the
two snapshot sets. This section provides an overall state of the operating system
during each of the two periods being compared.

8.3.2.3 Wait Events
The Wait Events section compares the wait events in the two snapshot sets.

The first section lists the classes of wait events, including user I/O and system I/O. The
classes are listed in descending order by absolute value of the % of DB time column.
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The second section lists the wait events. The wait events are ordered based on the
difference in total DB time spent on the wait event between the two snapshot sets, and
are listed in descending order. Wait events at the top of this section have the greatest
differential between the two snapshot sets, and may be possible causes for
performance degradation over time.

See Also:

"Wait Events Statistics" for information about wait events and wait classes

8.3.2.4 Service Statistics
The Service Statistics section compares services in the two snapshot sets. The
services are ordered based on the difference in total DB time spent on a particular
service between the two snapshot sets, and are listed in descending order.

8.3.2.5 SQL Statistics
The SQL Statistics section compares the top SQL statements in the two snapshot
sets. The SQL statements are ordered based on different comparison methods, but in
all cases, the top ten SQL statements with the greatest differential between the two
snapshot sets are shown.

The SQL statements shown in this section may be possible causes for performance
degradation over time, and are ordered based on the following categories:

• Top 10 SQL Comparison by Execution Time

• Top 10 SQL Comparison by CPU Time

• Top 10 SQL Comparison by Buffer Gets

• Top 10 SQL Comparison by Physical Reads

• Top 10 SQL Comparison by Executions

• Top 10 SQL Comparison by Parse Calls

• Complete List of SQL Text

8.3.2.5.1 Top 10 SQL Comparison by Execution Time
SQL statements in this subsection are ordered based on the difference in total DB time
spent processing the SQL statement between the two snapshot sets and are listed in
descending order.

SQL statements shown in this subsection that consumed a high percentage of DB time
in the one time period, but not in the other, are likely the high-load SQL statements
that caused the performance degradation and should be investigated. Review the SQL
statements in the Complete List of SQL Text subsection of the report and tune them, if
necessary.
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See Also:

Oracle Database SQL Tuning Guide for information about tuning SQL
statements

8.3.2.5.2 Top 10 SQL Comparison by CPU Time
SQL statements in this subsection are ordered based on the difference in CPU time
spent processing the SQL statement between the two snapshot sets, and are listed in
descending order.

8.3.2.5.3 Top 10 SQL Comparison by Buffer Gets
SQL statements in this subsection are ordered based on the difference in the number
of total buffer cache reads or buffer gets made when processing the SQL statement
between the two snapshot sets, and are listed in descending order.

8.3.2.5.4 Top 10 SQL Comparison by Physical Reads
SQL statements in this subsection are ordered based on the difference in the number
of physical reads made when processing the SQL statement between the two
snapshot sets, and are listed in descending order.

8.3.2.5.5 Top 10 SQL Comparison by Executions
SQL statements in this subsection are ordered based on the difference in the number
of executions per second (based on DB time) when processing the SQL statement
between the two snapshot sets, and are listed in descending order.

8.3.2.5.6 Top 10 SQL Comparison by Parse Calls
SQL statements in this subsection are ordered based on the difference in the number
of total parses made when processing the SQL statement between the two snapshot
sets, and are listed in descending order. Parsing is one stage in the processing of a
SQL statement.

When an application issues a SQL statement, the application makes a parse call to
Oracle Database. Making parse calls can greatly affect the performance of a database
and should be minimized as much as possible.

See Also:

Oracle Database Concepts for information about parsing

8.3.2.5.7 Complete List of SQL Text
This subsection displays the SQL text of all SQL statements listed in the SQL
Statistics section.
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8.3.2.6 Instance Activity Statistics
The Instance Activity Statistics section compares the statistic values of instance
activity between the two snapshot sets. For each statistic, the value of the statistic is
shown along with the differentials measured by DB time, elapsed time, and per
transaction.

The instance activity statistics are categorized into the following subsections:

• Key Instance Activity Statistics

• Other Instance Activity Statistics

8.3.2.6.1 Key Instance Activity Statistics
This subsection displays the difference in key instance activity statistic values between
the two snapshot sets.

8.3.2.6.2 Other Instance Activity Statistics
This subsection displays the difference in instance activity for all other statistics
between the two snapshot sets.

8.3.2.7 I/O Statistics
The I/O Statistics section compares the I/O operations performed on tablespaces and
database files between the two snapshot sets. A drastic increase in I/O operations
between the two snapshots may be the cause of performance degradation over time.

For each tablespace or database file, the difference in the number of reads, writes,
and buffer cache waits (or buffer gets) are quantified as a percentage. The database
files are ordered based on different comparison methods, but in all cases, the top 10
database files with the greatest differential between the two snapshot sets are shown.

The I/O statistics are divided into the following categories:

• Tablespace I/O Statistics

• Top 10 File Comparison by I/O

• Top 10 File Comparison by Read Time

• Top 10 File Comparison by Buffer Waits

8.3.2.7.1 Tablespace I/O Statistics
Tablespaces shown in this subsection are ordered by the difference in the number of
normalized I/Os performed on the tablespace between the two snapshot sets, and are
listed in descending order. Normalized I/Os are the sum of average reads and writes
per second.

8.3.2.7.2 Top 10 File Comparison by I/O
Database files shown in this subsection are ordered by the difference in the number of
normalized I/Os performed on the database file between the two snapshot sets, and
are listed in descending order. Normalized I/Os are the sum of average reads and
writes per second.
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8.3.2.7.3 Top 10 File Comparison by Read Time
Database files shown in this subsection are ordered by the difference in the
percentage of DB time spent reading data from the database file between the two
snapshot sets, and are listed in descending order.

8.3.2.7.4 Top 10 File Comparison by Buffer Waits
Database files shown in this subsection are ordered by the difference in the number of
buffer waits (waits caused during a free buffer lookup in the buffer cache) performed
on the database file between the two snapshot sets, and are listed in descending
order.

8.3.2.8 Advisory Statistics
The Advisory Statistics section compares program global area (PGA) memory
statistics between the two snapshot sets, and is divided into the following categories:

• PGA Aggregate Summary

• PGA Aggregate Target Statistics

8.3.2.8.1 PGA Aggregate Summary
This subsection compares the PGA cache hit ratio between the two snapshot sets.

8.3.2.8.2 PGA Aggregate Target Statistics
This subsection compares the key statistics related to the automatic PGA memory
management between the two snapshot sets.

8.3.2.9 Wait Statistics
The Wait Statistics section compares statistics for buffer waits and enqueues between
the two snapshot sets.

The wait statistics are divided into the following categories:

• Buffer Wait Statistics

• Enqueue Activity

8.3.2.9.1 Buffer Wait Statistics
This subsection compares buffer waits between the two snapshot sets. Buffer waits
happen during a free buffer lookup in the buffer cache.

8.3.2.9.2 Enqueue Activity
This subsection compares enqueue activities between the two snapshot sets.
Enqueues are shared memory structures (or locks) that serialize access to database
resources and can be associated with a session or transaction.
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See Also:

Oracle Database Reference for information about enqueues

8.3.2.10 Undo Segment Summary
The Undo Segment Summary section compares the use of undo segments in the two
periods. The chart compares the number of undo blocks in the two periods, the
number of transactions that use those blocks, and the maximum length of queries. The
STO/OOS column indicates the number of snapshot too old and out of space counts.

8.3.2.11 Latch Statistics
The Latch Statistics section compares the number of total sleeps for latches between
the two snapshot sets in descending order.

Latches are simple, low-level serialization mechanisms to protect shared data
structures in the SGA. For example, latches protect the list of users currently
accessing the database and the data structures describing the blocks in the buffer
cache. A server or background process acquires a latch for a very short time while
manipulating or looking up one of these structures. The implementation of latches is
operating system dependent, particularly in regard to whether and how long a process
will wait for a latch.

8.3.2.12 Segment Statistics
The Segment Statistics section compares segments, or database objects (such as
tables and indexes), between the two snapshot sets. The segments are ordered based
on different comparison methods, but in all cases the top five segments with the
greatest differential between the two snapshot sets are shown.

The segments shown in this may be the causes of performance degradation over time,
and are ordered based on the following categories:

• Top 5 Segments Comparison by Logical Reads

• Top 5 Segments Comparison by Physical Reads

• Top 5 Segments Comparison by Row Lock Waits

• Top 5 Segments Comparison by ITL Waits

• Top 5 Segments Comparison by Buffer Busy Waits

8.3.2.12.1 Top 5 Segments Comparison by Logical Reads
Segments shown in this subsection are ordered based on the difference in the number
of logical reads (total number of reads from disk or memory) performed on the
segment between the two snapshot sets, and are listed in descending order.

If an extremely high percentage of logical reads are made on a database object, then
the associated SQL statements should be investigated to determine if data access to
the database object need to be tuned using an index or a materialized view.
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See Also:

Oracle Database SQL Tuning Guide for information about optimizing data
access paths

8.3.2.12.1.1 Top 5 Segments Comparison by Physical Reads

Segments shown in this subsection are ordered based on the difference in the number
of physical reads (such as disk reads) performed on the segment between the two
snapshot sets, and are listed in descending order.

8.3.2.12.1.2 Top 5 Segments Comparison by Row Lock Waits

Segments shown in this subsection are ordered based on the difference in the number
of waits on row locks for the segment between the two snapshot sets, and are listed in
descending order.

Row-level locks are primarily used to prevent two transactions from modifying the
same row. When a transaction needs to modify a row, a row lock is acquired.

See Also:

Oracle Database Concepts for information about row locks

8.3.2.12.1.2.1 Top 5 Segments Comparison by ITL Waits
Segments shown in this subsection are ordered based on the difference in the number
of interested transaction list (ITL) waits for the segment between the two snapshot
sets, and are listed in descending order.

8.3.2.12.1.2.2 Top 5 Segments Comparison by Buffer Busy Waits
Segments shown in this subsection are ordered based on the difference in the number
of buffer busy waits for the segment between the two snapshot sets, and are listed in
descending order.

8.3.2.13 In-Memory Segment Statistics
The In-Memory Segment Statistics section compares in-memory segment statistics
between the two snapshot sets and lists the top in-memory segments based on
number of scans, database block changes, populate CU activities, and repopulate CU
activities. These statistics provide an insight into how in-memory segments are utilized
by user workload. The In-Memory Segment Statistics section is displayed in AWR
Compare Periods report only if Oracle Database has in-memory activity.

8.3.2.14 Dictionary Cache Statistics
The Dictionary Cache Statistics section compares the number of get requests
performed on the dictionary cache between the two snapshot sets in descending
order. The difference is measured by the number of get requests per second of both
total DB time and elapsed time.
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The dictionary cache is a part of the SGA that stores information about the database,
its structures, and its users. The dictionary cache also stores descriptive information
(or metadata) about schema objects, which is accessed by Oracle Database during
the parsing of SQL statements.

See Also:

"Data Dictionary Cache Concepts" for information about the dictionary cache

8.3.2.15 Library Cache Statistics
The Library Cache Statistics section compares the number of get requests performed
on the library cache between the two snapshot sets in descending order. The
difference is measured by the number of get requests per second of both total DB time
and elapsed time.

The library cache is a part of the SGA that stores table information, object definitions,
SQL statements, and PL/SQL programs.

See Also:

"Library Cache Concepts" for information about the library cache

8.3.2.16 Memory Statistics
The Memory Statistics section compares process and SGA memory statistics between
the two snapshot sets, and is divided into the following categories:

• Process Memory Summary

• SGA Memory Summary

• SGA Breakdown Difference

8.3.2.16.1 Process Memory Summary
This subsection summarizes the memory use of processes in the two time periods.
The process categories include SQL, PL/SQL, and other.

8.3.2.16.2 SGA Memory Summary
This subsection summarizes the SGA memory configurations for the two snapshot
sets.

8.3.2.16.3 SGA Breakdown Difference
This subsection compares SGA memory usage for each of its subcomponents
between the two snapshot sets. The difference is measured based on the percentage
changed in the beginning and ending values of memory usage between the two
snapshot sets.
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8.3.2.17 Streams Statistics
The Streams Statistics section compares CPU time, I/O time, Streams capture and
apply, and other statistics related to Oracle Streams.

8.3.3 Supplemental Information in the AWR Compare Periods Report
The supplemental information is at the end of the AWR Compare Periods report, and
provides information that is useful but not essential about the snapshot sets and
workloads used in the report.

The supplemental information contains the following sections:

• init.ora Parameters

• Complete List of SQL Text

8.3.3.1 init.ora Parameters
The init.ora Parameters section lists all the initialization parameter values for the first
snapshot set. Any changes in the values of the initialization parameters between the
two snapshot sets are listed for the second snapshot set with the changed value
shown.

8.3.3.2 Complete List of SQL Text
The Complete List of SQL Text section lists each statement contained in the
workloads by SQL ID and shows the text of the SQL statement.
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9
Analyzing Sampled Data

This chapter describes how to use sampled data to identify transient performance
problems in Oracle Database and contains the following topics:

• About Active Session History

• Generating Active Session History Reports

• Interpreting Results from Active Session History Reports

9.1 About Active Session History
The Active Session History (ASH) is a diagnostic tool that records the information
about all the active sessions in an Oracle database.

The Automatic Database Diagnostics Monitor (ADDM) analysis may not show
transient performance problems because they are short-lived. The ASH diagnostic tool
captures transient performance problems by taking samples of active sessions every
second and storing the sampled data in a circular buffer in the shared global area
(SGA). Any session that is connected to the database and is waiting for an event that
does not belong to the Idle wait class is considered as an active session. By capturing
only active sessions, a manageable set of data is represented with its size being
directly related to the work being performed, rather than the number of sessions
allowed on the system.

ASH enables you to examine and perform detailed analysis on the sampled session
activity using the V$ACTIVE_SESSION_HISTORY view. The data present in ASH can be
rolled up in various dimensions that it captures over a specified duration and gathered
into an ASH report.
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Note:

ADDM tries to report the most significant performance problems during an
analysis period in terms of their impact on DB time. Whether a performance
problem is captured by ADDM depends on its duration compared to the interval
between AWR snapshots.

If a performance problem lasts for a significant portion of the time between
snapshots, it will be captured by ADDM. For example, if the snapshot interval is
set to one hour, then a performance problem that lasts for 30 minutes should
not be considered as a transient performance problem because its duration
represents a significant portion of the snapshot interval and will likely be
captured by ADDM.

If a particular problem lasts for a very short duration, then its severity might be
averaged out or minimized by other performance problems in the analysis
period, and the problem may not appear in the ADDM findings. Using the same
example where the snapshot interval is set to one hour, a performance problem
that lasts for only 2 minutes may be a transient performance problem because
its duration represents a small portion of the snapshot interval and will likely not
show up in the ADDM findings.

See Also:

• "Active Session History Statistics" for information about ASH

• Oracle Database Administrator's Guide for information about how
manageability features, such as ASH, work in a multitenant container
database (CDB) and pluggable databases (PDBs).

9.2 Generating Active Session History Reports
ASH reports enable you to perform analysis of:

• Transient performance problems that typically last for a few minutes

• Scoped or targeted performance analysis by various dimensions or their
combinations, such as time, session, module, action, or SQL identifier

ASH reports are divided into multiple sections. The HTML report includes links that
can be used to navigate quickly between sections. The content of the report contains
ASH information used to identify blocker and waiter identities, their associated
transaction identifiers, and SQL statements for a specified duration.

This section describes how to generate ASH reports and contains the following topics:

• User Interfaces for Generating ASH Reports

• Generating an ASH Report Using the Command-Line Interface
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9.2.1 User Interfaces for Generating ASH Reports
The primary interface for generating ASH reports is Oracle Enterprise Manager Cloud
Control (Cloud Control). Whenever possible, generate ASH reports using Cloud
Control.

If Cloud Control is unavailable, then generate ASH reports by running SQL scripts.
The DBA role is required to run these scripts.

See Also:

Oracle Database 2 Day + Performance Tuning Guide for information about
generating ASH reports using Cloud Control

9.2.2 Generating an ASH Report Using the Command-Line Interface
This section describes how to generate ASH reports by running SQL scripts in the
command-line interface.

This section contains the following topics:

• Generating an ASH Report on the Local Database Instance

• Generating an ASH Report on a Specific Database Instance

• Generating an ASH Report for Oracle RAC

9.2.2.1 Generating an ASH Report on the Local Database Instance
The ashrpt.sql SQL script generates an HTML or text report that displays ASH
information for a specified duration on the local database instance.

To generate an ASH report on the local database instance using the command-
line interface:

1. At the SQL prompt, enter:

@$ORACLE_HOME/rdbms/admin/ashrpt.sql

2. Specify whether you want an HTML or a text report:

Enter value for report_type: text

In this example, a text report is chosen.

3. Specify the begin time in minutes before the system date:

Enter value for begin_time: -10

In this example, 10 minutes before the current time is selected.

4. Specify the duration to capture ASH information in minutes from the begin time.

Enter value for duration:

In this example, the default duration of system date minus begin time is accepted.
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5. Enter a report name, or accept the default report name:

Enter value for report_name: 
Using the report name ashrpt_1_0310_0131.txt

In this example, the default name is accepted and an ASH report named
ashrpt_1_0310_0131 is generated. The report will gather ASH information beginning
from 10 minutes before the current time and ending at the current time.

9.2.2.2 Generating an ASH Report on a Specific Database Instance
The ashrpti.sql SQL script generates an HTML or text report that displays ASH
information for a specified duration on a specified database and instance. This script
enables you to specify a database and instance for which the ASH report will be
generated.

To generate an ASH report on a specific database instance using the command-
line interface:

1. At the SQL prompt, enter:

@$ORACLE_HOME/rdbms/admin/ashrpti.sql

2. Specify whether you want an HTML or a text report:

Enter value for report_type: html

In this example, an HTML report is chosen.

A list of available database IDs and instance numbers are displayed:

Instances in this Workload Repository schema
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
   DB Id    Inst Num DB Name      Instance     Host
----------- -------- ------------ ------------ ------------
 3309173529        1 MAIN         main         examp1690
 3309173529        1 TINT251      tint251      samp251

3. Enter the values for the database identifier (dbid) and instance number (inst_num):

Enter value for dbid: 3309173529
Using 3309173529 for database id
Enter value for inst_num: 1

4. To generate an ASH report on a physical standby instance, the standby database
must be opened read-only. The ASH data on disk represents activity on the
primary database and the ASH data in memory represents activity on the standby
database.

Note:

This step is applicable only if you are generating an ASH report on an
Active Data Guard physical standby instance. If this is not the case, then
skip this step.

Specify whether to generate the report using data sampled from the primary or
standby database:
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You are running ASH report on a Standby database.
To generate the report over data sampled on the Primary database, enter 'P'.
Defaults to 'S' - data sampled in the Standby database.
Enter value for stdbyflag:
Using Primary (P) or Standby (S): S

In this example, the default value of Standby (S) is selected.

5. Specify the begin time in minutes before the system date:

Enter value for begin_time: -10

In this example, 10 minutes before the current time is selected.

6. Specify the duration to capture ASH information in minutes from the begin time.

Enter value for duration:

In this example, the default duration of system date minus begin time is accepted.

7. Specify the slot width in seconds that will be used in the Activity Over Time section
of the report:

Enter value for slot_width: 

In this example, the default value is accepted. For more information about the
Activity Over Time section and how to specify the slot width, see "Activity Over
Time".

8. Follow the instructions in the subsequent prompts and enter values for the
following report targets:

• target_session_id

• target_sql_id

• target_wait_class

• target_service_hash

• target_module_name

• target_action_name

• target_client_id

• target_plsql_entry

9. Enter a report name, or accept the default report name:

Enter value for report_name: 
Using the report name ashrpt_1_0310_0131.txt

In this example, the default name is accepted and an ASH report named
ashrpt_1_0310_0131 is generated. The report will gather ASH information on the
database instance with a database ID value of 3309173529 beginning from 10
minutes before the current time and ending at the current time.

9.2.2.3 Generating an ASH Report for Oracle RAC
The ashrpti.sql SQL script generates an HTML or text report that displays ASH
information for a specified duration for specified databases and instances in an Oracle
Real Application Clusters (Oracle RAC) environment. Only ASH data that is written to
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disk will be used to generate the report. This report will only use ASH samples from
the last 10 minutes that are found in the DBA_HIST_ACTIVE_SESS_HISTORY table.

To generate an ASH report for Oracle RAC:

1. At the SQL prompt, enter:

@$ORACLE_HOME/rdbms/admin/ashrpti.sql

2. Specify whether you want an HTML or a text report:

Enter value for report_type: html

In this example, an HTML report is chosen.

A list of available database IDs and instance numbers are displayed:

Instances in this Workload Repository schema
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
   DB Id    Inst Num DB Name      Instance     Host
----------- -------- ------------ ------------ ------------
 3309173529        1 MAIN         main         examp1690
 3309173529        1 TINT251      tint251      samp251
 3309173529        2 TINT251      tint252      samp252
 3309173529        3 TINT251      tint253      samp253
 3309173529        4 TINT251      tint254      samp254

3. Enter the values for the database identifier (dbid) and instance number (inst_num):

Enter value for dbid: 3309173529
Using database id: 3309173529
Enter instance numbers. Enter 'ALL' for all instances in an Oracle
RAC cluster or explicitly specify list of instances (e.g., 1,2,3).
Defaults to current instance.
Enter value for inst_num: ALL
Using instance number(s): ALL

4. Specify the begin time in minutes before the system date:

Enter value for begin_time: -1:10

In this example, 1 hour and 10 minutes before the current time is selected.

5. Specify the duration to capture ASH information in minutes from the begin time.

Enter value for duration: 10

In this example, the duration is set to 10 minutes.

6. Specify the slot width in seconds that will be used in the Activity Over Time section
of the report:

Enter value for slot_width: 

In this example, the default value is accepted. For more information about the
Activity Over Time section and how to specify the slot width, see "Activity Over
Time".

7. Follow the instructions in the subsequent prompts and enter values for the
following report targets:

• target_session_id

• target_sql_id

• target_wait_class
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• target_service_hash

• target_module_name

• target_action_name

• target_client_id

• target_plsql_entry

8. Enter a report name, or accept the default report name:

Enter value for report_name: 
Using the report name ashrpt_rac_0310_0131.txt

In this example, the default name is accepted and an ASH report named
ashrpt_rac_0310_0131 is generated. The report will gather ASH information on all
instances belonging to the database with a database ID value of 3309173529
beginning from 1 hour and 10 minutes before the current time and ending at 1
hour before the current time.

9.3 Interpreting Results from Active Session History Reports
After generating an ASH report, review its contents to identify possible causes of
transient performance problems.

The contents of the ASH report are divided into the following sections:

• Top Events

• Load Profile

• Top SQL

• Top PL/SQL

• Top Java

• Top Sessions

• Top Objects/Files/Latches

• Activity Over Time

See Also:

Oracle Real Application Clusters Administration and Deployment Guide for
information about sections in the ASH report that are specific to Oracle Real
Application Clusters (Oracle RAC)

9.3.1 Top Events
The Top Events section describes the top wait events of the sampled session activity
categorized by user, background, and priority. Use the information in this section to
identify wait events that may be causing a transient performance problem.

The Top Events section contains the following subsections:

• Top User Events
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• Top Background Events

• Top Event P1/P2/P3

9.3.1.1 Top User Events
The Top User Events subsection lists the top wait events from user processes that
accounted for the highest percentages of sampled session activity.

9.3.1.2 Top Background Events
The Top Background Events subsection lists the top wait events from backgrounds
that accounted for the highest percentages of sampled session activity.

9.3.1.3 Top Event P1/P2/P3
The Top Event P1/P2/P3 subsection lists the wait event parameter values of the top
wait events that accounted for the highest percentages of sampled session activity,
ordered by the percentage of total wait time (% Event). For each wait event, values in
the P1 Value, P2 Value, P3 Value column correspond to wait event parameters
displayed in the Parameter 1, Parameter 2, and Parameter 3 columns.

9.3.2 Load Profile
The Load Profile section describes the load analyzed in the sampled session activity.
Use the information in this section to identify the service, client, or SQL command type
that may be the cause of a transient performance problem.

The Load Profile section contains the following subsections:

• Top Service/Module

• Top Client IDs

• Top SQL Command Types

• Top Phases of Execution

9.3.2.1 Top Service/Module
The Top Service/Module subsection lists the services and modules that accounted for
the highest percentages of sampled session activity.

9.3.2.2 Top Client IDs
The Top Client IDs subsection lists the clients that accounted for the highest
percentages of sampled session activity based on their client ID, which is the
application-specific identifier of the database session.

9.3.2.3 Top SQL Command Types
The Top SQL Command Types subsection lists the SQL command types—such as
SELECT or UPDATE commands—that accounted for the highest percentages of sampled
session activity.
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9.3.2.4 Top Phases of Execution
The Top Phases of Execution subsection lists the phases of execution—such as SQL,
PL/SQL, and Java compilation and execution—that accounted for the highest
percentages of sampled session activity.

9.3.3 Top SQL
The Top SQL section describes the top SQL statements in the sampled session
activity. Use this information to identify high-load SQL statements that may be the
cause of a transient performance problem.

The Top SQL section contains the following subsections:

• Top SQL with Top Events

• Top SQL with Top Row Sources

• Top SQL Using Literals

• Top Parsing Module/Action

• Complete List of SQL Text

9.3.3.1 Top SQL with Top Events
The Top SQL with Top Events subsection lists the SQL statements that accounted for
the highest percentages of sampled session activity and the top wait events that were
encountered by these SQL statements. The Sampled # of Executions column shows
how many distinct executions of a particular SQL statement were sampled.

9.3.3.2 Top SQL with Top Row Sources
The Top SQL with Top Row Sources subsection lists the SQL statements that
accounted for the highest percentages of sampled session activity and their detailed
execution plan information. You can use this information to identify which part of the
SQL execution contributed significantly to the SQL elapsed time.

9.3.3.3 Top SQL Using Literals
The Top SQL Using Literals subsection lists the SQL statements using literals that
accounted for the highest percentages of sampled session activity. You should review
the statements listed in this report to determine whether the literals can be replaced
with bind variables.

9.3.3.4 Top Parsing Module/Action
The Top Parsing Module/Action subsection lists the module and action that accounted
for the highest percentages of sampled session activity while parsing the SQL
statement.

9.3.3.5 Complete List of SQL Text
The Complete List of SQL Text subsection displays the entire text of the SQL
statements shown in the Top SQL section.
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9.3.4 Top PL/SQL
The Top PL/SQL section lists the PL/SQL procedures that accounted for the highest
percentages of sampled session activity.

The PL/SQL Entry Subprogram column lists the application's top-level entry point into
PL/SQL. The PL/SQL Current Subprogram column lists the PL/SQL subprogram being
executed at the point of sampling. If the value of this column is SQL, then the % Current
column shows the percentage of time spent executing SQL for this subprogram.

9.3.5 Top Java
The Top Java section describes the top Java programs in the sampled session
activity.

9.3.6 Top Sessions
The Top Sessions section describes the sessions that were waiting for a particular
wait event. Use this information to identify the sessions that accounted for the highest
percentages of sampled session activity, which may be the cause of a transient
performance problem.

The Top Sessions section contains the following subsections:

• Top Sessions

• Top Blocking Sessions

• Top Sessions Running PQs

9.3.6.1 Top Sessions
The Top Session subsection lists the sessions that were waiting for a particular wait
event that accounted for the highest percentages of sampled session activity.

9.3.6.2 Top Blocking Sessions
The Top Blocking Sessions subsection lists the blocking sessions that accounted for
the highest percentages of sampled session activity.

9.3.6.3 Top Sessions Running PQs
The Top Sessions Running PQs subsection lists the sessions running parallel queries
(PQs) that were waiting for a particular wait event, which accounted for the highest
percentages of sampled session activity.

9.3.7 Top Objects/Files/Latches
The Top Objects/Files/Latches section provides additional information about the most
commonly-used database resources and contains the following subsections:

• Top DB Objects

• Top DB Files
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• Top Latches

9.3.7.1 Top DB Objects
The Top DB Objects subsection lists the database objects (such as tables and
indexes) that accounted for the highest percentages of sampled session activity.

9.3.7.2 Top DB Files
The Top DB Files subsection lists the database files that accounted for the highest
percentages of sampled session activity.

9.3.7.3 Top Latches
The Top Latches subsection lists the latches that accounted for the highest
percentages of sampled session activity.

Latches are simple, low-level serialization mechanisms used to protect shared data
structures in the System Global Area (SGA). For example, latches protect the list of
users currently accessing the database and the data structures describing the blocks
in the buffer cache. A server or background process acquires a latch for a very short
time while manipulating or looking at one of these structures. The implementation of
latches is operating system-dependent, particularly regarding if and how long a
process waits for a latch.

9.3.8 Activity Over Time
The Activity Over Time section is one of the most informative sections of the ASH
report. This section is particularly useful for analyzing longer time periods because it
provides in-depth details about activities and workload profiles during the analysis
period.

The Activity Over Time section is divided into 10 time slots. The size of each time slot
varies based on the duration of the analysis period. The first and last slots are usually
odd-sized. All inner slots are equally sized and can be compared to each other. For
example, if the analysis period lasts for 10 minutes, then all time slots will 1 minute
each. However, if the analysis period lasts for 9 minutes and 30 seconds, then the
outer slots may be 15 seconds each and the inner slots will be 1 minute each.

Each of the time slots contains information regarding that particular time slot, as
described in Table 9-1.

Table 9-1    Activity Over Time

Column Description

Slot Time (Duration) Duration of the slot

Slot Count Number of sampled sessions in the slot

Event Top three wait events in the slot

Event Count Number of ASH samples waiting for the wait event

% Event Percentage of ASH samples waiting for wait events in the entire
analysis period
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When comparing the inner slots, perform a skew analysis by identifying spikes in the
Event Count and Slot Count columns. A spike in the Event Count column indicates an
increase in the number of sampled sessions waiting for a particular event. A spike in
the Slot Count column indicates an increase in active sessions, because ASH data is
sampled from active sessions only and a relative increase in database workload.
Typically, when the number of active session samples and the number of sessions
associated with a wait event increases, the slot may be the cause of a transient
performance problem.

To generate the ASH report with a user-defined slot size, run the ashrpti.sql script, as
described in "Generating an ASH Report on a Specific Database Instance".
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10
Instance Tuning Using Performance Views

After the initial configuration of a database, monitoring and tuning an instance regularly
is important to eliminate any potential performance bottlenecks. This chapter
discusses the tuning process using Oracle V$ performance views.

This chapter contains the following sections:

• Instance Tuning Steps

• Interpreting Oracle Database Statistics

• Wait Events Statistics

• Tuning Instance Recovery Performance: Fast-Start Fault Recovery

10.1 Instance Tuning Steps
These are the main steps in the Oracle performance method for instance tuning:

1. Define the Problem

Get candid feedback from users about the scope of the performance problem.

2. Examine the Host System and Examine the Oracle Database Statistics

• After obtaining a full set of operating system, database, and application
statistics, examine the data for any evidence of performance problems.

• Consider the list of common performance errors to see whether the data
gathered suggests that they are contributing to the problem.

• Build a conceptual model of what is happening on the system using the
performance data gathered.

3. Implement and Measure Change

Propose changes to be made and the expected result of implementing the
changes. Then, implement the changes and measure application performance.

4. Determine whether the performance objective defined in step 1 has been met. If
not, then repeat steps 2 and 3 until the performance goals are met.

The remainder of this chapter discusses instance tuning using the Oracle Database
dynamic performance views. However, Oracle recommends using Automatic Workload
Repository (AWR) and Automatic Database Diagnostic Monitor (ADDM) for statistics
gathering, monitoring, and tuning due to the extended feature list.

Note:

If your site does not have AWR and ADDM features, then you can use
Statspack to gather Oracle database instance statistics.
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10.1.1 Define the Problem
It is vital to develop a good understanding of the purpose of the tuning exercise and
the nature of the problem before attempting to implement a solution. Without this
understanding, it is virtually impossible to implement effective changes. The data
gathered during this stage helps determine the next step to take and what evidence to
examine.

Gather the following data:

1. Identify the performance objective.

What is the measure of acceptable performance? How many transactions an hour,
or seconds, response time will meet the required performance level?

2. Identify the scope of the problem.

What is affected by the slowdown? For example, is the whole instance slow? Is it a
particular application, program, specific operation, or a single user?

3. Identify the time frame when the problem occurs.

Is the problem only evident during peak hours? Does performance deteriorate over
the course of the day? Was the slowdown gradual (over the space of months or
weeks) or sudden?

4. Quantify the slowdown.

This helps identify the extent of the problem and also acts as a measure for
comparison when deciding whether changes implemented to fix the problem have
actually made an improvement. Find a consistently reproducible measure of the
response time or job run time. How much worse are the timings than when the
program was running well?

5. Identify any changes.

Identify what has changed since performance was acceptable. This may narrow
the potential cause quickly. For example, has the operating system software,
hardware, application software, or Oracle Database release been upgraded? Has
more data been loaded into the system, or has the data volume or user population
grown?

At the end of this phase, you should have a good understanding of the symptoms. If
the symptoms can be identified as local to a program or set of programs, then the
problem is handled in a different manner from instance-wide performance issues.

10.1.2 Examine the Host System
Look at the load on the database server and the database instance. Consider the
operating system, the I/O subsystem, and network statistics, because examining these
areas helps determine what might be worth further investigation. In multitier systems,
also examine the application server middle-tier hosts.

Examining the host hardware often gives a strong indication of the bottleneck in the
system. This determines which Oracle Database performance data could be useful for
cross-reference and further diagnosis.

Data to examine includes the following:

• CPU Usage

Chapter 10
Instance Tuning Steps

10-2



• Identifying I/O Problems

• Identifying Network Issues

10.1.2.1 CPU Usage
If there is a significant amount of idle CPU, then there could be an I/O, application, or
database bottleneck. Note that wait I/O should be considered as idle CPU.

If there is high CPU usage, then determine whether the CPU is being used effectively.
Is the majority of CPU usage attributable to a small number of high-CPU using
programs, or is the CPU consumed by an evenly distributed workload?

If a small number of high-usage programs use the CPU, then look at the programs to
determine the cause. Check whether some processes alone consume the full power of
one CPU. Depending on the process, this could indicate a CPU or process-bound
workload that can be tackled by dividing or parallelizing process activity.

10.1.2.1.1 Non-Oracle Processes
If the programs are not Oracle programs, then identify whether they are legitimately
requiring that amount of CPU. If so, determine whether their execution be delayed to
off-peak hours. Identifying these CPU intensive processes can also help narrowing
what specific activity, such as I/O, network, and paging, is consuming resources and
how can it be related to the database workload.

10.1.2.1.2 Oracle Processes
If a small number of Oracle processes consumes most of the CPU resources, then use
SQL_TRACE and TKPROF to identify the SQL or PL/SQL statements to see if a particular
query or PL/SQL program unit can be tuned. For example, a SELECT statement could
be CPU-intensive if its execution involves many reads of data in cache (logical reads)
that could be avoided with better SQL optimization.

10.1.2.1.3 Oracle Database CPU Statistics
Oracle Database CPU statistics are available in several V$ views:

• V$SYSSTAT shows Oracle Database CPU usage for all sessions. The CPU used by
this session statistic shows the aggregate CPU used by all sessions. The parse
time cpu statistic shows the total CPU time used for parsing.

• V$SESSTAT shows Oracle Database CPU usage for each session. Use this view to
determine which particular session is using the most CPU.

• V$RSRC_CONSUMER_GROUP shows CPU utilization statistics for each consumer group
when the Oracle Database Resource Manager is running.

10.1.2.1.4 Interpreting CPU Statistics
It is important to recognize that CPU time and real time are distinct. With eight CPUs,
for any given minute in real time, there are eight minutes of CPU time available. On
Windows and UNIX, this can be either user time or system time (privileged mode on
Windows). Thus, average CPU time utilized by all processes (threads) on the system
could be greater than one minute for every one minute real time interval.
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At any given moment, you know how much time Oracle Database has used on the
system. So, if eight minutes are available and Oracle Database uses four minutes of
that time, then you know that 50% of all CPU time is used by Oracle. If your process is
not consuming that time, then some other process is. Identify the processes that are
using CPU time, figure out why, and then attempt to tune them.

If the CPU usage is evenly distributed over many Oracle server processes, examine
the V$SYS_TIME_MODEL view to help get a precise understanding of where most time is
spent.

See Also:

"Table 10-1" for more information about various wait events and their possible
causes

10.1.2.2 Identifying I/O Problems
An overly active I/O system can be evidenced by disk queue lengths greater than two,
or disk service times that are over 20-30ms. If the I/O system is overly active, then
check for potential hot spots that could benefit from distributing the I/O across more
disks. Also identify whether the load can be reduced by lowering the resource
requirements of the programs using those resources. If the I/O problems are caused
by Oracle Database, then I/O tuning can begin. If Oracle Database is not consuming
the available I/O resources, then identify the process that is using up the I/O.
Determine why the process is using up the I/O, and then tune this process.

I/O problems can be identified using V$ views in Oracle Database and monitoring tools
in the operating system, as described in the following sections:

• Identifying I/O Problems Using V$ Views

• Identifying I/O Problems Using Operating System Monitoring Tools

10.1.2.2.1 Identifying I/O Problems Using V$ Views
Check the Oracle wait event data in V$SYSTEM_EVENT to see whether the top wait events
are I/O related. I/O related events include db file sequential read, db file scattered
read, db file single write, db file parallel write, and log file parallel write. These
are all events corresponding to I/Os performed against data files and log files. If any of
these wait events correspond to high average time, then investigate the I/O contention.

Cross reference the host I/O system data with the I/O sections in the Automatic
Repository report to identify hot data files and tablespaces. Also compare the I/O times
reported by the operating system with the times reported by Oracle Database to see if
they are consistent.

An I/O problem can also manifest itself with non-I/O related wait events. For example,
the difficulty in finding a free buffer in the buffer cache or high wait times for logs to be
flushed to disk can also be symptoms of an I/O problem. Before investigating whether
the I/O system should be reconfigured, determine if the load on the I/O system can be
reduced.

To reduce I/O load caused by Oracle Database, examine the I/O statistics collected for
all I/O calls made by the database using the following views:
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• V$IOSTAT_CONSUMER_GROUP

The V$IOSTAT_CONSUMER_GROUP view captures I/O statistics for consumer groups. If
Oracle Database Resource Manager is enabled, I/O statistics for all consumer
groups that are part of the currently enabled resource plan are captured.

• V$IOSTAT_FILE

The V$IOSTAT_FILE view captures I/O statistics of database files that are or have
been accessed. The SMALL_SYNC_READ_LATENCY column displays the latency for
single block synchronous reads (in milliseconds), which translates directly to the
amount of time that clients need to wait before moving onto the next operation.
This defines the responsiveness of the storage subsystem based on the current
load. If there is a high latency for critical data files, you may want to consider
relocating these files to improve their service time. To calculate latency statistics,
timed_statistics must be set to TRUE.

• V$IOSTAT_FUNCTION

The V$IOSTAT_FUNCTION view captures I/O statistics for database functions (such as
the LGWR and DBWR).

An I/O can be issued by various Oracle processes with different functionalities.
The top database functions are classified in the V$IOSTAT_FUNCTION view. In cases
when there is a conflict of I/O functions, the I/O is placed in the bucket with the
lower FUNCTION_ID. For example, if XDB issues an I/O from the buffer cache, the
I/O would be classified as an XDB I/O because it has a lower FUNCTION_ID value.
Any unclassified function is placed in the Others bucket. You can display the
FUNCTION_ID hierarchy by querying the V$IOSTAT_FUNCTION view:

select FUNCTION_ID, FUNCTION_NAME
from v$iostat_function
order by FUNCTION_ID;

FUNCTION_ID FUNCTION_NAME
----------- ------------------
           0 RMAN
           1 DBWR
           2 LGWR
           3 ARCH
           4 XDB
           5 Streams AQ
           6 Data Pump
           7 Recovery
           8 Buffer Cache Reads
           9 Direct Reads
          10 Direct Writes
          11 Others

These V$IOSTAT views contains I/O statistics for both single and multi block read and
write operations. Single block operations are small I/Os that are less than or equal to
128 kilobytes. Multi block operations are large I/Os that are greater than 128 kilobytes.
For each of these operations, the following statistics are collected:

• Identifier

• Total wait time (in milliseconds)

• Number of waits executed (for consumer groups and functions)

• Number of requests for each operation

• Number of single and multi block bytes read
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• Number of single and multi block bytes written

You should also look at SQL statements that perform many physical reads by querying
the V$SQLAREA view, or by reviewing the "SQL ordered by Reads" section of the
Automatic Workload Repository report. Examine these statements to see how they
can be tuned to reduce the number of I/Os.

See Also:

Oracle Database Reference for more information about the views
V$IOSTAT_CONSUMER_GROUP, V$IOSTAT_FUNCTION, V$IOSTAT_FILE, and V$SQLAREA

10.1.2.2.2 Identifying I/O Problems Using Operating System Monitoring Tools
Use operating system monitoring tools to determine what processes are running on
the system as a whole and to monitor disk access to all files. Remember that disks
holding data files and redo log files can also hold files that are not related to Oracle
Database. Reduce any heavy access to disks that contain database files. You can
monitor access to non-database files only through operating system facilities, rather
than through the V$ views.

Utilities, such as sar -d (or iostat) on many UNIX systems and the administrative
performance monitoring tool on Windows systems, examine I/O statistics for the entire
system.

See Also:

Your operating system documentation for the tools available on your platform

10.1.2.3 Identifying Network Issues
Using operating system utilities, look at the network round-trip ping time and the
number of collisions. If the network is causing large delays in response time, then
investigate possible causes.

To identify network I/O caused by remote access of database files, examine the
V$IOSTAT_NETWORK view. This view contains network I/O statistics caused by accessing
files on a remote database instance, including:

• Database client initiating the network I/O (such as RMAN and PLSQL)

• Number of read and write operations issued

• Number of kilobytes read and written

• Total wait time in milliseconds for read operations

• Total wait in milliseconds for write operations

After the cause of the network issue is identified, network load can be reduced by
scheduling large data transfers to off-peak times, or by coding applications to batch
requests to remote hosts, rather than accessing remote hosts once (or more) for one
request.
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10.1.3 Examine the Oracle Database Statistics
Examine Oracle Database statistics and cross-reference them with operating system
statistics to ensure a consistent diagnosis of the problem. Operating system statistics
can indicate a good place to begin tuning. However, if the goal is to tune the Oracle
database instance, then look at the Oracle Database statistics to identify the resource
bottleneck from a database perspective before implementing corrective action.

This section contains the following topics.

• Setting the Level of Statistics Collection

• Wait Events

• Dynamic Performance Views Containing Wait Event Statistics

• System Statistics

• Segment-Level Statistics

See Also:

"Interpreting Oracle Database Statistics"

10.1.3.1 Setting the Level of Statistics Collection
Oracle Database provides the initialization parameter STATISTICS_LEVEL, which controls
all major statistics collections or advisories in the database. This parameter sets the
statistics collection level for the database.

Depending on the setting of STATISTICS_LEVEL, certain advisories or statistics are
collected, as follows:

• BASIC: No advisories or statistics are collected. Monitoring and many automatic
features are disabled. Oracle does not recommend this setting because it disables
important Oracle Database features.

• TYPICAL: This is the default value and ensures collection for all major statistics
while providing best overall database performance. This setting should be
adequate for most environments.

• ALL: All of the advisories or statistics that are collected with the TYPICAL setting are
included, plus timed operating system statistics and row source execution
statistics.

See Also:

• Oracle Database Reference for more information on the STATISTICS_LEVEL
initialization parameter.

• Oracle Database Reference for information about the V$STATISTICS_LEVEL
view. This view lists the status of the statistics or advisories controlled by
the STATISTICS_LEVEL initialization parameter.
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10.1.3.2 Wait Events
Wait events are statistics that are incremented by a server process or thread to
indicate that it had to wait for an event to complete before being able to continue
processing. Wait event data reveals various symptoms of problems that might be
impacting performance, such as latch contention, buffer contention, and I/O
contention. Remember that these are only symptoms of problems, not the actual
causes.

Wait events are grouped into classes. The wait event classes include: Administrative,
Application, Cluster, Commit, Concurrency, Configuration, Idle, Network, Other,
Scheduler, System I/O, and User I/O.

A server process can wait for the following:

• A resource to become available, such as a buffer or a latch.

• An action to complete, such as an I/O.

• More work to do, such as waiting for the client to provide the next SQL statement
to execute. Events that identify that a server process is waiting for more work are
known as idle events.

Wait event statistics include the number of times an event was waited for and the time
waited for the event to complete. If the initialization parameter TIMED_STATISTICS is set
to true, then you can also see how long each resource was waited for.

To minimize user response time, reduce the time spent by server processes waiting
for event completion. Not all wait events have the same wait time. Therefore, it is more
important to examine events with the most total time waited rather than wait events
with a high number of occurrences. Usually, it is best to set the dynamic parameter
TIMED_STATISTICS to true at least while monitoring performance.

See Also:

• "Wait Events Statistics"

• "Using Wait Events with Timed Statistics"

• Oracle Database Reference for more information about Oracle Database
wait events

10.1.3.3 Dynamic Performance Views Containing Wait Event Statistics
These dynamic performance views can be queried for wait event statistics:

• V$ACTIVE_SESSION_HISTORY

The V$ACTIVE_SESSION_HISTORY view displays active database session activity,
sampled once every second.

• V$SESS_TIME_MODEL and V$SYS_TIME_MODEL

The V$SESS_TIME_MODEL and V$SYS_TIME_MODEL views contain time model statistics,
including DB time which is the total time spent in database calls.

• V$SESSION_WAIT
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The V$SESSION_WAIT view displays information about the current or last wait for
each session (such as wait ID, class, and time).

• V$SESSION

The V$SESSION view displays information about each current session and contains
the same wait statistics as those found in the V$SESSION_WAIT view. If applicable,
this view also contains detailed information about the object that the session is
currently waiting for (such as object number, block number, file number, and row
number), the blocking session responsible for the current wait (such as the
blocking session ID, status, and type), and the amount of time waited.

• V$SESSION_EVENT

The V$SESSION_EVENT view provides summary of all the events the session has
waited for since it started.

• V$SESSION_WAIT_CLASS

The V$SESSION_WAIT_CLASS view provides the number of waits and the time spent in
each class of wait events for each session.

• V$SESSION_WAIT_HISTORY

The V$SESSION_WAIT_HISTORY view displays information about the last ten wait
events for each active session (such as event type and wait time).

• V$SYSTEM_EVENT

The V$SYSTEM_EVENT view provides a summary of all the event waits on the instance
since it started.

• V$EVENT_HISTOGRAM

The V$EVENT_HISTOGRAM view displays a histogram of the number of waits, the
maximum wait, and total wait time on an event basis.

• V$FILE_HISTOGRAM

The V$FILE_HISTOGRAM view displays a histogram of times waited during single
block reads for each file.

• V$SYSTEM_WAIT_CLASS

The V$SYSTEM_WAIT_CLASS view provides the instance wide time totals for the
number of waits and the time spent in each class of wait events.

• V$TEMP_HISTOGRAM

The V$TEMP_HISTOGRAM view displays a histogram of times waited during single
block reads for each temporary file.

Investigate wait events and related timing data when performing reactive performance
tuning. The events with the most time listed against them are often strong indications
of the performance bottleneck. For example, by looking at V$SYSTEM_EVENT, you might
notice lots of buffer busy waits. It might be that many processes are inserting into the
same block and must wait for each other before they can insert. The solution could be
to use automatic segment space management or partitioning for the object in question.
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See Also:

• "Wait Events Statistics" for differences among the views V$SESSION_WAIT,
V$SESSION_EVENT, and V$SYSTEM_EVENT

• Oracle Database Reference for information about the dynamic performance
views

10.1.3.4 System Statistics
System statistics are typically used in conjunction with wait event data to find further
evidence of the cause of a performance problem.

For example, if V$SYSTEM_EVENT indicates that the largest wait event (in terms of wait
time) is the event buffer busy waits, then look at the specific buffer wait statistics
available in the view V$WAITSTAT to see which block type has the highest wait count and
the highest wait time.

After the block type has been identified, also look at V$SESSION real-time while the
problem is occurring or V$ACTIVE_SESSION_HISTORY and DBA_HIST_ACTIVE_SESS_HISTORY
views after the problem has been experienced to identify the contended-for objects
using the object number indicated. The combination of this data indicates the
appropriate corrective action.

Statistics are available in many V$ views. The following are some of the V$ views that
contain system statistics.

V$ACTIVE_SESSION_HISTORY

This view displays active database session activity, sampled once every second.

V$SYSSTAT

This contains overall statistics for many different parts of Oracle Database, including
rollback, logical and physical I/O, and parse data. Data from V$SYSSTAT is used to
compute ratios, such as the buffer cache hit ratio.

V$FILESTAT

This contains detailed file I/O statistics for each file, including the number of I/Os for
each file and the average read time.

V$ROLLSTAT

This contains detailed rollback and undo segment statistics for each segment.

V$ENQUEUE_STAT

This contains detailed enqueue statistics for each enqueue, including the number of
times an enqueue was requested and the number of times an enqueue was waited for,
and the wait time.
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V$LATCH

This contains detailed latch usage statistics for each latch, including the number of
times each latch was requested and the number of times the latch was waited for.

See Also:

Oracle Database Reference for information about dynamic performance views

10.1.3.5 Segment-Level Statistics
You can gather segment-level statistics to help you spot performance problems
associated with individual segments. Collecting and viewing segment-level statistics is
a good way to effectively identify hot tables or indexes in an instance.

After viewing wait events and system statistics to identify the performance problem,
you can use segment-level statistics to find specific tables or indexes that are causing
the problem. Consider, for example, that V$SYSTEM_EVENT indicates that buffer busy
waits cause a fair amount of wait time. You can select from V$SEGMENT_STATISTICS the
top segments that cause the buffer busy waits. Then you can focus your effort on
eliminating the problem in those segments.

You can query segment-level statistics through the following dynamic performance
views:

• V$SEGSTAT_NAME: This view lists the segment statistics being collected and the
properties of each statistic (for instance, if it is a sampled statistic).

• V$SEGSTAT: This is a highly efficient, real-time monitoring view that shows the
statistic value, statistic name, and other basic information.

• V$SEGMENT_STATISTICS: This is a user-friendly view of statistic values. In addition to
all the columns of V$SEGSTAT, it has information about such things as the segment
owner and table space name. It makes the statistics easy to understand, but it is
more costly.

See Also:

Oracle Database Reference for information about dynamic performance
views

10.1.4 Implement and Measure Change
Often at the end of a tuning exercise, it is possible to identify two or three changes that
could potentially alleviate the problem. To identify which change provides the most
benefit, it is recommended that only one change be implemented at a time. The effect
of the change should be measured against the baseline data measurements found in
the problem definition phase.

Typically, most sites with dire performance problems implement several overlapping
changes at once, and thus cannot identify which changes provided any benefit.
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Although this is not immediately an issue, this becomes a significant hindrance if
similar problems subsequently appear, because it is not possible to know which of the
changes provided the most benefit and which efforts to prioritize.

If it is not possible to implement changes separately, then try to measure the effects of
dissimilar changes. For example, measure the effect of making an initialization change
to optimize redo generation separately from the effect of creating a new index to
improve the performance of a modified query. It is impossible to measure the benefit of
performing an operating system upgrade if SQL is tuned, the operating system disk
layout is changed, and the initialization parameters are also changed at the same time.

Performance tuning is an iterative process. It is unlikely to find a 'silver bullet' that
solves an instance-wide performance problem. In most cases, excellent performance
requires iteration through the performance tuning phases, because solving one
bottleneck often uncovers another (sometimes worse) problem.

Knowing when to stop tuning is also important. The best measure of performance is
user perception, rather than how close the statistic is to an ideal value.

10.2 Interpreting Oracle Database Statistics
Gather statistics that cover the time when the instance had the performance problem.
If you previously captured baseline data for comparison, then you can compare the
current data to the data from the baseline that most represents the problem workload.

When comparing two reports, ensure that the two reports are from times where the
system was running comparable workloads.

10.2.1 Examine Load
Usually, wait events are the first data examined. However, if you have a baseline
report, then check to see if the load has changed. Regardless of whether you have a
baseline, it is useful to see whether the resource usage rates are high.

Load-related statistics to examine include redo size, session logical reads, db block
changes, physical reads, physical read total bytes, physical writes, physical write
total bytes, parse count (total), parse count (hard), and user calls. This data is
queried from V$SYSSTAT. It is best to normalize this data over seconds and over
transactions. It is also useful to examine the total I/O load in MB per second by using
the sum of physical read total bytes and physical write total bytes. The combined value
includes the I/O's used to buffer cache, redo logs, archive logs, by Recovery Manager
(RMAN) backup and recovery and any Oracle Database background process.

In the AWR report, look at the Load Profile section. The data has been normalized
over transactions and over seconds.

Changing Load

The load profile statistics over seconds show the changes in throughput (that is,
whether the instance is performing more work each second). The statistics over
transactions identify changes in the application characteristics by comparing these to
the corresponding statistics from the baseline report.
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High Rates of Activity

Examine the statistics normalized over seconds to identify whether the rates of activity
are very high. It is difficult to make blanket recommendations on high values, because
the thresholds are different on each site and are contingent on the application
characteristics, the number and speed of CPUs, the operating system, the I/O system,
and the Oracle Database release.

The following are some generalized examples (acceptable values vary at each site):

• A hard parse rate of more than 100 a second indicates that there is a very high
amount of hard parsing on the system. High hard parse rates cause serious
performance issues and must be investigated. Usually, a high hard parse rate is
accompanied by latch contention on the shared pool and library cache latches.

• Check whether the sum of the wait times for library cache and shared pool latch
events (latch: library cache, latch: library cache pin, latch: library cache lock and
latch: shared pool) is significant compared to statistic DB time found in V$SYSSTAT. If
so, examine the SQL ordered by Parse Calls section of the AWR report.

• A high soft parse rate could be in the rate of 300 a second or more. Unnecessary
soft parses also limit application scalability. Optimally, a SQL statement should be
soft parsed once in each session and executed many times.

10.2.2 Using Wait Event Statistics to Drill Down to Bottlenecks
Whenever an Oracle process waits for something, it records the wait using one of a
set of predefined wait events. These wait events are grouped in wait classes. The Idle
wait class groups all events that a process waits for when it does not have work to do
and is waiting for more work to perform. Non-idle events indicate nonproductive time
spent waiting for a resource or action to complete.

Note:

Not all symptoms can be evidenced by wait events. See "Additional Statistics"
for the statistics that can be checked.

The most effective way to use wait event data is to order the events by the wait time.
This is only possible if TIMED_STATISTICS is set to true. Otherwise, the wait events can
only be ranked by the number of times waited, which is often not the ordering that best
represents the problem.

To get an indication of where time is spent, follow these steps:

1. Examine the data collection for V$SYSTEM_EVENT. The events of interest should be
ranked by wait time.

Identify the wait events that have the most significant percentage of wait time. To
determine the percentage of wait time, add the total wait time for all wait events,
excluding idle events, such as Null event , SQL*Net message from client, SQL*Net
message to client, and SQL*Net more data to client. Calculate the relative
percentage of the five most prominent events by dividing each event's wait time by
the total time waited for all events.
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Alternatively, look at the Top 5 Timed Events section at the beginning of the
Automatic Workload Repository report. This section automatically orders the wait
events (omitting idle events), and calculates the relative percentage:

Top 5 Timed Events
~~~~~~~~~~~~~~~~~~                                                % Total
Event                                         Waits    Time (s) Call Time
-------------------------------------- ------------ ----------- ---------
CPU time                                                    559     88.80
log file parallel write                       2,181          28      4.42
SQL*Net more data from client               516,611          27      4.24
db file parallel write                       13,383          13      2.04
db file sequential read                         563           2       .27

In some situations, there might be a few events with similar percentages. This can
provide extra evidence if all the events are related to the same type of resource
request (for example, all I/O related events).

2. Look at the number of waits for these events, and the average wait time. For
example, for I/O related events, the average time might help identify whether the
I/O system is slow. The following example of this data is taken from the Wait Event
section of the AWR report:

                                                             Avg
                                                Total Wait   wait     Waits
Event                           Waits  Timeouts   Time (s)   (ms)      /txn
--------------------------- --------- --------- ---------- ------ ---------
log file parallel write         2,181         0         28     13      41.2
SQL*Net more data from clie   516,611         0         27      0   9,747.4
db file parallel write         13,383         0         13      1     252.5

3. The top wait events identify the next places to investigate. A table of common wait
events is listed in Table 10-1. It is usually a good idea to also have quick look at
high-load SQL.

4. Examine the related data indicated by the wait events to see what other
information this data provides. Determine whether this information is consistent
with the wait event data. In most situations, there is enough data to begin
developing a theory about the potential causes of the performance bottleneck.

5. To determine whether this theory is valid, cross-check data you have examined
with other statistics available for consistency. The appropriate statistics vary
depending on the problem, but usually include load profile-related data in
V$SYSSTAT, operating system statistics, and so on. Perform cross-checks with other
data to confirm or refute the developing theory.

See Also:

• "Idle Wait Events" for the list of idle wait events

• Oracle Database Reference for more information about wait events

10.2.3 Table of Wait Events and Potential Causes
Table 10-1 links wait events to possible causes and gives an overview of the Oracle
data that could be most useful to review next.
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Table 10-1    Wait Events and Potential Causes

Wait Event General Area Possible Causes Look for / Examine

buffer busy
waits

Buffer cache,
DBWR

Depends on buffer
type. For example,
waits for an index
block may be caused
by a primary key that
is based on an
ascending sequence.

Examine V$SESSION while the problem
is occurring to determine the type of
block in contention.

free buffer
waits

Buffer cache,
DBWR, I/O

Slow DBWR (possibly
due to I/O?)

Cache too small

Examine write time using operating
system statistics. Check buffer cache
statistics for evidence of too small
cache.

db file
scattered
read

I/O, SQL
statement
tuning

Poorly tuned SQL

Slow I/O system

Investigate V$SQLAREA to see whether
there are SQL statements performing
many disk reads. Cross-check I/O
system and V$FILESTAT for poor read
time.

db file
sequential
read

I/O, SQL
statement
tuning

Poorly tuned SQL

Slow I/O system

Investigate V$SQLAREA to see whether
there are SQL statements performing
many disk reads. Cross-check I/O
system and V$FILESTAT for poor read
time.

enqueue waits
(waits starting
with enq:)

Locks Depends on type of
enqueue

Look at V$ENQUEUE_STAT.

library cache
latch waits:
library
cache,
library cache
pin, and
library cache
lock

Latch
contention

SQL parsing or
sharing

Check V$SQLAREA to see whether there
are SQL statements with a relatively
high number of parse calls or a high
number of child cursors (column
VERSION_COUNT). Check parse
statistics in V$SYSSTAT and their
corresponding rate for each second.

log buffer
space

Log buffer, I/O Log buffer small

Slow I/O system

Check the statistic redo buffer
allocation retries in V$SYSSTAT.
Check configuring log buffer section in
configuring memory chapter. Check
the disks that house the online redo
logs for resource contention.

log file
sync

I/O, over-
committing

Slow disks that store
the online logs

Un-batched commits

Check the disks that house the online
redo logs for resource contention.
Check the number of transactions
(commits + rollbacks) each second,
from V$SYSSTAT.
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See Also:

• "Wait Events Statistics" for detailed information on each event listed in
"Table 10-1" and for other information to cross-check

• Oracle Database Reference for information about dynamic performance
views

• My Oracle Support notices on buffer busy waits (34405.1) and free buffer
waits (62172.1). You can also access these notices and related notices by
searching for "busy buffer waits" and "free buffer waits" on My Oracle
Support website.

10.2.4 Additional Statistics
There are several statistics that can indicate performance problems that do not have
corresponding wait events.

Redo Log Space Requests Statistic

The V$SYSSTAT statistic redo log space requests indicates how many times a server
process had to wait for space in the online redo log, not for space in the redo log
buffer. Use this statistic and the wait events as an indication that you must tune
checkpoints, DBWR, or archiver activity, not LGWR. Increasing the size of the log
buffer does not help.

Read Consistency

Your system might spend excessive time rolling back changes to blocks in order to
maintain a consistent view. Consider the following scenarios:

• If there are many small transactions and an active long-running query is running in
the background on the same table where the changes are happening, then the
query might need to roll back those changes often, in order to obtain a read-
consistent image of the table. Compare the following V$SYSSTAT statistics to
determine whether this is happening:

– consistent: changes statistic indicates the number of times a database block
has rollback entries applied to perform a consistent read on the block.
Workloads that produce a great deal of consistent changes can consume a
great deal of resources.

– consistent gets: statistic counts the number of logical reads in consistent
mode.

• If there are few very, large rollback segments, then your system could be spending
a lot of time rolling back the transaction table during delayed block cleanout in
order to find out exactly which system change number (SCN) a transaction was
committed. When Oracle Database commits a transaction, all modified blocks are
not necessarily updated with the commit SCN immediately. In this case, it is done
later on demand when the block is read or updated. This is called delayed block
cleanout.

The ratio of the following V$SYSSTAT statistics should be close to one:
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ratio = transaction tables consistent reads - undo records applied /
        transaction tables consistent read rollbacks

The recommended solution is to use automatic undo management.

• If there are insufficient rollback segments, then there is rollback segment (header
or block) contention. Evidence of this problem is available by the following:

– Comparing the number of WAITS to the number of GETS in V$ROLLSTAT; the
proportion of WAITS to GETS should be small.

– Examining V$WAITSTAT to see whether there are many WAITS for buffers of CLASS
'undo header'.

The recommended solution is to use automatic undo management.

Table Fetch by Continued Row

You can detect migrated or chained rows by checking the number of table fetch
continued row statistic in V$SYSSTAT. A small number of chained rows (less than 1%) is
unlikely to impact system performance. However, a large percentage of chained rows
can affect performance.

Chaining on rows larger than the block size is inevitable. Consider using a tablespace
with a larger block size for such data.

However, for smaller rows, you can avoid chaining by using sensible space
parameters and good application design. For example, do not insert a row with key
values filled in and nulls in most other columns, then update that row with the real
data, causing the row to grow in size. Rather, insert rows filled with data from the start.

If an UPDATE statement increases the amount of data in a row so that the row no longer
fits in its data block, then Oracle Database tries to find another block with enough free
space to hold the entire row. If such a block is available, then Oracle Database moves
the entire row to the new block. This operation is called row migration. If the row is
too large to fit into any available block, then the database splits the row into multiple
pieces and stores each piece in a separate block. This operation is called row
chaining. The database can also chain rows when they are inserted.

Migration and chaining are especially detrimental to performance with the following:

• UPDATE statements that cause migration and chaining to perform poorly

• Queries that select migrated or chained rows because these must perform
additional input and output

The definition of a sample output table named CHAINED_ROWS appears in a SQL script
available on your distribution medium. The common name of this script is UTLCHN1.SQL,
although its exact name and location varies depending on your platform. Your output
table must have the same column names, data types, and sizes as the CHAINED_ROWS
table.

Increasing PCTFREE can help to avoid migrated rows. If you leave more free space
available in the block, then the row has room to grow. You can also reorganize or re-
create tables and indexes that have high deletion rates. If tables frequently have rows
deleted, then data blocks can have partially free space in them. If rows are inserted
and later expanded, then the inserted rows might land in blocks with deleted rows but
still not have enough room to expand. Reorganizing the table ensures that the main
free space is totally empty blocks.
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Note:

PCTUSED is not the opposite of PCTFREE.

See Also:

• Oracle Database Concepts for more information on PCTUSED

• Oracle Database Administrator's Guide to learn how to reorganize tables

Parse-Related Statistics

The more your application parses, the more potential for contention exists, and the
more time your system spends waiting. If parse time CPU represents a large percentage
of the CPU time, then time is being spent parsing instead of executing statements. If
this is the case, then it is likely that the application is using literal SQL and so SQL
cannot be shared, or the shared pool is poorly configured.

There are several statistics available to identify the extent of time spent parsing by
Oracle. Query the parse related statistics from V$SYSSTAT. For example:

SELECT NAME, VALUE
  FROM V$SYSSTAT
 WHERE NAME IN (  'parse time cpu', 'parse time elapsed',
                  'parse count (hard)', 'CPU used by this session' );

There are various ratios that can be computed to assist in determining whether parsing
may be a problem:

• parse time CPU / parse time elapsed

This ratio indicates how much of the time spent parsing was due to the parse
operation itself, rather than waiting for resources, such as latches. A ratio of one is
good, indicating that the elapsed time was not spent waiting for highly contended
resources.

• parse time CPU / CPU used by this session

This ratio indicates how much of the total CPU used by Oracle server processes
was spent on parse-related operations. A ratio closer to zero is good, indicating
that the majority of CPU is not spent on parsing.

10.3 Wait Events Statistics
The V$SESSION, V$SESSION_WAIT, V$SESSION_HISTORY, V$SESSION_EVENT, and V$SYSTEM_EVENT
views provide information on what resources were waited for, and, if the configuration
parameter TIMED_STATISTICS is set to true, how long each resource was waited for.
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See Also:

• "Setting the Level of Statistics Collection" for information about the
STATISTICS_LEVEL settings

• Oracle Database Reference for information about the V$ views containing
wait event statistics

Investigate wait events and related timing data when performing reactive performance
tuning. The events with the most time listed against them are often strong indications
of the performance bottleneck.

The following views contain related, but different, views of the same data:

• V$SESSION lists session information for each current session. It lists either the event
currently being waited for, or the event last waited for on each session. This view
also contains information about blocking sessions, the wait state, and the wait
time.

• V$SESSION_WAIT is a current state view. It lists either the event currently being
waited for, or the event last waited for on each session, the wait state, and the wait
time.

• V$SESSION_WAIT_HISTORY lists the last 10 wait events for each current session and
the associated wait time.

• V$SESSION_EVENT lists the cumulative history of events waited for on each session.
After a session exits, the wait event statistics for that session are removed from
this view.

• V$SYSTEM_EVENT lists the events and times waited for by the whole instance (that is,
all session wait events data rolled up) since instance startup.

Because V$SESSION_WAIT is a current state view, it also contains a finer-granularity of
information than V$SESSION_EVENT or V$SYSTEM_EVENT. It includes additional identifying
data for the current event in three parameter columns: P1, P2, and P3.

For example, V$SESSION_EVENT can show that session 124 (SID=124) had many waits
on the db file scattered read, but it does not show which file and block number.
However, V$SESSION_WAIT shows the file number in P1, the block number read in P2, and
the number of blocks read in P3 (P1 and P2 let you determine for which segments the
wait event is occurring).

This section concentrates on examples using V$SESSION_WAIT. However, Oracle
recommends capturing performance data over an interval and keeping this data for
performance and capacity analysis. This form of rollup data is queried from the
V$SYSTEM_EVENT view by AWR.

Most commonly encountered events are described in this chapter, listed in case-
sensitive alphabetical order. Other event-related data to examine is also included. The
case used for each event name is that which appears in the V$SYSTEM_EVENT view.

10.3.1 Changes to Wait Event Statistics from Past Releases
Starting with Oracle Database 11g, Oracle Database accumulates wait counts and
time outs for wait events (such as in the V$SYSTEM_EVENT view) differently than in past
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releases. Continuous waits for certain types of resources (such as enqueues) are
internally divided into a set of shorter wait calls. In releases prior to Oracle Database
11g, each individual internal wait call was counted as a separate wait. Starting with
Oracle Database 11g, a single resource wait is recorded as a single wait, irrespective
of the number of internal time outs experienced by the session during the wait.

This change allows Oracle Database to display a more representative wait count, and
an accurate total time spent waiting for the resource. Time outs now refer to the
resource wait, instead of the individual internal wait calls. This change also affects the
average wait time and the maximum wait time. For example, if a user session must
wait for an enqueue in order for a transaction row lock to update a single row in a
table, and it takes 10 seconds to acquire the enqueue, Oracle Database breaks down
the enqueue wait into 3-second wait calls. In this example, there will be three 3-second
wait calls, followed by a 1-second wait call. From the session's perspective, however,
there is only one wait on an enqueue.

In releases prior to Oracle Database 11g, the V$SYSTEM_EVENT view would represent this
wait scenario as follows:

• TOTAL_WAITS: 4 waits (three 3-second waits, one 1-second wait)

• TOTAL_TIMEOUTS: 3 time outs (the first three waits time out and the enqueue is
acquired during the final wait)

• TIME_WAITED: 10 seconds (sum of the times from the 4 waits)

• AVERAGE_WAIT: 2.5 seconds

• MAX_WAIT: 3 seconds

Starting with Oracle Database 11g, this wait scenario is represented as:

• TOTAL_WAITS: 1 wait (one 10-second wait)

• TOTAL_TIMEOUTS: 0 time outs (the enqueue is acquired during the resource wait)

• TIME_WAITED: 10 seconds (time for the resource wait)

• AVERAGE_WAIT: 10 seconds

• MAX_WAIT: 10 seconds

The following common wait events are affected by this change:

• Enqueue waits (such as enq: name - reason waits)

• Library cache lock waits

• Library cache pin waits

• Row cache lock waits

The following statistics are affected by this change:

• Wait counts

• Wait time outs

• Average wait time

• Maximum wait time

The following views are affected by this change:

• V$EVENT_HISTOGRAM

• V$EVENTMETRIC

Chapter 10
Wait Events Statistics

10-20



• V$SERVICE_EVENT

• V$SERVICE_WAIT_CLASS

• V$SESSION_EVENT

• V$SESSION_WAIT

• V$SESSION_WAIT_CLASS

• V$SESSION_WAIT_HISTORY

• V$SYSTEM_EVENT

• V$SYSTEM_WAIT_CLASS

• V$WAITCLASSMETRIC

• V$WAITCLASSMETRIC_HISTORY

See Also:

Oracle Database Reference for a description of the V$SYSTEM_EVENT view

10.3.2 buffer busy waits
This wait indicates that there are some buffers in the buffer cache that multiple
processes are attempting to access concurrently. Query V$WAITSTAT for the wait
statistics for each class of buffer. Common buffer classes that have buffer busy waits
include data block, segment header, undo header, and undo block.

Check the following V$SESSION_WAIT parameter columns:

• P1: File ID

• P2: Block ID

• P3: Class ID

Causes

To determine the possible causes, first query V$SESSION to identify the value of
ROW_WAIT_OBJ# when the session waits for buffer busy waits. For example:

SELECT row_wait_obj# 
  FROM V$SESSION 
 WHERE EVENT = 'buffer busy waits';

To identify the object and object type contended for, query DBA_OBJECTS using the value
for ROW_WAIT_OBJ# that is returned from V$SESSION. For example:

SELECT owner, object_name, subobject_name, object_type
  FROM DBA_OBJECTS
 WHERE data_object_id = &row_wait_obj;

Actions

The action required depends on the class of block contended for and the actual
segment.
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Segment Header

If the contention is on the segment header, then this is most likely free list contention.

Automatic segment-space management in locally managed tablespaces eliminates the
need to specify the PCTUSED, FREELISTS, and FREELIST GROUPS parameters. If possible,
switch from manual space management to automatic segment-space management
(ASSM).

The following information is relevant if you are unable to use ASSM (for example,
because the tablespace uses dictionary space management).

A free list is a list of free data blocks that usually includes blocks existing in several
different extents within the segment. Free lists are composed of blocks in which free
space has not yet reached PCTFREE or used space has shrunk below PCTUSED.
Specify the number of process free lists with the FREELISTS parameter. The default
value of FREELISTS is one. The maximum value depends on the data block size.

To find the current setting for free lists for that segment, run the following:

SELECT SEGMENT_NAME, FREELISTS
  FROM DBA_SEGMENTS
 WHERE SEGMENT_NAME = segment name
   AND SEGMENT_TYPE = segment type;

Set free lists, or increase the number of free lists. If adding more free lists does not
alleviate the problem, then use free list groups (even in single instance this can make
a difference). If using Oracle RAC, then ensure that each instance has its own free list
group(s).

See Also:

Oracle Database Concepts for information about automatic segment-space
management, free lists, PCTFREE, and PCTUSED

Data Block

If the contention is on tables or indexes (not the segment header):

• Check for right-hand indexes. These are indexes that are inserted into at the same
point by many processes. For example, those that use sequence number
generators for the key values.

• Consider using ASSM, global hash partitioned indexes, or increasing free lists to
avoid multiple processes attempting to insert into the same block.

Undo Header

For contention on rollback segment header:

• If you are not using automatic undo management, then add more rollback
segments.

Undo Block

For contention on rollback segment block:
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• If you are not using automatic undo management, then consider making rollback
segment sizes larger.

10.3.3 db file scattered read
This event signifies that the user process is reading buffers into the SGA buffer cache
and is waiting for a physical I/O call to return. A db file scattered read issues a
scattered read to read the data into multiple discontinuous memory locations. A
scattered read is usually a multiblock read. It can occur for a fast full scan (of an index)
in addition to a full table scan.

The db file scattered read wait event identifies that a full scan is occurring. When
performing a full scan into the buffer cache, the blocks read are read into memory
locations that are not physically adjacent to each other. Such reads are called
scattered read calls, because the blocks are scattered throughout memory. This is why
the corresponding wait event is called 'db file scattered read'. multiblock (up to
DB_FILE_MULTIBLOCK_READ_COUNT blocks) reads due to full scans into the buffer cache
show up as waits for 'db file scattered read'.

Check the following V$SESSION_WAIT parameter columns:

• P1: The absolute file number

• P2: The block being read

• P3: The number of blocks (should be greater than 1)

Actions

On a healthy system, physical read waits should be the biggest waits after the idle
waits. However, also consider whether there are direct read waits (signifying full table
scans with parallel query) or db file scattered read waits on an operational (OLTP)
system that should be doing small indexed accesses.

Other things that could indicate excessive I/O load on the system include the following:

• Poor buffer cache hit ratio

• These wait events accruing most of the wait time for a user experiencing poor
response time

Managing Excessive I/O

There are several ways to handle excessive I/O waits. In the order of effectiveness,
these are as follows:

• Reduce the I/O activity by SQL tuning.

• Reduce the need to do I/O by managing the workload.

• Gather system statistics with DBMS_STATS package, allowing the query optimizer to
accurately cost possible access paths that use full scans.

• Use Automatic Storage Management.

• Add more disks to reduce the number of I/Os for each disk.

• Alleviate I/O hot spots by redistributing I/O across existing disks.

The first course of action should be to find opportunities to reduce I/O. Examine the
SQL statements being run by sessions waiting for these events and statements
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causing high physical I/Os from V$SQLAREA. Factors that can adversely affect the
execution plans causing excessive I/O include the following:

• Improperly optimized SQL

• Missing indexes

• High degree of parallelism for the table (skewing the optimizer toward scans)

• Lack of accurate statistics for the optimizer

• Setting the value for DB_FILE_MULTIBLOCK_READ_COUNT initialization parameter too
high which favors full scans

Inadequate I/O Distribution

Besides reducing I/O, also examine the I/O distribution of files across the disks. Is I/O
distributed uniformly across the disks, or are there hot spots on some disks? Are the
number of disks sufficient to meet the I/O needs of the database?

See the total I/O operations (reads and writes) by the database, and compare those
with the number of disks used. Remember to include the I/O activity of LGWR and
ARCH processes.

Finding the SQL Statement executed by Sessions Waiting for I/O

Use the following query to determine, at a point in time, which sessions are waiting for
I/O:

SELECT SQL_ADDRESS, SQL_HASH_VALUE
  FROM V$SESSION 
 WHERE EVENT LIKE 'db file%read';  

Finding the Object Requiring I/O

To determine the possible causes, first query V$SESSION to identify the value of
ROW_WAIT_OBJ# when the session waits for db file scattered read. For example:

SELECT row_wait_obj# 
  FROM V$SESSION 
 WHERE EVENT = 'db file scattered read';

To identify the object and object type contended for, query DBA_OBJECTS using the value
for ROW_WAIT_OBJ# that is returned from V$SESSION. For example:

SELECT owner, object_name, subobject_name, object_type
  FROM DBA_OBJECTS
 WHERE data_object_id = &row_wait_obj;

10.3.4 db file sequential read
This event signifies that the user process is reading a buffer into the SGA buffer cache
and is waiting for a physical I/O call to return. A sequential read is a single-block read.

Single block I/Os are usually the result of using indexes. Rarely, full table scan calls
could get truncated to a single block call because of extent boundaries, or buffers
present in the buffer cache. These waits would also show up as db file sequential
read.

Check the following V$SESSION_WAIT parameter columns:
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• P1: The absolute file number

• P2: The block being read

• P3: The number of blocks (should be 1)

See Also:

"db file scattered read" for information about managing excessive I/O,
inadequate I/O distribution, and finding the SQL causing the I/O and the
segment the I/O is performed on.

Actions

On a healthy system, physical read waits should be the biggest waits after the idle
waits. However, also consider whether there are db file sequential reads on a large
data warehouse that should be seeing mostly full table scans with parallel query.

The following figure shows differences between these wait events:

• db file sequential read (single block read into one SGA buffer)

• db file scattered read (multiblock read into many discontinuous SGA buffers)

• direct read (single or multiblock read into the PGA, bypassing the SGA)

Figure 10-1    Scattered Read, Sequential Read, and Direct Path Read
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10.3.5 direct path read and direct path read temp
When a session is reading buffers from disk directly into the PGA (opposed to the
buffer cache in SGA), it waits on this event. If the I/O subsystem does not support
asynchronous I/Os, then each wait corresponds to a physical read request.

If the I/O subsystem supports asynchronous I/O, then the process is able to overlap
issuing read requests with processing the blocks existing in the PGA. When the
process attempts to access a block in the PGA that has not yet been read from disk, it
then issues a wait call and updates the statistics for this event. Hence, the number of
waits is not necessarily the same as the number of read requests (unlike db file
scattered read and db file sequential read).

Check the following V$SESSION_WAIT parameter columns:

• P1: File_id for the read call

• P2: Start block_id for the read call

• P3: Number of blocks in the read call

Causes

This situation occurs in the following situations:

• The sorts are too large to fit in memory and some of the sort data is written out
directly to disk. This data is later read back in, using direct reads.

• Parallel execution servers are used for scanning data.

• The server process is processing buffers faster than the I/O system can return the
buffers. This can indicate an overloaded I/O system.

Actions

The file_id shows if the reads are for an object in TEMP tablespace (sorts to disk) or
full table scans by parallel execution servers. This wait is the largest wait for large data
warehouse sites. However, if the workload is not a Decision Support Systems (DSS)
workload, then examine why this situation is happening.

Sorts to Disk

Examine the SQL statement currently being run by the session experiencing waits to
see what is causing the sorts. Query V$TEMPSEG_USAGE to find the SQL statement that is
generating the sort. Also query the statistics from V$SESSTAT for the session to
determine the size of the sort. See if it is possible to reduce the sorting by tuning the
SQL statement. If WORKAREA_SIZE_POLICY is MANUAL, then consider increasing the
SORT_AREA_SIZE for the system (if the sorts are not too big) or for individual processes. If
WORKAREA_SIZE_POLICY is AUTO, then investigate whether to increase
PGA_AGGREGATE_TARGET.

Full Table Scans

If tables are defined with a high degree of parallelism, then this setting could skew the
optimizer to use full table scans with parallel execution servers. Check the object being
read into using the direct path reads. If the full table scans are a valid part of the
workload, then ensure that the I/O subsystem is adequate for the degree of
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parallelism. Consider using disk striping if you are not already using it or Oracle
Automatic Storage Management (Oracle ASM).

Hash Area Size

For query plans that call for a hash join, excessive I/O could result from having
HASH_AREA_SIZE too small. If WORKAREA_SIZE_POLICY is MANUAL, then consider increasing
the HASH_AREA_SIZE for the system or for individual processes. If WORKAREA_SIZE_POLICY is
AUTO, then investigate whether to increase PGA_AGGREGATE_TARGET.

See Also:

• "Managing Excessive I/O" in the section "db file scattered read"

10.3.6 direct path write and direct path write temp
When a process is writing buffers directly from PGA (as opposed to the DBWR writing
them from the buffer cache), the process waits on this event for the write call to
complete. Operations that could perform direct path writes include sorts on disk,
parallel DML operations, direct-path INSERTs, parallel create table as select, and some
LOB operations.

Like direct path reads, the number of waits is not the same as number of write calls
issued if the I/O subsystem supports asynchronous writes. The session waits if it has
processed all buffers in the PGA and cannot continue work until an I/O request
completes.

See Also:

Oracle Database Administrator's Guide for information about direct-path inserts

Check the following V$SESSION_WAIT parameter columns:

• P1: File_id for the write call

• P2: Start block_id for the write call

• P3: Number of blocks in the write call

Causes

This happens in the following situations:

• Sorts are too large to fit in memory and are written to disk

• Parallel DML are issued to create/populate objects

• Direct path loads

Actions

For large sorts see "Sorts To Disk".
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For parallel DML, check the I/O distribution across disks and ensure that the I/O
subsystem is adequately configured for the degree of parallelism.

10.3.7 enqueue (enq:) waits
Enqueues are locks that coordinate access to database resources. This event
indicates that the session is waiting for a lock that is held by another session.

The name of the enqueue is included as part of the wait event name, in the form enq:
enqueue_type - related_details. In some cases, the same enqueue type can be held
for different purposes, such as the following related TX types:

• enq: TX - allocate ITL entry

• enq: TX - contention

• enq: TX - index contention

• enq: TX - row lock contention

The V$EVENT_NAME view provides a complete list of all the enq: wait events.

You can check the following V$SESSION_WAIT parameter columns for additional
information:

• P1: Lock TYPE (or name) and MODE

• P2: Resource identifier ID1 for the lock

• P3: Resource identifier ID2 for the lock

See Also:

Oracle Database Reference for more information about Oracle Database
enqueues

Finding Locks and Lock Holders

Query V$LOCK to find the sessions holding the lock. For every session waiting for the
event enqueue, there is a row in V$LOCK with REQUEST <> 0. Use one of the following two
queries to find the sessions holding the locks and waiting for the locks.

If there are enqueue waits, you can see these using the following statement:

SELECT * FROM V$LOCK WHERE request > 0;

To show only holders and waiters for locks being waited on, use the following:

SELECT DECODE(request,0,'Holder: ','Waiter: ') || 
          sid sess, id1, id2, lmode, request, type
   FROM V$LOCK
 WHERE (id1, id2, type) IN (SELECT id1, id2, type FROM V$LOCK WHERE request > 0)
   ORDER BY id1, request;

Actions

The appropriate action depends on the type of enqueue.
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If the contended-for enqueue is the ST enqueue, then the problem is most likely to be
dynamic space allocation. Oracle Database dynamically allocates an extent to a
segment when there is no more free space available in the segment. This enqueue is
only used for dictionary managed tablespaces.

To solve contention on this resource:

• Check to see whether the temporary (that is, sort) tablespace uses TEMPFILES. If
not, then switch to using TEMPFILES.

• Switch to using locally managed tablespaces if the tablespace that contains
segments that are growing dynamically is dictionary managed.

• If it is not possible to switch to locally managed tablespaces, then ST enqueue
resource usage can be decreased by changing the next extent sizes of the
growing objects to be large enough to avoid constant space allocation. To
determine which segments are growing constantly, monitor the EXTENTS column of
the DBA_SEGMENTS view for all SEGMENT_NAMEs.

• Preallocate space in the segment, for example, by allocating extents using the
ALTER TABLE ALLOCATE EXTENT SQL statement.

See Also:

• Oracle Database Administrator's Guide for detailed information on
TEMPFILES and locally managed tablespaces

• Oracle Database Administrator's Guide for more information about getting
space usage details

The HW enqueue is used to serialize the allocation of space beyond the high water
mark of a segment.

• V$SESSION_WAIT.P2 / V$LOCK.ID1 is the tablespace number.

• V$SESSION_WAIT.P3 / V$LOCK.ID2 is the relative data block address (dba) of segment
header of the object for which space is being allocated.

If this is a point of contention for an object, then manual allocation of extents solves
the problem.

The most common reason for waits on TM locks tend to involve foreign key constraints
where the constrained columns are not indexed. Index the foreign key columns to
avoid this problem.

These are acquired exclusive when a transaction initiates its first change and held until
the transaction does a COMMIT or ROLLBACK.

• Waits for TX in mode 6: occurs when a session is waiting for a row level lock that
is held by another session. This occurs when one user is updating or deleting a
row, which another session wants to update or delete. This type of TX enqueue
wait corresponds to the wait event enq: TX - row lock contention.

The solution is to have the first session holding the lock perform a COMMIT or
ROLLBACK.

• Waits for TX in mode 4 can occur if the session is waiting for an ITL (interested
transaction list) slot in a block. This happens when the session wants to lock a row
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in the block but one or more other sessions have rows locked in the same block,
and there is no free ITL slot in the block. Usually, Oracle Database dynamically
adds another ITL slot. This may not be possible if there is insufficient free space in
the block to add an ITL. If so, the session waits for a slot with a TX enqueue in
mode 4. This type of TX enqueue wait corresponds to the wait event enq: TX -
allocate ITL entry.

The solution is to increase the number of ITLs available, either by changing the
INITRANS or MAXTRANS for the table (either by using an ALTER statement, or by re-
creating the table with the higher values).

• Waits for TX in mode 4 can also occur if a session is waiting due to potential
duplicates in UNIQUE index. If two sessions try to insert the same key value the
second session has to wait to see if an ORA-0001 should be raised or not. This type
of TX enqueue wait corresponds to the wait event enq: TX - row lock contention.

The solution is to have the first session holding the lock perform a COMMIT or
ROLLBACK.

• Waits for TX in mode 4 can also occur if the session is waiting due to shared
bitmap index fragment. Bitmap indexes index key values and a range of rowids.
Each entry in a bitmap index can cover many rows in the actual table. If two
sessions want to update rows covered by the same bitmap index fragment, then
the second session waits for the first transaction to either COMMIT or ROLLBACK by
waiting for the TX lock in mode 4. This type of TX enqueue wait corresponds to the
wait event enq: TX - row lock contention.

• Waits for TX in Mode 4 can also occur waiting for a PREPARED transaction.

• Waits for TX in mode 4 also occur when a transaction inserting a row in an index
has to wait for the end of an index block split being done by another transaction.
This type of TX enqueue wait corresponds to the wait event enq: TX - index
contention.

See Also:

Oracle Database Development Guide for more information about referential
integrity and locking data explicitly

10.3.8 events in wait class other
This event belong to Other wait class and typically should not occur on a system. This
event is an aggregate of all other events in the Other wait class, such as latch free,
and is used in the V$SESSION_EVENT and V$SERVICE_EVENT views only. In these views, the
events in the Other wait class will not be maintained individually in every session.
Instead, these events will be rolled up into this single event to reduce the memory
used for maintaining statistics on events in the Other wait class.

10.3.9 free buffer waits
This wait event indicates that a server process was unable to find a free buffer and has
posted the database writer to make free buffers by writing out dirty buffers. A dirty
buffer is a buffer whose contents have been modified. Dirty buffers are freed for reuse
when DBWR has written the blocks to disk.
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Causes

DBWR may not be keeping up with writing dirty buffers in the following situations:

• The I/O system is slow.

• There are resources it is waiting for, such as latches.

• The buffer cache is so small that DBWR spends most of its time cleaning out
buffers for server processes.

• The buffer cache is so big that one DBWR process is not enough to free enough
buffers in the cache to satisfy requests.

Actions

If this event occurs frequently, then examine the session waits for DBWR to see
whether there is anything delaying DBWR.

If it is waiting for writes, then determine what is delaying the writes and fix it. Check the
following:

• Examine V$FILESTAT to see where most of the writes are happening.

• Examine the host operating system statistics for the I/O system. Are the write
times acceptable?

If I/O is slow:

• Consider using faster I/O alternatives to speed up write times.

• Spread the I/O activity across large number of spindles (disks) and controllers.

It is possible DBWR is very active because the cache is too small. Investigate whether
this is a probable cause by looking to see if the buffer cache hit ratio is low. Also use
the V$DB_CACHE_ADVICE view to determine whether a larger cache size would be
advantageous.

If the cache size is adequate and the I/O is evenly spread, then you can potentially
modify the behavior of DBWR by using asynchronous I/O or by using multiple
database writers.

Consider Multiple Database Writer (DBWR) Processes or I/O Slaves

Configuring multiple database writer processes, or using I/O slaves, is useful when the
transaction rates are high or when the buffer cache size is so large that a single DBWn
process cannot keep up with the load.

The DB_WRITER_PROCESSES initialization parameter lets you configure multiple database
writer processes (from DBW0 to DBW9 and from DBWa to DBWj). Configuring multiple
DBWR processes distributes the work required to identify buffers to be written, and it
also distributes the I/O load over these processes. Multiple db writer processes are
highly recommended for systems with multiple CPUs (at least one db writer for every 8
CPUs) or multiple processor groups (at least as many db writers as processor groups).

Based upon the number of CPUs and the number of processor groups, Oracle
Database either selects an appropriate default setting for DB_WRITER_PROCESSES or
adjusts a user-specified setting.

If it is not practical to use multiple DBWR processes, then Oracle Database provides a
facility whereby the I/O load can be distributed over multiple slave processes. The
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DBWR process is the only process that scans the buffer cache LRU list for blocks to
be written out. However, the I/O for those blocks is performed by the I/O slaves. The
number of I/O slaves is determined by the parameter DBWR_IO_SLAVES.

DBWR_IO_SLAVES is intended for scenarios where you cannot use multiple
DB_WRITER_PROCESSES (for example, where you have a single CPU). I/O slaves are also
useful when asynchronous I/O is not available, because the multiple I/O slaves
simulate nonblocking, asynchronous requests by freeing DBWR to continue identifying
blocks in the cache to be written. Asynchronous I/O at the operating system level, if
you have it, is generally preferred.

DBWR I/O slaves are allocated immediately following database open when the first I/O
request is made. The DBWR continues to perform all of the DBWR-related work, apart
from performing I/O. I/O slaves simply perform the I/O on behalf of DBWR. The writing
of the batch is parallelized between the I/O slaves.

Note:

Implementing DBWR_IO_SLAVES requires that extra shared memory be allocated
for I/O buffers and request queues. Multiple DBWR processes cannot be used
with I/O slaves. Configuring I/O slaves forces only one DBWR process to start.

Configuring multiple DBWR processes benefits performance when a single DBWR
process cannot keep up with the required workload. However, before configuring
multiple DBWR processes, check whether asynchronous I/O is available and
configured on the system. If the system supports asynchronous I/O but it is not
currently used, then enable asynchronous I/O to see if this alleviates the problem. If
the system does not support asynchronous I/O, or if asynchronous I/O is configured
and there is still a DBWR bottleneck, then configure multiple DBWR processes.

Note:

If asynchronous I/O is not available on your platform, then asynchronous I/O
can be disabled by setting the DISK_ASYNCH_IO initialization parameter to FALSE.

Using multiple DBWRs parallelizes the gathering and writing of buffers. Therefore,
multiple DBWn processes should deliver more throughput than one DBWR process
with the same number of I/O slaves. For this reason, the use of I/O slaves has been
deprecated in favor of multiple DBWR processes. I/O slaves should only be used if
multiple DBWR processes cannot be configured.

10.3.10 Idle Wait Events
These events belong to Idle wait class and indicate that the server process is waiting
because it has no work. This usually implies that if there is a bottleneck, then the
bottleneck is not for database resources. The majority of the idle events should be
ignored when tuning, because they do not indicate the nature of the performance
bottleneck. Some idle events can be useful in indicating what the bottleneck is not. An
example of this type of event is the most commonly encountered idle wait-event SQL

Chapter 10
Wait Events Statistics

10-32



Net message from client. This and other idle events (and their categories) are listed in 
Table 10-2.

Table 10-2    Idle Wait Events

Wait Name Background
Process Idle

Event

User
Process Idle

Event

Parallel
Query Idle

Event

Shared
Server Idle

Event

Oracle Real
Application

Clusters Idle
Event

dispatcher timer . . . X .

pipe get . X . . .

pmon timer X . . . .

PX Idle Wait . . X . .

PX Deq Credit:
need buffer

. . X . .

rdbms ipc
message

X . . . .

shared server
idle wait

. . . X .

smon timer X . . . .

SQL*Net message
from client

. X . . .

See Also:

Oracle Database Reference for explanations of each idle wait event

10.3.11 latch events
A latch is a low-level internal lock used by Oracle Database to protect memory
structures. The latch free event is updated when a server process attempts to get a
latch, and the latch is unavailable on the first attempt.

There is a dedicated latch-related wait event for the more popular latches that often
generate significant contention. For those events, the name of the latch appears in the
name of the wait event, such as latch: library cache or latch: cache buffers chains.
This enables you to quickly figure out if a particular type of latch is responsible for
most of the latch-related contention. Waits for all other latches are grouped in the
generic latch free wait event.

See Also:

Oracle Database Concepts for more information on latches and internal locks
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Actions

This event should only be a concern if latch waits are a significant portion of the wait
time on the system as a whole, or for individual users experiencing problems.

• Examine the resource usage for related resources. For example, if the library
cache latch is heavily contended for, then examine the hard and soft parse rates.

• Examine the SQL statements for the sessions experiencing latch contention to see
if there is any commonality.

Check the following V$SESSION_WAIT parameter columns:

• P1: Address of the latch

• P2: Latch number

• P3: Number of times process has slept, waiting for the latch

Example: Find Latches Currently Waited For

SELECT EVENT, SUM(P3) SLEEPS, SUM(SECONDS_IN_WAIT) SECONDS_IN_WAIT
  FROM V$SESSION_WAIT
 WHERE EVENT LIKE 'latch%'
  GROUP BY EVENT;

A problem with the previous query is that it tells more about session tuning or instant
instance tuning than instance or long-duration instance tuning.

The following query provides more information about long duration instance tuning,
showing whether the latch waits are significant in the overall database time.

SELECT EVENT, TIME_WAITED_MICRO, 
       ROUND(TIME_WAITED_MICRO*100/S.DBTIME,1) PCT_DB_TIME 
  FROM V$SYSTEM_EVENT, 
   (SELECT VALUE DBTIME FROM V$SYS_TIME_MODEL WHERE STAT_NAME = 'DB time') S
 WHERE EVENT LIKE 'latch%'
 ORDER BY PCT_DB_TIME ASC;

A more general query that is not specific to latch waits is the following:

SELECT EVENT, WAIT_CLASS, 
      TIME_WAITED_MICRO,ROUND(TIME_WAITED_MICRO*100/S.DBTIME,1) PCT_DB_TIME
  FROM V$SYSTEM_EVENT E, V$EVENT_NAME N,
    (SELECT VALUE DBTIME FROM V$SYS_TIME_MODEL WHERE STAT_NAME = 'DB time') S
   WHERE E.EVENT_ID = N.EVENT_ID
    AND N.WAIT_CLASS NOT IN ('Idle', 'System I/O')
  ORDER BY PCT_DB_TIME ASC;
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Table 10-3    Latch Wait Event

Latch SGA Area Possible Causes Look For:

Shared pool,
library cache

Shared pool Lack of statement reuse

Statements not using bind
variables

Insufficient size of application
cursor cache

Cursors closed explicitly after
each execution

Frequent logins and logoffs

Underlying object structure
being modified (for example
truncate)

Shared pool too small

Sessions (in V$SESSTAT) with
high:

• parse time CPU

• parse time elapsed
• Ratio of parse count

(hard) / execute count
• Ratio of parse count

(total) / execute count
Cursors (in V$SQLAREA/
V$SQLSTATS) with:

• High ratio of
PARSE_CALLS /
EXECUTIONS

• EXECUTIONS = 1 differing
only in literals in the WHERE
clause (that is, no bind
variables used)

• High RELOADS
• High INVALIDATIONS
• Large (> 1mb)

SHARABLE_MEM

cache buffers
lru chain

Buffer cache
LRU lists

Excessive buffer cache
throughput. For example,
inefficient SQL that accesses
incorrect indexes iteratively
(large index range scans) or
many full table scans

DBWR not keeping up with the
dirty workload; hence,
foreground process spends
longer holding the latch
looking for a free buffer

Cache may be too small

Statements with very high
logical I/O or physical I/O,
using unselective indexes

cache buffers
chains

Buffer cache
buffers

Repeated access to a block
(or small number of blocks),
known as a hot block

Sequence number generation
code that updates a row in a
table to generate the number,
rather than using a sequence
number generator

Index leaf chasing from very
many processes scanning the
same unselective index with
very similar predicate

Identify the segment the hot
block belongs to

row cache
objects
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Shared Pool and Library Cache Latch Contention

A main cause of shared pool or library cache latch contention is parsing. There are
several techniques that you can use to identify unnecessary parsing and several types
of unnecessary parsing:

This method identifies similar SQL statements that could be shared if literals were
replaced with bind variables. The idea is to either:

• Manually inspect SQL statements that have only one execution to see whether
they are similar:

SELECT SQL_TEXT
  FROM V$SQLSTATS
 WHERE EXECUTIONS < 4
 ORDER BY SQL_TEXT;

• Or, automate this process by grouping what may be similar statements. Estimate
the number of bytes of a SQL statement that are likely the same, and group the
SQL statements by this number of bytes. For example, the following example
groups statements that differ only after the first 60 bytes.

SELECT SUBSTR(SQL_TEXT, 1, 60), COUNT(*)
  FROM V$SQLSTATS
 WHERE EXECUTIONS < 4 
 GROUP BY SUBSTR(SQL_TEXT, 1, 60)
 HAVING COUNT(*) > 1;

• Or report distinct SQL statements that have the same execution plan. The
following query selects distinct SQL statements that share the same execution
plan at least four times. These SQL statements are likely to be using literals
instead of bind variables.

SELECT SQL_TEXT FROM V$SQLSTATS WHERE PLAN_HASH_VALUE IN
  (SELECT PLAN_HASH_VALUE 
     FROM V$SQLSTATS 
    GROUP BY PLAN_HASH_VALUE HAVING COUNT(*) > 4)
  ORDER BY PLAN_HASH_VALUE;

Check the V$SQLSTATS view. Enter the following query:

SELECT SQL_TEXT, PARSE_CALLS, EXECUTIONS 
  FROM V$SQLSTATS
ORDER BY PARSE_CALLS;

When the PARSE_CALLS value is close to the EXECUTIONS value for a given statement, you
might be continually reparsing that statement. Tune the statements with the higher
numbers of parse calls.

Identify unnecessary parse calls by identifying the session in which they occur. It might
be that particular batch programs or certain types of applications do most of the
reparsing. To achieve this goal, run the following query:

SELECT pa.SID, pa.VALUE "Hard Parses", ex.VALUE "Execute Count" 
  FROM V$SESSTAT pa, V$SESSTAT ex 
 WHERE pa.SID = ex.SID 
   AND pa.STATISTIC#=(SELECT STATISTIC# 
       FROM V$STATNAME WHERE NAME = 'parse count (hard)') 
   AND ex.STATISTIC#=(SELECT STATISTIC# 
       FROM V$STATNAME WHERE NAME = 'execute count') 
   AND pa.VALUE > 0; 
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The result is a list of all sessions and the amount of reparsing they do. For each
session identifier (SID), go to V$SESSION to find the name of the program that causes
the reparsing.

Note:

Because this query counts all parse calls since instance startup, it is best to
look for sessions with high rates of parse. For example, a connection which has
been up for 50 days might show a high parse figure, but a second connection
might have been up for 10 minutes and be parsing at a much faster rate.

The output is similar to the following:

   SID  Hard Parses  Execute Count
------  -----------  -------------
     7            1             20
     8            3          12690
     6           26            325
    11           84           1619

The cache buffers lru chain latches protect the lists of buffers in the cache. When
adding, moving, or removing a buffer from a list, a latch must be obtained.

For symmetric multiprocessor (SMP) systems, Oracle Database automatically sets the
number of LRU latches to a value equal to one half the number of CPUs on the
system. For non-SMP systems, one LRU latch is sufficient.

Contention for the LRU latch can impede performance on SMP computers with a large
number of CPUs. LRU latch contention is detected by querying V$LATCH,
V$SESSION_EVENT, and V$SYSTEM_EVENT. To avoid contention, consider tuning the
application, bypassing the buffer cache for DSS jobs, or redesigning the application.

The cache buffers chains latches are used to protect a buffer list in the buffer cache.
These latches are used when searching for, adding, or removing a buffer from the
buffer cache. Contention on this latch usually means that there is a block that is greatly
contended for (known as a hot block).

To identify the heavily accessed buffer chain, and hence the contended for block, look
at latch statistics for the cache buffers chains latches using the view V$LATCH_CHILDREN.
If there is a specific cache buffers chains child latch that has many more GETS, MISSES,
and SLEEPS when compared with the other child latches, then this is the contended for
child latch.

This latch has a memory address, identified by the ADDR column. Use the value in the
ADDR column joined with the X$BH table to identify the blocks protected by this latch. For
example, given the address (V$LATCH_CHILDREN.ADDR) of a heavily contended latch, this
queries the file and block numbers:

SELECT OBJ data_object_id, FILE#, DBABLK,CLASS, STATE, TCH
  FROM X$BH
 WHERE HLADDR = 'address of latch'
  ORDER BY TCH;

X$BH.TCH is a touch count for the buffer. A high value for X$BH.TCH indicates a hot block.

Chapter 10
Wait Events Statistics

10-37



Many blocks are protected by each latch. One of these buffers will probably be the hot
block. Any block with a high TCH value is a potential hot block. Perform this query
several times, and identify the block that consistently appears in the output. After you
have identified the hot block, query DBA_EXTENTS using the file number and block
number, to identify the segment.

After you have identified the hot block, you can identify the segment it belongs to with
the following query:

SELECT OBJECT_NAME, SUBOBJECT_NAME
  FROM DBA_OBJECTS
 WHERE DATA_OBJECT_ID = &obj;

In the query, &obj is the value of the OBJ column in the previous query on X$BH.

The row cache objects latches protect the data dictionary.

10.3.12 log file parallel write
This event involves writing redo records to the redo log files from the log buffer.

10.3.13 library cache pin
This event manages library cache concurrency. Pinning an object causes the heaps to
be loaded into memory. If a client wants to modify or examine the object, the client
must acquire a pin after the lock.

10.3.14 library cache lock
This event controls the concurrency between clients of the library cache. It acquires a
lock on the object handle so that either:

• One client can prevent other clients from accessing the same object

• The client can maintain a dependency for a long time which does not allow
another client to change the object

This lock is also obtained to locate an object in the library cache.

10.3.15 log buffer space
This event occurs when server processes are waiting for free space in the log buffer,
because all the redo is generated faster than LGWR can write it out.

Actions

Modify the redo log buffer size. If the size of the log buffer is reasonable, then ensure
that the disks on which the online redo logs reside do not suffer from I/O contention.
The log buffer space wait event could be indicative of either disk I/O contention on the
disks where the redo logs reside, or of a too-small log buffer. Check the I/O profile of
the disks containing the redo logs to investigate whether the I/O system is the
bottleneck. If the I/O system is not a problem, then the redo log buffer could be too
small. Increase the size of the redo log buffer until this event is no longer significant.
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10.3.16 log file switch
There are two wait events commonly encountered:

• log file switch (archiving needed)

• log file switch (checkpoint incomplete)

In both of the events, the LGWR cannot switch into the next online redo log file. All the
commit requests wait for this event.

Actions

For the log file switch (archiving needed) event, examine why the archiver cannot
archive the logs in a timely fashion. It could be due to the following:

• Archive destination is running out of free space.

• Archiver is not able to read redo logs fast enough (contention with the LGWR).

• Archiver is not able to write fast enough (contention on the archive destination, or
not enough ARCH processes). If you have ruled out other possibilities (such as
slow disks or a full archive destination) consider increasing the number of ARCn
processes. The default is 2.

• If you have mandatory remote shipped archive logs, check whether this process is
slowing down because of network delays or the write is not completing because of
errors.

Depending on the nature of bottleneck, you might need to redistribute I/O or add more
space to the archive destination to alleviate the problem. For the log file switch
(checkpoint incomplete) event:

• Check if DBWR is slow, possibly due to an overloaded or slow I/O system. Check
the DBWR write times, check the I/O system, and distribute I/O if necessary.

• Check if there are too few, or too small redo logs. If you have a few redo logs or
small redo logs (for example, 2 x 100k logs), and your system produces enough
redo to cycle through all of the logs before DBWR has been able to complete the
checkpoint, then increase the size or number of redo logs.

10.3.17 log file sync
When a user session commits (or rolls back), the session's redo information must be
flushed to the redo logfile by LGWR. The server process performing the COMMIT or
ROLLBACK waits under this event for the write to the redo log to complete.

Actions

If this event's waits constitute a significant wait on the system or a significant amount
of time waited by a user experiencing response time issues or on a system, then
examine the average time waited.

If the average time waited is low, but the number of waits are high, then the application
might be committing after every INSERT, rather than batching COMMITs. Applications can
reduce the wait by committing after 50 rows, rather than every row.
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If the average time waited is high, then examine the session waits for the log writer
and see what it is spending most of its time doing and waiting for. If the waits are
because of slow I/O, then try the following:

• Reduce other I/O activity on the disks containing the redo logs, or use dedicated
disks.

• Alternate redo logs on different disks to minimize the effect of the archiver on the
log writer.

• Move the redo logs to faster disks or a faster I/O subsystem (for example, switch
from RAID 5 to RAID 1).

• Consider using raw devices (or simulated raw devices provided by disk vendors)
to speed up the writes.

• Depending on the type of application, it might be possible to batch COMMITs by
committing every N rows, rather than every row, so that fewer log file syncs are
needed.

10.3.18 rdbms ipc reply
This event is used to wait for a reply from one of the background processes.

10.3.19 SQL*Net Events
The following events signify that the database process is waiting for acknowledgment
from a database link or a client process:

• SQL*Net break/reset to client

• SQL*Net break/reset to dblink

• SQL*Net message from client

• SQL*Net message from dblink

• SQL*Net message to client

• SQL*Net message to dblink

• SQL*Net more data from client

• SQL*Net more data from dblink

• SQL*Net more data to client

• SQL*Net more data to dblink

If these waits constitute a significant portion of the wait time on the system or for a
user experiencing response time issues, then the network or the middle-tier could be a
bottleneck.

Events that are client-related should be diagnosed as described for the event SQL*Net
message from client. Events that are dblink-related should be diagnosed as described
for the event SQL*Net message from dblink.

SQL*Net message from client

Although this is an idle event, it is important to explain when this event can be used to
diagnose what is not the problem. This event indicates that a server process is waiting
for work from the client process. However, there are several situations where this
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event could accrue most of the wait time for a user experiencing poor response time.
The cause could be either a network bottleneck or a resource bottleneck on the client
process.

A network bottleneck can occur if the application causes a lot of traffic between server
and client and the network latency (time for a round-trip) is high. Symptoms include the
following:

• Large number of waits for this event

• Both the database and client process are idle (waiting for network traffic) most of
the time

To alleviate network bottlenecks, try the following:

• Tune the application to reduce round trips.

• Explore options to reduce latency (for example, terrestrial lines opposed to VSAT
links).

• Change system configuration to move higher traffic components to lower latency
links.

If the client process is using most of the resources, then there is nothing that can be
done in the database. Symptoms include the following:

• Number of waits might not be large, but the time waited might be significant

• Client process has a high resource usage

In some cases, you can see the wait time for a waiting user tracking closely with the
amount of CPU used by the client process. The term client here refers to any process
other than the database process (middle-tier, desktop client) in the n-tier architecture.

SQL*Net message from dblink

This event signifies that the session has sent a message to the remote node and is
waiting for a response from the database link. This time could go up because of the
following:

• Network bottleneck

For information, see "SQL*Net message from client".

• Time taken to execute the SQL on the remote node

It is useful to see the SQL being run on the remote node. Login to the remote
database, find the session created by the database link, and examine the SQL
statement being run by it.

• Number of round trip messages

Each message between the session and the remote node adds latency time and
processing overhead. To reduce the number of messages exchanged, use array
fetches and array inserts.

SQL*Net more data to client

The server process is sending more data or messages to the client. The previous
operation to the client was also a send.
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See Also:

Oracle Database Net Services Administrator's Guide for a detailed discussion
on network optimization

10.4 Tuning Instance Recovery Performance: Fast-Start
Fault Recovery

This section describes instance recovery, and how Oracle's Fast-Start Fault Recovery
improves availability in the event of a crash or instance failure. It also offers guidelines
for tuning the time required to perform crash and instance recovery.

This section contains the following topics:

• About Instance Recovery

• Configuring the Duration of Cache Recovery: FAST_START_MTTR_TARGET

• Tuning FAST_START_MTTR_TARGET and Using MTTR Advisor

10.4.1 About Instance Recovery
Instance and crash recovery are the automatic application of redo log records to
Oracle data blocks after a crash or system failure. During normal operation, if an
instance is shut down cleanly (as when using a SHUTDOWN IMMEDIATE statement), rather
than terminated abnormally, then the in-memory changes that have not been written to
the data files on disk are written to disk as part of the checkpoint performed during
shutdown.

However, if a single instance database crashes or if all instances of an Oracle RAC
configuration crash, then Oracle Database performs crash recovery at the next startup.
If one or more instances of an Oracle RAC configuration crash, then a surviving
instance performs instance recovery automatically. Instance and crash recovery occur
in two steps: cache recovery followed by transaction recovery.

The database can be opened as soon as cache recovery completes, so improving the
performance of cache recovery is important for increasing availability.

10.4.1.1 Cache Recovery (Rolling Forward)
During the cache recovery step, Oracle Database applies all committed and
uncommitted changes in the redo log files to the affected data blocks. The work
required for cache recovery processing is proportional to the rate of change to the
database (update transactions each second) and the time between checkpoints.

10.4.1.2 Transaction Recovery (Rolling Back)
To make the database consistent, the changes that were not committed at the time of
the crash must be undone (in other words, rolled back). During the transaction
recovery step, Oracle Database applies the rollback segments to undo the
uncommitted changes.
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10.4.1.3 Checkpoints and Cache Recovery
Periodically, Oracle Database records a checkpoint. A checkpoint is the highest
system change number (SCN) such that all data blocks less than or equal to that SCN
are known to be written out to the data files. If a failure occurs, then only the redo
records containing changes at SCNs higher than the checkpoint need to be applied
during recovery. The duration of cache recovery processing is determined by two
factors: the number of data blocks that have changes at SCNs higher than the SCN of
the checkpoint, and the number of log blocks that need to be read to find those
changes.

How Checkpoints Affect Performance

Frequent checkpointing writes dirty buffers to the data files more often than otherwise,
and so reduces cache recovery time in the event of an instance failure. If
checkpointing is frequent, then applying the redo records in the redo log between the
current checkpoint position and the end of the log involves processing relatively few
data blocks. This means that the cache recovery phase of recovery is fairly short.

However, in a high-update system, frequent checkpointing can reduce run-time
performance, because checkpointing causes DBWn processes to perform writes.

Fast Cache Recovery Tradeoffs

To minimize the duration of cache recovery, you must force Oracle Database to
checkpoint often, thus keeping the number of redo log records to be applied during
recovery to a minimum. However, in a high-update system, frequent checkpointing
increases the overhead for normal database operations.

If daily operational efficiency is more important than minimizing recovery time, then
decrease the frequency of writes to data files due to checkpoints. This should improve
operational efficiency, but also increase cache recovery time.

10.4.2 Configuring the Duration of Cache Recovery:
FAST_START_MTTR_TARGET

The Fast-Start Fault Recovery feature reduces the time required for cache recovery,
and makes the recovery bounded and predictable by limiting the number of dirty
buffers and the number of redo records generated between the most recent redo
record and the last checkpoint.

The foundation of Fast-Start Fault Recovery is the Fast-Start checkpointing
architecture. Instead of conventional event-driven (that is, log switching)
checkpointing, which does bulk writes, fast-start checkpointing occurs incrementally.
Each DBWn process periodically writes buffers to disk to advance the checkpoint
position. The oldest modified blocks are written first to ensure that every write lets the
checkpoint advance. Fast-Start checkpointing eliminates bulk writes and the resultant
I/O spikes that occur with conventional checkpointing.

With the Fast-Start Fault Recovery feature, the FAST_START_MTTR_TARGET initialization
parameter simplifies the configuration of recovery time from instance or system failure.
FAST_START_MTTR_TARGET specifies a target for the expected mean time to recover
(MTTR), that is, the time (in seconds) that it should take to start up the instance and
perform cache recovery. After FAST_START_MTTR_TARGET is set, the database manages
incremental checkpoint writes in an attempt to meet that target. If you have chosen a
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practical value for FAST_START_MTTR_TARGET, you can expect your database to recover,
on average, in approximately the number of seconds you have chosen.

Note:

You must disable or remove the FAST_START_IO_TARGET, LOG_CHECKPOINT_INTERVAL,
and LOG_CHECKPOINT_TIMEOUT initialization parameters when using
FAST_START_MTTR_TARGET. Setting these parameters interferes with the
mechanisms used to manage cache recovery time to meet
FAST_START_MTTR_TARGET.

10.4.2.1 Practical Values for FAST_START_MTTR_TARGET
The maximum value for FAST_START_MTTR_TARGET is 3600 seconds (one hour). If you set
the value to more than 3600, then Oracle Database rounds it to 3600.

The following example shows how to set the value of FAST_START_MTTR_TARGET:

SQL> ALTER SYSTEM SET FAST_START_MTTR_TARGET=30;

In principle, the minimum value for FAST_START_MTTR_TARGET is one second. However,
the fact that you can set FAST_START_MTTR_TARGET this low does not mean that this target
can be achieved. There are practical limits to the minimum achievable MTTR target,
due to such factors as database startup time.

The MTTR target that your database can achieve given the current value of
FAST_START_MTTR_TARGET is called the effective MTTR target. You can view your current
effective MTTR by viewing the TARGET_MTTR column of the V$INSTANCE_RECOVERY view.

The practical range of MTTR target values for your database is defined to be the range
between the lowest achievable effective MTTR target for your database and the
longest that startup and cache recovery will take in the worst-case scenario (that is,
when the whole buffer cache is dirty). "Determine the Practical Range for
FAST_START_MTTR_TARGET" describes the procedure for determining the range of
achievable MTTR target values, one step in the process of tuning your
FAST_START_MTTR_TARGET value.

Note:

It is usually not useful to set your FAST_START_MTTR_TARGET to a value outside the
practical range. If your FAST_START_MTTR_TARGET value is shorter than the lower
limit of the practical range, the effect is as if you set it to the lower limit of the
practical range. In such a case, the effective MTTR target will be the best
MTTR target the system can achieve, but checkpointing will be at a maximum,
which can affect normal database performance. If you set
FAST_START_MTTR_TARGET to a time longer than the practical range, the MTTR
target will be no better than the worst-case situation.
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10.4.2.2 Reducing Checkpoint Frequency to Optimize Run-Time Performance
To reduce the checkpoint frequency and optimize run-time performance, you can do
the following:

• Set the value of FAST_START_MTTR_TARGET to 3600. This enables Fast-Start
checkpointing and the Fast-Start Fault Recovery feature, but minimizes its effect
on run-time performance while avoiding the need for performance tuning of
FAST_START_MTTR_TARGET.

• Size your online redo log files according to the amount of redo your system
generates. Try to switch logs at most every twenty minutes. Having your log files
too small can increase checkpoint activity and reduce performance. Also note that
all redo log files should be the same size.

See Also:

Oracle Database Concepts for detailed information about checkpoints

10.4.2.3 Monitoring Cache Recovery with V$INSTANCE_RECOVERY
The V$INSTANCE_RECOVERY view displays the current recovery parameter settings. You
can also use statistics from this view to determine which factor has the greatest
influence on checkpointing.

The following table lists those columns most useful in monitoring predicted cache
recovery performance:

Table 10-4    V$INSTANCE_RECOVERY Columns

Column Description

TARGET_MTTR Effective MTTR target in seconds. This field is 0 if
FAST_START_MTTR_TARGET is not specified.

ESTIMATED_MTTR The current estimated MTTR in seconds, based on the current number
of dirty buffers and log blocks. This field is always calculated, whether
FAST_START_MTTR_TARGET is specified.

As part of the ongoing monitoring of your database, you can periodically compare
V$INSTANCE_RECOVERY.TARGET_MTTR to your FAST_START_MTTR_TARGET. The two values
should generally be the same if the FAST_START_MTTR_TARGET value is in the practical
range. If TARGET_MTTR is consistently longer than FAST_START_MTTR_TARGET, then set
FAST_START_MTTR_TARGET to a value no less than TARGET_MTTR. If TARGET_MTTR is
consistently shorter, then set FAST_START_MTTR_TARGET to a value no greater than
TARGET_MTTR.

See Also:

Oracle Database Reference for more information about the V$INSTANCE_RECOVERY
view
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10.4.3 Tuning FAST_START_MTTR_TARGET and Using MTTR
Advisor

To determine the appropriate value for FAST_START_MTTR_TARGET for your database, use
the following four step process:

• Calibrate the FAST_START_MTTR_TARGET

• Determine the Practical Range for FAST_START_MTTR_TARGET

• Evaluate Different Target Values with MTTR Advisor

• Determine the Optimal Size for Redo Logs

10.4.3.1 Calibrate the FAST_START_MTTR_TARGET
The FAST_START_MTTR_TARGET initialization parameter causes the database to calculate
internal system trigger values, in order to limit the length of the redo log and the
number of dirty data buffers in the data cache. This calculation uses estimated time to
read a redo block, estimates of the time to read and write a data block and
characteristics of typical workload of the system, such as how many dirty buffers
corresponds to how many change vectors, and so on.

Initially, internal defaults are used in the calculation. These defaults are replaced over
time by data gathered on I/O performance during system operation and actual cache
recoveries.

You will have to perform several instance recoveries in order to calibrate your
FAST_START_MTTR_TARGET value properly. Before starting calibration, you must decide
whether FAST_START_MTTR_TARGET is being calibrated for a database crash or a hardware
crash. This is a consideration if your database files are stored in a file system or if your
I/O subsystem has a memory cache, because there is a considerable difference in the
read and write time to disk depending on whether the files are cached. The
appropriate value for FAST_START_MTTR_TARGET will depend upon which type of crash is
more important to recover from quickly.

To effectively calibrate FAST_START_MTTR_TARGET, ensure that you run the typical
workload of the system for long enough, and perform several instance recoveries to
ensure that the time to read a redo block and the time to read or write a data block
during recovery are recorded accurately.

10.4.3.2 Determine the Practical Range for FAST_START_MTTR_TARGET
After calibration, you can perform tests to determine the practical range for
FAST_START_MTTR_TARGET for your database.

10.4.3.2.1 Determining Lower Bound for FAST_START_MTTR_TARGET: Scenario
To determine the lower bound of the practical range, set FAST_START_MTTR_TARGET to 1,
and start up your database. Then check the value of V$INSTANCE_RECOVERY.TARGET_MTTR,
and use this value as a good lower bound for FAST_START_MTTR_TARGET. Database
startup time, rather than cache recovery time, is usually the dominant factor in
determining this limit.

For example, set the FAST_START_MTTR_TARGET to 1:
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SQL> ALTER SYSTEM SET FAST_START_MTTR_TARGET=1;

Then, execute the following query immediately after opening the database:

SQL> SELECT TARGET_MTTR, ESTIMATED_MTTR 
    FROM V$INSTANCE_RECOVERY;

Oracle Database responds with the following:

TARGET_MTTR ESTIMATED_MTTR 
18          15             

The TARGET_MTTR value of 18 seconds is the minimum MTTR target that the system can
achieve, that is, the lowest practical value for FAST_START_MTTR_TARGET. This minimum is
calculated based on the average database startup time.

The ESTIMATED_MTTR field contains the estimated mean time to recovery based on the
current state of the running database. Because the database has just opened, the
system contains few dirty buffers, so not much cache recovery would be required if the
instance failed at this moment. That is why ESTIMATED_MTTR can, for the moment, be
lower than the minimum possible TARGET_MTTR.

ESTIMATED_MTTR can be affected in the short term by recent database activity. Assume
that you query V$INSTANCE_RECOVERY immediately after a period of heavy update activity
in the database. Oracle Database responds with the following:

TARGET_MTTR ESTIMATED_MTTR 
18          30             

Now the effective MTTR target is still 18 seconds, and the estimated MTTR (if a crash
happened at that moment) is 30 seconds. This is an acceptable result. This means
that some checkpoints writes might not have finished yet, so the buffer cache contains
more dirty buffers than targeted.

Now wait for sixty seconds and reissue the query to V$INSTANCE_RECOVERY. Oracle
Database responds with the following:

TARGET_MTTR ESTIMATED_MTTR 
18          25             

The estimated MTTR at this time has dropped to 25 seconds, because some of the
dirty buffers have been written out during this period

10.4.3.2.2 Determining Upper Bound for FAST_START_MTTR_TARGET
To determine the upper bound of the practical range, set FAST_START_MTTR_TARGET to
3600, and operate your database under a typical workload for a while. Then check the
value of V$INSTANCE_RECOVERY.TARGET_MTTR. This value is a good upper bound for
FAST_START_MTTR_TARGET.

The procedure is substantially similar to that in "Determining Lower Bound for
FAST_START_MTTR_TARGET: Scenario".

10.4.3.2.3 Selecting Preliminary Value for FAST_START_MTTR_TARGET
After you have determined the practical bounds for the FAST_START_MTTR_TARGET
parameter, select a preliminary value for the parameter. Choose a higher value within
the practical range if your concern is with database performance, and a lower value
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within the practical range if your priority is shorter recovery times. The narrower the
practical range, of course, the easier the choice becomes.

For example, if you discovered that the practical range was between 17 and 19
seconds, it would be quite simple to choose 19, because it makes relatively little
difference in recovery time and at the same time minimizes the effect of checkpointing
on system performance. However, if you found that the practical range was between
18 and 40 seconds, you might choose a compromise value of 30, and set the
parameter accordingly:

SQL> ALTER SYSTEM SET FAST_START_MTTR_TARGET=30;

You might then go on to use the MTTR Advisor to determine an optimal value.

10.4.3.3 Evaluate Different Target Values with MTTR Advisor
After you have selected a preliminary value for FAST_START_MTTR_TARGET, you can use
MTTR Advisor to evaluate the effect of different FAST_START_MTTR_TARGET settings on
system performance, compared to your chosen setting.

10.4.3.3.1 Enabling MTTR Advisor
To enable MTTR Advisor, set the two initialization parameters STATISTICS_LEVEL and
FAST_START_MTTR_TARGET.

STATISTICS_LEVEL governs whether all advisors are enabled and is not specific to MTTR
Advisor. Ensure that it is set to TYPICAL or ALL. Then, when FAST_START_MTTR_TARGET is
set to a nonzero value, the MTTR Advisor is enabled.

10.4.3.3.2 Using MTTR Advisor
After enabling MTTR Advisor, run a typical database workload for a while. When
MTTR Advisor is ON, the database simulates checkpoint queue behavior under the
current value of FAST_START_MTTR_TARGET, and up to four other different MTTR settings
within the range of valid FAST_START_MTTR_TARGET values. (The database will in this case
determine the valid range for FAST_START_MTTR_TARGET itself before testing different
values in the range.)

10.4.3.3.3 Viewing MTTR Advisor Results: V$MTTR_TARGET_ADVICE
The dynamic performance view V$MTTR_TARGET_ADVICE lets you view statistics or
advisories collected by MTTR Advisor.

The database populates V$MTTR_TARGET_ADVICE with advice about the effects of each of
the FAST_START_MTTR_TARGET settings for your database. For each possible value of
FAST_START_MTTR_TARGET, the row contains details about how many cache writes would
be performed under the workload tested for that value of
FAST_START_MTTR_TARGET.

Specifically, each row contains information about cache writes, total physical writes
(including direct writes), and total I/O (including reads) for that value of
FAST_START_MTTR_TARGET, expressed both as a total number of operations and a ratio
compared to the operations under your chosen FAST_START_MTTR_TARGET value. For
instance, a ratio of 1.2 indicates 20% more cache writes.
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Knowing the effect of different FAST_START_MTTR_TARGET settings on cache write activity
and other I/O enables you to decide better which FAST_START_MTTR_TARGET value best
fits your recovery and performance needs.

If MTTR Advisor is currently on, then V$MTTR_TARGET_ADVICE shows the Advisor
information collected. If MTTR Advisor is currently OFF, then the view shows
information collected the last time MTTR Advisor was ON since database startup, if
any. If the database has been restarted since the last time the MTTR Advisor was
used, or if it has never been used, the view will not show any rows.

See Also:

Oracle Database Reference for the column details of the V$MTTR_TARGET_ADVICE
view

10.4.3.4 Determine the Optimal Size for Redo Logs
You can use the V$INSTANCE_RECOVERY view column OPTIMAL_LOGFILE_SIZE to determine
the size of your online redo logs. This field shows the redo log file size in megabytes
that is considered optimal based on the current setting of FAST_START_MTTR_TARGET. If
this field consistently shows a value greater than the size of your smallest online log,
then you should configure all your online logs to be at least this size.

Note, however, that the redo log file size affects the MTTR. In some cases, you may
be able to refine your choice of the optimal FAST_START_MTTR_TARGET value by re-running
the MTTR Advisor with your suggested optimal log file size.
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Part III
Tuning Database Memory

This part contains the following chapters:

• Database Memory Allocation

• Tuning the System Global Area

• Tuning the Database Buffer Cache

• Tuning the Shared Pool and the Large Pool

• Tuning the Result Cache

• Tuning the Program Global Area



11
Database Memory Allocation

This chapter describes memory allocation in Oracle Database and the various
methods for managing memory.

This chapter contains the following topics:

• About Database Memory Caches and Other Memory Structures

• Database Memory Management Methods

• Using Automatic Memory Management

• Monitoring Memory Management

11.1 About Database Memory Caches and Other Memory
Structures

Oracle Database stores information in memory caches and on disk. Memory access is
much faster than disk access. Disk access (physical I/O) takes a significant amount of
time, compared to memory access, typically in the order of 10 milliseconds. Physical
I/O also increases the CPU resources required due to the path length in device drivers
and operating system event schedulers. For this reason, it is more efficient for data
requests of frequently accessed objects to be perform by memory, rather than also
requiring disk access. Proper sizing and effective use of Oracle Database memory
caches greatly improves database performance.

The main Oracle Database memory caches that affect performance include:

• Database buffer cache

The database buffer cache stores data blocks read from disk.

• Redo log buffer

The redo log buffer stores redo entries of changes made to data blocks in the
buffer cache.

• Shared pool

The shared pool caches many different types of data and is mainly comprised of
the following components:

– Library cache

– Data dictionary cache

– Server result cache

• Large pool

The large pool provides large memory allocations for the following Oracle
Database features:

– Shared server architecture
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– Parallel query

– Recovery Manager (RMAN)

• Java pool

The Java pool stores session-specific Java code and Java Virtual Machine (JVM)
data.

• Streams pool

The Streams pool provides memory for Oracle Streams processes.

• Process-private memory

Process-private memory includes memory used for operations such as sorting and
hash joins.

• In-Memory Column Store (IM column store)

Starting in Oracle Database 12c Release 1 (12.1.0.2), the IM column store is an
optional, static SGA pool that stores copies of tables and partitions. In the IM
column store, data is stored in a special columnar format, which improves
performance of operations such as scans, joins, and aggregations.

Note:

The IM column store does not replace the buffer cache, but acts as a
supplement so that both memory areas can store the same data in different
formats.

See Also:

Oracle Database Concepts for information about the Oracle Database memory
architecture

11.2 Database Memory Management Methods
The goal of memory management is to reduce the physical I/O overhead as much as
possible, either by making it more likely that the required data is in memory, or by
making the process of retrieving the required data more efficient. To achieve this goal,
proper sizing and effective use of Oracle Database memory caches is essential.

Oracle Database provides the following methods to manage database memory:

• Automatic Memory Management

• Automatic Shared Memory Management

• Manual Shared Memory Management

• Automatic PGA Memory Management

• Manual PGA Memory Management
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11.2.1 Automatic Memory Management
Automatic memory management enables Oracle Database to manage and tune the
database memory automatically. In automatic memory management mode,
management of the shared global area (SGA) and program global area (instance
PGA) memory is handled completely by Oracle Database. This method is the most
automated and is strongly recommended by Oracle. Before setting any memory pool
sizes manually, strongly consider using automatic memory management.

For information about using automatic memory management, see "Using Automatic
Memory Management".

11.2.2 Automatic Shared Memory Management
If automatic memory management is disabled, then Oracle Database uses automatic
shared memory management to manage SGA memory. In this mode, Oracle
Database automatically distributes memory to individual SGA components based on a
target size that you set for the total SGA memory.

For information about using automatic shared memory management, see "Using
Automatic Shared Memory Management".

11.2.3 Manual Shared Memory Management
If both automatic memory management and automatic shared memory management
are disabled, then you must manage SGA memory manually by sizing the individual
memory pools in the SGA. Although this mode enables you to exercise complete
control over how SGA memory is distributed, it requires the most effort because the
SGA components must be manually tuned on an ongoing basis.

For information about using manual shared memory management, see "Sizing the
SGA Components Manually".

11.2.4 Automatic PGA Memory Management
If automatic memory management is disabled, then Oracle Database uses automatic
PGA memory management to manage PGA memory. In this mode, Oracle Database
automatically distributes memory to work areas in the instance PGA based on a target
size that you set for the total PGA memory.

For information about automatic PGA memory management, see Tuning the Program
Global Area .

11.2.5 Manual PGA Memory Management
If both automatic memory management and automatic PGA memory management are
disabled, then you must manage PGA memory manually by adjusting the portion of
PGA memory dedicated to each work area. This method can be very difficult because
the workload is always changing and is not recommended by Oracle. Although manual
PGA memory management is supported by Oracle Database, Oracle strongly
recommends using automatic memory management or automatic PGA memory
management instead.
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11.3 Using Automatic Memory Management
To use automatic memory management, set the following initialization parameters:

• MEMORY_TARGET

The MEMORY_TARGET initialization parameter specifies the target memory size. The
database tunes to the value specified for this parameter, redistributing memory as
needed between the SGA and the instance PGA. This parameter is dynamic, so
its value can be changed at any time without restarting the database.

• MEMORY_MAX_TARGET

The MEMORY_MAX_TARGET initialization parameter specifies the maximum memory
size. The value specified for this parameter serves as the limit to which the
MEMORY_TARGET initialization parameter can be set. This parameter is static, so its
value cannot be changed after instance startup.

If you need tuning advice for the MEMORY_TARGET parameter, then use the
V$MEMORY_TARGET_ADVICE view.

See Also:

Oracle Database Administrator's Guide for information about using automatic
memory management

11.4 Monitoring Memory Management
Table 11-1 lists the views that provide information about memory resize operations.

Table 11-1    Memory Management Views

View Description

V$MEMORY_CURRENT_RESIZE_OPS Displays information about memory resize
operations (both automatic and manual) that are
currently in progress.

V$MEMORY_DYNAMIC_COMPONENTS Displays information about the current sizes of all
dynamically-tuned memory components, including
the total sizes of the SGA and instance PGA.

V$MEMORY_RESIZE_OPS Displays information about the last 800 completed
memory resize operations (both automatic and
manual). This does not include operations that are
currently in progress.

V$MEMORY_TARGET_ADVICE Displays tuning advice for the MEMORY_TARGET
initialization parameter.

Chapter 11
Using Automatic Memory Management

11-4



See Also:

Oracle Database Reference for more information about these views

Chapter 11
Monitoring Memory Management

11-5



12
Tuning the System Global Area

This chapter describes how to tune the System Global Area (SGA). If you are using
automatic memory management to manage the database memory on your system,
then there is no need to tune the SGA as described in this chapter.

This chapter contains the following topics:

• Using Automatic Shared Memory Management

• Sizing the SGA Components Manually

• Monitoring Shared Memory Management

• Improving Query Performance with the In-Memory Column Store

12.1 Using Automatic Shared Memory Management
Automatic shared memory management simplifies the configuration of the SGA by
automatically distributing the memory in the SGA for the following memory pools:

• Database buffer cache (default pool)

• Shared pool

• Large pool

• Java pool

• Streams pool

Automatic shared memory management is controlled by the SGA_TARGET parameter.
Changes in the value of the SGA_TARGET parameter automatically resize these memory
pools. If these memory pools are set to nonzero values, then automatic shared
memory management uses these values as minimum levels. Oracle recommends that
you set the minimum values based on the minimum amount of memory an application
component requires to function properly.

The following memory caches are manually-sized components and are not controlled
by automatic shared memory management:

• Redo log buffer

The redo log buffer is sized using the LOG_BUFFER initialization parameter, as
described in "Configuring the Redo Log Buffer".

• Other buffer caches (such as KEEP, RECYCLE, and other nondefault block size)

The KEEP pool is sized using the DB_KEEP_CACHE_SIZE initialization parameter, as
described in "Configuring the KEEP Pool".

The RECYCLE pool is sized using the DB_RECYCLE_CACHE_SIZE initialization parameter,
as described in "Configuring the RECYCLE Pool".

• Fixed SGA and other internal allocations
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Fixed SGA and other internal allocations are sized using the DB_nK_CACHE_SIZE
initialization parameter.

The memory allocated to these memory caches is deducted from the value of the
SGA_TARGET parameter when automatic shared memory management computes the
values of the automatically-tuned memory pools.

The following sections describe how to access and set the value of the SGA_TARGET
parameter:

• User Interfaces for Setting the SGA_TARGET Parameter

• Setting the SGA_TARGET Parameter

See Also:

• Oracle Database Concepts for information about the SGA

• Oracle Database Administrator's Guide for information about managing the
SGA

• Oracle Database Administrator's Guide for information about using
initialization parameters

12.1.1 User Interfaces for Setting the SGA_TARGET Parameter
This section describes the user interfaces for setting the value of the SGA_TARGET
parameter.

This section contains the following topics:

• Setting the SGA_TARGET Parameter in Oracle Enterprise Manager Cloud Control

• Setting the SGA_TARGET Parameter in the Command-Line Interface

12.1.1.1 Setting the SGA_TARGET Parameter in Oracle Enterprise Manager
Cloud Control

You can change the value of the SGA_TARGET parameter in Oracle Enterprise Manager
Cloud Control (Cloud Control) by accessing the SGA Size Advisor from the Memory
Parameters SGA page.

12.1.1.2 Setting the SGA_TARGET Parameter in the Command-Line Interface
You can change the value of the SGA_TARGET parameter in the command-line interface
by querying the V$SGA_TARGET_ADVICE view and using the ALTER SYSTEM command.

12.1.2 Setting the SGA_TARGET Parameter
This section describes how to enable and disable automatic shared memory
management by setting the value of the SGA_TARGET parameter.

This section contains the following topics:
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• Enabling Automatic Shared Memory Management

• Disabling Automatic Shared Memory Management

12.1.2.1 Enabling Automatic Shared Memory Management
To enable automatic shared memory management, set the following initialization
parameters:

• STATISTICS_LEVEL to TYPICAL or ALL

• SGA_TARGET to a nonzero value

The SGA_TARGET parameter can be set to a value that is less than or equal to the
value of the SGA_MAX_SIZE initialization parameter. Set the value of the SGA_TARGET
parameter to the amount of memory that you intend to dedicate to the SGA.

12.1.2.2 Disabling Automatic Shared Memory Management
To disable automatic shared memory management, set the value of the SGA_TARGET
parameter dynamically to 0 at instance startup.

This disables automatic shared memory management and the current auto-tuned
sizes will be used for each memory pool. If necessary, you can manually resize each
memory pool, as described in "Sizing the SGA Components Manually".

12.2 Sizing the SGA Components Manually
If the system is not using automatic memory management or automatic shared
memory management, then you must manually configure the sizes of the following
SGA components:

• Database buffer cache

The database buffer cache is sized using the DB_CACHE_SIZE initialization
parameter, as described in "Configuring the Database Buffer Cache".

• Shared pool

The shared pool is sized using the SHARED_POOL_SIZE initialization parameter, as
described in "Configuring the Shared Pool".

• Large pool

The large pool is sized using the LARGE_POOL_SIZE initialization parameter, as
described in "Configuring the Large Pool".

• Java pool

The Java pool is sized using the JAVA_POOL_SIZE initialization parameter.

• Streams pool

The Streams pool is sized using the STREAMS_POOL_SIZE initialization parameter.

• IM column store

The IM column store is sized using the INMEMORY_SIZE initialization parameter.

The values for these parameters are also dynamically configurable using the ALTER
SYSTEM statement.

Chapter 12
Sizing the SGA Components Manually

12-3



Before configuring the sizes of these SGA components, take the following
considerations into account:

• SGA Sizing Unit

• Maximum Size of the SGA

• Application Considerations

• Operating System Memory Use

• Iteration During Configuration

See Also:

• Oracle Database Java Developer's Guide for information about Java
memory usage and the JAVA_POOL_SIZE initialization parameter

• Oracle Streams Replication Administrator's Guide for information about the
STREAMS_POOL_SIZE initialization parameter

• Oracle Database In-Memory Guide for information about the INMEMORY_SIZE
initialization parameter

12.2.1 SGA Sizing Unit
Memory for the buffer cache, shared pool, large pool, and Java pool is allocated in
units of granules. If the SGA size is less than 1 GB, then the granule size is 4MB. If the
SGA size is greater than 1 GB, the granule size changes to 16MB. The granule size is
calculated and fixed when the database instance starts up. The size does not change
during the lifetime of the instance.

To view the granule size that is currently being used for the SGA, use the
V$SGA_DYNAMIC_COMPONENTS view. The same granule size is used for all dynamic
components in the SGA.

12.2.2 Maximum Size of the SGA
The maximum amount of memory usable by the database instance is determined at
instance startup by the value of the SGA_MAX_SIZE initialization parameter. You can
expand the total SGA size to a value equal to the SGA_MAX_SIZE parameter. The value
of the SGA_MAX_SIZE parameter defaults to the aggregate setting of all the SGA
components.

If the value of the SGA_MAX_SIZE parameter is not set, then decrease the size of one
cache and reallocate that memory to another cache if necessary. Alternatively, you
can set the value of the SGA_MAX_SIZE parameter to be larger than the sum of all of the
SGA components, such as the buffer cache and the shared pool. Doing so enables
you to dynamically increase a cache size without having to decrease the size of
another cache.
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Note:

The value of the SGA_MAX_SIZE parameter cannot be dynamically resized.

12.2.3 Application Considerations
When configuring memory, size the memory caches appropriately based on the
application's needs. Conversely, tuning the application's use of the memory caches
can greatly reduce resource requirements. Efficient use of the memory caches also
reduces the load on related resources, such as latches, CPU, and the I/O system.

For optimal performance, consider the following:

• Design the cache to use the operating system and database resources in the most
efficient manner.

• Allocate memory to Oracle Database memory structures to best reflect the needs
of the application.

• If changes or additions are made to an existing application, resize Oracle
Database memory structures to meet the needs of the modified application.

• If the application uses Java, investigate whether the default configuration for the
Java pool needs to be modified.

See Also:

Oracle Database Java Developer's Guide for information about Java memory
usage

12.2.4 Operating System Memory Use
For most operating systems, it is important to consider the following when configuring
memory:

• Reduce Paging

• Fit the SGA into Main Memory

• Allow Adequate Memory to Individual Users

See Also:

Your operating system hardware and software documentation, and the Oracle
documentation specific to your operating system, for more information on
tuning operating system memory usage
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12.2.4.1 Reduce Paging
Paging occurs when an operating system transfers memory-resident pages to disk
solely to load new pages into memory. Many operating systems page to accommodate
large amounts of information that do not fit into real memory. On most operating
systems, paging reduces performance.

To determine whether significant paging is occurring on the host system, use
operating system utilities to examine the operating system. If significant paging is
occurring, then the total system memory may not be large enough to hold the memory
caches for which memory is allocated. Consider either increasing the total memory on
the system, or decreasing the amount of memory allocated.

12.2.4.2 Fit the SGA into Main Memory
Because the purpose of the SGA is to store data in memory for fast access, the SGA
should reside in the main memory. If pages of the SGA are swapped to disk, then the
data is no longer quickly accessible. On most operating systems, the disadvantage of
paging significantly outweighs the advantage of a large SGA.

This section contains the following topics:

• Viewing SGA Memory Allocation

• Locking the SGA into Physical Memory

12.2.4.2.1 Viewing SGA Memory Allocation
To view how much memory is allocated to the SGA and each of its internal structures,
use the SHOW SGA statement in SQL*Plus as shown in the following example:

SQL> SHOW SGA

The output of this statement might look like the following:

Total System Global Area  840205000 bytes
Fixed Size                   279240 bytes
Variable Size             520093696 bytes
Database Buffers          318767104 bytes
Redo Buffers                1064960 bytes

12.2.4.2.2 Locking the SGA into Physical Memory
To prevent the SGA from being paged out, consider locking the SGA into physical
memory by enabling the LOCK_SGA parameter. The database does not use the
MEMORY_TARGET and MEMORY_MAX_TARGET parameters when the LOCK_SGA parameter is
enabled.

12.2.4.3 Allow Adequate Memory to Individual Users
When sizing the SGA, ensure that you allow enough memory for the individual server
processes and any other programs running on the system.
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12.2.5 Iteration During Configuration
Configuring memory allocation involves distributing available memory to Oracle
Database memory structures, depending on the needs of the application. The
distribution of memory to Oracle Database structures can affect the amount of physical
I/O necessary for Oracle Database to operate properly. Having a proper initial memory
configuration provides an indication of whether the I/O system is effectively configured.

After the initial pass through the memory configuration process, it may be necessary to
repeat the steps of memory allocation. Subsequent passes enable you to make
adjustments to earlier steps, based on changes in subsequent steps. For example,
decreasing the size of the buffer cache enables you to increase the size of another
memory structure, such as the shared pool.

12.3 Monitoring Shared Memory Management
Table 12-1 lists the views that provide information about SGA resize operations.

Table 12-1    Shared Memory Management Views

View Description

V$SGA_CURRENT_RESIZE_OPS Displays information about SGA resize operations
that are currently in progress.

V$SGA_RESIZE_OPS Displays information about the last 800 completed
SGA resize operations. This does not include
operations that are currently in progress.

V$SGA_DYNAMIC_COMPONENTS Displays information about the dynamic
components in the SGA. This view summarizes
information of all completed SGA resize operations
that occurred after instance startup.

V$SGA_DYNAMIC_FREE_MEMORY Displays information about the amount of SGA
memory available for future dynamic SGA resize
operations.

See Also:

Oracle Database Reference for information about these views

12.4 Improving Query Performance with the In-Memory
Column Store

The In-Memory Column Store (IM column store) is an optional portion of the system
global area (SGA) that stores copies of tables, partitions, and other database objects
in columnar format, and this columnar data is optimized for rapid scans. As the IM
column store stores database objects in memory, Oracle Database can perform scans,
queries, joins, and aggregates on that data much faster as compared to performing
these operations on a data that is stored on a disk.
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Note:

• The IM column store and database buffer cache store the same data, but in
different formats. The IM column store does not replace the row-based
storage in the database buffer cache, but supplements it for achieving
better query performance.

• The IM column store is available starting with Oracle Database 12c
Release 1 (12.1.0.2).

See Also:

Oracle Database In-Memory Guide for more information about the IM column
store
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13
Tuning the Database Buffer Cache

This chapter describes how to tune the database buffer cache. If you are using
automatic memory management to manage the database memory on your system,
there is no need to manually tune the memory caches described in this chapter.

This chapter contains the following topics:

• About the Database Buffer Cache

• Configuring the Database Buffer Cache

• Configuring Multiple Buffer Pools

• Configuring the Redo Log Buffer

• Configuring the Database Caching Mode

13.1 About the Database Buffer Cache
For many types of operations, Oracle Database uses the buffer cache to store data
blocks read from disk. Oracle Database bypasses the buffer cache for particular
operations, such as sorting and parallel reads.

To use the database buffer cache effectively, tune SQL statements for the application
to avoid unnecessary resource consumption. To meet this goal, verify that frequently
executed SQL statements and SQL statements that perform many buffer gets are well-
tuned.

When using parallel query, consider configuring the database to use the database
buffer cache instead of performing direct reads into the Program Global Area (PGA).
This configuration may be appropriate when the system has a large amount of
memory.

See Also:

• Oracle Database SQL Tuning Guide for information about tuning SQL
statements

• Oracle Database VLDB and Partitioning Guide for information about
parallel execution

13.2 Configuring the Database Buffer Cache
When configuring a new database instance, it is impossible to know the correct size
for the buffer cache. Typically, a database administrator makes a first estimate for the
cache size, then runs a representative workload on the instance and examines the
relevant statistics to see whether the cache is under-configured or over-configured.
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This section describes how to configure the database buffer cache. If you are using
automatic shared memory management to configure the Shared Global Area (SGA),
there is no need to manually tune the database buffer cache as described in this
section.

This section contains the following topics:

• Using the V$DB_CACHE_ADVICE View

• Calculating the Buffer Cache Hit Ratio

• Interpreting the Buffer Cache Hit Ratio

• Increasing Memory Allocated to the Database Buffer Cache

• Reducing Memory Allocated to the Database Buffer Cache

13.2.1 Using the V$DB_CACHE_ADVICE View
The V$DB_CACHE_ADVICE view shows the simulated miss rates for a range of potential
buffer cache sizes. This view assists in cache sizing by providing information that
predicts the number of physical reads for each potential cache size. The data also
includes a physical read factor, which is a factor by which the current number of
physical reads is estimated to change if the buffer cache is resized to a given value.

However, physical reads do not necessarily indicate disk reads in Oracle Database,
because physical reads may be accomplished by reading from the file system cache.
Hence, the relationship between successfully finding a block in the cache and the size
of the cache is not always a smooth distribution. When sizing the buffer pool, avoid
using additional buffers that do not contribute (or contribute very little) to the cache hit
ratio.

The following figure illustrates the relationship between physical I/O ratio and buffer
cache size.

Figure 13-1    Physical I/O Ratio and Buffer Cache Size
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Examining the example illustrated in the above figure leads to the following
observations:

• As the number of buffers increases, the physical I/O ratio decreases.

• The decrease in the physical I/O between points A and B and points B and C is
not smooth, as indicated by the dotted line in the graph.

• The benefit from increasing buffers from point A to point B is considerably higher
than from point B to point C.

• The benefit from increasing buffers decreases as the number of buffers increases.

There is some overhead associated with using this advisory view. When the advisory
is enabled, there is a small increase in CPU usage, because additional bookkeeping is
required. To reduce both the CPU and memory overhead associated with
bookkeeping, Oracle Database uses sampling to gather cache advisory statistics.
Sampling is not used if the number of buffers in a buffer pool is small to begin with.

To use the V$DB_CACHE_ADVICE view:

1. Set the value of the DB_CACHE_ADVICE initialization parameter to ON.

This enables the advisory view. The DB_CACHE_ADVICE parameter is dynamic, so the
advisory can be enabled and disabled dynamically to enable you to collect
advisory data for a specific workload.

2. Run a representative workload on the database instance.

Allow the workload to stabilize before querying the V$DB_CACHE_ADVICE view.

3. Query the V$DB_CACHE_ADVICE view.

The following example shows a query of this view that returns the predicted I/O
requirement for the default buffer pool for various cache sizes.

COLUMN size_for_estimate          FORMAT 999,999,999,999 heading 'Cache Size (MB)'
COLUMN buffers_for_estimate       FORMAT 999,999,999 heading 'Buffers'
COLUMN estd_physical_read_factor  FORMAT 999.90 heading 'Estd Phys|Read Factor'
COLUMN estd_physical_reads        FORMAT 999,999,999 heading 'Estd Phys| Reads'

SELECT size_for_estimate, buffers_for_estimate, estd_physical_read_factor,
       estd_physical_reads
FROM   V$DB_CACHE_ADVICE
WHERE  name = 'DEFAULT'
  AND  block_size = (SELECT value FROM V$PARAMETER WHERE name = 'db_block_size')
  AND  advice_status = 'ON';

The output of this query might look like the following:

                                Estd Phys    Estd Phys
 Cache Size (MB)      Buffers Read Factor        Reads
---------------- ------------ ----------- ------------
              30        3,802       18.70  192,317,943      10% of Current Size 
              60        7,604       12.83  131,949,536
              91       11,406        7.38   75,865,861
             121       15,208        4.97   51,111,658
             152       19,010        3.64   37,460,786
             182       22,812        2.50   25,668,196
             212       26,614        1.74   17,850,847
             243       30,416        1.33   13,720,149
             273       34,218        1.13   11,583,180
             304       38,020        1.00   10,282,475      Current Size 
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             334       41,822         .93    9,515,878
             364       45,624         .87    8,909,026
             395       49,426         .83    8,495,039
             424       53,228         .79    8,116,496
             456       57,030         .76    7,824,764
             486       60,832         .74    7,563,180
             517       64,634         .71    7,311,729
             547       68,436         .69    7,104,280
             577       72,238         .67    6,895,122
             608       76,040         .66    6,739,731      200% of Current Size 

In this example, the output shows that if the cache was 212 MB instead of the current
size of 304 MB, the estimated number of physical reads would increase by a factor of
1.74, or 74%. Hence, it is not advisable to decrease the cache size to 212MB.

However, increasing the cache size to 334MB may potentially decrease reads by a
factor of .93, or 7%. If an additional 30MB memory is available on the system and the
value of the SGA_MAX_SIZE parameter allows for the increment, it is advisable to
increase the default buffer cache pool size to 334MB.

13.2.2 Calculating the Buffer Cache Hit Ratio
The buffer cache hit ratio calculates how often a requested block has been found in
the buffer cache without requiring disk access. This ratio is computed using data
selected from the V$SYSSTAT performance view. Use the buffer cache hit ratio to verify
the physical I/O as predicted by the V$DB_CACHE_ADVICE view.

Table 13-1 lists the statistics from the V$SYSSTAT view used to calculate the buffer
cache hit ratio.

Table 13-1    Statistics for Calculating the Buffer Cache Hit Ratio

Statistic Description

consistent gets from
cache

Number of times a consistent read was requested for a block
from the buffer cache.

db block gets from cache Number of times a CURRENT block was requested from the buffer
cache.

physical reads cache Total number of data blocks read from disk into buffer cache.

Example 13-1 shows a query of this view.

Example 13-1    Querying the V$SYSSTAT View

SELECT name, value
FROM V$SYSSTAT
WHERE name IN ('db block gets from cache', 'consistent gets from cache', 
'physical reads cache');

In this example, the query is simplified by using values selected directly from the
V$SYSSTAT view, rather than over an interval. It is recommended to calculate the delta of
these statistics over an interval while the application is running, then use these delta
values to determine the buffer cache hit ratio. For information about collecting statistics
over an interval, see Automatic Performance Diagnostics .

Using the values from the output of this query, calculate the hit ratio for the buffer
cache using the following formula:
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1 - (('physical reads cache') / ('consistent gets from cache' + 
'db block gets from cache'))

See Also:

Oracle Database Reference for information about the V$SYSSTAT view

13.2.3 Interpreting the Buffer Cache Hit Ratio
Before deciding whether to increase or decrease the buffer cache size, you should first
examine the buffer cache hit ratio.

A low cache hit ratio does not necessarily imply that increasing the size of the buffer
cache will benefit performance. Moreover, a high cache hit ratio may wrongly indicate
that the buffer cache is adequately sized for the workload.

To interpret the buffer cache hit ratio, consider the following factors:

• Avoid repeated scanning of frequently accessed data by performing the
processing in a single pass or by optimizing the SQL statement.

Repeated scanning of the same large table or index can artificially inflate a low
cache hit ratio. Examine frequently executed SQL statements with a large number
of buffer gets, to ensure that the execution plans for these SQL statements are
optimal.

• Avoid requerying the same data by caching frequently accessed data in the client
program or middle tier.

• In large databases running OLTP applications, many rows are accessed only once
(or never). Hence, there is no purpose in keeping the block in memory following its
use.

• Do not continuously increase the buffer cache size.

Continuous increases of the buffer cache size have no effect if the database is
performing full table scans or operations that do not use the buffer cache.

• Consider poor hit ratios when large full table scans are occurring.

Database blocks accessed during a long full table scan are placed on the tail end
of the Least Recently Used (LRU) list and not on the head of the list. Therefore,
the blocks age out faster than blocks read when performing indexed lookups or
small table scans.

Note:

Short table scans are scans performed on tables under a certain size
threshold. The definition of a small table is the maximum of 2% of the buffer
cache or 20, whichever is bigger.
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13.2.4 Increasing Memory Allocated to the Database Buffer Cache
If the cache hit ratio is low and your application is tuned to avoid performing full table
scans, consider increasing the size of the buffer cache. If possible, resize the buffer
pools dynamically, rather than shutting down the instance to perform this change.

To increase the size of the database buffer cache:

1. Set the value of the DB_CACHE_ADVICE initialization parameter to ON.

2. Allow the buffer cache statistics to stabilize.

3. Examine the advisory data in the V$DB_CACHE_ADVICE view to determine the next
increment required to significantly decrease the amount of physical I/O performed,
as described in "Using the V$DB_CACHE_ADVICE View".

4. If it is possible to allocate the extra memory required to the buffer cache without
causing the system to page, then allocate this memory.

5. To increase the amount of memory allocated to the buffer cache, increase the
value of the DB_CACHE_SIZE initialization parameter.

The DB_CACHE_SIZE parameter specifies the size of the default cache for the
database's standard block size. To create and use tablespaces with block sizes
other than the database's standard block sizes (such as for transportable
tablespaces), configure a separate cache for each block size used. Use the
DB_nK_CACHE_SIZE parameter to configure the nonstandard block size needed
(where n is 2, 4, 8, 16 or 32 and not the standard block size).

Note:

• The process of choosing a cache size is the same, regardless of whether
the cache is the default standard block size cache, the KEEP or RECYCLE
cache, or a nonstandard block size cache.

• When the cache is resized significantly (greater than 20%), the old cache
advisory value is discarded and the cache advisory is set to the new size.
Otherwise, the old cache advisory value is adjusted to the new size by the
interpolation of existing values.

See Also:

For more information about the DB_nK_CACHE_SIZE parameter, see:

• Oracle Database Administrator's Guide

• Oracle Database Reference
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13.2.5 Reducing Memory Allocated to the Database Buffer Cache
If the cache hit ratio is high, then the buffer cache is likely large enough to store the
most frequently accessed data. If this is the case and memory is required for another
memory structure, consider reducing the size of the buffer cache.

To reduce the size of the database buffer cache:

1. Examine the advisory data in the V$DB_CACHE_ADVICE view to determine if
decreasing the size of the buffer cache will significantly increase the number of
physical I/Os, as described in "Using the V$DB_CACHE_ADVICE View".

2. To reduce the amount of memory allocated to the buffer cache, decrease the
value of the DB_CACHE_SIZE initialization parameter.

13.3 Configuring Multiple Buffer Pools
For most systems, a single default buffer pool is generally adequate. However,
database administrators with detailed knowledge of an application's buffer pool may
benefit from configuring multiple buffer pools.

For segments that have atypical access patterns, consider storing blocks from these
segments in two separate buffer pools: the KEEP pool and the RECYCLE pool. A
segment's access pattern may be atypical if it is constantly accessed (sometimes
referred to as hot) or infrequently accessed (such as a large segment that is accessed
by a batch job only once a day).

Using multiple buffer pools enables you to address these irregularities. You can use
the KEEP pool to maintain frequently accessed segments in the buffer cache, and the
RECYCLE pool to prevent objects from consuming unnecessary space in the buffer
cache. When an object is associated with a buffer cache, all blocks from that object
are placed in that cache. Oracle Database maintains a DEFAULT buffer pool for objects
that are not assigned to a specific buffer pool. The default buffer pool size is
determined by the DB_CACHE_SIZE initialization parameter. Each buffer pool uses the
same LRU replacement policy. For example, if the KEEP pool is not large enough to
store all of the segments allocated to it, then the oldest blocks age out of the cache.

By allocating objects to appropriate buffer pools, you can:

• Reduce or eliminate I/Os

• Isolate or limit an object to a separate cache

This section describes how to configure multiple buffer pools and contains the
following topics:

• Considerations for Using Multiple Buffer Pools

• Using Multiple Buffer Pools

• Using the V$DB_CACHE_ADVICE View for Individual Buffer Pools

• Calculating the Buffer Pool Hit Ratio for Individual Buffer Pools

• Examining the Buffer Cache Usage Pattern

• Configuring the KEEP Pool

• Configuring the RECYCLE Pool
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13.3.1 Considerations for Using Multiple Buffer Pools
When using multiple buffer pools, take the following considerations into account:

• Random Access to Large Segments

• Oracle Real Application Cluster Instances

13.3.1.1 Random Access to Large Segments
A problem may occur with an LRU aging method when a very large segment
(compared to the size of the buffer cache) is accessed with a large or unbounded
index range scan. Any single segment that accounts for a substantial portion (more
than 10%) of nonsequential physical reads can be considered very large. Random
reads to a large segment may cause buffers that contain data for other segments to be
aged out of the cache. The large segment ends up consuming a large percentage of
the buffer cache, but it does not benefit from the cache.

Very frequently accessed segments are not affected by large segment reads because
their buffers are warmed frequently enough that they do not age out of the buffer
cache. However, the problem affects warm segments that are not accessed frequently
enough to survive the buffer aging caused by the large segment reads. There are
three options for solving this problem:

• If the object accessed is an index, determine whether the index is selective. If not,
tune the SQL statement to use a more selective index.

• If the SQL statement is tuned, move the large segment into a separate RECYCLE
cache so it does not affect the other segments. The RECYCLE cache should be
smaller than the DEFAULT buffer pool, and it should reuse buffers more quickly.

• Alternatively, consider moving the small, warm segments into a separate KEEP
cache that is not used for large segments. Size the KEEP cache to minimize misses
in the cache. You can make the response times for specific queries more
predictable by storing the segments accessed by the queries in the KEEP cache to
ensure that they do not age out.

13.3.1.2 Oracle Real Application Cluster Instances
In an Oracle Real Application Cluster (Oracle RAC) environment, consider creating
multiple buffer pools for each database instance. It is not necessary to define the same
set of buffer pools for each instance of the database. Among instances, the buffer
pools can be different sizes or undefined. Tune each instance according to the
application requirements for that instance.

13.3.2 Using Multiple Buffer Pools
To define a default buffer pool for an object, use the BUFFER_POOL keyword of the
STORAGE clause. This clause is valid for the following SQL statements:

• CREATE TABLE

• CREATE CLUSTER

• CREATE INDEX

• ALTER TABLE
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• ALTER CLUSTER

• ALTER INDEX

After a buffer pool is defined, all subsequent blocks read for the object are placed in
that pool. If a buffer pool is defined for a partitioned table or index, then each partition
of the object inherits the buffer pool from the table or index definition, unless if it is
overridden by a specific buffer pool.

When the buffer pool of an object is changed using the ALTER statement, all buffers
currently containing blocks of the altered segment remain in the buffer pool they were
in before the ALTER statement. Newly loaded blocks and any blocks that age out and
are reloaded are placed into the new buffer pool.

See Also:

Oracle Database SQL Language Reference for information about specifying
BUFFER_POOL in the STORAGE clause

13.3.3 Using the V$DB_CACHE_ADVICE View for Individual Buffer
Pools

As with the default buffer pool, you can use V$DB_CACHE_ADVICE view to assist in cache
sizing of other pools. After estimating the initial cache size and running a
representative workload, query the V$DB_CACHE_ADVICE view for the pool you want to
use.

For more information about using the V$DB_CACHE_ADVICE view, see "Using the
V$DB_CACHE_ADVICE View".

Example 13-2 shows a query of this view that queries data from the KEEP pool:

Example 13-2    Querying the V$DB_CACHE_ADVICE View for the KEEP Pool

SELECT size_for_estimate, buffers_for_estimate, estd_physical_read_factor, 
       estd_physical_reads
  FROM V$DB_CACHE_ADVICE
 WHERE name = 'KEEP'
   AND block_size = (SELECT value FROM V$PARAMETER WHERE name = 'db_block_size')
   AND advice_status = 'ON';

13.3.4 Calculating the Buffer Pool Hit Ratio for Individual Buffer Pools
The data in the V$SYSSTAT view reflects the logical and physical reads for all buffer
pools within one set of statistics. To determine the hit ratio for the buffer pools
individually, query the V$BUFFER_POOL_STATISTICS view. This view maintains statistics on
the number of logical reads and writes for each pool.
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See Also:

• "Calculating the Buffer Cache Hit Ratio" for more information about
calculating hit ratios

• Oracle Database Reference for more information about
V$BUFFER_POOL_STATISTICS view

The following query calculates the hit ratio using the V$BUFFER_POOL_STATISTICS view.

Example 13-3    Querying the V$BUFFER_POOL_STATISTICS View

SELECT name, physical_reads, db_block_gets, consistent_gets,
       1 - (physical_reads / (db_block_gets + consistent_gets)) "Hit Ratio"
  FROM V$BUFFER_POOL_STATISTICS;

13.3.5 Examining the Buffer Cache Usage Pattern
The V$BH view shows the data object ID of all blocks that currently reside in the SGA.
To determine which segments have many buffers in the pool, use this view to examine
the buffer cache usage pattern. You can either examine the buffer cache usage
pattern for all segments or a specific segment, as described in the following sections:

• Examining the Buffer Cache Usage Pattern for All Segments

• Examining the Buffer Cache Usage Pattern for a Specific Segment

13.3.5.1 Examining the Buffer Cache Usage Pattern for All Segments
One method to determine which segments have many buffers in the pool is to query
the number of blocks for all segments that reside in the buffer cache at a given time.
Depending on buffer cache size, this might require a lot of sort space.

Example 13-4 shows a query that counts the number of blocks for all segments.

Example 13-4    Querying the Number of Blocks for All Segments

COLUMN object_name FORMAT A40
COLUMN number_of_blocks FORMAT 999,999,999,999

SELECT o.object_name, COUNT(*) number_of_blocks
  FROM DBA_OBJECTS o, V$BH bh
 WHERE o.data_object_id = bh.OBJD
   AND o.owner != 'SYS'
 GROUP BY o.object_Name
 ORDER BY COUNT(*);

The output of this query might look like the following:

OBJECT_NAME                              NUMBER_OF_BLOCKS
---------------------------------------- ----------------
OA_PREF_UNIQ_KEY                                        1
SYS_C002651                                             1
..
DS_PERSON                                              78
OM_EXT_HEADER                                         701
OM_SHELL                                            1,765
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OM_HEADER                                           5,826
OM_INSTANCE                                        12,644

13.3.5.2 Examining the Buffer Cache Usage Pattern for a Specific Segment
Another method to determine which segments have many buffers in the pool is to
calculate the percentage of the buffer cache used by an individual object at a given
time.

To calculate the percentage of the buffer cache used by an individual object:

1. Find the Oracle Database internal object number of the segment by querying the 
DBA_OBJECTS view:

SELECT data_object_id, object_type
FROM DBA_OBJECTS 
WHERE object_name = UPPER('segment_name'); 

Because two objects can have the same name (if they are different types of
objects), use the OBJECT_TYPE column to identify the object of interest.

2. Find the number of buffers in the buffer cache for SEGMENT_NAME:

SELECT COUNT(*) buffers
FROM V$BH
WHERE objd = data_object_id_value;

For data_object_id_value, use the value of DATA_OBJECT_ID from the previous step.

3. Find the number of buffers in the database instance:

SELECT name, block_size, SUM(buffers)
FROM V$BUFFER_POOL
GROUP BY name, block_size
HAVING SUM(buffers) > 0;

4. Calculate the ratio of buffers to total buffers to obtain the percentage of the cache
currently used by SEGMENT_NAME:

% cache used by segment_name = [buffers(Step2)/total buffers(Step3)]

Note:

This method works only for a single segment. For a partitioned object, run the
query for each partition.

13.3.6 Configuring the KEEP Pool
The purpose of the KEEP buffer pool is to retain objects in memory, thus avoiding I/O
operations. Each object kept in memory results in a trade-off. It is more beneficial to
keep frequently-accessed blocks in the cache. Avoid retaining infrequently-used
blocks in the cache, as this results in less space for other, more active blocks

If there are certain segments in your application that are referenced frequently, then
consider storing the blocks from those segments in the KEEP buffer pool. Typical
segments that are kept in the KEEP pool are small, frequently-used reference tables. To
determine which tables are candidates, check the number of blocks from candidate
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tables by querying the V$BH view, as described in "Examining the Buffer Cache Usage
Pattern".

To configure the KEEP pool:

1. Compute an approximate size for the KEEP buffer pool.

The size of the KEEP buffer pool depends on the objects to be kept in the buffer
cache. To estimate its size, add the blocks used by all objects assigned to this
pool.

If you gathered statistics on the segments, query DBA_TABLES.BLOCKS and
DBA_TABLES.EMPTY_BLOCKS to determine the number of blocks used.

2. Taking two snapshots of system performance at different times.

Query data from the KEEP pool for each snapshot using the V$DB_CACHE_ADVICE view,
as described in "Using the V$DB_CACHE_ADVICE View for Individual Buffer
Pools".

3. Subtract the more recent values for physical reads, block gets, and consistent
gets from the older values, and use the results to calculate the hit ratio.

A buffer pool hit ratio of 100% may not be optimal. Oftentimes, you can decrease
the size of the KEEP buffer pool and still maintain a sufficiently high hit ratio.
Allocate blocks removed from the KEEP buffer pool to other buffer pools.

4. Allocate memory to the KEEP buffer pool by setting the value of the
DB_KEEP_CACHE_SIZE parameter to the required size.

The memory for the KEEP pool is not a subset of the default pool.

Note:

If an object grows in size, then it might no longer fit in the KEEP buffer pool. You
will begin to lose blocks out of the cache.

13.3.7 Configuring the RECYCLE Pool
You can configure a RECYCLE buffer pool for blocks belonging to those segments that
you do not want to keep in memory. The purpose of the RECYCLE pool is to retain
segments that are scanned rarely or are not referenced frequently. If an application
randomly accesses the blocks of a very large object, then it is unlikely for a block
stored in the buffer pool to be reused before it is aged out. This is true regardless of
the size of the buffer pool (given the constraint of the amount of available physical
memory). Consequently, the object's blocks do not need to be cached; the cache
buffers can be allocated to other objects.

Do not discard blocks from memory too quickly. If the buffer pool is too small, then
blocks can age out of the cache before the transaction or SQL statement completes its
execution. For example, an application might select a value from a table, use the value
to process some data, and then update the record. If the block is removed from the
cache after the SELECT statement, then it must be read from disk again to perform the
update. The block should be retained for the duration of the user transaction.
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To configure the RECYCLE POOL:

• Allocate memory to the RECYCLE buffer pool by setting the value of the
DB_RECYCLE_CACHE_SIZE parameter to the required size.

The memory for the RECYCLE pool is not a subset of the default pool.

13.4 Configuring the Redo Log Buffer
Server processes making changes to data blocks in the buffer cache generate redo
data into the log buffer. The log writer process (LGWR) begins writing to copy entries
from the redo log buffer to the online redo log if any of the following conditions are
true:

• The redo log buffer becomes at least one-third full

• LGWR is posted by a server process performing a COMMIT or ROLLBACK

• A database writer process (DBWR) posts LGWR to do so

When LGWR writes redo entries from the redo log buffer to a redo log file or disk, user
processes can copy new entries over the entries in memory that are written to disk, as
illustrated in the following figure.

Figure 13-2    Redo Log Buffer

Being written to 

disk by LGWR

Being filled by

DML users

LGWR attempts to write fast enough to ensure that space is available in the redo log
buffer for new entries, even if it is frequently accessed. Having a larger redo log buffer
makes it more likely that there is space for new entries, and also enables LGWR to
efficiently process redo records. On a system with large updates, if the redo log buffer
is too small, LGWR will continuously flush redo to disk so that it remains two-thirds
empty.

On systems with fast processors and relatively slow disks, the processors might be
filling the rest of the redo log buffer in the time it takes the redo log writer to move a
portion of the redo log buffer to disk. In this situation, a larger redo log buffer can
temporarily mask the effects of slower disks. Alternatively, consider either improving:

• The checkpointing or archiving process

• The performance of LGWR by moving all online logs to fast raw devices

To improve the performance of the redo log buffer, ensure that you are:
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• Batching commit operations for batch jobs, so that LGWR is able to write redo log
entries efficiently

• Using NOLOGGING operations when loading large quantities of data

This section describes how to configure the redo log buffer and contains the following
topics:

• Sizing the Redo Log Buffer

• Using Redo Log Buffer Statistics

13.4.1 Sizing the Redo Log Buffer
The default size of the redo log buffer is calculated as follows:

MAX(0.5M, (128K * number of cpus))

Applications that insert, modify, or delete large volumes of data may require changing
the default size of the redo log buffer. Oracle recommends setting the redo log buffer
size to minimum of 8 MB. Set it to a minimum of 64 MB for databases using flashback
functionality and having 4GB or higher SGAs. Set it to a minimum of 256 MB if you are
using Oracle Data Guard with asynchronous redo transport and have a high redo
generation rate.

To determine if the size of the redo log buffer is too small, monitor the redo log buffer
statistics, as described in "Using Redo Log Buffer Statistics". You can also check if the
log buffer space wait event is a significant factor in the wait time for the database
instance. If it is not, then the log buffer size is most likely adequately-sized.

See Also:

Oracle Database High Availability Best Practices

To size the redo log buffer:

• Set the size of the redo log buffer by setting the value of the LOG_BUFFER
initialization parameter to the required size.

The value of this parameter is expressed in bytes.

Note:

The size of the redo log buffer cannot be modified after instance startup.

13.4.2 Using Redo Log Buffer Statistics
The REDO BUFFER ALLOCATION RETRIES statistic reflects the number of times a user
process waits for space in the redo log buffer. This statistic can be queried using the
V$SYSSTAT performance view.

You should monitor the redo buffer allocation retries statistic over a period while
the application is running. The value of this statistic should be near zero over an
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interval. If this value increases consistently, then it means user processes had to wait
for space in the redo log buffer to become available. The wait can be caused by the
redo log buffer being too small or by checkpointing. In this case, consider one of the
following options:

• Increase the size of the redo log buffer, as described in "Sizing the Redo Log
Buffer"

• Improve the checkpointing or archiving process

Example 13-5 shows a query of the V$SYSSTAT view for this statistic.

Example 13-5    Querying the V$SYSSTAT View

SELECT name, value
  FROM V$SYSSTAT
 WHERE name = 'redo buffer allocation retries';

13.5 Configuring the Database Caching Mode
Starting with Oracle Database 12c Release 1 (12.1.0.2), there are two database
caching modes: the default database caching mode used in previous versions of
Oracle Database, and the force full database caching mode that is new to this release.
In default caching mode, Oracle Database does not always cache the underlying data
when a user queries a large table. In force full database caching mode, Oracle
Database assumes that the buffer cache is large enough to cache the full database
and tries to cache all the blocks that are accessed by queries.

This section contains the following topics:

• Default Database Caching Mode

• Force Full Database Caching Mode

• Determining When to Use Force Full Database Caching Mode

• Verifying the Database Caching Mode

Note:

Force full database caching mode is available starting with Oracle Database
12c Release 1 (12.1.0.2).

13.5.1 Default Database Caching Mode
By default, Oracle Database uses the default database caching mode when
performing full table scans. In default caching mode, Oracle Database does not always
cache the underlying data when a user queries a large table, because doing so might
remove more useful data from the buffer cache.

If the Oracle Database instance determines that there is enough space to cache the
full database in the buffer cache and that it would be beneficial to do so, then the
instance automatically caches the full database in the buffer cache.

If the Oracle Database instance determines that there is not enough space to cache
the full database in the buffer cache, then:
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• Smaller tables are loaded into memory only when the table size is less than 2
percent of the buffer cache size.

• For medium tables, Oracle Database analyzes the interval between the last table
scan and the aging timestamp of the buffer cache. If the size of the table reused in
the last table scan is greater than the remaining buffer cache size, then the table is
cached.

• Large tables are typically not loaded into memory, unless if you explicitly declare
the table for the KEEP buffer pool.

Note:

In default caching mode, Oracle Database instance does not cache NOCACHE
LOBs in the buffer cache.

See Also:

Oracle Database Concepts for information about the default database caching
mode

13.5.2 Force Full Database Caching Mode
As more memory is added to a database, buffer cache sizes may continually grow. In
some cases, the size of the buffer cache may become so large that the entire
database can fit into memory. The ability to cache an entire database in memory can
drastically improve database performance when performing full table scans or
accessing LOBs.

In force full database caching mode, Oracle Database caches the entire database in
memory when the size of the database is smaller than the database buffer cache size.
All data files, including NOCACHE LOBs and LOBS that use SecureFiles, are loaded into
the buffer cache as they are being accessed.

See Also:

• Oracle Database Concepts

• Oracle Database Administrator's Guide

13.5.3 Determining When to Use Force Full Database Caching Mode
To improve database performance for table scans and LOB data access, especially for
workloads that are limited by I/O throughput or response time, consider using force full 
database caching mode whenever the size of the database buffer cache is greater
than the size of the database.

Consider using force full database caching mode in the following situations:
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• The logical database size (or actual used space) is smaller than the individual
buffer cache of each database instance in an Oracle RAC environment. This is
applicable for non-Oracle RAC database as well.

• The logical database size is smaller than 80% of the combined buffer cache sizes
of all the database instances for well-partitioned workloads (by instance access) in
an Oracle RAC environment.

• The database uses SGA_TARGET or MEMORY_TARGET.

• The NOCACHE LOBs need to be cached. The NOCACHE LOBs are never cached unless
force full database caching is used.

For the first three situations, you should monitor the system performance periodically
to verify that the performance figures are according to your expectations.

When one Oracle RAC database instance uses force full database caching mode,
then all the other database instances in the Oracle RAC environment will also use
force full database caching mode.

In a multitenant environment, force full database caching mode applies to the entire
container database (CDB), including all of its pluggable databases (PDBs).

13.5.4 Verifying the Database Caching Mode
By default, Oracle Database runs in the default database caching mode.

To verify if force full database caching mode is enabled:

• Query the V$DATABASE view as shown:

SELECT FORCE_FULL_DB_CACHING FROM V$DATABASE;

If the query returns a value of YES, then force full database caching mode is
enabled on the database. If the query returns a value of NO, then force full
database caching mode is disabled and the database is in default database
caching mode.

Note:

To enable force full database caching mode, use the following ALTER
DATABASE command:

ALTER DATABASE FORCE FULL DATABASE CACHING;

See Also:

• Oracle Database Administrator's Guide for more information about enabling
and disabling force full database caching mode

• Oracle Database Reference for more information about the V$DATABASE view
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14
Tuning the Shared Pool and the Large Pool

This chapter describes how to tune the shared pool and the large pool. If you are using
automatic memory management to manage the database memory on your system, or
automatic shared memory management to configure the Shared Global Area (SGA),
there is no need to manually tune the shared pool and the large pool as described in
this chapter.

This chapter contains the following topics:

• About the Shared Pool

• Using the Shared Pool

• Configuring the Shared Pool

• Configuring the Large Pool

14.1 About the Shared Pool
Oracle Database uses the shared pool to cache many different types of data. Cached
data includes the textual and executable forms of PL/SQL blocks and SQL statements,
dictionary cache data, result cache data, and other data.

This section describes the shared pool and contains the following topics:

• Benefits of Using the Shared Pool

• Shared Pool Concepts

14.1.1 Benefits of Using the Shared Pool
Proper use and sizing of the shared pool can reduce resource consumption in at least
four ways:

• If the SQL statement is in the shared pool, parse overhead is avoided, resulting in
reduced CPU resources on the system and elapsed time for the end user.

• Latching resource usage is significantly reduced, resulting in greater scalability.

• Shared pool memory requirements are reduced, because all applications use the
same pool of SQL statements and dictionary resources.

• I/O is reduced, because dictionary elements that are in the shared pool do not
require disk access.

14.1.2 Shared Pool Concepts
The main components of the shared pool include:

• Library cache

The library cache stores the executable (parsed or compiled) form of recently
referenced SQL and PL/SQL code.
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• Data dictionary cache

The data dictionary cache stores data referenced from the data dictionary.

• Server result cache (depending on the configuration)

The server result cache is an optional cache that stores query and PL/SQL
function results within the shared pool. For information about the server result
cache, see "About the Result Cache".

Many of the caches in the shared pool—including the library cache and the dictionary
cache—automatically increase or decrease in size, as needed. Old entries are aged
out to accommodate new entries when the shared pool runs out of space.

A cache miss on the library cache or data dictionary cache is more expensive than a
miss on the buffer cache. For this reason, the shared pool should be sized to ensure
that frequently-used data is cached.

Several features require large memory allocations in the shared pool, such as shared
server, parallel query, or Recovery Manager. Oracle recommends using a separate
memory area—the large pool—to segregate the System Global Area (SGA) memory
used by these features.

Allocation of memory from the shared pool is performed in chunks. This chunking
enables large objects (over 5 KB) to be loaded into the cache without requiring a
single contiguous area. In this way, the database reduces the possibility of running out
of contiguous memory due to fragmentation.

Java, PL/SQL, or SQL cursors may sometimes make allocations out of the shared
pool that are larger than 5 KB. To enable these allocations to occur more efficiently,
Oracle Database segregates a small amount of the shared pool. The segregated
memory, called the reserved pool, is used if the shared pool runs out of space.

The following sections provide more details about the main components of the shared
pool:

• Library Cache Concepts

• Data Dictionary Cache Concepts

• SQL Sharing Criteria

14.1.2.1 Library Cache Concepts
The library cache stores executable forms of SQL cursors, PL/SQL programs, and
Java classes, which are collectively referred to as the application code. This section
focuses on tuning as it relates to the application code.

When the application code is executed, Oracle Database attempts to reuse existing
code if it has been executed previously and can be shared. If the parsed
representation of the SQL statement exists in the library cache and it can be shared,
then the database reuses the existing code. This is known as a soft parse, or a library
cache hit. If Oracle Database cannot use the existing code, then the database must
build a new executable version of the application code. This is known as a hard parse,
or a library cache miss. For information about when SQL and PL/SQL statements can
be shared, see "SQL Sharing Criteria".

In order to perform a hard parse, Oracle Database uses more resources than during a
soft parse. Resources used for a soft parse include CPU and library cache latch gets.
Resources required for a hard parse include additional CPU, library cache latch gets,
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and shared pool latch gets. A hard parse may occur on either the parse step or the
execute step when processing a SQL statement.

When an application makes a parse call for a SQL statement, if the parsed
representation of the statement does not exist in the library cache, then Oracle
Database parses the statement and stores the parsed form in the shared pool. To
reduce library cache misses on parse calls, ensure that all sharable SQL statements
are stored in the shared pool whenever possible.

When an application makes an execute call for a SQL statement, if the executable
portion of the SQL statement is aged out (or deallocated) from the library cache to
make room for another statement, then Oracle Database implicitly reparses the
statement to create a new shared SQL area for it, and executes the statement. This
also results in a hard parse. To reduce library cache misses on execution calls,
allocate more memory to the library cache.

For more information about hard and soft parsing, see "SQL Execution Efficiency".

14.1.2.2 Data Dictionary Cache Concepts
Information stored in the data dictionary cache includes:

• Usernames

• Segment information

• Profile data

• Tablespace information

• Sequence numbers

The data dictionary cache also stores descriptive information, or metadata, about
schema objects. Oracle Database uses this metadata when parsing SQL cursors or
during the compilation of PL/SQL programs.

14.1.2.3 SQL Sharing Criteria
Oracle Database automatically determines whether a SQL statement or PL/SQL block
being issued is identical to another statement currently in the shared pool.

To compare the text of the SQL statement to the existing SQL statements in the
shared pool, Oracle Database performs the following steps:

1. The text of the SQL statement is hashed.

If there is no matching hash value, then the SQL statement does not currently
exist in the shared pool, and a hard parse is performed.

2. If there is a matching hash value for an existing SQL statement in the shared pool,
then the text of the matched statement is compared to the text of the hashed
statement to verify if they are identical.

The text of the SQL statements or PL/SQL blocks must be identical, character for
character, including spaces, case, and comments. For example, the following
statements cannot use the same shared SQL area:

SELECT * FROM employees;
SELECT * FROM Employees;
SELECT *  FROM employees;
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Also, SQL statements that differ only in literals cannot use the same shared SQL
area. For example, the following statements do not resolve to the same SQL area:

SELECT count(1) FROM employees WHERE manager_id = 121;
SELECT count(1) FROM employees WHERE manager_id = 247;

The only exception to this rule is when the CURSOR_SHARING parameter is set to
FORCE, in which case similar statements can share SQL areas. For information
about the costs and benefits involved in cursor sharing, see "Sharing Cursors".

3. The objects referenced in the issued statement are compared to the referenced
objects of all existing statements in the shared pool to ensure that they are
identical.

References to schema objects in the SQL statements or PL/SQL blocks must
resolve to the same object in the same schema. For example, if two users each
issue the following SQL statement but they each have their own employees table,
then this statement is not considered identical, because the statement references
different tables for each user:

SELECT * FROM employees;

4. Bind variables in the SQL statements must match in name, data type, and length.

For example, the following statements cannot use the same shared SQL area,
because the bind variable names are different:

SELECT * FROM employees WHERE department_id = :department_id;
SELECT * FROM employees WHERE department_id = :dept_id;

Many Oracle products, such as Oracle Forms and the precompilers, convert the
SQL before passing statements to the database. Characters are uniformly
changed to uppercase, white space is compressed, and bind variables are
renamed so that a consistent set of SQL statements is produced.

5. The session's environment must be identical.

For example, SQL statements must be optimized using the same optimization
goal.

See Also:

Oracle Database Reference for information about the CURSOR_SHARING
initialization parameter

14.2 Using the Shared Pool
An important purpose of the shared pool is to cache the executable versions of SQL
and PL/SQL statements. This enables multiple executions of the same SQL or PL/SQL
code to be performed without the resources required for a hard parse, which results in
significant reductions in CPU, memory, and latch usage.

The shared pool is also able to support unshared SQL in data warehousing
applications, which execute low-concurrency, high-resource SQL statements. In this
situation, using unshared SQL with literal values is recommended. Using literal values
rather than bind variables enables the optimizer to make good column selectivity
estimates, thus providing an optimal data access plan.

Chapter 14
Using the Shared Pool

14-4



In a high-currency online transaction processing (OLTP) system, efficient use of the
shared pool significantly reduces the probability of parse-related application scalability
issues. There are several ways to ensure efficient use of the shared pool and related
resources in an OLTP system:

• Use Shared Cursors

• Use Single-User Logon and Qualified Table Reference

• Use PL/SQL

• Avoid Performing DDL Operations

• Cache Sequence Numbers

• Control Cursor Access

• Maintain Persistent Connections

See Also:

Oracle Database VLDB and Partitioning Guide for information about impact of
parallel query execution on the shared pool

14.2.1 Use Shared Cursors
Reuse of shared SQL for multiple users running the same application avoids hard
parsing. Soft parses provide a significant reduction in the use of resources, such as
the shared pool and library cache latches.

To use shared cursors:

• Use bind variables instead of literals in SQL statements whenever possible.

For example, the following two SQL statements cannot use the same shared area
because they do not match character for character:

SELECT employee_id FROM employees WHERE department_id = 10;
SELECT employee_id FROM employees WHERE department_id = 20;

Replacing the literals with a bind variable results in only one SQL statement which
can be executed twice:

SELECT employee_id FROM employees WHERE department_id = :dept_id;

For existing applications where rewriting the code to use bind variables is not
possible, use the CURSOR_SHARING initialization parameter to avoid some of the hard
parse overhead, as described in "Sharing Cursors".

• Avoid application designs that result in large numbers of users issuing dynamic,
unshared SQL statements.

Typically, the majority of data required by most users can be satisfied using preset
queries. Use dynamic SQL where such functionality is required.

• Ensure that users of the application do not change the optimization approach and
goal for their individual sessions.

• Establish the following policies for application developers:
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– Standardize naming conventions for bind variables and spacing conventions
for SQL statements and PL/SQL blocks.

– Consider using stored procedures whenever possible.

Multiple users issuing the same stored procedure use the same shared
PL/SQL area automatically. Because stored procedures are stored in a parsed
form, their use reduces run-time parsing.

• For SQL statements which are identical but are not being shared, query the
V$SQL_SHARED_CURSOR view to determine why the cursors are not shared.

This includes optimizer settings and bind variable mismatches.

See Also:

Oracle Database SQL Tuning Guide for more information about cursor sharing

14.2.2 Use Single-User Logon and Qualified Table Reference
In large OLTP systems where users log in to the database with their own user logon,
qualifying the segment owner explicitly instead of using public synonyms significantly
reduces the number of entries in the dictionary cache.

An alternative to qualifying table names is to connect to the database through a single
user logon, rather than individual user logons. User-level validation can take place
locally on the middle tier.

14.2.3 Use PL/SQL
Using stored PL/SQL packages can overcome many of the scalability issues for
systems with thousands of users, each with individual user logon and public
synonyms. This is because a package is executed as the owner, rather than the caller,
which reduces the dictionary cache load considerably.

Note:

Oracle encourages the use of definer's rights packages to overcome scalability
issues. The benefits of reduced dictionary cache load are not as great with
invoker's rights packages.

14.2.4 Avoid Performing DDL Operations
Avoid performing DDL operations on high-usage segments during peak hours.
Performing DDL operations on these segments often results in the dependent SQL
being invalidated and reparsed in a later execution.
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14.2.5 Cache Sequence Numbers
Allocating sufficient cache space for frequently updated sequence numbers
significantly reduces the frequency of dictionary cache locks, which improves
scalability.

To configure the number of cache entries for each sequence:

• Use the CACHE keyword in the CREATE SEQUENCE or ALTER SEQUENCE statement.

14.2.6 Control Cursor Access
Depending on your application tool, you can control how frequently the application
performs parse calls by controlling cursor access.

The frequency with which the application either closes cursors or reuses existing
cursors for new SQL statements affects the amount of memory used by a session, and
often the amount of parsing performed by that session. An application that closes
cursors or reuses cursors (for a different SQL statement) does not require as much
session memory as an application that keeps cursors open. Conversely, that same
application may need to perform more parse calls, using more CPU and database
resources

Cursors associated with SQL statements that are not executed frequently can be
closed or reused for other statements, because the likelihood of re-executing (and
reparsing) that statement is low. Extra parse calls are required when a cursor
containing a SQL statement that will be re-executed is closed or reused for another
statement. Had the cursor remained open, it may have been reused without the
overhead of issuing a parse call.

The ways in which you control cursor access depends on your application
development tool. This section describes the methods used for Oracle Database tools:

• Controlling Cursor Access Using OCI

• Controlling Cursor Access Using Oracle Precompilers

• Controlling Cursor Access Using SQLJ

• Controlling Cursor Access Using JDBC

• Controlling Cursor Access Using Oracle Forms

See Also:

The tool-specific documentation for information about each tool

14.2.6.1 Controlling Cursor Access Using OCI
When using Oracle Call Interface (OCI), do not close and reopen cursors that you will
be re-executing. Instead, leave the cursors open, and change the literal values in the
bind variables before execution.
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Avoid reusing statement handles for new SQL statements when the existing SQL
statement will be re-executed in the future.

14.2.6.2 Controlling Cursor Access Using Oracle Precompilers
When using the Oracle precompilers, you can control when cursors are closed by
setting precompiler clauses. In Oracle mode, the clauses are as follow:

• HOLD_CURSOR = YES 

• RELEASE_CURSOR = NO 

• MAXOPENCURSORS = desired_value 

The precompiler clauses can be specified on the precompiler command line or within
the precompiler program. Oracle recommends that you not use ANSI mode, in which
the values of HOLD_CURSOR and RELEASE_CURSOR are switched.

See Also:

Your language's precompiler manual for information about these clauses

14.2.6.3 Controlling Cursor Access Using SQLJ
Prepare the SQL statement, then re-execute the statement with the new values for the
bind variables. The cursor stays open for the duration of the session.

Note:

Starting with Oracle Database 12c Release 2 (12.2), server-side SQLJ code is
not supported, that is, you cannot use SQLJ code inside stored procedures,
functions, and triggers.

14.2.6.4 Controlling Cursor Access Using JDBC
Avoid closing cursors if they will be re-executed, because the new literal values can be
bound to the cursor for re-execution. Alternatively, JDBC provides a SQL statement
cache within the JDBC client using the setStmtCacheSize() method. Using this method,
JDBC creates a SQL statement cache that is local to the JDBC program.

See Also:

Oracle Database JDBC Developer's Guide for information about using the
JDBC SQL statement cache
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14.2.6.5 Controlling Cursor Access Using Oracle Forms
With Oracle Forms, it is possible to control some aspects of cursor access at run time,
the trigger level, or the form level.

14.2.7 Maintain Persistent Connections
Large OLTP applications with middle tiers should maintain connections, instead of
connecting and disconnecting for each database request. Maintaining persistent
connections saves CPU resources and database resources, such as latches.

14.3 Configuring the Shared Pool
This section describes how to configure the shared pool and contains the following
topics:

• Sizing the Shared Pool

• Deallocating Cursors

• Caching Session Cursors

• Sharing Cursors

• Keeping Large Objects to Prevent Aging

• Configuring the Reserved Pool

14.3.1 Sizing the Shared Pool
When configuring a new database instance, it is difficult to know the correct size for
the shared pool cache. Typically, a DBA makes a first estimate for the cache size, then
runs a representative workload on the instance, and examines the relevant statistics to
see whether the cache is under-configured or over-configured.

For most OLTP applications, shared pool size is an important factor in application
performance. Shared pool size is less important for applications that issue a very
limited number of discrete SQL statements, such as decision support systems (DSS).

If the shared pool is too small, then extra resources are used to manage the limited
amount of available space. This consumes CPU and latching resources, and causes
contention. Ideally, the shared pool should be just large enough to cache frequently-
accessed objects. Having a significant amount of free memory in the shared pool is a
waste of memory. When examining the statistics after the database has been running,
ensure that none of these mistakes are present in the workload.

This section describes how to size the shared pool and contains the following topics:

• Using Library Cache Statistics

• Using Shared Pool Advisory Statistics

• Using Dictionary Cache Statistics

• Increasing Memory Allocated to the Shared Pool

• Reducing Memory Allocated to the Shared Pool
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14.3.1.1 Using Library Cache Statistics
When sizing the shared pool, the goal is to cache SQL statements that are executed
multiple times in the library cache without over-allocating memory. To accomplish this
goal, examine the following library cache statistics:

• RELOADS

The RELOADS column in the V$LIBRARYCACHE view shows the amount of reloading (or
reparsing) of a previously-cached SQL statement that aged out of the cache. If the
application reuses SQL effectively and runs on a system with an optimal shared
pool size, this statistic should have a value near zero.

• INVALIDATIONS

The INVALIDATIONS column in V$LIBRARYCACHE view shows the number of times
library cache data was invalidated and had to be reparsed. This statistic should
have a value near zero, especially on OLTP systems during peak loads. This
means SQL statements that can be shared were invalidated by some operation
(such as a DDL).

• Library cache hit ratio

The library cache hit ratio is a broad indicator of the library cache health. This
value should be considered along with the other statistics, such as the rate of hard
parsing and if there is any shared pool or library cache latch contention.

• Amount of free memory in the shared pool

To view the amount of free memory in the shared pool, query the V$SGASTAT
performance view. Ideally, free memory should be as low as possible, without
causing any reparsing on the system.

The following sections describe how to view and examine these library cache
statistics:

• Using the V$LIBRARYCACHE View

• Calculating the Library Cache Hit Ratio

• Viewing the Amount of Free Memory in the Shared Pool

14.3.1.1.1 Using the V$LIBRARYCACHE View
Use the V$LIBRARYCACHE view to monitor statistics that reflect library cache activity.
These statistics reflect all library cache activity after the most recent database instance
startup.

Each row in this view contains statistics for one type of item kept in the library cache.
The item described by each row is identified by the value of the NAMESPACE column.
Rows with the following NAMESPACE values reflect library cache activity for SQL
statements and PL/SQL blocks:

• SQL AREA

• TABLE/PROCEDURE

• BODY

• TRIGGER
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Rows with other NAMESPACE values reflect library cache activity for object definitions that
Oracle Database uses for dependency maintenance.

Example 14-1 shows a query of this view to examine each namespace individually.

Example 14-1    Querying the V$LIBRARYCACHE View

SELECT namespace, pins, pinhits, reloads, invalidations
  FROM V$LIBRARYCACHE
 ORDER BY namespace;

The output of this query might look like the following:

NAMESPACE             PINS    PINHITS    RELOADS INVALIDATIONS
--------------- ---------- ---------- ---------- -------------
BODY                  8870       8819          0             0
CLUSTER                393        380          0             0
INDEX                   29          0          0             0
OBJECT                   0          0          0             0
PIPE                 55265      55263          0             0
SQL AREA          21536413   21520516      11204             2
TABLE/PROCEDURE   10775684   10774401          0             0
TRIGGER               1852       1844          0             0

In this example, the output shows that:

• For the SQL AREA namespace, there are 21,536,413 executions.

• 11,204 of these executions resulted in a library cache miss, requiring the database
to implicitly reparse a statement or block, or reload an object definition because it
aged out of the library cache.

• SQL statements are invalidated twice, again causing library cache misses.

Note:

This query returns data from instance startup. Using statistics gathered over an
interval instead may better identify the problem. For information about
gathering information over an interval, see Automatic Performance
Diagnostics .

See Also:

Oracle Database Reference for information about the V$LIBRARYCACHE view

14.3.1.1.2 Calculating the Library Cache Hit Ratio
To calculate the library cache hit ratio, use the following formula:

Library Cache Hit Ratio = sum(pinhits) / sum(pins)

Applying the library cache hit ratio formula to Example 14-1 results in the following
library cache hit ratio:
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SUM(PINHITS)/SUM(PINS)
----------------------
            .999466248

In this example, the hit percentage is about 99.94%, which means that only .06% of
executions resulted in reparsing.

14.3.1.1.3 Viewing the Amount of Free Memory in the Shared Pool
The amount of free memory in the shared pool is reported in the V$SGASTAT view.

Example 14-2 shows a query of this view.

Example 14-2    Querying the V$SGASTAT View

SELECT *
  FROM V$SGASTAT
 WHERE name = 'free memory'
   AND pool = 'shared pool';

The output of this query might look like the following:

POOL        NAME                            BYTES
----------- -------------------------- ----------
shared pool free memory                   4928280

If free memory is always available in the shared pool, then increasing its size offers
little or no benefit. Yet, just because the shared pool is full does not necessarily mean
there is a problem. It may be indicative of a well-configured system.

14.3.1.2 Using Shared Pool Advisory Statistics
The amount of memory available for the library cache can drastically affect the parse
rate of Oracle Database. To help you correctly size the library cache, Oracle Database
provides the following shared pool advisory views:

• V$SHARED_POOL_ADVICE

• V$LIBRARY_CACHE_MEMORY

• V$JAVA_POOL_ADVICE

• V$JAVA_LIBRARY_CACHE_MEMORY

These shared pool advisory views provide information about library cache memory,
enabling you to predict how changing the size of the shared pool can affect aging out
of objects in the shared pool. The shared pool advisory statistics in these views track
the library cache's use of shared pool memory and predict how the library cache will
behave in shared pools of different sizes. Using these views enable you to determine:

• How much memory the library cache is using

• How much memory is currently pinned

• How much memory is on the shared pool's Least Recently Used (LRU) list

• How much time might be lost or gained by changing the size of the shared pool

These views display shared pool advisory statistics when the shared pool advisory is
enabled. The statistics reset when the advisory is disabled.

The following sections describe these views in more detail:
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• About the V$SHARED_POOL_ADVICE View

• About the V$LIBRARY_CACHE_MEMORY View

• About V$JAVA_POOL_ADVICE and V$JAVA_LIBRARY_CACHE_MEMORY
Views

14.3.1.2.1 About the V$SHARED_POOL_ADVICE View
The V$SHARED_POOL_ADVICE view displays information about estimated parse time in the
shared pool for different pool sizes. The sizes range from 10% of the current shared
pool size or the amount of pinned library cache memory—whichever is higher—to
200% of the current shared pool size, in equal intervals. The value of the interval
depends on the current size of the shared pool.

See Also:

Oracle Database Reference for more information about the
V$SHARED_POOL_ADVICE view

14.3.1.2.2 About the V$LIBRARY_CACHE_MEMORY View
The V$LIBRARY_CACHE_MEMORY view displays information about memory allocated to
library cache memory objects in different namespaces. A memory object is an internal
grouping of memory for efficient management. A library cache object may consist of
one or more memory objects.

See Also:

Oracle Database Reference for more information about the
V$LIBRARY_CACHE_MEMORY view

14.3.1.2.3 About V$JAVA_POOL_ADVICE and V$JAVA_LIBRARY_CACHE_MEMORY
Views

The V$JAVA_POOL_ADVICE and V$JAVA_LIBRARY_CACHE_MEMORY views contain Java pool
advisory statistics that track information about library cache memory used for Java and
predict how changing the size of the Java pool affects the parse rate.

The V$JAVA_POOL_ADVICE view displays information about estimated parse time in the
Java pool for different pool sizes. The sizes range from 10% of the current Java pool
size or the amount of pinned Java library cache memory—whichever is higher—to
200% of the current Java pool size, in equal intervals. The value of the interval
depends on the current size of the Java pool.
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See Also:

Oracle Database Reference for more information about the
"V$JAVA_POOL_ADVICE" and "V$JAVA_LIBRARY_CACHE_MEMORY"
views

14.3.1.3 Using Dictionary Cache Statistics
Typically, if the shared pool is adequately sized for the library cache, it will also be
adequate sized for the dictionary cache data.

Misses on the data dictionary cache are to be expected in some cases. When the
database instance starts up, the data dictionary cache does not contain any data.
Therefore, any SQL statement issued is likely to result in cache misses. As more data
is read into the cache, the likelihood of cache misses decreases. Eventually, the
database reaches a steady state, in which the most frequently-used dictionary data is
in the cache. At this point, very few cache misses occur.

Each row in the V$ROWCACHE view contains statistics for a single type of data dictionary
item. These statistics reflect all data dictionary activity since the most recent instance
startup.

Table 14-1 lists the columns in the V$ROWCACHE view that reflect the use and
effectiveness of the data dictionary cache.

Table 14-1    Data Dictionary Columns in the V$ROWCACHE View

Column Description

PARAMETER Identifies a particular data dictionary item. For each row, the
value in this column is the item prefixed by dc_. For example, in
the row that contains statistics for file descriptions, this column
contains the value dc_files.

GETS Shows the total number of requests for information about the
corresponding item. For example, in the row that contains
statistics for file descriptions, this column contains the total
number of requests for file description data.

GETMISSES Shows the number of data requests that are not satisfied by the
cache and required an I/O.

MODIFICATIONS Shows the number of times data in the dictionary cache was
updated.

Example 14-3 shows a query of this view to monitor the statistics over a period while
the application is running. The derived column PCT_SUCC_GETS can be considered as the
item-specific hit ratio.

Example 14-3    Querying the V$ROWCACHE View

column parameter format a21
column pct_succ_gets format 999.9
column updates format 999,999,999

SELECT parameter,
       sum(gets),
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       sum(getmisses),
       100*sum(gets - getmisses) / sum(gets) pct_succ_gets,
       sum(modifications) updates
  FROM V$ROWCACHE
 WHERE gets > 0
 GROUP BY parameter;

The output of this query might look like the following:

PARAMETER              SUM(GETS) SUM(GETMISSES) PCT_SUCC_GETS      UPDATES
--------------------- ---------- -------------- ------------- ------------
dc_database_links             81              1          98.8            0
dc_free_extents            44876          20301          54.8       40,453
dc_global_oids                42              9          78.6            0
dc_histogram_defs           9419            651          93.1            0
dc_object_ids              29854            239          99.2           52
dc_objects                 33600            590          98.2           53
dc_profiles                19001              1         100.0            0
dc_rollback_segments       47244             16         100.0           19
dc_segments               100467          19042          81.0       40,272
dc_sequence_grants           119             16          86.6            0
dc_sequences               26973             16          99.9       26,811
dc_synonyms                 6617            168          97.5            0
dc_tablespace_quotas         120              7          94.2           51
dc_tablespaces            581248             10         100.0            0
dc_used_extents            51418          20249          60.6       42,811
dc_user_grants             76082             18         100.0            0
dc_usernames              216860             12         100.0            0
dc_users                  376895             22         100.0            0

In this example, the output shows the following:

• There are large numbers of misses and updates for used extents, free extents,
and segments. This implies that the database instance had a significant amount of
dynamic space extension.

• Comparing the percentage of successful gets with the actual number of gets
indicates the shared pool is large enough to adequately store dictionary cache
data.

You can also calculate the overall dictionary cache hit ratio using the following query;
however, summing up the data over all the caches will lose the finer granularity of
data:

SELECT (SUM(gets - getmisses - fixed)) / SUM(gets) "row cache"
  FROM V$ROWCACHE;

14.3.1.4 Increasing Memory Allocated to the Shared Pool
Increasing the amount of memory for the shared pool increases the amount of memory
available to the library cache, the dictionary cache, and the result cache. Before doing
so, review the shared pool statistics and examine:

• If the value of the V$LIBRARYCACHE.RELOADS column is near zero

• If the ratio of total V$ROWCACHE.GETMISSES column to total V$ROWCACHE.GETS is less than
10% or 15% for frequently-accessed dictionary caches, depending on the
application

If both of these conditions are met, then the shared pool is adequately sized and
increasing its memory will likely not improve performance. On the other hand, if either
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of these conditions is not met, and the application is using the shared pool effectively,
as described in "Using the Shared Pool", then consider increasing the memory of the
shared pool.

To increase the size of the shared pool:

• Increase the value of the SHARED_POOL_SIZE initialization parameter until the
conditions are met.

The maximum value for this parameter depends on your operating system. This
measure reduces implicit reparsing of SQL statements and PL/SQL blocks on
execution.

IC - Need link to "Managing Server Result Cache Memory with Init Parameters"

14.3.1.5 Reducing Memory Allocated to the Shared Pool
If the value of the V$LIBRARYCACHE.RELOADS column is near zero, and there is a small
amount of free memory in the shared pool, then the shared pool is adequately sized to
store the most frequently-accessed data. If there are always significant amounts of
free memory in the shared pool and you want to allocate this memory elsewhere, then
consider reducing the shared pool size.

To decrease the size of the shared pool

• Reduce the value of the SHARED_POOL_SIZE initialization parameter, while ensuring
that good performance is maintained.

14.3.2 Deallocating Cursors
If there are no library cache misses, then consider setting the value of the 
CURSOR_SPACE_FOR_TIME initialization parameter to TRUE to accelerate execution calls.
This parameter specifies whether a cursor can be deallocated from the library cache to
make room for a new SQL statement.

If the CURSOR_SPACE_FOR_TIME parameter is set to:

• FALSE (the default), then a cursor can be deallocated from the library cache
regardless of whether application cursors associated with its SQL statement are
open.

In this case, Oracle Database must verify that the cursor containing the SQL
statement is in the library cache.

• TRUE, then a cursor can be deallocated only when all application cursors
associated with its statement are closed.

In this case, Oracle Database does not need to verify that a cursor is in the library
cache because it cannot be deallocated while an application cursor associated
with it is open.

Setting the value of the parameter to TRUE saves Oracle Database a small amount of
time and may slightly improve the performance of execution calls. This value also
prevents the deallocation of cursors until associated application cursors are closed.

Do not set the value of the CURSOR_SPACE_FOR_TIME parameter to TRUE if:

• Library cache misses are found in execution calls
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Library cache misses indicate that the shared pool is not large enough to hold the
shared SQL areas of all concurrently open cursors. If the shared pool does not
have enough space for a new SQL statement and the value for this parameter is
set to TRUE, then the statement cannot be parsed and Oracle Database returns an
error indicating that there is not enough shared memory.

• The amount of memory available to each user for private SQL areas is scarce

This value also prevents the deallocation of private SQL areas associated with
open cursors. If the private SQL areas for all concurrently open cursors fills the
available memory so that there is no space for a new SQL statement, then the
statement cannot be parsed and Oracle Database returns an error indicating that
there is not enough memory.

If the shared pool does not have enough space for a new SQL statement and the
value of this parameter is set to FALSE, then Oracle Database deallocates an existing
cursor. Although deallocating a cursor may result in a subsequent library cache miss
(if the cursor is re-executed), this is preferable to an error halting the application
because a SQL statement cannot be parsed.

14.3.3 Caching Session Cursors
The session cursor cache contains closed session cursors for SQL and PL/SQL,
including recursive SQL. This cache can be useful to applications that use Oracle
Forms because switching from one form to another closes all session cursors
associated with the first form. If an application repeatedly issues parse calls on the
same set of SQL statements, then reopening session cursors can degrade
performance. By reusing cursors, the database reduces parse times, leading to faster
overall execution times.

This section describes the session cursor cache and contains the following topics:

• About the Session Cursor Cache

• Enabling the Session Cursor Cache

• Sizing the Session Cursor Cache

14.3.3.1 About the Session Cursor Cache
A session cursor represents an instantiation of a shared child cursor, which is stored in
the shared pool, for a specific session. Each session cursor stores a reference to a
child cursor that it has instantiated.

Oracle Database checks the library cache to determine whether more than three parse
requests have been issued on a given statement. If a cursor has been closed three
times, then Oracle Database assumes that the session cursor associated with the
statement should be cached and moves the cursor into the session cursor cache.

Subsequent requests to parse a SQL statement by the same session search an array
for pointers to the shared cursor. If the pointer is found, then the database
dereferences the pointer to determine whether the shared cursor exists. To reuse a
cursor from the cache, the cache manager checks whether the cached states of the
cursor match the current session and system environment.
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Note:

Reuse of a cached cursor still registers as a parse, even though it is not a hard
parse.

An LRU algorithm removes entries in the session cursor cache to make room for new
entries when needed. The cache also uses an internal time-based algorithm to age out
cursors that have been idle for an certain amount of time.

14.3.3.2 Enabling the Session Cursor Cache
The following initialization parameters pertain to the session cursor cache:

• SESSION_CACHED_CURSORS

This parameter sets the maximum number of cached closed cursors for each
session. The default value is 50. Use this parameter to reuse cursors from the
cache for the statements that get executed repeatedly in the same session.

• OPEN_CURSORS

This parameter specifies the maximum number of cursors a session can have
open simultaneously. For example, if its value is set to 1000, then each session
can have up to 1000 cursors open at one time.

These parameters are independent. For example, you can set the value of the
SESSION_CACHED_CURSORS parameter higher than the value of the OPEN_CURSORS parameter
because session cursors are not cached in an open state.

To enable the session cursor cache:

1. Determine the maximum number of session cursors to keep in the cache.

2. Do one of the following:

• To enable static caching, set the value of the SESSION_CACHED_CURSORS
parameter to the number determined in the previous step.

• To enable dynamic caching, execute the following statement:

ALTER SESSION SET SESSION_CACHED_CURSORS = value;

14.3.3.3 Sizing the Session Cursor Cache
Use the V$SESSTAT view to determine if the session cursor cache is adequately sized for
the database instance.

To size the session cursor cache:

1. Query the V$SESSTAT view to determine how many cursors are currently cached in a
particular session.

2. Query the V$SESSTAT view to find the percentage of parse calls that found a cursor
in the session cursor cache.

3. Consider increasing the value of the SESSION_CACHED_CURSORS parameter if the
following conditions are true:

• The session cursor cache count is close to the maximum
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• The percentage of session cursor cache hits is low relative to the total parses

• The application repeatedly performs parse calls for the same queries

Example 14-4 shows two queries of this view.

Example 14-4    Querying the V$SESSTAT View

The following query finds how many cursors are currently cached in a particular
session:

SELECT a.value curr_cached, p.value max_cached,
       s.username, s.sid, s.serial#
  FROM v$sesstat a, v$statname b, v$session s, v$parameter2 p
 WHERE a.statistic# = b.statistic#  and s.sid=a.sid and a.sid=&sid
   AND p.name='session_cached_cursors'
   AND b.name = 'session cursor cache count';

The output of this query might look like the following:

CURR_CACHED MAX_CACHED USERNAME   SID    SERIAL#
----------- ---------- -------- ----- ----------
         49 50         APP         35        263

This output shows that the number of cursors currently cached for session 35 is close
to the maximum.

The following query finds the percentage of parse calls that found a cursor in the
session cursor cache:

SELECT cach.value cache_hits, prs.value all_parses,
       round((cach.value/prs.value)*100,2) as "% found in cache"
  FROM v$sesstat cach, v$sesstat prs, v$statname nm1, v$statname nm2
 WHERE cach.statistic# = nm1.statistic#
   AND nm1.name = 'session cursor cache hits'
   AND prs.statistic#=nm2.statistic#
   AND nm2.name= 'parse count (total)'
   AND cach.sid= &sid and prs.sid= cach.sid;

The output of this query might look like the following:

CACHE_HITS ALL_PARSES % found in cache
---------- ---------- ----------------
        34        700             4.57

This output shows that the number of hits in the session cursor cache for session 35 is
low compared to the total number of parses.

In this example, setting the value of the SESSION_CACHED_CURSORS parameter to 100 may
help boost performance.

14.3.4 Sharing Cursors
In the context of SQL parsing, an identical statement is a SQL statement whose text is
identical to another statement, character for character, including spaces, case, and
comments. A similar statement is identical except for the values of some literals.

The parse phase compares the statement text with statements in the shared pool to
determine if the statement can be shared. If the value of the CURSOR_SHARING
initialization parameter is set to EXACT (the default value), and if a statement in the
shared pool is not identical, then the database does not share the SQL area. Instead,
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each SQL statement has its own parent cursor and its own execution plan based on
the literal in the statement.

This section describes how cursors can be shared and contains the following topics:

• About Cursor Sharing

• Forcing Cursor Sharing

14.3.4.1 About Cursor Sharing
When SQL statements use literals rather than bind variables, setting the value of the
CURSOR_SHARING initialization parameter to FORCE enables the database to replace literals
with system-generated bind variables. Using this technique, the database may reduce
the number of parent cursors in the shared SQL area.

When the value of the CURSOR_SHARING parameter is set to FORCE, the database performs
the following steps during the parse phase:

1. Searches for an identical statement in the shared pool.

If an identical statement is found, then the database skips the next step and
proceeds to step 3. Otherwise, the database proceeds to the next step.

2. Searches for a similar statement in the shared pool.

If a similar statement is not found, then the database performs a hard parse. If a
similar statement is found, then the database proceeds to the next step.

3. Proceeds through the remaining steps of the parse phase to ensure that the
execution plan of the existing statement is applicable to the new statement.

If the plan is not applicable, then the database performs a hard parse. If the plan is
applicable, then the database proceeds to the next step.

4. Shares the SQL area of the statement.

For details about the various checks performed by the database, see "SQL Sharing
Criteria".

14.3.4.2 Forcing Cursor Sharing
The best practice is to write sharable SQL and use the default value of EXACT for the
CURSOR_SHARING initialization parameter. By default, Oracle Database uses adaptive
cursor sharing to enable a single SQL statement that contains bind variables to use
multiple execution plans. However, for applications with many similar statements that
use literals instead of bind variables, setting the value of the CURSOR_SHARING parameter
to FORCE may improve cursor sharing, resulting in reduced memory usage, faster
parses, and reduced latch contention. Consider this approach when statements in the
shared pool differ only in the values of literals, and when response time is poor
because of a high number of library cache misses. In this case, setting the value of the
CURSOR_SHARING parameter to FORCE maximizes cursor sharing and leverages adaptive
cursor sharing to generate multiple execution plans based on different literal value
ranges.

If stored outlines are generated with the value of the CURSOR_SHARING parameter set to
EXACT, then the database does not use stored outlines generated with literals. To avoid
this problem, generate outlines with CURSOR_SHARING set to FORCE and use the
CREATE_STORED_OUTLINES parameter.
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Setting the value of the CURSOR_SHARING parameter to FORCE has the following
drawbacks:

• The database must perform extra work during the soft parse to find a similar
statement in the shared pool.

• There is an increase in the maximum lengths (as returned by DESCRIBE) of any
selected expressions that contain literals in a SELECT statement. However, the
actual length of the data returned does not change.

• Star transformation is not supported.

When the value of the CURSOR_SHARING parameter is set to FORCE, the database uses one
parent cursor and one child cursor for each distinct SQL statement. The same plan is
used for each execution of the same statement. For example, consider the following
SQL statement:

SELECT *
  FROM hr.employees
 WHERE employee_id = 101;

If the value of the CURSOR_SHARING parameter is set to FORCE, then the database
optimizes this statement as if it contained a bind variable and uses bind peeking to
estimate cardinality.

Note:

Starting with Oracle Database 11g Release 2, setting the value of the
CURSOR_SHARING parameter to SIMILAR is obsolete. Consider using adaptive
cursor sharing instead.

See Also:

• Oracle Database Reference for information about the CURSOR_SHARING
initialization parameter

• Oracle Database SQL Tuning Guide for information about adaptive cursor
sharing

14.3.5 Keeping Large Objects to Prevent Aging
After an entry is loaded into the shared pool, it cannot be moved. Sometimes, as
entries are loaded and aged out, the free memory may become fragmented. Shared
SQL and PL/SQL areas age out of the shared pool according to an LRU algorithm that
is similar to database buffers. To improve performance and avoid reparsing, prevent
large SQL or PL/SQL areas from aging out of the shared pool.

The DBMS_SHARED_POOL package enables you to keep objects in shared memory, so that
they do not age out with the normal LRU mechanism. By using the DBMS_SHARED_POOL
package to load the SQL and PL/SQL areas before memory fragmentation occurs, the
objects can be kept in memory. This ensures that memory is available and prevents
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the sudden slowdowns in user response times that occur when SQL and PL/SQL
areas are accessed after being aged out.

Consider using the DBMS_SHARED_POOL package:

• When loading large PL/SQL objects, such as the STANDARD and DIUTIL packages.

When large PL/SQL objects are loaded, user response time may be affected if
smaller objects must age out of the shared pool to make room for the larger
objects. In some cases, there may be insufficient memory to load the large
objects.

• To keep compiled triggers on frequently used tables in the shared pool.

• Support sequences.

Sequence numbers are lost when a sequence ages out of the shared pool. The
DBMS_SHARED_POOL package keeps sequences in the shared pool, thus preventing
the loss of sequence numbers.

To keep a SQL or PL/SQL area in shared memory:

1. Decide which packages or cursors to keep in memory.

2. Start up the database.

3. Call the DBMS_SHARED_POOL.KEEP package to pin the objects.

This procedure ensures that the system does not run out of shared memory before
the pinned objects are loaded. Pinning the objects early in the life of the database
instance prevents memory fragmentation that may result from keeping a large
portion of memory in the middle of the shared pool.

See Also:

Oracle Database PL/SQL Packages and Types Reference for information
about using DBMS_SHARED_POOL procedures

14.3.6 Configuring the Reserved Pool
Although Oracle Database breaks down very large requests for memory into smaller
chunks, on some systems there may be a requirement to find a contiguous chunk of
memory (such as over 5 KB, the default minimum reserved pool allocation is 4,400
bytes).

If there is not enough free space in the shared pool, then Oracle Database must
search for and free enough memory to satisfy this request. This operation may hold
the latch resource for significant periods of time, causing minor disruption to other
concurrent attempts at memory allocation.

To avoid this, Oracle Database internally reserves a small memory area in the shared
pool by default that the database can use if the shared pool does not have enough
space. This reserved pool makes allocation of large chunks more efficient. The
database can use this memory for operations such as PL/SQL and trigger compilation,
or for temporary space while loading Java objects. After the memory allocated from
the reserved pool is freed, it is returned to the reserved pool.
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For large allocations, Oracle Database attempts to allocate space in the shared pool in
the following order:

1. From the unreserved part of the shared pool.

2. From the reserved pool.

If there is not enough space in the unreserved part of the shared pool, then Oracle
Database checks whether the reserved pool has enough space.

3. From memory.

If there is not enough space in the unreserved and reserved parts of the shared
pool, then Oracle Database attempts to free enough memory for the allocation.
The database then retries the unreserved and reserved parts of the shared pool.

This section describes how to configure the reserved pool and contains the following
topics:

• Sizing the Reserved Pool

• Increasing Memory Allocated to the Reserved Pool

• Reducing Memory Allocated to the Reserved Pool

14.3.6.1 Sizing the Reserved Pool
Typically, it is not necessary to change the default amount of space Oracle Database
reserves for the reserved pool. However, there may be cases where you need to set
aside space in the shared pool for unusually large allocations of memory.

You can set the reserved pool size by setting the value of the
SHARED_POOL_RESERVED_SIZE initialization parameter. The default value for the
SHARED_POOL_RESERVED_SIZE parameter is 5% of the SHARED_POOL_SIZE parameter.

If you set the value of the SHARED_POOL_RESERVED_SIZE parameter to more than half of
the SHARED_POOL_SIZE parameter, then Oracle Database returns an error because the
database does not allow you to reserve too much memory for the reserved pool. The
amount of operating system memory available may also constrain the size of the
shared pool. In general, set the value of the SHARED_POOL_RESERVED_SIZE parameter to
no higher than 10% of the SHARED_POOL_SIZE parameter. On most systems, this value is
sufficient if the shared pool is adequately tuned. If you increase this value, then the
database takes additional memory from the shared pool and reduces the amount of
unreserved shared pool memory available for smaller allocations.

When tuning these parameters, use statistics from the V$SHARED_POOL_RESERVED view.
On a system with ample free memory to increase the size of the SGA, the value of the
REQUEST_MISSES statistic should equal zero. If the system is constrained by operating
system memory, then the goal is to have the REQUEST_FAILURES statistic equal zero, or
at least prevent its value from increasing. If you cannot achieve these target values,
then increase the value of the SHARED_POOL_RESERVED_SIZE parameter. Also, increase the
value of the SHARED_POOL_SIZE parameter by the same amount, because the reserved
list is taken from the shared pool.

The V$SHARED_POOL_RESERVED fixed view can also indicate when the value of the
SHARED_POOL_SIZE parameter is too small. This can be the case if the REQUEST_FAILURES
statistic is greater than zero and increasing. If the reserved list is enabled, then
decrease the value of the SHARED_POOL_RESERVED_SIZE parameter. If the reserved list is
not enabled, then increase the value of the SHARED_POOL_SIZE parameter, as described
in "Increasing Memory Allocated to the Shared Pool".
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14.3.6.2 Increasing Memory Allocated to the Reserved Pool
The reserved pool is too small if the value of the REQUEST_FAILURES statistic is higher
than zero and increasing. In this case, increase the amount of memory available to the
reserved pool.

Note:

Increasing the amount of memory available on the reserved list does not affect
users who do not allocate memory from the reserved list.

To increase the size of the reserved pool:

• Increase the value of the SHARED_POOL_RESERVED_SIZE and SHARED_POOL_SIZE
initialization parameters accordingly.

The values that you select for these parameters depend on the system's SGA size
constraints, as described in "Sizing the Reserved Pool".

14.3.6.3 Reducing Memory Allocated to the Reserved Pool
The reserved pool is too large if the:

• REQUEST_MISSES statistic is zero or not increasing

• FREE_SPACE statistic is greater than or equal to 50% of the
SHARED_POOL_RESERVED_SIZE minimum

If either of these conditions is true, then reduce the amount of memory available to the
reserved pool.

To reduce the size of the reserved pool:

• Decrease the value of the SHARED_POOL_RESERVED_SIZE initialization parameter.

14.4 Configuring the Large Pool
Unlike the shared pool, the large pool does not have an LRU list. Oracle Database
does not attempt to age objects out of the large pool. Consider configuring a large pool
if the database instance uses any of the following Oracle Database features:

• Shared server

In a shared server architecture, the session memory for each client process is
included in the shared pool.

• Parallel query

Parallel query uses shared pool memory to cache parallel execution message
buffers.

• Recovery Manager

Recovery Manager (RMAN) uses the shared pool to cache I/O buffers during
backup and restore operations. For I/O server processes, backup, and restore
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operations, Oracle Database allocates buffers that are a few hundred kilobytes in
size.

This section describes how to configure the large pool for the shared server
architecture and contains the following topics:

• Configuring the Large Pool for Shared Server Architecture

• Configuring the Large Pool for Parallel Query

• Sizing the Large Pool

• Limiting Memory Use for User Sessions

• Reducing Memory Use Using Three-Tier Connections

See Also:

• Oracle Database Concepts for information about the large pool

• Oracle Database Backup and Recovery User's Guide for information about
sizing the large pool with Recovery Manager

14.4.1 Configuring the Large Pool for Shared Server Architecture
As Oracle Database allocates shared pool memory to shared server sessions, the
amount of shared pool memory available for the library cache and data dictionary
cache decreases. If you allocate the shared server session memory from a different
pool, then the shared pool can be reserved for caching shared SQL.

Oracle recommends using the large pool to allocate the User Global Area (UGA) for
the shared server architecture. Using the large pool instead of the shared pool
decreases fragmentation of the shared pool and eliminates the performance overhead
from shrinking the shared SQL cache.

By default, the large pool is not configured. If you do not configure the large pool, then
Oracle Database uses the shared pool for shared server user session memory. If you
do configure the large pool, Oracle Database still allocates a fixed amount of memory
(about 10K) for each configured session from the shared pool when a shared server
architecture is used. In either case, consider increasing the size of the shared pool
accordingly.

Note:

Even though use of shared memory increases with shared servers, the total
amount of memory use decreases. This is because there are fewer processes;
therefore, Oracle Database uses less PGA memory with shared servers when
compared to dedicated server environments.
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Tip:

To specify the maximum number of concurrent shared server sessions that the
database allows, use the CIRCUITS initialization parameter.

Tip:

For best performance with sort operations using shared servers, set the values
of the SORT_AREA_SIZE and SORT_AREA_RETAINED_SIZE initialization parameters to
the same value. This keeps the sort result in the large pool instead of writing it
to disk.

14.4.2 Configuring the Large Pool for Parallel Query
Parallel query uses shared pool memory to cache parallel execution message buffers
when Automatic Memory Management or Automatic Shared Memory Management is
not enabled. Caching parallel execution message buffers in the shared pool increases
its workload and may cause fragmentation.

To avoid possible negative impact to performance, Oracle recommends that you do
not manage SGA memory manually when parallel query is used. Instead, you should
enable Automatic Memory Management or Automatic Shared Memory Management to
ensure that the large pool will be used to cache parallel execution memory buffers.

See Also:

• "Automatic Memory Management"

• "Automatic Shared Memory Management"

• Oracle Database VLDB and Partitioning Guide

14.4.3 Sizing the Large Pool
When storing shared server-related UGA in the large pool, the exact amount of UGA
that Oracle Database uses depends on the application. Each application requires a
different amount of memory for session information, and configuration of the large pool
should reflect the memory requirement.

Oracle Database collects statistics on memory used by a session and stores them in
the V$SESSTAT view. Table 14-2 lists the statistics from this view that reflect session
UGA memory.
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Table 14-2    Memory Statistics in the V$SESSTAT View

Statistic Description

session UGA memory Shows the amount of memory in bytes allocated to the session.

session UGA memory max Shows the maximum amount of memory in bytes ever allocated to
the session.

There are two methods to use this view to determine a correct size for the large pool.
One method is to configure the size of the large pool based on the number of
simultaneously active sessions. To do this, observe UGA memory usage for a typical
user and multiply this amount by the estimated number of user sessions. For example,
if the shared server requires 200K to 300K to store session information for a typical
user session and you anticipate 100 active user sessions simultaneously, then
configure the large pool to 30 MB.

Another method is to calculate the total and maximum memory being used by all user
sessions. Example 14-5 shows two queries of the V$SESSTAT and V$STATNAME views to
do this.

Example 14-5    Querying the V$SESSTAT and V$STATNAME Views

While the application is running, issue the following queries:

SELECT SUM(value) || ' bytes' "total memory for all sessions"
  FROM V$SESSTAT, V$STATNAME
 WHERE name = 'session uga memory'
   AND V$SESSTAT.STATISTIC# = V$STATNAME.STATISTIC#;

SELECT SUM(value) || ' bytes' "total max mem for all sessions"
  FROM V$SESSTAT, V$STATNAME
 WHERE name = 'session uga memory max'
   AND V$SESSTAT.STATISTIC# = V$STATNAME.STATISTIC#;

These queries also select from the V$STATNAME view to obtain internal identifiers for
session memory and max session memory.

The output of these queries might look like the following:

TOTAL MEMORY FOR ALL SESSIONS
-----------------------------
157125 BYTES

TOTAL MAX MEM FOR ALL SESSIONS
------------------------------
417381 BYTES

The result of the first query shows that the memory currently allocated to all sessions
is 157,125 bytes. This value is the total memory with a location that depends on how
the sessions are connected to the database. If the sessions are connected to
dedicated server processes, then this memory is part of the memories of the user
processes. If the sessions are connected to shared server processes, then this
memory is part of the shared pool.

The result of the second query shows that the sum of the maximum size of the
memory for all sessions is 417,381 bytes. The second result is greater than the first
because some sessions have deallocated memory since allocating their maximum
amounts.
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Use the result of either queries to determine the correct size for the shared pool. The
first value is likely to be a better estimate than the second, unless if you expect all
sessions to reach their maximum allocations simultaneously.

To size the large pool:

1. Verify the pool (shared pool or large pool) in which the memory for an object
resides by checking the POOL column in the V$SGASTAT view.

2. Set a value for the LARGE_POOL_SIZE initialization parameter.

The minimum value for this parameter is 300K.

14.4.4 Limiting Memory Use for User Sessions
To restrict the memory used by each client session from the SGA, set a resource limit
using PRIVATE_SGA.

PRIVATE_SGA defines the number of bytes of memory used from the SGA by a session.
However, this parameter is rarely used, because most DBAs do not limit SGA
consumption on a user-by-user basis.

See Also:

Oracle Database SQL Language Reference for information about setting the
PRIVATE_SGA resource limit

14.4.5 Reducing Memory Use Using Three-Tier Connections
If there is a high number of connected users, then consider reducing memory usage
by implementing three-tier connections. Using a transaction process (TP) monitor is
feasible only with pure transactional models because locks and uncommitted DML
operations cannot be held between calls.

Using a shared server environment:

• Is much less restrictive of the application design than a TP monitor.

• Dramatically reduces operating system process count and context switches by
enabling users to share a pool of servers.

• Substantially reduces overall memory usage, even though more SGA is used in
shared server mode.
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15
Tuning the Result Cache

This chapter describes how to tune the result cache and contains the following topics:

• About the Result Cache

• Configuring the Result Cache

• Specifying Queries for Result Caching

• Monitoring the Result Cache

15.1 About the Result Cache
A result cache is an area of memory, either in the Shared Global Area (SGA) or client
application memory, that stores the results of a database query or query block for
reuse. The cached rows are shared across SQL statements and sessions unless they
become stale.

This section describes the two types of result cache and contains the following topics:

• Server Result Cache Concepts

• Client Result Cache Concepts

15.1.1 Server Result Cache Concepts
The server result cache is a memory pool within the shared pool. This memory pool
consists of the SQL query result cache—which stores results of SQL queries—and the
PL/SQL function result cache, which stores values returned by PL/SQL functions.

This section describes the server result cache and contains the following topics:

• Benefits of Using the Server Result Cache

• Understanding How the Server Result Cache Works

See Also:

• Oracle Database Concepts for information about the server result cache

• Oracle Database PL/SQL Language Reference for information about the
PL/SQL function result cache

15.1.1.1 Benefits of Using the Server Result Cache
The benefits of using the server result cache depend on the application. OLAP
applications can benefit significantly from its use. Good candidates for caching are
queries that access a high number of rows but return a small number, such as those in
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a data warehouse. For example, you can use advanced query rewrite with
equivalences to create materialized views that materialize queries in the result cache
instead of using tables.

See Also:

Oracle Database Data Warehousing Guide for information about using the
result cache and advance query rewrite with equivalences

15.1.1.2 Understanding How the Server Result Cache Works
When a query executes, the database searches the cache memory to determine
whether the result exists in the result cache. If the result exists, then the database
retrieves the result from memory instead of executing the query. If the result is not
cached, then the database executes the query, returns the result as output, and stores
the result in the result cache.

When users execute queries and functions repeatedly, the database retrieves rows
from the cache, decreasing response time. Cached results become invalid when data
in dependent database objects is modified.

The following sections contains examples of how to retrieve results from the server
result cache:

• How Results are Retrieved in a Query

• How Results are Retrieved in a View

15.1.1.2.1 How Results are Retrieved in a Query
The following example shows a query of hr.employees that uses the RESULT_CACHE hint
to retrieve rows from the server result cache.

SELECT /*+ RESULT_CACHE */ department_id, AVG(salary)
  FROM hr.employees
 GROUP BY department_id;

A portion of the execution plan of this query might look like the following:

--------------------------------------------------------------
| Id | Operation          | Name                       |Rows
--------------------------------------------------------------
| 0 | SELECT STATEMENT    |                            | 11
| 1 |  RESULT CACHE       | 8fpza04gtwsfr6n595au15yj4y |
| 2 |   HASH GROUP BY     |                            | 11
| 3 |    TABLE ACCESS FULL| EMPLOYEES                  | 107
--------------------------------------------------------------

In this example, the results are retrieved directly from the cache, as indicated in step 1
of the execution plan. The value in the Name column is the cache ID of the result.

The following example shows a query of the V$RESULT_CACHE_OBJECTS view to retrieve
detailed statistics about the cached result.

SELECT id, type, creation_timestamp, block_count,
       column_count, pin_count, row_count
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  FROM V$RESULT_CACHE_OBJECTS
 WHERE cache_id = '8fpza04gtwsfr6n595au15yj4y';

In this example, the value of CACHE_ID is the cache ID obtained from the explain plan in
the earlier example. The output of this query might look like the following:

        ID TYPE       CREATION_ BLOCK_COUNT COLUMN_COUNT  PIN_COUNT  ROW_COUNT
---------- ---------- --------- ----------- ------------ ---------- ----------
         2 Result     06-NOV-11           1            2          0         12

15.1.1.2.2 How Results are Retrieved in a View
Example 15-1 shows a query that uses the RESULT_CACHE hint within a WITH clause view.

Example 15-1    RESULT_CACHE Hint Specified in a WITH View

WITH summary AS
( SELECT /*+ RESULT_CACHE */ department_id, avg(salary) avg_sal
    FROM hr.employees
   GROUP BY department_id )
SELECT d.*, avg_sal
  FROM hr.departments d, summary s
 WHERE d.department_id = s.department_id;

A portion of the execution plan of this query might look like the following:

------------------------------------------------------------------------------------------------
| Id| Operation             | Name                      | Rows | Bytes | Cost (%CPU)| Time     |
------------------------------------------------------------------------------------------------
|  0| SELECT STATEMENT      |                           |   11 |   517 |     7  (29)| 00:00:01 |
|* 1|  HASH JOIN            |                           |   11 |   517 |     7  (29)| 00:00:01 |
|  2|   VIEW                |                           |   11 |   286 |     4  (25)| 00:00:01 |
|  3|    RESULT CACHE       | 8nknkh64ctmz94a5muf2tyb8r |      |       |            |          |
|  4|     HASH GROUP BY     |                           |   11 |    77 |     4  (25)| 00:00:01 |
|  5|      TABLE ACCESS FULL| EMPLOYEES                 |  107 |   749 |     3   (0)| 00:00:01 |
|  6|   TABLE ACCESS FULL   | DEPARTMENTS               |   27 |   567 |     2   (0)| 00:00:01 |
------------------------------------------------------------------------------------------------

In this example, the summary view results are retrieved directly from the cache, as
indicated in step 3 of the execution plan. The value in the Name column is the cache ID
of the result.

15.1.2 Client Result Cache Concepts
The Oracle Call Interface (OCI) client result cache is a memory area inside a client
process that caches SQL query result sets for OCI applications. This client cache
exists for each client process and is shared by all sessions inside the process. Oracle
recommends client result caching for queries of read-only or read-mostly tables.

Note:

The client result cache is distinct from the server result cache, which resides in
the SGA. When client result caching is enabled, the query result set can be
cached on the client, server, or both. Client caching can be enabled even if the
server result cache is disabled.
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This section describes the client result cache and contains the following topics:

• Benefits of Using the Client Result Cache

• Understanding How the Client Result Cache Works

15.1.2.1 Benefits of Using the Client Result Cache
OCI drivers, such as OCCI, the JDBC OCI driver, and ODP.NET, support client result
caching. Performance benefits of using the client result cache include:

• Reduced query response time

When queries are executed repeatedly, the application retrieves results directly
from the client cache memory, resulting in faster query response time.

• More efficient use of database resources

The reduction in server round trips may result in substantial performance savings
of server resources, such as server CPU and I/O. These resources are freed for
other tasks, thereby making the server more scalable.

• Reduced memory cost

The result cache uses client memory, which may be less expensive than server
memory.

15.1.2.2 Understanding How the Client Result Cache Works
The client result cache stores the results of the outermost query, which are the
columns defined by the OCI application. Subqueries and query blocks are not cached.

The following figure illustrates a client process with a database login session. This
client process has one client result cache shared amongst multiple application
sessions running in the client process. If the first application session runs a query, then
it retrieves rows from the database and caches them in the client result cache. If other
application sessions run the same query, then they also retrieve rows from the client
result cache.

Figure 15-1    Client Result Cache

Database

Keeps

Consistent

Client Result Cache

Result

Set

SELECT department_id


FROM departments

SELECT department_id


FROM departments

10,20,30,40,..

Client Process

Application

Session

Application

Session

Client Server

Chapter 15
About the Result Cache

15-4



The client result cache transparently keeps the result set consistent with session state
or database changes that affect it. When a transaction changes the data or metadata
of database objects used to build the cached result, the database sends an
invalidation to the OCI client on its next round trip to the server.

See Also:

Oracle Call Interface Programmer's Guide for details about the client result
cache

15.2 Configuring the Result Cache
This section describes how to configure the server and client result cache and
contains the following topics:

• Configuring the Server Result Cache

• Configuring the Client Result Cache

• Setting the Result Cache Mode

• Requirements for the Result Cache

15.2.1 Configuring the Server Result Cache
By default, on database startup, Oracle Database allocates memory to the server
result cache in the shared pool. The memory size allocated depends on the memory
size of the shared pool and the selected memory management system:

• Automatic shared memory management

If you are managing the size of the shared pool using the SGA_TARGET initialization
parameter, Oracle Database allocates 0.50% of the value of the SGA_TARGET
parameter to the result cache.

• Manual shared memory management

If you are managing the size of the shared pool using the SHARED_POOL_SIZE
initialization parameter, then Oracle Database allocates 1% of the shared pool size
to the result cache.

Note:

Oracle Database will not allocate more than 75% of the shared pool to the
server result cache.

The size of the server result cache grows until it reaches the maximum size. Query
results larger than the available space in the cache are not cached. The database
employs a Least Recently Used (LRU) algorithm to age out cached results, but does
not otherwise automatically release memory from the server result cache.
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This section describes how to configure the server result cache and contains the
following topics:

• Sizing the Server Result Cache Using Initialization Parameters

• Managing the Server Result Cache Using DBMS_RESULT_CACHE

15.2.1.1 Sizing the Server Result Cache Using Initialization Parameters
Table 15-1 lists the database initialization parameters that control the server result
cache.

Table 15-1    Server Result Cache Initialization Parameters

Parameter Description

RESULT_CACHE_MAX_SIZE Specifies the memory allocated to the server result
cache. To disable the server result cache, set this
parameter to 0.

RESULT_CACHE_MAX_RESULT Specifies the maximum amount of server result
cache memory (in percent) that can be used for a
single result. Valid values are between 1 and 100.
The default value is 5%. You can set this
parameter at the system or session level.

RESULT_CACHE_REMOTE_EXPIRATION Specifies the expiration time (in minutes) for a
result in the server result cache that depends on
remote database objects. The default value is 0,
which specifies that results using remote objects
will not be cached. If a non-zero value is set for
this parameter, DML on the remote database does
not invalidate the server result cache.

See Also:

Oracle Database Reference for more information about these initialization
parameters

To change the memory allocated to the server result cache:

• Set the value of the RESULT_CACHE_MAX_SIZE initialization parameter to the desired
size.

In an Oracle Real Application Clusters (Oracle RAC) environment, the result cache
is specific to each database instance and can be sized differently on each
instance. However, invalidations work across instances. To disable the server
result cache in a cluster, you must explicitly set this parameter to 0 for each
instance startup.

15.2.1.2 Managing the Server Result Cache Using DBMS_RESULT_CACHE
The DBMS_RESULT_CACHE package provides statistics, information, and operators that
enable you to manage memory allocation for the server result cache. Use the
DBMS_RESULT_CACHE package to perform operations such as retrieving statistics on the
cache memory usage and flushing the cache.
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This section describes how to manage the server result cache using the
DBMS_RESULT_CACHE package and contains the following topics:

• Viewing Memory Usage Statistics for the Server Result Cache

• Flushing the Server Result Cache

15.2.1.2.1 Viewing Memory Usage Statistics for the Server Result Cache
This section describes how to view memory allocation statistics for the result cache
using the DBMS_RESULT_CACHE package.

To view memory usage statistics for the result cache:

• Execute the DBMS_RESULT_CACHE.MEMORY_REPORT procedure.

Example 15-2 shows an execution of this procedure.

Example 15-2    Using the DBMS_RESULT_CACHE Package

SQL> SET SERVEROUTPUT ON
SQL> EXECUTE DBMS_RESULT_CACHE.MEMORY_REPORT

The output of this command might look like the following:

R e s u l t  C a c h e  M e m o r y  R e p o r t
[Parameters]
Block Size = 1024 bytes
Maximum Cache Size = 950272 bytes (928 blocks)
Maximum Result Size = 47104 bytes (46 blocks)
[Memory]
Total Memory = 46340 bytes [0.048% of the Shared Pool]
... Fixed Memory = 10696 bytes [0.011% of the Shared Pool]
... State Object Pool = 2852 bytes [0.003% of the Shared Pool]
... Cache Memory = 32792 bytes (32 blocks) [0.034% of the Shared Pool]
....... Unused Memory = 30 blocks
....... Used Memory = 2 blocks
........... Dependencies = 1 blocks
........... Results = 1 blocks
............... SQL = 1 blocks

PL/SQL procedure successfully completed.

15.2.1.2.2 Flushing the Server Result Cache
This section describes how to remove all existing results and purge the result cache
memory using the DBMS_RESULT_CACHE package.

To flush the server result cache:

• Execute the DBMS_RESULT_CACHE.FLUSH procedure.

See Also:

Oracle Database PL/SQL Packages and Types Reference for information
about the DBMS_RESULT_CACHE package
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15.2.2 Configuring the Client Result Cache
Table 15-2 lists the database initialization parameters that enable or influence the
behavior of the client result cache.

Table 15-2    Client Result Cache Initialization Parameters

Parameter Description

CLIENT_RESULT_CACHE_SIZE Specifies the maximum size of the client result cache for
each client process. To enable the client result cache,
set the size to 32768 bytes or greater. A lesser value,
including the default of 0, disables the client result
cache.

Note: If the CLIENT_RESULT_CACHE_SIZE setting disables
the client cache, then a client node cannot enable it. If
the CLIENT_RESULT_CACHE_SIZE setting enables the
client cache, however, then a client node can override
the setting. For example, a client node can disable client
result caching or increase the size of its cache.

CLIENT_RESULT_CACHE_LAG Specifies the amount of lag time (in milliseconds) for the
client result cache. The default value is 3000 (3
seconds). If the OCI application does not perform any
database calls for a period of time, then this setting
forces the next statement execution call to check for
validations.

If the OCI application accesses the database
infrequently, then setting this parameter to a low value
results in more round trips from the OCI client to the
database to keep the client result cache synchronized
with the database.

COMPATIBLE Specifies the release with which Oracle Database must
maintain compatibility. For the client result cache to be
enabled, this parameter must be set to 11.0.0.0 or
higher. For client caching on views, this parameter must
be set to 11.2.0.0.0 or higher.

An optional client configuration file overrides client result cache initialization
parameters set in the server parameter file.

Note:

The client result cache lag can only be set with the CLIENT_RESULT_CACHE_LAG
initialization parameter.
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See Also:

• Oracle Call Interface Programmer's Guide for information about the
parameters that can be set in the client configuration file

• Oracle Database Reference for more information about these client result
cache initialization parameters

15.2.3 Setting the Result Cache Mode
The result cache mode is a database setting that determines which queries are eligible
to store result sets in the server and client result caches. If a query is eligible for
caching, then the application checks the result cache to determine whether the query
result set exists in the cache. If it exists, then the result is retrieved directly from the
result cache. Otherwise, the database executes the query and returns the result as
output and stores it in the result cache. Oracle recommends result caching for queries
of read-only or read-mostly database objects.

When the result cache is enabled, the database also caches queries that call non-
deterministic PL/SQL functions. When caching SELECT statements that call such
functions, the result cache tracks data dependencies for the PL/SQL functions and the
database objects. However, if the function uses data that are not being tracked (such
as sequences, SYSDATE, SYS_CONTEXT, and package variables), using the result cache on
queries that call this function can produce stale results. In this regard, the behavior of
the result cache is identical to caching PL/SQL functions. Therefore, always consider
data accuracy, as well as performance, when choosing to enable the result cache.

To set the result cache mode:

• Set the value of the RESULT_CACHE_MODE initialization parameter to determine the
behavior of the result cache.

You can set this parameter for the instance (ALTER SYSTEM), session (ALTER
SESSION), or in the server parameter file.

Table 15-3 describes the values for this parameter.

Table 15-3    Values for the RESULT_CACHE_MODE Parameter

Value Description

MANUAL Query results can only be stored in the result cache by using a query hint or table
annotation. This is the default and recommended value.

FORCE All results are stored in the result cache. If a query result is not in the cache, then
the database executes the query and stores the result in the cache. Subsequent
executions of the same SQL statement, including the result cache hint, retrieve
data from the cache. Sessions uses these results if possible. To exclude query
results from the cache, the /*+ NO_RESULT_CACHE */ query hint must be used.

Note: FORCE mode is not recommended because the database and clients will
attempt to cache all queries, which may create significant performance and
latching overhead. Moreover, because queries that call non-deterministic PL/SQL
functions are also cached, enabling the result cache in such a broad-based
manner may cause material changes to the results.
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See Also:

Oracle Database Reference for information about the RESULT_CACHE_MODE
initialization parameter

15.2.4 Requirements for the Result Cache
Enabling the result cache does not guarantee that a specific result set will be included
in the server or client result cache. In order for results to be cached, the following
requirements must be met:

• Read Consistency Requirements

• Query Parameter Requirements

• Restrictions for the Result Cache

15.2.4.1 Read Consistency Requirements
For a snapshot to be reusable, it must have read consistency. For a result set to be
eligible for caching, at least one of the following conditions must be true:

• The read-consistent snapshot used to build the result must retrieve the most
current, committed state of the data.

• The query points to an explicit point in time using flashback query.

If the current session has an active transaction referencing objects in a query, then the
results from this query are not eligible for caching.

15.2.4.2 Query Parameter Requirements
Cache results can be reused if they are parameterized with variable values when
queries are equivalent and the parameter values are the same. Different values or
bind variable names may cause cache misses. Results are parameterized if any of the
following constructs are used in the query:

• Bind variables

• The SQL functions DBTIMEZONE, SESSIONTIMEZONE, USERENV/SYS_CONTEXT (with constant
variables), UID, and USER

• NLS parameters

15.2.4.3 Restrictions for the Result Cache
Results cannot be cached when the following objects or functions are in a query:

• Temporary tables and tables in the SYS or SYSTEM schemas

• Sequence CURRVAL and NEXTVAL pseudo columns

• SQL functions CURRENT_DATE, CURRENT_TIMESTAMP, LOCAL_TIMESTAMP, USERENV/
SYS_CONTEXT (with non-constant variables), SYS_GUID, SYSDATE, and SYS_TIMESTAMP

The client result cache has additional restrictions for result caching.
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See Also:

Oracle Call Interface Programmer's Guide for information about additional
restrictions for the client result cache

15.3 Specifying Queries for Result Caching
This section describes how to specify queries for result caching and contains the
following topics:

• Using SQL Result Cache Hints

• Using Result Cache Table Annotations

15.3.1 Using SQL Result Cache Hints
Use result cache hints at the application level to control caching behavior. The SQL
result cache hints take precedence over the result cache mode and result cache table
annotations.

This section describes how to use SQL result cache hints and contains the following
topics:

• Using the RESULT_CACHE Hint

• Using the NO_RESULT_CACHE Hint

• Using the RESULT_CACHE Hint in Views

See Also:

Oracle Database SQL Language Reference for information about the
RESULT_CACHE and NO_RESULT_CACHE hints

15.3.1.1 Using the RESULT_CACHE Hint
When the result cache mode is MANUAL, the /*+ RESULT_CACHE */ hint instructs the
database to cache the results of a query block and to use the cached results in future
executions.

Example 15-3 shows a query that uses the RESULT_CACHE hint.

Example 15-3    Using the RESULT_CACHE Hint

SELECT /*+ RESULT_CACHE */ prod_id, SUM(amount_sold)
  FROM sales 
 GROUP BY prod_id
 ORDER BY prod_id;

In this example, the query instructs the database to cache rows for a query of the sales
table.
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15.3.1.2 Using the NO_RESULT_CACHE Hint
The /*+ NO_RESULT_CACHE */ hint instructs the database not to cache the results in
either the server or client result caches.

Example 15-4 shows a query that uses the NO_RESULT_CACHE hint.

Example 15-4    Using the NO_RESULT_CACHE Hint

SELECT /*+ NO_RESULT_CACHE */ prod_id, SUM(amount_sold) 
  FROM sales 
 GROUP BY prod_id
 ORDER BY prod_id;

In this example, the query instructs the database not to cache rows for a query of the
sales table.

15.3.1.3 Using the RESULT_CACHE Hint in Views
The RESULT_CACHE hint applies only to the query block in which the hint is specified. If
the hint is specified only in a view, then only these results are cached. View caching
has the following characteristics:

• The view must be one of the following types:

– A standard view (a view created with the CREATE ... VIEW statement)

– An inline view specified in the FROM clause of a SELECT statement

– An inline view created with the WITH clause

• The result of a view query with a correlated column (a reference to an outer query
block) cannot be cached.

• Query results are stored in the server result cache, not the client result cache.

• A caching view is not merged into its outer (or referring) query block.

Adding the RESULT_CACHE hint to inline views disables optimizations between the
outer query and inline view to maximize reusability of the cached result.

The following example shows a query of the inline view view1.

SELECT *
  FROM ( SELECT /*+ RESULT_CACHE */ department_id, manager_id, count(*) count
           FROM hr.employees 
          GROUP BY department_id, manager_id ) view1
 WHERE department_id = 30;

In this example, the SELECT statement from view1 is the outer block, whereas the SELECT
statement from employees is the inner block. Because the RESULT_CACHE hint is specified
only in the inner block, the results of the inner query are stored in the server result
cache, but the results of the outer query are not cached.

Assume that the same session run a query of the view view2 as shown in the following
example.

WITH view2 AS
( SELECT /*+ RESULT_CACHE */ department_id, manager_id, count(*) count
    FROM hr.employees 
   GROUP BY department_id, manager_id ) 
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SELECT *
  FROM view2 
 WHERE count BETWEEN 1 and 5;

In this example, because the RESULT_CACHE hint is specified only in the query block in
the WITH clause, the results of the employees query are eligible to be cached. Because
these results are cached from the query in the first example, the SELECT statement in
the WITH clause in the second example can retrieve the cached rows.

15.3.2 Using Result Cache Table Annotations
You can also use table annotations to control result caching. Table annotations affect
the entire query, not query segments. The primary benefit of using table annotations is
avoiding the necessity of adding result cache hints to queries at the application level.
Because a table annotation has a lower precedence than a SQL result cache hint, you
can override table and session settings by using hints at the query level.

Table 15-4 describes the valid values for the RESULT_CACHE table annotation.

Table 15-4    Values for the RESULT_CACHE Table Annotation

Value Description

DEFAULT If at least one table in a query is set to DEFAULT, then result caching is not
enabled at the table level for this query, unless if the RESULT_CACHE_MODE
initialization parameter is set to FORCE or the RESULT_CACHE hint is specified. This
is the default value.

FORCE If all the tables of a query are marked as FORCE, then the query result is
considered for caching. The table annotation FORCE takes precedence over the
RESULT_CACHE_MODE parameter value of MANUAL set at the session level.

This section describes how to use the RESULT_CACHE table annotations and contains the
following topics:

• Using the DEFAULT Table Annotation

• Using the FORCE Table Annotation

15.3.2.1 Using the DEFAULT Table Annotation
The DEFAULT table annotation prevents the database from caching results at the table
level.

Example 15-5 shows a CREATE TABLE statement that uses the DEFAULT table annotation
to create a table sales and a query of this table.

Example 15-5    Using the DEFAULT Table Annotation

CREATE TABLE sales (...) RESULT_CACHE (MODE DEFAULT);

SELECT prod_id, SUM(amount_sold)
  FROM sales 
 GROUP BY prod_id 
 ORDER BY prod_id;
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In this example, the sales table is created with a table annotation that disables result
caching. The example also shows a query of the sales table, whose results are not
considered for caching because of the table annotation.

See Also:

Oracle Database SQL Language Reference for information about the CREATE
TABLE statement and its syntax

15.3.2.2 Using the FORCE Table Annotation
The FORCE table annotation forces the database to cache results at the table level.

Using the sales table created in Example 15-5, assume that you decide to force result
caching for this table, you can do so by using the FORCE table annotation.

Example 15-6 shows an ALTER TABLE statement that uses the FORCE table annotation on
the sales table.

Example 15-6    Using the FORCE Table Annotation

ALTER TABLE sales RESULT_CACHE (MODE FORCE);

SELECT prod_id, SUM(amount_sold)
  FROM sales 
 GROUP BY prod_id 
HAVING prod_id=136;

SELECT /*+ NO_RESULT_CACHE */ * 
  FROM sales
 ORDER BY time_id DESC;

This example includes two queries of the sales table. The first query, which is
frequently used and returns few rows, is eligible for caching because of the table
annotation. The second query, which is a one-time query that returns many rows, uses
a hint to prevent result caching.

15.4 Monitoring the Result Cache
To view information about the server and client result caches, query the relevant
database views and tables.

Table 15-5 describes the most useful views and tables for monitoring the result cache.

Table 15-5    Views and Tables with Information About the Result Cache

View/Table Description

V$RESULT_CACHE_STATISTICS Lists various server result cache settings and memory
usage statistics.

V$RESULT_CACHE_MEMORY Lists all the memory blocks in the server result cache
and their corresponding statistics.
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Table 15-5    (Cont.) Views and Tables with Information About the Result Cache

View/Table Description

V$RESULT_CACHE_OBJECTS Lists all the objects whose results are in the server
result cache along with their attributes.

V$RESULT_CACHE_DEPENDENCY Lists the dependency details between the results in the
server result cache and dependencies among these
results.

CLIENT_RESULT_CACHE_STATS$ Stores cache settings and memory usage statistics for
the client result caches obtained from the OCI client
processes. This statistics table contains entries for each
client process that uses result caching. After the client
processes terminate, the database removes their
entries from this table. The client table contains
information similar to V$RESULT_CACHE_STATISTICS.

DBA_TABLES, USER_TABLES,
ALL_TABLES

Contains a RESULT_CACHE column that shows the result
cache mode annotation for the table. If the table is not
annotated, then this column shows DEFAULT. This
column applies to both server and client result caches.

See Also:

Oracle Database Reference for more information about these views and tables.

The following example shows a query of the V$RESULT_CACHE_STATISTICS view to monitor
server result cache statistics.

COLUMN name FORMAT a20
SELECT name, value
  FROM V$RESULT_CACHE_STATISTICS;

The output of this query might look like the following:

NAME                          VALUE
--------------------     ----------
Block Size (Bytes)             1024
Block Count Maximum            3136
Block Count Current              32
Result Size Maximum (Blocks)    156
Create Count Success              2
Create Count Failure              0
Find Count                        0
Invalidation Count                0
Delete Count Invalid              0
Delete Count Valid                0

The following example shows a query of the CLIENT_RESULT_CACHE_STATS$ table to
monitor the client result cache statistics.

SELECT stat_id, SUBSTR(name,1,20), value, cache_id
  FROM CLIENT_RESULT_CACHE_STATS$
 ORDER BY cache_id, stat_id;
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The output of this query might look like the following:

STAT_ID    NAME OF STATISTICS      VALUE   CACHE_ID
=======    ==================      =====   ========
    1      Block Size               256         124
    2      Block Count Max          256         124
    3      Block Count Current      128         124
    4      Hash Bucket Count       1024         124
    5      Create Count Success      10         124
    6      Create Count Failure       0         124
    7      Find Count                12         124
    8      Invalidation Count         8         124
    9      Delete Count Invalid       0         124
   10      Delete Count Valid         0         124

The CLIENT_RESULT_CACHE_STATS$ table contains statistics entries for each active client
process performing client result caching. Every client process has a unique cache ID.

To find the client connection information for the sessions performing client
caching:

1. Obtain the session IDs from the CLIENT_REGID column in the
GV$SESSION_CONNECT_INFO view that corresponds to the CACHE_ID column in the
CLIENT_RESULT_CACHE_STATS$ table.

2. Query the relevant columns from the GV$SESSION_CONNECT_INFO and GV$SESSION
views.

For both server and client result cache statistics, a database that is optimized for result
caching should show relatively low values for the Create Count Failure and Delete
Count Valid statistics, while showing relatively high values for the Find Count statistic.
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16
Tuning the Program Global Area

This chapter describes how to tune the Program Global Area (PGA). If you are using
automatic memory management to manage the database memory on your system,
then you do not need to manually tune the PGA as described in this chapter.

This chapter contains the following topics:

• About the Program Global Area

• Sizing the Program Global Area Using Automatic Memory Management

• Sizing the Program Global Area Using a Hard Limit

16.1 About the Program Global Area
The Program Global Area (PGA) is a private memory region that contains the data and
control information for a server process. Only a server process can access the PGA.
Oracle Database reads and writes information in the PGA on behalf of the server
process. An example of such information is the run-time area of a cursor. Each time a
cursor is executed, a new run-time area is created for that cursor in the PGA memory
region of the server process executing that cursor.

Note:

Part of the run-time area can be located in the Shared Global Area (SGA) when
using shared servers.

For complex queries (such as decision support queries), a big portion of the run-time
area is dedicated to work areas allocated by memory intensive operators, including:

• Sort-based operators, such as ORDER BY, GROUP BY, ROLLUP, and window functions

• Hash-join

• Bitmap merge

• Bitmap create

• Write buffers used by bulk load operations

A sort operator uses a work area (the sort area) to perform the in-memory sorting of a
set of rows. Similarly, a hash-join operator uses a work area (the hash area) to build a
hash table from its left input.

16.1.1 Work Area Sizes
Oracle Database enables you to control and tune the sizes of work areas. Generally,
bigger work areas can significantly improve the performance of a particular operator at
the cost of higher memory consumption. The available work area sizes include:

16-1



• Optimal

Optimal size is when the size of a work area is large enough that it can
accommodate the input data and auxiliary memory structures allocated by its
associated SQL operator. This is the ideal size for the work area.

• One-pass

One-pass size is when the size of the work area is below optimal size and an extra
pass is performed over part of the input data. With one-pass size, the response
time is increased.

• Multi-pass

Multi-pass size is when the size of the work area is below the one-pass threshold
and multiple passes over the input data are needed. With multi-pass size, the
response time is dramatically increased because the size of the work area is too
small compared to the input data size.

For example, a serial sort operation that must sort 10 GB of data requires a little more
than 10 GB to run as optimal size and at least 40 MB to run as one-pass size. If the
work area is less than 40 MB, then the sort operation must perform several passes
over the input data.

When sizing the work area, the goal is to have most work areas running with optimal
size (more than 90%, or even 100% for pure OLTP systems), and only a small number
of them running with one-pass size (less than 10%). Multi-pass executions should be
avoided for the following reasons:

• Multi-pass executions can severely degrade performance.

A high number of multi-pass work areas has an exponentially adverse effect on
the response time of its associated SQL operator.

• Running one-pass executions does not require a large amount of memory.

Only 22 MB is required to sort 1 GB of data in one-pass size.

Even for DSS systems running large sorts and hash-joins, the memory requirement for
one-pass executions is relatively small. A system configured with a reasonable amount
of PGA memory should not need to perform multiple passes over the input data.

16.2 Sizing the Program Global Area Using Automatic
Memory Management

Automatic PGA memory management simplifies and improves the way PGA memory
is allocated. By default, PGA memory management is enabled. In this mode, Oracle
Database automatically sizes the PGA by dynamically adjusting the portion of the PGA
memory dedicated to work areas, based on 20% of the SGA memory size. The
minimum value is 10MB.
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Note:

For backward compatibility, automatic PGA memory management can be
disabled by setting the value of the PGA_AGGREGATE_TARGET initialization
parameter to 0. When automatic PGA memory management is disabled, the
maximum size of a work area can be sized with the associated _AREA_SIZE
parameter, such as the SORT_AREA_SIZE initialization parameter.

This section describes how to size the PGA using automatic PGA memory
management and contains the following topics:

• Configuring Automatic PGA Memory Management

• Setting the Initial Value for PGA_AGGREGATE_TARGET

• Monitoring Automatic PGA Memory Management

• Tuning PGA_AGGREGATE_TARGET

16.2.1 Configuring Automatic PGA Memory Management
When running Oracle Database in automatic PGA memory management mode, sizing
of work areas for all sessions is automatic, and the *_AREA_SIZE parameters are
ignored by all sessions running in this mode. Oracle Database automatically derives
the total amount of PGA memory available to active work areas from the
PGA_AGGREGATE_TARGET initialization parameter. The amount of PGA memory is set to the
value of PGA_AGGREGATE_TARGET minus the amount of PGA memory allocated to other
components of the system (such as PGA memory allocated by sessions). Oracle
Database then assigns the resulting PGA memory to individual active work areas
based on their specific memory requirements.

Oracle Database attempts to adhere to the PGA_AGGREGATE_TARGET value set by the DBA
by dynamically controlling the amount of PGA memory allotted to work areas. To
accomplish this, Oracle Database first tries to maximize the number of optimal work
areas for all memory-intensive SQL operations. The rest of the work areas are
executed in one-pass mode, unless the PGA memory limit set by the DBA (using the
PGA_AGGREGATE_TARGET parameter) is so low that multi-pass execution is required to
reduce memory consumption to honor the PGA target limit.

When configuring a new database instance, it can be difficult to determine the
appropriate setting for PGA_AGGREGATE_TARGET.

To configure automatic PGA memory management:

1. Make an initial estimate for the value of the PGA_AGGREGATE_TARGET parameter, as
described in "Setting the Initial Value for PGA_AGGREGATE_TARGET".

2. Run a representative workload on the database instance and monitor its
performance, as described in "Monitoring Automatic PGA Memory Management".

3. Tune the value of the PGA_AGGREGATE_TARGET parameter using Oracle PGA advice
statistics, as described in "Tuning PGA_AGGREGATE_TARGET".
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See Also:

Oracle Database Reference for information about the PGA_AGGREGATE_TARGET
initialization parameter

16.2.2 Setting the Initial Value for PGA_AGGREGATE_TARGET
Set the initial value of the PGA_AGGREGATE_TARGET initialization parameter based on the
amount of available memory for the Oracle database instance. This value can then be
tuned and dynamically modified at the instance level. By default, Oracle Database
uses 20% of the SGA size for this value. However, this setting may be too low for a
large DSS system.

To set the initial value for PGA_AGGREGATE_TARGET:

1. Determine how much of the total physical memory to reserve for the operating
system and other non-Oracle applications running on the same system.

For example, you might decide to reserve 20% of the total physical memory for the
operating system and other non-Oracle applications, dedicating 80% of the
memory on the system to the Oracle database instance.

2. Divide the remaining available memory between the SGA and the PGA:

• For OLTP systems, the PGA memory typically makes up a small fraction of the
available memory, leaving most of the remaining memory for the SGA.

Oracle recommends initially dedicating 20% of the available memory to the
PGA, and 80% to the SGA. Therefore, the initial value of the
PGA_AGGREGATE_TARGET parameter for an OLTP system can be calculated as:

PGA_AGGREGATE_TARGET = (total_mem * 0.8) * 0.2 where total_mem is the total
amount of physical memory available on the system.

• For DSS systems running large, memory-intensive queries, PGA memory can
typically use up to 70% of the available memory.

Oracle recommends initially dedicating 50% of the available memory to the
PGA, and 50% to the SGA. Therefore, the initial value of the
PGA_AGGREGATE_TARGET parameter for a DSS system can be calculated as:

PGA_AGGREGATE_TARGET = (total_mem * 0.8) * 0.5 where total_mem is the total
amount of physical memory available on the system.

For example, if an Oracle database instance is configured to run on a system with 4
GB of physical memory, and if 80% (or 3.2 GB) of the memory is dedicated to the
Oracle database instance, then initially set PGA_AGGREGATE_TARGET to 640 MB for an
OLTP system, or 1,600 MB for a DSS system.

16.2.3 Monitoring Automatic PGA Memory Management
Before starting the tuning process, run a representative workload on the database
instance and monitor its performance. PGA statistics collected by Oracle Database
enable you to determine if the maximum PGA size is under-configured or over-
configured. Monitoring these statistics enables you to assess the performance of
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automatic PGA memory management and tune the value of the PGA_AGGREGATE_TARGET
parameter accordingly.

This section describes how to use performance views to monitor automatic PGA
memory management and contains the following topics:

• Using the V$PGASTAT View

• Using the V$PROCESS View

• Using the V$PROCESS_MEMORY View

• Using the V$SQL_WORKAREA_HISTOGRAM View

• Using the V$WORKAREA_ACTIVE View

• Using the V$SQL_WORKAREA View

16.2.3.1 Using the V$PGASTAT View
The V$PGASTAT view provides instance-level statistics about PGA memory usage and
the automatic PGA memory manager.

The following example shows a query of this view.

SELECT *
  FROM V$PGASTAT;

The output of this query might look like the following:

NAME                                                          VALUE UNIT
-------------------------------------------------------- ---------- ------------
aggregate PGA target parameter                             41156608 bytes
aggregate PGA auto target                                  21823488 bytes
global memory bound                                         2057216 bytes
total PGA inuse                                            16899072 bytes
total PGA allocated                                        35014656 bytes
maximum PGA allocated                                     136795136 bytes
total freeable PGA memory                                    524288 bytes
PGA memory freed back to OS                              1713242112 bytes
total PGA used for auto workareas                                 0 bytes
maximum PGA used for auto workareas                         2383872 bytes
total PGA used for manual workareas                               0 bytes
maximum PGA used for manual workareas                       8470528 bytes
over allocation count                                           291
bytes processed                                          2124600320 bytes
extra bytes read/written                                   39949312 bytes
cache hit percentage                                          98.15 percent

Table 16-1 describes the main statistics shown in the V$PGASTAT view.

Table 16-1    Statistics in the V$PGASTAT View

Statistic Description

aggregate PGA target
parameter

This statistic shows the current value of the
PGA_AGGREGATE_TARGET parameter. The default value is 20% of
the SGA size. Setting this parameter to 0 disables automatic
PGA memory management.
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Table 16-1    (Cont.) Statistics in the V$PGASTAT View

Statistic Description

aggregate PGA auto
target

This statistic shows the amount of PGA memory Oracle
Database can use for work areas running in automatic mode.
This amount is dynamically derived from the value of the
PGA_AGGREGATE_TARGET parameter and the current work area
workload. Hence, it is continuously adjusted by Oracle Database.
If this value is small compared to the PGA_AGGREGATE_TARGET
value, then most of PGA memory is used by other system
components (such as PL/SQL or Java) and little is left for work
areas. Ensure that enough PGA memory remains for work areas
running in automatic mode.

global memory bound This statistic shows the maximum size of a work area executed in
automatic mode. This value is continuously adjusted by Oracle
Database to reflect the current state of the work area workload.
The global memory bound generally decreases when the number
of active work areas increases in the system. As a rule of thumb,
the value of the global bound should not decrease to less than 1
MB. If it does, increase the value of the PGA_AGGREGATE_TARGET
parameter.

total PGA allocated This statistic shows the current amount of PGA memory allocated
by the database instance. Oracle Database tries to keep this
number less than the PGA_AGGREGATE_TARGET value. However, if
the work area workload is increasing rapidly or the
PGA_AGGREGATE_TARGET parameter is set to a value that is too low,
it is possible for the PGA allocated to exceed this value by a
small percentage and for a short time.

total freeable PGA
memory

This statistic indicates how much allocated PGA memory can be
freed.

total PGA used for auto
workareas

This statistic indicates how much PGA memory is currently
consumed by work areas running in automatic mode. Use this
number to determine how much memory is consumed by other
consumers of the PGA memory (such as PL/SQL or Java):

PGA other = total PGA allocated - total PGA used for auto 
workareas

over allocation count This statistic is cumulative from instance startup. Over-allocating
PGA memory can happen if the PGA_AGGREGATE_TARGET value is
too small to accommodate the PGA other component and the
minimum memory required to execute the work area workload. In
this case, Oracle Database cannot honor the
PGA_AGGREGATE_TARGET value, and extra PGA memory must be
allocated. If over-allocation occurs, increase the value of the
PGA_AGGREGATE_TARGET parameter using the information provided
by the V$PGA_TARGET_ADVICE view, as described in "Using the
V$PGA_TARGET_ADVICE View".

total bytes processed This statistic indicates the number of bytes processed by
memory-intensive SQL operators since instance startup. For
example, the number of bytes processed is the input size for a
sort operation. This number is used to compute the cache hit
percentage metric.
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Table 16-1    (Cont.) Statistics in the V$PGASTAT View

Statistic Description

extra bytes read/written When a work area cannot run optimally, one or more extra
passes is performed over the input data. This statistic represents
the number of bytes processed during these extra passes since
instance startup. This number is also used to compute the cache
hit percentage metric. Ideally, it should be small compared to
total bytes processed.

cache hit percentage This metric is computed by Oracle Database to reflect the
performance of the PGA memory component. It is cumulative
from instance startup. A value of 100% means that all work areas
executed by the system since instance startup are using an
optimal amount of PGA memory. This is ideal but rarely happens
except for pure OLTP systems. Typically, some work areas run
one-pass or even multi-pass, depending on the overall size of the
PGA memory. When a work area cannot run optimally, one or
more extra passes are performed over the input data. This
reduces the cache hit percentage in proportion to the size of the
input data and the number of extra passes performed. For an
example of how this metric is calculated, see Example 16-1.

Example 16-1 shows how extra passes affect the cache hit percentage metric.

Example 16-1    Calculating Cache Hit Percentage

Four sort operations have been executed, three were small (1 MB of input data) and
one was bigger (100 MB of input data). The total number of bytes processed (BP) by
the four operations is 103 MB. If one of the small sorts runs one-pass, an extra pass
over 1 MB of input data is performed. This 1 MB value is the number of extra bytes
read/written, or EBP.

The cache hit percentage is calculated using the following formula:

BP x 100 / (BP + EBP)

In this example, the cache hit percentage is 99.03%. This value reflects that only one of
the small sort operations performed an extra pass, while all other sort operations were
able to run in optimal size. Therefore, the cache hit percentage is almost 100%,
because the extra pass over 1 MB represents a tiny overhead. However, if the bigger
sort operation runs in one-pass size, then the EBP is 100 MB instead of 1 MB, and the
cache hit percentage falls to 50.73%, because the extra pass has a much bigger
impact.

16.2.3.2 Using the V$PROCESS View
The V$PROCESS view contains one row for each Oracle process connected to the
database instance. Use the following columns in this view to monitor the PGA memory
usage of these processes:

• PGA_USED_MEM

• PGA_ALLOC_MEM

• PGA_FREEABLE_MEM

• PGA_MAX_MEM
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Example 16-2 shows a query of this view.

Example 16-2    Querying the V$PROCESS View

SELECT program, pga_used_mem, pga_alloc_mem, pga_freeable_mem, pga_max_mem
  FROM V$PROCESS;

The output of this query might look like the following:

PROGRAM                 PGA_USED_MEM PGA_ALLOC_MEM PGA_FREEABLE_MEM PGA_MAX_MEM
----------------------- ------------ ------------- ---------------- -----------
PSEUDO                             0             0                0           0
oracle@examp1690 (PMON)       314540        685860                0      685860
oracle@examp1690 (MMAN)       313992        685860                0      685860
oracle@examp1690 (DBW0)       696720       1063112                0     1063112
oracle@examp1690 (LGWR)     10835108      22967940                0    22967940
oracle@examp1690 (CKPT)       352716        710376                0      710376
oracle@examp1690 (SMON)       541508        948004                0     1603364
oracle@examp1690 (RECO)       323688        685860                0      816932
oracle@examp1690 (q001)       233508        585128                0      585128
oracle@examp1690 (QMNC)       314332        685860                0      685860
oracle@examp1690 (MMON)       885756       1996548           393216     1996548
oracle@examp1690 (MMNL)       315068        685860                0      685860
oracle@examp1690 (q000)       330872        716200            65536      716200
oracle@examp1690 (CJQ0)       533476       1013540                0     1144612

16.2.3.3 Using the V$PROCESS_MEMORY View
The V$PROCESS_MEMORY view displays dynamic PGA memory usage by named
component categories for each Oracle process. This view contains up to six rows for
each Oracle process, one row for:

• Each named component category:

– Java

– PL/SQL

– OLAP

– SQL

• Freeable

Memory that has been allocated to the process by the operating system, but not to
a specific category

• Other

Memory that has been allocated to a category, but not to a named category

Use the following columns in this view to dynamically monitor the PGA memory usage
of Oracle processes for each of the six categories:

• CATEGORY

• ALLOCATED

• USED

• MAX_ALLOCATED
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Note:

The V$PROCESS_MEMORY_DETAIL view displays dynamic PGA memory usage for
the Oracle processes that exceed 500 MB of PGA usage. The
V$PROCESS_MEMORY_DETAIL view is available starting with Oracle Database 12c
Release 2.

See Also:

Oracle Database Reference for more information about the V$PROCESS_MEMORY
and V$PROCESS_MEMORY_DETAIL views

16.2.3.4 Using the V$SQL_WORKAREA_HISTOGRAM View
The V$SQL_WORKAREA_HISTOGRAM view shows the number of work areas executed with
optimal, one-pass, and multi-pass memory size since instance startup. Statistics in this
view are divided into buckets. The buckets are defined by the optimal memory
requirements of the work areas. Each bucket is identified by a range of optimal
memory requirements, specified by the values in the LOW_OPTIMAL_SIZE and
HIGH_OPTIMAL_SIZE columns.

For example, a sort operation may require 3 MB of memory to run in optimal size
(cached). Statistics about the work area used by this sort operation are placed in the
bucket defined by:

• LOW_OPTIMAL_SIZE = 2097152 (2 MB)

• HIGH_OPTIMAL_SIZE = 4194303 (4 MB minus 1 byte)

Statistics are segmented by work area size, because the performance impact of
running a work area in optimal, one-pass or multi-pass size depends mainly on the
size of the work area. In this example, statistics about the work area are placed in this
bucket because 3 MB lies within that range of optimal sizes.

Example 16-3 and Example 16-4 show two methods for querying this view.

Example 16-3    Querying the V$SQL_WORKAREA_HISTOGRAM View: Non-
Empty Buckets

The following query shows statistics for all non-empty buckets:

SELECT low_optimal_size/1024 low_kb,
       (high_optimal_size+1)/1024 high_kb,
       optimal_executions, onepass_executions, multipasses_executions
  FROM V$SQL_WORKAREA_HISTOGRAM
 WHERE total_executions != 0;

The result of the query might look like the following:

LOW_KB HIGH_KB OPTIMAL_EXECUTIONS ONEPASS_EXECUTIONS MULTIPASSES_EXECUTIONS
------ ------- ------------------ ------------------ ----------------------
     8      16             156255                  0                      0
    16      32                150                  0                      0
    32      64                 89                  0                      0
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    64     128                 13                  0                      0
   128     256                 60                  0                      0
   256     512                  8                  0                      0
   512    1024                657                  0                      0
  1024    2048                551                 16                      0
  2048    4096                538                 26                      0
  4096    8192                243                 28                      0
  8192   16384                137                 35                      0
 16384   32768                 45                107                      0
 32768   65536                  0                153                      0
 65536  131072                  0                 73                      0
131072  262144                  0                 44                      0
262144  524288                  0                 22                      0

In this example, the output shows that—in the 1 MB to 2 MB bucket—551 work areas
ran in optimal size, while 16 ran in one-pass size and none ran in multi-pass size. It
also shows that all work areas under 1 MB were able to run in optimal size.

Example 16-4    Querying the V$SQL_WORKAREA_HISTOGRAM View: Percent
Optimal

The following query shows the percentage of times work areas are executed in
optimal, one-pass, or multi-pass size since startup. This query only considers work
areas of a certain size, with an optimal memory requirement of at least 64 KB:

SELECT optimal_count, ROUND(optimal_count*100/total, 2) optimal_perc, 
       onepass_count, ROUND(onepass_count*100/total, 2) onepass_perc,
       multipass_count, ROUND(multipass_count*100/total, 2) multipass_perc
FROM
 (SELECT DECODE(SUM(total_executions), 0, 1, SUM(total_executions)) total,
         SUM(optimal_executions) optimal_count,
         SUM(onepass_executions) onepass_count,
         SUM(multipass_executions) multipass_count
    FROM V$SQL_WORKAREA_HISTOGRAM
   WHERE low_optimal_size >= 64*1024);

The output of this query might look like the following:

OPTIMAL_COUNT OPTIMAL_PERC ONEPASS_COUNT ONEPASS_PERC MULTIPASS_COUNT MULTIPASS_PERC
------------- ------------ ------------- ------------ --------------- --------------
         2239        81.63           504        18.37               0              0

In this example, the output shows that 81.63% of the work areas were able to run in
optimal size. The remaining work areas (18.37%) ran in one-pass size and none of
them ran in multi-pass size.

16.2.3.5 Using the V$WORKAREA_ACTIVE View
The V$WORKAREA_ACTIVE view displays the work areas that are active (or executing) in
the database instance. Small, active sort operations (under 64 KB) are excluded from
this view. Use this view to precisely monitor the size of all active work areas and to
determine whether these active work areas spill to a temporary segment.

Example 16-5 shows a query of this view.

Example 16-5    Querying the V$WORKAREA_ACTIVE View

SELECT TO_NUMBER(DECODE(sid, 65535, null, sid)) sid,
       operation_type operation,
       TRUNC(expected_size/1024) esize,
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       TRUNC(actual_mem_used/1024) mem,
       TRUNC(max_mem_used/1024) "max mem",
       number_passes pass,
       TRUNC(TEMPSEG_SIZE/1024) tsize
  FROM V$SQL_WORKAREA_ACTIVE
 ORDER BY 1,2;

The output of this query might look like the following:

SID         OPERATION     ESIZE       MEM   MAX MEM  PASS   TSIZE
--- ----------------- --------- --------- --------- ----- -------
  8   GROUP BY (SORT)       315       280       904     0
  8         HASH-JOIN      2995      2377      2430     1   20000
  9   GROUP BY (SORT)     34300     22688     22688     0
 11         HASH-JOIN     18044     54482     54482     0
 12         HASH-JOIN     18044     11406     21406     1  120000

In this example, the output shows that:

• Session 12 (SID column) is running a hash-join operation (OPERATION column) in a
work area running in one-pass size (PASS column)

• The maximum amount of memory that the PGA memory manager expects this
hash-join operation to use is 18044 KB (ESIZE column)

• The work area is currently using 11406 KB of memory (MEM column)

• The work area used up to 21406 KB of PGA memory (MAX MEM column) in the past

• The work area spilled to a temporary segment of 120000 KB (TSIZE column)

When the work area is deallocated—or when the execution of its associated SQL
operator is complete—it is automatically removed from this view.

16.2.3.6 Using the V$SQL_WORKAREA View
Oracle Database maintains cumulative work area statistics for each loaded cursor
whose execution plan uses one or more work areas. Each time a work area is
deallocated, the V$SQL_WORKAREA view is updated with execution statistics for that work
area.

You can join the V$SQL_WORKAREA view with the V$SQL view to relate a work area to a
cursor, and with the V$SQL_PLAN view to precisely determine which operator in the plan
uses a work area.

Example 16-6 shows three queries of this view.

Example 16-6    Querying the V$SQL_WORKAREA View

The following query finds the top 10 work areas that require the most cache memory:

SELECT *
FROM   (SELECT workarea_address, operation_type, policy, estimated_optimal_size
        FROM V$SQL_WORKAREA
        ORDER BY estimated_optimal_size DESC)
 WHERE ROWNUM <= 10;

The following query finds the cursors with one or more work areas that have been
executed in one or multiple passes:

col sql_text format A80 wrap 
SELECT sql_text, sum(ONEPASS_EXECUTIONS) onepass_cnt,
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       sum(MULTIPASSES_EXECUTIONS) mpass_cnt 
FROM V$SQL s, V$SQL_WORKAREA wa 
WHERE s.address = wa.address 
GROUP BY sql_text 
HAVING sum(ONEPASS_EXECUTIONS+MULTIPASSES_EXECUTIONS)>0;

Using the hash value and address of a particular cursor, the following query displays
the cursor execution plan, including information about the associated work areas:

col "O/1/M" format a10
col name format a20
SELECT operation, options, object_name name, trunc(bytes/1024/1024) "input(MB)",
       TRUNC(last_memory_used/1024) last_mem,
       TRUNC(estimated_optimal_size/1024) optimal_mem, 
       TRUNC(estimated_onepass_size/1024) onepass_mem, 
       DECODE(optimal_executions, null, null, 
              optimal_executions||'/'||onepass_executions||'/'||
              multipasses_executions) "O/1/M"
  FROM V$SQL_PLAN p, V$SQL_WORKAREA w 
 WHERE p.address=w.address(+) 
   AND p.hash_value=w.hash_value(+) 
   AND p.id=w.operation_id(+) 
   AND p.address='88BB460C'
   AND p.hash_value=3738161960; 

The output of this query might look like the following:

OPERATION    OPTIONS  NAME     input(MB) LAST_MEM OPTIMAL_ME ONEPASS_ME O/1/M 
------------ -------- -------- --------- -------- ---------- ---------- ------
SELECT STATE                                                                  
HASH         GROUP BY               4582        8         16         16 16/0/0
HASH JOIN    SEMI                   4582     5976       5194       2187 16/0/0
TABLE ACCESS FULL     ORDERS          51                                      
TABLE ACCESS FUL      LINEITEM      1000                                      

You can get the address and hash value from the V$SQL view by specifying a pattern in
the query, as shown in the following query:

SELECT address, hash_value 
  FROM V$SQL 
 WHERE sql_text LIKE '%my_pattern%';

16.2.4 Tuning PGA_AGGREGATE_TARGET
To help you tune the value of the PGA_AGGREGATE_TARGET initialization parameter, Oracle
Database provides two PGA performance advisory views: V$PGA_TARGET_ADVICE and
V$PGA_TARGET_ADVICE_HISTOGRAM. By using these views, you do not need to use an
empirical approach to tune the value of the PGA_AGGREGATE_TARGET parameter. Instead,
you can use these views to predict how changing the value of the
PGA_AGGREGATE_TARGET parameter will affect key PGA statistics.

This section describes how to tune the value of the PGA_AGGREGATE_TARGET initialization
parameter and contains the following topics:

• Enabling Automatic Generation of PGA Performance Advisory Views

• Using the V$PGA_TARGET_ADVICE View

• Using the V$PGA_TARGET_ADVICE_HISTOGRAM View

• Using the V$SYSSTAT and V$SESSTAT Views
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• Tutorial: How to Tune PGA_AGGREGATE_TARGET

16.2.4.1 Enabling Automatic Generation of PGA Performance Advisory Views
Oracle Database generates the V$PGA_TARGET_ADVICE and
V$PGA_TARGET_ADVICE_HISTOGRAM views by recording the workload history, and then
simulating this history for different values of the PGA_AGGREGATE_TARGET parameter. The
values of the PGA_AGGREGATE_TARGET parameter are derived from fractions and multiples
of its current value to assess possible higher and lower values. These values are used
for the prediction and range from 10 MB to a maximum of 256 GB. The simulation
process happens in the background and continuously updates the workload history to
produce the simulation result. You can view the result at any time by querying these
views.

To enable automatic generation of PGA performance advice views:

1. Set the PGA_AGGREGATE_TARGET parameter to enable automatic PGA memory
management.

Setting this parameter to 0 disables automatic PGA memory management and is
not recommended. For information about setting this parameter, see "Setting the
Initial Value for PGA_AGGREGATE_TARGET".

2. Set the STATISTICS_LEVEL parameter to TYPICAL (the default) or ALL.

Setting this parameter to BASIC disables generation of the PGA performance
advice views and is not recommended.

Note:

The contents of the PGA advice performance views are reset at instance
startup or when the value of the PGA_AGGREGATE_TARGET parameter is changed.

16.2.4.2 Using the V$PGA_TARGET_ADVICE View
The V$PGA_TARGET_ADVICE view predicts how changing the value of the
PGA_AGGREGATE_TARGET initialization parameter will affect the following statistics in the
V$PGASTAT view:

• cache hit percentage

• over allocation count

The following example shows a query of this view.

SELECT ROUND(pga_target_for_estimate/1024/1024) target_mb,
       estd_pga_cache_hit_percentage cache_hit_perc,
       estd_overalloc_count
  FROM V$PGA_TARGET_ADVICE;

The output of this query might look like the following:

 TARGET_MB  CACHE_HIT_PERC  ESTD_OVERALLOC_COUNT
----------  --------------  --------------------
        63              23                   367
       125              24                    30
       250              30                     3
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       375              39                     0
       500              58                     0
       600              59                     0
       700              59                     0
       800              60                     0
       900              60                     0
      1000              61                     0
      1500              67                     0
      2000              76                     0
      3000              83                     0
      4000              85                     0

The following figure illustrates how the result of this query can be plotted.

Figure 16-1    Graphical Representation of V$PGA_TARGET_ADVICE
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The curve shows how PGA cache hit percentage improves as the value of the
PGA_AGGREGATE_TARGET parameter increases. The shaded zone in the graph represents
the over allocation zone, where the value of the ESTD_OVERALLOCATION_COUNT column is
non-zero. This area indicates that the value of the PGA_AGGREGATE_TARGET parameter is
too small to meet the minimum PGA memory requirements. If the value of the
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PGA_AGGREGATE_TARGET parameter is set within the over allocation zone, then the
memory manager will over-allocate memory and the actual PGA memory consumed
will exceed the limit that was set. It is therefore meaningless to set a value of the
PGA_AGGREGATE_TARGET parameter in that zone. In this particular example, the
PGA_AGGREGATE_TARGET parameter should be set to at least 375 MB.

Beyond the over allocation zone, the value of the PGA cache hit percentage increases
rapidly. This is due to an increase in the number of optimal or one-pass work areas
and a decrease in the number of multi-pass executions. At some point, around 500 MB
in this example, an inflection in the curve corresponds to the point where most
(probably all) work areas can run in optimal or at least one-pass size. Beyond this
point, the cache hit percentage keeps increasing, though at a lower pace, up to the
point where it starts to taper off and only slight improvement is achieved with increase
in the value of the PGA_AGGREGATE_TARGET parameter. In the figure, this happens when
PGA_AGGREGATE_TARGET reaches 3 GB. At this point, the cache hit percentage is 83% and
only marginal improvement (by 2%) is achieved with one extra gigabyte of PGA
memory. In this example, 3 GB is the optimal value for the PGA_AGGREGATE_TARGET
parameter.

Note:

Although the theoretical maximum for the PGA cache hit percentage is 100%, a
practical limit exists on the maximum size of a work area that may prevent this
theoretical maximum from being reached, even when the value of the
PGA_AGGREGATE_TARGET parameter is further increased. This should happen only
in large DSS systems where the optimal memory requirement is large and may
cause the value of the cache hit percentage to taper off at a lower percentage,
such as 90%.

Ideally, the value of the PGA_AGGREGATE_TARGET parameter should be set to the optimal
value, or at least to the maximum value possible in the region beyond the over
allocation zone. As a rule of thumb, the PGA cache hit percentage should be higher
than 60%, because at 60% the system is almost processing double the number of
bytes it actually needs to process in an ideal situation. In this example, the value of the
PGA_AGGREGATE_TARGET parameter should be set to at least 500 MB, and as close to 3
GB as possible. However, the correct setting for the PGA_AGGREGATE_TARGET parameter
depends on how much memory can be dedicated to the PGA component. Generally,
adding PGA memory requires reducing memory for some SGA components—like the
shared pool or buffer cache—because the overall memory dedicated to the database
instance is often bound by the amount of physical memory available on the system.
Therefore, any decisions to increase PGA memory must be taken in the larger context
of the available memory in the system and the performance of the various SGA
components (which you can monitor with shared pool advisory and buffer cache
advisory statistics). If you cannot reduce memory from the SGA components, consider
adding more physical memory to the system.

16.2.4.3 Using the V$PGA_TARGET_ADVICE_HISTOGRAM View
The V$PGA_TARGET_ADVICE_HISTOGRAM view predicts how changing the value of the
PGA_AGGREGATE_TARGET initialization parameter will affect the statistics in the
V$SQL_WORKAREA_HISTOGRAM view. Use this view to display detailed information about the
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predicted number of optimal, one-pass, and multi-pass work area executions for the
PGA_AGGREGATE_TARGET values used for the prediction.

The V$PGA_TARGET_ADVICE_HISTOGRAM view is identical to the V$SQL_WORKAREA_HISTOGRAM
view, with two additional columns to represent the PGA_AGGREGATE_TARGET values used
for the prediction. Therefore, any query executed against the V$SQL_WORKAREA_HISTOGRAM
view can be used on this view, with an additional predicate to select the desired value
of the PGA_AGGREGATE_TARGET parameter.

Example 16-7 shows a query of this view that displays the predicted content of the
V$SQL_WORKAREA_HISTOGRAM view for a value of the PGA_AGGREGATE_TARGET parameter set to
twice its current value.

Example 16-7    Querying the V$PGA_TARGET_ADVICE_HISTOGRAM View

SELECT low_optimal_size/1024 low_kb, (high_optimal_size+1)/1024 high_kb,
       estd_optimal_executions estd_opt_cnt,
       estd_onepass_executions estd_onepass_cnt,
       estd_multipasses_executions estd_mpass_cnt
  FROM V$PGA_TARGET_ADVICE_HISTOGRAM
 WHERE pga_target_factor = 2
   AND estd_total_executions != 0
 ORDER BY 1;

The output of this query might look like the following:

LOW_KB   HIGH_KB   ESTD_OPTIMAL_CNT   ESTD_ONEPASS_CNT   ESTD_MPASS_CNT
------   -------   ----------------   ----------------   --------------
     8        16             156107                  0                0
    16        32                148                  0                0
    32        64                 89                  0                0
    64       128                 13                  0                0
   128       256                 58                  0                0
   256       512                 10                  0                0
   512      1024                653                  0                0
  1024      2048                530                  0                0
  2048      4096                509                  0                0
  4096      8192                227                  0                0
  8192     16384                176                  0                0
 16384     32768                133                 16                0
 32768     65536                 66                103                0
 65536    131072                 15                 47                0
131072    262144                  0                 48                0
262144    524288                  0                 23                0

In this example, the output shows that increasing the value of the PGA_AGGREGATE_TARGET
parameter by a factor of 2 will enable all work areas under 16 MB to execute in optimal
size.

16.2.4.4 Using the V$SYSSTAT and V$SESSTAT Views
Statistics in the V$SYSSTAT and V$SESSTAT views show the total number of work areas
executed with optimal, one-pass, and multi-pass memory size. These statistics are
cumulative since the instance or the session was started.

Example 16-8 shows a query of the V$SYSSTAT view that displays the total number and
the percentage of times work areas were executed in these three sizes since the
instance was started:
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Example 16-8    Querying the V$SYSSTAT View

SELECT name profile, cnt, DECODE(total, 0, 0, ROUND(cnt*100/total)) percentage
  FROM (SELECT name, value cnt, (SUM(value) over ()) total
  FROM V$SYSSTAT
 WHERE name
  LIKE 'workarea exec%');

The output of this query might look like the following:

PROFILE                                    CNT PERCENTAGE
----------------------------------- ---------- ----------
workarea executions - optimal             5395         95
workarea executions - onepass              284          5
workarea executions - multipass              0          0

In this example, the output shows that 5,395 work area executions (or 95%) were
executed in optimal size, and 284 work area executions (or 5%) were executed in one-
pass size.

16.2.4.5 Tutorial: How to Tune PGA_AGGREGATE_TARGET
This tutorial provides a guideline for tuning the value of the PGA_AGGREGATE_TARGET
parameter using the various views discussed in this chapter.

To tune PGA_AGGREGATE_TARGET:

1. Set the value of the PGA_AGGREGATE_TARGET parameter to avoid memory over-
allocation.

Use the V$PGA_TARGET_ADVICE view to ensure that the PGA_AGGREGATE_TARGET value is
not set within the over-allocation zone, as described in "Using the
V$PGA_TARGET_ADVICE View". In Example 16–8, the PGA_AGGREGATE_TARGET
value should be set to at least 375 MB.

2. Maximize the PGA cache hit percentage, based on response time requirements
and memory constraints.

Use the V$PGA_TARGET_ADVICE view to determine the optimal value for the
PGA_AGGREGATE_TARGET parameter and set its value to the optimal value, or to the
maximum value possible, as described in "Using the V$PGA_TARGET_ADVICE
View".

Assume a limit X on the memory that can be allocated to PGA:

• If limit X is higher than the optimal value, set the value of the
PGA_AGGREGATE_TARGET parameter to the optimal value.

In Example 16–8, if you have 10 GB to dedicate to PGA, set the value of the
PGA_AGGREGATE_TARGET parameter to 3 GB and dedicate the remaining 7 GB to
the SGA.

• If limit X is less than the optimal value, set the value of the
PGA_AGGREGATE_TARGET parameter to X.

In Example 16–8, if you have only 2 GB to dedicate to PGA, set the value of
the PGA_AGGREGATE_TARGET parameter to 2 GB and accept a cache hit percentage
of 75%.
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3. Verify that the new value of the PGA_AGGREGATE_TARGET parameter will result in the
desired number of optimal and one-pass work area executions and avoid any
multi-pass work area executions.

Use the V$PGA_TARGET_ADVICE_HISTOGRAM view to predict the number of optimal, one-
pass, and multi-pass work area executions, as described in "Using the
V$PGA_TARGET_ADVICE_HISTOGRAM View".

4. If more PGA memory is required, then increase PGA memory by either reducing
memory from SGA components or adding more physical memory to the system.

5. At any time, ensure the number of optimal, one-pass, and multi-pass work area
executions matches predictions and tune the value of the PGA_AGGREGATE_TARGET
parameter if necessary.

Use the V$SYSSTAT and V$SESSTAT views to verify the total number of work areas
executed with optimal, one-pass, and multi-pass memory size since instance or
session startup, respectively, as described in "Using the V$SYSSTAT and
V$SESSTAT Views".

16.3 Sizing the Program Global Area by Specifying an
Absolute Limit

In automatic PGA memory management mode, Oracle Database attempts to adhere
to the PGA_AGGREGATE_TARGET value by dynamically controlling the amount of PGA
memory allotted to work areas. However, PGA memory usage may exceed the
PGA_AGGREGATE_TARGET setting at times due to the following reasons:

• The PGA_AGGREGATE_TARGET setting acts as a target, and not a limit.

• PGA_AGGREGATE_TARGET only controls allocations of tunable memory.

Excessive PGA usage can lead to high rates of swapping. When this occurs, the
system may become unresponsive and unstable. In that case, consider using any of
the following methods to specify an absolute limit on the PGA memory usage:

• Use PGA_AGGREGATE_LIMIT parameter to set an absolute limit on the overall PGA
memory usage.

See "Sizing the Program Global Area Using the PGA_AGGREGATE_LIMIT
Parameter"

• Use the Resource Manager procedure
DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE to set an absolute limit on the PGA
memory usage for each session in a particular consumer group.

See "Sizing the Program Global Area Using the Resource Manager"

16.3.1 Sizing the Program Global Area Using the
PGA_AGGREGATE_LIMIT Parameter

The PGA_AGGREGATE_LIMIT initialization parameter enables you to specify an absolute
limit on the PGA memory usage. If the PGA_AGGREGATE_LIMIT value is exceeded, Oracle
Database aborts or terminates the sessions or processes that are consuming the most
untunable PGA memory in the following order:
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• Calls for sessions that are consuming the most untunable PGA memory are
aborted.

• If PGA memory usage is still over the PGA_AGGREGATE_LIMIT, then the sessions and
processes that are consuming the most untunable PGA memory are terminated.

In determining the sessions and processes to abort or terminate, Oracle Database
treats parallel queries as a single unit.

By default, the PGA_AGGREGATE_LIMIT parameter is set to the greater of 2 GB, 200% of
the PGA_AGGREGATE_TARGET value, or 3 MB times the value of the PROCESSES parameter.
However, it will not exceed 120% of the physical memory size minus the total SGA
size. The default value is printed into the alert log. A warning message is printed in the
alert log if the amount of physical memory on the system cannot be determined.

To set PGA_AGGREGATE_LIMIT:

• Set the PGA_AGGREGATE_LIMIT initialization parameter to a desired value in number of
bytes.

The value is expresses as a number followed by K (for kilobytes), M (for
megabytes), or G (for gigabytes). Setting the value to 0 disables the hard limit on
PGA memory.

See Also:

• Oracle Database Reference for information about the PGA_AGGREGATE_LIMIT
initialization parameter

• Oracle Database Reference for information about the V$PGASTAT view

• Oracle Database Administrator's Guide for information about Oracle
Database Resource Manager and consumer groups

16.3.2 Sizing the Program Global Area Using the Resource Manager
You can set an absolute limit on the amount of PGA memory that can be allocated to
each session in a particular consumer group using the SESSION_PGA_LIMIT parameter of
the DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE procedure of the Oracle Database
Resource Manager. If a session exceeds the PGA memory limit set for its consumer
group, then that session is terminated with the ORA-10260 error message.
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See Also:

• Oracle Database Administration Guide topics:

– "Program Global Area (PGA)" for more information about limiting the
PGA memory for each session in a consumer group.

– "Creating Resource Plan Directives" for more information about
creating resource plan directives using the
DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE procedure.

• Oracle Database PL/SQL Packages and Types Reference for the syntax of
the DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE procedure.
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Part IV
Managing System Resources

This part contains the following chapters:

• I/O Configuration and Design

• Managing Operating System Resources



17
I/O Configuration and Design

The I/O subsystem is a vital component of an Oracle database. This chapter
introduces fundamental I/O concepts, discusses the I/O requirements of different parts
of the database, and provides sample configurations for I/O subsystem design.

This chapter includes the following topics:

• About I/O

• I/O Configuration

• I/O Calibration Inside the Database

• I/O Calibration with the Oracle Orion Calibration Tool

17.1 About I/O
Every Oracle database reads or writes data on disk, thus generating disk I/O. The
performance of many software applications is inherently limited by disk I/O.
Applications that spend majority of their CPU time waiting for I/O activity to complete
are said to be I/O-bound.

Oracle Database is designed so that if an application is well written, its performance
should not be limited by I/O. Tuning I/O can enhance the performance of the
application if the I/O system is operating at or near capacity and is not able to service
the I/O requests within an acceptable time. However, tuning I/O cannot help
performance if the application is not I/O-bound (for example, when CPU is the limiting
factor).

Consider the following database requirements when designing an I/O system:

• Storage, such as minimum disk capacity

• Availability, such as continuous (24 x 7) or business hours only

• Performance, such as I/O throughput and application response times

Many I/O designs plan for storage and availability requirements with the assumption
that performance will not be an issue. This is not always the case. Optimally, the
number of disks and controllers to be configured should be determined by I/O
throughput and redundancy requirements. The size of disks can then be determined
by the storage requirements.

When developing an I/O design plan, consider using Oracle Automatic Storage
Management (Oracle ASM). Oracle ASM is an integrated, high-performance
database file system and disk manager that is based on the principle that the database
should manage storage instead of requiring an administrator to do it.

Oracle recommends that you use Oracle ASM for your database file storage, instead
of raw devices or the operating system file system. Oracle ASM provides the following
key benefits:

• Striping
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• Mirroring

• Online storage reconfiguration and dynamic rebalancing

• Managed file creation and deletion

See Also:

Oracle Automatic Storage Management Administrator's Guide for additional
information about Oracle ASM

17.2 I/O Configuration
This section describes the basic information to be gathered and decisions to be made
when defining a system's I/O configuration. You want to keep the configuration as
simple as possible, while maintaining the required availability, recoverability, and
performance. The more complex a configuration becomes, the more difficult it is to
administer, maintain, and tune.

This section contains the following topics:

• Lay Out the Files Using Operating System or Hardware Striping

• Manually Distributing I/O

• When to Separate Files

• Three Sample Configurations

• Oracle Managed Files

• Choosing Data Block Size

17.2.1 Lay Out the Files Using Operating System or Hardware Striping
If your operating system has LVM software or hardware-based striping, then it is
possible to distribute I/O using these tools. Decisions to be made when using an LVM
or hardware striping include stripe depth and stripe width.

• Stripe depth is the size of the stripe, sometimes called stripe unit.

• Stripe width is the product of the stripe depth and the number of drives in the
striped set.

Choose these values wisely so that the system is capable of sustaining the required
throughput. For an Oracle database, reasonable stripe depths range from 256 KB to 1
MB. Different types of applications benefit from different stripe depths. The optimal
stripe depth and stripe width depend on the following:

• Requested I/O Size

• Concurrency of I/O Requests

• Alignment of Physical Stripe Boundaries with Block Size Boundaries

• Manageability of the Proposed System
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17.2.1.1 Requested I/O Size
Table 17-1 lists the Oracle Database and operating system parameters that you can
use to set I/O size:

Table 17-1    Oracle Database and Operating System Operational Parameters

Parameter Description

DB_BLOCK_SIZE The size of single-block I/O requests. This parameter is also used
in combination with multiblock parameters to determine multiblock
I/O request size.

OS block size Determines I/O size for redo log and archive log operations.

Maximum OS I/O size Places an upper bound on the size of a single I/O request.

DB_FILE_MULTIBLOCK_READ
_COUNT

The maximum I/O size for full table scans is computed by
multiplying this parameter with DB_BLOCK_SIZE. (the upper value is
subject to operating system limits). If this value is not set explicitly
(or is set to 0), the default value corresponds to the maximum I/O
size that can be efficiently performed and is platform-dependent.

SORT_AREA_SIZE Determines I/O sizes and concurrency for sort operations.

HASH_AREA_SIZE Determines the I/O size for hash operations.

In addition to I/O size, the degree of concurrency also helps in determining the ideal
stripe depth. Consider the following when choosing stripe width and stripe depth:

• On low-concurrency (sequential) systems, ensure that no single I/O visits the
same disk twice. For example, assume that the stripe width is four disks, and the
stripe depth is 32K. If a single 1MB I/O request (for example, for a full table scan)
is issued by an Oracle server process, then each disk in the stripe must perform
eight I/Os to return the requested data. To avoid this situation, the size of the
average I/O should be smaller than the stripe width multiplied by the stripe depth.
If this is not the case, then a single I/O request made by Oracle Database to the
operating system results in multiple physical I/O requests to the same disk.

• On high-concurrency (random) systems, ensure that no single I/O request is
broken up into multiple physical I/O calls. Failing to do this multiplies the number of
physical I/O requests performed in your system, which in turn can severely
degrade the I/O response times.

17.2.1.2 Concurrency of I/O Requests
In a system with a high degree of concurrent small I/O requests, such as in a
traditional OLTP environment, it is beneficial to keep the stripe depth large. Using
stripe depths larger than the I/O size is called coarse grain striping. In high-
concurrency systems, the stripe depth can be as follows, where n > 1:

n * DB_BLOCK_SIZE

Coarse grain striping allows a disk in the array to service several I/O requests. In this
way, a large number of concurrent I/O requests can be serviced by a set of striped
disks with minimal I/O setup costs. Coarse grain striping strives to maximize overall
I/O throughput. Multiblock reads, as in full table scans, will benefit when stripe depths
are large and can be serviced from one drive. Parallel query in a data warehouse
environment is also a candidate for coarse grain striping because many individual
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processes each issue separate I/Os. If coarse grain striping is used in systems that do
not have high concurrent requests, then hot spots could result.

In a system with a few large I/O requests, such as in a traditional DSS environment or
a low-concurrency OLTP system, then it is beneficial to keep the stripe depth small.
This is called fine grain striping. In such systems, the stripe depth is as follows,
where n is smaller than the multiblock read parameters, such as
DB_FILE_MULTIBLOCK_READ_COUNT:

n * DB_BLOCK_SIZE

Fine grain striping allows a single I/O request to be serviced by multiple disks. Fine
grain striping strives to maximize performance for individual I/O requests or response
time.

17.2.1.3 Alignment of Physical Stripe Boundaries with Block Size Boundaries
On some Oracle Database ports, a database block boundary may not align with the
stripe. If your stripe depth is the same size as the database block, then a single I/O
issued by Oracle Database may result in two physical I/O operations.

This is not optimal in an OLTP environment. To ensure a higher probability of one
logical I/O resulting in no more than one physical I/O, the minimum stripe depth should
be at least twice the Oracle block size. Table 17-2 shows recommended minimum
stripe depth for random access and for sequential reads.

Table 17-2    Minimum Stripe Depth

Disk Access Minimum Stripe Depth

Random reads and writes The minimum stripe depth is twice the Oracle block size.

Sequential reads The minimum stripe depth is twice the value of
DB_FILE_MULTIBLOCK_READ_COUNT, multiplied by the Oracle
block size.

See Also:

The specific documentation for your platform

17.2.1.4 Manageability of the Proposed System
With an LVM, the simplest configuration to manage is one with a single striped volume
over all available disks. In this case, the stripe width encompasses all available disks.
All database files reside within that volume, effectively distributing the load evenly.
This single-volume layout provides adequate performance in most situations.

A single-volume configuration is viable only when used in conjunction with RAID
technology that allows easy recoverability, such as RAID 1. Otherwise, losing a single
disk means losing all files concurrently and, hence, performing a full database restore
and recovery.
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In addition to performance, there is a manageability concern: the design of the system
must allow disks to be added simply, to allow for database growth. The challenge is to
do so while keeping the load balanced evenly.

For example, an initial configuration can involve the creation of a single striped volume
over 64 disks, each disk being 16 GB. This is total disk space of 1 terabyte (TB) for the
primary data. Sometime after the system is operational, an additional 80 GB (that is,
five disks) must be added to account for future database growth.

The options for making this space available to the database include creating a second
volume that includes the five new disks. However, an I/O bottleneck might develop, if
these new disks are unable to sustain the I/O throughput required for the files placed
on them.

Another option is to increase the size of the original volume. LVMs are becoming
sophisticated enough to allow dynamic reconfiguration of the stripe width, which allows
disks to be added while the system is online. This begins to make the placement of all
files on a single striped volume feasible in a production environment.

If your LVM cannot support dynamically adding disks to the stripe, then it is likely that
you need to choose a smaller, more manageable stripe width. Then, when new disks
are added, the system can grow by a stripe width.

In the preceding example, eight disks might be a more manageable stripe width. This
is only feasible if eight disks are capable of sustaining the required number of I/Os
each second. Thus, when extra disk space is required, another eight-disk stripe can be
added, keeping the I/O balanced across the volumes.

Note:

The smaller the stripe width becomes, the more likely it is that you will need to
spend time distributing the files on the volumes, and the closer the procedure
becomes to manually distributing I/O.

17.2.2 Manually Distributing I/O
If your system does not have an LVM or hardware striping, then I/O must be manually
balanced across the available disks by distributing the files according to each file's I/O
requirements. In order to make decisions on file placement, you should be familiar with
the I/O requirements of the database files and the capabilities of the I/O system. If you
are not familiar with this data and do not have a representative workload to analyze,
you can make a first guess and then tune the layout as the usage becomes known.

To stripe disks manually, you need to relate a file's storage requirements to its I/O
requirements.

1. Evaluate database disk-storage requirements by checking the size of the files and
the disks.

2. Identify the expected I/O throughput for each file. Determine which files have the
highest I/O rate and which do not have many I/Os. Lay out the files on all the
available disks so as to even out the I/O rate.

One popular approach to manual I/O distribution suggests separating a frequently
used table from its index. This is not correct. During the course of a transaction, the
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index is read first, and then the table is read. Because these I/Os occur sequentially,
the table and index can be stored on the same disk without contention. It is not
sufficient to separate a data file simply because the data file contains indexes or table
data. The decision to segregate a file should be made only when the I/O rate for that
file affects database performance.

17.2.3 When to Separate Files
Regardless of whether you use operating system striping or manual I/O distribution, if
the I/O system or I/O layout is not able to support the I/O rate required, then you need
to separate files with high I/O rates from the remaining files. You can identify such files
either at the planning stage or after the system is live.

The decision to segregate files should only be driven by I/O rates, recoverability
concerns, or manageability issues. (For example, if your LVM does not support
dynamic reconfiguration of stripe width, then you might need to create smaller stripe
widths to be able to add n disks at a time to create a new stripe of identical
configuration.)

Before segregating files, verify that the bottleneck is truly an I/O issue. The data
produced from investigating the bottleneck identifies which files have the highest I/O
rates.

The following sections describe how to segregate the following file types:

• Tables, Indexes, and TEMP Tablespaces

• Redo Log Files

• Archived Redo Logs

17.2.3.1 Tables, Indexes, and TEMP Tablespaces
If the files with high I/O are data files belonging to tablespaces that contain tables and
indexes, then identify whether the I/O for those files can be reduced by tuning SQL or
application code.

If the files with high-I/O are data files that belong to the TEMP tablespace, then
investigate whether to tune the SQL statements performing disk sorts to avoid this
activity, or to tune the sorting.

After the application has been tuned to avoid unnecessary I/O, if the I/O layout is still
not able to sustain the required throughput, then consider segregating the high-I/O
files.

17.2.3.2 Redo Log Files
If the high-I/O files are redo log files, then consider splitting the redo log files from the
other files. Possible configurations can include the following:

• Placing all redo logs on one disk without any other files. Also consider availability;
members of the same group should be on different physical disks and controllers
for recoverability purposes.

• Placing each redo log group on a separate disk that does not store any other files.

• Striping the redo log files across several disks, using an operating system striping
tool. (Manual striping is not possible in this situation.)
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• Avoiding the use of RAID 5 for redo logs.

Redo log files are written sequentially by the Log Writer (LGWR) process. This
operation can be made faster if there is no concurrent activity on the same disk.
Dedicating a separate disk to redo log files usually ensures that LGWR runs smoothly
with no further tuning necessary. If your system supports asynchronous I/O but this
feature is not currently configured, then test to see if using this feature is beneficial.
Performance bottlenecks related to LGWR are rare.

17.2.3.3 Archived Redo Logs
If the archiver is slow, then it might be prudent to prevent I/O contention between the
archiver process and LGWR by ensuring that archiver reads and LGWR writes are
separated. This is achieved by placing logs on alternating drives.

For example, suppose a system has four redo log groups, each group with two
members. To create separate-disk access, the eight log files should be labeled 1a, 1b,
2a, 2b, 3a, 3b, 4a, and 4b. This requires at least four disks, plus one disk for archived
files.

The following figure illustrates how redo members should be distributed across disks
to minimize contention.

Figure 17-1    Distributing Redo Members Across Disks
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In this example, LGWR switches out of log group 1 (member 1a and 1b) and writes to
log group 2 (2a and 2b). Concurrently, the archiver process reads from group 1 and
writes to its archive destination. Note how the redo log files are isolated from
contention.

Note:

Mirroring redo log files, or maintaining multiple copies of each redo log file on
separate disks, does not slow LGWR considerably. LGWR writes to each disk
in parallel and waits until each part of the parallel write is complete. Thus, a
parallel write does not take longer than the longest possible single-disk write.
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Because redo logs are written serially, drives dedicated to redo log activity generally
require limited head movement. This significantly accelerates log writing.

17.2.4 Three Sample Configurations
This section contains three high-level examples of configuring I/O systems. These
examples include sample calculations that define the disk topology, stripe depths, and
so on:

• Stripe Everything Across Every Disk

• Move Archive Logs to Different Disks

• Move Redo Logs to Separate Disks

17.2.4.1 Stripe Everything Across Every Disk
The simplest approach to I/O configuration is to build one giant volume, striped across
all available disks. To account for recoverability, the volume is mirrored (RAID 1). The
striping unit for each disk should be larger than the maximum I/O size for the frequent
I/O operations. This provides adequate performance for most cases.

17.2.4.2 Move Archive Logs to Different Disks
If archived redo log files are striped on the same set of disks as other files, then any
I/O requests on those disks could suffer when the database is archiving the redo logs.
Moving archived redo log files to separate disks provides the following benefits:

• The archive can be performed at very high rate (using sequential I/O).

• Nothing else is affected by the degraded response time on the archive destination
disks.

The number of disks for archive logs is determined by the rate of archive log
generation and the amount of archive storage required.

17.2.4.3 Move Redo Logs to Separate Disks
In high-update OLTP systems, the redo logs are write-intensive. Moving the redo log
files to disks that are separate from other disks and from archived redo log files has
the following benefits:

• Writing redo logs is performed at the highest possible rate. Hence, transaction
processing performance is at its best.

• Writing of the redo logs is not impaired with any other I/O.

The number of disks for redo logs is mostly determined by the redo log size, which is
generally small compared to current technology disk sizes. Typically, a configuration
with two disks (possibly mirrored to four disks for fault tolerance) is adequate. In
particular, by having the redo log files alternating on two disks, writing redo log
information to one file does not interfere with reading a completed redo log for
archiving.
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17.2.5 Oracle Managed Files
When file systems can contain all Oracle Database data, database administration is
simplified by using Oracle Managed Files. Oracle Database internally uses standard
file system interfaces to create and delete files as needed for tablespaces, temp files,
online logs, and control files. Administrators only specify the file system directory to be
used for a particular type of file. You can specify one default location for data files and
up to five multiplexed locations for the control and online redo log files.

Oracle Database ensures that a unique file is created and then deleted when it is no
longer needed. This reduces corruption caused by administrators specifying the wrong
file, reduces wasted disk space consumed by obsolete files, and simplifies creation of
test and development databases. It also makes development of portable third-party
tools easier, because it eliminates the need to put operating system-specific file names
in SQL scripts.

New files can be created as Oracle Managed Files, while old ones are administered in
the old way. Thus, a database can have a mixture of Oracle Managed Files and user-
managed files.

Note:

Oracle Managed Files cannot be used with raw devices.

Several points should be considered when tuning Oracle Managed Files:

• Because Oracle Managed Files require the use of a file system, DBAs give up
control over how the data is laid out. Therefore, it is important to correctly
configure the file system.

• Build the file system for Oracle Managed Files on top of an LVM that supports
striping. For load balancing and improved throughput, stripe the disks in the file
system.

• Oracle Managed Files work best if used on an LVM that supports dynamically
extensible logical volumes. Otherwise, configure the logical volumes as large as
possible.

• Oracle Managed Files work best if the file system provides large extensible files.

See Also:

Oracle Database Administrator's Guide for detailed information about using
Oracle Managed Files

17.2.6 Choosing Data Block Size
A block size of 8 KB is optimal for most systems. However, OLTP systems
occasionally use smaller block sizes and DSS systems occasionally use larger block
sizes. This section discusses considerations when choosing database block size for
optimal performance and contains the following topics:
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• Reads

• Writes

• Block Size Advantages and Disadvantages

Note:

The use of multiple block sizes in a single database instance is not encouraged
because of manageability issues.

17.2.6.1 Reads
Regardless of the size of the data, the goal is to minimize the number of reads
required to retrieve the desired data.

• If the rows are small and access is predominantly random, then choose a smaller
block size.

• If the rows are small and access is predominantly sequential, then choose a larger
block size.

• If the rows are small and access is both random and sequential, then it might be
effective to choose a larger block size.

• If the rows are large, such as rows containing large object (LOB) data, then
choose a larger block size.

17.2.6.2 Writes
For high-concurrency OLTP systems, consider appropriate values for INITRANS,
MAXTRANS, and FREELISTS when using a larger block size. These parameters affect the
degree of update concurrency allowed within a block. However, you do not need to
specify the value for FREELISTS when using automatic segment-space management.

If you are uncertain about which block size to choose, then try a database block size of
8 KB for most systems that process a large number of transactions. This represents a
good compromise and is usually effective. Only systems processing LOB data need
more than 8 KB.

See Also:

The Oracle Database installation documentation specific to your operating
system for information about the minimum and maximum block size on your
platform

17.2.6.3 Block Size Advantages and Disadvantages
Table 17-3 lists the advantages and disadvantages of different block sizes.
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Table 17-3    Block Size Advantages and Disadvantages

Block Size Advantages Disadvantages

Smaller Good for small rows with lots of random
access.

Reduces block contention.

Has relatively large space overhead due to metadata
(that is, block header).

Not recommended for large rows. There might only be
a few rows stored for each block, or worse, row
chaining if a single row does not fit into a block,

Larger Has lower overhead, so there is more
room to store data.

Permits reading several rows into the
buffer cache with a single I/O (depending
on row size and block size).

Good for sequential access or very large
rows (such as LOB data).

Wastes space in the buffer cache, if you are doing
random access to small rows and have a large block
size. For example, with an 8 KB block size and 50
byte row size, you waste 7,950 bytes in the buffer
cache when doing random access.

Not good for index blocks used in an OLTP
environment, because they increase block contention
on the index leaf blocks.

17.3 I/O Calibration Inside the Database
The I/O calibration feature of Oracle Database enables you to assess the performance
of the storage subsystem, and determine whether I/O performance problems are
caused by the database or the storage subsystem. Unlike other external I/O calibration
tools that issue I/Os sequentially, the I/O calibration feature of Oracle Database issues
I/Os randomly using Oracle data files to access the storage media, producing results
that more closely match the actual performance of the database.

The section describes how to use the I/O calibration feature of Oracle Database and
contains the following topics:

• Prerequisites for I/O Calibration

• Running I/O Calibration

Oracle Database also provides Orion, an I/O calibration tool. Orion is a tool for
predicting the performance of an Oracle database without having to install Oracle or
create a database. Unlike other I/O calibration tools, Oracle Orion is expressly
designed for simulating Oracle database I/O workloads using the same I/O software
stack as Oracle. Orion can also simulate the effect of striping performed by Oracle
Automatic Storage Management. For more information, see "I/O Calibration with the
Oracle Orion Calibration Tool".

17.3.1 Prerequisites for I/O Calibration
Before running I/O calibration, ensure that the following requirements are met:

• The user must be granted the SYSDBA privilege

• timed_statistics must be set to TRUE

• Asynchronous I/O must be enabled

When using file systems, asynchronous I/O can be enabled by setting the
FILESYSTEMIO_OPTIONS initialization parameter to SETALL.

• Ensure that asynchronous I/O is enabled for data files by running the following
query:
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COL NAME FORMAT A50
SELECT NAME,ASYNCH_IO FROM V$DATAFILE F,V$IOSTAT_FILE I
WHERE  F.FILE#=I.FILE_NO
AND    FILETYPE_NAME='Data File';

Additionally, only one calibration can be performed on a database instance at a time.

17.3.2 Running I/O Calibration
The I/O calibration feature of Oracle Database is accessed using the
DBMS_RESOURCE_MANAGER.CALIBRATE_IO procedure. This procedure issues an I/O intensive
read-only workload, made up of one megabyte of random of I/Os, to the database files
to determine the maximum IOPS (I/O requests per second) and MBPS (megabytes of
I/O per second) that can be sustained by the storage subsystem.

The I/O calibration occurs in two steps:

• In the first step of I/O calibration with the DBMS_RESOURCE_MANAGER.CALIBRATE_IO
procedure, the procedure issues random database-block-sized reads, by default, 8
KB, to all data files from all database instances. This step provides the maximum
IOPS, in the output parameter max_iops, that the database can sustain. The value
max_iops is an important metric for OLTP databases. The output parameter
actual_latency provides the average latency for this workload. When you need a
specific target latency, you can specify the target latency with the input parameter
max_latency (specifies the maximum tolerable latency in milliseconds for database-
block-sized IO requests).

• The second step of calibration using the DBMS_RESOURCE_MANAGER.CALIBRATE_IO
procedure issues random, 1 MB reads to all data files from all database instances.
The second step yields the output parameter max_mbps, which specifies the
maximum MBPS of I/O that the database can sustain. This step provides an
important metric for data warehouses.

The calibration runs more efficiently if the user provides the num_physical_disks input
parameter, which specifies the approximate number of physical disks in the database
storage system.

Due to the overhead from running the I/O workload, I/O calibration should only be
performed when the database is idle, or during off-peak hours, to minimize the impact
of the I/O workload on the normal database workload.

To run I/O calibration and assess the I/O capability of the storage subsystem used by
Oracle Database, use the DBMS_RESOURCE_MANAGER.CALIBRATE_IO procedure:

SET SERVEROUTPUT ON
DECLARE
  lat  INTEGER;
  iops INTEGER;
  mbps INTEGER;
BEGIN
-- DBMS_RESOURCE_MANAGER.CALIBRATE_IO (<DISKS>, <MAX_LATENCY>, iops, mbps, lat);
   DBMS_RESOURCE_MANAGER.CALIBRATE_IO (2, 10, iops, mbps, lat);
 
  DBMS_OUTPUT.PUT_LINE ('max_iops = ' || iops);
  DBMS_OUTPUT.PUT_LINE ('latency  = ' || lat);
  dbms_output.put_line('max_mbps = ' || mbps);
end;
/
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When running the DBMS_RESOURCE_MANAGER.CALIBRATE_IO procedure, consider the
following:

• Only run one calibration at a time on databases that use the same storage
subsystem. If you simultaneously run the calibration across separate databases
that use the same storage subsystem, the calibration will fail.

• Quiesce the database to minimize I/O on the instance.

• For Oracle Real Application Clusters (Oracle RAC) configurations, ensure that all
instances are opened to calibrate the storage subsystem across nodes.

• For an Oracle Real Application Clusters (Oracle RAC) database, the workload is
simultaneously generated from all instances.

• The num_physical_disks input parameter is optional. By setting the
num_physical_disks parameter to the approximate number of physical disks in the
database's storage system, the calibration can be faster and more accurate.

• In some cases, asynchronous I/O is permitted for data files, but the I/O subsystem
for submitting asynchronous I/O may be maximized, and I/O calibration cannot
continue. In such cases, refer to the port-specific documentation for information
about checking the maximum limit for asynchronous I/O on the system.

At any time during the I/O calibration process, you can query the calibration status in
the V$IO_CALIBRATION_STATUS view. After I/O calibration is successfully completed, you
can view the results in the DBA_RSRC_IO_CALIBRATE table.

See Also:

• Oracle Database PL/SQL Packages and Types Reference for more
information about running the DBMS_RESOURCE_MANAGER.CALIBRATE_IO
procedure

• Oracle Database Reference for more information about the 
V$IO_CALIBRATION_STATUS view and DBA_RSRC_IO_CALIBRATE table

17.4 I/O Calibration with the Oracle Orion Calibration Tool
This section describes the Oracle Orion Calibration Tool and includes the following
sections:

• Introduction to the Oracle Orion Calibration Tool

• Getting Started with Orion

• Orion Input Files

• Orion Parameters

• Orion Output Files

• Orion Troubleshooting
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17.4.1 Introduction to the Oracle Orion Calibration Tool
Oracle Orion is a tool for predicting the performance of an Oracle database without
having to install Oracle or create a database. Unlike other I/O calibration tools, Oracle
Orion is expressly designed for simulating Oracle database I/O workloads using the
same I/O software stack as Oracle. Orion can also simulate the effect of striping
performed by Oracle Automatic Storage Management.

Table 17-4 lists the types of I/O workloads that Orion supports.

For each type of workload shown in Table 17-4, Orion can run tests using different I/O
loads to measure performance metrics such as MBPS, IOPS, and I/O latency. Load is
expressed in terms of the number of outstanding asynchronous I/Os. Internally, for
each such load level, the Orion software keeps issuing I/O requests as fast as they
complete to maintain the I/O load at that level. For random workloads, using either
large or small sized I/Os, the load level is the number of outstanding I/Os. For large
sequential workloads, the load level is a combination of the number of sequential
streams and the number of outstanding I/Os per stream. Testing a given workload at a
range of load levels can help you understand how performance is affected by load.

Note the following when you use Orion:

• Run Orion when the storage is idle (or pretty close to idle). Orion calibrates the
performance of the storage based on the I/O load it generates; Orion is not able to
properly assess the performance if non-Orion I/O workloads run simultaneously.

• If a database has been created on the storage, the storage can alternatively be
calibrated using the PL/SQL routine dbms_resource_manager.calibrate_io().

Table 17-4    Orion I/O Workload Support

Workload Description

Small Random I/O OLTP applications typically generate random reads and writes whose size is
equivalent to the database block size, typically 8 KB. Such applications typically
care about the throughput in I/Os Per Second (IOPS) and about the average
latency (I/O turn-around time) per request. These parameters translate to the
transaction rate and transaction turn-around time at the application layer.

Orion simulates a random I/O workload with a given percentage of reads
compared to writes, a given I/O size, and a given number of outstanding I/Os. In
this Orion workload simulation, the I/Os are distributed across all disks.

Large Sequential I/O Data warehousing applications, data loads, backups, and restores generate
sequential read and write streams composed of multiple outstanding 1 MB I/Os.
Such applications are processing large amounts of data, such as a whole table or
a whole database and they typically care about the overall data throughput in
MegaBytes Per Second (MBPS).

Orion can simulate a given number of sequential read or write streams of a given
I/O size with a given number of outstanding I/Os. Orion can optionally simulate
Oracle Automatic Storage Management striping when testing sequential streams.

Large Random I/O A sequential stream typically accesses the disks concurrently with other database
traffic. With striping, a sequential stream is spread across many disks.
Consequently, at the disk level, multiple sequential streams are seen as random 1
MB I/Os.
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Table 17-4    (Cont.) Orion I/O Workload Support

Workload Description

Mixed Workloads Orion can simulate two simultaneous workloads: Small Random I/O and either
Large Sequential I/O or Large Random I/O. This workload type enables you to
simulate, for example, an OLTP workload of 8 KB random reads and writes with a
backup workload of four sequential read streams of 1 MB I/Os.

Each Orion data point is a test for a specific mix of small and large I/O loads sustained
for a duration. An Orion test consists of multiple data point tests. These data point
tests can be represented as a two-dimensional matrix. Each column in the matrix
represents data point tests with the same small I/O load, but varying large I/O loads.
Each row represents data point tests with the same large I/O load, but varying small
I/O loads. An Orion test can be for a single point, a single row, a single column, or for
the whole matrix.

17.4.1.1 Orion Test Targets
You can use Orion to test any disk-based character device that supports
asynchronous I/O. Orion has been tested on the following types of targets:

• DAS (direct-attached) storage: You can use Orion to test the performance of one
or more local disks, volumes, or files on the local host.

• SAN (storage-area network) storage: Orion can be run on any host that has all or
parts of the SAN storage mapped as character devices. The devices can
correspond to striped or un-striped volumes exported by the storage array(s), or
individual disks, or one or more whole arrays.

• NAS (network-attached storage): You can use Orion to test the performance on
data files on NAS storage. In general, the performance results on NAS storage are
dependent on the I/O patterns with which the data files have been created and
updated. Therefore, you should initialize the data files appropriately before running
Orion.

17.4.1.2 Orion for Oracle Administrators
Oracle administrators can use Orion to evaluate and compare different storage arrays,
based on the expected workloads. Oracle administrators can also use Orion to
determine the optimal number of network connections, storage arrays, storage array
controllers, and disks for the expected peak workloads.

17.4.2 Getting Started with Orion
To get started using Orion, do the following:

1. Select a test name to use with the Orion –testname parameter. This parameter
specifies a unique identifier for your Orion run. For example, use the test name
"mytest". For more information, see "Orion Parameters".

2. Create an Orion input file, based on the test name. For example, create a file
named mytest.lun. In the input file list the raw volumes or files to test. Add one
volume name per line. Do not put comments or anything else in the .lun file.

For example, an Orion input file could contain the following:
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/dev/raw/raw1
/dev/raw/raw2
/dev/raw/raw3
/dev/raw/raw4
/dev/raw/raw5
/dev/raw/raw6
/dev/raw/raw7
/dev/raw/raw8

For more information, see "Orion Input Files".

3. Verify that the all volumes specified in the input file, for example mytest.lun, are
accessible using the command dd or another equivalent file viewing utility. For
example, for a typical sanity-check try the following on a Linux system:

$ dd if=/dev/raw/raw1 of=/dev/null bs=32k count=1024

Depending on your platform, the file viewing utility you use and its interface may
be different.

4. Verify that your platform has the necessary libraries installed to do asynchronous
I/Os. The Orion test is completely dependent on asynchronous I/O. On Linux and
Solaris, the library libaio must be in the standard lib directories or accessible
through the shell environment's library path variable (usually LD_LIBRARY_PATH or
LIBPATH, depending on your shell). Windows has built-in asynchronous I/O
libraries, so this issue does not apply.

5. As a first test with Orion, use –run with either the oltp or dss option. If the database
is primarily OLTP, then use –run oltp. If the database is primarily for data
warehousing or analytics, then use –run dss.

For example, use the following command to run an OLTP-like workload using the
default input file name, orion.lun:

$ ./orion -run oltp

The I/O load levels generated by Orion take into account the number of disk
spindles being tested (or specified with the –num_disks parameter). Keep in mind
that the number of spindles may or may not be related to the number of volumes
specified in the input file, depending on how these volumes are mapped.

6. The section "Orion Output Files" provides sample results showing the Orion output
files. Using the sample file mytest_summary.txt is a good starting point for verifying
the input parameters and analyzing the output. The sample files mytest_*.csv
contain comma-delimited values for several I/O performance measures.

17.4.3 Orion Input Files
When you specify the Orion –testname <testname> parameter, this sets the test name
prefix for the Orion input and output filenames. The default value for the –testname
option is "orion".

The Orion input file, <testname>.lun should contain a carriage-return-separated list of
LUNs.

17.4.4 Orion Parameters
Use the Orion command parameters to specify the I/O workload type and to specify
other Orion options.

Chapter 17
I/O Calibration with the Oracle Orion Calibration Tool

17-16



17.4.4.1 Orion Required Parameter
The –run parameter is required with the Orion command. Table 17-5 describes the –
run parameter.
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Table 17-5    Required Orion Parameter

Option Description Default

–run level Specifies the test run level to be level. This option provides the run level and allows
complex commands to be specified at the advanced level. If not set as –run advanced,
then setting any other parameter, besides –cache_size or –verbose, results in an error.

Except advanced, all of the –run level settings use a pre-specified set of parameters.

The level must be one of:

• oltp
Tests with random small (8K) I/Os at increasing loads to determine the maximum
IOPS.

This parameter corresponds to the following Orion invocation:

%> ./orion -run advanced \
    -num_large 0 -size_small 8 -type rand \
    -simulate concat -write 0 -duration 60 \
    -matrix row

• dss
Tests with random large (1M) I/Os at increasing loads to determine the maximum
throughput.

This parameter corresponds to the following Orion invocation:

%> ./orion -run advanced \
    -num_small 0 -size_large 1024 -type rand \
    -simulate concat -write 0 -duration 60 \
    -matrix column

• simple
Generates the Small Random I/O and the Large Random I/O workloads for a range
of load levels. In this option, small and large I/Os are tested in isolation. The only
optional parameters that can be specified at this run level are –cache_size and –
verbose.

This parameter corresponds to the following Orion invocation:

%> ./orion -run advanced \
-size_small 8 -size_large 1024 -type rand \
-simulate concat -write 0 -duration 60 \
-matrix basic

• normal
Same as simple, but also generates combinations of the small random I/O and large
random I/O workloads for a range of loads. The only optional parameters that can be
specified at this run level are –cache_size and –verbose.

This parameter corresponds to the following Orion invocation:

%> ./orion -run advanced \
-size_small 8 -size_large 1024 -type rand \
-simulate concat -write 0 -duration 60 \
-matrix detailed

• advanced
Tests the workload you specify with optional parameters. Any of the optional
parameters can be specified at this run level.

normal

Chapter 17
I/O Calibration with the Oracle Orion Calibration Tool

17-18



17.4.4.2 Orion Optional Parameters

Table 17-6    Optional Orion Parameters

Option Description Default

–cache_size num Size of the storage array's read or write cache (in MB). For
Large Sequential I/O workloads, Orion warms the cache by
doing random large I/Os before each data point. Orion uses the
cache size to determine the duration for this cache warming
operation. If set to 0, do not perform cache warming.

Unless this option is set to 0, Orion issues several unmeasured,
random I/Os before each large sequential data point. These I/Os
fill up the storage array's cache, if any, with random data so that
I/Os from one data point do not result in cache hits for the next
data point. Read tests are preceded with junk reads and write
tests are preceded with junk writes. If specified, this 'cache
warming' is performed until num MBs of I/O have been read or
written.

Default Value:

If not specified, warming
occurs for a default
amount of time (two
minutes). That is, issue
two minutes of
unmeasured random I/Os
before each data point.

–duration
num_seconds

Set the duration to test each data point in seconds to the value
num_seconds.

Default Value: 60

–help Prints Orion help information. All other options are ignored with
help set.

–matrix type Type of mixed workloads to test over a range of loads. An Orion
test consists of multiple data point tests. The data point tests can
be represented as a two-dimensional matrix.

Each column in the matrix represents data point tests with the
same small I/O load, but varying large I/O loads. Each row
represents data point tests with the same large I/O load, but
varying small I/O loads. An Orion test can be for a single point, a
single row, a single column, or the whole matrix, depending on
the matrix type:

• basic: No mixed workload. The Small Random and Large
Random/Sequential workloads are tested separately. Test
small I/Os only, then large I/Os only.

• detailed: Small Random and Large Random/Sequential
workloads are tested in combination. Test entire matrix.

• point: A single data point with S outstanding Small Random
I/Os and L outstanding Large Random I/Os or sequential
streams. S is set by the –num_small parameter. L is set by
the –num_large parameter. Test with –num_small small
I/Os, –num_large large I/Os.

• col: Large Random/Sequential workloads only. Test a
varying large I/O load with –num_small small I/Os.

• row: Small Random workloads only. Test a varying small
I/O load with –num_large large I/Os.

• max: Same as detailed, but only tests the workload at the
maximum load, specified by the –num_small and –
num_large parameters. Test varying loads up to the –
num_small and –num_large limits.

Default Value: basic

–num_disks value Specify the number of physical disks used by the test. Used to
generate a range for the load. Specifies the number of disks
(physical spindles). This number value is used to gauge the
range of loads that Orion should test at. Increasing this
parameter results in Orion using heavier I/O loads.

Default Value: the number
of LUNs in
<testname>.lun.
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Table 17-6    (Cont.) Optional Orion Parameters

Option Description Default

–num_large value Controls the large I/O load.

Note, this option only applies when –matrix is specified as: row,
point, or max.

When the –type option is set to rand, the parameter argument
value specifies the number of outstanding large I/Os.

When the –type option is set to seq, the parameter argument
value specifies the number of sequential I/O streams.

Default Value: no default

–num_small Specify the maximum number of outstanding I/Os for the Small
Random I/O workload.

Note: this only applies when –matrix is specified as col, point,
or max.

Default Value: no default

–num_streamIO num Specify the number of concurrent I/Os per stream as num.

Note: this parameter is only used if –type is seq.

Default Value: 4

–simulate type Data layout to simulate for Large Sequential I/O workload. Orion
tests on a virtual LUN formed by combining specified LUNs in
one of these ways. The type is one:

• concat: A virtual volume is simulated by serially chaining
the specified LUNs. A sequential test over this virtual
volume will go from some point to the end of each one LUN,
followed by the beginning to end of the next LUN, and so
on.

• raid0: A virtual volume is simulated by striping across the
specified LUNs. Each sequential stream issues I/Os across
all LUNs using raid0 striping. The stripe depth is 1M by
default, to match the Oracle Automatic Storage
Management stripe depth, and can be changed with the –
stripe parameter.

The offsets for I/Os are determined as follows:

For Small Random and Large Random workloads:

• The LUNs are concatenated into a single virtual LUN
(VLUN) and random offsets are chosen within the VLUN.

For Large Sequential workloads:

• With striping (–simulate raid0). The LUNs are used to
create a single striped VLUN. With no concurrent Small
Random workload, the sequential streams start at fixed
offsets within the striped VLUN. For n streams, stream i
start at offset VLUNsize * (i + 1) / (n + 1), unless n is 1, in
which case the single stream start at offset 0. With a
concurrent Small Random workload, streams start at
random offsets within the striped VLUN.

• Without striping (–simulate CONCAT). The LUNs are
concatenated into a single VLUN. The streams start at
random offsets within the single VLUN.

This parameter is typically only used if –type is seq.

Default Value: concat

–size_large num Specify the num, size of the I/Os (in KB) for the Large Random
or Sequential I/O workload.

Default Value: 1024

–size_small num Specify the num, size of the I/Os (in KB) for the Small Random
I/O workload.

Default Value: 8
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Table 17-6    (Cont.) Optional Orion Parameters

Option Description Default

–storax type API to use for testing I/O workload.

• skgfr: Use operating system I/O layer.
• oss: Use OSS API for I/O with Cell server in an Exadata

machine.
• asmlib: Use ASMLIB disk devices based storage API for

I/O.
• odmlib: Use Direct NFS storage based API for I/O.

Default Value: skgfr

–testname tname Specify the tname identifier for the test run. When specified, the
input file containing the LUN disk or file names must be named
<tname>.lun.

The output files are named with the prefix <tname>_.

Default Value: orion

–type [rand | seq] Type of the Large I/O workload.

• rand: Randomly distributed large I/Os.
• seq: Sequential streams of large I/Os.

Default Value: rand

–verbose Prints status and tracing information to standard output. Default Value: option not
set

–write num_write Specify the percentage of I/Os that are writes to num_write; the
rest being reads.

This parameter applies to both the Large and Small I/O
workloads. For Large Sequential I/Os, each stream is either
read-only or write-only; the parameter specifies the percentage
of streams that are write-only. The data written to disk is
garbage and unrelated to any existing data on the disk.

Caution: write tests obliterate all data on the specified LUNS.

Default Value: 0

Note:

Write tests obliterate all data on the specified LUNS.

17.4.4.3 Orion Command Line Samples
The following provides sample Orion commands for different types of I/O workloads:

1. To evaluate storage for an OLTP database:

-run oltp

2. To evaluate storage for a data warehouse:

-run dss

3. For a basic set of data:

-run normal

4. To understand your storage performance with read-only, small and large random
I/O workload:

$ orion -run simple 
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5. To understand your storage performance with a mixed small and large random I/O
workload:

$ orion -run normal 

6. To generate combinations of 32KB and 1MB reads to random locations:

$ orion -run advanced -size_small 32 \
-size_large 1024 -type rand -matrix detailed

7. To generate multiple sequential 1 MB write streams, simulating 1 MB RAID-0
stripes:

$ orion -run advanced -simulate raid0 \
-stripe 1024 -write 100 -type seq -matrix col -num_small 0

8. To generate combinations of 32 KB and 1 MB reads to random locations:

 -run advanced -size_small 32 -size_large 1024 -type rand -matrix detailed

9. To generate multiple sequential 1 MB write streams, simulating RAID0 striping:

 -run advanced -simulate raid0 -write 100 -type seq -matrix col -num_small 0

17.4.5 Orion Output Files
The output files for a test run are prefixed by <testname>_<date> where date is
yyyymmdd_hhmm.

Table 17-7 lists the Orion output files.

Table 17-7    Orion Generated Output Files

Output File Description

<testname>_<date>_hist.csv Histogram of I/O latencies.

<testname>_<date>_iops.csv Performance results of small I/Os in IOPS.

<testname>_<date>_lat.csv Latency of small I/Os in microseconds.

<testname>_<date>_mbps.csv Performance results of large I/Os in MBPS.

<testname>_<date>_summary.txt Summary of the input parameters, along with the minimum small I/O latency
(in secs), the maximum MBPS, and the maximum IOPS observed.

<testname>_<date>_trace.txt Extended, unprocessed output.

Note:

If you are performing write tests, be prepared to lose any data stored on the
LUNs.

17.4.5.1 Orion Sample Output Files
Orion creates several output files as specified in Table 17-7. For the sample "mytest"
shown in the section, "Getting Started with Orion", the output files are:

• mytest_summary.txt: This file contains:

– Input parameters
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– Maximum throughput observed for the Large Random/Sequential workload

– Maximum I/O rate observed for the Small Random workload

– Minimum latency observed for the Small Random workload

• mytest_mbps.csv: comma-delimited value file containing the data transfer rate
(MBPS) results for the Large Random/Sequential workload. In the general case,
this and all other CSV files contains a two-dimensional table. Each row in the table
corresponds to a large I/O load level and each column corresponds to a specific
small I/O load level. Thus, the column headings are the number of outstanding
small I/Os and the row headings are the number of outstanding large I/Os (for
random large I/O tests) or the number of sequential streams (for sequential large
I/O tests).

The following example shows the first few data points of the Orion MBPS output
CSV file for "mytest". The simple mytest command-line does not test combinations
of large and small I/Os. Hence, the MBPS file has just one column corresponding
to 0 outstanding small I/Os. In this example, at a load level of 8 outstanding large
reads and no small I/Os, the report data indicates a throughput of 103.06 MBPS.

Large/Small,       0

1,   19.18
2,   37.59
4,   65.53
6,   87.03
8,  103.06
10,  109.67
. .   . . .
. .   . . .

The following graph shows a sample data transfer rate measured at different large
I/O load levels. This graph can be generated by loading mytest_mbps.csv into a
spreadsheet and graphing the data points. Orion does not directly generate such
graphs. The x-axis corresponds to the number of outstanding large reads and the
y-axis corresponds to the throughput observed.

The graph shows typical storage system behavior. As the number of outstanding
I/O requests is increased, the throughput increases. However, at a certain point
the throughput level stabilizes, indicating the storage system's maximum
throughput value.

Figure 17-2    Sample I/O Load Levels
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• mytest_iops.csv: Comma-delimited value file containing the I/O throughput (in
IOPS) results for the Small Random workload. Like in the MBPS file, the column
headings are the number of outstanding small I/Os and the row headings are the
number of outstanding large I/Os, when testing large random, or the number of
sequential streams (for large sequential).

In the general case, a CSV file contains a two-dimensional table. However, for a
simple test where you are not testing combinations of large and small I/Os the
results file has just one row. Hence, the IOPS results file just has one row with 0
large I/Os. As shown in the following example, data point with 12 outstanding
small reads and no large I/Os provides a sample throughput of 951 IOPS.

Large/Small,     1,     2,     3,     6,     9,    12 . . . .

0,             105,   208,   309,   569,   782,   951 . . . .

The following graph is generated by loading mytest_iops.csv into Excel and
charting the data. This graph illustrates the IOPS throughput seen at different
small I/O load levels.

The graph shows typical storage system behavior. As the number of outstanding
I/O requests is increased, the throughput increases. However, at a certain point,
the throughput level stabilizes, indicating the storage system reaches a maximum
throughput value. At higher throughput levels, the latency for the I/O requests also
increase significantly. Therefore, it is important to view this data with the latency
data provided in the generated latency results in mytest_lat.csv.

Figure 17-3    I/O Throughput at Different Small I/O Load Levels

• mytest_lat.csv: Comma-delimited value file containing the latency results for the
Small Random workload. As with the MBPS and IOPS files, the column headings
are the number of outstanding small I/Os and the row headings are the number of
outstanding large I/Os (when testing large random I/Os) or the number of
sequential streams.

In the general case, a CSV file contains a two-dimensional table. However, for a
simple test where you are not testing combinations of large and small I/Os the
results file has just one row. Hence, the IOPS results file just has one row with 0
large I/Os. In the following example, at a sustained load level of 12 outstanding
small reads and no large I/Os, the generated results show an I/O turn-around
latency of 22.25 milliseconds.
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Large/Small, 1, 2, 3, 6, 9, 12 . . . .

0, 14.22, 14.69, 15.09, 16.98, 18.91, 21.25 . . . .

The following graph is generated by loading mytest_lat.csv into Excel and charting
the data. This graph illustrates the small I/O latency at different small I/O load
levels for mytest.

Figure 17-4    I/O Latency at Small I/O Load Levels

• mytest_trace.txt: Contains the extended, unprocessed test output.

Note:

Orion reports errors that occur during a test on standard output.

17.4.6 Orion Troubleshooting
1. If you are getting an I/O error on one or more of the volumes specified in the

<testname>.lun file:

• Verify that you can access the volume in the same mode as the test, read or
write, using a file copy program such as dd.

• Verify that your host operating system version can do asynchronous I/O.

• On Linux and Solaris, the library libaio must be in the standard lib directories
or accessible through the shell environment's library path variable (usually
LD_LIBRARY_PATH or LIBPATH, depending on your shell).

2. If you run on NAS storage:

• The file system must be properly mounted for Orion to run. Please consult
your Oracle Installation Guide for directions (for example, the section,
Appendix B "Using NAS Devices" in the Database Installation Guide for Linux
x86).

• The mytest.lun file should contain one or more paths of existing files. Orion
does not work on directories or mount points. The file has to be large enough
for a meaningful test. The size of this file should represent the eventual
expected size of your datafiles (say, after a few years of use).
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• You may see poor performance doing asynchronous I/O over NFS on Linux
(including 2.6 kernels).

• If you are doing read tests and the reads are hitting untouched blocks of the
file that were not initialized or previously written, some smart NAS systems
may "fake" the read by returning zeroed-out blocks. When this occurs, you see
unexpectedly good performance.

The workaround is to write all blocks, using a tool such as dd, before
performing the read test.

3. If you run Orion on Windows: Testing on raw partitions requires temporarily
mapping the partitions to drive letters and specifying these drive letters in the
test.lun file.

4. If you run Orion 32-bit Linux/x86 binary on an x86_64 system: Please copy a 32-
bit libaio.so file from a 32-bit computer running the same Linux version.

5. If you are testing with a lot of disks (num_disks greater than around 30):

• You should use the -duration option (see the optional parameters section for
more details) to specify a long duration (like 120 seconds or more) for each
data point. Since Orion tries to keep all the spindles running at a particular
load level, each data point requires a ramp-up time, which implies a longer
duration for the test.

• You may get the following error message, instructing you to increase the
duration value:

Specify a longer -duration value.

A duration of 2x the number of spindles seems to be a good rule of thumb.
Depending on your disk technology, your platform may need more or less
time.

6. If you get an error about libraries being used by Orion:

• Linux/Solaris: See I/O error troubleshooting.

• NT-Only: Do not move/remove the Oracle libraries included in the distribution.
These must be in the same directory as orion.exe.

7. If you are seeing performance numbers that are "unbelievably good":

• You may have a large read or write cache, or read and write cache
somewhere between the Orion program and the disk spindles. Typically, the
storage array controller has the biggest effect. Find out the size of this cache
and use the -cache_size advanced option to specify it to Orion (see the
optional parameters section for more details).

• The total size of your volumes may be really small compared to one or more
caches along the way. Try to turn off the cache. This is needed if the other
volumes sharing your storage show significant I/O activity in a production
environment (and end up using large parts of the shared cache).

8. If Orion is reporting a long estimated run time:

• The run time increases when -num_disks is high. Orion internally uses a linear
formula to determine how long it takes to saturate the given number of disks.

• The -cache_size parameter affects the run time, even when it is not specified.
Orion does cache warming for two minutes per data point by default. If you
have turned off the cache, specify -cache_size 0.
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• The run time increases when a long -duration value is specified, as expected.
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18
Managing Operating System Resources

This chapter explains how to tune the operating system for optimal performance of
Oracle Database.

This chapter contains the following sections:

• Understanding Operating System Performance Issues

• Resolving Operating System Issues

• Understanding CPU

• Resolving CPU Issues

See Also:

• Your operating system documentation

• Your Oracle Database platform-specific documentation, which contains
tuning information specific to your platform

18.1 Understanding Operating System Performance Issues
Operating system performance issues commonly involve process management,
memory management, and scheduling. If you have tuned the Oracle database
instance and still need to improve performance, verify your work or try to reduce
system time. Ensure that there is enough I/O bandwidth, CPU power, and swap space.
Do not expect, however, that further tuning of the operating system will have a
significant effect on application performance. Changes in the Oracle Database
configuration or in the application are likely to result in a more significant difference in
operating system efficiency than simply tuning the operating system.

For example, if an application experiences excessive buffer busy waits, then the
number of system calls increases. If you reduce the buffer busy waits by tuning the
application, then the number of system calls decreases.

This section covers the following topics related to operating system performance
issues:

• Using Operating System Caches

• Memory Usage

• Using Operating System Resource Managers

18.1.1 Using Operating System Caches
Operating systems and device controllers provide data caches that do not directly
conflict with Oracle Database cache management. Nonetheless, these structures can
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consume resources while offering little or no performance benefit. This situation is
most noticeable when database files are stored in a Linux or UNIX file system. By
default, all database I/O goes through the file system cache.

On some Linux and UNIX systems, direct I/O is available to the filestore. This
arrangement allows the database files to be accessed within the file system,
bypassing the file system cache. Direct I/O saves CPU resources and allows the file
system cache to be dedicated to non-database activity, such as program texts and
spool files.

Note:

This problem does not occur on Windows. All file requests by the database
bypass the caches in the file system.

Although the operating system cache is often redundant because the Oracle Database
buffer cache buffers blocks, in some cases the database does not use the database
buffer cache. In these cases, using direct I/O or raw devices may yield worse
performance than using operating system buffering. Examples include:

• Reads or writes to the TEMP tablespace

• Data stored in NOCACHE LOBs

• Parallel execution servers reading data

Note:

In some cases the database can cache parallel query data in the database
buffer cache instead of performing direct reads from disk into the PGA. This
configuration may be appropriate when the database servers have a large
amount of memory. See Oracle Database VLDB and Partitioning Guide to
learn more using parallel execution.

You may want to cache but not all files at the operating system level.

18.1.1.1 Asynchronous I/O
With synchronous I/O, when an I/O request is submitted to the operating system, the
writing process blocks until the write is confirmed as complete. It can then continue
processing. With asynchronous I/O, processing continues while the I/O request is
submitted and processed. Use asynchronous I/O when possible to avoid bottlenecks.

Some platforms support asynchronous I/O by default, others need special
configuration, and some only support asynchronous I/O for certain underlying file
system types.

18.1.1.2 FILESYSTEMIO_OPTIONS Initialization Parameter
You can use the FILESYSTEMIO_OPTIONS initialization parameter to enable or disable
asynchronous I/O or direct I/O on file system files. This parameter is platform-specific
and has a default value that is best for a particular platform.
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FILESYSTEMIO_OPTIONS can be set to one of the following values:

• ASYNCH: enable asynchronous I/O on file system files, which has no timing
requirement for transmission.

• DIRECTIO: enable direct I/O on file system files, which bypasses the buffer cache.

• SETALL: enable both asynchronous and direct I/O on file system files.

• NONE: disable both asynchronous and direct I/O on file system files.

See Also:

Your platform-specific documentation for more details

18.1.1.3 Limiting Asynchronous I/O in NFS Server Environments
In some Network File Storage (NFS) server environments, performance may be
impaired if a large number of asynchronous I/O requests are made within a short
period of time. In such cases, use the DNFS_BATCH_SIZE initialization parameter to
improve performance and increase stability on your system by limiting the number of
I/Os issued by an Oracle process.

The DNFS_BATCH_SIZE initialization parameter controls the number of asynchronous I/Os
that can be queued by an Oracle foreground process when Direct NFS Client is
enabled. In environments where the NFS server cannot handle a large number of
outstanding asynchronous I/O requests, Oracle recommends setting this parameter to
a value of 128. You can then increase or decrease its value based on the performance
of your NFS server.

Note:

The default setting for the DNFS_BATCH_SIZE initialization parameter is 4096. The
recommended value of 128 is only applicable on systems where the NFS
server cannot handle a large number of asynchronous I/O requests and severe
latency is detected.

See Also:

Oracle Database Reference for information about the DNFS_BATCH_SIZE
initialization parameter

18.1.1.4 Improving I/O Performance Using Direct NFS Client
Direct NFS Client integrates the NFS client functionality directly in Oracle Database.
Because Direct NFS Client is a specialized NFS client for Oracle Database, it is highly
optimized. Direct NFS Client considerably improves database performance over NFS
as compared to the traditional operating system NFS client.
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Parallel NFS is an optional feature of Direct NFS Client that is introduced in NFS
version 4.1 and is supported by Oracle Database 12c Release 2 (12.2) and later.
Parallel NFS is a highly scalable distributed storage protocol, where clients, server,
and storage devices are responsible for managing file access. In the NFS versions
earlier to 4.1, only the server is responsible for managing file access. Thus, Parallel
NFS enables highly scalable distributed NAS storage for better I/O performance.

Starting with Oracle Database 12c Release 2 (12.2), you can also use the Direct NFS
dispatcher feature of Direct NFS Client. The Direct NFS dispatcher consolidates the
TCP connections that are created from a database instance to an NFS server. In large
database deployments, using Direct NFS dispatcher improves scalability and network
performance. Therefore, for a large number of TCP connections, Oracle recommends
using Direct NFS dispatcher along with Parallel NFS for a Direct NFS Client
deployment.

See Also:

• Oracle Database Installation Guide for information about enabling the
Parallel NFS feature for Direct NFS Client by setting the value for the
nfs_version parameter to pNFS in the Direct NFS configuration file oranfstab.

• Oracle Database Reference for information about enabling the Direct NFS
dispatcher feature for the Direct NFS Client by setting the value for the
ENABLE_DNFS_DISPATCHER initialization parameter to true.

18.1.2 Memory Usage
Memory usage is affected by both buffer cache limits and initialization parameters.

18.1.2.1 Buffer Cache Limits
The UNIX buffer cache consumes operating system memory resources. Although in
some versions of UNIX, the UNIX buffer cache may be allocated a set amount of
memory, it is common today for more sophisticated memory management
mechanisms to be used. Typically, these will allow free memory pages to be used to
cache I/O. In such systems, it is common for operating system reporting tools to show
that there is no free memory, which is not generally a problem. If processes require
more memory, the memory caching I/O data is usually released to allow the process
memory to be allocated.

18.1.2.2 Parameters Affecting Memory Usage
The memory required by any one Oracle Database session depends on many factors.
Typically the major contributing factors are:

• Number of open cursors

• Memory used by PL/SQL, such as PL/SQL tables

• SORT_AREA_SIZE initialization parameter

In Oracle Database, the PGA_AGGREGATE_TARGET initialization parameter gives greater
control over a session's memory usage.
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18.1.3 Using Operating System Resource Managers
Some platforms provide operating system resource managers. These are designed to
reduce the impact of peak load use patterns by prioritizing access to system
resources. They usually implement administrative policies that govern which resources
users can access and how much of those resources each user is permitted to
consume.

Operating system resource managers are different from domains or other similar
facilities. Domains provide one or more completely separated environments within one
system. Disk, CPU, memory, and all other resources are dedicated to each domain
and cannot be accessed from any other domain. Other similar facilities completely
separate just a portion of system resources into different areas, usually separate CPU
or memory areas. Like domains, the separate resource areas are dedicated only to the
processing assigned to that area; processes cannot migrate across boundaries. Unlike
domains, all other resources (usually disk) are accessed by all partitions on a system.

Oracle Database runs within domains, and within these other less complete
partitioning constructs, as long as the allocation of partitioned memory (RAM)
resources is fixed, not dynamic.

Operating system resource managers prioritize resource allocation within a global pool
of resources, usually a domain or an entire system. Processes are assigned to groups,
which are in turn assigned resources anywhere within the resource pool.

Note:

• If you have multiple instances on a node, and you want to distribute
resources among them, then each instance should be assigned to a
dedicated operating-system resource manager group or managed entity.
To run multiple instances in the managed entity, use instance caging to
manage how the CPU resources within the managed entity should be
distributed among the instances. When Oracle Database Resource
Manager is managing CPU resources, it expects a fixed amount of CPU
resources for the instance. Without instance caging, it expects the available
CPU resources to be equal to the number of CPUs in the managed entity.
With instance caging, it expects the available CPU resources to be equal to
the value of the CPU_COUNT initialization parameter. If there are less CPU
resources than expected, then Oracle Database Resource Manager is not
as effective at enforcing the resource allocations in the resource plan.

• Oracle Database is not supported for use with any UNIX operating system
resource manager's memory management and allocation facility. Oracle
Database Resource Manager, which provides resource allocation
capabilities within an Oracle database instance, cannot be used with any
operating system resource manager.

For a complete list of operating system resource management and
resource allocation and deallocation features that work with Oracle
Database and Oracle Database Resource Manager, see your systems
vendor and your Oracle representative. Oracle does not certify these
system features for compatibility with specific release levels.
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See Also:

• Oracle Database Administrator's Guide for information about Oracle
Database Resource Manager

• Oracle Database Administrator's Guide for information about instance
caging

18.2 Resolving Operating System Issues
This section provides hints for tuning various systems by explaining the following
topics:

• Performance Hints on UNIX-Based Systems

• Performance Hints on Windows Systems

• Performance Hints on HP OpenVMS Systems

Familiarize yourself with platform-specific issues so that you know what performance
options the operating system provides.

See Also:

Your Oracle platform-specific documentation and your operating system
vendor's documentation

18.2.1 Performance Hints on UNIX-Based Systems
On UNIX systems, try to establish a good ratio between the amount of time the
operating system spends fulfilling system calls and doing process scheduling and the
amount of time the application runs. The goal should be to run most of the time in
application mode, also called user mode, rather than system mode.

The ratio of time spent in each mode is only a symptom of the underlying problem,
which might involve the following:

• Paging or swapping

• Executing too many operating system calls

• Running too many processes

If such conditions exist, then there is less time available for the application to run. The
more time you can release from the operating system side, the more transactions an
application can perform.

18.2.2 Performance Hints on Windows Systems
On Windows systems, as with UNIX-based systems, establish an appropriate ratio
between time in application mode and time in system mode. You can easily monitor
many factors with the Windows administrative performance tool: CPU, network, I/O,
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and memory are all displayed on the same graph to assist you in avoiding bottlenecks
in any of these areas.

18.2.3 Performance Hints on HP OpenVMS Systems
Consider the paging parameters on a mainframe, and remember that Oracle Database
can exploit a very large working set.

Free memory in HP OpenVMS environments is actually memory that is not mapped to
any operating system process. On a busy system, free memory likely contains a page
belonging to one or more currently active process. When that access occurs, a soft
page fault takes place, and the page is included in the working set for the process. If
the process cannot expand its working set, then one of the pages currently mapped by
the process must be moved to the free set.

Any number of processes might have pages of shared memory within their working
sets. The sum of the sizes of the working sets can thus markedly exceed the available
memory. When the Oracle server is running, the SGA, the Oracle Database kernel
code, and the Oracle Forms run-time executable are normally all sharable and account
for perhaps 80% or 90% of the pages accessed.

18.3 Understanding CPU
To address CPU problems, first establish appropriate expectations for the amount of
CPU resources your system should be using. Then, determine whether sufficient CPU
resources are available and recognize when your system is consuming too many
resources. Begin by determining the amount of CPU resources the Oracle database
instance utilizes with your system in the following three cases:

• System is idle, when little Oracle Database and non-Oracle activity exists

• System at average workloads

• System at peak workloads

You can capture various workload snapshots using the Automatic Workload
Repository, Statspack, or the UTLBSTAT/UTLESTAT utility. Operating system utilities—such
as vmstat, sar, and iostat on UNIX and the administrative performance monitoring tool
on Windows—can be used along with the V$OSSTAT or V$SYSMETRIC_HISTORY view during
the same time interval as Automatic Workload Repository, Statspack, or UTLBSTAT/
UTLESTAT to provide a complimentary view of the overall statistics.

Workload is an important factor when evaluating your system's level of CPU utilization.
During peak workload hours, 90% CPU utilization with 10% idle and waiting time can
be acceptable. Even 30% utilization at a time of low workload can be understandable.
However, if your system shows high utilization at normal workload, then there is no
room for a peak workload. For example, The following figure illustrates workload over
time for an application having peak periods at 10:00 AM and 2:00 PM.
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Figure 18-1    Average Workload and Peak Workload
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This example application has 100 users working 8 hours a day. Each user entering
one transaction every 5 minutes translates into 9,600 transactions daily. Over an 8-
hour period, the system must support 1,200 transactions an hour, which is an average
of 20 transactions a minute. If the demand rate were constant, then you could build a
system to meet this average workload.

However, usage patterns are not constant and in this context, 20 transactions a minute
can be understood as merely a minimum requirement. If the peak rate you need to
achieve is 120 transactions a minute, then you must configure a system that can
support this peak workload.

For this example, assume that at peak workload, Oracle Database uses 90% of the
CPU resource. For a period of average workload, then, Oracle Database uses no
more than about 15% of the available CPU resource, as illustrated in the following
equation:

20 tpm / 120 tpm * 90% = 15% of available CPU resource

where tpm is transactions a minute.

If the system requires 50% of the CPU resource to achieve 20 tpm, then a problem
exists: the system cannot achieve 120 transactions a minute using 90% of the CPU.
However, if you tuned this system so that it achieves 20 tpm using only 15% of the
CPU, then, assuming linear scalability, the system might achieve 120 transactions a
minute using 90% of the CPU resources.

As users are added to an application, the workload can rise to what had previously
been peak levels. No further CPU capacity is then available for the new peak rate,
which is actually higher than the previous.

18.4 Resolving CPU Issues
You can resolve CPU capacity issues by:
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• Detecting and solving CPU problems from excessive consumption, as described in
"Finding and Tuning CPU Utilization".

• Reducing the impact of peak load use patterns by prioritizing CPU resource
allocation using Oracle Database Resource Manager, as described in "Managing
CPU Resources Using Oracle Database Resource Manager".

• Using instance caging to limit the number of CPUs that a database instance can
use simultaneously when running multiple database instances on a multi-CPU
system, as described in "Managing CPU Resources Using Instance Caging".

• Increasing hardware capacity and improving the system architecture.

18.4.1 Finding and Tuning CPU Utilization
Every process running on your system affects the available CPU resources. Therefore,
tuning non-database factors can also improve database performance.

Use the V$OSSTAT or V$SYSMETRIC_HISTORY view to monitor system utilization statistics
from the operating system. Useful statistics contained in V$OSSTAT and
V$SYSMETRIC_HISTORY include:

• Number of CPUs

• CPU utilization

• Load

• Paging

• Physical memory

See Also:

Oracle Database Reference for more information on V$OSSTAT and
V$SYSMETRIC_HISTORY

You can use operating system monitoring tools to determine which processes run on
the system as a whole. If the system is too heavily loaded, check the memory, I/O, and
process management areas described later in this section.

You can use tools such as sar -u on many UNIX-based systems to examine the level
of CPU utilization on the system. In UNIX, statistics show user time, system time, idle
time, and time waiting for I/O. A CPU problem exists if idle time and time waiting for
I/O are both close to zero (less than 5%) at a normal or low workload.

On Windows, you can use the administrative performance tool to monitor CPU
utilization. This utility provides statistics on processor time, user time, privileged time,
interrupt time, and DPC time.

Related topics:

• Checking Memory Management

• Checking I/O Management

• Checking Network Management

• Checking Process Management
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Note:

This document describes how to check system CPU utilization on most UNIX-
based and Windows systems. For other platforms, see your operating system
documentation.

18.4.1.1 Checking Memory Management
Check the following memory management areas:

• Paging and Swapping

• Oversize Page Tables

18.4.1.1.1 Paging and Swapping
Use the V$OSSTAT view, utilities such as sar or vmstat on UNIX, or the administrative 
performance tool on Windows, to investigate the cause of paging and swapping.

18.4.1.1.2 Oversize Page Tables
On UNIX, if the processing space becomes too large, then it can result in the page
tables becoming too large. This is not an issue on Windows systems.

18.4.1.2 Checking I/O Management
Thrashing is an I/O management issue. Ensure that your workload fits into memory, so
the computer is not thrashing (swapping and paging processes in and out of memory).
The operating system allocates fixed portions of time during which CPU resources are
available to your process. If the process wastes a large portion of each time period
checking to ensure that it can run and ensuring that all necessary components are in
the computer, then the process might be using only 50% of the time allotted to actually
perform work.

18.4.1.3 Checking Network Management
Check client/server round trips. There is an overhead in processing messages. When
an application generates many messages that need to be sent through the network,
the latency of sending a message can result in CPU overload. To alleviate this
problem, bundle multiple messages rather than perform lots of round trips. For
example, you can use array inserts, array fetches, and so on.

18.4.1.4 Checking Process Management
Several process management issues discussed in this section should be checked.

• Scheduling and Switching

• Context Switching

• Starting New Operating System Processes
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18.4.1.4.1 Scheduling and Switching
The operating system can spend excessive time scheduling and switching processes.
Examine the way in which you are using the operating system, because it is possible
that too many processes are in use. On Windows systems, do not overload the server
with too many non-database processes.

18.4.1.4.2 Context Switching
Due to operating system specific characteristics, your system could be spending a lot
of time in context switches. Context switching can be expensive, especially with a
large SGA. Context switching is not an issue on Windows, which has only one process
for each instance. All threads share the same page table.

Oracle Database has several features for context switching:

• Post-wait driver

An Oracle process must be able to post another Oracle process (give it a
message) and also must be able to wait to be posted. For example, a foreground
process may need to post LGWR to tell it to write out all blocks up to a given point
so that it can acknowledge a commit.

Often this post-wait mechanism is implemented through UNIX Semaphores, but
these can be resource intensive. Therefore, some platforms supply a post-wait
driver, typically a kernel device driver that is a lightweight method of implementing
a post-wait interface.

• Memory-mapped system timer

Oracle Database often needs to query the system time for timing information. This
can involve an operating system call that incurs a relatively costly context switch.
Some platforms implement a memory-mapped timer that uses an address within
the processes virtual address space to contain the current time information.
Reading the time from this memory-mapped timer is less expensive than the
overhead of a context switch for a system call.

• List I/O interfaces to submit multiple asynchronous I/Os in One Call

List I/O is an application programming interface that allows several asynchronous
I/O requests to be submitted in a single system call, rather than submitting several
I/O requests through separate system calls. The main benefit of this feature is to
reduce the number of context switches required.

18.4.1.4.3 Starting New Operating System Processes
There is a high cost in starting new operating system processes. Developers often
create a single-purpose process, exit the process, and then create a new one. This
technique re-creates and destroys the process each time, consuming excessive
amounts of CPU, especially in applications that have large SGAs. The CPU is needed
to build the page tables each time. The problem is aggravated when you pin or lock
shared memory because you must access every page.

For example, if you have a 1 gigabyte SGA, then you might have page table entries for
every 4 KB, and a page table entry might be 8 bytes. You could end up with (1 GB / 4
KB) * 8 byte entries. This becomes expensive, because you need to continually ensure
that the page table is loaded.
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18.4.2 Managing CPU Resources Using Oracle Database Resource
Manager

Oracle Database Resource Manager allocates and manages CPU resources among
database users and applications in the following ways:

• Preventing CPU saturation

If the CPUs run at 100%, then you can use Oracle Database Resource Manager
to allocate a maximum amount of CPU to sessions in each consumer group. This
feature can ensure that high-priority sessions can run immediately and lower the
CPU consumption of low-priority sessions.

• Limiting CPU usage for a consumer group

You can use the Resource Manager directive max_utilization_limit to place a
hard limit on the percentage of CPU that a consumer group can use. This feature
restricts the CPU consumption of low-priority sessions and can help provide more
consistent performance for the workload in a consumer group.

• Limiting damage from runaway queries

Starting with Oracle Database 11g Release 2 (11.2.0.2), Oracle Database
Resource Manager can limit the damage from runaway queries by limiting the
maximum execution time for a call, or by moving a long-running query to a lower-
priority consumer group.

• Limiting the parallel statement activity for a consumer group

Starting with Oracle Database 11g Release 2 (11.2.0.2), you can use the
Resource Manager directive parallel_target_percentage to prevent one consumer
group from monopolizing all parallel servers. The database queues parallel
statements if they would cause this limit to be exceeded.

For example, assume that the target number of parallel servers is 64, and the
consumer group ETL has this directive set to 50%. If consumer group ETL is using
30 parallel servers, and if a new parallel statement needs 4 parallel servers, then
the database would queue this statement.

See Also:

• Oracle Database Administrator's Guide to learn how to use Oracle
Database Resource Manager

• Oracle Database VLDB and Partitioning Guide to learn how to use parallel
query

18.4.3 Managing CPU Resources Using Instance Caging
When running multiple database instances on a single system, the instances compete
for CPU resources. One resource-intensive database instance may significantly
degrade the performance of the other instances. To avoid this problem, you can use
instance caging to limit the number of CPUs that can used by each instance. Oracle
Database Resource Manager then allocates CPU among the various database
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sessions according to the resource plan that you set for the instance, thereby
minimizing the likelihood of the instance becoming CPU-bound.

See Also:

Oracle Database Administrator's Guide for information about using instance
caging
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