Oracle® Spatial and Graph
Topology Data Model and Network Data
Model Graph Developer's Guide

ORACLE"

Oracle Spatial and Graph Topology Data Model and Network Data Model Graph Developer's Guide, 12¢
Release 2 (12.2)

E85874-01

Copyright © 2003, 2017, Oracle and/or its affiliates. All rights reserved.
Primary Author: Chuck Murray

Contributors: Ning An, Betsy George, Huiling Gong, Siva Ravada, Jack Wang

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface

Audience XVi
Documentation Accessibility XVi
Related Documents XVi
Conventions XVi

Changes in This Release for Oracle Spatial and Graph Topology
Data Model and Network Data Model Graph Developer's Guide

Changes in Oracle Database 12c Release 1 (12.1) XVili
Changes in Oracle Database 12c Release 2 (12.2) XX

Part | Topology Data Model

1 Topology Data Model Overview

1.1 Main Steps in Using Topology Data 1-2
1.1.1 Using a Topology Built from Topology Data 1-3
1.1.2 Using a Topology Built from Spatial Geometries 1-3

1.2 Topology Data Model Concepts 1-4
1.2.1 Tolerance in the Topology Data Model 1-7

1.3 Topology Geometries and Layers 1-8
1.3.1 Features 1-8
1.3.2 Collection Layers 1-9

1.4 Topology Geometry Layer Hierarchy 1-11

1.5 Topology Data Model Tables 1-14
1.5.1 Edge Information Table 1-15
1.5.2 Node Information Table 1-17
1.5.3 Face Information Table 1-18
1.5.4 Relationship Information Table 1-18
1.5.5 History Information Table 1-19

1.6 Topology Data Types 1-22

ORACLE iii

1.6.1 SDO_TOPO_GEOMETRY Type 1-22
1.6.2 SDO_TOPO_GEOMETRY Constructors 1-23
1.6.2.1 Constructors for Insert Operations: Specifying Topological
Elements 1-24
1.6.2.2 Constructors for Insert Operations: Specifying Lower-Level

Features 1-25

1.6.2.3 Constructors for Update Operations: Specifying Topological
Elements 1-26

1.6.2.4 Constructors for Update Operations: Specifying Lower-Level
Features 1-27
1.6.3 GET_GEOMETRY Member Function 1-28
1.6.4 GET_TGL_OBJECTS Member Function 1-28
1.6.5 GET_TOPO_ELEMENTS Member Function 1-29
1.6.6 SDO_LIST_TYPE Type 1-29
1.6.7 SDO_EDGE_ARRAY and SDO_NUMBER_ARRAY Types 1-29
1.7 Topology Metadata Views 1-29
1.7.1 xxx_SDO_TOPO_INFO Views 1-30
1.7.2 xxx_SDO_TOPO_METADATA Views 1-31
1.8 Topology Application Programming Interface 1-33
1.8.1 Topology Operators 1-34
1.8.2 Topology Data Model Java Interface 1-37
1.9 Exporting and Importing Topology Data 1-37
1.10 Cross-Schema Topology Usage and Editing 1-38
1.10.1 Cross-Schema Topology Usage 1-38
1.10.2 Cross-Schema Topology Editing 1-39
1.11 Function-Based Indexes Not Supported 1-40
1.12 Topology Examples (PL/SQL) 1-40
1.12.1 Topology Built from Topology Data 1-40
1.12.2 Topology Built from Spatial Geometries 1-49
1.13 README File for Spatial and Graph and Related Features 1-55

2 Editing Topologies

2.1 Approaches for Editing Topology Data 2-1
2.1.1 TopoMap Objects 2-2
2.1.2 Specifying the Editing Approach with the Topology Parameter 2-3
2.1.3 Using GET_xxx Topology Functions 2-3
2.1.4 Process for Editing Using Cache Explicitly (PL/SQL API) 2-4
2.1.5 Process for Editing Using the Java API 2-6
2.1.6 Error Handling for Topology Editing 2-7
2.1.6.1 Input Parameter Errors 2-8
2.1.6.2 All Exceptions 2-8
ORACLE Y

2.2 Performing Operations on Nodes 2-9
2.2.1 Adding a Node 2-9
2.2.2 Moving a Node 2-10

2.2.2.1 Additional Examples of Allowed and Disallowed Node Moves 2-12
2.2.3 Removing a Node 2-13
2.2.4 Removing Obsolete Nodes 2-14

2.3 Performing Operations on Edges 2-15
2.3.1 Adding an Edge 2-16
2.3.2 Moving an Edge 2-16
2.3.3 Removing an Edge 2-17
2.3.4 Updating an Edge 2-18

3 SDO_TOPO Package Subprograms

3.1 SDO_TOPO.ADD_TOPO_GEOMETRY_LAYER 3-1

3.2 SDO_TOPO.CREATE_TOPOLOGY 3-3

3.3 SDO_TOPO.DELETE_TOPO_GEOMETRY_LAYER 3-5

3.4 SDO_TOPO.DROP_TOPOLOGY 3-6

3.5 SDO_TOPO.GET_FACE_BOUNDARY 3-6

3.6 SDO_TOPO.GET_TOPO_OBJECTS 3-7

3.7 SDO_TOPO.INITIALIZE_AFTER_IMPORT 3-9

3.8 SDO_TOPO.INITIALIZE_METADATA 3-9

3.9 SDO_TOPO.PREPARE_FOR_EXPORT 3-10

3.10 SDO_TOPO.RELATE 3-11

4 SDO_TOPO_MAP Package Subprograms

4.1 SDO_TOPO_MAP.ADD_EDGE 4-2

4.2 SDO_TOPO_MAP.ADD_ISOLATED_NODE 4-4

4.3 SDO_TOPO_MAP.ADD_LINEAR_GEOMETRY 4-5

4.4 SDO_TOPO_MAP.ADD_LOOP 4-7

45 SDO_TOPO MAP.ADD_NODE 4-8

46 SDO_TOPO_MAP.ADD_POINT_GEOMETRY 4-10

4.7 SDO_TOPO_MAP.ADD_POLYGON_GEOMETRY 4-11

4.8 SDO_TOPO MAP.CHANGE_EDGE_COORDS 4-12

49 SDO_TOPO_MAP.CLEAR_TOPO_MAP 4-14

4,10 SDO_TOPO_MAP.COMMIT_TOPO_MAP 4-15

411 SDO_TOPO MAP.CREATE_EDGE_INDEX 4-16

4.12 SDO_TOPO_MAP.CREATE_FACE_INDEX 4-16

4.13 SDO_TOPO_MAP.CREATE_FEATURE 4-17

4.14 SDO_TOPO_MAP.CREATE_TOPO_MAP 4-21

ORACLE

4.15
4.16
417
4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.25
4.26
4.27
4.28
4.29
4.30
4.31
4.32
4.33
4.34
4.35
4.36
4.37
4.38
4.39
4.40
4.41
4.42
4.43
4.44
4.45
4.46
4.47
4.48
4.49
4.50
451
452

ORACLE

SDO_TOPO_MAP.DROP_TOPO_MAP
SDO_TOPO_MAP.GET_CONTAINING_FACE
SDO_TOPO_MAP.GET_EDGE_ADDITIONS
SDO_TOPO_MAP.GET_EDGE_CHANGES
SDO_TOPO_MAP.GET_EDGE_COORDS
SDO_TOPO_MAP.GET_EDGE_DELETIONS
SDO_TOPO_MAP.GET_EDGE_NODES
SDO_TOPO_MAP.GET_FACE_ADDITIONS
SDO_TOPO_MAP.GET_FACE_CHANGES
SDO_TOPO_MAP.GET_FACE_BOUNDARY
SDO_TOPO_MAP.GET_FACE_DELETIONS
SDO_TOPO_MAP.GET_NEAREST EDGE
SDO_TOPO_MAP.GET_NEAREST_EDGE_IN_CACHE
SDO_TOPO_MAP.GET_NEAREST_NODE
SDO_TOPO_MAP.GET_NEAREST NODE_IN_CACHE
SDO_TOPO_MAP.GET_NODE_ADDITIONS
SDO_TOPO_MAP.GET_NODE_CHANGES
SDO_TOPO_MAP.GET_NODE_COORD
SDO_TOPO_MAP.GET_NODE_DELETIONS
SDO_TOPO_MAP.GET_NODE_FACE_STAR
SDO_TOPO_MAP.GET_NODE_STAR
SDO_TOPO_MAP.GET_TOPO_NAME
SDO_TOPO_MAP.GET_TOPO_TRANSACTION_ID
SDO_TOPO_MAP.LIST_TOPO_MAPS
SDO_TOPO_MAP.LOAD_TOPO_MAP
SDO_TOPO_MAP.MOVE_EDGE
SDO_TOPO_MAP.MOVE_ISOLATED_NODE
SDO_TOPO_MAP.MOVE_NODE
SDO_TOPO_MAP.REMOVE_EDGE
SDO_TOPO_MAP.REMOVE_NODE
SDO_TOPO_MAP.REMOVE_OBSOLETE_NODES
SDO_TOPO_MAP.ROLLBACK_TOPO_MAP
SDO_TOPO_MAP.SEARCH_EDGE_RTREE_TOPO_MAP
SDO_TOPO_MAP.SEARCH_FACE_RTREE_TOPO_MAP
SDO_TOPO_MAP.SET_MAX_MEMORY_SIZE
SDO_TOPO_MAP.UPDATE_TOPO_MAP
SDO_TOPO_MAP.VALIDATE_TOPO_MAP
SDO_TOPO_MAP.VALIDATE_TOPOLOGY

4-22
4-23
4-24
4-25
4-25
4-26
4-27
4-28
4-29
4-29
4-30
4-31
4-32
4-33
4-35
4-36
4-36
4-37
4-38
4-39
4-40
4-41
4-41
4-42
4-43
4-46
4-48
4-49
4-51
4-51
4-52
4-53
4-53
4-54
4-55
4-56
4-57
4-58

Vi

Part Il Network Data Model

5 Network Data Model Graph Overview

5.1 Introduction to Network Modeling 5-2
5.2 Main Steps in Using the Network Data Model Graph 5-3
5.2.1 Letting Spatial Perform Most Operations 5-4
5.2.2 Performing the Operations Yourself 5-5

5.3 Network Data Model Graph Concepts 5-5
5.3.1 Subpaths 5-8
5.3.2 Features and Feature Layers 5-8

5.4 Network Applications 5-10
5.4.1 Road Network Example 5-10
5.4.2 Subway (Train) Network Example 5-11
5.4.3 Multimodal Network and Temporal Examples 5-11
5.4.4 Utility Network Example 5-11
5.4.5 Biochemical Network Example 5-12

5.5 Network Hierarchy 5-12
5.6 Network User Data 5-13
5.6.1 User-Defined Data Example (PL/SQL and Java) 5-14
5.6.2 User-Defined Data Example (Custom User Data I/0O Implementation) 5-15
5.6.2.1 Implementation of writeUserData method of LODUserDatalO 5-16

5.6.2.2 Implementation of readUserData method of LODUserDatalO 5-17

5.7 Feature Modeling 5-19
5.7.1 Data Types Used for Feature Modeling 5-20

5.8 Feature Modeling Using Network Feature Editing (NFE) 5-20
5.8.1 Creation Modes for NFE Models 5-21
5.8.2 NFE Feature Classes 5-21
5.8.3 NFE Rules 5-22
5.8.4 Data Types Used for NFE Connectivity Rules 5-25

5.9 Network Constraints 5-26
5.10 Network Analysis Using Load on Demand 5-26
5.10.1 Partitioning a Network 5-27
5.10.2 Generating Partition BLOBs 5-27
5.10.3 Configuring the Partition Cache 5-28
5.10.4 Analyzing the Network 5-28
5.10.5 Using Link Levels for Priority Modeling 5-28
5.10.6 Precomputed Analysis Results 5-29
5.11 Network Data Model Graph Tables 5-29
5.11.1 Network Layer Tables 5-30
5.11.1.1 Node Table 5-30

ORACLE vii

511.1.2
5.11.1.3
511.14
5.11.15
5.11.1.6
5.11.1.7
5.11.1.8
5.11.1.9
5.11.1.10

Link Table

Path Table

Path-Link Table

Subpath Table

Partition Table

Partition BLOB Table

Connected Component Table

Node Hierarchy Table (Optional)
Node Level Table (Optional)

5.11.2 Feature Layer Tables

511.2.1
5.11.2.2
5.11.2.3

Feature Table
Feature Element Relationships Table
Feature Hierarchy Table

5.11.3 Network Feature Editing (NFE) Model Tables

511.3.1
5.11.3.2
5.11.3.3
5.11.34
5.11.3.5
5.11.3.6
5.11.3.7
5.11.3.8
5.11.3.9
5.11.3.10
5.11.3.11
5.11.3.12
5.11.3.13
5.11.3.14

Automatically Created Points Default Attributes Table
Connectivity Line-Line Rules Table
Connectivity Line-Point Rules Table
Feature Class Table
Feature Class Attributes Constraints Table
Feature Class Default Predefined Connected Points Table
Feature Class Relationship Table
Feature Rule Relationship Table
Feature User Data Table
Feature User Data Catalog Table
Feature User Data Catalog Values Table
Point Cardinality Rules Table
Rule Decision Handlers Table
Rule Instance Table

5.12 Network Data Model Graph and Network Feature Editing (NFE) Model
Metadata Views

5.12.1 xxx_SDO_NETWORK_METADATA Views
5.12.2 xxx_SDO_NETWORK_CONSTRAINTS Views
5.12.3 xxx_SDO_NETWORK_USER_DATA Views
5.12.4 xxx_SDO_NETWORK_FEATURE Views
5.12.5 xxx_SDO_NFE_MODEL_FTLAYER_REL Views
5.12.6 xxx_SDO_NFE_MODEL_METADATA Views
5.12.7 xxx_SDO_NFE_MODEL_WORKSPACE Views
5.13 Network Data Model Graph Application Programming Interface
5.13.1 Network Data Model Graph PL/SQL Interface
5.13.2 Network Data Model Graph Java Interface

5.13.2.1

ORACLE

Network Metadata and Data Management

5-31
5-32
5-33
5-34
5-36
5-36
5-37
5-38
5-39
5-39
5-39
5-40
5-40
5-41
5-42
5-42
5-43
5-44
5-44
5-45
5-45
5-46
5-46
5-47
5-47
5-48
5-48
5-50

5-50
5-51
5-55
5-56
5-58
5-59
5-60
5-62
5-64
5-64
5-66
5-66

viii

5.13.2.2 Network Analysis Using the Load on Demand Approach 5-66
5.13.3 Network Data Model Graph XML Interface 5-67
5.13.3.1 User-Specified Implementations 5-67
5.14 Cross-Schema Network Access 5-68
5.14.1 Cross-Schema Access by Specifying Owner in Network Metadata 5-69
5.14.2 Cross-Schema Access by Using Views 5-69
5.15 Network Examples 5-70
5.15.1 Simple Spatial (SDO) Network Example (PL/SQL) 5-71
5.15.2 Simple Logical Network Example (PL/SQL) 5-73
5.15.3 Spatial (LRS) Network Example (PL/SQL) 5-74
5.15.4 Logical Hierarchical Network Example (PL/SQL) 5-81
5.15.5 Partitioning and Load on Demand Analysis Examples (PL/SQL, XML,
and Java) 5-86
5.15.6 User-Defined Data Examples (PL/SQL and Java) 5-90
5.16 Network Data Model Graph Tutorial and Other Resources 5-94
5.17 README File for Spatial and Graph and Related Features 5-95
6 SDO_NET Package Subprograms
6.1 SDO_NET.ADD_CHILD_FEATURE 6-4
6.2 SDO_NET.ADD_CHILD_FEATURES 6-5
6.3 SDO_NET.ADD_FEATURE 6-6
6.4 SDO_NET.ADD_FEATURE_ELEMENT 6-7
6.5 SDO_NET.ADD_FEATURE_ELEMENTS 6-8
6.6 SDO_NET.ADD_FEATURE_LAYER 6-9
6.7 SDO_NET.COMPUTE_PATH_GEOMETRY 6-10
6.8 SDO_NET.COPY_NETWORK 6-11
6.9 SDO_NET.CREATE_LINK_TABLE 6-12
6.10 SDO_NET.CREATE_LOGICAL_NETWORK 6-13
6.11 SDO_NET.CREATE_LRS_NETWORK 6-15
6.12 SDO_NET.CREATE_LRS TABLE 6-18
6.13 SDO_NET.CREATE_NODE_TABLE 6-19
6.14 SDO_NET.CREATE_PARTITION_TABLE 6-20
6.15 SDO_NET.CREATE_PATH_LINK_TABLE 6-21
6.16 SDO_NET.CREATE_PATH_TABLE 6-21
6.17 SDO_NET.CREATE_SDO_NETWORK 6-22
6.18 SDO_NET.CREATE_SUBPATH_TABLE 6-25
6.19 SDO_NET.CREATE_TOPO_NETWORK 6-26
6.20 SDO_NET.DELETE_CHILD_FEATURES 6-28
6.21 SDO_NET.DELETE_CHILD_FEATURES_AT 6-29
6.22 SDO_NET.DELETE_DANGLING_FEATURES 6-30
6.23 SDO_NET.DELETE_DANGLING_LINKS 6-31

ORACLE

6.24
6.25
6.26
6.27
6.28
6.29
6.30
6.31
6.32
6.33
6.34
6.35
6.36
6.37
6.38
6.39
6.40
6.41
6.42
6.43
6.44
6.45
6.46
6.47
6.48
6.49
6.50
6.51
6.52
6.53
6.54
6.55
6.56
6.57
6.58
6.59
6.60
6.61
6.62
6.63
6.64

ORACLE

SDO_NET.DELETE_DANGLING_NODES
SDO_NET.DELETE_FEATURE_ELEMENTS

SDO_NET.DELETE_FEATURE_ELEMENTS_AT

SDO_NET.DELETE_FEATURES
SDO_NET.DELETE_LINK
SDO_NET.DELETE_NODE
SDO_NET.DELETE_PATH

SDO_NET.DELETE_PHANTOM_FEATURES

SDO_NET.DELETE_SUBPATH
SDO_NET.DEREGISTER_CONSTRAINT
SDO_NET.DROP_FEATURE_LAYER
SDO_NET.DROP_NETWORK

SDO_NET.FIND_CONNECTED_COMPONENTS

SDO_NET.GENERATE_NODE_LEVELS
SDO_NET.GENERATE_PARTITION_BLOB

SDO_NET.GENERATE_PARTITION_BLOBS

SDO_NET.GET_CHILD_FEATURE_IDS
SDO_NET.GET_CHILD_LINKS
SDO_NET.GET_CHILD_NODES
SDO_NET.GET_DANGLING_FEATURES
SDO_NET.GET_DANGLING_LINKS
SDO_NET.GET_DANGLING_NODES
SDO_NET.GET_FEATURE_ELEMENTS
SDO_NET.GET_FEATURE_LAYER_ID
SDO_NET.GET_FEATURES_ON_LINKS
SDO_NET.GET_FEATURES_ON_NODES
SDO_NET.GET_GEOMETRY_TYPE
SDO_NET.GET_IN_LINKS
SDO_NET.GET_INVALID_LINKS
SDO_NET.GET_INVALID_NODES
SDO_NET.GET_INVALID_PATHS
SDO_NET.GET_ISOLATED_NODES
SDO_NET.GET_LINK_COST_COLUMN
SDO_NET.GET_LINK_DIRECTION
SDO_NET.GET_LINK_GEOM_COLUMN
SDO_NET.GET_LINK_GEOMETRY
SDO_NET.GET_LINK_TABLE_NAME
SDO_NET.GET_LINKS_IN_PATH
SDO_NET.GET_LRS_GEOM_COLUMN
SDO_NET.GET_LRS_LINK_GEOMETRY
SDO_NET.GET_LRS_NODE_GEOMETRY

6-31
6-32
6-33
6-33
6-34
6-35
6-36
6-36
6-37
6-37
6-38
6-39
6-39
6-40
6-42
6-43
6-45
6-46
6-47
6-48
6-48
6-49
6-50
6-51
6-51
6-52
6-53
6-54
6-54
6-55
6-55
6-56
6-56
6-57
6-58
6-58
6-59
6-60
6-60
6-61
6-62

6.65
6.66
6.67
6.68
6.69
6.70
6.71
6.72
6.73
6.74
6.75
6.76
6.77
6.78
6.79
6.80
6.81
6.82
6.83
6.84
6.85
6.86
6.87
6.88
6.89
6.90
6.91
6.92
6.93
6.94
6.95
6.96
6.97
6.98
6.99
6.100
6.101
6.102
6.103
6.104
6.105

ORACLE

SDO_NET.GET_LRS_TABLE_NAME
SDO_NET.GET_NETWORK_TYPE
SDO_NET.GET_NO_OF HIERARCHY_LEVELS
SDO_NET.GET_NO_OF_LINKS
SDO_NET.GET_NO_OF_NODES
SDO_NET.GET_NODE_DEGREE
SDO_NET.GET_NODE_GEOM_COLUMN
SDO_NET.GET_NODE_GEOMETRY
SDO_NET.GET_NODE_IN_DEGREE
SDO_NET.GET_NODE_OUT_DEGREE
SDO_NET.GET_NODE_TABLE_NAME
SDO_NET.GET_OUT _LINKS
SDO_NET.GET_PARENT_FEATURE_IDS
SDO_NET.GET_PARTITION_SIZE
SDO_NET.GET_PATH_GEOM_COLUMN
SDO_NET.GET_PATH_TABLE_NAME
SDO_NET.GET_PERCENTAGE
SDO_NET.GET_PHANTOM_FEATURES
SDO_NET.GET_PT
SDO_NET.IS_HIERARCHICAL
SDO_NET.IS_LINK_IN_PATH
SDO_NET.IS_LOGICAL
SDO_NET.IS_NODE_IN_PATH
SDO_NET.IS_SPATIAL
SDO_NET.LOAD_CONFIG
SDO_NET.LOGICAL_PARTITION
SDO_NET.LOGICAL_POWERLAW_PARTITION
SDO_NET.LRS_GEOMETRY_NETWORK
SDO_NET.NETWORK_EXISTS
SDO_NET.POST_XML
SDO_NET.REGISTER_CONSTRAINT
SDO_NET.SDO_GEOMETRY_NETWORK
SDO_NET.SET_LOGGING_LEVEL
SDO_NET.SET_MAX_JAVA_ HEAP_SIZE
SDO_NET.SPATIAL_PARTITION
SDO_NET.TOPO_GEOMETRY_NETWORK
SDO_NET.UPDATE_FEATURE
SDO_NET.UPDATE_FEATURE_ELEMENT
SDO_NET.VALIDATE_LINK_SCHEMA
SDO_NET.VALIDATE_LRS_SCHEMA
SDO_NET.VALIDATE_NETWORK

6-62
6-63
6-63
6-64
6-65
6-66
6-66
6-67
6-68
6-68
6-69
6-70
6-70
6-71
6-72
6-73
6-74
6-75
6-75
6-76
6-77
6-77
6-78
6-79
6-79
6-80
6-82
6-84
6-85
6-85
6-87
6-88
6-89
6-89
6-90
6-91
6-92
6-93
6-94
6-95
6-95

Xi

6.106 SDO_NET.VALIDATE_NODE_SCHEMA 6-96
6.107 SDO_NET.VALIDATE_PARTITION_SCHEMA 6-97
6.108 SDO_NET.VALIDATE_PATH_SCHEMA 6-98
6.109 SDO_NET.VALIDATE_SUBPATH_SCHEMA 6-98
7 SDO_NFE Package Subprograms

7.1 SDO_NFE.APPLY_RULE 7-2
7.2 SDO_NFE.CLASSIFY_LINES_BY_SIDE 7-2
7.3 SDO_NFE.CREATE_MODEL_SEQUENCE 7-4
7.4 SDO_NFE.CREATE_MODEL_STRUCTURE 7-4
7.5 SDO_NFE.CREATE_MODEL_UNDERLYING_NET 7-5
7.6 SDO_NFE.CREATE_MODEL_WORKSPACE 7-6
7.7 SDO_NFE.DELETE_ALL_FT_LAYERS 7-8
7.8 SDO_NFE.DELETE_ALL_WORKSPACES 7-8
7.9 SDO_NFE.DELETE_MODEL_STRUCTURE 7-9
7.10 SDO_NFE.DELETE_MODEL_WORKSPACE 7-9
7.11 SDO_NFE.DROP_MODEL_SEQUENCE 7-10
7.12 SDO_NFE.DROP_MODEL_UNDERLYING_NETWORK 7-10
7.13 SDO_NFE.GET_CONNECTION_POINT_GEOM 7-11
7.14 SDO_NFE.GET_INTERACTION_GROUPS 7-12
7.15 SDO_NFE.GET_LINES MATCH_LP_RULE 7-13
7.16 SDO_NFE.GET_LL_CONN_INTERSECTIONS 7-14
7.17 SDO_NFE.GET_LP_CONN_INTERSECTIONS 7-15
7.18 SDO_NFE.GET_MODEL_SEQUENCE_NAME 7-17
7.19 SDO_NFE.GET_MODEL_TABLE_NAME 7-18
7.20 SDO_NFE.GET_MODEL_UNDERLYING_NETWORK 7-18
7.21 SDO_NFE.GET_NEXT_SEQUENCE_VALUE 7-19
7.22 SDO_NFE.GET_POINTS_MATCH_LP_RULE 7-20
7.23 SDO_NFE.IMPORT_NETWORK 7-21
7.24 SDO_NFE.SET_MODEL_UNDERLYING_NETWORK 7-22
Index

ORACLE

Xii

List of Figures

1-1 Simplified Topology 1-5
1-2 Simplified Topology, with Grid Lines and Unit Numbers 1-7
1-3 Features in a Topology 1-9
1-4 Topology Geometry Layer Hierarchy 1-12
1-5 Mapping Between Feature Tables and Topology Tables 1-14
1-6 Nodes, Edges, and Faces 1-16
2-1 Editing Topologies Using the TopoMap Object Cache (PL/SQL API) 2-4
2-2 Editing Topologies Using the TopoMap Object Cache (Java API) 2-6
2-3 Adding a Non-Isolated Node 2-9
2-4 Effect of is_new_shape_point Value on Adding a Node 2-10
2-5 Topology Before Moving a Non-Isolated Node 2-11
2-6 Topology After Moving a Non-Isolated Node 2-11
2-7 Node Move Is Not Allowed 2-12
2-8 Topology for Node Movement Examples 2-13
2-9 Removing a Non-Isolated Node 2-14
2-10 Removing Obsolete Nodes 2-15
2-11 Adding a Non-Isolated Edge 2-16
2-12 Moving a Non-Isolated Edge 2-17
2-13 Removing a Non-Isolated Edge 2-18
4-1 Loading Topological Elements into a Window 4-45
5-1 San Francisco Nodes and Links 5-3
5-2 Path and Subpaths 5-8
5-3 Network Hierarchy 5-12
5-4 Simple Spatial (SDO) Network 5-71
5-5 Simple Logical Network 5-73
5-6 Roads and Road Segments for Spatial (LRS) Network Example 5-75
5-7 Nodes and Links for Logical Network Example 5-81

ORACLE Xiii

List of Tables

1-1 Columns in the <topology-name>_EDGES$ Table

1-2 Edge Table ID Column Values

1-3 Columns in the <topology-name>_NODE$ Table

1-4 Columns in the <topology-name>_FACES$ Table

1-5 Columns in the <topology-name>_RELATIONS$ Table
1-6 Columns in the <topology-name>_HISTORY$ Table
1-7 SDO_TOPO_GEOMETRY Type Attributes

1-8 Columns in the xxx_SDO_TOPO_INFO Views

1-9 Columns in the xxx_SDO_TOPO_METADATA Views
5-1 Feature Types

5-2 Feature Layer Types

5-3 Shapes for NFE Feature Classes

5-4 Examples of Line-Point Connectivity Rules

5-5 LHS and RHS for Sample Line-Line Rules

5-6 Node Table Columns

5-7 Link Table Columns

5-8 Path Table Columns

5-9 Path-Link Table Columns

5-10 Subpath Table Columns

5-11 Partition Table Columns

5-12 Partition BLOB Table Columns

5-13 Connected Component Table Columns

5-14 Node Hierarchy Table Columns

5-15 Node Level Table Columns

5-16 Feature Table Columns

5-17 Feature Element Relationships Table Columns

5-18 Feature Hierarchy Table Columns

5-19 Automatically Created Points Default Attributes Table Columns
5-20 Connectivity Line-Line Rules Table Columns

5-21 Connectivity Line-Point Rules Table Columns

5-22 Feature Class Table Columns

5-23 Feature Class Attributes Constraints Table Columns
5-24 Feature Class Default Predefined Connected Points Table Columns
5-25 Feature Class Relationship Table Columns

5-26 Feature Rule Relationship Table Columns
ORACLE

1-15
1-17
1-17
1-18
1-19
1-20
1-22
1-30
1-32

5-9

5-9
5-22
5-23
5-24
5-30
5-31
5-32
5-33
5-34
5-36
5-37
5-38
5-38
5-39
5-39
5-40
5-40
5-42
5-43
5-43
5-44
5-45
5-45
5-46
5-46

XV

5-27 Feature User Data Table Columns

5-28 Feature User Data Catalog Table Columns

5-29 Feature User Data Catalog Values Table Columns

5-30 Point Cardinality Rules Table Columns

5-31 Rule Decision Handlers Table Columns

5-32 Rule Instance Table Columns

5-33 Columns in the xxx_SDO_NETWORK_METADATA Views
5-34 Columns in the xxx_SDO_NETWORK_CONSTRAINTS Views
5-35 Columns in the xxx_SDO_NETWORK_USER_DATA Views
5-36 Columns in the xxx_SDO_NETWORK_FEATURE Views

5-37 Columns in the xxx_SDO_NFE_MODEL_FTLAYER_REL Views
5-38 Columns in the xxx_SDO_NFE_MODEL_METADATA Views
5-39 Columns in the TABLE_REG_TAB Table

5-40 Columns in the SEQUENCE_REG_TAB Table

5-41 Columns in the xxx_SDO_NFE_MODEL_WORKSPACE Views
ORACLE

5-46
5-47
5-47
5-48
5-48
5-50
5-51
5-55
5-56
5-58
5-59
5-60
5-62
5-62
5-63

XV

Preface

Preface

Audience

Oracle Spatial and Graph Topology Data Model and Network Data Model Graph
Developer's Guide provides usage and reference information about the Topology Data
Model and Network Data Model Graph features of Oracle Spatial and Graph, which is
often referred to as just Spatial and Graph.

Topics:

* Audience

e Documentation Accessibility
* Related Documents

e Conventions

This guide is intended for those who need to work with data about nodes, edges, and
faces in a topology or nodes, links, and paths in a network.

You are assumed to be familiar with the main spatial concepts, data types, and
operations, as documented in Oracle Spatial and Graph Developer's Guide.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents

For more information, see Oracle Spatial and Graph Developer's Guide.

Conventions

ORACLE

The following text conventions are used in this document:

XVi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

ORACLE

Preface

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code

in examples, text that appears on the screen, or text that you enter.

XVii

Changes in This Release for Oracle Spatial and Graph Topology Data Model and Network Data Model Graph Developer's
Guide

Changes in This Release for Oracle Spatial
and Graph Topology Data Model and
Network Data Model Graph Developer's
Guide

This preface contains the following.

Topics:

e Changes in Oracle Database 12c Release 1 (12.1)
e Changes in Oracle Database 12c Release 2 (12.2)

Changes in Oracle Database 12c Release 1 (12.1)

The following are changes in Oracle Spatial and Graph Topology Data Model and
Network Data Model Graph Developer's Guide for Oracle Database 12c¢ Release 1
(12.1).

* New Features
e Javain-Memory APl and SDO_NET_MEM Package Desupported
e Other Changes

New Features

The following features are new in this release.
* Feature Modeling in the Network Data Model
e Multimodal Network and Temporal Modeling Support

* New part_size_tolerance Parameter for
SDO_NET.LOGICAL_POWERLAW_PARTITION

Feature Modeling in the Network Data Model

You can model objects of interest along the network as features. A feature consists of
one or many feature elements. A feature element can be a point, a link, or a partial link
along the network. You can define feature layers on top of a network. For example,
restaurants, and hotels can each be defined as a feature layer on a road network, and
switches can be defined as a feature layer on an electrical network.

For more information about feature modeling, see the following:

* Features and Feature Layers

ORACLE XVili

Changes in This Release for Oracle Spatial and Graph Topology Data Model and Network Data Model Graph Developer's

Multimodal Network and Temporal Modeling Support

Feature Modeling

New PL/SQL subprograms related to feature modeling (each documented in

SDO_NET Package Subprograms):

SDO_NET.ADD_CHILD_FEATURE
SDO_NET.ADD_CHILD_FEATURES
SDO_NET.ADD_FEATURE
SDO_NET.ADD_FEATURE_ELEMENT
SDO_NET.ADD_FEATURE_ELEMENTS
SDO_NET.ADD_FEATURE_LAYER
SDO_NET.DELETE_CHILD_FEATURES
SDO_NET.DELETE_CHILD_FEATURES_AT
SDO_NET.DELETE_DANGLING_FEATURES
SDO_NET.DELETE_DANGLING_LINKS
SDO_NET.DELETE_DANGLING_NODES
SDO_NET.DELETE_FEATURE_ELEMENTS
SDO_NET.DELETE_FEATURE_ELEMENTS_AT
SDO_NET.DELETE_FEATURES
SDO_NET.DELETE_PHANTOM_FEATURES
SDO_NET.DROP_FEATURE_LAYER
SDO_NET.GET_CHILD_FEATURE_IDS
SDO_NET.GET_DANGLING_FEATURES
SDO_NET.GET DANGLING_LINKS
SDO_NET.GET_DANGLING_NODES
SDO_NET.GET_FEATURE_ELEMENTS
SDO_NET.GET_FEATURE_LAYER_ID
SDO_NET.GET_FEATURES_ON_LINKS
SDO_NET.GET FEATURES_ON_NODES
SDO_NET.GET_PARENT FEATURE_IDS
SDO_NET.GET_PHANTOM_FEATURES
SDO_NET.POST XML
SDO_NET.UPDATE_FEATURE
SDO_NET.UPDATE_FEATURE_ELEMENT

Multimodal Network and Temporal Examples
User-Defined Data Examples (PL/SQL and Java)

New part_size tolerance Parameter for

SDO_NET.LOGICAL_POWERLAW_PARTITION

The SDO_NET.LOGICAL_POWERLAW_PARTITION procedure has a new
(additional) parameter named part _si ze_t ol erance, which specifies the allowed
tolerance in partition size expressed as a percentage of max_num nodes.

ORACLE

Guide

Multimodal networks consist of multiple modes of transportation. Many metropolitan
transportation networks consist of multiple modes such as buses, subways, and
commuter rail lines, where transfers across modes are possible (for example, from a
bus to the subway). Each transportation mode has a component network within the
larger transportation network, and has its own schedule-related information. The
component networks can be modeled using nodes and links, and the transfers across
modes can be modeled as links that connect the stops where transfers are possible.

For more information about support for multimodal networks and temporal modeling
and analysis, see the following:

XiX

Changes in This Release for Oracle Spatial and Graph Topology Data Model and Network Data Model Graph Developer's
Guide

Java in-Memory APl and SDO_NET_MEM Package Desupported

The Java in-memory API and the related SDO_NET_MEM PL/SQL package,
previously announced as deprecated, have been removed from this manual. (The
documentation for these features remains in the Release 11.2 manual.) You are
instead encouraged to use the load-on-demand approach.

Other Changes

The spatial product name has been changed from Oracle Spatial to Oracle Spatial and
Graph, also referred to as Spatial and Graph.

The network data modeling feature name has been changed to Network Data Model
Graph.

Changes in Oracle Database 12c Release 2 (12.2)

The following are major changes in Oracle Spatial and Graph Topology Data Model
and Network Data Model Graph Developer's Guide for Oracle Database 12¢ Release
2 (12.2).

* Network Feature Editing (NFE)

Network Feature Editing (NFE)

Network feature editing (NFE) lets you create and manage an NFE model. An NFE
model extends the feature modeling capabilities by enabling you to visualize and
manipulate features using Java Swing components and a PL/SQL API. You can also
define features on the top of an existing network.

Feature Modeling Using Network Feature Editing (NFE) explains the main concepts
and techniques.

SDO_NFE Package Subprograms provides reference information about the PL/SQL
API for NFE.

ORACLE XX

Topology Data Model

ORACLE

This part covers the topology data model feature of Oracle Spatial and Graph.

This document has two main parts:

Part | provides conceptual, usage, and reference information about the Topology
Data Model feature of Oracle Spatial and Graph.

Network Data Model provides conceptual, usage, and reference information about
the Network Data Model Graph feature of Oracle Spatial and Graph.

Part | contains the following chapters:

Chapters:

Topology Data Model Overview
The Topology Data Model feature of Oracle Spatial and Graph lets you work with
data about nodes, edges, and faces in a topology.

Editing Topologies
Node and edge data in a topology can be edited. The operations include adding,
moving, and removing nodes and edges, and updating the coordinates of an edge.

SDO_TOPO Package Subprograms

The MDSYS.SDO_TOPO package contains subprograms (functions and
procedures) that constitute part of the PL/SQL application programming interface
(API) for the Spatial and Graph Topology Data Model feature. This package mainly
contains subprograms for creating and managing topologies.

SDO_TOPO_MAP Package Subprograms

The MDSYS.SDO_TOPO_MAP package contains subprograms (functions and
procedures) that constitute part of the PL/SQL application programming interface
(API) for the Spatial and Graph Topology Data Model feature.

Topology Data Model Overview

ORACLE

The Topology Data Model feature of Oracle Spatial and Graph lets you work with data
about nodes, edges, and faces in a topology.

For example, United States Census geographic data is provided in terms of nodes,
chains, and polygons, and this data can be represented using the Spatial and Graph
Topology Data Model feature. You can store information about topological elements
and geometry layers in Oracle Spatial and Graph tables and metadata views. You can
then perform certain spatial operations referencing the topological elements, for
example, finding which chains (such as streets) have any spatial interaction with a
specific polygon entity (such as a park).

This chapter describes the spatial data structures and data types that support the
Topology Data Model feature, and what you need to do to populate and manipulate
the structures. You can use this information to write a program to convert your
topological data into formats usable with Spatial and Graph.

Note:

Although this chapter discusses some topology terms as they relate to Oracle
Spatial and Graph, it assumes that you are familiar with basic topology
concepts.

It also assumes that you are familiar with the main concepts, data types, and
operations as documented in Oracle Spatial and Graph Developer's Guide.

Topics:

* Main Steps in Using Topology Data
This topic summarizes the main steps for working with topology data.

* Topology Data Model Concepts
Topology is a branch of mathematics concerned with objects in space. Topological
relationships include such relationships as contains, inside, covers, covered by,
touch, and overlap with boundaries intersecting.

* Topology Geometries and Layers
A topology geometry (also referred to as a feature) is a spatial representation of
a real world object. For example, Main Street and Walden State Park might be the
names of topology geometries.

* Topology Geometry Layer Hierarchy
In some topologies, the topology geometry layers (feature layers) have one or
more parent-child relationships in a topology hierarchy. That is, the layer at the
topmost level consists of features in its child layer at the next level down in the
hierarchy; the child layer might consist of features in its child layer at the next layer
farther down; and so on.

1-1

Chapter 1
Main Steps in Using Topology Data

Topology Data Model Tables

To use the Spatial and Graph topology capabilities, you must first insert data into
special edge, node, and face tables, which are created by Spatial and Graph when
you create a topology.

Topology Data Types
The main data type associated with the Topology Data Model is
SDO_TOPO_GEOMETRY, which describes a topology geometry.

Topology Metadata Views

There are two sets of topology metadata views for each schema (user):
xXX_SDO_TOPO_INFO and xxx_SDO_TOPO_METADATA, where xxx can be
USER or ALL. These views are read-only to users; they are created and
maintained by Spatial and Graph.

Topology Application Programming Interface
The Topology Data Model application programming interface (API) consists of the
following.

Exporting and Importing Topology Data

You can export a topology from one database and import it into a new topology
with the same name, structures, and data in another database, as long as the
target database does not already contain a topology with the same name as the
exported topology.

Cross-Schema Topology Usage and Editing
This topic contains requirements and guidelines for using and editing topologies
when multiple database users (schemas) are involved.

Function-Based Indexes Not Supported
You cannot create a function-based index on a column of type
SDO_TOPO_GEOMETRY.

Topology Examples (PL/SQL)
This topic presents simplified PL/SQL examples that perform Topology Data
Model operations.

README File for Spatial and Graph and Related Features

1.1 Main Steps in Using Topology Data

This topic summarizes the main steps for working with topology data.

ORACLE

It refers to important concepts, structures, and operations that are described in detail
in other topics.

The specific main steps depend on which of two basic approaches you follow, which
depend on the kind of data you will use to build the topology:

If you have data about the edges, nodes, and faces (but not spatial geometry
data), follow the steps in Using a Topology Built from Topology Data.

If you will build the topology from spatial geometries that will become topology
features, follow the steps in Using a Topology Built from Spatial Geometries.

You can use the Topology Data Model PL/SQL and Java APIs to update the topology
(for example, to change the data about an edge, node, or face). The PL/SQL API for
most editing operations is the SDO_TOPO_MAP package, which is documented in
SDO_TOPO_MAP Package Subprograms. The Java APl is described in Topology
Data Model Java Interface.

1-2

Chapter 1
Main Steps in Using Topology Data

Using a Topology Built from Topology Data

Using a Topology Built from Spatial Geometries

1.1.1 Using a Topology Built from Topology Data

The main steps for working with a topology built from topology data are as follows:

1.

Create the topology, using the SDO_TOPO.CREATE_TOPOLOGY procedure.
This causes the <topology-name>_EDGE$, <topology-name>_NODES$,
<topology-name>_ FACES$, and <topology-name>_HISTORY$ tables to be
created. (These tables are described in Edge Information Table, Node Information
Table, Face Information Table, and History Information Table, respectively.)

Load topology data into the node, edge, and face tables created in Step 1. This is
typically done using a bulk-load utility, but it can be done using SQL INSERT
statements.

Create a feature table for each type of topology geometry layer in the topology.
For example, a city data topology might have separate feature tables for land
parcels, streets, and traffic signs.

Associate the feature tables with the topology, using the
SDO_TOPO.ADD_TOPO_GEOMETRY_LAYER procedure for each feature table.
This causes the <topology-name> RELATIONS table to be created. (This table is
described in Relationship Information Table.)

Initialize topology metadata, using the SDO_TOPO.INITIALIZE_METADATA
procedure. (This procedure also creates spatial indexes on the <topology-
name>_ EDGES, <topology-name> NODES$, and <topology-name>_FACES$
tables, and additional B-tree indexes on the <topology-name>_EDGE$ and
<topology-name>_NODES$ tables.)

Load the feature tables using the SDO_TOPO_GEOMETRY constructor. (This
constructor is described in SDO_TOPO_GEOMETRY Constructors.)

Query the topology data (for example, using one of topology operators described
in Topology Operators).

Optionally, edit topology data using the PL/SQL or Java application programming
interfaces (APIs).

Topology Built from Topology Data contains a PL/SQL example that performs these
main steps.

1.1.2 Using a Topology Built from Spatial Geometries

To build a topology from spatial geometries, you must first perform the standard
operations for preparing data for use with Oracle Spatial and Graph, as described in
Oracle Spatial and Graph Developer's Guide:

ORACLE

A

Create the spatial tables.

Update the spatial metadata (USER_SDO_GEOM_METADATA view).
Load data into the spatial tables.

Validate the spatial data.

Create the spatial indexes.

1-3

Chapter 1
Topology Data Model Concepts

The main steps for working with a topology built from Oracle Spatial and Graph
geometries are as follows:

1. Create the topology, using the SDO_TOPO.CREATE_TOPOLOGY procedure.
This causes the <topology-name>_ EDGE$, <topology-name> NODES,
<topology-name>_FACES$, and <topology-name>_HISTORY$ tables to be
created. (These tables are described in Edge Information Table, Node Information
Table, Face Information Table, and History Information Table, respectively.)

2. Create the universe face (FO, defined in Topology Data Model Concepts).

3. Create a feature table for each type of topology geometry layer in the topology.
For example, a city data topology might have separate feature tables for land
parcels, streets, and traffic signs.

4. Associate the feature tables with the topology, using the
SDO_TOPO.ADD_TOPO_GEOMETRY_LAYER procedure for each feature table.
This causes the <topology-name> RELATIONS table to be created. (This table is
described in Relationship Information Table.)

5. Initialize topology metadata, using the SDO_TOPO.INITIALIZE_METADATA
procedure. (This procedure also creates spatial indexes on the <topology-
name> EDGES, <topology-name> NODES$, and <topology-name>_FACES$
tables, and additional B-tree indexes on the <topology-name>_EDGE$ and
<topology-name>_NODES$ tables.)

6. Create a TopoMap object and load the whole topology into cache.

7. Load the feature tables, inserting data from the spatial tables and using the
SDO_TOPO_MAP.CREATE_FEATURE function.

8. Query the topology data (using one of topology operators described in Topology
Operators).

9. Optionally, edit topology data using the PL/SQL or Java application programming
interfaces (APIs).

Topology Built from Spatial Geometries contains a PL/SQL example that performs
these main steps.

1.2 Topology Data Model Concepts

ORACLE

Topology is a branch of mathematics concerned with objects in space. Topological
relationships include such relationships as contains, inside, covers, covered by, touch,
and overlap with boundaries intersecting.

Topological relationships remain constant when the coordinate space is deformed,
such as by twisting or stretching. (Examples of relationships that are not topological
include length of, distance between, and area of.)

The basic elements in a topology are its nodes, edges, and faces.

A node, represented by a point, can be isolated or it can be used to bound edges.
Two or more edges meet at a non-isolated node. A node has a coordinate pair
associated with it that describes the spatial location for that node. Examples of
geographic entities that might be represented as nodes include start and end points of
streets, places of historical interest, and airports (if the map scale is sufficiently large).

An edge is bounded by two nodes: the start (origin) node and the end (terminal) node.
An edge has an associated geometric object, usually a coordinate string that describes

1-4

Chapter 1
Topology Data Model Concepts

the spatial representation of the edge. An edge may have several vertices making up a
line string. (Circular arcs are not supported for topologies.) Examples of geographic
entities that might be represented as edges include segments of streets and rivers.

The order of the coordinates gives a direction to an edge, and direction is important in
determining topological relationships. The positive direction agrees with the orientation
of the underlying edge, and the negative direction reverses this orientation. Each
orientation of an edge is referred to as a directed edge, and each directed edge is the
mirror image of its other directed edge. The start node of the positive directed edge is
the end node of the negative directed edge. An edge also lies between two faces and
has references to both of them. Each directed edge contains a reference to the next
edge in the contiguous perimeter of the face on its left side.A face, corresponding to a
polygon, has a reference to one directed edge of its outer boundary. If any island
nodes or island edges are present, the face also has a reference to one directed edge
on the boundary of each island. Examples of geographic entities that might be
represented as faces include parks, lakes, counties, and states.

Figure 1-1 shows a simplified topology containing nodes, edges, and faces. The
arrowheads on each edge indicate the positive direction of the edge (or, more
precisely, the orientation of the underlying line string or curve geometry for positive
direction of the edge).

Figure 1-1 Simplified Topology

E5
E2 g
E1 N5
N21 N22 N.4 N3
E26 o
F2 E4
F1
i >
N1 N2
F
0 E6 E7 E8
) (R 2] o]
E21 F3 E19 F4 E17 F5 E15
I E9 E10 I E11 I
N5 > N4 DI E >z
Eoo F6 E20 F7 E18 F8 E16
EF12 r EF13 IE4
N8 N9 N10 N11
Notes on Figure 1-1:
e E elements (E1, E2, and so on) are edges, F elements (F0O, F1, and so on) are
faces, and N elements (N1, N2, and so on) are nodes.
ORACLE 1-5

ORACLE

Chapter 1
Topology Data Model Concepts

* FO (face zero) is created for every topology. It is the universe face containing
everything else in the topology. There is no geometry associated with the universe
face. FO has the face ID value of -1 (negative 1).

* There is a node created for every point geometry and for every start and end node
of an edge. For example, face F1 has only an edge (a closed edge), E1, that has
the same node as the start and end nodes (N1). F1 also has edge E25, with start
node N21 and end node N22.

* Anisolated node (also called an island node) is a node that is isolated in a face.
For example, node N4 is an isolated node in face F2.

* Anisolated edge (also called an island edge) is an edge that is isolated in a
face. For example, edge E25 is an isolated edge in face F1.

* Aloop edge is an edge that has the same node as its start node and end node.
For example, edge E1 is a loop edge starting and ending at node N1.

* An edge cannot have an isolated (island) node on it. The edge can be broken up
into two edges by adding a node on the edge. For example, if there was originally
a single edge between nodes N16 and N18, adding node N17 resulted in two
edges: E6 and E7.

» Information about the topological relationships is stored in special edge, face, and
node information tables. For example, the edge information table contains the
following information about edges E9 and E10. (Note the direction of the
arrowheads for each edge.) The next and previous edges are based on the left
and right faces of the edge.

For edge E9, the start node is N15 and the end node is N14, the next left edge is
E19 and the previous left edge is -E21, the next right edge is -E22 and the
previous right edge is E20, the left face is F3 and the right face is F6.

For edge E10, the start node is N13 and the end node is N14, the next left edge is
-E20 and the previous left edge is E18, the next right edge is E17 and the previous
right edge is -E19, the left face is F7 and the right face is F4.

For additional examples of edge-related data, including an illustration and
explanations, see Edge Information Table.

Figure 1-2 shows the same topology illustrated in Figure 1-1, but it adds a grid and unit
numbers along the x-axis and y-axis. Figure 1-2 is useful for understanding the output
of some of the examples in SDO_TOPO Package Subprograms and
SDO_TOPO_MAP Package Subprograms.

1-6

Chapter 1
Topology Data Model Concepts

Figure 1-2 Simplified Topology, with Grid Lines and Unit Numbers

* Tolerance in the Topology Data Model

1.2.1 Tolerance in the Topology Data Model

Tolerance is used to associate a level of precision with spatial data. Tolerance reflects
the distance that two points can be apart and still be considered the same (for
example, to accommodate rounding errors). The tolerance value must be a positive
number greater than zero.

However, in the Topology Data Model, tolerance can have two meanings depending
on the operation being performed: one meaning is the traditional Oracle Spatial and
Graph definition of tolerance, and the other is a fixed tolerance value of 10E-15.

e The tolerance value specified in the call to the
SDO_TOPO.CREATE_TOPOLOGY procedure refers to the traditional Oracle
Spatial and Graph definition, as explained in Oracle Spatial and Graph
Developer's Guide. This value is used when indexes are created in the node,
edge, and face tables, and when spatial operators are used to query these tables.

* The tolerance value used for internal computations (for example, finding edge
intersections) during topology editing operations is always 10E-15 (based on Java
double precision arithmetic). This value is used during the validation checks

ORACLE 1-7

Chapter 1
Topology Geometries and Layers

performed by the SDO_TOPO_MAP.VALIDATE_TOPO_MAP and
SDO_TOPO_MAP.VALIDATE_TOPOLOGY functions.

Thus, for example, an edge geometry that is considered valid by the
SDO_TOPO_MAP.VALIDATE_TOPO_MAP or
SDO_TOPO_MAP.VALIDATE_TOPOLOGY function might not be valid if that
geometry is passed to the SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT
function.

1.3 Topology Geometries and Layers

A topology geometry (also referred to as a feature) is a spatial representation of a
real world object. For example, Main Street and Walden State Park might be the
names of topology geometries.

The geometry is stored as a set of topological elements (nodes, edges, and faces),
which are sometimes also referred to as primitives. Each topology geometry has a
unique ID (assigned by Spatial and Graph when records are imported or loaded)
associated with it.

A topology geometry layer consists of topology geometries, usually of a specific
topology geometry type, although it can be a collection of multiple types (see
Collection Layers for information about collection layers). For example, Streets might
be the topology geometry layer that includes the Main Street topology geometry, and
State Parks might be the topology geometry layer that includes the Walden State Park
topology geometry. Each topology geometry layer has a unique ID (assigned by
Spatial and Graph) associated with it. The data for each topology geometry layer is
stored in a feature table. For example, a feature table named CITY_STREETS might
contain information about all topology geometries (individual roads or streets) in the
Streets topology geometry layer.

Each topology geometry (feature) is defined as an object of type
SDO_TOPO_GEOMETRY (described in SDO_TOPO_GEOMETRY Type), which
identifies the topology geometry type, topology geometry ID, topology geometry layer
ID, and topology ID for the topology.

Topology metadata is automatically maintained by Spatial and Graph in the
USER_SDO_TOPO_METADATA and ALL_SDO_TOPO_METADATA views, which
are described in xxx_SDO_TOPO_METADATA Views. The USER_SDO_TOPO_INFO
and ALL_SDO_TOPO_INFO views (described in xxx_SDO_TOPO_INFO Views)
contain a subset of this topology metadata.

e« [Features

e Collection Layers

1.3.1 Features

ORACLE

Often, there are fewer features in a topology than there are topological elements
(nodes, edges, and faces). For example, a road feature may consist of many edges,
an area feature such as a park may consist of many faces, and some nodes may not
be associated with point features. Figure 1-3 shows point, line, and area features
associated with the topology that was shown in Figure 1-1 in Topology Data Model
Concepts.

1-8

Chapter 1
Topology Geometries and Layers

Figure 1-3 Features in a Topology

‘..........

Imm» e
P4 . *vy
P5 . " .’
EEm - N R2 -
R3 S4 u Yo ®
R4 L J n®
n .‘ .- S3
a . 4
s .#

IIIIRJII‘IIIIIIISIZ.IIIIIIII
1

P1 P2 P3

Figure 1-3 shows the following kinds of features in the topology:

« Point features (traffic signs), shown as dark circles: S1, S2, S3, and S4
* Linear features (roads or streets), shown as dashed lines: R1, R2, R3, and R4
e Area features (land parcels), shown as rectangles: P1, P2, P3, P4, and P5

Land parcel P5 does not include the shaded area within its area. (Specifically, P5
includes face F1 but not face F9. These faces are shown in Figure 1-1 in Topology
Data Model Concepts.)

Example 1-12 in Topology Built from Topology Data defines these features.

1.3.2 Collection Layers

ORACLE

A collection layer is a topology geometry layer that can contain topological elements
of different topology geometry types. For example, using the Cl TY_DATA topology from

the examples in Topology Examples (PL/SQL), you could create a collection layer to

contain specific land parcel, city street, and traffic sign elements.

To create a collection layer, follow essentially the same steps for creating other types
of layers. Create a feature table for the layer, as in the following example:

CREATE TABLE col | ected_features (-- Selected heterogeneous features
feature_name VARCHAR2(30) PRI MARY KEY,
feature SDO TOPO GEQVETRY);

Associate the feature table with the topology, specifying COLLECTI ON for the

t opo_geonetry_| ayer _t ype parameter in the call to the
SDO_TOPO.ADD_TOPO_GEOMETRY_LAYER procedure, as in the following
example:

1-9

Chapter 1
Topology Geometries and Layers

EXECUTE SDO_TOPQ. ADD_TOPO GEOVETRY_LAYER(' CI TY_DATA', COLLECTED FEATURES
' FEATURE', ' COLLECTION) ;

To load the feature table for the collection layer, insert the necessary rows, as shown
in Example 1-1.

Example 1-1 Loading the Feature Table for a Collection Layer

-- Take R5 fromthe Cl TY_STREETS | ayer.
I NSERT | NTO col | ect ed_f eatures VALUES(

"CR5',

SDO_TOPO GEOMETRY(' CI TY_DATA',
2, -- tg_type =line/mltiline
4, -- tg_layer_id

SDO_TOPO OBJECT_ARRAY(
SDO_TOPO CBJECT(20, 2),
SDO TOPO OBJECT(-9, 2)))
)s

-- Take S3 fromthe TRAFFI C_SI G\S | ayer.
I NSERT | NTO col | ect ed_f eat ures VALUES(

"C S3',

SDO_TOPO GEOMETRY(' CI TY_DATA',
1, -- tg_type = point/nultipoint
4, -- topo layer id

SDO_TOPO OBJECT_ARRAY(
SDO TOPO OBJECT(6, 1)))
)s

-- Take P3 fromthe LAND PARCELS | ayer.
I NSERT | NTO col | ect ed_f eat ures VALUES(

"CP3',

SDO_TOPO GEOMETRY(' CI TY_DATA',
3, -- tg_type = (multi)polygon
4,

SDO_TOPO OBJECT_ARRAY(
SDO_TOPO OBJECT(5, 3),
SDO_TOPO OBJECT(8, 3)))

)s

-- Create a collection froma polygon and a point.
I NSERT | NTO col | ect ed_f eat ures VALUES(

"Cl',

SDO_TOPO GEOMETRY(' CI TY_DATA',
4, -- tg_type = collection
4,

SDO_TOPO OBJECT_ARRAY(
SDO_TOPO OBJECT(5, 3),
SDO_TOPO OBJECT(6, 1)))

)s

-- Create a collection froma polygon and a |ine.
I NSERT | NTO col | ect ed_f eat ures VALUES(

"o

SDO_TOPO_GEQVETRY(' CI TY_DATA',
4, -- tg_type = collection
4,

SDO TOPO OBJECT ARRAY(
SDO TOPO OBJECT(8, 3),
SDO_TOPO OBJECT(10, 2)))

ORACLE 1-10

Chapter 1
Topology Geometry Layer Hierarchy

- Create a collection froma line and a point.
I NSERT | NTO col | ect ed_features VALUES(
‘o3
SDO TOPO GEOMETRY(' CI TY_DATA',
4, -- tg_type = collection

4,

SDO_TOPO_OBJECT ARRAY(
SDO_TOPO OBJECT(-5, 2),
SDO_TOPO OBJECT(10, 1)))

)s

1.4 Topology Geometry Layer Hierarchy

In some topologies, the topology geometry layers (feature layers) have one or more
parent-child relationships in a topology hierarchy. That is, the layer at the topmost
level consists of features in its child layer at the next level down in the hierarchy; the
child layer might consist of features in its child layer at the next layer farther down; and
S0 on.

For example, a land use topology might have the following topology geometry layers at
different levels of hierarchy:

e States at the highest level, which consists of features from its child layer, Counties

e Counties at the next level down, which consists of features from its child layer,
Tracts

e Tracts at the next level down, which consists of features from its child layer, Block
Groups

e Block Groups at the next level down, which consists of features from its child layer,
Land Parcels

e Land Parcels at the lowest level of the hierarchy

If the topology geometry layers in a topology have this hierarchical relationship, it is far
more efficient if you model the layers as hierarchical than if you specify all topology
geometry layers at a single level (that is, with no hierarchy). For example, it is more
efficient to construct SDO_TOPO_GEOMETRY objects for counties by specifying only
the tracts in the county than by specifying all land parcels in all block groups in all
tracts in the county.

The lowest level (for the topology geometry layer containing the smallest kinds of
features) in a hierarchy is level 0, and successive higher levels are numbered 1, 2, and
so on. Topology geometry layers at adjacent levels of a hierarchy have a parent-child
relationship. Each topology geometry layer at the higher level is the parent layer for
one layer at the lower level, which is its child layer. A parent layer can have only one
child layer, but a child layer can have one or more parent layers. Using the preceding
example, the Counties layer can have only one child layer, Tracts; however, the Tracts
layer could have parent layers named Counties and Water Districts.

ORACLE 1-11

ORACLE

Chapter 1
Topology Geometry Layer Hierarchy

Note:

Topology geometry layer hierarchy is somewhat similar to network hierarchy,
which is described in Network Hierarchy; however, there are significant
differences, and you should not confuse the two. For example, the lowest
topology geometry layer hierarchy level is 0, and the lowest network hierarchy
level is 1; and in a topology geometry layer hierarchy each parent must have
one child and each child can have many parents, while in a network hierarchy
each parent can have many children and each child must have one parent.

Figure 1-4 shows the preceding example topology geometry layer hierarchy. Each
level of the hierarchy shows the level number and the topology geometry layer in that
level.

Figure 1-4 Topology Geometry Layer Hierarchy

Level 4 @

Level 0 Land Parcels

v

Example 1-2 Modeling a Topology Geometry Layer Hierarchy

To model topology geometry layers as hierarchical, specify the child layer in the
child_layer _i d parameter when you call the
SDO_TOPO.ADD_TOPO_GEOMETRY_LAYER procedure to add a parent topology
geometry layer to the topology. Add the lowest-level (level 0) topology geometry layer
first; then add the level 1 layer, specifying the level O layer as its child; then add the
level 2 layer, specifying the level 1 layer as its child; and so on. Example 1-2 shows
five topology geometry layers being added so that the 5-level hierarchy is established.

1-12

ORACLE

Chapter 1

Topology Geometry Layer Hierarchy

- Create the topology. (Null SRIDin this exanple.)
EXECUTE SDO _TOPO. CREATE_TOPOLOGY(' LAND_USE_H ER, 0.00005);

- Create feature tables.

CREATE TABLE | and_parcels (-- Land parcels (selected faces)
feature_nanme VARCHAR2(30) PRI MARY KEY,
feature SDO_TOPO GEQVETRY);

CREATE TABLE bl ock_groups (
feature_nane VARCHAR2(30) PRI MARY KEY,
feature SDO TOPO GEQVETRY);

CREATE TABLE tracts (
feature_nanme VARCHAR2(30) PRI MARY KEY,
feature SDO_TOPO GEQVETRY);

CREATE TABLE counties (
feature_nanme VARCHAR2(30) PRI MARY KEY,
feature SDO_TOPO GEQVETRY);

CREATE TABLE states (
feature_name VARCHAR2(30) PRI MARY KEY,
feature SDO_TOPO GEQVETRY);

- (G her steps not shown here, such as popul ating the feature tables
- and initializing the netadata.)

-- Associate feature tables with the topology; include hierarchy information.

DECLARE
| and_parcel s_i d NUVBER,
bl ock_groups_i d NUVBER,
tracts_id NUMBER
counties_id NUVBER,
BEG N
SDO_TOPO. ADD_TCPO_GEQVETRY_LAYER(' LAND USE_H ER , ' LAND_PARCELS',
" FEATURE' , ' POLYGON) ;
SELECT tg_layer_id INTO | and_parcel s_i d FROM user_sdo_topo_info
VHERE t opol ogy = ' LAND USE HIER AND table_name = ' LAND PARCELS' ;
SDO_TOPO. ADD_TCPO_GEQVETRY_LAYER(' LAND USE_H ER , ' BLOCK_GROUPS',
" FEATURE' , ' POLYGON , NULL, land_parcels_id);
SELECT tg_layer_id I NTO bl ock_groups_i d FROM user_sdo_topo_info
VWHERE topol ogy = 'LAND USE_H ER AND tabl e_name = ' BLOCK_GROUPS ;
SDO_TOPO. ADD_TOPO_GEQVETRY_LAYER(' LAND USE_HI ER , ' TRACTS',
" FEATURE' , ' POLYGON' , NULL, bl ock_groups_id);
SELECT tg_layer_id INTO tracts_id FROM user _sdo_t opo_i nfo
VHERE t opol ogy = ' LAND USE_HIER AND tabl e_name = ' TRACTS';
SDO_TOPO. ADD_TOPO_GEOVETRY_LAYER(' LAND USE H ER , ' COUNTIES',
' FEATURE' ,' POLYGON' , NULL, tracts_id);
SELECT tg_layer_id I NTO counties_id FROM user_sdo_topo_info
VWHERE topol ogy = ' LAND _USE_H ER AND tabl e_nane = ' COUNTI ES';
SDO_TOPO. ADD_TOPO_GEOVETRY_LAYER(' LAND USE H ER , ' STATES',
" FEATURE' , ' POLYGON , NULL, counties_id);
END; /

Within each level above level 0, each layer can contain features built from features at

the next lower level (as is done in Example 1-2), features built from topological

elements (faces, nodes, edges), or a combination of these. For example, a tracts layer
can contain tracts built from block groups or tracts built from faces, or both. However,
each feature within the layer must be built only either from features from the next lower
level or from topological elements. For example, a specific tract can consist of block

1-13

Chapter 1
Topology Data Model Tables

groups or it can consist of faces, but it cannot consist of a combination of block groups
and faces.

To insert or update topology geometry objects in feature tables for the levels in a
hierarchy, use the appropriate forms of the SDO_TOPO_GEOMETRY constructor.
Feature tables are described in Topology Geometries and Layers, and
SDO_TOPO_GEOMETRY constructors are described in SDO_TOPO_GEOMETRY
Constructors.

Note that the TOPO_ID and TOPO_TYPE attributes in the relationship information
table have special meanings when applied to parent layers in a topology with a
topology geometry layer hierarchy. See the explanations of these attributes in
Table 1-5 in Relationship Information Table.

1.5 Topology Data Model Tables

ORACLE

To use the Spatial and Graph topology capabilities, you must first insert data into
special edge, node, and face tables, which are created by Spatial and Graph when
you create a topology.

The edge, node, and face tables are described in Edge Information Table, Node
Information Table, and Face Information Table, respectively.

Spatial and Graph automatically maintains a relationship information (<topology-
name>_ RELATIONS) table for each topology, which is created the first time that a
feature table is associated with a topology (that is, at the first call to the
SDO_TOPO.ADD_TOPO_GEOMETRY_LAYER procedure that specifies the
topology). The relationship information table is described in Relationship Information
Table.

Figure 1-5 shows the role of the relationship information table in connecting
information in a feature table with information in its associated node, edge, or face
table.

Figure 1-5 Mapping Between Feature Tables and Topology Tables

Feature Table Relationship information Table
SDO_TOPO_GEOMETRY <topology-name>_RELATION$
TG_LAYER_ID === TG_LAYER_ID Node, Edge, Face Tables
TG_ID TG_ID = = =» <topology-name>_NODE$
TOPO_ID | NODE_ID
TOPO_TYPE < = = = =l= » <topology-name> EDGE$
1 = EDGE_ID
L & =p <topology-name>_FACE$
- FACE_ID

As shown in Figure 1-5, the mapping between feature tables and the topology node,
edge, and face tables occurs through the <topology-name>_RELATIONS table. In
particular:;

» Each feature table includes a column of type SDO_TOPO_GEOMETRY. This type
includes a TG_LAYER_ID attribute (the unique ID assigned by Oracle Spatial and
Graph when the layer is created), as well as a TG_ID attribute (the unique ID
assigned to each feature in a layer). The values in these two columns have
corresponding values in the TG_LAYER_ID and TG_ID columns in the <topology-
name>_ RELATIONS$ table.

1-14

Chapter 1
Topology Data Model Tables

« Each feature has one or more rows in the <topology-name>_RELATIONS$ table.

 Giventhe TG_LAYER_ID and TG_ID values for a feature, the set of nodes, faces,
and edges associated with the feature can be determined by matching the
TOPO_ID value (the node, edge, or face ID) in the <topology-name>_RELATION$
table with the corresponding ID value in the <topology-name>_NODES$, <topology-
name>_EDGES, or <topology-name>_FACES$ table.

The following considerations apply to schema, table, and column names that are
stored in any Oracle Spatial and Graph metadata views. For example, these
considerations apply to the names of edge, node, face, relationship, and history
information tables, and to the names of any columns in these tables and schemas for
these tables that are stored in the topology metadata views described in Topology
Metadata Views.

* The name must contain only letters, numbers, and underscores. For example, the
name cannot contain a space (), an apostrophe ('), a quotation mark ("), or a
comma (,).

« All letters in the names are converted to uppercase before the names are stored in
metadata views or before the tables are accessed. This conversion also applies to
any schema name specified with the table name.

* Edge Information Table
* Node Information Table
* Face Information Table
* Relationship Information Table

e History Information Table

1.5.1 Edge Information Table

ORACLE

You must store information about the edges in a topology in the <topology-
name>_EDGES$ table, where <topology-name> is the name of the topology as
specified in the call to the SDO_TOPO.CREATE_TOPOLOGY procedure. Each edge
information table has the columns shown in Table 1-1.

Table 1-1 Columns in the <topology-name>_EDGES$ Table
]

Column Name Data Type Description

EDGE_ID NUMBER Unique ID number for this
edge

START_NODE_ID NUMBER ID number of the start node for
this edge

END_NODE_ID NUMBER ID number of the end node for
this edge

NEXT_LEFT_EDGE_ID NUMBER ID number (signed) of the next
left edge for this edge

PREV_LEFT_EDGE_ID NUMBER ID number (signed) of the
previous left edge for this
edge

NEXT_RIGHT_EDGE_ID NUMBER ID number (signed) of the next
right edge for this edge

1-15

ORACLE

Chapter 1
Topology Data Model Tables

Table 1-1 (Cont.) Columns in the <topology-name>_EDGES$ Table
|

Column Name Data Type Description

PREV_RIGHT_EDGE_ID NUMBER ID number (signed) of the
previous right edge for this
edge

LEFT_FACE_ID NUMBER ID number of the left face for
this edge

RIGHT_FACE_ID NUMBER ID number of the right face for
this edge

GEOMETRY SDO_GEOMETRY Geometry object (line string)

representing this edge, listing
the coordinates in the natural
order for the positive directed
edge

The NEXT_LEFT_EDGE_ID and NEXT_RIGHT_EDGE_ID values refer to the next
directed edges in the counterclockwise delineation of the perimeters of the left and
right faces, respectively. The PREV_LEFT_EDGE_ID and PREV_RIGHT_EDGE_ID
values refer to the previous directed edges in the counterclockwise delineation of the
perimeters of the left and right faces, respectively. The LEFT_FACE_ID value refers to
the face to the left of the positive directed edge, and the RIGHT_FACE_ID value refers
to the face to the left of the negative directed edge. For any numeric ID value, the sign
indicates which orientation of the target edge is being referred to.

Figure 1-6 shows nodes, edges, and faces that illustrate the relationships among the
various ID columns in the edge information table. (In Figure 1-6, thick lines show the
edges, and thin lines with arrowheads show the direction of each edge.)

Figure 1-6 Nodes, Edges, and Faces

E5

E3 F1

- N1 — o N2

E1 E4 E7
E6

E2 F2

-
@ o
N3 E8 N4

Table 1-2 shows the ID column values in the edge information table for edges E4 and
E8 in Figure 1-6. (For clarity, Table 1-2 shows ID column values with alphabetical
characters, such as E4 and N1; however, the ID columns actually contain humeric
values only, specifically the numeric ID value associated with each named object.)

1-16

Chapter 1
Topology Data Model Tables

Table 1-2 Edge Table ID Column Values

I
EDGE_| START_. END N NEXT L PREV_ NEXT_R PREV_R LEFT_F RIGHT_

D NODE | ODE ID EFT_ED LEFT E IGHT E IGHT E ACE_ID FACE._I
D GE_ ID DGE_ID DGE ID DGE_ID D

E4 N1 N2 -ES E3 E2 -E6 F1 F2

ES8 N4 N3 -E8 -E8 E8 E8 F2 F2

In Figure 1-6 and Table 1-2:

e The start node and end node for edge E4 are N1 and N2, respectively. The next
left edge for edge E4 is E5, but its direction is the opposite of edge E4, and
therefore the next left edge for E4 is stored as -E5 (negative E5).

e The previous left edge for edge E4 is E3, and because it has the same direction as
edge E4, the previous left edge for E4 is stored as E3.

* The next right face is determined using the negative directed edge of E4. This can
be viewed as reversing the edge direction and taking the next left edge and
previous left edge. In this case, the next right edge is E2 and the previous right
edge is -E6 (the direction of edge E6 is opposite the negative direction of edge
E4). For edge E4, the left face is F1 and the right face is F2.

* Edges E1 and E7 are neither leftmost nor rightmost edges with respect to edge
E4, and therefore they do not appear in the edge table row associated with edge
E4.

1.5.2 Node Information Table

You must store information about the nodes in a topology in the <topology-
name>_NODES$ table, where <topology-name> is the name of the topology as
specified in the call to the SDO_TOPO.CREATE_TOPOLOGY procedure. Each node
information table has the columns shown in Table 1-3.

Table 1-3 Columns in the <topology-name>_NODES$ Table

Column Name Data Type Description

NODE_ID NUMBER Unique ID number for this
node

EDGE_ID NUMBER ID number (signed) of the
edge (if any) associated with
this node

FACE_ID NUMBER ID number of the face (if any)
associated with this node

GEOMETRY SDO_GEOMETRY Geometry object (point)

representing this node

For each node, the EDGE_ID or FACE_ID value (but not both) must be null:

* If the EDGE_ID value is null, the node is an isolated node (that is, isolated in a
face).

ORACLE 1-17

Chapter 1
Topology Data Model Tables

» If the FACE_ID value is null, the node is not an isolated node, but rather the start
node or end node of an edge.

1.5.3 Face Information Table

You must store information about the faces in a topology in the <topology-
name>_FACES$ table, where <topology-name> is the name of the topology as
specified in the call to the SDO_TOPO.CREATE_TOPOLOGY procedure. Each face
information table has the columns shown in Table 1-4.

Table 1-4 Columns in the <topology-name>_FACES$ Table
|

Column Name Data Type Description
FACE_ID NUMBER Unique ID number for this face
BOUNDARY_EDGE_ID NUMBER ID number of the boundary

edge for this face. The sign of
this number (which is ignored
for use as a key) indicates
which orientation is being
used for this boundary
component (positive numbers
indicate the left of the edge,
and negative numbers indicate
the right of the edge).

ISLAND_EDGE_ID_LIST SDO_LIST_TYPE Island edges (if any) in this
face. (The SDO_LIST_TYPE
type is described in
SDO_LIST_TYPE Type.)

ISLAND_NODE_ID_LIST SDO_LIST_TYPE Island nodes (if any) in this
face. (The SDO_LIST_TYPE
type is described in
SDO_LIST_TYPE Type.)

MBR_GEOMETRY SDO_GEOMETRY Minimum bounding rectangle
(MBR) that encloses this face.
(This is required, except for
the universe face.) The MBR
must be stored as an
optimized rectangle (a
rectangle in which only the
lower-left and the upper-right
corners are specified). The
SDO_TOPO.INITIALIZE_MET
ADATA procedure creates a
spatial index on this column.

1.5.4 Relationship Information Table

ORACLE

As you work with topological elements, Spatial and Graph automatically maintains
information about each object in <topology-name>_RELATIONS tables, where
<topology-name> is the name of the topology and there is one such table for each
topology. Each row in the table uniquely identifies a topology geometry with respect to
its topology geometry layer and topology. Each relationship information table has the
columns shown in Table 1-5.

1-18

Chapter 1
Topology Data Model Tables

Table 1-5 Columns in the <topology-name>_RELATIONS Table

___|
Column Name Data Type Description
TG_LAYER_ID NUMBER ID number of the topology

geometry layer to which the
topology geometry belongs

TG_ID NUMBER ID number of the topology
geometry
TOPO_ID NUMBER For a topology that does not

have a topology geometry
layer hierarchy: ID number of
a topological element in the
topology geometry

For a topology that has a
topology geometry layer
hierarchy: Reserved for Oracle
use

TOPO_TYPE NUMBER For a topology that does not
have a topology geometry
layer hierarchy: 1 = node, 2 =
edge, 3 =face
For a topology that has a
topology geometry layer
hierarchy: Reserved for Oracle
use

TOPO_ATTRIBUTE VARCHAR2 Reserved for Oracle use

1.5.5 History Information Table

The history information table for a topology contains information about editing
operations that are not recorded in other information tables. Thus, the history
information table is not a comprehensive record of topology modifications. Instead, it
contains rows for node, edge, or face editing operations only when one or more
feature tables are associated with the topology and any of the following conditions are
met:

e An existing face or edge is split as a result of the operation.

e Asingle face or edge is created by merging two faces or two edges as a result of
the operation.

Spatial and Graph automatically maintains information about these operations in
<topology-name>_HISTORY$ tables, where <topology-name> is the name of the
topology and there is one such table for each topology. Each row in the table uniquely
identifies an editing operation on a topological element, although an editing operation
(such as using the SDO_TOPO_MAP.ADD_POLYGON_GEOMETRY function) can
add multiple rows. (Topology editing is discussed in Editing Topologies .) Each history
information table has the columns shown in Table 1-6.

ORACLE 1-19

ORACLE

Chapter 1
Topology Data Model Tables

Table 1-6 Columns in the <topology-name>_HISTORY$ Table
|

Column Name

Data Type

Description

TOPO_TX_ID

TOPO_SEQUENCE

TOPOLOGY

TOPO_ID

TOPO_TYPE

TOPO_OP

PARENT_ID

NUMBER

NUMBER

VARCHAR2

NUMBER

NUMBER

VARCHAR?2

NUMBER

ID number of the transaction
that was started by a call to
the
SDO_TOPO_MAP.LOAD_TO
PO_MAP function or
procedure or to the
loadWindow or loadTopology
Java method. Each
transaction can consist of
several editing operations.
You can get the transaction ID
number for the current
updatable TopoMap object by
calling the
SDO_TOPO_MAP.GET_TOP
O_TRANSACTION_ID
function.

Sequence number assigned to
an editing operation within the
transaction

ID of the topology containing
the objects being edited

ID number of a topological
element in the topology
geometry

Type of topological element: 1
=node, 2 = edge, 3 = face

Type of editing operation that
was performed on the
topological element: | for
insert or D for delete

For an insert operation, the ID
of the parent topological
element from which the
current topological element is
derived; for a delete operation,
the ID of the resulting
topological element

Consider the following examples:

* Adding a node to break edge E2, generating edge E3: The TOPO_ID value of the
new edge is the ID of E3, the TOPO_TYPE value is 2, the PARENT_ID value is

the ID of E2, and the TOPO_OP value is | .

» Deleting a node to merge edges E6 and E7, resulting in E7: The TOPO_ID value
is the ID of E6, the TOPO_TYPE value is 2, the PARENT_ID value is the ID of E7,
and the TOPO_OP value is D.

To further illustrate the effect of editing operations on the history information table, a
test procedure was created to perform various editing operations on a simple topology,

1-20

ORACLE

Chapter 1
Topology Data Model Tables

and to examine the effect on the history information table for the topology. The
procedure performed these main steps:

1.

It created and initialized a non-geodetic topology with a universe face, and added
a line feature layer and an area feature layer to the topology.

It created a rectangular area by adding four isolated nodes and four edges
connecting the isolated nodes. This caused a face (consisting of the rectangle) to
be created, and it caused one row to be added to the history information table: an
insert operation for the new face, whose parent is the universe face.

The following statement shows the history information table row added by this
insertion:

SELECT topo_id, topo_type, topo_op, parent_id
FROM hi st _test _hi story$ ORDER BY topo_tx_id, topo_sequence, topol ogy;

TOPO ID TOPO TYPE TOP PARENT |D

1 row sel ect ed.

It split the rectangular face into two smaller rectangular faces (side-by-side) by
adding two nodes and a vertical edge connecting these nodes, which caused two
edges (the top and bottom edges) and the face to be split. Three rows were added
to the history information table: an insert operation for each of the two new edges
(with the parent of each new edge being the existing edge that was split), and an
insert operation for the new face (whose parent is the original rectangular face that
was split).

The following statement shows the history information table rows added thus far.
The rows added by this step are shown in bold:

SELECT topo_id, topo_type, topo_op, parent_id
FROM hi st _test _hi story$ ORDER BY topo_tx_id, topo_sequence, topol ogy;

TOPO ID TOPO TYPE TOP PARENT |D

4 rows selected.

It added a diagonal edge to small rectangular face on the left (using the existing
nodes), and it removed the vertical edge that was added in Step 3. Two rows were
added to the history information table: an insert operation for the new face created
as a result of the edge addition (with the parent of each new face being the small
rectangular face on the left that was split), and a delete operation as a result of the
edge removal (with the resulting face taking its topological object ID from one of
the "parent" faces that were merged).

The following statement shows the history information table rows added thus far.
The rows added by this step are shown in bold:

SELECT topo_id, topo_type, topo_op, parent_id
FROM hi st _test _hi story$ ORDER BY topo_tx_id, topo_sequence, topol ogy;

TOPO ID TOPO TYPE TOP PARENT |D

1-21

Chapter 1
Topology Data Types

P WO

W wWwwnMNDND W
'

NN EFE BN

6 rows selected.

1.6 Topology Data Types

The main data type associated with the Topology Data Model is
SDO_TOPO_GEOMETRY, which describes a topology geometry.

The SDO_TOPO_GEOMETRY type has several constructors and member functions.
This section describes the topology model types, constructors, and member functions.

« SDO_TOPO_GEOMETRY Type

e SDO_TOPO_GEOMETRY Constructors

e GET_GEOMETRY Member Function

e GET_TGL_OBJECTS Member Function

e GET_TOPO_ELEMENTS Member Function

« SDO_LIST_TYPE Type

« SDO_EDGE_ARRAY and SDO_NUMBER_ARRAY Types

1.6.1 SDO_TOPO_GEOMETRY Type

ORACLE

The description of a topology geometry is stored in a single row, in a single column of
object type SDO_TOPO_GEOMETRY in a user-defined table. The object type
SDO_TOPO_GEOMETRY is defined as:

CREATE TYPE sdo_topo_geonetry AS OBJECT
(tg_type NUMBER,
tg_id NUNBER,
tg_layer_id NUMBER,
topol ogy_id NUMBER);

The SDO_TOPO_GEOMETRY type has the attributes shown in Table 1-7.

Table 1-7 SDO_TOPO_GEOMETRY Type Attributes

__|
Attribute Explanation

TG_TYPE Type of topology geometry: 1 = point or
multipoint, 2 = line string or multiline string, 3 =
polygon or multipolygon, 4 = heterogeneous
collection

TG_ID Unique ID number (generated by Spatial and
Graph) for the topology geometry

1-22

Chapter 1
Topology Data Types

Table 1-7 (Cont.) SDO_TOPO_GEOMETRY Type Attributes

__|
Attribute Explanation

TG_LAYER_ID ID number for the topology geometry layer to
which the topology geometry belongs. (This
number is generated by Spatial and Graph,
and it is unique within the topology geometry
layer.)

TOPOLOGY_ID Unique ID number (generated by Spatial and
Graph) for the topology

Each topology geometry in a topology is uniquely identified by the combination of its
TG_ID and TG_LAYER_ID values.

You can use an attribute name in a query on an object of SDO_TOPO_GEOMETRY.
Example 1-3 shows SELECT statements that query each attribute of the FEATURE
column of the CITY_STREETS table, which is defined in Example 1-12 in Topology
Examples (PL/SQL).

Example 1-3 SDO_TOPO_GEOMETRY Attributes in Queries

SELECT s.feature.tg_type FROMcity_streets s;
SELECT s.feature.tg_id FROMcity_streets s;
SELECT s.feature.tg_layer_id FROMcity_streets s;
SELECT s.feature.topol ogy_id FROMcity_streets s;

1.6.2 SDO_TOPO_GEOMETRY Constructors

ORACLE

The SDO_TOPO_GEOMETRY type has constructors for inserting and updating
topology geometry objects. The constructors can be classified into two types,
depending on the kind of objects they use:

e Constructors that specify the lowest-level topological elements (nodes, edges, and
faces). These constructors have at least one attribute of type
SDO_TOPO_OBJECT_ARRAY and no attributes of type
SDO_TGL_OBJECT_ARRAY.

e Constructors that specify elements in the child level. These constructors have at
least one attribute of type SDO_TGL_OBJECT_ARRAY and no attributes of type
SDO_TOPO_OBJECT_ARRAY.

To insert and update topology geometry objects when the topology does not have a
topology geometry layer hierarchy or when the operation affects the lowest level (level
0) in the hierarchy, you must use constructors that specify the lowest-level topological
elements (nodes, edges, and faces). (Topology geometry layer hierarchy is explained
in Topology Geometry Layer Hierarchy.)

To insert and update topology geometry objects when the topology has a topology
geometry layer hierarchy and the operation affects a level other than the lowest in the
hierarchy, you can use either or both types of constructor. That is, for each topology
geometry object to be inserted or updated, you can use either of the following:

* Toinsert and update a topology geometry object consisting of the lowest-level
topological elements (for example, to create a tract from faces), use the format
that has at least one attribute of type SDO_TOPO_OBJECT_ARRAY and no
attributes of type SDO_TGL_OBJECT_ARRAY.

1-23

Chapter 1
Topology Data Types

* Toinsert and update a topology geometry object consisting of features at the next
lower level (for example, create a tract from block groups), use the format that has
at least one attribute of type SDO_TGL_OBJECT_ARRAY and no attributes of
type SDO_TOPO_OBJECT_ARRAY.

This section describes the available SDO_TOPO_GEOMETRY constructors.

Note:

An additional SDO_TOPO_GEOMETRY constructor with the same attributes
as the type definition (tg_type, tg_id, tg_layer_id, topology_id) is for Oracle
internal use only.

e Constructors for Insert Operations: Specifying Topological Elements
e Constructors for Insert Operations: Specifying Lower-Level Features
e Constructors for Update Operations: Specifying Topological Elements

e Constructors for Update Operations: Specifying Lower-Level Features

1.6.2.1 Constructors for Insert Operations: Specifying Topological Elements

ORACLE

The SDO_TOPO_GEOMETRY type has the following constructors for insert
operations in which you specify topological elements (faces, nodes, or edges). You
must use one of these formats to create new topology geometry objects when the
topology does not have a topology geometry layer hierarchy or when the operation
affects the lowest level (level 0) in the hierarchy, and you can use one of these formats
to create new topology geometry objects when the operation affects a level higher
than level 0 in the hierarchy:

SDO_TOPO_GEOMETRY ('t opol ogy VARCHAR,
tg_type NUMBER,
tg_layer_id NUMBER,
topo_ids SDO_TOPO_OBJECT_ARRAY)

SDO_TOPO_GEOVETRY ('t opol ogy VARCHAR?,
tabl e_nane VARCHAR?,
colum_name VARCHAR?,
tg_type NUMBER,
topo_ids SDO_TOPO_OBJECT_ARRAY)

The SDO_TOPO_OBJECT_ARRAY type is defined as a VARRAY of
SDO_TOPO_OBJECT objects.

The SDO_TOPO_OBJECT type has the following two attributes:

(topo_id NUMBER, topo_type NUMBER)

The TG_TYPE and TOPO_IDS attribute values must be within the range of values
from the <topology-name>_RELATIONS table (described in Relationship Information
Table) for the specified topology.

Example 1-4 shows two SDO_TOPO_GEOMETRY constructors, one in each format.
Each constructor inserts a topology geometry into the LAND_PARCELS table, which is
defined in Example 1-12 in Topology Examples (PL/SQL).

1-24

Chapter 1
Topology Data Types

Example 1-4 INSERT Using Constructor with SDO_TOPO_OBJECT_ARRAY

I NSERT I NTO | and_parcel s VALUES (' P1', -- Feature nane
SDO_TOPO_GEOVETRY(
"CITY_DATA', -- Topol ogy name
3, -- Topol ogy geonetry type (polygon/ multi pol ygon)
1, -- TG LAYERID for this topology (from ALL_SDO TOPO METADATA)
SDO_TOPO_OBJECT_ARRAY (
SDO TOPO OBJECT (3, 3), -- face_id = 3
SDO TOPO OBJECT (6, 3))) -- face_id = 6
)

I NSERT INTO | and_parcel s VALUES (' P1A', -- Feature nane
SDO_TOPO_GEOVETRY(
"CITY_DATA', -- Topol ogy name
" LAND PARCELS', -- Table nane
' FEATURE', -- Col umm nane
3, -- Topol ogy geonetry type (polygon/ multi pol ygon)
SDO_TOPO_OBJECT_ARRAY (
SDO TOPO OBJECT (3, 3), -- face_id = 3
SDO TOPO OBJECT (6, 3))) -- face_id = 6
)

1.6.2.2 Constructors for Insert Operations: Specifying Lower-Level Features

The SDO_TOPO_GEOMETRY type has the following constructors for insert
operations in which you specify features in the next lower level of the hierarchy. You
can use one of these formats to create new topology geometry objects when the
operation affects a level higher than level 0 in the hierarchy:

SDO_TOPO_GEOMVETRY ('t opol ogy VARCHAR?,
tg_type NUMBER,
tg_layer_id NUMBER
topo_i ds SDO _TG._OBJECT_ARRAY)

SDO_TOPO_GEOMVETRY ('t opol ogy VARCHAR?,
tabl e_nane VARCHAR?,
colum_name VARCHAR?,
tg_type NUMBER,
topo_i ds SDO_TGL_OBJECT_ARRAY)

The SDO_TGL_OBJECT_ARRAY type is defined as a VARRAY of
SDO_TGL_OBJECT objects.

The SDO_TGL_OBJECT type has the following two attributes:
(tgl id NUMBER, tg_ id NUVBER)

Example 1-5 shows an SDO_TOPO_GEOMETRY constructor that inserts a row into
the BLOCK_GROUPS table, which is the feature table for the Block Groups level in
the topology geometry layer hierarchy. The Block Groups level is the parent of the
Land Parcels level at the bottom of the hierarchy.

Example 1-5 INSERT Using Constructor with SDO_TGL_OBJECT_ARRAY

I NSERT | NTO bl ock_groups VALUES ('BGl', -- Feature nane
SDO_TOPO GEOMETRY(' LAND USE H ER
3, -- Topol ogy geonetry type (pol ygon/ multipol ygon)
2, -- TG_LAYERID for block groups (from ALL_SDO TOPO METADATA)
SDO TGL_OBJECT_ARRAY (
SDO TGL_OBJECT (1, 1), -- land parcel ID=1

ORACLE 1-25

Chapter 1
Topology Data Types

SDO TGL_OBJECT (1, 2))) -- land parcel ID=2
);

1.6.2.3 Constructors for Update Operations: Specifying Topological Elements

ORACLE

The SDO_TOPO_GEOMETRY type has the following constructors for update
operations in which you specify topological elements (faces, nodes, or edges). You
must use one of these formats to update topology geometry objects when the topology
does not have a topology geometry layer hierarchy or when the operation affects the
lowest level (level 0) in the hierarchy, and you can use one of these formats to update
topology geometry objects when the operation affects a level higher than level O in the
hierarchy:

SDO _TOPO_GEQOVETRY ('t opol ogy VARCHAR?,
tg_type NUMBER,
tg_layer_id NUMBER,

add_t opo_i ds SDO_TOPO_CBJECT_ARRAY,
del ete_topo_ids SDO TOPO OBJECT_ARRAY)

SDO _TOPO_GEQOVETRY ('t opol ogy VARCHAR?,
tabl e_nane VARCHAR?,
col um_nane VARCHAR?,
tg_type NUMBER,

add_t opo_i ds SDO_TOPO_CBJECT_ARRAY,
del ete_topo_ids SDO TOPO OBJECT_ARRAY)

For example, you could use one of these constructor formats to add an edge to a
linear feature or to remove an obsolete edge from a feature.

The SDO_TOPO_OBJECT_ARRAY type definition and the requirements for the
TG_TYPE and TOPO_IDS attribute values are as described in Constructors for Insert
Operations: Specifying Topological Elements.

You can specify values for both the ADD_TOPO_IDS and DELETE_TOPO_IDS
attributes, or you can specify values for one attribute and specify the other as null;
however, you cannot specify null values for both ADD_TOPO_IDS and
DELETE_TOPO_IDS.

Example 1-6 shows two SDO_TOPO_GEOMETRY constructors, one in each format.
Each constructor removes two faces from the C TY_DATA topology in the
LAND_PARCELS table, which is defined in Example 1-12 in Topology Examples (PL/

SQL).
Example 1-6 UPDATE Using Constructor with SDO_TOPO_OBJECT_ARRAY

UPDATE | and_parcels | SET |.feature = SDO TOPO GEOVETRY(
"CI TY_DATA', -- Topol ogy nane
3, -- Topol ogy geonetry type (pol ygon/multi pol ygon)
1, -- TG_LAYER ID for this topology (from ALL_SDO TOPO METADATA)
NULL, -- No topol ogical elements to be added
SDO_TOPO_OBJECT_ARRAY (
SDO TOPO OBJECT (3, 3), -- face_id =3
SDO_TOPO OBJECT (6, 3))) -- face_id = 6
WHERE | . feature_name = 'P1';

UPDATE | and_parcels | SET |.feature = SDO TOPO GEOVETRY(

"CI TY_DATA', -- Topol ogy nane
" LAND_PARCELS', -- Table name
' FEATURE', -- Col um nane

3, -- Topol ogy geonetry type (pol ygon/multi pol ygon)

1-26

Chapter 1
Topology Data Types

NULL, -- No topol ogical elenents to be added
SDO _TOPO_OBJECT_ARRAY (
SDO_TOPO OBJECT (3, 3), -- face_id = 3
SDO_TOPO OBJECT (6, 3))) -- face_id = 6
WHERE | . feature_nane = 'P1A';

1.6.2.4 Constructors for Update Operations: Specifying Lower-Level Features

ORACLE

The SDO_TOPO_GEOMETRY type has the following constructors for update
operations in which you specify features in the next lower level of the hierarchy. You
can use one of these formats to update topology geometry objects when the operation
affects a level higher than level 0 in the hierarchy:

SDO _TOPO_GEQOVETRY ('t opol ogy VARCHAR?,
tg_type NUMBER,
tg_layer_id NUMBER,

add_t opo_i ds SDO TG._OBJECT ARRAY,
del ete_topo_ids SDO TG._OBJECT_ARRAY)

SDO _TOPO_GEQOVETRY ('t opol ogy VARCHAR?,
tabl e_nane VARCHAR?,
col um_nane VARCHAR?,
tg_type NUMBER,

add_t opo_i ds SDO TG._OBJECT_ARRAY,
del ete_topo_ids SDO TG._OBJECT_ARRAY)

For example, you could use one of these constructor formats to add an edge to a
linear feature or to remove an obsolete edge from a feature.

The SDO_TGL_OBJECT_ARRAY type definition and the requirements for its attribute
values are as described in Constructors for Insert Operations: Specifying Lower-Level
Features.

You can specify values for both the ADD_TOPO_IDS and DELETE_TOPO_IDS
attributes, or you can specify values for one attribute and specify the other as null;
however, you cannot specify null values for both ADD_TOPO_IDS and
DELETE_TOPO_IDS.

Example 1-7 shows two SDO_TOPO_GEOMETRY constructors, one in each format.
Each constructor deletes the land parcel with the ID value of 2 from a feature (named
BGL in the first format and BGLA in the second format, though each feature has the same
definition) from the Cl TY_DATA topology in the BLOCK_GROUPS table, which is the
feature table for the Block Groups level in the topology geometry layer hierarchy. The
Block Groups level is the parent of the Land Parcels level at the bottom of the
hierarchy.

Example 1-7 UPDATE Using Constructor with SDO_TGL_OBJECT_ARRAY

UPDATE bl ock_groups b SET b.feature = SDO TOPO GEOMVETRY(
"LAND _USE H ER ,
3, -- Topol ogy geonetry type (polygon/mltipolygon)
2, -- TG_LAYER ID for block groups (from ALL_SDO TOPO METADATA)
null, -- No IDs to add
SDO_TGL_OBJECT_ARRAY (
SDO TGL_OBJECT (1, 2)) -- land parcel ID =2
)
WHERE b. feature_nanme = 'BGL';

UPDATE bl ock_groups b SET b.feature = SDO TOPO_ GEOMVETRY(
"LAND USE_H ER ,

1-27

Chapter 1
Topology Data Types

" BLOCK_GROUPS', -- Feature table
" FEATURE', -- Feature colum
3, -- Topol ogy geonetry type (polygon/multipol ygon)
null, -- No IDs to add
SDO_TGL_OBJECT_ARRAY (
SDO TG._OBJECT (1, 2)) -- land parcel ID =2
)
VWHERE b. feature_nanme = 'BGLA';

1.6.3 GET_GEOMETRY Member Function

The SDO_TOPO_GEOMETRY type has a member function GET_GEOMETRY, which
you can use to return the SDO_GEOMETRY object for the topology geometry object.

Example 1-8 uses the GET_GEOMETRY member function to return the
SDO_GEOMETRY object for the topology geometry object associated with the land
parcel named P1.

Example 1-8 GET_GEOMETRY Member Function

SELECT | .feature_nane, |.feature.get_geonetry()
FROM | and_parcel s | WHERE |.feature_name = 'P1';

FEATURE_NAME

P1
SDO_GEOMETRY(2003, NULL, NULL, SDO ELEM I NFO ARRAY(1, 3, 1), SDO _CRDI NATE_ARRAY(
21, 14, 21, 22, 9, 22, 9, 14, 9, 6, 21, 6, 21, 14))

1.6.4 GET_TGL_OBJECTS Member Function

ORACLE

The SDO_TOPO_GEOMETRY type has a member function GET_TGL_OBJECTS,
which you can use to return the SDO_TOPO_OBJECT_ARRAY object for a topology
geometry object in a geometry layer with a hierarchy level greater than 0 (zero) in a
topology with a topology geometry layer hierarchy. (If the layer is at hierarchy level 0
or is in a topology that does not have a topology geometry layer hierarchy, this method
returns a null value.)

The SDO_TGL_OBJECT_ARRAY type is described in Constructors for Insert
Operations: Specifying Lower-Level Features.

Example 1-9 uses the GET_TGL_OBJECTS member function to return the
SDO_TOPO_OBJECT_ARRAY object for the topology geometry object associated
with the block group named B®.

Example 1-9 GET_TGL_OBJECTS Member Function

SELECT bg. feature_name, bg.feature.get_tgl _objects()
FROM bl ock_groups bg WHERE bg.feature_name = 'B&';

FEATURE_NAME

B®
SDO TG._OBJECT ARRAY(SDO TGL_OBJECT(1, 3), SDO TGL_OBJECT(1, 4))

1-28

Chapter 1
Topology Metadata Views

1.6.5 GET_TOPO_ELEMENTS Member Function

The SDO_TOPO_GEOMETRY type has a member function
GET_TOPO_ELEMENTS, which you can use to return the
SDO_TOPO_OBJECT_ARRAY object for the topology geometry object.

The SDO_TOPO_OBJECT_ARRAY type is described in Constructors for Insert
Operations: Specifying Topological Elements.

Example 1-8 uses the GET_TOPO_ELEMENTS member function to return the
SDO_TOPO_OBJECT_ARRAY object for the topology geometry object associated
with the land parcel named P1.

Example 1-10 GET_TOPO_ELEMENTS Member Function

SELECT | .feature_nane, |.feature.get_topo_el enents()
FROM | and_parcel s | WHERE |.feature_name = 'P1';

FEATURE_NAME

P1
SDO_TOPO OBJECT ARRAY(SDO_TCPO OBJECT(3, 3), SDO TOPO OBJECT(6, 3))

1.6.6 SDO_LIST_TYPE Type

The SDO_LIST_TYPE type is used to store the EDGE_ID values of island edges and
NODE_ID values of island nodes in a face. The SDO_LIST_TYPE type is defined as:

CREATE TYPE sdo_|ist_type as VARRAY(2147483647) OF NUMBER

1.6.7 SDO_EDGE_ARRAY and SDO_NUMBER_ARRAY Types

The SDO_EDGE_ARRAY type is used to specify the coordinates of attached edges
affected by a node move operation. The SDO_EDGE_ARRAY type is defined as:

CREATE TYPE sdo_edge_array as VARRAY(1000000) OF MDSYS. SDO NUMBER_ARRAY;

The SDO_NUMBER_ARRAY type is a general-purpose type used by Spatial and
Graph for arrays. The SDO_NUMBER_ARRAY type is defined as:

CREATE TYPE sdo_nunber _array as VARRAY(1048576) OF NUVBER,

1.7 Topology Metadata Views

ORACLE

There are two sets of topology metadata views for each schema (user):
xxx_SDO_TOPO_INFO and xxx_SDO_TOPO_METADATA, where xxx can be USER
or ALL. These views are read-only to users; they are created and maintained by
Spatial and Graph.

The xxx_SDO_TOPO_METADATA views contain the most detailed information, and
each xxx_SDO_TOPO_INFO view contains a subset of the information in its
corresponding xxx_SDO_TOPO_METADATA view.

e xxx_SDO_TOPO_INFO Views

1-29

« xxx_SDO_TOPO_METADATA Views

1.7.1 xxx_SDO_TOPO_INFO Views

The following views contain basic information about topologies:

Chapter 1
Topology Metadata Views

e USER_SDO_TOPO_INFO contains topology information for all feature tables

owned by the user.

* ALL_SDO_TOPO_INFO contains topology information for all feature tables on

which the user has SELECT permission.

The USER_SDO_TOPO_INFO and ALL_SDO_TOPO_INFO views contain the same
columns, as shown Table 1-8. (The columns are listed in their order in the view

definition.)

Table 1-8 Columns in the xxx_SDO_TOPO_INFO Views
]

Column Name

Data Type

Purpose

OWNER
TOPOLOGY
TOPOLOGY_ID
TOLERANCE

SRID

TABLE_SCHEMA

TABLE_NAME

COLUMN_NAME

TG_LAYER_ID

ORACLE

VARCHAR?2
VARCHAR2
NUMBER
NUMBER

NUMBER

VARCHAR2

VARCHAR2

VARCHAR?2

NUMBER

Owner of the topology
Name of the topology
ID number of the topology

Tolerance value associated
with topology geometries in
the topology. (Tolerance is
explained in Tolerance in the
Topology Data Model.)

Coordinate system (spatial
reference system) associated
with all topology geometry
layers in the topology. Is null if
no coordinate system is
associated; otherwise, it
contains a value from the
SRID column of the
MDSYS.CS_SRS table
(described in Oracle Spatial
and Graph Developer's
Guide).

Name of the schema that
owns the table containing the
topology geometry layer
column

Name of the table containing
the topology geometry layer
column

Name of the column
containing the topology
geometry layer data

ID number of the topology
geometry layer

1-30

Chapter 1
Topology Metadata Views

Table 1-8 (Cont.) Columns in the xxx_SDO_TOPO_INFO Views
|

Column Name Data Type

Purpose

TG_LAYER_TYPE VARCHAR2

TG_LAYER_LEVEL NUMBER

CHILD_LAYER_ID NUMBER

DIGITS_RIGHT_OF_DECIMA NUMBER
L

Contains one of the following:
POINT, LINE, CURVE,
POLYGON, or COLLECTION.
(LINE and CURVE have the
same meaning.)

Hierarchy level number of this
topology geometry layer.
(Topology geometry layer
hierarchy is explained in
Topology Geometry Layer
Hierarchy.)

ID number of the topology
geometry layer that is the child
layer of this layer in the
topology geometry layer
hierarchy. Null if this layer has
no child layer or if the topology
does not have a topology
geometry layer hierarchy.
(Topology geometry layer
hierarchy is explained in
Topology Geometry Layer
Hierarchy.)

Number of digits permitted to
the right of the decimal point in
the expression of any
coordinate position when
features are added to an
existing topology. All incoming
features (those passed as
arguments to the

addLi near Geonetry,

addPol ygonGeonetry, or
addPoi nt Geonet ry method in
the Java API or the equivalent
PL/SQL subprograms) are
automatically snapped
(truncated) to the number of
digits right of the decimal.
Default: 16.

1.7.2 xxx_SDO_TOPO_METADATA Views

The following views contain detailed information about topologies:

e USER_SDO_TOPO_METADATA contains topology information for all tables

owned by the user.

* ALL_SDO_TOPO_METADATA contains topology information for all tables on

which the user has SELECT permission.

ORACLE

1-31

ORACLE

Chapter 1
Topology Metadata Views

The USER_SDO_TOPO_METADATA and ALL_SDO_TOPO_METADATA views
contain the same columns, as shown Table 1-9. (The columns are listed in their order

in the view definition.)

Table 1-9 Columns in the xxx_SDO_TOPO_METADATA Views

Column Name

Data Type

Purpose

OWNER
TOPOLOGY
TOPOLOGY_ID
TOLERANCE

SRID

TABLE_SCHEMA

TABLE_NAME

COLUMN_NAME

TG_LAYER_ID

TG_LAYER_TYPE

TG_LAYER_LEVEL

VARCHAR2
VARCHAR2
NUMBER
NUMBER

NUMBER

VARCHAR2

VARCHAR2

VARCHAR2

NUMBER

VARCHAR2

NUMBER

Owner of the topology
Name of the topology
ID number of the topology

Tolerance value associated
with topology geometries in
the topology. (Tolerance is
explained in Tolerance in the
Topology Data Model.)

Coordinate system (spatial
reference system) associated
with all topology geometry
layers in the topology. Is null if
no coordinate system is
associated; otherwise,
contains a value from the
SRID column of the
MDSYS.CS_SRS table
(described in Oracle Spatial
and Graph Developer's
Guide).

Name of the schema that
owns the table containing the
topology geometry layer
column

Name of the table containing
the topology geometry layer
column

Name of the column
containing the topology
geometry layer data

ID number of the topology
geometry layer

Contains one of the following:
POINT, LINE, CURVE,
POLYGON, or COLLECTION.
(LINE and CURVE have the
same meaning.)

Hierarchy level number of this
topology geometry layer.
(Topology geometry layer
hierarchy is explained in
Topology Geometry Layer
Hierarchy.)

1-32

Chapter 1
Topology Application Programming Interface

Table 1-9 (Cont.) Columns in the xxx_SDO_TOPO_METADATA Views

___|
Column Name Data Type Purpose

CHILD_LAYER_ID NUMBER ID number of the topology
geometry layer that is the child
layer of this layer in the
topology geometry layer
hierarchy. Null if this layer has
no child layer or if the topology
does not have a geometry
layer hierarchy. (Topology
geometry layer hierarchy is
explained in Topology
Geometry Layer Hierarchy.)

NODE_SEQUENCE VARCHAR2 Name of the sequence
containing the next available
node ID number

EDGE_SEQUENCE VARCHAR2 Name of the sequence
containing the next available
edge ID number

FACE_SEQUENCE VARCHAR2 Name of the sequence
containing the next available
face ID number

TG_SEQUENCE VARCHAR2 Name of the sequence
containing the next available
topology geometry ID number

DIGITS_RIGHT_OF_DECIMA NUMBER Number of digits permitted to

L the right of the decimal point in
the expression of any
coordinate position when
features are added to an
existing topology. All incoming
features (those passed as
arguments to the
addLi near Geonetry,
addPol ygonCGeonet ry, or
addPoi nt Geonet ry method in
the Java API or the equivalent
PL/SQL subprograms) are
automatically snapped
(truncated) to the number of
digits right of the decimal.
Default: 16

1.8 Topology Application Programming Interface

The Topology Data Model application programming interface (API) consists of the
following.

e PL/SQL functions and procedures in the SDO_TOPO package (described in
SDO_TOPO Package Subprograms) and the SDO_TOPO_MAP package
(described in SDO_TOPO_MAP Package Subprograms)

e PL/SQL topology operators (described in Topology Operators)

ORACLE 1-33

Chapter 1
Topology Application Programming Interface

» Java API (described in Topology Data Model Java Interface)

« Topology Operators

» Topology Data Model Java Interface

1.8.1 Topology Operators

ORACLE

With the Topology Data Model PL/SQL API, you can use the Oracle Spatial and Graph
operators, except for the following:

e SDO_RELATE (but you can use the SDO_RELATE convenience operators that do
not use the mask parameter)

- SDO_NN
- SDO_NN_DISTANCE
- SDO_WITHIN_DISTANCE

To use spatial operators with the Topology Data Model, you must understand the
usage and reference information about spatial operators, which are documented in
Oracle Spatial and Graph Developer's Guide. This topic describes only additional
information or differences that apply to using spatial operators with topologies.
Otherwise, unless this section specifies otherwise, the operator-related information in
Oracle Spatial and Graph Developer's Guide applies to the use of operators with
topology data.

When you use spatial operators with topologies, the formats of the first two parameters
can be any one of the following:

* Two topology geometry objects (type SDO_TOPO_GEOMETRY)

For example, the following statement finds all city streets features that have any
interaction with a land parcel feature named P3. (This example uses definitions
and data from Topology Built from Topology Data.)

SELECT c.feature_name FROM city_streets ¢, land_parcels |
VWHERE | . feature_nane = 'P3' AND
SDO_ANYI NTERACT (c.feature, |.feature) = 'TRUE;

FEATURE_NAME

* Atopology geometry object (type SDO_TOPO_GEOMETRY) as the first
parameter and a spatial geometry (type SDO_GEOMETRY) as the second
parameter

For example, the following statement finds all city streets features that have any
interaction with a geometry object that happens to be a polygon identical to the
boundary of the land parcel feature named P3. (This example uses definitions and
data from Topology Built from Spatial Geometries.)

SELECT c.feature_name FROM city_streets ¢
VWHERE SDO_ANYI NTERACT (c.feature,
SDO_GEOVETRY(2003, NULL, NULL, SDO ELEM | NFO ARRAY(1, 1003, 1),
SDO_ORDI NATE_ARRAY(35, 6, 47,6, 47,14, 47,22, 35,22, 35,14, 35,6))) =
"TRUE' ;

FEATURE_NAME

1-34

ORACLE

Chapter 1
Topology Application Programming Interface

* Atopology geometry object (type SDO_TOPO_GEOMETRY) as the first
parameter and a topology object array object (type
SDO_TOPO_OBJECT_ARRAY) as the second parameter

For example, the following statement finds all city streets features that have any
interaction with an SDO_TOPO_OBJECT_ARRAY object that happens to be
identical to the land parcel feature named P3. (This example uses definitions and
data from Topology Built from Spatial Geometries.)

SELECT c.feature_nane FROM city_streets ¢ WHERE
SDO_ANYI NTERACT (c. feature,
SDO_TOPO OBJECT_ARRAY (SDO TOPO OBJECT (5, 3), SDO TOPO OBJECT (8, 3)))
= ' TRUE ;

FEATURE_NAMVE

Example 1-11 shows different topology operators checking for a specific relationship
between city streets features and the land parcel named P3. The first statement shows
the SDO_FILTER operator, and the remaining statements show the SDO_RELATE
convenience operators that include the "mask” in the operator name. With the
convenience operators in this example, only SDO_ANYINTERACT,
SDO_OVERLAPBDYINTERSECT, and SDO_OVERLAPS return any resulting feature
data. (As Figure 1-3 in Features shows, the only street feature to have any interaction
with land parcel P3 is R1.) All statements in Example 1-11 use the format where the
first two parameters are topology geometry objects.

Example 1-11 Topology Operators

- SDO FILTER
SELECT c.feature_name FROM city_streets c, land_parcels |
VHERE | . feature_name = 'P3'" AND
SDO FILTER (c.feature, |.feature) ="' TRUE ;

FEATURE_NAME

- SDO_RELATE conveni ence operators
SELECT c.feature_name FROM city_streets c, land_parcels |
VHERE | .feature_name = 'P3'" AND
SDO_ANYI NTERACT (c.feature, |.feature) ='TRUE;

FEATURE_NAME

SELECT c.feature_name FROM city_streets c, land_parcels |
VHERE | . feature_name = 'P3'" AND
SDO _CONTAINS (c.feature, |.feature) = 'TRUE ;

no rows selected
SELECT c.feature_name FROM city_streets c, land_parcels |

VHERE | .feature_name = 'P3' AND
SDO_COVEREDBY (c.feature, |.feature) = 'TRUE ;

1-35

Chapter 1
Topology Application Programming Interface

no rows selected
SELECT c.feature_nane FROM city_streets c, land_parcels |
VWHERE | .feature_nane = 'P3' AND
SDO COVERS (c.feature, |.feature) ="' TRUE ;
no rows selected
SELECT c.feature_nane FROM city_streets c, land_parcels |
VWHERE | .feature_nane = 'P3' AND
SDO EQUAL (c.feature, |.feature) = 'TRUE ;
no rows selected
SELECT c.feature_nane FROM city_streets c, land_parcels |
VWHERE | . feature_nane = 'P3' AND
SDO INSIDE (c.feature, |.feature) ="' TRUE ;
no rows selected
SELECT c.feature_nane FROM city_streets c, land_parcels |
VWHERE | .feature_nane = 'P3' AND
SDO ON (c.feature, |.feature) ="' TRUE ;
no rows selected
SELECT c.feature_nane FROM city_streets c, land_parcels |
VWHERE | .feature_nane = 'P3' AND
SDO_OVERLAPBDY!I NTERSECT (c.feature, |.feature) = ' TRUE ;
FEATURE_NANE

SELECT c.feature_nane FROM city_streets c, land_parcels |
VWHERE | .feature_nane = 'P3' AND
SDO_OVERLAPBDYDI SJONT (c.feature, |.feature) = 'TRUE ;
no rows selected
SELECT c.feature_nane FROM city_streets c, land_parcels |
VWHERE | .feature_nane = 'P3' AND
SDO _OVERLAPS (c.feature, |.feature) = 'TRUE ;
FEATURE_NANE

SELECT c.feature_nane FROM city_streets c, land_parcels |
VWHERE | .feature_nane = 'P3' AND
SDO TOUCH (c.feature, |.feature) = 'TRUE ;

no rows selected

See Also:

e Usage Notes for the SDO_TOPO.RELATE function

ORACLE 1-36

Chapter 1
Exporting and Importing Topology Data

1.8.2 Topology Data Model Java Interface

The Java client interface for the Topology Data Model consists of the following
classes:

» TopoMap: class that stores edges, nodes, and faces, and provides methods for
adding and deleting elements while maintaining topological consistency both in the
cache and in the underlying database tables

* Edge: class for an edge

* Face: class for a face

* Node: class for a node

e Poi nt 2DD: class for a point

e ConpGeom class for static computational geometry methods

e InvalidTopoQperationException: class for the invalid topology operation exception
* TopoValidationException: class for the topology validation failure exception

e TopoEntityNot FoundExcepti on: class for the entity not found exception

* TopoDat aExcepti on: class for the invalid input exception

The Spatial and Graph Java class libraries are in .jar files under the <ORACLE_HOVE>/ nd/
jlib/ directory.

See Also:

e Oracle Spatial and Graph Java API Reference for detailed reference
information about the Topology Data Model classes, as well as some
usage information about the Java API

1.9 Exporting and Importing Topology Data

ORACLE

You can export a topology from one database and import it into a new topology with
the same name, structures, and data in another database, as long as the target
database does not already contain a topology with the same name as the exported

topology.

To export topology data from one database and import it into another database, follow
the steps in this section.

Note:

The steps are required regardless of whether the topology data is transported
using transportable tablespaces. (For detailed information about transportable
tablespaces and transporting tablespaces to other databases, see Oracle
Database Administrator's Guide.)

1-37

Chapter 1
Cross-Schema Topology Usage and Editing

In the database with the topology data to be exported, perform the following actions:

Connect to the database as the owner of the topology.

Execute the SDO_TOPO.PREPARE_FOR_EXPORT procedure (documented in
SDO_TOPO Package Subprograms), to create the topology export information
table, with a name in the format <topology-name>_EXP$. (This table contains the
same columns as the USER_SDO_TOPO_INFO and ALL_SDO_TOPO_INFO
views. These columns are described in Table 1-8 in xxx_SDO_TOPO_INFO
Views.)

For example, preparing the sample Cl TY_DATA topology for export creates the
CITY_DATA_EXPS$ table.

Export all tables related to the topology, including the feature tables and the
<topology-name>_EDGES$, <topology-name>_FACES$, <topology-
name>_HISTORY$, <topology-name>_NODES$, <topology-name>_RELATIONS,
and <topology-name>_EXP$ tables. The names of feature tables (if they exist) are
stored in the topology metadata.

This creates a file with the extension . dnp (for example, ci ty_dat a. dnp).

In the database into which to import the topology data, perform the following actions:

1.

Connect to the target database, that is, the database in which to create a topology
with the same name, structures, and data as the topology exported from the
source database. Connect as the user for the schema that is to own the topology
to be created.

Ensure that the target database does not already contain a topology with the same
name as the topology in the . dnp file.

Import the tables from the . dnp file that you created when you exported the
topology data. Specify the i ndexes=N option.

If you have imported the topology tables into a different schema than the one used
for the topology in the source database, update the values in the OWNER and
TABLE_SCHEMA columns in all rows of the <topology-name>_EXP$ table to
reflect the table owner and schema names in the current (target) database.

Execute the SDO_TOPO.INITIALIZE_AFTER_IMPORT procedure, which creates
the topology and performs other operations, as necessary, to make the topology
ready for use.

1.10 Cross-Schema Topology Usage and Editing

This topic contains requirements and guidelines for using and editing topologies when
multiple database users (schemas) are involved.

Cross-Schema Topology Usage

Cross-Schema Topology Editing

1.10.1 Cross-Schema Topology Usage

The following considerations apply when one user owns a topology and another user
owns a topology geometry layer table. In the following, assume that user A owns the

Cl TY_DATA topology and that user B owns the CITY_STREETS topology geometry layer
table.

ORACLE

1-38

Chapter 1
Cross-Schema Topology Usage and Editing

The owner of the topology must create the topology and initialize the metadata. In
this example, user A must perform these actions.

Only the owner of a topology can add layers to or delete layers from the topology.
Therefore, if you add a table owned by another user to a topology, or when you
remove such a table from the topology, you must qualify the table name with the
schema name. For example, user A could add the CITY_STREETS table owned
by user B to the CI TY_DATA topology with the following statement:

EXECUTE SDO_TOPO. ADD_TOPO_GEOVETRY_LAYER(' CI TY_DATA', 'B. CI TY_STREETS,
" FEATURE', 'LINE');

User A could delete the CITY_STREETS table owned by user B from the
Cl TY_DATA topology with the following statement:

EXECUTE SDO_TOPO. DELETE_TOPO GEOMVETRY_LAYER(' CI TY_DATA', 'B.Cl TY_STREETS',
' FEATURE') ;

The owner of the topology should grant the SELECT or READ privilege on the
node, edge, and face information tables to the owner of the topology geometry
layer table. For example, user A should grant the SELECT privilege on the
CITY_DATA_NODES, CITY_DATA_EDGES, and CITY_DATA_FACES$ tables to
user B.

The owner of the topology geometry layer table should grant the SELECT and
INDEX privileges on that table to the owner of the topology. For example, user B
should grant the SELECT and INDEX privileges on the CITY_STREETS table to
user A.

The owner of the topology geometry layer table should also grant appropriate
privileges to other users that need to access the table. For read-only access, grant
the SELECT privilege on the table to a user; for read/write access, grant the
INSERT, SELECT, and UPDATE privileges.

1.10.2 Cross-Schema Topology Editing

The following considerations apply when one user owns a topology and another user
wants to edit the topology. In the following, assume that user A owns the Cl TY_DATA
topology and that user B wants to edit that topology.

ORACLE

The owner of the topology should grant the following privileges to users who can
edit the topology: INSERT, SELECT, and UPDATE on the node, edge, face, and
relationship information tables, and SELECT on the node, edge, and face
sequences used to generate ID numbers for the topology primitives. For example,
user A could grant the following privileges to user B, where the table names end
with $ and the sequence names end with _S:

GRANT insert, sel ect,update ON city_data_node$ TO b;
GRANT insert,sel ect,update ON city_data_edge$ TO b;
GRANT insert, sel ect,update ON city data_face$ TO b;
GRANT insert, sel ect,update ON city data_relation$ TO b;
GRANT select ON city_data_node_s TO b;

GRANT select ON city_data_edge_s TO b;

GRANT select ON city_data_face_s TO b;

When a user who does not own the topology edits that topology, the owner's
schema name should be specified with the topology name in functions and
procedures that accept the topology name as an input parameter. For example,
user B should specify the topology as A C TY_DATA, not just Cl TY_DATA.

1-39

Chapter 1
Function-Based Indexes Not Supported

See Also:

» Editing Topologies for information about editing topologies.

1.11 Function-Based Indexes Not Supported

You cannot create a function-based index on a column of type
SDO_TOPO_GEOMETRY.

(Function-based indexes are explained in Oracle Database Development Guide and
Oracle Database Administrator's Guide.)

1.12 Topology Examples (PL/SQL)

This topic presents simplified PL/SQL examples that perform Topology Data Model
operations.

The examples refer to concepts that are explained in this chapter. They use
SDO_TOPO and SDO_TOPO_MAP functions and procedures, which are documented
in SDO_TOPO Package Subprograms and SDO_TOPO_MAP Package Subprograms,
and the SDO_ANYINTERACT topology operator (see Topology Operators).

Both examples are based on the "city data" topology shown in Figure 1-1 in Topology
Data Model Concepts, and the features shown in Figure 1-3 in Features. However, the
topologies created are not identical, because the topology built from Spatial and Graph
geometries (Example 1-13) does not contain all the edges, nodes, and faces that are
defined for the topology build from topology data (Example 1-12).

* Topology Built from Topology Data

* Topology Built from Spatial Geometries

1.12.1 Topology Built from Topology Data

Example 1-12 uses a topology built from edge, node, and face data.

Example 1-12 Topology Built from Topology Data

- Main steps for using the Topol ogy Data Mddel with a topol ogy

- built fromedge, node, and face data

Create a topol ogy.

Load (normally bul k-10ad) topol ogy data (node, edge, and face tables).
Create feature tables.

Associate feature tables with the topol ogy.

Initialize topol ogy netadata.

Load feature tables using the SDO TOPO GEOMETRY constructor.

Query the data.

Optionally, edit data using the PL/SQL or Java API.

........
NGO RLN R

1. Create the topology. (Null SRIDin this exanple.)
EXECUTE SDO TOPO. CREATE_TOPOLOGY(' CI TY_DATA', 0.00005);

ORACLE 1-40

ORACLE

Chapter 1
Topology Examples (PL/SQL)

- 2. Load topology data (node, edge, and face tables).
Use I NSERT statenents here instead of a bulk-load utility.

- 2A Insert data into <topol ogy_name> EDGE$ table.

-- El
I NSERT | NTO city_data_edge$ (edge_id, start_node_id, end_node_id,
next _|left_edge id, prev_left_edge_id, next_right_edge_id,
prev_right_edge_id, left_face_id, right_face_id, geonetry)
VALUES(Z1, 1, 1, 1, 1, -1, -1, 1, -1,
SDO_GEQVETRY(2002, NULL, NULL, SDO ELEM | NFO ARRAY(1, 2, 1),
SDO_ORDI NATE_ARRAY(8, 30, 16,30, 16,38, 3,38, 3,30, 8,30)));
- B2
I NSERT | NTO city_data_edge$ (edge_id, start_node_id, end_node_id,
next _left_edge_id, prev_left_edge_id, next_right_edge_id,
prev_right_edge_id, left_face_id, right_face_id, geonetry)
VALUES(2, 2, 2, 3, -3, -2, -2, 2, -1,
SDO GEQVETRY(2002, NULL, NULL, SDO ELEM | NFO ARRAY(1, 2, 1),
SDO_ORDI NATE_ARRAY(25, 30, 31,30, 31,40, 17,40, 17,30, 25,30)));
-- E3
I NSERT | NTO city_data_edge$ (edge_id, start_node_id, end_node_id,
next _left_edge id, prev_left_edge_id, next_right_edge_id,
prev_right_edge_id, left_face_id, right_face_id, geonetry)
VALUES(3, 2, 3, -3, 2, 2, 3, 2, 2,
SDO _GEQVETRY(2002, NULL, NULL, SDO ELEM | NFO ARRAY(1, 2, 1),
SDO_ORDI NATE_ARRAY(25, 30, 25, 35))):
-- E4
I NSERT | NTO city_data_edge$ (edge_id, start_node_id, end_node_id,
next _left_edge_id, prev_left_edge_id, next_right_edge_ id,
prev_right_edge_id, left_face_id, right_face_id, geonetry)
VALUES(4, 5, 6, -5, -4, 4, 5, -1, -1,
SDO _GEQVETRY(2002, NULL, NULL, SDO ELEM | NFO ARRAY(1, 2, 1),
SDO_ORDI NATE_ARRAY(36, 38, 38,35, 41,34, 42,33, 45,32, 47,28, 50,28, 52,32,
57,33)));
-- BE5
I NSERT | NTO city_data_edge$ (edge_id, start_node_id, end_node_id,
next_left_edge_id, prev_left_edge_id, next_right_edge_id,
prev_right_edge_id, left_face_id, right_face_id, geonetry)
VALUES(5, 7, 6, -4, -5, 5, 4, -1, -1,
SDO_GEQVETRY(2002, NULL, NULL, SDO ELEM | NFO ARRAY(1, 2, 1),
SDO_ORDI NATE_ARRAY(41, 40, 45,40, 47,42, 62,41, 61,38, 59,39, 57,36,
57,33)));
-- E6
I NSERT | NTO city_data_edge$ (edge_id, start_node_id, end_node_id,
next _|left_edge id, prev_left_edge_id, next_right_edge_id,
prev_right_edge_id, left_face_id, right_face_id, geonetry)
VALUES(6, 16, 17, 7, 21, -21, 19, -1, 3,
SDO _GEQVETRY(2002, NULL, NULL, SDO ELEM | NFO ARRAY(1, 2, 1),
SDO_ORDI NATE_ARRAY(9, 22, 21,22)));
-- E7
I NSERT | NTO city_data_edge$ (edge_id, start_node_id, end_node_id,
next _left_edge id, prev_left_edge_id, next_right_edge_id,
prev_right_edge_id, left_face_id, right_face_id, geonetry)
VALUES(7, 17, 18, 8, 6, -19, 17, -1, 4,
SDO_GEQVETRY(2002, NULL, NULL, SDO ELEM | NFO ARRAY(1, 2, 1),
SDO_CRDI NATE_ARRAY(21, 22, 35,22)));
-- E8
I NSERT | NTO city_data_edge$ (edge_id, start_node_id, end_node_id,
next _|left_edge id, prev_left_edge_id, next_right_edge_id,
prev_right_edge_id, left_face_id, right_face_id, geonetry)
VALUES(8, 18, 19, -15, 7, -17, 15, -1, 5,

1-41

Chapter 1
Topology Examples (PL/SQL)

SDO_GEQVETRY(2002, NULL, NULL, SDO ELEM | NFO ARRAY(1, 2, 1),
SDO_ORDI NATE_ARRAY(35, 22, 47,22)));
-- E9
I NSERT | NTO city_data_edge$ (edge_id, start_node_id, end_node_id,
next _left_edge_ id, prev_left_edge_id, next_right_edge_id,
prev_right_edge_id, left_face_id, right_face_id, geonetry)
VALUES(9, 15, 14, 19, -21, -22, 20, 3, 6,
SDO GEQVETRY(2002, NULL, NULL, SDO ELEM | NFO ARRAY(1, 2, 1),
SDO_CRDI NATE_ARRAY(9, 14, 21,14)));
- E10
I NSERT | NTO city_data_edge$ (edge_id, start_node_id, end_node_id,
next _|left_edge id, prev_left_edge_id, next_right_edge_id,
prev_right_edge_id, left_face_id, right_face_id, geonetry)
VALUES(10, 13, 14, -20, 18, 17, -19, 7, 4,
SDO _GEQVETRY(2002, NULL, NULL, SDO ELEM | NFO ARRAY(1, 2, 1),
SDO_CRDI NATE_ARRAY(35, 14, 21,14)));
- E11
I NSERT | NTO city_data_edge$ (edge_id, start_node_id, end_node_id,
next _|left_edge id, prev_left_edge_id, next_right_edge_id,
prev_right_edge_id, left_face_id, right_face_id, geonetry)
VALUES(11, 13, 12, 15, -17, -18, 16, 5, 8,
SDO _GEQVETRY(2002, NULL, NULL, SDO ELEM | NFO ARRAY(1, 2, 1),
SDO_CRDI NATE_ARRAY(35, 14, 47,14)));
- E12
I NSERT | NTO city_data_edge$ (edge_id, start_node_id, end_node_id,
next_left_edge_id, prev_left_edge_id, next_right_edge_ id,
prev_right_edge_id, left_face_id, right_face_id, geonetry)
VALUES(12, 8, 9, 20, -22, 22, -13, 6, -1,
SDO_GEQVETRY(2002, NULL, NULL, SDO ELEM | NFO ARRAY(1, 2, 1),
SDO_ORDI NATE_ARRAY(9, 6, 21,6)));
- E13
I NSERT | NTO city_data_edge$ (edge_id, start_node_id, end_node_id,
next _|left_edge id, prev_left_edge_id, next_right_edge_id,
prev_right_edge_id, left_face_id, right_face_id, geonetry)
VALUES(13, 9, 10, 18, -20, -12, -14, 7, -1,
SDO GEQVETRY(2002, NULL, NULL, SDO ELEM | NFO ARRAY(1, 2, 1),
SDO_ORDI NATE_ARRAY(21, 6, 35,6)));
- E14
I NSERT | NTO city_data_edge$ (edge_id, start_node_id, end_node_id,
next_left_edge_id, prev_left_edge_id, next_right_edge_ id,
prev_right_edge_id, left_face_id, right_face_id, geonetry)
VALUES(14, 10, 11, 16, -18, -13, -16, 8, -1,
SDO _GEQVETRY(2002, NULL, NULL, SDO ELEM | NFO ARRAY(1, 2, 1),
SDO_ORDI NATE_ARRAY(35,6, 47,6))):
- E15
I NSERT | NTO city_data_edge$ (edge_id, start_node_id, end_node_id,
next _|left_edge_ id, prev_left_edge_id, next_right_edge_id,
prev_right_edge_id, left_face_id, right_face_id, geonetry)
VALUES(15, 12, 19, -8, 11, -16, 8, 5, -1,
SDO _GEQVETRY(2002, NULL, NULL, SDO ELEM | NFO ARRAY(1, 2, 1),
SDO_CRDI NATE_ARRAY(47, 14, 47,22)));
- E16
I NSERT | NTO city_data_edge$ (edge_id, start_node_id, end_node_id,
next _left_edge_ id, prev_left_edge_id, next_right_edge_id,
prev_right_edge_id, left_face_id, right_face_id, geonetry)
VALUES(16, 11, 12, -11, 14, -14, -15, 8, -1,
SDO _GEQVETRY(2002, NULL, NULL, SDO ELEM | NFO ARRAY(1, 2, 1),
SDO_CRDI NATE_ARRAY(47, 6, 47,14)));
- E17
I NSERT | NTO city_data_edge$ (edge_id, start_node_id, end_node_id,
next _left_edge id, prev_left_edge_id, next_right_edge_id,

ORACLE 1-42

Chapter 1
Topology Examples (PL/SQL)

prev_right_edge_id, left_face_id, right_face_id, geonetry)
VALUES(17, 13, 18, -7, -10, 11, -8, 4, 5,
SDO_GEQVETRY(2002, NULL, NULL, SDO ELEM | NFO ARRAY(1, 2, 1),
SDO_ORDI NATE_ARRAY(35, 14, 35,22)));
- E18
I NSERT | NTO city_data_edge$ (edge_id, start_node_id, end_node_id,
next _|left_edge id, prev_left_edge_id, next_right_edge_id,
prev_right_edge_id, left_face_id, right_face_id, geonetry)
VALUES(18, 10, 13, 10, 13, 14, -11, 7, 8,
SDO_GEQVETRY(2002, NULL, NULL, SDO ELEM | NFO ARRAY(1, 2, 1),
SDO_ORDI NATE_ARRAY(35, 6, 35,14)));
- E19
I NSERT | NTO city_data_edge$ (edge_id, start_node_id, end_node_id,
next _|left_edge id, prev_left_edge_id, next_right_edge_id,
prev_right_edge_id, left_face_id, right_face_id, geonetry)
VALUES(19, 14, 17, -6, 9, -10, -7, 3, 4,
SDO_GEQVETRY(2002, NULL, NULL, SDO ELEM | NFO ARRAY(1, 2, 1),
SDO_CRDI NATE_ARRAY(21, 14, 21,22)));
- E20
I NSERT | NTO city_data_edge$ (edge_id, start_node_id, end_node_id,
next _left_edge id, prev_left_edge_id, next_right_edge_id,
prev_right_edge_id, left_face_id, right_face_id, geonetry)
VALUES(20, 9, 14, -9, 12, 13, 10, 6, 7,
SDO _GEQVETRY(2002, NULL, NULL, SDO ELEM | NFO ARRAY(1, 2, 1),
SDO_CRDI NATE_ARRAY(21, 6, 21,14)));
- E21
I NSERT | NTO city_data_edge$ (edge_id, start_node_id, end_node_id,
next _left_edge id, prev_left_edge_id, next_right_edge_id,
prev_right_edge_id, left_face_id, right_face_id, geonetry)
VALUES(21, 15, 16, 6, 22, 9, -6, -1, 3,
SDO _GEQVETRY(2002, NULL, NULL, SDO ELEM | NFO ARRAY(1, 2, 1),
SDO_ORDI NATE_ARRAY(9, 14, 9,22)));
- E22
I NSERT | NTO city_data_edge$ (edge_id, start_node_id, end_node_id,
next _|left_edge id, prev_left_edge_id, next_right_edge_id,
prev_right_edge_id, left_face_id, right_face_id, geonetry)
VALUES(22, 8, 15, 21, -12, 12, -9, -1, 6,
SDO _GEQVETRY(2002, NULL, NULL, SDO ELEM | NFO ARRAY(1, 2, 1),
SDO_ORDI NATE_ARRAY(9, 6, 9,14)));
- E25
I NSERT | NTO city_data_edge$ (edge_id, start_node_id, end_node_id,
next _|left_edge id, prev_left_edge_id, next_right_edge_id,
prev_right_edge_id, left_face_id, right_face_id, geonetry)
VALUES(25, 21, 22, -25, -25, 25, 25, 1, 1,
SDO _GEQVETRY(2002, NULL, NULL, SDO ELEM | NFO ARRAY(1, 2, 1),
SDO_ORDI NATE_ARRAY(9, 35, 13,35)));
- E26
I NSERT | NTO city_data_edge$ (edge_id, start_node_id, end_node_id,
next _|left_edge id, prev_left_edge_id, next_right_edge_id,
prev_right_edge_id, left_face_id, right_face_id, geonetry)
VALUES(26, 20, 20, 26, 26, -26, -26, 9, 1,
SDO _GEQVETRY(2002, NULL, NULL, SDO ELEM | NFO ARRAY(1, 2, 1),
SDO_CRDI NATE_ARRAY(4, 31, 7,31, 7,34, 4,34, 4,31)));

- 2B. Insert data into <topol ogy_name> NCDE$ table.

-- N
I NSERT | NTO city_data_node$ (node_id, edge_id, face_id, geonetry)
VALUES(1, 1, NULL,

SDO_GEQVETRY(2001, NULL, SDO POl NT_TYPE(8, 30, NULL), NULL, NULL));
- N2

ORACLE 1-43

ORACLE

Chapter 1
Topology Examples (PL/SQL)

I NSERT | NTO city_data_node$ (node_id, edge_id, face_id, geonetry)
VALUES(2, 2, NULL,
SDO_GEQVETRY(2001, NULL, SDO PO NT_TYPE(25, 30, NULL), NULL, NULL));
-- N3
I NSERT | NTO city_data_node$ (node_id, edge_id, face_id, geonetry)
VALUES(3, -3, NULL,
SDO_GEQVETRY(2001, NULL, SDO PO NT_TYPE(25, 35, NULL), NULL, NULL));
-- M
I NSERT | NTO city_data_node$ (node_id, edge_id, face_id, geonetry)
VALUES(4, NULL, 2,
SDO_GEQVETRY(2001, NULL, SDO PO NT_TYPE(20, 37, NULL), NULL, NULL));
-- N5
I NSERT | NTO city_data_node$ (node_id, edge_id, face_id, geonetry)
VALUES(5, 4, NULL,
SDO_GEQVETRY(2001, NULL, SDO PO NT_TYPE(36, 38, NULL), NULL, NULL));
-- N6
I NSERT | NTO city_data_node$ (node_id, edge_id, face_id, geonetry)
VALUES(6, -4, NULL,
SDO_GEQVETRY(2001, NULL, SDO PO NT_TYPE(57,33, NULL), NULL, NULL));
-- N7
I NSERT | NTO city_data_node$ (node_id, edge_id, face_id, geonetry)
VALUES(7, 5, NULL,
SDO_GEQVETRY(2001, NULL, SDO PO NT_TYPE(41,40, NULL), NULL, NULL));
-- N8
I NSERT | NTO city_data_node$ (node_id, edge_id, face_id, geonetry)
VALUES(8, 12, NULL,
SDO_GEQVETRY(2001, NULL, SDO POl NT_TYPE(9, 6, NULL), NULL, NULL));
-- N9
I NSERT | NTO city_data_node$ (node_id, edge_id, face_id, geonetry)
VALUES(9, 20, NULL,
SDO_GEQVETRY(2001, NULL, SDO POINT_TYPE(21, 6, NULL), NULL, NULL));
- N10
I NSERT | NTO city_data_node$ (node_id, edge_id, face_id, geonetry)
VALUES(10, 18, NULL,
SDO_GEQVETRY(2001, NULL, SDO POl NT_TYPE(35, 6, NULL), NULL, NULL));
- N1
I NSERT | NTO city_data_node$ (node_id, edge_id, face_id, geonetry)
VALUES(11, -14, NULL,
SDO_GEQVETRY(2001, NULL, SDO POl NT_TYPE(47,6, NULL), NULL, NULL));
- N12
I NSERT | NTO city_data_node$ (node_id, edge_id, face_id, geonetry)
VALUES(12, 15, NULL,
SDO_GEQVETRY(2001, NULL, SDO PO NT_TYPE(47,14,NULL), NULL, NULL));
- N13
I NSERT | NTO city_data_node$ (node_id, edge_id, face_id, geonetry)
VALUES(13, 17, NULL,
SDO_GEQVETRY(2001, NULL, SDO PO NT_TYPE(35, 14, NULL), NULL, NULL));
- N4
I NSERT | NTO city_data_node$ (node_id, edge_id, face_id, geonetry)
VALUES(14, 19, NULL,
SDO_GEQVETRY(2001, NULL, SDO PO NT_TYPE(21, 14, NULL), NULL, NULL));
- N15
I NSERT | NTO city_data_node$ (node_id, edge_id, face_id, geonetry)
VALUES(15, 21, NULL,
SDO_GEQVETRY(2001, NULL, SDO POINT_TYPE(9, 14, NULL), NULL, NULL));
- N16
I NSERT | NTO city_data_node$ (node_id, edge_id, face_id, geonetry)
VALUES(16, 6, NULL,
SDO_GEQVETRY(2001, NULL, SDO POINT_TYPE(9, 22, NULL), NULL, NULL));
- N17
I NSERT | NTO city_data_node$ (node_id, edge_id, face_id, geonetry)

1-44

ORACLE

Chapter 1
Topology Examples (PL/SQL)

VALUES(17, 7, NULL,

SDO_GEQVETRY(2001, NULL, SDO PO NT_TYPE(21,22, NULL), NULL, NULL));
- N18
I NSERT | NTO city_data_node$ (node_id, edge_id, face_id, geonetry)
VALUES(18, 8, NULL,

SDO_GEQVETRY(2001, NULL, SDO PO NT_TYPE(35,22, NULL), NULL, NULL));
- N19
I NSERT | NTO city_data_node$ (node_id, edge_id, face_id, geonetry)
VALUES(19, -15, NULL,

SDO_GEQVETRY(2001, NULL, SDO PO NT_TYPE(47,22,NULL), NULL, NULL));
- N20
I NSERT | NTO city_data_node$ (node_id, edge_id, face_id, geonetry)
VALUES(20, 26, NULL,

SDO_GEQVETRY(2001, NULL, SDO POl NT_TYPE(4, 31, NULL), NULL, NULL));
- N1
I NSERT | NTO city_data_node$ (node_id, edge_id, face_id, geonetry)
VALUES(21, 25, NULL,

SDO_GEQVETRY(2001, NULL, SDO POINT_TYPE(9, 35, NULL), NULL, NULL));
- N22
I NSERT | NTO city_data_node$ (node_id, edge_id, face_id, geonetry)
VALUES(22, -25, NULL,

SDO_GEQVETRY(2001, NULL, SDO PO NT_TYPE(13, 35, NULL), NULL, NULL));

- 2C. Insert data into <topol ogy_name> FACE$ table.

- FO (id = -1, not 0)
INSERT INTO city_data_face$ (face_id, boundary_edge_id,
island_edge_id_list, island_node_id_list, nbr_geonetry)
VALUES(-1, NULL, SDO LIST TYPE(-1, -2, 4, 6),
SDO LIST_TYPE(), NULL);
- F1
INSERT INTO city_data_face$ (face_id, boundary_edge_id,
island_edge_id_list, island_node_id_list, nbr_geonetry)
VALUES(1, 1, SDO LIST TYPE(25, -26), SDO LIST TYPE(),
SDO_GEQVETRY(2003, NULL, NULL, SDO ELEM | NFO ARRAY(1, 1003, 3),
SDO_ORDI NATE_ARRAY(3, 30, 15,38)));
- F2
INSERT INTO city_data_face$ (face_id, boundary_edge_id,
island_edge_id_list, island_node_id_list, nbr_geonetry)
VALUES(2, 2, SDO LIST TYPE(), SDO LIST_TYPE(4),
SDO_GEQVETRY(2003, NULL, NULL, SDO ELEM | NFO ARRAY(1, 1003, 3),
SDO_ORDI NATE_ARRAY(17, 30, 31,40))):
- F3
INSERT INTO city_data_face$ (face_id, boundary_edge_id,
island_edge_id_list, island_node_id_list, nbr_geonetry)
VALUES(3, 19, SDO LIST_TYPE(), SDO LIST TYPE(),
SDO_GEQVETRY(2003, NULL, NULL, SDO ELEM | NFO ARRAY(1, 1003, 3),
SDO_CRDI NATE_ARRAY(9, 14, 21,22)));
- F4
INSERT INTO city_data_face$ (face_id, boundary_edge_id,
island_edge_id_list, island_node_id_list, nbr_geonetry)
VALUES(4, 17, SDO LIST_TYPE(), SDO LIST TYPE(),
SDO_GEQVETRY(2003, NULL, NULL, SDO ELEM | NFO ARRAY(1, 1003, 3),
SDO_CRDI NATE_ARRAY(21, 14, 35,22)));
- F5
INSERT INTO city_data_face$ (face_id, boundary_edge_id,
island_edge_id_list, island_node_id_list, nbr_geonetry)
VALUES(5, 15, SDO LIST_TYPE(), SDO LIST TYPE(),
SDO_GEQVETRY(2003, NULL, NULL, SDO ELEM | NFO ARRAY(1, 1003, 3),
SDO_CRDI NATE_ARRAY(35, 14, 47,22)));
- F6

1-45

ORACLE

Chapter 1

Topology Examples (PL/SQL)

INSERT INTO city_data_face$ (face_id, boundary_edge_id,
island_edge_id_list, island_node_id_list, nbr_geonetry)
VALUES(6, 20, SDO LIST_TYPE(), SDO LIST TYPE(),
SDO_GEOMETRY(2003, NULL, NULL, SDO ELEM | NFO ARRAY(1, 1003, 3),
SDO_CRDI NATE_ARRAY(9, 6, 21,14)));
- F7
INSERT INTO city_data_face$ (face_id, boundary_edge_id,
island_edge_id_list, island_node_id_list, nbr_geonetry)
VALUES(7, 10, SDO LIST_TYPE(), SDO LIST TYPE(),
SDO_GEOMETRY(2003, NULL, NULL, SDO ELEM | NFO ARRAY(1, 1003, 3),
SDO_CRDI NATE_ARRAY(21, 6, 35,14)));
- F8
INSERT INTO city_data_face$ (face_id, boundary_edge_id,
island_edge_id_list, island_node_id_list, nbr_geonetry)
VALUES(8, 16, SDO LI ST_TYPE(), SDO LIST TYPE(),
SDO_GEOMETRY(2003, NULL, NULL, SDO ELEM | NFO ARRAY(1, 1003, 3),
SDO_ORDI NATE_ARRAY(35, 6, 47,14)));
- F9
INSERT INTO city_data_face$ (face_id, boundary_edge_id,
island_edge_id_list, island_node_id_list, nbr_geonetry)
VALUES(9, 26, SDO LI ST_TYPE(), SDO LI ST TYPE(),
SDO_GEOMETRY(2003, NULL, NULL, SDO ELEM | NFO ARRAY(1, 1003, 3),
SDO_CRDI NATE_ARRAY(4, 31, 7,34)));

- 3. Create feature tables.

CREATE TABLE | and_parcels (-- Land parcels (selected faces)
feature_nanme VARCHAR2(30) PRI MARY KEY,
feature SDO TOPO GEQVETRY);

CREATE TABLE city streets (-- City streets (selected edges)
feature_name VARCHAR2(30) PRI MARY KEY,
feature SDO_TOPO GEQVETRY);

CREATE TABLE traffic_signs (-- Traffic signs (selected nodes)
feature_name VARCHAR2(30) PRI MARY KEY,
feature SDO_TOPO GEQVETRY);

- 4. Associate feature tables with the topol ogy.

Add the three topol ogy geonetry layers to the Cl TY_DATA topol ogy.

Any order is OK

EXECUTE SDO_TOPO. ADD_TOPO_GEOVETRY_LAYER(' CI TY_DATA', ' LAND_PARCELS ,' FEATURE',

"POLYGON) ;

EXECUTE SDO_TOPO. ADD_TOPO _GEOVETRY_LAYER(' CI TY_DATA', ' TRAFFIC SIGN\S', ' FEATURE' ,

'POINT');

EXECUTE SDO_TOPO. ADD_TOPO GEOMVETRY_LAYER(' CI TY_DATA', ' CI TY_STREETS

" FEATURE' , ' LINE');

As a result, Spatial and Graph generates a unique TG LAYER ID for each layer in

the topol ogy metadata (USER/ ALL_SDO TOPO METADATA).

- 5. Initialize topology netadata.
EXECUTE SDO_TOPO. | NI TI ALI ZE_NMETADATA(' Cl TY_DATA');

- 6. Load feature tables using the SDO TOPO GEOVETRY constructor.

- Each topol ogy feature can consist of one or more objects (face, edge, node)
-- of an appropriate type. For exanple, a |and parcel can consist of one face,
- or two or nore faces, as specified in the SDO TOPO OBJECT_ARRAY.

1-46

ORACLE

Chapter 1
Topology Examples (PL/SQL)

- There are typically fewer features than there are faces, nodes, and edges.
-- In this exanple, the only features are these:
-- Area features (land parcels): P1, P2, P3, P4, P5
-- Point features (traffic signs): S1, S2, S3, 4

- Linear features (roads/streets): Rl, R2, R3, R4

- 6A. Load LAND PARCELS table.

-- P1
I NSERT I NTO | and_parcel s VALUES (' P1', -- Feature nane
SDO_TOPO_GEOMETRY(
"CI TY_DATA', -- Topol ogy nane
3, -- Topol ogy geonetry type (pol ygon/ multipolygon)
1, -- TG_LAYERID for this topology (from ALL_SDO TOPO METADATA)
SDO _TOPO _OBJECT_ARRAY (
SDO TOPO OBJECT (3, 3), -- face_id =3
SDO _TOPO OBJECT (6, 3))) -- face_id = 6
);
-- P2
I NSERT | NTO | and_parcel s VALUES (' P2', -- Feature nane
SDO_TOPO_GEOMETRY(
"CI TY_DATA', -- Topol ogy nane
3, -- Topol ogy geonetry type (polygon/ multipolygon)
1, -- TG_LAYERID for this topology (from ALL_SDO TOPO METADATA)
SDO _TOPO OBJECT_ARRAY (
SDO _TOPO _OBJECT (4, 3), -- face_id =4
SDO_TOPO _OBJECT (7, 3))) -- face_id =7
);
-- P3
I NSERT | NTO | and_parcel s VALUES (' P3', -- Feature nane
SDO_TOPO_GEOMETRY(
"CI TY_DATA', -- Topol ogy nane
3, -- Topol ogy geonetry type (pol ygon/ multipolygon)
1, -- TG_LAYERID for this topology (from ALL_SDO TOPO METADATA)
SDO _TOPO _OBJECT_ARRAY (
SDO_TOPO OBJECT (5, 3), -- face_id =5
SDO _TOPO OBJECT (8, 3))) -- face_id =8

);
-- P4
I NSERT I NTO | and_parcel s VALUES (' P4', -- Feature nane
SDO_TOPO_GEQVETRY(
"CI TY_DATA', -- Topol ogy nane
3, -- Topol ogy geonetry type (pol ygon/ multipolygon)
1, -- TG_LAYER ID for this topology (from ALL_SDO TOPO METADATA)
SDO_TOPO_OBJECT_ARRAY (
SDO _TOPO OBJECT (2, 3))) -- face_id =2
)
- P5 (Includes F1, but not F9.)
I NSERT I NTO | and_parcel s VALUES (' P5', -- Feature nane
SDO_TOPO_GEQVETRY(
"CI TY_DATA', -- Topol ogy nane
3, -- Topol ogy geonetry type (pol ygon/ multipolygon)
1, -- TG_LAYERID for this topology (from ALL_SDO TOPO METADATA)
SDO_TOPO_OBJECT_ARRAY (
SDO _TOPO OBJECT (1, 3))) -- face_id =1

- 6B. Load TRAFFIC_SIGNS table.

-- Sl
INSERT INTO traffic_signs VALUES ('S1', -- Feature nane

1-47

ORACLE

Chapter 1
Topology Examples (PL/SQL)

SDO_TOPO_GEOMETRY(
"CI TY_DATA', -- Topol ogy nane
1, -- Topol ogy geonetry type (point)
2, -- TG LAYERID for this topology (from ALL_SDO TOPO METADATA)
SDO _TOPO _OBJECT_ARRAY (
SDO TOPO OBJECT (14, 1))) -- node_id = 14

);
-- 2
INSERT INTO traffic_signs VALUES ('S2', -- Feature nane
SDO_TOPO_GEOMETRY(
"CI TY_DATA', -- Topol ogy nane
1, -- Topol ogy geonetry type (point)
2, -- TG LAYERID for this topology (from ALL_SDO TOPO METADATA)
SDO _TOPO OBJECT_ARRAY (
SDO TOPO OBJECT (13, 1))) -- node_id = 13

);
-- 3
INSERT INTO traffic_signs VALUES ('S3', -- Feature nane
SDO_TOPO_GEOMETRY(
"CI TY_DATA', -- Topol ogy nane
1, -- Topol ogy geonetry type (point)
2, -- TG_LAYERID for this topology (from ALL_SDO TOPO METADATA)
SDO TOPO OBJECT_ARRAY (
SDO TOPO OBJECT (6, 1))) -- node_id = 6

);
-- 4
INSERT INTO traffic_signs VALUES ('S4', -- Feature nane
SDO_TOPO_GEOMETRY(
"CI TY_DATA', -- Topol ogy nane
1, -- Topol ogy geonetry type (point)
2, -- TG_LAYERID for this topology (from ALL_SDO TOPO METADATA)
SDO _TOPO_OBJECT_ARRAY (
SDO TOPO OBJECT (4, 1))) -- node_id = 4

- 6C. Load CI TY_STREETS table.
- (Note: "R' in feature names is for "Road", because "S' is used for signs.)

-- Rl
INSERT INTO city_streets VALUES ('Rl', -- Feature nane
SDO_TOPO_GEOMETRY(
"CI TY_DATA', -- Topol ogy nane
2, -- Topol ogy geonetry type (line string)
3, -- TG LAYER ID for this topology (from ALL_SDO TOPO METADATA)
SDO _TOPO OBJECT_ARRAY (
SDO _TOPO OBJECT (9, 2),
SDO _TOPO OBJECT (-10, 2),
SDO TOPO OBJECT (11, 2))) -- edge_ids =9, -10, 11

);
-- R
INSERT INTO city_streets VALUES (' R2', -- Feature nane
SDO_TOPO_GEOMETRY(
"CI TY_DATA', -- Topol ogy nane
2, -- Topol ogy geonetry type (line string)
3, -- TG LAYER ID for this topology (from ALL_SDO TOPO METADATA)
SDO _TOPO_OBJECT_ARRAY (
SDO _TOPO OBJECT (4, 2),
SDO _TOPO OBJECT (-5, 2))) -- edge_ids = 4, -5

):
-- R3
INSERT INTO city_streets VALUES ('R3', -- Feature nane

1-48

Chapter 1
Topology Examples (PL/SQL)

SDO_TOPO_GEOMETRY(
"CI TY_DATA', -- Topol ogy nane
2, -- Topol ogy geonetry type (line string)
3, -- TG LAYER ID for this topology (from ALL_SDO TOPO METADATA)
SDO _TOPO _OBJECT_ARRAY (
SDO TOPO OBJECT (25, 2))) -- edge_id = 25

);
-- R4
INSERT INTO city_streets VALUES (' R4', -- Feature nane
SDO_TOPO_GEOMETRY(
"CI TY_DATA', -- Topol ogy nane
2, -- Topol ogy geonetry type (line string)
3, -- TG LAYER ID for this topology (from ALL_SDO TOPO METADATA)
SDO _TOPO OBJECT_ARRAY (
SDO_TOPO OBJECT (3, 2))) -- edge_id =3

- 7. Query the data.

SELECT a.feature_nane, a.feature.tg_id, a.feature.get_geometry()
FROM I and_parcel s a;

/[* Wndow is city_streets */
SELECT a.feature_nane, b.feature_nane
FROM city_streets b,
| and_parcel s a
VWHERE Db.feature_nane like 'R®W AND
sdo_anyinteract(a.feature, b.feature) ="'TRUE
ORDER BY b.feature_name, a.feature_nane;

- Find all streets that have any interaction with land parcel P3.
- (Should return only R1.)
SELECT c.feature_nane FROM city_streets c, land_parcels |

VWHERE | .feature_nane = 'P3' AND

SDO_ANYI NTERACT (c.feature, |.feature) = 'TRUE ;

- Find all land parcels that have any interaction with traffic sign Sl
- (Should return P1 and P2.)
SELECT | .feature_nane FROM |l and_parcels |, traffic_signs t

VHERE t.feature_name = 'S1' AND

SDO_ANYI NTERACT (I.feature, t.feature) = 'TRUE ;

- Get the geonetry for land parcel Pl.
SELECT | .feature_nane, |.feature.get_geonetry()
FROM | and_parcels | WHERE | .feature_nanme = 'P1';

- CGet the boundary of face with face_id 3.
SELECT SDO _TOPO. GET_FACE_BOUNDARY(' CI TY_DATA', 3) FROM DUAL;

- Get the topological elements for land parcel P2.

- CITY_DATA layer, land parcels (tg_ layer_id = 1), parcel P2 (tg_id = 2)
SELECT SDO TOPO. GET_TOPO OBJECTS(' CI TY_DATA', 1, 2) FROM DUAL;

1.12.2 Topology Built from Spatial Geometries

Example 1-13 uses a topology built from Oracle Spatial and Graph geometry data.

Example 1-13 Topology Built from Spatial Geometries

- Main steps for using the Topol ogy Data Mvdel with a topol ogy

ORACLE 1-49

ORACLE

Chapter 1
Topology Examples (PL/SQL)

- built from Spatial and Graph geonetry data
1. Create the topol ogy.
2. Insert the universe face (FO). (id = -1, not 0)
- 3. Create feature tables.
- 4. Associate feature tables with the topol ogy.
5. Initialize topol ogy netadata.
6. Create a TopoMap object and | oad the whol e topology into
cache for updating.
- 7. Load feature tables, inserting data fromthe spatial tables and
-- usi ng SDO TOPO MAP. CREATE_FEATURE.
-- 8. Query the data.
- 9. Optionally, edit the data using the PL/SQ or Java API.

-- Prelimnary work for this exanple (things nornally done to use
- data with Oracle Spatial and G aph):
-- * Create the spatial tables.
- * Update the spatial netadata (USER_SDO GEOM METADATA).
* Load data into the spatial tables.
- * Validate the spatial data (validate the layers).
* Create the spatial indexes.

- Create spatial tables of geonetry features: nanes and geonetries.

CREATE TABLE city streets_geom (-- City streets/roads
name VARCHAR2(30) PRI MARY KEY,
geonmetry SDO_GEQVETRY);

CREATE TABLE traffic_signs_geom(-- Traffic signs
name VARCHAR2(30) PRI MARY KEY,
geonmetry SDO_GEQVETRY);

CREATE TABLE | and_parcel s_geom (-- Land parcels
name VARCHAR2(30) PRI MARY KEY,
geonmetry SDO_GEQVETRY);

I NSERT | NTO user _sdo_geom net adat a
(TABLE_NAME,
COLUWN_NAME,
DI M NFO,
SRI D)
VALUES (
' Ol TY_STREETS_GEOM ,
" GEOMVETRY' ,
SDO_DI M_ARRAY(
SDO DI M ELEMENT(" X', 0, 65, 0.005),
SDO DI M ELEMENT('Y', 0, 45, 0.005)
),
NULL -- SRID

)i

I NSERT | NTO user _sdo_geom net adat a
(TABLE_NAME,
COLUWN_NAME,
DI M NFO,
SRI D)
VALUES (
' TRAFFI C_SI GNS_GEOM
" GEOMVETRY' ,
SDO DI M_ARRAY(
SDO DI M ELEMENT(" X', 0, 65, 0.005),

1-50

ORACLE

SDO DI M ELEMENT(' Y, 0, 45, 0.005)
)

NULL -- SRID

)

I NSERT | NTO user _sdo_geom net adat a
(TABLE_NAME,
COLUWN_NAME,
DI M NFO,
SRI D)
VALUES (
' LAND_PARCELS_GEQOM ,
" GEOMVETRY' ,
SDO DI M_ARRAY(
SDO DI M ELEMENT(" X', 0, 65, 0.005),
SDO DI M ELEMENT('Y', 0, 45, 0.005)
),
NULL -- SRID
)

Chapter 1
Topology Examples (PL/SQL)

- Load these tables (nanes and geonetries for city streets/roads,

- traffic signs, and land parcels).
- Insert data into city street line geonetries.

-- RL
I NSERT | NTO city_streets_geom VALUES(' Rl',

SDO_GEOMETRY(2002, NULL, NULL, SDO ELEM | NFO ARRAY(1, 2, 1),

SDO_ORDI NATE_ARRAY(9, 14, 21,14, 35,14, 47,14)));

-- R
I NSERT | NTO city_streets_geom VALUES(' R2',

SDO_GEOVETRY(2002, NULL, NULL, SDO ELEM |NFO ARRAY(1, 2, 1),
SDO_ORDI NATE_ARRAY(36, 38, 38,35, 41,34, 42,33, 45,32, 47,28, 50,28, 52,32,

57,33, 57,36, 59,39, 61,38, 62,41, 47,42, 45,40, 41,40)));

-- R
I NSERT | NTO city_streets_geom VALUES(' R3',

SDO_GEOVETRY(2002, NULL, NULL, SDO ELEM |NFO ARRAY(1, 2, 1),

SDO_ORDI NATE_ARRAY(9, 35, 13,35)));

-- R4
I NSERT | NTO city_streets_geom VALUES(' R4',

SDO_GEOVETRY(2002, NULL, NULL, SDO ELEM |NFO ARRAY(1, 2, 1),

SDO_ORDI NATE_ARRAY(25, 30, 25, 35))):
- Insert data into traffic sign point geonetries.

-- Sl
I NSERT | NTO traffic_signs_geom VALUES(' S1',

SDO_GEOMETRY(2001, NULL, SDO POINT_TYPE(21, 14, NULL), NULL,

-- 82
I NSERT I NTO traffic_signs_geom VALUES(' S2',

SDO_GEOVETRY(2001, NULL, SDO PO NT_TYPE(35, 14, NULL), NULL,

-- S3
I NSERT | NTO traffic_signs_geom VALUES(' S3',

SDO_GEOVETRY(2001, NULL, SDO PO NT_TYPE(57, 33, NULL), NULL,

-S4

NULL)) ;

NULL)) ;

NULL)) ;

1-51

ORACLE

Chapter 1
Topology Examples (PL/SQL)

I NSERT | NTO traffic_signs_geom VALUES(' $4',
SDO_GEQVETRY(2001, NULL, SDO PO NT_TYPE(20, 37, NULL), NULL, NULL));

- Insert data into land parcel polygon geonetri es.

-- Pl
I NSERT | NTO | and_par cel s_geom VALUES(' P1',
SDO_GEOMETRY(2003, NULL, NULL, SDO ELEM | NFO ARRAY(1, 1003, 1),
SDO_ORDI NATE_ARRAY(9, 6, 21,6, 21,14, 21,22, 9,22, 9,14, 9,6)));

-- P2
I NSERT | NTO | and_par cel s_geom VALUES(' P2',
SDO_GEOMETRY(2003, NULL, NULL, SDO ELEM | NFO ARRAY(1, 1003, 1),
SDO_ORDI NATE_ARRAY(21,6, 35,6, 35,14, 35,22, 21,22, 21,14, 21,6)));

-- P3
I NSERT | NTO | and_par cel s_geom VALUES(' P3',
SDO_GEOVETRY(2003, NULL, NULL, SDO ELEM | NFO ARRAY(1, 1003, 1),
SDO_ORDI NATE_ARRAY(35, 6, 47,6, 47,14, 47,22, 35,22, 35,14, 35,6)));

-- P4
I NSERT | NTO | and_par cel s_geom VALUES(' P4',
SDO_GEOMETRY(2003, NULL, NULL, SDO ELEM | NFO ARRAY(1, 1003, 1),
SDO_ORDI NATE_ARRAY(17, 30, 31,30, 31,40, 17,40, 17,30)));

- P5 (polygon with a hole; exterior ring and one interior ring)
I NSERT | NTO | and_par cel s_geom VALUES(' P5',
SDO GEOVETRY(2003, NULL, NULL, SDO ELEM I NFO ARRAY(1, 1003, 1, 11,2003,1),
SDO_ORDI NATE_ARRAY(3, 30, 16,30, 16,38, 3,38, 3,30, 4,31, 4,34, 7,34, 7,31,
4,31)));

- Validate the layers.

create table val results (sdo_rowid ROND, result VARCHAR2(2000));

call

SDO_GEOM VALI DATE_LAYER W TH_CONTEXT(' Cl TY_STREETS_GEOM , ' GEOVETRY' , ' VAL_RESULTS');
SELECT * fromval _results;

truncate table val _results;

call

SDO_GEOM VAL| DATE_LAYER W TH_CONTEXT(' TRAFFI C_SI GNS_GEQM , ' GEOVETRY' , ' VAL_RESULTS');
SELECT * fromval _results;

truncate table val results;

call

SDO_GEOM VALI DATE_LAYER W TH_CONTEXT(' LAND PARCELS GEOM ,' GEQVETRY', ' VAL_RESULTS');
SELECT * fromval _results;

drop table val _results;

- Create the spatial indexes.
CREATE INDEX city streets_geom.idx ON city_streets_geon(geonetry)
| NDEXTYPE |'S MDSYS. SPATI AL_I NDEX;
CREATE INDEX traffic_signs_geomidx ON traffic_signs_geon(geonetry)
| NDEXTYPE |'S MDSYS. SPATI AL_I NDEX;
CREATE | NDEX | and_parcel s_geom i dx ON | and_parcel s_geon{ geonetry)
| NDEXTYPE |'S MDSYS. SPATI AL_I NDEX;

- Start the main steps for using the Topology Data Mdel with a
- topology built fromspatial geonmetry data.

- 1. Create the topology. (Null SRIDin this exanple.)
EXECUTE SDO_TOPO. CREATE_TOPOLOGY(' CI TY_DATA', 0.00005);

- 2. Insert the universe face (FO). (id = -1, not 0)

1-52

Chapter 1
Topology Examples (PL/SQL)

I NSERT | NTO CI TY_DATA FACE$ val ues (
-1, NULL, SDO_LIST_TYPE(), SDO_LIST_TYPE(), NULL),

COWM T;
- 3. Create feature tables.

CREATE TABLE city streets (-- City streets/roads
feature_nanme VARCHAR2(30) PRI MARY KEY,
feature SDO_TOPO GEQVETRY);

CREATE TABLE traffic_signs (-- Traffic signs
feature_nanme VARCHAR2(30) PRI MARY KEY,
feature SDO_TOPO GEQVETRY);

CREATE TABLE | and_parcels (-- Land parcels
feature_nanme VARCHAR2(30) PRI MARY KEY,
feature SDO TOPO GEQVETRY);

- 4. Associate feature tables with the topol ogy.
Add the three topol ogy geonetry layers to the Cl TY_DATA topol ogy.
Any order is OK

EXECUTE SDO_TOPO. ADD_TOPO GEOVETRY_LAYER(' CI TY_DATA', ' CI TY_STREETS ,

"FEATURE', ' LINE');

EXECUTE SDO TOPO. ADD_TOPO _GEOVETRY_LAYER(' CI TY_DATA', ' TRAFFIC_SIGNS', ' FEATURE',
"PONT");

EXECUTE SDO _TOPO. ADD_TOPO _GEOVETRY_LAYER(' CI TY_DATA', ' LAND_PARCELS' ,' FEATURE',
"POLYGON) ;

As a result, Spatial and Graph generates a unique TG LAYER ID for each layer in
the topol ogy metadata (USER/ ALL_SDO TOPO METADATA).

- 5. Initialize topology netadata.
EXECUTE SDO_TOPO. | NI TI ALI ZE_METADATA(' CI TY_DATA');

- 6. Create a TopoMap object and |oad the whole topology into cache for updating.

EXECUTE SDO_TOPO MAP. CREATE_TOPO MAP(' CI TY_DATA', ' Cl TY_DATA TOPOVAP')
EXECUTE SDO_TOPO_MAP. LOAD TOPO MAP(' CI TY_DATA TOPOVAP' , 'true'):

- 7. Load feature tables, inserting data fromthe spatial tables and
usi ng SDO_TOPO MAP. CREATE_FEATURE.

BEG N
FOR street_rec | N (SELECT nane, geometry FROM city_streets_geon) LOOP
INSERT INTO city_streets VALUES(street_rec. nane,
SDO TOPO_MAP. CREATE_FEATURE(' O TY_DATA', ' O TY_STREETS', ' FEATURE',
street _rec.geonetry));
END LOOP;

FOR sign_rec IN (SELECT nane, geonetry FROMtraffic_signs_geon) LOOP
I NSERT I NTO traffic_signs VALUES(sign_rec.nane,
SDO TOPO_MAP. CREATE_FEATURE(' I TY_DATA', ' TRAFFIC SIGNS', ' FEATURE',
sign_rec.geometry));
END LOOP;

FOR parcel _rec I N (SELECT nane, geometry FROM | and_parcel s_geon) LOOP
I NSERT | NTO | and_par cel s VALUES(par cel _rec. nane,
SDO_TOPO_MAP. CREATE_FEATURE(' CI TY_DATA', ' LAND PARCELS', ' FEATURE ,
parcel _rec. geonetry));

ORACLE 1-53

ORACLE

Chapter 1
Topology Examples (PL/SQL)

END LOCP;
END;
/

CALL SDO TOPO MAP. COMM T_TOPO MAP() ;
CALL SDO_TOPO MAP. DROP_TGPO MAP(' Cl TY_DATA TOPOVRP') :

- 8. Query the data.

SELECT a.feature_nane, a.feature.tg_id, a.feature.get_geometry()
FROM | and_parcel s a;

SELECT a.feature_nane, a.feature.tg_id, a.feature.get_geometry()
FROM city_streets a;

SELECT a.feature_nane, a.feature.tg_id, a.feature.get_geometry()
FROM traffic_signs a;

SELECT sdo_t opo. get _face_boundary(' Cl TY_DATA'", face_id), face_id
FROM city_data_face$;

SELECT sdo_t opo. get _face_boundary(' Cl TY_DATA'", face_id), face_id
FROM city_data_face$;

SELECT sdo_t opo. get _face_boundary(' CI TY_DATA', face_id, 'TRUE), face_id
FROM city_data_face$;

- Get topological elenents.

SELECT a. FEATURE_NAME,

sdo_t opo. get _topo_obj ects(' CI TY_DATA', a.feature. TG LAYER ID, a.feature.TG_|D)
FROM I and_parcel s a;

SELECT a. FEATURE_NAME,
sdo_t opo. get _topo_obj ects(' CI TY_DATA', a.feature. TG LAYER ID, a.feature.TG_|D)
FROM city_streets a;

SELECT a. FEATURE_NAME,
sdo_t opo. get _topo_obj ects(' CI TY_DATA', a.feature. TG LAYER ID, a.feature.TG_|D)
FROM traffic_signs a;

SELECT sdo_t opo. get _topo_obj ects(' CI TY_DATA", sdo_geonetry(2003,null, null,
sdo_elem.info_array(1, 1003, 3),
sdo_ordinate_array(1,1, 20,20)))
FROM DUAL;

SELECT sdo_t opo. get _topo_obj ects(' CI TY_DATA", sdo_geonetry(2003,null, null,
sdo_elem.info_array(1,1003,3),
sdo_ordi nate_array(17,30, 31,40)))
FROM DUAL;

- Find all city streets interacting with a query wi ndow.
SELECT c.feature_nane FROM city_streets ¢ WHERE
SDO_ANYI NTERACT(
c.feature,
SDO_GEOMETRY(2003, NULL, NULL,
SDO ELEM | NFO ARRAY(1, 1003, 3),
SDO_ORDI NATE_ARRAY(5,5, 30, 40)))
= "TRUE;

- Find all streets that have any interaction with land parcel P3.
- (Should return only R1.)

1-54

Chapter 1
README File for Spatial and Graph and Related Features

SELECT c.feature_nane FROM city_streets c, land_parcels |
VWHERE | .feature_nane = 'P3' AND
SDO_ANYI NTERACT (c.feature, |.feature) = 'TRUE ;

- Find all land parcels that have any interaction with traffic sign Sl
- (Should return P1 and P2.)
SELECT | .feature_nane FROM |l and_parcels |, traffic_signs t

VHERE t.feature_nanme = 'S1' AND

SDO_ANYI NTERACT (I.feature, t.feature) = 'TRUE ;

- Get the geonetry for land parcel P1.
SELECT | .feature_nane, |.feature.get_geonetry()
FROM | and_parcels | WHERE |.feature_nanme = 'P1';

-- Query SDO TOPO GEQMETRY attributes,

SELECT s.feature.tg_type FROMcity streets s;
SELECT s.feature.tg_id FROMcity_streets s;
SELECT s.feature.tg_layer_id FROMcity streets s;
SELECT s.feature.topology_id FROMcity streets s;

- Topol ogy-specific functions

- CGet the boundary of face with face_id 3.

SELECT SDO TOPQ. GET_FACE_BOUNDARY(' CI TY_DATA', 3) FROM DUAL;

- Try '"TRUE' as third paraneter.

SELECT SDO TOPO. GET_FACE_BOUNDARY(' CI TY_DATA', 3, 'TRUE') FROM DUAL;
- CGet the boundary of face with face_id 2.

SELECT SDO TOPQ. GET_FACE_BOUNDARY(' CI TY_DATA', 2) FROM DUAL;

- Try '"TRUE' as third paraneter.

SELECT SDO TOPQ. GET_FACE_BOUNDARY(' CI TY_DATA', 2, 'TRUE') FROM DUAL;
- CGet the boundary of face with face_id 1.

SELECT SDO _TOPO. GET_FACE_BOUNDARY(' CI TY_DATA', 1) FROM DUAL;

- Specify 'TRUE' for the all_edges paraneter.

SELECT SDO TOPQ. GET_FACE_BOUNDARY(' CI TY_DATA', 1, 'TRUE') FROM DUAL;

- CITY_DATA layer, land parcels (tg_ layer_id = 1), parcel P2 (tg_id = 2)
SELECT SDO _TOPO. GET_TOPO OBJECTS(' CI TY_DATA', 1, 2) FROM DUAL;

- 10. Optionally, edit the data using the PL/SQ or Java API.

1.13 README File for Spatial and Graph and Related
Features

A README. t xt file supplements the information in the following manuals: Oracle Spatial
and Graph Developer's Guide, Oracle Spatial and Graph GeoRaster Developer's
Guide, and Oracle Spatial and Graph Topology Data Model and Network Data Model
Graph Developer's Guide (this manual).

This file is located at:

$ORACLE_HOVE/ nd/ doc/ README. t xt

ORACLE 1-55

Editing Topologies

Node and edge data in a topology can be edited. The operations include adding,
moving, and removing nodes and edges, and updating the coordinates of an edge.

This chapter explains two approaches to editing topology data, and it explains why one
approach (creating and using a special cache) is better in most cases. It also
describes the behavior and implications of some major types of editing operations.

The explanations in this chapter refer mainly to the PL/SQL application programming
interface (API) provided in the MDSYS.SDO_TOPO_MAP package, which is
documented in SDO_TOPO_MAP Package Subprograms. However, you can also
perform topology editing operations using the client-side Java API, which is introduced
in Topology Data Model Java Interface and is explained in the Javadoc-generated
documentation.

To edit topology data, always use the PL/SQL or Java API. Do not try to perform
editing operations by directly modifying the node, edge, or face information tables.

Topics:
e Approaches for Editing Topology Data

e Performing Operations on Nodes
This topic contains sections that describe the effects of adding, moving, and
removing nodes, and that explain how to perform these operations using the
PL/SQL API.

e Performing Operations on Edges
This topic describes the effects of adding, moving, removing, and updating edges,
and explains how to perform these operations using the PL/SQL API.

¢ See Also:

e Cross-Schema Topology Editing

2.1 Approaches for Editing Topology Data

ORACLE

Whenever you need to edit a topology, you can use PL/SQL or Java API. In both
cases, Oracle Spatial and Graph uses an in-memory topology cache, specifically, a
TopoMap object. (This object is described in in TopoMap Objects.)

e If you use the PL/SQL API, you can either explicitly create and use the cache or
allow Spatial and Graph to create and use the cache automatically.

e If you use the Java API, you must explicitly create and use the cache.

Allowing Spatial and Graph to create and manage the cache automatically is simpler,
because it involves fewer steps than creating and using a cache. However, because

2-1

Chapter 2
Approaches for Editing Topology Data

allowing Spatial and Graph to create and manage the cache involves more database
activity and disk accesses, it is less efficient when you need to edit more than a few
topological elements.

e TopoMap Objects

» Specifying the Editing Approach with the Topology Parameter
» Using GET_xxx Topology Functions

* Process for Editing Using Cache Explicitly (PL/SQL API)

* Process for Editing Using the Java API

* Error Handling for Topology Editing

2.1.1 TopoMap Objects

ORACLE

A TopoMap object is associated with an in-memory cache that is associated with a
topology. If you explicitly create and use a cache for editing a topology, you must
create a TopoMap object to be associated with a topology, load all or some of the
topology into the cache, edit objects, periodically update the topology to write changes
to the database, commit the changes made in the cache, and clear the cache.

Although this approach involves more steps than allowing Spatial and Graph to create
and use the cache automatically, it is much faster and more efficient for most topology
editing sessions, which typically affect hundreds or thousands of topological elements.
It is the approach shown in most explanations and illustrations.

A TopoMap object can be updatable or read-only, depending on the value of the
al | ow_updat es parameter when you call the SDO_TOPO_MAP.LOAD_TOPO_MAP
function or procedure:

* With a read-only TopoMap object, topological elements (primitives) are loaded but
not locked.

* With an updatable TopoMap object, topological elements (primitives) are loaded
and locked. If you specified a rectangular window for an updatable TopoMap
object, you can edit only those topological elements inside the specified window.
(The TopoMap object may also contain locked topological elements that you
cannot edit directly, but that Oracle Spatial and Graph can modify indirectly as
needed.)

For more information about what occurs when you use an updatable TopoMap
object, see the Usage Notes for the SDO_TOPO_MAP.LOAD_TOPO_MAP
function or procedure.

The following procedures set an updatable TopoMap object to be read-only:
« SDO _TOPO_MAP.COMMIT_TOPO_MAP

« SDO _TOPO MAP.ROLLBACK_TOPO_MAP

« SDO TOPO MAP.CLEAR_TOPO_ MAP

Within a user session at any given time, there can be no more than one updatable
TopoMap object. However, multiple different user sessions can work with updatable
TopoMap objects based on the same topology, as long as their editing windows do not
contain any topological elements that are in any other updatable TopoMap objects.
There can be multiple read-only TopoMap objects within and across user sessions.

2-2

Chapter 2
Approaches for Editing Topology Data

Two or more users can edit a topology at the same time as long as their editing
windows (specified in the call to the SDO_TOPO_MAP.LOAD_TOPO_MAP function or
procedure) do not overlap.

2.1.2 Specifying the Editing Approach with the Topology Parameter

For many SDO_TOPO_MAP package functions and procedures that edit topologies,
such as SDO_TOPO_MAP.ADD_NODE or SDO_TOPO_MAP.MOVE_EDGE, you
indicate the approach you are using for editing by specifying either a topology name or
a null value for the first parameter, which is named t opol ogy:

If you specify a topology name, Spatial and Graph checks to see if an updatable
TopoMap object already exists in the user session; and if one does not exist,
Spatial and Graph creates an internal TopoMap object, uses that cache to perform
the editing operation, commits the change (or rolls back changes to the savepoint
at the beginning of the process if an exception occurred), and deletes the
TopoMap object. (If an updatable TopoMap object already exists, an exception is
raised.) For example, the following statement removes the node with node ID
value 99 from the MY_TOPO topology:

CALL SDO TOPO MAP. REMOVE_NODE(' MY_TOPO , 99):

If you specify a null value, Spatial and Graph checks to see if an updatable
TopoMap object already exists in the user session; and if one does exist, Spatial
and Graph performs the operation in the TopoMap object's cache. (If no updatable
TopoMap object exists, an exception is raised.) For example, the following
statement removes the node with node ID value 99 from the current updatable
TopoMap object:

CALL SDO TOPO MAP. REMOVE_NODE(nul |, 99);

2.1.3 Using GET_xxx Topology Functions

Some SDO_TOPO_MAP package functions that get information about topologies
have t opol ogy and t opo_nap as their first two parameters. Examples of such functions
are SDO_TOPO_MAP.GET_EDGE_COORDS and
SDO_TOPO_MAP.GET_NODE_STAR. To use these functions, specify a valid value
for one parameter and a null value for the other parameter, as follows:

ORACLE

If you specify a valid t opol ogy parameter value, Spatial and Graph retrieves the
information for the specified topology. It creates an internal TopoMap object, uses
that cache to perform the operation, and deletes the TopoMap object. For
example, the following statement returns the edge coordinates of the edge with an
ID value of 1 from the CI TY_DATA topology:

SELECT SDO TOPO_MAP. GET_EDGE_COORDS(' CI TY_DATA', null, 1) FROM DUAL;

If you specify a null t opol ogy parameter value and a valid t opo_map parameter
value, Spatial and Graph uses the specified TopoMap object (which can be
updatable or read-only) to retrieve the information for the specified topology. For
example, the following statement returns the edge coordinates of the edge with an
ID value of 1 from the CI TY_DATA_TCPOMAP TopoMap object:

SELECT SDO TOPO_MAP. GET_EDGE_COORDS(nul |, ' CI TY_DATA TOPOVAP', 1) FROM DUAL;

If you specify a null or invalid value for both the t opol ogy and t opo_map parameters,
an exception is raised.

2-3

Chapter 2
Approaches for Editing Topology Data

Some SDO_TOPO_MAP package functions that get information about topology
editing operations have no parameters. Examples of such functions are
SDO_TOPO_MAP.GET_FACE_ADDITIONS and
SDO_TOPO_MAP.GET_NODE_CHANGES. These functions use the current
updatable TopoMap object. If no updatable TopoMap object exists, an exception is
raised. For example, the following statement returns an SDO_NUMBER_ARRAY
object (described in SDO_EDGE_ARRAY and SDO_NUMBER_ARRAY Types) with
the node ID values of nodes that have been added to the current updatable TopoMap

object:

SELECT SDO TOPO_MAP. GET_NODE_ADDI TI ONS FROM DUAL;

2.1.4 Process for Editing Using Cache Explicitly (PL/SQL API)

Figure 2-1 shows the recommended process for editing topological elements using the
PL/SQL API and explicitly using a TopoMap object and its associated cache.

Figure 2-1 Editing Topologies Using the TopoMap Object Cache (PL/SQL API)

Create TopoMap
object (CREATE_

TOPO MAP) l

Y

Validate cache
(VALIDATE_
A TOPO_MAP)

Rebuild indexes
(CREATE_EDGE_INDEX
and CREATE_FACE_
INDEX) (for example,
after each 100 added nodes)

Load TopoMap ” . Clear cache
X i Perform editing operations
(Lglzgct_lfgrptgdatip) > (for example, add 1000 nodes) > (CLEAR_TOPO_MAP)
— I3 1y I
LY

Y

Update topology
(UPDATE_TOPO_MAP)

- (for example, after
each 1000 added nodes)

B |

Commit changes
(COMMIT_TOPO_MAP) L_p

Remove TopoMap
object (DROP_
TOPO_MAP)

As Figure 2-1 shows, the basic sequence is as follows:

1. Create the TopoMap object, using the SDO_TOPO_MAP.CREATE_TOPO_MAP

procedure.

This creates an in-memory cache for editing objects associated with the specified

topology.

ORACLE

2-4

ORACLE

Chapter 2
Approaches for Editing Topology Data

Load the entire topology or a rectangular window from the topology into the
TopoMap object cache for update, using the
SDO_TOPO_MAP.LOAD_TOPO_MAP function or procedure.

You can specify that in-memory R-tree indexes be built on the edges and faces
that are being loaded. These indexes use some memory resources and take some
time to create and periodically rebuild; however, they significantly improve
performance if you edit a large number of topological elements in the session.
(They can also improve performance for queries that use a read-only TopoMap
object.)

Perform a number of topology editing operations (for example, add 1000 nodes).

Periodically, validate the cache by calling the
SDO_TOPO_MAP.VALIDATE_TOPO_MAP function.

You can rebuild existing in-memory R-tree indexes on edges and faces in the
TopoMap object, or create new indexes if none exist, by using the
SDO_TOPO_MAP.CREATE_EDGE_INDEX and
SDO_TOPO_MAP.CREATE_FACE_INDEX procedures. For best index
performance, these indexes should be rebuilt periodically when you are editing a
large number of topological elements.

If you want to discard edits made in the cache, call the
SDO_TOPO_MAP.CLEAR_TOPO_MAP procedure. This procedure fails if there
are any uncommitted updates; otherwise, it clears the data in the cache and sets
the cache to be read-only.

Update the topology by calling the SDO_TOPO_MAP.UPDATE_TOPO_MAP
procedure.

Repeat Steps 3 and 4 (editing objects, validating the cache, rebuilding the R-tree
indexes, and updating the topology) as often as needed, until you have finished
the topology editing operations.

Commit the topology changes by calling the
SDO_TOPO_MAP.COMMIT_TOPO_MAP procedure. (The
SDO_TOPO_MAP.COMMIT_TOPO_MAP procedure automatically performs the
actions of the SDO_TOPO_MAP.UPDATE_TOPO_MAP procedure before it
commits the changes.) After the commit operation, the cache is made read-only
(that is, it is no longer updatable). However, if you want to perform further editing
operations using the same TopoMap object, you can load it again and use it (that
is, repeat Steps 2 through 5, clearing the cache first if necessary).

To perform further editing operations, clear the TopoMap object cache by calling
the SDO_TOPO_MAP.CLEAR_TOPO_MAP procedure, and then go to Step 2.

If you want to discard all uncommitted topology changes, you can call the
SDO_TOPO_MAP.ROLLBACK_TOPO_MAP procedure at any time. After the
rollback operation, the cache is cleared.

Remove the TopoMap object by calling the
SDO_TOPO_MAP.DROP_TOPO_MAP procedure.

This procedure removes the TopoMap object and frees any resources that it had
used. (If you forget to drop the TopoMap object, it will automatically be dropped
when the user session ends.) This procedure also rolls back any topology changes
in the cache that have not been committed.

If the application terminates abnormally, all uncommitted changes to the database
will be discarded.

2-5

Chapter 2
Approaches for Editing Topology Data

If you plan to perform a very large number of topology editing operations, you can
divide the operations among several editing sessions, each of which performs Steps 1
through 7 in the preceding list.

2.1.5 Process for Editing Using the Java AP

Figure 2-2 shows the recommended process for editing topological elements using the
client-side Java API, which is introduced in Topology Data Model Java Interface and is
explained in the Javadoc-generated documentation. The Java API requires that you
create and manage a TopoMap object and its associated cache.

Figure 2-2 Editing Topologies Using the TopoMap Object Cache (Java API)

Create TopoMap
object i <
Load TopoMap Perform editin ration Clear cache
object for update P (foreexc;mp?g tad% 2%%3 tn?)dses) =P (clearCache)
(loadTopology or
loadWindow) Ay Ay A
LY
Validate cache Rebuild indexes
(validateCache) (createEdgelndex and
A createFacelndex) (for
example, after each 100
added nodes)

Y

Update topology
(updateTopology)

. (for example, after
each 1000 added nodes)

A |

Commit changes
(commitDB) —— Remove TopoMap
object

As Figure 2-2 shows, the basic sequence is as follows:

1.

ORACLE

Create the TopoMap object, using a constructor of the TopoMap class, specifying a
topology and a database connection.

This creates an in-memory cache for editing objects associated with the specified
topology.

Load the entire topology or a rectangular window from the topology into the
TopoMap object cache for update, using the | oadTopol ogy or | oadW ndow method of
the TopoMap class.

You can specify that in-memory R-tree indexes be built on the edge and edge face
that are being affected. These indexes use some memory resources and take

2-6

Chapter 2
Approaches for Editing Topology Data

some time to create and periodically rebuild; however, they significantly improve
performance if you edit a large number of topological elements during the
database connection.

3. Perform a number of topology editing operations (for example, add 1000 nodes),
and update the topology by calling the updat eTopol ogy method of the TopoMap class.

Periodically, validate the cache by calling the val i dat eCache method of the TopoMap
class.

If you caused in-memory R-tree indexes to be created when you loaded the
TopoMap object (in Step 2), you can periodically (for example, after each addition
of 100 nodes) rebuild the indexes by calling the cr eat eEdgel ndex and

creat eFacel ndex methods of the TopoMap class. For best index performance, these
indexes should be rebuilt periodically when you are editing a large number of
topological elements.

If you do not want to update the topology but instead want to discard edits made in
the cache since the last update, call the cl ear Cache method of the TopoMap class.
The cl ear Cache method fails if there are any uncommitted updates; otherwise, it
clears the data in the cache and sets the cache to be read-only.

4. Update the topology by calling the updat eTopol ogy method of the TopoMap class.

5. Repeat Steps 3 and 4 (editing objects, validating the cache, rebuilding the R-tree
indexes, and updating the topology) as often as needed, until you have finished
the topology editing operations.

6. Commit the topology changes by calling the comni t DB method of the TopoMap class.
(The conmi t DB method automatically calls the updat eTopol ogy method before it
commits the changes.) After the commit operation, the cache is made read-only
(that is, it is no longer updatable). However, if you want to perform further editing
operations using the same TopoMap object, you can load it again and use it (that
is, repeat Steps 2 through 5, clearing the cache first if necessary).

To perform further editing operations, clear the TopoMap object cache by calling
the cl ear Cache method of the TopoMap class, and then go to Step 2.

If you want to discard all uncommitted topology changes, you can call the
rol | backDB method of the TopoMap class at any time. After the rollback operation,
the cache is cleared.

7. Remove the TopoMap object by setting the TopoMap object to null, which makes
the object available for garbage collection and frees any resources that it had
used. (If you forget to remove the TopoMap object, it will automatically be garbage
collected when the application ends.)

If the application terminates abnormally, all uncommitted changes to the database
will be discarded.

If you plan to perform a very large number of topology editing operations, you can
divide the operations among several editing sessions, each of which performs Steps 1
through 7 in the preceding list.

2.1.6 Error Handling for Topology Editing

This section discusses the following conditions.

* Input Parameter Errors

» All Exceptions

ORACLE .

Chapter 2
Approaches for Editing Topology Data

2.1.6.1 Input Parameter Errors

When an SDO_TOPO_MAP PL/SQL subprogram or a public method in the TopoMap
Java class is called, it validates the values of the input parameters, and it uses or
creates a TopoMap object to perform the editing or read-only operation. Whenever
there is an input error, an oracl e. spati al . t opo. TopoDat aExcept i on exception is thrown.
Other errors may occur when the underlying TopoMap object performs an operation.

If the method is called from SQL or PL/SQL, the caller gets the following error
message:

ORA-29532: Java call terminated by uncaught Java exception:
<specific error message text>

The following PL/SQL example shows how you can handle a TopoDat aExcept i on
exception:

DECLARE

topo_dat a_error EXCEPTI ON;

PRAGVA EXCEPTI ON_I NI T(t opo_data_error, -29532);
BEG N

sdo_t opo_map. create_topo_map(nul |, null, 100, 100, 100);
EXCEPTI ON

VHEN topo_data_error THEN

DBMS_QUTPUT. PUT_LI NE(SQLERRM) ;

END; /

The preceding example generates the following output:

ORA-29532: Java cal |l termnated by uncaught Java
exception:oracle.spatial.topo. TopoDat aException: invalid TopoMap name

2.1.6.2 All Exceptions

ORACLE

The following actions are performed automatically when any exception occurs in a call
to any of the following SDO_TOPO_MAP PL/SQL subprograms or their associated
methods in the TopoMap Java class: SDO_TOPO_MAP.ADD_EDGE (addEdge),
SDO_TOPO_MAP.ADD_ISOLATED_NODE (add! sol at edNode),
SDO_TOPO_MAP.ADD_LOORP (addLoop), SDO_TOPO_MAP.ADD_NODE (addNode),
SDO_TOPO_MAP.ADD_POINT_GEOMETRY (addPoi nt Geonet ry),
SDO_TOPO_MAP.ADD_POLYGON_GEOMETRY (addPol ygonGeonet ry),
SDO_TOPO_MAP.CHANGE_EDGE_COORDS (changeEdgeCoor ds),
SDO_TOPO_MAP.MOVE_ISOLATED_NODE (movel sol at edNode),
SDO_TOPO_MAP.MOVE_NODE (noveNode), SDO_TOPO_MAP.MOVE_EDGE
(moveEdge), SDO_TOPO_MAP.REMOVE_EDGE (r enoveEdge),
SDO_TOPO_MAP.REMOVE_NODE (r emoveNode), and
SDO_TOPO_MAP.UPDATE_TOPO_MAP (updat eTopol ogy).

* The transaction is rolled back.
* The TopoMap object cache is cleared.

* The TopoMap object is made read-only.

2-8

Chapter 2
Performing Operations on Nodes

2.2 Performing Operations on Nodes

This topic contains sections that describe the effects of adding, moving, and removing
nodes, and that explain how to perform these operations using the PL/SQL API.

* Adding a Node
* Moving a Node
 Removing a Node

* Removing Obsolete Nodes

2.2.1 Adding a Node

ORACLE

Adding a non-isolated node adds the node to an edge at a point that is currently on the
edge. This operation also splits the edge, causing the original edge to be divided into
two edges. Spatial and Graph automatically adjusts the definition of the original edge
and creates a new edge (assigning it an ID value that is unique among edges in the

topology).

To add a non-isolated node, use the SDO_TOPO_MAP.ADD_NODE function. To add
an isolated node, use the SDO_TOPO_MAP.ADD_ISOLATED_NODE function.

Figure 2-3 shows the addition of a node (N3) on edge E1.

Figure 2-3 Adding a Non-Isolated Node

Before Adding a Node
N1 N2
o P 0
E1

After Adding a Node
N1 N3 N2
o P> O P> o
E1 E2

As a result of the operation shown in Figure 2-3:

- Edge E1 is redefined to be between the original edge's start point and the point at
the added node (N3).

- Edge E2 is created. Its start point is the point at node N3, and its end point is the
end point of the original edge.

- If any linear features were defined on the original edge, they are automatically
redefined to be on both resulting edges, the edge is split, and a record is added to
the history information table (explained in History Information Table) for the
topology. For example, if a street named Main Street had been defined on the
original edge E1 in Figure 2-3, then after the addition of node N3, Main Street
would be defined on both edges E1 and E2.

Figure 2-4 shows a more complicated example of adding a node, where the result
depends on whether or not the added node is a new shape point of the original edge

2-9

Chapter 2
Performing Operations on Nodes

(that is, on the value of the i s_new_shape_poi nt parameter to the
SDO_TOPO_MAP.ADD_NODE function).

Figure 2-4 Effect of is_new_shape_point Value on Adding a Node

Original Edge with Shape Points

E1

New Node Is Not a Shape Point of the Original Edge

N1 N2
E2

E1 N3
P O

New Node Is a Shape Point of the Original Edge

N3
E2

E1

In Figure 2-4:

e Inthe top part of the figure, the original edge (E1) starts at node N1, ends at node
N2, and has two intermediate shape points.

e In the middle part of the figure, a new node (N3) is added that is not a shape point
of the original edge, but instead is a new shape point (that is,
i s_new_shape_poi nt =>' TRUE). The new node is added at the location specified with
the poi nt parameter, and is added after the vertex specified in the coor d_i ndex
parameter (in this case, coor d_i ndex=>1 to indicate after the first vertex). The new
node becomes the end node for edge E1 and the start node for the new edge E2,
which ends at node N2.

* Inthe bottom part of the figure, a new node (N3) is added that is a shape point of
the original edge, and is thus not a new shape point (that is,
i s_new_shape_poi nt =>' FALSE'). Because it is not a new shape point, the node is
added at the vertex specified with the coor d_i ndex parameter (in this case,
coor d_i ndex=>2). As in the middle part of the figure, the new node becomes the end
node for edge E1 and the start node for the new edge E2, which ends at node N2.

2.2.2 Moving a Node

Moving a non-isolated node to a new position causes the ends of all edges that are
attached to the node to move with the node. You must specify the vertices for all

ORACLE 2-10

ORACLE

Chapter 2
Performing Operations on Nodes

edges affected by the moving of the node; each point (start or end) that is attached to
the node must have the same coordinates as the new location of the node, and the
other end points (not the moved node) of each affected edge must remain the same.

To move a non-isolated node, use the SDO_TOPO_MAP.MOVE_NODE procedure.
To move an isolated node, use the SDO_TOPO_MAP.MOVE_ISOLATED_NODE
procedure.

Figure 2-5 shows the original topology before node N1 is moved.

Figure 2-5 Topology Before Moving a Non-Isolated Node

Figure 2-6 shows two cases of the original topology after node N1 is moved. In one
case, no reshaping occurs; that is, all edges affected by the movement are specified
as straight lines. In the other case, reshaping occurs; that is, one or more affected
edges are specified as line segments with multiple vertices.

Figure 2-6 Topology After Moving a Non-Isolated Node

Without Reshaping With Reshaping

In both cases shown in Figure 2-6:

» The topology does not change. That is, the number of nodes, edges, and faces
does not change, and the relationships (such as adjacency and connectivity)
among the nodes, edges, and faces do not change.

2-11

Chapter 2
Performing Operations on Nodes

» All features defined on the nodes, edges, and faces retain their definitions.

Any isolated nodes and edges might remain in the same face or be moved to a
different face as a result of a move operation on a non-isolated node. The
SDO_TOPO_MAP.MOVE_NODE procedure has two output parameters,

nmoved_i so_nodes and noved_i so_edges, that store the ID numbers of any isolated nodes
and edges that were moved to a different face as a result of the operation.

A node cannot be moved if, as a result of the move, any of the following would
happen:

* Any edges attached to the node would intersect any other edge. For example,
assume that the original topology shown in Figure 2-6 had included another edge
E20 that passed just above and to the right of node N1. If the movement of node
N1 would cause edge E3, E4, E6, ES8, or E9 to intersect edge E20, the move
operation is not performed.

* The node would be moved to a face that does not currently bound the node. For
example, if the movement of node N1 would place it outside the original topology
shown in Figure 2-6, the move operation is not performed.

* The node would be moved to the opposite side of an isolated face. This is not
allowed because the move would change the topology by changing one or more of
the following: the relationship or ordering of edges around the face, and the left
and right face for each edge. Figure 2-7 shows a node movement (flipping node
N1 from one side of isolated face F1 to the other side) that would not be allowed.

Figure 2-7 Node Move Is Not Allowed

Before Flip After Flip
(Not Allowed)
N1
F1
N2 N3
N2 N3
F1
F2 F2 N1

* Additional Examples of Allowed and Disallowed Node Moves

2.2.2.1 Additional Examples of Allowed and Disallowed Node Moves

This section provides additional examples of node movement operations that are
either allowed or not allowed. All refer to the topology shown in Figure 2-8.

ORACLE 2-12

Chapter 2
Performing Operations on Nodes

Figure 2-8 Topology for Node Movement Examples

In the topology shown in Figure 2-8:

e Attempts will be made to move node N1 to points P1, P2, P3, and P4. (These
points are locations but are not existing nodes.)

* The edges have no shape points, either before or after the move operation.

* New vertices are specified for the edges E1, E2, E3, and E4, but the ID values of
the start and end points for the edges remain the same.

When the following node move operations are attempted using the topology shown in
Figure 2-8, the following results occur:

* Moving node N1 to point P1: Not allowed, because one or more of the four
attached edges would intersect edge E5. (Edge E3 would definitely intersect edge
ES5 if the move were allowed.)

* Moving node N1 to point P2: Allowed.

* Moving node N1 to point P3: Allowed. However, this operation causes the isolated
node N2 to change from face F2 to face F1, and this might cause the application
to want to roll back or disallow the movement of node N1. Similarly, if the
movement of a node would cause any isolated edges or faces to change from one
face to another, the application might want to roll back or disallow the node move
operation.

* Moving node N1 to point P4: Not allowed, because the node must be moved to a
point in a face that bounds the original (current) position of the node.

2.2.3 Removing a Node

ORACLE

You can remove individual nodes (isolated or non-isolated), as explained in this
section, and you can remove all obsolete nodes in a topology, as explained in
Removing Obsolete Nodes.

Removing a non-isolated node deletes the node and merges the edges that were
attached to the node into a single edge. (Spatial and Graph applies complex rules,
which are not documented, to determine the ID value and direction of the resulting
edge.)

2-13

Chapter 2
Performing Operations on Nodes

To remove a non-isolated or isolated node, use the
SDO_TOPO_MAP.REMOVE_NODE procedure.

Figure 2-9 shows the removal of a node (N1) that is attached to edges E1 and E2.

Figure 2-9 Removing a Non-Isolated Node

Before Removing a Node

N3 N1 N2
(o > O < O
E1 E2
After Removing a Node
N3 N2
(o P O
E1

As a result of the operation shown in Figure 2-9:

» Edge E1 is redefined to consist of the line segments that had represented the
original edges E1 and E2.

* Edge E2is deleted.

» If any linear features were defined on both original edges, they are automatically
redefined to be on the resulting edge, and a record is added to the history
information table (explained in History Information Table) for the topology. For
example, if a street named Main Street had been defined on the original edges E1
and E2 in Figure 2-9, then after the removal of node N1, Main Street would be
defined on edge E1.

A node cannot be removed if one or more of the following are true:

* A point feature is defined on the node. For example, if a point feature named
Metropolitan Art Museum had been defined on node N1 in Figure 2-9, node N1
cannot be removed. Before you can remove the node in this case, you must
remove the definition of any point features on the node.

» Alinear feature defined on either original edge is not also defined on both edges.
For example, if a linear feature named Main Street had been defined on edge E1
but not edge E2 in Figure 2-9, node N1 cannot be removed.

2.2.4 Removing Obsolete Nodes

ORACLE

An obsolete node is a node that is connected to only two distinct edges, is not
assigned to any point feature, and does not serve as the demarcation between
different linear features. Obsolete nodes can result when the
SDO_TOPO_MAP.ADD_POLYGON_GEOMETRY function is used repeatedly to build
a topology, or when edges have been removed during editing operations, leaving
some unnecessary hodes. Therefore, it is recommended that you use the
SDO_TOPO_MAP.REMOVE_OBSOLETE_NODES procedure to remove obsolete
nodes in such cases.

Spatial and Graph automatically updates the appropriate entries in the <topology-
name>_NODES$ and <topology-name>_EDGES$ tables, and in the <topology-
name>_FACES$ table if necessary.

2-14

Chapter 2
Performing Operations on Edges

Figure 2-10 shows the removal of obsolete nodes in a simple topology. In this
topology, node N1 has a point feature named Art Museum defined on it, and node N3
has a point feature named Town Hall defined on it. Edges E1, E2, and E3 have a
linear feature named Main Street defined on them, and edge E4 has a linear feature
named First Avenue defined on it.

Figure 2-10 Removing Obsolete Nodes

N1 = Art Museum (point feature) E1, E2, E3 = Main Street (linear feature)
N3 = Town Hall (point feature) E4 = First Avenue (linear feature)

Before Removing Obsolete Nodes
N1 N2 N3 N4
o P> O P O
E1 E2 E3

o
N6

After Removing Obsolete Nodes (Only N2 Here)
N3 N4

0=

P
E1 E3

N5

In Figure 2-10, the only node removed is N2, because only that node satisfies all the
criteria for an obsolete node. As for the other nodes:

* N1 is connected to only one edge (E1), and it has a point feature defined on it (Art
Museum).

* N3 has a point feature defined on it (Town Hall).

* N4 is the demarcation between two different linear features (Main Street and First
Avenue).

* N5 is connected to only one edge (E4).
* Node N6 is an isolated node (not connected to any edges).

Also as a result of the operation shown in Figure 2-10, edge E2 was removed as a
result of the removal of node N2.

2.3 Performing Operations on Edges

This topic describes the effects of adding, moving, removing, and updating edges, and
explains how to perform these operations using the PL/SQL API.

* Adding an Edge
* Moving an Edge

ORACLE 2-15

Chapter 2
Performing Operations on Edges

* Removing an Edge

* Updating an Edge

2.3.1 Adding an Edge

Adding a non-isolated edge adds the edge to a face. It also splits the face, causing the
original face to be divided into two faces. Spatial and Graph automatically adjusts the
definition of the original face and creates a new face (assigning it an ID value that is
unique among faces in the topology).

To add an edge, use the SDO_TOPO_MAP.ADD_EDGE procedure. You must specify
existing nodes as the start and end nodes of the added edge.

Figure 2-11 shows the addition of an edge (E7) between nodes N3 and N5 on face F3.

Figure 2-11 Adding a Non-Isolated Edge

Before Adding an Edge

N6 E5 N5 E4 N4
7o O
E6 F3 E3
o O o
N1 E1 N3 E2 N2
After Adding an Edge
N6 E5 N5 E4 N4
o O
E6 F1 E7 F3 E3
o O
N1 E1 N3 E2 N2

As a result of the operation shown in Figure 2-11, face F3 is redefined to be two faces,
F1 and F3. (Spatial and Graph applies complex rules, which are not documented, to
determine the ID values of the resulting faces.)

Any polygon features that were defined on the original face are automatically redefined
to be on both resulting faces. For example, if a park named Walden State Park had
been defined on the original face F3 in Figure 2-11, then after the addition of edge E7,
Walden State Park would be defined on both faces F1 and F3.

2.3.2 Moving an Edge

ORACLE

Moving a non-isolated edge keeps the start or end point of the edge in the same
position and moves the other of those two points to another existing node position.
You must specify the source node (location before the move of the node to be moved),
the target node (location after the move of the node being moved), and the vertices for
the moved edge.

To move an edge, use the SDO_TOPO_MAP.MOVE_EDGE procedure.

2-16

Chapter 2
Performing Operations on Edges

Figure 2-12 shows the movement of edge E7, which was originally between nodes N3
and N5, to be between nodes N2 and N5.

Figure 2-12 Moving a Non-Isolated Edge

Before Moving an Edge

N6 E5 N5 E4 N4
O 7o)
E6 F1 E7 F3 E3
L -
N1 E1 N3 E2 N2
After Moving an Edge
N6 E5 N5 E4 N4
r
E6 F1 E7 F3 E3
o O
N1 E1 N3 E2 N2

As a result of the operation shown in Figure 2-12, faces F1 and F3 are automatically
redefined to reflect the coordinates of their edges, including the new coordinates for
edge E7.

Any isolated nodes and edges might remain in the same face or be moved to a
different face as a result of a move operation on a non-isolated edge. The
SDO_TOPO_MAP.MOVE_EDGE procedure has two output parameters,

noved_i so_nodes and noved_i so_edges, that store the ID numbers of any isolated nodes
and edges that were moved to a different face as a result of the operation.

An edge cannot be moved if, as a result of the move, any of the following would
happen:

* The moved edge would intersect any other edge. For example, assume that the
topology before the move, as shown in Figure 2-12, had included another edge
(E10) that was between nodes N3 and N4. In this case, the movement of edge E7
would cause it to intersect edge E10, and therefore the move operation is not
performed.

* The node would be moved to a face that does not currently bound the edge. For
example, if the movement of edge E7 would place its terminating point at a node
outside the faces shown in Figure 2-12 (F1 and F3), the move operation is not
performed.

2.3.3 Removing an Edge

ORACLE

Removing a non-isolated edge deletes the edge and merges the faces that bounded
the edge. (Spatial and Graph applies complex rules, which are not documented, to
determine the ID value of the resulting face.)

To remove an edge, use the SDO_TOPO_MAP.REMOVE_EDGE procedure.

Figure 2-13 shows the removal of an edge (E7) that is bounded by faces F1 and F3.

2-17

Chapter 2
Performing Operations on Edges

Figure 2-13 Removing a Non-Isolated Edge

Before Removing an Edge

N6 E5 N5 E4 N4
o o

E6 F1 E7 F3 E3
o o
N1 E1 N3 E2 N2

After Removing an Edge

N6 E5 N5 E4 N4
o o

E6 F1 E3
o o
N1 E1 N3 E2 N2

As a result of the operation shown in Figure 2-13:

* Face F1 is redefined to consist of the area of the original faces F1 and F3.
* Face F3is deleted.
e The start and end nodes of the deleted edge (nodes N3 and N5) are not removed.

Any polygon features that were defined on both original faces are automatically
redefined to be on the resulting face. For example, if a park named Adams Park had
been defined on the original faces F1 and F3 in Figure 2-13, then after the removal of
edge E7, Adams Park would be defined on face F1.

A non-isolated edge cannot be removed if one or more of the following are true:

* Alinear feature is defined on the edge. For example, if a linear feature named
Main Street had been defined on edge E7 in Figure 2-13, edge E7 cannot be
removed. Before you can remove the edge in this case, you must remove the
definition of any linear features on the edge.

* A polygon feature defined on either original face is not also defined on both faces.
For example, if a linear feature named Adams Park had been defined on face F1
but not face F3 in Figure 2-13, edge E7 cannot be removed.

2.3.4 Updating an Edge

Updating an isolated edge means changing one or more coordinates of the edge, but
without changing the start point and end point.

To update an edge, use the SDO_TOPO_MAP.CHANGE_EDGE_COORDS
procedure.

Any isolated nodes and edges might remain in the same face or be moved to a
different face as a result of an update operation on a non-isolated edge. The
SDO_TOPO_MAP.CHANGE_EDGE_COORDS procedure has two output parameters,
noved_i so_nodes and noved_i so_edges, that store the ID numbers of any isolated nodes
and edges that were moved to a different face as a result of the operation.

ORACLE 2-18

Chapter 2
Performing Operations on Edges

An edge cannot be updated if, as a result of the operation, it would intersect any other
edge. See the Usage Notes for the SDO_TOPO_MAP.CHANGE_EDGE_COORDS
procedure for more information about updating an edge.

ORACLE' 219

SDO TOPO Package Subprograms

The MDSYS.SDO_TOPO package contains subprograms (functions and procedures)
that constitute part of the PL/SQL application programming interface (API) for the
Spatial and Graph Topology Data Model feature. This package mainly contains
subprograms for creating and managing topologies.

To use the subprograms in this chapter, you must understand the conceptual
information about topology in Topology Data Model Overview.

Another package, SDO_TOPO_MAP, mainly contains subprograms related to editing
topologies. Reference information for the SDO_TOPO_MAP package is in
SDO_TOPO_MAP Package Subprograms.

The rest of this chapter provides reference information about the SDO_TOPO
subprograms, listed in alphabetical order.

Topics:

e SDO_TOPO.ADD_TOPO_GEOMETRY_LAYER
e SDO_TOPO.CREATE_TOPOLOGY

e SDO_TOPO.DELETE_TOPO_GEOMETRY_LAYER
+ SDO_TOPO.DROP_TOPOLOGY

e SDO_TOPO.GET_FACE_BOUNDARY

- SDO_TOPO.GET_TOPO_OBJECTS

e SDO_TOPO.INITIALIZE_AFTER_IMPORT

e SDO_TOPO.INITIALIZE_METADATA

e SDO_TOPO.PREPARE_FOR_EXPORT

e SDO_TOPO.RELATE

3.1 SDO_TOPO.ADD TOPO GEOMETRY LAYER

Format

SDO_TOPO ADD_TOPO_GEOVETRY_LAYER(

t opol ogy I N VARCHAR?,
tabl e_nane I N VARCHAR?,
col utm_nane I N VARCHAR?,

topo_geonetry_|ayer _type | N VARCHARZ,
relation_table storage |IN VARCHAR2 DEFAULT NULL,
child_layer_id I'N NUVBER DEFAULT NULL);

Description

Adds a topology geometry layer to a topology.

ORACLE 3-1

ORACLE

Chapter 3
SDO_TOPO.ADD_TOPO_GEOMETRY_LAYER

Parameters

topology

Topology to which to add the topology geometry layer containing the topology
geometries in the specified column. The topology must have been created using the
SDO_TOPO.CREATE_TOPOLOGY procedure.

table_name
Name of the topology geometry layer table containing the column specified in
col urm_narre.

column_name
Name of the column (of type SDO_TOPO_GEOMETRY) containing the topology
geometries in the topology geometry layer to be added to the topology.

topo_geometry_layer_type
Type of topology geometry layer: POINT, LINE, CURVE, POLYGON, or
COLLECTION.

relation_table_storage

Physical storage parameters used internally to create the <topology-
name>_RELATIONS$ table (described in Relationship Information Table). Must be a
valid string for use with the CREATE TABLE statement. For example: TABLESPACE
tbs_3 STORAGE (INITIAL 100K NEXT 200K). If you do not specify this parameter, the
default physical storage values are used.

child_layer_id

Layer ID number of the child topology geometry layer for this layer, if the topology has
a topology geometry layer hierarchy. (Topology geometry layer hierarchy is explained
in Topology Geometry Layer Hierarchy.) If you do not specify this parameter and if the
topology has a topology geometry layer hierarchy, the topology geometry layer is
added to the lowest level (level 0) of the hierarchy.

If the topology does not have a topology geometry layer hierarchy, do not specify this
parameter when adding any of the topology geometry layers.

Usage Notes

The first call to this procedure for a given topology creates the <topology-
name>_RELATIONS table, which is described in Relationship Information Table.

This procedure automatically performs a commit operation, and therefore it cannot be
rolled back. To delete the topology that you just created, call the
SDO_TOPO.DELETE_TOPO_GEOMETRY_LAYER procedure.

The procedure creates a spatial index on the spatial features in the topology
geometries, and a B-tree index on the combination of t g_t ype and t g_i d in the topology
geometries.

Users granted CONNECT and RESOURCE roles must also be granted the CREATE
VIEW privilege to call the procedure. This is necessary because effective with Oracle
Database 10g Release 2, the CONNECT role privilege reduction feature removed the
following privileges from the CONNECT role: CREATE CLUSTER, CREATE
DATABASE LINK, CREATE SEQUENCE, ALTER SESSION, CREATE SYNONYM,
CREATE TABLE, and CREATE VIEW.

The topology geometry layer table (t abl e_nanme parameter) cannot be an object table.

3-2

Chapter 3
SDO_TOPO.CREATE_TOPOLOGY

An exception is raised if t opol ogy, t abl e_nane, or col um_name does not exist, or if
topo_geonetry_| ayer_type is not one of the supported values.

Examples

The following example adds a topology geometry layer to the Cl TY_DATA topology. The
topology geometry layer consists of polygon geometries in the FEATURE column of
the LAND_PARCELS table. (The example refers to definitions and data from Topology
Built from Topology Data.)

EXECUTE SDO TOPO. ADD_TOPO _GEOVETRY_LAYER(' CI TY_DATA', ' LAND_PARCELS , 'FEATURE',
" POLYGON) ;

3.2 SDO_TOPO.CREATE_TOPOLOGY

ORACLE

Format

SDO_TOPQ. CREATE._TOPOLOGY(

t opol ogy I'N VARCHAR,

tol erance I N NUMBER,

srid I'N NUVBER DEFAULT NULL,
node_t abl e_st orage I'N VARCHAR2 DEFAULT NULL,
edge_tabl e_storage I'N VARCHAR2 DEFAULT NULL,
face_tabl e_storage I'N VARCHAR2 DEFAULT NULL,

hi story_tabl e_storage I'N VARCHAR2 DEFAULT NULL.
digits_right_of _decimal | N VARCHAR2 DEFAULT 16);

Description

Creates a topology.
Parameters

topology
Name of the topology to be created. Must not exceed 20 characters.

tolerance
Tolerance value associated with topology geometries in the topology. (Tolerance is
explained in Tolerance in the Topology Data Model.)

srid

Coordinate system (spatial reference system) associated with all topology geometry
layers in the topology. The default is null: no coordinate system is associated;
otherwise, it must be a value from the SRID column of the SDO_COORD_REF_SYS
table (described in Oracle Spatial and Graph Developer's Guide).

node_table_storage

Physical storage parameters used internally to create the <topology-name>_NODES$
table (described in Node Information Table). Must be a valid string for use with the
CREATE TABLE statement. For example: TABLESPACE tbs_3 STORAGE (I NI TI AL 100K
NEXT 200K) . If you do not specify this parameter, the default physical storage values
are used.

edge_table_storage
Physical storage parameters used internally to create the <topology-name>_EDGE$
table (described in Edge Information Table). Must be a valid string for use with the

3-3

ORACLE

Chapter 3
SDO_TOPO.CREATE_TOPOLOGY

CREATE TABLE statement. For example: TABLESPACE tbs_3 STORAGE (I NI TI AL 100K
NEXT 200K). If you do not specify this parameter, the default physical storage values
are used.

face_table_storage

Physical storage parameters used internally to create the <topology-name> FACES$
table (described in Face Information Table). Must be a valid string for use with the
CREATE TABLE statement. For example: TABLESPACE tbs_3 STORAGE (I NI TIAL 100K
NEXT 200K). If you do not specify this parameter, the default physical storage values
are used.

history_table_storage

Physical storage parameters used internally to create the <topology-
name>_HISTORY$ table (described in History Information Table. Must be a valid
string for use with the CREATE TABLE statement. For example: TABLESPACE t bs_3
STORAGE (I NI'TIAL 100K NEXT 200K) . If you do not specify this parameter, the default
physical storage values are used.

digits_right_of_decimal

The number of digits permitted to the right of the decimal point in the expression of
any coordinate position when features are added to an existing topology. All incoming
features (those passed as arguments to the addLi near Geonet ry, addPol ygonGeonet ry, Or
addPoi nt Geonet ry method in the Java API or the equivalent PL/SQL subprograms) will
be automatically snapped (truncated) to the number of digits right of the decimal that
is specified in this parameter. The default is 16.

This value should be set to match the last digit right of the decimal point that is
considered valid based on the accuracy of the incoming data. This mechanism is
provided to improve the stability of the computational geometry during the feature
insertion process, and to minimize the creation of sliver polygons and other undesired
results.

Usage Notes

This procedure creates the <topology-name>_EDGES$, <topology-name>_NODES$,
<topology-name>_FACES, and <topology-name>_HISTORY$ tables, which are
described in Topology Data Model Tables, and it creates B-tree indexes on the
primary keys of these tables. This procedure also creates the metadata for the

topology.

In the sri d parameter, you can specify a geodetic coordinate system; however, all
Spatial and Graph internal operations on the topology will use Cartesian (not geodetic)
arithmetic operations. (Geodetic and non-geodetic coordinate systems are discussed
in Oracle Spatial and Graph Developer's Guide.)

Node, edge, face, and history tables are created without partitions; however, you can
alter any of these tables to make it partitioned. You can also create a partitioned
spatial index on a partitioned table, as explained in Oracle Spatial and Graph
Developer's Guide.

This procedure automatically performs a commit operation, and therefore it cannot be
rolled back. To delete the topology that you just created, call the
SDO_TOPO.DROP_TOPOLOGY procedure.

An exception is raised if the topology already exists.

3-4

Chapter 3
SDO_TOPO.DELETE_TOPO_GEOMETRY_LAYER

Examples

The following example creates a topology named Cl TY_DATA. The spatial geometries in
this topology have a tolerance value of 0.5 and use the WGS 84 coordinate system
(longitude and latitude, SRID value 8307). (The example refers to definitions and data
from Topology Built from Topology Data.)

EXECUTE SDO_TOPO. CREATE_TOPOLOGY(' CI TY_DATA', 0.5, 8307);

3.3 SDO_TOPO.DELETE_TOPO_GEOMETRY_LAYER

ORACLE

Format

SDO_TOPO. DELETE_TOPO _GEOVETRY_LAYER(
t opol ogy I'N VARCHARZ,
tabl e_name | N VARCHAR?,
col um_nane | N VARCHAR?) ;

Description

Deletes a topology geometry layer from a topology.
Parameters

topology

Topology from which to delete the topology geometry layer containing the topology
geometries in the specified column. The topology must have been created using the
SDO_TOPO.CREATE_TOPOLOGY procedure.

table_name
Name of the table containing the column specified in col um_nane.

column_name
Name of the column containing the topology geometries in the topology geometry
layer to be deleted from the topology.

Usage Notes

This procedure deletes data associated with the specified topology geometry layer
from the <topology-name>_RELATIONS table (described in Relationship Information
Table). If this procedure is deleting the only remaining topology geometry layer from
the topology, it also deletes the <topology-name>_RELATIONS table.

This procedure automatically performs a commit operation, and therefore it cannot be
rolled back.

Examples

The following example deletes the topology geometry layer that is based on the
geometries in the FEATURE column of the LAND_PARCELS table from the topology
named Cl TY_DATA. (The example refers to definitions and data from Topology Built from
Topology Data.)

EXECUTE SDO_TOPO. DELETE_TOPO _GEOMVETRY_LAYER(' CI TY_DATA', ' LAND PARCELS', ' FEATURE');

3-5

Chapter 3
SDO_TOPO.DROP_TOPOLOGY

3.4 SDO_TOPO.DROP_TOPOLOGY

Format

SDO_TOPO. DROP_TOPOLOGY(
topol ogy | N VARCHAR2);

Description

Deletes a topology.
Parameters

topology
Name of the topology to be deleted. The topology must have been created using the
SDO_TOPO.CREATE_TOPOLOGY procedure.

Usage Notes

This procedure deletes the <topology-name>_EDGES$, <topology-name>_NODES$,
<topology-name>_ FACES$, <topology-name>_NODES, <topology-
name>_RELATIONS, and <topology-name>_HISTORY$ tables (described in Topology
Data Model Tables).

If there are no topology layers associated with the topology, the topology is removed
from the Spatial and Graph metadata.

This procedure automatically performs a commit operation, and therefore it cannot be
rolled back.

A database user that owns a topology cannot be deleted. Therefore, before you can
use the DROP USER ... CASCADE statement on a database user that owns a
topology, you must connect as that user and execute the
SDO_TOPO.DROP_TOPOLOGY procedure.

An exception is raised if the topology contains any topology geometries from any
topology geometry layers. If you encounter this exception, delete all topology geometry
layers in the topology using the SDO_TOPO.DELETE_TOPO_GEOMETRY_LAYER
procedure for each topology geometry layer, and then drop the topology.

Examples

The following example drops the topology named Cl TY_DATA. (The example refers to
definitions and data from Topology Built from Topology Data.)

EXECUTE SDO_TCOPO. DROP_TOPOLOGY(' CI TY_DATA') ;

3.5SDO_TOPO.GET_FACE_BOUNDARY

ORACLE

Format

SDO_TOPO. GET_FACE_BOUNDARY(

topology | N VARCHARZ,

face_id I N NUMBER,

all _edges | N VARCHAR2 DEFAULT ' FALSE
) RETURN SDO LI ST_TYPE;

3-6

Chapter 3
SDO_TOPO.GET_TOPO_OBJECTS

Description

Returns a list of the signed ID numbers of the edges for the specified face.
Parameters

topology
Name of the topology that contains the face. Must not exceed 20 characters.

face_id
Face ID value of the face.

all_edges

TRUE includes all edges that bound the face (that is, that have the face on one or both
sides); FALSE (the default) includes only edges that constitute the external boundary of
the face. (See the examples for this function.)

Usage Notes

None.

Examples

The following examples return the ID numbers of the edges for the face whose face ID
value is 1. The first example accepts the default value of 'FALSE' for the al | _edges
parameter. The second example specifies ' TRUE' for al | _edges, and the list includes
the ID numbers of the boundary edge and the two isolated edges on the face. (The
examples refer to definitions and data from Topology Examples (PL/SQL).)

- CGet the boundary of face with face_id 1.
SELECT SDO TOPO. GET_FACE_BOUNDARY(' CI TY_DATA', 1) FROM DUAL;

SDO_TOPO. GET_FACE_BOUNDARY(' CI TY_DATA', 1)

SDO LI ST_TYPE(1)

- Specify 'TRUE' for the all_edges paraneter.
SELECT SDO TOPO. GET_FACE_BOUNDARY(' CI TY_DATA', 1, 'TRUE') FROM DUAL;

SDO_TOPO. GET_FACE_BOUNDARY(" CI TY_DATA', 1,' TRUE')

SDO LI ST_TYPE(1, -26, 25)

3.6 SDO_TOPO.GET TOPO OBJECTS

ORACLE

Format

SDO_TOPO. GET_TOPO_OBJECTS(
topol ogy | N VARCHARZ,
geonetry |IN SDO_GEOMETRY

) RETURN SDO TOPO OBJECT_ARRAY;

or

SDO_TOPO. GET_TOPO_OBJECTS(
t opol ogy I'N VARCHAR?,
topo_geonetry_layer _id I N NUMBER

3-7

ORACLE

Chapter 3
SDO_TOPO.GET_TOPO_OBJECTS

topo_geonetry_id I N NUMBER
) RETURN SDO_TOPO OBJECT ARRAY:

Description

Returns an array of SDO_TOPO_OBJECT objects that interact with a specified
geometry object or topology geometry object.

Parameters

topology
Name of the topology. Must not exceed 20 characters.

geometry
Geometry object to be checked.

topo_geometry_layer_id
ID number of the topology geometry layer that contains the topology geometry object
to be checked.

topo_geometry_id
ID number of the topology geometry object to be checked.

Usage Notes

The SDO_TOPO_OBJECT_ARRAY data type is described in Constructors for Insert
Operations: Specifying Topological Elements.

For a topology that has a topology geometry layer hierarchy, this function works for all
levels of the hierarchy, and it always returns the leaf-level (lowest-level) objects.
(Topology geometry layer hierarchy is explained in Topology Geometry Layer
Hierarchy.)

Examples

The following example returns the topology geometry objects that interact with land
parcel P2 in the Cl TY_DATA topology. (The example refers to definitions and data from
Topology Built from Topology Data.)

- CITY_DATA | ayer, land parcels (topo_geonetry_ layer_id = 1),
- parcel P2 (topo_geonetry_id = 2)
SELECT SDO TOPQO. GET_TOPO OBJECTS(' CI TY_DATA', 1, 2) FROM DUAL;

SDO_TOPO. GET_TOPO_OBJECTS(' CI TY_DATA', 1, 2) (TOPO_I D, TOPO TYPE)
SDO_TOPO_OBJECT ARRAY(SDO TOPO OBJECT(9, 1), SDO TOPO OBJECT(10, 1), SDO TOPO OB
JECT(13, 1), SDO TOPO OBJECT(14, 1), SDO TOPO OBJECT(17, 1), SDO TOPO OBJECT(18,
1), SDO TOPO OBJECT(6, 2), SDO TOPO OBJECT(7, 2), SDO TOPO OBJECT(8, 2), SDO TO
PO OBJECT(9, 2), SDO TOPO OBJECT(10, 2), SDO TOPO OBJECT(11, 2), SDO TOPO OBJECT
(12, 2), SDO TOPO OBJECT(13, 2), SDO TOPO OBJECT(14, 2), SDO TOPO GBJECT(17, 2),
SDO_TOPO OBJECT(18, 2), SDO TOPO OBJECT(19, 2), SDO TOPO OBJECT(20, 2), SDO TOP
0 OBJECT(-6, 2), SDO TOPO OBJECT(-7, 2), SDO TOPO OBJECT(-8, 2), SDO TOPO OBJECT
(-9, 2), SDO TOPO OBJECT(-10, 2), SDO TOPO OBJECT(-11, 2), SDO TOPO OBJECT(- 12,

2), SDO TOPO OBJECT(-13, 2), SDO TOPO OBJECT(-14, 2), SDO TOPO OBJECT(-17, 2), S
DO TOPO OBJECT(- 18, 2), SDO TOPO OBJECT(-19, 2), SDO TOPO OBJECT(-20, 2), SDO TO
PO OBJECT(-1, 3), SDO TOPO OBJECT(3, 3), SDO TOPO OBJECT(4, 3), SDO TOPO OBJECT(
5, 3), SDO TOPO OBJECT(6, 3), SDO TOPO OBJECT(7, 3), SDO TOPO OBJECT(S, 3))

3-8

Chapter 3
SDO_TOPO.INITIALIZE_AFTER_IMPORT

3.7 SDO_TOPO.INITIALIZE_AFTER_IMPORT

Format

SDO_TOPQ. | NI TI ALI ZE_AFTER_| MPORT(
topol ogy | N VARCHAR?);

Description

Creates (initializes) a topology that was imported from another database.

Parameters

topology
Name of the topology to be created. The topology must have been exported from a
source database.

Usage Notes

This procedure creates the specified topology and all related database structures,
adjusts (if necessary) the topology ID values in all feature tables, and creates the
feature layers in the correct order.

Before calling this procedure, connect to the database as the user for the schema that
is to own the topology to be created.

You must use this procedure after following all other required steps for exporting and
importing the topology, as explained in Exporting and Importing Topology Data.

Examples

The following example creates the topology named Cl TY_DATA, using information from
the imported tables, including CITY_DATA_EXP$. (The example refers to definitions
and data from Topology Built from Topology Data.)

EXECUTE SDO TOPO. | NI TI ALl ZE_AFTER | MPORT(' CI TY_DATA) ;

3.8 SDO_TOPO.INITIALIZE_METADATA

ORACLE

Format

SDO TOPO. | NI TI ALl ZE_METADATA(
topol ogy | N VARCHAR2);

Description

Initializes the topology metadata: sets sequence information for the node, edge, and
face tables, and creates (or re-creates) required indexes on these tables.

Parameters
topology

Name of the topology for which to initialize the sequences. The topology must have
been created using the SDO_TOPO.CREATE_TOPOLOGY procedure.

3-9

Chapter 3
SDO_TOPO.PREPARE_FOR_EXPORT

Usage Notes

You should run this procedure after loading data into the node, edge, or face tables, to
initialize the sequences for these tables with numeric values 2 higher than the highest
ID values stored in those tables. This ensures that no attempt is made to reuse the
unique ID values in these tables. (The node, edge, and face tables are described in
Topology Data Model Tables.)

This procedure creates spatial indexes on the geometry or MBR geometry columns in
the node, edge, and face tables. If the indexes were dropped before a bulk load
operation, running this procedure after the bulk load will re-create these indexes.

Examples

The following example initializes the metadata for the topology named Ci TY_DATA. (The
example refers to definitions and data from Topology Built from Topology Data.)

EXECUTE SDO_TOPO. | NI TI ALI ZE_METADATA(' CI TY_DATA') ;

3.9 SDO_TOPO.PREPARE_FOR_EXPORT

ORACLE

Format

SDO_TOPO. PREPARE_FCR_EXPCRT(
topol ogy | N VARCHAR2);

Description

Prepares a topology to be exported to another database.
Parameters

topology
Name of the topology to be prepared for export. The topology must have been
created using the SDO_TOPO.CREATE_TOPOLOGY procedure.

Usage Notes

This procedure prepares the specified topology in the current database (the source
database) to be exported to another database (the target database).

This procedure creates a table in the current schema with a table name in the format
<topology-name>_EXP$. This table contains the same columns as the
USER_SDO_TOPO_INFO and ALL_SDO_TOPO_INFO views. These columns are
described in Table 1-8 in xxx_SDO_TOPO_INFO Views.

Before calling this procedure, connect to the database as the owner of the topology.

For information about exporting and importing topologies, including the steps to be
followed, see Exporting and Importing Topology Data.

Examples

The following example prepares the topology named Cl TY_DATA for export to a target
database. (The example refers to definitions and data from Topology Built from
Topology Data.)

EXECUTE SDO_TOPO. PREPARE_FCOR_EXPORT(' CI TY_DATA');

3-10

3.10 SDO_TOPO.RELATE

ORACLE

Format

SDO_TOPO. RELATE(

geoml | N SDO_TOPO GEOVETRY,
geom2 | N SDO_TOPO GEOVETRY,

mask | N VARCHAR2
) RETURN VARCHARZ;

or

SDO_TOPO. RELATE(

featurel |N SDO TOPO GEQVETRY,
feature2 | N SDO GEQVETRY,

mask IN VARCHAR2
) RETURN VARCHARZ;

or

SDO_TOPO. RELATE(

geom I'N SDO_TOPO_GEOVETRY,
topo_elemarray IN SDO TOPO OBJECT_ARRAY,
mask I'N VARCHAR2

) RETURN VARCHARZ;

Description

Chapter 3
SDO_TOPO.RELATE

Examines two topology geometry objects, or a topology geometry and a spatial

geometry, or a topology geometry and a topology object array

(SDO_TOPO_OBJECT_ARRAY object), to determine their spatial relationship.

Parameters

geoml

Topology geometry object.

geom2

Topology geometry object.

featurel

Topology geometry object.

feature2
Spatial geometry object.

geom

Topology geometry object.

topo_elem_array

Topology object array (of type SDO_TOPO_OBJECT_ARRAY, which is described in
Constructors for Insert Operations: Specifying Topological Elements).

mask

Specifies one or more relationships to check. See the list of keywords in the Usage

Notes.

3-11

ORACLE

Chapter 3
SDO_TOPO.RELATE

Usage Notes

The topology operators (described in Topology Operators) provide better performance
than the SDO_TOPO.RELATE function if you are checking a large number of objects;
however, if you are checking just two objects or a small number, the
SDO_TOPO.RELATE function provides better performance. In addition, sometimes
you may need to use the SDO_TOPO.RELATE function instead of a topology
operator. For example, you cannot specify the DETERMINE mask keyword with the
topology operators.

The following keywords can be specified in the mask parameter to determine the spatial
relationship between two objects:

* ANYINTERACT: Returns TRUE if the objects are not disjoint.

* CONTAINS: Returns TRUE if the second object is entirely within the first object
and the object boundaries do not touch; otherwise, returns FALSE.

« COVEREDBY: Returns TRUE if the first object is entirely within the second object
and the object boundaries touch at one or more points; otherwise, returns FALSE.

* COVERS: Returns TRUE if the second object is entirely within the first object and
the boundaries touch in one or more places; otherwise, returns FALSE.

- DETERMINE: Returns the one relationship keyword that best matches the
geometries.

* DISJOINT: Returns TRUE if the objects have no common boundary or interior
points; otherwise, returns FALSE.

 EQUAL: Returns TRUE if the objects share every point of their boundaries and
interior, including any holes in the objects; otherwise, returns FALSE.

* INSIDE: Returns TRUE if the first object is entirely within the second object and
the object boundaries do not touch; otherwise, returns FALSE.

* ON: Returns TRUE if the boundary and interior of a line (the first object) is
completely on the boundary of a polygon (the second object); otherwise, returns
FALSE.

* OVERLAPBDYDISJOINT: Returns TRUE if the objects overlap, but their
boundaries do not interact; otherwise, returns FALSE.

°* OVERLAPBDYINTERSECT: Returns TRUE if the objects overlap, and their
boundaries intersect in one or more places; otherwise, returns FALSE.

* TOUCH: Returns TRUE if the two objects share a common boundary point, but no
interior points; otherwise, returns FALSE.

Values for mask (except for DETERMINE) can be combined using the logical Boolean
operator OR. For example, 'INSIDE + TOUCH' returns the string TRUE or FALSE
depending on the outcome of the test.

Examples

The following example finds whether or not the ANYINTERACT relationship exists
between each topology geometry object in the CITY_STREETS table and the P3 land
parcel (that is, which streets interact with that land parcel). (The example refers to
definitions and data from Topology Examples (PL/SQL). The output is reformatted for
readability.)

3-12

ORACLE

Chapter 3
SDO_TOPO.RELATE

SELECT c. f eat ure_nane,
SDO TOPO. RELATE(c. feature, |.feature, '"anyinteract') Any_Interaction
FROM city streets c, land_parcels | WHERE |.feature_nane = 'P3';

FEATURE_NAMVE
ANY_| NTERACTI ON

R1 TRUE

R2 FALSE
R3 FALSE
R4 FALSE

The following example finds whether or not the ANYINTERACT relationship exists
between each topology geometry object in the CITY_STREETS table and an
SDO_TOPO_OBJECT_ARRAY object that happens to be identical to the land parcel
feature named P3. (This example uses definitions and data from Topology Examples
(PL/SQL).) The output is identical to that in the preceding example, and is reformatted
for readability.

SELECT c. feature_nane,
SDO_TOPO. RELATE(c. f eat ure,
SDO TOPO OBJECT_ARRAY (SDO TOPO OBJECT (5, 3), SDO TOPO OBJECT (8, 3)),
"anyinteract') Any_Interaction
FROM city_streets ¢, land_parcels | WHERE | .feature_name = 'P3';

FEATURE_NAME
ANY_| NTERACTI ON

R1 TRUE

R2 FALSE
R3 FALSE
R4 FALSE

3-13

SDO TOPO_ MAP Package Subprograms

ORACLE

The MDSYS.SDO_TOPO_MAP package contains subprograms (functions and
procedures) that constitute part of the PL/SQL application programming interface (API)
for the Spatial and Graph Topology Data Model feature.

This package contains subprograms related to editing topologies. These subprograms
use a TopoMap object, either one that you previously created or that Spatial and
Graph creates implicitly.

To use the subprograms in this chapter, you must understand the conceptual
information about topology in Topology Data Model Overview, as well as the
information about editing topologies in Editing Topologies .

The rest of this chapter provides reference information about the SDO_TOPO_MAP
subprograms, listed in alphabetical order.

Topics:

« SDO_TOPO_MAP.ADD_EDGE

« SDO_TOPO_MAP.ADD_ISOLATED NODE

e SDO_TOPO_MAP.ADD_LINEAR_GEOMETRY
« SDO_TOPO_MAP.ADD_LOOP

« SDO_TOPO_MAP.ADD_NODE

e SDO_TOPO_MAP.ADD_POINT_GEOMETRY
e SDO_TOPO_MAP.ADD_POLYGON_GEOMETRY
e SDO_TOPO_MAP.CHANGE_EDGE_COORDS
e SDO_TOPO_MAP.CLEAR_TOPO_MAP

e SDO_TOPO_MAP.COMMIT_TOPO_MAP

e SDO_TOPO_MAP.CREATE_EDGE_INDEX

e SDO_TOPO_MAP.CREATE_FACE_INDEX

e SDO_TOPO_MAP.CREATE_FEATURE

e SDO_TOPO_MAP.CREATE_TOPO_MAP

e SDO_TOPO_MAP.DROP_TOPO_MAP

e SDO_TOPO_MAP.GET_CONTAINING_FACE
e SDO_TOPO_MAP.GET_EDGE_ADDITIONS

e SDO_TOPO_MAP.GET_EDGE_CHANGES

e SDO_TOPO_MAP.GET_EDGE_COORDS

e SDO _TOPO_MAP.GET_EDGE_DELETIONS

e SDO_TOPO_MAP.GET_EDGE_NODES

e SDO_TOPO_MAP.GET_FACE_ADDITIONS

4-1

Chapter 4
SDO_TOPO_MAP.ADD_EDGE

- SDO_TOPO_MAP.GET_FACE_CHANGES
- SDO_TOPO_MAP.GET_FACE_BOUNDARY

- SDO_TOPO_MAP.GET_FACE_DELETIONS

- SDO_TOPO_MAP.GET NEAREST EDGE

- SDO_TOPO_MAP.GET NEAREST EDGE_IN_CACHE

- SDO_TOPO_MAP.GET_NEAREST NODE

- SDO_TOPO_MAP.GET_NEAREST NODE_IN_CACHE

- SDO_TOPO_MAP.GET_NODE_ADDITIONS

- SDO_TOPO_MAP.GET_NODE_CHANGES

- SDO_TOPO_MAP.GET_NODE_COORD

- SDO_TOPO_MAP.GET NODE_DELETIONS

- SDO_TOPO_MAP.GET_NODE_FACE_STAR

- SDO_TOPO_MAP.GET_NODE_STAR

- SDO_TOPO_MAP.GET_TOPO_NAME

- SDO_TOPO_MAP.GET_TOPO_TRANSACTION_ID

- SDO_TOPO_MAP.LIST_ TOPO_MAPS

- SDO_TOPO_MAP.LOAD_TOPO_MAP

- SDO_TOPO_MAP.MOVE_EDGE

- SDO_TOPO_MAP.MOVE_ISOLATED _NODE

- SDO_TOPO_MAP.MOVE_NODE

- SDO_TOPO_MAP.REMOVE_EDGE

- SDO_TOPO_MAP.REMOVE_NODE

- SDO_TOPO_MAP.REMOVE_OBSOLETE_NODES

- SDO_TOPO_MAP.ROLLBACK_TOPO_MAP

- SDO_TOPO_MAP.SEARCH_EDGE_RTREE_TOPO_MAP
- SDO_TOPO_MAP.SEARCH_FACE_RTREE_TOPO_MAP
- SDO_TOPO_MAP.SET_MAX_MEMORY_SIZE

- SDO_TOPO_MAP.UPDATE_TOPO_MAP

- SDO_TOPO_MAP.VALIDATE_TOPO_MAP

- SDO_TOPO_MAP.VALIDATE_TOPOLOGY

4.1 SDO_TOPO_MAP.ADD_EDGE

Format

SDO_TOPO_MAP. ADD_EDGE(
topol ogy | N VARCHAR?,
node_i d1 I N NUVBER
node_i d2 | N NUVBER

ORACLE 4-2

ORACLE

Chapter 4
SDO_TOPO_MAP.ADD EDGE

geom IN SDO_GEQVETRY
) RETURN NUMBER;

Description

Adds an edge to a topology, and returns the edge ID of the added edge.
Parameters

topology

Name of the topology to which to add the edge, or null if you are using an updatable
TopoMap object (see Specifying the Editing Approach with the Topology Parameter).
Must not exceed 20 characters.

node_id1l
Node ID of the start node for the edge to be added.

node_id2
Node ID of the end node for the edge to be added.

geom
SDO_GEOMETRY object (line or contiguous line string geometry) representing the
edge to be added.

Usage Notes

Spatial and Graph automatically assigns an edge ID to the added edge. If t opol ogy is
not null, the appropriate entry is inserted in the <topology-name>_EDGES$ table; and if
the addition of the edge affects the face information table, the appropriate entries in
the <topology-name>_FACES$ table are updated. (If t opol ogy is null, you can update
these tables at any time by calling the SDO_TOPO_MAP.UPDATE_TOPO_MAP
procedure.)

If node_i d1 and node_i d2 are the same value, a loop edge is created.
For information about adding and deleting nodes and edges, see Editing Topologies .

This function is equivalent to using the addEdge method of the TopoMap class of the
client-side Java API (described in Topology Data Model Java Interface).

Examples

The following example adds an edge connecting node N3 to node N4 in the current
updatable TopoMap object. (The example refers to definitions and data from Topology
Built from Topology Data.)

CALL SDO TOPO MAP. ADD EDGE(null, 3, 4,
SDO GEOMETRY(2002, NULL, NULL, SDO ELEM |NFO ARRAY(1, 2, 1),

SDO_ORDI NATE_ARRAY(25, 35, 20,37)))
I NTO : res_nunber;

Cal | conpl et ed.
SQ> PRINT res_nunber;

RES_NUMBER

4-3

Chapter 4
SDO_TOPO_MAP.ADD_ISOLATED_NODE

4.2 SDO_TOPO_MAP.ADD_ISOLATED NODE

ORACLE

Format

SDO_TOPO_MAP. ADD | SOLATED_NODE(
topol ogy | N VARCHAR?,
face_id | N NUMBER,
poi nt I'N SDO_CEOVETRY

) RETURN NUMBER;

or

SDO_TOPO_MAP. ADD | SOLATED_NODE(
topol ogy | N VARCHAR?,
poi nt IN SDO_GEQVETRY

) RETURN NUMBER;

or

SDO_TOPO_MAP. ADD_| SOLATED _NODE(
topol ogy |'N VARCHAR?,

face id | N NUMBER

X I'N NUMBER,

y I N NUMBER

) RETURN NUMVBER,

or

SDO_TOPO_MAP. ADD_| SOLATED_NODE(
topol ogy | N VARCHAR2,

X I N NUMBER,

y I' N NUMBER

) RETURN NUMBER;

Description

Adds an isolated node (that is, an island node) to a topology, and returns the node ID
of the added isolated node.

Parameters

topology

Name of the topology to which to add the isolated node, or null if you are using an
updatable TopoMap object (see Specifying the Editing Approach with the Topology
Parameter). Must not exceed 20 characters.

face_id
Face ID of the face on which the isolated node is to be added. (An exception is raised
if the specified point is not on the specified face.)

point
SDO_GEOMETRY object (point geometry) representing the isolated node to be
added.

X
X-axis value of the point representing the isolated node to be added.

4-4

Chapter 4
SDO_TOPO_MAP.ADD_LINEAR_GEOMETRY

y
Y-axis value of the point representing the isolated node to be added.

Usage Notes

Spatial and Graph automatically assigns a node ID to the added node. If t opol ogy is
not null, the appropriate entry is inserted in the <topology-name>_NODES$ table, and
the <topology-name>_FACES$ table is updated to include an entry for the added
isolated node. (If t opol ogy is null, you can update these tables at any time by calling
the SDO_TOPO_MAP.UPDATE_TOPO_MAP procedure.)

If you know the ID of the face on which the isolated node is to be added, you can
specify the face_i d parameter. If you specify this parameter, there are two benefits:

* Validation: The function checks to see if the point is on the specified face, and
raises an exception if it is not. Otherwise, the function checks to see if the point is
on any face in the topology, and raises an exception if it is not.

» Performance: The function checks only if the point is on the specified face.
Otherwise, it checks potentially all faces in the topology to see if the point is on
any face.

To add a non-isolated node, use the SDO_TOPO_MAP.ADD_NODE function.
For information about adding and deleting nodes and edges, see Editing Topologies .

This function is equivalent to using the addl sol at edNode method of the TopoMap class of
the client-side Java API (described in Topology Data Model Java Interface).

Examples

The following example adds an isolated node to the right of isolated node N4 on face
F2, and it returns the node ID of the added node. It uses the current updatable
TopoMap object. (The example refers to definitions and data from Topology Built from
Topology Data.)

DECLARE
resul t _num NUMBER;

BEG N

result _num:= SDO TOPO_MAP. ADD_| SOLATED_NODE(nul |, 2,
SDO_GEOMETRY(2001, NULL, SDO PO NT_TYPE(22,37,NULL), NULL, NULL));

DBMS_OUTPUT. PUT_LINE(' Result =" || result_num;
END;

/

Result = 24

PL/ SQ procedure successfully conpleted.

4.3SDO_TOPO MAP.ADD_LINEAR GEOMETRY

ORACLE

Format

SDO_TOPO_MAP. ADD_LI NEAR_GEQOVETRY(
t opol ogy | N VARCHAR?,
curve IN SDO_GEQVETRY

) RETURN SDO_NUMBER_ARRAY;

or

4-5

ORACLE

Chapter 4
SDO_TOPO_MAP.ADD_LINEAR_GEOMETRY

SDO_TOPO_MAP. ADD LI NEAR_GEQVETRY(
topol ogy | N VARCHAR?,
coords I N SDO NUVBER_ARRAY

) RETURN SDO_NUMBER_ARRAY;

Description

Adds a linear (line string or multiline string) geometry to the topology, inserting edges
and nodes as necessary based on the full intersection of the geometry with the edges
and nodes in the topology graph, and an array of the edge IDs of the inserted and
shared edges in sequence from the start to the end of the geometry.

Parameters

topology

Name of the topology to which to add the edge or edges, or null if you are using an
updatable TopoMap object (see Specifying the Editing Approach with the Topology
Parameter). Must not exceed 20 characters.

curve
SDO_GEOMETRY object (curve or line string geometry) representing the edge or
edges to be added.

coords
SDO_NUMBER_ARRAY object specifying the coordinates of the edge or edges to be
added.

Usage Notes

This function creates at least one new edge, and more edges if necessary. For
example, if the line string geometry intersects an existing edge, two edges are created
for the added line string, and the existing edge (the one being intersected) is divided
into two edges. If t opol ogy is not null, Spatial and Graph automatically updates the
<topology-name>_ EDGES$ table as needed. (If t opol ogy is null, you can update this
table at any time by calling the SDO_TOPO_MAP.UPDATE_TOPO_MAP procedure.)

This function returns an array of the edge IDs of the inserted and shared edges in
sequence from the start to the end of the geometry. If a segment in the added
geometry overlaps an existing edge in the topology, the sign of the returned edge
depends on the directions of the added segment and the existing edge: if the direction
of the existing edge is the same as the linear geometry, the returned edge element is
positive; if the direction of the existing edge is the opposite of the linear geometry, the
returned edge element is negative.

An exception is raised if the object in the curve or coor ds parameter contains any line
segments that run together (overlap) in any manner; however, the line segments can
Cross at one or more points.

For information about adding and deleting nodes and edges, see Editing Topologies .

This function is equivalent to using the addLi near Geonet ry method of the TopoMap class
of the client-side Java API (described in Topology Data Model Java Interface).

Examples

The following example adds an edge representing a specified line string geometry,
and it returns the edge ID of the added edge. It uses the current updatable TopoMap

4-6

Chapter 4
SDO_TOPO_MAP.ADD_LOOP

object. (The example refers to definitions and data from Topology Built from Topology
Data.)

SELECT SDO TOPO_MAP. ADD LI NEAR GEOVETRY(nul I ,
SDO_GEOVETRY(2002, NULL, NULL, SDO ELEM | NFO ARRAY(1,2, 1),
SDO_ORDI NATE_ARRAY(50, 10, 55,10, 57,11)))
FROM DUAL;

SDO_TOPO MAP. ADD_LI NEAR GEOMETRY(NULL, SDO_GEOVETRY(2002, NULL, NULL, SDO_ELEM | NFO_

SDO_NUVBER_ARRAY(31)

4.4 SDO_TOPO MAP.ADD LOOP

ORACLE

Format

SDO_TOPO_MAP. ADD_LOOP(
topol ogy | N VARCHARZ,
node_id I N NUMBER,
geom IN SDO_GEOMVETRY
) RETURN NUMBER;

Description

Adds an edge that loops and connects to the same node, and returns the edge ID of
the added edge.

Parameters

topology

Name of the topology to which to add the edge, or null if you are using an updatable
TopoMap object (see Specifying the Editing Approach with the Topology Parameter).
Must not exceed 20 characters.

node_id
Node ID of the node to which to add the edge that will start and end at this node.

geom

SDO_GEOMETRY object (line string geometry) representing the edge to be added.
The start and end points of the line string must be the same point representing
node_i d.

Usage Notes

This function creates a new edge, as well as a new face consisting of the interior of the
loop. If the edge is added at an isolated node, the edge is an isolated edge. If t opol ogy
is not null, Spatial and Graph automatically updates the <topology-name>_EDGE$
and <topology-name>_FACES$ tables as needed. (If t opol ogy is null, you can update
these tables at any time by calling the SDO_TOPO_MAP.UPDATE_TOPO_MAP
procedure.)

For information about adding and deleting nodes and edges, see Editing Topologies .

This function is equivalent to using the addLoop method of the TopoMap class of the
client-side Java API (described in Topology Data Model Java Interface).

4-7

Chapter 4
SDO_TOPO_MAP.ADD_NODE

Examples

The following example adds an edge loop starting and ending at node N4, and it
returns the edge ID of the added edge. It uses the current updatable TopoMap object.
(The example refers to definitions and data from Topology Built from Topology Data.)

CALL SDO TOPO MAP. ADD LOOP(nul I, 4,
SDO_GEOMETRY(2002, NULL, NULL, SDO ELEM I NFO ARRAY(1, 2, 1),
SDO_ORDI NATE_ARRAY(20, 37, 20,39, 25,39, 20,37)))
I NTO : res_nunber;

Cal | conpl et ed.
SQL> PRINT res_nunber;

RES_NUMBER

4.5SDO_TOPO MAP.ADD NODE

ORACLE

Format

SDO_TOPO_MAP. ADD_NODE(

t opol ogy I'N VARCHAR?,
edge_id I N NUMBER,

poi nt IN SDO_GEQVETRY,
coord_i ndex I N NUMBER,

i s_new_shape_poi nt | N VARCHAR2
) RETURN NUMBER;

or

SDO_TOPO_MAP. ADD_NODE(

t opol ogy I'N VARCHAR?,
edge_id I N NUMBER,
X I N NUMBER,
y I N NUMBER,
coord_i ndex I N NUMBER,

i s_new_shape_poi nt | N VARCHAR2
) RETURN NUMBER,

Description

Adds a non-isolated node to a topology to split an existing edge, and returns the node
ID of the added node.

Parameters

topology

Name of the topology to which to add the node, or null if you are using an updatable
TopoMap object (see Specifying the Editing Approach with the Topology Parameter).
Must not exceed 20 characters.

edge_id
Edge ID of the edge on which the node is to be added.

4-8

ORACLE

Chapter 4
SDO_TOPO_MAP.ADD_NODE

point

SDO_GEOMETRY object (point geometry) representing the node to be added. The
point must be an existing shape point or a new point that breaks a line segment
connecting two consecutive shape points.

X
X-axis value of the point representing the node to be added. The point must be an
existing shape point or a new point that breaks a line segment connecting two
consecutive shape points.

y
Y-axis value of the point representing the node to be added. The point must be an

existing shape point or a new point that breaks a line segment connecting two
consecutive shape points.

coord_index

The index (position) of the array position in the edge coordinate array on or after
which the node is to be added. Each vertex (node or shape point) has a position in the
edge coordinate array. The start point (node) is index (position) 0, the first point after
the start point is 1, and so on. (However, the coor d_i ndex value cannot be the index of
the last vertex.) For example, if the edge coordinates are (2,2, 5,2, 8,3) the index of
the second vertex (5,2) is 1.

is_new_shape_point

TRUE if the added node is to be a new shape point following the indexed vertex

(coor d_i ndex value) of the edge; FALSE if the added node is exactly on the indexed
vertex.

A value of TRUE lets you add a node at a new point, breaking an edge segment at the
coordinates specified in the poi nt parameter or the x and y parameter pair. A value of
FALSE causes the coordinates in the poi nt parameter or the x and y parameter pair to
be ignored, and causes the node to be added at the existing shape point associated
with the coord_i ndex value.

Usage Notes

Spatial and Graph automatically assigns a node ID to the added node and creates a
new edge. The split piece at the beginning of the old edge is given the edge ID of the
old edge. If t opol ogy is not null, appropriate entries are inserted in the <topology-
name>_NODE$ and <topology-name>_EDGES$ tables. (If t opol ogy is null, you can
update these tables at any time by calling the
SDO_TOPO_MAP.UPDATE_TOPO_MAP procedure.)

To add an isolated node (that is, an island node), use the
SDO_TOPO_MAP.ADD_ISOLATED_NODE function.

For information about adding and deleting nodes and edges, see Editing Topologies .

This function is equivalent to using the addNode method of the TopoMap class of the
client-side Java API (described in Topology Data Model Java Interface).

Examples

The following example adds a non-isolated node to the right of node N2 on edge E2,
and it returns the node ID of the added node. It uses the current updatable TopoMap
object. (The example refers to definitions and data from Topology Built from Topology
Data.)

4-9

Chapter 4
SDO_TOPO_MAP.ADD_POINT_GEOMETRY

DECLARE
resul t _num NUMBER;

BEG N

result _num:= SDO TOPO_MAP. ADD_NCDE(nul I, 2,
SDO_GEQVETRY(2001, NULL, SDO POl NT_TYPE(27,30, NULL), NULL, NULL),
0, '"TRUE');

DBMS_QUTPUT. PUT_LINE(' Result =" || result_num;
END;

/

Result = 26

PL/ SQL procedure successfully conpl et ed.

4.6 SDO_TOPO MAP.ADD POINT GEOMETRY

ORACLE

Format

SDO_TOPO_MAP. ADD_POI NT_GEOVETRY(
topol ogy | N VARCHAR?,
poi nt I'N SDO_CEOVETRY

) RETURN NUMBER;

or

SDO_TOPO_MAP. ADD PO NT_GEOVETRY(
topol ogy | N VARCHAR?,
coord IN SDO_NUMBER_ARRAY
) RETURN NUMBER;

Description

Adds a node representing a specified point geometry or coordinate pair, and returns
the node ID of the added node.

Parameters

topology

Name of the topology to which to add the node, or null if you are using an updatable
TopoMap object (see Specifying the Editing Approach with the Topology Parameter).
Must not exceed 20 characters.

point
SDO_GEOMETRY object (point geometry) representing the node to be added.

coord
SDO_NUMBER_ARRAY object specifying the coordinates of the node to be added.

Usage Notes

If the point coincides with an existing node, no changes are made to the topology.
Otherwise, an isolated node or a node splitting an edge is added.

For information about adding and deleting nodes and edges, see Editing Topologies .

This function is equivalent to using the addPoi nt Geonet ry method of the TopoMap class of
the client-side Java API (described in Topology Data Model Java Interface).

4-10

Chapter 4
SDO_TOPO_MAP.ADD_POLYGON_GEOMETRY

Examples

The following example adds a node representing a specified point geometry, and it
returns the node ID of the added node. It uses the current updatable TopoMap object.

SELECT SDO TOPO_MAP. ADD_POI NT_GEOVETRY(nul | ,
SDO_GEOMVETRY(2001, NULL, SDO POINT TYPE(57,12, NULL), NULL, NULL))
FROM DUAL;

SDO_TOPO_MAP. ADD_ PO NT_GEOVETRY(NULL, SDO_GEQVETRY(2001, NULL, SDO POl NT_TYPE(57, 12

The following example adds a node at the specified coordinates (58, 12), and it returns
the node ID of the added node. It uses the current updatable TopoMap object.

SELECT SDO TOPO MAP. ADD POl NT_GEOMETRY(nul |, SDO NUMBER ARRAY(58, 12))
FROM DUAL;

SDO TOPO_MAP. ADD POl NT_GEOMETRY(NULL, SDO NUVBER_ARRAY(58, 12))

4.7 SDO_TOPO MAP.ADD POLYGON_GEOMETRY

ORACLE

Format

SDO_TOPO_MAP. ADD_POLYGON_GEQOVETRY(
topol ogy | N VARCHARZ,
pol ygon I N SDO GEQVETRY

) RETURN SDO_NUMBER_ARRAY;

or

SDO_TOPO_MAP. ADD_POLYGON_GEOVETRY(
topol ogy | N VARCHAR?,
coords I N SDO_NUMBER_ARRAY

) RETURN SDO_NUMBER_ARRAY;

Description

Adds one or more faces representing a specified polygon geometry, and returns the
face ID of each added face.

Parameters

topology

Name of the topology to which to add the face or faces, or null if you are using an
updatable TopoMap object (see Specifying the Editing Approach with the Topology
Parameter). Must not exceed 20 characters.

polygon

SDO_GEOMETRY object (polygon or multipolygon geometry) representing the face
or faces to be added. Each polygon in the object must have a single exterior ring that
can contain any number of interior rings.

4-11

Chapter 4
SDO_TOPO_MAP.CHANGE_EDGE_COORDS

coords

SDO_NUMBER_ARRAY object specifying the coordinates of a single polygon
geometry representing the face or faces to be added. The vertices of the polygon
must be in counterclockwise order, with the last vertex the same as the first vertex.

Usage Notes

This function creates at least one new face, and more faces if necessary. For
example, if the polygon geometry intersects an existing face, faces are created for the
added polygon, and the existing face (the one being intersected) definition is adjusted.
If t opol ogy is not null, Spatial and Graph automatically updates the <topology-
name>_FACES$ table as needed. (If t opol ogy is null, you can update this table at any
time by calling the SDO_TOPO_MAP.UPDATE_TOPO_MAP procedure.)

If the polygon coincides with an existing face, no changes are made to the topology.

For a multipolygon geometry, no exterior ring may overlap any other exterior ring. For
example, you cannot add a face representing the following single multipolygon
geometry: a park (exterior ring) containing a lake (interior ring) with an island in the
lake (exterior ring inside the preceding interior ring).

This function is equivalent to using the addPol ygonGeonet ry method of the TopoMap class
of the client-side Java API (described in Topology Data Model Java Interface).

Examples

The following example adds a face representing a specified polygon geometry, and it
returns and prints the face ID of the added edge. It uses the current updatable
TopoMap object.

DECLARE
res_nunber _array SDO_NUMBER_ARRAY;
face_count NUMBER;
face_ctr NUMBER
this_face NUMBER
BEG N
res_nunber_array := SDO_TOPO MAP. ADD_POLYGON GEOVETRY(nul I,
SDO_GEOMVETRY(2003, NULL, NULL, SDO ELEM I NFO ARRAY(1, 1003, 1),
SDO_ORDI NATE_ARRAY(61, 10, 70,10, 70,15, 65,15, 61,10)));

- DBMS_QUTPUT. PUT_LINE(' Result ="' || res_nunber_array);
- Print each face associated with the geonetry.
face_count := res_nunber_array.count;

for face_ctr in 1..face_count |oop
this_face := res_nunber_array(face_ctr);

dbns_output.put_line ("this face = "|| this_face);
end loop; -- printed each face

END;

/

this face = 12

4.8 SDO_TOPO_MAP.CHANGE_EDGE_COORDS

ORACLE

Format

SDO_TOPO_MAP. CHANGE_EDGE_COORDS(
topol ogy | N VARCHAR?,
edge_id | N NUMBER,
geom IN SDO_GEQVETRY) ;

4-12

ORACLE

Chapter 4
SDO_TOPO_MAP.CHANGE _EDGE_COORDS

or

SDO_TCPO_MAP. CHANGE_EDGE_COORDS(

t opol ogy I'N VARCHAR?,
edge_id I N NUVBER,
geom IN SDO_GEOVETRY,

nmoved_i so_nodes QUT SDO NUVBER ARRAY,
nmoved_i so_edges OUT SDO NUMBER_ARRAY,
allow_ iso_moves | N VARCHAR?);

Description

Changes the coordinates and related information about an edge.
Parameters

topology

Name of the topology containing the edge, or null if you are using an updatable
TopoMap object (see Specifying the Editing Approach with the Topology Parameter).
Must not exceed 20 characters.

edge_id
Edge ID of the edge whose coordinates are to be changed.

geom
SDO_GEOMETRY object (line or contiguous line string geometry) representing the
modified edge. The start and end points of the modified edge must be the same as for
the original edge.

moved_iso_nodes

Output parameter in which, if the al | ow_i so_noves parameter value is TRUE, Spatial and
Graph stores the node ID values of any isolated nodes that have moved to a different
face as a result of this procedure. If the al | ow_i so_noves parameter value is FALSE,
Spatial and Graph stores the node ID values of any isolated nodes that did not move
but that would have moved to a different face if the al | ow_i so_noves parameter value
had been TRUE.

moved_iso_edges

Output parameter in which, if the al | ow_i so_noves parameter value is TRUE, Spatial and
Graph stores the edge ID values of any isolated edges that have moved to a different
face as a result of this procedure. If the al | ow_i so_noves parameter value is FALSE,
Spatial and Graph stores the edge ID values of any isolated edges that did not move
but that would have moved to a different face if the al | ow i so_noves parameter value
had been TRUE.

allow_iso_moves

TRUE causes Spatial and Graph to allow an edge coordinates change operation that
would cause any isolated nodes or edges to be in a different face, and to adjust the
containing face information for such isolated nodes and edges; FALSE causes Spatial
and Graph not to allow an edge coordinates change operation that would cause any
isolated nodes or edges to be in a different face.

If you use the format that does not include the al | ow i so_noves parameter, Spatial and
Graph allows edge move operations that would cause any isolated nodes or edges to
be in a different face, and it adjusts the containing face information for such isolated
nodes and edges.

4-13

Chapter 4
SDO_TOPO_MAP.CLEAR_TOPO_MAP

Usage Notes

If this procedure modifies a boundary between faces, Spatial and Graph automatically
performs the following operations and updates the Topology Data Model tables as
needed: reassigning island nodes and faces, and adjusting the MBRs of the faces on
both sides.

If t opol ogy is not null, this procedure modifies the information about the specified edge
in the <topology-name>_EDGES$ table (described in Edge Information Table). (If

t opol ogy is null, you can update this table at any time by calling the
SDO_TOPO_MAP.UPDATE_TOPO_MAP procedure.)

You cannot use this procedure to change the start point or the end point, or both, of
the specified edge. To do any of these operations, you must delete the edge, delete
the node or nodes for the start or end point (or both) to be changed, add the necessary
new node or nodes, and add the edge.

For information about editing topological elements, see Editing Topologies .

This procedure is equivalent to using the changeEdgeCoor ds method of the TopoMap class
of the client-side Java API (described in Topology Data Model Java Interface).
Examples

The following example changes the coordinates of edge E1. (It changes only the third
point, from 16,38 to 16,39.) It uses the current updatable TopoMap object. (The
example refers to definitions and data from Topology Built from Topology Data.)

CALL SDO TOPO MAP. CHANGE_EDGE_COORDS(nul |, 1,
SDO_GEOMETRY(2002, NULL, NULL, SDO ELEM | NFO ARRAY(1, 2, 1),
SDO_ORDI NATE_ARRAY(8, 30, 16,30, 16,39, 3,38, 3,30, 8,30)));

4.9 SDO_TOPO MAP.CLEAR TOPO MAP

ORACLE

Format

SDO_TOPO_MAP. CLEAR _TOPO_MAP(
topo_map | N VARCHAR?);

Description

Clears all objects and changes in the cache associated with a TopoMap object.
Parameters

topo_map
Name of the TopoMap object. (TopoMap objects are explained in TopoMap Obijects.)

Usage Notes
If the TopoMap object is updatable, this procedure changes it to be read-only.

For information about using an in-memory cache to edit topological elements, see
Approaches for Editing Topology Data.

Contrast this procedure with the SDO_TOPO_MAP.UPDATE_TOPO_MAP procedure,
which applies the changes in the cache associated with the TopoMap object to the
topology. You cannot call the SDO_TOPO_MAP.CLEAR_TOPO_MAP procedure if

4-14

Chapter 4
SDO_TOPO_MAP.COMMIT_TOPO_MAP

you previously used the SDO_TOPO_MAP.UPDATE_TOPO_MAP procedure on the
specified TopoMap object.

This procedure is equivalent to using the cl ear Cache method of the TopoMap class of the
client-side Java API (described in Topology Data Model Java Interface).

Examples

The following example clears the cache associated with the TopoMap object named
Cl TY_DATA_TOPOMAP, which is associated with the topology named Cl TY_DATA. (The
example refers to definitions and data from Topology Built from Topology Data.)

CALL SDO TOPO MAP. CLEAR TOPO MAP(' CI TY_DATA TOPOVAP') ;

4.10 SDO_TOPO_MAP.COMMIT TOPO MAP

ORACLE

Format

SDO_TOPO MAP. COMM T_TOPO_MAP;

Description

Updates the topology to reflect changes made to the current updatable TopoMap
object, commits all changes to the database, and makes the TopoMap object read-
only.

Parameters

None.

Usage Notes

Use this procedure when you are finished with a batch of edits to a topology and you
want to commit all changes to the database. After the commit operation completes,
you cannot edit the TopoMap object. To make further edits to the topology, you must
either clear the cache (using the SDO_TOPO_MAP.CLEAR_TOPO_MAP procedure)
or create a new TopoMap object (using the SDO_TOPO_MAP.CREATE_TOPO_MAP
procedure), and then load the topology into the TopoMap object for update (using the
SDO_TOPO_MAP.LOAD_TOPO_MAP function or procedure).

Contrast this procedure with the SDO_TOPO_MAP.UPDATE_TOPO_MAP procedure,
which leaves the TopoMap object available for editing operations and which does not
perform a commit operation (and thus does not end the database transaction).

To roll back all TopoMap object changes, use the
SDO_TOPO_MAP.ROLLBACK_TOPO_MAP procedure.

For information about using an in-memory cache to edit topological elements, see
Approaches for Editing Topology Data.

This procedure is equivalent to using the commi t DB method of the TopoMap class of the
client-side Java API (described in Topology Data Model Java Interface).

Examples

The following example commits to the database all changes to the current updatable
TopoMap object, and prevents further editing of the TopoMap object.

EXECUTE SDO_TOPO MAP. COMM T_TOPO_MAP;

4-15

Chapter 4
SDO_TOPO_MAP.CREATE_EDGE_INDEX

4.11 SDO TOPO_MAP.CREATE EDGE_INDEX

Format

SDO_TOPO_MAP. CREATE_EDGE_| NDEX(
topo_map | N VARCHAR2);

Description

Creates an internal R-tree index (or rebuilds the index if one already exists) on the
edges in the cache associated with a TopoMap object.

Parameters

topo_map
Name of the TopoMap object. (TopoMap objects are explained in TopoMap Objects.)

Usage Notes

You can cause Spatial and Graph to create in-memory R-tree indexes to be built on
the edges and faces in the specified TopoMap object. These indexes use some
memory resources and take some time to create; however, they significantly improve
performance if you edit a large number of topological elements in the session. They
can also improve performance for queries that use a read-only TopoMap object. If the
TopoMap object is updatable and if you are performing many editing operations, you
should probably rebuild the indexes periodically; however, if the TopoMap object will
not be updated, create the indexes when or after loading the read-only TopoMap
object or after calling the SDO_TOPO_MAP.COMMIT_TOPO_MAP procedure.

Compare this procedure with the SDO_TOPO_MAP.CREATE_FACE_INDEX
procedure, which creates an internal R-tree index (or rebuilds the index if one already
exists) on the faces in the cache associated with a TopoMap object.

This procedure is equivalent to using the cr eat eEdgel ndex method of the TopoMap class
of the client-side Java API (described in Topology Data Model Java Interface).

Examples

The following example creates an internal R-tree index (or rebuilds the index if one
already exists) on the edges in the cache associated with the TopoMap object named
Cl TY_DATA TOPOMAP, which is associated with the topology named Cl TY_DATA. (The
example refers to definitions and data from Topology Built from Topology Data.)

CALL SDO TOPO MAP. CREATE_EDGE_| NDEX(' CI TY_DATA TOPOMVAP') :

4.12 SDO_TOPO_MAP.CREATE_FACE_INDEX

ORACLE

Format

SDO_TOPO_MAP. CREATE_FACE_| NDEX(
topo_map | N VARCHAR?);

Description

Creates an internal R-tree index (or rebuilds the index if one already exists) on the
faces in the cache associated with a TopoMap object.

4-16

Chapter 4
SDO_TOPO_MAP.CREATE_FEATURE

Parameters

topo_map
Name of the TopoMap object. (TopoMap objects are explained in TopoMap Objects.)

Usage Notes

You can cause Spatial and Graph to create in-memory R-tree indexes to be built on
the edges and faces in the specified TopoMap object. These indexes use some
memory resources and take some time to create; however, they significantly improve
performance if you edit a large number of topological elements in the session. They
can also improve performance for queries that use a read-only TopoMap object. If the
TopoMap object is updatable and if you are performing many editing operations, you
should probably rebuild the indexes periodically; however, if the TopoMap object will
not be updated, create the indexes when or after loading the read-only TopoMap
object or after calling the SDO_TOPO_MAP.COMMIT_TOPO_MAP procedure.

Compare this procedure with the SDO_TOPO_MAP.CREATE_EDGE_INDEX
procedure, which creates an internal R-tree index (or rebuilds the index if one already
exists) on the edges in the cache associated with a TopoMap object.

This procedure is equivalent to using the cr eat eFacel ndex method of the TopoMap class
of the client-side Java API (described in Topology Data Model Java Interface).

Examples

The following example creates an internal R-tree index (or rebuilds the index if one
already exists) on the faces in the cache associated with the TopoMap object named
Cl TY_DATA TOPOMAP, which is associated with the topology named CI TY_DATA. (The
example refers to definitions and data from Topology Built from Topology Data.)

CALL SDO TOPO MAP. CREATE_FACE_| NDEX(' CI TY_DATA TOPOMVAP') ;

4.13 SDO_TOPO_MAP.CREATE_FEATURE

ORACLE

Format (no topology geometry layer hierarchy or lowest level in a hierarchy)

SDO TOPO_MAP. CREATE_FEATURE(
t opol ogy I'N VARCHAR?,
tabl e_name | N VARCHAR?,
col um_nane | N VARCHARZ,
geom I'N SDO_GEQVETRY
) RETURN SDO TOPO GEOVETRY;
or
SDO_TOPO_MAP. CREATE_FEATURE(
t opol ogy I'N VARCHAR?,
tabl e_name | N VARCHAR?,
col um_nane | N VARCHARZ,
geom I'N SDO_GEQOVETRY,
snapfeature I N NUVBER
) RETURN SDO TOPO GEQOVETRY;

Format (parent level in a hierarchy)

SDO_TOPO_MAP. CREATE_FEATURE(
t opol ogy I'N VARCHAR?,
tabl e_nane I N VARCHAR?2,

4-17

ORACLE

Chapter 4
SDO_TOPO_MAP.CREATE_FEATURE

colum_nane | N VARCHAR?,
dml _condition I N VARCHAR2
) RETURN SDO TOPO GEQVETRY;

Description

Creates a feature from Oracle Spatial and Graph geometries. (This function is
intended to be used for inserting rows into a feature table.)

* The first two formats (with the geomparameter and without the dn _condi ti on
parameter) are for creating a feature in a topology without a topology geometry
layer hierarchy or in the lowest level of a topology with a topology geometry layer
hierarchy.

e The third format (with the dm _condi ti on parameter and without the geom
parameter) is for creating a feature in a parent level of a topology with a topology
geometry layer hierarchy.

Parameters

topology
Topology having the associated specified feature table and feature column.

table_name
Name of the feature table containing the feature column specified in col um_nane.

column_name
Name of the feature column (of type SDO_TOPO_GEOMETRY) containing the
topology geometries.

geom
Geometry objects.

snapfeature
If set to 1, the specified new feature is snapped to existing edges and nodes in the
topology.

dml_condition

For topologies with a topology geometry layer hierarchy (described in Topology
Geometry Layer Hierarchy): DML condition for selecting rows from a child layer to be
inserted into a parent layer. Specify the condition in a quoted string, but without the
word WHERE. For example, to select only rows where the STATE_ABBR column
value is M, specify the following: ' state_abbr=""M\""

Usage Notes

This function is used to create features from existing geometries stored in a spatial
table. Creating features from existing geometries is one approach to creating topology
features; the other approach is to load the topology data into the node, edge, and face
information tables. Both approaches are described in Main Steps in Using Topology
Data, which contains the following subsections:

e Using a Topology Built from Topology Data

e Using a Topology Built from Spatial Geometries (that is, the approach using the
CREATE_FEATURE function)

When you use the first or second format of this function, you must first create and load
an updatable TopoMap object. To create a topology feature or an associated

4-18

ORACLE

Chapter 4
SDO_TOPO_MAP.CREATE_FEATURE

topological element, the function internally calls the addPoi nt Geonet ry,

addLi near Geonet ry, or addPol ygonGeonet ry method of the updatable TopoMap object,
depending on the SDO_GTYPE value of the geometry object, and it calls the

updat eTopol ogy method of the updatable TopoMap object to write topological elements
to the database. If this function is called in an INSERT or UPDATE statement, a
feature is created or updated in the feature table. When the function completes, it has
the effect of overlaying the geometry onto the topology. (That is, Spatial and Graph
uses an implicitly created TopoMap object to create a new TopoMap object for each
call to this function.)

When you use the third format of this function, you do not need to create an updatable
TopoMap object. The function internally collects TG_ID values of features in the child
level based on the dnl _condi ti on parameter value, and it assembles an
SDO_TGL_OBJECT_ARRAY object to create the SDO_GEOMETRY object.

To ensure that this function works correctly with all geometries, use a loop to call the
function for each geometry. Do not use this function in a subquery in an INSERT or
UPDATE statement, because doing so may cause inconsistencies in the topology, and
you may not receive any error or warning messages about the inconsistencies.

An exception is raised if one or more of the following conditions exist:

e topol ogy, tabl e_name, or col um_nane does not exist.

* geomspecifies geometry objects of a type inconsistent with the topology geometry
layer type. For example, you cannot use line string geometries to create land
parcel features.

e dnl _condition is used with a topology that does not have a topology geometry
layer hierarchy.

* The input geometries include any optimized shapes, such as optimized rectangles
or circles.

* Aline string or multiline string geometry contains any overlapping line segments.

* In a multipolygon geometry, an exterior ring overlaps any other exterior ring.

Examples

The following example populates the FEATURE column in the CITY_STREETS,
TRAFFIC_SIGNS, and LAND_PARCELS feature tables with all geometries in the
GEOMETRY column in the CITY_STREETS_GEOM, TRAFFIC_SIGNS_GEOM, and
LAND_PARCELS_GEOM spatial tables, respectively. This example assumes that an
updatable TopoMap object has been created and loaded for the C TY_DATA topology.
(The example refers to definitions and data from Topology Built from Spatial
Geometries.)

BEG N
FOR street_rec | N (SELECT nane, geometry FROM city_streets_geon) LOOP
INSERT INTO city_streets VALUES(street_rec. nane,
SDO_TOPO_MAP. CREATE_FEATURE(' CI TY_DATA', ' CI TY_STREETS', ' FEATURE',
street _rec.geonetry));
END LOOP;

FOR sign_rec IN (SELECT nane, geonetry FROMtraffic_signs_geon) LOOP
I NSERT | NTO traffic_signs VALUES(sign_rec. nane,
SDO_TOPO_MAP. CREATE_FEATURE(' CI TY_DATA', ' TRAFFIC SIGNS , ' FEATURE ,
sign_rec. geometry));
END LOOP;

4-19

ORACLE

Chapter 4
SDO_TOPO_MAP.CREATE_FEATURE

FOR parcel _rec I N (SELECT nane, geometry FROM | and_parcel s_geon) LOOP
I NSERT | NTO | and_par cel s VALUES(par cel _rec. nane,
SDO_TOPO_MAP. CREATE_FEATURE(' CI TY_DATA', ' LAND PARCELS', ' FEATURE ,
parcel _rec. geonetry));
END LOOP;
END;
/

The following example creates a topology that has a topology geometry layer
hierarchy with two layers: counties and states. The calls to the CREATE_FEATURE
function that create parent layer (state) features include the dni _condi ti on parameter
(for example, ' p_name=""NH'").

decl are

nane varchar2(64);

cursor cl is select state_abrv, county from
counties order by 1, 2;

stateabrv varchar2(2);

begin

- Initialize.
sdo_t opo_map. create_topo_map(' cnty', 'n2', 10000, 10000, 10000);
sdo_t opo_map. | oad_t opo_map(' n2', -180, -90, 180, 90, 'true');

- Insert one county at a tine.
for cnty_rec in cl [oop
stateabrv := cnty_rec.state_abrv;
name := cnty_rec.county;
insert into cnty_areas select state abrv || '-' ||county,
sdo_t opo_map. create_feature(' CNTY', ' CNTY_AREAS' , 'FEATURE', geom) from
counties where state_abrv=stateabrv and county=nane;
end | oop;

- Roll back topol ogy.
sdo_t opo_map. rol | back_t opo_map();
sdo_t opo_map. drop_t opo_map(' n2');

- Roll back inserts.
rol | back;

exception
when ot hers then

dbns_out put . put _l i ne(SQLERRM ;
sdo_t opo_nap. rol | back_t opo_map();
sdo_t opo_nap. drop_t opo_map(' n2');
rol | back;

end;

/

- Add parent feature |ayer.

The fol | owing comented out statement can be used to popul ate the
child_layer_id paraneter in sdo_topo.add_topo_geonetry_| ayer.

select tg_layer_id
from user_sdo_topo_info
where TOPOLOGY = ' SC
and table _name = ' SC AREAS ;

execute sdo_t opo. add_t opo_geonetry_| ayer(' SC,"' SC P_AREAS , ' FEATURE , -
"POLYGON , NULL, child_layer_id => 1);

4-20

Chapter 4
SDO_TOPO_MAP.CREATE_TOPO_MAP

- Create and insert state features (logically) fromcounty features.
insert into sc_p_areas (f_name, p_name, feature) values ('NH, 'US,
sdo_topo_map. create_feature(' SC,' SC_ P_AREAS' ,' FEATURE ,'p_name=""NH "'"));
insert into sc_p_areas (f_nane, p_nane, feature) values ('CT", 'US,
sdo_topo_map. create_feature(' SC,' SC_ P_AREAS' ,' FEATURE ,' p_name=""'CT'"'"));
insert into sc_p_areas (f_name, p_name, feature) values ('ME, 'US,
sdo_topo_map. create_feature(' SC,' SC_ P_AREAS' ,' FEATURE ,' p_name=""'ME'"'"));
insert into sc_p_areas (f_name, p_name, feature) values (' M\, 'US,
sdo_topo_map. create_feature(' SC,' SC_ P_AREAS' ,' FEATURE ,' p_name=""M\"""));
comi t;

4.14 SDO_TOPO_MAP.CREATE_TOPO MAP

Format

SDO_TOPO_MAP. CREATE_TOPO_MAP(
t opol ogy I'N VARCHAR?,
t opo_map I'N VARCHARZ,
number _of _edges | N NUMBER DEFAULT 100,
nunmber _of _nodes | N NUVBER DEFAULT 80,
nurmber _of _faces | N NUVBER DEFAULT 30);

Description

Creates a TopoMap object cache associated with an existing topology.
Parameters

topology
Name of the topology. Must not exceed 20 characters.

topo_map
Name of the TopoMap object. (TopoMap objects are explained in TopoMap Obijects.)

number_of_edges
An estimate of the maximum number of edges that will be in the TopoMap object at
any given time. If you do not specify this parameter, a default value of 100 is used.

number_of_nodes
An estimate of the maximum number of nodes that will be in the TopoMap object at
any given time. If you do not specify this parameter, a default value of 80 is used.

number_of_faces
An estimate of the maximum number of faces that will be in the TopoMap object at
any given time. If you do not specify this parameter, a default value of 30 is used.

Usage Notes

The nunber _of _edges, nunber _of _nodes, and nunber _of _f aces parameters let you improve
the performance and memory usage of the procedure when you have a good idea of
the approximate number of edges, nodes, or faces (or any combination) that will be
placed in the cache associated with the specified TopoMap object. Spatial and Graph
initially allocates memory cache for the specified or default number of objects of each
type, and incrementally increases the allocation later if more objects need to be
accommodated.

ORACLE 4-21

Chapter 4
SDO_TOPO_MAP.DROP_TOPO_MAP

You can create more than one TopoMap object in a user session; however, there can
be no more than one updatable TopoMap object at any given time in a user session.

For information about using an in-memory cache to edit topological elements, see
Approaches for Editing Topology Data.

Using this procedure is equivalent to calling the constructor of the TopoMap class of the
client-side Java API (described in Topology Data Model Java Interface).

Examples

The following example creates a TopoMap object named Cl TY_DATA TOPOVAP and its
associated cache, and it associates the TopoMap object with the topology named
Cl TY_DATA. (The example refers to definitions and data from Topology Built from
Topology Data.)

CALL SDO TOPO_MAP. CREATE_TOPO MAP(' CI TY_DATA', ' Cl TY_DATA TOPOVAP')

4.15 SDO_TOPO MAP.DROP TOPO MAP

ORACLE

Format

SDO_TOPO_MAP. DROP_TOPO_MAP(
topo_map | N VARCHAR2) ;

Description

Deletes a TopoMap object from the current user session.

Parameters

topo_map
Name of the TopoMap object. (TopoMap objects are explained in TopoMap Objects.)

Usage Notes

This procedure rolls back any uncommitted changes if the TopoMap object is
updatable (that is, performs the equivalent of an
SDO_TOPO_MAP.ROLLBACK_TOPO_MAP operation). It clears the cache
associated with the TopoMap object, and removes the TopoMap object from the
session.

For information about using an in-memory cache to edit topological elements, see
Approaches for Editing Topology Data.

Using this procedure is equivalent to setting the variable of the TopoMap object to a
null value in a client-side Java application. (The client-side Java API is described in
Topology Data Model Java Interface.)

Examples

The following example drops the TopoMap object named Cl TY_DATA TOPOMAP. (The
example refers to definitions and data from Topology Built from Topology Data.)

CALL SDO TOPO MAP. DROP_TOPO MAP(' CI TY_DATA TOPOMAP') ;

4-22

Chapter 4
SDO_TOPO_MAP.GET_CONTAINING_FACE

4.16 SDO_TOPO MAP.GET _CONTAINING FACE

ORACLE

Format

SDO_TOPO_MAP. GET_CONTAI NI NG_FACE(
topol ogy | N VARCHAR?,
topo_map I N VARCHARZ,
poi nt I'N SDO_GEQVETRY

) RETURN NUMBER

or

SDO_TOPO_MAP. GET_CONTAI NI NG_FACE(
topol ogy | N VARCHAR?,
topo_map IN VARCHAR2,
X I N NUMBER,
y I'N NUMBER
) RETURN NUMBER;

Description

Returns the face ID number of the face that contains the specified point.
Parameters

topology
Name of the topology that contains the face and the point, or a null value, as
explained in Using GET_xxx Topology Functions. Must not exceed 20 characters.

topo_map
Name of the TopoMap object, or a null value, as explained in Using GET_xxx
Topology Functions. (TopoMap objects are explained in TopoMap Objects.)

point
Geometry object specifying the point.

X
X-axis value of the point.

y
Y-axis value of the point.

Usage Notes

The t opol ogy or t opo_map parameter should specify a valid name, as explained in Using
GET_xxx Topology Functions.

This function determines, from the faces in the specified TopoMap object (including
any island faces), which one face (if any) contains the specified point in its open set,
excluding islands. (The open set, excluding islands, of a face consists of all points
inside, but not on the boundary of, the face.) If the point is exactly on the boundary of a
face, the function returns a value of O (zero).

If the entire topology has been loaded into the TopoMap object and if the point is not in
any finite face in the cache, this function returns a value of -1 (for the universe face). If
a window from the topology has been loaded into the TopoMap object and if the point

is not in any finite face in the cache, this function returns a value of -1 (for the universe

4-23

Chapter 4
SDO_TOPO_MAP.GET_EDGE_ADDITIONS

face) if the point is inside the window and a value of 0 (zero) if the point is outside the
window. If neither the entire topology nor a window has been loaded, this function
returns O (zero).

This function is equivalent to using the get Cont ai ni ngFace method of the TopoMap class
of the client-side Java API (described in Topology Data Model Java Interface).

Examples

The following example returns the face ID number of the face that contains the point at
(22, 37) in the CI TY_DATA_TOPOVAP TopoMap object. (The example refers to definitions
and data from Topology Built from Topology Data.)

SELECT SDO TOPO_MAP. GET_CONTAI NI NG_FACE(nul |, ' CI TY_DATA_TOPOVAP',
SDO_GEOVETRY(2001, NULL, SDO PO NT_TYPE(22, 37, NULL), NULL, NULL))
FROM DUAL;

SDO_TOPO_MAP. GET_CONTAI NI NG_FACE(NULL, ' CI TY_DATA TOPOMAP' , SDO_GEOMETRY(2001, NULL

4.17 SDO_TOPO_MAP.GET EDGE_ADDITIONS

ORACLE

Format

SDO_TOPO MAP. GET_EDGE_ADDI TI ONS() RETURN SDO NUVBER ARRAY:

Description

Returns an array of edge ID numbers of edges that have been added to the current
updatable TopoMap object.

Parameters

None.

Usage Notes

This function returns the edge ID numbers of edges in the current updatable TopoMap
object that have been added since the object was most recently loaded (using
SDO_TOPO_MAP.LOAD_TOPO_MAP), updated (using
SDO_TOPO_MAP.UPDATE_TOPO_MAP), cleared (using
SDO_TOPO_MAP.CLEAR_TOPO_MAP), committed (using
SDO_TOPO_MAP.COMMIT_TOPO_MAP), or rolled back (using
SDO_TOPO_MAP.ROLLBACK_TOPO_MAP). If there have been no additions during
that time, the function returns an empty SDO_NUMBER_ARRAY object.

This function is equivalent to using the get EdgeAddi ti ons method of the TopoMap class of
the client-side Java API (described in Topology Data Model Java Interface).

Examples

The following example returns the edge ID numbers of edges that have been added to
the current updatable TopoMap object.

SELECT SDO TOPO_MAP. GET_EDGE_ADDI TI ONS FROM DUAL;

GET_EDGE_ADDI TI ONS

4-24

Chapter 4
SDO_TOPO_MAP.GET_EDGE_CHANGES

SDO_NUMBER ARRAY(28, 29, 30, 32)

4.18 SDO_TOPO_MAP.GET_EDGE_CHANGES

Format

SDO TOPO MAP. GET_EDGE_CHANGES() RETURN SDO NUMBER ARRAY:

Description

Returns an array of edge ID numbers of edges that have been changed (modified) in
the current updatable TopoMap object.

Parameters

None.

Usage Notes

This function returns the edge ID numbers of edges in the current updatable TopoMap
object that have been changed since the object was most recently loaded (using
SDO_TOPO_MAP.LOAD_TOPO_MAP), updated (using
SDO_TOPO_MAP.UPDATE_TOPO_MAP), cleared (using
SDO_TOPO_MAP.CLEAR_TOPO_MAP), committed (using
SDO_TOPO_MAP.COMMIT_TOPO_MAP), or rolled back (using
SDO_TOPO_MAP.ROLLBACK_TOPO_MAP). If there have been no changes during
that time, the function returns an empty SDO_NUMBER_ARRAY object.

This function is equivalent to using the get EdgeChanges method of the TopoMap class of
the client-side Java API (described in Topology Data Model Java Interface).

Examples

The following example returns the edge ID numbers of edges that have been changed
in the current updatable TopoMap object.

SELECT SDO_TOPO MAP. GET_EDGE_CHANGES FROM DUAL;

SDO NUMBER ARRAY(3, 2, 1)

4.19 SDO TOPO_ MAP.GET EDGE_COORDS

ORACLE

Format

SDO_TOPO_MAP. GET_EDGE_COORDS(
topol ogy | N VARCHAR?,
topo_map IN VARCHARZ,
edge_id | N NUMBER

) RETURN SDO_NUVBER_ARRAY;

Description

Returns an array with the coordinates of the start node, shape points, and end node
for the specified edge.

4-25

Chapter 4
SDO_TOPO_MAP.GET_EDGE_DELETIONS

Parameters

topology
Name of the topology that contains the edge, or a null value, as explained in Using
GET_xxx Topology Functions. Must not exceed 20 characters.

topo_map
Name of the TopoMap object, or a null value, as explained in Using GET_xxx
Topology Functions. (TopoMap objects are explained in TopoMap Objects.)

edge_id
Edge ID value of the edge.

Usage Notes

The t opol ogy or t opo_map parameter should specify a valid name, as explained in Using
GET_xxx Topology Functions.

This function is equivalent to using the get EdgeCoor ds method of the TopoMap class of
the client-side Java API (described in Topology Data Model Java Interface).

Examples

The following example returns the coordinates of the start node, shape points, and end
node for the edge whose edge ID value is 1. The returned array contains coordinates
for six points. (The example refers to definitions and data from Topology Built from
Topology Data.)

SELECT SDO TOPO_MAP. GET_EDGE_CCOORDS(nul |, ' CI TY_DATA TOPOVAP', 1) FROM DUAL;

SDO_TOPO MAP. GET_EDGE_COORDS(NULL, ' CI TY_DATA TOPOMAP' | 1)

SDO_NUMBER ARRAY(8, 30, 16, 30, 16, 38, 3, 38, 3, 30, 8, 30)

4.20 SDO_TOPO MAP.GET EDGE DELETIONS

ORACLE

Format

SDO_TOPO MAP. GET_EDGE_DELETI ONS() RETURN SDO NUVBER ARRAY:

Description

Returns an array of edge ID numbers of edges that have been deleted from the
current updatable TopoMap object.

Parameters

None.

Usage Notes

This function returns the edge ID numbers of edges in the current updatable TopoMap
object that have been deleted since the object was most recently loaded (using
SDO_TOPO_MAP.LOAD_TOPO_MAP), updated (using
SDO_TOPO_MAP.UPDATE_TOPO_MAP), cleared (using
SDO_TOPO_MAP.CLEAR_TOPO_MAP), committed (using
SDO_TOPO_MAP.COMMIT_TOPO_MAP), or rolled back (using

4-26

Chapter 4
SDO_TOPO_MAP.GET_EDGE_NODES

SDO_TOPO_MAP.ROLLBACK_TOPO_MAP). If there have been no deletions during
that time, the function returns an empty SDO_NUMBER_ARRAY object.

This function is equivalent to using the get EdgeDel eti ons method of the TopoMap class of
the client-side Java API (described in Topology Data Model Java Interface).

Examples

The following example returns the edge ID numbers of edges that have been deleted
from the current updatable TopoMap object. In this case, the return of an empty
SDO_NUMBER_ARRAY object indicates that no edges have been deleted.

SELECT SDO TOPO MAP. GET_EDGE_DELETI ONS FROM DUAL;

CGET_EDGE_DELETI ONS

SDO_NUVBER_ARRAY()

4.21 SDO_ TOPO MAP.GET EDGE NODES

ORACLE

Format

SDO _TOPO_MAP. GET_EDGE_NODES(
topol ogy | N VARCHAR?,
topo_map | N VARCHAR?,
edge_id | N NUMBER

) RETURN SDO NUMBER_ARRAY;

Description

Returns an array with the ID numbers of the start and end nodes on the specified
edge.

Parameters

topology
Name of the topology that contains the edge, or a null value, as explained in Using
GET_xxx Topology Functions. Must not exceed 20 characters.

topo_map
Name of the TopoMap object, or a null value, as explained in Using GET_xxx
Topology Functions. (TopoMap objects are explained in TopoMap Objects.)

edge_id
Edge ID value of the edge.

Usage Notes

The t opol ogy or t opo_map parameter should specify a valid name, as explained in Using
GET_xxx Topology Functions.

If the edge starts and ends at a node, the ID number of the node is the first and last
number in the array.

This function has no exact equivalent method in the TopoMap class of the client-side
Java API (described in Topology Data Model Java Interface). The get Edge method
returns a Java edge object of the oracl e. spati al . t opo. Edge class.

4-27

Chapter 4
SDO_TOPO_MAP.GET_FACE_ADDITIONS

Examples

The following example returns the ID numbers of the nodes on the edge whose edge
ID value is 1. The returned array contains two nodes ID numbers, both of them 1 (for
the same node), because the specified edge starts and ends at the node with node 1D
1 and has a loop edge. (The example refers to definitions and data from Topology Built
from Topology Data.)

SELECT SDO TOPO_MAP. GET_EDGE_NCDES(nul |, ' CI TY_DATA TOPOVAP', 1) FROM DUAL;

SDO_TOPO MAP. GET_EDGE_NODES(NULL, ' CI TY_DATA_TOPOMAP' |, 1)

SDO_NUMBER ARRAY(1, 1)

4.22 SDO_TOPO MAP.GET FACE_ADDITIONS

ORACLE

Format

SDO_TOPO_MAP. GET_FACE_ADDI TI ONS() RETURN SDO NUVBER ARRAY;

Description

Returns an array of face ID numbers of faces that have been added to the current
updatable TopoMap object.

Parameters

None.

Usage Notes

This function returns the face ID numbers of faces in the current updatable TopoMap
object that have been added since the object was most recently loaded (using
SDO_TOPO_MAP.LOAD_TOPO_MAP), updated (using
SDO_TOPO_MAP.UPDATE_TOPO_MAP), cleared (using
SDO_TOPO_MAP.CLEAR_TOPO_MAP), committed (using
SDO_TOPO_MAP.COMMIT_TOPO_MAP), or rolled back (using
SDO_TOPO_MAP.ROLLBACK_TOPO_MAP). If there have been no additions during
that time, the function returns an empty SDO_NUMBER_ARRAY object.

This function is equivalent to using the get FaceAddi ti ons method of the TopoMap class of
the client-side Java API (described in Topology Data Model Java Interface).

Examples

The following example returns the face ID numbers of faces that have been added to
the current updatable TopoMap object.

SELECT SDO TOPO_MAP. GET_FACE_ADDI TI ONS FROM DUAL;
GET_FACE_ADDI TI ONS

SDO_NUMBER_ARRAY(11)

4-28

Chapter 4
SDO_TOPO_MAP.GET_FACE_CHANGES

4.23 SDO_TOPO_MAP.GET_FACE_CHANGES

Format

SDO TOPO MAP. GET_FACE_CHANGES() RETURN SDO NUMBER ARRAY:

Description

Returns an array of face ID numbers of faces that have been changed (modified) in
the current updatable TopoMap object.

Parameters

None.

Usage Notes

This function returns the face ID numbers of faces in the current updatable TopoMap
object that have been changed since the object was most recently loaded (using
SDO_TOPO_MAP.LOAD_TOPO_MAP), updated (using
SDO_TOPO_MAP.UPDATE_TOPO_MAP), cleared (using
SDO_TOPO_MAP.CLEAR_TOPO_MAP), committed (using
SDO_TOPO_MAP.COMMIT_TOPO_MAP), or rolled back (using
SDO_TOPO_MAP.ROLLBACK_TOPO_MAP). If there have been no changes during
that time, the function returns an empty SDO_NUMBER_ARRAY object.

This function is equivalent to using the get FaceChanges method of the TopoMap class of
the client-side Java API (described in Topology Data Model Java Interface).

Examples

The following example returns the face ID numbers of faces that have been changed
in the current updatable TopoMap object.

SELECT SDO TOPO MAP. GET_FACE_CHANGES FROM DUAL;

SDO NUMBER ARRAY(2, 1, -1)

4.24 SDO_TOPO_ MAP.GET FACE_BOUNDARY

ORACLE

Format

SDO_TOPO_MAP. GET_FACE_BOUNDARY(
topol ogy | N VARCHAR?,
topo_map IN VARCHARZ,
face_id | N NUMBER
option | N NUMBER

) RETURN SDO_NUVBER_ARRAY;

Description

Returns an array with the edge ID numbers of the edges that make up the boundary
for the specified face.

4-29

Chapter 4
SDO_TOPO_MAP.GET_FACE_DELETIONS

Parameters

topology
Name of the topology that contains the face, or a null value, as explained in Using
GET_xxx Topology Functions. Must not exceed 20 characters.

topo_map
Name of the TopoMap object, or a null value, as explained in Using GET_xxx
Topology Functions. (TopoMap objects are explained in TopoMap Objects.)

face_id
Face ID value of the face.

option

One of the following numbers to indicate an option for computing the boundary: 0 for
an external boundary ring without spurs (that is, without doubly traced edges), 1 for
external and internal rings without spurs, or 2 for external and internal rings with
spurs. A value of 2 returns the full, though possibly degenerate, boundary.

Usage Notes

The t opol ogy or t opo_map parameter should specify a valid name, as explained in Using
GET_xxx Topology Functions.

This function is equivalent to using the get FaceBoundary method of the TopoMap class of
the client-side Java API (described in Topology Data Model Java Interface).

Examples

The following example returns the edges in the external boundary ring without spurs
for the face whose face ID value is 3. The returned array contains four edge ID values.
(The example refers to definitions and data from Topology Built from Topology Data.)

SELECT SDO TOPO_MAP. GET_FACE_BOUNDARY(nul |, ' CI TY_DATA TOPOMAP' , 3, 0) FROM DUAL;

SDO_TOPO_MAP. GET_FACE_BOUNDARY(NULL, ' CI TY_DATA TOPOVAP' | 3, 0)

SDO NUMBER ARRAY(19, 6, 21, 9)

4.25 SDO_ TOPO MAP.GET FACE_DELETIONS

ORACLE

Format

SDO_TOPO_MAP. GET_FACE_DELETI ONS() RETURN SDO_NUMBER ARRAY;

Description

Returns an array of face ID numbers of faces that have been deleted from the current
updatable TopoMap object.

Parameters

None.

4-30

Chapter 4
SDO_TOPO_MAP.GET_NEAREST_EDGE

Usage Notes

This function returns the face ID numbers of faces in the current updatable TopoMap
object that have been deleted since the object was most recently loaded (using
SDO_TOPO_MAP.LOAD_TOPO_MAP), updated (using
SDO_TOPO_MAP.UPDATE_TOPO_MAP), cleared (using
SDO_TOPO_MAP.CLEAR_TOPO_MAP), committed (using
SDO_TOPO_MAP.COMMIT_TOPO_MAP), or rolled back (using
SDO_TOPO_MAP.ROLLBACK_TOPO_MAP). If there have been no deletions during
that time, the function returns an empty SDO_NUMBER_ARRAY object.

This function is equivalent to using the get FaceDel eti ons method of the TopoMap class of
the client-side Java API (described in Topology Data Model Java Interface).

Examples

The following example returns the face ID numbers of faces that have been deleted
from the current updatable TopoMap object. In this case, the return of an empty
SDO_NUMBER_ARRAY object indicates that no faces have been deleted.

SELECT SDO TOPO MAP. GET_FACE_DELETI ONS FROM DUAL;

GET_FACE_DELETI ONS

SDO_NUVBER_ARRAY()

4.26 SDO_TOPO MAP.GET NEAREST EDGE

ORACLE

Format

SDO_TOPO _MAP. GET_NEAREST EDGE(
topol ogy | N VARCHAR?,
topo_map | N VARCHAR?,
poi nt I'N SDO_GEQVETRY

) RETURN NUMBER;

or

SDO_TOPO_MAP. GET_NEAREST_EDGE(
t opol ogy | N VARCHAR?,
topo_map IN VARCHARZ,

X I'N NUMBER,
y I'N NUMBER
) RETURN NUMVBER,

Description
Returns the edge ID number of the edge that is nearest (closest to) the specified point.
Parameters

topology
Name of the topology that contains the edge and the point, or a null value, as
explained in Using GET_xxx Topology Functions. Must not exceed 20 characters.

4-31

4.27

Chapter 4
SDO_TOPO_MAP.GET_NEAREST_EDGE_IN_CACHE

topo_map
Name of the TopoMap object, or a null value, as explained in Using GET_xxx
Topology Functions. (TopoMap objects are explained in TopoMap Objects.)

point
Geometry object specifying the point.

X
X-axis value of the point.

y
Y-axis value of the point.

Usage Notes

The t opol ogy or t opo_map parameter should specify a valid name, as explained in Using
GET _xxx Topology Functions.

The nearest edge is determined from the representation of the topology in the
database, using the spatial index. If there are changed, added, or deleted edges in the
instance and the database has not been updated to reflect those changes, the result
may not reflect the true situation in the TopoMap object cache.

If multiple edges are equally close to the point, any one of the edge ID values is
returned. If no edges exist in the topology, this function returns 0 (zero).

This function is equivalent to using the get Near est Edge method of the TopoMap class of
the client-side Java API (described in Topology Data Model Java Interface).

Examples

The following example returns the edge ID number of the edge that is closest to the
point at (8, 8) in the CI TY_DATA TOPOMAP TopoMap object. (The example refers to
definitions and data from Topology Built from Topology Data.)

SELECT SDO TOPO_MAP. GET_NEAREST EDGE(nul |, ' CI TY_DATA TOPOVRP'
SDO_GEOMETRY(2001, NULL, SDO PO NT_TYPE(8, 8, NULL), NULL, NULL))
FROM DUAL;

SDO_TOPO_MAP. GET_NEAREST_EDGE(NULL, ' CI TY_DATA TOPOMAP' , SDO _GEOMETRY(2001, NULL, SD

SDO _TOPO MAP.GET NEAREST EDGE_IN_CACHE

ORACLE

Format

SDO TOPO_MAP. GET_NEAREST EDGE_| N_CACHE(
topo_nmap | N VARCHAR?,
point |N SDO GEOVETRY

) RETURN NUMBER;

or

SDO_TOPO_MAP. GET_NEAREST_EDGE_| N_CACHE(
topo_map IN VARCHAR2,
X I'N NUMBER,

4-32

Chapter 4
SDO_TOPO_MAP.GET_NEAREST_NODE

y I N NUVBER
) RETURN NUMBER;

Description

Returns the edge ID number of the edge that, of the edges loaded in the specified
TopoMap object, is nearest (closest to) the specified point.

Parameters

topo_map
Name of the TopoMap object. (TopoMap objects are explained in TopoMap Obijects.)

point
Geometry object specifying the point.

X
X-axis value of the point.

y
Y-axis value of the point.

Usage Notes

If multiple edges are equally close to the point, any one of the edge ID values is
returned. If no topology data is loaded or if no edges exist in the cache, this function
returns O (zero).

This function is equivalent to using the get Near est Edgel nCache method of the TopoMap
class of the client-side Java API (described in Topology Data Model Java Interface).

Examples

The following example returns the edge ID number of the edge that is closest to the
point at (8, 8) in the CI TY_DATA TOPOVAP TopoMap object. (The example refers to
definitions and data from Topology Built from Topology Data.)

SELECT SDO TOPO MAP. GET_NEAREST EDGE_| N_CACHE(' CI TY_DATA TOPOVAP'
SDO_GEOVETRY(2001, NULL, SDO POINT_TYPE(8, 8, NULL), NULL, NULL))
FROM DUAL;

SDO_TOPO MAP. GET_NEAREST EDGE_| N_CACHE(' CI TY_DATA TOPOVAP' , SDO_GEOVETRY(2001, NUL

4.28 SDO_TOPO_MAP.GET NEAREST NODE

ORACLE

Format

SDO_TOPO_MAP. GET_NEAREST_NODE(
topol ogy | N VARCHAR?,
topo_map IN VARCHAR2,
poi nt IN SDO_GEQVETRY

) RETURN NUMBER,

or

SDO_TOPO_MAP. GET_NEAREST_ NODE(
t opol ogy | N VARCHAR?,

4-33

ORACLE

Chapter 4
SDO_TOPO_MAP.GET_NEAREST_NODE

topo_map IN VARCHAR2,
X I'N NUMBER,
y I'N NUMBER

) RETURN NUMBER;

Description

Returns the node ID number of the node that is nearest (closest to) the specified point.
Parameters

topology
Name of the topology that contains the node and the point, or a null value, as
explained in Using GET_xxx Topology Functions. Must not exceed 20 characters.

topo_map
Name of the TopoMap object, or a null value, as explained in Using GET_xxx
Topology Functions. (TopoMap objects are explained in TopoMap Objects.)

point
Geometry object specifying the point.

X
X-axis value of the point.

y
Y-axis value of the point.

Usage Notes

The t opol ogy or t opo_map parameter should specify a valid name, as explained in Using
GET _xxx Topology Functions.

The nearest node is determined from the representation of the topology in the
database, using the spatial index. If there are changed, added, or deleted nodes in the
instance and the database has not been updated to reflect those changes, the result
may not reflect the true situation in the TopoMap object cache.

If multiple nodes are equally close to the point, any one of the node ID values is
returned.

This function is equivalent to using the get Near est Node method of the TopoMap class of
the client-side Java API (described in Topology Data Model Java Interface).

Examples

The following example returns the node ID number of the node that is closest to the
point at (8, 8) in the CI TY_DATA_TOPOVAP TopoMap object. (The example refers to
definitions and data from Topology Built from Topology Data.)

SELECT SDO TOPO MAP. GET_NEAREST NODE(nul |, ' CI TY_DATA TOPOVAP'
SDO_GEOMETRY(2001, NULL, SDO POINT_TYPE(8, 8, NULL), NULL, NULL))
FROM DUAL;

SDO_TOPO MAP. GET_NEAREST NODE(NULL, ' CI TY_DATA TOPOMAP' , SDO_GEOVETRY(2001, NULL, SD

4-34

Chapter 4
SDO_TOPO_MAP.GET_NEAREST_NODE_IN_CACHE

4.29
SDO _TOPO MAP.GET NEAREST NODE IN_CACHE

Format

SDO_TOPO_MAP. GET_NEAREST_NCODE_| N_CACHE(
topo_map IN VARCHARZ,
poi nt IN SDO_GEOMETRY

) RETURN NUMBER;

or

SDO_TOPO_MAP. GET_NEAREST_NODE_| N_CACHE(
topo_map IN VARCHAR2,
X I N NUMBER,
y I'N NUMBER

) RETURN NUMBER;

Description

Returns the node ID number of the node that, of the nodes loaded in the specified
TopoMap object, is nearest (closest to) the specified point.

Parameters

topo_map
Name of the TopoMap object. (TopoMap objects are explained in TopoMap Objects.)

point
Geometry object specifying the point.

X
X-axis value of the point.

y
Y-axis value of the point.

Usage Notes

If multiple nodes are equally close to the point, any one of the node ID values is
returned. If no topology data is loaded or if no nodes exist in the cache, this function
returns O (zero).

This function is equivalent to using the get Near est Nodel nCache method of the TopoMap
class of the client-side Java API (described in Topology Data Model Java Interface).

Examples

The following example returns the node ID number of the node that is closest to the
point at (8, 8) in the CI TY_DATA TOPOVAP TopoMap object. (The example refers to
definitions and data from Topology Built from Topology Data.)

SELECT SDO TOPO MAP. GET_NEAREST NODE_| N_CACHE(' CI TY_DATA TOPOVAP'
SDO_GEOMETRY(2001, NULL, SDO POINT_TYPE(8, 8, NULL), NULL, NULL))
FROM DUAL;

ORACLE 4-35

Chapter 4
SDO_TOPO_MAP.GET_NODE_ADDITIONS

SDO TOPO_MAP. GET_NEAREST NODE_| N_CACHE(' CI TY_DATA TOPOVAP' , SDO_GEOVETRY(2001, NUL

4.30 SDO_TOPO_MAP.GET_NODE_ADDITIONS

Format

SDO TOPO_MAP. GET_NODE_ADDI TI ONS() RETURN SDO NUMBER ARRAY:

Description

Returns an array of node ID numbers of nodes that have been added to the current
updatable TopoMap object.

Parameters

None.

Usage Notes

This function returns the node ID numbers of nodes in the current updatable TopoMap
object that have been added since the object was most recently loaded (using
SDO_TOPO_MAP.LOAD_TOPO_MAP), updated (using
SDO_TOPO_MAP.UPDATE_TOPO_MAP), cleared (using
SDO_TOPO_MAP.CLEAR_TOPO_MAP), committed (using
SDO_TOPO_MAP.COMMIT_TOPO_MAP), or rolled back (using
SDO_TOPO_MAP.ROLLBACK_TOPO_MAP). If there have been no additions during
that time, the function returns an empty SDO_NUMBER_ARRAY object.

This function is equivalent to using the get NodeAddi ti ons method of the TopoMap class of
the client-side Java API (described in Topology Data Model Java Interface).
Examples

The following example returns the node ID numbers of nodes that have been added to
the current updatable TopoMap object.

SELECT SDO TOPO_MAP. GET_NODE_ADDI TI ONS FROM DUAL;

GET_NCDE_ADDI TI ONS

SDO_NUVBER ARRAY(24, 25, 26, 27, 28)

4.31 SDO TOPO MAP.GET NODE_CHANGES

ORACLE

Format

SDO_TOPO_ MAP. GET_NODE_CHANGES() RETURN SDO NUVBER ARRAY:

Description

Returns an array of node ID numbers of nodes that have been changed (modified) in
the current updatable TopoMap object.

4-36

Chapter 4
SDO_TOPO_MAP.GET_NODE_COORD

Parameters

None.

Usage Notes

This function returns the node ID numbers of nodes in the current updatable TopoMap
object that have been changed since the object was most recently loaded (using
SDO_TOPO_MAP.LOAD_TOPO_MAP), updated (using
SDO_TOPO_MAP.UPDATE_TOPO_MAP), cleared (using
SDO_TOPO_MAP.CLEAR_TOPO_MAP), committed (using
SDO_TOPO_MAP.COMMIT_TOPO_MAP), or rolled back (using
SDO_TOPO_MAP.ROLLBACK_TOPO_MAP). If there have been no changes during
that time, the function returns an empty SDO_NUMBER_ARRAY object.

This function is equivalent to using the get NodeChanges method of the TopoMap class of
the client-side Java API (described in Topology Data Model Java Interface).

Examples

The following example returns the node ID numbers of nodes that have been changed
in the current updatable TopoMap object.

SELECT SDO TOPO MAP. GET_NODE_CHANGES FROM DUAL;

SDO_NUVBER_ARRAY(2, 4)

4.32 SDO_TOPO_MAP.GET NODE_COORD

ORACLE

Format

SDO_TOPO_MAP. GET_NODE_COORD(
topol ogy | N VARCHARZ,
topo_map | N VARCHAR?,
node_id | N NUMBER

) RETURN SDO_GEQVETRY;

Description

Returns an SDO_GEOMETRY object with the coordinates of the specified node.
Parameters

topology
Name of the topology that contains the node, or a null value, as explained in Using
GET _xxx Topology Functions. Must not exceed 20 characters.

topo_map
Name of the TopoMap object, or a null value, as explained in Using GET_xxx
Topology Functions. (TopoMap objects are explained in TopoMap Objects.)

node_id
Node ID value of the node.

4-37

Chapter 4
SDO_TOPO_MAP.GET_NODE_DELETIONS

Usage Notes

The t opol ogy or t opo_map parameter should specify a valid name, as explained in Using
GET _xxx Topology Functions.

This function is equivalent to using the get NodeCoor d method of the TopoMap class of the
client-side Java API (described in Topology Data Model Java Interface).

Examples

The following example returns a geometry object with the coordinates of the node
whose node ID value is 14. (The example refers to definitions and data from Topology
Built from Topology Data.)

SELECT SDO TOPO_MAP. GET_NODE_COORD(nul |, ' CI TY_DATA TOPOVAP', 14) FROM DUAL;

SDO_TOPO_MAP. GET_NODE_COORD(NULL, ' CI TY_DATA TOPOVAP' , 14) (SDO _GTYPE, SDO SRID, SD

SDO_GEOMETRY(2001, 0, SDO POINT TYPE(21, 14, NULL), NULL, NULL)

4.33 SDO_TOPO_MAP.GET NODE_DELETIONS

ORACLE

Format

SDO_TOPO_MAP. GET_NCDE_DELETI ONS() RETURN SDO NUVBER ARRAY:

Description

Returns an array of node ID numbers of nodes that have been deleted from the
current updatable TopoMap object.

Parameters

None.

Usage Notes

This function returns the node ID numbers of nodes in the current updatable TopoMap
object that have been deleted since the object was most recently loaded (using
SDO_TOPO_MAP.LOAD_TOPO_MAP), updated (using
SDO_TOPO_MAP.UPDATE_TOPO_MAP), cleared (using
SDO_TOPO_MAP.CLEAR_TOPO_MAP), committed (using
SDO_TOPO_MAP.COMMIT_TOPO_MAP), or rolled back (using
SDO_TOPO_MAP.ROLLBACK_TOPO_MAP). If there have been no deletions during
that time, the function returns an empty SDO_NUMBER_ARRAY object.

This function is equivalent to using the get NodeDel et i ons method of the TopoMap class of
the client-side Java API (described in Topology Data Model Java Interface).

Examples

The following example returns the node ID numbers of nodes that have been deleted
from the current updatable TopoMap object. In this case, the return of an empty
SDO_NUMBER_ARRAY object indicates that no nodes have been deleted.

SELECT SDO_TOPO_MAP. GET_NODE_DELETI ONS FROM DUAL;

GET_NODE_DELETI ONS

4-38

Chapter 4
SDO_TOPO_MAP.GET_NODE_FACE_STAR

SDO_NUMBER ARRAY()

4.34 SDO_TOPO_MAP.GET NODE_FACE_STAR

ORACLE

Format

SDO TOPO_MAP. GET_NODE_FACE_STAR(
topol ogy | N VARCHARZ,
topo_map | N VARCHAR?,
node_id | N NUMBER

) RETURN SDO_NUMBER_ARRAY;

Description

Returns an SDO_NUMBER_ARRAY object with the face ID numbers, in clockwise
order, of the faces that are connected to the specified node.

Parameters

topology
Name of the topology that contains the node, or a null value, as explained in Using
GET_xxx Topology Functions. Must not exceed 20 characters.

topo_map
Name of the TopoMap object, or a null value, as explained in Using GET_xxx
Topology Functions. (TopoMap objects are explained in TopoMap Objects.)

node_id
Node ID value of the node.

Usage Notes

The node face star of a node is the faces that are connected to the node. One face is
returned for each edge connected to the node. For an isolated node, the containing
face is returned. A face may appear more than once in the list.

The t opol ogy or t opo_map parameter should specify a valid name, as explained in Using
GET_xxx Topology Functions.

This function is equivalent to using the get NodeFaceSt ar method of the TopoMap class of
the client-side Java API (described in Topology Data Model Java Interface).

To return the node star of a node, use the SDO_TOPO_MAP.GET_NODE_STAR
function.

Examples

The following example returns the node face star of the node whose node ID value is
14. (The example refers to definitions and data from Topology Built from Topology
Data.)

SELECT SDO_TOPO MAP. GET_NODE_FACE_STAR(nul |, ' CI TY_DATA TOPOVAP' , 14) FROM DUAL;
SDO_TOPO_MAP. GET_NODE_FACE_STAR(NULL, ' CI TY_DATA TOPOVAP' , 14)

SDO_NUMVBER ARRAY(4, 7, 6, 3)

4-39

Chapter 4
SDO_TOPO_MAP.GET_NODE_STAR

4.35 SDO_TOPO MAP.GET NODE_STAR

ORACLE

Format

SDO_TOPO_MAP. GET_NODE_STAR(
topol ogy | N VARCHARZ,
topo_map | N VARCHAR?,
node_id | N NUMBER

) RETURN SDO_NUMBER_ARRAY;

Description

Returns an SDO_NUMBER_ARRAY object with the edge ID numbers, in clockwise
order, of the edges that are connected to the specified node.

Parameters

topology
Name of the topology that contains the node, or a null value, as explained in Using
GET_xxx Topology Functions. Must not exceed 20 characters.

topo_map
Name of the TopoMap object, or a null value, as explained in Using GET_xxx
Topology Functions. (TopoMap objects are explained in TopoMap Objects.)

node_id
Node ID value of the node.

Usage Notes

The node star of a node is the edges that are connected to the node. A positive edge
ID represents an edge for which the node is its start node. A negative edge 1D
represents an edge for which the node is its end node. If any loops are connected to
the node, edges may appear in the list twice with opposite signs.

The t opol ogy or t opo_map parameter should specify a valid name, as explained in Using
GET _xxx Topology Functions.

This function is equivalent to using the get NodeSt ar method of the TopoMap class of the
client-side Java API (described in Topology Data Model Java Interface).

To return the node face star of a node, use the
SDO_TOPO_MAP.GET_NODE_FACE_STAR function.

Examples

The following example returns the node star of the node whose node ID value is 14.
(The example refers to definitions and data from Topology Built from Topology Data.)

SELECT SDO TOPO MAP. GET_NODE_STAR(nul |, ' CI TY_DATA TOPOVAP' , 14) FROM DUAL;

SDO_TOPO_MAP. GET_NCDE_STAR(NULL, ' CI TY_DATA TOPOVAP' , 14)

4-40

Chapter 4
SDO_TOPO_MAP.GET_TOPO_NAME

4.36 SDO_TOPO_MAP.GET TOPO NAME

Format
SDO TOPO_MAP. GET_TOPO_NANME(

topo_map | N VARCHAR2
) RETURN VARCHARZ;

Description

Returns the name of the topology associated with the specified TopoMap object.

Parameters

topo_map
Name of the TopoMap object. (TopoMap objects are explained in TopoMap Objects.)

Usage Notes

This function is equivalent to using the get TopoNanme method of the TopoMap class of the
client-side Java API (described in Topology Data Model Java Interface).

Examples

The following example returns the name of the topology associated with the TopoMap
object named CI TY_DATA TOPOMAP. (The example refers to definitions and data from
Topology Built from Topology Data.)

SELECT SDO TOPO_MAP. GET_TOPO _NAME(' CI TY_DATA TOPOVAP') FROM DUAL;

SDO_TOPO_MAP. GET_TOPO NAME(' CI TY_DATA_TOPOVAP')

ClI TY_DATA

4.37 SDO_TOPO MAP.GET TOPO TRANSACTION ID

ORACLE

Format

SDO_TOPO MAP. GET_TCPO TRANSACTI ON_I D{) RETURN NUMBER;

Description

Returns the topology transaction ID number, if data has been loaded into the current
updatable TopoMap object.

Parameters

None.

Usage Notes

For each row in the history information table for a topology, the TOPO_TX_ID column
contains the topology transaction ID number. The history information table is described
in History Information Table.

4-41

Chapter 4
SDO_TOPO_MAP.LIST_TOPO_MAPS

This function is equivalent to using the get TopoTr ansacti onl d method of the TopoMap
class of the client-side Java API (described in Topology Data Model Java Interface).

Examples

The following example returns the topology transaction ID number for the current
updatable TopoMap object.

SELECT SDO_TOPO_MAP. GET_TOPO_TRANSACTI ON_I D FROM DUAL,;

GET_TCPO_TRANSACTI ON_I D

4.38 SDO_TOPO_MAP.LIST_TOPO_MAPS

ORACLE

Format

SDO TOPO MAP. LI ST_TOPO MAPS() RETURN VARCHARZ;

Description

Returns a comma-delimited list of entries for each TopoMap object currently active in
the session, or an empty string if there are no currently active TopoMap objects.

Parameters

None.

Usage Notes

Each entry in the comma-delimited list contains the following information: the name of
the TopoMap object, the name of the topology associated with the TopoMap object,
and either updat abl e if the TopoMap object can be updated (that is, edited) or r ead-
only if the TopoMap object cannot be updated.

For more information about TopoMap objects, including updatable and read-only
status, see TopoMap Objects.

To remove a TopoMap object from the session, use the
SDO_TOPO_MAP.DROP_TOPO_MAP procedure.

Examples

The following example lists the Topomap object name, topology name, and whether
the object is updatable or read-only for each TopoMap object currently active in the
session. (The example refers to definitions and data from Topology Built from
Topology Data.)

SELECT SDO TGPO_MAP. LI ST_TCPO MAPS FROM DUAL;
LI ST_TOPO_MAPS

(CI TY_DATA TOPOMAP, CI TY_DATA, updat abl e)

4-42

Chapter 4
SDO_TOPO_MAP.LOAD_TOPO_MAP

4.39 SDO_TOPO _MAP.LOAD TOPO MAP

Format (Function)

SDO_TOPO_MAP. LOAD TOPO_MAP(

topo_map I'N VARCHARZ,

al | ow_updates | N VARCHAR?,

bui I'd_i ndexes | N VARCHAR2 DEFAULT ' TRUE'
) RETURN VARCHARZ;

or

SDO_TOPO_MAP. LOAD_TOPO_MAP(

t opo_map I'N VARCHAR2,
xnin I N NUMBER,
ynin I N NUMBER,
Xmax I N NUMBER,
ymax I N NUMBER,

al | ow_updates | N VARCHAR?,
bui I'd_i ndexes | N VARCHAR2 DEFAULT ' TRUE'
) RETURN VARCHARZ;

Format (Procedure)

SDO_TOPO_MAP. LOAD_TOPO_MAP(
t opo_map I'N VARCHAR2,
al | ow_updates | N VARCHAR?,
bui | d_i ndexes I'N VARCHAR2 DEFAULT ' TRUE');'

or

SDO_TOPO_MAP. LOAD_TOPO_MAP(

t opo_map I'N VARCHARZ,
Xxm n I N NUMBER,
ynin I N NUVBER,
Xmax I N NUMBER,
ymax I N NUMBER,

al | ow_updates | N VARCHAR?,
bui | d_i ndexes | N VARCHAR2 DEFAULT ' TRUE);'

Description

Loads the topological elements (primitives) for an entire topology or a window
(rectangular portion) of a topology into a TopoMap object. If you use a function format,
returns the string TRUE if topological elements were loaded into the cache, and FALSE if
no topological elements were loaded into the cache.

Parameters

topo_map
Name of the TopoMap object. (TopoMap objects are explained in TopoMap Objects.)

Xmin

Lower-left X coordinate value for the window (rectangular portion of the topology) to
be loaded.

See the Usage Notes and Figure 4-1 for information about which topological elements
are loaded when you specify a window.

ORACLE 4-43

ORACLE

Chapter 4
SDO_TOPO_MAP.LOAD_TOPO_MAP

ymin
Lower-left Y coordinate value for the window (rectangular portion of the topology) to
be loaded.

Xmax
Upper-right X coordinate value for the window (rectangular portion of the topology) to
be loaded.

ymax
Upper-right Y coordinate value for the window (rectangular portion of the topology) to
be loaded.

allow_updates

TRUE makes the TopoMap object updatable; that is, it allows topology editing
operations to be performed on the TopoMap object and changes to be written back to
the database. FALSE makes the TopoMap object read-only with respect to the
database; that is, it allows topology editing operations to be performed on the
TopoMap object but does not allow changes to be written back to the database.
Making a TopoMap object updatable causes the topological elements in the TopoMap
object to be locked, which means that they cannot be included in an updatable
TopoMap object in the session of another database user. (Within any given user
session, there can be no more than one updatable TopoMap object active.)

build_indexes

TRUE (the default) builds in-memory R-tree indexes for edge and face data; FALSE does
not build in-memory R-tree indexes for edge and face data. The indexes improve the
performance of editing operations, especially with large topologies.

Usage Notes

Using a procedure format for loading the TopoMap object is more efficient than using
the function format, if you do not need to know if any topological elements were loaded
(for example, if the specified topology or rectangular area is empty). Using a function
format lets you know if any topological elements were loaded.

You must create the TopoMap object (using the
SDO_TOPO_MAP.CREATE_TOPO_MAP procedure) before you load data into it.

You cannot use this function or procedure if the TopoMap object already contains
data. If the TopoMap object contains any data, you must do one of the following before
calling this function or procedure: commit the changes (using the
SDO_TOPO_MAP.COMMIT_TOPO_MAP procedure) and clear the cache (using the
SDO_TOPO_MAP.CLEAR_TOPO_MAP procedure), or roll back the changes (using
the SDO_TOPO_MAP.ROLLBACK_TOPO_MAP procedure).

For information about using an in-memory cache to edit topological elements, see
Approaches for Editing Topology Data.

This function or procedure is equivalent to using the | oadTopol ogy or | oadW ndow
method of the TopoMap class of the client-side Java API (described in Topology Data
Model Java Interface).

Every TopoMap object, whether for an entire topology or for a window specified using
the xni n, yni n, xmax, and ymax parameters, has a region associated with it. For an
updatable TopoMap object, updates are allowed only within this region. (The region
might also contain topological elements that you cannot update directly, but that might
be modified by Oracle Spatial and Graph as needed as a result of your editing
operations.)

4-44

ORACLE

Chapter 4
SDO_TOPO_MAP.LOAD _TOPO_MAP

When a TopoMap object is loaded, all nodes, faces, and edges that intersect the
region for the TopoMap object are loaded. When a face is loaded, all edges and nodes
that are on the boundary of the face are loaded. When an edge is loaded, the start
node and end node of the edge are loaded. Consider the topology and the window
(shown by a dashed line) in Figure 4-1.

Figure 4-1 Loading Topological Elements into a Window

N13
N18

N12

°N7

N8 N10

E9|
N6

With the window shown in Figure 4-1:

e Face F1 is loaded because it partially overlaps the window.

e The following edges are loaded: E3, E4, E5, E6, E7, E8, E9, E10, E11, E12, E13,
E14, E16.

Edge E3 is loaded because it partially overlaps the window.
Edge E9 is loaded because it bounds a face (F1) that partially overlaps a window.

Edge E12 is loaded because it is an island edge in a face (F1) that partially
overlaps the window.

Edge EL1 is not loaded because it is not associated with any face that interacts with
the window.

e The following nodes are loaded: N2, N5, N6, N7, N8, N9, N10, N11, N12, N16,
N19, N20.

Non-isolated node N2 is loaded because edge E3 is loaded.
Non-isolated node N12 is loaded because edges E9 and E11 are loaded.

Isolated node N16 is loaded because it is an isolated (island) node inside a locked
face.

4-45

Chapter 4
SDO_TOPO_MAP.MOVE_EDGE

Examples

The following example loads all CI TY_DATA topology elements into its associated
TopoMap object for editing and builds the in-memory R-tree indexes by default. It
returns a result indicating that the operation was successful and that some topological
elements were loaded into the cache. (The example refers to definitions and data from
Topology Built from Topology Data.)

CALL SDO TOPO MAP. LOAD TOPO MAP(' CI TY_DATA TOPOMAP', ' TRUE') INTO :res_varchar:
Cal | conpl et ed.
PRI NT res_varchar;

RES_VARCHAR

4.40 SDO_TOPO_MAP.MOVE_EDGE

ORACLE

Format

SDO_TOPO_MAP. MOVE_EDGE(
t opol ogy I'N VARCHARZ,
edge_id I'N NUMBER,
s_node_id | N NUMBER
t_node_id | N NUMBER
edge_coords | N SDO NUVBER_ARRAY) ;

or
SDO_TOPO_MAP. MOVE_EDGE(
t opol ogy I'N VARCHAR2,
edge_id I'N NUMBER,
s_node_i d I'N NUMBER,
t_node_id I'N NUMBER,
edge_coor ds I'N SDO_NUMBER_ARRAY,

moved_i so_nodes OUT SDO_NUMBER_ARRAY,
moved_i so_edges OUT SDO_NUMBER_ARRAY,
al l ow_i so_noves | N VARCHAR?) ;

Description
Moves a non-isolated edge.
Parameters

topology

Name of the topology in which to move the edge, or null if you are using an updatable
TopoMap object (see Specifying the Editing Approach with the Topology Parameter).
Must not exceed 20 characters.

edge_id
Edge ID of the edge to be moved.

edge_coords
An array of coordinates of the resulting moved edge, from start point to end point.

4-46

ORACLE

Chapter 4
SDO_TOPO_MAP.MOVE_EDGE

s_node_id

Node ID of the source node, which identifies the point (start node or end node of the
edge) affected by the move, before the move occurs. For example, if the end point of
edge E19 is to be moved from node N17 to node N16, the s_node_i d value is the node
ID number for node N17.

t_node_id

Node ID of the target node, which identifies the point affected by the move, after the
move occurs. For example, if the end point of edge E19 is to be moved from node
N17 to node N16, the t _node_i d value is the node ID number for node N16.

moved_iso_nodes

Output parameter in which, if the al | ow_i so_noves parameter value is TRUE, Spatial and
Graph stores the node ID values of any isolated nodes that have moved to a different
face as a result of this procedure. If the al | ow_i so_noves parameter value is FALSE,
Spatial and Graph stores the node ID values of any isolated nodes that did not move
but that would have moved to a different face if the al | ow_i so_noves parameter value
had been TRUE.

moved_iso_edges

Output parameter in which, if the al | ow_i so_noves parameter value is TRUE, Spatial and
Graph stores the edge ID values of any isolated edges that have moved to a different
face as a result of this procedure. If the al | ow_i so_noves parameter value is FALSE,
Spatial and Graph stores the edge ID values of any isolated edges that did not move
but that would have moved to a different face if the al | ow_i so_moves parameter value
had been TRUE.

allow_iso_moves

TRUE causes Spatial and Graph to allow an edge move operation that would cause any
isolated nodes or edges to be in a different face, and to adjust the containing face
information for such isolated nodes and edges; FALSE causes Spatial and Graph not to
allow an edge move operation that would cause any isolated nodes or edges to be in
a different face.

If you use the format that does not include the al | ow i so_noves parameter, Spatial and
Graph allows an edge move operation that would cause any isolated nodes or edges
to be in a different face, and it adjusts the containing face information for such isolated
nodes and edges.

Usage Notes
For information about moving edges, see Moving an Edge.

This procedure is equivalent to using the moveEdge method of the TopoMap class of the
client-side Java API (described in Topology Data Model Java Interface).

Examples

The following example moves the edge with edge ID value 19, and it displays the edge
coordinates before and after the move. The edge move operation moves the end point
of the edge from the node with node ID value 17 to the node with node ID value 16.
(The edge being moved is E19 in Figure 1-2 in Topology Data Model Concepts; and
the edge is being changed from going vertically up to node N17, to going diagonally up
and left to node N16. The example refers to definitions and data from Topology Built
from Topology Data.)

- Cet coordinates of edge E19.
SELECT SDO TOPO MAP. GET_EDGE_COORDS(nul |, ' CI TY_DATA TCPOMAP' , 19) FROM DUAL;

4-47

Chapter 4
SDO_TOPO_MAP.MOVE_ISOLATED_NODE

SDO TOPO MAP. GET_EDGE_COORDS(NULL, ' CI TY_DATA TOPOVRP | 19)

SDO_NUMBER ARRAY(21, 14, 21, 22)

- Mve edge E19: from N14 -> N17 to N14 -> N16. The 3rd and 4th paraneters
- identify NL7 and NI16.
CALL SDO TOPO MAP. MOVE_EDGE(nul I, 19, 17, 186,

SDO NUMBER ARRAY(21, 14, 9,22));

Cal | conpl et ed.

- Get coordinates of edge E19 after the nove.
SELECT SDO TOPO MAP. GET_EDGE_COORDS(nul |, ' CI TY_DATA TOPOVAP' , 19) FROM DUAL;

SDO TOPO MAP. GET_EDGE_COORDS(NULL, ' CI TY_DATA TOPOVRP | 19)

SDO_NUMBER ARRAY(21, 14, 9, 22)

4.41 SDO_TOPO_MAP.MOVE_ISOLATED NODE

Format

SDO_TOPO_MAP. MOVE_| SOLATED NODE(
topol ogy | N VARCHARZ,
node_id | N NUMBER,
poi nt IN SDO_GEQVETRY) ;

or

SDO_TOPO_MAP. MOVE_| SOLATED NCDE(
topol ogy | N VARCHARZ,
node_id I N NUMBER,

X I'N NUMBER,
y I N NUVBER) ;
Description

Moves an isolated (island) node.
Parameters

topology

Name of the topology in which to move the node, or null if you are using an updatable
TopoMap object (see Specifying the Editing Approach with the Topology Parameter).
Must not exceed 20 characters.

node_id
Node ID of the node to be moved.

point
SDO_GEOMETRY object (point geometry) representing the location to which the
isolated node is to be moved.

X
X-axis value of the point representing the location to which the isolated node is to be
moved.

ORACLE 4-48

Chapter 4
SDO_TOPO_MAP.MOVE_NODE

y
Y-axis value of the point representing the location to which the isolated node is to be

moved.

Usage Notes
For information about moving nodes, see Moving a Node.

The node must be moved to a location inside the face in which it is currently located.
Otherwise, you must delete the node and re-create it.

This procedure is equivalent to using the movel sol at edNode method of the TopoMap class
of the client-side Java API (described in Topology Data Model Java Interface).

Examples

The following example adds an isolated node and then moves it. (The example refers
to definitions and data from Topology Built from Topology Data.)

CALL SDO TOPO MAP. ADD | SOLATED NCDE(nul I, 2,
SDO_GEOMETRY(2001, NULL, SDO PO NT_TYPE(22, 38, NULL), NULL, NULL))
I NTO : res_nunber;

- Mve the just-added isol ated node (from 20,38 to 22, 39).
CALL SDO TOPO MAP. MOVE_| SOLATED NODE(nul I, :res_nunber,
SDO_GEOVETRY(2001, NULL, SDO PO NT_TYPE(22, 39, NULL), NULL, NULL));

4.42 SDO_TOPO_ MAP.MOVE_NODE

ORACLE

Format

SDO_TOPO_MAP. MOVE_NODE(
t opol ogy I'N VARCHAR?,
node_i d I N NUMBER,
edges_coords I N SDO EDGE_ARRAY);

or

SDO_TOPO_MAP. MOVE_ NODE(
t opol ogy I'N VARCHAR2,
node_i d I N NUMBER,
edges_coor ds I'N SDO_EDGE_ARRAY,
moved_i so_nodes OUT SDO NUMBER_ARRAY,
moved_i so_edges OUT SDO NUMBER_ARRAY,
al l ow_i so_noves | N VARCHAR?) ;

Description
Moves a non-isolated node and its attached edges.
Parameters

topology

Name of the topology in which to move the node, or null if you are using an updatable
TopoMap object (see Specifying the Editing Approach with the Topology Parameter).
Must not exceed 20 characters.

4-49

ORACLE

Chapter 4
SDO_TOPO_MAP.MOVE_NODE

node_id
Node ID of the node to be moved.

edges_coords

An array of arrays, of type SDO_EDGE_ARRAY (described in SDO_EDGE_ARRAY
and SDO_NUMBER_ARRAY Types). Each inner array consists of coordinates of
each resulting attached edge, from start point to end point. The outer array consists of
the attached edge arrays, starting with the start edge of the node to be moved and
proceeding in clockwise order (with the sequence of the edges as would be obtained
in a call to the SDO_TOPO_MAP.GET_NODE_STAR function).

The array for each edge must include the start and end points. Any loops that connect
twice at the moved node must be specified twice in the array.

moved_iso_nodes

Output parameter in which, if the al | ow_i so_noves parameter value is TRUE, Spatial and
Graph stores the node ID values of any isolated nodes that have moved to a different
face as a result of this procedure. If the al | ow_i so_noves parameter value is FALSE,
Spatial and Graph stores the node ID values of any isolated nodes that did not move
but that would have moved to a different face if the al | ow_i so_moves parameter value
had been TRUE.

moved_iso_edges

Output parameter in which, if the al | ow_i so_noves parameter value is TRUE, Spatial and
Graph stores the edge ID values of any isolated edges that have moved to a different
face as a result of this procedure. If the al | ow i so_noves parameter value is FALSE,
Spatial and Graph stores the edge ID values of any isolated edges that did not move
but that would have moved to a different face if the al | ow_i so_moves parameter value
had been TRUE.

allow_iso_moves

TRUE causes Spatial and Graph to allow a node move operation that would cause any
isolated nodes or edges to be in a different face, and to adjust the containing face
information for such isolated nodes and edges; FALSE causes Spatial and Graph not to
allow a node move operation that would cause any isolated nodes or edges to be in a
different face.

If you use the format that does not include the al | ow i so_noves parameter, Spatial and
Graph allows a node move operation that would cause any isolated nodes or edges to
be in a different face, and it adjusts the containing face information for such isolated
nodes and edges.

Usage Notes
For information about moving nodes, see Moving a Node.

This procedure is equivalent to using the mveNode method of the TopoMap class of the
client-side Java API (described in Topology Data Model Java Interface).

Examples

The following example moves node N3 and adjusts the coordinates of the only
attached edge. (The example refers to definitions and data from Topology Built from
Topology Data.)

- Move node N3 to right: from 25,35 to 26, 35.

- E3 is changed from 25,30 -> 25,35 to 25,30 -> 26, 35.
CALL SDO TGOPO_MAP. MOVE_NODE(nul I, 3,

SDO_EDGE_ARRAY(SDO_NUMBER_ARRAY(25, 30, 26, 35)));

4-50

Chapter 4
SDO_TOPO_MAP.REMOVE_EDGE

4.43 SDO_TOPO_MAP.REMOVE_EDGE

Format

SDO_TOPO_MAP. REMOVE_EDGE(
topol ogy | N VARCHAR?,
edge_id | N NUVBER);

Description

Removes an edge from a topology.

Parameters

topology

Name of the topology from which to remove the edge, or null if you are using an
updatable TopoMap object (see Specifying the Editing Approach with the Topology
Parameter). Must not exceed 20 characters.

edge_id
Edge ID of the edge to be removed.

Usage Notes

If t opol ogy is not null, Spatial and Graph automatically updates the appropriate entries
in the <topology-name>_EDGE$ and <topology-name>_FACES tables. (If t opol ogy is
null, you can update these tables at any time by calling the
SDO_TOPO_MAP.UPDATE_TOPO_MAP procedure.)

For information about removing an edge from a topology, see Removing an Edge.

Examples

The following example removes the edge with edge ID value 99 from the current
updatable TopoMap object.

CALL SDO TOPO MAP. REMOVE_EDGE(nul |, 99);

4.44 SDO_TOPO_MAP.REMOVE_NODE

Format

SDO_TOPO_MAP. REMOVE_NODE(
t opol ogy | N VARCHAR?,
node_id | N NUMBER);

Description

Removes a node from a topology.

ORACLE' 451

Chapter 4
SDO_TOPO_MAP.REMOVE_OBSOLETE_NODES

Parameters

topology

Name of the topology from which to remove the node, or null if you are using an
updatable TopoMap object (see Specifying the Editing Approach with the Topology
Parameter). Must not exceed 20 characters.

node_id
Node ID of the node to be removed.

Usage Notes

If t opol ogy is not null, Spatial and Graph automatically updates the appropriate entries
in the <topology-name>_NODES$ and <topology-name>_EDGES$ tables, and in the
<topology-name>_FACES$ table if necessary. (If t opol ogy is null, you can update these
tables at any time by calling the SDO_TOPO_MAP.UPDATE_TOPO_MAP procedure.)

For information about removing a node from a topology, see Removing a Node.

Examples

The following example removes the node with node ID value 500 from the current
updatable TopoMap object.

CALL SDO TOPO MAP. REMOVE_NODE(nul |, 500);

4.45 SDO_TOPO_MAP.REMOVE_OBSOLETE_NODES

ORACLE

Format

SDO_TOPO_MAP. REMOVE_OBSOLETE_NODES(
topol ogy | N VARCHAR2);

Description

Removes obsolete nodes from a topology. (Obsolete nodes are explained in
Removing Obsolete Nodes.)

Parameters

topology

Name of the topology from which to remove obsolete nodes, or null if you are using
an updatable TopoMap object (see Specifying the Editing Approach with the Topology
Parameter). Must not exceed 20 characters.

Usage Notes

For information about removing obsolete nodes from a topology, see Removing
Obsolete Nodes.

Examples

The following example removes all obsolete nodes from the current updatable
TopoMap object.

CALL SDO TOPO MAP. REMOVE_OBSCLETE_NODES(nul |) ;

4-52

Chapter 4
SDO_TOPO_MAP.ROLLBACK_TOPO_MAP

4.46 SDO_TOPO_MAP.ROLLBACK_TOPO_MAP

4.47

Format

SDO_TOPO_MAP. ROLLBACK_TOPO MAP;

Description

Rolls back all changes to the database that were made using the current updatable
TopoMap object, discards any changes in the object, clears the object's cache
structure, and makes the object read-only.

Parameters

None.

Usage Notes

Use this procedure when you are finished with a batch of edits to a topology and you
want to discard (that is, not commit) all changes to the database and in the cache.
After the rollback operation completes, you cannot edit the TopoMap object. To make
further edits to the topology, you can load the topology into the same TopoMap object
for update (using the SDO_TOPO_MAP.LOAD_TOPO_MAP function or procedure), or
you can create a new TopoMap object (using the
SDO_TOPO_MAP.CREATE_TOPO_MAP procedure) and load the topology into that
TopoMap object for update.

To commit all TopoMap object changes, use the
SDO_TOPO_MAP.COMMIT_TOPO_MAP procedure.

For information about using an in-memory cache to edit topological elements, see
Approaches for Editing Topology Data.

This procedure is equivalent to using the rol | backDB method of the TopoMap class of the
client-side Java API (described in Topology Data Model Java Interface).

Examples

The following example rolls back from the database all changes associated with the
current updatable TopoMap object.

EXECUTE SDO_TOPO_MAP. ROLLBACK_TOPO_MAP;

SDO_TOPO_MAP.SEARCH_EDGE_RTREE TOPO MAP

ORACLE

Format

SDO_TOPO_MAP. SEARCH EDGE_RTREE_TOPO_MAP(
topo_map IN VARCHARZ,

Xxm n I'N NUMBER,
ynin I'N NUMBER,
Xmax I N NUMBER,
ymax I N NUMBER,

4-53

4.48

Chapter 4
SDO_TOPO_MAP.SEARCH_FACE_RTREE_TOPO_MAP

capacity | N NUMBER
) RETURN SDO NUMBER_ARRAY;

Description

Returns an array with the edge ID numbers of the edges that interact with a specified
guery window. The query uses the edge R-tree built on the specified TopoMap object.

Parameters

topo_map
Name of the TopoMap object. (TopoMap objects are explained in TopoMap Obijects.)

xmin
Lower-left X coordinate value for the query window.

ymin
Lower-left Y coordinate value for the query window.

Xmax
Upper-right X coordinate value for the query window.

ymax
Upper-right Y coordinate value for the query window.

capacity
Maximum number of edge ID values to be returned. If you specify O or a negative
number, 100 is used.

Usage Notes

This procedure is equivalent to using the sear chEdgeRTr ee method of the TopoMap class
of the client-side Java API (described in Topology Data Model Java Interface).

Examples

The following example returns the edge ID numbers (up to 200) of edge that interact
with a query window whose lower-left corner is at (5,5) and upper-right corner is at
(30,40). (The example refers to definitions and data from Topology Built from Topology
Data.)

SELECT SDO TOPO MAP. SEARCH EDGE_RTREE TOPO MAP(' CI TY_DATA TOPOVAP' , -
5,5, 30,40, 200) FROM DUAL;

SDO_TOPO_MAP. SEARCH_EDGE_RTREE_TOPO MAP(' CI TY_DATA_TOPOMAP' , 5, 5, 30, 40, 200)

SDO NUMBER ARRAY(12, 13, 22, 20, 9, 21, 19, 6, 10, 7, 26, 3, 1, 25, 2)

SDO_TOPO_MAP.SEARCH_FACE_RTREE_TOPO MAP

ORACLE

Format

SDO_TOPO_MAP. SEARCH FACE_RTREE_TOPO_MAP(
topo_map IN VARCHARZ,
xnin I'N NUMBER,
ynin I'N NUMBER,

4-54

Chapter 4
SDO_TOPO_MAP.SET_MAX_MEMORY_SIZE

xnax I'N NUMBER,
ymax I N NUMBER,
capacity | N NUMBER

) RETURN SDO NUMBER_ARRAY;

Description

Returns an array with the face ID numbers of the faces that interact with a specified
query window. The query uses the face R-tree built on the specified TopoMap object.

Parameters

topo_map
Name of the TopoMap object. (TopoMap objects are explained in TopoMap Obijects.)

xmin
Lower-left X coordinate value for the query window.

ymin
Lower-left Y coordinate value for the query window.

Xmax
Upper-right X coordinate value for the query window.

ymax
Upper-right Y coordinate value for the query window.

capacity
Maximum number of face ID values to be returned. If you specify 0 or a negative
number, 100 is used.

Usage Notes

This procedure is equivalent to using the sear chFaceRTr ee method of the TopoMap class
of the client-side Java API (described in Topology Data Model Java Interface).

Examples

The following example returns the face ID numbers (up to 200) of faces that interact
with a query window whose lower-left corner is at (5,5) and upper-right corner is at
(30,40). (The example refers to definitions and data from Topology Built from Topology
Data.)

SELECT SDO TOPO MAP. SEARCH FACE RTREE TOPO MAP(' CI TY_DATA TOPOVAP' , -
5,5, 30,40, 200) FROM DUAL;

SDO_TOPO_MAP. SEARCH_FACE_RTREE_TOPO MAP(' CI TY_DATA TOPOMAP' , 5, 5, 30, 40, 200)

SDO NUVBER ARRAY(6, 7, 3, 4, 9, 1, 2)

4.49 SDO_TOPO_MAP.SET _MAX_MEMORY_SIZE

Format

SDO_TOPO MAP. SET_MAX_MEMORY_SI ZE(
maxsi ze | N NUVBER DEFAULT 268435456);

ORACLE 4-55

Chapter 4
SDO_TOPO_MAP.UPDATE_TOPO_MAP

Description

Sets the Java maximum heap size for an application to run in an Oracle Java virtual
machine.

Parameters

maxsize
Number of bytes for the Java maximum heap size. The default value is 268435456
(256 MB).

Usage Notes

If you encounter the j ava. | ang. Qut Of Memor yError exception, you can use this procedure
to increase the maximum heap size.

If you specify a value greater than the system limit, the system limit is used.

Examples
The following example sets the Java maximum heap size to 536870912 (512 MB).
EXECUTE SDO_TOPO MAP. SET_MAX_MEMORY_SI ZE(536870912) ;

4.50 SDO_TOPO_MAP.UPDATE_TOPO MAP

ORACLE

Format

SDO_TOPO MAP. UPDATE_TOPO MAP;

Description

Updates the topology to reflect edits made to the current updatable TopoMap object.

Parameters

None.

Usage Notes

Use this procedure to update the topology periodically during an editing session, as
explained in Process for Editing Using Cache Explicitly (PL/SQL API). Updates are
made, as needed, to the edge, face, and node information tables (described in
Topology Data Model Tables). The TopoMap object remains open for further editing
operations. The updates are not actually committed to the database until you call the
SDO_TOPO_MAP.COMMIT_TOPO_MAP procedure.

This procedure performs a level-0 validation of the TopoMap object before it updates
the topology. (See the explanation of the | evel parameter for the
SDO_TOPO_MAP.VALIDATE_TOPO_MAP function.)

If you caused in-memory R-tree indexes to be created when you loaded the TopoMap
object (by specifying or accepting the default value of TRUE for the bui | d_i ndexes
parameter with the SDO_TOPO_MAP.LOAD_TOPO_MAP function or procedure), you
can rebuild these indexes by using the SDO_TOPO_MAP.CREATE_EDGE_INDEX
and SDO_TOPO_MAP.CREATE_FACE_INDEX procedures. For best index

4-56

Chapter 4
SDO_TOPO_MAP.VALIDATE_TOPO_MAP

performance, these indexes should be rebuilt periodically when you are editing a large
number of topological elements.

Contrast this procedure with the SDO_TOPO_MAP.CLEAR_TOPO_MAP procedure,
which clears the cache associated with a specified TopoMap object and makes the
object read-only.

To commit all TopoMap object changes, use the
SDO_TOPO_MAP.COMMIT_TOPO_MAP procedure.

For information about using an in-memory cache to edit topological elements, see
Approaches for Editing Topology Data.

This procedure is equivalent to using the updat eTopol ogy method of the TopoMap class of
the client-side Java API (described in Topology Data Model Java Interface).

Examples

The following example updates the topology associated with the current updatable
TopoMap object to reflect changes made to that object.

EXECUTE SDO_TOPO_MAP. UPDATE_TOPO MAP;

451 SDO_TOPO_MAP.VALIDATE_TOPO MAP

ORACLE

Format

SDO_TOPO_MAP. VALI DATE_TOPO_MAP(
topo_map | N VARCHAR?,
level N NUMBER DEFAULT 1
) RETURN VARCHARZ;

Description

Performs a first-order validation of a TopoMap object, and optionally (by default)
checks the computational geometry also; returns the string TRUE if the structure of the
topological elements in TopoMap object is consistent, and raises an exception if the
structure of the topological elements in TopoMap object is not consistent.

Parameters

topo_map
Name of the TopoMap object. (TopoMap objects are explained in TopoMap Objects.)

level
A value of 0 checks for the following conditions as part of a first-order validation;

e All faces are closed, and none have infinite loops.

e All previous and next edge pointers are consistent.

e All edges meet at nodes.

» Eachisland node is associated with a face.

« All edges on a face boundary are associated with the face.

A value of 1 (the default) checks for all conditions associated with a value of 0, plus
the following conditions related to computational geometry:

4-57

Chapter 4
SDO_TOPO_MAP.VALIDATE_TOPOLOGY

» Eachisland is inside the boundary of its associated face.
* No edge intersects itself or another edge.
» Start and end coordinates of edges match coordinates of nodes.

* Node stars are properly ordered geometrically.

Usage Notes

This function checks the consistency of all pointer relationships among edges, nodes,
and faces. You can use this function to validate an updatable TopoMap object before
you update the topology (using the SDO_TOPO_MAP.UPDATE_TOPO_MAP
procedure) or to validate a read-only TopoMap object before issuing queries.

This function uses a tolerance value of 10E-15 for its internal computations, as
explained in Tolerance in the Topology Data Model.

This function is equivalent to using the val i dat eCache method of the TopoMap class of
the client-side Java API (described in Topology Data Model Java Interface).

Examples

The following example validates the topology in the TopoMap object named
Cl TY_DATA_TOPOMAP, and it returns a result indicating that the topology is valid. (The
example refers to definitions and data from Topology Built from Topology Data.)

CALL SDO TOPO MAP. VALI DATE_TOPO MAP(' CI TY_DATA TOPOMAP') I NTO :res_varchar:
Cal | conpl et ed.
PRI NT res_varchar;

RES VARCHAR

4.52 SDO_TOPO_MAP.VALIDATE_TOPOLOGY

ORACLE

Format

SDO_TOPO_MAP. VALI DATE_TOPOLOGY(
topol ogy | N VARCHARZ,
) RETURN VARCHARZ;

or
SDO_TOPO_MAP. VALI DATE_TOPOLOGY(
t opol ogy I'N VARCHAR?,
prevent _updates | N VARCHARZ,
| evel I N NUMBER DEFAULT 1

) RETURN VARCHARZ;

or

SDO_TOPO_MAP. VAL| DATE_TOPOLOGY(
topol ogy | N VARCHARZ,

Xxm n I N NUVBER,
ynin I N NUMBER,
Xmax I N NUMBER,

4-58

ORACLE

Chapter 4
SDO_TOPO_MAP.VALIDATE_TOPOLOGY

yImax I N NUVBER
) RETURN VARCHAR?;

or

SDO_TOPO_MAP. VALI DATE_TOPOLOGY(
topology | N VARCHAR?,

xmn I'N NUMBER,
ymn I'N NUMBER,
Xnax I'N NUMBER,
ynax I'N NUMBER

) RETURN VARCHARZ;

Description

Loads an entire topology or a window (rectangular portion) of a topology into a
TopoMap object; returns the string TRUE if the structure of the topology is consistent,
and raises an exception if the structure of the topology is not consistent.

Parameters

topology
Name of the topology to be validated. Must not exceed 20 characters.

xmin
Lower-left X coordinate value for the window (rectangular portion of the topology) to
be validated.

ymin
Lower-left Y coordinate value for the window (rectangular portion of the topology) to
be validated.

Xmax
Upper-right X coordinate value for the window (rectangular portion of the topology) to
be validated.

ymax
Upper-right Y coordinate value for the window (rectangular portion of the topology) to
be validated.

prevent_updates

TRUE prevents other users from updating the topology while the validation is being
performed; FALSE allows other users to update the topology while the validation is
being performed. If you specify FALSE, any topology changes made by other users
while the validation is being performed will not be considered by this function and will
not affect the result.

level
A value of 0 checks for the following conditions:

» All faces are closed, and none have infinite loops.
* All previous and next edge pointers are consistent.
* All edges meet at nodes.

* Eachisland node is associated with a face.

» All edges on a face boundary are associated with the face.

4-59

ORACLE

Chapter 4
SDO_TOPO_MAP.VALIDATE_TOPOLOGY

A value of 1 (the default) checks for all conditions associated with a value of 0, plus
the following conditions related to computational geometry:

» Eachisland is inside the boundary of its associated face.
* No edge intersects itself or another edge.
» Start and end coordinates of edges match coordinates of nodes.

* Node stars are properly ordered geometrically.

Usage Notes

This function implicitly creates a TopoMap object, and removes the object after the
validation is complete. (TopoMap objects are described in TopoMap Objects.)

This function uses a tolerance value of 10E-15 for its internal computations, as
explained in Tolerance in the Topology Data Model.

Examples

The following example validates the topology named Cl TY_DATA, and it returns a result
indicating that the topology is valid. (The example refers to definitions and data from
Topology Built from Topology Data.)

CALL SDO TOPO MAP. VALI DATE_TOPOLOGY(' CI TY_DATA') INTO :res_varchar;
Cal | conpl et ed.
PRI NT res_varchar;

RES_VARCHAR

4-60

Network Data Model

ORACLE

This part covers the network data model graph feature of Oracle Spatial and Graph.
This document has two main parts:

* Topology Data Model provides conceptual, usage, and reference information
about the Topology Data Model feature of Oracle Spatial and Graph.

» Part Il provides conceptual, usage, and reference information about the Network
Data Model Graph feature of Oracle Spatial and Graph.

Part Il contains the following chapters:

Chapters:

* Network Data Model Graph Overview
This chapter explains the concepts and operations related to the network data
model for representing capabilities or objects that are modeled as nodes and links
(vertices and edges) in a graph.

e SDO_NET Package Subprograms
The MDSYS.SDO_NET package contains subprograms (functions and
procedures) for managing networks.

 SDO_NFE Package Subprograms
The MDSYS.SDO_NFE package contains subprograms (functions and
procedures) for performing network feature editing.

Network Data Model Graph Overview

ORACLE

This chapter explains the concepts and operations related to the network data model
for representing capabilities or objects that are modeled as nodes and links (vertices

and edges) in a graph.

This model is called the Oracle Spatial and Graph Network Data Model Graph feature,
or simply Network Data Model Graph. This chapter assumes that you are familiar with
the main Oracle Spatial and Graph concepts, data types, and operations, as
documented in Oracle Spatial and Graph Developer's Guide.

Although this chapter discusses some network-related terms as they relate to Oracle
Spatial and Graph, it assumes that you are familiar with basic network data modeling
concepts.

Topics:

Introduction to Network Modeling

In many applications, capabilities or objects are modeled as nodes and links in a
network. The network model contains logical information such as connectivity
relationships among nodes and links, directions of links, and costs of nodes and
links.

Main Steps in Using the Network Data Model Graph

Network Data Model Graph Concepts
A network is a type of mathematical graph that captures relationships between
objects using connectivity.

Network Applications
Networks are used in applications to find how different objects are connected to
each other.

Network Hierarchy

Some network applications require representations at different levels of
abstraction. For example, two major processes might be represented as nodes
with a link between them at the highest level of abstraction, and each major
process might have several subordinate processes that are represented as nodes
and links at the next level down.

Network User Data

For user data defined through the xxx_SDO_NETWORK_USER_DATA views, the
default user data 1/0 implementation (LODUser Dat al 0SDO) is used to access the user
data during network analysis. However, some user data is not included in the node
or link table, and thus cannot be registered through
xxX_SDO_NETWORK_USER_DATA views.

Feature Modeling
You can model objects of interest on the network as features.

Feature Modeling Using Network Feature Editing (NFE)

Network feature editing (NFE) lets you create and manage an NFE model. An NFE
model extends the feature modeling capabilities by enabling you to visualize and
manipulate features using Java Swing components and a PL/SQL API.

5-1

Chapter 5
Introduction to Network Modeling

* Network Constraints
Network constraints are restrictions defined on network analysis computations.

* Network Analysis Using Load on Demand

* Network Data Model Graph Tables
The connectivity information for a spatial network is stored in two tables: a node
table and a link table. In addition, path information can be stored in a path table
and a path-link table.

* Network Data Model Graph and Network Feature Editing (NFE) Model Metadata
Views
Two sets of network metadata views can be created for each schema (user):
xXX_SDO_NETWORK_xxxxxx and xxx_SDO_NFE_MODEL_xxxxxx, where the
initial xxx can be USER or ALL. These views are created, as needed, by Spatial
and Graph

* Network Data Model Graph Application Programming Interface
The Oracle Spatial and Graph Network Data Model Graph feature includes two
client application programming interfaces (APIs): a PL/SQL interface provided by
the SDO_NET package and a Java interface.

e Cross-Schema Network Access
If database users other than the network owner need to read a network into
memory, you need to do one of the following options.

* Network Examples
This topic presents several Network Data Model Graph examples.

* Network Data Model Graph Tutorial and Other Resources
Network Data Model Graph learning resources are available.

 README File for Spatial and Graph and Related Features

5.1 Introduction to Network Modeling

ORACLE

In many applications, capabilities or objects are modeled as nodes and links in a
network. The network model contains logical information such as connectivity
relationships among nodes and links, directions of links, and costs of nodes and links.

With logical network information, you can analyze a network and answer questions,
many of them related to path computing and tracing. For example, for a biochemical
pathway, you can find all possible reaction paths between two chemical compounds;
or for a road network, you can find the following information:

e What is the shortest (distance) or fastest (travel time) path between two cities?
* What is the closest hotel to a specific airport, and how can | get there?

In addition to logical network information, spatial information such as node locations
and link geometries can be associated with the network. This information can help you
to model the logical information (such as the cost of a route, because its physical
length can be directly computed from its spatial representation).

The Spatial and Graph Network Data Model Graph feature can be used for large,
complex networks. For example, Figure 5-1 shows San Francisco and links, which
have been defined using the Network Data Model Graph feature, displayed in a demo
web-based application for network analysis. (You can install this demo using the NDM
tutorial described in Network Data Model Graph Tutorial and Other Resources.)

5-2

Chapter 5

Main Steps in Using the Network Data Model Graph

Figure 5-1 San Francisco Nodes and Links

Oracle Spatial Network Data Model Demo
Shartest Path Analysis

FAQ
PiESII0 ol Course 3
Left click for start point, riaht click for end point, or manually enter node 1D, link Jackson S5 \r 3
g
ID@percentage, o address N o8
Start [199515187 T pmaE
I E Tt
Western Addition £ = % gofanell
End [139497626 Canfornia st g o e
5 g . £ by &
Network Constraints 8 E @ =
tHold ctrl key for multi-selest or de-select) £ Richmond District 1 ?E Soloeh ;:::?W T
custorm NoHighwayC onstraint ~ Ry = % 3 saErancises P ENG
custarn.ProhibitedZoneConstraint B Bl g o %
oracle.spatial.router.ndm TruskHeightConstraint g PEESy H @ payes St i -
oracle spatial router ndrm TruckLegalConstraint v 3 fulton St fé % “y S *4&
g 2 E 3
5 & fol st oy
Prohibited Zone - ©) 4 > oak 3
Link Cost Calculators B,
Default Link Cost Calculator v Park 1375t Central Fuy (0]
1 DF i
Keep Previous Results [w2 by % 2
Reverse Direction [g H '1; 26th 3¢
111 o A E v T Ma
s % i
Include Traffic Patterns [] £ areas™ A SR T X
g] ‘ & El
. 8 ES 2
ot T 4 z g £ Mission District E
2010 v || September v|[23 v|[300AM G & g 3 E
& onst F 3 >
; g & e “ E
iFind Shortest Path x s bt g
%, 2 23ed St
Analysis Result: L0 [
Fror: 199515187 zamst 2
T 199457828 "
¢
(19851 5187-~198407526) ¥ Cesar Chavez
[£0St9172.31001, 109 links] =
2
il Diamond Heights. 2
Titre to ahalyze the netwark 0.017%. il
Time to compule geometries: 0.042s 2
taDr
vicente St 2 o o)
Sigtnind Stern o
3 Grove 4 -
o
Eosusy oY o
Monerey Bivd
it of %
U
2,000t % & %
i
SoERT S

5
=
Inglesiddocean Ave F:

)
©2010 NAVTEG™ and ©2010 Oracle™

The generic data model and network analysis capability can model and analyze many
kinds of network applications in addition to traditional geographical information
systems (GIS). For example, in biochemistry, applications may need to model reaction
pathway networks for living organisms; and in the pharmaceutical industry,
applications that model the drug discovery process may need to model protein-protein

interaction.

The network modeling capabilities of Spatial and Graph include schema objects and

an application programming interface (API). The schema objects include metadata and
network tables. The API includes a server-side PL/SQL API (the SDO_NET package)

for creating and managing networks in the database, and a middle-tier (or client-side)
Java API for network editing and analysis.

5.2 Main Steps in Using the Network Data Model Graph

ORACLE

This topic summarizes the main steps for working with the Network
Data Model Graph feature in Oracle Spatial and Graph.

It refers to important concepts, structures, and operations that are described in detail
in other sections.

There are two basic approaches to creating a network:

Let Spatial and Graph perform most operations, using procedures with names in
the form CREATE_<network-type> NETWORK.

Perform the operations yourself: create the necessary network tables and update
the network metadata.

5-3

Chapter 5
Main Steps in Using the Network Data Model Graph

With each approach, you must insert the network data into the network tables. You
can then use the Network Data Model Graph PL/SQL and Java application
programming interfaces (APIs) to update the network and perform other operations.
(The PL/SQL and Java APIs are described in Network Data Model Graph Application
Programming Interface.)

Letting Spatial Perform Most Operations

Performing the Operations Yourself

5.2.1 Letting Spatial Perform Most Operations

To create a network by letting Spatial and Graph perform most of the necessary
operations, follow these steps:

ORACLE

1.

Create the network using a procedure with a name in the form
CREATE_<network-type> NETWORK, where <network-type> reflects the type of
network that you want to create:

e SDO_NET.CREATE_SDO_NETWORK for a spatial network with non-LRS
SDO_GEOMETRY objects

e SDO_NET.CREATE_LRS NETWORK for a spatial network with LRS
SDO_GEOMETRY objects

e SDO_NET.CREATE_TOPO_NETWORK for a spatial network with topology
geometry (SDO_TOPO_GEOMETRY) objects

e SDO_NET.CREATE_LOGICAL_NETWORK for a logical network that does
not contain spatial information

Each of these procedures creates the necessary Network Data Model Graph
tables (described in Network Data Model Graph Tables) and inserts a row with the
appropriate network metadata information into the
xxx_SDO_NETWORK_METADATA views (described in
xxx_SDO_NETWORK_METADATA Views).

Each procedure has two formats: one format creates all Network Data Model
Graph tables using default names for the tables and certain columns, and other
format lets you specify names for the tables and certain columns. The default
names for the Network Data Model Graph tables are <network-name>_NODES$,
<network-name>_LINKS$, <network-name>_PATHS$, and <network-
name>_PLINKS$. The default name for cost columns in the Network Data Model
Graph tables is COST, and the default name for geometry columns is
GEOMETRY.

Insert data into the node and link tables, and if necessary into the path and path-
link tables. (The node, link, path, and path-link tables are described in Network
Data Model Graph Tables.)

Validate the network, using the SDO_NET.VALIDATE_NETWORK function.

For a spatial (SDO or LRS) network, insert the appropriate information into the
USER_SDO_GEOM_METADATA view, and create spatial indexes on the
geometry columns.

If you plan to use a view as a node, link, or path table, you must specify the view
name for the TABLE_NAME column value when you insert information about the
node, link, or path table in the USER_SDO_GEOM_METADATA view.

5-4

Chapter 5
Network Data Model Graph Concepts

5.2.2 Performing the Operations Yourself

To create a network by performing the necessary operations yourself, follow these
steps:

Create the node table, using the SDO_NET.CREATE_NODE_TABLE procedure.
Insert data into the node table.
Create the link table, using the SDO_NET.CREATE_LINK_TABLE procedure.

Insert data into the link table.

g A w0 d P

Optionally, create the path table, using the SDO_NET.CREATE_PATH_TABLE
procedure.

6. If you created the path table, create the path-link table, using the
SDO_NET.CREATE_PATH_LINK_TABLE procedure.

7. If you created the path table and if you want to create paths, insert data into the
table.

8. If you inserted data into the path table, insert the appropriate rows into the path-
link table.

9. Insert a row into the USER_SDO_NETWORK_METADATA view with information
about the network. (The USER_SDO_NETWORK_METADATA view is described
in xxx_SDO_NETWORK_METADATA Views.)

If you plan to use a view as a node, link, path, or path-link table, you must specify
the view name for the relevant columns when you insert information about the
network in the USER_SDO_NETWORK_METADATA view.

10. For a spatial (SDO or LRS) network, insert the appropriate information into the
USER_SDO_GEOM_METADATA view, and create spatial indexes on the
geometry columns.

If you plan to use a view as a node, link, or path table, you must specify the view
name for the TABLE_NAME column value when you insert information about the
node, link, or path table in the USER_SDO_GEOM_METADATA view.

11. Validate the network, using the SDO_NET.VALIDATE_NETWORK function.

You can change the sequence of some of these steps. For example, you can create
both the node and link tables first, and then insert data into each one; and you can
insert the row into the USER_SDO_NETWORK_METADATA view before you create
the node and link tables.

5.3 Network Data Model Graph Concepts

ORACLE

A network is a type of mathematical graph that captures relationships between objects
using connectivity.

The connectivity may or may not be based on spatial proximity. For example, if two
towns are on opposite sides of a lake, the shortest path based on spatial proximity (a
straight line across the middle of the lake) is not relevant if you want to drive from one
town to the other. Instead, to find the shortest driving distance, you need connectivity
information about roads and intersections and about the "cost" of individual links.

5-5

ORACLE

Chapter 5
Network Data Model Graph Concepts

A network consists of a set of nodes and links. Each link (sometimes also called an
edge or a segment) specifies two nodes.

A network can be directed (that is, by default, the start and end nodes determine link
direction) or undirected (that is, links can be traversed in either direction).

The following are some key terms related to the Network Data Model Graph: feature

* A node, also called a vertex, is a point where links can join each other. An
isolated node is a node that is not included in any links. (A non-isolated node will
become isolated if all links that include that node are deleted.)

» Alink represents a relationship between two nodes. Within a directed network,
any link can be undirected (that is, able to be traversed either from the start node
to the end node or from the end node to the start node) or directed (that is, able to
be traversed only from the start node to the end node). Within an undirected
network, all links are undirected.

A network element is a node or a link.

* A path is an alternating sequence of nodes and links, beginning and ending with
nodes, and usually with no nodes and links appearing more than once. (Repeating
nodes and links within a path are permitted, but are rare in most network
applications.)

* A subpath is a partial path along a path, created either as a result of a network
analysis operation or explicitly by a user. Subpaths are explained and illustrated in
Subpaths.

* Alogical network contains connectivity information but no geometric information.
This is the model used for network analysis. A logical network can be treated as a
directed graph or undirected graph, depending on the application.

* A spatial network contains both connectivity information and geometric
information. In a spatial network, the nodes and links are SDO_GEOMETRY
geometry objects without LRS information (an SDO network) or with LRS
information (an LRS network), or SDO_TOPO_GEOMETRY objects (a topology
geometry network).

In an LRS network, each node includes a geometry ID value and a measure value,
and each link includes a geometry ID value and start and end measure values;
and the geometry ID value in each case refers to an SDO_GEOMETRY object
with LRS information. A spatial network can be directed or undirected, depending
on the application.

* A feature is an object of interest in a network application that is associated with a
node or link. Features and feature layer types are explained in Features and
Feature Layers

» Cost is a non-negative numeric attribute that can be associated with links or
nodes for computing the minimum cost path, which is the path that has the
minimum total cost from a start node to an end node. You can specify a single cost
factor, such as driving time or driving distance for links, in the network metadata,
and network analytical functions that examine cost will use this specified cost
factor.

» Duration is a non-negative numeric attribute that can be associated with links or
nodes to specify a duration value for the link or node. The duration value can
indicate a number of minutes or any other user-determined significance. You can
specify a single duration factor, such as driving time for links, in the network
metadata; however, if you use duration instead of cost to indicate elapsed time,

5-6

ORACLE

Chapter 5
Network Data Model Graph Concepts

network analytical functions that examine cost will not consider the specified
duration factor.

State is a string attribute, either ACTI VE or | NACTI VE, that is associated with links or
nodes to specify whether or not a link or node will be considered by network
analysis functions. For example, if the state of a node is | NACTI VE, any links from or
to that node are ignored in the computation of the shortest path between two
nodes. The state is ACTI VE by default when a link or node is created, but you can
set the state | NACTI VE.

Type is a string attribute that can be associated with links or nodes to specify a
user-defined value for the type of a link or a node.

Temporary links, nodes, and paths exist only in a network memory object, and are
not written to the database when the network memory object is written. For
example, during a network analysis and editing session you might create
temporary nodes to represent street addresses for shortest-path computations, but
not save these temporary nodes when you save the results of editing operations.

Reachable nodes are all nodes that can be reached from a given node.
Reaching nodes are all nodes that can reach a given node.

The degree of a node is the number of links to (that is, incident upon) the node.
The in-degree is the number of inbound links, and the out-degree is the number
of outbound links.

A connected component is a group of network nodes that are directly or
indirectly connected. If node A can reach node B, they must belong to the same
connected component. If two nodes are not connected, it is concluded that there is
no possible path between them. This information can be used as a filter to avoid
unnecessary path computations.

A spanning tree of a connected graph is a tree (that is, a graph with no cycles)
that connects all nodes of the graph. (The directions of links are ignored in a
spanning tree.) The minimum cost spanning tree is the spanning tree that
connects all nodes and has the minimum total cost.

A partitioned network is a network that contains multiple partitions. Partitioning a
large network enables only the necessary partitions to be loaded on demand into
memory, thus providing better overall performance.

Network partitions are sub-networks, each covering a subset of nodes and links of
the entire network. Network partitions are the basic processing units for load on
demand analysis. They are created by assigning every node in the network to only
one partition ID. Network partition information is stored in a partition table.

Load on demand (load on demand analysis) is an approach that divides large
networks into manageable partitions and only loads needed patrtitions during
analysis, thus removing memory limitation as a consideration and providing better
overall performance.

Partition BLOBs are binary representations for network partitions. They provide
faster partition loading time. They are stored in a partition BLOB table.

The load on demand partition cache is an in-memory placeholder for network
partitions loaded into memory during network analysis. You can configure the
partition cache.

User-defined data is the information (not related to connectivity) that users want
to associate with a network representation. User-defined data can be defined at

5-7

Chapter 5
Network Data Model Graph Concepts

the node, link, path, and subpath level, and is stored in columns in the node, link,
path, and subpath tables.

e Subpaths

* Features and Feature Layers

5.3.1 Subpaths

A subpath is a partial path along a path, created either as a result of a network
analysis operation or explicitly by a user. The start and end points of a subpath are
defined as link indexes and the percentage of the distance from the previous node in
the path, as shown in Figure 5-2.

Figure 5-2 Path and Subpaths

Subpath { (0, 65%), (6, 50%) }

jemm TR

-
~.-.----—

——
0 Reference Path 4 S 6 i‘
3
1 2

Start Link Index (0) End Link Index (6)

A subpath refers to an existing path (the reference path) using the following
parameters:

« Reference path ID: the path ID of the reference path.

e Start link index: the start link index on the reference path. (Link index O refers to
the link between the first and second nodes on the path.) In Figure 5-2, link index
0 is the start link index.

e Start percentage: the percentage of the distance along the start link for the start
node of the subpath. In Figure 5-2, the subpath starts at 65 percent of the distance
between the start and end of link index 0.

e End link index: the end link index on the reference path. In Figure 5-2, link index 6
is the end link index.

« End percentage: the percentage of the distance along the end link for the end
node of the subpath. In Figure 5-2, the subpath ends at 50 percent of the distance
between the start and end of link index 6.

5.3.2 Features and Feature Layers

ORACLE

A feature is an object of interest in a network application that is associated with a
node or link. For example, in a transportation network, features include exits and
intersections (mapped to nodes), and highways and streets (mapped to links).

A feature consists of one or more feature elements. A feature element is a point or
line along the network. If it is a point, it can lie on a node or along a line; if it is a line, it
can be a full link or a partial link.

5-8

ORACLE

Chapter 5

Network Data Model Graph Concepts

Depending on the types of feature elements in the feature, a feature can have any of
the feature types shown in Table 5-1.

Table 5-1 Feature Types

Type Number

Type Name

Feature Elements Consist
of:

SDO_NET.FEAT_TYPE_PON
SDO_NET.FEAT_TYPE_POL

SDO_NET.FEAT_TYPE_POI
NT

SDO_NET.FEAT_TYPE_LINE

SDO_NET.FEAT_TYPE_MPO
N

SDO_NET.FEAT_TYPE_MPO
L

SDO_NET.FEAT_TYPE_MPO
INT

SDO_NET.FEAT_TYPE_MLI
NE

SDO_NET.FEAT_TYPE_COL
L

A single point on a node
A single point on a link

A single point, but whether it is
on a node or a link is unknown
A single line

One or more points on one or
more nodes

One or more points on one or
more links

One or more points, but the
points can be on nodes or
links (or a combination)

One or more lines

A collection of both points and
lines, or the types of the
feature elements are unknown

A feature layer corresponds to a table containing features that have the same set of
attributes. For example, in a roads network, there may be separate feature layers for
restaurants and hotels (and perhaps other feature layers for other kinds of things of

interest to travelers).

Depending on the types of features in the feature layer, a feature layer can have any
of the feature layer types shown in Table 5-2, which maps each feature layer type to
the associated feature type or types from Table 5-1.

Table 5-2 Feature Layer Types

__|
Features in the Layer Are of (type from

Layer Type Number

Table 5-1):

a b~ W N B

Type 1 (SDO_NET.FEAT_TYPE_PON)
Type 2 (SDO_NET.FEAT_TYPE_POL)
Type 3 (SDO_NET.FEAT_TYPE_POINT)
Type 4 (SDO_NET.FEAT_TYPE_LINE)

Type 5 (SDO_NET.FEAT_TYPE_MPON) or 1
(SDO_NET.FEAT_TYPE_PON)

Type 6 (SDO_NET.FEAT_TYPE_MPOL) or 2
(SDO_NET.FEAT_TYPE_POL)

Type 1,2,3,5,6,0r7

Type 8 (SDO_NET.FEAT_TYPE_MLINE) or 4
(SDO_NET.FEAT_TYPE_LINE)

5-9

Chapter 5
Network Applications

Table 5-2 (Cont.) Feature Layer Types
|

Layer Type Number Features in the Layer Are of (type from
Table 5-1):

9 Potentially a mixture of any number of feature
types

A parent feature consists of features from one or more feature layers. For example, in
an electrical network, substation is a parent feature for the feature layers for all its
associated parts, such as joints, switches, and cables.

Features and feature layers can be edited and displayed using the NFE API. This API
makes it easier to model certain types of networks, such as electrical, gas, and water
utilities.

See Also:

* Feature Modeling Using Network Feature Editing (NFE)

5.4 Network Applications

Networks are used in applications to find how different objects are connected to each
other.

The connectivity is often expressed in terms of adjacency and path relationships. Two
nodes are adjacent if they are connected by a link. There are often several paths
between any two given nodes, and you may want to find the path with the minimum
cost.

This topic describes some typical examples of different kinds of network applications.

* Road Network Example

e Subway (Train) Network Example

* Multimodal Network and Temporal Examples
e Utility Network Example

* Biochemical Network Example

5.4.1 Road Network Example

ORACLE

In a typical road network, the intersections of roads are nodes and the road segments
between two intersections are links. The spatial representation of a road is not
inherently related to the nodes and links in the network. For example, a shape point in
the spatial representation of a road (reflecting a sharp turn in the road) is not a node in
the network if that shape point is not associated with an intersection; and a single
spatial object may make up several links in a network (such as a straight segment
intersected by three crossing roads). An important operation with a road network is to
find the path from a start point to an end point, minimizing either the travel time or

5-10

Chapter 5
Network Applications

distance. There may be additional constraints on the path computation, such as having
the path go through a particular landmark or avoid a particular intersection.

5.4.2 Subway (Train) Network Example

The subway network of any major city is probably best modeled as a logical network,
assuming that precise spatial representation of the stops and track lines is
unimportant. In such a network, all stops on the system constitute the nodes of the
network, and a link is the connection between two stops if a train travels directly
between these two stops. Important operations with a train network include finding all
stations that can be reached from a specified station, finding the number of stops
between two specified stations, and finding the travel time between two stations.

5.4.3 Multimodal Network and Temporal Examples

Multimodal networks are networks that consist of multiple modes, such as a network
consisting of driving and walking routes. They are usually modeled as individual
networks (of the specific mode) and are treated as an aggregate network so that
routes of single mode as well as multiple modes can be represented and computed. In
general, multimodal networks are "connected" by schedules of different modes, and in
such cases they are also temporal networks. An example is to compute an itinerary
with walking to nearest bus stop, taking the fastest bus route, getting off at the stop
that is closest to the destination, then walking to your destination. You could also add
modes like driving or flight to be taken into consideration.

Temporal modeling and analysis adds a temporal (time) dimension to network
modeling and analysis. The time factor provides cost and/or constraints on top of static
(non-temporal) networks. An example is to consider traffic patterns (time-dependent
travel time costs) instead of static travel-time costs.

Many metropolitan transportation networks consist of multiple modes such as buses,
subways, and commuter rail lines, where transfers across modes are possible (for
example, from a bus to the subway). Each transportation mode has a component
network within the larger transportation network. The component networks can be
modeled using nodes and links, and the transfers across modes can be modeled as
links that connect the stops where transfers are possible.

An important feature of such multimodal transportation networks is their schedule-
based operation. When performing common network operations such as computing
the fastest route from a start point to an end point, the schedule information and
possible transfers across modes must be considered. The schedule information at
stops can be represented as user-defined data at the nodes representing these stops.
Examples of operations that use schedule information in a multimodal network are (A)
finding the fastest route (minimum travel time) from a start point to an end point for a
specified start time, and (B) finding the latest departure time at a start point to reach an
end point by a specified arrival time.

5.4.4 Utility Network Example

ORACLE

Utility networks, such as power line or cable networks, must often be configured to
minimize the cost. An important operation with a utility network is to determine the
connections among nodes, using minimum cost spanning tree algorithms, to provide
the required quality of service at the minimum cost. Another important operation is
reachability analysis, so that, for example, if a station in a water network is shut down,
you know which areas will be affected.

5-11

Chapter 5
Network Hierarchy

5.4.5 Biochemical Network Example

Biochemical processes can be modeled as biochemical networks to represent
reactions and regulations in living organisms. For example, metabolic pathways are
networks involved in enzymatic reactions, while regulatory pathways represent protein-
protein interactions. In this example, a pathway is a network; genes, proteins, and
chemical compounds are nodes; and reactions among nodes are links. Important
operations for a biochemical network include computing paths and the degrees of
nodes.

5.5 Network Hierarchy

Some network applications require representations at different levels of abstraction.
For example, two major processes might be represented as nodes with a link between
them at the highest level of abstraction, and each major process might have several
subordinate processes that are represented as nodes and links at the next level down.

A network hierarchy enables you to represent a network with multiple levels of
abstraction by assigning a hierarchy level to each node. (Links are not assigned a
hierarchy level, and links can be between nodes in the same hierarchy level or in
different levels.) The lowest (most detailed) level in the hierarchy is level 1, and
successive higher levels are numbered 2, 3, and so on.

Nodes at adjacent levels of a network hierarchy have parent-child relationships. Each
node at the higher level can be the parent node for one or more nodes at the lower
level. Each node at the lower level can be a child node of one node at the higher
level. Sibling nodes are nodes that have the same parent node.

Links can also have parent-child relationships. However, because links are not
assigned to a hierarchy level, there is not necessarily a relationship between link
parent-child relationships and network hierarchy levels. Sibling links are links that
have the same parent link.

Figure 5-3 shows a simple hierarchical network, in which there are two levels.

Figure 5-3 Network Hierarchy

Level 2

ORACLE 5-12

Chapter 5
Network User Data

As shown in Figure 5-3:

e The top level (level 2) contains two nodes. Each node is the parent node of
several nodes in the bottom level. The link between the nodes in the top level is
the parent link of two links between nodes in the bottom level.

* The bottom level (level 1) shows the nodes that make up each node in the top
level. It also shows the links between nodes that are child nodes of each parent
node in the top level, and two links between nodes that have different parent
nodes.

* The links between nodes in the bottom level that have different parent nodes are
shown with dark connecting lines. These links are child links of the single link
between the nodes in the top level in the hierarchy. (However, these two links in
the bottom level could also be defined as not being child links of any parent link
between nodes in a higher level.)

* The parent-child relationships between each parent node and link and its child
nodes and links are shown with dashed lines with arrowheads at both ends.

Although it is not shown in Figure 5-3, links can cross hierarchy levels. For example, a
link could be defined between a node in the top level and any node in the bottom level.
In this case, there would not be a parent-child relationship between the links.

Given certain grouping of nodes in a network, a parent network can be defined. The
group IDs in the child network are used as node IDs in the parent network. The
aggregated links between groups in the child network represent the links in the parent
network, with arbitrary link IDs assigned.

A network can have multiple ways of grouping its nodes based on different criteria;
therefore, it can have multiple parent networks. In addition, nodes in a parent network
can be further grouped to form a higher-level parent network. For example, in a social
network, members can be grouped by city, profession, income, or other criteria.
Members grouped by city, for example, can be further grouped into higher-level
county, state, or country networks.

The parent-child network relationship is defined through the CHILD_NETWORK and
HIERARCHY_TABLE_NAME columns in the network metadata.

Note:

Do not confuse a hierarchical network with a multilevel network, which is a
network with multiple link levels. A multilevel network does not necessarily
have parent-child relationships between nodes; that is, a multilevel network
may also be a hierarchical network or may also not be a hierarchical network.
In a multilevel network, a higher-level network (such as level 2) is just a
subnetwork of a lower-level network (such as level 1), with link levels greater
than or equal to the higher-level link.

5.6 Network User Data

For user data defined through the xxx_ SDO_NETWORK_USER_DATA views, the
default user data 1/0O implementation (LODUser Dat al 0SDO) is used to access the user
data during network analysis. However, some user data is not included in the node or

ORACLE 5-13

Chapter 5
Network User Data

link table, and thus cannot be registered through xxx_SDO_NETWORK_USER_DATA
views.

For such user data, users must provide their own custom implementation of the user
data /O interface. A typical way of implementing a custom data I/O interface is to
generate BLOBs corresponding to node and link user data, one BLOB for each
partition, and then retrieve user data information from the BLOBs during network
analysis.

Network Data Model Graph also allows you to associate multiple categories of user-
defined data (categorized user data) with a single network. For example, in a
multimodal network, if you need to associate driving-related attributes (such as speed
limit) with a link in addition to the link's multimodal attributes, user-defined data can be
organized in two categories, one for driving-related attributes and the other for
multimodal attributes.

See these examples of user-defined data:

e User-Defined Data Example (PL/SQL and Java)

* User-Defined Data Example (Custom User Data I/O Implementation)

5.6.1 User-Defined Data Example (PL/SQL and Java)

ORACLE

This section presents an example of using network user-defined data, which is the
information (not related to connectivity) that users want to associate with a network
representation. The USER_SDO_NETWORK_USER_DATA and ALL_SDO _
NETWORK_USER_DATA metadata views (described in
xxX_SDO_NETWORK_USER_DATA Views) contain information about user-defined
data.

To use user-defined data, you must set the USER_DEFINED_DATA column value to Y
in the appropriate xxx_SDO_NETWORK_METADATA views (described in Section
xxx_SDO_NETWORK_METADATA Views).

Example 5-1 inserts link-related user-defined data into the network metadata.
Example 5-1 Inserting User-Defined Data into Network Metadata

- Insert link user data nanmed 'interaction' of
- type varchar2 (50) in network 'bi_test'.
--'interaction' is a colum of type varchar2(50) in the link table of network 'bi_
test'.
insert into user_sdo_network_user_data (network, table_type, data_name, data_type,
data_l ength, category_id)
values ('bi_test', 'LINK', "interaction', 'VARCHAR2', 50, 0) ;
- insert link user data naned ' PROB' of type Number.
--'"PROB' is a colum of type NUMBER in the link table of network 'bi_test'.
insert into user_sdo_network_user_data (network, table_type, data_name, data_type,
category_id)
values ('bi _test','LINK,'PROB,'NUMBER , 0) ;

After a network or network partition is |oaded, user-defined data is available in
Java representations. You can access user-defined data through the

get Cat egori zedUser Data and set Cat egori zedUser Data nmethods for the Node, Link, Path,
and SubPath interfaces. For exanple:

/1 The user data index is the sequence nunber of a user data within a category sorted
by data nane.

5-14

Chapter 5
Network User Data

int interactionUserDatalndex = 0;
int probUserDatal ndex = 1;

String interaction = (String)link.getCategorizedUserData().get UserData(0).
get (i nteractionUseDat al ndex) ;

doubl e prob = ((Doubl e)link. get Cat egori zedUser Dat a() . get User Dat a(0) .
get (probUser dat al ndex)). doubl eVal ue();

5.6.2 User-Defined Data Example (Custom User Data I/0
Implementation)

ORACLE

This section presents an example of a custom user data I/O implementation
(nondefault implementation) of the LODUser Dat al Ointerface. In Example 5-2, user data
associated with links is written to BLOBs (one BLOB per partition) and read from
BLOBSs during analysis. It is assumed that the user-defined data BLOB for multimodal
data for each partition has the partition ID and number of links associated with the
partition, followed by <Link ID, link route ID> for each link.

Example 5-2 Implementation of writeUserData method of LODUserDatalO

/I Method getLinksInPartition(partitionld) conputes a vector that

Il consists of the ID and the route ID of each link associated with a partition
[l with ID= partitionld

Li nkVector = getLinksInPartition(partitionld);

bj ect Qut put Stream dout = nul | ;

[l1nsert an enpty blob for the partition with ID = partition_id
String insertStr = "INSERT INTO " + MULTI MODAL_USER DATA +

" (partition_id, blob) " + " VALUES " + " (?,
EMPTY_LOB())" ;

PreparedStatenment stnt = conn. prepareStatenent (insertStr);
stnt.setlnt(1, partitionld);

int n = stnt.executeUpdate();

stnt.close();

[11ock the row for blob update
String lockRowStr = "SELECT bl ob FROM " + MULTI MODAL_USER DATA +
" WHERE partition_id = ? " + " FOR UPDATE';
stnt = conn. prepareStat ement (| ockRowStr);
stnt.setInt(1,partitionld);
ResultSet rs = stnt.executeQuery();

rs.next();
oracl e.sql.BLOB userDataBl ob = (oracle.sql.BLOB) rs.getBlob(1);
stnt.close();

Qut put Stream bl obQut = ((oracle.sqgl.BLOB) userDataBl ob).setBinaryStrean(1);
dout = new Cbj ect Qut put Strean{ bl obQut);

[/wite partition ID
dout.writelnt(partitionld);
int nunLinks = linkVector.size()

for (int i=0; i<linkVector.size(); i++) {

/IMultinmodal Link is a class with variables link ID and route ID
Mul timodal Link Iink = (Miltinodal Link) |inkVector.elementAt(i);

5-15

Chapter 5
Network User Data

Ilwite link ID
dout.writeLong(link.getLinkld());

I/ wite route IDinto file
dout.witelnt(link.getRouteld());

}

dout . cl ose();
bl obQut . cl ose();
rs.close();

The subsections that follow describe the implementations of the wri t eUser Dat a and
readUser Dat a methods of the LODUser Dat al Ointerface.

* Implementation of writeUserData method of LODUserDatalO

* Implementation of readUserData method of LODUserDatalO

5.6.2.1 Implementation of writeUserData method of LODUserDatalO

In the implementation of the writeUserData method of LODUserDatalO, the user-
defined data BLOB table name is assumed to be MULTIMODAL_USER_DATA.

[/ Method getLinksinPartition(partitionld) conputes a vector that

/1 consists of the ID and the route ID of each link associated with a partition
[/ with ID= partitionld

Li nkVector = getLinkslnPartition(partitionld);

bj ect Qut put Stream dout = nul | ;

[/lnsert an enpty blob for the partition with ID = partition_id
String insertStr = "INSERT INTO " + MULTI MODAL_USER DATA +
" (partition_id, blob) " + " VALUES " + " (?, EMPTY_BLOB())" ;

PreparedStatement stnt = conn. prepareSt atenent (i nsertStr);
stnt.setInt(1, partitionld);

int n = stnt.executeUpdate();

stnt.close();

[/1ock the row for blob update
String | ockRowstr = "SELECT bl ob FROM " + MULTI MODAL_USER_DATA +
" VWHERE partition_id = ? " + " FOR UPDATE';
stnt = conn. prepareSt at ement (| ockRowStr);
stnt.setInt(1, partitionld);
Result Set rs = stnt.executeQuery();

rs.next();
oracle.sql.BLOB userDataBl ob = (oracle.sqgl.BLOB) rs.getBlob(1);
stnt.close();

Qut put St ream bl obQut = ((oracle.sql.BLOB) userDataBl ob).setBinaryStrean(1l);
dout = new Cbj ect Qut put Strean(bl obQut);

[fwite partition ID
dout.witelnt(partitionld);
int nunLinks = linkVector.size()

for (int i=0; i<linkVector.size(); i++) {
//MltinmodalLink is a class with variables link ID and route ID
Mul timodal Link link = (Miltinodal Link) |inkVector.elenmentAt(i);
[fwite link ID
dout.writeLong(link.getLinkld());

ORACLE 5-16

Chapter 5
Network User Data

Il witeroute IDinto file
dout.writelnt(link.getRouteld());
1
dout . cl ose();
bl obQut . cl ose();
rs.close();

5.6.2.2 Implementation of readUserData method of LODUserDatalO

ORACLE

The user-defined data is accessed through the get Cat egori zedUser Dat a and
set Cat egor i zedUser Dat a methods for the Node, Li nk, Pat h, and SubPat h interfaces and
get User Dat a and set User Dat a methods of the Cat egori zedUser Dat a interface.

//Read the blob for the required partition fromthe user data blob table
Il In this exanple,
/1 MULTI MODAL_USER DATA is the nane of user —defined data blob table
BLOB nul tinodal Blob = nul | ;
String queryStr = "SELECT blob FROM " +
MULTI MODAL_USER DATA
" WHERE partition_id = ?";

PreparedStatement stnt = conn. prepareSt at enent (queryStr);
stnt.setlnt(1, partitionld);
Resul t Set rs = stnt.executeQuery();
if (rs.next()) {

mul ti modal Bl ob = (oracle.sql.BLOB)rs. getBlob(1);
}

/1 Materialize the blob value as an input stream
I nput Streamis = nultinodal Bl ob. get Bi naryStreant();

[/ Create an (bjectlinputStreamthat reads fromthe InputStreamis
oj ect I nput Stream oi s = new Chj ect I nput Strean(is);

/I Read the values of partition ID and number of links fromthe bl ob
int partitionld = ois.readlnt();
int nunLinks = ois.readlnt();

for (int i=0; i<nunLlinks; i++) {

//Read link IDand route ID for each |ink
long linkld = ois.readLong();
int routeld = ois.readlnt();

/Ml tinmodal LinkUserData is an inplenmentati on of NDM LOD UserData interface
//1nplementation is provided at the end of the example
l'inkUserData = new Mil tinodal Li nkUserDat a(routeld);

/1CGet the link object corresponding to the link ID
Logi cal NetLink link = partition.getLink(linkld);

//Get the (categorized) user data associated with the |ink.
Categori zedUserData cud = |ink. get Cat egori zedUser Dat a();

/1 1f the link does not have categorized user data associated with it,
[/ initialize it to IinkUserData
Il Else, set the user data for category USER DATA MJLTI MODAL
/1 to linkUserData
if (cud == null) {
UserData [] userDataArray = {linkUserData};

5-17

ORACLE

Chapter 5
Network User Data

cud = new Cat egori zedUser Dat al npl (user Dat aArray);
I'i nk. set Cat egori zedUser Dat a(cud) ;

}

el se {

}

cud. set User Dat a(USER_DATA MULTI MODAL, | i nkUser Dat a) ;

}

The following segment shows how to read the user-defined data, specifically the route
ID associated with a link during analysis.

/linfo is an instance of LODAnalysislnfo
Logi cal Link currentLink = info.getCurrentLink();

/I Read the user-defined data (in this case, route I1D)
int linkRouteld = (Integer)currentLink.getCategorizedUserData().

get User Dat a(USER_DATA_MULTI MODAL) .
get (1 NDEX_LI NK_ROUTEI D) ;

I npl ement ation of Miltinodal Li nkUser Data :

class Miltinodal Li nkUser Data i npl ements User Data
{

private int routeld,;

protected Miltinodal Li nkUser Data(int routeld)
{

}

public Object get(int index)
{

swi t ch(i ndex)

{

this.routeld = routeld;

case | NDEX_LI NK_ROUTEI D:
return routeld;

}

return nul l;

}

public void set(int index, Object userData)

{

swi tch(i ndex)

{
case | NDEX_LI NK_ROUTEI D:

this.routeld = (Integer) userData;

}
}

public int getNunmber Of User Dat a()
{

}
public Object clone()

return 1;

return new Mil tinodal Li nkUser Data(routel d);

}
}

5-18

Chapter 5
Feature Modeling

5.7 Feature Modeling

You can model objects of interest on the network as features.

ORACLE

A feature consists of one or many feature elements. A feature element can be a point,
a link, or a partial link along the network. You can define feature layers on top of a
network. For example, restaurants and hotels can each be defined as a feature layer
on a road network, and switches can be defined as a feature layer on an electrical
network.

The following are the typical steps for using feature modeling.

1.

Create a feature layer.

For example, the points of interest (POIs) on a road network can be modeled as
features. Each type of POI (hotels, restaurants, hospitals, schools, and so on)
corresponds to one feature layer. The following example adds a feature layer for
hotels:

sdo_net . add_feature_| ayer (
"US_ROAD NETWORK', --network nane

" HOTEL' , --feature layer nane

2, --feature layer type: point on link
" HOTEL_TAB', --feature table or view name
"HOTEL_NET_REL', --relation table or view nane
null); --hierarchy table or view nanme

Register feature user data, if any application-specific feature attributes are
potentially useful in feature analysis.

Feature user data is registered by adding an entry in the
XXX_SDO_NETWORK_USER_DATA view, just like registering the user data for
network nodes or links, except that the TABLE_TYPE column is set to the name of
the feature table. The following example adds hotel name as user data for hotel
features:

I NSERT | NTO USER_SDO NETWORK_USER DATA(
network, table_type, data_nane, data_type, category_id)

VALUES(
"US_ROAD NETWORK', --network nanme
" HOTEL_TAB', --feature table or view name
"NAME' , --user data nane, i.e., name of the user data colum
' VARCHAR?' --user data type
3); --user data category

Add, update, or delete features on the feature layer.

If the content of feature tables, feature element relationship table, and feature
hierarchy table (all described in Feature Layer Tables) -- or any combination of
these tables -- is managed by the data provider, then you can skip this step.
Otherwise, you can call procedures in the SDO_NET package, such as
ADD_FEATURE, UPDATE_FEATURE, DELETE_FEATURES, to add, update or
delete features in a feature layer. (The SDO_NET subprograms are described in
SDO_NET Package Subprograms.)

Perform feature analysis using Net wor kAnal yst . The feature analysis functions
include:

e Shortest paths between features

» Nearest (reaching) features

5-19

Chapter 5
Feature Modeling Using Network Feature Editing (NFE)

* Within (reaching) cost features

» Data Types Used for Feature Modeling

5.7.1 Data Types Used for Feature Modeling

This section describes the following PL/SQL data types that are used for parameters
and return values of some SDO_NET package subprograms related to feature
modeling:

- SDO_NET_FEAT_ELEM_ARRAY
- SDO_NET_FEAT_ELEM

- SDO_NET_LAYER_FEAT ARRAY
- SDO_NET_LAYER_FEAT

- SDO_NETWORK_NVP_TAB

- SDO_NETWORK_NVP

SDO_NET_FEAT_ELEM_ARRAY is defined as VARRAY(1024) OF
MDSYS. SDO NET_FEAT ELEM

SDO_NET_FEAT_ELEM is defined as:

FEAT_ELEM TYPE NUMBER
NET_ELEM I D NUMBER
START_PERCENTAGE NUMBER
END_PERCENTAGE NUMBER

SDO_NET LAYER_FEAT_ARRAY is defined as VARRAY(1024) OF
VDSYS. SDO_NET_LAYER FEAT.

SDO_NET_LAYER_FEAT is defined as:

FEATURE_LAYER | D NUMBER
FEATURE_I D NUVBER

SDO_NETWORK_NVP_TAB is defined as TABLE OF MDSYS. SDO_NETWORK_NVP.
SDO_NETWORK_NVP is defined as:

NAVE VARCHAR2(128)
VALUE VARCHAR2(1024)

5.8 Feature Modeling Using Network Feature Editing (NFE)

ORACLE

Network feature editing (NFE) lets you create and manage an NFE model. An NFE
model extends the feature modeling capabilities by enabling you to visualize and
manipulate features using Java Swing components and a PL/SQL API.

NFE lets you define features on the top of an existing network. For example,
restaurants and hotels can be defined as features on the top of a road network. You
can also define models that consist just of features (network elements are hidden from
you), and where the connectivity can be restricted by rules. Such connectivity
restrictions are typically used in utility networks, such as electrical, water, or gas
networks, to model the network devices and restrict the connectivity. One example of
using connectivity restrictions is to avoid connections between high tension and low
tension devices in an electrical network

5-20

Chapter 5
Feature Modeling Using Network Feature Editing (NFE)

NFE includes concepts such as feature classes and rules, which can be built into a
model. Metadata tables and views are automatically created and maintained when you
create and work with an NFE model.

The minimum privileges required for using NFE features are CREATE TABLE,CREATE VI EW
CREATE SEQUENCE, and CREATE SESSI ON. These are in addition to any other privileges that
the user might need to perform operations not specifically related to NFE.

* Creation Modes for NFE Models

* NFE Feature Classes

* NFE Rules

» Data Types Used for NFE Connectivity Rules

5.8.1 Creation Modes for NFE Models

You can create a network feature editing (NFE) model in one of two possible modes:
from scratch and over an existing network model.

* From scratch: In this mode, a network is generated automatically when you
create the NFE the model, and the network is assign to the model. You will work
only with features, and the underlying network elements will be hidden from you.
This mode supports rules whose statements specify what kind of features (feature
classes) can be connected with each other kinds of features. One typical use of
this mode is to model utility networks, such as electricity or water networks, where
you want to restrict the connections among certain components in the network.

* Over an existing network model: In this mode, an existing network is used when
you create the NFE model. The network is visible to you, and you can add features
over the network elements. Rules are not supported in this mode.

The feature class relationship table contains information about the relationship
between features and feature classes, that is, which feature belongs to which feature
class.

5.8.2 NFE Feature Classes

ORACLE

A feature class describes a group of features based on attributes values, shape, and
style. Each feature class belongs only to one feature layer, so the group of features in
the feature class also belongs to the same feature layer.

For example, an electrical network might include two feature layers: Transformers and
Conductors. Each of these feature layers might include two feature classes:

e The Transformers feature layer might include the HT Transformers (high tension
transformers) and LT Transformers (low tension transformers), where transformers
within each feature type have specified input and output voltages, and tension
types. Both feature types are associated with points (their shape). Each feature
type has a different associated icon for use in diagrams.

e The Conductors feature layer might include the HT Conductors (high tension
conductors) and LT Conductors (low tension conductors), where conductors within
each feature type have specified attribute values. Both feature types are
associated with lines (their shape). Each feature type has a different associated
icon for use in diagrams.

5-21

Chapter 5

Feature Modeling Using Network Feature Editing (NFE)

The following table lists the shapes that can be associated with a feature class, and
requirements and restrictions depending on the creation mode used for the NFE

model..

Table 5-3 Shapes for NFE Feature Classes
|

Shape Shape Model Created from Scratch Model Created over Existing
Type Name Network
(Number)
1 Point Features can have only one Features can have one or more
PointOnNode feature element. feature elements of types
PointOnNode and PointOnLine.
2 Line Features can have only one line Features can contain one or more
feature element. A line supports line feature elements. It does not
connections only on its start and matter if the lines are adjacent or
end points. not.
3 Complex Features can have multiple (Complex lines not supported for
line adjacent (connected) line feature this creation mode.)
elements. A complex line supports
connection on its middle points;
when this happens, the complex
line is divided into two line feature
elements.
4 Path Feature representing a path. This Feature representing a path. This

type of feature class is typically
used when analysis is performed.

type of feature class is typically
used when analysis is performed.

5.8.3 NFE Rules

ORACLE

Rules in NFE models are constraints related to feature connections. Rules are
available only for models created from scratch, that is, not for models created over an
existing network. Rules can be customized, and can support any kind of connection
constraint.

Rules can generally be classified into cardinality rules and connectivity rules:

» Cardinality rules are used over point features that have specific characteristics
(that is, belong to the same feature class), to specify the maximum and minimum
number of incoming and outgoing connections that the point feature can accept.

* Connectivity rules are used to indicate whether two features can be connected if
they have some specific characteristics (feature layer, feature class, and
attributes) and a specific interaction. A connectivity rule will allow the connection
with a point feature as long as the point feature has available space to support the
corresponding incoming and outgoing connections needed, as dictated by its
related cardinality rule.

Connectivity rules are the only way to connect features in NFE, and they are
always positive; that is, they allow connections, but cannot deny them. The
absence of connectivity rules between elements indicates that elements cannot be
connected.

Line-Point Connectivity Rules

A line-point connectivity rule states that whenever a line feature and a point feature
interact in certain ways, they can be connected.

5-22

ORACLE

Chapter 5
Feature Modeling Using Network Feature Editing (NFE)

A line-point connectivity rule, along with its cardinality rule, can be expressed as
follows: “Any Line Feature from Feature Layer L1 with Feature Class C1 matching the
condition P1 can be connected to a Point Feature from Feature Layer L2 with Feature
Class C2 matching the condition P2. The cardinality of Point Feature indicates that
maximum of X incoming connections and a maximum of Y outgoing connections are
allowed.”

The following table shows examples of line-point connectivity rules.

Table 5-4 Examples of Line-Point Connectivity Rules
|

Line Condition Point Condition Cardinality Description
HT Conductor class HT Transformer Unbounded Any number of high tension
from Conductors class from conductors can connect to a high
layer Transformers tension transformer.
layer
HT Conductor class LT Transformer In: Any number of incoming high tension
from Conductors class from unbounded; conductors can connect to a low
layer Transformers Out: 0 tension transformer, but no outgoing
layer high tension conductors can be
connected out from a low tension
transformer.

A low tension transformer steps down
the voltage from a high tension
conductor to a low tension conductor.

LT Conductor class LT Transformer Unbounded Any number of low tension

from Conductors class from conductors can connect to a low
layer Transformers tension transformer.
layer

Line-Line Connectivity Rules

A line-line connectivity rule states that when two line features interact in some specific
way, they can be connected through one specific point feature. The rule can also
specify to automatically create the connecting point, if it does not already exist, when
the interaction between the feature lines occurs. Another way of looking at a line-line
rule is as two line-point rules having in common the same point feature restrictions, so
in that sense a line-line rule refers to two line-point rules with the same point feature
condition.

An example line-line connectivity rule might be expressed as follows: “If interaction | is
true between (Line Featurel from Feature Layer L1 with Feature Class C1 matching
the condition P1) AND (Line Feature2 from Feature Layer L2 with Feature Class C2
matching the condition P2) the lines can be connected using (Point Feature P1)
(Optionally: create automatically Point Feature P1 if it does not exist).”

Left Hand Side and Right Hand Size of a Line-Line Connectivity Rule

A line-line connectivity rule specifies interaction between two line features: line feature
1 and line feature 2. These two line features are known as the left hand side (LHS) of
the rule and the right hand side (RHS) of the rule, respectively. Any feature that is
on line feature 1 is considered to be on the LHS of the rule, and any feature that is on
line feature 2 is considered to be on the RHS of the rule.

The following table shows examples of line-line rules suitable for an electrical network
model, identifying the LHS and RHS line feature groups of the rule. Each row in the
table describes one line-line rule.

5-23

ORACLE

Chapter 5

Feature Modeling Using Network Feature Editing (NFE)

Table 5-5 LHS and RHS for Sample Line-Line Rules
|

LHS Line Interacti RHS Line Common Description

Features on Type Features Point

Group Group

HT Touch HT Conductor HT High tension conductors are

Conductor end point class from Transformer automatically connected to each other

class from Conductors class from by a high tension transformer when

Conductors layer Transformer they are touching on their end points.

layer s layer

LT Conductor Touch LT Conductor LT Low tension conductors are

class from end point class from Transformer automatically connected to each other

Conductors Conductors class from by a low tension transformer when

layer layer Transformer they are touching on their end points.
s layer

HT Touch LT Conductor LT High tension conductors are

Conductor end point class from Transformer automatically connected to low tension

class from Conductors class from conductors by a low tension

Conductors layer Transformer transformer when they are touching on

layer s layer their end points.

Rule Decision Handlers

Rules can be customized by using rule decision handlers, which can be applied to
both line-point and line-line rules. Decision handlers are a mechanism that allows a
user to determine which elements in an interaction must be connected and how.

A rule implementation always uses a decision handler to manage the connections
among the features. NFE provides a default implementation to connect features for
line-point and line-line rules. When executing a rule, the default decision handler
implementation will try to connect as many elements matching the rule as possible, but
there could be scenarios where you want more control over the connections than the
rule provides by default, in which case you must modify the default decision handler
implementation..

Using a water network example, assume that two valves can interact with pipes at a

spatial point. Each valve has four outlets. Either (A) all four pipe ends can be
connected to the four outlets of a single valve, or (B) two pipe ends can connect to two
opposite outlets of one valve, and the two other pipe ends can connect to two opposite
outlets of the other valve. The default decision handler implementation will try the first
approach (all four pipe ends connecting to a single valve); but if you wanted to
distribute the four pipes among the two available valves, you could implement a
custom decision handler tio use the second approach (two pipe ends connecting to the
first valve, the two other pipe ends connecting to the second valve).

Rule Instances

When features are connected because of the application of certain rule, the group of
connected features is called a rule instance, that is, an instance of the rule that
allowed the connection. Rule instances are maintained in the Rule Instance Table.

A rule definition can be removed or modified only if no dependent rule instances exist
(that is, no connections that depend on any existing rule instances)

If a feature element involved in a rule instance is deleted, the rule instance may or may
not be automatically deleted. If the feature element deletion causes the number of

5-24

Chapter 5
Feature Modeling Using Network Feature Editing (NFE)

elements to drop below the minimum number for the rule instance (which depends on
the type of rule), then the rule instance is deleted. However, if the feature element
deletion does not cause the number of elements to drop below the minimum number
for the rule instance, then the feature element is deleted from the rule instance, but
the .the rule instance itself is not deleted (but it is modified).

5.8.4 Data Types Used for NFE Connectivity Rules

ORACLE

This section describes the following PL/SQL data types that are used for parameters
and return values of some SDO_NFE package subprograms related to network feature
editing (NFE):

- SDO_INTERACT_POINT_FEAT ARRAY
- SDO_INTERACT_POINT_FEAT

- SDO_INTERACT_LINE_FEAT ARRAY

- SDO_INTERACT_LINE_FEAT

- SDO_INTERACTION_ARRAY

- SDO_INTERACTION

SDO_INTERACT_POINT_FEAT_ARRAY is defined as VARRAY(1024) OF
VDSYS. SDO | NTERACT POl NT_FEAT.

SDO_INTERACT_POINT_FEAT is defined as:

FEATURE_LAYER | D NUVBER

FEATURE_| D NUVBER
FEATURE_CLASS | D NUVBER

NODE_| D NUVBER

NODE_GEOM SDO_GEQVETRY

AVAI LABLE_| N_CONN SDO_NUVBER ARRAYSET
AVAI LABLE_OUT_CONN SDO_NUMBER ARRAYSET
RUNTI ME_CREATED CHAR(1)

SDO_INTERACT_LINE_FEAT_ARRAY is defined as VARRAY(1024) OF
VDSYS. SDO | NTERACT LI NE_FEAT.

SDO_NET_LAYER_FEAT is defined as:

FEATURE_LAYER | D NUMBER
FEATURE_| D NUMBER

FEATURE_CLASS | D NUMBER

LINK_I D NUMBER

LI NK_GEOM SDO_GEOVETRY

START _NODE SDO | NTERACT POl NT_FEAT
END_NCDE SDO | NTERACT POl NT_FEAT
Bl DI RECTED CHAR(1)

| NTERSECTI ON_LOCATION NUMBER

RULE_SI DE CHAR(1)

SDO_INTERACTION_ARRAY is defined as VARRAY (1048576) OF
MDSYS. SDO_| NTERACTI ON.

SDO_INTERACTION is defined as:

LI NES SDO | NTERACT LI NE_FEAT ARRAY
PO NTS SDO | NTERACT POl NT_FEAT ARRAY
| NTERSECT_PT_GEOM SDO_GEOVETRY

5-25

Chapter 5
Network Constraints

5.9 Network Constraints

Network constraints are restrictions defined on network analysis computations.

For example, a network constraint might list a series of prohibited turns in a roads
network due to one-way streets and "No Left Turn" signs, with each prohibited turn
represented as a pair of links (a start link and an end link onto which a turn cannot be
made from the start link). As another example, a network constraint might require that
driving routes must not include toll roads or must not include expressways.

To create a network constraint, you must create a Java class that implements the
constraint, and you must register the constraint by using the
SDO_NET.REGISTER_CONSTRAINT procedure. To apply a network constraint to a
network analysis operation, you must specify that constraint.

Examples of Java classes to implement network constraints are provided in the
Network Data Model Graph demo files, which are described in Network Data Model
Graph Tutorial and Other Resources. For example, the Prohi bi t edTur ns. j ava file
creates a network constraint that defines a series of prohibited turns, and it then
returns the shortest path between two nodes, first without applying the constraint and
then applying the constraint.

5.10 Network Analysis Using Load on Demand

ORACLE

Load on demand means that during network analysis, a network
partition is not loaded into memory until the analysis has reached this
partition while exploring the network.

With load on demand, Oracle Spatial and Graph performs most partitioning and
loading operations automatically, and this usually results in more efficient memory
utilization with very large networks.

Load on demand analysis involves the following major steps: network creation,
network partition, partition cache configuration, and network analysis.

1. Create the network, using one of the approaches described in Main Steps in Using
the Network Data Model Graph.

2. Partition the network using the SDO_NET.SPATIAL_PARTITION procedure, as
explained in Partitioning a Network.

3. Optionally, generate partition BLOBS, as explained in Generating Partition BLOBSs.

4. Configure the load on demand environment, including the partition cache, as
explained in Configuring the Partition Cache.

5. Analyze the network, as explained in Analyzing the Network.

Note:

Load on demand analysis also works with nonpartitioned networks by treating
the entire network as one partition. For a small network, there may be no
performance benefit in partitioning it, in which case you can skip the
partitioning but still use load on demand APIs.

5-26

Chapter 5
Network Analysis Using Load on Demand

For examples of performing load on demand network analysis and configuring the
partition cache, see Partitioning and Load on Demand Analysis Examples (PL/SQL_
XML_ and Java).

Additional examples of partitioning and load on demand analysis are included on the
Oracle Database Examples media (see Oracle Database Examples Installation
Guide). For more information about Network Data Model Graph example and demo
files, see Network Data Model Graph Tutorial and Other Resources.

e Partitioning a Network

e Generating Partition BLOBs

e Configuring the Partition Cache

* Analyzing the Network

e Using Link Levels for Priority Modeling

* Precomputed Analysis Results

5.10.1 Partitioning a Network

You can partition a network using the SDO_NET.SPATIAL_PARTITION procedure,
specifying the maximum number of nodes in each partition. The partition result is
stored in a partition table, which is automatically generated, and partition metadata
information is inserted into the network metadata. (As an alternative to using the
procedure, you can partition a network by creating and populating a partition table.)
You can use other SDO_NET subprograms to query the partitioning metadata.

A good partition strategy is to minimize the number of links between partitions, which
reduces the number of partitions that need to be loaded and the probable number of
times that the same partitions need to be reloaded. Moreover, partitions that are too

small require excessive loading and unloading of partitions during analysis.

The recommended maximum number of nodes per partition, assuming 1 GB of
memory, is between 5,000 and 10,000. You can tune the number and see what is best
for your applications, considering the available memory, type of analysis, and network
size. You should also consider configuring the partition caching size.

5.10.2 Generating Partition BLOBS

ORACLE

To enhance the performance of network loading, you can optionally store partitions as
BLOBs in a network partition BLOB table. This information needs to be stored in the
network metadata view in order to take advantage of faster partition loading time. Note
that if a network or partition information is updated, the partition BLOBs need to be
regenerated as well.

A partition BLOB is a binary stream of data containing the network partition
information, such as number of nodes, number of links, properties of each node,
properties of each link, and so on. If a partition BLOB exists, Spatial and Graph uses it
to read information during the load operation, rather than performing time-consuming
database queries.

To generate partition BLOBs, use the SDO_NET.GENERATE_PARTITION_BLOBS
procedure. The partition BLOBs and their metadata are stored in the Partition BLOB
Table.

5-27

Chapter 5
Network Analysis Using Load on Demand

5.10.3 Configuring the Partition Cache

Before you perform network analysis, you can configure the network partition cache to
optimize performance, by modifying an XML configuration file to override the default
configuration. You can specify the following:

e Cache size: the maximum number of nodes in partition cache
» Partitions source: from network tables or partition BLOBs

» Resident partitions: IDs of partitions that will not be flushed out of the cache, but
will stay in memory once they are loaded

e Cache flushing policy: class name of the Cachi ngHandl er implementation

The default caching policy is Least Recent | yUsed, which flushes out the oldest
partition out of memory when the cache is full. You can specify other caching
policies by implementing the Cachi ngHandl er interface.

A copy of the default load on demand configuration file is included in the
supplementary documentation, described in Network Data Model Graph Tutorial and
Other Resources.

5.10.4 Analyzing the Network

After you have created and partitioned the network, and optionally configured the
partition cache, you can issue analysis queries. Analysis results are returned in Java
representation or XML responses, depending on whether you used the Java or XML
API. For details, see the load on demand (LOD) Javadoc and XML schemas (the latter
described in Network Data Model Graph Tutorial and Other Resources).

You can write the analysis results to the database using the load on demand Java API.

5.10.5 Using Link Levels for Priority Modeling

ORACLE

Although the load on demand approach reduces the effect of memory limitations in
analyzing large networks, analysis operations still can sometimes be very slow. For
example, shortest path analysis of two nodes diagonally across the entire network is
likely to require traversing almost every link in the network, and this will take a
significant amount of time for a network with more than, for example, two million
nodes.

To further reduce network analysis time, you can perform analysis on different link
levels. Link level is a positive integer assigned to a link indicating the level of
preference of this link. The higher the link level, the higher the preference. For
example, a road network may consist of two link levels, level 1 for local roads and level
2 for highways. During network analysis, highways are preferred to local roads, and
the minimum link level is 1. (If no link level is assigned to a link, the default link level of
1 is used for the link.)

Link levels have an implicit inheritance property, which means that a network at higher
link levels must be a subnetwork of a network at a lower link level. That is, link level 2
is a subnetwork of link level 1, link level 3 is a subnetwork of link level 2, and so on.

You can specify a link level when you load a network or a partition, which causes links
at that level and higher levels to be loaded. Using the road network example, with link
level 1 for local roads and link level 2 for highways, specifying link level 1 on a load

5-28

Chapter 5
Network Data Model Graph Tables

operation loads links at link levels 1 and 2 (that is, local roads and highways), but
specifying link level 2 on a load operation loads only the highways links. If you wanted
to perform analysis using only highways links, you could optimize the performance by
specifying link level 2 for the load operation.

5.10.6 Precomputed Analysis Results

Some analysis operations, such as connected component analysis, can be time
consuming. To improve runtime performance, you can call the
SDO_NET.FIND_CONNECTED_COMPONENTS procedure, which computes the
connected components in the network and stores the results in the Connected
Component Table.

At runtime, before calling shortest path analysis or reachability analysis, you can check
whether the nodes of interest belong to the same connected component by querying
the connected component table. If precomputed component information does not exist,
it may take a long time for shortest path and reachability analysis to discover that two
nodes are, in fact, not connected.

5.11 Network Data Model Graph Tables

ORACLE

The connectivity information for a spatial network is stored in two tables: a node table
and a link table. In addition, path information can be stored in a path table and a path-
link table.

You can have Spatial and Graph create these tables automatically when you create
the network using a CREATE_<network-type> NETWORK procedure; or you can
create these tables using the SDO_NET.CREATE_NODE_TABLE,
SDO_NET.CREATE_LINK_TABLE, SDO_NET.CREATE_PATH_TABLE, and
SDO_NET.CREATE_PATH_LINK_TABLE procedures.

These tables contain columns with predefined names, and you must not change any of
the predefined column names; however, you can add columns to the tables by using
the ALTER TABLE statement with the ADD COLUMN clause. For example, although
each link and path table is created with a single COST column, you can create
additional columns and associate them with other comparable attributes. Thus, to
assign a driving time, scenic appeal rating, and a danger rating to each link, you could
use the COST column for driving time, add columns for SCENIC_APPEAL and
DANGER to the link table, and populate all three columns with values to be interpreted
by applications.

The following considerations apply to schema, table, and column names that are
stored in any Oracle Spatial and Graph metadata views. For example, these
considerations apply to the names of node, link, path, and path-link tables, and to the
names of any columns in these tables that are stored in the network metadata views
described in Network Data Model Graph Metadata Views.

e The name must contain only letters, numbers, and underscores. For example, the
name cannot contain a space (), an apostrophe ('), a quotation mark (*), or a
comma (,).

e All letters in the names are converted to uppercase before the names are stored in
metadata views or before the tables are accessed. This conversion also applies to
any schema name specified with the table name.

* Network Layer Tables

5-29

Chapter 5
Network Data Model Graph Tables

* Feature Layer Tables

* Network Feature Editing (NFE) Model Tables

5.11.1 Network Layer Tables

The metadata tables in this section are not related to feature modeling.

* Node Table

e Link Table

e Path Table

* Path-Link Table

e Subpath Table

* Partition Table

* Partition BLOB Table

e Connected Component Table

* Node Hierarchy Table (Optional)
* Node Level Table (Optional)

5.11.1.1 Node Table

Each network has a node table that can contain the columns described in Table 5-6.
(The specific columns depend on the network type and whether the network is
hierarchical or not.)

Table 5-6 Node Table Columns
]

Column Name Data Type Description
NODE_ID NUMBER ID number that uniquely identifies this node within the
network

NODE_NAME VARCHARZ2(32) Name of the node
NODE_TYPE VARCHAR2(24) User-defined string to identify the node type

ACTIVE VARCHAR2(1) Contains Y if the node is active (visible in the network), or
N if the node is not active.
PARTITION_ID NUMBER (Not used. Instead, node and partition relationships are

stored in the partition table, which is described in
Partition Table.)

ORACLE 5-30

Chapter 5
Network Data Model Graph Tables

Table 5-6 (Cont.) Node Table Columns
|

Column Name Data Type

Description

<node_geometry SDO_GEOMET

_column>, or RY, or

GEOM_IDand SDO_TOPO_GE

MEASURE OMETRY, or
NUMBER

<node_cost _colu NUMBER
mn>

HIERARCHY_LE NUMBER
VEL

PARENT NODE NUMBER
_ID

For a spatial (SDO, non-LRS) network, the
SDO_GEOMETRY object associated with the node

For a spatial topology network, the
SDO_TOPO_GEOMETRY object associated with the
node

For a spatial LRS network, GEOM_ID and MEASURE
column values (both of type NUMBER) for the geometry
objects associated with the node

For a logical network, this column is not used.

For a spatial SDO or topology network, the actual
column name is either a default name or what you
specified as the geom col umn parameter value in the call
to the SDO_NET.CREATE_NODE_TABLE procedure.

Cost value to be associated with the node, for use by
applications that use the network. The actual column
name is either a default name or what you specified as
the cost _col uim parameter value in the call to the
SDO_NET.CREATE_NODE_TABLE procedure. The
cost value can represent anything you want, for
example, the toll to be paid at a toll booth.

For hierarchical networks only: number indicating the
level in the network hierarchy for this node. (Network
Hierarchy explains network hierarchy.)

For hierarchical networks only: node ID of the parent
node of this node. (Network Hierarchy explains network
hierarchy.)

5.11.1.2 Link Table

Each network has a link table that contains the columns described in Table 5-7.

ORACLE

Table 5-7 Link Table Columns

Description

Column Name Data Type
LINK_ID NUMBER
LINK_NAME VARCHAR2(32)

START_NODE_|I NUMBER
D

END_NODE_ID NUMBER
LINK_TYPE VARCHAR2(24)
ACTIVE VARCHAR2(1)

LINK_LEVEL NUMBER

ID number that uniquely identifies this link within the
network

Name of the link
Node ID of the node that starts the link

Node ID of the node that ends the link
User-defined string to identify the link type

Contains Y if the link is active (visible in the network), or
Nif the link is not active.

Priority level for the link; used for network analysis, so
that links with higher priority levels can be considered
first in computing a path

5-31

Chapter 5
Network Data Model Graph Tables

Table 5-7 (Cont.) Link Table Columns
|

Column Name Data Type

Description

<link_geometry_c SDO_GEOMET

olumn>; or RY, or
GEOM_ID, SDO_TOPO_GE
START_MEASU OMETRY, or
RE, and NUMBER

END_MEASURE

<link_cost_colum NUMBER
n>

PARENT_LINK_I NUMBER
D

BIDIRECTED VARCHAR2(1)

For a spatial (SDO, non-LRS) network, the
SDO_GEOMETRY object associated with the link

For a spatial topology network, the
SDO_TOPO_GEOMETRY object associated with the
link

For a spatial LRS network, GEOM_ID,
START_MEASURE, and END_MEASURE column
values (all of type NUMBER) for the geometry objects
associated with the link

For a logical network, this column is not used.

For a spatial SDO or topology network, the actual
column name is either a default name or what you
specified as the geom col umn parameter value in the call
to the SDO_NET.CREATE_LINK_TABLE procedure.

Cost value to be associated with the link, for use by
applications that use the network. The actual column
name is either a default name or what you specified as
the cost _col uim parameter value in the call to the
SDO_NET.CREATE_LINK_TABLE procedure. The cost
value can represent anything you want, for example, the
estimated driving time for the link.

For hierarchical networks only: link ID of the parent link
of this link. (Network Hierarchy explains parent-child
relationships in a network hierarchy.)

For directed networks only: contains Y if the link is
undirected (that is, can be traversed either from the start
node to the end node or from the end node to the start
node), or Nif the link is directed (in one direction only,
from the start node to the end node).

5.11.1.3 Path Table

Each network can have a path table. A path is an ordered sequence of links, and is
usually created as a result of network analysis. A path table provides a way to store
the result of this analysis. For each path table, you must create an associated path-link
table (described in Path-Link Table). Each path table contains the columns described

ORACLE

in Table 5-8.

Table 5-8 Path Table Columns

Column Name Data Type Description

PATH_ID NUMBER ID number that uniquely
identifies this path within the
network

PATH_NAME VARCHAR2(32) Name of the path

PATH_TYPE VARCHAR2(24) User-defined string to identify

the path type

5-32

Table 5-8 (Cont.) Path Table Columns
|

Column Name

Data Type

Chapter 5
Network Data Model Graph Tables

Description

START_NODE_ID

END_NODE_ID

COST

SIMPLE

<path_geometry _column>

NUMBER

NUMBER

NUMBER

VARCHAR2(1)

SDO_GEOMETRY

Node ID of the node that starts
the first link in the path

Node ID of the node that ends
the last link in the path

Cost value to be associated
with the path, for use by
applications that use the
network. The cost value can
represent anything you want,
for example, the estimated
driving time for the path.

Contains Y if the path is a
simple path, or Nif the path is
a complex path. In a simple
path, the links form an ordered
list that can be traversed from
the start node to the end node
with each link visited once. In
a complex path, there are
multiple options for going from
the start node to the end node.

For all network types except
logical, the geometry object
associated with the path. The
actual column name is either a
default name or what you
specified as the geom col um
parameter value in the call to
the
SDO_NET.CREATE_PATH_T
ABLE procedure.

For a logical network, this
column is not used.

5.11.1.4 Path-Link Table

For each path table (described in Path Table), you must create a path-link table. Each
row in the path-link table uniquely identifies a link within a path in a network; that is,
each combination of PATH_ID, LINK_ID, and SEQ_NO values must be unique within
the network. The order of rows in the path-link table is not significant. Each path-link

ORACLE

table contains the columns described in Table 5-9.

Table 5-9 Path-Link Table Columns
]

Column Name Data Type Description

PATH_ID NUMBER ID number of the path in the
network

LINK_ID NUMBER ID number of the link in the

network

5-33

Table 5-9 (Cont.) Path-Link Table Columns

Chapter 5
Network Data Model Graph Tables

Column Name

Data Type

Description

SEQ_NO

NUMBER

Unique sequence number of
the link in the path. (The
sequence numbers start at 1.)
Sequence numbers allow
paths to contain repeating
nodes and links.

5.11.1.5 Subpath Table

Each path can have one or more associated subpaths, and information about all
subpaths in a network is stored in the subpath table. A subpath is a partial path along
a path, as explained in Network Data Model Graph Concepts. The subpath table

contains the columns described in Table 5-10.

Table 5-10 Subpath Table Columns
|

Column Name

Data Type

Description

SUBPATH_ID

SUBPATH_NAME
SUBPATH_TYPE

REFERENCE_PATH_ID

START_LINK_INDEX

END_LINK_INDEX

ORACLE

NUMBER

VARCHAR2(32)
VARCHAR2(24)

NUMBER

NUMBER

NUMBER

ID number that uniquely
identifies this subpath within
the reference path

Name of the subpath

User-defined string to identify
the subpath type

Path ID number of the path
that contains this subpath

Link ID of the link used to
define the start of the subpath.
For example, in Figure 5-2 in
Network Data Model Graph
Concepts, the
START_LINK_INDEX is 0,
and the
START_PERCENTAGE is
0.65.

Link ID of the link used to
define the end of the subpath.
For example, in Figure 5-2 in
Network Data Model Graph
Concepts, the
END_LINK_INDEX is 6, and
the END_PERCENTAGE is
0.5.

5-34

Table 5-10 (Cont.) Subpath Table Columns

Chapter 5

Network Data Model Graph Tables

Column Name Data Type

Description

START_PERCENTAGE NUMBER

END_PERCENTAGE NUMBER

COST NUMBER

GEOM SDO_GEOMETRY

Percentage of the distance
between
START_LINK_INDEX and the
next link in the path,
representing the start point of
the subpath. Can be a positive
or negative number. For
example, in Figure 5-2 in
Network Data Model Graph
Concepts, the
START_LINK_INDEX is 0,
and the
START_PERCENTAGE is
0.65. ("Percentage" values in
this case are expressed as
between 0 and 1.0, so 0.65 is
65 percent.)

Percentage of the distance
between END_LINK_INDEX
and the next link in the path,
representing the end point of
the subpath. Can be a positive
or negative number. For
example, in Figure 5-2 in
Network Data Model Graph
Concepts, the
END_LINK_INDEX is 6, and
the END_PERCENTAGE is
0.5. ("Percentage" values in
this case are expressed as
between 0 and 1.0, s0 0.5 is
50 percent.)

Cost value to be associated
with the subpath, for use by
applications that use the
network. The cost value can
represent anything you want,
for example, the estimated
driving time for the path.

For all network types except
logical, the geometry object
associated with the subpath.
The actual column name is
either a default name or what
you specified as the

geom col urm parameter value
in the call to the
SDO_NET.CREATE_SUBPAT
H_TABLE procedure.

For a logical network, this
column is not used.

ORACLE

5-35

Chapter 5
Network Data Model Graph Tables

5.11.1.6 Partition Table

Each partitioned network has a partition table. For information about partitioned
networks, see Network Analysis Using Load on Demand. Each partition table contains
the columns described in Table 5-11.

Table 5-11 Partition Table Columns
]

Column Name Data Type Description

NODE_ID NUMBER ID number of the node

PARTITION_ID NUMBER ID number of the partition.
Must be unique within the
network.

LINK_LEVEL NUMBER Link level (Link level reflects

the priority level for the link,
and is used for network
analysis, so that links with
higher priority levels can be
considered first in computing a
path.)

5.11.1.7 Partition BLOB Table

Each partitioned network can have a partition BLOB table, which stores binary large
object (BLOB) representations for each combination of link level and partition ID in the
network. Having BLOB representations of partitions enables better performance for
network load on demand analysis operations. To create the partition BLOB table, use
the SDO_NET.GENERATE_PARTITION_BLOBS procedure, where you specify the
partition BLOB table name as one of the parameters. For information about partitioned
networks, see Network Analysis Using Load on Demand.

¢ Note:

You should never directly modify the partition BLOB table. This table is
automatically updated as a result of calls to the
SDO_NET.GENERATE_PARTITION_BLOBS and
SDO_NET.GENERATE_PARTITION_BLOB procedures.

Each partition table contains the columns described in Table 5-12.

ORACLE 5-36

Table 5-12 Partition BLOB Table Columns

Chapter 5
Network Data Model Graph Tables

Column Name

Data Type

Description

LINK_LEVEL

PARTITION_ID
BLOB

NUM_INODES

NUM_ENODES

NUM_ILINKS

NUM_ELINKS

NUM_INLINKS

NUM_OUTLINKS

USER_DATA_INCLUDED

VARCHAR2(32)

NUMBER
BLOB

NUMBER

NUMBER

NUMBER

NUMBER

NUMBER

NUMBER

VARCHAR2(1)

Link level (Link level reflects
the priority level for the link,
and is used for network
analysis, so that links with
higher priority levels can be
considered first in computing a
path.)

ID number of the partition

Binary large object (BLOB)
representing the specified link
level within the specified
partition

Number of internal nodes in
the BLOB (that is, total
number of nodes in the BLOB)

Number of external nodes. An
external node is a node that is
outside the BLOB, but is one
end of a link in which the other
node is inside the BLOB.

Number of internal links in the
BLOB (that is, links completely
inside the BLOB)

Number of external links. An
external link is a link in which
one node is internal (inside the
BLOB) and one node is
external (outside the BLOB).

Number of incoming links. An
incoming link is an external
link in which the start node is
outside the BLOB and the end
node is inside the BLOB.

Number of outgoing links. An
outgoing link is an external link
in which the start node is
inside the BLOB and the end
node is outside the BLOB.

Contains Y if the BLOB can
include user data, or Nif the
BLOB cannot include user
data.

5.11.1.8 Connected Component Table

ORACLE

Each network can have a connected component table, which stores the component ID
for each node. Nodes of the same connected component have the same component
ID. Having this information in the table enables better performance for many network
analysis operations. To create the connected component table, and to update the

contents of the table at any time afterwards, use the

5-37

Chapter 5
Network Data Model Graph Tables

SDO_NET.FIND_CONNECTED_COMPONENTS procedure, where you specify the
connected component table name as one of the parameters. For more information
about using the precomputed information about connected components, see
Precomputed Analysis Results.

Each connected component table contains the columns described in Table 5-13.

Table 5-13 Connected Component Table Columns

|
Column Name Data Type Description

LINK_LEVEL NUMBER Link level of the component
assignment. (Link level
reflects the priority level for the
link, and is used for network
analysis, so that links with
higher priority levels can be
considered first in computing a
path.)

NODE_ID NUMBER ID number of the node from
which to compute all other
components that are
reachable.

COMPONENT_ID NUMBER ID number of a component
that is reachable from the
specified node.

5.11.1.9 Node Hierarchy Table (Optional)

ORACLE

Each network can have a node hierarchy table, which stores parent-child relationships
if the network has a hierarchy (explained in Network Hierarchy).

If the node hierarchy table exists, it contains the columns described in Table 5-14.

Table 5-14 Node Hierarchy Table Columns

___|
Column Name Data Type Description

PARENT_ID NUMBER Parent node ID, that is, the
node ID in the parent network,
or the group, cluster, or
partition 1D in the child

network.
CHILD_ID NUMBER Child ID, that is, the node ID in
the child network.
LINK_LEVEL NUMBER Link level on which the parent-

child relationship is defined. A
network on a higher link level
is a subnetwork of that on a
lower link level. A network on
link level n consists of only
links with link level greater
than or equal to n.

5-38

Chapter 5
Network Data Model Graph Tables

5.11.1.10 Node Level Table (Optional)

Each network can have a node level table, which stores information on the maximum
link level for each higher level node (that is, a node whose maximum link level is
greater than 1). The node level table is only useful for multilevel networks; it makes
loading partitions from node and link tables faster.

If the node level table exists, it contains the columns described in Table 5-15.

Table 5-15 Node Level Table Columns
]

Column Name Data Type Description

NODE_ID NUMBER ID of a node whose maximum
link level is greater than 1

LINK_LEVEL NUMBER Maximum link level to which

the node is connected.

5.11.2 Feature Layer Tables

The tables in this section are related to feature modeling (see Feature Modeling).
These tables are used to describe each registered feature layer.

In most applications, the tables containing feature entity information, feature to
network relationships, or feature hierarchy relationships already exist, although the
table schema may be different from that of the NDM tables. In such cases, you can
create views to map the existing table schema to the NDM table schema.

* Feature Table
* Feature Element Relationships Table

* Feature Hierarchy Table

5.11.2.1 Feature Table

A feature table contains feature entity information. Each feature table must contain a
FEATURE_ID column. Other feature attributes that are potentially useful during
feature analysis can be registered as user data.

Each feature table contains the columns described in Table 5-16.

Table 5-16 Feature Table Columns
]

Column Name Data Type Description

FEATURE_ID NUMBER ID of the feature.

(Additional (As appropriate) (Other feature attributes that are potentially useful during
columns as feature analysis)

needed)

ORACLE 5-39

5.11.2.2 Feature Element Relationships Table

Chapter 5
Network Data Model Graph Tables

The feature element relationships table contains information about the relationships
between feature elements and network elements (nodes and links).

The feature element relationships table contains the columns described in Table 5-17.

Table 5-17 Feature Element Relationships Table Columns

Column Name

Data Type

Description

FEATURE_ID
FEAT_ELEM_TYPE

NET_ELEM_ID

START_PERCENTAGE

END_PERCENTAGE

SEQUENCE

NUMBER
NUMBER

NUMBER

NUMBER

NUMBER

NUMBER

ID of the feature.

Feature element type. One of
the following: 1 for SDO_NET.
FEAT_ELEM_TYPE_PON
(point on node) ; 2 for
SDO_NET.
FEAT_ELEM_TYPE_POL
(point on link); 3 for
SDO_NET.
FEAT_ELEM_TYPE_LINE
(line).

ID of the network element
(node or link) associated with
this feature element.

Start percentage along
NET_ELEM_ID for this feature
element (ignored for point on
node feature elements).

End percentage along
NET_ELEM_ID for this feature
element (ignored for point on
node and point on line feature
elements).

Sequence number of the
feature element.

5.11.2.3 Feature Hierarchy Table

The feature hierarchy table contains feature hierarchy information. Child features can
belong to different feature layers.

ORACLE

The feature hierarchy table contains the columns described in Table 5-18.

Table 5-18 Feature Hierarchy Table Columns

Column Name Data Type

Description

PARENT_ID NUMBER
CHILD_LAYER_ID NUMBER
CHILD_ID NUMBER
SEQUENCE NUMBER

ID of the parent feature.

Feature layer ID of the child feature.

ID of the child feature.

Sequence number of the child feature.

5-40

Chapter 5
Network Data Model Graph Tables

5.11.3 Network Feature Editing (NFE) Model Tables

ORACLE

The tables in this section are related to feature manipulation using Network Feature
Editing (NFE) (see Feature Modeling Using Network Feature Editing (NFE)). These
tables are used to describe each NFE model.

In most cases, these tables are created or updated automatically when a new NFE
Model is created using the PL/SQL function
SDO_NFE.CREATE_MODEL_STRUCTURE or the Java API; but you can also
manually create the tables or views and register them to the desired model.

e Automatically Created Points Default Attributes Table
The automatically created points default attributes table contains information about
the default values for the attributes of automatically created points as the result of
the execution of a connectivity line-line rule.

e Connectivity Line-Line Rules Table
The connectivity line-line rules table contains the information about the definition of
connectivity line-line rules applicable to features involved in an NFE model.

e Connectivity Line-Point Rules Table
The connectivity line-point rules table contains the information about the definition
of connectivity line-point rules applicable to features involved in an NFE model.

e Feature Class Table
A feature class is related to a feature. A feature class table contains the records of
all feature classes from a feature layer, and must contain the columns described in
the following table.

e Feature Class Attributes Constraints Table
The feature class attributes constraints table contains information about user
restrictions over feature class attributes, which are the same attributes defined for
the feature layer that the feature class belongs to.

* Feature Class Default Predefined Connected Points Table
The feature class default predefined connected points table contains the
information about such default connected point features along a line feature
described by a feature class.

e Feature Class Relationship Table
The feature class relationship table contains information about the relationship
between features and feature classes, that is, which feature belongs to which
feature class.

e Feature Rule Relationship Table
The feature rule relationship table contains information that relates each feature
element involved in a rule, with the rule that caused its generation or connection.

e Feature User Data Table
The feature user data table contains he information of feature class attributes of a
catalog type.

e Feature User Data Catalog Table
You can assign a value to a feature class attribute from a catalog; this is, that the
attribute type from a feature class can be a catalog type. The feature user data
catalog table keeps a register of the catalogs that can be used for that purpose.

5-41

Chapter 5
Network Data Model Graph Tables

* Feature User Data Catalog Values Table
The feature user data catalog values table contains the list of values held by
catalogs defined in feature user data catalog table.

* Point Cardinality Rules Table
The point cardinality rules table contains the configuration of the maximum and
minimum inbound and outbound connections that a specific point feature must
support in an NFE model.

* Rule Decision Handlers Table
The rule decision handlers table contains information about the names of the Java
class and/or PL/SQL procedures to be executed as decision handlers when a
connectivity rule (line-line or line-point) is executed.

* Rule Instance Table
The rule instance table contains information about rule instances generated by the
application of either line-line or line-point connectivity rules in an NFE model.

5.11.3.1 Automatically Created Points Default Attributes Table

The automatically created points default attributes table contains information about the
default values for the attributes of automatically created points as the result of the
execution of a connectivity line-line rule.

. The following table describes the columns of the automatically created points default
attributes table. When an NFE model is created, the name by default given to this kind
of table is POINT_ATTR_DEF_[model_id]$.

Table 5-19 Automatically Created Points Default Attributes Table Columns
|

Column Data Type Description

Name

ID NUMBER Primary key. Default value identifier.

LINE_LINE_R NUMBER Foreign key. An existing line-line rule identifier. Refers to the
ULE_ID ID column in the line-line rules table.

ATTRIBUTE_ VARCHAR(50 A point feature class attribute name. Refers to the

NAME) DATA_NAME column in the

xxx_SDO_NETWORK_USER_DATA view.

DEFAULT_VA VARCHAR(10 Default value for the point's attribute.
LUE 0)

5.11.3.2 Connectivity Line-Line Rules Table

ORACLE

The connectivity line-line rules table contains the information about the definition of
connectivity line-line rules applicable to features involved in an NFE model.

This definition depicts how two line features (described in a line-point rule) must
interact in order to be connected each other.

The following table describes the columns of a connectivity line-line rules table When
an NFE model is created, the name by default given to this kind of table is
LINE_LINE_RULE_[model_id]$.

5-42

Chapter 5
Network Data Model Graph Tables

Table 5-20 Connectivity Line-Line Rules Table Columns
|

Column Data Type Description

Name

ID NUMBER Primary key. Line-line rule identifier.

LINE_POINT_ NUMBER Foreign key. An existing line-point rule identifier. Refers to the
11D ID column from a line point rules table.

LINE_POINT_ NUMBER Foreign key. An existing line-point rule identifier. Refers to the
2 ID ID column from a line point rules table.

INTERACTION NUMBER Interaction type between the two lines. Posible values: 1 =

Crosses, 2 = Touches end points, 3 = Touches middle points,
4 = Touches any point, 5 = Any interact

DECISION_HA NUMBER Foreign key. The ID of the decision handler (if any) associated
NDLER_ID with the rule. Refrs to the ID column in the rules decision
handler table.

CREATE_POI VARCHAR2(1 Specifies whether the connection point should be created
NT) automatically or not when the interaction among feature lines
occurs. Possible values: 'Y’, ‘N’.

5.11.3.3 Connectivity Line-Point Rules Table

ORACLE

The connectivity line-point rules table contains the information about the definition of
connectivity line-point rules applicable to features involved in an NFE model.

This definition includes specifications of feature layer, feature class, and feature
attributes conditions for both line and point interacting features that can be connected.

The following table describes the columns of a connectivity line-point rules table When
an NFE model is created, the name by default given to this kind of table is
LINE_POINT_RULE_[model_id]$.

Table 5-21 Connectivity Line-Point Rules Table Columns

|
Column Name Data Type Description

ID NUMBER Primary key. Line-point rule identifier.
LINE_FEATURE_ NUMBER Feature layer identifier to which the line belongs. Refers to
LAYER_ID the xxx_SDO_NETWORK_FEATURE table. A value of -1

means all feature layers.
LINE_FEATURE_ NUMBER Feature class identifier for the line to which the rule will be

CLASS_ID applied. A value of -1 means all feature classes.

LINE_ATTRIBUT VARCHAR2(Condition to be evaluated in the rule over the feature line

E_CONDITION 200) attributes. Example: MATERI AL = ' | RON

POINT_FEATUR NUMBER Feature layer identifier to which allowed connection point

E_LAYER_ID belongs. Refers to the xxx_SDO_NETWORK_FEATURE
table.

POINT_FEATUR NUMBER Feature class identifier for the allowed connection point. A

E_CLASS_ID value of -1 means all feature classes.

DECISION_HAN NUMBER Foreign key. The ID of the decision handler (if any)

DLER_ID associated with the rule. Refers to the ID column from the

rule decision handler table.

5-43

Chapter 5
Network Data Model Graph Tables

Table 5-21 (Cont.) Connectivity Line-Point Rules Table Columns

___|
Column Name Data Type Description

MAX_IN_CONN NUMBER Maximum number of incoming lines that can be connected
to the point.

MAX_OUT_CON NUMBER Maximum number of outgoing lines that can be connected to
N the point.

MIN_IN_CONN NUMBER Minimum number of incoming lines that must be connected

to the point

MIN_OUT_CONN NUMBER Minimum number of outgoing lines that must be connected
to the point

SOURCE NUMBER Indicates whether the rule was created by the user or by a

line-line rule. Possible values are: 1 = User, 2=Line-Line
Rule. The default value is 1.

ID NUMBER Primary key. Line-line rule identifier.

5.11.3.4 Feature Class Table

A feature class is related to a feature. A feature class table contains the records of all
feature classes from a feature layer, and must contain the columns described in the
following table.

When an NFE model is created, the name by default given to this kind of table is
FT_CLASS_[model_id]$.

Table 5-22 Feature Class Table Columns

___|
Column Name Data Type Description

ID NUMBER Primary key. Feature class identifier
NAME VARCHAR2(Feature class name

50)
FEATURE_LAYE NUMBER Feature layer identifier. Reference to
R_ID xxx_SDO_NETWORK_FEATURE table.
SHAPE NUMBER Feature class shape type. Possible values:

SDO_NFE.FT_CLASS_POINT (1),
SDO_NFE.FT_CLASS_SIMPLE_LINE (2),
SDO_NFE.FT_CLASS_COMPLEX_LINE (3),
SDO_NFE.FT_CLASS_PATH (4).

STYLE VARCHAR2(Feature class style. Reference to xxx_SDO_STYLES table.
50)

5.11.3.5 Feature Class Attributes Constraints Table

ORACLE

The feature class attributes constraints table contains information about user
restrictions over feature class attributes, which are the same attributes defined for the
feature layer that the feature class belongs to.

This table must contain the columns described in the following table. When an NFE
model is created, the name by default given to this kind of table is
FT_CLASS_ATTR_CSTR_[model_id]$.

5-44

Chapter 5
Network Data Model Graph Tables

Table 5-23 Feature Class Attributes Constraints Table Columns
]
Column Name Data Type Description

ID NUMBER Primary key. Constraint identifier.

FEATURE_CLA NUMBER Foreign key. Feature class identifier. Reference to feature
SS ID class table.

ATTRIBUTE_NA VARCHAR2(Name of the attribute to be restricted. Reference to
ME 50) DATA_NAME column from the
xxx_SDO_NETWORK_USER_DATA view.

DEFAULT_VALU VARCHAR2(Default value for the specified attribute (attribute_name).
E 100)

VISIBLE VARCHAR2(Specifies whether the attribute must be visible or not.
1)

EDITABLE VARCHAR2(Specifies whether the attribute must be editable or not.
1

5.11.3.6 Feature Class Default Predefined Connected Points Table

The feature class default predefined connected points table contains the information
about such default connected point features along a line feature described by a feature
class.

A Line Feature Class can be defined with points connected by default. The following
table describes the columns of a feature class default predefined connected points
table. When an NFE model is created, the name by default given to this kind of table is
FT_CLASS_DEF _CON_PT_[model_id]$.

Table 5-24 Feature Class Default Predefined Connected Points Table Columns

L __|
Column Name Data Type Description

ID NUMBER Primary key. Default connected point identifier.
LINE_FEATURE_ NUMBER Foreign key. Line feature class identifier. Refers to the ID
CLASS_ID column in the feature class table.

POINT_FEATUR NUMBER Foreign key. Point feature class identifier. Refers to the ID
E_CLASS ID column in the feature class table.

POSITION_PER DECIMAL Percentage of point's location along the line.
CENTAGE

5.11.3.7 Feature Class Relationship Table

ORACLE

The feature class relationship table contains information about the relationship
between features and feature classes, that is, which feature belongs to which feature
class.

The feature class relationship table contains the columns described in the following
table. When an NFE model is created, the name by default given to this kind of table is
FT_CLASS_REL_[model_id]$.

5-45

Chapter 5
Network Data Model Graph Tables

Table 5-25 Feature Class Relationship Table Columns

___|
Column Name Data Type Description

FEATURE_ID NUMBER Primary key. Feature identifier. Reference to feature table.

FEATURE_CLA NUMBER Foreign key. Feature class identifier. Reference to feature
SS ID class table.

5.11.3.8 Feature Rule Relationship Table

The feature rule relationship table contains information that relates each feature
element involved in a rule, with the rule that caused its generation or connection.

The feature rule relationship table contains the columns described in the following
table. When an NFE model is created, the name by default given to this kind of table is
FT_RULE_REL_[model_id]$.

Table 5-26 Feature Rule Relationship Table Columns

___|
Column Name Data Type Description

RULE_INSTAN NUMBER Primary key. Rule instance identifier.

CE_ID
FEATURE_LAY NUMBER Primary key. Feature layer identifier. Refers to the
ER_ID xxx_SDO_NETWORK_FEATURE table.

FEATURE_ID NUMBER Primary key. Feature identifier. Refers to the FEATURE_ID
column from the feature table.

NET_ELEM_ID NUMBER Primary key. Network element identifier. Refers to the
NET_ELEM_ID column from the feature element
relationships table.

FEAT_ELEM_T NUMBER Primary key. Feature element type. Refers to the
YPE FEAT_ELEM_TYPE column from the feature element
relationships table.

5.11.3.9 Feature User Data Table

ORACLE

The feature user data table contains he information of feature class attributes of a
catalog type.

The feature user data table is an extension of xxx_SDO_NETWORK_USER_DATA
view. The following table describes the columns of a feature user data table. When an
NFE model is created, the name by default given to this kind of table is
FT_USR_DATA_[model_id]$.

Table 5-27 Feature User Data Table Columns

Column Data Type Description

Name

ID NUMBER Primary key. Feature class attribute identifier.
FEATURE_L NUMBER Feature layer identifier to which the feature class attribute
AYER_ID belongs.

5-46

Chapter 5
Network Data Model Graph Tables

Table 5-27 (Cont.) Feature User Data Table Columns
|

Column Data Type Description

Name

ATTRIBUTE VARCHAR2(5 Attribute name. Refers to the DATA_NAME column of the
_NAME 0) xxx_SDO_NETWORK_USER_DATA view.

CATALOG_| NUMBER Foreign key. Catalog identifier. Refers to the ID column from the
D feature user data catalog table.

5.11.3.10 Feature User Data Catalog Table

You can assign a value to a feature class attribute from a catalog; this is, that the
attribute type from a feature class can be a catalog type. The feature user data catalog
table keeps a register of the catalogs that can be used for that purpose.

The following table describes the columns that a feature user data catalog table must
contain. When an NFE model is created, the name by default given to this kind of table
is FT_USR_DATA_CATLG_[model_id]$.

Table 5-28 Feature User Data Catalog Table Columns
|

Column Data Type Description

Name

ID NUMBER Primary key. Catalog identifier.

NAME VARCHAR2(2 Catalog name.
00)

DATA_TYPE VARCHAR2(1 Catalog data type (for example, Number or Varchar2).
2)

5.11.3.11 Feature User Data Catalog Values Table

ORACLE

The feature user data catalog values table contains the list of values held by catalogs
defined in feature user data catalog table.

The following table describes the columns that a feature user data catalog values table
must contain. When an NFE model is created, the name by default given to this kind of
table is FT_USR_DATA_CVAL_[model_id]$.

Table 5-29 Feature User Data Catalog Values Table Columns
|

Column Data Type Description
Name
ID NUMBER Primary key. Catalog entry identifier.
CATALOG_| NUMBER Foreign key. Catalog identifier. Reference to the feature user
D data catalog table.
VALUE VARCHAR2(1 Catalog entry.
2)

5-47

Chapter 5
Network Data Model Graph Tables

5.11.3.12 Point Cardinality Rules Table

The point cardinality rules table contains the configuration of the maximum and
minimum inbound and outbound connections that a specific point feature must support
in an NFE model.

The point cardinality rules table contains the columns described in the following table.
When an NFE model is created, the name by default given to this kind of table is
POINT_CARD_RULE_[model_id]$.

Table 5-30 Point Cardinality Rules Table Columns
|

Column Data Type Description

Name

ID NUMBER Primary key. Cardinality rule identifier

FEATURE_LA NUMBER Feature layer of the point

YER_ID

FEATURE_CL NUMBER Feature class of the point. The shape of the class must be of type
ASS_ID POINT

MAX_IN_CON NUMBER Maximum number of incoming lines that can be connected to the
N point

MAX_OUT_C NUMBER Maximum number of outgoing lines that can be connected to the
ONN point

5.11.3.13 Rule Decision Handlers Table

The rule decision handlers table contains information about the names of the Java
class and/or PL/SQL procedures to be executed as decision handlers when a
connectivity rule (line-line or line-point) is executed.

The rule decision handlers table contains the columns described in the following table.
When an NFE model is created, the name by default given to this kind of table is
RULE_DEC_HANDLER_[model_id]$.

Table 5-31 Rule Decision Handlers Table Columns

__|
Column Name Data Type Description

ID NUMBER Primary key. Decision handler identifier.

TYPE VARCHAR2(SDO _NFE. RULE_TYPE_LI NE_LI NE for line-line rule handler, or
1) SDO_NFE. RULE_TYPE_LI NE_PQ NT for line-point rule handler.

CLASS_FQNAME VARCHAR(1 Handler class fully qualified name. This class must be an
00) implementation of

oracle.spatial.network.nfe.model.rule.DecisionHandler. The
implementation class must be accessible from the classpath
of the application that is running the rule engine in the Java
API.

ORACLE 5-48

Chapter 5
Network Data Model Graph Tables

Table 5-31 (Cont.) Rule Decision Handlers Table Columns

__|
Column Name Data Type Description

PLSQL_SP_GET VARCHAR2(Name of the PL/SQL stored procedure used to obtain the

_CONN_GROUP 50) different groups of elements participating in an intersection

S that can be connected through a rule. The name must
include the package name. For a handler of type 'L, the
default value is SDO_NFE.get _Il_conn_intersections, and
the parameters must be:

model_id IN NUMBER - Model identifier Il_rule_id IN
NUMBER - Line-Line rule identifier

interaction_grp IN OUT SDO_INTERACTION - Group of
lines and points that are interacting

rule_lhs_lines_indexes IN dbms_sql.NUMBER_TABLE -
Among the line features in the interacting group, indexes of
the lines that specifically match the LEFT hand side of the
line-line rule.

rule_rhs_lines_indexes IN dbms_sql.NUMBER_TABLE -
Among the line features in the interacting group, indexes of
the lines that specifically match the RIGHT hand side of the
line-line rule.

rule_points_indexes IN dbms_sql.NUMBER_TABLE -
Among the point features in the interacting group, indexes
of the points that specifically match the point feature
specification in the line-line rule. These points are the ones
to be considered in the conformation of connectable groups.

Refer to SDO_NFE.GET_LL_CONN_INTERSECTIONS
function documentation in Section 7 for more details.

For a handler of type 'P’, the default value is
SDO_NFE.get_Ip_conn_intersections, and the
parameters must be:

model_id IN NUMBER - Model identifier
Ip_rule_id IN NUMBER - Line-point rule identifier

interaction_grp IN OUT SDO_INTERACTION - Group of
lines and points that are interacting.

rule_lines_indexes IN dbms_sql.NUMBER_TABLE - Among
the line features in the interacting group, indexes of the
LINES that specifically match the line-point rule. These lines
will be considered in the conformation of connectable
groups.

rule_points_indexes IN dbms_sql.NUMBER_TABLE -
Among the point features in the interacting group, indexes
of the POINTS that specifically match the point feature
specification in the line-point rule. These points are the
ones to be considered in the conformation of connectable
groups.

Refer to
SDO_NFE.GET_LP_CONN_INTERSECTIONSfunction
documentation in Section 7 for more details.

ORACLE 5-49

Chapter 5
Network Data Model Graph and Network Feature Editing (NFE) Model Metadata Views

Table 5-31 (Cont.) Rule Decision Handlers Table Columns

__|
Column Name Data Type Description

PLSQL_SP_GET VARCHAR2(Name of the PL/SQL stored procedure used to determine

_CONN_POINT 50) the geometry of the connection point between the
participating elements in an intersection. The name must
include the package name. Default value is
SDO_NFE.get_connection_point_geom. It must accept
only one parameter as an object of type
SDO_INTERACTION which is the group of interacting
features. Refer to
SDO_NFE.GET_CONNECTION_POINT_GEOM function
documentation for more details.

For using customized rule decision handlers in the Java API, the decision handler
Java class to be used must be specified in CLASS_FQNAME. For using customized
rule decision handlers in PL/SQL, the subprogram for calculating the connectable
groups of features must be specified in PLSQL_SP_GET_CONN_GROUPS, and the
subprogram for calculating the geometry of the connection point among the features to
be connected must be specified in PLSQL_SP_GET_CONN_POINT.

5.11.3.14 Rule Instance Table

The rule instance table contains information about rule instances generated by the
application of either line-line or line-point connectivity rules in an NFE model.

This definition includes the identifier for the rule instance, the identifier of the rule that
generated the instance, and the type of the rule.

The following table describes the columns of a rule instance table When an NFE
model is created, the name by default given to this kind of table is
RULE_INSTANCE_[model_id]$.

Table 5-32 Rule Instance Table Columns
]

Column Data Type Description

Name

ID NUMBER Primary key. Rule instance identifier

RULE_ID NUMBER Rule identifier. Refers to ID column in either the line-line rules

table or line-point rules table.

RULE_TY VARCHAR(1) Mustbe SDO NFE. RULE_TYPE LINE_LI NE or
PE SDO_NFE. RULE_TYPE_LI NE_PQOI NT.

5.12 Network Data Model Graph and Network Feature
Editing (NFE) Model Metadata Views

Two sets of network metadata views can be created for each schema (user):
xxx_SDO_NETWORK_xxxxxx and xxx_SDO_NFE_MODEL_xxxxxx, where the initial
xxx can be USER or ALL. These views are created, as needed, by Spatial and Graph

ORACLE 5-50

Chapter 5
Network Data Model Graph and Network Feature Editing (NFE) Model Metadata Views

The xxx_SDO_NFE_MODEL_xxxxxx metadata views relate to Feature Modeling
Using Network Feature Editing (NFE).

« xxx_SDO_NETWORK_METADATA Views

* Xxx_SDO_NETWORK_CONSTRAINTS Views

* Xxx_SDO_NETWORK_USER_DATA Views

* xXxx_SDO_NETWORK_FEATURE Views

« xxx_SDO_NFE_MODEL_FTLAYER_REL Views
« xxx_SDO_NFE_MODEL_METADATA Views

* xXxx_SDO_NFE_MODEL_WORKSPACE Views

5.12.1 xxx_SDO_NETWORK_METADATA Views

The following views contain information about networks:

e USER_SDO_NETWORK_METADATA contains information about all networks
owned by the user.

e ALL SDO NETWORK_METADATA contains information about all networks on
which the user has SELECT permission.

If you create a network using one of the CREATE_<network-type> NETWORK
procedures, the information in these views is automatically updated to reflect the new
network; otherwise, you must insert information about the network into the
USER_SDO_NETWORK_METADATA view.

The USER_SDO_NETWORK_METADATA and ALL_SDO_NETWORK_METADATA
views contain the same columns, as shown Table 5-33, except that the
USER_SDO_NETWORK_METADATA view does not contain the OWNER column.
(The columns are listed in their order in the view definition.)

Table 5-33 Columns in the xxx_SDO_NETWORK_METADATA Views

Column Name Data Type Purpose

OWNER VARCHAR2(32) Owner of the network
(ALL_SDO_NETWORK_MET
ADATA view only)

NETWORK VARCHAR2(24) Name of the network

NETWORK_ID NUMBER ID number of the network;
assigned by Spatial and
Graph

NETWORK_CATEGORY VARCHAR2(12) Contains SPATI AL if the

network nodes and links are
associated with spatial
geometries; contains LOG CAL
if the network nodes and links
are not associated with spatial
geometries. A value of

LOA CAL causes the Network
Data Model Graph PL/SQL
and Java APIs to ignore any
spatial attributes of nodes,
links, and paths.

ORACLE 5-51

Chapter 5
Network Data Model Graph and Network Feature Editing (NFE) Model Metadata Views

Table 5-33 (Cont.) Columns in the xxx_SDO_NETWORK_METADATA Views

___|
Column Name Data Type Purpose

GEOMETRY_TYPE VARCHAR2(24) If NETWORK_CATEGORY is
SPATI AL, contains a value
indicating the geometry type of
nodes and links:
SDO_GEQVETRY for non-LRS
SDO_GEOMETRY objects,
LRS GEQOVETRY for LRS
SDO_GEOMETRY objects,
TOPO_GEQOVETRY for
SDO_TOPO_GEOMETRY

objects.
NETWORK_TYPE VARCHAR2(24) User-defined string to identify
the network type.
NO_OF_HIERARCHY_LEVEL NUMBER Number of levels in the
S network hierarchy. Contains 1

if there is no hierarchy. (See
Network Hierarchy for
information about network

hierarchy.)
NO_OF_PARTITIONS NUMBER (Not currently used)
LRS_TABLE_NAME VARCHAR2(32) If GEOVETRY_TYPE is

SDO_GEQVMETRY, contains the
name of the table containing
geometries associated with
nodes.

LRS_GEOM_COLUMN VARCHAR2(32) If LRS TABLE NAME contains a
table name, identifies the
geometry column in that table.

NODE_TABLE_NAME VARCHAR2(32) If GEOVETRY_TYPE is
SDO_GEQVMETRY, contains the
name of the table containing
geometries associated with
nodes. (The node table is
described in Node Table.)

NODE_GEOM_COLUMN VARCHAR2(32) If NODE_TABLE_NAME contains a
table name, identifies the
geometry column in that table.

NODE_COST_COLUMN VARCHAR2(1024) If NODE_TABLE_NAME contains a
table name, identifies the cost
column in that table, or a
PL/SQL function to compute
the cost value.

NODE_PARTITION_COLUM VARCHAR2(32) (Not currently used).
N

ORACLE 5-52

Chapter 5

Network Data Model Graph and Network Feature Editing (NFE) Model Metadata Views

Table 5-33 (Cont.) Columns in the xxx_SDO_NETWORK_METADATA Views
|

Column Name Data Type

Purpose

NODE_DURATION_COLUMN VARCHAR2(32)

LINK_TABLE_NAME VARCHAR2(32)
LINK_GEOM_COLUMN VARCHAR2(32)
LINK_DIRECTION VARCHAR2(12)
LINK_COST_COLUMN VARCHAR2(1024)

LINK_PARTITION_COLUMN VARCHAR2(32)
LINK_DURATION_COLUMN VARCHAR2(32)

PATH_TABLE_NAME VARCHAR2(32)

PATH_GEOM_COLUMN VARCHAR2(32)

ORACLE

If NODE_TABLE_NAME contains a
table name, identifies the
optional duration column in
that table. This column can
contain a numeric value that
has any user-defined
significance, such as a
number of minutes associated
with the node.

If GEOVETRY_TYPE is
SDO_GEQVMETRY, contains the
name of the table containing
geometries associated with
links. (The link table is
described in Link Table.)

If LI NK_TABLE_NAME contains a
table name, identifies the
geometry column in that table.

Contains a value indicating the
type for all links in the

network: UNDI RECTED or

Dl RECTED.

If LI NK_TABLE_NAME contains a
table name, identifies the
optional numeric column
containing a cost value for
each link, or a PL/SQL
function to compute the cost
value.

(Not currently used)

If LI NK_TABLE_NAME contains a
table name, identifies the
optional duration column in
that table. This column can
contain a numeric value that
has any user-defined
significance, such as a
number of minutes associated
with the link.

Contains the name of an
optional table containing
information about paths. (The
path table is described in Path
Table.)

If PATH TABLE_NAME is
associated with a spatial
network, identifies the
geometry column in that table.

5-53

ORACLE

Chapter 5

Network Data Model Graph and Network Feature Editing (NFE) Model Metadata Views

Table 5-33 (Cont.) Columns in the xxx_SDO_NETWORK_METADATA Views
|

Column Name Data Type

Purpose

PATH_LINK_TABLE_NAME VARCHAR2(32)

SUBPATH_TABLE_NAME VARCHAR2(32)

SUBPATH_GEOM_COLUMN VARCHAR2(32)

PARTITION_TABLE_NAME VARCHAR2(32)

PARTITION_BLOB_TABLE_N VARCHAR2(32)
AME

COMPONENT_TABLE_NAM VARCHAR2(32)
E

NODE_LEVEL_TABLE_NAM VARCHAR2(32)
E

TOPOLOGY VARCHAR2(32)

Contains the name of an
optional table containing
information about links for
each path. (The path-link table
is described in Path-Link
Table.)

Contains the name of an
optional table containing
information about subpaths.
(The subpath table is
described in Subpath Table.)

If SUBPATH_TABLE_NAME is
associated with a spatial
network, identifies the
geometry column in that table.

For a partitioned network: the
name of the partition table.
(The partition table is
described in Partition Table.

For a partitioned network for
which any partition BLOBs
have been generated: the
name of the partition BLOB
table. (The partition BLOB
table is described in Partition
BLOB Table.

The name of the table
containing information about
precomputed connected
components, as explained in
Precomputed Analysis
Results. (The connected
component table is described
in Connected Component
Table.)

The name of the table
containing information about
node levels in a multilevel
network. Specify this table as
the node_| evel _tabl e_nane
parameter with the
SDO_NET.GENERATE_NOD
E_LEVELS procedure.

For a spatial network
containing
SDO_TOPO_GEOMETRY
objects (creating using the
SDO_NET.CREATE_TOPO _
NETWORK procedure),
contains the name of the
topology.

5-54

Chapter 5
Network Data Model Graph and Network Feature Editing (NFE) Model Metadata Views

Table 5-33 (Cont.) Columns in the xxx_SDO_NETWORK_METADATA Views

___|
Column Name Data Type Purpose

USER_DEFINED_DATA VARCHAR2(1) Contains Y if the network
contains user-defined data;
contains N if the network does
not contain user-defined data.

EXTERNAL_REFERENCES VARCHAR2(1) (Not currently used)

CHILD_NETWORK VARCHAR2(32) Name of the child network, if a
network hierarchy is involved.

HIERARCHY_TABLE_NAME VARCHAR2(32) Name of the hierarchy table, if
a network hierarchy is
involved.

5.12.2 xxx_SDO_NETWORK_CONSTRAINTS Views

ORACLE

The following views contain information about network constraints (described in
Network Constraints):

e USER_SDO_NETWORK_CONSTRAINTS contains information about all network
constraints owned by the user.

e ALL_SDO_NETWORK_CONSTRAINTS contains information about all network
constraints on which the user has SELECT permission.

These views are automatically maintained by the
SDO_NET.REGISTER_CONSTRAINT and SDO_NET.DEREGISTER_CONSTRAINT
procedures. You should not directly modify the contents of these views.

The USER_SDO_NETWORK_CONSTRAINTS and
ALL_SDO_NETWORK_CONSTRAINTS views contain the same columns, as shown
Table 5-34, except that the USER_SDO_NETWORK_CONSTRAINTS view does not
contain the OWNER column. (The columns are listed in their order in the view
definition.)

Table 5-34 Columns in the xxx_SDO_NETWORK_CONSTRAINTS Views
]

Column Name Data Type Purpose
OWNER VARCHAR2(32) Owner of the network
constraint

(ALL_SDO_NETWORK_CON
STRAINTS view only)

CONSTRAINT VARCHAR2(32) Name of the network
constraint
DESCRIPTION VARCHAR2(200) Descriptive information about

the network constraint, such
as its purpose and any usage
notes

CLASS_NAME VARCHAR2(4000) Name of the Java class that
implements the network
constraint

5-55

Chapter 5
Network Data Model Graph and Network Feature Editing (NFE) Model Metadata Views

Table 5-34 (Cont.) Columns in the xxx_SDO_NETWORK_CONSTRAINTS Views

Column Name Data Type Purpose

CLASS BINARY FILE LOB The Java class that
implements the network
constraint

5.12.3 xxx_SDO_NETWORK_USER_DATA Views

ORACLE

The following views contain information about network user-defined data, which is the
information (not related to connectivity) that users want to associate with a network
representation:

e USER_SDO_NETWORK_USER_DATA contains information about all network
user-defined data owned by the user.

 ALL_SDO_NETWORK_USER_DATA contains information about all network user-
defined data on which the user has SELECT permission.

The USER_SDO_NETWORK_USER_DATA and
ALL_SDO_NETWORK_USER_DATA views contain the same columns, as shown
Table 5-34, except that the USER_SDO_NETWORK_USER_DATA view does not
contain the OWNER column. (The columns are listed in their order in the view
definition.)

Table 5-35 Columns in the xxx_SDO_NETWORK_USER_DATA Views

Column Name Data Type Purpose
OWNER VARCHAR2(32) Owner of the network
constraint

(ALL_SDO_NETWORK_USE
R_DATA view only)

NETWORK VARCHAR2(32) Name of the network

TABLE_TYPE VARCHAR2(12) Type of the table containing
the user-defined data: NCDE,
LI NK, PATH, or SUBPATH

If feature user data is
registered through the
xxx_SDO_USER_NETWORK
_USER_DATA views.
TABLE_TYPE is set to the
name of the feature table.

DATA_NAME VARCHAR2(32) Name of column containing
the user-defined data
DATA_TYPE VARCHAR2(12) Data type of the user-defined

data: VARCHAR?, | NTEGER,
NUMBER, DATE, TI MESTAVP, or
SDO_GEOMETRY

DATA_LENGTH NUMBER(38) If DATA_TYPE is VARCHAR?,
the length of the user-defined
data

5-56

ORACLE

Chapter 5
Network Data Model Graph and Network Feature Editing (NFE) Model Metadata Views

Table 5-35 (Cont.) Columns in the xxx_SDO_NETWORK_USER_DATA Views

___|
Column Name Data Type Purpose

CATEGORY_ID NUMBER User data category ID (non-
negative number, default 0).
The category ID allows for
grouping of user data for
different applications.
Category 0 is reserved for
general-purpose user data
that is useful for all
applications. User data for
different purposes can be
grouped into different
categories, so that during
network analysis, only the
relevant user data categories
are loaded into memory,
reducing memory
consumption at runtime.

For example, for a road
network, category O user data
can include the speed limit
and function class of links, and
the x, y coordinates of nodes;
trucking-related user data
might belong to category 1;
and traffic-related user data
might belong to category 2.

To use user-defined data, you must set the USER_DEFINED_DATA column value to Y
in the appropriate xxx_SDO_NETWORK_METADATA views (described in
xxx_SDO_NETWORK_METADATA Views).

For an example of using user-defined data, see User-Defined Data Examples (PL/SQL
and Java).

For user data defined through the xxx_SDO_NETWORK_USER_DATA views, the
default user data 1/0O implementation (LODUser Dat al 0SDO) is used to access the user
data during network analysis. However, some user data is not included in the node or
link table, and thus cannot be registered through xxx_SDO_NETWORK_USER_DATA
views. For such user data, you must provide your own implementation of the user data
I/0O interface. A typical way of implementing a custom user data I/O interface is to
generate BLOBs corresponding to node and link user data , one BLOB for each
partition, and then retrieve user data information from the BLOBs during network
analysis.

You can also associate multiple categories of user-defined data (categorized user
data) with a single network. For example, in a multimodal network (described in
Multimodal Network and Temporal Examples), if you must associate driving-related
attributes (such as speed limit) with a link in addition to the link's multimodal attributes,
you can organize user-defined data in two categories: one for driving-related attributes
and the other for multimodal attributes.

5-57

Chapter 5
Network Data Model Graph and Network Feature Editing (NFE) Model Metadata Views

5.12.4 xxx_SDO_NETWORK_FEATURE Views

ORACLE

The following views contain information about network feature layers (described in
Features and Feature Layers):

« USER_SDO_NETWORK_FEATURE contains information about all network
feature layers owned by the user.

 ALL_SDO_NETWORK_FEATURE contains information about all network feature
layers on which the user has SELECT permission.

The USER_SDO_NETWORK_FEATURE and ALL_SDO_NETWORK_FEATURE
views contain the same columns, as shown Table 5-34, except that the
USER_SDO_NETWORK_FEATURE view does not contain the OWNER column. (The
columns are listed in their order in the view definition.)

Table 5-36 Columns in the xxx_SDO_NETWORK_FEATURE Views
]

Column Name Data Type Purpose

OWNER VARCHAR2(32) Owner of the network feature
layer
(ALL_SDO_NETWORK_FEAT
URE view only)

NETWORK VARCHAR2(32) Name of the network on which
the feature layer is defined

FEATURE_LAYER_NAME VARCHAR2(32) Name of the feature layer

FEATURE_LAYER_ID NUMBER ID of the feature layer
(assigned by Oracle Spatial
and Graph)

FEATURE_LAYER_TYPE NUMBER Type of the feature layer (see

Table 5-2 in Features and
Feature Layers)

FEATURE_TABLE_NAME VARCHAR2(32) Name of the feature table (see
Feature Table)
RELATION_TABLE_NAME VARCHAR2(32) Name of the feature element

relationships table, which
maps feature elements with
network elements (nodes and
links) (see Feature Element
Relationships Table)

HIERRCHY_TABLE_NAME VARCHAR2(32) Name of the feature hierarchy
table, which defines parent-
child relationships between
features (see Feature
Hierarchy Table)

To use user-defined data, you must set the USER_DEFINED_DATA column value to Y
in the appropriate xxx_SDO_NETWORK_METADATA views (described in
xxX_SDO_NETWORK_METADATA Views).

For an example of using user-defined data, see User-Defined Data Examples (PL/SQL
and Java).

5-58

Chapter 5
Network Data Model Graph and Network Feature Editing (NFE) Model Metadata Views

For user data defined through the xxx_SDO_NETWORK_USER_DATA views, the
default user data 1/0 implementation (LODUser Dat al 0SDO) is used to access the user
data during network analysis. However, some user data is not included in the node or
link table, and thus cannot be registered through xxx_SDO_NETWORK_USER_DATA
views. For such user data, you must provide your own implementation of the user data
I/O interface. A typical way of implementing a custom user data I/O interface is to
generate BLOBs corresponding to node and link user data , one BLOB for each
partition, and then retrieve user data information from the BLOBs during network
analysis.

You can also associate multiple categories of user-defined data (categorized user
data) with a single network. For example, in a multimodal network (described in
Multimodal Network and Temporal Examples), if you must associate driving-related
attributes (such as speed limit) with a link in addition to the link's multimodal attributes,
you can organize user-defined data in two categories: one for driving-related attributes
and the other for multimodal attributes.

5.12.5 xxx_SDO_NFE_MODEL_FTLAYER_REL Views

The following views contain information about network feature layers related to NFE
models. (This topic assumes you are familiar with the concepts explained in Feature
Modeling Using Network Feature Editing (NFE).)

e USER_SDO_NFE_MODEL_FTLAYER_REL contains information about feature
layers that are related to all NFE models that are owned by the user.

e ALL _SDO_NFE_MODEL_FTLAYER_REL contains information about feature
layers that are related to NFE models on which the user has SELECT permission.

The USER_SDO_NFE_MODEL_FTLAYER_REL and
ALL_SDO_NFE_MODEL_FTLAYER_REL views contain the same columns, as shown
in Table 5-37, except that the USER_SDO_NFE_MODEL_FTLAYER_REL view does
not contain the OWNER column. (The columns are listed in their order in the view
definition.)

Table 5-37 Columns in the xxx_SDO_NFE_MODEL_FTLAYER_REL Views

___|
Column Name Data Type Purpose
OWNER VARCHAR2(32) Owner of the NFE model

(ALL_SDO_NFE_MODEL_FT
LAYER_REL view only)

MODEL_ID NUMBER Identifier of the model related
to a feature layer.

FEATURE_LAYER_ID NUMBER Identifier of the related feature
layer.

HIERARCHY_LEVEL NUMBER Hierarchical level for the

feature layer in the model. The
default is O (zero). Higher
levels are on top of lower
levels.

ORACLE 5-59

Chapter 5

Network Data Model Graph and Network Feature Editing (NFE) Model Metadata Views

Table 5-37 (Cont.) Columns in the xxx_SDO_NFE_MODEL_FTLAYER_REL

Views

Column Name

Data Type

Purpose

Z_ORDER

PATH_LAYER

NUMBER

VARCHAR2(1)

Depth of the feature layer
among other feature layers in
the same hierarchy level.
Normally used to determine
the order of drawing the
feature layer elements on a
canvas: the lowest order is the
first to be presented.

Indicates whether the feature
layer is a path generated from
an analysis operation. Y
indicates a path feature layer
(generated from an analysis
operation); N or null indicates a
common feature layer.

5.12.6 xxx_SDO_NFE_MODEL_METADATA Views

The following views contain information about NFE models. (This topic assumes you
are familiar with the concepts explained in Feature Modeling Using Network Feature

Editing (NFE).)

e USER_SDO_NFE_MODEL_METADATA contains information about NFE models
that are owned by the user.

e ALL SDO_NFE_MODEL_METADATA contains information about NFE models on
which the user has SELECT permission.

The USER_SDO_NFE_MODEL_METADATA and

ALL_SDO_NFE_MODEL_METADATA views contain the same columns, as shown in
Table 5-38, except that the USER_SDO_NFE_MODEL_METADATA view does not
contain the OWNER column. (The columns are listed in their order in the view

definition.)

Table 5-38 Columns in the xxx_SDO_NFE_MODEL_METADATA Views
]

Column Name Data Type Purpose

OWNER VARCHAR2(32) Owner of the NFE model
(ALL_SDO_NFE_MODEL_ME
TADATA view only).

ID NUMBER Model identifier (assigned by
Oracle Spatial and Graph).

NAME VARCHAR2(100) Name of the model.

ORACLE

5-60

ORACLE

Chapter 5

Network Data Model Graph and Network Feature Editing (NFE) Model Metadata Views

Table 5-38 (Cont.) Columns in the xxx_SDO_NFE_MODEL_METADATA Views
|

Column Name

Data Type

Purpose

EDITION_MODE

VERSIONABLE_IND

TABLE_REG_TAB

SEQUENCE_REG_TAB

NETWORK_NAME

NUMBER

VARCHAR2(1)

VARCHAR2(50)

VARCHAR2(50)

VARCHAR2(50)

Can be 1
(SDO_NFE.FROM_SCRATC
H) for models using a new
network, creating features
along with underlying network
elements, or 2
(SDO_NFE.OVER_EXISTING
_NETWORK) for models built
on top of a currently existing
network (in which network
elements cannot be modified).

Indicates whether the model
will allow different versions or
branches. Y indicates a they
are allowed; Nindicates they
are not allowed.

Name of the table in which the
names of the Network Feature
Editing (NFE) Model Tables
are registered. This table is
automatically created and
maintained, and it has the
columns described in

Table 5-39.

Name of the table in which the
sequences associated with the
model’s tables are registered.
This table is automatically
created and maintained, and it
has the columns described in
xxx_SDO_NFE_MODEL_MET
ADATA Views.

Name of the network
associated with the model.

5-61

Chapter 5
Network Data Model Graph and Network Feature Editing (NFE) Model Metadata Views

Table 5-39 Columns in the TABLE_REG_TAB Table
]

Column Name Data Type Purpose

TABLE_TYPE VARCHAR2(50) Primary Key. Type of the table
to be registered. Possible
values:

SDO_NFE.FT_CLASS,
SDO_NFE.FT_CLASS_REL,
SDO_NFE.FT_CLASS_ATTR
_CON,
DO_NFE.FT_USR_DATA,
SDO_NFE.FT_USR_DATA C
AT,
SDO_NFE.FT_USR_DATA C
VAL,
SDO_NFE.FT_CLASS_DEF_
PTS,
SDO_NFE.LINE_LINE_RULE
S,
SDO_NFE.LINE_POINT_RUL
ES,
SDO_NFE.RULE_INSTANCE,
SDO_NFE.FT_RULE_REL,
SDO_NFE.RULE_DEC_HAN
DLER,
SDO_NFE.POINT_CARD_RU
LES,
SDO_NFE.POINT_ATTR_DE
F

TABLE_NAME VARCHAR2(50) Name assigned to the table.
When you use
SDO_NET.ADD_CHILD_FEA
TURE, by default this name is
created in the form
[TABLE_TYPE] [nodel i d] $.

Table 5-40 Columns in the SEQUENCE_REG_TAB Table

Column Name Data Type Purpose

TABLE_NAME VARCHAR2(50) Primary key. Name of the
table associated with the
sequence..

SEQUENCE_NAME VARCHAR2(50) Name of the sequence..

5.12.7 xxx_SDO_NFE_MODEL_WORKSPACE Views

The following views contain information about workspaces related to NFE models.
(This topic assumes you are familiar with the concepts explained in Feature Modeling
Using Network Feature Editing (NFE).)

* USER_SDO_NFE_MODEL_WORKSPACE contains information about
workspaces that are related to all NFE models that are owned by the user.

ORACLE 5-62

Chapter 5

Network Data Model Graph and Network Feature Editing (NFE) Model Metadata Views

e ALL _SDO_NFE_MODEL_WORKSPACE contains information about workspaces
that are related to NFE models on which the user has SELECT permission.

These views are automatically maintained by Spatial and Graph using the NFE Java
and PL/SQL interfaces for creating and deleting Workspace Manager workspaces.
You should never directly modify the content of these views.

The USER_SDO_NFE_MODEL_WORKSPACE and

ALL_SDO_NFE_MODEL_WORKSPACE views contain the same columns, as shown
in Table 5-37, except that the USER_SDO_NFE_MODEL_WORKSPACE view does
not contain the OWNER column. (The columns are listed in their order in the view

definition.)

Table 5-41 Columns in the xxx_SDO_NFE_MODEL_WORKSPACE Views

Column Name

Data Type

Purpose

OWNER

MODEL_ID

WORKSPACE_NAME
MBR_IND

LOWER_X

UPPER_X

LOWER_Y

UPPER_Y

LOCK_IND

VARCHAR2(32)

NUMBER

NUMBER

VARCHAR2(50)
VARCHAR2(1)

NUMBER

NUMBER

NUMBER

NUMBER

VARCHAR2(1)

Owner of the NFE model
(ALL_SDO_NFE_MODEL_W
ORKSPACE view only)

Identifier of the workspace.
Assigned by Oracle Spatial
and Graph.

Identifier of the model to which
the workspace belongs.

Name of the workspace.

Indicates whether the
workspace represents an
MBR (minimum bounding
rectangle) region in the model.
Y indicates the workspace
represents an MBR; N
indicates the workspace does
not represent an MBR

If MBR_IND is Y, the X value
for the lower coordinate of the
MBR.

If MBR_IND is Y, the X value
for the upper coordinate of the
MBR.

If MBR_IND is Y, the Y value
for the lower coordinate of the
MBR.

If MBR_IND is Y, the Y value
for the upper coordinate of the
MBR.

Indicates whether the
workspace is locked for editing
by others (that is,, unable to
be edited by others). Y
indicates the workspace is
locked; N indicates the
workspace is not locked.

ORACLE

5-63

Chapter 5
Network Data Model Graph Application Programming Interface

5.13 Network Data Model Graph Application Programming

Interface

The Oracle Spatial and Graph Network Data Model Graph feature includes two client
application programming interfaces (APIs): a PL/SQL interface provided by the
SDO_NET package and a Java interface.

Both interfaces let you create and update network data, and the Java interface lets you
perform network analysis. It is recommended that you use only PL/SQL or SQL to
populate network tables and to create indexes, and that you mainly use Java for
application development.

The following performance considerations apply to the PL/SQL and Java APIs:

» If you plan to analyze or edit only nonspatial aspects of a spatial network, you can
get better performance by setting the NETWORK_CATEGORY column value to
LOG CAL in the USER_SDO_NETWORK_METADATA view (described in
xxx_SDO_NETWORK_METADATA Views) before performing the analysis or
editing, and then changing the value back to SPATI AL afterward.

For example, you could use this technique when finding the shortest path between
two nodes, because the shortest-path computation considers cost values.
However, you could not use this technique when setting the spatial geometry
object or the end measure value for a link.

* If you do not plan to modify any network objects (that is, if you plan to perform only
network analysis operations or to retrieve network information), you can get better
performance by creating the network memory object as read-only (that is, by
specifying that updates are not allowed).

* Network Data Model Graph PL/SQL Interface
* Network Data Model Graph Java Interface
* Network Data Model Graph XML Interface

5.13.1 Network Data Model Graph PL/SQL Interface

ORACLE

The SDO_NET package provides subprograms for creating, accessing, and managing
networks on a database server. Example 5-5 in Network Examples shows the use of
SDO_NET functions and procedures.

The SDO_NET subprograms can be grouped into the following logical categories:

» Creating networks:
SDO_NET.CREATE_SDO_NETWORK
SDO_NET.CREATE_LRS_NETWORK
SDO_NET.CREATE_TOPO_NETWORK
SDO_NET.CREATE_LOGICAL_NETWORK

e Copying and deleting networks:
SDO_NET.COPY_NETWORK
SDO_NET.DROP_NETWORK

5-64

ORACLE

Chapter 5
Network Data Model Graph Application Programming Interface

Creating network tables:
SDO_NET.CREATE_NODE_TABLE
SDO_NET.CREATE_LINK_TABLE
SDO_NET.CREATE_PATH_TABLE
SDO_NET.CREATE_PATH_LINK_TABLE
SDO_NET.CREATE_LRS_TABLE
Validating network objects:
SDO_NET.VALIDATE_NETWORK
SDO_NET.VALIDATE_NODE_SCHEMA
SDO_NET.VALIDATE_LINK_SCHEMA
SDO_NET.VALIDATE_PATH_SCHEMA
SDO_NET.VALIDATE_LRS_SCHEMA

Retrieving information (getting information about the network, checking for a
characteristic):

SDO_NET.GET_CHILD_LINKS
SDO_NET.GET_CHILD_NODES
SDO_NET.GET_GEOMETRY_TYPE
SDO_NET.GET_IN_LINKS
SDO_NET.GET_LINK_COST_COLUMN
SDO_NET.GET_LINK_DIRECTION
SDO_NET.GET_LINK_GEOM_COLUMN
SDO_NET.GET_LINK_GEOMETRY
SDO_NET.GET_LINK_TABLE_NAME
SDO_NET.GET_LRS_GEOM_COLUMN
SDO_NET.GET_LRS_LINK_GEOMETRY
SDO_NET.GET_LRS_NODE_GEOMETRY
SDO_NET.GET_LRS_TABLE_NAME
SDO_NET.GET_NETWORK_TYPE
SDO_NET.GET_NO_OF HIERARCHY_LEVELS
SDO_NET.GET_NO_OF LINKS
SDO_NET.GET_NO_OF NODES
SDO_NET.GET_NODE_DEGREE
SDO_NET.GET_NODE_GEOM_COLUMN
SDO_NET.GET_NODE_GEOMETRY
SDO_NET.GET_NODE_IN_DEGREE
SDO_NET.GET_NODE_OUT_DEGREE
SDO_NET.GET_NODE_TABLE_NAME

5-65

Chapter 5
Network Data Model Graph Application Programming Interface

SDO_NET.GET_OUT_LINKS
SDO_NET.GET_PATH_GEOM_COLUMN
SDO_NET.GET_PATH_TABLE_NAME
SDO_NET.IS_HIERARCHICAL
SDO_NET.IS_LOGICAL
SDO_NET.IS_SPATIAL
SDO_NET.LRS_GEOMETRY_NETWORK
SDO_NET.NETWORK_EXISTS
SDO_NET.SDO_GEOMETRY_NETWORK
SDO_NET.TOPO_GEOMETRY_NETWORK

For reference information about each SDO_NET function and procedure, see
SDO_NET Package Subprograms.

5.13.2 Network Data Model Graph Java Interface

The Network Data Model Graph feature includes the load on demand Java interface.
Complete reference information about this interface is provided in Oracle Spatial and
Graph Java API Reference. The classes of the load on demand Java interface are in
the oracl e. spati al . network. | od package and its subpackages.

The Spatial and Graph Java class libraries are in .jar files under the <ORACLE_HOVE>/ md/
jlib/ directory.

* Network Metadata and Data Management

* Network Analysis Using the Load on Demand Approach

5.13.2.1 Network Metadata and Data Management

You can use the Java API to perform network metadata and data management
operations such as the following:

e Insert, delete, and modify node and link data
* Load a network from a database

* Store a network in a database

» Store network metadata in a database

e Modify network metadata attributes

5.13.2.2 Network Analysis Using the Load on Demand Approach

ORACLE

You can use the oracl e. spati al . net work. | od. Net wor kAnal yst class to perform network
analysis operations, such as the following, using the load on demand approach:

e Shortest path: typical transitive closure problems in graph theory. Given a start
and an end node, find the shortest path.

e Reachability: Given a node, find all nodes that can reach that node, or find all
nodes that can be reached by that node.

5-66

Chapter 5
Network Data Model Graph Application Programming Interface

* Within-cost analysis: Given a target node and a cost, find all nodes that can be
reached by the target node within the given cost.

* Nearest-neighbors analysis: Given a target node and number of neighbors, find
the neighbor nodes and their costs to go to the given target node.

* Dynamic data input: Create and use a Net wor kUpdat e object with network update
information.

» User-defined link and node cost calculators: Define the method for computing the
cost of a link or a node.

5.13.3 Network Data Model Graph XML Interface

You can use the Network Data Model Graph XML API to perform network analysis.
Web service requests are supported through Oracle Spatial and Graph web services,
which are described in Oracle Spatial and Graph Developer's Guide.

HTTP requests can be sent to the web service from Java, PLSQL, or .NET programs
or simply from a HTML form. The SDO_NET.POST_XML function (described in
SDO_NET Package Subprograms) enables PL/SQL users to call the web service.

The XML schema of the Network Data Model Graph XML API is described in the
following: $ORACLE_HOME/ nd/ doc/ sdondnxnd . zi p

* User-Specified Implementations

5.13.3.1 User-Specified Implementations

The XML API can take user-specified constraints, cost calculators, or even network
analysis algorithm settings, by letting you specify the Java class that implements the
LOD interfaces. For any implementation that requires input parameters, such as truck
weight or height in a trucking constraint implementation, the Java class must
implement the oracl e. spati al . net work. | od. XM_Conf i gur abl e interface, that is, it must
implement the following two methods:

e void init(El enent parameter);
e String get XM.Schema();

The i nit method lets you pass in the input parameter as an XML element, which must
follow the schema returned from the get XM.Schema method.

The following XML code segment is an example of how to configure the shortest path
algorithm for a shortest path analysis request:

<start Poi nt >
<nodel D>123</ nodel D>
</startPoi nt>
<endPoi nt >
<nodel D>456</ nodel D>
</ endPoi nt >
<short est Pat hAl gori t hnm
<cl assName>or acl e. spati al . network. | od. ASt ar </ cl assName>
<par amet er s>
<heuri sti cCost Functi on>
<cl assName>or acl e. spati al . network. | od. Geodet i cCost Functi on</ cl assNanme>
<par amet er s>
<user Dat aCat egor y>0</ user Dat aCat egor y>
<xCoor dUser Dat al ndex>0</ xCoor dUser Dat al ndex>

ORACLE 5-67

Chapter 5
Cross-Schema Network Access

<yCoor dUser Dat al ndex>1</yCoor dUser Dat al ndex>
</ par anet er s>
</ heuri sti cCost Functi on>
<linkLevel Sel ect or >
<cl assName>or acl e. spati al . network. | od. Dynani cLi nkLevel Sel ect or </ cl assName>
<par anet er s>
<maxLi nkLevel >2</ maxLi nkLevel >
<cost Threshol d |inkLevel ="1">40000</ cost Thr eshol d>
<nunHi ghLevel Nei ghbor s>8</ nunHi ghLevel Nei ghbor s>
<costMultiplier>1. 5</ costMiltiplier>
<cost Functi on>
<cl assName>or acl e. spati al . network. | od. Geodet i cCost Functi on</ cl assNanme>
<par anet er s>
<user Dat aCat egor y>0</ user Dat aCat egor y>
<xCoor dUser Dat al ndex>0</ xCoor dUser Dat al ndex>
<yCoor dUser Dat al ndex>1</ yCoor dUser Dat al ndex>
</ par anet er s>
</ cost Functi on>
</ par anet er s>
</linkLevel Sel ect or>
</ par anet er s>
</ shortest Pat hAl gorithme

More examples of the XML API are provided with the NDM tutorial (see Network Data
Model Graph Tutorial and Other Resources).

5.14 Cross-Schema Network Access

ORACLE

If database users other than the network owner need to read a network into memory,
you need to do one of the following options.

» For each non-owner user, qualify the network tables with the schema of the
network owner in the USER_SDO_NETWORK_METADATA view, as explained in
Cross-Schema Access by Specifying Owner in Network Metadata.

* For each non-owner user, create views on the Network Data Model Graph tables
and update the USER_SDO_NETWORK_METADATA view, as explained in
Cross-Schema Access by Using Views.

The second approach requires the extra step of creating views, but the views provide
you with flexibility in controlling the parts of the network that are accessible. Each view
can provide access to all of the network, or it can use a WHERE clause to provide
access to just one or more parts (for example, WHERE STATE_CODE=' NY' to restrict the
view users to rows for New York) .

Consider the following example scenatrio:

e Userl creates (and thus owns) Network1.

e User2 attempts to call the
SDO_NET_MEM.NETWORK_MANAGER.READ_NETWORK procedure to read
Network1, but receives an error. The error occurs even though User2 has the
appropriate privileges on the Network Data Model Graph tables for Network1.

To work around this problem, you must use the approach in either Cross-Schema
Access by Specifying Owner in Network Metadata or Cross-Schema Access by Using
Views.

» Cross-Schema Access by Specifying Owner in Network Metadata

5-68

Chapter 5
Cross-Schema Network Access

Cross-Schema Access by Using Views

5.14.1 Cross-Schema Access by Specifying Owner in Network

Metadata

To enable a non-owner user (with suitable privileges) to access a network, you can
specify the network owner in the network metadata. For each non-owner user that will
be permitted to access the network, follow these steps:

1.

Ensure that the user has SELECT or READ privilege access to the necessary
Network Data Model Graph tables. If the user does not have this access, connect
as the network owner and grant it. For example, connect as Userl and execute
the following statements:

GRANT sel ect ON networkl node$ TO user2;
GRANT sel ect ON networkl |ink$ TO user2;
GRANT sel ect ON networkl_path$ TO user2;
GRANT sel ect ON networkl_plink$ TO user?2;

Connect as the non-owner user. For example, connect as User2.

Use the schema name of the network owner to qualify the Network Data Model
Graph tables for the network in the USER_SDO_NETWORK_METADATA view
(explained in xxx_SDO_NETWORK_METADATA Views). For example, if the
network is not already defined in this view, enter the following while connected as
User2:

I NSERT | NTO user _sdo_networ k_rmet adat a
(network, network_category, geonetry_type,
node_t abl e_name, node_geom col um,
l'ink_table_name, |ink_geom colum, |ink_direction,
path_tabl e_name, path_geom col um,
path_link_t abl e_nane)
VALUES
(" NETWORK1' , ' SPATIAL', ' SDO GEOMVETRY',
" USERL. NETWORK1_NODE$' , ' GEQOVETRY',
" USERL. NETWORK1_LI NK$' , " GEOMETRY', ' DI RECTED ,
" USERL. NETWORK1_PATH$', ' GEOVETRY',
" USERL. NETWORKL_PLI NK$') ;

If the network is already defined in this view, update the definition to qualify each
table name with the schema name. For example:

UPDATE USER_SDO NETWORK METADATA
SET node_tabl e_name = ' USERL. NETWORK1 NCDES$',
link_table name = ' USERL. NETWORKL LI NK$',
path_tabl e name = ' USERL. NETWORK1_PATH$' ,
path_link_table_name = ' USERL. NETWORK1_PLI NK$'
VWHERE network = ' NETWORK1' ;

In this scenario, User2 can now read NETWORK1 into memory.

5.14.2 Cross-Schema Access by Using Views

To enable a non-owner user (with suitable privileges) to access a network, or specific
parts of a network, you can create views. For each non-owner user that will be
permitted to access the network, follow these steps:

ORACLE

5-69

Chapter 5
Network Examples

Ensure that the user has SELECT or READ privilege access to the necessary
Network Data Model Graph tables. If the user does not have this access, connect
as the network owner and grant it. For example, connect as Userl and execute
the following statements:

GRANT sel ect ON networkl_node$ TO user?2;
GRANT sel ect ON networkl _|ink$ TO user?2;
GRANT sel ect ON networkl_path$ TO user?2;
GRANT sel ect ON networkl1_plink$ TO user2;

Connect as the non-owner user. For example, connect as User2.

Create a view on each of the necessary Network Data Model Graph nodes, with
each view selecting all columns in the associated table. Qualify the table name
with the schema name of the network owner. For example, while connected as
User2:

CREATE VI EW net wor k1_node$ AS select * from userl. networkl_node$;
CREATE VI EWnetwork1_link$ AS select * fromuserl.networkl_|ink$;
CREATE VI EW network1_pat h$ AS select * from userl. networkl_path$;
CREATE VI EW network1_plink$ AS select * fromuserl. networkl_plink$;

Note:

Although this example shows views that include all data in the underlying
tables, you can restrict the parts of the network that are available by using a
WHERE clause in each view definition (for example, WHERE STATE_CODE=' NY').

Add a row specifying the newly created views to the
USER_SDO_NETWORK_METADATA view (explained in
xxx_SDO_NETWORK_METADATA Views). For example, while connected as
User2:

I NSERT | NTO user_sdo_net wor k_net adat a
(network, network_category, geonetry_type,
node_t abl e_name, node_geom col um,
l'ink_table_nane, |ink_geomcolum, Iink_direction,
path_tabl e_name, path_geom col um,
path_link_tabl e_nane)
VALUES
(" NETWORK1' , ' SPATIAL', ' SDO GEOMVETRY',
" NETWORK1_NODE$' , ' GEOVETRY',
" NETWORK1_LI NK$', ' GEOVETRY', ' DI RECTED ,
" NETWORK1_PATHS$' , ' GEOVETRY",
" NETWORK1_PLI NK$') ;

In this scenario, User2 can now read into memory those parts of NETWORKZ1 that are
available through the views that were created.

5.15 Network Examples

ORACLE

This topic presents several Network Data Model Graph examples.

Most are simplified examples. All examples use the PL/SQL API, and some also use
other APIs.

The examples refer to concepts that are explained in this chapter, and they use
PL/SQL functions and procedures documented in SDO_NET Package Subprograms.

5-70

Chapter 5
Network Examples

* Simple Spatial (SDO) Network Example (PL/SQL)

» Simple Logical Network Example (PL/SQL)

* Spatial (LRS) Network Example (PL/SQL)

* Logical Hierarchical Network Example (PL/SQL)

» Partitioning and Load on Demand Analysis Examples (PL/SQL, XML, and Java)
* User-Defined Data Examples (PL/SQL and Java)

5.15.1 Simple Spatial (SDO) Network Example (PL/SQL)

ORACLE

This section presents an example of a very simple spatial (SDO, not LRS) network that
contains three nodes and a link between each node. The network is illustrated in
Figure 5-4.

Figure 5-4 Simple Spatial (SDO) Network

N3

N1 L1 N2

= N ® Hh O
I
w
-
no

0 123456 7891011121314 15

As shown in Figure 5-4, node N1 is at point 1,1, node N2 is at point 15,1, and node N3 is
at point 9,4. Link L1 is a straight line connecting nodes N1 and N2, link L2 is a straight
line connecting nodes N2 and N3, and link L3 is a straight line connecting nodes N3 and
NL. There are no other nodes or shape points on any of the links.

Example 5-3 does the following:

* Inacalltothe SDO_NET.CREATE_SDO_NETWORK procedure, creates the
SDO NET1 directed network; creates the SDO_NET1 _NODES$, SDO_NET1_LINKS,
SDO_NET1_PATHS$, and SDO_NET1_PLINKS tables; and updates the
xxX_SDO_NETWORK_METADATA views. All geometry columns are named
GEOMETRY. Both the node and link tables contain a cost column named COST.

» Populates the node, link, path, and path-link tables. It inserts three rows into the
node table, three rows into the link table, two rows into the path table, and four
rows into the path-link table.

» Updates the Oracle Spatial and Graph metadata, and creates spatial indexes on
the GEOMETRY columns of the node and link tables. (These actions are not
specifically related to network management, but that are necessary if applications
are to benefit from spatial indexing on these geometry columns.)

Example 5-3 does not show the use of many SDO_NET functions and procedures;
these are included in Example 5-5 in Spatial (LRS) Network Example (PL/SQL).

Example 5-3 Simple Spatial (SDO) Network Example (PL/SQL)

- Create the SDO NET1 directed network. Also creates the SDO NET1_NODES,
- SDO NET1_LINK$, SDO NET1_PATH$, SDO NET1_PLINK$ tables, and updates
- USER_SDO _NETWORK _METADATA. All geonetry colums are named GEOVETRY.

5-71

Chapter 5
Network Examples

- Both the node and link tables contain a cost col um naned COST.
EXECUTE SDO_NET. CREATE_SDO NETWORK(' SDO NET1', 1, TRUE, TRUE);

- Popul ate the SDO NET1_NODE$ tabl e.
-- N
I NSERT | NTO sdo_net 1_node$ (node_id, node_name, active, geonetry, cost)
VALUES(1, 'NL', 'Y,
SDO_GEOMETRY(2001, NULL, SDO PO NT_TYPE(1, 1, NULL), NULL, NULL),
5);
- N2
I NSERT | NTO sdo_net 1_node$ (node_id, node_name, active, geonetry, cost)
VALUES(2, 'N2', 'Y,
SDO_GEQMVETRY(2001, NULL, SDO PO NT_TYPE(15,1, NULL), NULL, NULL),
8);
- N3
I NSERT | NTO sdo_net 1_node$ (node_id, node_name, active, geonetry, cost)
VALUES(3, 'N3', 'Y,
SDO_GEQOMETRY(2001, NULL, SDO PO NT_TYPE(9, 4, NULL), NULL, NULL),

4);

- Popul ate the SDO NET1_LINK$ tabl e.
- L1
I NSERT | NTO sdo_net1 |ink$ (link_id, link_name, start_node_id, end_node_id,
active, geonetry, cost, bidirected)
VALUES(1, 'L1', 1, 2, 'Y,
SDO_GEOMETRY(2002, NULL, NULL,
SDO _ELEM | NFO ARRAY(1, 2, 1),
SDO_ORDI NATE_ARRAY(1,1, 15,1)),
14, 'Y');
- L2
I NSERT | NTO sdo_net1 _|ink$ (link_id, link_name, start_node_id, end_node_id,
active, geonetry, cost, bidirected)
VALUES(2, 'L2', 2, 3, 'Y,
SDO_GEOMETRY(2002, NULL, NULL,
SDO _ELEM | NFO ARRAY(1, 2, 1),
SDO_CRDI NATE_ARRAY(15,1, 9,4)),
10, 'Y');
- L3
I NSERT | NTO sdo_net1 |ink$ (link_id, |ink_name, start_node_id, end_node_id,
active, geonetry, cost, bidirected)
VALUES(3, 'L3', 3, 1, 'Y,
SDO_GEOMETRY(2002, NULL, NULL,
SDO _ELEM | NFO ARRAY(1, 2, 1),
SDO_CRDI NATE_ARRAY(9, 4, 1,1)),
10, 'Y');

- Do not popul ate the SDO NET1_PATH$ and SDO NET1_PLINK$ tabl es now.
- Do this only when you need to create any paths.

- Update the USER SDO GEOM METADATA view. This is required before the
- spatial index can be created. Do this only once for each |ayer
- (that is, table-colum conbination).

I NSERT | NTO user _sdo_geom net adat a
(TABLE_NAME,
COLUWN_NAME,
DI M NFO,
SRI D)

ORACLE 5-72

Chapter 5
Network Examples

VALUES (

' SDO_NET1_NODES$' ,

" GEOMVETRY' ,

SDO DI M ARRAY(-- 20X20 grid
SDO DI M ELEMENT(" X', 0, 20, 0.005),
SDO DI M ELEMENT(" Y', 0, 20, 0.005)
),

NULL -- SRID (spatial reference system also called coordinate system

);

I NSERT | NTO user _sdo_geom net adat a
(TABLE_NAME,

COLUWN_NAME,

DI M NFO,

SRI D)

VALUES (

' SDO NET1_LINK$',

" GEOMVETRY' ,

SDO DI M ARRAY(-- 20X20 grid
SDO DI M ELEMENT(" X', 0, 20, 0.005),
SDO DI M ELEMENT(" Y', 0, 20, 0.005)
),

NULL -- SRID (spatial reference system also called coordinate system

)

- Create the spatial indexes
CREATE | NDEX sdo_net1 nodes_i dx ON sdo_net1_node$(geonetry)
| NDEXTYPE |'S MDSYS. SPATI AL_I NDEX;
CREATE | NDEX sdo_net1_|inks_i dx ON sdo_net1_|ink$(geometry)
| NDEXTYPE |'S MDSYS. SPATI AL_I NDEX;

5.15.2 Simple Logical Network Example (PL/SQL)

This section presents an example of a very simple logical network that contains three
nodes and a link between the nodes. The network is illustrated in Figure 5-5.

Figure 5-5 Simple Logical Network
N3

L3 L2

As shown in Figure 5-5, link L1 is a straight line connecting nodes N1 and N2, link L2 is a
straight line connecting nodes N2 and N3, and link L3 is a straight line connecting nodes
N3 and N1. There are no other nodes on any of the links.

Example 5-4 calls the SDO_NET.CREATE_LOGICAL_NETWORK procedure, which
does the following: creates the LOG NET1 directed network; creates the
LOG_NET1_NODE$, LOG_NET1_LINKS$, LOG_NET1_PATHS$, and
LOG_NET1_PLINKS tables; and updates the xxx_SDO_NETWORK_METADATA
views. Both the node and link tables contain a cost column named COST. (Because
this is a logical network, there are no geometry columns.) The example also populates
the node and link tables.

ORACLE 5-73

Chapter 5
Network Examples

Example 5-4 does not show the use of many SDO_NET functions and procedures;
these are included in the logical hierarchical network example (Example 5-6) in Logical
Hierarchical Network Example (PL/SQL).

Example 5-4 Simple Logical Network Example (PL/SQL)

-- Creates the LOG NET1 directed | ogical network. Al so creates the
-- LOG NET1_NODE$, LOG NET1_LINK$, LOG NET1_PATHS,

- and LOG NET1_PLINK$ tables, and updates USER SDO NETWORK METADATA.
-- Both the node and Iink tables contain a cost colum named COST.
EXECUTE SDO_NET. CREATE_LOG CAL_NETWORK(' LOG NET1', 1, TRUE, TRUE);

- Popul ate the LOG NET1_NCDE$ tabl e.

-- N1

I NSERT I NTO | 0og_net1_node$ (node_id, node_nane, active, cost)
VALUES (1, 'NL', 'Y, 2);

-- N2

I NSERT I NTO | 0og_net1_node$ (node_id, node_nane, active, cost)
VALUES (2, 'N2', 'Y, 3);

-- N3

I NSERT I NTO | 0og_net1_node$ (node_id, node_nane, active, cost)
VALUES (3, 'N3', 'Y, 2);

- Popul ate the LOG NET1_LINK$ table.
- L1
I NSERT INTO log_net1_link$ (link_id, link_nane, start_node_id, end_node_id,
active, link_|level, cost)
VALUES (1, 'L1', 1, 2, 'Y, 1, 10);
- L2
I NSERT INTO log_net1_link$ (link_id, link_nane, start_node_id, end_node_id,
active, link_|level, cost)
VALUES (2, 'L2', 2, 3, 'Y, 1, 7);
- L3
INSERT INTO log_net1_link$ (link_id, link_nane, start_node_id, end_node_id,
active, link_|level, cost)
VALUES (3, 'L3', 3, 1, 'Y, 1, 8);

- Do not popul ate the LOG NET1_PATH$ and LOG NET1_PLINK$ tabl es now.
- Do this only when you need to create any paths.

5.15.3 Spatial (LRS) Network Example (PL/SQL)

ORACLE

This section presents an example of a spatial (LRS) network that uses the roads
(routes) illustrated in Figure 5-6. Each road is built from individual line segments
(associated with links) taken from one or more road segment geometries, which are
also shown in the figure.

5-74

Chapter 5
Network Examples

Figure 5-6 Roads and Road Segments for Spatial (LRS) Network Example
! Egﬂ%g? Zgg N8g @. Road_Segment3
1 N7 Lo Route2 end N7 oG
1 N8 N
1 R1L6
11 N6 @
1 Route3 start .N5
N6 N5 N6'g Py
9 Road_Segment4 N5
8
7
RaL1 R1L4
6 N3g
5 Road_Segment2 N4@
d " Rriz Nd g M
R N2 N3 N4
3] RiLA1 oute2 start o pA
2 Road_Segment1
1
N1

ORACLE

As shown in Figure 5-6:

Rout el starts at point 2,2 and ends at point 5,14. It has the following nodes: N1, N2,
N3, N4, N5, N6, and N7. It has the following links: R1L1, R1L2, R1L3, R1L4, RIL5, and
RIL6.

Rout e2 starts at point 8,4 and ends at point 8,13. It has the following nodes: N3, N6,
and N8. It has the following links: R2L1 and R2L2.

Rout e3 starts at point 12,10 and ends at point 5,14. It has the following nodes: N5,
N8, and N7. It has the following links: R3L1 and R3L2.

The four road segment geometries are shown individually on the right side of the
figure. (The points on each segment are labeled with their associated node
names, to clarify how each segment geometry fits into the illustration on the left
side.)

Example 5-5 does the following:

Creates a table to hold the road segment geometries.

Inserts four road segment geometries into the table.

Inserts the spatial metadata into the USER_SDO_GEOM_METADATA view.
Creates a spatial index on the geometry column in the ROAD_SEGMENTS table.
Creates and populates the node table.

Creates and populates the link table.

Creates and populates the path table and path-link table, for possible future use.
(Before an application can use paths, you must populate these two tables.)

Inserts network metadata into the USER_SDO_NETWORK_METADATA view.

5-75

Chapter 5
Network Examples

Example 5-5 Spatial (LRS) Network Example (PL/SQL)

- Create a table for road segments. Use LRS.
CREATE TABLE road_segnents (

segnent _id NUMVBER PRI MARY KEY,

segnent _nane VARCHAR2(32),

segment _geom SDO GEQOMVETRY,

geom i d NUMBER);

- Populate the table with road segments.
I NSERT | NTO road_segnents VALUES(

1,
' Segnent 1",
SDO_GEQVETRY(
3302, -- line string, 3 dinensions (X, Y,M, 3rd is measure di mension
NULL,
NULL,
SDO ELEM | NFO_ARRAY(1,2,1), -- one line string, straight segnents
SDO_ORDI NATE_ARRAY(
2,2,0, -- Starting point - Nodel; 0 is nmeasure fromstart.
2,4,2, -- Node2; 2 is neasure fromstart.
8,4,8, -- Node3; 8 is neasure fromstart.
12,4,12) -- Node4; 12 is neasure fromstart.
), 1001
)
I NSERT | NTO road_segnments VALUES(
2,
' Segnent 2",
SDO_GEOVETRY(
3302, -- line string, 3 dinensions (X, Y,M, 3rd is measure di mension
NULL,
NULL,
SDO ELEM | NFO_ARRAY(1,2,1), -- one line string, straight segnents
SDO_ORDI NATE_ARRAY(
8,4,0, -- Node3; 0 is neasure fromstart.
8,10,6, -- Node6; 6 is measure fromstart.
8,13,9) -- Ending point - Node8; 9 is neasure fromstart.
), 1002
)
I NSERT | NTO road_segnments VALUES(
3,
' Segnent 3",
SDO_GEOVETRY(
3302, -- line string, 3 dinensions (X, Y,M, 3rd is measure di mension
NULL,
NULL,
SDO ELEM | NFO_ARRAY(1,2,1), -- one line string, straight segnents
SDO_ORDI NATE_ARRAY(
12, 4,0, -- Node4; 0 is neasure fromstart.
12, 10, 6, -- Node5; 6 is neasure fromstart.
8,13, 11, -- Node8; 11 is neasure fromstart.
5,14,14.16) -- Ending point - Node7; 14.16 is neasure fromstart.
), 1003
)

I NSERT | NTO road_segnments VALUES(

ORACLE 5-76

Chapter 5
Network Examples

4,
' Segnent 4',
SDO_GEQVETRY(
3302, -- line string, 3 dinmensions (X Y,M, 3rd is measure di mension
NULL,
NULL,
SDO ELEM | NFO_ARRAY(1,2,1), -- one line string, straight segnents
SDO_CRDI NATE_ARRAY(
12,10,0, -- Node5; 0 is nmeasure fromstart.
8,10,4, -- Node6; 4 is neasure fromstart.
5,14,9) -- Ending point - Node7; 9 is neasure fromstart.
), 1004
);

- Update the USER SDO GEOM METADATA view. This is required before the
- spatial index can be created. Do this only once for each |ayer
- (that is, table-colum conbination; here: road_segment and segment_geon).
I NSERT | NTO user _sdo_geom net adat a
(TABLE_NAME,
COLUWN_NAME,
DI M NFO,
SRI D)
VALUES (
' ROAD_SEGMENTS',
" SEGVENT_GEOM ,
SDO DI M ARRAY(-- 20X20 grid
SDO DI M ELEMENT(' X', 0, 20, 0.005),
SDO DI M ELEMENT('Y', 0, 20, 0.005),
SDO DI M ELEMENT(' M, 0, 20, 0.005) -- Measure dinension
),

NULL -- SRID (spatial reference system also called coordinate systen

CREATE | NDEX road_segments_i dx ON road_segnent s(segnent _geom)
| NDEXTYPE |'S MDSYS. SPATI AL_I NDEX;

- This procedure does not use the CREATE_LRS NETWORK procedure. |nstead,
- the user creates the network tables and popul ates the network metadata view.
- Basic steps:
- 1. Create and popul ate the node table.
- 2. Create and populate the link table.
- 3. Create the path table and paths and links table (for possible
-- future use, before which they will need to be popul ated).
- 4. Popul ate the network metadata (USER_SDO NETWORK METADATA) .
Note: Can be done before or after Steps 1-3.
- 5. Use various SDO NET functions and procedures.

- 1. Create and popul ate the node table.

EXECUTE SDO_NET. CREATE_NODE_TABLE(' ROADS NCDES' , ' LRS_GEOVETRY', ' NODE_GEOMETRY'
LOOST', 1);

ORACLE -

Chapter 5
Network Examples

- Popul ate the node table.

-- N
I NSERT | NTO roads_nodes (node_id, node_nanme, active, geom.id, measure)
VALUES (1, '"NL', 'Y', 1001, 0);

- N2
I NSERT | NTO roads_nodes (node_id, node_nanme, active, geom.id, measure)
VALUES (2, '"N2', 'Y, 1001, 2);

- N3
I NSERT | NTO roads_nodes (node_id, node_nanme, active, geom.id, measure)
VALUES (3, 'N3', 'Y', 1001, 8);

- M
I NSERT | NTO roads_nodes (node_id, node_nanme, active, geom.id, measure)
VALUES (4, '"N4', 'Y, 1001, 12);

- N5
I NSERT | NTO roads_nodes (node_id, node_nanme, active, geom.id, measure)
VALUES (5, 'N5', 'Y, 1004, 0);

- N6
I NSERT | NTO roads_nodes (node_id, node_nanme, active, geom.id, measure)
VALUES (6, 'N6', 'Y, 1002, 6);

- N7
I NSERT | NTO roads_nodes (node_id, node_nanme, active, geom.id, measure)
VALUES (7, 'N7', 'Y, 1004, 9);

- N8
I NSERT | NTO roads_nodes (node_id, node_nanme, active, geom.id, measure)
VALUES (8, 'N8', 'Y, 1002, 9);

- 2. Create and populate the link table.
EXECUTE SDO_NET. CREATE LI NK_TABLE(' ROADS LINKS', ' LRS _GEOMETRY', ' LINK_GEOVETRY',
'CosT', 1);

- Populate the link table.

- Routel, Linkl

I NSERT | NTO roads_links (link_id, link_name, start_node_id, end_node_id, active,
cost, geom.id, start_measure, end_measure)

VALUES (101, 'RIL1', 1, 2, 'Y', 3, 1001, O, 2);

- Routel, Link2

I NSERT | NTO roads_links (link_id, link_name, start_node_id, end_node_id, active,
cost, geom.id, start_measure, end_measure)

VALUES (102, 'R1L2', 2, 3, 'Y', 15, 1001, 2, 8);

- Routel, Link3

I NSERT | NTO roads_links (link_id, link_name, start_node_id, end_node_id, active,
cost, geom.id, start_measure, end_measure)

VALUES (103, 'RIL3', 3, 4, 'Y', 10, 1001, 8, 12);

- Routel, Link4

I NSERT | NTO roads_links (link_id, link_name, start_node_id, end_node_id, active,
cost, geom.id, start_measure, end_measure)

VALUES (104, 'R1L4', 4, 5, 'Y', 15, 1003, 0, 6);

- Routel, Link5

ORACLE 5-78

ORACLE

I NSERT | NTO roads_links (link_id, link_name, start_node_id,

cost, geom.id, start_measure, end_measure)
VALUES (105, 'RIL5', 5, 6, 'Y', 10, 1004, 0, 4);

- Routel, Link6

I NSERT | NTO roads_links (link_id, link_name, start_node_id,

cost, geom.id, start_measure, end_measure)
VALUES (106, 'R1L6', 6, 7, "Y', 7, 1004, 4, 9);

- Route2, Linkl (cost = 30, a slow drive)

I NSERT | NTO roads_links (link_id, link_name, start_node_id,

cost, geom.id, start_measure, end_measure)
VALUES (201, 'ReL1', 3, 6, 'Y, 30, 1002, 0, 6);

- Route2, Link2

I NSERT I NTO roads_links (link_id, link_name, start_node_id,

cost, geom.id, start_measure, end_measure)
VALUES (202, 'R2L2', 6, 8, 'Y', 5, 1002, 6, 9);

- Route3, Linkl

I NSERT | NTO roads_links (link_id, link_name, start_node_id,

cost, geom.id, start_measure, end_measure)
VALUES (301, 'R3L1', 5, 8, 'Y', 5, 1003, 6, 11);

- Route3, Link2

I NSERT I NTO roads_links (link_id, link_name, start_node_id,

cost, geom.id, start_measure, end_measure)

VALUES (302, 'R3L2', 8, 7, 'Y, 5, 1003, 11, 14.16);

Chapter 5
Network Examples

end_node_id, active,

end_node_id, active,

end_node_id, active,

end_node_id, active,

end_node_id, active,

end_node_id, active,

- 3. Create the path table (to store created paths) and the path-1ink
table (to store links for each path) for possible future use,

bef ore which they will need to be popul ated.

EXECUTE SDO_NET. CREATE_PATH TABLE(' ROADS_PATHS', ' PATH GEOMETRY');

EXECUTE SDO_NET. CREATE_PATH LI NK_TABLE(' ROADS_PATHS LINKS');

- 4. Popul ate the network metadata (USER_SDO NETWORK _METADATA) .

I NSERT | NTO user_sdo_net wor k_net adat a
(NETVORK,

NETWORK_CATEGORY,
GEQVETRY_TYPE,
NETWORK_TYPE,
NO_OF_Hl ERARCHY_LEVELS,
NO_OF PARTI TI ONS,
LRS_TABLE_NAME,
LRS_GEOM COLUWN,
NODE_TABLE_NAME,
NODE_GEOM COLUWN,
NODE_CCST_COLUMN,
LI NK_TABLE_NAME,
LI NK_GEOM COLUMN,
LI NK_DI RECTI ON,
LI NK_COST_COLUMN,
PATH_TABLE_NAME,
PATH_GEOM COLUMN,
PATH_LI NK_TABLE_NANE)

VALUES (
" ROADS_NETWORK' - Network name
"SPATIAL', -- Network category
" LRS_GEQVETRY', - Ceonetry type
" Roadways', - Network type (user-defined)

5-79

ORACLE

Chapter 5
Network Examples

1, - No. of levels in hierarchy

1, -- No. of partitions

" ROAD_SEGMVENTS', -- LRS tabl e nane

" SEGVENT_GEOM , -- LRS geonetry colum
" ROADS_NODES', -- Node table nane

" NODE_CGEOMETRY', -- Node geonetry col um
' COST', - Node cost colum
"ROADS_LINKS', -- Link table nane

"LI NK_GEOMETRY', -- Link geonetry col um
"DIRECTED', -- Link direction

' COST', - Link cost colum

" ROADS_PATHS', -- Path table nane

' PATH_GEOMETRY', -- Path geonetry col um

)

" ROADS_PATHS LINKS' -- Paths and links table

- 5. Use various SDO NET functions and procedures.

- Validate the network.
SELECT SDO_NET. VALI DATE_NETWORK(' ROADS_NETWORK') FROM DUAL;

- Validate parts or aspects of the network.
SELECT SDO_NET. VALI DATE_LI NK_SCHEMA(' ROADS_NETWORK') FROM DUAL;
SELECT SDO_NET. VALI DATE_LRS_SCHEMA(' ROADS_NETWORK') FROM DUAL;
SELECT SDO_NET. VALI DATE_NODE_SCHEMA(' ROADS_NETWORK') FROM DUAL:
SELECT SDO_NET. VALI DATE_PATH_SCHEMA(' ROADS_NETWORK') FROM DUAL;

- Retrieve various information (GET_xxx and some other functions).

SELECT
SELECT
SELECT
SELECT
SELECT
SELECT
SELECT
SELECT
SELECT
SELECT
SELECT
SELECT
SELECT
SELECT
SELECT
SELECT
SELECT
SELECT
SELECT
SELECT
SELECT
SELECT
SELECT
SELECT
SELECT
SELECT
SELECT
SELECT
SELECT
SELECT
SELECT
SELECT
SELECT

SDO_NET
SDO_NET
SDO_NET
SDO_NET
SDO_NET
SDO_NET
SDO_NET
SDO_NET
SDO_NET
SDO_NET
SDO_NET
SDO_NET
SDO_NET
SDO_NET
SDO_NET
SDO_NET
SDO_NET
SDO_NET
SDO_NET
SDO_NET
SDO_NET
SDO_NET
SDO_NET
SDO_NET
SDO_NET
SDO_NET
SDO_NET
SDO_NET
SDO_NET
SDO_NET
SDO_NET
SDO_NET
SDO_NET

. GET_CHI LD_LI NKS(' ROADS_NETWORK' , 101) FROM DUAL;

. GET_CHI LD_NODES(' ROADS_NETWORK' , 1) FROM DUAL;

. GET_GEOMETRY_TYPE(' ROADS NETWORK') FROM DUAL;

. GET_I N_LI NKS(' ROADS_NETWORK', 3) FROM DUAL;

. GET_I NVALI D_LI NKS(' ROADS_NETWORK') FROM DUAL;

. GET_| NVALI D_NODES(' ROADS_NETWORK') FROM DUAL;

. GET_| NVALI D_PATHS(' ROADS_NETWORK') FROM DUAL;

. GET_| SOLATED NODES(' ROADS NETWORK') FROM DUAL;

. GET_LI NK_COST_COLUMN(' ROADS NETWORK') FROM DUAL;

. GET_LI NK_DI RECTI ON(' ROADS_NETWORK') FROM DUAL;

. GET_LI NK_GEOM COLUMN(' ROADS NETWORK') FROM DUAL;

. GET_LI NK_GEOVETRY(' ROADS_NETWORK' , 103) FROM DUAL;

. GET_LI NK_TABLE_NAME(' ROADS NETWORK') FROM DUAL;

. GET_LRS_GEOM COLUMN(' ROADS NETWORK') FROM DUAL;

. GET_LRS_LI NK_GEOVETRY(' ROADS_NETWORK', 103) FROM DUAL;
. GET_LRS_NODE_GEOMETRY(' ROADS NETWORK', 3) FROM DUAL;
. GET_LRS_TABLE_NAME(' ROADS NETWORK') FROM DUAL;

. GET_NETWORK_CATEGORY(' ROADS NETWORK') FROM DUAL;

. GET_NETWORK_| D(' ROADS_NETWORK') FROM DUAL;

. GET_NETVIORK_NAVE(3) FROM DUAL;

. GET_NETWORK_TYPE(' ROADS_NETWORK') FROM DUAL;

. GET_NO_OF_HI ERARCHY_ LEVELS(' ROADS_NETWORK') FROM DUAL;
. GET_NO_OF LI NKS(' ROADS_NETWORK') FROM DUAL;

. GET_NO_OF NODES(' ROADS_NETWORK') FROM DUAL;

. GET_NODE_DEGREE(' ROADS_NETWORK' , 3) FROM DUAL;

. GET_NODE_GEOM COLUMN(' ROADS NETWORK') FROM DUAL;

. GET_NODE_GEOVETRY(' ROADS_NETWORK' , 3) FROM DUAL;

. GET_NODE_| N_DEGREE(' ROADS NETWORK' , 3) FROM DUAL;

. GET_NODE_OUT DEGREE(' ROADS NETWORK' , 3) FROM DUAL;

. GET_NODE_TABLE_NAME(' ROADS NETWORK') FROM DUAL;

. GET_NODE_COST_COLUMN(' ROADS NETWORK') FROM DUAL;

. GET_NODE_HI ERARCHY_LEVEL(' ROADS_NETWORK' , 3) FROM DUAL;
. GET_OUT_LINKS(' ROADS_NETWORK', 3) FROM DUAL;

5-80

Chapter 5
Network Examples

SELECT SDO_NET. GET_PATH_GEOM COLUMN(' ROADS_NETWORK') FROM DUAL;
SELECT SDO_NET. GET_PATH TABLE_NAVE(' ROADS_NETWORK') FROM DUAL;
SELECT SDO NET.|S_COVPLEX(' ROADS NETWORK') FROM DUAL;

SELECT SDO_NET.|'S_H ERARCH CAL(' ROADS NETWORK') FROM DUAL;
SELECT SDO NET.|1S_LOG CAL(' ROADS NETWORK') FROM DUAL;

SELECT SDO_NET.|S_SI MPLE(' ROADS NETWORK') FROM DUAL;

SELECT SDO NET. |'S_SPATI AL(' ROADS_NETWORK') FROM DUAL;

SELECT SDO_NET. LRS_GEOVETRY_NETWORK(' ROADS_NETWORK') FROM DUAL;
SELECT SDO_NET. NETWORK_EXI STS(' ROADS_NETWORK') FROM DUAL;
SELECT SDO_NET. SDO_GEOVETRY_NETWORK(' ROADS_NETWORK') FROM DUAL;
SELECT SDO_NET. TOPO GEOVETRY_NETWORK(' ROADS_NETWORK') FROM DUAL;

- Copy a network.
EXECUTE SDO_NET. COPY_NETWORK(' ROADS_NETWORK' , ' ROADS_NETWORK2') ;

- Create a trigger.
EXECUTE SDO NET. CREATE _DELETE_TRI GGER(' ROADS_NETWORK') ;

5.15.4 Logical Hierarchical Network Example (PL/SQL)

This section presents an example of a logical network that contains the nodes and
links illustrated in Figure 5-7. Because it is a logical network, there are no spatial
geometries associated with it. (Figure 5-7 is essentially the same as Figure 5-3 in
Network Hierarchy, but with the nodes and links labeled.)

Figure 5-7 Nodes and Links for Logical Network Example

Level 2

HN1HN2

As shown in Figure 5-7:

e The network is hierarchical, with two levels. The top level (level 2) consists of two
nodes (HN1 and H\2), and the remaining nodes and links are in the bottom level
(level 1) of the hierarchy.

» Each node in level 1 is a child node of one of the nodes in level 2. Node HNL has
the following child nodes: N1, N2, N3, N4, N5, and N6. Node H\2 has the following child
nodes: N7, N8, N9, N10, N11, N12, N13, and N14.

ORACLE 5-81

ORACLE

Chapter 5
Network Examples

* One link (HN1H\2) links nodes HN1 and H\2, and two links (N5SN8 and N6N7) are child
links of parent link HNLHN2. Note, however, that links are not associated with a

specific network hierarchy level.
Example 5-6 does the following:
e Creates and populates the node table.

» Creates and populates the link table.

» Creates and populates the path table and path-link table, for possible future use.
(Before an application can use paths, you must populate these two tables.)

* Inserts network metadata into the USER_SDO_NETWORK_METADATA view.

e Uses various SDO_NET functions and procedures.
Example 5-6 Logical Network Example (PL/SQL)

- Basic steps:
- 1. Create and popul ate the node table.
- 2. Create and populate the link table.

- 3. Create the path table and paths and links table (for possible

future use,

before which they will need to be popul ated).

- 4. Popul ate the network netadata (USER_SDO NETWORK METADATA) .
Note: Can be done before or after Steps 1-3.
- 5. Use various SDO NET functions and procedures.

1. Create and popul ate the node table.

EXECUTE SDO_NET. CREATE_NCDE_TABLE("' XYZ_NCDES',

NULL, NULL, NULL, 2);

- Popul ate the node table, starting with the highest level in the hierarchy.

- HNL (Hierarchy Ievel =2, highest in this
I NSERT | NTO xyz_nodes (node_i d, node_nane,
VALUES (1, "HNL', 'Y, 2);

- H\N2 (Herarchy I evel =2, highest in this
I NSERT | NTO xyz_nodes (node_i d, node_nane,
VALUES (2, "HN2', 'Y, 2);

- NL (Hierarchy level 1, parent node ID =

I NSERT | NTO xyz_nodes (node_i d, node_nane,
parent _node_i d)
VALUES (101, 'NL', 'Y, 1, 1);
-- N2
I NSERT | NTO xyz_nodes (node_i d, node_nane,
parent _node_i d)
VALUES (102, 'N2', 'Y, 1, 1);
-- N3
I NSERT | NTO xyz_nodes (node_i d, node_nane,
parent _node_i d)
VALUES (103, 'N3', 'Y, 1, 1);
-- M
I NSERT | NTO xyz_nodes (node_i d, node_nane,
parent _node_i d)
VALUES (104, "N4', 'Y, 1, 1);
-- N5
I NSERT | NTO xyz_nodes (node_i d, node_nane,

net wor k)
active, hierarchy_level)

net wor k)
active, hierarchy_level)

1 for NL through N6)
active, hierarchy_level,

active, hierarchy_level,

active, hierarchy_level,

active, hierarchy_level,

active, hierarchy_level,

5-82

ORACLE

Chapter 5
Network Examples

parent _node_i d)
VALUES (105, 'N5', 'Y, 1, 1);

- N6
I NSERT | NTO xyz_nodes (node_i d, node_nane, active, hierarchy_|level
parent _node_i d)
VALUES (106, 'N6', 'Y, 1, 1);

- N7 (Herarchy level 1, parent node ID = 2 for N7 through N14)
I NSERT | NTO xyz_nodes (node_id, node_name, active, hierarchy_|evel
parent _node_i d)
VALUES (107, 'N7', 'Y', 1, 2);

- N8
I NSERT | NTO xyz_nodes (node_i d, node_nane, active, hierarchy_|evel
parent _node_i d)
VALUES (108, 'N8', 'Y, 1, 2);

- N9
I NSERT | NTO xyz_nodes (node_i d, node_nane, active, hierarchy_|evel
parent _node_i d)
VALUES (109, 'No', 'Y, 1, 2);

- N10
I NSERT | NTO xyz_nodes (node_i d, node_nane, active, hierarchy_|evel
parent _node_i d)
VALUES (110, 'NIO', 'Y, 1, 2);

- N1
I NSERT | NTO xyz_nodes (node_i d, node_nane, active, hierarchy_|evel
parent _node_i d)
VALUES (111, 'N11', 'Y, 1, 2);

- N12
I NSERT | NTO xyz_nodes (node_i d, node_nane, active, hierarchy_|level
parent _node_i d)
VALUES (112, 'N12', 'Y, 1, 2);

- N13
I NSERT | NTO xyz_nodes (node_i d, node_nane, active, hierarchy_|evel
parent _node_i d)
VALUES (113, "N13', 'Y, 1, 2);

- N4
I NSERT | NTO xyz_nodes (node_i d, node_nane, active, hierarchy_|evel
parent _node_i d)
VALUES (114, 'N14', 'Y, 1, 2);

- 2. Create and populate the link table
EXECUTE SDO_NET. CREATE_LI NK_TABLE(' XYZ_LINKS', NULL, NULL, 'COST', 2);

- Populate the link table

- HNIHN2 (single Iink in highest hierarchy level: link level = 2)
I NSERT INTO xyz_links (link_id, link_name, start_node_id, end_node_id, active
l'ink_level)
VALUES (1001, 'HNIHN2', 1, 2, 'Y', 2);

- For remaining links, link level =1 and cost (10, 20, or 30) varies among |inks

- NIN2
I NSERT INTO xyz_links (link_id, link_name, start_node_id, end_node_id, active

5-83

Chapter 5
Network Examples

link_level, cost)
VALUES (1101, 'NIN2', 101, 102, 'Y, 1, 10);

- NIN3
INSERT INTO xyz_links (link_id, link_name, start_node_id, end_node_id, active,
link_level, cost)
VALUES (1102, 'NIN3', 101, 103, 'Y, 1, 20);

- N2N3
I NSERT INTO xyz_links (link_id, link_name, start_node_id, end_node_id, active,
link_level, cost)
VALUES (1103, 'N2N3', 102, 103, 'Y, 1, 30);

- N3Mv
I NSERT INTO xyz_links (link_id, link_name, start_node_id, end_node_id, active,
link_level, cost)
VALUES (1104, 'N3N4', 103, 104, 'Y, 1, 10);

- NAN5
I NSERT INTO xyz_links (link_id, link_name, start_node_id, end_node_id, active,
link_level, cost)
VALUES (1105, 'N4N5', 104, 105, 'Y, 1, 20);

- NANG
I NSERT INTO xyz_links (link_id, link_name, start_node_id, end_node_id, active,
link_level, cost)
VALUES (1106, ' N4N6', 104, 106, 'Y, 1, 30);

- N5N6
I NSERT INTO xyz_links (link_id, |ink_name, start_node_id, end_node_id, active,
link_level, cost)
VALUES (1107, 'N6N6', 105, 106, 'Y', 1, 10);

- N5N8 (child of the higher-level link: parent ID = 1001)
I NSERT INTO xyz_links (link_id, link_name, start_node_id, end_node_id, active,
link_level, cost, parent_link_id)
VALUES (1108, 'N5N8', 105, 108, 'Y, 1, 20, 1001);

- N6N7 (child of the higher-level link: parent ID = 1001)
INSERT INTO xyz_links (link_id, link_name, start_node_id, end_node_id, active,
link_level, cost, parent_link_id)
VALUES (1109, 'Ne6N7', 106, 107, 'Y, 1, 30, 1001);

- N7N8
INSERT INTO xyz_links (link_id, link_name, start_node_id, end_node_id, active,
link_level, cost)
VALUES (1110, 'N7N8', 107, 108, 'Y', 1, 10);

- N7N9
I NSERT INTO xyz_links (link_id, link_name, start_node_id, end_node_id, active,
link_level, cost)
VALUES (1111, 'N7NO', 107, 109, 'Y, 1, 20);

- N\8N9
INSERT INTO xyz_links (link_id, link_name, start_node_id, end_node_id, active,
link_level, cost)
VALUES (1112, 'N8N9', 108, 109, 'Y, 1, 30);

- NON1O

I NSERT INTO xyz_links (link_id, link_name, start_node_id, end_node_id, active,
link_level, cost)

ORACLE 5-84

ORACLE

VALUES (1113, 'N9NI1O',

-- NONIL3
I NSERT | NTO xyz_links (I
link_level, cost)
VALUES (1114, 'N9N13',

-- NION11
I NSERT | NTO xyz_links (I
link_level, cost)
VALUES (1115, 'NLON11'

-- N11IN12
I NSERT | NTO xyz_links (I
link_level, cost)
VALUES (1116, 'NLIN12'

-- NI12N13
I NSERT | NTO xyz_links (I
link_level, cost)
VALUES (1117, 'N12N13'

-- NI12N14
I NSERT | NTO xyz_links (I
link_level, cost)
VALUES (1118, ' N12N14'

-- N13N14
I NSERT | NTO xyz_links (I
link_level, cost)
VALUES (1119, 'NL13N14'

-- 3. Create the path table (to store created paths) and the path-link

109, 110, 'Y, 1, 30);

ink_id, l'ink_nane, start_node_id,

109, 113, 'Y, 1, 10);

ink_id, l'ink_nanme, start_node_id,

, 110, 111, 'Y, 1, 20);

ink_id, l'ink_nane, start_node_id,

, 111, 112, 'Y, 1, 30);

ink_id, l'ink_nanme, start_node_id,

, 112, 113, 'Y, 1, 10);

ink_id, l'ink_nanme, start_node_id,

, 112, 114, 'Y, 1, 20);

ink_id, l'ink_nanme, start_node_id,

, 113, 114, 'Y, 1, 30);

end_node_i d,

end_node_i d,

end_node_i d,

end_node_i d,

end_node_i d,

end_node_i d,

-- table (to store links for each path) for possible future use,
-- before which they will need to be popul at ed.
EXECUTE SDO NET. CREATE_PATH TABLE(' XYZ_PATHS', NULL);

EXECUTE SDO_NET. CREATE_PATH LI NK_TABLE(' XYZ_PATHS LI NKS)

-- 4. Populate the network netadata (USER SDO NETWORK METADATA) .

I NSERT | NTO user_sdo_net wor k_net adat a

(NETWORK,
NETWORK_CATEGORY,

NO_OF H ERARCHY LEVELS,

NO_OF_PARTI Tl ONS,
NODE_TABLE_NAME,
LI NK_TABLE_NAME,
LI NK_DI RECTI ON,
LI NK_COST_COLUMN,
PATH_TABLE_NAME,

PATH_LI NK_TABLE_NANE)

VALUES (
" XYZ_NETWORK' , -- Network nane
"LOG CAL', -- Network category
2, -- No. of levels in hierarchy
1, -- No. of partitions
" XYZ_NODES', -- Node table nanme
"XYZ_LINKS', -- Link table nanme
"BIDIRECTED', -- Link direction
"COST', -- Link cost colum
" XYZ_PATHS', -- Path table nane

Chapter 5
Network Examples

active,

active,

active,

active,

active,

active,

5-85

Chapter 5
Network Examples

' XYZ_PATHS LINKS' -- Path-link table nane
)

- 5. Use various SDO NET functions and procedures.

- Validate the network.
SELECT SDO_NET. VALI DATE_NETWORK(' XYZ_NETWORK') FROM DUAL;

- Validate parts or aspects of the network.

SELECT SDO _NET. VALI DATE_LI NK_SCHEMA(' XYZ_NETWORK') FROM DUAL;
SELECT SDO NET. VALI DATE_LRS_SCHEMA(' XYZ_NETWORK') FROM DUAL;
SELECT SDO_NET. VALI DATE_NODE_SCHEMA(' XYZ_NETWORK') FROM DUAL;
SELECT SDO_NET. VALI DATE_PATH_SCHEMA(' XYZ_NETWORK') FROM DUAL;

- Retrieve various information (GET_xxx and some other functions).
SELECT SDO NET. GET_CHI LD LI NKS(' XYZ_NETWORK' , 1001) FROM DUAL;
SELECT SDO NET. GET_CHI LD _NODES(' XYZ_NETWORK', 1) FROM DUAL;
SELECT SDO NET. GET_CHI LD _NODES(' XYZ_NETWORK', 2) FROM DUAL;
SELECT SDO NET. GET_I N_LI NKS(' XYZ_NETWORK', 104) FROM DUAL;
SELECT SDO NET. GET_LI NK_COST_COLUMN(' XYZ_NETWORK') FROM DUAL;
SELECT SDO NET. GET_LI NK_DI RECTI ON(* XYZ_NETWORK') FROM DUAL;
SELECT SDO NET. GET_LI NK_TABLE_NANME(' XYZ_NETWORK') FROM DUAL;
SELECT SDO NET. GET_NETWORK_TYPE(' XYZ_NETWORK') FROM DUAL;

SELECT SDO NET. GET_NO_OF HI ERARCHY LEVELS(' XYZ_NETWORK') FROM DUAL;
SELECT SDO NET. GET_NO_OF LI NKS(' XYZ_NETWORK') FROM DUAL;

SELECT SDO_NET. GET_NO_OF NODES(' XYZ_NETWORK') FROM DUAL;

SELECT SDO NET. GET_NCDE_DEGREE(' XYZ_NETWORK' , 104) FROM DUAL;
SELECT SDO NET. GET_NCDE_| N_DEGREE(' XYZ_NETWORK' , 104) FROM DUAL;
SELECT SDO NET. GET_NCDE_OUT_DEGREE(' XYZ_NETWORK' , 104) FROM DUAL;
SELECT SDO_NET. GET_QUT_LI NKS(' XYZ_NETWORK' , 104) FROM DUAL;
SELECT SDO NET. GET_PATH TABLE_NANME(' XYZ_NETWORK') FROM DUAL;
SELECT SDO _NET. | S_H ERARCHI CAL(' XYZ_NETWORK') FROM DUAL;

SELECT SDO _NET.|S_LOG CAL(" XYZ_NETWORK') FROM DUAL;

SELECT SDO NET. | S_SPATI AL(' XYZ_NETWORK') FROM DUAL;

SELECT SDO_NET. NETWORK_EXI STS(' XYZ_NETWORK') FROM DUAL;

- Copy a network.
EXECUTE SDO_NET. COPY_NETWORK(' XYZ_NETWORK' , ' XYZ_NETWORK2') ;

- Create a trigger.
EXECUTE SDO_NET. CREATE_DELETE_TRI GGER(' XYZ_NETWORK') ;

5.15.5 Partitioning and Load on Demand Analysis Examples (PL/SQL,
XML, and Java)

ORACLE

This section presents examples of partitioning a network, including related operations,
and performing load on demand network analysis. The examples illustrate concepts
and techniques explained in Network Analysis Using Load on Demand.

Additional examples of using load on demand analysis with partitioned networks are
included in the demo files, described in Network Data Model Graph Tutorial and Other
Resources.

Example 5-7 Partitioning a Spatial Network

Example 5-7 partitions a spatial network named NYC_NET. (Assume that this network
already exists and its metadata, node, and link tables are populated.)

5-86

ORACLE

Chapter 5
Network Examples

Example 5-7 and Example 5-8 generate the necessary partition tables for the NYC_NET
network. After executing these examples, you can check the .log file for the current
status or any errors encountered during partitioning or BLOB generation.

exec sdo_net.spatial _partition(

networ k->" NYC_NET', -- network nanme

partition_tabl e_name->' NYC PART$', -- partition table name
max_num nodes- >5000, -- max. nunber of nodes per partition
log_loc-> MDDIR, -- partition log directory
log_file->nyc_part.log', --partition log file nane
open_node->' W, -- partition log file open node
link_level->1); -- link |evel

Example 5-8 Generating Partition BLOBs
Example 5-8 generates partition BLOBs for the network.

exec sdo_net.generate_partition_bl obs(

network->"NYC NET', ,-- network name

link level ->1, -- link |evel

partition_blob_table_name->' NYC PBLOB$', -- partition blob table nanme
i ncl udeUser dat a- >FALSE, -- include user data in partition bl obs?
log_loc->MWDIR, -- partition |log directory
log_file->nyc_part.log', --partition log file nane

open_node->'a'); -- partition log file open node

Example 5-9 Configuring the Load on Demand Environment, Including
Partition Cache

Example 5-9 shows the XML for configuring the load on demand environment,
including the partition cache.

<?xm version="1.0" encodi ng="UTF-8" ?>
<LODConfigs xm ns:xsi="http://ww. w3. org/ 2001/ XM_.Schena- i nst ance"
xmns ="http://xm ns.oracl e. conf spati al / net work"
version = "12.1">
<!I--The new xml configuration schema takes the version nunber. |f the version
attribute is missing, then we assume it is 11.2 or |ower. -->
<I-- default configuration for networks not configured -->
<LODConfi g gl obal Net wor kName="$DEFAULTS$" net wor kNanme="$DEFAULT$" >
<net wor kI G
<georet ryTol er ance>0. 000001</ geonet ryTol er ance>
<readPartitionFronBl ob>f al se</readPartitionFronBl ob>
<partitionBl obTransl at or>
<cl assName>or acl e. spati al . network. | od. PartitionBl obTransl at or 11gR2</
cl assName>
<par amet er s></ par anet er s>
</partitionBl obTransl at or >
<user Dat al O cat egoryl d="0">
<cl assName>or acl e. spati al . networ k. | od. LODUser Dat al OSDO</ ¢l assNane>
<par amet er s></ par anet er s>
</ user Dat al O
<cachingPolicy linkLevel ="1">
<maxNodes>500000</ maxNodes>
<residentPartitions></residentPartitions>
<fl ushRul e>
<cl assName>or acl e. spati al . networ k. | od. LRUCachi ngHandl er </ cl assNane>
<par amet er s></ par anet er s>
</ fl ushRul e>
</ cachi ngPol i cy>
</ net wor kI C>

5-87

ORACLE

Chapter 5
Network Examples

<net wor kAnal ysi s>
<linkLevel Sel ector>
<cl assName>or acl e. spati al . net work. | od. DummyLi nkLevel Sel ect or </ cl assName>
<par amet er s></ par anet er s>
</linkLevel Sel ector >
<wi t hi nCost Pol ygonTol er ance>0. 05</ wi t hi nCost Pol ygonTol er ance>
</ net wor kAnal ysi s>
</ LODConfi g>
<LODConfi g gl obal Net wor kName="SAMPLE_NETWORK" net wor kName="SAMPLE_NETWORK" >
<net wor kI O
<georet ryTol erance>0. 000001</ geonet ryTol er ance>
<readPartitionFronBl ob>true</readPartitionFronBl ob>
<partitionBl obTransl at or>
<cl assName>or acl e. spati al . router. ndm Rout er Parti ti onBl obTransl at or 11gR2</
cl assName>
<par amet er s></ par anet er s>
</partitionBl obTransl at or >
<user Dat al O cat egoryl d="0">
<cl assName>or acl e. spati al . network. | od. LODUser Dat al OSDO</ ¢l assNane>
<par amet er s></ par anet er s>
</ user Dat al O
<user Dat al O categoryl d="1">
<cl assNanme>oracl e. spati al . rout er. ndm Rout er User Dat al O</ cl assNanme>
<par amet er s></ par anet er s>
</ user Dat al O
<cachingPolicy linkLevel ="1">
<maxNodes>200000</ maxNodes>
<residentPartitions></residentPartitions>
<fl ushRul e>
<cl assName>or acl e. spati al . network. | od. LRUCachi ngHandl er </ ¢l assNane>
<par amet er s></ par anet er s>
</ fl ushRul e>
</ cachi ngPol i cy>
<cachingPolicy linkLevel ="2">
<maxNodes>800000</ maxNodes>
<residentPartitions>0</residentPartitions>
<fl ushRul e>
<cl assName>or acl e. spati al . network. | od. LRUCachi ngHandl er </ ¢l assNane>
<par amet er s></ par anet er s>
</ fl ushRul e>
</ cachi ngPol i cy>
</ net wor kI C>
<net wor kAnal ysi s>
</ net wor kAnal ysi s>
</ LODConfi g>
</ LODConfi gs>

Example 5-10 Reloading the Load on Demand Configuration (Java API)

Example 5-10 and Example 5-11 show the Java and PL/SQL APIs, respectively, for
reloading the load on demand configuration.

I nput Stream config = O assLoader. get Syst enResour ceAsSt r eam
"netl odcfg.xm");
LODNet wor kManager . get Conf i gManager () . | oadConfi g(config);

Example 5-11 Reloading the Load on Demand Configuration (PL/SQL API)
EXECUTE SDO_NET. LOAD CONFI G(' WORK DR, 'netlodcfg. xm');

5-88

ORACLE

Chapter 5
Network Examples

Example 5-12 Getting Estimated Partition Size
Example 5-12 returns the estimated size in bytes for a specified network partition.

SELECT SDO NET. GET_PARTI TI ON_SI ZE (
NETWORK- >' NYC_NET' ,
PARTI TI ON_| D->1,
LI NK_LEVEL ->1,
| NCLUDE_USER DATA->' FALSE',
| NCLUDE_SPATI AL_DATA->' TRUE') FROM DUAL;

Example 5-13 Network Analysis: Shortest Path (LOD Java API)

Example 5-13 uses the load on demand Java API (oracle.spatial.network.lod) to issue
a shortest-path query on a network.

Connection conn = LODNet wor kManager . get Connection(dbUrl, dbUser, dbPassword);

/1 get LOD network 10O Adapter

String networkName = "NYC _NET";

Net wor kI O reader = LCDNet wor kManager . get CachedNet wor kI O(conn, net wor kNane,

net wor kName, null);

/1 get analysis nodul e

Net wor kAnal yst anal yst = LODNet wor kManager . get Net wor kAnal yst (reader);

/] conpute the shortest path

Logi cal SubPath path = anal yst. shortestPat hDi j kstra(new Poi nt OnNet (st art Nodel d),
new Poi nt OnNet (endNodel d), null);

[l print path result

PrintUility.print(Systemout, path, false, 0, 0);

Example 5-14 Network Analysis: Shortest Path (XML API)

Example 5-14 uses the XML API (oracle.spatial.network.xml) to issue a shortest-path
guery on a network. It includes the request and the response.

<?xm version="1.0" encodi ng="UTF-8"?>
<ndm net wor kAnal ysi sRequest

xm ns: ndme"http: //xn ns. oracl e. conl spati al / net wor k"

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"

xm ns: gm ="http://ww. opengi s. net/gm ">

<ndm net wor kNane>NYC_NET</ ndm net wor kNane>
<ndm short est Pat h>

<ndm st art Poi nt >
<ndm nodel D>65</ ndm nodel D>

</ ndm st art Poi nt >

<ndm endPoi nt >
<ndm nodel D>115</ ndm nodel D>

</ ndm endPoi nt >

<ndm subPat hRequest Par anet er >
<ndm i sFul | Path> true </ndmisFul | Pat h>
<ndm st art Li nkl ndex> true </ndm startLinkl ndex>
<ndm start Percentage> true </ndm startPercentage>
<ndm endLi nkl ndex> true </ndm endLi nkl ndex>
<ndm endPer cent age> true </ ndm endPer cent age>
<ndm geonet r y>f al se</ ndm geonet ry>

<ndm pat hRequest Par amet er >
<ndm cost > true </ndm cost >
<ndm i sSi npl e> true </ndmisSinpl e>
<ndm st art Nodel D>t r ue</ ndm st ar t Nodel D>
<ndm endNodel D>t r ue</ ndm endNodel D>
<ndm noCf Li nks>t rue</ ndm noCf Li nks>
<ndm | i nksRequest Par anet er >

5-89

Chapter 5
Network Examples

<ndm onl yLi nkl D>t r ue</ ndm onl yLi nkl D>
</ ndm | i nksRequest Par anet er >
<ndm nodesRequest Par anet er >
<ndm onl yNodel D>t r ue</ ndm onl yNodel D>
</ ndm nodesRequest Par anet er >
<ndm geonet ry>t rue</ ndm geonet ry>
</ ndm pat hRequest Par anet er >
</ ndm subPat hRequest Par amet er >
</ ndm short est Pat h>
</ ndm net wor kAnal ysi sRequest >

<?xm version = "1.0" encoding = 'UTF-8' 2>
<ndm net wor kAnal ysi sResponse xn ns: xsi ="htt p: // ww. w3. or g/ 2001/ XM_.Schema- i nst ance"
xm ns: ndme"http: // xnm ns. oracl e. com spatial / network" xmns:gm ="http://
www. opengi s. net/gm ">
<ndm net wor kNane>NYC_NET</ ndm net wor kNane>
<ndm short est Pat h>
<ndm subPat hResponse>
<ndm i sFul | Pat h>true</ ndm i sFul | Pat h>
<ndm st art Li nkl ndex>0</ ndm st art Li nkl ndex>
<ndm st art Per cent age>0. 0</ ndm st ar t Per cent age>
<ndm endLi nkl ndex>17</ ndm endLi nkl ndex>
<ndm endPer cent age>1. 0</ ndm endPer cent age>
<ndm pat hResponse>
<ndm cost >6173. 212694405703</ ndm cost >
<ndm i sSi npl e>true</ndm i sSi npl e>
<ndm st art Nodel D>65</ ndm st ar t Nodel D>
<ndm endNodel D>115</ ndm endNodel D>
<ndm noCf Li nks>18</ ndm noCf Li nks>
<ndm | i nkl Ds>145477046 145477044 145477042 145477039 145476926 145476930
145480892 145480891 145476873 145476871 145477023 145489019 145489020 145476851
145488986 145488987 145476913 145476905
</ ndm | i nkl Ds>
<ndm nodel Ds>65 64 60 57 58 61 71 70 73 87 97 95 91 101 102 104 117 120 115
</ ndm nodel Ds>
<ndm geonet ry>
<gm : LineString>
<gn : coordi nat es>-71. 707462, 43. 555262 -71. 707521, 43. 555601...
</ gm : coordi nat es>
</gm :LineString>
</ ndm geonetry>
</ ndm pat hResponse>
</ ndm subPat hResponse>
</ ndm short est Pat h>
</ ndm net wor kAnal ysi sResponse>

5.15.6 User-Defined Data Examples (PL/SQL and Java)

ORACLE

This section presents examples of using network user-defined data, which is the
information (not related to connectivity) that users want to associate with a network
representation. The USER_SDO_NETWORK_USER_DATA and
ALL_SDO_NETWORK_USER_DATA metadata views (described in
xxx_SDO_NETWORK_USER_DATA Views) contain information about user-defined
data.

To use user-defined data, you must set the USER_DEFINED_DATA column value to Y
in the appropriate xxx_SDO_NETWORK_METADATA views (described in
xxx_SDO_NETWORK_METADATA Views).

5-90

Chapter 5
Network Examples

Example 5-15 Inserting User-Defined Data into Network Metadata

Example 5-15 uses the PL/SQL API to insert link-related user-defined data into the
network metadata.

- Insert link user data named 'interaction' of
- type varchar2 (50) in network 'bi_test'.
--'interaction' is a colum of type varchar2(50) in the link table of network 'bi_
test'.
insert into user_sdo_network_user_data
(network,table_type, data_nane, data_type, data_length, category_id)
values ('bi_test', 'LINK', "interaction', 'VARCHAR2', 50, 0) ;
- insert link user data named ' PROB' of type Number.
--'"PROB' is a colum of type NUMBER in the link table of network 'bi_test'.
insert into user_sdo_network_user_data
(network,tabl e_type, data_nane, data_type, category_id)
values ('bi _test',"'LINK,"PROB,'NUMBER , 0) ;

After a network or network partition is loaded, user-defined data is available in Java
representations. You can access user-defined data through the

get Cat egori zedUser Dat a and set Cat egor i zedUser Dat a methods for the Node, Li nk, Pat h,
and SubPat h interfaces. For example:

/1 The user data index is the sequence number of a user data within a category
/] sorted by data nane.

int interactionUserDatalndex = 0;
int probUserDatal ndex = 1;

String interaction = (String)link.getCategorizedUserData().get UserData(0).
get (i nteractionUseDat al ndex) ;

doubl e prob = ((Doubl e)link. get Cat egori zedUser Dat a() . get User Dat a(0) .
get (probUser dat al ndex)) . doubl eVal ue();

Example 5-16 Implementation of writeUserData method of LODUserDatalO
Interface

Example 5-16 uses the Java API for a custom user data I/0O implementation (non-
default implementation) of the LODUser Dat al O interface. User data associated to links is
written to BLOBs (one BLOB per partition) and read from BLOBs during analysis. In
this example it is assumed that:

* The user-defined data BLOB for multimodal data for each partition has the
partition ID and number of links associated with the partition followed by <Link ID,
link route ID> for each link

* The user-defined data BLOB table name is MULTIMODAL_USER_DATA

/I Method getLinkslnPartition(partitionld) conputes a vector that

/1 consists of the ID and the route ID of each link associated with a partition
[/ with ID= partitionld

Li nkVector = getLinksInPartition(partitionld);

bj ect Qut put Stream dout = nul |
//1nsert an enpty blob for the partition with ID = partition_id
String insertStr = "INSERT INTO " + MULTI MODAL_USER DATA +

" (partition_id, blob) " + " VALUES " + " (?,
EMPTY_BLOB())" ;

ORACLE 5-91

ORACLE

Chapter 5
Network Examples

PreparedSt at ement stnmt = conn. prepareStatenent (insertStr);
stnt.setInt(1,partitionld);

int n = stnt.executeUpdate();

stnt.close();

//1ock the row for blob update
String | ockRowStr = "SELECT bl ob FROM " + MULTI MODAL_USER_DATA +
" WHERE partition_id = ? " + " FOR UPDATE";
stnt = conn. prepareSt atenent (1 ockRowStr);
stnt.setInt(1,partitionld);
Result Set rs = stnt.executeQuery();

rs.next();
oracle.sql.BLOB userDataBl ob = (oracle.sqgl.BLOB) rs.getBlob(1);
stnt.close();

Qut put Stream bl obQut = ((oracle.sql.BLOB) userDataBl ob).setBinaryStrean(1);
dout = new Cbj ect Qut put Strean(bl obQut);

[/wite partition ID
dout.writelnt(partitionld);
int nunlLinks = linkVector.size()

for (int i=0; i<linkVector.size(); i++) {
/IMltimodalLink is a class with variables link ID and route ID
Mul tinodal Link link = (Miltinmodal Link) |inkVector.elementAt(i);
[fwite link ID
dout.writeLong(link.getLinkld());

Il wite route IDinto file
dout.writelnt(link.getRouteld());
}
dout. cl ose();
bl obQut . cl ose();
rs.close();

Example 5-17 Implementation of readUserData method of LODUserDatalO
Interface

In Example 5-17, the user-defined data is accessed through the

get Cat egori zedUser Dat a and set Cat egor i zedUser Dat a methods for the Node, Li nk, Pat h,
and SubPat h interfaces and the get User Dat a and set User Dat a methods of the

Cat egori zedUser Dat a interface.

/I Read the blob for the required partition fromthe user data blob table
Il In this exanple,
/1 MULTI MODAL_USER DATA is the nane of user —defined data blob table
BLOB mul ti nodal Bl ob = nul | ;
String queryStr = "SELECT bl ob FROM" +
MULTI MODAL_USER DATA
" WHERE partition_id = ?";

PreparedStat enent stnt = conn. prepareSt at enent (queryStr);
stnt.setlnt(1, partitionld);
Result Set rs = stnt.executeQuery();
if (rs.next()) {

mul ti modal Bl ob = (oracle.sql.BLOB)rs. getBlob(1);
}

/1 Materialize the blob value as an input stream
InputStreamis = nul tinodal Bl ob. get Bi naryStrean();

5-92

Chapter 5
Network Examples

//Create an (bjectlnputStreamthat reads fromthe InputStreamis
oj ect I nput Stream oi s = new Cbj ect I nput Strean(is);

/I Read the values of partition ID and number of links fromthe bl ob
int partitionld = ois.readlnt();
int nunLinks = ois.readlnt();

for (int i=0; i<nunLlinks; i++) {
/IRead link ID and route ID for each |ink

long linkld = ois.readLong();
int routeld = ois.readlnt();

/Ml tinmodal LinkUserData is an inplenmentati on of NDM LOD UserData interface
//1nplementation is provided at the end of the example
l'inkUserData = new Mil tinodal Li nkUser Dat a(routeld);

/1CGet the link object corresponding to the link ID
Logi cal NetLink link = partition.getLink(linkld);

//Get the (categorized) user data associated with the |ink.
Categori zedUserData cud = |ink. get Cat egori zedUserDat a();

/1 1f the link does not have categorized user data associated with it,
[/ initialize it to IinkUserData
Il Else, set the user data for category USER DATA MJLTI MODAL
/1 to linkUserData
if (cud == null) {
UserData [] userDataArray = {linkUserData};
cud = new Cat egori zedUser Dat al npl (user Dat aArray) ;
l'i nk. set Cat egori zedUser Dat a(cud) ;
}

el se {

}

cud. set User Dat a(USER_DATA MULTI MODAL, | i nkUser Dat a) ;

}

The following example shows how to read the user-defined data, namely the route ID
associated with a link during analysis:

/linfo is an instance of LODAnalysislnfo
Logi cal Link currentLink = info.getCurrentLink();

/I Read the user-defined data (in this case, route I1D)
int linkRouteld = (Integer)currentLink.getCategorizedUserData().

get User Dat a(USER_DATA_MULTI MODAL) .
get (1 NDEX_LI NK_ROUTEI D) ;

The implementation of the Mil ti nodal Li nkUser Dat a interface is as follows:

class Ml tinodal Li nkUserData i npl enents UserData
{

private int routeld;

protected Miltinodal Li nkUserData(int routeld)
{

}

this.routeld = routeld;

public Cbject get(int index)

ORACLE 5-93

Chapter 5
Network Data Model Graph Tutorial and Other Resources

{

swi tch(i ndex)

{
case | NDEX_LI NK_ROUTEI D:
return routeld;
}
return nul l;

}

public void set(int index, Object userData)
{

swi t ch(i ndex)
{
case | NDEX_LI NK_ROUTEI D:
this.routeld = (Integer) userData;

}
}

public int getNunmber Of User Dat a()
{

}

return 1;

public Object clone()

return new Ml tinodal Li nkUser Dat a(routeld);
1
}

5.16 Network Data Model Graph Tutorial and Other
Resources

Network Data Model Graph learning resources are available.

http://wwm. oracl e. coni t echnet wor k/ dat abase- opt i ons/ spat i al andgr aph on the Oracle
Technology Network provides links to valuable resources to help you get started with
Oracle Spatial and Graph technologies, including the Network Data Model (NDM)
Graph. The Network Data Model Graph resources include the following:

* A Network Data Model Graph tutorial (ndm tutorial.ziponhttp://
wwv. or acl e. cont t echnet wor k/ i ndexes/ sanpl ecode/ spati al - 1433316. ht nl) outlines the
steps to set up and configure a network, and to conduct the analysis. It also
includes sample code and a web application that demonstrates how to use Oracle
Maps to display analysis results.

* An NDM white paper ("A Load-On-Demand Approach to Handling Large
Networks in the Oracle Spatial and Graph Network Data Model Graph") provides
detailed explanations and examples.

* The NDM editor, provided as a demo intended for small and medium-size
networks, is a graphical tool to view, browse, and navigate through data that is
stored in the network data model. You can also use this tool to perform analysis on
networks (shortest path, nearest neighbor, minimum cost spanning tree, and so
on), and to add and delete nodes, links, and paths.

* NFE (Network Feature Editing) Java APl documentation provides examples of
NFE capabilities. It also provides electricity and water network examples, and a
NFE data dictionary with NFE table descriptions.

ORACLE 5-94

http://www.oracle.com/technetwork/database-options/spatialandgraph
http://www.oracle.com/technetwork/indexes/samplecode/spatial-1433316.html
http://www.oracle.com/technetwork/indexes/samplecode/spatial-1433316.html

Chapter 5
README File for Spatial and Graph and Related Features

You are encouraged to examine the Java examples before starting development
with NFE.

* The NFE editor is a sample application to create NFE models and manage them.
The models can be created in the From Scratch mode or the Over Existing
Network Model mode. You can create and manage feature layers, feature classes
and features. Additionally, a video presentation shows how to create and manage
NFE models with the NFE editor.

5.17 README File for Spatial and Graph and Related

Features

ORACLE

A README. t xt file supplements the information in the following manuals: Oracle Spatial
and Graph Developer's Guide, Oracle Spatial and Graph GeoRaster Developer's
Guide, and Oracle Spatial and Graph Topology Data Model and Network Data Model
Graph Developer's Guide (this manual).

This file is located at:

$ORACLE_HOVE/ nd/ doc/ README. t xt

5-95

SDO_NET Package Subprograms

The MDSYS.SDO_NET package contains subprograms (functions and procedures) for
managing networks.

To use the subprograms in this chapter, you must understand the conceptual
information in Network Data Model Graph Overview.

For a listing of the subprograms grouped in logical categories, see Network Data
Model Graph PL/SQL Interface. The rest of this chapter provides reference information
about the subprograms, listed in alphabetical order.

Topics:

e SDO_NET.ADD_CHILD_FEATURE

e SDO_NET.ADD_CHILD_FEATURES

e SDO_NET.ADD_FEATURE

e SDO_NET.ADD_FEATURE_ELEMENT

e SDO_NET.ADD_FEATURE_ELEMENTS

e SDO_NET.ADD_FEATURE_LAYER

e SDO_NET.COMPUTE_PATH_GEOMETRY
e SDO_NET.COPY_NETWORK

e SDO_NET.CREATE_LINK_TABLE

e SDO_NET.CREATE_LOGICAL_NETWORK
e SDO_NET.CREATE_LRS NETWORK

e SDO_NET.CREATE_LRS TABLE

e SDO_NET.CREATE_NODE_TABLE

e SDO_NET.CREATE_PARTITION_TABLE

e SDO_NET.CREATE_PATH_LINK_TABLE

e SDO_NET.CREATE_PATH_TABLE

e SDO_NET.CREATE_SDO_NETWORK

e SDO_NET.CREATE_SUBPATH_TABLE

e SDO_NET.CREATE_TOPO_NETWORK

e SDO_NET.DELETE_CHILD FEATURES

e SDO_NET.DELETE_CHILD FEATURES_AT
e SDO_NET.DELETE_DANGLING_FEATURES
e SDO_NET.DELETE_DANGLING_LINKS

e SDO_NET.DELETE_DANGLING_NODES

e SDO_NET.DELETE_FEATURE_ELEMENTS

ORACLE 6-1

ORACLE

Chapter 6

SDO_NET.DELETE_FEATURE_ELEMENTS_AT
SDO_NET.DELETE_FEATURES
SDO_NET.DELETE_LINK
SDO_NET.DELETE_NODE
SDO_NET.DELETE_PATH
SDO_NET.DELETE_PHANTOM_FEATURES
SDO_NET.DELETE_SUBPATH
SDO_NET.DEREGISTER_CONSTRAINT
SDO_NET.DROP_FEATURE_LAYER
SDO_NET.DROP_NETWORK
SDO_NET.FIND_CONNECTED_COMPONENTS
SDO_NET.GENERATE_NODE_LEVELS
SDO_NET.GENERATE_PARTITION_BLOB
SDO_NET.GENERATE_PARTITION_BLOBS
SDO_NET.GET_CHILD_FEATURE_IDS
SDO_NET.GET_CHILD_LINKS
SDO_NET.GET_CHILD_NODES
SDO_NET.GET_DANGLING_FEATURES
SDO_NET.GET_DANGLING_LINKS
SDO_NET.GET_DANGLING_NODES
SDO_NET.GET_FEATURE_ELEMENTS
SDO_NET.GET_FEATURE_LAYER_ID
SDO_NET.GET_FEATURES_ON_LINKS
SDO_NET.GET_FEATURES_ON_NODES
SDO_NET.GET_GEOMETRY_TYPE
SDO_NET.GET_IN_LINKS
SDO_NET.GET_INVALID_LINKS
SDO_NET.GET_INVALID_NODES
SDO_NET.GET_INVALID_PATHS
SDO_NET.GET_ISOLATED_NODES
SDO_NET.GET_LINK_COST_COLUMN
SDO_NET.GET_LINK_DIRECTION
SDO_NET.GET_LINK_GEOM_COLUMN
SDO_NET.GET_LINK_GEOMETRY
SDO_NET.GET_LINK_TABLE_NAME
SDO_NET.GET_LINKS_IN_PATH
SDO_NET.GET_LRS_GEOM_COLUMN

6-2

ORACLE

Chapter 6

SDO_NET.GET_LRS_LINK_GEOMETRY
SDO_NET.GET_LRS_NODE_GEOMETRY
SDO_NET.GET_LRS_TABLE_NAME
SDO_NET.GET_NETWORK_TYPE
SDO_NET.GET_NO_OF HIERARCHY_LEVELS
SDO_NET.GET_NO_OF_LINKS
SDO_NET.GET_NO_OF NODES
SDO_NET.GET_NODE_DEGREE
SDO_NET.GET_NODE_GEOM_COLUMN
SDO_NET.GET_NODE_GEOMETRY
SDO_NET.GET_NODE_IN_DEGREE
SDO_NET.GET_NODE_OUT_DEGREE
SDO_NET.GET_NODE_TABLE_NAME
SDO_NET.GET_OUT_LINKS
SDO_NET.GET_PARENT_FEATURE_IDS
SDO_NET.GET_PARTITION_SIZE
SDO_NET.GET_PATH_GEOM_COLUMN
SDO_NET.GET_PATH_TABLE_NAME
SDO_NET.GET_PERCENTAGE
SDO_NET.GET_PHANTOM_FEATURES
SDO_NET.GET_PT
SDO_NET.IS_HIERARCHICAL
SDO_NET.IS_LINK_IN_PATH
SDO_NET.IS_LOGICAL
SDO_NET.IS_NODE_IN_PATH
SDO_NET.IS_SPATIAL
SDO_NET.LOAD_CONFIG
SDO_NET.LOGICAL_PARTITION
SDO_NET.LOGICAL_POWERLAW_PARTITION
SDO_NET.LRS_GEOMETRY_NETWORK
SDO_NET.NETWORK_EXISTS
SDO_NET.POST_XML
SDO_NET.REGISTER_CONSTRAINT
SDO_NET.SDO_GEOMETRY_NETWORK
SDO_NET.SET_LOGGING_LEVEL
SDO_NET.SET_MAX_JAVA_HEAP_SIZE
SDO_NET.SPATIAL_PARTITION

6-3

Chapter 6

SDO_NET.ADD_CHILD_FEATURE

SDO_NET.TOPO_GEOMETRY_NETWORK
SDO_NET.UPDATE_FEATURE
SDO_NET.UPDATE_FEATURE_ELEMENT
SDO_NET.VALIDATE_LINK_SCHEMA
SDO_NET.VALIDATE_LRS_SCHEMA
SDO_NET.VALIDATE_NETWORK
SDO_NET.VALIDATE_NODE_SCHEMA
SDO_NET.VALIDATE_PARTITION_SCHEMA
SDO_NET.VALIDATE_PATH_SCHEMA
SDO_NET.VALIDATE_SUBPATH_SCHEMA

6.1 SDO_NET.ADD_CHILD_FEATURE

ORACLE

Format

SDO_NET. ADD_CH LD_FEATURE(

parent _layer_id | N NUVBER

parent _feature_id | N NUVBER,

child_layer_id I'N NUMBER,
child_feature_id | N SDO NET_LAYER FEAT,
sequence_number | N NUVMBER DEFAULT NULL,
check_integrity | N BOOLEAN DEFAULT TRUE);

Description

Associates a feature as a child feature of a specified parent feature.

Parameters

parent_layer_id
ID of the parent feature layer.

parent_feature_id
ID of the feature that is to become the parent feature of the specified child feature.

child_layer_id
ID of the child feature layer.

child_feature_id
ID of the feature to be associated as a child feature of the specified parent feature.
(The SDO_NET_LAYER_FEAT type is described in Data Types Used for Feature
Modeling.)

sequence_number
Sequence number of the chi | d_f eat ure_i d feature in the child feature layer. If this
parameter is null, a sequence number after the last current number is assigned.

check_integrity
TRUE (the default) checks if the child feature exists; and if it does not exist, an error is
generated. FALSE does not check if the child feature exists.

6-4

Chapter 6
SDO_NET.ADD_CHILD_FEATURES

Usage Notes
The specified child feature must already exist.

To associate multiple features as child features, use the
SDO_NET.ADD_CHILD FEATURES procedure.

Examples
The following example adds a child feature at sequence number 2.

DECLARE
parent _| ayer_id NUVBER;
parent _feature_id NUMBER : = 1,
child_layer_id NUVBER;
child_feature_id NUMBER : = 3;
BEG N
parent _|ayer_id := sdo_net.get_feature_layer_id(' GRID, ' PARENT_LAYER);
child_layer_id := sdo_net.get_feature_layer_id(' R D, 'PO");
sdo_net. add_chi | d_feature(parent_|ayer_id, parent_feature_id, child_layer_id,
child_feature_id, 2, true);
END;
/

6.2 SDO_NET.ADD CHILD FEATURES

ORACLE

Format

SDO_NET. ADD_CH LD_FEATURES(
parent |ayer_id | N NUVBER
parent _feature_id I N NUVBER,
child_feature_ids IN SDO NET_LAYER FEAT_ARRAY,
check_integrity | N BOOLEAN DEFAULT TRUE);

Description

Associates multiple features as child features of a specified parent feature.

Parameters

parent_layer_id
ID of the parent feature layer.

parent_feature_id
ID of the feature that is to become the parent feature of the specified child features.

child_feature_ids

IDs of features to be associated as child features of the specified parent feature. (The
SDO_NET_LAYER_FEAT_ARRAY type is described in Data Types Used for Feature
Modeling.)

check_integrity

TRUE (the default) checks if the child features exist; and if any do not exist, an error is
generated. FALSE does not check if the child features exist.

Usage Notes

The specified child features must already exist.

6-5

Chapter 6
SDO_NET.ADD_FEATURE

To associate a single feature as a child feature, use the
SDO_NET.ADD_CHILD_FEATURE procedure.

Examples
The following example adds two child features at the end of the parent feature.

DECLARE
parent _| ayer _id NUVBER,
parent _feature_id NUMBER : = 1;
child_layer_id NUVBER
child_feature_ids SDO NET_LAYER FEAT ARRAY := SDO NET_LAYER FEAT ARRAY();
BEG N
parent _layer_id := sdo_net.get feature_layer_id(' GRID, 'PARENT_LAYER);
child_layer_id := sdo_net.get _feature_layer_id('GRID, "PO");
child feature_ids.extend;
child_feature_ids(1l) := SDO NET_LAYER FEAT(child_l ayer_id, 4);
child _feature_ids. extend;
child_feature_ids(2) := SDO NET_LAYER FEAT(child_l ayer_id, 10);
sdo_net. add_chi | d_features(parent_layer_id, parent_feature_id, child_feature_ids,
true);
END;
/

6.3 SDO_NET.ADD_FEATURE

ORACLE

Format

SDO_NET. ADD_FEATURE(
feature_layer_id I N NUMBER,
feature_id I N NUMBER,
feature_elements | N SDO NET_FEAT ELEM ARRAY DEFAULT NULL,
child feature_ids | N SDO NET_LAYER FEAT ARRAY DEFAULT NULL,
check_integrity | N BOOLEAN DEFAULT TRUE);

Description

Adds a feature to a feature layer.
Parameters

feature_layer_id
ID of the feature layer to which to add the feature.

feature_id
ID of the feature to be added to the feature layer.

feature_elements

Feature elements of the feature to be added. If this parameter is null, no feature
elements are defined for this feature. (The SDO_NET_FEAT_ELEM_ARRAY type is
described in Data Types Used for Feature Modeling.)

child_feature_ids

IDs of the child features of the feature that are to be added along with the feature. If
this parameter is null, no child features are to be added. (The
SDO_NET_LAYER_FEAT_ARRAY type is described in Data Types Used for Feature
Modeling.)

6-6

Chapter 6
SDO_NET.ADD_FEATURE_ELEMENT

check_integrity
TRUE (the default) checks if the input network elements exist; and if any do not exist,
an error is generated. FALSE does not check if the input network elements exist.

Usage Notes

To update a feature in a feature layer, use the SDO_NET.UPDATE_FEATURE
procedure.

Examples
The following example adds a feature associated with a point at 20% on link 1314.

DECLARE
feature_layer_id NUMBER
feature_id NUMBER : = 1;
el ements SDO_NET_FEAT_ELEM ARRAY : = SDO NET_FEAT_ELEM ARRAY();
link_id NUMBER := 1314;
BEG N
feature_layer_id := sdo_net.get_feature_layer id('GRID, 'PA");
el enent s. ext end;
el enents(1) := SDO NET_FEAT_ELEM SDO NET. FEAT ELEM TYPE PQL, link_id, 0.2, null);
sdo_net.add_feature(feature_layer_id, feature_id, elenments, null);
END;
/

6.4 SDO_NET.ADD_FEATURE_ELEMENT

ORACLE

Format

SDO_NET. ADD_FEATURE_ELEMENT(
feature_layer_id I N NUMBER,
feature_id I'N NUMBER,
feature_element | N SDO NET_FEAT ELEM
sequence_nunber | N NUMBER DEFAULT NULL,
check_integrity |N BOOLEAN DEFAULT TRUE);

Description

Adds a feature element to a feature.
Parameters

feature_layer_id
ID of the feature layer for the feature.

feature_id
ID of the feature.

feature_element

Feature element to be added to the feature. This feature element is automatically
appended to the end of any existing feature elements in the feature. (The
SDO_NET_FEAT_ELEM type is described in Data Types Used for Feature Modeling.)

sequence_number

Sequence number of the added feature element in the feature. If this parameter is
null, a sequence number after the last current number is assigned.

6-7

Chapter 6
SDO_NET.ADD_FEATURE_ELEMENTS

check_integrity
TRUE (the default) checks if the input network elements exist; and if any do not exist,
an error is generated. FALSE does not check if the input network elements exist.

Usage Notes

To add multiple feature elements to a feature in a single operation, use the
SDO_NET.ADD_FEATURE_ELEMENTS procedure.

To update a feature element, use the SDO_NET.UPDATE_FEATURE_ELEMENT
procedure.

Examples
The following example adds a point feature for node ID 13 at sequence number 2.

DECLARE

feature_|l ayer _id NUMBER

feature_id NUMBER : = 1;

feature_el ement SDO_NET_FEAT_ELEM

node_i d NUMBER : = 13;
BEG N

feature_layer_id := sdo_net.get _feature_layer id('GRID, 'PA");

feature_el ement := SDO NET_FEAT ELEM SDO NET. FEAT_ELEM TYPE PON, node_id, null,
null);

sdo_net.add_feature_el enent (feature_layer _id, feature_id, feature_elenent, 2);
END;
/

6.5 SDO_NET.ADD_FEATURE_ELEMENTS

ORACLE

Format

SDO_NET. ADD_FEATURE_ELEMENTS(
feature_layer_id | N NUVBER,
feature_ id I N NUMBER,
feature_elenents IN SDO NET_FEAT ELEM _ARRAY,
check_integrity |N BOOLEAN DEFAULT TRUE);

Description

Adds an array of feature elements to a feature.

Parameters

feature_layer_id
ID of the feature layer for the feature.

feature_id
ID of the feature.

feature_elements

Feature elements to be added to the feature. These feature elements are
automatically appended to the end of any existing feature elements in the feature.
(The SDO_NET_FEAT_ELEM_ARRAY type is described in Data Types Used for
Feature Modeling.)

6-8

Chapter 6
SDO_NET.ADD_FEATURE_LAYER

check_integrity
TRUE (the default) checks if the input network elements exist; and if any do not exist,
an error is generated. FALSE does not check if the input network elements exist.

Usage Notes

To add a single feature element to a feature, use the
SDO_NET.ADD_FEATURE_ELEMENT procedure.

Examples

The following example adds two point feature elements at the end of the feature
elements associated with feature ID 1.

DECLARE
feature_layer_id NUMBER
feature_id NUMBER : = 1;
el ements SDO_NET_FEAT_ELEM ARRAY : = SDO NET_FEAT_ELEM ARRAY();
link_id NUMBER := 1314;
BEG N
feature_layer_id := sdo_net.get_feature_layer id('GRID, 'PA");
el enent s. ext end;
el ements(1) := SDO NET_FEAT_ELEM SDO NET. FEAT ELEM TYPE PQL, link_id, 0.7, null);
el enent s. ext end;
el enents(2) := SDO NET_FEAT_ELEM SDO NET. FEAT ELEM TYPE PQL, link_id, 0.8, null);
sdo_net.add_feature_el ements(feature_layer_id, feature_id, elenents);
END;
/

6.6 SDO_NET.ADD_FEATURE_LAYER

ORACLE

Format

SDO_NET. ADD_FEATURE_LAYER(
network_nane | N VARCHARZ,
feature_l ayer_name I N VARCHAR?,
feature_l ayer_type IN VARCHAR?,
feature_table I N VARCHAR?,
relation_table I N VARCHAR?,
hi erarchy_tabl e I N VARCHAR?) ;

Description
Adds a feature layer.
Parameters

network_name
Name of the network.

feature_layer_name
Name of the feature layer.

feature_layer_type
Type of features in the layer (from Table 5-1).

feature_table
Name of the feature table (see Feature Table).

6-9

Chapter 6
SDO_NET.COMPUTE_PATH_GEOMETRY

relation_table
Name of the feature element relationships table (see Feature Element Relationships
Table).

hierarchy_table
Name of the feature hierarchy table (see Feature Hierarchy Table).

Usage Notes

A feature layer ID is automatically generated for the feature layer.

Examples

The following example creates a feature layer named PO (points of interest) of
multipoints (SDO_NET. FEAT_TYPE_MPQI NT).

BEG N
sdo_net. add_feature_| ayer(
"GRID,
PO,
SDO_NET. FEAT _TYPE_MPQOI NT,
'PO_FEAT$' ,
'PO_REL$',
NULL
)
END;
/

6.7 SDO_NET.COMPUTE_PATH_GEOMETRY

ORACLE

Format

SDO_NET. COMPUTE_PATH_GEOVETRY(
network | N VARCHAR2
path_id I N NUMBER
tol erance | N NUMBER

) RETURN SDO_GEQVETRY;

Description

Returns the spatial geometry for a path.

Parameters

network
Network name.

path_id
Path ID number.

tolerance

Tolerance value associated with geometries in the network. (Tolerance is explained in
Chapter 1 of Oracle Spatial and Graph Developer's Guide.) This value should be
consistent with the tolerance values of the geometries in the link table and node table
for the network.

6-10

Chapter 6
SDO_NET.COPY_NETWORK

Usage Notes

This function computes and returns the SDO_GEOMETRY object for the specified
path.

This function and the SDO_NET_MEM.PATH.COMPUTE_GEOMETRY procedure
(documented in SDO_NET Package Subprograms) both compute a path geometry,
but they have the following differences:

e The SDO_NET.COMPUTE_PATH_GEOMETRY function computes the path from
the links in the database, and does not use a network memory object. It returns
the path geometry.

e The SDO_NET_MEM.PATH.COMPUTE_GEOMETRY procedure computes the
path using a network memory object that has been loaded. It does not return the
path geometry; you must use the SDO_NET_MEM.PATH.GET_GEOMETRY
function to get the geometry.

Examples

The following example computes and returns the spatial geometry of the path with
path ID 1 in the network named SDO NET1, using a tolerance value of 0.005. The
returned path geometry is a straight line from (1,1) to (15,1) because this path consists
of a single link.

SELECT SDO NET. COMPUTE_PATH GEOVETRY(' SDO_NET1', 1, 0.005) FROM DUAL;

SDO_NET. COMPUTE_PATH_GEOMETRY(' SDO_NET1', 1, 0. 005) (SDO_GTYPE, SDO SRI D, SDO PO NT

SDO_GEOVETRY(2002, NULL, NULL, SDO ELEM |NFO ARRAY(1, 2, 1), SDO ORDI NATE ARRAY(
1, 1, 15, 1))

6.8 SDO_NET.COPY_NETWORK

ORACLE

Format

SDO_NET. COPY_NETWORK(
sour ce_net wor k I N VARCHAR?2,
target _network I N VARCHAR?2,
storage_parameters |N VARCHAR2 DEFAULT NULL);

Description
Creates a copy of a network, including its metadata tables.
Parameters

source_network
Name of the network to be copied.

target_network
Name of the network to be created as a copy of source_net work.

storage_parameters
Physical storage parameters used internally to create network tables. Must be a valid
string for use with the CREATE TABLE statement. For example: TABLESPACE tbs_3

6-11

Chapter 6
SDO_NET.CREATE_LINK_TABLE

STORAGE (I NITIAL 100K NEXT 200K). If you do not specify this parameter, the default
physical storage values are used.

Usage Notes

This procedure creates an entry in the xxx_SDO_NETWORK_METADATA views
(described in xxx_SDO_NETWORK_METADATA Views) for target _network that has
the same information as for sour ce_net wor k, except for the new network name.

This procedure also creates a new node table, link table, and path table (if a path table
exists for sour ce_net wor k) for t ar get _net wor k based on the metadata and data in these
tables for sour ce_net wor k. These tables have names in the form <target-
network>_NODES$, <target-network>_LINK$, and <target-network>_PATHS. For
example, if t arget _net work has the value ROADS_NETWORK2 and if sour ce_net work has a
path table, the names of the created metadata tables are
ROADS_NETWORK2_NODES$, ROADS_NETWORK2_LINKS$, and
ROADS_NETWORK2_PATHS.

Examples

The following example creates a new network named ROADS_NETWORK2 that is a copy of
the network named ROADS_NETWORK.

EXECUTE SDO_NET. COPY_NETWORK(' ROADS_NETWORK' , * ROADS_NETWCRK2') ;

6.9 SDO_NET.CREATE_LINK_TABLE

ORACLE

Format

SDO_NET. CREATE_LI NK_TABLE(
tabl e_nane I N VARCHAR2,
geom type IN VARCHAR?,
geom col um I'N VARCHAR?,
cost _col um I N VARCHAR2,

no_of _hi erarchy_l evel s I N NUMBER,
add_bi directed_colum | N BOOLEAN DEFALT FALSE,
storage_paraneters I'N VARCHAR2 DEFAULT NULL);

Description

Creates a link table for a network.

Parameters

table_name
Name of the link table.

geom_type

For a spatial network, specify a value indicating the geometry type of links:
SDO_GEOVETRY for non-LRS SDO_GEOMETRY objects, LRS_GEOVETRY for LRS
SDO_GEOMETRY objects, or TOPO GEOVETRY for SDO_TOPO_GEOMETRY objects.

geom_column

For a spatial network, the name of the column containing the geometry objects
associated with the links. (If the geom t ype value is not spelled correctly, the
geom col um column is not included in the table.)

6-12

Chapter 6
SDO_NET.CREATE_LOGICAL_NETWORK

cost_column
Name of the column containing the cost values to be associated with the links.

no_of_hierarchy_levels
Number of hierarchy levels for links in the network. (For an explanation of network
hierarchy, see Network Hierarchy.)

add_bidirected_column
TRUE adds a column named BIDIRECTED to the link table; FALSE (the default) does not
add a column named BIDIRECTED to the link table.

storage_parameters

Physical storage parameters used internally to create the link table. Must be a valid
string for use with the CREATE TABLE statement. For example: TABLESPACE t bs_3
STORAGE (I NI'TIAL 100K NEXT 200K) . If you do not specify this parameter, the default
physical storage values are used.

Usage Notes

The link table is described in Link Table.

Examples

The following example creates a link table named ROADS_LINKS, with a geometry
column named LINK_GEOMETRY that will contain LRS geometries, a cost column
named COST, and a single hierarchy level.

EXECUTE SDO_NET. CREATE_LI NK_TABLE(' ROADS_LINKS , ' LRS GEOMETRY', ' LI NK_GEOMETRY',
'COST', 1);

6.10 SDO_NET.CREATE_LOGICAL NETWORK

ORACLE

Format

SDO_NET. CREATE_LOG CAL_NETWORK(

net wor k I N VARCHAR2,

no_of _hi erarchy_l evel s I N NUMBER,

is_directed I N BOOLEAN,

node_wi t h_cost I N BOOLEAN DEFAULT FALSE,
i s_conpl ex I N BOOLEAN DEFAULT FALSE,
storage_paraneters I'N VARCHAR2 DEFAULT NULL);

or

SDO_NET. CREATE_LOG CAL_NETWORK(

net wor k I N VARCHAR2,

no_of _hi erarchy_l evel s I N NUMBER,

is_directed I N BOOLEAN,

node_t abl e_name I'N VARCHAR?,

node_cost _col um I'N VARCHAR?,

['ink_tabl e_nanme I'N VARCHARZ,

['i nk_cost _col um I'N VARCHAR?,

path_t abl e_name I'N VARCHAR?,
path_link_table_name | N VARCHAR?2,

subpat h_t abl e_name I'N VARCHAR?,

i s_conpl ex I N BOOLEAN DEFAULT FALSE,
storage_parameters I'N VARCHAR2 DEFAULT NULL);

6-13

ORACLE

Chapter 6
SDO_NET.CREATE_LOGICAL_NETWORK

Description

Creates a logical network, creates all necessary tables, and updates the network
metadata.

Parameters

network
Network name.

no_of_hierarchy_levels
Number of hierarchy levels for links in the network. (For an explanation of network
hierarchy, see Network Hierarchy.)

is_directed
A Boolean value. TRUE indicates that the links are directed; FALSE indicates that the
links are undirected (not directed).

node_with_cost

A Boolean value. TRUE causes a column named COST to be included in the <network-
name>_NODES$ table; FALSE (the default) causes a column named COST not to be
included in the <network-name>_NODES$ table.

node_table_name

Name of the node table to be created. (The node table is explained in Node Table.) If
you use the format that does not specify this parameter, a node table named
<network-name>_NODES$ is created.

node_cost_column

Name of the cost column in the node table. (The node table is explained in Node
Table.) If you use the format that does not specify this parameter, the geometry
column is named COST.

link_table_name

Name of the link table to be created. (The link table is explained in Link Table.) If you
use the format that does not specify this parameter, a link table named <network-
name>_LINK$ is created.

link_cost_column

Name of the cost column in the link table. (The link table is explained in Link Table.) If
you use the format that does not specify this parameter, the geometry column is
named COST.

path_table_name

Name of the path table to be created. (The path table is explained in Path Table.) If
you use the format that does not specify this parameter, a path table named
<network-name>_PATHS is created.

path_link_table_name

Name of the path-link table to be created. (The path-link table is explained in Path-
Link Table.) If you use the format that does not specify this parameter, a path-link
table named <network-name>_PLINK$ is created.

6-14

Chapter 6
SDO_NET.CREATE_LRS _NETWORK

subpath_table_name
Name of the subpath table to be created. (The subpath table is explained in Subpath
Table.)

is_complex
Reserved for future use. Ignored for the current release.

storage_parameters

Physical storage parameters used internally to create network tables. Must be a valid
string for use with the CREATE TABLE statement. For example: TABLESPACE t bs_3
STORAGE (I NITIAL 100K NEXT 200K). If you do not specify this parameter, the default
physical storage values are used.

Usage Notes

This procedure provides a convenient way to create a logical network when the node,
link, and optional related tables do not already exist. The procedure creates the
network; creates the node, link, path, and path-link tables for the network; and inserts
the appropriate information in the xxx_SDO_NETWORK_METADATA views
(described in xxx_SDO_NETWORK_METADATA Views).

An exception is generated if any of the tables to be created already exists.

The procedure has two formats. The simpler format creates the tables using default
values for the table name and the cost column name. The other format lets you specify
names for the tables and the cost column.

As an alternative to using this procedure, you can create the network as follows:
create the tables using the SDO_NET.CREATE_NODE_TABLE,
SDO_NET.CREATE_LINK_TABLE, SDO_NET.CREATE_PATH_TABLE, and
SDO_NET.CREATE_PATH_LINK_TABLE procedures; and insert the appropriate row
in the USER_SDO_NETWORK_METADATA view.

Examples

The following example creates a directed logical network named LOG NET1. The
example creates the LOG_NET1_NODES$, LOG_NET1_LINKS$,LOG_NET1_PATHS$,
and LOG_NET1_PLINKS tables, and updates the xxx_SDO_NETWORK_METADATA
views. Both the node and link tables contain a cost column named COST.

EXECUTE SDO_NET. CREATE_LOG CAL_NETWORK(' LOG NET1', 1, TRUE, TRUE);

6.11 SDO_NET.CREATE_LRS_NETWORK

ORACLE

Format

SDO_NET. CREATE_LRS_NETWORK(
network |'N VARCHAR2,

I rs_table_name I'N VARCHAR?,

I rs_geom col um I'N VARCHAR?,

no_of _hierarchy_levels I N NUVBER,

is_directed I N BOOLEAN,

node_wi t h_cost I N BOOLEAN DEFAULT FALSE,
i s_conpl ex I N BOOLEAN DEFAULT FALSE,
storage_paraneters IN VARCHAR2 DEFAULT NULL);

or

6-15

ORACLE

Chapter 6
SDO_NET.CREATE_LRS_NETWORK

SDO_NET. CREATE_LRS_NETVIORK(

net wor k I'N VARCHARZ,

no_of _hi erarchy_l evel s I N NUMBER,

is_directed I N BOOLEAN,

node_t abl e_name I'N VARCHAR?,

node_cost _col um I'N VARCHAR?,

['ink_tabl e_nanme I'N VARCHARZ,

['i nk_cost _col um I'N VARCHAR?,

Irs_tabl e_nane I'N VARCHAR?,

I rs_geom col um I'N VARCHAR?,

path_t abl e_name I'N VARCHAR?,

pat h_geom col um I'N VARCHAR?,

path_link_table_name | N VARCHAR?2,

subpat h_t abl e_nanme I'N VARCHAR?,

subpat h_geom col urm I'N VARCHAR?,

i s_conpl ex I'N BOOLEAN DEFAULT FALSE,

storage_par aneters IN VARCHAR2 DEFAULT NULL);
Description

Creates a spatial network containing LRS SDO_GEOMETRY objects, creates all
necessary tables, and updates the network metadata.

Parameters

network
Network name.

Irs_table_name
Name of the table containing the LRS geometry column.

Irs_geom_column
Name of the column in I rs_t abl e_nane that contains LRS geometries (that is,
SDO_GEOMETRY objects that include measure information for linear referencing).

is_directed
A Boolean value. TRUE indicates that the links are directed; FALSE indicates that the
links are undirected (not directed).

no_of_hierarchy_levels
Number of hierarchy levels for links in the network. (For an explanation of network
hierarchy, see Network Hierarchy.)

node_with_cost

A Boolean value. TRUE causes a column hamed COST to be included in the <network-
name>_NODES$ table; FALSE (the default) causes a column named COST not to be
included in the <network-name>_NODES$ table.

is_complex
Reserved for future use. Ignored for the current release.

node_table_name

Name of the node table to be created. (The node table is explained in Node Table.) If
you use the format that does not specify this parameter, a node table hamed
<network-name>_NODES$ is created.

6-16

ORACLE

Chapter 6
SDO_NET.CREATE_LRS_NETWORK

node_cost_column

Name of the cost column in the node table. (The node table is explained in Node
Table.) If you use the format that does not specify this parameter, the geometry
column is named COST.

link_table_name

Name of the link table to be created. (The link table is explained in Link Table.) If you
use the format that does not specify this parameter, a link table named <network-
name>_LINKS$ is created.

link_cost_column

Name of the cost column in the link table. (The link table is explained in Link Table.) If
you use the format that does not specify this parameter, the geometry column is
named COST.

path_table_name

Name of the path table to be created. (The path table is explained in Path Table.) If
you use the format that does not specify this parameter, a path table named
<network-name>_PATHS is created.

path_geom_column

Name of the geometry column in the path table. (The path table is explained in Path
Table.) If you use the format that does not specify this parameter, the geometry
column is named GEOMETRY.

path_link_table_name

Name of the path-link table to be created. (The path-link table is explained in Path-
Link Table.) If you use the format that does not specify this parameter, a path-link
table named <network-name>_PLINKS$ is created.

subpath_table_name
Name of the subpath table to be created. (The subpath table is explained in Subpath
Table.).

subpath_geom_column
Name of the geometry column in the subpath table. (The subpath table is explained in
Subpath Table.)

storage_parameters

Physical storage parameters used internally to create network tables. Must be a valid
string for use with the CREATE TABLE statement. For example: TABLESPACE t bs_3
STORAGE (I NITIAL 100K NEXT 200K). If you do not specify this parameter, the default
physical storage values are used.

Usage Notes

This procedure provides a convenient way to create a spatial network of LRS
geometries when the node, link, and optional related tables do not already exist. The
procedure creates the network; creates the node, link, path, and path-link tables for
the network; and inserts the appropriate information in the
xxx_SDO_NETWORK_METADATA views (described in
xxx_SDO_NETWORK_METADATA Views).

An exception is generated if any of the tables to be created already exists.

6-17

Chapter 6
SDO_NET.CREATE_LRS TABLE

The procedure has two formats. The simpler format creates the tables using default
values for the table name and the geometry and cost column names. The other format
lets you specify names for the tables and the geometry and cost columns.

As an alternative to using this procedure, you can create the network as follows:
create the tables using the SDO_NET.CREATE_NODE_TABLE,
SDO_NET.CREATE_LINK_TABLE, SDO_NET.CREATE_PATH_TABLE, and
SDO_NET.CREATE_PATH_LINK_TABLE procedures; and insert the appropriate row
in the USER_SDO_NETWORK_METADATA view.

Examples

The following example creates a directed spatial network named LRS_NET1. The LRS
geometries are in the column named LRS_GEOM in the table named LRS_TAB. The
example creates the LRS_NET1_NODES$, LRS_NET1_LINK$, LRS_NET1_PATHS,
and LRS_NET1_PLINKS$ tables, and updates the xxx_SDO_NETWORK_METADATA
views. All geometry columns are named GEOMETRY. Both the node and link tables
contain a cost column named COST.

EXECUTE SDO_NET. CREATE_LRS_NETWORK(' LRS NET1', 'LRS TAB', 'LRS GEOM, 1, TRUE, TRUE);

6.12 SDO_NET.CREATE_LRS TABLE

ORACLE

Format

SDO_NET. CREATE_LRS_TABLE(
tabl e_nane I N VARCHARZ,
geom col um I'N VARCHAR?,

storage_paraneters |N VARCHAR2 DEFAULT NULL);

Description

Creates a table for storing Oracle Spatial and Graph linear referencing system (LRS)
geometries.

Parameters

table_name
Name of the table containing the geometry column specified in geom col um.

geom_column
Name of the column (of type SDO_GEOMETRY) to contain geometry objects.

storage_parameters

Physical storage parameters used internally to create the LRS table. Must be a valid
string for use with the CREATE TABLE statement. For example: TABLESPACE t bs_3
STORAGE (I NITIAL 100K NEXT 200K). If you do not specify this parameter, the default
physical storage values are used.

Usage Notes

This procedure creates a table named t abl e_nane with two columns: GEOM_ID of type
NUMBER and geom col um of type SDO_GEOMETRY.

Although the created table does not need to be used to store LRS geometries, the
procedure is intended as a convenient method for creating a table to store such

6-18

Chapter 6
SDO_NET.CREATE_NODE_TABLE

geometries. You will probably want to modify the table to add other columns before
you store data in the table.

Examples

The following example creates a table named HIGHWAYS with a geometry column
named GEOM.

EXECUTE SDO _NET. CREATE_LRS_TABLE(' H GHWAYS', ' GEOM);
PL/ SQL procedure successfully conpleted.

DESCRI BE hi ghways

Nane Nul 2 Type
GEOM I D NOT NULL NUMBER
GEOM MDSYS. SDO_GEQVETRY

6.13 SDO_NET.CREATE_NODE_TABLE

ORACLE

Format
SDO_NET. CREATE_NODE_TABLE(
tabl e_nane I'N VARCHAR?,
geom type I N VARCHAR2,
geom col um I'N VARCHAR?,
cost _col um I'N VARCHAR?,
no_of _hierarchy_|evels I N NUVBER,
i s_conpl ex I N BOOLEAN DEFAULT FALSE,
storage_paraneters IN VARCHAR2 DEFAULT NULL);

or

SDO_NET. CREATE_NODE_TABLE(

tabl e_nane I'N VARCHAR?,

geom type I'N VARCHAR2,

geom col um I'N VARCHAR?,

cost _col um I'N VARCHAR?,

partition_colum I'N VARCHAR?,

no_of _hierarchy_levels I N NUVBER,

i s_conpl ex I N BOOLEAN DEFAULT FALSE,

storage_paraneters IN VARCHAR2 DEFAULT NULL);
Description

Creates a node table.
Parameters

table_name
Name of the node table.

geom_type

For a spatial network, specify a value indicating the geometry type of nodes:
SDO_GEOVETRY for non-LRS SDO_GEOMETRY objects, LRS_GEOVETRY for LRS
SDO_GEOMETRY objects, or TOPO GEOVETRY for SDO_TOPO_GEOMETRY objects.
(If the geom t ype value is not spelled correctly, the geom col um column is not included
in the table.)

6-19

Chapter 6
SDO_NET.CREATE_PARTITION_TABLE

geom_column
For a spatial network, the name of the column containing the geometry objects
associated with the nodes.

cost_column
Name of the column containing the cost values to be associated with the nodes.

partition_column
Name of the column containing the partition ID values to be associated with the
nodes.

no_of_hierarchy_levels
Number of hierarchy levels for nodes in the network. (For an explanation of network
hierarchy, see Network Hierarchy.)

is_complex
Reserved for future use. Ignored for the current release.

storage_parameters

Physical storage parameters used internally to create the <network-name>_NODES$
table (described in Node Table). Must be a valid string for use with the CREATE
TABLE statement. For example: TABLESPACE tbs_3 STORAGE (I NI TI AL 100K NEXT 200K).
If you do not specify this parameter, the default physical storage values are used.

Usage Notes

This procedure has two formats, one without the partition_col urm parameter and one
with the partition_col um parameter.

The node table is described in Node Table.

Examples

The following example creates a node table named ROADS_NODES with a geometry
column named NODE_GEOMETRY that will contain LRS geometries, no cost column,
and a single hierarchy level.

EXECUTE SDO _NET. CREATE_NODE_TABLE(' ROADS_NCDES , ' LRS_GEOVETRY', ' NODE_GEOMETRY',
NULL, 1);

6.14 SDO_NET.CREATE_PARTITION_TABLE

ORACLE

Format

SDO_NET. CREATE_PARTI TI ON_TABLE(
tabl e_name I N VARCHAR?);

Description

Creates a partition table.

Parameters

table_name
Name of the partition table.

6-20

Chapter 6
SDO_NET.CREATE_PATH_LINK_TABLE

Usage Notes
The partition table is described in Partition Table.

For information about using partitioned networks to perform analysis using the load on
demand approach, see Network Analysis Using Load on Demand.

Examples
The following example creates a partition table named MY_PART_TAB.

EXECUTE SDO_NET. CREATE_PARTI TI ON_TABLE(' MY_PART TAB')

6.15 SDO_NET.CREATE_PATH_LINK_TABLE

Format

SDO_NET. CREATE_PATH_LI NK_TABLE(
tabl e_nane I N VARCHAR?2,
storage_parameters |N VARCHAR2 DEFAULT NULL);

Description

Creates a path-link table, that is, a table with a row for each link in each path in the
path table.

Parameters

table_name
Name of the path-link table.

storage_parameters

Physical storage parameters used internally to create the path-link table. Must be a
valid string for use with the CREATE TABLE statement. For example: TABLESPACE
tbs_3 STORAGE (I NITIAL 100K NEXT 200K). If you do not specify this parameter, the
default physical storage values are used.

Usage Notes
The path-link table is described in Path-Link Table.

To use paths with a network, you must populate the path-link table.

Examples
The following example creates a path-link table named ROADS_PATHS_LINKS.
EXECUTE SDO_NET. CREATE_PATH LI NK_TABLE(' ROADS_PATHS LI NKS');

6.16 SDO_NET.CREATE_PATH_TABLE

Format

SDO_NET. CREATE_PATH_TABLE(
tabl e_nane I'N VARCHAR?,
geom col um I'N VARCHAR?,

storage_parameters |N VARCHAR2 DEFAULT NULL);

ORACLE 6-21

Chapter 6
SDO_NET.CREATE_SDO_NETWORK

Description

Creates a path table.
Parameters

table_name
Name of the path table.

geom_column
For a spatial network, name of the column containing the geometry objects associated
with the paths.

storage_parameters

Physical storage parameters used internally to create the path table. Must be a valid
string for use with the CREATE TABLE statement. For example: TABLESPACE t bs_3
STORAGE (I NITIAL 100K NEXT 200K). If you do not specify this parameter, the default
physical storage values are used.

Usage Notes
The path table is described in Path Table.

To use paths with a network, after you create the path table, you must create the path-
link table using the SDO_NET.CREATE_PATH_LINK_TABLE procedure, and
populate the path-link table.

Examples

The following example creates a path table named ROADS_PATHS that contains a
geometry column named PATH_GEOMETRY.

EXECUTE SDO_NET. CREATE_PATH TABLE(' ROADS_PATHS', ' PATH GEOVETRY');

6.17 SDO_NET.CREATE_SDO_NETWORK

ORACLE

Format

SDO_NET. CREATE_SDO_NETWORK(

net wor k I N VARCHAR?2,

no_of _hierarchy_l evel s I N NUVBER,

is directed | N BOOLEAN,

node with_cost N BOOLEAN DEFAULT FALSE,
i s_conpl ex | N BOOLEAN DEFAULT FALSE,
storage_paraneters IN VARCHAR2 DEFAULT NULL);

or

SDO_NET. CREATE_SDO_NETWORK(

net wor k I N VARCHAR?2,
no_of _hierarchy_l evel s I N NUVBER,

is directed | N BOOLEAN,
node_t abl e_nane I'N VARCHAR2,
node_geom col um I'N VARCHAR2,
node_cost _col um IN VARCHAR2,
Iink_table _nanme IN VARCHAR2,
I'i nk_geom col um IN VARCHAR2,
['ink_cost_colum IN VARCHAR2,

6-22

ORACLE

Chapter 6
SDO_NET.CREATE_SDO_NETWORK

path_t abl e_name I'N VARCHAR?,

pat h_geom col um I'N VARCHAR?,
path_link_table_name | N VARCHAR?2,

subpat h_t abl e_nane I'N VARCHAR?,

subpat h_geom col urm I'N VARCHAR?,

i s_conpl ex I N BOOLEAN DEFAULT FALSE,
storage_parameters IN VARCHAR2 DEFAULT NULL);

Description

Creates a spatial network containing non-LRS SDO_GEOMETRY objects, creates all
necessary tables, and updates the network metadata.

Parameters

network
Network name.

no_of_hierarchy_levels
Number of hierarchy levels for links in the network. (For an explanation of network
hierarchy, see Network Hierarchy.)

is_directed
A Boolean value. TRUE indicates that the links are directed; FALSE indicates that the
links are undirected (not directed).

node_with_cost

A Boolean value. TRUE causes a column named COST to be included in the <network-
name>_NODES$ table; FALSE (the default) causes a column named COST not to be
included in the <network-name>_NODES$ table.

node_table_name

Name of the node table to be created. (The node table is explained in Node Table.) If
you use the format that does not specify this parameter, a node table named
<network-name>_NODES$ is created.

node_geom_column

Name of the geometry column in the node table. (The node table is explained in Node
Table.) If you use the format that does not specify this parameter, the geometry
column is named GEOMETRY.

node_cost_column

Name of the cost column in the node table. (The node table is explained in Node
Table.) If you use the format that does not specify this parameter, the geometry
column is named COST.

link_table_name

Name of the link table to be created. (The link table is explained in Link Table.) If you
use the format that does not specify this parameter, a link table named <network-
name>_LINKS$ is created.

link_geom_column

Name of the geometry column in the link table. (The link table is explained in Link
Table.) If you use the format that does not specify this parameter, the geometry
column is named GEOMETRY.

6-23

ORACLE

Chapter 6
SDO_NET.CREATE_SDO_NETWORK

link_cost_column

Name of the cost column in the link table. (The link table is explained in Link Table.) If
you use the format that does not specify this parameter, the geometry column is
named COST.

path_table_name

Name of the path table to be created. (The path table is explained in Path Table.) If
you use the format that does not specify this parameter, a path table named
<network-name>_PATHS is created.

path_geom_column

Name of the geometry column in the path table. (The path table is explained in Path
Table.) If you use the format that does not specify this parameter, the geometry
column is named GEOMETRY.

path_link_table_name

Name of the path-link table to be created. (The path-link table is explained in Path-
Link Table.) If you use the format that does not specify this parameter, a path-link
table named <network-name>_PLINKS is created.

subpath_table_name
Name of the subpath table to be created. (The subpath table is explained in Subpath
Table.)

subpath_geom_column
Name of the geometry column in the subpath table. (The subpath table is explained in
Subpath Table.).

is_complex
Reserved for future use. Ignored for the current release.

storage_parameters

Physical storage parameters used internally to create network tables. Must be a valid
string for use with the CREATE TABLE statement. For example: TABLESPACE tbs_3
STORAGE (I NITIAL 100K NEXT 200K). If you do not specify this parameter, the default
physical storage values are used.

Usage Notes

This procedure provides a convenient way to create a spatial network when the node,
link, and optional related tables do not already exist. The procedure creates the
network; creates the node, link, path, and path-link tables for the network; and inserts
the appropriate information in the xxx_SDO_NETWORK_METADATA views
(described in xxx_SDO_NETWORK_METADATA Views).

An exception is generated if any of the tables to be created already exists.

The procedure has two formats. The simpler format creates the tables using default
values for the table name and the geometry and cost column names. The other format
lets you specify hames for the tables and the geometry and cost columns.

As an alternative to using this procedure, you can create the network as follows:
create the tables using the SDO_NET.CREATE_NODE_TABLE,
SDO_NET.CREATE_LINK_TABLE, SDO_NET.CREATE_PATH_TABLE, and
SDO_NET.CREATE_PATH_LINK_TABLE procedures; and insert the appropriate row
in the USER_SDO_NETWORK_METADATA view.

6-24

Chapter 6
SDO_NET.CREATE_SUBPATH_TABLE

Examples

The following example creates a directed spatial network named SDO NET1. The
example creates the SDO_NET1_NODES$, SDO_NET1_LINKS$, SDO_NET1_PATHS,
and SDO_NET1_PLINKS$ tables, and updates the xxx_SDO_NETWORK_METADATA
views. All geometry columns are named GEOMETRY. Both the node and link tables
contain a cost column named COST.

EXECUTE SDO_NET. CREATE_SDO _NETWORK(' SDO NET1', 1, TRUE, TRUE);

6.18 SDO_NET.CREATE_SUBPATH_TABLE

Format

SDO_NET. CREATE_SUBPATH_TABLE(
tabl e_nane I N VARCHAR2,
geom col um I'N VARCHAR?,
storage_paraneters | N VARCHAR2 DEFAULT NULL);

Description

Creates a subpath table.

Parameters

table_name
Name of the subpath table.

geom_column
For a spatial network, name of the column containing the geometry objects associated
with the subpaths.

storage_parameters

Physical storage parameters used internally to create the subpath table (described in
Node Table). Must be a valid string for use with the CREATE TABLE statement. For
example: TABLESPACE tbs_3 STORAGE (I NI TIAL 100K NEXT 200K). If you do not specify
this parameter, the default physical storage values are used.

Usage Notes
The subpath table is described in Subpath Table.

To use subpaths with a network, you must create one or more path tables and their
associated path-link tables.

Examples

The following example creates a subpath table named ROADS_SUBPATHS that
contains a geometry column named SUBPATH_GEOMETRY.

EXECUTE SDO _NET. CREATE_SUBPATH TABLE(' ROADS_SUBPATHS', ' SUBPATH GEOMETRY');

ORACLE 6-25

Chapter 6
SDO_NET.CREATE_TOPO_NETWORK

6.19 SDO_NET.CREATE_TOPO_NETWORK

ORACLE

Format

SDO_NET. CREATE_TOPO_NETWORK(

net wor k I N VARCHAR2,

no_of _hi erarchy_l evel s I N NUMBER,

is_directed I N BOOLEAN,

node_wi t h_cost I N BOOLEAN DEFAULT FALSE,
i s_conpl ex I N BOOLEAN DEFAULT FALSE,

storage_parameters

I'N VARCHAR2 DEFAULT NULL);

or

SDO_NET. CREATE_TOPO_NETWORK(

net wor k I N VARCHAR2,
no_of _hi erarchy_l evel s I N NUMBER,

is_directed I N BOOLEAN,

node_t abl e_name I'N VARCHAR?,
node_cost _col um I'N VARCHAR?,
['ink_tabl e_nanme I'N VARCHARZ,
['ink_cost _col um I'N VARCHAR?,
path_t abl e_name I'N VARCHAR?,
pat h_geom col um I'N VARCHAR?,
path_link_table_name | N VARCHAR?2,

i s_conpl ex
storage_paraneters

I N BOOLEAN DEFAULT FALSE,
[N VARCHAR2 DEFAULT NULL);

or

SDO_NET. CREATE_TOPO_NETWORK(

net wor k I'N VARCHAR?,
no_of _hi erarchy_l evel s I N NUMBER,

is_directed | N BOOLEAN,

node_t abl e_name I'N VARCHAR?,
node_geom col um I'N VARCHAR?,
node_cost _col um I'N VARCHAR?,
['ink_tabl e_nanme I'N VARCHARZ,
['ink_cost _col um I'N VARCHAR?,
path_t abl e_name I'N VARCHAR?,
pat h_geom col um I'N VARCHAR?,
path_link_table_name | N VARCHAR?2,
subpat h_t abl e_name I'N VARCHAR?,
subpat h_geom col urm I'N VARCHAR?,

i s_conpl ex
storage_paraneters

I N BOOLEAN DEFAULT FALSE,
I'N VARCHAR2 DEFAULT NULL);

Description

Creates a spatial topology network containing SDO_TOPO_GEOMETRY objects,
creates all necessary tables, and updates the network metadata.

Parameters

network
Network name.

6-26

ORACLE

Chapter 6
SDO_NET.CREATE_TOPO_NETWORK

no_of_hierarchy_levels
Number of hierarchy levels for links in the network. (For an explanation of network
hierarchy, see Network Hierarchy.)

is_directed
A Boolean value. TRUE indicates that the links are directed; FALSE indicates that the
links are undirected (not directed).

node_with_cost

A Boolean value. TRUE causes a column hamed COST to be included in the <network-
name>_NODES$ table; FALSE (the default) causes a column named COST not to be
included in the <network-name>_NODES$ table.

node_table_name

Name of the node table to be created. (The node table is explained in Node Table.) If
you use the format that does not specify this parameter, a node table named
<network-name>_NODES$ is created.

node_cost_column

Name of the cost column in the node table. (The node table is explained in Node
Table.) If you use the format that does not specify this parameter, the geometry
column is named COST.

link_table_name

Name of the link table to be created. (The link table is explained in Link Table.) If you
use the format that does not specify this parameter, a link table named <network-
name>_LINKS$ is created.

link_cost_column

Name of the cost column in the link table. (The link table is explained in Link Table.) If
you use the format that does not specify this parameter, the geometry column is
named COST.

path_table_name

Name of the path table to be created. (The path table is explained in Path Table.) If
you use the format that does not specify this parameter, a path table named
<network-name>_PATHS$ is created.

path_geom_column

Name of the geometry column in the path table. (The path table is explained in Path
Table.) If you use the format that does not specify this parameter, the geometry
column is named GEOMETRY.

path_link_table_name

Name of the path-link table to be created. (The path-link table is explained in Path-
Link Table.) If you use the format that does not specify this parameter, a path-link
table named <network-name>_PLINK$ is created.

subpath_table_name
Name of the subpath table to be created. (The subpath table is explained in Subpath
Table.).

subpath_geom_column

Name of the geometry column in the subpath table. (The subpath table is explained in
Subpath Table.)

6-27

Chapter 6
SDO_NET.DELETE_CHILD_FEATURES

is_complex
Reserved for future use. Ignored for the current release.

storage_parameters

Physical storage parameters used internally to create network tables. Must be a valid
string for use with the CREATE TABLE statement. For example: TABLESPACE t bs_3
STORAGE (I NITIAL 100K NEXT 200K). If you do not specify this parameter, the default
physical storage values are used.

Usage Notes

This procedure provides a convenient way to create a spatial network when the node,
link, and optional related tables do not already exist. The procedure creates the
network; creates the node, link, path, and path-link tables for the network; and inserts
the appropriate information in the xxx_SDO_NETWORK_METADATA views
(described in xxx_SDO_NETWORK_METADATA Views). The node and link tables
contain a topology geometry column named TOPO_GEOMETRY of type
SDO_TOPO_GEOMETRY.

An exception is generated if any of the tables to be created already exists.

The procedure has two formats. The simpler format creates the tables using default
values for the table name and the geometry and cost column names. The other format
lets you specify hames for the tables and the geometry and cost columns.

As an alternative to using this procedure, you can create the network as follows:
create the tables using the SDO_NET.CREATE_NODE_TABLE,
SDO_NET.CREATE_LINK_TABLE, SDO_NET.CREATE_PATH_TABLE, and
SDO_NET.CREATE_PATH_LINK_TABLE procedures; and insert the appropriate row
in the USER_SDO_NETWORK_METADATA view.

Examples

The following example creates a directed spatial topology geometry network named
TOPO NET1. The example creates the TOPO_NET1_NODES$, TOPO_NET1 LINKS,
TOPO_NET1 PATHS$, and TOPO_NET1_PLINK$ tables, and updates the
xxX_SDO_NETWORK_METADATA views. The topology geometry columns are
named TOPO_GEOMETRY. Both the node and link tables contain a cost column
named COST.

EXECUTE SDO_NET. CREATE_TOPO NETWORK(' TOPO NET1', 1, TRUE, TRUE);

6.20 SDO_NET.DELETE_CHILD_FEATURES

ORACLE

Format

SDO_NET. DELETE_CHI LD FEATURES(
parent |ayer_id | N NUVBER
parent _feature_id I N NUVBER,
child_feature_ids I N SDO NET_LAYER FEAT_ARRAY);

Description

Removes the parent-child relationship for the input child features.

6-28

Chapter 6
SDO_NET.DELETE_CHILD _FEATURES_AT

Parameters

parent_layer_id
ID of the parent feature layer.

parent_feature_id
ID of the parent feature of the specified child features.

child_feature_ids
IDs of the child features. (The SDO_NET_LAYER_FEAT_ARRAY type is described in
Data Types Used for Feature Modeling.)

Usage Notes
The specified parent and child features must exist.

To delete the child features at specified sequence points, use the
SDO_NET.DELETE_CHILD_FEATURES_AT procedure.

Examples
The following example deletes a child feature with feature ID 1 in the PO feature layer.

DECLARE
parent _|ayer i d NUVBER,
parent _feature_id NUMBER : = 1;
child_layer_id NUVBER
child_feature_ids SDO NET_LAYER FEAT ARRAY := SDO NET_LAYER FEAT ARRAY();
BEG N
parent _layer _id := sdo_net.get feature_layer_id(' GRID, 'PARENT_LAYER);
child_layer_id := sdo_net.get feature_layer_id('GRID, '"PO");
child_feature_ids. extend;
child_feature_ids(1) := SDO NET_LAYER FEAT(child_layer_id, 1);
sdo_net.del ete_child_features(parent_|ayer_id, parent_feature_id,
child_feature_ids);
END;
/

6.21 SDO_NET.DELETE_CHILD FEATURES AT

ORACLE

Format

SDO_NET. DELETE_CHI LD_FEATURES_AT(
parent _layer _id | N NUVBER
parent _feature_id | N NUVBER,
sequence_nunbers | N SDO_NUVBER_ARRAY) ;

Description

Removes the parent-child relationship for the child features at the specified sequence
numbers.

Parameters

parent_layer_id
ID of the parent feature layer.

6-29

Chapter 6
SDO_NET.DELETE_DANGLING_FEATURES

parent_feature_id
ID of the parent feature of the specified child features.

child_feature_ids
IDs of the child features. (The SDO_NET_LAYER_FEAT_ARRAY type is described in
Data Types Used for Feature Modeling.)

Usage Notes
The specified parent and child features must exist.

To delete child features specified by their ID values, use the
SDO_NET.DELETE_CHILD_FEATURES procedure.

Examples
The following example deletes a child feature at sequence number 1.

DECLARE
parent _| ayer _id NUVBER,
parent _feature_id NUMBER : = 1;
sequence_numbers SDO NUMBER_ARRAY : = SDO NUMBER_ARRAY(1);
BEG N
parent _layer_id := sdo_net.get _feature_|layer_id(' GRID, 'PARENT_LAYER);
sdo_net.del ete_child_features_at(parent_|ayer_id, parent_feature_id,
sequence_numnbers);
END;
/

6.22 SDO_NET.DELETE_DANGLING_FEATURES

ORACLE

Format

SDO_NET. DELETE_DANGLI NG_FEATURES(
feature_layer_id | N NUMBER);

Description

Deletes dangling features in a feature layer. A dangling feature is a feature that is not
associated with any network elements (nodes or links).

Parameters

feature_layer_id
ID of the feature layer containing the features.

Usage Notes

To find the dangling features in a feature layer, use the
SDO_NET.GET_DANGLING_FEATURES function.

Examples

The following example deletes any dangling features in the PO feature layer in the GRID
network.

DECLARE
feature_layer_id NUMBER
BEG N

6-30

Chapter 6
SDO_NET.DELETE_DANGLING_LINKS

feature_layer_id := sdo_net.get _feature_layer id('GRID, 'PA");
sdo_net. del ete_dangling_features(feature_layer_id);

END;

/

6.23 SDO_NET.DELETE_DANGLING_LINKS

Format

SDO_NET. DELETE_DANGLI NG_LI NKS(
network |'N VARCHAR2) ;

Description

Deletes links that are not referenced by any feature in any feature layer.

Parameters

network
Name of the network.

Usage Notes

To find the dangling links in a network, use the SDO_NET.GET_DANGLING_LINKS
function.

Examples
The following example deletes any dangling links in the GRI D network.

EXECUTE sdo_net . del ete_dangling_links(' GRID);

6.24 SDO_NET.DELETE_DANGLING_NODES

ORACLE

Format

SDO_NET. DELETE_DANGLI NG_NCDES(
network |'N VARCHAR2) ;

Description

Deletes nodes that are not referenced by any feature in any feature layer.

Parameters

network
Name of the network.

Usage Notes

To find the dangling nodes in a network, use the
SDO_NET.GET_DANGLING_NODES function.

Examples
The following example deletes any dangling nodes in the GRI D network.

EXECUTE sdo_net . del ete_dangl i ng_nodes(' GRID);

6-31

Chapter 6
SDO_NET.DELETE_FEATURE_ELEMENTS

6.25 SDO_NET.DELETE_FEATURE_ELEMENTS

ORACLE

Format

SDO_NET. DELETE_FEATURE_ELEMENTS(
feature_layer_id | N NUMBER,
feature_id I N NUMBER,
feature_el ements | N SDO_NET_FEAT_ELEM ARRAY,
del ete_net _el ens | N BOOLEAN DEFAULT FALSE);

Description

Deletes feature elements from a feature.

Parameters

feature_layer_id
ID of the feature layer containing the feature.

feature_id
ID of the feature from which to delete the feature elements.

feature_elements
Feature elements to be deleted. (The SDO_NET_FEAT_ELEM_ARRAY type is
described in Data Types Used for Feature Modeling.)

delete_net_elems

Controls whether all network elements that are referenced only by the specified
features are also deleted: TRUE also deletes such elements; FALSE (the default) does
not also delete such elements.

Usage Notes

Contrast this procedure with SDO_NET.DELETE_FEATURE_ELEMENTS_AT.

Examples
The following example two point feature elements from a specified feature layer.

DECLARE
feature_layer_id NUMBER
feature_id NUMBER : = 1;
el ements SDO NET_FEAT_ELEM ARRAY := SDO NET_FEAT ELEM ARRAY();
link_id NUMBER := 1314,
BEG N
feature_layer_id := sdo_net.get feature_layer id('GRID, 'PQ");
el enent s. ext end,;
el ements(1) := SDO NET_FEAT ELEM SDO NET. FEAT ELEM TYPE POL, link_id, 0.2, null);
el enent s. ext end,;
el ements(2) := SDO NET_FEAT ELEM SDO NET. FEAT ELEM TYPE POL, link_id, 0.7, null);
sdo_net.delete_feature_elenents(feature_layer _id, feature_id, elenents);
END;
/

6-32

Chapter 6
SDO_NET.DELETE_FEATURE_ELEMENTS_AT

6.26 SDO_NET.DELETE_FEATURE_ELEMENTS_AT

Format

SDO_NET. DELETE_FEATURE_ELEMENTS_AT(
feature_layer_id | N NUMBER,
feature_id I N NUMBER,
sequence_nunbers | N SDO NUVBER_ARRAY,
del ete_net _el ens | N BOOLEAN DEFAULT FALSE);

Description

Deletes the feature elements with specified sequence numbers from a feature.

Parameters

feature_layer_id
ID of the feature layer containing the feature.

feature_id
ID of the feature from which to delete the feature elements.

sequence_numbers
Array of sequence numbers for the feature elements to be deleted.

delete_net_elems

Controls whether all network elements that are referenced only by the specified
features are also deleted: TRUE also deletes such elements; FALSE (the default) does
not also delete such elements.

Usage Notes

Contrast this procedure with SDO_NET.DELETE_FEATURE_ELEMENTS

Examples
The following example deletes the feature element at sequence number 1.

DECLARE
feature_layer_id NUMBER
feature_id NUMBER : = 1;
sequence_numbers SDO NUMBER_ARRAY : = SDO NUMBER_ARRAY();
BEG N
feature_layer_id := sdo_net.get feature_layer id('GRID, 'PQ");
sequence_numbers. ext end;
sequence_numbers(1) := 1;
sdo_net.delete_feature_elenents_at(feature_layer_id, feature_id, sequence_nunbers);
END;
/

6.27 SDO_NET.DELETE_FEATURES

Format

SDO_NET. DELETE_FEATURES(
feature_layer_id | N NUVBER,
feature_ids I N SDO_NUMBER_ARRAY,

ORACLE' 6-33

Chapter 6
SDO_NET.DELETE_LINK

del ete_net el ens | N BOOLEAN DEFAULT FALSE,
delete_children | N BOOLEAN DEFAULT FALSE);

Description

Deletes features.

Parameters

feature_layer_id
ID of the feature layer containing the features

feature_ids
IDs of the features to be deleted.

delete_net_elems

Controls whether all network elements that are referenced only by the specified
features are also deleted: TRUE also deletes such elements; FALSE (the default) does
not also delete such elements.

delete_children

Controls whether all child features that are referenced only by the specified features
are also deleted: TRUE also deletes such features; FALSE (the default) does not also
delete such features.

Usage Notes

(None.)

Examples

The following example deletes the feature with feature ID 1 from the PO feature layer
in the GRI D network.

DECLARE
feature_layer_id NUMBER
feature_ids SDO NUVBER ARRAY := SDO NUMBER ARRAY(1);
BEG N
feature_layer_id := sdo_net.get _feature_layer id('GRID, 'PQ");
sdo_net.delete_features(feature_layer_id, feature_ids, false, false);
END;
/

6.28 SDO_NET.DELETE_LINK

ORACLE

Format

SDO_NET. DELETE_LI NK(
network I N VARCHAR?,
link_id IN NUMBER);

Description

Deletes a link, along with all dependent network elements and all references to the link
from features.

6-34

Chapter 6
SDO_NET.DELETE_NODE

Parameters

network
Network name.

link_id
ID of the link to delete.

Usage Notes

This procedure deletes the specified link from the link table (described in Link Table),
and it deletes any other network elements that depend on this link. For example, if the
specified link is included in any paths and subpaths, those paths and subpaths are
deleted also.

Examples

The following example deletes the link in the SDO_NET?2 network whose link ID is 1.

SELECT SDO NET. DELETE_LI NK(" SDO_NET2', 1);

6.29 SDO_NET.DELETE_NODE

ORACLE

Format

SDO_NET. DELETE_NODE(
network |'N VARCHARZ,
node_id I N NUVBER);

Description

Deletes a node, along with all dependent network elements and all references to the
node from features.

Parameters

network
Network name.

node_id
ID of the node to delete.

Usage Notes

This procedure deletes the specified node from the node table (described in Node
Table), and it deletes any other network elements that depend on this node. For
example, if the specified node is included in any link definitions, those links are
deleted; and if any of the deleted links are included in any paths and subpaths, those
paths and subpaths are deleted also.

Examples

The following example deletes the node in the SDO_NET2 network whose node ID is
1.

SELECT SDO_NET. DELETE_NCDE(' SDO NET2', 1);

6-35

Chapter 6
SDO_NET.DELETE_PATH

6.30 SDO_NET.DELETE_PATH

Format

SDO_NET. DELETE_PATH(
network | N VARCHAR?,
path_id I N NUMBER);

Description

Deletes a path and all dependent network elements.

Parameters

network
Network name.

path_id
ID of the path to delete.

Usage Notes

This procedure deletes the specified path from the path table (described in Path
Table), and it deletes any other network elements that depend on this path. For
example, if the specified path has any subpaths, those subpaths are deleted also.

Examples
The following example deletes the path in the SDO_NET2 network whose path ID is 1.
SELECT SDO NET. DELETE_PATH(' SDO_NET2', 1);

6.31 SDO_NET.DELETE_PHANTOM_FEATURES

ORACLE

Format

SDO_NET. DELETE_PHANTOM FEATURES(
feature_layer_id | N NUMBER);

Description

Deletes phantom features in a feature layer. A phantom feature is a feature that
references nonexistent network elements (nodes or links).

Parameters

feature_layer_id
ID of the feature layer containing the features.

Usage Notes

To find the phantom features in a feature layer, use the
SDO_NET.GET_PHANTOM_FEATURES function.

6-36

Chapter 6
SDO_NET.DELETE_SUBPATH

Examples

The following example deletes any phantom features in the PO feature layer in the
@RI D network.

DECLARE
feature_|layer_id NUMBER

BEG N
feature_layer_id := sdo_net.get_feature_layer id('GRID, 'PA");
sdo_net . del et e_phantom features(feature_l ayer_id);

END;

/

6.32 SDO_NET.DELETE_SUBPATH

Format

SDO_NET. DELETE_SUBPATH(
net wor k I N VARCHAR2,
subpath_id I N NUVBER) ;

Description

Deletes a subpath.

Parameters

network
Network name.

subpath_id
ID of the subpath to delete.

Usage Notes

This procedure deletes the specified subpath from the path table (described in Path
Table). It does not delete any other network elements, because no other elements
depend on a subpath definition.

Examples

The following example deletes the subpath in the SDO_NET2 network whose subpath
IDis 17.

SELECT SDO NET. DELETE_SUBPATH(' SDO NET2', 17);

6.33 SDO_NET.DEREGISTER_CONSTRAINT

ORACLE

Format

SDO_NET. DEREG STER_CONSTRAI NT(
constraint_name | N VARCHAR2) ;

Description

Unloads (removes) the class for the specified network constraint from the Java
repository in the database, and deletes the row for that constraint from the

6-37

Chapter 6
SDO_NET.DROP_FEATURE_LAYER

USER_SDO_NETWORK_CONSTRAINTS view (described in
xxX_SDO_NETWORK_CONSTRAINTS Views).

Parameters

constraint_name
Name of the network constraint. Must match a value in the CONSTRAINT column of
the USER_SDO_NETWORK_CONSTRAINTS view.

Usage Notes

Use this procedure if you want to disable a network constraint that you had previously
enabled, such as by using the SDO_NET.REGISTER_CONSTRAINTprocedure. For
more information about network constraints, see Network Constraints.

Examples

The following example deregisters (disables) a network constraint named
G venProhi bi tedTurn.

EXECUTE SDO_NET. DEREG STER_CONSTRAI NT(' G venProhi bi tedTurn');

6.34 SDO_NET.DROP_FEATURE_LAYER

ORACLE

Format

SDO_NET. DROP_FEATURE_LAYER(

net wor k_nane I'N VARCHAR?,

feature_layer _name I N VARCHARZ,

drop_tables I N BOOLEAN DEFAULT FALSE);
Description

Drops (deletes) a feature layer.
Parameters

network_name
Name of the network containing the feature layer to be dropped.

feature_layer_name
Name of the feature layer to be dropped.

drop_tables

Controls whether all relevant tables are deleted along with the feature layer metadata:
TRUE drops the feature table, feature element relationships table, and feature hierarchy
table, and deletes the feature layer metadata; FALSE (the default) deletes the feature
layer metadata but does not drop the feature table, feature element relationships
table, and feature hierarchy table.

Usage Notes

(None.)

6-38

Chapter 6

SDO_NET.DROP_NETWORK

Examples

The following example drops the PO feature layer in the GRI D network, and (because
drop_tabl es is true) drops the feature table, feature element relationships table, and

feature hierarchy table, and deletes the feature layer metadata

EXECUTE sdo_net.drop_feature_layer("GRID, "PA"', true);

6.35 SDO_NET.DROP_NETWORK

Format

SDO_NET. DROP_NETWORK(
network I'N VARCHAR2) ;

Description

Drops (deletes) a network.

Parameters

network
Name of the network to be dropped.

Usage Notes

This procedure also deletes the node, link, and path tables associated with the
network, and the network metadata for the network.

Examples
The following example drops the network named ROADS_NETWORK.
EXECUTE SDO_NET. DROP_NETWORK(' ROADS_NETWORK') ;

6.36 SDO_NET.FIND_CONNECTED_COMPONENTS

ORACLE

Format

SDO_NET. FI ND_CONNECTED_COVPONENTS(
network |'N VARCHAR2) ;

Description

Finds all connected components for a specified link level in a network, and stores the

information in the connected component table.

Parameters

network
Network name.

6-39

Chapter 6
SDO_NET.GENERATE_NODE_LEVELS

link_level

Link level for which to find connected components (default = 1). The link level reflects
the priority level for the link, and is used for network analysis, so that links with higher
priority levels can be considered first in computing a path.

component_table_name

Name of the connected component table, which is created by this procedure. (If an
existing table with the specified name already exists, it is updated with information for
the specified link level.) The connected component table is described in Connected
Component Table.

log_loc
Directory object that identifies the path for the log file. To create a directory object,
use the SQL*Plus command CREATE DIRECTORY.

log_file
Log file containing information about spatial network operations, including any
possible errors or problems.

open_mode

A one-character code indicating the mode in which to open the log file: wfor write over
(that is, delete any existing log file at the specified location and name, and create a
new file), or A (the default) for append (that is, append information to the existing
specified log file). If you specify A and the log file does not exist, a new log file is
created.

Usage Notes

This procedure finds, for each node in the specified network, information about all
other nodes that are reachable from that node, and it stores the information in the
specified connected component table. Having this information in the table enables
better performance for many network analysis operations.

Examples

The following example finds the connected components for link level 1 in the
SDO_PARTITIONED network, and creates or updates the
SDO_PARTITIONED_CONN_COMP_TAB table. Information about the operation is
added (open_node => 'a') to the sdo_partitioned. | og file, located in the location
associated with the directory object named LOG DI R.

EXECUTE SDO_NET. FI ND_CONNECTED COVPONENTS(-
network =>"'SDO PARTI TIONED , -
link _|evel =>1,-
conponent _tabl e_name => 'sdo_partitioned_conn_conp_tab', -
log_loc => "LOG DIR, log_file=>"'sdo_partitioned.log",-
open_node => 'a');

6.37 SDO_NET.GENERATE_NODE_LEVELS

ORACLE

Format

SDO_NET. GENERATE_NCDE_LEVELS(

net wor k I N VARCHAR?,
node | evel table name |N VARCHARZ,
overwite I N BOOLEAN DEFAULT FALSE,
log_loc I N VARCHAR?,

6-40

ORACLE

Chapter 6
SDO_NET.GENERATE_NODE_LEVELS

log_file I'N VARCHAR?,
open_node IN VARCHAR2 DEFAULT 'A');
Description

Generates node levels for a specified multilevel network, and stores the information in
atable.

Parameters

network
Network name.

node_level_table_name
Table in which to store node level information. This table must have the following
definition: (node_i d NUVBER PRI MARY KEY, |ink_| evel NUVBER)

overwrite

Controls the behavior if the table specified in node_| evel _t abl e_nanme already exists:
TRUE replaces the contents of that table with new data; FALSE (the default) generates
an error. (This parameter has no effect if the table specified in node_I evel _t abl e_nane
does not exist.)

log_loc
Directory object that identifies the path for the log file. To create a directory object,
use the SQL*Plus command CREATE DIRECTORY.

log_file
Log file containing information about spatial network operations, including any
possible errors or problems.

open_mode

A one-character code indicating the mode in which to open the log file: wfor write over
(that is, delete any existing log file at the specified location and name, and create a
new file), or A (the default) for append (that is, append information to the existing
specified log file). If you specify A and the log file does not exist, a new log file is
created.

Usage Notes

If network is not a multilevel network (one with multiple link levels), this procedure does
not perform any operation.

This procedure is used internally by the SDO_NET.GENERATE_PARTITION_BLOBS
procedure. Therefore, if you have executed
SDO_NET.GENERATE_PARTITION_BLOBS, you do not need to execute this
procedure. However, you do need to execute this procedure explicitly in these cases:

* When a Java application has been configured to read partitions from the node or
link tables instead of from BLOBSs, and partition BLOBs have never been
generated on the network.

* When a higher-level node has been added or deleted in the network and the node-
partition relationship has been updated. Before you execute
SDO_NET.GENERATE_PARTITION_BLOB to regenerate the containing partition
BLOB or BLOBSs, you must manually either update the node level table or execute
this procedure (SDO_NET.GENERATE_NODE_LEVELS).

6-41

Chapter 6
SDO_NET.GENERATE_PARTITION_BLOB

The node level table name is stored in the NODE_LEVEL_TABLE_NAME column of
the USER_SDO_NETWORK_METADATA view, which is described in
xxx_SDO_NETWORK_METADATA Views.

Examples

The following example generates the node level information for the
MY_MULTILEVEL_NET network, and stores the information in the
MY_NET_NODE_LEVELS table. Information about the operation is added (open_node
=> 'a')tothe ny_multilevel net.log file, located in the location associated with the
directory object named LOG DI R.

EXECUTE SDO_NET. GENERATE_NODE_LEVELS(-
network => ' MY_MILTILEVEL_NET', -
node_| evel _table name => ' MY_NET_NODE_LEVELS', -
overwite => FALSE, -
log_loc => "LOGDIR, log_file=>"ny_nultilevel _net.log",-
open_node => 'a');

6.38 SDO_NET.GENERATE_PARTITION_BLOB

ORACLE

Format

SDO_NET. GENERATE_PARTI TI ON_BLOB(

net wor k I'N VARCHAR2,

l'ink_I evel I'N NUVBER DEFAULT 1,
partition_id I'N VARCHAR2,

i ncl ude_user _data I'N BOOLEAN,

log_l oc I'N VARCHAR?,

log_file I'N VARCHARZ,

open_node I'N VARCHAR2 DEFAULT 'A',

preformdelta_update | N BOOLEAN DEFAULT FALSE);

Description

Generates a single binary large object (BLOB) representation for a specified partition
associated with a specified link level in the network, and stores the information in the
existing partition BLOB table.

Parameters

network
Network name.

link_level

Link level for links to be included in the BLOB (default = 1). The link level reflects the
priority level for the link, and is used for network analysis, so that links with higher
priority levels can be considered first in computing a path.

partition_id
Partition ID number. Network elements associated with the specified combination of
link level and partition ID are included in the generated BLOB.

include_user_data

TRUE if the BLOB should include any user data of category 0 (zero) associated with the
network elements represented in each BLOB, or FALSE if the BLOB should not include
any user data.

6-42

Chapter 6
SDO_NET.GENERATE_PARTITION_BLOBS

log_loc
Directory object that identifies the path for the log file. To create a directory object,
use the SQL*Plus command CREATE DIRECTORY.

log_file
Log file containing information about spatial network operations, including any
possible errors or problems.

open_mode

A one-character code indicating the mode in which to open the log file: wfor write over
(that is, delete any existing log file at the specified location and name, and create a
new file), or A (the default) for append (that is, append information to the existing
specified log file). If you specify A and the log file does not exist, a new log file is
created.

perform_delta_update
(Reserved for future use. The only permitted value is FALSE, the default.)

Usage Notes

This procedure adds a single new BLOB or replaces a single existing BLOB in the
partition BLOB table, which must have been previously created using the
SDO_NET.GENERATE_PARTITION_BLOBS procedure.

One use for this procedure is to perform a relatively quick update of the BLOB for a
desired partition in a network that contains multiple large partitions, as opposed to than
updating the BLOBs for all partitions using the
SDO_NET.GENERATE_PARTITION_BLOBS procedure.

Examples

The following example generates the partition BLOB for the partition associated with
partition ID 1 and link level 1 in the SDO_PARTITIONED network, and adds or
replaces the appropriate BLOB in the SDO_PARTITIONED_PART_BLOB_TAB table.
Any user data of category 0 (zero) associated with the network elements is also
included. Information about the operation is added (open_node => 'a') to the
sdo_partitioned. | og file, located in the location associated with the directory object
named LOG DI R.

EXECUTE SDO_NET. GENERATE_PARTI Tl ON_BLOB(-
network => ' SDO PARTITIONED , -
link level =>1,-
partition_id => 1, -
include_user_data => true, -
log_loc =>"'LOG DR, log_ file=>"'sdo_partitioned.log',-
open_node => "a');

6.39 SDO_NET.GENERATE_PARTITION_BLOBS

ORACLE

Format

SDO_NET. GENERATE_PARTI TI ON_BLOBS(

net wor k I N VARCHAR?,

link_|evel I'N NUMBER DEFAULT 1,
partition_blob_table name I N VARCHARZ,

i ncl ude_user _data I N BOOLEAN,

conmi t _for_each_bl ob I N BOOLEAN DEFAULT TRUE,

6-43

ORACLE

Chapter 6
SDO_NET.GENERATE_PARTITION_BLOBS

log_loc I'N VARCHAR?,

log_ file I'N VARCHAR2,

open_node I'N VARCHAR2 DEFAULT 'A',
performdel ta_update I N BOOLEAN DEFAULT FALSE,

regenerate_node_| evel s I N BOOLEAN DEFAULT FALSE);

Description

Generates a binary large object (BLOB) representation for partitions associated with a
specified link level in the network, and stores the information in the partition BLOB
table.

Parameters

network
Network name.

link_level

Link level for links to be included in each BLOB (default = 1). The link level reflects the
priority level for the link, and is used for network analysis, so that links with higher
priority levels can be considered first in computing a path.

partition_blob_table_name

Name of the partition BLOB table, which is created by this procedure. (If an existing
table with the specified name already exists, it is updated with information for the
specified link level.) The partition BLOB table is described in Partition BLOB Table.

include_user_data

TRUE if each BLOB should include any user data of category 0O (zero) associated with
the network elements represented in each BLOB, or FALSE if each BLOB should not
include any user data.

commit_for_each_blob

TRUE (the default) if each partition BLOB should be committed to the database after it
is generated, or FALSE if each BLOB should not be committed (in which case you must
perform one or more explicit commit operations).

log_loc
Directory object that identifies the path for the log file. To create a directory object,
use the SQL*Plus command CREATE DIRECTORY.

log_file
Log file containing information about spatial network operations, including any
possible errors or problems.

open_mode

A one-character code indicating the mode in which to open the log file: wfor write over
(that is, delete any existing log file at the specified location and name, and create a
new file), or A (the default) for append (that is, append information to the existing
specified log file). If you specify A and the log file does not exist, a new log file is
created.

perform_delta_update
(Reserved for future use. The only permitted value is FALSE, the default.)

6-44

Chapter 6
SDO_NET.GET_CHILD_FEATURE_IDS

regenerate_node_levels

TRUE to regenerate the node level table for multilevel networks, or FALSE (the default)
not to regenerate the node level table for multilevel networks. You should set this
parameter to TRUE if higher-level (second level or above) nodes are added or deleted
from the network, or if the level of a node is changed. The level of a node is defined
as the maximum link level coming into or out of the node.

Usage Notes

Generating partition BLOBs enables better performance for many network analysis
operations, especially with large networks.

If the network is not partitioned, this procedure generates a single BLOB representing
the entire network.

When this procedure is first executed on a multilevel network, it internally calls
SDO_NET.GENERATE_NODE_LEVELS to create and populate the node level table
(described in Node Level Table (Optional)). When this procedure is called
subsequently on a multilevel network, you can use the regener ate_node_| evel s
parameter to specify whether to overwrite the existing node level table.

Do not confuse this procedure with SDO_NET.GENERATE_PARTITION_BLOB,
which regenerates a single BLOB for a specified combination of link level and partition
ID, and adds that information to the existing partition BLOB table.

Examples

The following example generates partition BLOBSs for link level 1 in the
SDO_PARTITIONED network, and creates or updates the
SDO_PARTITIONED_PART_BLOB_TAB table. Any user data of category 0 (zero)
associated with the network elements is also included. Information about the operation
is added (open_node => 'a') to the sdo_partitioned. | og file, located in the location
associated with the directory object named LOG DI R.

EXECUTE SDO_NET. GENERATE_PARTI TI ON_BLOBS(-
network => ' SDO PARTI TIONED , -
link_level =>1,-
partition_blob_table_name => 'sdo_partitioned_part_blob_tab',-
include_user_data => true, -
log_loc => "LOGDIR, log_file=>"'sdo_partitioned.log",-
open_node => 'a');

6.40 SDO_NET.GET CHILD FEATURE_IDS

ORACLE

Format

SDO_NET. GET_CH LD_FEATURE_| DS(
feature_layer_id | N NUMVBER,
feature_id I'N NUMBER

) RETURN SDO_NET_LAYER FEAT_ARRAY;

Description

Returns the feature layer ID and child feature IDs for the specified feature. (The
SDO_NET_LAYER_FEAT_ARRAY type is described in Data Types Used for Feature
Modeling.)

6-45

Chapter 6
SDO_NET.GET_CHILD_LINKS

Parameters

feature_layer_id
ID of the feature layer for the feature (that is, the parent feature).

feature_id
ID of the feature.

Usage Notes

To get the feature layer ID and feature ID of the parent features for a specified feature,
use the SDO_NET.GET_PARENT_FEATURE_IDS function.

For information about features, including parent and child features, see Features and
Feature Layers.

Examples

The following example returns and displays the child feature 1Ds for feature 1 in the
PARENT_LAYER feature layer.

DECLARE
feature_|layer _id NUVBER
feature_ id NUMBER : = 1;
feature_ids SDO NET_LAYER FEAT ARRAY;

BEG N
feature_layer_id := sdo_net.get_feature_layer_id(' GRID', 'PARENT_LAYER);
feature_ids := sdo_net.get_child feature_ids(feature_layer_id, feature_id);
FORi in 1..feature_ids.count

LooP
--dbns_output.put_line('["|]i]]|"]"||'" FEATURE_LAYERID ="'||
feature_ids(i).feature_|layer_id);
dbns_out put. put _line('['||i]]|"]"||" FEATURE_ID =
feature_ids(i).feature_id);
dbns_out put. put _line('---");
END LOCP;
END;

/

6.41 SDO_NET.GET CHILD LINKS

ORACLE

Format

SDO_NET. GET_CH LD_LI NKS(
network |'N VARCHAR2,
link id IN NUVBER

) RETURN SDO_NUMBER ARRAY;

Description

Returns the child links of a link.

Parameters

network
Network name.

6-46

Chapter 6
SDO_NET.GET_CHILD_NODES

link_id
ID of the link for which to return the child links.

Usage Notes

For information about parent and child nodes and links in a network hierarchy, see
Network Hierarchy.

Examples

The following example returns the child links of the link in the XYZ_NETWORK network
whose link ID is 1001.

SELECT SDO _NET. GET_CHI LD_LI NKS("' XYZ_NETWORK', 1001) FROM DUAL;

SDO_NET. GET_CHI LD_LI NKS(' XYZ_NETWORK' , 1001)

SDO_NUMBER ARRAY(1108, 1109)

6.42 SDO_NET.GET CHILD NODES

ORACLE

Format

SDO_NET. GET_CHI LD_NODES(
network | N VARCHARZ,
node_id I N NUMBER

) RETURN SDO_NUVBER_ARRAY;

Description

Returns the child nodes of a node.

Parameters

network
Network name.

node_id
ID of the node for which to return the child nodes.

Usage Notes

For information about parent and child nodes and links in a network hierarchy, see
Network Hierarchy.

Examples

The following example returns the child nodes of the node in the XYZ_NETWORK network
whose node ID is 1.

SELECT SDO NET. GET_CHI LD_NODES(' XYZ_NETWORK' , 1) FROM DUAL;
SDO NET. GET_CHI LD_NODES(' XYZ_NETWORK' , 1)

SDO_NUVBER ARRAY(101, 102, 103, 104, 105, 106)

6-47

Chapter 6
SDO_NET.GET_DANGLING_FEATURES

6.43 SDO_NET.GET_DANGLING_FEATURES

Format

SDO_NET. GET_DANGLI NG_FEATURES(
feature_layer_id | N NUMBER
) RETURN SDO_NUMBER_ARRAY;

Description

Returns the IDs of dangling features in a feature layer. A dangling feature is a feature
that is not associated with any network elements (nodes or links).

Parameters

feature_layer_id
ID of the feature layer containing the features.

Usage Notes

To delete the dangling features in a feature layer, use the
SDO_NET.DELETE_DANGLING_FEATURES procedure.

Examples

The following example gets the dangling features in the PO feature layer of the GRI D
network and then displays their feature IDs.

DECLARE
feature_layer_id NUMBER
feature_i ds SDO NUMBER_ARRAY;
BEG N
feature_layer_id := sdo_net.get feature_layer id('GRID, 'PQ");
feature_ids := sdo_net.get_dangling_features(feature_layer_id);
dbns_out put. put _|ine(' Dangling Features:');
for i in 1..feature_ids.count |oop
dbns_output.put _line("["|]i]|"] "||feature_ids(i));
end | oop;
END;
/

6.44 SDO_NET.GET DANGLING_LINKS

Format

SDO _NET. GET_DANGLI NG_LI NKS(
network I N VARCHAR2
) RETURN SDO_NUMBER_ARRAY;

Description

Returns links that are not referenced by any feature in any feature layer.

ORACLE 6-48

Chapter 6
SDO_NET.GET_DANGLING_NODES

Parameters

network
Name of the network.

Usage Notes

To delete the dangling links in a network, use the
SDO_NET.DELETE_DANGLING_LINKS procedure.

Examples

The following example gets the dangling links in the GRI D network and then displays
the number (count) of dangling links found.

DECLARE

l'ink_i ds SDO NUMBER_ARRAY;
BEG N

link_ids := sdo_net.get_dangling_links('GRID);

dbns_out put . put _I i ne(" Nunber of dangling Links: '||link_ids.count);
END;

/

6.45 SDO_NET.GET DANGLING_NODES

ORACLE

Format

SDO_NET. GET_DANGLI NG_NODES(
network I N VARCHAR2
) RETURN SDO_NUMBER ARRAY;

Description

Returns nodes that are not referenced by any feature in any feature layer.

Parameters

network
Name of the network.

Usage Notes

To delete the dangling nodes in a network, use the
SDO_NET.DELETE_DANGLING_NODES procedure.

Examples

The following example gets the dangling nodes in the GRI D network and then displays
the number (count) of dangling nodes found.

DECLARE

node_ids SDO NUMBER ARRAY;
BEG N

node_i ds : = sdo_net. get_dangling_nodes(' GRID);

dbnms_out put . put _I'i ne(" Nunber of dangling Nodes: '||node_ids.count);
END;

/

6-49

Chapter 6
SDO_NET.GET_FEATURE_ELEMENTS

6.46 SDO_NET.GET_FEATURE_ELEMENTS

ORACLE

Format

SDO_NET. GET_FEATURE_ELENENTS(
feature_layer_id | N NUVBER,
feature_id I'N NUMBER

) RETURN SDO_NET_FEAT ELEM ARRAY;

Description

Returns the feature elements in a feature layer. (The
SDO_NET_FEAT_ELEM_ARRAY type is described in Data Types Used for Feature
Modeling.)

Parameters

feature_layer_id
ID of the feature layer for the feature.

feature_id
ID of the feature.

Usage Notes

To add a feature element to a feature, use the SDO_NET.ADD_FEATURE_ELEMENT
procedure; to add multiple feature elements in a single operation, use the
SDO_NET.ADD_FEATURE_ELEMENTS procedure.

Examples

The following example gets the feature layer ID for a specified feature layer, then gets
and displays information about the feature elements for feature 1 in this feature layer.

DECLARE
feature_|l ayer _id NUVBER
feature_id NUMBER : = 1;
el ements SDO NET_FEAT ELEM ARRAY:
BEG N
feature_layer_id := sdo_net.get feature_layer_id('"GRID, 'PA");
el enents := sdo_net.get _feature_el ements(feature_layer_id, feature_id);
FOR i in 1..elenents.count

LooP
dbns_out put.put _line('["||i]]|"]"||" FEAT_ELEMTYPE ="'||
el ements(i).feat_elemtype);
dbns_out put. put _line("["||i]]"]"||" NET_ELEMID ="'
el ements(i).net_elemid);
dbns_out put. put _line("["||i]]|"]"||" START_PERCENTAGE = '||
el ements(i).start_percentage);
dbns_out put.put _line('["||i]]|"]"||' END_PERCENTAGE ='||
el ements(i).end_percentage);
dbns_out put. put _line('---");
END LOCP;
END;

/

6-50

Chapter 6
SDO_NET.GET_FEATURE_LAYER_ID

6.47 SDO_NET.GET_FEATURE_LAYER_ID

Format

SDO_NET. GET_FEATURE_LAYER | I
net wor k_nane I'N VARCHAR2
feature_l ayer_name | N VARCHAR2
) RETURN NUMBER,

Description

Returns the feature layer ID for a specified feature layer.

Parameters

network _name
Network name.

feature_layer_name
Feature layer name.

Usage Notes

This function returns the value of the FEATURE_LAYER_ID column for the network
and feature layer combination in the USER_SDO_NETWORK_FEATURE view (see
Table 5-36 in xxx_SDO_NETWORK_FEATURE Views).

Examples

The following example gets and displays the feature layer ID for a specified feature
layer.

DECLARE
feature_|l ayer _id NUVBER
BEG N
feature_layer_id := sdo_net.get feature_layer_id('"GRID, '"PQ");
dbms_out put . put _l'ine(' Feature layer ID for the PO feature layer is '|]|
feature_layer_id);
END;
/

6.48 SDO_NET.GET FEATURES_ON_LINKS

ORACLE

Format

SDO_NET. GET_FEATURES_ON LI NKS
feature_layer_id | N NUMVBER,
link_ ids I'N SDO_NUMBER ARRAY
) RETURN SDO_NUMBER ARRAY;

Description

Returns the IDs of features in a feature layer that reference specified links.

6-51

Chapter 6
SDO_NET.GET_FEATURES_ON_NODES

Parameters

feature_layer_id
ID of the feature layer containing the features.

link _ids
IDs of the links to check for features.

Usage Notes

To find the IDs of features in a feature layer that reference specified nodes, use the
SDO_NET.GET_FEATURES_ON_NODES procedure.

Examples
The following example gets and displays the feature IDs of features on a specified link.

DECLARE
feature_layer_id NUMBER
l'ink_ids SDO NUVBER ARRAY : = SDO NUMBER_ARRAY(1314);
feature_ids SDO NUVBER ARRAY;
BEG N
feature_layer_id := sdo_net.get_feature_layer id('GRID, 'PA");
feature_ids := sdo_net.get_features_on_links(feature_layer_id, |ink_ids);

dbnms_out put. put _line(' Features On Link "|[link_ids(1)||":");
for i in 1..feature_ids.count |oop
dbrs_out put. put _line("["||i||"] "||feature_ids(i));
end | oop;
END;

/

6.49 SDO NET.GET FEATURES ON_NODES

ORACLE

Format

SDO_NET. GET_FEATURES_ON_NODES
feature_layer_id | N NUVBER,
node_i ds IN SDO NUMBER ARRAY
) RETURN SDO_NUMBER ARRAY;

Description
Returns the IDs of features in a feature layer that reference specified nodes.
Parameters

feature_layer_id
ID of the feature layer containing the features.

node_ids
IDs of the nodes to check for features.

Usage Notes

To find the IDs of features in a feature layer that reference specified links, use the
SDO_NET.GET_FEATURES_ON_LINKS procedure.

6-52

Chapter 6
SDO_NET.GET_GEOMETRY_TYPE

Examples

The following example gets and displays the feature IDs of features on a specified
node.

DECLARE
feature_|layer_id NUMBER
node_i ds SDO NUVBER ARRAY : = SDO NUMBER_ARRAY(13);
feature_ids SDO NUVBER ARRAY;
BEG N
feature_layer_id := sdo_net.get_feature_layer id('GRID, 'PA");
feature_ids := sdo_net.get_features_on_nodes(feature_layer_id, node_ids);

dbns_out put. put _|ine(' Features On Node '||node_ids(1)||":");
for i in 1..feature_ids.count |oop
dbns_out put. put _line("["||i||"] '||feature_ids(i));
end | oop;
END;

/

6.50 SDO_NET.GET_GEOMETRY_TYPE

Format

SDO_NET. GET_GEOMVETRY_TYPE(
network I N VARCHAR2
) RETURN VARCHARZ;

Description

Returns the geometry type for a spatial network.

Parameters

network
Network name.

Usage Notes

This function returns the value of the GEOMETRY_TYPE column for the network in
the USER_SDO_NETWORK_METADATA view (see Table 5-33 in
xxx_SDO_NETWORK_METADATA Views).

Examples

The following example returns the geometry type for the network named
ROADS_NETWORK.

SELECT SDO _NET. GET_GEOVETRY_TYPE(' ROADS_NETWORK') FROM DUAL;
SDO_NET. GET_GEOMETRY_TYPE(' ROADS_NETWORK')

LRS_GEOMETRY

ORACLE 6-53

Chapter 6
SDO_NET.GET_IN_LINKS

6.51 SDO_NET.GET_IN_LINKS

Format

SDO_NET. GET_I N_LI NKS(
network | N VARCHAR?,
node_id I N NUMBER

) RETURN SDO_NUMBER_ARRAY;

Description

Returns an array of link ID numbers of the inbound links to a node.

Parameters

network
Network name.

node_id
ID of the node for which to return the array of inbound links.

Usage Notes

For information about inbound links and related Network Data Model Graph concepts,
see Network Data Model Graph Concepts.

Examples

The following example returns an array of link ID numbers of the inbound links into the
node whose node ID is 3 in the network named ROADS_NETWORK.

SELECT SDO NET. GET_I N_LI NKS(' ROADS_NETWORK' , 3) FROM DUAL;

SDO_NET. GET_I N_LI NKS(' ROADS_NETVIORK' , 3)

SDO_NUMBER_ARRAY(102)

6.52 SDO_NET.GET_INVALID_LINKS

ORACLE

Format

SDO_NET. GET_I NVALI D_LI NKS(
network | N VARCHAR2
) RETURN SDO_NUVBER_ARRAY;

Description

Returns the invalid links in a network.

Parameters

network
Network name.

6-54

Chapter 6
SDO_NET.GET_INVALID_NODES

Usage Notes

This function returns an SDO_NUMBER_ARRAY object with a comma-delimited list of
node ID numbers of invalid links in the specified network. If there are no invalid links,
this function returns a null value.

Examples
The following example returns the invalid links in the SDO_PARTITIONED network.
SELECT SDO _NET. GET_| NVALI D_LI NKS(* SDO_PARTI TI ONED') FROM DUAL;

6.53 SDO_NET.GET_INVALID_NODES

Format

SDO_NET. GET_| NVALI D_NODES(
network I N VARCHAR2
) RETURN SDO_NUMBER_ARRAY;

Description

Returns the invalid nodes in a network.

Parameters

network
Network name.

Usage Notes

This function returns an SDO_NUMBER_ARRAY object with a comma-delimited list of
node ID numbers of invalid nodes in the specified network. If there are no invalid
nodes, this function returns a null value.

Examples
The following example returns the invalid nodes in the SDO_PARTITIONED network.
SELECT SDO_NET. GET_| NVALI D_NODES(' SDO_PARTI TI ONED') FROM DUAL;

6.54 SDO_NET.GET_INVALID_PATHS

Format

SDO_NET. GET_| NVALI D_PATHS(
network | N VARCHAR2
) RETURN SDO_NUMBER_ARRAY;

Description

Returns the invalid paths in a network.

ORACLE' 6-55

Chapter 6
SDO_NET.GET_ISOLATED_NODES

Parameters

network
Network name.

Usage Notes

This function returns an SDO_NUMBER_ARRAY object with a comma-delimited list of
node ID numbers of invalid paths in the specified network. If there are no invalid paths,
this function returns a null value.

Examples
The following example returns the invalid paths in the SDO_PARTITIONED network.
SELECT SDO_NET. GET_I NVALI D_PATHS(" SDO_PARTI TI ONED') FROM DUAL;

6.55 SDO_NET.GET ISOLATED NODES

Format

SDO_NET. GET_| SOLATED_NODES(
network | N VARCHAR2
) RETURN SDO_NUMBER_ARRAY;

Description

Returns the isolated nodes in a network.

Parameters

network
Network name.

Usage Notes

This function returns an SDO_NUMBER_ARRAY object with a comma-delimited list of
node ID numbers of isolated nodes in the specified network. If there are no isolated
nodes, this function returns a null value.

For a brief explanation of isolated nodes in a network, see Network Data Model Graph
Concepts.

Examples
The following example returns the isolated nodes in the SDO_PARTITIONED network.
SELECT SDO_NET. GET_I SOLATED_NODES(' SDO_PARTI TI ONED') FROM DUAL;

6.56 SDO_NET.GET LINK_COST COLUMN

Format

SDO_NET. GET_LI NK_COST_COLUM\(
network | N VARCHAR2
) RETURN VARCHAR?Z;

ORACLE 6-56

Chapter 6
SDO_NET.GET_LINK_DIRECTION

Description

Returns the name of the link cost column for a network.

Parameters

network
Network name.

Usage Notes

This function returns the value of the LINK_COST_COLUMN column for the network in
the USER_SDO_NETWORK_METADATA view (see Table 5-33 in
xxx_SDO_NETWORK_METADATA Views).

Examples

The following example returns the name of the link cost column for the network named
ROADS_NETWORK.

SELECT SDO NET. GET_LI NK_COST_COLUMN(' ROADS_NETWORK') FROM DUAL;

SDO_NET. GET_LI NK_COST_COLUMN(' ROADS_NETWORK')

6.57 SDO_NET.GET_LINK_DIRECTION

ORACLE

Format

SDO_NET. GET_LI NK_DI RECTI ON(
network | N VARCHAR2
) RETURN VARCHARZ;

Description

Returns the link direction for a network.

Parameters

network
Network name.

Usage Notes

This function returns the value of the LINK_DIRECTION column for the network in the
USER_SDO_NETWORK_METADATA view (see Table 5-33 in
xxx_SDO_NETWORK_METADATA Views).

Examples
The following example returns the link direction for the network named ROADS NETWORK.

SELECT SDO _NET. GET_LI NK_DI RECTI ON(' ROADS_NETWORK') FROM DUAL;

SDO_NET. GET_LI NK_Di RECTI ON(' ROADS_NETVORK')

DI RECTED

6-57

Chapter 6
SDO_NET.GET_LINK_GEOM_COLUMN

6.58 SDO_NET.GET_LINK_GEOM_COLUMN

Format

SDO_NET. GET_LI NK_GEOM COLUMN(
network | N VARCHAR?
) RETURN VARCHARZ;

Description

Returns the name of the link geometry column for a spatial network.

Parameters

network
Network name.

Usage Notes

This function returns the value of the LINK_GEOM_COLUMN column for the network
in the USER_SDO_NETWORK_METADATA view (see Table 5-33 in
xxX_SDO_NETWORK_METADATA Views).

Examples

The following example returns the name of the link geometry column for the network
named ROADS_NETWORK.

SELECT SDO _NET. GET_LI NK_GEOM COLUMN(' ROADS_NETWORK') FROM DUAL;

SDO_NET. GET_LI NK_GEOM COLUMN(* ROADS_NETWORK')

LI NK_GEOVETRY

6.59 SDO_NET.GET_LINK_GEOMETRY

ORACLE

Format

SDO_NET. GET_LI NK_GEQVETRY(
net wor k I N VARCHAR2,
link_id I N NUMBER,

start_percentage | N NUVBER DEFAULT 0,
end_percentage | N NUVBER DEFAULT 1.0
) RETURN SDO_GEOVETRY;

Description

Returns the entire geometry or a portion of the geometry associated with a link in a
spatial network.

Parameters

network
Network name.

6-58

Chapter 6
SDO_NET.GET_LINK_TABLE_NAME

link_id
ID number of the link for which to return the geometry.

start_percentage

Percentage of the distance along the link to be used for the start point of the returned
geometry. Expressed as a number between 0 and 1.0; for example, 0.5 is 50 percent.
The default value is 0; that is, the start of the returned geometry is associated with the
start point of the link.

end_percentage

Percentage of the distance along the link to be used for the end point of the returned
geometry. Expressed as a humber between 0 and 1.0; for example, 0.5 is 50 percent.
The default value is 1.0; that is, the end of returned geometry is associated with the
end point of the link.

Usage Notes

None.

Examples

The following example returns the geometry associated with the link whose link ID is
103 in the network named ROADS_NETWORK.

SELECT SDO NET. GET_LI NK_GEOMETRY(' ROADS NETWORK', 103) FROM DUAL;

SDO_NET. GET_LI NK_GEOVETRY(' ROADS_NETWORK' , 103) (SDO_GTYPE, SDO_SRID, SDO PO NT(X,

SDO GEOMETRY(2002, NULL, NULL, SDO ELEM |NFO ARRAY(1, 2, 1), SDO ORDI NATE_ARRAY(
8, 4, 12, 4))

6.60 SDO_NET.GET LINK_TABLE_NAME

ORACLE

Format

SDO_NET. GET_LI NK_TABLE_NAME(
network | N VARCHAR2
) RETURN VARCHARZ;

Description

Returns the name of the link table for a network.

Parameters

network
Network name.

Usage Notes

This function returns the value of the LINK_TABLE_NAME column for the network in
the USER_SDO_NETWORK_METADATA view (see Table 5-33 in
xxx_SDO_NETWORK_METADATA Views).

Examples

The following example returns the name of the link table for the network named
ROADS_NETWORK.

6-59

Chapter 6

SDO_NET.GET_LINKS_IN_PATH

SELECT SDO_NET. GET_LI NK_TABLE_NAME(' ROADS_NETVORK') FROM DUAL;

ROADS_LI NKS

6.61 SDO_NET.GET LINKS_IN_PATH

Format

SDO_NET. GET_LI NKS_| N_PATH(
network | N VARCHAR?,
path_id |N NUMBER

) RETURN SDO_NUMBER ARRAY;

Description
Returns the links in a path.
Parameters

network
Network name.

path_id
ID of the path for which to return the links.

Usage Notes

For an explanation of links and paths, see Network Data Model Graph Concepts.

Examples

The following example returns the link ID values of links in the path in the XYZ_NETWORK

network whose path ID is 1.

SELECT SDO NET. GET_LI NKS_I N_PATH(" XYZ_NETWORK', 1) FROM DUAL,;

SDO NET. GET_LI NKS_I N_PATH(' XYZ_NETWORK' , 1)

SDO NUVBER ARRAY(1102, 1104, 1105)

6.62 SDO_NET.GET LRS_GEOM_COLUMN

ORACLE

Format

SDO_NET. GET_LRS_GEOM COLUM\(
network | N VARCHAR2
) RETURN VARCHAR?Z;

Description

Returns the name of the LRS geometry column for a spatial network.

6-60

Chapter 6
SDO_NET.GET_LRS_LINK_GEOMETRY

Parameters

network
Network name.

Usage Notes

This function returns the value of the LRS_GEOM_COLUMN column for the network in
the USER_SDO_NETWORK_METADATA view (see Table 5-33 in
xxx_SDO_NETWORK_METADATA Views).

Examples

The following example returns the name of the LRS geometry column for the network
named ROADS NETWORK.

SELECT SDO NET. GET_LRS_GEOM COLUMN(" ROADS_NETWORK') FROM DUAL;

SDO_NET. GET_LRS_GEOM COLUMN(' ROADS_NETWORK')

6.63 SDO_NET.GET LRS_LINK_GEOMETRY

ORACLE

Format

SDO_NET. GET_LRS_LI NK_GEOVETRY(
network | N VARCHAR2,
link id IN NUMBER

) RETURN SDO_GEOMETRY;

Description

Returns the LRS geometry associated with a link in a spatial LRS network.

Parameters

network
Network name.

link_id
ID number of the link for which to return the geometry.

Usage Notes

None.

Examples

The following example returns the LRS geometry associated with the link whose link
ID is 103 in the network named ROADS_NETWORK.

SELECT SDO _NET. GET_LRS_LI NK_GEOVETRY(' ROADS_NETWORK', 103) FROM DUAL;

SDO_NET. GET_LRS_LI NK_GEOVETRY(' ROADS_NETWORK' , 103) (SDO_GTYPE, SDO SRID, SDO PO N

SDO GEOMETRY(2002, NULL, NULL, SDO ELEM |NFO ARRAY(1, 2, 1), SDO ORDI NATE_ARRAY(
8, 4, 12, 4))

6-61

Chapter 6
SDO_NET.GET_LRS NODE_GEOMETRY

6.64 SDO_NET.GET_LRS_NODE_GEOMETRY

Format
SDO_NET. GET_LRS_NODE_GEQVETRY(
network | N VARCHAR?,

node_id | N NUMBER
) RETURN SDO_GEOVETRY:;

Description

Returns the LRS geometry associated with a node in a spatial LRS network.

Parameters

network
Network name.

node_id
ID number of the node for which to return the geometry.

Usage Notes

None.

Examples

The following example returns the LRS geometry associated with the node whose
node ID is 3 in the network named ROADS_NETWORK.

SELECT SDO _NET. GET_LRS_NODE_GEOMETRY(' ROADS_NETWORK' , 3) FROM DUAL;

SDO_NET. GET_LRS_NODE_GEOVETRY(' ROADS_NETWORK' , 3) (SDO_GTYPE, SDO SRI D, SDO PO NT(

SDO_GEOVETRY(2001, NULL, SDO POINT_TYPE(8, 4, NULL), NULL, NULL)

6.65 SDO_NET.GET LRS_TABLE_NAME

ORACLE

Format

SDO_NET. GET_LRS_TABLE_NAME(
network | N VARCHAR2
) RETURN VARCHAR?Z;

Description

Returns the name of the table containing LRS geometries in a spatial LRS network.

Parameters

network
Network name.

6-62

Chapter 6
SDO_NET.GET_NETWORK_TYPE

Usage Notes

This function returns the value of the LRS_TABLE_NAME column for the network in
the USER_SDO_NETWORK_METADATA view (see Table 5-33 in
xxxX_SDO_NETWORK_METADATA Views).

Examples

The following example returns the name of the table that contains LRS geometries for
the network named ROADS_NETWORK.

SELECT SDO NET. GET_LRS_TABLE_NAME(' ROADS_NETWORK') FROM DUAL;

SDO_NET. GET_LRS_TABLE_NAME(' ROADS_NETVORK')

6.66 SDO_NET.GET NETWORK_TYPE

Format

SDO_NET. GET_NETWORK_TYPE(
network | N VARCHAR2
) RETURN VARCHARZ;

Description

Returns the network type.

Parameters

network
Network name.

Usage Notes

This function returns the value of the NETWORK_TYPE column for the network in the
USER_SDO_NETWORK_METADATA view (see Table 5-33 in
xxx_SDO_NETWORK_METADATA Views).

Examples
The following example returns the network type for the network named ROADS_NETWORK.

SELECT SDO_NET. GET_NETWORK_TYPE(' ROADS NETWORK') FROM DUAL;

SDO_NET. GET_NETWORK_TYPE(' ROADS_NETWORK')

6.67 SDO_NET.GET NO_OF HIERARCHY LEVELS

Format

SDO_NET. GET_NO_OF_HI ERARCHY_LEVELS(
network | N VARCHAR2
) RETURN NUMBER;

ORACLE' 6-63

Chapter 6
SDO_NET.GET_NO_OF_LINKS

Description

Returns the number of hierarchy levels for a network.

Parameters

network
Network name.

Usage Notes

This function returns the value of the NO_OF HIERARCHY_LEVELS column for the
network in the USER_SDO_NETWORK_METADATA view (see Table 5-33 in
xxx_SDO_NETWORK_METADATA Views).

For an explanation of network hierarchy, see Network Hierarchy.

Examples

The following example returns the number of hierarchy levels for the network named
ROADS_NETWORK.

SELECT SDO NET. GET_NO OF H ERARCHY LEVELS(' ROADS_NETWORK') FROM DUAL;

SDO_NET. GET_NO OF H ERARCHY LEVELS(' ROADS_NETVORK')

6.68 SDO_NET.GET NO OF LINKS

ORACLE

Format
SDO NET. GET_NO OF LI NKS(

network | N VARCHAR2
) RETURN NUMBER,

or
SDO_NET. GET_NO_OF LI NKS(
net wor k IN VARCHAR?,

hierarchy_id | N NUMBER
) RETURN NUMBER;

Description
Returns the number of links for a network or a hierarchy level in a network.
Parameters

network
Network name.

hierarchy_id
Hierarchy level number for which to return the number of links.

Usage Notes

None.

6-64

Chapter 6
SDO_NET.GET_NO_OF_NODES

Examples

The following example returns the number of links in the network named
ROADS_NETWORK.

SELECT SDO NET. GET_NO_OF_LI NKS(' ROADS_NETWORK') FROM DUAL;

SDO_NET. GET_NO_OF_LI NKS(' ROADS_NETWORK')

6.60 SDO_NET.GET NO OF NODES

Format
SDO_NET. GET_NO_OF NODES(

network | N VARCHAR2
) RETURN NUMBER;

or
SDO_NET. GET_NO_OF _NODES(
net wor k I N VARCHAR2,

hierarchy_id | N NUMBER
) RETURN NUMBER;

Description

Returns the number of nodes for a network or a hierarchy level in a network.

Parameters

network
Network name.

hierarchy_id
Hierarchy level number for which to return the number of nodes.

Usage Notes

For information about nodes and related concepts, see Network Data Model Graph
Concepts.

Examples

The following example returns the number of nodes in the network named
ROADS_NETWORK.

SELECT SDO_NET. GET_NO_OF NODES(' ROADS_NETVORK') FROM DUAL;

SDO_NET. GET_NO_OF_NODES(' ROADS_NETWORK')

ORACLE 6-65

Chapter 6
SDO_NET.GET_NODE_DEGREE

6.70 SDO_NET.GET_NODE_DEGREE

Format
SDO_NET. GET_NCDE_DEGREE(
network | N VARCHAR2,

node_id | N NUMBER
) RETURN NUMBER;

Description

Returns the number of links to a node.

Parameters

network
Network name.

node_id
Node ID of the node for which to return the number of links.

Usage Notes

For information about node degree and related Network Data Model Graph concepts,
see Network Data Model Graph Concepts.

Examples

The following example returns the number of links to the node whose node ID is 3 in
the network named ROADS_NETWORK.

SELECT SDO NET. GET_NODE_DEGREE(' ROADS NETWORK' , 3) FROM DUAL;

SDO_NET. GET_NODE_DEGREE(' ROADS_NETWORK' , 3)

6.71 SDO_NET.GET NODE_GEOM_COLUMN

ORACLE

Format

SDO_NET. GET_NODE_GEOM COLUMN(
network | N VARCHAR2
) RETURN VARCHAR?Z;

Description

Returns the name of the geometry column for nodes in a spatial network.

Parameters

network
Network name.

6-66

Chapter 6
SDO_NET.GET_NODE_GEOMETRY

Usage Notes

This function returns the value of the NODE_GEOM_COLUMN column for the network
in the USER_SDO_NETWORK_METADATA view (see Table 5-33 in
xxxX_SDO_NETWORK_METADATA Views).

Examples

The following example returns the name of the geometry column for nodes in the
network named ROADS_NETWORK.

SELECT SDO NET. GET_NODE_GEOM COLUMN(' ROADS_NETWORK') FROM DUAL;

SDO_NET. GET_NODE_GEOM COLUMN(' ROADS_NETWORK')

6.72 SDO_NET.GET_NODE_GEOMETRY

Format
SDO_NET. GET_NODE_GEOVETRY(
network | N VARCHAR2,

node_id | N NUMBER
) RETURN SDO_GEQOVETRY;

Description

Returns the LRS geometry associated with a node in a spatial network.

Parameters

network
Network name.

node_id
ID number of the node for which to return the geometry.

Usage Notes

None.

Examples

The following example returns the geometry associated with the node whose node ID
is 3 in the network named ROADS NETWORK.

SELECT SDO NET. GET_NODE_GEOMVETRY(' ROADS NETWORK', 3) FROM DUAL;
SDO_NET. GET_NODE_GEOVETRY(' ROADS NETWORK' , 3) (SDO_GTYPE, SDO SRID, SDO POINT(X, Y

SDO_GEOVETRY(2001, NULL, SDO POINT_TYPE(8, 4, NULL), NULL, NULL)

ORACLE 6-67

Chapter 6
SDO_NET.GET_NODE_IN_DEGREE

6.73 SDO_NET.GET NODE_IN_DEGREE

Format
SDO_NET. GET_NCDE_| N_DEGREE(
network | N VARCHAR2,

node_id | N NUMBER
) RETURN NUMBER;

Description

Returns the number of inbound links to a node.

Parameters

network
Network name.

node_id
Node ID of the node for which to return the number of inbound links.

Usage Notes

For information about node degree and related Network Data Model Graph concepts,
see Network Data Model Graph Concepts.

Examples

The following example returns the number of inbound links to the node whose node ID
is 3 in the network named ROADS_NETWORK.

SELECT SDO_NET. GET_NODE_| N_DEGREE(' ROADS_NETWORK' , 3) FROM DUAL;

SDO_NET. GET_NODE_| N_DEGREE(' ROADS_NETWORK' | 3)

6.74 SDO_NET.GET NODE_OUT DEGREE

ORACLE

Format

SDO_NET. GET_NCDE_OUT_DEGREE(
network | N VARCHAR?,
node_id | N NUMBER

) RETURN NUMBER,

Description

Returns the number of outbound links from a node.

Parameters

network
Network name.

6-68

Chapter 6
SDO_NET.GET_NODE_TABLE_NAME

node_id
Node ID of the node for which to return the number of outbound links.

Usage Notes

For information about node degree and related Network Data Model Graph concepts,
see Network Data Model Graph Concepts.

Examples

The following example returns the number of outbound links from the node whose
node ID is 3 in the network named ROADS_NETWORK.

SELECT SDO_NET. GET_NODE_OUT_DEGREE(' ROADS_NETWCRK', 3) FROM DUAL;

SDO_NET. GET_NODE_OUT_DEGREE(' ROADS_NETWORK' , 3)

6.75 SDO_NET.GET NODE_TABLE_NAME

Format
SDO_NET. GET_NODE_TABLE_NAME(

network | N VARCHAR2
) RETURN VARCHARZ;

Description

Returns the name of the table that contains the nodes in a spatial network.

Parameters

network
Network name.

Usage Notes

This function returns the value of the NODE_TABLE_NAME column for the network in
the USER_SDO_NETWORK_METADATA view (see Table 5-33 in
xxX_SDO_NETWORK_METADATA Views).

Examples

The following example returns the name of the table that contains the nodes in the
network named ROADS_NETWORK.

SELECT SDO_NET. GET_NODE_TABLE_NAME(' ROADS_NETWORK') FROM DUAL;

SDO_NET. GET_NODE_TABLE_NAME(' ROADS_NETWORK')

ORACLE 6-69

Chapter 6
SDO_NET.GET_OUT_LINKS

6.76 SDO_NET.GET_OUT_LINKS

Format

SDO_NET. GET_QUT_LI NKS(
network | N VARCHARZ,
node_id | N NUMBER

) RETURN SDO_NUMBER ARRAY;

Description

Returns an array of link ID numbers of the outbound links from a node.

Parameters

network
Network name.

node_id
ID of the node for which to return the array of outbound links.

Usage Notes

For information about outbound links and related Network Data Model Graph
concepts, see Network Data Model Graph Concepts.

Examples

The following example returns an array of link ID numbers of the outbound links from
the node whose node ID is 3 in the network named ROADS_NETWORK.

SELECT SDO NET. GET_OUT_LI NKS(' ROADS_NETWORK', 3) FROM DUAL;

SDO_NET. GET_OUT_LI NKS(* ROADS_NETWORK' |, 3)

SDO NUMBER ARRAY(103, 201)

6.77 SDO_NET.GET _PARENT FEATURE_IDS

Format

SDO_NET. GET_PARENT_FEATURE_| DS(
feature_layer_id | N NUMVBER,
feature_id I N NUMBER

) RETURN SDO NET_LAYER_FEAT_ARRAY;

Description

Returns the feature layer ID and parent feature IDs for the specified feature. (The
SDO_NET_LAYER_FEAT_ARRAY type is described in Data Types Used for Feature
Modeling.)

ORACLE 6-70

Chapter 6
SDO_NET.GET_PARTITION_SIZE

Parameters

feature_layer_id
ID of the feature layer for the feature (that is, the child feature).

feature_id
ID of the feature.

Usage Notes

To get the feature layer ID and feature ID of the child features for a specified feature,
use the SDO_NET.GET_CHILD_FEATURE_IDS function.

For information about features, including parent and child features, see Features and
Feature Layers.

Examples

The following example returns and displays the parent feature IDs for feature 1 in the
PO feature layer.

DECLARE
feature_|layer _id NUVBER
feature_ id NUMBER : = 1;
feature_ids SDO NET_LAYER FEAT ARRAY;
BEG N
feature_layer_id := sdo_net.get feature_layer_id('"GRID, 'PA");
feature_ids := sdo_net.get_parent_feature_ids(feature_layer_id, feature_id);
FORi in 1..feature_ids.count

LooP
--dbns_output.put_line('["|]i]]|"]"||'" FEATURE_LAYERID ="'||
feature_ids(i).feature_|layer_id);
dbns_out put. put _line('['||i]]|"]"||" FEATURE_ID =
feature_ids(i).feature_id);
dbns_out put. put _line('---");
END LOCP;
END;

/

6.78 SDO_NET.GET_PARTITION_SIZE

ORACLE

Format

SDO_NET. GET_PARTI TI ON_SI ZE(
net wor k I N VARCHAR2,
partition_id I'N VARCHAR?,
l'ink_|evel I'N NUMBER DEFAULT 1,

i ncl ude_user_data IN VARCHAR2 DEFAULT ' FALSE',
include_spatial _data IN VARCHAR2 DEFAULT ' FALSE
) RETURN NUMBER;

Description

Gets the estimated size (in bytes) for a specified combination of partition ID and link
level.

6-71

Chapter 6
SDO_NET.GET_PATH_GEOM_COLUMN

Parameters

network
Network name.

partition_id
Partition ID number.

link_level

Link level (default = 1). The link level reflects the priority level for the link, and is used
for network analysis, so that links with higher priority levels can be considered first in
computing a path.

include_user_data

TRUE if the size should include any user data associated with the network elements
represented in each BLOB, or FALSE (the default) if the size should not include any
user data.

include_spatial_data

TRUE if the size should include spatial geometry definitions associated with the network
elements represented in each BLOB, or FALSE (the default) if the size should not
include spatial geometry definitions.

Usage Notes

The returned size of a network partition is a rough estimate and might vary depending
on the Java Virtual Machine and garbage collection.

For information about using partitioned networks to perform analysis using the load on
demand approach, see Network Analysis Using Load on Demand.

Examples

The following example returns the number of bytes for the partition associated with
partition ID 1 and link level 1 in the SDO_PARTITIONED network, not including any
user data or spatial data.

SELECT SDO NET. GET_PARTI TI ON_SI ZE(' SDO PARTITIONED', 1, 1, 'N, 'N) FROM DUAL;

SDO_NET. GET_PARTI TI ON_SI ZE(' SDO_PARTI TI ONED |, 1, 1, ' FALSE', ' FALSE')

6.79 SDO_NET.GET_PATH_GEOM_COLUMN

ORACLE

Format
SDO_NET. GET_PATH_GEOM COLUMN(

network | N VARCHAR2
) RETURN VARCHARZ;

Description

Returns the name of the geometry column for paths in a spatial network.

6-72

Chapter 6
SDO_NET.GET_PATH_TABLE_NAME

Parameters

network
Network name.

Usage Notes

This function returns the value of the PATH_GEOM_COLUMN column for the network
in the USER_SDO_NETWORK_METADATA view (see Table 5-33 in
xxx_SDO_NETWORK_METADATA Views).

Examples

The following example returns the name of the geometry column for paths in the
network named ROADS NETWORK.

SELECT SDO NET. GET_PATH_GEOM COLUMN(' ROADS_NETWORK') FROM DUAL;

SDO_NET. GET_PATH_GEOM COLUMN(' ROADS_NETWORK')

PATH_GEOVETRY

6.80 SDO_NET.GET PATH_TABLE_NAME

ORACLE

Format

SDO_NET. GET_PATH_TABLE_NAME(
network | N VARCHAR2
) RETURN VARCHARZ;

Description

Returns the name of the table that contains the paths in a spatial network.

Parameters

network
Network name.

Usage Notes

This function returns the value of the PATH_TABLE_NAME column for the network in
the USER_SDO_NETWORK_METADATA view (see Table 5-33 in
xxx_SDO_NETWORK_METADATA Views).

Examples

The following example returns the name of the table that contains the paths in the
network named ROADS_NETWORK.

SELECT SDO _NET. GET_PATH_TABLE_NAME(' ROADS_NETWORK') FROM DUAL;

ROADS_PATHS

6-73

Chapter 6
SDO_NET.GET_PERCENTAGE

6.81 SDO_NET.GET_PERCENTAGE

Format

SDO_NET. GET_PERCENTAGE(
network | N VARCHARZ,
link_id | N NUMBER
pt _geom | N SDO_GEOVETRY

) RETURN SDO_GEQOVETRY;

Description

Returns the percentage of the distance along a link's line string geometry of a point
geometry.

Parameters

network

Network name.
link_id

ID number of the link.

pt_geom
Point geometry.

Usage Notes

This function returns a value between 0 and 1. For example, if the point is 25 percent
(one-fourth) of the distance between the start node and end node for the link, the
function returns .25.

If pt _geomis not on the link geometry, the nearest point on the link geometry to pt _geom
is used.

To find the point geometry that is a specified percentage of the distance along a link's
line string geometry, use the SDO_NET.GET_PT function.

Examples

The following example returns the percentage (as a decimal fraction) of the distance of
a specified point along the geometry associated with the link whose link ID is 101 in
the network named ROADS NETWORK.

SQL> SELECT SDO NET. GET_PERCENTAGE(' ROADS_NETWORK' , 101,
SDO GEOMETRY(2001, NULL, SDO POINT TYPE(2, 2.5, NULL), NULL, NULL))
FROMVDUAL; 2 3

SDO_NET. GET_PERCENTAGE(' ROADS_NETWORK' , 101, SDO_GEOVETRY(2001, NULL, SDO_PO NT_TYPE

ORACLE 6-74

Chapter 6
SDO_NET.GET_PHANTOM_FEATURES

6.82 SDO_NET.GET_PHANTOM_FEATURES

Format

SDO_NET. GET_PHANTOM _FEATURES(
feature_layer_id IN NUMBER
) RETURN SDO_NUMBER_ARRAY;

Description

Returns the IDs of phantom features in a feature layer. A phantom feature is a feature
that references nonexistent network elements (nodes or links).

Parameters

feature_layer_id
ID of the feature layer containing the features.

Usage Notes

To delete the phantom features in a feature layer, use the
SDO_NET.DELETE_PHANTOM_FEATURES procedure.

Examples

The following example gets and displays the feature IDs of phantom features in a
specified feature layer.

DECLARE
feature_layer_id NUMBER
feature_i ds SDO NUMBER_ARRAY;

BEG N
feature_layer_id := sdo_net.get _feature_layer id('GRID, 'PA");
feature_ids := sdo_net.get_phantom features(feature_layer_id);
dbms_out put . put _I'i ne(' Phant om Features:');

for i in 1..feature_ids.count |oop
dbrs_out put. put _line("["||i||"] '||feature_ids(i));
end | oop;
END;

/

6.83 SDO_NET.GET PT

ORACLE

Format

SDO_NET. GET_PT(
net wor k I N VARCHAR?,
link_id I'N NUMBER,
percentage | N NUMBER

) RETURN SDO_GEQVETRY;

Description

Returns the point geometry that is a specified percentage of the distance along a link's
line string geometry.

6-75

Chapter 6
SDO_NET.IS_HIERARCHICAL

Parameters

network
Network name.

link_id
ID number of the link for which to return the point geometry at the specified per cent age
distance.

percentage
Percentage value as a decimal fraction between 0 and 1. For example, 0.25 is 25
percent.

Usage Notes

To find the percentage along a link geometry for a specified point, use the
SDO_NET.GET_PERCENTAGE function.

Examples

The following example returns the point geometry that is 25 percent of the distance
from the start node along the geometry associated with the link whose link ID is 101 in
the network named ROADS_NETWORK.

SELECT SDO _NET. GET_PT(' ROADS_NETWORK', 101, 0.25) FROM DUAL;

SDO_NET. GET_PT(' ROADS_NETWORK' , 101, 0. 25) (SDO_GTYPE, SDO SRID, SDO POINT(X, Y, 2)

SDO_GEOMETRY(2001, NULL, SDO POINT TYPE(2, 2.5, NULL), NULL, NULL)

6.84 SDO_NET.IS_HIERARCHICAL

ORACLE

Format

SDO_NET. |'S_HI ERARCHI CAL(
network | N VARCHAR?
) RETURN VARCHAR?;

Description

Returns the string TRUE if the network has more than one level of hierarchy; returns the
string FALSE if the network does not have more than one level of hierarchy.

Parameters

network
Network name.

Usage Notes

For an explanation of network hierarchy, see Network Hierarchy.

Examples

The following example checks if the network named ROADS_NETWORK has more than one
level of hierarchy.

6-76

Chapter 6
SDO_NET.IS_LINK_IN_PATH

SELECT SDO NET. |'S_HI ERARCHI CAL(' ROADS_NETWORK') FROM DUAL;

SDO_NET. |'S_H ERARCHI CAL(' ROADS_NETWORK')

6.85 SDO_NET.IS_LINK_IN_PATH

Format

SDO NET. 1'S_LI NK_I N_PATH(
network | N VARCHAR?,
path_id |N NUVBER,
link id IN NUMBER

) RETURN VARCHARZ;

Description

Returns the string TRUE if the specified link is in the specified path; returns the string
FALSE if the specified link is not in the specified path.

Parameters

network
Network name.

path_id
ID number of the path.

link_id
ID number of the link.

Usage Notes

You can use this function to check if a specific link is included in a specific path.

Examples

The following example checks if the link with link ID 1 is in the path with path ID 1 in
the network named SDO NET1.

SELECT SDO NET. 'S LINK I N PATH(' SDO NET1', 1, 1) FROM DUAL;

SDO NET. I'S_LINK_I N_PATH(' SDO NET1', 1, 1)

6.86 SDO_NET.IS_LOGICAL

ORACLE

Format

SDO NET. IS _LOG CAL(
network | N VARCHAR2
) RETURN VARCHAR?Z;

6-77

Chapter 6
SDO_NET.IS_NODE_IN_PATH

Description

Returns the string TRUE if the network is a logical network; returns the string FALSE if the
network is not a logical network.

Parameters

network
Network name.

Usage Notes

A network can be a spatial network or a logical network, as explained in Network Data
Model Graph Concepts.

Examples
The following example checks if the network named ROADS_NETWORK is a logical network.

SELECT SDO NET.|S_LOG CAL(' ROADS_NETWORK') FROM DUAL;

SDO NET. | S_LOG CAL(' ROADS_NETWORK')

6.87 SDO_NET.IS_NODE_IN_PATH

ORACLE

Format

SDO_NET. | S_NODE_I N_PATH(
network | N VARCHAR2,
path_id | N NUMVBER

node_id | N NUMBER
) RETURN VARCHARZ;

Description

Returns the string TRUE if the specified node is in the specified path; returns the string
FALSE if the specified node is not in the specified path.

Parameters

network
Network name.

path_id
ID number of the path.

node_id
ID number of the node.

Usage Notes

You can use this function to check if a specific node is included in a specific path.

6-78

Chapter 6
SDO_NET.IS_SPATIAL

Examples

The following example checks if the node with node ID 1 is in the path with path ID 1 in
the network named SDO_NET1.

SELECT SDO NET.|S_NODE | N PATH(' SDO NET1', 1, 1) FROM DUAL;

SDO NET. | S_NODE_| N_PATH(' SDO NET1', 1, 1)

6.88 SDO_NET.IS_SPATIAL

Format

SDO _NET. | S_SPATI AL(
network | N VARCHAR2
) RETURN VARCHARZ;

Description

Returns the string TRUE if the network is a spatial network; returns the string FALSE if the
network is not a spatial network.

Parameters

network
Network name.

Usage Notes

A network can be a spatial network or a logical network, as explained in Network Data
Model Graph Concepts.

You can further check for the geometry type of a spatial network by using the following
functions: SDO_NET.LRS_GEOMETRY_NETWORK,
SDO_NET.SDO_GEOMETRY_NETWORK, and
SDO_NET.TOPO_GEOMETRY_NETWORK.

Examples
The following example checks if the network named ROADS_NETWORK is a spatial network.

SELECT SDO NET. | S_SPATI AL(' ROADS_NETWORK') FROM DUAL;

SDO _NET. | S_SPATI AL(' ROADS_NETVIORK')

6.89 SDO_NET.LOAD_CONFIG

Format

SDO_NET. LOAD_CONFI ¢
file_directory |N VARCHARZ,
file_name I'N VARCHAR?) ;

ORACLE 6-79

Chapter 6
SDO_NET.LOGICAL_PARTITION

Description

Loads (or reloads) the configuration for load on demand Java stored procedures from

the specified XML file. The load on demand configuration is mainly for partition BLOB

translation and partition cache configuration. (The Java stored procedures are classes
in the package oracl e. spati al . network. | od.)

Parameters

file_directory
Directory object that identifies the path for the XML file. To create a directory object,
use the SQL*Plus command CREATE DIRECTORY.

file_name
Name of the XML file containing the information to be loaded.

Usage Notes

A default configuration is provided for load on demand. You can use this procedure if
you need to change the default configuration.

For information about configuring the load on demand environment, including the
partition cache, see Configuring the Partition Cache.

Examples

The following example loads the load on demand configuration from a specified XML
file.

EXECUTE SDO _NET. LOAD_CONFI G(' WORK_DI R, 'netlodcfg.xm");

6.90 SDO_NET.LOGICAL_PARTITION

ORACLE

Format

SDO_NET. LOG CAL_PARTI TI O\(

net wor k I'N VARCHAR?,
partition_table_name I N VARCHARZ,
max_num nodes I N NUVBER,
log_l oc I N VARCHAR?,
log_file I N VARCHAR?,
open_node IN VARCHAR2 DEFAULT 'A',
l'ink_|evel I'N NUMBER DEFAULT 1);
or

SDO_NET. LOG CAL_PARTI TI ON(

net wor k I N VARCHAR?,
partition_table_name I N VARCHARZ,

max_num nodes I'N NUMBER,

log_l oc I N VARCHAR?,

log_file I N VARCHAR?,

open_node I N VARCHAR2 DEFAULT 'A',
l'ink_|evel I N NUMBER DEFAULT 1,

part_size_tolerance | N NUMBER);

6-80

ORACLE

Chapter 6
SDO_NET.LOGICAL _PARTITION

Description

Partitions a logical network, and stores the information in the partition table.

Note:

If the logical network is a power law (scale-free) network, do not use this
procedure to partition it, but instead use the
SDO_NET.LOGICAL_POWERLAW_PARTITION procedure.

Parameters

network
Network name.

partition_table_name

Name of the partition table, which is created by this procedure. (If an existing table
with the specified name already exists, it is updated with partition information for the
specified link level.) The partition table is described in Partition Table.

max_nhum_nodes

Maximum number of nodes to include in each partition. For example, if you specify
5000 and if the network contains 50,000 nodes, each partition will have 5000 or fewer
nodes, and the total number of partitions will be 10 or higher.

log_loc
Directory object that identifies the path for the log file. To create a directory object,
use the SQL*Plus command CREATE DIRECTORY.

log_file
Log file containing information about operations on the logical network, including any
possible errors or problems.

open_mode

A one-character code indicating the mode in which to open the log file: wfor write over
(that is, delete any existing log file at the specified location and name, and create a
new file), or A (the default) for append (that is, append information to the existing
specified log file). If you specify A and the log file does not exist, a new log file is
created.

link_level

Network link level on which to perform the partitioning (default = 1). The link level
reflects the priority level for the link, and is used for network analysis, so that links with
higher priority levels can be considered first in computing a path.

part_size_tolerance

Allowed tolerance in partition size expressed as a decimal fraction of max_num nodes.
Must be from 0 to 1. This parameter allows the partitioning procedure to create
partitions with sizes larger than the one specified by max_num nodes, thereby providing
the flexibility to generate partitions with reduced inter-connectivity. For example, if
max_num nodes is 5000 and part _si ze_t ol erance is 0.1, a partition can include up to
5500 (5000+500 because 500 is 0.1*5000) nodes.

6-81

Chapter 6
SDO_NET.LOGICAL_POWERLAW_PARTITION

Usage Notes

The format with the part _si ze_t ol erance parameter enables you to partition logical
networks with a primary focus on reducing the inter-connectivity among partitions while
keeping the edge-cut small.

After you use this procedure to create the partitions, consider using the
SDO_NET.GENERATE_PARTITION_BLOBS procedure, to enable better
performance for many network analysis operations, especially with large networks.

Examples

The following example creates patrtitions for link level 1 in the MY_LOG CAL_NET network,
and creates the MY_LOGICAL_PART_TAB table. The maximum number of nodes to
be placed in any partition is 5000. Information about the operation is added (open_node
=> 'a') to the ny_| ogi cal _part. | og file located in the location associated with the
directory object named LOG DI R.

EXECUTE SDO_NET. LOG CAL_PARTI TI ON(network => ' MY_LOd CAL_NET', -
partition_table_name => 'ny_|ogical part_tab',-
max_num nodes => 5000, -
log_loc =>"'LOG DR, log_file=>"'nmy_logical_part.log',-
link_|evel => 1, open_mpde =>'a');

The following example creates partitions for link level 1 in the My_LOG CAL_NET network,
and creates the MY_LOGICAL_PART_TAB table. The maximum number of nodes to
be placed in any partition is 5500 because of the combination of the max_num nodes and
part_size_tol erance values (5000 + 0.1*5000 = 5500). Information about the operation
is written (open_node => 'w) to the my_l ogi cal _part. | og file located in the location
associated with the directory object named LOG DI R, replacing any existing file with that
name in that location.

EXECUTE SDO_NET. LOG CAL_PARTI TI ON(network => ' MY_LOd CAL_NET', -
partition_table_name => 'ny_|ogical part_tab',-
max_num nodes => 5000, -
log_loc =>"'LOG DR, log_file=>"'ny_logical_part.log',-
link_|evel => 1, open_npde =>"'w,
part_size_tol erance => 0.1);

6.91 SDO_NET.LOGICAL_POWERLAW_PARTITION

Format

SDO_NET. LOG CAL_POWERLAW PARTI Tl ON(

net wor k I N VARCHAR?,
partition_table name I N VARCHARZ,

max_num nodes I N NUVBER,

log_loc I'N VARCHAR?,

log_ file I'N VARCHAR?,

open_node I'N VARCHAR2 DEFAULT "A',
l'ink_|evel I'N NUVBER DEFAULT 1,

part_size tolerance |N NUVBER DEFAULT 0);

ORACLE 6-82

ORACLE

Chapter 6
SDO_NET.LOGICAL_POWERLAW_PARTITION

Description

Partitions a logical power law (also called scale-free) network, and stores the
information in the partition table. (In a power law network, the node degree values
contain the power law information.)

Parameters

network
Network name.

partition_table_name

Name of the partition table, which is created by this procedure. (If an existing table
with the specified name already exists, it is updated with partition information for the
specified link level.) The partition table is described in Partition Table.

max_num_nodes

Maximum number of nodes to include in each partition. For example, if you specify
5000 and if the network contains 50,000 nodes, each partition will have 5000 or fewer
nodes, and the total number of partitions will be 10 or higher.

If the part _si ze_t ol erance value is greater than 0, the maximum number of nodes to
include in each partition is increased, as explained in the description of that
parameter.

log_loc
Directory object that identifies the path for the log file. To create a directory object,
use the SQL*Plus command CREATE DIRECTORY.

log_file
Log file containing information about operations on the logical power law network,
including any possible errors or problems.

open_mode

A one-character code indicating the mode in which to open the log file: wfor write over
(that is, delete any existing log file at the specified location and name, and create a
new file), or A (the default) for append (that is, append information to the existing
specified log file). If you specify A and the log file does not exist, a new log file is
created.

link_level

Network link level on which to perform the partitioning (default = 1). The link level
reflects the priority level for the link, and is used for network analysis, so that links with
higher priority levels can be considered first in computing a path.

part_size_tolerance

Allowed tolerance in partition size expressed as a percentage of max_num nodes. Must
be from O (the default) to 100.

A part_size_tol erance value greater than 0 effectively raises the max_num nodes value.
For example, if max_num nodes is 5000 and you specify part _si ze_t ol erance as 10, then
the actual maximum number of nodes to include in each patrtition is 5500 (5000 + 500,
because 500 is 10 percent of 5000). In deciding whether to use part_si ze_tol erance
and what value to specify, consider the cache size and the probability of related
nodes being placed in different partitions.

6-83

Chapter 6
SDO_NET.LRS_GEOMETRY_NETWORK

Usage Notes

After you use this procedure to create the partitions, consider using the
SDO_NET.GENERATE_PARTITION_BLOBS procedure, to enable better
performance for many network analysis operations, especially with large networks.

If the logical network is not a power law network, do not use this procedure, but
instead use the SDO_NET.LOGICAL_PARTITION procedure.

Examples

The following example creates partitions for link level 1 in the My_LOG CAL_PLAW NET
network, and creates the MY_LOGICAL_PLAW_PART_TAB table. The maximum
number of nodes to be placed in any partition is 5000. Information about the operation
is added (open_node => 'a') to the ny_l ogi cal _pl aw_part. | og file, located in the location
associated with the directory object named LOG DI R.

EXECUTE SDO_NET. LOG CAL_POWERLAW PARTI TI ON(net wor k => ' MY_LOGI CAL_PLAW NET', -
partition_table_name => 'ny_|ogical plaw part_tab',-
max_num nodes => 5000, -
log_loc => 'LOG DR, log_file=>"'ny_logical _plawpart.log",-
link_level => 1, open_npde =>"'a');

6.92 SDO_NET.LRS_GEOMETRY_NETWORK

ORACLE

Format

SDO_NET. LRS_GEOVETRY_NETWORK(
network | N VARCHAR2
) RETURN VARCHARZ;

Description

Returns the string TRUE if the network is a spatial network containing LRS geometries;
returns the string FALSE if the network is not a spatial network containing LRS
geometries.

Parameters

network
Network name.

Usage Notes

A network contains LRS geometries if the GEOMETRY_TYPE column in its entry in
the USER_SDO_NETWORK_METADATA view contains the value LRS_GEOVETRY. (The
USER_SDO_NETWORK_METADATA view is explained in
xxx_SDO_NETWORK_METADATA Views.)

Examples

The following example checks if the network named ROADS_NETWORK is a spatial network
containing LRS geometries.

SELECT SDO _NET. LRS_GEOVETRY_NETVORK(' ROADS_NETWORK') FROM DUAL;

SDO_NET. LRS_GEOVETRY_NETWORK(' ROADS_NETWORK')

6-84

Chapter 6
SDO_NET.NETWORK_EXISTS

6.93 SDO_NET.NETWORK_EXISTS

Format

SDO_NET. NETWORK_EXI STS(
network | N VARCHAR?
) RETURN VARCHARZ;

Description

Returns the string TRUE if the network exists; returns the string FALSE if the network
does not exist.

Parameters

network
Network name.

Usage Notes

If you drop a network (using the SDO_NET.DROP_NETWORK procedure), the
network no longer exists.

Examples
The following example checks if the network named ROADS_NETWORK exists.

SELECT SDO NET. NETWORK_EXI STS(' ROADS_NETWORK') FROM DUAL;

SDO_NET. NETWORK_EXI STS(' ROADS_NETVIORK')

6.94 SDO_NET.POST_XML

ORACLE

Format

SDO_NET. POST_XM(
url I'N VARCHAR?,
request IN XM.TYPE
) RETURN XMLTYPE;

Description
Sends an XML request to a URL, and returns the XML response.
Parameters

url
Uniform resource locator (URL) to receive the request.

request
Request in XML form.

6-85

ORACLE

Chapter 6
SDO_NET.POST_XML

Usage Notes

For information about the XML API to the Network Data Model Graph, see Network
Data Model Graph XML Interface.

Examples

The following example specifies an XML request, and sends it to a URL and returns
the XML response, which it then displays.

DECLARE
xm _request varchar2(4000);
ndmns_ur | var char 2(4000) ;
xnm _response xm type;
BEG N
xnm _request :=
'<?xm version="1.0" ?>
<net wor kAnal ysi sRequest
xm ns="http://xm ns. oracl e. conf spati al / net wor k"
xmns: xsi ="http://ww. w3. org/ 2001/ XM.Schema- i nst ance”
xmns:gm ="http://ww. opengis. net/gm ">
<net wor kNane>Hl LLSBOROUGH NETWORK2</ net wor kNanme>
<short est Pat h>
<start Poi nt>
<nodel D>1533</ nodel D>
</ startPoi nt>
<endPoi nt >
<nodel D>10043</ nodel D>
</ endPoi nt >
<subPat hRequest Par anet er >
<cost> true </cost>
<i sFul | Pat h> true </isFul | Pat h>
<startLinklndex> true </startLinklndex>
<startPercentage> true </startPercentage>
<endLi nkl ndex> true </endLi nkl ndex>
<endPer cent age> true </endPercent age>
<pat hRequest Par amet er >
<cost> true </cost>
<i sSinple> true </isSinple>
<start Nodel D>t r ue</ st art Nodel D>
<endNodel D>t r ue</ endNodel D>
<noCf Li nks>t rue</ noOf Li nks>
<l i nksRequest Par anet er >
<onl yLi nkl D>t r ue</ onl yLi nkl D>
</li nksRequest Par anet er >
<nodesRequest Par anet er >
<onl yNodel D>t r ue</ onl yNodel D>
</ nodesRequest Par anet er >
</ pat hRequest Par anet er >
</ subPat hRequest Par amet er >
</ short est Pat h>
</ net wor kAnal ysi sRequest >";
ndmws_url := "http://1ocal host: 7001/ Spati al Ws- Spat i al W6- cont ext - r oot /
Spati al WoXm Servl et ;
xn _response := sdo_net.PCST_XM.(ndmas_ur |, XM.TYPE(xm _request));
dbns_out put . put _l'i ne(xm _response. get StringVal ());
END;
/

6-86

Chapter 6
SDO_NET.REGISTER_CONSTRAINT

6.95 SDO_NET.REGISTER_CONSTRAINT

ORACLE

Format

SDO_NET. REGI STER_CONSTRAI NT(
constraint_name | N VARCHAR?,

cl ass_name I'N VARCHAR?,

directory_name | N VARCHARZ,

description I'N VARCHAR?) ;
Description

Loads the compiled Java code for the specified network constraint into the Java class
repository in the database, and loads the class name into the CLASS column of the
USER_SDO_NETWORK_CONSTRAINTS view (described in
xxx_SDO_NETWORK_CONSTRAINTS Views).

Parameters

constraint_name
Name of the network constraint.

class_name
Fully qualified name (including the name of the package) of the class that implements
the network constraint.

directory_name

Name of the directory object (created using the SQL statement CREATE
DIRECTORY) that identifies the location of the class file created when you compiled
the network constraint.

description
Description of the network constraint.

Usage Notes

Before you call this procedure, you must insert a row into the
USER_SDO_NETWORK_CONSTRAINTS view, compile the code for the Java class
that implements the network constraint, and use the CREATE DIRECTORY statement
to create a directory object identifying the location of the compiled class. For more
information about network constraints, see Network Constraints.

To delete the row for the constraint from the
USER_SDO_NETWORK_CONSTRAINTS view and thus disable the constraint, use
the SDO_NET.DEREGISTER_CONSTRAINT procedure.

Examples
The following example registers a network constraint named G venPr ohi bi t edTur n.

- Set up the network constraint.
REM
REM Create the geor_dir on the file systemfirst.
REM
- Connect as SYSTEM
DECLARE
- This is the directory that contains the CLASS file generated when you

6-87

Chapter 6
SDO_NET.SDO_GEOMETRY_NETWORK

- conpil ed the network constraint.

geor _dir varchar2(1000) :="'C\ny_data\files81\ PROTOTYPES\ NETWORK CONSTRAI NT
\ PLSQL_EXAMPLE ;
BEG N

EXECUTE | MVEDI ATE ' CREATE OR REPLACE DI RECTORY work_dir AS'' || geor_dir || '""'";
END;
/
GRANT read,wite on directory work_dir to net_con;

- Connect as the user that will register the constraint.

REM
REM Conpi | e G venProhi bitedTurn before you register the constraint.
REM
BEG N
SDO_NET. REG STER_CONSTRAI NT(' G venPr ohi bi tedTurn',
' conl net wor k/ const rai nts/ Prohi bi tedTurn',
"WORK DR, 'This is a network constraint that '||
"prohibits certain turns');

END;
/

6.96 SDO_NET.SDO_GEOMETRY_NETWORK

ORACLE

Format

SDO_NET. SDO_GEOVETRY_NETWORK(
network | N VARCHAR2
) RETURN VARCHARZ;

Description

Returns the string TRUE if the network is a spatial network containing SDO geometries
(spatial geometries without measure information); returns the string FALSE if the
network is not a spatial network containing SDO geometries.

Parameters

network
Network name.

Usage Notes

A network contains SDO geometries if the GEOMETRY_TYPE column in its entry in
the USER_SDO_NETWORK_METADATA view contains the value SDO_GEQVETRY. (The
USER_SDO_NETWORK_METADATA view is explained in
xxx_SDO_NETWORK_METADATA Views.)

Examples

The following example checks if the network named ROADS_NETWORK is a spatial network
containing SDO geometries.

SELECT SDO _NET. SDO_GEOVETRY_NETWORK(' ROADS_NETWORK') FROM DUAL;

SDO_NET. SDO_GEOMETRY_NETWORK(' ROADS_NETWORK')

6-88

Chapter 6
SDO_NET.SET_LOGGING_LEVEL

6.97 SDO_NET.SET_LOGGING_LEVEL

Format

SDO_NET. SET_LOGAE NG_LEVEL(
[evel | N NUMBER);

Description

Sets the minimum level of severity for messages to be displayed for network
operations.

Parameters

level
Minimum severity level for messages to be displayed for network operations. Must be
one of the numeric constants specified in the Usage Notes.

Usage Notes

All messages at the specified logging level and higher levels will be written. The
logging levels, from highest to lowest, are:

SDO_NET. LOGGI NG LEVEL_FATAL
SDO_NET. LOGGI NG LEVEL_ERROR
SDO_NET. LOGGH NG_LEVEL_WARN
SDO_NET. LOGG NG _LEVEL_| NFO
SDO_NET. LOGGI NG LEVEL_DEBUG
SDO_NET. LOGGI NG _LEVEL_FI NEST

The logging level is the Java logging level from the underlying implementation of this
function; therefore, to see the Java logging output on the console, execute the
following statements beforehand:

SET SERVEROQUTPUT ON;
EXECUTE DBMS_JAVA. SET_OUTPUT(10000);

Examples

The following example sets the logging level at SDO NET. LOGA NG_LEVEL_ERRCR, which
means that only messages with a severity of SDO NET. LOGG NG_LEVEL_ERRCR or
SDO_NET. LOGG NG _LEVEL_FATAL will be displayed.

EXECUTE SDO _NET. SET_LOGG NG_LEVEL(SDO_NET. LOGG NG _LEVEL_ERROR) ;

6.98 SDO_NET.SET MAX_JAVA HEAP_SIZE

ORACLE

Format

SDO_NET. SET_MAX_JAVA HEAP S| ZE(
bytes I N NUMBER);

Description

Sets the Java maximum heap size for an application to run in an Oracle Java virtual
machine.

6-89

Chapter 6
SDO_NET.SPATIAL_PARTITION

Parameters

bytes
Number of bytes for the Java maximum heap size.

Usage Notes

If you encounter the j ava. | ang. Qut Of Memor yError exception, you can use this procedure
to increase the maximum heap size.

If you specify a value greater than the system limit, the system limit is used.

Examples
The following example sets the Java maximum heap size to 536870912 (512 MB).
EXECUTE SDO_NET. SET_MAX_JAVA HEAP_S| ZE(536870912) ;

6.99 SDO_NET.SPATIAL_PARTITION

ORACLE

Format

SDO_NET. SPATI AL_PARTI TI ON(

net wor k I N VARCHAR?,

partition_table_name I N VARCHARZ,

max_num nodes I'N NUMBER,

log_l oc I N VARCHAR?,

log_file I N VARCHAR?,

open_node I N VARCHAR2 DEFAULT 'A',

l'ink_|evel I'N NUMBER DEFAULT 1);
Description

Partitions a spatial network, and stores the information in the partition table.

Parameters

network
Network name.

partition_table_name

Name of the partition table, which is created by this procedure. (If an existing table
with the specified name already exists, it is updated with partition information for the
specified link level.) The partition table is described in Partition Table.

max_hum_nodes

Maximum number of nodes to include in each partition. For example, if you specify
5000 and if the network contains 50,000 nodes, each partition will have 5000 or fewer
nodes, and the total number of partitions will be 10 or higher.

log_loc
Directory object that identifies the path for the log file. To create a directory object,
use the SQL*Plus command CREATE DIRECTORY.

6-90

Chapter 6
SDO_NET.TOPO_GEOMETRY_NETWORK

log_file
Log file containing information about spatial network operations, including any
possible errors or problems.

open_mode

A one-character code indicating the mode in which to open the log file: wfor write over
(that is, delete any existing log file at the specified location and name, and create a
new file), or A (the default) for append (that is, append information to the existing
specified log file). If you specify A and the log file does not exist, a new log file is
created.

link_level

Network link level on which to perform the partitioning (default = 1). The link level
reflects the priority level for the link, and is used for network analysis, so that links with
higher priority levels can be considered first in network computations.

Usage Notes

After you use this procedure to create the partitions, consider using the
SDO_NET.GENERATE_PARTITION_BLOBS procedure, to enable better
performance for many network analysis operations, especially with large networks.

Examples

The following example creates partitions for link level 1 in the MY_PARTI TI ONED_NET
network, and creates the MY_PARTITIONED_NET_TAB table. The maximum number
of nodes to be placed in any partition is 5000. Information about the operation is added
(open_node => 'a') to the ny_partitioned_net.| og file, located in the location associated
with the directory object named LOG DI R.

EXECUTE SDO_NET. SPATI AL_PARTI TI ON(net wor k => ' MY_PARTI TI ONED_NET' , -
partition_table _name => 'ny_partitioned_net_tab',-
max_num nodes => 5000, -
log_loc =>"LOG DR, log_file=>"'ny_partitioned_net.log',-
link_|evel => 1, open_nmode => 'a');

6.100 SDO_NET.TOPO_GEOMETRY_NETWORK

ORACLE

Format

SDO_NET. TOPO_GEOVETRY_NETWORK(
network | N VARCHAR?
) RETURN VARCHARZ;

Description

Returns the string TRUE if the network is a spatial network containing
SDO_TOPO_GEOMETRY (topology geometry) objects; returns the string FALSE if the
network is not a spatial network containing SDO_TOPO_GEOMETRY objects.

Parameters

network
Network name.

6-91

Chapter 6
SDO_NET.UPDATE_FEATURE

Usage Notes

A network contains SDO_TOPO_GEOMETRY objects if the GEOMETRY_TYPE
column in its entry in the USER_SDO_NETWORK_METADATA view contains the
value TOPO_GEOVETRY. (The USER_SDO_NETWORK_METADATA view is explained in
xxX_SDO_NETWORK_METADATA Views.)

Examples

The following example checks if the network named ROADS_NETWORK is a spatial network
containing SDO_TOPO_GEOMETRY objects.

SELECT SDO _NET. TOPO_GEOVETRY_NETWORK(' ROADS_NETWORK') FROM DUAL;

SDO_NET. TOPO_GEOVETRY_NETWORK(' ROADS_NETWORK')

6.101 SDO_NET.UPDATE_FEATURE

ORACLE

Format

SDO_NET. UPDATE_FEATURE(
feature_layer_id | N NUMBER,
feature id I N NUVBER,
feature_elements | N SDO NET_FEAT ELEM ARRAY DEFAULT NULL,
child feature_ids |N SDO NET_LAYER FEAT ARRAY DEFAULT NULL,
check_integrity I N BOOLEAN DEFAULT TRUE);

Description

Updates a feature in a feature layer.

Parameters

feature_layer_id
ID of the feature layer to which to update the feature.

feature_id
ID of the feature to be updated.

feature_elements

Feature elements of the feature to add to any existing feature elements. If this
parameter is null, the existing feature elements are not changed. If this parameter in
empty, any existing feature elements are removed. (The
SDO_NET_FEAT_ELEM_ARRAY type is described in Data Types Used for Feature
Modeling.)

child_feature_ids

Child features of the feature that are to add to any existing child features. If this
parameter is null, the existing child features are not changed. If this parameter in
empty, any existing parent relationships for this feature with child features are
removed. (The SDO_NET_LAYER_FEAT_ARRAY type is described in Data Types
Used for Feature Modeling.)

6-92

Chapter 6
SDO_NET.UPDATE_FEATURE_ELEMENT

check_integrity
TRUE (the default) checks if the input network elements exist; and if any do not exist,
an error is generated. FALSE does not check if the input network elements exist.

Usage Notes
To add a feature to a feature layer, use the SDO_NET.ADD_FEATURE procedure.

A feature layer ID is automatically generated for the feature layer.

Examples

The following example updates a specified feature by defining two feature elements
and adding them.

DECLARE
feature_|l ayer _i d NUVBER
feature_id NUMBER : = 1;
el ements SDO NET_FEAT ELEM ARRAY : = SDO NET_FEAT ELEM ARRAY();
link_id NUMBER := 1314,
BEG N
feature_layer_id := sdo_net.get _feature_layer id('GRID, 'PA");
el ement s. ext end;
el ements(1) := SDO NET_FEAT_ELEM SDO NET. FEAT_ELEM TYPE POL, link_id, 0.7, null);
el ement s. ext end;
el ements(2) := SDO NET_FEAT_ELEM SDO NET. FEAT ELEM TYPE POL, link_id, 0.8, null);
sdo_net.update_feature(feature_layer_id, feature_id, elements, null);
END;
/

6.102 SDO_NET.UPDATE_FEATURE_ELEMENT

ORACLE

Format

SDO_NET. UPDATE_FEATURE_ELEMENT(
feature_layer_id | N NUVBER,
feature id I N NUMBER,
sequence_nunber | N NUVBER,
feature_elenent |N SDO NET FEAT ELEM
check_integrity |N BOOLEAN DEFAULT TRUE);

Description
Updates a feature element.
Parameters

feature_layer_id
ID of the feature layer for the feature.

feature_id
ID of the feature.

sequence_number
Sequence number of the feature element to be updated.

6-93

Chapter 6
SDO_NET.VALIDATE_LINK_SCHEMA

feature_element
Feature element definition to replace the specified feature element. (The
SDO_NET_FEAT_ELEM type is described in Data Types Used for Feature Modeling.)

check_integrity
TRUE (the default) checks if the input network elements exist; and if any do not exist,
an error is generated. FALSE does not check if the input network elements exist.

Usage Notes

To add a feature element, use the SDO_NET.ADD_FEATURE_ELEMENT procedure;
to add multiple feature elements in a single operation, use the
SDO_NET.ADD_FEATURE_ELEMENTS procedure.

Examples

The following example updates the feature element at sequence number 2 on link ID
1314 of feature ID 1.

DECLARE
feature_layer_id NUMBER
feature_id NUMBER : = 1;
el ement SDO_NET_FEAT _ELEM
link_id NUMBER := 1314,
BEG N
feature_layer_id := sdo_net.get feature_layer id('GRID, 'PQ");
el ement : = SDO NET_FEAT ELEM SDO NET. FEAT ELEM TYPE POL, link_id, 0.2, null);
sdo_net.update_feature_el enent(feature_layer_id, feature_id, 1, element);
END;
/

6.103 SDO_NET.VALIDATE_LINK_SCHEMA

ORACLE

Format

SDO_NET. VALI DATE_LI NK_SCHEMA(
network | N VARCHAR2
) RETURN VARCHARZ;

Description

Returns the string TRUE if the metadata relating to links in a network is valid; returns the
string FALSE if the metadata relating to links in a network is not valid.

Parameters

network
Network name.

Usage Notes

This function checks the following for validity: table name, geometry column, and cost
column for spatial networks; measure-related information for LRS networks; topology-
related information for topology networks; and hierarchy-related information for
hierarchical networks.

6-94

Chapter 6
SDO_NET.VALIDATE_LRS_SCHEMA

Examples

The following example checks the validity of the metadata related to links in the
network named ROADS_NETWORK.

SELECT SDO NET. VALI DATE_LI NK_SCHEMA(' ROADS_NETWORK') FROM DUAL;

SDO_NET. VALI DATE_LI NK_SCHEMA(' ROADS_NETWORK')

6.104 SDO_NET.VALIDATE_LRS_SCHEMA

Format

SDO _NET. VALI DATE_LRS_SCHEMA(
network | N VARCHAR2
) RETURN VARCHARZ;

Description

Returns the string TRUE if the metadata relating to LRS information in a network is valid;
returns the string FALSE if the metadata relating to LRS information in a network is not
valid.

Parameters

network
Network name.

Usage Notes

None.

Examples

The following example checks the validity of the metadata related to LRS information
in the network named ROADS_NETWORK.

SELECT SDO_NET. VALI DATE_LRS_SCHEMA(' ROADS_NETWORK') FROM DUAL;

SDO_NET. VALI DATE_LRS_SCHEMA(' ROADS_NETWORK')

6.105 SDO_NET.VALIDATE_NETWORK

ORACLE

Format

SDO_NET. VALI DATE_NETWORK(

net wor k I N VARCHAR2,

check_data | N VARCHAR2 DEFAULT ' FALSE
) RETURN VARCHAR?;

6-95

Chapter 6
SDO_NET.VALIDATE_NODE_SCHEMA

Description

Returns the string TRUE if the network is valid; returns the string FALSE if the network is
not valid.

Parameters

network
Network name.

check_data

TRUE performs additional checks on the referential integrity of network data; FALSE (the
default) performs basic checks, but not additional checks, on the referential integrity of
network data.

Usage Notes

This function checks the metadata for the network and any applicable network schema
structures (link, node, path, subpath, LRS). It performs basic referential integrity
checks on the network data, and it optionally performs additional checks. If any errors
are found, the function returns the string FALSE.

The checks performed by this function include the following:

* The network exists.

* The node and link tables for the network exist, and they contain the required
columns.

* The start and end nodes of each link exist in the node table.

e For an LRS geometry network, the LRS table exists and contains the required
columns.

» For a spatial network, columns for the node and path geometries exist and have
spatial indexes defined on them.

e If check_dat a is TRUE, additional referential integrity checking on the network data is
performed. This will take longer, especially if the network is large.

Examples
The following example validates the network named LOG_NET1.

SELECT SDO _NET. VALI DATE_NETWORK(' LOG_NET1') FROM DUAL;

SDO_NET. VALI DATE_NETWORK(' LOG NET1')

6.106 SDO_NET.VALIDATE_NODE_SCHEMA

Format

SDO_NET. VALI DATE_NODE_SCHEMA(
network | N VARCHAR2
) RETURN VARCHAR?Z;

ORACLE 6-96

Chapter 6
SDO_NET.VALIDATE_PARTITION_SCHEMA

Description

Returns the string TRUE if the metadata relating to nodes in a network is valid; returns
the string FALSE if the metadata relating to nodes in a network is not valid.

Parameters

network
Network name.

Usage Notes

This function checks the following for validity: table name, geometry column, and cost
column for spatial networks; measure-related information for LRS networks; topology-
related information for topology networks; and hierarchy-related information for
hierarchical networks.

Examples

The following example checks the validity of the metadata related to nodes in the
network named LOG NET1.

SELECT SDO _NET. VALI DATE_NODE_SCHEMA(' LOG_NET1') FROM DUAL;

SDO_NET. VALI DATE_NCDE_SCHEMA(' LOG NET1')

6.107 SDO_NET.VALIDATE_PARTITION_SCHEMA

ORACLE

Format

SDO_NET. VALI DATE_PARTI TI ON_SCHEMA(
network | N VARCHAR2
) RETURN VARCHARZ;

Description

Returns the string TRUE if the metadata relating to partitions in a network is valid;
returns the string FALSE if the metadata relating to partitions in a network is not valid.

Parameters

network
Network name.

Usage Notes

This function checks the validity of information in the partition table, which is described
in Partition Table.

Examples

The following example checks the validity of the metadata related to partitions in the
network named SDO_PARTI Tl ONED.

6-97

Chapter 6
SDO_NET.VALIDATE_PATH_SCHEMA

SELECT SDO _NET. VALI DATE_PARTI TI ON_SCHEMA(' SDO_PARTI TI ONED') FROM DUAL;

SDO_NET. VALI DATE_PARTI TI ON_SCHEMA(' SDO_PARTI TI ONED')

6.108 SDO_NET.VALIDATE_PATH_SCHEMA

Format

SDO_NET. VALI DATE_PATH_SCHEMA(
network | N VARCHAR2
) RETURN VARCHARZ;

Description

Returns the string TRUE if the metadata relating to paths in a network is valid; returns
the string FALSE if the metadata relating to paths in a network is not valid.

Parameters

network
Network name.

Usage Notes

This function checks the following for validity: table name, geometry column, and cost
column for spatial networks; measure-related information for LRS networks; topology-
related information for topology networks; and hierarchy-related information for
hierarchical networks.

Examples

The following example checks the validity of the metadata related to paths in the
network named ROADS_NETWORK.

SELECT SDO_NET. VALI DATE_PATH_SCHEMA(' ROADS_NETWORK') FROM DUAL;

SDO_NET. VALI DATE_PATH_SCHEMA(' ROADS_NETWORK')

6.109 SDO_NET.VALIDATE_SUBPATH_SCHEMA

ORACLE

Format

SDO_NET. VALI DATE_SUBPATH_SCHEMA(
network | N VARCHAR2
) RETURN VARCHARZ;

Description

Returns the string TRUE if the metadata relating to subpaths in a network is valid;
returns the string FALSE if the metadata relating to subpaths in a network is not valid.

6-98

Chapter 6
SDO_NET.VALIDATE_SUBPATH_SCHEMA

Parameters

network
Network name.

Usage Notes

This function checks the validity of information in the subpath table, which is described
in Subpath Table.

Examples

The following example checks the validity of the metadata related to subpaths in the
network named MY_NETWORK.

SELECT SDO NET. VALI DATE_SUBPATH_SCHEMA(' MY_NETWORK') FROM DUAL;

SDO_NET. VALI DATE_SUBPATH_SCHEMA(" MY_NETWORK')

ORACLE 6-99

SDO _NFE Package Subprograms

The MDSYS.SDO_NFE package contains subprograms (functions and procedures) for
performing network feature editing.

To use these subprograms, you must understand the conceptual information in
Network Data Model Graph Overview, and especially Feature Modeling Using Network
Feature Editing (NFE).

Topics:

« SDO_NFE.APPLY_RULE

« SDO_NFE.CLASSIFY_LINES_BY_SIDE

« SDO_NFE.CREATE_MODEL_SEQUENCE

e SDO_NFE.CREATE_MODEL_STRUCTURE

e SDO_NFE.CREATE_MODEL_UNDERLYING_NET

« SDO_NFE.CREATE_MODEL_WORKSPACE

« SDO_NFE.DELETE_ALL_FT _LAYERS

e SDO_NFE.DELETE_ALL_WORKSPACES

e SDO_NFE.DELETE_MODEL_STRUCTURE

e SDO_NFE.DELETE_MODEL_WORKSPACE

« SDO_NFE.DROP_MODEL_SEQUENCE

« SDO_NFE.DROP_MODEL_UNDERLYING_NETWORK
e SDO_NFE.GET_CONNECTION_POINT_GEOM

e SDO_NFE.GET_INTERACTION_GROUPS

« SDO_NFE.GET_LINES_MATCH_LP_RULE

e SDO_NFE.GET_LL_CONN_INTERSECTIONS

e SDO_NFE.GET_LP_CONN_INTERSECTIONS

« SDO_NFE.GET_MODEL_SEQUENCE_NAME

« SDO_NFE.GET_MODEL_TABLE_NAME

e SDO_NFE.GET_MODEL_UNDERLYING_NETWORK
« SDO_NFE.GET_NEXT_SEQUENCE_VALUE

« SDO_NFE.GET_POINTS_MATCH_LP_RULE

e SDO_NFE.IMPORT_NETWORK

e SDO_NFE.SET_MODEL_UNDERLYING_NETWORK

ORACLE 7-1

Chapter 7
SDO_NFE.APPLY_RULE

7.1 SDO_NFE.APPLY_RULE

Format

SDO_NFE. APPLY_RULE(
model _id | N NUMVBER
rul e_type I'N VARCHARZ,
rule_id I N NUMVBER);

Description

Applies a connectivity rule over all the features contained in a specified NFE model.

Parameters

model_id
ID of the NFE model.

rule_type
Type of connectivity rule to apply: RULE_TYPE_LI NE or RULE_TYPE_PQOl NT.

rule_id
ID of the connectivity rule.

Usage Notes

The specified rule must be registered in the specified model. You can register a
connectivity rule in the model tables or through the Java API.

Examples

The following example applies a line-line rule to any interacting lines in an NFE model
that meet the connectivity rule identified by the rule ID 1.

DECLARE
model id NUMBER : = 1;
rul e_type VARCHAR2(1) := sdo_nfe. RULE_TYPE_LI NE_LI NE;
rule id NUMBER : = 1;
BEG N
sdo_nfe.apply_rule(model _id, rule_type, rule_id);
END;
/

7.2 SDO_NFE.CLASSIFY LINES BY SIDE

Format

SDO_NFE. CLASSI FY_LI NES_BY_SI DE(
nodel _i d I N NUMBER,
Il _rule_id | N NUMBER
|'i nes I N NUMBER,
I hs_indexes OUT DBMS_SQL, NUMBER TABLE,
rhs_i ndexes OUT DBMS_SQ., NUVBER TABLE);

ORACLE 7-2

ORACLE

Chapter 7
SDO_NFE.CLASSIFY _LINES BY SIDE

Description

Given a set of line features that match a connectivity Line-Line rule, this procedure
classifies which lines lie on the left hand side of the rule and which ones on the right
hand side.

Parameters

model_id
ID of the NFE model.

Il_rule_id
Connectivity Line-Line rule identifier.

lines
Set of line features that meet the rule..

lhs_indexes
Associative array where the indexes of the lines lying on the left hand side of the rule
will be stored (in the form (index, index)).

rhs_indexes
Associative array where the indexes of the lines lying on the right hand side of the rule
will be stored.

Usage Notes

The specified rule must be registered in the specified model. You can register a
connectivity rule in the model tables or through the Java API.

Examples

The following example first gets all the interacting groups that meet the rule with ID 1
and then classifies the lines by side. Left hand side lines are output in lhs_indexes
while rhs_indexes contain the rule’s right hand side lines.

DECLARE
model _id NUMBER : = 1;
[l rule_id NUMBER := 1;
l'ines SDO_| NTERACT_LI NE_FEAT_ARRAY;
[hs_i ndexes dbms_sql . NUMBER TABLE;
rhs_i ndexes dbms_sql . NUVBER TABLE;
inter_grps SDO | NTERACTI ON_ARRAY;

BEG N

- CGet the groups of interacting features that meet the L-L Rule
inter_grps := sdo_nfe.get_interaction_groups(nodel _id,
sdo_nfe. RULE_TYPE LINE_LINE, Il _rule_id);

FORi IN 1..inter_grps.count |oop
lines := inter_grps(i).lines;
- For each group, classify the lines by rule side.
sdo_nfe.classify_lines_by side(nodel _id, Il _rule_id, lines, |hs_indexes,
rhs_i ndexes);
END | oop;

END;

7-3

Chapter 7
SDO_NFE.CREATE_MODEL_SEQUENCE

7.3 SDO_NFE.CREATE_MODEL_SEQUENCE

Format

SDO_NFE. CREATE_MODEL _ SEQUENCE(
model _i d I N NUMBER,
owner _nane I N VARCHAR2,
aequence_nane | N VARCHAR?) ;

Description

Creates and registers a sequence for a model.

Parameters

model_id
ID of the NFE model.

owner_name
Sequence's related table.

aequence_name
Name of the sequence to be created.

Usage Notes

All the sequences for the base tables are created by the
SDO_NFE.CREATE_MODEL_STRUCTURE function, but you may need to create
other sequences (such as for features).

The NFE model and the sequence’s related table must exist.

Examples

The following example creates a sequence for the NFE model identified by the ID 1
and a table named FEATURES.

SDO_NFE. CREATE_MODEL_SEQUENCE(’ 1', ' features',’ features_seq’)

7.4 SDO_NFE.CREATE_MODEL_STRUCTURE

ORACLE

Format

SDO_NFE. CREATE_MODEL_STRUCTURE(
model _name I'N VARCHAR?,
edition_mode | N NUMBER,
versionable | N VARCHAR2

) RETURN NUMBER;

Description

Creates the tables and metadata for an NFE model.

7-4

Chapter 7
SDO_NFE.CREATE_MODEL_UNDERLYING_NET

Parameters

model_name
Name to be given to the INFE model.

edition_mode
Edition mode. Must be SDO NFE. FROM SCRATCH or SDO_NFE. OVER _EXI ST_NETWORK.

versionable
The string value Y if the model will be versionable, otherwise N.

Usage Notes

This function returns the new model's ID value.

Examples

The following example creates a versionable model named MXDELO1 with the
SDO_NFE. FROM SCRATCH edition mode.

DECLARE
model _id NUMBER;
nodel _nane VARCHAR2(50) := ' MODELO1';
edition_mode NUMBER = SDO_NFE. FROM SCRATCH,;
versionable VARCHAR2(1) :='Y';

BEG N
model _id : = SDO NFE. create_nodel _structure(nodel _nane, edition_node,
versionable);
END;
/

7.5 SDO_NFE.CREATE_MODEL_UNDERLYING_NET

ORACLE

Format

SDO_NFE. CREATE_MODEL_UNDERLY! NG_NET(
model id I N NUMBER,
net wor k_nane I'N VARCHARZ,
num hi erarchy_| evel s I N NUVBER,
is_directed I N BOOLDEAN,
node_with_costs I N BOOLEAN) ;

Description

Creates a spatial network and associates it to the specified NFE Model. It also creates
sequences for its nodes, links, and paths, and registers them in the model's metadata.

Parameters

model_id
ID of the NFE model.

network_name
Name of the network to be created.

7-5

Chapter 7
SDO_NFE.CREATE_MODEL_WORKSPACE

num_hierarchy_levels
Number of hierarchical levels for the network.

is_directed
TRUE if the network is directed.

node_with_costs
TRUE if the network’s nodes contain cost values.

Usage Notes

An NFE model with the specified ID must exist. The geometry metadata must be
registered for the newly created network’s nodes and links tables.

Examples

The following example creates an underlying network for an NFE model and registers
the geometry metadata for the network’s links and nodes tables.

DECLARE
model _id NUMBER =1
net wor k_name VARCHAR2(50) := ' MODELO1';
num hi erarchy_l evel s NUMBER : = 1;
is_directed VARCHAR2(10) : = "'TRUE';
node_wi th_costs VARCHAR2(10) : = 'TRUE';
BEG N

- create underlying network
SDO _NFE. creat e_nodel _under|ying_net (nodel _id, network_nane, num hierarchy_|evels,
is_directed, node_with_costs);
- register links and nodes tabl es geom netadata
SDO_NET. i nsert _geom net adat a(net wor k_nane,
SDO DI M_ARRAY(SDO DI M ELEMENT(' LONG TUDE' , -180, 180, 0.5),
SDO DI M _ELEMENT(' LATI TUDE', -90, 90, 0.5)), 8307);
END;
/

7.6 SDO_NFE.CREATE_MODEL_WORKSPACE

Format

SDO_NFE. CREATE_MODEL_WORKSPACE(

model _id I'N NUMBER,
parent _wor kspace_nanme | N VARCHARZ,
wor kspace_nane I'N VARCHAR?,

i s_nmbr I'N VARCHAR?,
i s_locked I N VARCHAR?,
[ower_x | N NUVBER,
[ower_y I N NUVBER,
upper _x | N NUMBER,
upper_y | N NUMVBER);

Description

Creates a new workspace and relates it to an NFE model.

ORACLE 7-6

Parameters

model_id
ID of the NFE model.

parent_workspace_name
Name of the parent workspace.

workspace_name
Name of the workspace.

is_mbr

Chapter 7

SDO_NFE.CREATE_MODEL_WORKSPACE

The string TRUE if the workspace is created for a minimum bounding rectangle (MBR)

rectangular area of the model.

is_locked
The string TRUE if the workspace is locked.

lower_x
The lower x ordinate of the workspace MBR.

lower_y
The lower y ordinate of the workspace MBR.

upper_x
The upper x ordinate of the workspace MBR.

upper_y
The upper y ordinate of the workspace MBR.

Usage Notes

The NFE model must have been created with the ver si onabl e option enabled.

Examples

The following example creates a workspace for an NFE model.

DECLARE
model _i d NUVBER :
parent _ws_name VARCHAR2

= 1,

(30) :="LIVE;
wor kspace_name VARCHAR2(30)

(1)

(1)

:= "PRQJECT_VI';
ry
NE

i s_mbr VARCHAR2
is_l ocked VARCHAR2
| ower _x NUMBER : = -15.575;
| over _y NUMBER : = 15.575;
upper _x NUMBER : = -12. 825;
upper _y NUMBER : 28. 975;

BEG N

SDO_NFE. creat e_nodel _wor kspace(nodel _id, parent_ws_nane, workspace_nane,

is_locked, lower_x, |ower_y, upper_x, upper_y);
END;
/

ORACLE

i s_nbr,

7-7

Chapter 7
SDO_NFE.DELETE_ALL FT_LAYERS

7.7 SDO_NFE.DELETE_ALL_FT LAYERS

Format

SDO_NFE. DELETE ALL_FT_LAYERS(
model id |N NUMBER);

Description

Drops all content in a specified NFE model.

Parameters

model_id
ID of the NFE model.

Usage Notes

This procedure is mainly used before deleting a model and its structure from the
database.

Examples
The following example deletes all content from the model with the ID value 1.

EXECUTE SDO NFE. DELETE ALL_FT_LAYERS(1);

7.8 SDO_NFE.DELETE_ALL_WORKSPACES

ORACLE

Format

SDO_NFE. DELETE_ALL_WORKSPACES(
model _id | N NUVBER);

Description

Dropa all the workspaces related to the specified NFE model, along with their
relationship to the model.

Parameters

model_id
ID of the NFE model.

Usage Notes

This procedure is mainly used before deleting a model and its structure from the
database.

Examples
The following example deletes all workspaces related to the model with ID value 1.

EXECUTE SDO_NFE. DELETE_ALL_WORKSPACES(1) ;

7-8

Chapter 7
SDO_NFE.DELETE_MODEL_STRUCTURE

7.9 SDO_NFE.DELETE_MODEL_STRUCTURE

Format

SDO_NFE. DELETE_MODEL_STRUCTURE(
model _id | N NUVBER);

Description

Drops all tables in a specified NFE model, and deletes the metadata records for the
model.

Parameters

model_id
ID of the NFE model.

Usage Notes
Before using this procedure, you may need to do the following:

« Delete model’'s workspaces by executing the
SDO_NFE.DELETE_ALL_WORKSPACES procedure.

e Delete the model's feature layers by executing the
SDO_NFE.DELETE_ALL_FT_LAYERS procedure.

e If f the model’s edition mode is SDO NFE. FROM SCRATCH, delete the underlying
network.

Examples
The following example the structure of the model with the ID value 1.

EXECUTE SDO_NFE. DELETE_MODEL_STRUCTURE(1) ;

/.10 SDO_NFE.DELETE_MODEL_WORKSPACE

ORACLE

Format

SDO_NFE. DELETE_MODEL_WORKSPACE(
nodel _i d I'N NUMBER,
wor kspace_nane | N VARCHAR?) ;

Description
Drops a workspace along with its relationship with the specified NFE model.
Parameters

model_id
ID of the NFE model.

workspace_name
Name of the workspace.

7-9

Chapter 7
SDO_NFE.DROP_MODEL_SEQUENCE

Usage Notes

wor kspace_name must be the name of an existing workspace under the specified NFE
model. All branches of the workspace are removed.

The relationship with the model is deleted from
xxx_SDO_NFE_MODEL_WORKSPACE views.

Examples

The following example deletes the workspace named PROJECT V4 from the NFE model
with the ID 1

EXECUTE SDO_NFE. DELETE_MODEL_WORKSPACE(1, ' PROJECT V4'):

7.11 SDO_NFE.DROP_MODEL_SEQUENCE

Format
SDO_NFE. DROP_MODEL_ SEQUENCE(

model _id | N NUMBER
seg_nane | N VARCHAR?) ;

Description
Drops a sequence along with its relationship with the specified NFE model.
Parameters

model_id
ID of the NFE model.

seq_name
Name of the sequence.

Usage Notes

The relationship of the sequence with the model is deleted from the table registered in
SEQUENCE_REG_TAB from the xxx_SDO_NFE_MODEL_METADATA views.

Examples

The following example deletes the sequence named Pl PES_FTLAY_| D_SEQfrom the NFE
model with the ID 1.

EXECUTE SDO NFE. DROP_MODEL_SEQUENCE(1, ' PI PES_FTLAY ID SEQ)

7.12
SDO_NFE.DROP_MODEL_UNDERLYING_NETWORK

Format

SDO _NFE. DROP_MODEL_UNDERLYI NG _NETWORK
network_name | N VARCHAR?);

ORACLE 7-10

Chapter 7
SDO_NFE.GET_CONNECTION_POINT_GEOM

Description

Drops a network and removes its relationship with any NFE model.

Parameters

network_name
Name of the network.

Usage Notes

The network must be bound to at least one NFE model..

Examples

The following example drops the network named PI PES and removes its relationship
with any existing NFE model.

EXECUTE SDO_NFE. DROP_MODEL_UNDERLYI NG_NETWORK("' PI PES') ;

7.13SDO_NFE.GET _CONNECTION POINT GEOM

ORACLE

Format

SDO_NFE. GET_CONNECTI ON_POI NT_GEOM
conn_intersection |N SDO | NTERACTI ON
) RETURN SDO_GEOVETRY;

Description

Given a group of interacting features (lines and/or points), calculates and returns the
geometry of the point that must connect them.

Parameters

conn_intersection

Interaction group of features. Set of line and/or point features that interact at a
common spatial point. (The SDO_INTERACTION type is described in Data Types
Used for NFE Connectivity Rules.)

Usage Notes

This function is mainly used over a validated group of features that must be connected
because of the requirement of a connectivity rule (see NFE Rules). To get this group
of features, use SDO_NFE.GET_LP_CONN_INTERSECTIONS for Line-Point Rules
or SDO_NFE.GET_LL_CONN_INTERSECTIONS for Line-Line Rules.

Examples

The following example gets the connection point geometry for each interacting group
that meets the given line-point rule.

DECLARE
model _i d NUMBER : = 1;
[p_rule_id NUMBER : = 1;
inter_grps SDO_| NTERACTI ON_ARRAY;

conn_poi nt _geom SDO_GEQOMVETRY;

7-11

Chapter 7
SDO_NFE.GET_INTERACTION_GROUPS

BEG N
- Get the groups of interacting features that neet the L-P Rule in the nodel
inter_grps := sdo_nfe.get_interaction_groups(nodel _id,
sdo_nfe. RULE_TYPE_LINE_PONT, Ip_rule_id);
- Iterate through the interacting groups
FORi IN 1..inter_grps.count |oop
- Get the connection point geometry for each interacting group
conn_poi nt_geom : = sdo_nfe. get_connection_poi nt_geon(inter_groups(i));
END | oop;
END;
/

7.14 SDO_NFE.GET_INTERACTION_GROUPS

ORACLE

Format

SDO_NFE. GET_| NTERACTI ON_GROUPS(
model _id I N SDO NUMBER,
rule_type |N VARCHARZ,
rule_id I'N NUMBER
) RETURN SDO_| NTERACTI ON_ARRAY;

Description

Returns an array of groups of all features that are interacting at spatial points where
the specified connectivity rule is being met.

Parameters

model_id
NFE model identifier.

rule_type
Connectivity rule type. Possible values: SDO NFE. RULE_TYPE_LI NE_LI NE or
SDO_NFE. RULE_TYPE_LI NE_PQI NT.

rule_id
Rule identifier. Must be a value from the LINE_LINE_RULE or LINE_POINT_RULE
table.

Usage Notes

This function returns an object of type SDO_INTERACTION_ARRAY, which is
described in Data Types Used for NFE Connectivity Rules.

Each group of the interacting features returned by this function is composed of all the
line and point features that interact at a specific spatial point where the specified rule is
being met.

By returning the whole group of all interacting features at specific points, this function
can help you if you want to create a customized way of connecting features depending
on which other features (meeting the rule or not) are taking part in a specified
interaction point. (See the discussion of rule decision handlers under NFE Rules.)

Examples

The following example gets the interacting groups which met the given line-point rule.

7-12

Chapter 7
SDO_NFE.GET_LINES_MATCH_LP RULE

DECLARE
model _i d NUMBER : = 1;
lp_rule_id NUMBER : = 1;
inter_grps SDO_| NTERACTI ON_ARRAY;
BEG N
inter_grps := sdo_nfe.get _interaction_groups(nodel _id,
END;

/

7.15SDO_NFE.GET_LINES MATCH_LP RULE

ORACLE

Format

SDO_NFE. GET_LI NES_MATCH_LP_RULE(
model _i d N SDO_NUMBER,
[p_rule_id | N NUMBER,
l'ines I N SDO_| NTERACT_LI NE_FEAT_ARRAY,
) RETURN DBMS_SQL. NUMBER TABLE;

Description

Given an set of line features, calculates the group of them that match a connectivity
line-point rule. Returns a DBMS_SQL.NUMBER_TABLE object with the indexes of the
lines in the input array that match the line-point rule.

Parameters

model_id
NFE model identifier.

Ip_rule_id
Connectivity line-point rule identifier. Must exist in the LINE_POINT_RULE table.

lines

Array of line features where the search will take place. (The
SDO_INTERACT_LINE_FEAT_ARRAY type is described in Data Types Used for
NFE Connectivity Rules.)

Usage Notes

This function is mainly used after the SDO_NFE.GET_INTERACTION_GROUPS
function, which returned a group of mixed line features where some line features
matched a specific connectivity rule and some did not.

Examples

The following example finds the lines that meet a connectivity line-point rule from
interacting groups.

DECLARE
model _i d NUMBER : = 1;
[p_rule_id NUMBER := 1,

lines SDO | NTERACT LI NE_FEAT _ARRAY:
mat ch_l i nes dbms_sql . NUMBER_TABLE;
inter_grps SDO_| NTERACTI ON_ARRAY;
BEG N
- find interaction groups
inter_grps := sdo_nfe.get _interaction_groups(nodel _id,
sdo_nfe. RULE_ TYPE_LINE LINE, 1);

7-13

Chapter 7
SDO_NFE.GET_LL_CONN_INTERSECTIONS

FOR i IN1..inter_grps.count |oop

lines := inter_grps(i).lines;

mat ch_lines := sdo_nfe.get_lines_match_|p_rule(nodel _id, Ip_rule_id, lines);
END | oop;

END;
/

7.16 SDO_NFE.GET LL_CONN_INTERSECTIONS

ORACLE

Format

SDO_NFE. GET_LL_CONN_| NTERSECTI ONS(

model _i d I'N SDO_NUMBER,
[l_rule_id I'N NUMBER,
interaction_grp N QUT SDO_I NTERACTI ON,

rule_I hs_lines_indexes | N DBMS_SQL. NUMBER_TABLE,
rule_rhs_lines_indexes | N DBMS_SQL. NUMBER_TABLE,
rul e_poi nts_i ndexes I'N DBMS_SQL. NUMBER _TABLE,
) RETURN SDO_| NTERACTI ON_ARRAY;

Description

Given a group of interacting features (lines and points) this function calculates
subgroups of these features that can be connected according to the connectivity line-
line rule specified, and returns the set of connectable features groups.

Parameters

model_id
NFE model identifier.

ll_rule_id
Connectivity line-line rule identifier.. Must exist in the LINE_LINE_RULE table.

interaction_grp
Group of interacting features. (The SDO_INTERACTION type is described in Data
Types Used for NFE Connectivity Rules.)

rule_lhs_lines_indexes
Among the line features in the interacting group, indexes of the lines that match the
left hand side of the line-line rule.

rule_rhs_lines_indexes
Among the line features in the interacting group, indexes of the lines that match the
right hand side of the line-line rule.

rule_points_indexes

Among the point features in the interacting group, indexes of the points that match the
point feature specification in the line-line rule. These points are the ones to be
considered in the conformation of connectable groups.

Usage Notes

This function returns an SDO_INTERACTION_ARRAY object. (The
SDO_INTERACTION_ARRAY type is described in Data Types Used for NFE
Connectivity Rules.)

7-14

Chapter 7
SDO_NFE.GET_LP_CONN_INTERSECTIONS

The indexes of LHS and RHS lines can be obtained with the
SDO_NFE.CLASSIFY_LINES_BY_SIDE procedure. The indexes of the points can be
obtained with the SDO_NFE.GET_POINTS_MATCH_LP_RULE function.

This function is registered by default in the Rule Decision Handlers Table when a line-
line rule is created in a model (using the Java API). However, this function can be
replaced by any other user function that calculates the group of connectable features
in a customized way. See the information about Rule Decision Handlers under NFE
Rules for information about customizing connections (rule decision handlers).

Examples

The following example gets the set of connectable feature groups for each interacting
group that match a given line-line rule.

DECLARE
model _i d NUMBER : = 1;
[l _rule_id NUMBER := 1,

rule_I hs_lines_indexes dbms_sql. NUVBER TABLE;
rule_rhs_lines_indexes dbms_sql. NUVBER TABLE;
rul e_poi nts_i ndexes dbms_sql . NUMBER_TABLE;

conn_i nteracs SDO_| NTERACTI ON_ARRAY;
inter_grps SDO_| NTERACTI ON_ARRAY;
BEG N

- CGet the groups of interacting features that neet the L-L Rule in the nodel
inter_grps := sdo_nfe.get_interaction_groups(nodel _id,
sdo_nfe. RULE_TYPE LINE_LINE, Il _rule_id);
FORi IN 1..inter_grps.count |oop
- Cassify the line features by side in the L-L rule (LHS, RHS).
sdo_nfe.classify_lines_by side(nodel _id, Il _rule_id, inter_grps(i).lines,
rule_l hs_lines_indexes, rule_rhs_lines_indexes);
- Get the specific point features that match the L-L rule.
rul e_poi nts_indexes := sdo_nfe.get_points_match_|p_rule(model _id, 1,
inter_grps(i).points);
- Get the group of features that can be connected according the L-L rule.

conn_interacs := sdo_nfe.get || _conn_intersections(nodel _id, Il _rule_id,
inter_grps(i), rule_lhs_lines_indexes, rule_rhs_lines_indexes, rule_points_indexes);
END | oop;
END;

/

7.17 SDO _NFE.GET LP_CONN_INTERSECTIONS

ORACLE

Format

SDO NFE. GET_LP_CONN_| NTERSECTI ONS{(

nodel _i d [N SDO_NUMBER,
[p_rule_id I'N NUMBER,
interaction_grp IN QUT SDO | NTERACTI ON,

rule | 'hs_Iines indexes | N DBMS_SQL. NUMBER TABLE,
rule rhs_lines_indexes | N DBMS_SQL. NUMBER TABLE,
rul e_poi nts_i ndexes I'N DBMS_SQL. NUMBER TABLE,
) RETURN SDO | NTERACTI ON_ARRAY;

Description

Given a group of interacting features (lines and points) this function calculates
subgroups of these features that can be connected according to the connectivity line-
point rule specified, and returns the set of connectable features groups.

7-15

ORACLE

Chapter 7
SDO_NFE.GET_LP_CONN_INTERSECTIONS

Parameters

model_id
NFE model identifier.

Ip_rule_id
Connectivity line-point rule identifier.. Must exist in the LINE_POINT_RULE table.

interaction_grp
Group of interacting features. (The SDO_INTERACTION type is described in Data
Types Used for NFE Connectivity Rules.)

rule_lhs_lines_indexes
Among the line features in the interacting group, indexes of the lines that match the
left hand side of the line-point rule.

rule_rhs_lines_indexes
Among the line features in the interacting group, indexes of the lines that match the
right hand side of the line-point rule.

rule_points_indexes

Among the point features in the interacting group, indexes of the points that match the
point feature specification in the line-point rule. These points are the ones to be
considered in the conformation of connectable groups.

Usage Notes

This function returns an SDO_INTERACTION_ARRAY object. (The
SDO_INTERACTION_ARRAY type is described in Data Types Used for NFE
Connectivity Rules.)

The indexes of LHS and RHS lines can be obtained with the
SDO_NFE.CLASSIFY_LINES BY_SIDE procedure. The indexes of the points can be
obtained with the SDO_NFE.GET_POINTS_MATCH_LP_RULE function.

This function is registered by default in the Rule Decision Handlers Table when a line-
point rule is created in a model (using the Java API). However, this function can be
replaced by any other user function that calculates the group of connectable features
in a customized way. See the information about Rule Decision Handlers under NFE
Rules for information about customizing connections (rule decision handlers).

Examples

The following example gets the group of feature that can be connected according to a
given line-point rule for each interacting group.

DECLARE
model _id NUMBER : = 1,
Ip_rule_id NUMBER : = 1;

rule_lines_indexes dbms_sqgl. NUVBER TABLE;
rul e_poi nts_i ndexes dbms_sql . NUVBER_TABLE;

conn_i nteracs SDO_| NTERACTI ON_ARRAY;
inter_grps SDO_| NTERACTI ON_ARRAY;
BEG N

- CGet the groups of interacting features that meet the L-P Rule in the nodel
inter_grps := sdo_nfe.get_interaction_groups(model _id,
sdo_nfe. RULE_TYPE_LINE_PONT, Ip_rule_id);

7-16

Chapter 7
SDO_NFE.GET_MODEL_SEQUENCE_NAME

- For each group:
FOR i IN1..inter_grps.count |oop
- Get the specific line features that match the L-P rule.
rule_lines_indexes := sdo_nfe.get_|ines_match_|p_rule(model _id, Ip_rule_id,
inter_grps(i).lines);

- Get the specific point features that match the L-P rule.
rul e_points_indexes : = sdo_nfe.get_points_match_l p_rule(nodel _id, Ip_rule_id,
inter_grps(i).points);

- Get the group of features that can be connected according the L-P rule.
conn_interacs := sdo_nfe.get | p_conn_intersections(nodel _id, Ip_rule_id,
inter_grps(i), rule_lines_indexes, rule_points_indexes);
END | oop;
END;
/

7.18 SDO_NFE.GET MODEL_SEQUENCE_NAME

ORACLE

Format

SDO_NFE. GET_MODEL_ SEQUENCE_ NAME(
model _id |IN SDO NUMBER,
tab_name | N VARCHAR2
) RETURN VARCHARZ;

Description

Returns the sequence name for the specified model’s table.

Parameters

model_id
NFE model identifier.

tab_name
Table name for the model.

Usage Notes

The table name must exist in the TABLE_REG_TAB table, and the name of its
sequence must exist in the SEQUENCE_REG_TAB table. When a new model is
created using SDO_NFE.CREATE_MODEL_STRUCTURE, all the model’s tables and
sequences are automatically registered in the appropriate views and tables. When
SDO_NFE.CREATE_MODEL_SEQUENCEiIs executed, a sequence for the model's
table is registered.

Examples

The following example gets the sequence name defined for the table that holds the
feature classes of the NFE model whose ID is 1.

SELECT SDO NFE. GET_MODEL_SEQUENCE_NAME(1, sdo_nfe. get _nodel _tabl e_name(1,
SDO _NFE. FT_CLASS));

7-17

Chapter 7
SDO_NFE.GET_MODEL_TABLE_NAME

7.19 SDO_NFE.GET_MODEL_TABLE_NAME

Format

SDO_NFE. GET_MODEL_TABLE_NANE(
model _id N SDO_NUMBER,
tabl e_type |IN VARCHAR2
) RETURN VARCHARZ;

Description

Returns the name of the table of a specified type for an NFE model.

Parameters

model_id
NFE model identifier.

table_type
Type of table whose name is to be returned. For example, the value for the feature
classes table is SDO NFE. FT_CLASS.

Usage Notes

The table name must exist in the TABLE_REG_TAB table, and the name of its
sequence must exist in the SEQUENCE_REG_TAB table. When a new model is
created using SDO_NFE.CREATE_MODEL_STRUCTURE, the names of all of the
model’s tables and sequences are automatically registered in the appropriate views
and tables.

Examples

The following example gets the name of the table that holds the feature classes in the
NFE model with the ID 1.

SELECT SDO NFE. GET_MODEL_TABLE NAME(1, SDO NFE. FT_CLASS);

7.20 SDO_NFE.GET_MODEL_UNDERLYING_NETWORK

ORACLE

Format
SDO_NFE. GET_MODEL_UNDERLY! NG_NETWORK(
model id IN SDO_NUMBER
) RETURN VARCHARZ;
Description
Returns the name of the network that is associated with an NFE model.

Parameters

model_id
NFE model identifier.

7-18

Chapter 7
SDO_NFE.GET_NEXT_SEQUENCE_VALUE

Usage Notes

A network is associated with an NFE model during the creation process, either when
using the SDO_NFE.CREATE_MODEL_UNDERLYING_NET for models in the
SDO_NFE.FROM_SCRATCH mode, or using
SDO_NFE.SET_MODEL_UNDERLYING_NETWORK for models in the
SDO_NFE.OVER_EXIST_NETWORK mode.

Examples

The following example gets the underlying network associated with an existing NFE
model.

SELECT SDO _NFE. get _nodel _under|yi ng_networ k(1) FROM DUAL;

7.21 SDO_NFE.GET NEXT SEQUENCE VALUE

ORACLE

Format
SDO_NFE. GET_NEXT_SEQUENCE_VAL UE(
sequence_nane I'N VARCHARZ,

seq_val ue_increnent | N NUVBER
) RETURN NUMBER

Description

Returns the value resulting from adding the value of the second parameter to the
current value of the specified sequence.

Parameters

sequence_name
Name of the sequence.

seq_value_increment
Integer value to be added to the current value of sequence_nane. (If the specified value
is negative, it is subtracted from the current value.)

Usage Notes

This function does not change the INCREMENT BY value of the specified sequence or
the current value of that sequence.

This function can be used to manage a block of consecutive sequence numbers.

Examples

The following example returns the value that would result from adding 10 to the current
value of a sequence named MY_SEQ.

SELECT SDO NFE. GET_NEXT_SEQUENCE VALUE(' ny_seq', 10) FROM DUAL;

If the current value of MY_SEQ is 100, this example returns the value 110 (100 + 10).

7-19

Chapter 7
SDO_NFE.GET_POINTS_MATCH_LP_RULE

7.22 SDO_NFE.GET _POINTS_MATCH_LP_RULE

ORACLE

Format

SDO_NFE. GET_PQO NTS_MATCH_LP_RULE(
model _id N SDO_NUMBER,
[p_rule_id | N NUMBER,
poi nts I N SDO_| NTERACT_POl NT_FEAT_ARRAY,
) RETURN DBMS_SQL. NUMBER TABLE;

Description

Given an set of point features, this function calculates the group of them that match a
connectivity line-point rule. Returns a DBMS_SQL.NUMBER_TABLE object with the
indexes of the points in the input array that match the line-point rule.

Parameters

model_id
NFE model identifier.

Ip_rule_id
Connectivity line-point rule identifier. Must exist in the LINE_POINT_RULE table.

points

Array of point features where the search will take place. (The
SDO_INTERACT_POINT_FEAT_ARRAY type is described in Data Types Used for
NFE Connectivity Rules.)

Usage Notes

This function is mainly used after the SDO_NFE.GET_INTERACTION_GROUPS
function, which returned a group of mixed line features where some line features
matched a specific connectivity rule and some did not.

Examples

The following example gets the specific point features that match a line-point rule.

DECLARE
model _i d NUMBER : = 1;
lp_rule_id NUMBER : = 1;
rul e_poi nts_i ndexes dbms_sql . NUVBER_TABLE;
inter_grps SDO_| NTERACTI ON_ARRAY;
BEG N

- CGet the groups of interacting features that neet the L-P Rule in the nodel
inter_grps := sdo_nfe.get_interaction_groups(nodel _id,
sdo_nfe. RULE_TYPE_LINE_PONT, Ip_rule_id);

- For each group:
FORi IN1..inter_grps.count |oop
- Get the specific point features that match the L-P rule.
rul e_poi nts_indexes : = sdo_nfe.get_points_match_l p_rule(nodel _id, Ip_rule_id,

inter_grps(i).points);

END | oop;
END;
/

7-20

Chapter 7
SDO_NFE.IMPORT_NETWORK

7.23 SDO_NFE.IMPORT_NETWORK

ORACLE

Format

SDO_NFE. | MPORT_NETWORK(

model _id I'N NUMBER,
model _i d I'N NUMBER,
network_from I N VARCHAR2,

line_ft_layer_id |N NUVBER
line_ft_class_id | N NUVBER
point_ft _layer_id I N NUVBER,
point _ft_class_id I N NUMBER);

Description

Copies the network elements from an existing network to the underlying network of an
NFE model (created in the SDO_NFE.FROM_SCRATCH mode), translating every link
in line features from the line feature class (line_ft_class_id), and every node in point
features from the point feature class (point_ft_class_id)..

Parameters

model_id
NFE model identifier.

network_from
Name of the network to be imported.

line_ft_layer._id
Feature layer ID for the newly created line features (created from the link elements).

line_ft_class_id
Feature class ID for the newly created line features.

point_ft_layer_id
Feature layer ID for the newly created point features (created from the node
elements).

point_ft_class_id
Feature class ID for the newly created point features.

Usage Notes

The feature classes for the line and point features must already exist in the NFE
model.

Examples

The following example imports a network named NeT01 to a model identified by the ID
1. Lines and point features will be created for every link and node using the feature
layers 10 and 11 and the feature classes 5 and 6.

EXECUTE SDO NFE.inport_network(1, ‘NETO1, 10, 5, 11, 6);

7-21

Chapter 7
SDO_NFE.SET_MODEL_UNDERLYING_NETWORK

7.24 SDO_NFE.SET_MODEL_UNDERLYING_NETWORK

ORACLE

Format
SDO_NFE. SET_MODEL_UNDERLYI NG_NETWORK(

model _i d I'N SDO_NUMBER
network_name | N VARCHAR?) ;

Description

Associates a network as the underlying network of an NFE model. (The model must
have been created in the SDO_NFE.OVER_EXIST_NETWORK mode.)

Parameters

model_id
NFE model identifier.

network_name
Name of the network to be associated with the model.

Usage Notes

See also the SDO_NFE.GET_MODEL_UNDERLYING_NETWORK function.

Examples
The following example

EXECUTE ... ;

7-22

Index

A

active links, 5-5
ACTIVE column in link table, 5-31
active nodes, 5-5
ACTIVE column in node table, 5-30
ADD_CHILD_FEATURE procedure, 6-4
ADD_CHILD_FEATURES procedure, 6-5
ADD_EDGE function, 4-2
ADD_FEATURE procedure, 6-6
ADD_FEATURE_ELEMENT procedure, 6-7
ADD_FEATURE_ELEMENTS procedure, 6-8
ADD_FEATURE_LAYER procedure, 6-9
ADD_ISOLATED_NODE function, 4-4
ADD_LINEAR_GEOMETRY function, 4-5
ADD_LOORP function, 4-7
ADD_NODE function, 4-8
ADD_POINT_GEOMETRY function, 4-10
ADD_POLYGON_GEOMETRY function, 4-11
ADD_TOPO_GEOMETRY_LAYER procedure,
3-1
ALL_SDO_NETWORK_CONSTRAINTS view,
5-55
ALL_SDO_NETWORK_METADATA view, 5-51
ALL_SDO_NETWORK_USER_DATA view, 5-56,
5-58
ALL_SDO_NFE_MODEL_FTLAYER_REL view,
5-59
ALL_SDO_NFE_MODEL_METADATA view,
5-60
ALL_SDO_NFE_MODEL_WORKSPACE view,
5-63
ALL_SDO_TOPO_INFO view, 1-30
ALL_SDO_TOPO_METADATA view, 1-31
API
Network Data Model Graph, 5-64
performance, 5-64
Topology Data Model, 1-33
application programming interface (API)
Network Data Model Graph
performance, 5-64
Topology Data Model, 1-33
APPLY_RULE procedure, 7-2
automatically created points default attributes
table

ORACLE

automatically created points default attributes table (continued)

definition, 5-42

C

cache, 2-2

partition, 5-28

TopoMap object associated with, 2-2

See also TopoMap objects

CHANGE_EDGE_COORDS procedure, 4-12
child layer, 1-11
child node, 5-12
CLASSIFY_LINES_BY_SIDE procedure, 7-2
CLEAR_TOPO_MAP procedure, 4-14
collection layers, 1-9
COMMIT_TOPO_MAP procedure, 4-15
complex path, 5-33
COMPUTE_PATH_GEOMETRY procedure, 6-10
connected component table

definition, 5-37
connected components

finding, 6-39
connectivity line-line rules table

definition, 5-42
connectivity line-point rules table

definition, 5-43
constraints

network, 5-26
containing face

getting for point, 4-23
COPY_NETWORK procedure, 6-11
cost, 5-5

LINK_COST_COLUMN column in network

metadata views, 5-53
NODE_COST_COLUMN column in network
metadata views, 5-52
CREATE_EDGE_INDEX procedure, 4-16
CREATE_FACE_INDEX procedure, 4-16
CREATE_FEATURE function, 4-17
CREATE_LINK_TABLE procedure, 6-12
CREATE_LOGICAL_NETWORK procedure,
6-13

CREATE_LRS_NETWORK procedure, 6-15
CREATE_LRS_TABLE procedure, 6-18
CREATE_MODEL_SEQUENCE procedure, 7-4

Index-1

CREATE_MODEL_STRUCTURE function, 7-4
CREATE_MODEL_UNDERLYING_NET
procedure, 7-5
CREATE_MODEL_WORKSPACE procedure,
7-6
CREATE_NODE_TABLE procedure, 6-19
CREATE_PARTITION_TABLE procedure, 6-20
CREATE_PATH_LINK_TABLE procedure, 6-21
CREATE_PATH_TABLE procedure, 6-21
CREATE_SDO_NETWORK procedure, 6-22
CREATE_SUBPATH_TABLE procedure, 6-25
CREATE_TOPO_MAP procedure, 4-21
CREATE_TOPO_NETWORK procedure, 6-26
CREATE_TOPOLOGY procedure, 3-3
cross-schema considerations
topology editing, 1-39
topology usage, 1-38

D

dangling features
deleting, 6-30
getting, 6-48
dangling links
deleting, 6-31
getting, 6-48
dangling nodes
deleting, 6-31
getting, 6-49
degree
of a node, 5-5
DELETE_ALL_FT_LAYERS procedure, 7-8
DELETE_ALL_WORKSPACES procedure, 7-8
DELETE_CHILD_FEATURES procedure, 6-28
DELETE_CHILD_FEATURES_AT procedure,
6-29
DELETE_DANGLING_FEATURES procedure,
6-30
DELETE_DANGLING_LINKS procedure, 6-31
DELETE_DANGLING_NODES procedure, 6-31
DELETE_FEATURE_ELEMENTS procedure,
6-32
DELETE_FEATURE_ELEMENTS_AT
procedure, 6-33
DELETE_FEATURES procedure, 6-33
DELETE_LINK procedure, 6-34
DELETE_MODEL_STRUCTURE procedure, 7-9
DELETE_MODEL_WORKSPACE procedure, 7-9
DELETE_NODE procedure, 6-35
DELETE_PATH procedure, 6-36
DELETE_PHANTOM_FEATURES procedure,
6-36
DELETE_SUBPATH procedure, 6-37
DELETE_TOPO_GEOMETRY_LAYER
procedure, 3-5

ORACLE

Index

demo files
Network Data Model Graph, 5-94
DEREGISTER_CONSTRAINT procedure, 6-37
directed links, 5-5
directed networks, 5-6
direction of edge, 1-5
DROP_MODEL_SEQUENCE procedure, 7-10
DROP_MODEL_UNDERLYING_NETWORK
procedure, 7-10
DROP_NETWORK procedure, 6-39
DROP_TOPO_MAP procedure, 4-22
DROP_TOPOLOGY procedure, 3-6
duration, 5-5
LINK_DURATION_COLUMN column in
network metadata views, 5-53
NODE_DURATION_COLUMN column in
network metadata views, 5-53

E

edge index
creating for TopoMap object, 4-16
edge information table, 1-15
edge sequences
privileges needed for cross-schema topology
editing, 1-39
edges
adding, 2-16, 4-2
adding linear geometry, 4-5
adding loop, 4-7
changing coordinates, 2-18, 4-12
definition, 1-4
direction, 1-5
finding edges interacting with a query
window, 4-53
getting coordinates of shape points, 4-25
getting ID numbers of added edges, 4-24
getting ID numbers of changed edges, 4-25
getting ID numbers of deleted edges, 4-26
getting nearest edge for point, 4-31
getting nearest edge in cache for point, 4-32
getting nodes on, 4-27
island, 1-4
isolated, 1-4
loop, 1-4
moving, 2-16, 4-46
removing, 2-17, 4-51
storing information in edge information table,
1-15
updating, 2-18
error handling
topology editing, 2-7
examples
Network Data Model Graph, 5-70, 5-94
Topology Data Model (PL/SQL), 1-40

Index-2

exception handling
topology editing, 2-7

F

FO (face zero, or universe face), 1-4
face index
creating for TopoMap object, 4-16
face information table, 1-18
face sequences
privileges needed for cross-schema topology
editing, 1-39
faces
adding polygon geometry, 4-11
definition, 1-4
finding faces interacting with a query window,
4-54
getting boundary, 4-29
getting boundary of, 3-6
getting containing face for point, 4-23
getting ID numbers of added faces, 4-28
getting ID numbers of changed faces, 4-29
getting ID numbers of deleted faces, 4-30
redefining, 2-18
storing information in face information table,
1-18
feature class attributes constraints table
definition, 5-44
feature class default predefined connected points
table
definition, 5-45
feature class relationship table
definition, 5-45
feature class table
definition, 5-44
feature element relationships table
definition, 5-40
feature elements, 5-8
definition, 5-8
feature hierarchy table
definition, 5-40
feature layer types, 5-8
feature layers, 5-8
feature rule relationship table
definition, 5-46
feature table, 1-8
definition, 5-39
feature types, 5-8
feature user data catalog table
definition, 5-47
feature user data catalog values table
definition, 5-47
feature user data table
definition, 5-46
FEATURE_LAYER procedure, 6-38

ORACLE

Index

features

creating from geometries, 4-17

in network application, 5-6, 5-7

in network applications, 5-8
FIND_CONNECTED_COMPONENTS

procedure, 6-39

function-based indexes

not supported on SDO_TOPO_GEOMETRY

columns, 1-40

G

GENERATE_NODE_LEVELS procedure, 6-40
GENERATE_PARTITION_BLOB procedure,
6-42
GENERATE_PARTITION_BLOBS procedure,
6-43
geometry
computing for a path, 6-10
GET_CHILD_FEATURE_IDS function, 6-45
GET_CHILD_LINKS function, 6-46
GET_CHILD_NODES function, 6-47
GET_CONNECTION_POINT_GEOM function,
7-11
GET_CONTAINING_FACE function, 4-23
GET_DANGLING_FEATURES function
SDO_NET package
GET_DANGLING_FEATURES, 6-48
GET_DANGLING_LINKS function, 6-48
GET_DANGLING_NODES function, 6-49
GET_EDGE_ADDITIONS function, 4-24
GET_EDGE_CHANGES function, 4-25
GET_EDGE_COORDS function, 4-25
GET_EDGE_DELETIONS function, 4-26
GET_EDGE_NODES function, 4-27
GET_FACE_ADDITIONS function, 4-28
GET_FACE_BOUNDARY function, 3-6, 4-29
GET_FACE_CHANGES function, 4-29
GET_FACE_DELETIONS function, 4-30
GET_FEATURE_ELEMENTS function, 6-50
GET_FEATURE_LAYER_ID function, 6-51
GET_FEATURES_ON_LINKS function
SDO_NET package
GET_FEATURES_ON_LINKS, 6-51
GET_FEATURES_ON_NODES function
SDO_NET package
GET_FEATURES_ON_NODES, 6-52
GET_GEOMETRY member function, 1-28
GET_GEOMETRY_TYPE function, 6-53
GET_IN_LINKS function, 6-54
GET_INTERACTION_GROUPS function, 7-12
GET_INVALID_LINKS function, 6-54
GET_INVALID_NODES function, 6-55
GET_INVALID_PATHS function, 6-55
GET_ISOLATED_NODES function, 6-56

GET_LINES_MATCH_LP_RULE function, 7-13
GET_LINK_COST_COLUMN function, 6-56
GET_LINK_DIRECTION function, 6-57
GET_LINK_GEOM_COLUMN function, 6-58
GET_LINK_GEOMETRY function, 6-58
GET_LINK_TABLE_NAME function, 6-59
GET_LINKS_IN_PATH function, 6-60
GET_LL_CONN_INTERSECTIONS function,
7-14
GET_LP_CONN_INTERSECTIONS function,
7-15
GET_LRS_GEOM_COLUMN function, 6-60
GET_LRS_LINK_GEOMETRY function, 6-61
GET_LRS_NODE_GEOMETRY function, 6-62
GET_LRS_TABLE_NAME function, 6-62
GET_MODEL_SEQUENCE_NAME function,
7-17
GET_MODEL_TABLE_NAME function, 7-18
GET_MODEL_UNDERLYING_NETWORK
function, 7-18
GET_NEAREST_EDGE function, 4-31
GET_NEAREST_EDGE_IN_CACHE function,
4-32
GET_NEAREST_NODE function, 4-33
GET_NEAREST_NODE_IN_CACHE function,
4-35
GET_NETWORK_TYPE function, 6-63
GET_NEXT_SEQUENCE_VALUE function, 7-19
GET_NO_OF_HIERARCHY_LEVELS function,
6-63
GET_NO_OF_LINKS function, 6-64
GET_NO_OF_NODES function, 6-65
GET_NODE_ADDITIONS function, 4-36
GET_NODE_CHANGES function, 4-36
GET_NODE_COORD function, 4-37
GET_NODE_DEGREE function, 6-66
GET_NODE_DELETIONS function, 4-38
GET_NODE_FACE_STAR function, 4-39
GET_NODE_GEOM_COLUMN function, 6-66
GET_NODE_GEOMETRY function, 6-67
GET_NODE_IN_DEGREE function, 6-68
GET_NODE_OUT_DEGREE function, 6-68
GET_NODE_STAR function, 4-40
GET_NODE_TABLE_NAME function, 6-69
GET_OUT_LINKS function, 6-70
GET_PARENT_FEATURE_IDS function, 6-70
GET_PARTITION_SIZE function, 6-71
GET_PATH_GEOM_COLUMN function, 6-72
GET_PATH_TABLE_NAME function, 6-73
GET_PERCENTAGE function, 6-74
GET_PHANTOM_FEATURES function, 6-75
GET_POINTS_MATCH_LP_RULE function, 7-20
GET_PT function, 6-75
GET_TGL_OBJECTS member function, 1-28
GET_TOPO_ELEMENTS member function, 1-29

ORACLE

GET_TOPO_NAME function, 4-41
GET_TOPO_OBJECTS function, 3-7

Index

GET_TOPO_TRANSACTION_ID function, 4-41

H

heap size

Java, 4-55
heap size (Java)

setting maximum, 6-89
hierarchy

network, 5-12

topology geometry layer, 1-11
history information table, 1-19

IMPORT_NETWORK procedure, 7-21
in-degree, 5-5
inbound links, 5-5
getting link ID numbers, 6-54
getting number of for node, 6-68

INITIALIZE_AFTER_IMPORT procedure, 3-9

INITIALIZE_METADATA procedure, 3-9
invalid links

getting, 6-54
invalid nodes

getting, 6-55
invalid paths

getting, 6-55
IS_HIERARCHICAL function, 6-76
IS_LINK_IN_PATH function, 6-77
IS_LOGICAL function, 6-77
IS_NODE_IN_PATH function, 6-78
IS_SPATIAL function, 6-79
island edge

See isolated edge
island node

See isolated nodes (topology)
isolated edge, 1-4
isolated nodes (network)

definition of, 5-6

getting, 6-56
isolated nodes (topology),

adding, 4-4

definition of, 1-6

J

Java client interface for Network Data Model

Graph (sdonm), 5-66

Java client interface for Topology Data Model

(sdotopo), 1-37
Java heap size
setting maximum, 6-89

Index-4

Java maximum heap size
setting, 4-55

L

layer
collection, 1-9
topology geometry, 1-8, 3-1
linear geometries
adding, 4-5
link direction
getting, 6-57
link geometry
getting, 6-58
link levels, 5-28
link table
definition, 5-31
links, 5-5
definition, 5-5
deleting, 6-34
determining if directed, 6-57
directed, 5-5
direction, 5-5
getting geometry for, 6-58
getting percentage of point on link, 6-74
invalid, 6-54
relationship to paths, 5-5
state of, 5-5
temporary, 5-5
undirected, 5-5
See also undirected links, inbound links,
outbound links
LIST_TOPO_MAPS function, 4-42
load on demand
using for editing and analysis, network
editing
using partitioning and load on demand,
5-26
load on demand analysis, 5-5
LOAD_CONFIG procedure, 6-79
LOAD_TOPO_MAP function or procedure, 4-43
logging level
setting for network operations, 6-89
logical network, 5-6
LOGICAL_PARTITION procedure, 6-80
LOGICAL_POWERLAW_PARTITION procedure,
6-82
loop edge, 1-4
loops
adding, 4-7
LRS network, 5-6
LRS_GEOMETRY_NETWORK function, 6-84

ORACLE

Index

M

metadata

initializing for a topology, 3-9
minimum cost path, 5-5
minimum cost spanning tree, 5-5
MOVE_EDGE procedure, 4-46
MOVE_ISOLATED_NODE procedure, 4-48
MOVE_NODE procedure, 4-49
multilevel networks, 5-13
multimodal networks, 5-11

N

naming considerations
spatial table and column names, 1-15, 5-29
nearest edge
getting for point, 4-31
getting in cache for point, 4-32
nearest node
getting for point, 4-33
getting in cache for point, 4-35
network analysis
using the load on demand approach, 5-26
network constraints, 5-26
ALL_SDO_NETWORK_CONSTRAINTS
view, 5-55
deregistering, 6-37
registering, 6-87
USER_SDO_NETWORK_CONSTRAINTS
view, 5-55
Network Data Model Graph
application programming interface (API),
5-64
performance, 5-64
concepts, 5-5
examples, 5-70
network feature editor subprogram reference
information, 7-1
overview, 5-1
steps for using, 5-3
subprogram reference information, 6-1
tables for, 5-29
network elements
definition, 5-5
NETWORK_EXISTS function, 6-85
networks
directed, 5-6
hierarchical, 5-12
logical, 5-6
partitioned, 5-5
spatial, 5-6
undirected, 5-6
node face star
getting for node, 4-39

node geometry
getting, 6-67
node hierarchy table
definition, 5-38
node information table, 1-17
node level table
definition, 5-39
node sequences
privileges needed for cross-schema topology
editing, 1-39
node star
getting for node, 4-40
node table
definition, 5-30
nodes
adding, 2-9, 4-8
adding isolated (topology), 4-4
adding point geometry, 4-10
definition, 1-4, 5-5
degree, 5-5
deleting, 6-35
generating node levels for multilevel network,
6-40
getting coordinates of, 4-37
getting geometry, 6-67
getting ID numbers of added nodes, 4-36
getting ID numbers of changed nodes, 4-36
getting ID numbers of deleted nodes, 4-38
getting nearest node for point, 4-33
getting nearest node in cache for point, 4-35
getting node face star, 4-39
getting node star, 4-40
getting number of, 6-65
invalid, 6-55
island, 1-6
isolated (network), 5-6, 6-56
isolated (topology), 1-6
moving, 2-10, 4-49
moving isolated nodes (topology), 4-48
obsolete, 2-14, 4-52
reachable, 5-5
reaching, 5-5
removing, 2-13, 4-51
removing obsolete, 2-14, 4-52
state of, 5-5
storing information in node information table,
1-17
temporary, 5-5

O

Index

out-degree, 5-5
outbound links, 5-5
getting link ID numbers, 6-70
getting number of for node, 6-68
OutOfMemoryError exception
raising maximum heap size, 4-55

P

obsolete nodes

removing, 2-14, 4-52
operators

Topology Data Model, 1-34

ORACLE

parent feature
definition, 5-10
parent layer, 1-11
parent node, 5-12
partition BLOB
generating, 6-42
partition BLOBs, 5-5
generating, 6-43
generating and loading from, 5-27
partition cache, 5-5, 5-28
loading configuration, 6-79
partition size
getting, 6-71
partition table
definition, 5-36
partitioned network, 5-5
partitions
caching, 5-28
partition table, 5-36
partitioning a network, 6-80, 6-82, 6-90
resident, 5-28
using for editing and analysis, 5-26
path table
definition, 5-32
path-link table
definition, 5-33
paths
complex, 5-33
computing the geometry, 6-10
definition, 5-5
deleting, 6-36
invalid, 6-55
minimum cost, 5-5
simple, 5-33
subpaths, 5-8
temporary, 5-5
performance
Network Data Model Graph API, 5-64
phantom features
deleting, 6-36
getting, 6-75
PL/SQL examples
Network Data Model Graph, 5-70
point cardinality rules table
definition, 5-48
point geometries

Index-6

point geometries (continued)

adding, 4-10
points

getting point at percentage on link, 6-75
polygon geometries

adding, 4-11
POST_ XML function, 6-85
power law networks, 6-82
precomputed analysis results, 5-29
PREPARE_FOR_EXPORT procedure, 3-10
primitives

See topological elements

R

reachable nodes, 5-5
reaching nodes, 5-5
read-only TopoMap objects, 2-2
README file

for Spatial and Graph and related features,

5-95

reference path

definition, 5-8
REGISTER_CONSTRAINT procedure, 6-87
RELATE function, 3-11
relationship information table, 1-18
REMOVE_EDGE procedure, 4-51
REMOVE_NODE procedure, 4-51
REMOVE_OBSOLETE_NODES procedure, 4-52
resident partitions, 5-28
ROLLBACK_TOPO_MAP procedure, 4-53
rule decision handlers table

definition, 5-48
rule instance table

definition, 5-50

S

scale-free (power law) networks, 6-82
SDO network, 5-6
SDO_EDGE_ARRAY type, 1-29
SDO_GEOMETRY_NETWORK function, 6-88
SDO_INTERACT_LINE_FEAT_ARRAY data
type, 5-25
SDO_INTERACT_POINT_FEAT data type, 5-25
SDO_INTERACT_POINT_FEAT_ARRAY data
type, 5-25
SDO_INTERACTION data type, 5-25
SDO_INTERACTION_ARRAY data type, 5-25
SDO_LIST_TYPE type, 1-29
SDO_NET package
ADD_CHILD_FEATURE, 6-4
ADD_CHILD_FEATURES, 6-5
ADD_FEATURE, 6-6
ADD_FEATURE_ELEMENT, 6-7

ORACLE

Index

SDO_NET package (continued)
ADD_FEATURE_ELEMENTS, 6-8
ADD_FEATURE_LAYER, 6-9
COMPUTE_PATH_GEOMETRY, 6-10
COPY_NETWORK, 6-11
CREATE_LINK_TABLE, 6-12
CREATE_LOGICAL_NETWORK, 6-13
CREATE_LRS_NETWORK, 6-15
CREATE_LRS_TABLE, 6-18
CREATE_NODE_TABLE, 6-19
CREATE_PARTITION_TABLE, 6-20
CREATE_PATH_LINK_TABLE, 6-21
CREATE_PATH_TABLE, 6-21
CREATE_SDO_NETWORK, 6-22
CREATE_SUBPATH_TABLE, 6-25
CREATE_TOPO_NETWORK, 6-26
DELETE_CHILD_FEATURES, 6-28
DELETE_CHILD_FEATURES_AT, 6-29
DELETE_DANGLING_FEATURES, 6-30
DELETE_DANGLING_LINKS, 6-31
DELETE_DANGLING_NODES, 6-31
DELETE_FEATURE_ELEMENTS, 6-32
DELETE_FEATURE_ELEMENTS_AT, 6-33
DELETE_FEATURES, 6-33
DELETE_LINK, 6-34
DELETE_NODE, 6-35
DELETE_PATH, 6-36
DELETE_PHANTOM_FEATURES, 6-36
DELETE_SUBPATH, 6-37
DEREGISTER_CONSTRAINT, 6-37
DROP_NETWORK, 6-39
FEATURE_LAYER, 6-38
FIND_CONNECTED_COMPONENTS, 6-39
GENERATE_NODE_LEVELS, 6-40
GENERATE_PARTITION_BLOB, 6-42
GENERATE_PARTITION_BLOBS, 6-43
GET_CHILD_FEATURE_IDS, 6-45
GET_CHILD_LINKS, 6-46
GET_CHILD_NODES, 6-47
GET_DANGLING_LINKS, 6-48
GET_DANGLING_NODES, 6-49
GET_FEATURE_ELEMENTS, 6-50
GET_FEATURE_LAYER_ID, 6-51
GET_GEOMETRY_TYPE, 6-53
GET_IN_LINKS, 6-54
GET_INVALID_LINKS, 6-54
GET_INVALID_NODES, 6-55
GET_INVALID_PATHS, 6-55
GET_ISOLATED_NODES, 6-56
GET_LINK_COST_COLUMN, 6-56
GET_LINK_DIRECTION, 6-57
GET_LINK_GEOM_COLUMN, 6-58
GET_LINK_GEOMETRY, 6-58
GET_LINK_TABLE_NAME, 6-59
GET_LINKS_IN_PATH, 6-60

SDO_NET package (continued)
GET_LRS_GEOM_COLUMN, 6-60
GET_LRS_LINK_GEOMETRY, 6-61
GET_LRS_NODE_GEOMETRY, 6-62
GET_LRS_TABLE_NAME, 6-62
GET_NETWORK_TYPE, 6-63
GET_NO_OF _HIERARCHY_LEVELS, 6-63
GET_NO_OF_LINKS, 6-64
GET_NO_OF_NODES, 6-65
GET_NODE_DEGREE, 6-66
GET_NODE_GEOM_COLUMN, 6-66
GET_NODE_GEOMETRY, 6-67
GET_NODE_IN_DEGREE, 6-68
GET_NODE_OUT_DEGREE, 6-68
GET_NODE_TABLE_NAME, 6-69
GET_OUT _LINKS, 6-70
GET_PARENT_FEATURE_IDS, 6-70
GET_PARTITION_SIZE, 6-71
GET_PATH_GEOM_COLUMN, 6-72
GET_PATH_TABLE_NAME, 6-73
GET_PERCENTAGE, 6-74
GET_PHANTOM_FEATURES, 6-75
GET_PT, 6-75
IS_HIERARCHICAL, 6-76
IS_LINK_IN_PATH, 6-77
IS LOGICAL, 6-77
IS NODE_IN_PATH, 6-78
IS_SPATIAL, 6-79
LOAD_CONFIG, 6-79
LOGICAL_PARTITION, 6-80
LOGICAL_POWERLAW_PARTITION, 6-82
LRS _GEOMETRY_NETWORK, 6-84
NETWORK_EXISTS, 6-85
POST_ XML, 6-85
reference information, 6-1
REGISTER_CONSTRAINT, 6-87
SDO_GEOMETRY_NETWORK, 6-88
SET _LOGGING_LEVEL, 6-89
SET_MAX_JAVA HEAP_SIZE, 6-89
SPATIAL_PARTITION, 6-90
TOPO_GEOMETRY_NETWORK, 6-91
UPDATE_FEATURE, 6-92
UPDATE_FEATURE_ELEMENT, 6-93
VALIDATE_LINK_SCHEMA, 6-94
VALIDATE_LRS SCHEMA, 6-95
VALIDATE_NETWORK, 6-95
VALIDATE_NODE_SCHEMA, 6-96
VALIDATE_PARTITION_SCHEMA, 6-97
VALIDATE_PATH_SCHEMA, 6-98
VALIDATE_SUBPATH_SCHEMA, 6-98

SDO_NET_FEAT_ELEM data type, 5-20

SDO_NET_FEAT_ELEM_ARRAY data type,

5-20
SDO_NET_LAYER_FEAT data type, 5-20, 5-25

ORACLE

Index

SDO_NET_LAYER_FEAT_ARRAY data type,
5-20
SDO_NETWORK_NVP data type, 5-20
SDO_NETWORK_NVP_TAB data type, 5-20
SDO_NFE package
APPLY_RULE, 7-2
CLASSIFY_LINES BY_SIDE, 7-2
CREATE_MODEL_SEQUENCE, 7-4
CREATE_MODEL_STRUCTURE, 7-4
CREATE_MODEL_UNDERLYING_NET, 7-5
CREATE_MODEL_WORKSPACE, 7-6
DELETE_ALL_FT_LAYERS, 7-8
DELETE_ALL_WORKSPACES, 7-8
DELETE_MODEL_STRUCTURE, 7-9
DELETE_MODEL_WORKSPACE, 7-9
DROP_MODEL_SEQUENCE, 7-10
DROP_MODEL_UNDERLYING_NETWORK,
7-10
GET_CONNECTION_POINT_GEOM, 7-11
GET_INTERACTION_GROUPS, 7-12
GET_LINES_MATCH_LP_RULE, 7-13
GET_LL_CONN_INTERSECTIONS, 7-14
GET_LP_CONN_INTERSECTIONS, 7-15
GET_MODEL_SEQUENCE_NAME, 7-17
GET_MODEL_TABLE_NAME, 7-18
GET_MODEL_UNDERLYING_NETWORK,
7-18
GET_NEXT_SEQUENCE_VALUE, 7-19
GET_POINTS_MATCH_LP_RULE, 7-20
IMPORT_NETWORK, 7-21
reference information, 7-1
SET_MODEL_UNDERLYING_NETWORK,
7-22
SDO_NUMBER_ARRAY type, 1-29
SDO_TGL_OBJECT type, 1-25
SDO_TGL_OBJECT_ARRAY type, 1-25
SDO_TOPO package
ADD_TOPO_GEOMETRY_LAYER, 3-1
CREATE_TOPOLOGY, 3-3
DELETE_TOPO_GEOMETRY_LAYER, 3-5
DROP_TOPOLOGY, 3-6
GET_FACE_BOUNDARY, 3-6
GET_TOPO_OBJECTS, 3-7
INITIALIZE_AFTER_IMPORT, 3-9
INITIALIZE_METADATA, 3-9
PREPARE_FOR_EXPORT, 3-10
reference information, 3-1
RELATE, 3-11
SDO_TOPO_GEOMETRY constructors, 1-23
SDO_TOPO_GEOMETRY member functions
GET_GEOMETRY, 1-28
GET_TGL_OBJECTS, 1-28
GET_TOPO_ELEMENTS, 1-29
SDO_TOPO_GEOMETRY type, 1-22
SDO_TOPO_MAP package

Index-8

SDO_TOPO_MAP package (continued)
ADD _EDGE, 4-2
ADD_ISOLATED_NODE, 4-4
ADD _LINEAR_GEOMETRY, 4-5
ADD _LOOP, 4-7
ADD_NODE, 4-8
ADD_POINT_GEOMETRY, 4-10
ADD POLYGON_GEOMETRY, 4-11
CHANGE_EDGE_COORDS, 4-12
CLEAR_TOPO_MAP, 4-14
COMMIT_TOPO_MAP, 4-15
CREATE_EDGE_INDEX, 4-16
CREATE_FACE_INDEX, 4-16
CREATE_FEATURE, 4-17
CREATE_TOPO_MAP, 4-21
DROP_TOPO_MAP, 4-22
GET_CONTAINING_FACE, 4-23
GET_EDGE_ADDITIONS, 4-24
GET_EDGE_CHANGES, 4-25
GET_EDGE_COORDS, 4-25
GET_EDGE_DELETIONS, 4-26
GET_EDGE_NODES, 4-27
GET_FACE_ADDITIONS, 4-28
GET_FACE_BOUNDARY, 4-29
GET_FACE_CHANGES, 4-29
GET_FACE_DELETIONS, 4-30
GET_NEAREST_EDGE, 4-31
GET_NEAREST_EDGE_IN_CACHE, 4-32
GET_NEAREST_NODE, 4-33
GET_NEAREST_NODE_IN_CACHE, 4-35
GET_NODE_ADDITIONS, 4-36
GET_NODE_CHANGES, 4-36
GET_NODE_COORD, 4-37
GET_NODE_DELETIONS, 4-38
GET_NODE_FACE_STAR, 4-39
GET_NODE_STAR, 4-40
GET_TOPO_NAME, 4-41
GET_TOPO_TRANSACTION_ID, 4-41
LIST TOPO_MAPS, 4-42
LOAD TOPO_MAP, 4-43
MOVE_EDGE, 4-46
MOVE_ISOLATED_NODE, 4-48
MOVE_NODE, 4-49
reference information, 4-1
REMOVE_EDGE, 4-51
REMOVE_NODE, 4-51
REMOVE_OBSOLETE_NODES, 4-52
ROLLBACK_TOPO_MAP, 4-53
SEARCH_EDGE_RTREE_TOPO_MAP,

4-53
SEARCH_FACE_RTREE_TOPO_MAP, 4-54
SET_MAX_MEMORY_SIZE, 4-55
UPDATE_TOPO_MAP, 4-56
VALIDATE_TOPO_MAP, 4-57
VALIDATE_TOPOLOGY, 4-58

ORACLE

Index

SDO_TOPO_OBJECT type, 1-24
SDO_TOPO_OBJECT_ARRAY type, 1-24
sdonm Java client interface, 5-66
sdotopo Java client interface, 1-37
SEARCH_EDGE_RTREE_TOPO_MAP function,
4-53
SEARCH_FACE_RTREE_TOPO_MAP function,
4-54
sequences
node, edge, and face
privileges needed for cross-schema
topology editing, 1-39
SET_LOGGING_LEVEL procedure, 6-89
SET_MAX_JAVA_HEAP_SIZE procedure, 6-89
SET_MAX_MEMORY_SIZE procedure, 4-55
SET_MODEL_UNDERLYING_NETWORK
function, 7-22
sibling links, 5-12
sibling nodes, 5-12
simple path, 5-33
spanning tree, 5-7
minimum cost, 5-5
spatial network, 5-6
SPATIAL_PARTITION procedure, 6-90
star
node, 4-40
node face, 4-39
state, 5-5
subpath table
definition, 5-34
subpaths
CREATE_SUBPATH_TABLE procedure,
6-25
definition, 5-8
deleting, 6-37
subpath table, 5-34

T

temporal modeling and analysis for networks,
5-11
temporary links, 5-5
temporary nodes, 5-5
temporary paths, 5-5
TG_ID attribute of SDO_TOPO_GEOMETRY
type, 1-22
TG_LAYER_ID attribute of
SDO_TOPO_GEOMETRY type, 1-23
TG_TYPE attribute of SDO_TOPO_GEOMETRY
type, 1-22
tolerance
in the Topology Data Model, 1-7
TOPO_GEOMETRY_NETWORK function, 6-91
topo_map parameter
SDO_TOPO subprograms, 2-3

topological elements, 1-8
definition (nodes, edges, faces), 1-8
topology
clearing map, 4-14
committing map, 4-15
creating, 3-3
creating edge index, 4-16
creating face index, 4-16
creating map, 4-21
deleting (dropping), 3-6
deleting (dropping) map, 4-22
editing, 2-1
export information table format, 1-38
exporting
preparing for, 3-10
getting name from TopoMap object, 4-41
hierarchy of geometry layers, 1-11
importing
initializing after, 3-9
initializing metadata, 3-9
loading into TopoMap object, 4-43
updating, 4-56
validating, 4-58
Topology Data Model
application programming interface (API),
1-33
concepts, 1-4
overview, 1-1
PL/SQL example, 1-40
steps for using, 1-2
subprogram reference information, 3-1, 4-1
topology data types, 1-22
topology export information table, 1-38
topology geometry
definition, 1-8
layer, 1-8
topology geometry layer
adding, 3-1
definition, 1-8
deleting, 3-5
hierarchical relationships in, 1-11
topology geometry network, 5-6
topology maps, 2-2
listing, 4-42
loading, 4-43
rolling back, 4-53
validating, 4-57
See also TopoMap objects
topology operators, 1-34
topology parameter
SDO_TOPO subprograms, 2-3
topology transaction ID
getting, 4-41
TOPOLOGY_ID attribute of
SDO_TOPO_GEOMETRY type, 1-23

ORACLE

Index

TopoMap objects, 2-2
clearing, 4-14
committing changes to the database, 4-15
creating, 4-21
creating edge index, 4-16
creating face index, 4-16
deleting (dropping), 4-22
description, 2-2
getting topology name, 4-41
listing, 4-42
loading, 4-43
process for using to edit topologies, 2-4, 2-6
read-only, 2-2
rolling back changes in, 4-53
updatable, 2-2
validating, 4-57
type
link or node type, 5-5

U

undirected links, 5-5

undirected networks, 5-6

universe face (F0), 1-4

updatable TopoMap objects, 2-2
UPDATE_FEATURE procedure, 6-92
UPDATE_FEATURE_ELEMENT procedure, 6-93
UPDATE_TOPO_MAP procedure, 4-56
USER_SDO_NETWORK_CONSTRAINTS view,

5-55
USER_SDO_NETWORK_METADATA view,
5-51
USER_SDO_NETWORK_USER_DATA view,
5-56, 5-58
USER_SDO_NFE_MODEL_FTLAYER_REL
view, 5-59
USER_SDO_NFE_MODEL_METADATA view,
5-60
USER_SDO_NFE_MODEL_WORKSPACE view,
5-62

USER_SDO_TOPO_INFO view, 1-30
USER_SDO_TOPO_METADATA view, 1-31
user-defined data, 5-5
ALL_SDO_NETWORK_USER_DATA view,
5-56, 5-58
USER_SDO_NETWORK_USER_DATA
view, 5-56, 5-58

Vv

VALIDATE_LINK_SCHEMA function, 6-94
VALIDATE_LRS_SCHEMA function, 6-95
VALIDATE_NETWORK function, 6-95
VALIDATE_NODE_SCHEMA function, 6-96
VALIDATE_PARTITION_SCHEMA function, 6-97

Index-10

VALIDATE_PATH_SCHEMA function, 6-98
VALIDATE_SUBPATH_SCHEMA function, 6-98
VALIDATE_TOPO_MAP function, 4-57
VALIDATE_TOPOLOGY procedure, 4-58
vertex (node), 5-5

ORACLE

X

Index

XML interface for Network Data Model Graph,
5-67

11

	Contents
	List of Figures
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	Changes in This Release for Oracle Spatial and Graph Topology Data Model and Network Data Model Graph Developer's Guide
	Changes in Oracle Database 12c Release 1 (12.1)
	New Features
	Feature Modeling in the Network Data Model
	Multimodal Network and Temporal Modeling Support
	New part_size_tolerance Parameter for SDO_NET.LOGICAL_POWERLAW_PARTITION

	Java in-Memory API and SDO_NET_MEM Package Desupported
	Other Changes

	Changes in Oracle Database 12c Release 2 (12.2)
	Network Feature Editing (NFE)

	Part I Topology Data Model
	1 Topology Data Model Overview
	1.1 Main Steps in Using Topology Data
	1.1.1 Using a Topology Built from Topology Data
	1.1.2 Using a Topology Built from Spatial Geometries

	1.2 Topology Data Model Concepts
	1.2.1 Tolerance in the Topology Data Model

	1.3 Topology Geometries and Layers
	1.3.1 Features
	1.3.2 Collection Layers

	1.4 Topology Geometry Layer Hierarchy
	1.5 Topology Data Model Tables
	1.5.1 Edge Information Table
	1.5.2 Node Information Table
	1.5.3 Face Information Table
	1.5.4 Relationship Information Table
	1.5.5 History Information Table

	1.6 Topology Data Types
	1.6.1 SDO_TOPO_GEOMETRY Type
	1.6.2 SDO_TOPO_GEOMETRY Constructors
	1.6.2.1 Constructors for Insert Operations: Specifying Topological Elements
	1.6.2.2 Constructors for Insert Operations: Specifying Lower-Level Features
	1.6.2.3 Constructors for Update Operations: Specifying Topological Elements
	1.6.2.4 Constructors for Update Operations: Specifying Lower-Level Features

	1.6.3 GET_GEOMETRY Member Function
	1.6.4 GET_TGL_OBJECTS Member Function
	1.6.5 GET_TOPO_ELEMENTS Member Function
	1.6.6 SDO_LIST_TYPE Type
	1.6.7 SDO_EDGE_ARRAY and SDO_NUMBER_ARRAY Types

	1.7 Topology Metadata Views
	1.7.1 xxx_SDO_TOPO_INFO Views
	1.7.2 xxx_SDO_TOPO_METADATA Views

	1.8 Topology Application Programming Interface
	1.8.1 Topology Operators
	1.8.2 Topology Data Model Java Interface

	1.9 Exporting and Importing Topology Data
	1.10 Cross-Schema Topology Usage and Editing
	1.10.1 Cross-Schema Topology Usage
	1.10.2 Cross-Schema Topology Editing

	1.11 Function-Based Indexes Not Supported
	1.12 Topology Examples (PL/SQL)
	1.12.1 Topology Built from Topology Data
	1.12.2 Topology Built from Spatial Geometries

	1.13 README File for Spatial and Graph and Related Features

	2 Editing Topologies
	2.1 Approaches for Editing Topology Data
	2.1.1 TopoMap Objects
	2.1.2 Specifying the Editing Approach with the Topology Parameter
	2.1.3 Using GET_xxx Topology Functions
	2.1.4 Process for Editing Using Cache Explicitly (PL/SQL API)
	2.1.5 Process for Editing Using the Java API
	2.1.6 Error Handling for Topology Editing
	2.1.6.1 Input Parameter Errors
	2.1.6.2 All Exceptions

	2.2 Performing Operations on Nodes
	2.2.1 Adding a Node
	2.2.2 Moving a Node
	2.2.2.1 Additional Examples of Allowed and Disallowed Node Moves

	2.2.3 Removing a Node
	2.2.4 Removing Obsolete Nodes

	2.3 Performing Operations on Edges
	2.3.1 Adding an Edge
	2.3.2 Moving an Edge
	2.3.3 Removing an Edge
	2.3.4 Updating an Edge

	3 SDO_TOPO Package Subprograms
	3.1 SDO_TOPO.ADD_TOPO_GEOMETRY_LAYER
	3.2 SDO_TOPO.CREATE_TOPOLOGY
	3.3 SDO_TOPO.DELETE_TOPO_GEOMETRY_LAYER
	3.4 SDO_TOPO.DROP_TOPOLOGY
	3.5 SDO_TOPO.GET_FACE_BOUNDARY
	3.6 SDO_TOPO.GET_TOPO_OBJECTS
	3.7 SDO_TOPO.INITIALIZE_AFTER_IMPORT
	3.8 SDO_TOPO.INITIALIZE_METADATA
	3.9 SDO_TOPO.PREPARE_FOR_EXPORT
	3.10 SDO_TOPO.RELATE

	4 SDO_TOPO_MAP Package Subprograms
	4.1 SDO_TOPO_MAP.ADD_EDGE
	4.2 SDO_TOPO_MAP.ADD_ISOLATED_NODE
	4.3 SDO_TOPO_MAP.ADD_LINEAR_GEOMETRY
	4.4 SDO_TOPO_MAP.ADD_LOOP
	4.5 SDO_TOPO_MAP.ADD_NODE
	4.6 SDO_TOPO_MAP.ADD_POINT_GEOMETRY
	4.7 SDO_TOPO_MAP.ADD_POLYGON_GEOMETRY
	4.8 SDO_TOPO_MAP.CHANGE_EDGE_COORDS
	4.9 SDO_TOPO_MAP.CLEAR_TOPO_MAP
	4.10 SDO_TOPO_MAP.COMMIT_TOPO_MAP
	4.11 SDO_TOPO_MAP.CREATE_EDGE_INDEX
	4.12 SDO_TOPO_MAP.CREATE_FACE_INDEX
	4.13 SDO_TOPO_MAP.CREATE_FEATURE
	4.14 SDO_TOPO_MAP.CREATE_TOPO_MAP
	4.15 SDO_TOPO_MAP.DROP_TOPO_MAP
	4.16 SDO_TOPO_MAP.GET_CONTAINING_FACE
	4.17 SDO_TOPO_MAP.GET_EDGE_ADDITIONS
	4.18 SDO_TOPO_MAP.GET_EDGE_CHANGES
	4.19 SDO_TOPO_MAP.GET_EDGE_COORDS
	4.20 SDO_TOPO_MAP.GET_EDGE_DELETIONS
	4.21 SDO_TOPO_MAP.GET_EDGE_NODES
	4.22 SDO_TOPO_MAP.GET_FACE_ADDITIONS
	4.23 SDO_TOPO_MAP.GET_FACE_CHANGES
	4.24 SDO_TOPO_MAP.GET_FACE_BOUNDARY
	4.25 SDO_TOPO_MAP.GET_FACE_DELETIONS
	4.26 SDO_TOPO_MAP.GET_NEAREST_EDGE
	4.27 SDO_TOPO_MAP.GET_NEAREST_EDGE_IN_CACHE
	4.28 SDO_TOPO_MAP.GET_NEAREST_NODE
	4.29 SDO_TOPO_MAP.GET_NEAREST_NODE_IN_CACHE
	4.30 SDO_TOPO_MAP.GET_NODE_ADDITIONS
	4.31 SDO_TOPO_MAP.GET_NODE_CHANGES
	4.32 SDO_TOPO_MAP.GET_NODE_COORD
	4.33 SDO_TOPO_MAP.GET_NODE_DELETIONS
	4.34 SDO_TOPO_MAP.GET_NODE_FACE_STAR
	4.35 SDO_TOPO_MAP.GET_NODE_STAR
	4.36 SDO_TOPO_MAP.GET_TOPO_NAME
	4.37 SDO_TOPO_MAP.GET_TOPO_TRANSACTION_ID
	4.38 SDO_TOPO_MAP.LIST_TOPO_MAPS
	4.39 SDO_TOPO_MAP.LOAD_TOPO_MAP
	4.40 SDO_TOPO_MAP.MOVE_EDGE
	4.41 SDO_TOPO_MAP.MOVE_ISOLATED_NODE
	4.42 SDO_TOPO_MAP.MOVE_NODE
	4.43 SDO_TOPO_MAP.REMOVE_EDGE
	4.44 SDO_TOPO_MAP.REMOVE_NODE
	4.45 SDO_TOPO_MAP.REMOVE_OBSOLETE_NODES
	4.46 SDO_TOPO_MAP.ROLLBACK_TOPO_MAP
	4.47 SDO_TOPO_MAP.SEARCH_EDGE_RTREE_TOPO_MAP
	4.48 SDO_TOPO_MAP.SEARCH_FACE_RTREE_TOPO_MAP
	4.49 SDO_TOPO_MAP.SET_MAX_MEMORY_SIZE
	4.50 SDO_TOPO_MAP.UPDATE_TOPO_MAP
	4.51 SDO_TOPO_MAP.VALIDATE_TOPO_MAP
	4.52 SDO_TOPO_MAP.VALIDATE_TOPOLOGY

	Part II Network Data Model
	5 Network Data Model Graph Overview
	5.1 Introduction to Network Modeling
	5.2 Main Steps in Using the Network Data Model Graph
	5.2.1 Letting Spatial Perform Most Operations
	5.2.2 Performing the Operations Yourself

	5.3 Network Data Model Graph Concepts
	5.3.1 Subpaths
	5.3.2 Features and Feature Layers

	5.4 Network Applications
	5.4.1 Road Network Example
	5.4.2 Subway (Train) Network Example
	5.4.3 Multimodal Network and Temporal Examples
	5.4.4 Utility Network Example
	5.4.5 Biochemical Network Example

	5.5 Network Hierarchy
	5.6 Network User Data
	5.6.1 User-Defined Data Example (PL/SQL and Java)
	5.6.2 User-Defined Data Example (Custom User Data I/O Implementation)
	5.6.2.1 Implementation of writeUserData method of LODUserDataIO
	5.6.2.2 Implementation of readUserData method of LODUserDataIO

	5.7 Feature Modeling
	5.7.1 Data Types Used for Feature Modeling

	5.8 Feature Modeling Using Network Feature Editing (NFE)
	5.8.1 Creation Modes for NFE Models
	5.8.2 NFE Feature Classes
	5.8.3 NFE Rules
	5.8.4 Data Types Used for NFE Connectivity Rules

	5.9 Network Constraints
	5.10 Network Analysis Using Load on Demand
	5.10.1 Partitioning a Network
	5.10.2 Generating Partition BLOBs
	5.10.3 Configuring the Partition Cache
	5.10.4 Analyzing the Network
	5.10.5 Using Link Levels for Priority Modeling
	5.10.6 Precomputed Analysis Results

	5.11 Network Data Model Graph Tables
	5.11.1 Network Layer Tables
	5.11.1.1 Node Table
	5.11.1.2 Link Table
	5.11.1.3 Path Table
	5.11.1.4 Path-Link Table
	5.11.1.5 Subpath Table
	5.11.1.6 Partition Table
	5.11.1.7 Partition BLOB Table
	5.11.1.8 Connected Component Table
	5.11.1.9 Node Hierarchy Table (Optional)
	5.11.1.10 Node Level Table (Optional)

	5.11.2 Feature Layer Tables
	5.11.2.1 Feature Table
	5.11.2.2 Feature Element Relationships Table
	5.11.2.3 Feature Hierarchy Table

	5.11.3 Network Feature Editing (NFE) Model Tables
	5.11.3.1 Automatically Created Points Default Attributes Table
	5.11.3.2 Connectivity Line-Line Rules Table
	5.11.3.3 Connectivity Line-Point Rules Table
	5.11.3.4 Feature Class Table
	5.11.3.5 Feature Class Attributes Constraints Table
	5.11.3.6 Feature Class Default Predefined Connected Points Table
	5.11.3.7 Feature Class Relationship Table
	5.11.3.8 Feature Rule Relationship Table
	5.11.3.9 Feature User Data Table
	5.11.3.10 Feature User Data Catalog Table
	5.11.3.11 Feature User Data Catalog Values Table
	5.11.3.12 Point Cardinality Rules Table
	5.11.3.13 Rule Decision Handlers Table
	5.11.3.14 Rule Instance Table

	5.12 Network Data Model Graph and Network Feature Editing (NFE) Model Metadata Views
	5.12.1 xxx_SDO_NETWORK_METADATA Views
	5.12.2 xxx_SDO_NETWORK_CONSTRAINTS Views
	5.12.3 xxx_SDO_NETWORK_USER_DATA Views
	5.12.4 xxx_SDO_NETWORK_FEATURE Views
	5.12.5 xxx_SDO_NFE_MODEL_FTLAYER_REL Views
	5.12.6 xxx_SDO_NFE_MODEL_METADATA Views
	5.12.7 xxx_SDO_NFE_MODEL_WORKSPACE Views

	5.13 Network Data Model Graph Application Programming Interface
	5.13.1 Network Data Model Graph PL/SQL Interface
	5.13.2 Network Data Model Graph Java Interface
	5.13.2.1 Network Metadata and Data Management
	5.13.2.2 Network Analysis Using the Load on Demand Approach

	5.13.3 Network Data Model Graph XML Interface
	5.13.3.1 User-Specified Implementations

	5.14 Cross-Schema Network Access
	5.14.1 Cross-Schema Access by Specifying Owner in Network Metadata
	5.14.2 Cross-Schema Access by Using Views

	5.15 Network Examples
	5.15.1 Simple Spatial (SDO) Network Example (PL/SQL)
	5.15.2 Simple Logical Network Example (PL/SQL)
	5.15.3 Spatial (LRS) Network Example (PL/SQL)
	5.15.4 Logical Hierarchical Network Example (PL/SQL)
	5.15.5 Partitioning and Load on Demand Analysis Examples (PL/SQL, XML, and Java)
	5.15.6 User-Defined Data Examples (PL/SQL and Java)

	5.16 Network Data Model Graph Tutorial and Other Resources
	5.17 README File for Spatial and Graph and Related Features

	6 SDO_NET Package Subprograms
	6.1 SDO_NET.ADD_CHILD_FEATURE
	6.2 SDO_NET.ADD_CHILD_FEATURES
	6.3 SDO_NET.ADD_FEATURE
	6.4 SDO_NET.ADD_FEATURE_ELEMENT
	6.5 SDO_NET.ADD_FEATURE_ELEMENTS
	6.6 SDO_NET.ADD_FEATURE_LAYER
	6.7 SDO_NET.COMPUTE_PATH_GEOMETRY
	6.8 SDO_NET.COPY_NETWORK
	6.9 SDO_NET.CREATE_LINK_TABLE
	6.10 SDO_NET.CREATE_LOGICAL_NETWORK
	6.11 SDO_NET.CREATE_LRS_NETWORK
	6.12 SDO_NET.CREATE_LRS_TABLE
	6.13 SDO_NET.CREATE_NODE_TABLE
	6.14 SDO_NET.CREATE_PARTITION_TABLE
	6.15 SDO_NET.CREATE_PATH_LINK_TABLE
	6.16 SDO_NET.CREATE_PATH_TABLE
	6.17 SDO_NET.CREATE_SDO_NETWORK
	6.18 SDO_NET.CREATE_SUBPATH_TABLE
	6.19 SDO_NET.CREATE_TOPO_NETWORK
	6.20 SDO_NET.DELETE_CHILD_FEATURES
	6.21 SDO_NET.DELETE_CHILD_FEATURES_AT
	6.22 SDO_NET.DELETE_DANGLING_FEATURES
	6.23 SDO_NET.DELETE_DANGLING_LINKS
	6.24 SDO_NET.DELETE_DANGLING_NODES
	6.25 SDO_NET.DELETE_FEATURE_ELEMENTS
	6.26 SDO_NET.DELETE_FEATURE_ELEMENTS_AT
	6.27 SDO_NET.DELETE_FEATURES
	6.28 SDO_NET.DELETE_LINK
	6.29 SDO_NET.DELETE_NODE
	6.30 SDO_NET.DELETE_PATH
	6.31 SDO_NET.DELETE_PHANTOM_FEATURES
	6.32 SDO_NET.DELETE_SUBPATH
	6.33 SDO_NET.DEREGISTER_CONSTRAINT
	6.34 SDO_NET.DROP_FEATURE_LAYER
	6.35 SDO_NET.DROP_NETWORK
	6.36 SDO_NET.FIND_CONNECTED_COMPONENTS
	6.37 SDO_NET.GENERATE_NODE_LEVELS
	6.38 SDO_NET.GENERATE_PARTITION_BLOB
	6.39 SDO_NET.GENERATE_PARTITION_BLOBS
	6.40 SDO_NET.GET_CHILD_FEATURE_IDS
	6.41 SDO_NET.GET_CHILD_LINKS
	6.42 SDO_NET.GET_CHILD_NODES
	6.43 SDO_NET.GET_DANGLING_FEATURES
	6.44 SDO_NET.GET_DANGLING_LINKS
	6.45 SDO_NET.GET_DANGLING_NODES
	6.46 SDO_NET.GET_FEATURE_ELEMENTS
	6.47 SDO_NET.GET_FEATURE_LAYER_ID
	6.48 SDO_NET.GET_FEATURES_ON_LINKS
	6.49 SDO_NET.GET_FEATURES_ON_NODES
	6.50 SDO_NET.GET_GEOMETRY_TYPE
	6.51 SDO_NET.GET_IN_LINKS
	6.52 SDO_NET.GET_INVALID_LINKS
	6.53 SDO_NET.GET_INVALID_NODES
	6.54 SDO_NET.GET_INVALID_PATHS
	6.55 SDO_NET.GET_ISOLATED_NODES
	6.56 SDO_NET.GET_LINK_COST_COLUMN
	6.57 SDO_NET.GET_LINK_DIRECTION
	6.58 SDO_NET.GET_LINK_GEOM_COLUMN
	6.59 SDO_NET.GET_LINK_GEOMETRY
	6.60 SDO_NET.GET_LINK_TABLE_NAME
	6.61 SDO_NET.GET_LINKS_IN_PATH
	6.62 SDO_NET.GET_LRS_GEOM_COLUMN
	6.63 SDO_NET.GET_LRS_LINK_GEOMETRY
	6.64 SDO_NET.GET_LRS_NODE_GEOMETRY
	6.65 SDO_NET.GET_LRS_TABLE_NAME
	6.66 SDO_NET.GET_NETWORK_TYPE
	6.67 SDO_NET.GET_NO_OF_HIERARCHY_LEVELS
	6.68 SDO_NET.GET_NO_OF_LINKS
	6.69 SDO_NET.GET_NO_OF_NODES
	6.70 SDO_NET.GET_NODE_DEGREE
	6.71 SDO_NET.GET_NODE_GEOM_COLUMN
	6.72 SDO_NET.GET_NODE_GEOMETRY
	6.73 SDO_NET.GET_NODE_IN_DEGREE
	6.74 SDO_NET.GET_NODE_OUT_DEGREE
	6.75 SDO_NET.GET_NODE_TABLE_NAME
	6.76 SDO_NET.GET_OUT_LINKS
	6.77 SDO_NET.GET_PARENT_FEATURE_IDS
	6.78 SDO_NET.GET_PARTITION_SIZE
	6.79 SDO_NET.GET_PATH_GEOM_COLUMN
	6.80 SDO_NET.GET_PATH_TABLE_NAME
	6.81 SDO_NET.GET_PERCENTAGE
	6.82 SDO_NET.GET_PHANTOM_FEATURES
	6.83 SDO_NET.GET_PT
	6.84 SDO_NET.IS_HIERARCHICAL
	6.85 SDO_NET.IS_LINK_IN_PATH
	6.86 SDO_NET.IS_LOGICAL
	6.87 SDO_NET.IS_NODE_IN_PATH
	6.88 SDO_NET.IS_SPATIAL
	6.89 SDO_NET.LOAD_CONFIG
	6.90 SDO_NET.LOGICAL_PARTITION
	6.91 SDO_NET.LOGICAL_POWERLAW_PARTITION
	6.92 SDO_NET.LRS_GEOMETRY_NETWORK
	6.93 SDO_NET.NETWORK_EXISTS
	6.94 SDO_NET.POST_XML
	6.95 SDO_NET.REGISTER_CONSTRAINT
	6.96 SDO_NET.SDO_GEOMETRY_NETWORK
	6.97 SDO_NET.SET_LOGGING_LEVEL
	6.98 SDO_NET.SET_MAX_JAVA_HEAP_SIZE
	6.99 SDO_NET.SPATIAL_PARTITION
	6.100 SDO_NET.TOPO_GEOMETRY_NETWORK
	6.101 SDO_NET.UPDATE_FEATURE
	6.102 SDO_NET.UPDATE_FEATURE_ELEMENT
	6.103 SDO_NET.VALIDATE_LINK_SCHEMA
	6.104 SDO_NET.VALIDATE_LRS_SCHEMA
	6.105 SDO_NET.VALIDATE_NETWORK
	6.106 SDO_NET.VALIDATE_NODE_SCHEMA
	6.107 SDO_NET.VALIDATE_PARTITION_SCHEMA
	6.108 SDO_NET.VALIDATE_PATH_SCHEMA
	6.109 SDO_NET.VALIDATE_SUBPATH_SCHEMA

	7 SDO_NFE Package Subprograms
	7.1 SDO_NFE.APPLY_RULE
	7.2 SDO_NFE.CLASSIFY_LINES_BY_SIDE
	7.3 SDO_NFE.CREATE_MODEL_SEQUENCE
	7.4 SDO_NFE.CREATE_MODEL_STRUCTURE
	7.5 SDO_NFE.CREATE_MODEL_UNDERLYING_NET
	7.6 SDO_NFE.CREATE_MODEL_WORKSPACE
	7.7 SDO_NFE.DELETE_ALL_FT_LAYERS
	7.8 SDO_NFE.DELETE_ALL_WORKSPACES
	7.9 SDO_NFE.DELETE_MODEL_STRUCTURE
	7.10 SDO_NFE.DELETE_MODEL_WORKSPACE
	7.11 SDO_NFE.DROP_MODEL_SEQUENCE
	7.12 SDO_NFE.DROP_MODEL_UNDERLYING_NETWORK
	7.13 SDO_NFE.GET_CONNECTION_POINT_GEOM
	7.14 SDO_NFE.GET_INTERACTION_GROUPS
	7.15 SDO_NFE.GET_LINES_MATCH_LP_RULE
	7.16 SDO_NFE.GET_LL_CONN_INTERSECTIONS
	7.17 SDO_NFE.GET_LP_CONN_INTERSECTIONS
	7.18 SDO_NFE.GET_MODEL_SEQUENCE_NAME
	7.19 SDO_NFE.GET_MODEL_TABLE_NAME
	7.20 SDO_NFE.GET_MODEL_UNDERLYING_NETWORK
	7.21 SDO_NFE.GET_NEXT_SEQUENCE_VALUE
	7.22 SDO_NFE.GET_POINTS_MATCH_LP_RULE
	7.23 SDO_NFE.IMPORT_NETWORK
	7.24 SDO_NFE.SET_MODEL_UNDERLYING_NETWORK

	Index

