

Liquidity Management Extensibility

Oracle Banking Liquidity Management

 Release 14.0.0.0.0

[November] [2017]

Table of Contents

1. MAKING AN APPLICATION CUSTOMIZABLE... 3

1.1 INTRODUCTION ... 3
1.2 DEVELOPING THE CUSTOMIZATION CLASSES ... 3
1.3 DEPLOYING THE CUSTOMIZATION CLASSES .. 7
1.4 ENABLING SEEDED CUSTOMIZATION ... 9
1.5 LINKING THE CUSTOMIZATION CLASS TO THE APPLICATION .. 11
1.6 CUSTOMIZING VIEW OBJECT ... 16
1.7 CUSTOMIZING JAVA CLASSES ... 19
1.8 CUSTOMIZING THE PAGES ... 23
1.9 CUSTOMIZING TASK FLOW .. 33

2. EXTENDING HOST FOR CUSTOMIZATION ... 34

2.1 EXTENDING COMMON PROJECTS AND DEPLOYMENT .. 34

1. Making an Application Customizable

1.1 Introduction

 This customization functionality can be useful for companies, if you have two screens that work

with the same data, but one of the screens must show more fields than the other, you can create one

screen with all the fields and use customization to create another version of the same screen with fewer

fields for other users.

ADF has customization features built-in, it’s easy to perform the customization with minimal changes.

1.2 Developing the Customization Classes

 For each layer of customization, you need to develop a customization class with a specific format

technically, by extending the built-in abstract class oracle.mds.cust.CustomizationClass.

1. Create a new ADF application

2. Provide proper naming conventions and finish the application creation

3. Once application creation is done, delete the model as we don’t need to use that part. And view

controller to be renamed (Ex: com.ofss.glm.ui.customization).

4. Create the Customization classes that can be used.

5. Name the Class as per naming conventions and package too.

In Extends click on Search and Type Customization Class, and try to select as shown in the screenshot

(oracle.mds.cust.CustomizationClass)

6. getName() method defines the name of the customization layer.

getValue() defines the logic when the customizations should be shown.

7. Based on the requirement of different customization layers, we can create customization classes. As of

now we have one layer “CZ” with values “wf” and “all”(default).

1.3 Deploying the customization classes

 Because you place your customization class in the different project, you need to deploy the

project to an ADF library to use it on customizable application.

Now deploy this project as a JAR File by creating a new deployment profile. (Follow the

screenshots to do the same)

1.4 Enabling Seeded Customization

1. Verify that Seeded Customizations is enabled for the module/screen that you want to customize.

This helps in customizing the jsff/taskflow etc. files in customization developer mode.

2. Open adfm.xml in project’s META-INF project and add BusinessComponentProjectRegistry and

BusinessComponentServiceRegistry tags. This helps to fetch the view objects from libraries.

<?xml version = '1.0' encoding = 'UTF-8'?>

<MetadataDirectory xmlns="http://xmlns.oracle.com/adfm/metainf"

version="11.1.1.0.0">

<BusinessComponentProjectRegistry

path="com/ofss/glm/ui/taskflows/view/setup/branch/comOfssGlmUiTaskflowsSetupB

ranch.jpx"/>

<BusinessComponentServiceRegistry

path="com/ofss/glm/ui/taskflows/view/setup/branch/common/bc4j.xcfg"/>

<DataBindingRegistry

path="com/ofss/glm/ui/taskflows/view/setup/branch/DataBindings.cpx"/>

</MetadataDirectory>

3. Now open the view project by removing all dependencies of modules.

Go to Application Properties and add the library (in Libraries and ClassPath By clicking on Add JAR)

which was created earlier for customization layer specification.

1.5 Linking the customization class to the application

1. Now Open Application Resources tab -> Descriptors -> ADF-METAINF-> adf-config.xml

 Click on MDS and then add the customization classes which is present in library.

2. Once added click on “Configure Design time Customization Layer Values” link to generate

customizationLayerValues.xml file.

3. Edit the Xml file as per our requirement.

4. To verify the configuration for customization,Restart JDeveloper in Customization Developer

Mode.

5. Verify the pre-defined customization layers in Customization Context tab.

4. Switch back to developer mode by restarting JDeveloper and try to add the libraries to do

customization.

5. Extract the libraries from ear and store in a folder.

6. Add these libraries to the file system as referred below:

7. Once the required libraries are added to project, the same can be verified through Project Properties.

1 Switch back to Customization mode to modify the page(jsff).

1.6 Customizing View Object

 Create the same package structure as the existing view object was in with the layer values you

need to customization with.

Existing package structure:

com.ofss.glm.ui.taskflows.view.setup.branch.model.BranchVO

New Package Structure with tip layer Name (cz) and value (wf):

com.ofss.glm.cz.wf.ui.taskflows.view.setup.branch.model.BranchVOEx.

Note: While creating AppModule, maintain the same package structure.

1.7 Customizing Java Classes

Similarly Extend Assembler, Handler, Bean and Util Classes to implement the new logic.

1.8 Customizing the pages

1. Once done with writing the logic switch to Customization Developer mode.

2. Enable Show Libraries to see all the libs added.

3. Select jsff file from lib and then select structure from windows menu.

4. Drag and drop the required UI components in the structure which creates a *.jsff.xml (with the

same name as the one you selected) file in Library Customizations and with the same package

structure by adding the layer which was selected in Customizations Context tab.

5. Overriding Resource bundle: (switch to Studio Developer mode)

6. Turn on Application Properties register the existing bundle of the application.

7. Select the label of a field from resource bundle.

8. Once done with resource bundle, add the bindings of new attribute through iterator and

datacontrol to store the value entered from UI/show the value fetched from DB.

9. Once done add the binding to the value of a field.

10. Add create method to set the current row to *VOImpl class newly created VO.

1.9 Customizing Task Flow

 Modify the Managed Bean class in the Taskflow with the extended bean class.

Once changes are done deploy the UI application.

2. Extending Host for Customization

2.1 Extending Common Projects and Deployment

 1. Create xface Extension Project

2 Add Existing xface projects as dependency in Java Build Path.

3 Once done with the project Creation, Create a Child DTO for the base DTO which we need to extend.

4 Create Config Extension Project

5 Add the existing Config Project as Dependency for the created extension Project

6 Create Host.java File in Java and HostConfigExt.Properties File.

7 Copy and paste the code from Existing Host File and Replace Default Setups File properties file.

8 Add required common library files in Config Project.

9 Create a new Web service Project for proxy project extension.

10 Add the required projects

11 Add Weblogic.xml file with the context root.

12 Create Proxy Ext Class.

13 Add the Proxy Ext which was created in ApplicationConfigExt.

14 Extend the module on which screen we need to do changes.

15 Create an EJB Project.

16 Add New Entity, Application Service, Domain Service and Repository.

17 Create a persistence.xml and add the entity inside the persistence.xml.

18 Add ejb-jar.xml, weblogic-beans.xml and beans.xml.

19 Add the newly created projects in Deployment Assembly in the ear project.

Oracle Banking Liquidity Management
Version 14.0.0.0.0
[November] [2017]

Oracle Financial Services Software Limited
Oracle Park
Off Western Express Highway
Goregaon (East)
Mumbai, Maharashtra 400 063
India

Worldwide Inquiries:
Phone: +91 22 6718 3000
Fax:+91 22 6718 3001
www.oracle.com/financialservices/

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their
respective owners.

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs
installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer
software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system,
integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and
license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate failsafe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates
disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of
this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any
errors, please report them to us in writing.

This software or hardware and documentation may provide access to or information on content, products and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any
kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or
services.

http://www.oracle.com/financialservices/

