

Reference Guide

CLINTRIAL™

release 4.7.1
Part Number: E27576-01

Copyright © 2003-2012, Oracle and/or its affiliates. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information; they are
provided under a license agreement containing restrictions on use and disclosure and are also protected by
copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly, or
decompilation of the Programs, except to the extent required to obtain interoperability with other indepen-
dently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these Pro-
grams may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any pur-
pose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regula-
tions. As such, use, duplication, disclosure, modification, and adaptation of the Programs, including docu-
mentation and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle
license agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software -- Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway, Redwood City,
CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently dan-
gerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup, redun-
dancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

The Programs may provide links to Web sites and access to content, products, and services from third parties.
Oracle is not responsible for the availability of, or any content provided on, third-party Web sites. You bear
all risks associated with the use of such content. If you choose to purchase any products or services from a
third party, the relationship is directly between you and the third party. Oracle is not responsible for: (a) the
quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the third
party, including delivery of products or services and warranty obligations related to purchased products or
services. Oracle is not responsible for any loss or damage of any sort that you may incur from dealing with
any third party.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This documentation may include references to materials, offerings, or products that were previously offered
by Phase Forward Inc. Certain materials, offerings, services, or products may no longer be offered or pro-
vided. Oracle and its affiliates cannot be held responsible for any such references should they appear in the
text provided.

Contents

Contents

Preface
Overview xii
About this book xii
About the Clintrial software documentation xii
Clintrial 4.7 compatibility with other Oracle Health Sciences products xvi
If you need assistance xvi

Part I: Database Structures

1 Introducing Database Structures
How to use this part of the guide 22
Types of accounts 22

2 Protocol Account
panel-name_UPDATE 26
panel-name_DATA 29
panel-name_AUDIT 32
ERRORLOG 35
SUBJECT_BLOCK 37
SUBJECT_PAGE 38
TAGS 39
TAGS_AUDIT 41
VCT_ERRORITEM_UPDATE 43
VCT_ERRORSTATUS_UPDATE 43

3 CTS Account
ACCESS_RIGHT 47
ACTIVITY_LOG 47
CATDEFS 48
CC_DICTIONARY 50
CC_DICTIONARY_LABEL 51
CTS_PROTOCOLS 51
CTS_USERGROUPS 58
CTS_USERGROUPS_AUDIT 59
CTS_USER 61
iii

CTS_USER_AUDIT 61
DATABASE 63
EXCEPTION_MESSAGE 64
INVESTIGATOR_SITE 65
JOB_LOG 66
OBJINDX for Oracle parameters 68
OBJINDX for Clintrial software parameters 70
PARAM_AUDIT 72
PROTOCOL_LOCK_HISTORY 73
PROTOCOL_PARAM 74
PROTOCOL_PARAM_AUDIT 75
REGISTRY 76
SEARCH_LIST 77
TAGDEFS 77
USERGROUP 79
USERGROUP_AUDIT 79
USERGROUP_ACCESS 81
USERGROUP_ACCESS_AUDIT 82
USERGROUP_ACCESS_PANEL 83
USERGROUP_ACCESS_PANEL_AUDIT 84
USER_PARAM 85

4 CTPROC Account
SUBJECT_AUDIT_RECORD 88
SUBJECT_AUDIT_ITEM 89

5 CTSCODES Account
AGGREGATED_CODES 92
CODE_INDEX 93
CODELIST_ASSOC 95
IMPORT_LOG 96
VIEW_CODELIST 97

6 CTCLASSIFY Account
GCT_CC_ID 100
GCT_CC_OMISSION 101
GCT_CTX_LOC 103
GCT_DC_ID 104
GCT_DC_OMISSION 105
GCT_DC_PROTOCOL 108
GCT_LEX_ELT 109
GCT_SOLUTION 111

7 CTSDD Account
AUDIT_START_HISTORY 117
iv Contents

BLOCK_REF 118
BLOCK_REF_VALUE 119
BLOCK_REPEATS 120
CC_TARGET 122
CC_TARGET_ITEM 124
DERIVATION 125
DERIVATION_AUDIT 126
ENCODING_TARGET 128
ENCODING_TARGET_AUDIT 130
ITEM 132
ITEM_NONDD 135
OBJECT_AUDIT 139
OBJECT_CONNECTION 141
OBJINDX 144
PAGELAYOUT 145
PAGELAYOUT_EVENT 147
PAGE_LIST 148
PAGE_LIST_MEMBER 149
PAGE_REF 150
PAGE_REF_VALUE 152
PAGE_REPEATS 153
PANE 154
PANE_ITEM 156
PANE_ITEM_SEQ 159
PANEL 160
PANEL_MASTER 162
PANEL_MASTER_NONDD 163
PANEL_NONDD 164
PANE_SEQ_VALUE 166
PANE_USAGE 167
QUERY 169
RULE 170
RULE_AUDIT 172
STUDYBOOK 174
SUBJECT_LIST 176
SUBJECT_LIST_MEMBER 177
THESAURUS_ALGORITHM 178
THESAURUS_ALGORITHM_STEP 179
THESAURUS_LANGUAGE 181
THESAURUS_VIEW 182

8 CTSRM Account
Overview 188
CODE_VALUE_DIFF 188
DIFF_ANALYSIS 189
ERRORLOG 191
FUNCTION_RECV 192
FUNCTION_SOURCE 194
v

ObjectTable_DIFF 195
ObjectTable_SN 197
OBJINDX_SN 198
RELEASE_CHANGE 199
RELEASE_RECV 201
RELEASE_SEND 202
RELEASE_VERSION 203
RELEASED_OBJECT 204
LATEST_RECV view 205

9 CTSRP Account
Overview 210
CALLREC 210
CHANGEREC 210
DCHANGENUM 211
DBOTYPEINFO 212
ERRORREC 214
GROUPDIST table 215
HSUBVIEW 217
REPAUDIT 218
REPGROUP 220
REPGROUPOWN 221
REPPARAMS 222
REPSITE 222
REPTABLE 224

10 CTRESOLVEREF Protocol
Overview 226
DISCREP_STATE panel 226
DISCREP_TRANSITION panel 229
INVESTIGATOR panel 232
VCT_ERRORITEM panel 233
VCT_ERRORSTATUS panel 235

11 CTL_REFERENCE Protocol
Overview 242
CTL_NORMAL_RANGE panel 242
CTL_UNIT_CONVERSION panel 243

12 CT_MEDDRA Protocol
Overview 246
L_PREF_TERM panel 247
L_LOW_LEVEL_TERM panel 249
L_MD_HIERARCHY panel 251
L_SOC_TERM panel 253
vi Contents

L_HLT_PREF_COMP panel 255
L_HLGT_HLT_COMP panel 256
L_HLGT_PREF_TERM panel 257
L_HLT_PREF_TERM panel 258
L_SOC_HLGT_COMP panel 260
L_SOC_INTL_ORDER panel 261
L_SPEC_CAT panel 262
L_SPEC_PREF_COMP panel 263
LLT_PT_SOC panel 264
SYNONYMS panel 265
STOPWORDS panel 266
Thesaurus views 267
Thesaurus algorithms 268

13 PXFR_RECV Account
IMPORT_PARAMS 270

14 Lab Loader Tables
CTL_DUPLICATE table 274
CTL_CONTROL_FILE table 275
CTL_MAP table 276
CTL_MAP_ITEM table 278

Part II: Programming

15 Using PL/SQL in the Clintrial Software
PL/SQL basics 285
PL/SQL in the Clintrial software 291
Site-specific and protocol-specific functions 297
PL/SQL in derivations and rules 303

16 Using Clintrial Software Functions
Basic functions 310
BLOCK_HAS_DATA 310
CLOSE_LOOKUP 312
CONVERT_DATE 313
FIND_N_RECORDS 314
IS_EMPTY 316
IS_NOTEMPTY 317
LOOKUP_FLAG 318
LOOKUP_VARS 320
MSG_IF_EMPTY 323
MSG_IF_NOTEMPTY 324
PAGE_HAS_DATA 326
vii

SECTION_HAS_DATA 327
String functions 329
ADD_ELEMENT (for names) 330
ADD_ELEMENT (for name/value pairs) 331
CHAR_TO_DATE 332
CHAR_TO_DATETIME 333
CHAR_TO_FLOAT 334
COUNT_LIST 335
DATE_TO_CHAR 336
DATETIME_TO_CHAR 337
FLOAT_TO_CHAR 338
GET_ARRAY_VALUE 339
GET_ITEM 340
INIT_NAME_VALUE_ARRAYS 341
MAKE_LIST 342
Privilege functions 344
Resolve functions 345
Lab Loader functions 345
CALC_NORMALCY_STATUS 346
CALC_NORMAL_RANGE 348
CALC_SI_VALUE 350
LOOKUP_SUBJECT_ID 351
MedDRA functions 352
GET_CODE_LLT 353
GET_CODE_PT 354
GET_CODE_HLT 355
GET_CODE_HLGT 356
GET_TERM 358
Event utility functions 359
DELETE_RPT 359
DEL_FLAG 360
DEL_FLAG_RPT 361
DEL_NOTE 363
DEL_NOTE_RPT 364
DISABLE 365
DISABLE_DEL 366
DISABLE_RPT 367
ENABLE 369
ENABLE_DEL 370
ENABLE_RPT 371
FLAG 372
FLAG_RPT 374
ITEM_FOCUS 375
ITEM_FOCUS_RPT 377
NOTE 378
NOTE_RPT 380
SECTION_FOCUS 381
SET_ITEM 382
SET_RPT 383
viii Contents

17 Using Data-Entry Processing Procedures
Overview 386
Value Changed procedures 387
Page-related procedures 391
Attaching data-entry processing procedures 394
Examples 397

Part III: Common Information

18 Data Format
Data types 406
Database formats 407

19 Naming Clintrial Software Objects
Naming conventions 410
Reserved words 410

20 Restricting Records
Restricting records based on a SQL restriction 412
Restricting records based on flags and notes 416
Restricting records based on date and time 416

21 Using SQL in the Clintrial Software
Types of SQL statements 420
How to use the SQL command 420
Database structures 421
SELECT statement syntax 421
DESCRIBE statement syntax 423
Saving statements and results 423

22 Using Custom Menus
Overview 426
Defining the Custom menu 427
Replacement variables 428
Example 428

23 Running Batch Jobs
Submitting a batch job 432
Using the batch job queue 432
ix

24 Glossary
x Contents

Overview xii

About this book xii

About the Clintrial software documentation xii

Clintrial 4.7 compatibility with other Oracle Health Sciences products xvi

If you need assistance xvi

Preface
 xi

Overview

Clintrial 4 software (hereafter referred to as Clintrial software) is a
comprehensive clinical research system for the collection, management, and
review of clinical trials data. Clintrial software is designed for use by companies
that must both:

• Collect clinical data to meet regulatory requirements for conducting clinical
trials.

• Analyze data that is collected during those clinical trials.

Clintrial software enables companies to unify all of their clinical data collection
and management, regardless of source or phase of development (pre- or post-
market).

About this book

This book is written for all Clintrial software users. It explains Clintrial software
concepts and describes the tasks you can perform with Clintrial software. Other
chapters cover product installation, and setup of the Sample Studies.

About the Clintrial software documentation

The Clintrial software documentation includes books that contain conceptual
information. The Clintrial software Help contains procedures for the tasks that
you perform with the Clintrial software.

The Clintrial software documentation assumes that you know how to perform
basic tasks on your computer.
xii Preface

What are the Clintrial software books?

The Clintrial 4.7 documentation includes the documents in the following table.
All documentation is available from the Phase Forward Download Center.

Title: Content:

Release Notes The Release Notes document describes enhancements introduced and
problems fixed in the current release, upgrade considerations, release history,
and other late-breaking information.

Known Issues The Known Issues document provides detailed information about the known
issues in this release, along with workarounds, if available.

Note: The most current list of known issues is available on the Phase Forward
Extranet.

To sign in to the Extranet, go to https://extranet.phaseforward.com and click
Customer Login. Enter your email address and password, and navigate to the
Known Issues section. Select a product, and then enter your search criteria.

Getting Started The Getting Started guide:

• Provides a summary of each Clintrial module, a description of the
relationships between modules, and descriptions of key concepts.

• Describes how to install, upgrade, and de-install the Clintrial software.

• Describes how to configure the Clintrial application.

• Provides information and procedures for customizing the Windows
Registry.

• Explains how to use the Medika Sample Studies.

Admin and Design The Admin and Design document describes how to use:

• The Admin module to work with user accounts, access rights, parameters,
and system administration tools.

• The Design module to set up and maintain Clintrial application objects,
such as protocols, panels, and study books.

Secure Configuration
Guide

The Secure Configuration Guide provides an overview of the security features
provided with the Clintrial application including details about the general
principles of application security, as well as how to install, configure, and use
the Clintrial application securely.
About the Clintrial software documentation xiii

Reference Guide The Reference Guide provides:

• Definitions of the Oracle database tables that store Clintrial metadata and
clinical data.

• Descriptions of the use of PL/SQL for Clintrial-specific procedures.

• Explanations of data types and naming conventions.

• Information on using SQL, setting up custom menus, and running batch
jobs.

• A glossary of terms.

Manage, Classify, and
Lab Loader

The Manage, Classify, and Lab Loader document describes how to use:

• The Manage module to perform data management tasks such as coding
(including integration with Central Coding), global modification,
validation, auditing, and batch loading of clinical data.

• The Classify module to track, review and solve for values that fail
automatic coding; to audit the contents of a coding thesaurus protocol;
and to build and test effective thesaurus algorithms.

• The Lab Loader module to batch load laboratory data and to set up Lab
Loader objects.

Enter, Resolve, and
Retrieve

The Enter, Resolve, and Retrieve document describes how to use:

• The Enter module to enroll subjects, enter and edit data, verify data, and
work with reports.

• The Resolve module to identify, track, and report data discrepancies, as
well as how to customize the Resolve module, including writing rules that
reference data items.

• The Retrieve module to extract clinical data from the database and work
with query results.

Multisite The Multisite document describes:

• How to distribute codelists and protocols.

• How to set up a replication environment.

• How other Clintrial modules work differently in a Multisite environment.

Quick Reference Card
for Enter

The Quick Reference for Enter lists Enter module menu commands and
shortcut keys.

Title: Content:
xiv Preface

Conventions
The following conventions are used in the Clintrial software books:

Medika Sample Studies

The Clintrial software provides three sample studies that you can optionally
install and use as a learning aid.

For information about installing and using the sample study, see the Clintrial
Getting Started guide, Chapter 7.

Convention: Description:

Italics Italics are used to indicate the following:

• New terms

• Titles of books

• Variable names in code examples or file names

Ctrl + c Key combinations where you press the first key and hold
it down while you press the second key. For example, to
copy selected text to the clipboard, you press the Ctrl
key and hold it down while pressing the c key.

bold Menu names, command names, dialog box buttons, and
key names appear in bold type. Additionally, the text you
enter in fields during procedures appears in bold type.

COMMENT IS NULL Examples of programming code (such as PL/SQL) or
SQL commands are emphasized with a different font.

This caution symbol advises users that failure to take or
avoid a specified action could result in
significant data problems.
About the Clintrial software documentation xv

Clintrial 4.7 compatibility with other Oracle Health Sciences
products

The Products Compatibility Matrix, which identifies Clintrial compatibility with
other Oracle Health Sciences products, can be downloaded from
https://extranet.phaseforward.com.

To sign in, click Customer Login. Enter your email address and password, and
navigate to the Bulletins section.

If you need assistance

If you are an Oracle customer with a maintenance agreement, you can contact
the Global Support Center for assistance with product issues.

Your maintenance agreement indicates the type of support you are eligible to
receive and describes how to contact Oracle. Additionally, the Oracle website
lists the toll-free support number for your product, location, and support level:

http://www.oracle.com/support/

In the event that our toll-free telephone service is interrupted, please use either of
the following methods to contact the Global Support Center:

• email

saasclinicalsupport_ww@oracle.com

• telephone

Oracle also provides assistance with User Management, Site Assessment, and
Provisioning. Please refer to your Master Services Agreement and individual
Statement of Work to determine if you are eligible to use these services.

In the US: 1-800-633-0925

Outside of the US: +44 (0) 207 131 2801
xvi Preface

D
atab

ase S
tru

ctu
res
Part I: Database Structures

Chapter 1: Introducing Database Structures 21

Chapter 2: Protocol Account 25

Chapter 3: CTS Account 45

Chapter 4: CTPROC Account 87

Chapter 5: CTSCODES Account 91

Chapter 7: CTSDD Account 115

Chapter 6: CTCLASSIFY Account 99

Chapter 8: CTSRM Account 187

Chapter 9: CTSRP Account 209

Chapter 10: CTRESOLVEREF Protocol 225

Chapter 11: CTL_REFERENCE Protocol 241

Chapter 12: CT_MEDDRA Protocol 245

Chapter 13: PXFR_RECV Account 269

Chapter 14: Lab Loader Tables 273
 19

D
at

ab
as

e
S

tr
u

ct
u

re
s

20

D
atab

ase S
tru

ctu
res
How to use this part of the guide 22

Types of accounts 22

1 Introducing Database
Structures
 21

D
at

ab
as

e
S

tr
u

ct
u

re
s

How to use this part of the guide

Part I provides the following information about each Oracle table that is in a
protocol account, or in certain system accounts, such as CTS, CTSCODES or
CTSDD:

• A description of the type of information stored in the table.

• A description of rows in the table.

• A description of columns in the table, including column names, data types,
and meanings.

• A description of the indexes for each table, including index names, whether
the indexes are unique, and the names of indexed columns.

The meaning of certain columns is shown as obsolete or reserved. If obsolete,
then the column has been retained in the tables for compatibility with previous
Clintrial software releases; however, the column is no longer used. If reserved,
then the column is not currently used, but it may be needed in future Clintrial
software releases.

Caution: Access to these tables outside of Clintrial software activities should be
read-only. The presentation of this material should not be construed as explicit or
implicit permission to alter the contents of the tables outside of Clintrial software
activities. We cannot guarantee that the Clintrial software will operate correctly
if you modify the contents of these tables. Also note that the format and content
of these tables is subject to change in subsequent releases of the Clintrial
software.

Types of accounts

Protocol accounts

A protocol account, or protocol, is an Oracle account that stores information that
is specific to a protocol, including the following:

• Clinical data for a particular clinical study or group of studies.

• Error log records, flags, and notes associated with the clinical data.

• Views of clinical data.

See the Design section of Admin and Design for information about protocol
accounts.
22 Chapter 1: Introducing Database Structures

D
atab

ase S
tru

ctu
res
System accounts

A Clintrial software system account is an Oracle account that stores database-
wide information. The Design section of Admin and Design describes the system
accounts. This guide describes tables in the following system accounts:

• CTS account — The CTS account stores information about: protocol
accounts; flags and notes; user accounts and privileges; Clintrial software
activities, messages and parameters; and Oracle parameters.

• CTSCODES account — The CTSCODES account stores information about
codelists.

• CTSDD account — The CTSDD account stores information about protocol-
specific objects, such as panels and items.

• CTCLASSIFY account — The CTCLASSIFY account is created
automatically by the installation of Classify. This account stores information
about Classify-specific objects, such as omissions.

• CTSRM account — The CTSRM account is created automatically when you
install the Distribution (CTC) server component of Multisite. This account
stores information that is used to manage distribution across multiple sites.

• CTSRP account — The CTSRP account is created automatically when you
install the Replication (CTX) server component of Multisite. This account
stores information that is used to manage replication across multiple sites.
Types of accounts 23

D
at

ab
as

e
S

tr
u

ct
u

re
s

24 Chapter 1: Introducing Database Structures

D
atab

ase S
tru

ctu
res
panel-name_UPDATE 26

panel-name_DATA 29

panel-name_AUDIT 32

ERRORLOG 35

SUBJECT_BLOCK 37

SUBJECT_PAGE 38

TAGS 39

TAGS_AUDIT 41

VCT_ERRORITEM_UPDATE 43

VCT_ERRORSTATUS_UPDATE 43

2 Protocol Account
 25

D
at

ab
as

e
S

tr
u

ct
u

re
s

panel-name_UPDATE

For each installed panel for which database tables exist, there is an update table.
The update table stores clinical data that has been entered but is not yet merged
(that is, moved to the data table). The full name of the update table is protocol-
name.panel-name_UPDATE.

The Columns section following describes the system items that comprise the
first eight columns of the update table, and are used internally by the Clintrial
software to identify records. Other columns in the update table are determined by
items defined for the CONTEXT panel and for the specific panel.

Rows

For information about how records are stored in the update table for different
panel types, see the Design section of Admin and Design.

Columns

Column name: Data type: Description:

MERGE-
_DATETIME

DATE Date and time at which the record was
created, or was last modified in the update
table. (Modifications include changes to any
items, including other system items, in the
record.)

STATUS NUMBER(2) Numeric code indicating the status of the
record:

3 — Batch-loaded and not yet screened.

2 — Entered interactively and not yet
verified.

1 — Passed verification or screening.

0 — Passed validation.

–1 — Failed validation or merge.

–2 — Failed verification.

–3 — Failed screening.
26 Chapter 2: Protocol Account

D
atab

ase S
tru

ctu
res
ENTRY_ID VARCHAR2(20) User account that entered or last modified the
record. (For batch-loaded records, this value
is initially CTS$LOAD.)

ENTRY-
_DATETIME

DATE Date and time at which the record was
created.

CT_RECID VARCHAR2(40) Unique identifier that is automatically
assigned to the record. The CT_RECI, for
example, 1,SMITH.LFYKQ[c.001, consists
of four parts.

The first part (1 in the preceding example)
identifies the database in which the record
was created. If Multisite is not installed, this
value is always 1.

The second part (SMITH in the preceding
example) identifies the user account that
created the record. For batch-loaded records,
this part includes the characters SQLLOAD.

The third part (LFYKQ[c in the preceding
example) identifies the observation, and is
the same for all records in an observation.

The fourth part (001 in the preceding
example) distinguishes records that are part
of the same observation. The fourth part of
the CT_RECID is normally three characters
long if there are less than 999 records in an
observation.

For a non-repeating record, this value is 001.

For repeating records, if a new record is
inserted between existing repeating records,
then the new record will have a CT_RECID
the same as the CT_RECID of the preceding
record, but with a single digit appended at
the end. For example, if there are two
records, one with .002 and another with .003,
at the end of the CT_RECID and a record is
inserted between the two, the new record will
have a CT_RECID with .0021 at the end.

DB_ID NUMBER(5) Unique identifier of the Clintrial software
database instance.

Column name: Data type: Description:
panel-name_UPDATE 27

D
at

ab
as

e
S

tr
u

ct
u

re
s

Indexes

panel-name_DATA

For each installed panel for which database tables exist, there is a data table. The
data table stores clinical data that has been merged, that is, moved from the
update table to the data table. The full name of the data table is protocol-
name.panel-name_DATA.

The following Columns section describes the system items that comprise the
first eight columns of the data table, and are used internally by the Clintrial
software to identify records. Other columns in the data table are determined by
items defined for the CONTEXT panel and for the specific panel.

SUBJECT_ID NUMBER(15) Unique identifier that is automatically
assigned to the subject item.

The subject item is a subject-related context
item that the designer designates as the
unique key for identifying data by subject.
For example, suppose that the subject-related
context items are SUB_ID and INV_ID, and
that the designer designates SUB_ID as the
subject item. For each unique SUB_ID value,
there will be a unique SUBJECT_ID value.

CTS$REASON VARCHAR2(2000) Reason that the record was changed or
deleted.

Index name: Unique?: Columns indexed:

panel-name_UPK
(all panel types)

Yes CT_RECID

panel-name_UPIDX
(panel types 1 – 5)

No SUBJECT_ID, block_item (the context item
defined as the block key item)

Column name: Data type: Description:
28 Chapter 2: Protocol Account

D
atab

ase S
tru

ctu
res
Rows

For information about how records are stored in the data table for different panel
types, see the Design section of Admin and Design.

Columns

Column name: Data type: Description:

MERGE-
_DATETIME

DATE Date and time at which the record was
merged, or was last modified in the data
table. (Modifications include changes to any
items, including other system items, in the
record.) If the record was entered directly
into the data table (as for Type 5 panels), this
is the date and time the record was created in
the data table.

STATUS NUMBER(2) Numeric code indicating the status of the
record. For a record in the data table, this
status is always 0, indicating that the record
passed validation.

ENTRY_ID VARCHAR2(20) User account of the user who entered or last
modified the record.

ENTRY-
_DATETIME

DATE Date and time at which the record was
created in the update table. If the record was
entered directly into the data table (as for
Type 5 panels), this is the date and time the
record was created in the data table.

CT_RECID VARCHAR2(40) Same value as that of the record when it was
moved from the update table to the data
table.

DB_ID NUMBER(5) Same value as that of the record when it was
moved from the update table to the data
table.

SUBJECT_ID NUMBER(15) Same value as that of the record when it was
moved from the update table to the data
table.
panel-name_DATA 29

D
at

ab
as

e
S

tr
u

ct
u

re
s

Indexes

* If there are user-defined panel keys for a Type 0, 2, or 4 panel, then the index in-
cludes those keys. For a Type 2 or 4 panel with defined panel keys, the index also in-
cludes the page item and page repeat key item.

CTS$REASON VARCHAR2(2000) Reason that the record was modified or
deleted.

Index name: Unique?: Columns indexed*:

panel-name_DPK
(all panel types)

Yes CT_RECID

panel-name_DBIDX
(Type 1 panel)

Yes SUBJECT_ID

panel-name_DBIDX
(Type 2 panel)

No SUBJECT_ID

panel-name_DBIDX
(Type 3 panel)

Yes SUBJECT_ID, block key item, and block
repeat key item (if defined)

panel-name_DBIDX
(Type 4 panel)

No SUBJECT_ID, block key item, and block
repeat key item (if defined)

panel-name_DBIDX
(Type 5 panel)

Yes SUBJECT_ID

panel-name_SBIDX
(Type 5 panel)

Yes Subject item (the context item defined as the
subject item)

Column name: Data type: Description:
30 Chapter 2: Protocol Account

D
atab

ase S
tru

ctu
res
panel-name_AUDIT

For each installed panel for which database tables exist, there is an audit table.
The audit table stores copies of records that were modified or deleted while they
were in the update table or data table and auditing was in effect. The full name of
the audit table is protocol-name.panel-name_AUDIT.

The following Columns section describes the system items that comprise the
first eight columns of the audit table, and are used internally by the Clintrial
software to identify records. Other columns in the audit table are determined by
items defined for the CONTEXT panel and for the specific panel.

Rows

For information about how records are stored in the audit table for different
panel types, see the Design section of Admin and Design.

Columns

Column name: Data type: Description:

MERGE-
_DATETIME

DATE If the record was modified or deleted, this
value is the same as the
MERGE_DATETIME of the record that was
modified or deleted.

Note: For a deleted record, a second copy of
the deleted record is placed in the audit table.
For the second copy, the
MERGE_DATETIME is the date of the
deletion.
panel-name_AUDIT 31

D
at

ab
as

e
S

tr
u

ct
u

re
s
 STATUS NUMBER(2) Numeric code indicating the status of the

record.

-60 — Was modified when it had the status 2.

-61 — Was deleted when it had the status 2.

-50 — Was modified when it had the status
–2.

-51 — Was deleted when it had the status –2.

-40 — Was modified when it had the status 1.

-41 — Was deleted when it had the status 1.

-30 — Was modified when it had the status
–1.

-31 — Was deleted when it had the status –1.

-20 — Was modified when it had the status 0
and was in the update table.

-21 — Was deleted when it had the status 0
and was in the update table.

-10 — Was modified when it had the status 0
and was in the data table.

-11 — Was deleted when it had the status 0
and was in the data table.

ENTRY_ID VARCHAR2(20) For a record that was modified or deleted, the
ENTRY_ID is that of the record when it was
modified or deleted.

Note: For a deleted record, a second copy of
the deleted record is placed in the audit table.
For the second copy, the ENTRY_ID is the
user account of the user deleting the record.

ENTRY-
_DATETIME

DATE Date and time at which the record was placed
in the audit table.

Note: For a deleted record, a second copy of
the deleted record is placed in the audit table.
For the second copy, the
ENTRY_DATETIME is the same as the
ENTRY_DATETIME of the record that was
deleted.

Column name: Data type: Description:
32 Chapter 2: Protocol Account

D
atab

ase S
tru

ctu
res
Indexes

ERRORLOG

The protocol-name.ERRORLOG table stores information about errors that occur
during screening, validation, merging, and global change or deletion.

Rows

One per error.

CT_RECID VARCHAR2(40) Same value as that of the record when it was
modified or deleted in the update table or
data table.

DB_ID NUMBER(5) Same value as that of the record when it was
modified or deleted in the update table or
data table.

SUBJECT_ID NUMBER(15) Same value as that of the record when it was
modified or deleted in the update table or
data table.

CTS$REASON VARCHAR2(2000) Reason that the record was modified or
deleted.

Index name: Unique?: Columns indexed:

panel-name_APK
(panel types 0 – 5)

Yes CT_RECID, MERGE_DATETIME

panel-name_APIDX
(panel types 1 – 5)

No SUBJECT_ID

Column name: Data type: Description:
ERRORLOG 33

D
at

ab
as

e
S

tr
u

ct
u

re
s

Columns

Column name: Data type: Description:

PROTOCOL VARCHAR2(20) Name of the protocol in which the error
occurred.

PANEL VARCHAR2(20) Name of the panel containing the data for
which the error occurred.

CT_RECID VARCHAR2(40) Value of the CT_RECID system item for the
record for which the error occurred.

SUBJECT_ID NUMBER(15) Value of the SUBJECT_ID system item for
the record for which the error occurred.

BLOCK_ITEM VARCHAR2(240) Value of the block item for the record for
which the error occurred.

PAGE_ITEM VARCHAR2(240) Value of the page item for the record for
which the error occurred.

BLOCK_REPEAT-
_ITEM

VARCHAR2(40) Value of the block repeat key item for the
record for which the error occurred.

PAGE_REPEAT-
_ITEM

VARCHAR2(40) Value of the page repeat key item for the
record for which the error occurred.

ORCTABLE VARCHAR2(80) UPDATE — The error occurred for a record
in the update table.

DATA — The error occurred for a record in
the data table.

ERRDT DATE Date and time at which the error occurred.

ERRTYPE VARCHAR2(20) Clintrial software activity during which the
error occurred:

GLOBAL CHG — Global change

GLOBAL DEL — Global deletion

MERGE — Merge

SCREEN — Screening

VALIDATE — Validation
34 Chapter 2: Protocol Account

D
atab

ase S
tru

ctu
res
Index

SUBJECT_BLOCK

The protocol-name.SUBJECT_BLOCK table stores information about blocks
for which data exists for a subject.

REMARKS VARCHAR2(240) Message text associated with the error.

ERRACT VARCHAR2(20) If ERRTYPE is VALIDATE:

• REPORT — The record failed the rule,
and the rule action is REPORT.

• REJECT — The record failed the rule
and the rule action is REJECT.

If ERRTYPE is SCREEN:

• REPORT — The record failed data
checks but the checks were overridden.

• REJECT — The record failed data
checks and the checks were not
overridden.

For all other error types, this value is
REJECT if the activity failed.

RULE_NAME VARCHAR2(20) If ERRTYPE is VALIDATE, the name of the
rule that resulted in an error.

REC_MODDATE DATE Date and time at which the record for which
the error occurred was created or last
modified.

Index name: Unique?: Columns indexed:

ERRORLOG_INDX No PANEL, ERRTYPE

Column name: Data type: Description:
SUBJECT_BLOCK 35

D
at

ab
as

e
S

tr
u

ct
u

re
s

Rows

One per block per subject.

Columns

Index

SUBJECT_PAGE

The protocol-name.SUBJECT_PAGE table stores information about study pages
for which data exists for a subject.

Rows

One per study page per subject.

Column name: Data type: Description:

SUBJECT_ID NUMBER(15) Identifier of a subject.

BLOCK_KEY VARCHAR2(40) Block key value for the block.

BLOCK_REPEAT-
_KEY

VARCHAR2(40) Block repeat key value for the block.

DB_ID NUMBER(5) Unique identifier of the Clintrial software
database instance.

Index name: Unique?: Columns indexed:

SUBJ_BLOCK_PK Yes SUBJECT_ID, BLOCK_KEY,
BLOCK_REPEAT_KEY
36 Chapter 2: Protocol Account

D
atab

ase S
tru

ctu
res
Columns

Column name: Data type: Description:

SUBJECT_ID NUMBER(15) Identifier of a subject.

BLOCK_KEY VARCHAR2(40) Block key value for the page.

BLOCK_REPEAT-
_KEY

VARCHAR2(40) Block repeat key value for the page.

PAGE_KEY VARCHAR2(40) Page key value for the page.

PAGE_REPEAT-
_KEY

VARCHAR2(40) Page repeat key value for the page.

DB_ID NUMBER(5) Unique identifier of the Clintrial software
database instance.

STATUS_0 NUMBER(15) Holds the number of records on the current
page with status value = 0.

STATUS_1 NUMBER(15) Holds the number of records on the current
page with status value = 1.

STATUS_2 NUMBER(15) Holds the number of records on the current
page with status value = 2.

STATUS_N1 NUMBER(15) Holds the number of records on the current
page with status value = -1.

STATUS_N2 NUMBER(15) Holds the number of records on the current
page with status value = -2.

DISCREP_CNT_S NUMBER(15) Holds the number of discrepancies on the
current page with discrepancy state = Sent
(S).

DISCREP_CNT-

_ RTS

NUMBER(15) Holds the number of discrepancies on the
current page with discrepancy state = Ready
to Send (RTS).
SUBJECT_PAGE 37

D
at

ab
as

e
S

tr
u

ct
u

re
s

Indexes

TAGS

The protocol-name.TAGS table stores information about tags (that is, flags and
notes) that are attached to clinical data.

Rows

One per flag or note that is attached to clinical data.

DISCREP_CNT NUMBER(15) Holds the number of discrepancies on the
current page with all other open discrepancy
states.

PAGE_STATE NUMBER(1) Indicates the state of a page in the Connect
1.1 workflow:

0 — Connect 1.1 is not installed.

2 — Draft.

3 — Submitted.

4 — Signed.

Index name: Unique?: Columns indexed:

SUBJ_PAGE_PK Yes SUBJECT_ID, BLOCK_KEY,
BLOCK_REPEAT_KEY, PAGE_KEY,
PAGE_REPEAT_KEY

Column name: Data type: Description:
38 Chapter 2: Protocol Account

D
atab

ase S
tru

ctu
res
Columns

Column name: Data type: Description:

TAG_RECID NUMBER(15) Unique identifier that is assigned
automatically to the flag or note.

CT_RECID VARCHAR2(40) Value of the CT_RECID system item for the
record to which the tag is attached, or for the
record containing the item to which the flag
or note is attached.

TAGID NUMBER(15) Unique identifier of the type of flag or note.

AGGREGATION VARCHAR2(1) Level of data to which the flag or note is
attached:

O — Observation

R — Record

I — Item

PANEL VARCHAR2(20) Name of the panel containing the data to
which the flag or note is attached.

DBTABLE VARCHAR2(1) Type of table containing the data to which
the flag or note is attached:

UPDATE — Update table

DATA — Data table

ENTRY_ID VARCHAR2(20) User account that attached or last
modified the flag or note.

ENTRY_DT DATE Date and time at which the flag or note was
attached.

MODIFY_DT DATE Date and time at which the flag or note was
last modified.

ITEMNAME VARCHAR2(20) If AGGREGATION is I, the name of the
item to which the flag or note is attached.

BATCH_ID VARCHAR2(7) Obsolete.
TAGS 39

D
at

ab
as

e
S

tr
u

ct
u

re
s

Indexes

TAGS_AUDIT

The protocol-name.TAGS_AUDIT table stores information about modified or
deleted flags or notes.

Rows

One per modification or deletion of a flag or note.

SUBJECT_ID NUMBER(15) Value of the SUBJECT_ID system item for
the record to which the flag or note is
attached.

DB_ID NUMBER(5) Unique identifier of the Clintrial software
database instance.

NOTE VARCHAR2(2000) Flag comment or note text.

Index name: Unique?: Columns indexed:

TAGSIDX2 No CT_RECID

TAGSIDX3 Yes PANEL, CT_RECID, TAGID,
AGGREGATION, ITEMNAME

TAGS_PK Yes TAG_RECID

Column name: Data type: Description:
40 Chapter 2: Protocol Account

D
atab

ase S
tru

ctu
res
Columns

Column name: Data type: Description:

TAG_RECID NUMBER(15) Same value as that of the flag or note when it
was modified or deleted.

CT_RECID VARCHAR2(40) Same value as that of the flag or note when it
was modified or deleted.

TAGID NUMBER(15) Same value as that of the flag or note when it
was modified or deleted.

AGGREGATION VARCHAR2(1) Same value as that of the flag or note when it
was modified or deleted.

PANEL VARCHAR2(20) Same value as that of the flag or note when it
was modified or deleted.

DBTABLE VARCHAR2(1) Same value as that of the flag or note when it
was modified or deleted.

ENTRY_ID VARCHAR2(20) User account that modified or deleted the
flag or note.

ENTRY_DT DATE Same value as that of the flag or note when it
was modified or deleted.

MODIFY_DT DATE Date and time at which the flag or note was
modified or deleted.

ITEMNAME VARCHAR2(20) Same value as that of the flag or note when it
was modified or deleted.

BATCH_ID VARCHAR2(7) Obsolete.

SUBJECT_ID NUMBER(15) Same value as that of the flag or note when it
was modified or deleted.

DB_ID NUMBER(5) Same value as that of the flag or note when it
was modified or deleted.

NOTE VARCHAR2(2000) Same value as that of the flag or note when it
was modified or deleted.
TAGS_AUDIT 41

D
at

ab
as

e
S

tr
u

ct
u

re
s

Index

VCT_ERRORITEM_UPDATE

When you set up a protocol for Resolve, the VCT_ERRORITEM panel is copied
from the CTRESOLVEREF protocol to that protocol.

For a description of the VCT_ERRORITEM panel, see Chapter 10.

VCT_ERRORSTATUS_UPDATE

When you set up a protocol for Resolve, the VCT_ERRORSTATUS panel is
copied from the CTRESOLVEREF protocol to the protocol.

For a description of the VCT_ERRORSTATUS panel, see Chapter 10.

Index name: Unique?: Columns indexed:

TAGS_AUDIT_PK Yes TAG_RECID, MODIFY_DT
42 Chapter 2: Protocol Account

D
atab

ase S
tru

ctu
res
VCT_ERRORSTATUS_UPDATE 43

D
at

ab
as

e
S

tr
u

ct
u

re
s

44 Chapter 2: Protocol Account

D
atab

ase S
tru

ctu
res
BLOCK_REPEAT_ITEM

ACCESS_RIGHT 47

ACTIVITY_LOG 47

CATDEFS 48

CC_DICTIONARY 50

CC_DICTIONARY_LABEL 51

CTS_USERGROUPS 58

CTS_USERGROUPS_AUDIT 59

CTS_USER 61

CTS_USER_AUDIT 61

DATABASE 63

EXCEPTION_MESSAGE 64

INVESTIGATOR_SITE 65

JOB_LOG 66

OBJINDX for Oracle parameters 68

OBJINDX for Clintrial software parameters 70

PARAM_AUDIT 72

PROTOCOL_LOCK_HISTORY 73

PROTOCOL_PARAM 74

PROTOCOL_PARAM_AUDIT 75

SEARCH_LIST 77

TAGDEFS 77

USERGROUP 79

USERGROUP_AUDIT 79

3 CTS Account
 45

D
at

ab
as

e
S

tr
u

ct
u

re
s

USERGROUP_ACCESS 81

USERGROUP_ACCESS_AUDIT 82

USERGROUP_ACCESS_PANEL 83

USERGROUP_ACCESS_PANEL_AUDIT 84

USER_PARAM 85
46 Chapter 3: CTS Account

D
atab

ase S
tru

ctu
res
ACCESS_RIGHT

The CTS.ACCESS_RIGHT table stores information about protocol and non-
protocol access rights.

Rows

One per access right.

Columns

Index

ACTIVITY_LOG

The CTS.ACTIVITY_LOG table stores information about the use of menu
commands.

Column name: Data type: Description:

ACCESS_RIGHT VARCHAR2(20) Name of the access right.

PROTOCOL-
_TYPE

NUMBER(10) Type of protocol:

–1 — Non-protocol

1 — Protocol

2 — Resolve

ABBREV VARCHAR2(4) Abbreviation of the access right.

NUM_ROLES NUMBER(3) Number of Oracle roles associated with the
access right.

Index name: Unique?: Columns indexed:

ACCESS_RIGHT_PK Yes ACCESS_RIGHT
ACCESS_RIGHT 47

D
at

ab
as

e
S

tr
u

ct
u

re
s

Rows

One per use of a menu command.

Columns

Index

CATDEFS

The CTS.CATDEFS table stores information about flag categories and note
categories.

Column name: Data type: Description:

ACTIVITY_ID NUMBER(10) Unique identifier of the activity log record.

ACTIVITY_DATE DATE Date and time at which the activity occurred.

USERNAME VARCHAR2(20) User account that performed the activity.

PROTOCOL VARCHAR2(20) Name of the protocol in which the
activity occurred.

MODULE_NAME VARCHAR2(10) Three-letter identifier of the Clintrial
software module in which the activity
occurred.

MENU_NAME VARCHAR2(80) Internal name of the menu.

MENU_TEXT VARCHAR2(40) Name of the menu command.

Index name: Unique?: Columns indexed:

ACTIVITY_LOG_PK Yes ACTIVITY_ID
48 Chapter 3: CTS Account

D
atab

ase S
tru

ctu
res
Rows

One per flag category or note category.

Columns

Index

Column name: Data type: Description:

CATNAME VARCHAR2(20) Name of the flag category or note
category.

DESCRIPTION VARCHAR2(240) Description of the flag category or note
category.

STATUS VARCHAR2(10) Status of the flag category or note
category:

• OK

• DELETED

DB_ID NUMBER(5) Unique identifier of the Clintrial software
database instance.

LOCK_STATUS NUMBER(1) 0 — The flag category or note category is
modifiable.

1 — The flag category or note category is not
modifiable, but it can be reset to modifiable.

2 — The flag category or note category is a
nonmodifiable copy that cannot be made
modifiable except by breaking the
connection.

LOCK_COPY NUMBER(1) Obsolete

Index name: Unique?: Columns indexed:

CATDEFS_PK Yes CATNAME
CATDEFS 49

D
at

ab
as

e
S

tr
u

ct
u

re
s

CC_DICTIONARY

The CTS.CC_DICTIONARY table stores information about Central Coding
Dictionaries.

Rows

One per dictionary.

Columns

Index

Column name: Data type: Description:

DICT_ID NUMBER(15) Internal Identifier

DICT_NAME VARCHAR2(20) Name of the dictionary in Central Coding

DICT_VERSION VARCHAR2(30) Version of the dictionary

DICT_CULTURE VARCHAR2(10) Language used in the dictionary.

Must be a value in the CTS_LANGUAGE
codelist.

MODDATE TIMESTAMP Date of creation or modification

MODUSER VARCHAR2(20) User who made the modification

STATUS VARCHAR2(10) ‘OK’

’DELETED’

‘CREATED’

Index name: Unique?: Columns indexed:

CC_DICTIONARY_PK Yes DICT_ID
50 Chapter 3: CTS Account

D
atab

ase S
tru

ctu
res
CC_DICTIONARY_LABEL

The CTS.CC_DICTIONARY_LABEL table stores information about Labels
used by Central Coding dictionaries.

Rows

One per dictionary label.

Columns

Index

CTS_PROTOCOLS

The CTS.CTS_PROTOCOLS table stores information about protocols.

Rows

One per protocol.

Column name: Data type: Description:

DICT_ID NUMBER(15) Internal Identifier

CC_LABEL_TYPE NUMBER(2) 1 — Target

2 — Associated

3 — Verbatim Type

CC_LABEL_NAME VARCHAR2(64) Label used in Central Coding for this item.

Index name: Unique?: Columns indexed:

CC_DICT_LABEL_PK Yes DICT_ID, CC_LABEL_NAME
CC_DICTIONARY_LABEL 51

D
at

ab
as

e
S

tr
u

ct
u

re
s

Columns

Column name: Data type: Description:

PROTOCOL VARCHAR2(20) Name of the protocol.

DESCRIPTION VARCHAR2(240) Description of the protocol.

CREATOR VARCHAR2(20) User account that created the protocol.

CREATE_DATE DATE Date and time at which the protocol was
created.

CREATE_ITEM-
_PRIV

VARCHAR2(5) Obsolete

MOD_SRCHLST-
_PRIV

VARCHAR2(5) 0 — The searchlist cannot be modified.

1 — The searchlist can be modified.

SEARCHLIST VARCHAR2(240) Obsolete.

SITE VARCHAR2(20) Name of the database from which the
protocol was imported.

IMPORT_DATE DATE Date and time at which the protocol was
imported.

STATUS VARCHAR2(20) Status of the protocol:

• CREATING

• DELETED

• NORMAL

• PT_CHKD

• PT_DD_INSTALLED

• PT_EMPTY

• PT_ERROR

• PT_INSTALLED

• PT_LOADED

• PT_OK

• PT_UNCHKD

PROT_NUM NUMBER(15) Unique identifier assigned by the Clintrial
software to the protocol.
52 Chapter 3: CTS Account

D
atab

ase S
tru

ctu
res
DATASPACE VARCHAR2(30) Name of the tablespace to be used for
database tables for the protocol.

INDEXSPACE VARCHAR2(30) Name of the tablespace to be used for
indexes for database tables for the
protocol.

PROT_UID NUMBER(9) Obsolete.

AUDIT-_SPONSOR NUMBER(1) 0 — Sponsor notes are not audited for the
protocol.

1 — Sponsor notes are audited for the
protocol.

AUDIT_INVEST NUMBER(1) 0 — Investigator notes are not audited for the
protocol.

1 — Investigator notes are audited for the
protocol.

VIEW-
_PROTOCOL

NUMBER(1) Obsolete.

BASE-
_PROTOCOL

VARCHAR2(20) For a view protocol, the name of the base
protocol.

CPDATE DATE For a view protocol, the checkpoint date.

CONDITION LONG Obsolete.

AUDIT_COM-
MENCE_DEF

VARCHAR2(20) Default audit start point for panels in the
protocol:

• ENTRY

• VERIFICATION

• VALIDATION

• VALIDITY

• MERGE

Column name: Data type: Description:
CTS_PROTOCOLS 53

D
at

ab
as

e
S

tr
u

ct
u

re
s
 MOD_AUDIT-

_PRIV
VARCHAR2(1) 0 — The audit start point cannot be

set on a panel-by-panel basis for the
protocol.

1 — The audit start point can be set on a
panel-by-panel basis for the protocol.

DB_ID NUMBER(5) Obsolete.

TYPE NUMBER(10) Type of protocol:

1 — Clinical Data

2 — Coding Thesaurus

3 — View Protocol

4 — Lab Loader

5 — Clintrace Storage Area

VERSION VARCHAR2(10) Number of the Clintrial software release.

PROC-
_LANGUAGE

VARCHAR2(6) Name of the language in which data-entry
processing procedures and validation
procedures are written.

PARENT-
_PROTOCOL

VARCHAR2(20) Protocol used as a basis for this
protocol’s objects.

MOD_OBJECTS-
_PRIV

NUMBER(1) Reserved for future use.

ENROLL_PANEL VARCHAR2(20) Name of the enrollment panel for the
protocol.

SUBJECT_ITEM VARCHAR2(20) Name of the subject item for the
protocol.

BLOCK_ITEM VARCHAR2(20) Name of the block key item for the
protocol.

PAGE_ITEM VARCHAR2(20) Name of the page key item for the
protocol.

Column name: Data type: Description:
54 Chapter 3: CTS Account

D
atab

ase S
tru

ctu
res
BLOCK_REPEAT-
_ITEM

VARCHAR2(20) Name of the block repeat key item for the
protocol.

PAGE_REPEAT-
_ITEM

VARCHAR2(20) Name of the page repeat key item for the
protocol.

ERRORLOG-
_ITEM

VARCHAR2(20) Name of the additional Error Log item,
which is shown in the Error Log report.

ENCODE-
_OVERRIDE

NUMBER(1) 0 — Automatic coding does not override
interactive coding.

1 — Automatic coding overrides interactive
coding.

VIEW_OBJECT-
_ID

NUMBER(15) For a view protocol, identifier of the text
object that contains the view restriction
clause in CTSDD.OBJINDX.

HELP_FILE VARCHAR2(240) Name of the site-defined Help file attached
to the protocol.

HELP_CONTEXT-
_POINT

NUMBER(5) Context point number within the user-
defined help file.

LOCKED NUMBER(1) 0 — The protocol is not locked.

1 — The protocol is locked.

DATA_DICT NUMBER(1) 0 — The protocol is not a data dictionary
protocol.

1 — The protocol is a data dictionary
protocol.

Column name: Data type: Description:
CTS_PROTOCOLS 55

D
at

ab
as

e
S

tr
u

ct
u

re
s
 EDC_PROTOCOL NUMBER(2) This column contains information related to

EDC protocols

• Whether the protocol can contain paper
data, EDC data or both (Hybrid).

• Whether data dictionary changes have
been made to the protocol since the last
synchronization from CIS.

• Whether panel metadata changes are
allowed to be made to an EDC protocol,
even though data has already been
collected.

1 — Only paper data can be stored within
this protocol. No dictionary modifications
have been made.

2 — Only EDC data can be stored within this
protocol. No dictionary modifications have
been made.

3 — Both paper and EDC data can be stored
within this protocol (Hybrid). No dictionary
modifications have been made, and panel
modifications are not allowed.

5 — Only paper data can be stored within
this protocol. Dictionary modifications have
been made.

6 — Only EDC data can be stored within this
protocol. Dictionary modifications have been
made, and panel modifications are not
allowed.

7 — Both paper and EDC data can be stored
within this protocol (Hybrid). Dictionary
modifications have been made, and panel
modifications are not allowed.

10 — Only EDC data can be stored within
this protocol. No dictionary modifications
have been made, and panel modifications are
allowed.

Column name: Data type: Description:
56 Chapter 3: CTS Account

D
atab

ase S
tru

ctu
res
Index

CTS_USERGROUPS

The CTS.CTS_USERGROUPS table stores information about the user accounts
that are part of usergroups.

Rows

One per user account in a usergroup.

Columns

11 — Both paper and EDC data can be stored
within this protocol (Hybrid). No dictionary
modifications have been made, and panel
modifications are allowed.

14 — Only EDC data can be stored within
this protocol. Dictionary modifications have
been made, and panel modifications are
allowed.

15 — Both paper and EDC data can be stored
within this protocol (Hybrid). Dictionary
modifications have been made, and panel
modifications are allowed.

Index name: Unique?: Columns indexed:

CTS_PROTOCOLS_PK Yes PROTOCOL

Column name: Data type: Description:

USERGROUP VARCHAR2(20) Name of the usergroup.

Column name: Data type: Description:
CTS_USERGROUPS 57

D
at

ab
as

e
S

tr
u

ct
u

re
s

Index

CTS_USERGROUPS_AUDIT

The CTS.CTS_USERGROUPS_AUDIT table stores information about
modifications to usergroups.

Rows

One row for every creation or deletion of a usergroup.

Columns

USERNAME VARCHAR2(20) Name of the user account.

Index name: Unique?: Columns indexed:

CTS_USER-
GROUPS_PK

Yes USERGROUP, USERNAME

Column name: Data type: Description:

USERGROUP VARCHAR2(20) Name of the usergroup.

MODDATE TIMESTAMP Date of the modification.

MODUSER VARCHAR2(20) User who made the modification.

ACTION VARCHAR2(2) I=Inserted, D=Deleted

Column name: Data type: Description:
58 Chapter 3: CTS Account

D
atab

ase S
tru

ctu
res
Index

Index name: Unique?: Columns indexed:

CTS_USER-
GROUPS_AUDIT_
PK

Yes USERGROUP, MODDATE
CTS_USERGROUPS_AUDIT 59

D
at

ab
as

e
S

tr
u

ct
u

re
s

CTS_USER

The CTS.CTS_USER table stores information about Clintrial software users.

Rows

One per user.

Columns

Index

CTS_USER_AUDIT

The CTS.CTS_USER_AUDIT table stores information about modifications to
user accounts.

Rows

One for each modification of a user account (Insert, Update, Delete).

Column name: Data type: Description:

USERNAME VARCHAR2(20) Name of the user account.

DESCRIPTION VARCHAR2(80) Description of the user.

FULL_NAME VARCHAR2(80) Complete name of the user.

CREATED DATE Date the user account was created.

Index name: Unique?: Columns indexed:

CTS_USER_PK Yes USERNAME
60 Chapter 3: CTS Account

D
atab

ase S
tru

ctu
res
Columns

Index

DATABASE

The CTS.DATABASE table stores information about Clintrial software database
instances.

Column name: Data type: Description:

USERNAME VARCHAR2(20) Name of the user account.

DESCRIPTION VARCHAR2(80) Description of the user.

FULL_NAME VARCHAR2(80) Complete name of the user.

CREATED DATE Date the user account was created.

DEFAULT_TABLE
SPACE

VARCHAR2(30) Default tablespace for account.

TEMPORARY_
TABLESPACE

VARCHAR2(30) Temporary tablespace for account.

PROFILE VARCHAR2(30) Oracle profile for the account.

MODDATE TIMESTAMP Date of modification.

MODUSER VARCHAR2(20) user that made the modification.

ACTION VARCHAR2(2) I=Inserted, U=Updated, D=Deleted

Index name: Unique?: Columns indexed:

CTS_USER_AUDI
T_PK

Yes USERNAME, MODDATE
DATABASE 61

D
at

ab
as

e
S

tr
u

ct
u

re
s

Rows

One per database instance.

Columns

Index

Column name: Data type: Description:

NAME VARCHAR2(20) Unique name for the instance.

DESCRIPTION VARCHAR2(240) Description of the instance.

DB_NAME VARCHAR2(40) Global database name for the instance.

DB_ID NUMBER(5) Unique identifier for the instance.

SQLNET VARCHAR2(60) Oracle Net Service Name.

TYPE NUMBER(2) 0 — Nonlocal

1 — Local (this instance)

DISTR_SRC NUMBER(1) 0 — The database is not a source for
Multisite distribution.

1 — The data is a source for Multisite
distribution.

DISTR_DEST NUMBER(1) 0 — The database is not a destination for
Multisite distribution.

1 — The database is a destination for
Multisite distribution.

Index name: Unique?: Columns indexed:

DATABASE_PK Yes NAME
62 Chapter 3: CTS Account

D
atab

ase S
tru

ctu
res
EXCEPTION_MESSAGE

The CTS.EXCEPTION_MESSAGE table stores information about messages
that display in the Clintrial software.

Rows

One per message.

Columns

Column name: Data type: Description:

EXCEPTION-
_MESSAGE_ID

NUMBER Unique identifier of the message.

LANGUAGE_ID NUMBER Language of the message:

1 — English

USER_DS VARCHAR2(255) Message text that is displayed to the user.

TECHNICAL_DS VARCHAR2(255) Message text that is sent to the
CLINTRIA.LOG file.

LOG_FL NUMBER 0 — Do not send to the log file.

1 — Send to the log file.

BUTTON-
_MESSAGE_NR

NUMBER Number indicating buttons displayed in the
message dialog box.

EXCEPTION-
_ICON_NR

NUMBER Number indicating the icons displayed in the
message dialog box.

EXCEPTION-
_DEFAULT_NR

NUMBER Number indicating the default button.

HELPFILE VARCHAR2(40) Reserved.

HELPKEYWORD VARCHAR2(255) Number indicating additional help (a context
point) for the message.
EXCEPTION_MESSAGE 63

D
at

ab
as

e
S

tr
u

ct
u

re
s

Index

INVESTIGATOR_SITE

The CTS.INVESTIGATOR_SITE table stores information about investigator
sites.

Rows

One per investigator site.

Columns

Index name: Unique? Columns indexed:

EXCEPTION_MESSAGE-
_PK

Yes EXCEPTION_MESSAGE_ID,

LANGUAGE_ID

Column name: Data type: Description:

NAME VARCHAR2(20) Unique name of the site at which the
investigator enters data.

DESCRIPTION VARCHAR2(80) Description of the site.

TIME_ZONE VARCHAR2(10) Time zone in which the investigator site is
located.

DB_ID NUMBER(5) Unique identifier of the Clintrial software
database instance.
64 Chapter 3: CTS Account

D
atab

ase S
tru

ctu
res
Index

JOB_LOG

The CTS.JOB_LOG table stores information about batch jobs run in the Clintrial
software.

Rows

One per execution or submission of a batch job.

Columns

Index name: Unique?: Columns indexed:

INVESTIGATOR-
_SITE_PK

Yes NAME

Column name: Data type: Description:

JOB_ID NUMBER(10) Unique identifier of the job.

JOB_TYPE VARCHAR2(10) Type of job:

• AUDIT_RPT

• CODE

• GLOBAL CHG

• GLOBAL DEL

• MERGE

• SCREEN

• TRANSFER

• VALIDATE

Note: AUDIT_RPT is the data generation
step of the Subject Audit Report.

Note: TRANSFER is Lab Loader Transfer

PROTOCOL VARCHAR2(20) Name of the protocol.
JOB_LOG 65

D
at

ab
as

e
S

tr
u

ct
u

re
s
 PANEL VARCHAR2(20) Name of the panel.

DBTABLE VARCHAR2(6) Name of the database table for which the
process occurred.

START-
_DATETIME

DATE Date and time at which the process started.

END_DATETIME DATE Date and time at which the process ended.

LOG_USER VARCHAR2(20) User name that ran or submitted the job.

NUM_SELECTED NUMBER(10) Total number of records processed.

NUM_SUCCESS NUMBER(10) Total number of records successfully
processed.

NUM_FAILURE NUMBER(10) Total number of records for which there were
processing errors. If the JOB_TYPE is
VALIDATE, this is the total number of failed
rules with the error action REJECT. If the
JOB_TYPE is SCREEN, this is the total
number of records that failed screening and
for which data checks were not overridden.

NUM_WARNING NUMBER(10) If the JOB_TYPE is VALIDATE, the total
number of REPORT errors. If the
JOB_TYPE is SCREEN, the number of
records that failed screening.

OVERALL-
_STATUS

VARCHAR2(10) NORMAL — Completed with no errors.

ERROR — Completed with errors.

RUNNING — Still running.

BATCH_ID NUMBER(10) Identifier of the job.

REMARKS VARCHAR2(240) COMPLETED or error message.

RESTRICTION VARCHAR2(2000) Restriction clause used to select records for
the job.

Column name: Data type: Description:
66 Chapter 3: CTS Account

D
atab

ase S
tru

ctu
res
Indexes

OBJINDX for Oracle parameters

The CTS.OBJINDX table stores information about Oracle parameters and
Clintrial software parameters. This section describes the CTS.OBJINDX table
for Oracle parameters.

Rows

One per type of database table or index.

Columns

Index name: Unique?: Columns indexed:

JOB_LOG_IDX No PROTOCOL, JOB_TYPE

JOB_LOG_PK Yes JOB_ID

Column name: Data type: Description:

OBJECT VARCHAR2(10) Type of object:

INDXPARMS — Index for database table

TABPARMS — Database table

ONAME VARCHAR2(20) Type of table or index:

• CTSCODES

• CTS_AUDIT

• CTS_DATA

• CTS_UPDATE

• ERRORLOG

• SUBJECT_SPACE

• TAGS_SPACE

• TAGS_AUDIT_SPACE (only if
ONAME is TABPARMS)
OBJINDX for Oracle parameters 67

D
at

ab
as

e
S

tr
u

ct
u

re
s

Index

LASTMOD DATE Date and time at which the parameter was
last modified.

I3 VARCHAR2(240) Value of the Oracle parameter
INITIAL.

I4 VARCHAR2(240) Value of the Oracle parameter NEXT.

I6 VARCHAR2(240) Value of the Oracle parameter
MINEXTENTS.

I7 VARCHAR2(240) Value of the Oracle parameter
MAXEXTENTS.

I8 VARCHAR2(240) Value of the Oracle parameter
PCTINCREASE.

I9 VARCHAR2(240) Value of the Oracle parameter PCTUSED.

I10 VARCHAR2(240) Value of the Oracle parameter PCTFREE.

I11 VARCHAR2(240) Value of the Oracle parameter INITRANS.

I12 VARCHAR2(240) Value of the Oracle parameter MAXTRANS.

I13 VARCHAR2(240) If OBJECT is TABPARMS and ONAME is
CTSCODES, the name of the tablespace
containing unaggregated codelists.

If OBJECT is INDXPARMS and ONAME is
CTSCODES, the name of the tablespace
containing indexes on unaggregated
codelists.

Index name: Unique?: Columns indexed:

OBJINDX_PK Yes OBJECT, ONAME

Column name: Data type: Description:
68 Chapter 3: CTS Account

D
atab

ase S
tru

ctu
res
OBJINDX for Clintrial software parameters

The CTS.OBJINDX table stores information about Oracle parameters and
Clintrial software parameters. This section describes the CTS.OBJINDX table
for Clintrial software parameters.

Rows

One per parameter.

Columns

Column name: Data type: Description:

OBJECT VARCHAR2(10) Type of Clintrial software parameter:

SYS_PARAM — System parameter

USER_PARAM — User preference

PROT_PARAM — System parameter

ONAME VARCHAR2(20) Name of the parameter.

LASTMOD DATE Date and time at which the parameter was
last modified.

I4 VARCHAR2(240) Value of the parameter.

I5 VARCHAR2(240) Data type of the parameter:

• BOOL

• DATE

• FIXED

• RESPONSE

• SPECIAL

• TEXT

I10 VARCHAR2(240) Language of the parameter description.

I11 VARCHAR2(240) Lower bound of the parameter.
OBJINDX for Clintrial software parameters 69

D
at

ab
as

e
S

tr
u

ct
u

re
s

Index

PARAM_AUDIT

The CTS.PARAM_AUDIT table stores information about modifications to the
values of system parameters, or the default values of protocol parameters.

Rows

One row for every modification of a system or default protocol parameter.

Columns

I12 VARCHAR2(240) Upper bound of the parameter.

I13 VARCHAR2(240) Codelist associated with the parameter.

I14 VARCHAR2(240) Version number of the parameter.

I15 VARCHAR2(240) Identifier of the parameter group.

I25 LONG Description of the parameter.

Index name: Unique?: Columns indexed:

OBJINDX_PK Yes OBJECT, ONAME

Column name: Data type: Description:

OBJECT VARCHAR2(10) SYS_PARAM or PROT_PARAM

ONAME VARCHAR2(20) Name of the parameter.

LASTMOD DATE Date of modification.

Column name: Data type: Description:
70 Chapter 3: CTS Account

D
atab

ase S
tru

ctu
res
Index

PROTOCOL_LOCK_HISTORY

The CTS.PROTOCOL_LOCK_HISTORY table stores information about
protocol locking and unlocking.

Rows

One per each locking or unlocking of a protocol.

Columns

MODUSER VARCHAR2(20) User account that made the modification.

PARAM_VALUE VARCHAR2(240) Value of the parameter

Index name: Unique?: Columns indexed:

PARAM_AUDIT_PK Yes OBJECT, ONAME, LASTMOD

Column name: Data type: Description:

PROTOCOL VARCHAR2(20) Name of the protocol.

MODDATE DATE Date and time on which the protocol was
locked or unlocked.

ACTION NUMBER(1) 0 — The protocol was unlocked.

1 — The protocol was locked.

REASON VARCHAR2(2000) Reason that the protocol was locked or
unlocked.

Column name: Data type: Description:
PROTOCOL_LOCK_HISTORY 71

D
at

ab
as

e
S

tr
u

ct
u

re
s

Index

PROTOCOL_PARAM

The CTS.PROTOCOL_PARAM table stores information about protocol
parameters that have been modified to different settings than the
systemwide defaults.

Rows

One per protocol parameter that has been modified to a different setting than the
systemwide default.

Columns

MODUSER VARCHAR2(20) User account that locked or unlocked he
protocol.

DB_ID NUMBER(5) Obsolete.

Index name: Unique?: Columns indexed:

PROT_LOCK_HIST_PK Yes PROTOCOL, MODDATE

Column name: Data type: Description:

PROTOCOL VARCHAR2(20) Name of the protocol.

PARAM_NAME VARCHAR2(50) Name of the protocol parameter.

PARAM_VALUE VARCHAR2(240) Description of the protocol parameter.

DB_ID NUMBER(5) Obsolete.

Column name: Data type: Description:
72 Chapter 3: CTS Account

D
atab

ase S
tru

ctu
res
Index

PROTOCOL_PARAM_AUDIT

The CTS.PROTOCOL_PARAM_AUDIT table stores information about
modifications to protocol parameters.

Rows

One for every modification to a protocol parameter.

Columns

MODDATE TIMESTAMP Date of last modification.

MODUSER ARCHAR2(20) User account who made the modification.

Index name: Unique?: Columns indexed:

PROT_PARAM_PK Yes PROTOCOL, PARAM_NAME

Column name: Data type: Description:

PROTOCOL VARCHAR2(20) Name of the protocol.

PARAM_NAME VARCHAR2(50) Name of the protocol parameter.

PARAM_VALUE VARCHAR2(240) Description of the protocol parameter.

MODDATE TIMESTAMP Date of last modification.

MODUSER ARCHAR2(20) User account who made the modification.

Column name: Data type: Description:
PROTOCOL_PARAM_AUDIT 73

D
at

ab
as

e
S

tr
u

ct
u

re
s

Index

REGISTRY

The CTS.REGISTRY table stores information about which Clintrial software
components, as well as other Oracle product components, have been installed on
the server.

Rows

One per installation of the Clintrial software core modules on the server, and one
per extended module, or other component, installed on the server.

Columns

Index name: Unique?: Columns indexed:

PROT_PARAM_AUDIT_P
K

Yes PROTOCOL, PARAM_NAME, MODDATE

Column name: Data type: Description:

CT_OPTION VARCHAR2(5) Identifier of the component.

STATUS NUMBER(1) 1 — Installed

MODDATE DATE Date and time at which the component was
installed.

VERSION VARCHAR2(10) Version number of the component.

PATCH_LEVEL VARCHAR2(10) Patch number of the component, if a patch
has been applied.
74 Chapter 3: CTS Account

D
atab

ase S
tru

ctu
res
Index

SEARCH_LIST

The CTS.SEARCH_LIST table stores information about protocol searchlists.

Rows

One per protocol that is in a searchlist.

Columns

Indexes

Index name: Unique?: Columns indexed:

REGISTRY_PK Yes CT_OPTION

Column name: Data type: Description:

PROTOCOL VARCHAR2(20) Name of the protocol to which the searchlist
is attached.

SEARCH_PROTOC
OL

VARCHAR2(20) Name of the protocol in the searchlist.

SEARCH_ORDER NUMBER10) Order of searching; lower numbers are
searched first.

DB_ID NUMBER(5) Obsolete.

Index name: Unique?: Columns indexed:

SEARCH_LIST_PK Yes PROTOCOL, SEARCH_PROTOCOL
SEARCH_LIST 75

D
at

ab
as

e
S

tr
u

ct
u

re
s

TAGDEFS

The CTS.TAGDEFS table stores information about flag definitions and note
definitions.

Rows

One per flag definition or note definition.

Columns

Column name: Data type: Description:

TAGID NUMBER(15) Unique identifier of the flag or note.

CATNAME VARCHAR2(20) Name of the flag category or note
category.

TAGNAME VARCHAR2(20) Name of the flag name or note name.

DESCRIPTION VARCHAR2(240) Description of the flag or note.

STATUS VARCHAR2(10) Status of the flag definition of note
definition:

• OK

• DELETED

DB_ID NUMBER(5) Unique identifier of the Clintrial software
database instance.

LOCK_STATUS NUMBER(1) 0 — The flag definition or note definition is
modifiable.

1 — The flag definition or note definition is
not modifiable, but it can be reset to
modifiable.

2 — The flag definition or note definition is a
nonmodifiable copy that cannot be made
modifiable except by breaking the
connection.
76 Chapter 3: CTS Account

D
atab

ase S
tru

ctu
res
Indexes

USERGROUP

The CTS.USERGROUP table stores information about usergroups.

Rows

One per usergroup.

Column

Index

LOCK_COPY NUMBER(1) Obsolete.

Index name: Unique?: Columns indexed:

TAGDEFS_PK Yes TAGID

TAGDEFS_IDX Yes CATNAME, TAGNAME

Column name: Data type: Description:

USERGROUP VARCHAR2(20) Name of the usergroup.

Index name: Unique?: Columns indexed:

USERGROUP_PK Yes USERGROUP

Column name: Data type: Description:
USERGROUP 77

D
at

ab
as

e
S

tr
u

ct
u

re
s

USERGROUP_AUDIT

The CTS.USERGROUP table stores information about modifications to
members of a usergroup.

Rows

One row for every modification to the members of a usergroup.

Column

Index

Column name: Data type: Description:

USERGROUP VARCHAR2(20) Name of the usergroup.

USERNAME VARCHAR2(20) Name of the user in this group.

MODDATE TIMESTAMP Date of modification.

MODUSER VARCHAR2(20) user that made the modification.

ACTION VARCHAR2(2) I=Inserted, D=Deleted

Index name: Unique?: Columns indexed:

USERGROUP_AUDIT_PK Yes USERGROUP, USERNAME, MODDATE
78 Chapter 3: CTS Account

D
atab

ase S
tru

ctu
res
USERGROUP_ACCESS

The CTS.USERGROUP_ACCESS table stores information about access rights
and levels granted to users and usergroups.

Rows

One per access right granted.

Columns

Index

Column name: Data type: Description:

USERGROUP VARCHAR2(20) Name of the user or usergroup.

PROTOCOL VARCHAR2(20) Name of the protocol.

ACCESS_RIGHT VARCHAR2(20) Name of the access right.

IS_GROUP NUMBER(1) 0 — The value of USERGROUP is the name
of a user.

1 — The value of USERGROUP is the name
of a usergroup.

ACCESS_LEVEL NUMBER(10) Value of the access level:

1 — Read, Basic

2 — No Delete

3 — Full, Write

4 — Publish

Index name: Unique?: Columns indexed:

USERGROUP_ACCESS-
_PK

Yes USERGROUP, PROTOCOL,
ACCESS_RIGHT, IS_GROUP
USERGROUP_ACCESS 79

D
at

ab
as

e
S

tr
u

ct
u

re
s

USERGROUP_ACCESS_AUDIT

The CTS.USERGROUP_ACCESS table stores information about modifications
to access rights and levels granted to users and usergroups.

Rows

One row for every modification to the privileges of a user account or usergroup.

Columns

Column name: Data type: Description:

USERGROUP VARCHAR2(20) Name of the user or usergroup.

DEFAULT — NONE

PROTOCOL VARCHAR2(20) Name of the protocol.

ACCESS_RIGHT VARCHAR2(20) Name of the access right.

IS_GROUP NUMBER(1) 0 — The value of USERGROUP is the name
of a user.

1 — The value of USERGROUP is the name
of a usergroup.

ACCESS_LEVEL NUMBER(10) Value of the access level:

1 — Read, Basic

2 — No Delete

3 — Full, Write

4 — Publish

MODDATE TIMESTAMP Date of modification.

MODUSER VARCHAR2(20) User who made the modification.
80 Chapter 3: CTS Account

D
atab

ase S
tru

ctu
res
Index

USERGROUP_ACCESS_PANEL

The CTS.USERGROUP_ACCESS_PANEL table stores information about
access rights granted to users or usergroups for protected panels.

Rows

One per access right granted to a user or usergroup for
a protected panel.

Columns

Index name: Unique?: Columns indexed:

USERGROUP_ACCESS_A
UDIT_PK

Yes USERGROUP, PROTOCOL,
ACCESS_RIGHT, IS_GROUP, MODDATE

ACCESS_AUDIT_PROT_I
DX

No USERGROUP, PROTOCOL,
ACCESS_RIGHT, IS_GROUP

Column name: Data type: Description:

USERGROUP VARCHAR2(20) Name of the usergroup or user.

PROTOCOL VARCHAR2(20) Name of the protocol containing the
protected panel.

PANEL VARCHAR2(20) Name of the protected panel.

ACCESS_RIGHT VARCHAR2(20) Name of the access right.

IS_GROUP NUMBER(1) 0 — The value of USERGROUP is the name
of a user.

1 — The value of USERGROUP is the name
of a usergroup.
USERGROUP_ACCESS_PANEL 81

D
at

ab
as

e
S

tr
u

ct
u

re
s

Index

USERGROUP_ACCESS_PANEL_AUDIT

The CTS.USERGROUP_ACCESS_PANEL_AUDIT table stores information
about modifications to access rights and levels granted to users and usergroups
for protected panels.

Rows

One row for every modification of the protected panel access levels for a user or
usergroup.

Columns

ACCESS_LEVEL NUMBER(10) Value of the access level:

1 — Read, Basic

2 — No Delete

3 — Full, Write

4 — Publish

Index name: Unique?: Columns indexed:

USERGROUP_ACCESS-
_PANEL_PK

Yes USERGROUP, PROTOCOL, PANEL,
ACCESS_RIGHT, IS_GROUP

Column name: Data type: Description:

USERGROUP VARCHAR2(20) Name of the usergroup or user.

PROTOCOL VARCHAR2(20) Name of the protocol containing the
protected panel.

Column name: Data type: Description:
82 Chapter 3: CTS Account

D
atab

ase S
tru

ctu
res
Index

USER_PARAM

The CTS.USER_PARAM table stores information about user preferences that
have been modified to a different setting than the system-wide default.

PANEL VARCHAR2(20) Name of the protected panel.

ACCESS_RIGHT VARCHAR2(20) Name of the access right.

IS_GROUP NUMBER(1) 0 — The value of USERGROUP is the name
of a user.

1 — The value of USERGROUP is the name
of a usergroup.

ACCESS_LEVEL NUMBER(10) Value of the access level:

1 — Read, Basic

2 — No Delete

3 — Full, Write

4 — Publish

MODDATE TIMESTAMP Date of modification.

MODUSER VARCHAR2(20) User that made the modification.

Index name: Unique?: Columns indexed:

USERGROUP_ACCESS_P
ANEL_AUDIT_PK

Yes USERGROUP, PROTOCOL, PANEL,
ACCESS_RIGHT, IS_GROUP, MODDATE

Column name: Data type: Description:
USER_PARAM 83

D
at

ab
as

e
S

tr
u

ct
u

re
s

Rows

One per user preference that has been modified to a different setting than the
systemwide default.

Columns

Index

Column name: Data type: Description:

PARAM_TYPE VARCHAR2(10) Reserved.

PARAM_NAME VARCHAR2(20) Name of the user preference.

USERNAME VARCHAR2(20) User account that modified the user
preference.

PARAM_VALUE VARCHAR2(2000) Value of the user preference.

Index name: Unique?: Columns indexed:

USER_PARAM_PK Yes USERNAME, PARAM_NAME,
PARAM_TYPE
84 Chapter 3: CTS Account

D
atab

ase S
tru

ctu
res
USER_PARAM 85

D
at

ab
as

e
S

tr
u

ct
u

re
s

86 Chapter 3: CTS Account

D
atab

ase S
tru

ctu
res
SUBJECT_AUDIT_RECORD 88

SUBJECT_AUDIT_ITEM 89

4 CTPROC Account
 87

D
at

ab
as

e
S

tr
u

ct
u

re
s

Note: This account has not been documented previously, because there were not
any tables.

SUBJECT_AUDIT_RECORD

The CTPROC.SUBJECT_AUDIT_RECORD table stores information about
modifications to subjects included in a Subject Audit Report.

One row for each modification to a record included in a Subject Audit report.

Columns

Column name: Data type: Description:

AUDIT_ID NUMBER(1) Unique identifier of a record included in the
audit report.

JOB_ID NUMBER(1) Identifier of the report.

PROTOCOL VARCHAR2(20) Name of the protocol.

SUBJECT_ID NUMBER(1) Subject identifier.

PANEL VARCHAR2(20) Name of the panel.

CT_RECID VARCHAR2(40) Record identifier (in the panel).

MODDATE DATE Date record was modified.

MODUSER VARCHAR2(20) User that modified the record.

CTS$REASON VARCHAR2(2000) Reason for change.

SUBJECT_KEY VARCHAR2(40) Value of subject key.

BLOCK_KEY VARCHAR2(40) Value of block key.

BLOCK_REPEAT_
KEY

VARCHAR2(40) Value of block repeat key.
88 Chapter 4: CTPROC Account

D
atab

ase S
tru

ctu
res
Index

SUBJECT_AUDIT_ITEM

The CTPROC.SUBJECT_AUDIT_ITEM table stores information about data
value changes for subjects included in a Subject Audit Report.

One row for each data item modified in records included in a Subject Audit
Report.

Columns

PAGE_KEY VARCHAR2(40) Value of page key.

PAGE_REPEAT_K
EY

VARCHAR2(40) Value of page repeat key.

Index name: Unique?: Columns indexed:

SUBJ_AUDIT_RECORD_P
K

Yes AUDIT_ID

SUBJ_AUDIT_RECORD_I
DX

No JOB_ID, PROTOCOL, SUBJECT_ID,
BLOCK_KEY, BLOCK_REPEAT_KEY,
PAGE_KEY, PAGE_REPEAT_KEY

Column name: Data type: Description:

AUDIT_ID NUMBER(1) Unique identifier of a record included in the
audit report.

ITEM_NAME VARCHAR2(20) Name of an item.

PREV_VALUE VARCHAR2(2000) Value of the item before modification.

NEW_VALUE VARCHAR2(2000) Value of the item after modification.

Column name: Data type: Description:
SUBJECT_AUDIT_ITEM 89

D
at

ab
as

e
S

tr
u

ct
u

re
s

Index

Index name: Unique?: Columns indexed:

SUBJ_AUDIT_ITEM_PK Yes AUDIT_ID, ITEM_NAME
90 Chapter 4: CTPROC Account

D
atab

ase S
tru

ctu
res
AGGREGATED_CODES 92

CODE_INDEX 93

CODELIST_ASSOC 95

IMPORT_LOG 96

VIEW_CODELIST 97

5 CTSCODES Account
 91

D
at

ab
as

e
S

tr
u

ct
u

re
s

AGGREGATED_CODES

The CTSCODES.AGGREGATED_CODES table stores the contents of all
aggregated codelists in the database instance.

Rows

One per combination of codelist and value.

Columns

Column name: Data type: Description:

CODELIST VARCHAR2(20) Name of the codelist.

VARNO NUMBER(2) This value is always 1.

CODE VARCHAR2(80) Code

VALUE VARCHAR2(80) Value associated with the code.

LABEL VARCHAR2(80) Short descriptive label associated with the
code.

LONGLABEL VARCHAR2(240) Long descriptive label associated with the
code.

DB_ID NUMBER(5) Obsolete

STATUS NUMBER(1) Status of the codelist entry:

 0 — Valid
-1 — Invalid

CODE_ORDER NUMBER(5) Position of the codelist entry in the ordered
set of codelist entries.
92 Chapter 5: CTSCODES Account

D
atab

ase S
tru

ctu
res
Index

CODE_INDEX

The CTSCODES.CODE_INDEX table stores the attributes of codelists.

Rows

One per codelist.

Columns

SUBSET_REQD NUMBER(1) 0 — The codelist entry is not required in
subset codelists that are based on this
codelist.

1 — The codelist entry is included
(regardless of the subset restriction) in the
subset codelists that are based on this
codelist.

SUBSET_VALUE NUMBER(5) Subset value, which may be used to create
subset codelists.

Index name: Unique?: Columns indexed:

AGGREGATED_CODES-
_PK

Yes CODELIST, VARNO, CODE, VALUE

Column name: Data type: Description:

CODELIST VARCHAR2(20) Name of the codelist.

CHECKTYPE VARCHAR2(10) Obsolete.

Column name: Data type: Description:
CODE_INDEX 93

D
at

ab
as

e
S

tr
u

ct
u

re
s
 AGGREGATED VARCHAR2(10) NO — The codelist is not aggregated.

YES — The codelist is aggregated.

VIEW — The codelist is a view codelist.

SUBSET — The codelist is a subset codelist.

CODETYPE VARCHAR2(10) Data type of the code:

• FIXED

• TEXT

VALUETYPE VARCHAR2(10) Data type of the value:

• FIXED

• TEXT

DESCRIPTION VARCHAR2(80) Description of the codelist.

MODDATE DATE Date and time at which the codelist was
created or last modified.

AUTHOR VARCHAR2(20) User account that created or last modified the
codelist.

SASNAME VARCHAR2(6) SAS format name associated with the
codelist.

DB_ID NUMBER(5) Obsolete.

STATUS NUMBER(1) Status of the codelist:

 0 — Valid
-1 — Invalid

DATA_DICT NUMBER(1) 0 — The codelist is not a data dictionary
codelist.

1 — The codelist is a data dictionary
codelist.

BASE_CODELIST VARCHAR2(20) Name of the base codelist for a subset
codelist.

SUBSET-
_RESTRICTION

VARCHAR2(2000) Subset restriction clause (Oracle
WHERE clause for a subset codelist.

Column name: Data type: Description:
94 Chapter 5: CTSCODES Account

D
atab

ase S
tru

ctu
res
Indexes

CODELIST_ASSOC

The CTSCODES.CODELIST_ASSOC table stores information about the
association of imported codelists to existing codelists at the receiving site.

Rows

One per association of an imported codelist to an existing codelist.

Columns

VIEW_CREATED NUMBER(1) 0 — The codelist’s view has not been created
or is invalid.

1 — The codelist’s view has been created.

Null — The codelist is not a view codelist or
subset codelist.

Index name: Unique?: Columns indexed:

CODESAS_INDEX Yes SASNAME

CODE_INDEX_PK Yes CODELIST

Column name: Data type: Description:

IMPORT_NUM NUMBER(6) Unique identifier of the codelist import.

SOURCE_NAME VARCHAR2(20) Name of the codelist at the sending site.

INSTALLED-
_NAME

VARCHAR2(20) Name of the codelist at the receiving site.

Column name: Data type: Description:
CODELIST_ASSOC 95

D
at

ab
as

e
S

tr
u

ct
u

re
s

Index

IMPORT_LOG

The CTSCODES.IMPORT_LOG table stores information about imports of
codelists.

Rows

One per import of a codelist.

Columns

Index name: Unique?: Columns indexed:

CODELIST_ASSOC_PK Yes IMPORT_NUM, SOURCE_NAME

Column name: Data type: Description:

IMPORT_NUM NUMBER(6) Unique identifier of the codelist import.

SOURCE_SITE VARCHAR2(30) Name of the database from which the
codelist was exported.

EXPORT-
_DATETIME

DATE Date and time at which the codelist was
exported.

IMPORT-
_DATETIME

DATE Date and time at which the codelist was
imported.

CHANGECOUNT NUMBER(8) Obsolete.
96 Chapter 5: CTSCODES Account

D
atab

ase S
tru

ctu
res
Index

VIEW_CODELIST

The CTSCODES.VIEW_CODELIST table stores information about view
codelists.

Rows

One per view codelist.

Columns

Index name: Unique?: Columns indexed:

IMPORT_LOG_PK Yes IMPORT_NUM

Column name: Data type: Description:

CODELIST VARCHAR2(20) Name of the view codelist.

PROTOCOL VARCHAR2(20) Name of the protocol containing the panel
for the view onto which the view codelist
provides a view.

PANEL VARCHAR2(20) Name of the panel onto which the view
codelist provides a view.

CODE_ITEM VARCHAR2(20) Name of the column that stores codes.

VALUE_ITEM VARCHAR2(20) Name of the column that stores values.

LABEL_ITEM VARCHAR2(20) Name of the column that stores short labels.

LONGLABEL-
_ITEM

VARCHAR2(20) Name of the column that stores long labels.
VIEW_CODELIST 97

D
at

ab
as

e
S

tr
u

ct
u

re
s

Index

RESTRICTION VARCHAR2(240) SQL restriction clause that selects data from
the base table to create the view codelist.

STATUS NUMBER(2) 0 — The view is invalid or was not
created.

1 — The view was created and is valid.

DB_ID NUMBER(5) Obsolete.

STATUS_ITEM VARCHAR(20) Name of the column that stores the status of
the codelist entry; analogous to the STATUS
column of the AGGREGATED_CODES
table.

CODE_ORDER-
_ITEM

VARCHAR2(20) Name of the column that stores the position
of the codelist entry; analogous to the
CODE_ORDER column of the
AGGREGATED_CODES table.

SUBSET_REQD-
_ITEM

VARCHAR2(20) Name of the column that stores an indication
of whether the codelist entry is required;
analogous to the SUBSET_REQD column of
the AGGREGATED_CODES table.

SUBSET_VALUE-
_ITEM

VARCHAR2(20) Name of the column that stores the subset
value; analogous to the SUBSET_VALUE
column in the AGGREGATED_CODE table.

BASE_TYPE NUMBER(1) 0 — The codelist is based on a Clintrial
software panel’s database tables.

1 — The codelist is based on a non-Clintrial
Oracle table.

Index name: Unique?: Columns indexed:

VIEW_CODELIST_PK Yes CODELIST

Column name: Data type: Description:
98 Chapter 5: CTSCODES Account

D
atab

ase S
tru

ctu
res
GCT_CC_ID 100

GCT_CC_OMISSION 101

GCT_CTX_LOC 103

GCT_DC_ID 104

GCT_DC_OMISSION 105

GCT_DC_PROTOCOL 108

GCT_LEX_ELT 109

GCT_SOLUTION 111

6 CTCLASSIFY Account
 99

D
at

ab
as

e
S

tr
u

ct
u

re
s

GCT_CC_ID

The CTCLASSIFY.GCT_CC_ID table supplies the drop-down list of the
GCT_CC_DB_ID column in the editor for the GCT_CTX_LOC table.

A row is created in this table when the Autocoding Sites command on Classify’s
Configuration menu is used.

Rows

One per coding center.

Columns

Indexes

Column name: Data type: Description:

GCT_CREATE_DT DATE Date on which the record was created.

LASTMOD DATE Date on which the record was last
modified.

MODUSER VARCHAR2(30) User account that created or last modified
the record.

GCT_SITE_NAME VARCHAR2(40) Coding center site name.

GCT_CC_DB_ID NUMBER Database identifier of the coding center.

DB_ID NUMBER Database identifier of the owner of the
coding center.

Index name: Unique?: Columns indexed:

GCT_CC_ID_PK Yes GCT_SITE_NAME
100 Chapter 6: CTCLASSIFY Account

D
atab

ase S
tru

ctu
res
GCT_CC_OMISSION

The CTCLASSIFY.GCT_CC_OMISSION table contains additional information
for omission records.

A row is created in this table when a clinical data record fails automatic coding.
Classify users delete omission records, and their corresponding rows in this
table, by purging.

Rows

One per omission record.

Columns

GCT_CC_ID_UK Yes GCT_CC_DB_ID

Column name: Data type: Description:

GCT_OMISSION-
_ID

VARCHAR2(20) Unique identifier of the related
GCT_DC_OMISSION row. Joins a
GCT_CC_OMISSION row to a
GCT_DC_OMISSION row.

GCT_SOLUTION-
_ID

VARCHAR2(20) 0 (zero) if not initialized from a reusable
solution, otherwise, the solution ID of the
reusable solution used for the
initialization.

LASTMOD DATE The date this row was last modified.

MODUSER VARCHAR2(30) User account that last modified this row.

Index name: Unique?: Columns indexed:
GCT_CC_OMISSION 101

D
at

ab
as

e
S

tr
u

ct
u

re
s

Indexes

GCT_SOLUTION-
_TYPE

VARCHAR2(20) Indicates the type of solution proposed or
applied to the omission record:

• Synonym

• Verbatim

• Request

• None

GCT_DETAILS VARCHAR2(256) Used for omission records with a solution
type of Request or Verbatim only.

• For Request solutions, contains the
text of the discrepancy message or
item flag.

• For Verbatim solutions, contains the
new verbatim text.

GCT_SYNONYM-
_ERROR

VARCHAR2(256) Used for omission records with a solution
type of Synonym only. If a synonym is
proposed, but an error is received when
you attempt to accept it, this item stores
the error message.

GCT_CC_STATUS VARCHAR2(20) Indicates the internal status of the solution
for the omission record:

• Needs Proposal

• Proposed

• Accepted

GCT_DC_DB_ID NUMBER Database identifier of the data center.

DB_ID NUMBER Database identifier of the coding center.

GCT_REASON VARCHAR2(20)

Index name: Unique?: Columns indexed:

GCT_CC_PK Yes GCT_OMISSION_ID

GCT_CC_IDX_A1 No GCT_SOLUTION_ID

Column name: Data type: Description:
102 Chapter 6: CTCLASSIFY Account

D
atab

ase S
tru

ctu
res
GCT_CTX_LOC

The CTCLASSIFY.GCT_CTX_LOC table identifies which coding center owns
an omission, as determined by the data center where it was created, the protocol
containing the clinical data, and the thesaurus used for
coding.

To enter or modify this table, use Classify’s Mapping command on the
Configuration menu.

Rows

One per omission.

Columns

Column name: Data type: Description:

GCT_CREATE-
_DATE

DATE Date on which the record was created.

LAST_MOD DATE Date on which the record was last
modified.

MODUSER VARCHAR2(30) User account that created or last modified
the record.

GCT_CC_DB_ID NUMBER) Database identifier of the coding center.

GCT_DC_DB_ID NUMBER Database identifier of the data
center, or a wildcard for all database
identifiers.

GCT_THESAURUS VARCHAR2(20) Thesaurus protocol, or a wildcard for all
thesaurus protocols.

GCT_PROTOCOL VARCHAR2(20) Clinical data protocol, or a wildcard for all
clinical data protocols.
GCT_CTX_LOC 103

D
at

ab
as

e
S

tr
u

ct
u

re
s

Index

GCT_DC_ID

The CTCLASSIFY.GCT_DC_ID table supplies the drop-down list for the
GCT_DC_DB_ID column in the editor for the GCT_CTX_LOC table.

A row is created in this table when the Omission Handling Sites command on
Classify’s Configuration menu is used.

Rows

One per data center.

Columns

DB_ID NUMBER Database identifier of the owner of the
omission.

Index name: Unique?: Columns indexed:

GCT_CTX_LOC_PK Yes GCT_DC_DB_ID,
GCT_THESAURUS,
GCT_PROTOCOL

Column name: Data type: Description:

GCT_CREATE_DT DATE Date on which the record was created.

LASTMOD DATE Date on which the record was last
modified.

MODUSER VARCHAR2(30) User account that created or last modified
the record.

Column name: Data type: Description:
104 Chapter 6: CTCLASSIFY Account

D
atab

ase S
tru

ctu
res
Indexes

GCT_DC_OMISSION

The CTCLASSIFY.GCT_DC_OMISSION table contains information about the
omission records created when a clinical data record fails automatic coding in
Manage.

A row is created in this table when a clinical data record fails automatic coding.
Classify users delete omission records, and their corresponding rows in this
table, by purging.

Rows

One per omission record.

GCT_SITE_NAME VARCHAR2(40) Data center site name.

GCT_DC_DB_ID NUMBER Data center database identifier.

DB_ID NUMBER Database identifier of the owner of the
data center.

GCT_REFRESH-
_DID_DT

DATE Date on which an attempt was last made to
refresh the GCT_DC_PROTOCOL table.

GCT_REFRESH-
_CHANGE_DT

DATE Reserved.

Index name: Unique?: Columns indexed:

GCT_DC_ID_PK Yes GCT_SITE_NAME

GCT_DC_ID_UK Yes GCT_DC_DB_ID

Column name: Data type: Description:
GCT_DC_OMISSION 105

D
at

ab
as

e
S

tr
u

ct
u

re
s

Columns

Column name: Data type: Description:

GCT_OMISSION-
_ID

VARCHAR2(20) Unique identifying number for an
omission record. Created by concatenating
the next sequential value and DB_ID in the
format value.DB_ID.

GCT_CREATE_DT DATE The date this row was first inserted into
the GCT_DC_OMISSION table.

LASTMOD DATE The date this row was last modified.

MODUSER VARCHAR2(30) User account that last modified this row.

GCT_THESAURUS VARCHAR2(20) Coding thesaurus protocol used to code the
verbatim text.

GCT_ALGORITHM VARCHAR2(20) Algorithm used for coding.

GCT_LANGUAGE VARCHAR2(20) Thesaurus language used for coding.

GCT_PROTOCOL VARCHAR2(20) Protocol of the clinical data record with
the value that failed automatic coding.

GCT_PANEL VARCHAR2(20) Panel with the value that failed automatic
coding.

GCT_ORCTABLE VARCHAR2(10) Oracle database table where the clinical
data record was located at the time
automatic coding failed (that is, update or
data).

GCT_CODE1_ITEM VARCHAR2(20) Name of the Code1 item.

GCT_VERBATIM-
_ITEM

VARCHAR2(20) Name of the Verbatim Text item. (The
field in which the term that could not be
coded was entered.)

GCT_ERR_RECID VARCHAR2(40) Ct_Recid of the clinical data record that
failed automatic coding.
106 Chapter 6: CTCLASSIFY Account

D
atab

ase S
tru

ctu
res
Indexes

GCT_SUBJECT VARCHAR2(200) Value of the subject context item from the
clinical data record that failed automatic
coding. Null for Type 0 panels.

GCT_BLOCK VARCHAR2(20) Value of the block context item from the
clinical data record that failed automatic
coding. Null for Type 0 panels.

GCT_PAGE VARCHAR2(20) Value of the page context item from the
clinical data record that failed automatic
coding. Null for Type 0 panels.

GCT_VERBATIM VARCHAR2(256) The text that could not be coded.

GCT_NORMAL-
_VERBATIM

VARCHAR2(256) The normalized text resulting from
applying a thesaurus algorithm to the
verbatim text.

GCT_DC_STATUS VARCHAR2(20) Indicates the status of the omission record
at the implementation level:

• Active

• Applied

• Autoresolved

GCT_CC_DB_ID NUMBER Database identifier of the coding center.

DB_ID NUMBER Database identifier of the data center.

GCT_ERROR VARCHAR2(256) Error text.

GCT_REASON VARCHAR2(20)

Index name: Unique?: Columns indexed:

GCT_DC_PK Yes GCT_OMISSION_ID

GCT_DC_IDX_A1 No GCT_ERR_RECID
GCT_CODE1_ITEM

Column name: Data type: Description:
GCT_DC_OMISSION 107

D
at

ab
as

e
S

tr
u

ct
u

re
s

GCT_DC_PROTOCOL

The CTCLASSIFY.GCT_DC_PROTOCOL table supplies the drop-down list for
the thesaurus and protocol in the GCT_CTX_LOC table.

Rows

One per protocol.

Columns

GCT_DC_IDX_A2 No GCT_VERBATIM,
GCT_THESAURUS,
GCT_ALGORITHM,
GCT_LANGUAGE

Column name: Data type: Description:

GCT_CREATE_DT DATE Date on which the record was created.

LASTMOD DATE Date on which the record was last
modified.

MODUSER VARCHAR2(30) User account that created or last modified
the record.

GCT_DC_DB_ID NUMBER Data center database identifier.

GCT_THESAURUS VARCHAR2(20) Thesaurus protocol, or a wildcard for all
thesaurus protocols.

GCT_PROTOCOL VARCHAR2(20) Clinical data protocol, or a wildcard for all
clinical data protocols.

Index name: Unique?: Columns indexed:
108 Chapter 6: CTCLASSIFY Account

D
atab

ase S
tru

ctu
res
Index

GCT_LEX_ELT

The CTCLASSIFY.GCT_LEX_ELT table defines the support elements required
by Classify transformations.

Rows

One per transformation.

Columns

DB_ID NUMBER Database identifier of the owner of the
protocol.

Index name: Unique?: Columns indexed:

GCT_DC_PROTOCOL_PK Yes GCT_DC_DB_ID,
GCT_THESAURUS,
GCT_PROTOCOL

Column name: Data type: Description:

GCT_THESAURUS VARCHAR2(20) Coding thesaurus protocol used to code the
verbatim text.

GCT_ALGORITHM VARCHAR2(20) Algorithm used for coding.

GCT_LANGUAGE VARCHAR2(20) Thesaurus language used for coding.

Column name: Data type: Description:
GCT_LEX_ELT 109

D
at

ab
as

e
S

tr
u

ct
u

re
s

Index

GCT_SOLUTION

The CTCLASSIFY.GCT_SOLUTION table contains information about
synonym solution types when they are proposed or accepted for an omission
record.

GCT_ELEMENT-
_TYPE

VARCHAR2(30) The following transformations are
supported:

• REPLACE_WORDS

• REMOVE_CHARS

• REMOVE_WORDS

• PROTECTED_STEMMING

GCT_ELEMENT VARCHAR2(200) Text of the original phrase, word, stem, or
character.

GCT_ELEMENT-
_PRIME

VARCHAR2(200) Text to replace the original phrase, word,
stem, or character.

GCT_CREATE_DT DATE Date this row was first inserted into the
GCT_LEX_ELT table.

LASTMOD DATE Date this row was last modified.

MODUSER VARCHAR2(30) User account that last modified this row.

DB_ID NUMBER Database identifier of the owner of the
protocol.

Index name: Unique?: Columns indexed:

GCT_LEX_ELT_PK Yes GCT_ELEMENT,
GCT_ELEMENT_TYPE,
GCT_LANGUAGE,
GCT_ALGORITHM,
GCT_THESAURUS

Column name: Data type: Description:
110 Chapter 6: CTCLASSIFY Account

D
atab

ase S
tru

ctu
res
Rows

One per solution with a solution type of synonym.

Columns

Column name: Data type: Description:

GCT_SOLUTION-
_ID

VARCHAR2(20) Unique identifier of the related
GCT_CC_OMISSION row. Joins a
GCT_SOLUTION row to a
GCT_CC_OMISSION row.

GCT_CREATE_DT DATE Date this row was first inserted into the
GCT_SOLUTION table.

LASTMOD DATE Date this row was last modified.

MODUSER VARCHAR2(30) User account that last modified this row.

GCT_THESAURUS VARCHAR2(20) Coding thesaurus protocol to which the
new synonym will be added.

GCT_ALGORITHM VARCHAR2(20) Algorithm to which the synonym solution
applies.

GCT_LANGUAGE VARCHAR2(20) Thesaurus language to which the synonym
solution applies.

GCT_SYNONYM VARCHAR2(256) Text for the new synonym.

GCT_SYNONYM-
_CODE

VARCHAR2(60) Code for the synonym; selected from an
existing terms or synonyms thesaurus
view.

GCT_SYNONYM-
_VIEW

VARCHAR2(20) View in which the new synonym will be
created.

GCT_SYNONYM-
_COMMENT

VARCHAR2(256) Text describing the reasons for creating
this synonym.
GCT_SOLUTION 111

D
at

ab
as

e
S

tr
u

ct
u

re
s

Index

GCT_SOURCE-
_SYNONYM

VARCHAR2(256) Term or synonym that currently uses the
selected code.

GCT_SOURCE-
_VIEW

VARCHAR2(20) Name of the thesaurus view that contains
the existing term or synonym.

GCT_SOURCE-
_THESAURUS

VARCHAR2(20) Name of the coding thesaurus protocol that
contains the existing term or synonym.

DB_ID NUMBER Database identifier of the owner of the
protocol.

GCT_CC_DB_ID NUMBER Database identifier of the coding center.

Index name: Unique?: Columns indexed:

GCT_SLT_PK Yes GCT_SOLUTION_ID

Column name: Data type: Description:
112 Chapter 6: CTCLASSIFY Account

D
atab

ase S
tru

ctu
res
GCT_SOLUTION 113

D
at

ab
as

e
S

tr
u

ct
u

re
s

114 Chapter 6: CTCLASSIFY Account

D
atab

ase S
tru

ctu
res
AUDIT_START_HISTORY 117

BLOCK_REF 118

BLOCK_REF_VALUE 119

BLOCK_REPEATS 120

CC_TARGET 122

CC_TARGET_ITEM 124

DERIVATION_AUDIT 126

ENCODING_TARGET 128

ENCODING_TARGET_AUDIT 130

ITEM 132

ITEM_NONDD 135

OBJECT_AUDIT 139

OBJECT_CONNECTION 141

OBJINDX 144

PAGELAYOUT 145

PAGELAYOUT_EVENT 147

PAGE_LIST 148

PAGE_LIST_MEMBER 149

PAGE_REF 150

PAGE_REF_VALUE 152

PAGE_REPEATS 153

PANE 154

PANE_ITEM 156

7 CTSDD Account
 115

D
at

ab
as

e
S

tr
u

ct
u

re
s

PANE_ITEM_SEQ 159

PANEL 160

PANEL_MASTER 162

PANEL_MASTER_NONDD 163

PANEL_NONDD 164

PANE_SEQ_VALUE 166

PANE_USAGE 167

QUERY 169

RULE 170

RULE_AUDIT 172

STUDYBOOK 174

SUBJECT_LIST 176

SUBJECT_LIST_MEMBER 177

THESAURUS_ALGORITHM 178

THESAURUS_ALGORITHM_STEP 179

THESAURUS_LANGUAGE 181

THESAURUS_VIEW 182
116 Chapter 7: CTSDD Account

D
atab

ase S
tru

ctu
res
AUDIT_START_HISTORY

The CTSDD.AUDIT_START_HISTORY table stores information about
modified audit start points.

Rows

One per modification of an audit start point.

Columns

Index

Column name: Data type: Description:

PROTOCOL VARCHAR2(20) Name of the protocol containing the panel to
which the audit start point applies.

PANEL VARCHAR2(20) Name of the panel to which the audit start
point applies.

MODDATE DATE Date and time at which the audit start point
was modified.

AUDIT_POINT VARCHAR2(20) Setting of the audit start point:

• ENTRY

• VERIFICATION

• VALIDATION

• VALIDITY

• MERGE

DB_ID NUMBER(5) Obsolete.

Index name: Unique?: Columns indexed:

AUDIT_START_HIST_PK Yes PROTOCOL, PANEL, MODDATE
AUDIT_START_HISTORY 117

D
at

ab
as

e
S

tr
u

ct
u

re
s

BLOCK_REF

The CTSDD.BLOCK_REF table stores information about blocks in a study
book.

Rows

One per block in a study book.

Columns

Column name: Data type: Description:

PROTOCOL VARCHAR2(20) Name of the protocol containing the study
book that contains the block.

STUDYBOOK-
_NAME

VARCHAR2(20) Name of the study book containing the
block.

BLOCK_KEY VARCHAR2(40) Block key value.

Note: For a study book for a Type 0 or 5
panel, this column stores the name of a panel.

BLOCK_TITLE VARCHAR2(20) Title of the block.

BLOCK_ORDER NUMBER(5) Order of the block in the study book.

MODDATE DATE Date and time at which the block was created
or last modified.

MODUSER VARCHAR2(20) User account that created or last modified the
block.

COMPONENT_ID NUMBER(10) Obsolete.

DB_ID NUMBER(5) Obsolete.

HAS_REPEATS NUMBER(1) 0 — The block does not allow repeats.

1 — The block allows repeats.
118 Chapter 7: CTSDD Account

D
atab

ase S
tru

ctu
res
Index

BLOCK_REF_VALUE

The CTSDD.BLOCK_REF_VALUE table stores information about other visit-
related context items for which default values have been defined.

Rows

One per visit-related context item for which a default value has been defined.

Columns

REPEATS_LIMIT NUMBER(5) Maximum number of block repeats allowed;
if -1, there is no limit.

LOCK_STATUS NUMBER(1) 0 — The block is modifiable.

1 — The block is not modifiable, but it can
be reset to modifiable.

2 — The block is a nonmodifiable copy that
cannot be made modifiable except by
breaking the connection.

LOCK_COPY NUMBER(1) Obsolete

Index name: Unique?: Columns indexed:

BLOCK_REF_PK Yes PROTOCOL, STUDYBOOK_NAME,
BLOCK_KEY

Column name: Data type: Description:

PROTOCOL VARCHAR2(20) Name of the protocol.

Column name: Data type: Description:
BLOCK_REF_VALUE 119

D
at

ab
as

e
S

tr
u

ct
u

re
s

Index

BLOCK_REPEATS

The CTSDD.BLOCK_REPEATS table stores information about repeating
blocks used in study books.

Rows

One per repeating block.

STUDYBOOK-
_NAME

VARCHAR2(20) Name of the study book

BLOCK_KEY VARCHAR2(40) Block key value.

ITEM_NAME VARCHAR2(20) Name of the visit-related context item
associated with the block identified by the
block key value.

ITEM_VALUE VARCHAR2(240) Value to be used for the item specified by
ITEM_NAME.

DB_ID NUMBER(5) Obsolete.

Index name: Unique?: Columns indexed:

BLOCK_REF_VALUE_PK Yes PROTOCOL, STUDYBOOK_NAME,
BLOCK_KEY, ITEM_NAME

Column name: Data type: Description:
120 Chapter 7: CTSDD Account

D
atab

ase S
tru

ctu
res
Columns

Index

Column name: Data type: Description:

PROTOCOL VARCHAR2(20) Name of the protocol.

BLOCK_KEY VARCHAR2(40) Block key value.

BLOCK_REPEAT-
_KEY

VARCHAR2(40) Block repeat key value.

BLOCK_REPEAT-
_ORDER

NUMBER(5) Order of the repeating block within the series
of repeating blocks. For example, if the block
repeats three times, this value could be 1, 2,
or 3.

IS_STATIC NUMBER(1) 0 — The block repeat key was created during
data entry.

1 — The block repeat key was predefined by
the study designer.

MODDATE DATE Date and time at which the repeating block
was created or last modified.

MODUSER VARCHAR2(20) User account that created or last modified the
repeating block.

DB_ID NUMBER(5) Obsolete.

Index name: Unique?: Columns indexed:

BLOCK_RPT_PK Yes PROTOCOL, BLOCK_KEY, BLOCK-
_REPEAT_KEY
BLOCK_REPEATS 121

D
at

ab
as

e
S

tr
u

ct
u

re
s

CC_TARGET

The CTSDD.CC_TARGET table stores information about coding Targets.

Rows

One per encoding target.

Columns

Column name: Data type: Description:

PROTOCOL VARCHAR2(20)
(FK)

Name of the protocol containing the panel
to which the target is attached.

PANEL VARCHAR2(20)
(FK)

Name of the panel to which the target is
attached.

CODE_ITEM VARCHAR2(20) Name of the target item that stores codes.

WORKFLOW_ITEM VARCHAR2(20) Name of the item that stores the workflow
information.

Values will be either ‘SENT’ or ‘CODED’

DATE_ITEM VARCHAR2(20) Name of the item used to store the
verbatim text to be coded.

VERBATIM_ITEM VARCHAR2(20) Name of the item used to store the Date
Coded

VERBATIM_TYPE VARCHAR2(20) One of the verbatim types defined by the
dictionary used by this target.

MODDATE VARCHAR2(20) Date of modification.

MODUSER VARCHAR2(20) User who made the modification.
122 Chapter 7: CTSDD Account

D
atab

ase S
tru

ctu
res
Index

STATUS NUMBER(1) Status of the coding target:

Null — Newly created during panel
revision.

0 — Not newly created during panel
revision.

LOCK_STATUS NUMBER(1) 0 — The coding target is modifiable.

1 — The coding target is not modifiable,
but it can be reset to modifiable.

2 — The coding target is a non-modifiable
copy that cannot be made modifiable
except by breaking the connection.

Index name: Unique?: Columns indexed:

CC_TARGET_PK Yes PROTOCOL, PANEL, CODE_ITEM

Column name: Data type: Description:
CC_TARGET 123

D
at

ab
as

e
S

tr
u

ct
u

re
s

CC_TARGET_ITEM

The CTSDD.CC_TARGET_ITEM table stores information about Central
Coding Target Items and Labels.

Rows

One per encoding Target Item.

Columns

Note: In this release PANEL_NAME will always be the same as PANEL.

Column name: Data type: Description:

PROTOCOL VARCHAR2(20)
(FK)

Name of the protocol containing the panel
to which the target item is attached.

PANEL VARCHAR2(20)
(FK)

Name of the panel to which the target item
is attached.

CODE_ITEM VARCHAR2(20) Name of the column that stores codes.

LABEL_NAME VARCHAR2(20) L Dictionary Label for the item

LABEL_TYPE NUMBER(1) Label Type for this item

1:Target; 2:Associated; 3:Verbatim Type

PANEL_NAME VARCHAR2(20) Name of the panel containing the item.

ITEM_NAME VARCHAR2(20) Name of the item, which will store/pass
information with this label.
124 Chapter 7: CTSDD Account

D
atab

ase S
tru

ctu
res
Index

DERIVATION

The CTSDD.DERIVATION table stores information about derivations.

Rows

One per derivation.

Columns

Index name: Unique?: Columns indexed:

CC_TARGET_ITEM_PK Yes PROTOCOL, PANEL, CODE_ITEM,
LABEL_NAME

Column name: Data type: Description:

PROTOCOL VARCHAR2(20) Name of the protocol containing the panel to
which the derivation is attached.

PANEL VARCHAR2(20) Name of the panel to which the derivation is
attached.

DERIV_NAME VARCHAR2(20) Name of the derivation.

IS_COMPILED NUMBER(1) 0 — The derivation has not been compiled
successfully.

1 — The derivation has been compiled
successfully.

MODDATE DATE Date and time at which the derivation was
created or last modified.

MODUSER VARCHAR2(20) User account that created or last modified the
derivation.
DERIVATION 125

D
at

ab
as

e
S

tr
u

ct
u

re
s

Index

DERIVATION_AUDIT

The CTSDD.DERIVATION_AUDIT table stores information about modified or
deleted derivations while the panel is marked for revision.

Rows

One per modified or deleted derivation while the panel is marked for revision.

OBJECT_ID NUMBER(15) Identifier of the text object that contains the
text of the derivation in CTSDD-.OBJINDX.

DB_ID NUMBER(5) Obsolete

DESCRIPTION VARCHAR2(240) Description of the derivation.

LOCK_STATUS NUMBER(1) 0 — The derivation is modifiable.

1 — The derivation is not modifiable, but it
can be reset to modifiable.

2 — The derivation is a nonmodifiable copy
that cannot be made modifiable except by
breaking the connection.

LOCK_COPY NUMBER(1) 0 — The derivation must be copied when the
panel is copied.

1 — The derivation can optionally be copied
when the panel is copied.

Index name: Unique?: Columns indexed:

DERIVATION_CNST Yes PROTOCOL, PANEL, DERIV_NAME

Column name: Data type: Description:
126 Chapter 7: CTSDD Account

D
atab

ase S
tru

ctu
res
Columns

Index

Column name: Data type: Description:

PROTOCOL VARCHAR2(20) Same value as that of the derivation before it
was modified or deleted.

PANEL VARCHAR2(20) Same value as that of the derivation before it
was modified or deleted.

DERIV_NAME VARCHAR2(20) Same value as that of the derivation before it
was modified or deleted.

IS_COMPILED NUMBER(1) Same value as that of the derivation before it
was modified or deleted.

MODDATE DATE Date and time at which the derivation was
modified or deleted.

MODUSER VARCHAR2(20) Date and time at which the derivation was
modified or deleted.

OBJECT_ID NUMBER(15) Same value as that of the derivation before it
was modified or deleted.

DB_ID NUMBER(5) Obsolete.

DESCRIPTION VARCHAR2(240) Same value as that of the derivation before it
was modified or deleted.

LOCK_STATUS NUMBER(1) Same value as that of the derivation before it
was modified or deleted.

LOCK_COPY NUMBER(1) Same value as that of the derivation before it
was modified or deleted.

Index name: Unique?: Columns indexed:

DERIVATION_AUDIT-_PK Yes PROTOCOL, PANEL, DERIV_NAME
DERIVATION_AUDIT 127

D
at

ab
as

e
S

tr
u

ct
u

re
s

ENCODING_TARGET

The CTSDD.ENCODING_TARGET table stores information about coding
targets.

Rows

One per coding target.

Columns

Column name: Data type: Description:

PROTOCOL VARCHAR2(20) Name of the protocol containing the clinical
data panel that contains the item to be coded.

PANEL VARCHAR2(20) Name of the clinical data panel containing
the item to be coded.

CODE1_ITEM VARCHAR2(20) Name of the item (in the clinical data panel)
that stores the code (or the first part of a
multipart code).

CODE2_ITEM VARCHAR2(20) Name of the item (in the clinical data panel)
that stores the second part of a multipart
code.

CODE3_ITEM VARCHAR2(20) Name of the item (in the clinical data panel)
that stores the third part of a multipart code.

ENCODED_ITEM VARCHAR2(20) Name of the item (in the clinical data panel)
to be coded.

WORKFLOW-
_ITEM

VARCHAR2(20) Name of the item (in the clinical data panel)
that stores the indication of the type of
coding.

USER_ITEM VARCHAR2(20) Name of the item (in the clinical data panel)
that stores the name of the user account that
performs the coding.
128 Chapter 7: CTSDD Account

D
atab

ase S
tru

ctu
res
DATE_ITEM VARCHAR2(20) Name of the item (in the clinical data panel)
that stores the date and time that coding is
performed.

AUTO-
_MATCHES_ITEM

VARCHAR2(20) Name of the item (in the clinical data panel)
that stores the number of matches found by
automatic coding.

AUTO_STEP-
_ITEM

VARCHAR2(20) Name of the item (in the clinical data panel)
that stores the step of the algorithm that
produces a match during automatic coding.

LANGUAGE-
_ITEM

VARCHAR2(20) Name of the item (in the clinical data panel)
that stores the language used for coding.

ALGORITHM VARCHAR2(20) Name of the item (in the clinical data panel)
that stores the name of the algorithm used for
automatic coding.

STATUS NUMBER(2) Status of the coding target:

Null — Newly created during panel revision.

0 — Not newly created during panel
revision.

MODDATE DATE Date and time at which the coding target was
created or last modified.

MODUSER VARCHAR2(20) User account that created or last modified the
coding target.

DB_ID NUMBER(5) Obsolete.

NORMAL_TEXT-
_ITEM

VARCHAR2(20) Name of the item (in the clinical data panel)
that stores the normalized text.

LOCK_STATUS NUMBER(1) 0 — The coding target is modifiable.

1 — The coding target is not modifiable, but
it can be reset to modifiable.

2 — The coding target is a non-modifiable
copy that cannot be made modifiable except
by breaking the connection.

Column name: Data type: Description:
ENCODING_TARGET 129

D
at

ab
as

e
S

tr
u

ct
u

re
s

Index

ENCODING_TARGET_AUDIT

 The CTSDD.ENCODING_TARGET_AUDIT table stores information about
modified or deleted coding targets while the panel is marked for revision.

Rows

One per modified or deleted coding target while the panel is marked for revision.

Columns

LOCK_COPY NUMBER(1) Obsolete.

Index name: Unique?: Columns indexed:

ENCODING_TARGET-_PK Yes PROTOCOL, PANEL, CODE1_ITEM

Column name: Data type: Description:

PROTOCOL VARCHAR2(20) Same value as that of the coding target
before it was modified or deleted.

PANEL VARCHAR2(20) Same value as that of the coding target
before it was modified or deleted.

CODE1_ITEM VARCHAR2(20) Same value as that of the coding target
before it was modified or deleted.

CODE2_ITEM VARCHAR2(20) Same value as that of the coding target
before it was modified or deleted.

Column name: Data type: Description:
130 Chapter 7: CTSDD Account

D
atab

ase S
tru

ctu
res
CODE3_ITEM VARCHAR2(20) Same value as that of the coding target
before it was modified or deleted.

ENCODED_ITEM VARCHAR2(20) Same value as that of the coding target
before it was modified or deleted.

WORKFLOW-
_ITEM

VARCHAR2(20) Same value as that of the coding target
before it was modified or deleted.

USER_ITEM VARCHAR2(20) Same value as that of the coding target
before it was modified or deleted.

DATE_ITEM VARCHAR2(20) Same value as that of the coding target
before it was modified or deleted.

AUTO-
_MATCHES_ITEM

VARCHAR2(20) Same value as that of the coding target
before it was modified or deleted.

AUTO_STEP-
_ITEM

VARCHAR2(20) Same value as that of the coding target
before it was modified or deleted.

LANGUAGE-
_ITEM

VARCHAR2(20) Same value as that of the coding target
before it was modified or deleted.

ALGORITHM VARCHAR2(20) Same value as that of the coding target
before it was modified or deleted.

STATUS NUMBER(2) Same value as that of the coding target
before it was modified or deleted.

MODDATE DATE Same value as that of the coding target
before it was modified or deleted.

MODUSER VARCHAR2(20) Same value as that of the coding target
before it was modified or deleted.

DB_ID NUMBER(5) Obsolete.

NORMAL_TEXT-
_ITEM

VARCHAR2(20) Same value as that of the coding target
before it was modified or deleted.

LOCK_STATUS NUMBER(1) Same value as that of the coding target
before it was modified or deleted.

Column name: Data type: Description:
ENCODING_TARGET_AUDIT 131

D
at

ab
as

e
S

tr
u

ct
u

re
s

Index

ITEM

The CTSDD.ITEM table stores information about attributes of items in installed
panels.

Rows

One per item for an installed panel.

Columns

LOCK_COPY NUMBER(1) Same value as that of the coding target
before it was modified or deleted.

Index name: Unique?: Columns indexed:

ENCODING_TAUDIT-_PK Yes PROTOCOL, PANEL, CODE1_ITEM

Column name: Data type: Description:

PROTOCOL VARCHAR2(20) Name of the protocol containing the panel
that contains the item.

PANEL VARCHAR2(20) Name of the panel containing the item.

ITEM_NAME VARCHAR2(20) Name of the item.

SASNAME VARCHAR2(8) SAS name of the item.

DESCRIP VARCHAR2(240) Description of the item.

UNITS VARCHAR2(40) Unit of measurement of the item.

Column name: Data type: Description:
132 Chapter 7: CTSDD Account

D
atab

ase S
tru

ctu
res
DTYPE VARCHAR2(10) Data type of the item:

• TEXT

• FIXED

• FLOAT

• DATE

• DATETIME

CODENAME VARCHAR2(20) Name of the codelist attached to the item.

LOOKUPNAME VARCHAR2(20) Name of the checklist attached to the item.

DERIVED VARCHAR2(5) 0 — The item is not derived.

1 — The item is derived.

MANDATORY VARCHAR2(5) 0 — The item is not required.

1 — The item is required.

RANGELB VARCHAR2(40) Minimum value for the item.

RANGEUB VARCHAR2(40) Maximum value for the item.

DBFMT VARCHAR2(20) Database format of the item.

IORDER VARCHAR2(10) Number of the column containing the item in
the database tables for the panel. This value
indicates the logical order of items.

THESAURUS VARCHAR2(20) Name of the coding thesaurus protocol used
for coding the item.

CONTEXT_TYPE NUMBER(2) 0 — Not a context item.

1 — Subject-related context item.

2 — Block-related context item.

3 — Page-related context item.

4 — Other context item.

KEY_ORDER NUMBER(10) If the item is part of a user-defined panel key,
the order within the key.

Column name: Data type: Description:
ITEM 133

D
at

ab
as

e
S

tr
u

ct
u

re
s
 MODDATE DATE Date and time at which the item was created

or last modified.

MODUSER VARCHAR2(20) User account that created or last modified the
item.

LOCK_STATUS NUMBER(1) 0 — The item is modifiable.

1 — The item is not modifiable, but it can be
reset to modifiable.

2 — The item is a nonmodifiable copy that
cannot be made modifiable except by
breaking the connection.

LOCK_COPY NUMBER(1) 0 — The item must be copied when the panel
is copied.

1 — The item can optionally be copied when
the panel is copied.

STATUS NUMBER(1) Status of the item:

 0 — Valid

-1 — Invalid

SORT_ORDER NUMBER(10) Item used for sorting within observations,
and for order within the sort.

SORT_DESC NUMBER(1) 0 — Sort is descending.

1 — Sort is ascending.

This value is null if the item is not used for
sorting.

SORT_IS_GRP NUMBER(1) 0 — Item is used only for sorting, not for
grouping.

1 — Item is used for sorting and for
grouping of observations.

This value is null if the item is not used for
sorting or is not in a Type 0 panel.

Column name: Data type: Description:
134 Chapter 7: CTSDD Account

D
atab

ase S
tru

ctu
res
Index

ITEM_NONDD

The CTSDD.ITEM_NONDD table stores information about items in panels that
are not yet installed, are deinstalled, or are marked for revision.

Rows

One per item in a panel that is not yet installed, is deinstalled, or is marked for
revision.

Columns

Index name: Unique?: Columns indexed:

ITEM_PK Yes PROTOCOL, PANEL, ITEM_NAME

Column name: Data type: Description:

PROTOCOL VARCHAR2(20) Protocol containing the panel that contains
the item.

PANEL VARCHAR2(20) Panel containing the item.

UNIQUE_NAME VARCHAR2(20) Name of the item.

ITEMTYPE VARCHAR2(10) DE — Deinstalled.

UN — Not installed.

PRE — Marked for revision, but the item has
not been modified.

REV — Marked for revision and the item has
been modified.

IDDNUM NUMBER(15) Obsolete.

SASNAME VARCHAR2(8) SAS name of the item.
ITEM_NONDD 135

D
at

ab
as

e
S

tr
u

ct
u

re
s
 DESCRIP VARCHAR2(240) Description of the item.

UNITS VARCHAR2(40) Unit of measurement associated with the
item.

DTYPE VARCHAR2(10) Data type of the item:

• TEXT

• FIXED

• FLOAT

• DATE

• DATETIME

CODED VARCHAR2(5) Obsolete.

CODENAME VARCHAR2(20) Obsolete.

THESAURUS VARCHAR2(20) Name of the coding thesaurus protocol used
for coding the item.

LOOKUPNAME VARCHAR2(20) Name of the checklist attached to the item.

DERIVED VARCHAR2(5) 0 — The item is not derived.

1 — The item is derived.

MANDATORY VARCHAR2(5) 0 — The item is not required.

1 — The item is required.

RANGELB VARCHAR2(40) Minimum value for the item.

RANGEUB VARCHAR2(40) Maximum value for the item.

DBFMT VARCHAR2(20) Database format of the item.

OUTFMT VARCHAR2(20) Obsolete.

IORDER NUMBER(10) Number of the column containing the item in
the update, data, and audit tables for the
panel. This value indicates the logical order
of items.

PCTNULL NUMBER(10) Obsolete.

Column name: Data type: Description:
136 Chapter 7: CTSDD Account

D
atab

ase S
tru

ctu
res
REVORDER NUMBER(10) Revised value of IORDER for the item; this
value is present only until revisions to the
panel are implemented.

CONTEXT_TYPE NUMBER(2) 0 — Not a context item.

1 — Patient-related context item.

2 — Block-related context item.

3 — Page-related context item.

4 — Other context item.

KEY_ORDER NUMBER(10) If the item is part of a user-defined panel key,
the order within the key.

MODDATE DATE Date and time at which the item was
created or last modified.

MODUSER VARCHAR2(20) User account that created or last modified the
item.

DB_ID NUMBER(5) Obsolete.

COMPONENT-_ID NUMBER(10) Obsolete.

LOCK_STATUS NUMBER(1) 0 — The item is modifiable.

1 — The item is not modifiable, but it can be
reset to modifiable.

2 — The item is a nonmodifiable copy that
cannot be made modifiable except by
breaking the connection.

LOCK_COPY NUMBER(1) 0 — The item must be copied when the panel
is copied.

1 — The item can optionally be copied when
the panel is copied.

STATUS NUMBER(1) Status of the item:

 0 — Valid

-1 — Invalid

Column name: Data type: Description:
ITEM_NONDD 137

D
at

ab
as

e
S

tr
u

ct
u

re
s

Indexes

OBJECT_AUDIT

The CTSDD.OBJECT_AUDIT table stores information about modified
connected objects.

Rows

One for each modification of a connected source object that has not been used to
refresh the destination object.

SORT_ORDER NUMBER(10) Item used for sorting within observations,
and for order within the sort.

SORT_DESC NUMBER(1) 0 — Sort is descending.

1 — Sort is ascending.

This value is null if the item is not used for
sorting.

SORT_IS_GRP NUMBER(1) 0 — Item is not used for sorting or is not in a
Type 0 panel.

1 — Items is used for grouping of
observations.

This value is null if the item is not used for
sorting or is not in a Type 0 panel.

Index name: Unique?: Columns indexed:

ITEM_NONDD_IDX No PROTOCOL, UNIQUE_NAME

ITEM_NONDD_PK Yes PROTOCOL, PANEL, UNIQUE_NAME

Column name: Data type: Description:
138 Chapter 7: CTSDD Account

D
atab

ase S
tru

ctu
res
Columns

Column name: Data type: Description:

AUDIT_ID NUMBER(15) Unique internal identifier for this record.

PROTOCOL VARCHAR2(20) Name of the protocol in which the changed
object exists.

OBJECT_TYPE NUMBER(5) Type of object that was changed:

1 through 6 — Not applicable.

7 — Study book

8 — Block

9 — Study page

10 — Page layout

11 — Pane (that is, page section)

12 — Panel

13 — Item

14 — Derivation

15 — Rule

16 — Coding target

17 — Thesaurus language

18 — Thesaurus view

19 — Thesaurus algorithm

OBJECT_NAME VARCHAR2(20) Name of the connected object that changed.

OBJECT_CON-
TAINER

VARCHAR2(20) Name of the container object, if changed
object was a contained object.

OBJECT_SUB-
CONTAINER

VARCHAR2(20) Name of a contained object, if the contained
object is the object that was changed. For
page objects, the name of the containing
block.

TRANSACTION-
_TYPE

VARCHAR2(6) Type of change (UPDATE, DELETE,
INSERT).
OBJECT_AUDIT 139

D
at

ab
as

e
S

tr
u

ct
u

re
s

Index

OBJECT_CONNECTION

The CTSDD.OBJECT_CONNECTION table stores information about the
connections between source objects and destination objects.

PENDING NUMBER(1) 0 — Modification is not pending.

1 — Modification was made to an object
contained in a panel that is uninstalled or
marked for revision.

MODUSER VARCHAR2(20) User account that modified the object.

MODDATE DATE Date of the modification of the object.

REASON_FOR-
_CHANGE

VARCHAR2(255) User-supplied reason for the change.

DESCRIPTION-
_OF_CHANGE

VARCHAR2(255) User-supplied description of the change.

COMMENTS VARCHAR2(255) User-supplied comments.

SUPPORTING-
_DOCUMENT

VARCHAR2(255) User-supplied description of supporting
documents.

RELEASE_NUM NUMBER(15) Release number of Multisite. If the protocol
is in distribution, the distribution release
number is in effect at the time of the change.

Index name: Unique?: Columns indexed:

OBJECT_AUDIT_PK Yes AUDIT_ID

Column name: Data type: Description:
140 Chapter 7: CTSDD Account

D
atab

ase S
tru

ctu
res
Rows

One for each connected source and destination object.

Columns

Column name: Data type: Description:

CONNECTION-_ID NUMBER(15) Unique internal identifier for the
connection.

SRC_PROTOCOL VARCHAR2(20) Name of the protocol from which the object
is being copied with a connection.

SRC_OBJECT-
_NAME

VARCHAR2(20) Name of the source object.

SRC_CON-TAINER VARCHAR2(20) Name of the source object’s container, if it is
a contained object.

SRC_SUBCON-
TAINER

VARCHAR2(20) For page objects, the name of the containing
block.

DEST_PROTO-
COL

VARCHAR2(20) Name of the protocol to which the object is
being copied.

DEST_OBJECT-
_NAME

VARCHAR2(20) Name of the destination object that is being
created by a copy with a
connection.

DEST_CON-
TAINER

VARCHAR2(20) Name of the destination object’s container, if
it is a contained object.

DEST_SUBCON-
TAINER

VARCHAR2(20) For page objects, the name of the destination
block.
OBJECT_CONNECTION 141

D
at

ab
as

e
S

tr
u

ct
u

re
s
 OBJECT_TYPE NUMBER(5) Type of object that was changed:

1 through 6 — Not applicable.

7 — Study book

8 — Block

9 — Study page

10 — Page layout

11 — Pane (that is, page section)

12 — Panel

13 — Item

14 — Derivation

15 — Rule

16 — Coding target

17 — Thesaurus language

18 — Thesaurus view

19 — Thesaurus algorithm

COPY_DATE DATE Date that the connected object was
copied.

DEST_MODDATE DATE Obsolete.

PENDING_DEST-
_MODDATE

DATE Date that a connected object was refreshed in
the destination instance in a panel that was
uninstalled or marked for revision.

If Null, there are no changes pending.

SRC_MODIFIED NUMBER(1) 0 — The source object has not been
modified.

1 — The source object has been
modified.

SRC_MODIFIED-
_PENDING

NUMBER(1) 0 — Modification is not pending.

1 — Modification was made to an object
contained in a panel that is uninstalled or
marked for revision.

Column name: Data type: Description:
142 Chapter 7: CTSDD Account

D
atab

ase S
tru

ctu
res
Indexes

OBJINDX

The CTSDD.OBJINDX table stores information about Clintrial software text
objects. Each object is divided into 2 KB pieces.

Rows

One per 2 KB piece of a Clintrial software text object.

Columns

REFRESHING NUMBER(1) 0 — The destination object is not being
refreshed.

1 — The destination object is being
refreshed.

Index name: Unique?: Columns indexed:

OBJECT_CONNECTION Yes CONNECTION_ID

OBJECT_CONNEC-
TION_IDX

No SRC_PROTOCOL, SRC_OBJECT-_NAME

Column name: Data type: Description:

OBJECT_ID NUMBER(15) Unique identifier of the object.

OBJECT_SEQ NUMBER(10) Sequence number of this piece of the text
object.

Column name: Data type: Description:
OBJINDX 143

D
at

ab
as

e
S

tr
u

ct
u

re
s

Index

PAGELAYOUT

The CTSDD.PAGELAYOUT table stores information about page
templates.

Rows

One per page template.

OBJECT_TYPE VARCHAR2(10) Type of Clintrial software object:

• CTRL_FILE

• DERIVATION

• PANE

• QUERY

• QUERY_EXT

• RULE

• VIEW_PANEL

• VIEW_PROT

MODDATE DATE Date and time at which the object was last
modified.

OBJECT_TEXT VARCHAR2(2000) ASCII text.

DB_ID NUMBER(5) Obsolete.

Index name: Unique?: Columns indexed:

OBJINDX_PK Yes OBJECT, ONAME, OBJECT_ID,
OBJECT_SEQ

Column name: Data type: Description:
144 Chapter 7: CTSDD Account

D
atab

ase S
tru

ctu
res
Column

Index

Column name: Data type: Description:

PROTOCOL VARCHAR2(20) Name of the protocol containing the page
template.

LAYOUT_NAME VARCHAR2(20) Name of the page template.

MODDATE DATE Date and time at which the page template
was created or last modified.

MODUSER VARCHAR2(20) User account that created or last modified the
page template.

DB_ID NUMBER(5) Obsolete.

DESCRIPTION VARCHAR2(240) Description of the page template.

LOCK_STATUS NUMBER(1) 0 — The page template is modifiable.

1 — The page template is not modifiable, but
it can be reset to modifiable.

2 — The page template is a non-modifiable
copy that cannot be made modifiable except
by breaking the connection.

LOCK_COPY NUMBER(1) Obsolete

STATUS NUMBER(1) Status of the page template:

0 — Valid

1 — Invalid

Index name: Unique?: Columns indexed:

PAGELAYOUT_PK Yes PROTOCOL, LAYOUT_NAME
PAGELAYOUT 145

D
at

ab
as

e
S

tr
u

ct
u

re
s

PAGELAYOUT_EVENT

The CTSDD.PAGELAYOUT_EVENT table stores information about data-entry
processing procedures attached to page templates or page sections.

Note: For more information about data-entry processing procedures attached to
items, see the CTSDD.PANE_ITEM table.

Rows

One per data-entry processing procedure attached to a page template or page
section.

Column

Column name: Data type: Description:

PROTOCOL VARCHAR2(20) Name of the protocol.

LAYOUT_NAME VARCHAR2(20) Name of the page template.

PANE_USAGE-
_SEQ

NUMBER(5) If the procedure is attached to a page section,
number of the page section.

EVENT_TYPE NUMBER(2) Type of event:

1 — Page Opened

2 — Page Saved

3 — Page Deleted

4 — Initializing Page Section

5 — Saving Page Section

EVENT_PROC VARCHAR2(60) Name of the data-entry processing
procedure.
146 Chapter 7: CTSDD Account

D
atab

ase S
tru

ctu
res
Index

PAGE_LIST

The CTSSDD.PAGE_LIST table stores information about page lists.

Rows

One per page list.

Columns

Index name: Unique?: Columns indexed:

PAGELAYOUT_EVENT-
_PK

Yes PROTOCOL, LAYOUT_NAME,
PANE_USAGE_SEQ, EVENT_TYPE

Column name: Data type: Description:

LIST_ID NUMBER(10) Unique identifier of the page list.

PROTOCOL VARCHAR2(20) Name of the protocol containing the page
list.

LIST_NAME VARCHAR2(20) Name of the page list.

LIST_TYPE NUMBER(10) 0 — All pages are included in the page list.

1 — Specified pages are included in the page
list.

2 — Dynamic page list.

LIST_CRITERIA VARCHAR2(2000) SQL text of the flag restriction or note
restriction associated with the page list.
PAGE_LIST 147

D
at

ab
as

e
S

tr
u

ct
u

re
s

Indexes

PAGE_LIST_MEMBER

The CTSDD.PAGE_LIST_MEMBER table stores information about pages that
are included in page lists.

Rows

One per page that is included in a page list.

Columns

Index name: Unique?: Columns indexed:

PAGE_LIST_IDX Yes PROTOCOL, LIST_NAME

PAGE_LIST_PK Yes LIST_ID

Column name: Data type: Description:

PROTOCOL VARCHAR2(20) Name of the protocol containing the page
list.

BLOCK_KEY VARCHAR2(40) Block key value associated with the page.

PAGE_KEY VARCHAR2(40) Page key value associated with the page.

LIST_ID NUMBER(10) Unique identifier of the page list.

LIST_ORDER NUMBER10) Order of the page in the page list.

BLOCK_REPEAT-
_KEY

VARCHAR2(40) Block repeat key value associated with the
page.

PAGE_REPEAT-
_KEY

VARCHAR2(40) Page repeat key value associated with the
page.
148 Chapter 7: CTSDD Account

D
atab

ase S
tru

ctu
res
Index

PAGE_REF

The CTSDD.PAGE_REF table stores information about pages in a study book.

Rows

One per page in a study book.

Columns

Index name: Unique?: Columns indexed:

PAGE_LIST_MEMBER-
_PK

Yes PROTOCOL, BLOCK_KEY, BLOCK-
_REPEAT_KEY, PAGE_KEY, PAGE-
_REPEAT_KEY, LIST_ID

Column name: Data type: Description:

PROTOCOL VARCHAR2(20) Name of the protocol containing the study
book that contains the page.

STUDYBOOK-
_NAME

VARCHAR2(20) Name of the study book containing the page.

BLOCK_KEY VARCHAR2(40) Block key value associated with the page.

PAGE_KEY VARCHAR2(40) Page key value associated with the page.

LAYOUT_NAME VARCHAR2(20) Name of the page template associated with
the page.

PAGE_ORDER NUMBER(5) Order of the page in the block.

PAGE_TITLE VARCHAR2(30) Title of the page.
PAGE_REF 149

D
at

ab
as

e
S

tr
u

ct
u

re
s

Index

REPEATS_LIMIT NUMBER(10) Maximum number of page repeats allowed;
if -1, there is no limit.

PAGE_NUM VARCHAR2(20) Page number of the page.

HELP_CONTEXT-
_POINT

NUMBER(5) Context point number for user-defined Help
on this page.

MODDATE DATE Date and time at which the page was
created or last modified.

MODUSER VARCHAR2(20) User account that created or last modified the
page.

COMPONENT_ID NUMBER(10) Obsolete.

DB_ID NUMBER(5) Obsolete.

HAS_REPEATS NUMBER(1) 0 — The study page cannot have repeats.

1 — The study page can have repeat pages.

LOCK_STATUS NUMBER(1) 0 — The study page is modifiable.

1 — The study page is not modifiable, but it
can be reset to modifiable.

2 — The study page is a nonmodifiable copy
that cannot be made modifiable except by
breaking the connection.

LOCK_COPY NUMBER(1) Obsolete.

Index name: Unique?: Columns indexed:

PAGE_REF_PK Yes PROTOCOL, STUDYBOOK_NAME,
BLOCK_KEY, PAGE_KEY

Column name: Data type: Description:
150 Chapter 7: CTSDD Account

D
atab

ase S
tru

ctu
res
PAGE_REF_VALUE

The CTSDD.PAGE_REF_VALUE table stores information about other page-
related context items for which default values have been defined.

Rows

One per page-related context item for which a default value has been defined.

Columns

Index

Column name: Data type: Description:

PROTOCOL VARCHAR2(20) Name of the protocol containing the study
book that contains the page.

STUDYBOOK-
_NAME

VARCHAR2(20) Name of the study book containing the page.

BLOCK_KEY VARCHAR2(40) Block key value associated with the page.

PAGE_KEY VARCHAR2(40) Page key value associated with the page.

ITEM_NAME VARCHAR2(20) Name of the page-related context item
associated with the page identified by the
page key value.

ITEM_VALUE VARCHAR2(240) Value to be used for the item specified by
ITEM_NAME.

DB_ID NUMBER(5) Obsolete.

Index name: Unique?: Columns indexed:

PAGE_REF_VALUE_PK Yes PROTOCOL, STUDYBOOK_NAME,
BLOCK_KEY, PAGE_KEY, ITEM_NAME
PAGE_REF_VALUE 151

D
at

ab
as

e
S

tr
u

ct
u

re
s

PAGE_REPEATS

The CTSDD.PAGE_REPEATS table stores information about repeating pages
used in study books.

Rows

One per repeating page.

Columns

Column name: Data type: Description:

PROTOCOL VARCHAR2(20) Name of the protocol.

BLOCK_KEY VARCHAR2(40) Block key value.

BLOCK_REPEAT-
_KEY

VARCHAR2(40) Block repeat key value.

PAGE_KEY VARCHAR2(40) Page key value.

PAGE_REPEAT-
_KEY

VARCHAR2(40) Page repeat key value.

PAGE_REPEAT-
_ORDER

VARCHAR2(5) Order of the repeating page within the series
of repeating pages. For example, if the page
repeats three times, this value could be 1, 2,
or 3.

IS_STATIC NUMBER(1) 0 — The page repeat key was created during
data entry.

1 — The page repeat key was predefined by
the study designer.

MODDATE DATE Date and time at which the repeating page
was created or last modified.

MODUSER VARCHAR2(20) User account that created or last modified the
repeating page.
152 Chapter 7: CTSDD Account

D
atab

ase S
tru

ctu
res
Index

PANE

The CTSDD.PANE table stores information about page sections.

Rows

One per page section.

Columns

DB_ID NUMBER(5) Obsolete.

Index name: Unique?: Columns indexed:

PAGE_RPT_PK Yes PROTOCOL, BLOCK_KEY,
BLOCK_REPEAT_KEY, PAGE_KEY,
PAGE_REPEAT_KEY

Column name: Data type: Description:

PROTOCOL VARCHAR2(20) Name of the protocol containing the page
section.

PANE_NAME VARCHAR2(20) Name of the page section.

PANEL_NAME VARCHAR2(20) Name of the panel associated with the page
section.

HAS_REPEATS NUMBER(10) 0 — The page section does not contain
repeats.

1 — The page section contains repeats.

Column name: Data type: Description:
PANE 153

D
at

ab
as

e
S

tr
u

ct
u

re
s
 HAS-

_SEQUENCES
NUMBER(10) 0 — There are no sequences associated with

the page section.

1 — There are sequences associated with the
page section.

MAX_REPEATS NUMBER(10) Maximum number of repeats allowed in the
page section. NULL or -1 means unlimited.

WIDTH NUMBER(10) Width of the page section.

HEIGHT NUMBER(10) Height of the page section.

STATUS NUMBER(2) -2 — No page section layout

-1 — Invalid page section layout

 0 — Valid page section layout

 2 — An object that the page section depends
on has changed. The page section layout is
still valid, but should be reviewed by the
designer.

MODDATE DATE Date and time at which the page section was
created or last modified.

MODUSER VARCHAR2(20) User account that created or last modified the
page section.

COMPONENT_ID NUMBER(10) Obsolete.

OBJECT_ID NUMBER(15) Unique identifier of the page section
layout description stored in CTSDD-
.OBJINDX.

DB_ID NUMBER(5) Obsolete.

DESCRIPTION VARCHAR2(240) User-supplied description.

Column name: Data type: Description:
154 Chapter 7: CTSDD Account

D
atab

ase S
tru

ctu
res
Index

PANE_ITEM

The CTSDD.PANE_ITEM table stores information about items in page sections.

Rows

One per item in a page section.

Columns

LOCK_STATUS NUMBER(1) 0 — The page section is modifiable.

1 — The page section is not modifiable, but
it can be reset to modifiable.

2 — The page section is a nonmodifiable
copy that cannot be made modifiable except
by breaking the connection.

LOCK_COPY NUMBER(1) Obsolete.

Index name: Unique?: Columns indexed:

PANE_PK Yes PROTOCOL, PANE_NAME

Column name: Data type: Description:

PROTOCOL VARCHAR2(20) Name of the protocol containing the page
section that contains the item.

PANE_NAME VARCHAR2(20) Name of the page section containing the
item.

ITEM_NAME VARCHAR2(20) Name of the item.

Column name: Data type: Description:
PANE_ITEM 155

D
at

ab
as

e
S

tr
u

ct
u

re
s
 ITEM_STYLE NUMBER(3) Display style of the item:

1 — Normal (editable field)

2 — Autoskip

3 — Checklist, drop-down list

4 — Codelist, drop-down list

5 — Check box

6 — Radio button

UC NUMBER(1) 0 — The case of values entered for the item
is ignored.

1 — Values entered for the item must be
uppercase.

DUP NUMBER(1) 0 — The item is not part of an
autoduplication group.

1 — The item is part of an autoduplication
group.

CARRY NUMBER(1) 0 — A value for the item is not carried
forward from the previous study page in the
block.

1 — A value for the item is carried forward
from the previous study page in the block.

VERIFY NUMBER(1) 0 — Verification of the item is not required.

1 — Verification is required before
validation can occur.

SEQ_ALIGN NUMBER(1) 0 — A crossed sequence is attached to the
item.

1 — An aligned sequence is attached to the
item.

SEQ_CODELIST VARCHAR2(20) Name of the codelist used to create initial
values for the sequence.

Null if a codelist or checklist is attached to
the item.

Column name: Data type: Description:
156 Chapter 7: CTSDD Account

D
atab

ase S
tru

ctu
res
Index

PANE_ITEM_SEQ

The CTSDD.PANE_ITEM_SEQ table stores information about sequences
associated with items.

HELP VARCHAR2(240) Help text that displays at the bottom of the
study page when the cursor is in the field for
the item.

CONV_PROC VARCHAR2(60) Name of the data-entry processing procedure
(for the Value Changed event) attached to the
item.

OVERRIDE NUMBER(1) 0 — The upper and lower bounds, and the
checklist attached to the item, cannot be
overridden.

1 — The upper and lower bounds, and the
checklist attached to the item, can be
overridden.

CODEENTRY NUMBER(1) 0 — Values (but not codes) from the attached
codelist or checklist can be entered.

1 — Codes (but not values) from the attached
codelist can be entered.

CODE_LABEL VARCHAR2(20) Reserved.

CODELIST VARCHAR2(20) Obsolete.

DB_ID NUMBER(5) Obsolete.

Index name: Unique?: Columns indexed:

PANE_ITEM_PK Yes PROTOCOL, PANE_NAME, ITEM_NAME

Column name: Data type: Description:
PANE_ITEM_SEQ 157

D
at

ab
as

e
S

tr
u

ct
u

re
s

Rows

One per sequence value.

Columns

Index

PANEL

The CTSDD.PANEL table stores information about panels that are installed.

Column name: Data type: Description:

PROTOCOL VARCHAR2(20) Name of the protocol containing the page
section that contains the item with a
sequence.

PANE_NAME VARCHAR2(20) Name of the page section containing an item
with a sequence.

ITEM_NAME VARCHAR2(20) Name of the item with the sequence.

SEQ_ORDER NUMBER(6) Number indicating the order of the sequence
value within the sequence.

Null if a codelist or checklist is attached to
the item.

SEQ_VALUE VARCHAR2(240) Sequence value.

DB_ID NUMBER(5) Obsolete.

Index name: Unique?: Columns indexed:

PANE_ITEM_SEQ_PK Yes PROTOCOL, PANE_NAME,
ITEM_NAME, SEQ_ORDER
158 Chapter 7: CTSDD Account

D
atab

ase S
tru

ctu
res
Rows

One per panel that is installed.

Columns

Column name: Data type: Description:

PROTOCOL VARCHAR2(20) Name of the protocol containing the panel.

PANEL VARCHAR2(20) Name of the panel.

PDDNUM NUMBER(15) Obsolete.

TYPE NUMBER(1) Type of panel (0 – 5).

DESCRIP VARCHAR2(240) Description of the panel.

VERIFIABLE NUMBER(1) 0 — Verification is not required before data
in the panel can be validated.

1 — Verification is required before data in
the panel can be validated.

INSTALLED NUMBER(1) 0 — The panel is not yet installed or is
deinstalled.

1 — The panel is installed.

TABLES-
_CREATED

NUMBER(1) 0 — Database tables for the panel have not
been created.

1 — Database tables for the panel have been
created.

REVISE_FLAG NUMBER(1) 0 — The panel is not marked for revision.

1 — The panel is marked for revision.

REVISING NUMBER(1) 0 — Panel revisions are not currently being
implemented.

1 — Panel revisions are currently being
implemented.
PANEL 159

D
at

ab
as

e
S

tr
u

ct
u

re
s
 LOCKED NUMBER(1) Obsolete.

LOCKUSER VARCHAR2(20) Obsolete.

LOCKDATE DATE Obsolete.

AUDIT_START VARCHAR2(20) Audit start point for the panel:

• ENTRY

• VERIFICATION

• VALIDATION

• VALIDITY

• MERGE

PROTECTED NUMBER(1) 0 — The panel is not protected.

1 — The panel is protected.

VLD_ORDER NUMBER(5) Order in which the panel should be validated,
with respect to other panels.

MODDATE DATE Date and time at which the panel was created
or last modified.

MODUSER VARCHAR2(20) User account that created or last modified the
panel.

COMPONENT_ID NUMBER(10) Obsolete.

VIEW_OBJECT_ID NUMBER(15) For a view panel, identifier of the text object
that contains the view restriction clause for
the panel (if different than the view
restriction clause for the protocol) in
CTSDD.OBJINDX.

DB_ID NUMBER(5) Obsolete.

LOCK_STATUS NUMBER(1) 0 — The panel is modifiable.

1 — The panel is not modifiable, but it can
be reset to modifiable.

2 — The panel is a nonmodifiable copy that
cannot be made modifiable except by
breaking the connection.

Column name: Data type: Description:
160 Chapter 7: CTSDD Account

D
atab

ase S
tru

ctu
res
Index

PANEL_MASTER

The CTSDD.PANEL_MASTER table stores information about panels that are
installed and have been defined as detail panels in a master-detail relationship
with other panels.

Rows

One per detail panel that has been installed.

Columns

LOCK_COPY NUMBER(1) Obsolete.

SASNAME VARCHAR2(8) SAS name of the panel.

SUBSET_ITEM VARCHAR2(20) Name of the panel’s subset key item.

Index name: Unique?: Columns indexed:

PANEL_PK Yes PROTOCOL, PANEL

Column name: Data type: Description:

PROTOCOL VARCHAR2(20) Name of the protocol.

PANEL VARCHAR2(20) Name of the detail panel.

ITEM_NAME VARCHAR2(20) Name of the detail key item.

MASTER_PANEL VARCHAR2(20) Name of the master panel.

Column name: Data type: Description:
PANEL_MASTER 161

D
at

ab
as

e
S

tr
u

ct
u

re
s

Index

PANEL_MASTER_NONDD

The CTSDD.PANEL_MASTER_NONDD table stores information about panels
that are not yet installed, are deinstalled, or are marked for
revision, and have been defined as the detail panel in a master-detail relationship.

Rows

One per detail panel that is not yet installed, is deinstalled, or is marked for
revision.

Columns

MASTER_ITEM VARCHAR2(20) Name of the master key item.

Index name: Unique?: Columns indexed:

PANEL_MASTER_PK Yes PROTOCOL, PANEL

Column name: Data type: Description:

PROTOCOL VARCHAR2(20) Name of the protocol.

PANEL VARCHAR2(20) Name of the detail panel.

ITEM_NAME VARCHAR2(20) Name of the detail key item.

MASTER_PANEL VARCHAR2(20) Name of the master panel.

MASTER_ITEM VARCHAR2(20) Name of the master key item.

Column name: Data type: Description:
162 Chapter 7: CTSDD Account

D
atab

ase S
tru

ctu
res
Index

PANEL_NONDD

THE CTSDD.PANEL_NONDD table stores information about panels that are
not yet installed, are deinstalled, or are marked for revision.

Rows

One per panel that is installed, is deinstalled, or is marked for revision.

Columns

Index name: Unique?: Columns indexed:

PANEL_MASTER-
_NONDD_PK

Yes PROTOCOL, PANEL

Column name: Data type: Description:

PROTOCOL VARCHAR2(20) Name of the protocol containing the panel.

PANEL VARCHAR2(20) Name of the panel.

TYPE NUMBER(1) Type of panel (0 – 5).

DESCRIP VARCHAR2(240) Description of the panel.

VERIFIABLE NUMBER(1) 0 — Verification is not required before data
in the panel can be validated.

1 — Verification is required before data in
the panel can be validated.

INSTALLED NUMBER(1) 0 — The panel is not yet installed or is
deinstalled.

1 — The panel is installed.
PANEL_NONDD 163

D
at

ab
as

e
S

tr
u

ct
u

re
s
 TABLES-

_CREATED
NUMBER(1) 0 — Database tables for the panel have not

been created.

1 — Database tables for the panel have been
created.

REVISE_FLAG NUMBER(1) 0 — The panel is not marked for
revision.

1 — The panel is marked for revision.

REVISING NUMBER(1) 0 — Panel revisions are not currently being
implemented.

1 — Panel revisions are currently being
implemented.

AUDIT_START VARCHAR2(20) Audit start point for the panel:

• ENTRY

• VERIFICATION

• VALIDATION

• VALIDITY

• MERGE

PROTECTED NUMBER(1) 0 — The panel is not protected.

1 — The panel is protected.

VLD_ORDER NUMBER(5) Order in which the panel should be validated,
with respect to other panels.

MODDATE DATE Date and time at which the panel was created
or last modified.

MODUSER VARCHAR2(20) User account that created or last modified the
panel.

VIEW_OBJECT_ID NUMBER(15) For a view panel, identifier of the text object
that contains the view restriction clause for
the panel (if different than the view
restriction clause for the protocol) in
CTSDD.OBJINDX.

Column name: Data type: Description:
164 Chapter 7: CTSDD Account

D
atab

ase S
tru

ctu
res
Index

PANE_SEQ_VALUE

THE CTSDD.PANE_SEQ_VALUE table stores information about sequences
associated with items, after the sequences have been crossed or aligned with
other sequences in the page section.

Rows

One per sequence value.

Columns

LOCK_STATUS NUMBER(1) 0 — The panel is modifiable.

1 — The panel is not modifiable, but it can
be reset to modifiable.

2 — The panel is a nonmodifiable copy that
cannot be made modifiable except by
breaking the connection.

SASNAME VARCHAR2(8) SAS name of the panel.

SUBSET_ITEM VARCHAR2(20) Name of the panel’s subset key item.

Index name: Unique?: Columns indexed:

PANE_NONDD_PK Yes PROTOCOL, PANEL

Column name: Data type: Description:

PROTOCOL VARCHAR2(20) Name of the protocol containing the page
section that contains the item with a
sequence.

Column name: Data type: Description:
PANE_SEQ_VALUE 165

D
at

ab
as

e
S

tr
u

ct
u

re
s

Index

PANE_USAGE

The CTSDD.PANE_USAGE table stores information about page sections that
are used in page templates.

Rows

One per use of a page section.

Columns

PANE_NAME VARCHAR2(20) Name of the page section containing an item
with a sequence.

ITEM_NAME VARCHAR2(20) Name of the item with the sequence.

SEQ_ORDER NUMBER(6) Number indicating the order of the sequence
value.

SEQ_VALUE VARCHAR2(240) Sequence value.

DB_ID NUMBER(5) Obsolete.

Index name: Unique?: Columns indexed:

PANE_SEQ_VALUE_PK Yes PROTOCOL, PANE_NAME,
ITEM_NAME, SEQ_ORDER

Column name: Data type: Description:

PROTOCOL VARCHAR2(20) Name of the protocol in which the page
section is used.

Column name: Data type: Description:
166 Chapter 7: CTSDD Account

D
atab

ase S
tru

ctu
res
Index

QUERY

The CTSDD.QUERY table stores information about queries created in Retrieve.

Rows

One per query.

LAYOUT_NAME VARCHAR2(20) Name of the page template that uses the page
section.

PANE_USAGE-
_SEQ

NUMBER(5) Number associated with the page section
within the page template. This number does
not determine layout or tabbing order, and
does not change when layout or tabbing
order changes.

PANE_NAME VARCHAR2(20) Name of the page section.

PANE_ORDER NUMBER(10) Tabbing order of the page section in the page
template.

POSITION_X NUMBER(10) Vertical position of the page section.

POSITION_Y NUMBER(10) Horizontal position of the page section.

DB_ID NUMBER(5) Obsolete.

SUBSET_VALUE VARCHAR2(40) Value of the subset key item for the page
section.

Index name: Unique?: Columns indexed:

PANE_USAGE_PK Yes PROTOCOL, LAYOUT_NAME,
PANE_USAGE_SEQ

Column name: Data type: Description:
QUERY 167

D
at

ab
as

e
S

tr
u

ct
u

re
s

Columns

Column name: Data type: Description:

PROTOCOL VARCHAR2(20) Name of the protocol containing the query.

QUERY_NAME VARCHAR2(20) Name of the query.

DESCRIP VARCHAR2(80) Description of the query.

QUERY_TYPE NUMBER(10) 1 — QBF

2 — Ad Hoc

3 — QBP

4 — SQL

IS_SYSTEM NUMBER(1) 0 — Private query

1 — Public query

EXEC_DATE DATE Date and time at which the query was last
run.

STATUS NUMBER(2) 0 — Created and not modified.

1 — Modified.

MODDATE DATE Date and time at which the query was created
or last modified.

MODUSER VARCHAR2(20) User account that created or last modified the
query.

OBJECT_ID NUMBER(15) Identifier of the text object that contains the
query text in CTSDD.OBJINDX.

EXT_OBJECT_ID NUMBER(15) Reserved

DB_ID NUMBER(5) Obsolete

SUMMARY_INFO VARCHAR2(255) Summary description of the query, for use
with Integrated Review™.
168 Chapter 7: CTSDD Account

D
atab

ase S
tru

ctu
res
Index

RULE

The CTSDD.RULE table stores information about rules.

Rows

One per rule.

Columns

Index name: Unique?: Columns indexed:

QUERY_PK Yes PROTOCOL, QUERY_NAME

Column name: Data type: Description:

PROTOCOL VARCHAR2(20) Name of the protocol containing the panel to
which the rule is attached.

PANEL VARCHAR2(20) Name of the panel to which the rule is
attached.

RULE_NAME VARCHAR2(20) Name of the rule.

RULE_ACTION VARCHAR2(10) Rule action of the rule:

• REPORT

• REJECT

IS_COMPILED NUMBER(1) 0 — The rule has not been compiled
successfully.

1 — The rule has been compiled
successfully.
RULE 169

D
at

ab
as

e
S

tr
u

ct
u

re
s
 MSG_IS-

_DERIVED
NUMBER(1) 0 — The message is not created by a

derivation.

1 — The message is created by a
derivation.

MSG_TEXT VARCHAR2(240) Text of the message generated by the rule if
the record fails the rule.

EMPTY_IS_TRUE NUMBER(1) 0 — If the rule evaluates to EMPTY, it is
treated as if it evaluated to FALSE.

1 — If the rule evaluates to EMPTY, it is
treated as if it evaluated to TRUE.

TAGID NUMBER(15) Unique identifier associated with the tag that
is set if the rule evaluates to FALSE.

MODDATE DATE Date and time at which the rule was created
or last modified.

MODUSER VARCHAR2(20) User account that created or last modified the
rule.

OBJECT_ID NUMBER(15) Identifier of the text object that contains the
text of the rule in CTSDD.OBJINDX.

DB_ID NUMBER(5) Obsolete.

DESCRIPTION VARCHAR2(240) User-supplied description.

LOCK_STATUS NUMBER(1) 0 — The rule is modifiable.

1 — The rule is not modifiable, but it can be
reset to modifiable.

2 — The rule is a nonmodifiable copy that
cannot be made modifiable except by
breaking the connection.

LOCK_COPY NUMBER(1) 0 — The rule must be copied when the panel
is copied.

1 — The rule can optionally be copied when
the panel is copied.

Column name: Data type: Description:
170 Chapter 7: CTSDD Account

D
atab

ase S
tru

ctu
res
Index

RULE_AUDIT

The CTSDD.RULE_AUDIT table stores information about modified or deleted
rules while the panel is marked for revision.

Rows

One per modified or deleted rule while the panel is marked for revision.

Columns

PRIORITY NUMBER(5) Priority of discrepancies generated by the
rule.

DISCREP_STATE VARCHAR2(8) Initial status of discrepancies generated by
the rule.

Index name: Unique?: Columns indexed:

RULE_PK Yes PROTOCOL, PANEL, RULE_NAME

Column name: Data type: Description:

PROTOCOL VARCHAR2(20) Same value as that of the rule before it was
modified or deleted.

PANEL VARCHAR2(20) Same value as that of the rule before it was
modified or deleted.

RULE_NAME VARCHAR2(20) Same value as that of the rule before it was
modified or deleted.

Column name: Data type: Description:
RULE_AUDIT 171

D
at

ab
as

e
S

tr
u

ct
u

re
s
 RULE_ACTION VARCHAR2(10) Same value as that of the rule before it was

modified or deleted.

IS_COMPILED NUMBER(1) Same value as that of the rule before it was
modified or deleted.

MSG_IS-
_DERIVED

NUMBER(1) Same value as that of the rule before it was
modified or deleted.

MSG_TEXT VARCHAR2(240) Same value as that of the rule before it was
modified or deleted.

EMPTY_IS_TRUE NUMBER(1) Same value as that of the rule before it was
modified or deleted.

TAGID NUMBER(15) Same value as that of the rule before it was
modified or deleted.

MODDATE DATE Same value as that of the rule before it was
modified or deleted.

MODUSER VARCHAR2(20) Same value as that of the rule before it was
modified or deleted.

OBJECT_ID NUMBER(15) Same value as that of the rule before it was
modified or deleted.

DB_ID NUMBER(5) Obsolete.

DESCRIPTION VARCHAR2(240) Same value as that of the rule before it was
modified or deleted.

LOCK_STATUS NUMBER(1) Same value as that of the rule before it was
modified or deleted.

LOCK_COPY NUMBER(1) Same value as that of the rule before it was
modified or deleted.

PRIORITY NUMBER(5) Same value as that of the rule before it was
modified or deleted.

DISCREP_STATE VARCHAR2(8) Same value as that of the rule before it was
modified or deleted.

Column name: Data type: Description:
172 Chapter 7: CTSDD Account

D
atab

ase S
tru

ctu
res
Index

STUDYBOOK

The CTSDD.STUDYBOOK table stores information about study books.

Rows

One per study book.

Columns

Index name: Unique?: Columns indexed:

RULE_AUDIT_PK Yes PROTOCOL, PANEL, RULE_NAME

Column name: Data type: Description:

PROTOCOL VARCHAR2(20) Name of the protocol containing the study
book.

STUDYBOOK-
_NAME

VARCHAR2(20) Name of the study book.

DESCRIPTION VARCHAR2(240) Description of the study book.

CLASS NUMBER(10) Type of panels associated with the study
book:

0 — A single Type 0 panel.

1 — Type 1–4 panels.

5 — A single Type 5 panel.

STATUS NUMBER(1) Status of the study book:

0 — Valid

1 —Invalid
STUDYBOOK 173

D
at

ab
as

e
S

tr
u

ct
u

re
s

Index

SUBJECT_LIST

The CTSDD.SUBJECT_LIST table stores information about subject lists.

Rows

One per subject list.

MODDATE DATE Date and time at which the study book was
created or last modified.

MODUSER VARCHAR2(20) User account that created or last modified the
study book.

COMPONENT-_ID NUMBER(10) Obsolete.

DB_ID NUMBER(5) Obsolete.

LOCK_STATUS NUMBER(1) 0 — The study book is modifiable.

1 — The study book is not modifiable, but it
can be reset to modifiable.

2 — The study book is a nonmodifiable copy
that cannot be made modifiable except by
breaking the connection.

LOCK_COPY NUMBER(1) Obsolete.

Index name: Unique?: Columns indexed:

STUDYBOOK_PK Yes PROTOCOL, STUDYBOOK_NAME

Column name: Data type: Description:
174 Chapter 7: CTSDD Account

D
atab

ase S
tru

ctu
res
Columns

Index

SUBJECT_LIST_MEMBER

The CTSDD.SUBJECT_LIST_MEMBER table stores information about
subjects that are included in subject lists.

Column name: Data type: Description:

LIST_ID NUMBER(10) Unique identifier of the subject list.

PROTOCOL VARCHAR2(20) Name of the protocol containing the subject
list.

LIST_NAME VARCHAR2(20) Name of the subject list.

LIST_TYPE NUMBER(10) 0 — All subjects are included in the subject
list.

1 — Specified subjects are included in the
subject list.

2 — Dynamic subject list.

3 — Clintrace subject list.

4 — Site list, which is automatically defined
when the protocol is registered for
replication.

LIST_CRITERIA VARCHAR2(2000) SQL text of the tag restriction associated
with the subject list.

Index name: Unique?: Columns indexed:

SUBJECT_LIST_IDX Yes PROTOCOL, LIST_NAME

SUBJECT_LIST_PK Yes LIST_ID
SUBJECT_LIST_MEMBER 175

D
at

ab
as

e
S

tr
u

ct
u

re
s

Rows

One per subject included in a subject list.

Columns

Index

THESAURUS_ALGORITHM

The CTSDD.THESAURUS_ALGORITHM table stores information about
customized thesaurus algorithms used for coding.

Rows

One per customized thesaurus algorithm.

Column name: Data type: Description:

PROTOCOL VARCHAR2(20) Name of the protocol containing the subject
list.

SUBJECT_ID NUMBER(15) Identifier of the subject in the subject list.

LIST_ID NUMBER(10) Unique identifier of the subject list.

LIST_ORDER NUMBER(10) Order of the subject in the subject list.

Index name: Unique?: Columns indexed:

SUBJ_LIST-
_MEMBER_PK

Yes PROTOCOL, SUBJECT_ID, LIST_ID
176 Chapter 7: CTSDD Account

D
atab

ase S
tru

ctu
res
Columns

Column name: Data type: Description:

PROTOCOL VARCHAR2(20) Name of the protocol containing the
customized thesaurus algorithm.

ALGORITHM VARCHAR2(20) Name of the customized thesaurus
algorithm.

MODDATE DATE Date and time at which the customized
thesaurus algorithm was created or last
modified.

MODUSER VARCHAR2(20) User account that created or last modified the
customized thesaurus algorithm.

DB_ID NUMBER(5) Obsolete.

DESCRIPTION VARCHAR2(240) Description of the algorithm.

NORMALIZE NUMBER(1) 0 — Comprehensive normalization does not
occur before use of this thesaurus algorithm.

1 — Comprehensive normalization occurs
before use of this thesaurus
algorithm.

LOCK_STATUS NUMBER(1) 0 — The thesaurus algorithm is
modifiable.

1 — The thesaurus algorithm is not
modifiable, but it can be reset to modifiable.

2 — The thesaurus algorithm is a
nonmodifiable copy that cannot be
made modifiable except by breaking
the connection.

LOCK_COPY NUMBER(1) Obsolete.

PREF_TERM-
_VIEW

VARCHAR2(20) Thesaurus view used to define the preferred
terms.
THESAURUS_ALGORITHM 177

D
at

ab
as

e
S

tr
u

ct
u

re
s

Index

THESAURUS_ALGORITHM_STEP

The CTSDD.THESAURUS_ALGORITHM_STEP table stores information
about the steps of customized thesaurus algorithms.

Rows

One per step of a customized thesaurus algorithm.

Columns

Index name: Unique?: Columns indexed:

THESAURUS-
_ALGORITHM_PK

Yes PROTOCOL, ALGORITHM

Column name: Data type: Description:

PROTOCOL VARCHAR2(20) Name of the protocol containing the
customized thesaurus algorithm.

ALGORITHM VARCHAR2(20) Name of the customized thesaurus
algorithm.

STEP_ORDER NUMBER(5) Number of the algorithm step.

STEP_TYPE VARCHAR2(20) Type of activity performed by the
algorithm step:

• EXACT

• CONTAINS

• FILTER

If Classify is loaded, additional step-type
activities are possible.

VIEW_NAME VARCHAR2(20) Name of the thesaurus view that is used by
the algorithm step.
178 Chapter 7: CTSDD Account

D
atab

ase S
tru

ctu
res
Index

THESAURUS_LANGUAGE

The CTSDD.THESAURUS_LANGUAGE table stores information about
thesaurus languages used for coding.

Rows

One per thesaurus language.

Columns

MODDATE DATE Date and time at which the algorithm step
was created or last modified.

MODUSER VARCHAR2(20) User account that created or last modified the
algorithm step.

DB_ID NUMBER(5) Obsolete.

Index name: Unique?: Columns indexed:

THESAURUS-
_ALGORITHM_STEP_PK

Yes PROTOCOL, ALGORITHM,
STEP_ORDER

Column name: Data type: Description:

PROTOCOL VARCHAR2(20) Name of the protocol containing the
thesaurus language.

LANGUAGE VARCHAR2(20) Name of the thesaurus language.

Column name: Data type: Description:
THESAURUS_LANGUAGE 179

D
at

ab
as

e
S

tr
u

ct
u

re
s

Index

THESAURUS_VIEW

The CTSDD.THESAURUS_VIEW table stores information about thesaurus
views used for coding.

Rows

One per thesaurus view.

PUNCTUATION VARCHAR2(100) Punctuation marks removed from verbatim
text during automatic coding using the
thesaurus language.

MODDATE DATE Date and time at which the thesaurus
language was created or last modified.

MODUSER VARCHAR2(20) User account that created or last modified the
thesaurus language.

DB_ID NUMBER(5) Obsolete.

LOCK_STATUS NUMBER(1) 0 — The thesaurus language is modifiable.

1 — The thesaurus language is not
modifiable, but it can be reset to modifiable.

2 — The thesaurus language is a
nonmodifiable copy that cannot be
made modifiable except by breaking
the connection.

LOCK_COPY NUMBER(1) Obsolete.

Index name: Unique?: Columns indexed:

THESAURUS_LANG_PK Yes PROTOCOL, LANGUAGE

Column name: Data type: Description:
180 Chapter 7: CTSDD Account

D
atab

ase S
tru

ctu
res
Columns

Column name: Data type: Description:

PROTOCOL VARCHAR2(20) Name of the thesaurus protocol containing
the thesaurus view.

VIEW_NAME VARCHAR2(20) Name of the thesaurus view. The default
thesaurus algorithm requires creation of the
following views:

• TERMS

• SYNONYMS

• STOPWORDS

PANEL_OWNER VARCHAR2(20) For views based on tables, the user account
that owns the table. Null for views based on
panels in the coding thesaurus protocol.

PANEL VARCHAR2(20) For views based on tables, name of the base
Oracle table. For views based on panels,
name of the base panel in the coding
thesaurus protocol.

CODE1-_COLUMN VARCHAR2(20) Name of the item that contains the code (or
the first part of a multipart code).

CODE2-_COLUMN VARCHAR2(20) Name of the item that contains the second
part of a multipart code.

CODE3-_COLUMN VARCHAR2(20) Name of the item that contains the third part
of a multipart code.

TEXT_COLUMN VARCHAR2(20) Name of the item that contains the text.

ACTIVE-
_COLUMN

VARCHAR2(20) Name of the item that indicates whether the
record is active (can be used for coding) in
the thesaurus view.

ACTIVE_VALUE VARCHAR2(10) Value of the ACTIVE_COLUMN that
indicates Active.

VIEWS-
_CREATED

NUMBER(1) 0 — Views have not been created.

1 — Views have been created.
THESAURUS_VIEW 181

D
at

ab
as

e
S

tr
u

ct
u

re
s

Index

MODDATE DATE Date and time at which the thesaurus view
was created or last modified.

MODUSER VARCHAR2(20) User account that created or last modified the
thesaurus view.

DB_ID NUMBER(5) Obsolete.

DESCRIPTION VARCHAR2(240) Description of the thesaurus view.

LOCK_STATUS NUMBER(1) 0 — The thesaurus view is modifiable.

1 — The thesaurus view is not modifiable,
but it can be reset to modifiable.

2 — The thesaurus view is a non-modifiable
copy that cannot be made modifiable except
by breaking the connection.

LOCK_COPY NUMBER(1) Obsolete.

Index name: Unique?: Columns indexed:

THESAURUS_VIEW_PK Yes PROTOCOL, VIEW_NAME

Column name: Data type: Description:
182 Chapter 7: CTSDD Account

D
atab

ase S
tru

ctu
res
THESAURUS_VIEW 183

D
at

ab
as

e
S

tr
u

ct
u

re
s

184 Chapter 7: CTSDD Account

D
atab

ase S
tru

ctu
res
THESAURUS_VIEW 185

D
at

ab
as

e
S

tr
u

ct
u

re
s

186 Chapter 7: CTSDD Account

D
atab

ase S
tru

ctu
res
Overview 188

CODE_VALUE_DIFF 188

DIFF_ANALYSIS 189

ERRORLOG 191

FUNCTION_RECV 192

FUNCTION_SOURCE 194

ObjectTable_DIFF 195

ObjectTable_SN 197

OBJINDX_SN 198

RELEASE_CHANGE 199

RELEASE_RECV 201

RELEASE_SEND 202

RELEASE_VERSION 203

RELEASED_OBJECT 204

LATEST_RECV view 205

8 CTSRM Account
 187

D
at

ab
as

e
S

tr
u

ct
u

re
s

Overview

The CTSRM account stores information for Multisite Distribution.

CODE_VALUE_DIFF

The CTSRM.CODE_VALUE_DIFF table stores information about differences
in codelist values. Differences in codelist values for aggregated and
unaggregated codelists are stored in this table.

A row is created in this table when a distributed codelist is closed
for revision and its value has been modified or a new value has been created.

Rows

One for each value inserted or deleted; two for each value changed.

Columns

Column name: Data type: Description:

CODELIST VARCHAR2(20) Name of the codelist.

CODE VARCHAR2(80) Codelist code.

VALUE VARCHAR2(80) Codelist value.

NEW_VERSION NUMBER(1) 0 — Old or deleted.

1 — New or inserted.

LABEL VARCHAR2(80) Codelist label.

LONGLABEL VARCHAR2(240) Codelist long label.

STATUS NUMBER(1) Status of the codelist value.
188 Chapter 8: CTSRM Account

D
atab

ase S
tru

ctu
res
DIFF_ANALYSIS

The CTSRM.DIFF_ANALYSIS table stores information about modifications
made to distributed protocols.

A row is created in this table when a protocol is closed for revision
after modifications have been made to an object in the protocol.

Rows

One for each changed object.

Columns

CODE_ORDER NUMBER(5) Order in codelist.

SUBSET_REQD NUMBER(1) 0 — Value not required in all codelists.

1 — Value required in all codelists.

SUBSET_VALUE NUMBER(5) Value to distinguish subsets.

Column name: Data type: Description:

PROTOCOL VARCHAR2(20) Name of the distributed protocol.

Column name: Data type: Description:
DIFF_ANALYSIS 189

D
at

ab
as

e
S

tr
u

ct
u

re
s
 OBJECT_TYPE NUMBER(5) Type of object that was changed:

1 — Protocol

3 — Codelist

2, 4 through 6 — Reserved

7 — Study book

8 — Block

9 — Study page

10 — Page layout

11 — Page Section

12 — Panel

13 — Item

14 — Derivation

15 — Rule

16 — Coding target

17 — Thesaurus language

18 — Thesaurus view

19 — Thesaurus algorithm

20 — Query

100 — Lab Loader Map

101 — Lab Loader Control File

OBJECT_NAME VARCHAR2(30) Name of the modified object.

OBJECT-
_CONTAINER

VARCHAR2(30) If the object that changed is a
contained object, the name of the
container object for that contained
object (for example, the name of the
panel that contains items).

OBJECT_SUB-
_CONTAINER

VARCHAR2(30) Name of subcontainer of the modified
object.

Column name: Data type: Description:
190 Chapter 8: CTSRM Account

D
atab

ase S
tru

ctu
res
Index

ERRORLOG

The CTSRM.ERRORLOG table stores information about errors that have
occurred as part of the distribution process.

A row is created in this table when a site attempts to accept an object that has
errors at the site.

Rows

One per error of each object where acceptance failed at the site.

CHANGE_TYPE VARCHAR2(6) Type of change to the object:

• INSERT

• UPDATE

• DELETE

Index name: Unique?: Columns indexed:

DIFF_ANALYSIS_IDX No PROTOCOL, OBJECT_TYPE,
OBJECT_NAME, OBJECT_CONTAINER,
OBJECT_SUBCONTAINER

Column name: Data type: Description:
ERRORLOG 191

D
at

ab
as

e
S

tr
u

ct
u

re
s

Columns

Index

FUNCTION_RECV

The CTSRM.FUNCTION_RECV table stores information about PL/SQL
functions, procedures, and packages received at a site.

Column name: Data type: Description:

OBJECT_TYPE NUMBER(5) Type of object that was changed:

1 — Protocol

3 — Codelist

OBJECT_NAME VARCHAR2(20) Name of the object with the error.

RELEASE_NUM NUMBER(15) Internal release number of the object
with the error.

TABLE_NAME VARCHAR2(30) Table name where the error occurred.

ERRDT DATE Date the error was detected.

ERRACT VARCHAR2(20) The action associated with the error:

• REJECT

• REPORT

REMARKS VARCHAR2(240) Informational text about the error.

Index name: Unique?: Columns indexed:

ERRORLOG_IDX No OBJECT_TYPE, OBJECT_NAME,
RELEASE_NUM
192 Chapter 8: CTSRM Account

D
atab

ase S
tru

ctu
res
A row is created in this table when a function, procedure, or package is copied to
a site.

Rows

One for each package, procedure, or function received.

Columns

Column name: Data type: Description:

SRC_INSTANCE VARCHAR2(30) Name of the site where the function
originated.

OWNER VARCHAR2(30) Account name that owns the function.

OBJECT_NAME VARCHAR2(30) Name of the function, package or
procedure.

OBJECT_TYPE VARCHAR2(15) Type of object:

• FUNCTION

• PACKAGE

• PROCEDURE

• PACKAGE BODY

OBJECT_LENGTH NUMBER Length of the function.

STATUS NUMBER(1) Status of the function:

0 – Pending.

1 – Compiled.

2 – Compile Error.

MODDATE DATE Date the function was modified.

MODUSER VARCHAR2(20) User who modified the function.
FUNCTION_RECV 193

D
at

ab
as

e
S

tr
u

ct
u

re
s

Index

FUNCTION_SOURCE

The CTSRM.FUNCTION_SOURCE table stores the source PL/SQL code for
functions, procedures, and packages received at a site.

A row is created in this table when a function, procedure, or package is copied to
a site.

Rows

One for each line of source code.

Columns

Index name: Unique?: Columns indexed:

FUNCTION_RECV_PK Yes SRC_INSTANCE, OWNER,
OBJECT_NAME, OBJECT_TYPE

Column name: Data type: Description:

SRC_INSTANCE VARCHAR2(30 Name of the site where the function
originated.

OWNER VARCHAR2(30) Account name that owns the function.

OBJECT_NAME VARCHAR2(30) Name of the function, package or
procedure.

OBJECT_TYPE VARCHAR2(15) Type of object:

• FUNCTION

• PACKAGE

• PROCEDURE
194 Chapter 8: CTSRM Account

D
atab

ase S
tru

ctu
res
Index

ObjectTable_DIFF

The ObjectTable_DIFF tables store information about differences between
current objects and objects as they existed when the object was last compared.
Possible values of ObjectTable are as follows.

Protocol Distribution:

BLOCK_REF
BLOCK_REF_VALUE
BLOCK_REPEATS
DERIVATION
ENCODING_TARGET
ITEMOBJINDX
PAGELAYOUT
PAGE_REF
PAGE_REF_VALUE
PAGE_REPEATS
PANE
PANE_ITEM
PANE_ITEM_SEQ
PANEL

LINE NUMBER The line number of the source.

TEXT VARCHAR2(4000) The text that comprises this portion of
the source.

Index name: Unique?: Columns indexed:

FUNCTION_SOURCE_PK Yes SRC_INSTANCE, OWNER,
OBJECT_NAME, OBJECT_TYPE,
LINE

Column name: Data type: Description:
ObjectTable_DIFF 195

D
at

ab
as

e
S

tr
u

ct
u

re
s

PANEL_MASTER
PANE_SEQ_VALUE
PANE_USAGE
RULE
STUDYBOOK
THESAURUS_ALGORITHM
THESAURUS_ALGORITHM_STEP
THESAURUS_LANGUAGE
THESAURUS_VIEW

PROTOCOL
PROTOCOL_PARAM

SEARCH_LIST

QUERY

Codelist Distribution:

CODE_INDEX
AGGREGATED_CODES
VIEW_CODELIST

Rows

One for each insertion or deletion of an object; two for each modification of an
existing object.

Columns

For each entry in the previous list, the object-name_DIFF table columns are
identical to the columns in the tables where the objects are defined, except for
the columns noted in the following table (and system items, which the object-
name_DIFF tables do not contain). For example, the CTSRM.Block_Ref_DIFF
table has the same columns as CTSDD.BLOCK_REF.

Column name: Data type: Description:

ObjectKeys Data type(s) of key
item(s) for the object.

Column name(s) are the names of the
key item(s) for the object. Values are
the value(s) of key item(s) for the
object.
196 Chapter 8: CTSRM Account

D
atab

ase S
tru

ctu
res
ObjectTable_SN

The ObjectTable_SN tables store copies of the metadata at the time a distributed
object is opened for revision. Possible values of ObjectTable are listed in the
description of ObjectTable_DIFF. The same comment about keys noted in the
ObjectTable_DIFF apply to the ObjectTable_SN table.

Rows

One for each row at the time the object was opened.

Modifiable-Attributes Values of the user-modifiable
attributes of the object’s base table.
Attributes maintained by the Clintrial
software are not included, such as:

• MODDATE

• MODUSER

• COMPONENT_ID

• DB_ID

• STATUS (for the objects
STUDYBOOK, PANE, and
ENCODING_TARGET)

• OBJECT_ID (for the objects
PANE, RULE, and
DERIVATION)

• IS_COMPILED (for the objects
RULE and DERIVATION)

• VIEWS_CREATED (for the
object THESAURUS_VIEW)

NEW_VERSION NUMBER(1) 0 — The record contains previous
values of object attributes.

1 — The record contains new values
of object attributes.

Column name: Data type: Description:
ObjectTable_SN 197

D
at

ab
as

e
S

tr
u

ct
u

re
s

Columns

The columns in the SN tables are the same as the columns for the objects
themselves. For example the columns in CTSRM.BLOCK_REF_SN are the
same as the columns in CTSDD.BLOCK_REF. (The _SN tables do include the
columns maintained by the Clintrial software; for example, MODDATE,
MODUSER.)

OBJINDX_SN

The OBJINDX_SN table stores values of unlimited attributes at the time
a distributed protocol is opened for revision. Unlimited text is used
by Rules, Derivations, View Protocols, Queries, and Page Section Layouts.

Rows

One for each block of text.

Columns

Column name: Data type: Description:

PROTOCOL VARCHAR2(20) Name of the protocol.

OBJECT-
_CONTAINER

VARCHAR2(20) If the changed object is a contained
object, the name of the container object
for that contained object

OBJECT_NAME VARCHAR2(20) Name of the modified object.

OBJECT_SEQ NUMBER(10) Text block sequence number within the
unlimited text attribute.

OBJECT_TYPE VARCHAR2(10) VIEW_PROT, VIEW_PANEL, RULE,
DERIVATION, PANE, QUERY,
QUERY_EXT

MODDATE DATE Date of modification
198 Chapter 8: CTSRM Account

D
atab

ase S
tru

ctu
res
Index

RELEASE_CHANGE

The CTSRM.RELEASE_CHANGE table stores information about changes to
metadata distributed to a site or received at a site.

Rows are created in this table at the source when a new release is
distributed to another site.

Rows

One for each metadata object which is new or changed.

Columns

OBJECT_TEXT VARCHAR2(2000) Text block.

Index name: Unique?: Columns indexed:

OBJINDX_SN_PK Yes PROTOCOL, OBJECT_CONTAINER,
OBJECT_NAME, OBJECT_SEQ,
OBJECT_TYPE

Column name: Data type: Description:

OBJECT_TYPE NUMBER(5) Type of object that was changed:

1 — Protocol

3 — Codelist

OBJECT_NAME VARCHAR2(20) Name of the object.

Column name: Data type: Description:
RELEASE_CHANGE 199

D
at

ab
as

e
S

tr
u

ct
u

re
s

Index

RELEASE_RECV

The CTSRM.RELEASE_RECV table stores information about each object
accepted at the site.

A row is created in this table when an object is accepted at the site.

RELEASE_NUM NUMBER(15) Internal numeric identifier for the
release.

IS_INITIAL NUMBER(1) Is this the initial release for this
destination?

0 – No

1 – Yes

TABLE_NAME VARCHAR2(30) Table that was modified.

CHANGE_TYPE VARCHAR2(6) Type of change (UPDATE, DELETE,
INSERT).

APPLIED NUMBER(1) 0 — The change has been applied.

1 — The change has not been applied.

1 through I24 VARCHAR2(255) Values of the object attributes;
dependent on the object type.

125 VARCHAR2(2000) Values of the object attributes;
dependent on the object type.

Index name: Unique?: Columns indexed:

RELEASE_CHANGE-_IDX No OBJECT_TYPE, OBJECT_NAME,
RELEASE_NUM, IS_INITIAL,
TABLE_NAME, CHANGE_TYPE

Column name: Data type: Description:
200 Chapter 8: CTSRM Account

D
atab

ase S
tru

ctu
res
Rows

One per each accepted object at the site.

Columns

Index

Column name: Data type: Description:

OBJECT_TYPE NUMBER(5) Type of object that was changed:

1 — Protocol

3 — Codelist

OBJECT_NAME VARCHAR2(20) Name of the distributed object.

RELEASE_NUM NUMBER(15) The current release number of the
distributed object.

STATUS NUMBER(1) Status of the object:

0 — Pending

1 — Accepted

2 — Accept failed

MODDATE DATE Date the object was distributed.

MODUSER VARCHAR2(20) User who distributed the object.

Index name: Unique?: Columns indexed:

RELEASE_SEND_PK Yes OBJECT_TYPE, OBJECT_NAME,
RELEASE_NUM, DEST_NAME
RELEASE_RECV 201

D
at

ab
as

e
S

tr
u

ct
u

re
s

RELEASE_SEND

The CTSRM.RELEASE_SEND table stores information about each object
distributed from the site

A row is created in this table when an object is distributed from the site.

Rows

One per each distributed object per destination site.

Columns

Column name: Data type: Description:

OBJECT_TYPE NUMBER(5) Type of distributed object:

1 — Protocol

3 — Codelist

OBJECT_NAME VARCHAR2(20) Name of the distributed object.

RELEASE_NUM NUMBER(15) Current release number of the
distributed object.

DEST_NAME VARCHAR2(20) Name of the site to which the object
was distributed.

MODDATE DATE Date the object was distributed.

MODUSER VARCHAR2(20) User who distributed the object.
202 Chapter 8: CTSRM Account

D
atab

ase S
tru

ctu
res
Index

RELEASE_VERSION

The CTSRM.RELEASE_VERSION table stores information about the version
of each object distributed to or from the site.

A row is created in this table when an object is first distributed from the site, or
when the object is closed for revision.

Rows

One per each version of each distributed object.

Columns

Index name: Unique?: Columns indexed:

RELEASE_SEND_PK Yes OBJECT_TYPE, OBJECT_NAME,
RELEASE_NUM, DEST_NAME

Column name: Data type: Description:

OBJECT_TYPE NUMBER(5) Type of object that was closed or
distributed:

1 — Protocol

3 — Codelist

OBJECT_NAME VARCHAR2(20) Name of the distributed object.

RELEASE_NUM NUMBER(15) Internal release number of the
distributed object.
RELEASE_VERSION 203

D
at

ab
as

e
S

tr
u

ct
u

re
s

Index

RELEASED_OBJECT

The CTSRM.RELEASED_OBJECT table stores information about the objects
that have been distributed to or from the site.

A row is created in this table when an object is first distributed to or from the
site.

Rows

One per distributed object.

VERSION_NUM VARCHAR2(20) Version number of the distributed
object, entered by the user when the
object was distributed or closed for
revision.

DESCRIPTION VARCHAR2(240) Description of the distributed object,
entered by the user when the object was
distributed or closed for revision.

Index name: Unique?: Columns indexed:

RELEASE_VERSION_PK Yes OBJECT_TYPE, OBJECT_NAME,
RELEASE_NUM

Column name: Data type: Description:
204 Chapter 8: CTSRM Account

D
atab

ase S
tru

ctu
res
Columns

Index

LATEST_RECV view

The CTSRM.LATEST_RECV view stores information about most recent
versions of objects that have been received at the site. This view is created from
the RELEASED_OBJECT, RELEASE_VERSION, and the RELEASE_RECV
tables.

Column name: Data type: Description:

OBJECT_TYPE NUMBER(5) Type of distributed object:

1 — Protocol

3 — Codelist

OBJECT_NAME VARCHAR2(20) Name of the distributed object.

LOCKED NUMBER(1) Status of the distributed object:

0 — Open for revision at the local site.

1 — Closed for revision or an object at
a subordinate site.

SRC_INSTANCE VARCHAR2(30) If the distributed object was accepted
from another site, the name of that
Source site.

LAST_COMPARED DATE Date of the last comparison between
revisions of the object.

Index name: Unique?: Columns indexed:

RELEASED-
_OBJECT_PK

Yes OBJECT_TYPE, OBJECT_NAME
LATEST_RECV view 205

D
at

ab
as

e
S

tr
u

ct
u

re
s

Rows

One per distributed object.

Columns

Column name: Data type: Description:

OBJECT_TYPE NUMBER(5) Type of distributed object:

1 — Protocol

3 — Codelist

OBJECT_NAME VARCHAR2(20) Name of the distributed object.

LOCKED NUMBER(1) Status of the object:

Always 1 – Closed for revision

SRC_INSTANCE VARCHAR2(30) If the distributed object was accepted
from another site, the name of that
Source site.

LAST_COMPARED DATE Date of the last comparison between
revisions of the object.

RELEASE_NUM NUMBER(15) Current release number of the
distributed object.

STATUS NUMBER(1) Status of the object:

0 — Pending

1 — Accepted

2 — Accept failed

VERSION_NUM VARCHAR2(20) Version number of the distributed
object, entered by the user when the
object was distributed or closed for
revision.

DESCRIPTION VARCHAR2(240) Description of the distributed object,
entered by the user when the object
was distributed or closed for revision.
206 Chapter 8: CTSRM Account

D
atab

ase S
tru

ctu
res
LATEST_RECV view 207

D
at

ab
as

e
S

tr
u

ct
u

re
s

208 Chapter 8: CTSRM Account

D
atab

ase S
tru

ctu
res
Overview 210

CALLREC 210

CHANGEREC 210

DCHANGENUM 211

DBOTYPEINFO 212

ERRORREC 214

GROUPDIST table 215

HSUBVIEW 217

REPAUDIT 218

REPGROUP 220

REPGROUPOWN 221

REPPARAMS 222

REPSITE 222

REPTABLE 224

9 CTSRP Account
 209

D
at

ab
as

e
S

tr
u

ct
u

re
s

Overview

The CTSRP account stores information for Multisite Replication.

CALLREC

This table is no longer used.

CHANGEREC

The CTSRP.CHANGEREC table stores information about changes made to
records in tables in replication.

A row is created in this table when a change is made to a record in a table which
is being replicated.

Rows

One for each record change.

Columns

Column name: Data type: Description:

CHANGENUM NUMBER Sequence assigned to the change.

CHANGETYPE CHAR(1) Type of change:

I — Insert

U — Update

D — Delete

L — Local
210 Chapter 9: CTSRP Account

D
atab

ase S
tru

ctu
res
Index

DCHANGENUM

The CTSRP.DCHANGENUM table stores information about the number of
record changes made in a group.

Rows are created in this table when a Replication Master site is ready to replicate
data to a Replication Subordinate site.

Rows

One for each change to be replicated to a Replication Subordinate site.

CHANGETAB VARCHAR2(30) Table where change occurred.

CHANGEGROUP VARCHAR2(30) Account where change occurred.

TOSITE NUMBER(6) DB_ID of the site where the change
will be replicated.

FROMSITE NUMBER(6) DB_ID of the site that made the
change.

Index name: Unique?: Columns indexed:

PK_CHANGEREC Yes CHANGENUM

Column name: Data type: Description:
DCHANGENUM 211

D
at

ab
as

e
S

tr
u

ct
u

re
s

Columns

Indexes

None.

DBOTYPEINFO

The CTSRP.DBOTYPEINFO table stores information about parameters used in
the creation tables and sequences.

Rows

A row is created in this table at installation time.

Columns

Column name: Data type: Description:

SITEID NUMBER(6) DB_ID of the site where the change is
made.

GROUPINDX NUMBER(6) Index of the account.

CHANGENUM NUMBER The change sequence.

Column name: Data type: Description:

INDX NUMBER(5)
212 Chapter 9: CTSRP Account

D
atab

ase S
tru

ctu
res
TYPENAME VARCHAR2(20) One of the following:

• DEFAULT

• TBL_ADMIN

• USR_DEFAULT

• TBL_USER

At installation, information related to
the creation of tables and sequences for
replication objects is stored in the N1
through N9 and S1 through S3
columns. The type of information that
is stored in those columns depends on
whether this type is DEFAULT
(information supplied by the Clintrial
software) or one of the other five types,
for which information is supplied at
installation.

PARENT NUMBER(5) Not used.

N1 NUMBER

N2 NUMBER

N3 NUMBER

N4 NUMBER

N5 NUMBER

N6 NUMBER

N7 NUMBER

N8 NUMBER

N9 NUMBER

 S1 VARCHAR2(40)

 S2 VARCHAR2(40)

 S3 VARCHAR2(40)

Column name: Data type: Description:
DBOTYPEINFO 213

D
at

ab
as

e
S

tr
u

ct
u

re
s

Indexes

None.

ERRORREC

The CTSRP.ERRORREC table stores information about replication errors.

A row is created in this table when a replication error occurs for a table in
replication.

Rows

One for each error.

Columns

Column name: Data type: Description:

ERRORNUM NUMBER Sequence identifying the error.

ERRORTYPE CHAR(1) Type of error:

• I — Insert

• U — Update

• D — Delete

ISUPLOAD CHAR(1) Did the error occur when uploading
data (Replication Subordinate site to
Replication Master site)?

Y — Yes

N — No

CHANGENUM NUMBER Change number from
CTSRP.CHANGEREC associated with
this error.

ERRORTAB VARCHAR2(30) Table where the error occurred.
214 Chapter 9: CTSRP Account

D
atab

ase S
tru

ctu
res
Index

GROUPDIST table

The CTSRP.GROUPDIST table stores information about replicated accounts per
site.

A row is created in this table when a site is added into replication for the account.

Rows

One for each site that is added into replication.

ERRORCODE NUMBER(8) Oracle error code associated with the
error.

ERRORGROUP VARCHAR2(30) The account (group) where the error
occurred.

ERRORMSG VARCHAR2
(240)

The error message associated with the
error.

ERRORTOSITE NUMBER(6) DB_ID of the site where the record is
being replicated.

Index name: Unique?: Columns indexed:

PK_ERRORREC Yes ERRORNUM

Column name: Data type: Description:
GROUPDIST table 215

D
at

ab
as

e
S

tr
u

ct
u

re
s

Columns

Indexes

None.

HSUBVIEW

The CTSRP.HSUBVIEW table stores information about horizontal subsets
applied to tables in replication. It is only populated at the Replication Master site
of the account.

A row is created in this table when a subset is placed on a replicating table.

Column name: Data type: Description:

SITEID NUMBER(6) DB_ID of the site particpating in
replication.

GROUPINDX NUMBER(6) Index of the replicating account.

PRIVLS CHAR(2) Privileges of the account:

• RW — Read/write

• RO — Read only

STATUS CHAR(2) Current status of account at the site.
See Multisite for a list of possible
statuses.

STATGOAL CHAR(2) Goal Status of account at the site. See
Multisite for a list of possible statuses.

LASTCHANGE NUMBER(8) Sequence identifying the last
replication change made for the
account to the site.

 JOBNO NUMBER(6) Oracle job number replicating this
account.
216 Chapter 9: CTSRP Account

D
atab

ase S
tru

ctu
res
Rows

One for each table and site combination.

Columns

Index

Column name: Data type: Description:

SITEID NUMBER(6) DB_ID of the site where the WHERE
clause is applied.

TABLEINDX NUMBER(6) Index assigned to the replicating table
from CTSRP.REPTABLE.

WCLAUSE VARCHAR2
(1000)

Current SQL restriction.

OLDWCLAUSE VARCHAR2
(1000)

Previous SQL restriction.

SUBTYPE CHAR(2) Subset type: HZ — Horizontal.

UPDATED CHAR(1) Indicates if the WHERE clause (subset)
has been updated:

• Y — Yes

• N — No

Index name: Unique?: Columns indexed:

U_SITE_TABLE_TYPE Yes SITEID, TABLEINDX, SUBTYPE
HSUBVIEW 217

D
at

ab
as

e
S

tr
u

ct
u

re
s

REPAUDIT

The CTSRP.REPAUDIT table stores information about the replication
history of the table.

A row is created in this table when a replication event occurs.

Rows

One for each replication event per group per site.

Columns

Column name: Data type: Description:

EVENT_DATE DATE The date the replication event occurred.
218 Chapter 9: CTSRP Account

D
atab

ase S
tru

ctu
res
EVENT_CODE CHAR(2) Replication event code associated with
the change:

UP — upload
UD — upload done
UE — upload error
UR — redo upload errors
DW — download begin
DD — download done
DE — download error
DR — redo download errors
HG — halt group
RG — resume group
EC — clear errors
EF — initial download
HC — halt client
HD — download while halting
RC — resume client
DC — drop client
AL — accepting invitation
TA — accepted invitation
FI — Finishing invitation
CH — halting
IU — initial uploading
CD — dropping

See Multisite for descriptions of the
event codes.

CDATA1 VARCHAR2
(100)

Name of a protocol.

CDATA2 VARCHAR2
(100)

Name of a site.

CDATA3 VARCHAR2
(100)

Not used.

CDATA4 VARCHAR2(6) Not used.

CDATA5 VARCHAR2(6) Not used.

CDATA6 VARCHAR2
(240)

Error messages.

Column name: Data type: Description:
REPAUDIT 219

D
at

ab
as

e
S

tr
u

ct
u

re
s

Index

REPGROUP

The CTSRP.REPGROUP table stores information about accounts that are in
replication.

A row is created in this table when a site becomes a Replication Master site or
Replication Subordinate site for an account.

Rows

One for each replicating account.

Columns

NDATA1 NUMBER(8) Error codes.

Index name: Unique?: Columns indexed:

U_SITE_TABLE_TYPE Yes SITEID, TABLEINDX, SUBTYPE

Column name: Data type: Description:

INDX NUMBER(6) Index assigned to the replicating
account.

NAME VARCHAR2(30) Name of the account in replication.

WILLGIVE CHAR(1) Not used; always N.

Column name: Data type: Description:
220 Chapter 9: CTSRP Account

D
atab

ase S
tru

ctu
res
Indexes

REPGROUPOWN

The CTSRP.REPGROUPOWN table stores information about which site is the
Replication Master site for an account. This table is only populated at the
Multisite Master site.

A row is created in this table when an account is registered for replication.

Rows

One for each account in replication.

OWNID NUMBER(6) DB_ID of the Replication Master site
for the account.

PROMOTEID NUMBER(6) Reserved.

REPCHANGE NUMBER(6) Number of pending replication
changes.

STATUS CHAR(2) Status of the account.

Index name: Unique?: Columns indexed:

PK_GROUP_INDX Yes INDX

U_GROUP_NAME Yes NAME

Column name: Data type: Description:
REPGROUPOWN 221

D
at

ab
as

e
S

tr
u

ct
u

re
s

Columns

Index

REPPARAMS

The CTSRP.REPPARAMS table is not used.

REPSITE

The CTSRP.REPSITE table stores information about sites particpating in
replication. This table may have different contents at each site in the replication
environment.

A row is created in this table when a site is designated as the Replication Master
site of a protocol at the Replication Subordinate site, or when the Replication
Subordinate site is invited into replication for an account by the Replication
Master site.

Rows

One for each known replication site.

Column name: Data type: Description:

NAME VARCHAR2(30) Name of the account in replication.

OWNID NUMBER(6) DB_ID of the Replication Master site
for the account.

Index name: Unique?: Columns indexed:

PK_GROUPOWN_NAME Yes NAME
222 Chapter 9: CTSRP Account

D
atab

ase S
tru

ctu
res
Columns

Indexes

Column name: Data type: Description:

DBID NUMBER(6) Unique identifier of the site.

NAME VARCHAR2(20) User given name identifying
the site.

STATUS CHAR(2) Status of the site.

DBNAME VARCHAR2(40) Global database name of the site.

SITETYPE CHAR(1) The type of the site:

C — Multisite Master

N — Non-Master

R — Remote

ISHERE CHAR(1) Indicates if this is the local site:

Y — Site is local.

N — Site is not local.

SQLNET VARCHAR2(60) SQL* Net alias of the site.

PKEY NUMBER(8) CTSRP internal information.

Index name: Unique?: Columns indexed:

PK_SITE_DBID Yes DBID

U_SITE_NAME Yes NAME
REPSITE 223

D
at

ab
as

e
S

tr
u

ct
u

re
s

REPTABLE

The CTSRP.REPTABLE table stores information about tables in
replication.

A row is created in this table when a table is added into replication for an
account.

Rows

One for each table in replication.

Columns

Index

Column name: Data type: Description:

INDX NUMBER Sequence of the replicating table.

NAME NUMBER(7) Name of the table in replication.

GROUPINDX VARCHAR2(30) Unique identifier of the replicating
group, from CTSRP.REPGROUP.

STATUS CHAR(2) Replication status of the table.

Index name: Unique?: Columns indexed:

PK_TABLE_INDX Yes INDX
224 Chapter 9: CTSRP Account

D
atab

ase S
tru

ctu
res
Overview 226

DISCREP_STATE panel 226

DISCREP_TRANSITION panel 229

INVESTIGATOR panel 232

VCT_ERRORITEM panel 233

VCT_ERRORSTATUS panel 235

10 CTRESOLVEREF Protocol
 225

D
at

ab
as

e
S

tr
u

ct
u

re
s

Overview

In order to use Resolve, the CTRESOLVEREF protocol must be imported. This
protocol includes the following panels:

• CONTEXT – A placeholder panel that makes the installation of the
VCT_ERRORSTATUS Type 4 panel possible.

• DISCREP_STATE

• DISCREP_TRANSITION

• INVESTIGATOR

• VCT_ERRORITEM

• VCT_ERRORSTATUS

Resolve uses the update tables, not the data tables, for panels in the
CTRESOLVEREF protocol.

DISCREP_STATE panel

The DISCREP_STATE panel defines valid discrepancy statuses for the
CTV_DSTATUS item in the VCT_ERRORSTATUS panel. For each record
(discrepancy status), the items in this panel also determine whether:

• The discrepancy status is a terminal status.

• Users with specific access rights can modify discrepancy records in this
status.

• Users with specific access rights can change records to this status.

The DISCREP_STATE panel is a Clintrial software Type 0 panel.

Rows

One per discrepancy status.
226 Chapter 10: CTRESOLVEREF Protocol

D
atab

ase S
tru

ctu
res
Columns

Column name: Data type: Description:

CODE Text Letter code representing a discrepancy status.
Used by the DISCREP_TRANSITION panel and
the Resolve program. Do not edit.

VALUE Text Name for display in dialog boxes and
drop-down lists.

LABEL Text Not used for records supplied with Resolve. Lets
you create a codelist for use in other Clintrial
software modules. Accepts up to 40 characters.

LONGLABEL Text Not used for records supplied with Resolve. Lets
you create a codelist for use in other Clintrial
software modules. Accepts up to 80 characters.

END_FINAL Number Determines whether this is a terminal
discrepancy status:

0 — no (not final)

1 — yes (final)

PROPOSE_CAN-
_CHANGETO

Number Indicates whether a user with the PROPOSE
access right can set a discrepancy record to this
discrepancy status:

0 — no (cannot change to)

1 — yes (can change to)

PROPOSE_CAN-
_MODIFY

Number Indicates whether a user with the PROPOSE
access right can modify a discrepancy record that
is in this discrepancy status:

0 — no (cannot modify)

1 — yes (can modify)

MANAGE_CAN-
_CHANGETO

Number Indicates whether a user with the MANAGE
access right can set a discrepancy record to this
discrepancy status:

0 — no (cannot change to)

1 — yes (can change to)
DISCREP_STATE panel 227

D
at

ab
as

e
S

tr
u

ct
u

re
s

Indexes

No indexes are created for this panel other than the standard Clintrial software
indexing.

Installed values

When the CTRESOLVEREF protocol is imported, the following values are
supplied in the DISCREP_STATE panel:

MANAGE_CAN-
_MODIFY

Number Indicates whether a user with the MANAGE
access right can modify a discrepancy record that
is in this discrepancy status:

0 — no (cannot modify)

1 — yes (can modify)

ALLOW_DUP Number Determines whether a new discrepancy record
can be added if a duplicate is found in the same
status when running validation.

0 — no (cannot add)

1 — yes (can add)

Code: Value:
End
Final:

Propose
Can Chg:

Propose
Can Mod:

Manage
Can Chg:

Manage
Can Mod:

Allow
Dup:

ACD Autoclosed 1 0 0 0 1 1

ACM Obsolete 1 0 0 0 0 1

CN Confirmed As Is 1 0 0 1 0 0

LK Linked 1 0 0 1 0 0

N New 0 0 0 1 1 0

NO No Action Needed 1 0 0 1 0 0

Column name: Data type: Description:
228 Chapter 10: CTRESOLVEREF Protocol

D
atab

ase S
tru

ctu
res
DISCREP_TRANSITION panel

The CTRESOLVEREF.DISCREP_TRANSITION panel defines valid
discrepancy transitions for the CTV_DSTATUS item in the
VCT_ERRORSTATUS panel. This is a Clintrial software Type 0 panel.

Rows

One per permitted discrepancy transition.

RA Resolution
Applied

1 0 0 1 0 1

REI Reissued 1 0 0 1 0 0

REL Released 0 0 1 1 0 0

RI Resolved
Internally

1 0 0 1 0 0

RM Resolved
Manually

1 0 0 1 0 1

RP Resolution
Proposed

0 1 0 1 1 0

RTS Ready To Send 0 1 0 0 1 0

S Sent 0 0 0 0 1 0

SD Source Deleted 1 0 0 1 0 0

UN Unresolvable 1 0 0 1 0 0

Code: Value:
End
Final:

Propose
Can Chg:

Propose
Can Mod:

Manage
Can Chg:

Manage
Can Mod:

Allow
Dup:
DISCREP_TRANSITION panel 229

D
at

ab
as

e
S

tr
u

ct
u

re
s

Columns

Indexes

No indexes are created for this panel other than the standard Clintrial software
indexing.

Installed values

When the CTRESOLVEREF protocol is imported, the following values are
supplied in the DISCREP_TRANSITION panel:

Column name: Data type: Description:

START_STATE Text Code representing a discrepancy status (see
DISCREP_STATE panel).

END_STATE Text Code of the same or another discrepancy status.
Each DISCREP_TRANSITION record
represents a possible transition from the
START_STATE to the END_STATE. To change
a given discrepancy status, your options are
limited to the set of discrepancy statuses that has
a relationship with it, as defined by a record in
this panel.

Start State: End State: Start State: End State:

ACD RTS RP REI

CN RP RP LK

LK N RP RA

N ACD RP UN

N ACM RP CN

N NO RP SD
230 Chapter 10: CTRESOLVEREF Protocol

D
atab

ase S
tru

ctu
res
Note: Unlike the other codes in this table, REITO does not refer to a specific
discrepancy status. Instead, this code indicates the discrepancy statuses that you
can assign to the newly created discrepancy record when you reissue an existing
discrepancy record. Only statuses with an REITO transition on file are available
for the new discrepancy record when you change the status of an existing record
to Reissued.

N LK RP RM

N RI RTS ACD

N REL RTS ACM

NO N S ACD

REITO
(See Note.)

N S ACM

REITO
(See Note.)

REL S RP

REITO
(See Note.)

RTS S REI

REL ACD S LK

REL ACM S CN

REL RTS S RA

REL RP S RM

RI N S SD

RP ACD S UN

RP ACM UN RP

Start State: End State: Start State: End State:
DISCREP_TRANSITION panel 231

D
at

ab
as

e
S

tr
u

ct
u

re
s

INVESTIGATOR panel

The INVESTIGATOR panel stores identifying data for investigators.
One record is established in this panel for each investigator in the protocol.

The standard data discrepancy form installed with Resolve includes
data from this panel. You can also include references to items in this panel if you
redesign the standard data discrepancy form using PowerBuilder Version 7.0.2.

Rows

One per investigator.

Columns

Indexes

No indexes are created for this panel other than the standard Clintrial software
indexing.

Column name: Data type: Description:

INV_ID Text Stores the ID of an investigator.

INV_NAME Text Stores the name to print on data discrepancy
forms next to the investigator ID.

INV_ADDRESS Text Not used by the standard data discrepancy form.

INV_TELEPHONE Text Not used by the standard data discrepancy form.

INV_FAX Text Not used by the standard data discrepancy form.

INV_CRA Text Not used by the standard data discrepancy form.

INV_PROTOCOL Text Stores the name of a specific protocol. If the
investigator information in this record applies to
all protocols, enter an asterisk (*).
232 Chapter 10: CTRESOLVEREF Protocol

D
atab

ase S
tru

ctu
res
VCT_ERRORITEM panel

When you set up a protocol for Resolve, the VCT_ERRORITEM panel is copied
from the CTRESOLVEREF protocol to that protocol. The VCT_ERRORITEM
panel contains the names and values of items associated with an error. It also
contains columns where proposed new values can be entered for review by data
management. Each record in this panel identifies a data record (with the panel
name and CT_RECID) and an item (by the item name).

The VCT_ERRORITEM panel is a Type 0 panel. The primary keys for this
panel are:

• CTV_ERROR_ID

• CTV_PANEL

• CTV_DISCR_RECID

• CTV_ITEM_NAME

Rows

One per PL/SQL statement called for a VCT_ERRORITEM record.

Columns

Column name: Data type: Description:

CTV_ERROR_ID Number Unique identifier of the related VCT-
_ERRORSTATUS record. Joins VCT-
_ERRORITEM record(s) to a VCT-
_ERRORSTATUS record.

CTV_PANEL Text Name of the panel containing data associated
with this discrepancy record.

CTV_DISCR_RECID Text The CT_RECID item of the specific associated
data record.

CTV_DISCREP-
_PAGE_ID

Text Value of the page context item in the associated
data record.
VCT_ERRORITEM panel 233

D
at

ab
as

e
S

tr
u

ct
u

re
s

Index

In addition to standard Clintrial software indexing, the following index is created
for this panel:

VCT_ERRORSTATUS panel

When you set up a protocol for Resolve, the VCT_ERRORSTATUS panel is
copied from the CTRESOLVEREF protocol to that protocol. The
VCT_ERRORSTATUS panel is a Type 4 panel.

CTV_DISCREP-
_BLOCK

Text Value of the block context item in the associated
data record.

CTV_ITEM_NAME Text Name of the specific item that you want to
associate with this discrepancy record.

CTV_ITEM_VALUE Text Value of the specific item at the time the
discrepancy was detected.

CTV_NEW_VALUE Text Proposed new value for the specified item (or
null).

CTV_NEW_VALUE-
_GIVEN

Number Check box indicating whether or not a new value
has been provided. If not checked, indicates that
no new value has been provided. Check to
indicate that a New Value has been provided.

CTV_REPEAT_ID Text Optional description to provide contextual
information about the item.

CTV_REASON Text Stores descriptive text or a code from the
CTS_REASON_CODES codelist to describe the
change made from the existing item value to the
new value.

Index name: Unique?: Columns indexed:

VCT_ERRORITEM_UERR2IX No CTV_ERROR_ID

Column name: Data type: Description:
234 Chapter 10: CTRESOLVEREF Protocol

D
atab

ase S
tru

ctu
res
Rows

One per discrepancy.

Columns

Column name: Data type: Description:

CTV_ERROR_ID Number Identifying number for a discrepancy record. ID
numbers are unique within a
protocol.

CTV_SOURCE Text The source of a discrepancy:

• MANUAL

• RULE

• FLAG

• CLASSIFY

CTV_CONTEXT1 Text Value of first context item (subject identifier)
from the data record that is the source of the
discrepancy.

CTV_REMARKS Text Description of the data error; provided by the
creator of the discrepancy record. For
discrepancy records created by rules, the
description provided within the rule is
supplied.

CTV_REPLACE-
_REMARKS

Text Allows a reviewer to replace the description in
the CTV_REMARKS column. When this
column has a value, it displays on data
discrepancy forms in place of CTV_REMARKS.
For discrepancy records created by rules, the
description provided within the rule is supplied.

CTV_ADDTL-
_REMARKS

Text Appended to CTV_REMARKS or to
CTV_REPLACE_REMARKS on standard data
discrepancy forms.

CTV_COMMENTS_1 Text Internal comments from the first review (data
management). Does not appear on standard data
discrepancy forms.
VCT_ERRORSTATUS panel 235

D
at

ab
as

e
S

tr
u

ct
u

re
s
 CTV_COMMENTS_2 Text Internal comments from a second review. Does

not appear on standard data discrepancy forms.

CTV_DSTATUS Text Discrepancy status of the record (for example,
New or Ready to Send). See the
DISCREP_STATE panel.

CTV_STATUS-
_CHANGE _DT

Date Date and time that CTV_DSTATUS was last
modified.

CTV_PRIORITY Number Stores a priority. For example, a three point scale
(1, 2, 3) can indicate discrepancies of high,
medium, or low priority.

• For records created by rules, the priority can
be assigned automatically.

• For manually entered records, the person
creating the record enters a priority.

CTV_CLOSED-
_DATE

Date Date and time the record is placed in a terminal
discrepancy status (such as Resolution Applied
or Linked).

CTV_CONFIRMA-
TION_FLA

Number Indicates that a resolution for the discrepancy
record has been entered in the database, and only
confirmation from the investigator is needed. In
the More Detail window set the Query for
Confirmation check box, or by the Discrepancy
menu’s Query for Confirmation command.
Check this check box to indicate that necessary
changes have already been made to the database.
If this check box is left unchecked (the default),
it indicates that no changes have been made to
data records and that a resolution is needed from
the investigator.

CTV_PROPOSAL-
_TEXT

Text Description of a proposed resolution. Useful for
complex resolutions or if no VCT_ERRORITEM
records are associated with the discrepancy
record.

Column name: Data type: Description:
236 Chapter 10: CTRESOLVEREF Protocol

D
atab

ase S
tru

ctu
res
CTV_RESOLUTION-
_CODE

Text Stores descriptive text or a code from the
CTS_REASON_CODES codelist to indicate a
resolution reason (for example, original value
confirmed or corrected value supplied). Supplied
automatically from system parameters as
follows:

• From CTV_APPL_RES_CODE during
applied proposed value processing.

• From CTV_AUTOCLOSED_RES when
validation autocloses a discrepancy record.

• From CTV_OBSOLETE_RES when a
discrepancy record’s status is updated to
Obsolete.

CTV_RESOLUTION-
_COMM

Text Message explaining an unusual resolution or the
reason for the change.

CTV_LINKED-
_ERROR_ID

Number CTV_ERROR_ID of another discrepancy
record. Used for records in Linked or Reissued
discrepancy status to point to the discrepancy
record that remains open.

CTV_RULE_NAME Text For records created by rules, stores the name of
the rule.

CTV_FORM-
_BATCH_NUM

Number Identifier assigned to all records in a batch of
data discrepancy forms. All records in a batch
have the same batch number. This number can be
used to recall the batch for reprinting, or to
browse for and display records once the forms
are returned.

CTV_FORM-
_BATCH_DATE

Date Date and time the batch was printed. All records
in a batch have the same Form Batch Date.

CTV_BATCH-
_ORDER_NUM

Number A number that sorts discrepancy records in a
batch into the order in which they appeared on
printed data discrepancy forms.

CTV_PANEL Text Name of the panel containing the primary
clinical data record associated with the
discrepancy record.

Column name: Data type: Description:
VCT_ERRORSTATUS panel 237

D
at

ab
as

e
S

tr
u

ct
u

re
s

Indexes

In addition to standard Clintrial software indexing, the following indexes are
created for this panel:

CTV_DISCR_RECID Text CT_RECID of the primary data record associated
with the discrepancy record.

CTV_ORCTABLE Text Oracle table where the primary data record was
at the time the discrepancy was detected (that is,
update or data).

CTV_DISCREP-
_PAGE_ID

Text Value of the page context item of the primary
record.

CTV_DISCREP-
_BLOCK

Text Value of the block context item of the primary
record.

CTV_REC_MOD-
DATE

Date Date of last modification of the primary record at
the time the discrepancy was detected.

CTV_ERRDT Date Date and time the record was first inserted into
the VCT_ERRORSTATUS panel.

CTV_ERRTYPE Text Process that created the discrepancy record:
VALIDATE, FLAG, MERGE, MANUAL, or
CLASSIFY.

CTV_ERRACT Text For records created by rules, error action (Report
or Reject) taken by the rule.

Index name: Unique?: Columns indexed:

VCT_ERRORSTATUS_UERRIX Yes CTV_ERROR_ID

VCT_ERRORSTATUS-
_UPANRULREC

No CTV_PANEL,
CTV_RULE_NAME,
CTV_DISCR_RECID

Column name: Data type: Description:
238 Chapter 10: CTRESOLVEREF Protocol

D
atab

ase S
tru

ctu
res
VCT_ERRORSTATUS panel 239

D
at

ab
as

e
S

tr
u

ct
u

re
s

240 Chapter 10: CTRESOLVEREF Protocol

D
atab

ase S
tru

ctu
res
Overview 242

CTL_NORMAL_RANGE panel 242

CTL_UNIT_CONVERSION panel 243

11 CTL_REFERENCE
Protocol
 241

D
at

ab
as

e
S

tr
u

ct
u

re
s

Overview

The CTL_REFERENCE protocol is a thesaurus-type protocol designed to help
Lab Loader users calculate and maintain lab normal ranges and perform SI unit
conversions using PL/SQL functions. This protocol includes the following
panels:

• CTL_NORMAL_RANGE

• CTL_UNIT_CONVERSION

CTL_NORMAL_RANGE panel

The CTL_NORMAL_RANGE panel is a Clintrial software Type 0 panel that
stores lab normal values and unit specifications for a particular lab, lab test,
gender, weight range, patient age range, and effective date range.

Rows

One per lab normal range.

Columns

Column name: Data type: Description:

CTL$LAB_ID VARCHAR2(40) Lab Identifier.

CTL$TEST VARCHAR2(40) Test code.

CTL$START-
_DATE

DATE Effective start date of normal range
test.

CTL$HIGH NUMBER(18,4) Test’s high normal value.

CTL$LOW NUMBER(18,4) Test’s low normal value.

CTL$UNIT VARCHAR2(40) Test units.
242 Chapter 11: CTL_REFERENCE Protocol

D
atab

ase S
tru

ctu
res
Indexes

None.

CTL_UNIT_CONVERSION panel

The CTL_UNIT_CONVERSION panel is a Clintrial software Type 0 panel that
stores unit conversions for a particular test.

Rows

One per unit conversion.

CTL$SEX VARCHAR2(40) Sex. You must enter a ‘.’ if the normal ranges
do not depend on sex.

CTL$AGE_LOW NUMBER(7,2) Age range minimum value. The value must
be > 0.

CTL$AGE_HIGH NUMBER(7,2) Age range maximum value.

CTL$AGE_UNITS VARCHAR2(40) Age units.

CTL$WT_LOW NUMBER(7,2) Weight range minimum value. The value
must be > 0.

CTL$WT_HIGH NUMBER(7,2) Weight range maximum value.

CTL$WT_UNIT VARCHAR2(40) Weight units.

Column name: Data type: Description:
CTL_UNIT_CONVERSION panel 243

D
at

ab
as

e
S

tr
u

ct
u

re
s

Columns

Indexes

None.

Column name: Data type: Description:

CTL$SRC_UNIT VARCHAR2(40) Unit to be converted FROM.

CTL$DEST_UNIT VARCHAR2(40) Unit to be converted TO.

CTL$TEST VARCHAR2(40) Test code. You must enter a ‘.’ if the
conversion does not depend on a Test
code.

CTL$MULTIPLY NUMBER(18,9) Multiplication factor. Default value is 1.

CTL$ADD NUMBER(18,9) Additive constant. Default value is 0.
244 Chapter 11: CTL_REFERENCE Protocol

D
atab

ase S
tru

ctu
res
Overview 246

L_PREF_TERM panel 247

L_LOW_LEVEL_TERM panel 249

L_MD_HIERARCHY panel 251

L_SOC_TERM panel 253

L_HLT_PREF_COMP panel 255

L_HLGT_HLT_COMP panel 256

L_HLGT_PREF_TERM panel 257

L_HLT_PREF_TERM panel 258

L_SOC_HLGT_COMP panel 260

L_SOC_INTL_ORDER panel 261

L_SPEC_CAT panel 262

L_SPEC_PREF_COMP panel 263

LLT_PT_SOC panel 264

SYNONYMS panel 265

STOPWORDS panel 266

Thesaurus views 267

Thesaurus algorithms 268

12 CT_MEDDRA Protocol
 245

D
at

ab
as

e
S

tr
u

ct
u

re
s

Overview

The CT_MEDDRA protocol is a thesaurus-type protocol specifically designed
to hold MedDRA thesaurus data that can be used for coding. This protocol
includes the following panels:

• L_PREF_TERM

• L_LOW_LEVEL_TERM

• L_MD_HIERARCHY

• L_SOC_TERM

• L_HLT_PREF_COMP

• L_HLGT_HLT_COMP

• L_HLGT_PREF_TERM

• L_HLT_PREF_TERM

• L_SOC_HLGT_COMP

• L_SOC_INTL_ORDER

• L_SPEC_CAT

• L_SPEC_PREF_COMP

• LLT_PT_SOC

• SYNONYMS

• STOPWORDS

In addition, six thesaurus views and three thesaurus coding algorithms are
provided for use with the CT_MEDDRA protocol. A set of MedDRA translation
functions are also provided. For information on the MedDRA functions, see
"MedDRA functions" on page 352. For more information on MedDRA see the
Manage section of Manage, Classify, and Lab Loader.
246 Chapter 12: CT_MEDDRA Protocol

D
atab

ase S
tru

ctu
res
L_PREF_TERM panel

The L_PREF_TERM panel stores information about the Preferred Term.

Rows

One per record.

Columns

Column name: Data type: Description:

PT_ENGLISH_TEXT VARCHAR2(100) Normalized content of PT_NAME.

NULL_FIELD VARCHAR2(1) This field is null.

PT_CODE NUMBER(8) 8-digit code to identify the Preferred Term.

PT_CODE_CHR VARCHAR2(8) Derived from PT_CODE for Character
Text.

PT_COSTART-_SYM VARCHAR2(21) Symbol allocated by the COSTART©
terminology.

PT_HARTS_CODE NUMBER(8) Code allocated by the HARTS©
terminology.

PT_ICD10_CODE VARCHAR2(8) Code allocated by the 10th Revision of
International Classification of Diseases,
ICD-10©.

PT_ICD9_CODE VARCHAR2(8) Code allocated by the 9th Revision of
International Classification of Diseases,
ICD-9.

PT_ICD9CM-_CODE VARCHAR2(8) Code allocated by the 9th Revision of
International Classification of Diseases,
Clinical Modification, ICD-9-CM©.

PT_JART_CODE VARCHAR2(6) Code allocated by the J-ART terminology.
L_PREF_TERM panel 247

D
at

ab
as

e
S

tr
u

ct
u

re
s

Indexes

PT_NAME VARCHAR2(100) Full name of the Preferred Term.

PT_SOC_CODE NUMBER(8) The primary System Organ Class to which
the Preferred Term is linked.

PT_WHOART-_CODE VARCHAR2(7) Code allocated by the WHO-ART©
terminology.

Index name: Unique?: Columns indexed:

PREF_TERM_DBIDX Yes PT_CODE

PT_VIEW_ENGLISH_THIDX No PT_ENGLISH_TEXT

IX1_PT02 Yes PT_NAME

IX1_PT03 No PT_SOC_CODE

Column name: Data type: Description:
248 Chapter 12: CT_MEDDRA Protocol

D
atab

ase S
tru

ctu
res
L_LOW_LEVEL_TERM panel

The L_LOW_LEVEL_TERM panel stores information about the Low Level
Term associated with the Preferred Term.

Rows

One per record.

Columns

Column name: Data type: Description:

LLT_ENGLISH_TEXT VARCHAR2(100) Normalized content of LLT_NAME.

LLT_CODE NUMBER(8) The 8-digit code to identify the Lowest
Level Term.

LLT_NAME VARCHAR2(100) Full name of Low Level Term.

LLT_CODE_CHR VARCHAR2(8) Derived from LLT_CODE for Character
Text.

LLT_COSTART-_SYM VARCHAR2(21) Symbol allocated by the COSTART©
terminology.

LLT_CURRENCY VARCHAR2(1) Indicates whether the Low Level Term is
current or noncurrent.

LLT_HARTS_CODE NUMBER(8) Code allocated by the HARTS©
terminology.

LLT_ICD10_CODE VARCHAR2(8) Code allocated by the 10th Revision of
International Classification of Diseases,
ICD-10©.

LLT_ICD9_CODE VARCHAR2(8) Code allocated by the 9th Revision of
International Classification of Diseases,
ICD-9.
L_LOW_LEVEL_TERM panel 249

D
at

ab
as

e
S

tr
u

ct
u

re
s

Indexes

LLT_ICD9CM-_CODE VARCHAR2(8) Code allocated by the 9th Revision of
International Classification of Diseases,
Clinical Modification, ICD-9-CM©.

LLT_JART_CODE VARCHAR2(6) Code allocated by the J-ART
terminology.

LLT_WHOART-_CODE VARCHAR2(7) Code allocated by the WHO-ART©
terminology.

PT_CODE NUMBER(8) 8-digit code to identify the Preferred
Term.

PT_CODE_CHR VARCHAR2(8) Derived from PT_CODE for Character
Text.

Index name: Unique?: Columns indexed:

LOW_LEVEL_TERM_DBIDX Yes LLT_CODE

LLT_VIEW_ENGLISH_THIDX No LLT_ENGLISH_TEXT

IX1_PT_LLT02 No LLT_NAME

IX1_PT_LLT03 No PT_CODE

Column name: Data type: Description:
250 Chapter 12: CT_MEDDRA Protocol

D
atab

ase S
tru

ctu
res
L_MD_HIERARCHY panel

The L_MD_HIERARCHY panel stores information from the MedDRA
1_MD_HIERARCHY table.

Rows

One per record.

Columns

Column name: Data type: Description:

HLGT_CODE NUMBER(8) The 8-digit code to identify the High Level
Group Term.

HLGT_NAME VARCHAR2(100) Full name of the High Level Group Term.

HLT_CODE NUMBER(8) 8-digit code to identify the High Level Term.

HLT_NAME VARCHAR2(100) Full name of the High Level Term.

NULL_FIELD VARCHAR2(1) This field is null.

PRIMARY_SOC-
_FG

VARCHAR2(1) Flag set to Y/N to indicate Primary SOC.

PT_CODE NUMBER(8) 8-digit code to identify the Preferred Term.

PT_NAME VARCHAR2(100) Full name of the Preferred Term.

PT_SOC_CODE NUMBER(8) The primary System Organ Class to which
the Preferred Term is linked.

SOC_ABBREV VARCHAR2(5) System Organ Class abbreviation.

SOC_CODE NUMBER(8) 8-digit code to identify the System Organ
Class.
L_MD_HIERARCHY panel 251

D
at

ab
as

e
S

tr
u

ct
u

re
s

Indexes
IX1_MD_HIER_04

SOC_NAME VARCHAR2(100) Full name of the System Organ Class.

Index name: Unique?: Columns indexed:

IX1_MD_HIER_01 No PT_CODE

IX1_MD_HIER_02 No HLT_CODE

IX1_MD_HIER_03 No HLGT_CODE

IX1_MD_HIER_04 No SOC_CODE

IX1_MD_HIER_05 No PT_SOC_CODE

Column name: Data type: Description:
252 Chapter 12: CT_MEDDRA Protocol

D
atab

ase S
tru

ctu
res
L_SOC_TERM panel

The L_SOC_TERM panel stores information about the System Organ Classes.

Rows

One per record.

Columns

Column name: Data type: Description:

SOC_ENGLISH_TE
XT

VARCHAR2(100) Normalized content of SOC_NAME.

SOC_CODE NUMBER(8) The 8-digit code to identify the Lowest Level
Term.

SOC_NAME VARCHAR2(100) Full name of the System Organ Class.

SOC_ABBREV VARCHAR2(5) System Organ Class abbreviation.

SOC_CODE_CHR VARCHAR2(8) Derived from SOC_CODE for Character
text.

SOC_COSTART-
_SYM

VARCHAR2(21) Symbol allocated by the COSTART©
terminology.

SOC_HARTS_COD
E

NUMBER(8) Code allocated by the HARTS©
terminology.

SOC_ICD10_CODE VARCHAR2(8) Code allocated by the 10th Revision of
International Classification of Diseases,
ICD-10©.

SOC_ICD9_CODE VARCHAR2(8) Code allocated by the 9th Revision of
International Classification of Diseases,
ICD-9.
L_SOC_TERM panel 253

D
at

ab
as

e
S

tr
u

ct
u

re
s

Indexes
IX1_MD_HIER_04

SOC_ICD9CM-
_CODE

VARCHAR2(8) Code allocated by the 9th Revision of
International Classification of Diseases,
Clinical Modification, ICD-9-CM©.

SOC_JART_CODE VARCHAR2(6) Code allocated by the J-ART terminology.

SOC_WHOART-
_CODE

VARCHAR2(7) Code allocated by the WHO-ART©
terminology.

Index name: Unique?: Columns indexed:

SOC_TERM_DBIDX Yes SOC_CODE

IX1_SOC02 No SOC_NAME

Column name: Data type: Description:
254 Chapter 12: CT_MEDDRA Protocol

D
atab

ase S
tru

ctu
res
L_HLT_PREF_COMP panel

The L_HLT_PREF_COMP panel stores information from the MedDRA
1_HLT_PREF_COMP table.

Rows

One per record.

Columns

Indexes

Column name: Data type: Description:

HLT_CODE NUMBER(8) 8-digit code to identify the High Level Term.

PT_CODE NUMBER(8) 8-digit code to identify the Preferred Term.

Index name: Unique?: Columns indexed:

IX1_HLT_PT01 No HLT_CODE

IX1_HLT_PT02 No PT_CODE
L_HLT_PREF_COMP panel 255

D
at

ab
as

e
S

tr
u

ct
u

re
s

L_HLGT_HLT_COMP panel

The L_HLGT_HLT_COMP panel stores information from the MedDRA
1_HLGT_HLT_COMP table.

Rows

One per record.

Columns

Indexes

Column name: Data type: Description:

HLGT_CODE NUMBER(8) 8-digit code to identify the High Level Group
Term.

HLT_CODE NUMBER(8) 8 digit code to identify the High Level Term.

Index name: Unique?: Columns indexed:

 IX1_HLGT_COMP_DBIDX Yes HLGT_CODE

HLT_CODE

 IX1_HLGT_HLT02 No HLGT_CODE
256 Chapter 12: CT_MEDDRA Protocol

D
atab

ase S
tru

ctu
res
L_HLGT_PREF_TERM panel

The L_HLGT_PREF_TERM panel stores information from the High Level
Group Terms.

Rows

One per record.

Columns

Column name: Data type: Description:

HLGT_CODE NUMBER(8) 8-digit code to identify the High Level Group
Term.

HLGT_NAME VARCHAR2(100) Full name of the High Level Group Term.

HLGT_COSTART_
SYM

VARCHAR2(21) Symbol allocated by the COSTART©
terminology.

HLGT_HARTS_CO
DE

NUMBER(8) Code allocated by the HARTS©
terminology.

HLGT_ICD10_COD
E

VARCHAR2(8) Code allocated by the 10th Revision of
International Classification of Diseases,
ICD-10©.

HLGT_ICD9_COD
E

VARCHAR2(8) Code allocated by the 9th Revision of
International Classification of Diseases,
ICD-9.

HLGT_ICD9CM-
_CODE

VARCHAR2(8) Code allocated by the 9th Revision of
International Classification of Diseases,
Clinical Modification, ICD-9-CM©.

HLGT_JART_COD
E

VARCHAR2(6) Code allocated by the J-ART terminology.
L_HLGT_PREF_TERM panel 257

D
at

ab
as

e
S

tr
u

ct
u

re
s

Indexes

L_HLT_PREF_TERM panel

The L_HLT_PREF_TERM panel stores information from the High Level Terms.

Rows

One per record.

Columns

HLGT_WHOART-
_CODE

VARCHAR2(7) Code allocated by the WHO-ART©
terminology.

Index name: Unique?: Columns indexed:

IX1_HLGT01 No HLGT_CODE

IX1_HLGT02 No HLGT_NAME

Column name: Data type: Description:

HLT_CODE NUMBER(8) 8-digit code to identify the High Level
Term.

HLT_NAME VARCHAR2(100) Full name of the High Level Term.

HLT_COSTART_SYM VARCHAR2(21) Symbol allocated by the COSTART©
terminology.

HLT_HARTS_CODE NUMBER(8) Code allocated by the HARTS©
terminology.

Column name: Data type: Description:
258 Chapter 12: CT_MEDDRA Protocol

D
atab

ase S
tru

ctu
res
Indexes

HLT_ICD10_CODE VARCHAR2(8) Code allocated by the 10th Revision of
International Classification of Diseases,
ICD-10©.

HLT_ICD9_CODE VARCHAR2(8) Code allocated by the 9th Revision of
International Classification of Diseases,
ICD-9.

HLT_ICD9CM-
_CODE

VARCHAR2(8) Code allocated by the 9th Revision of
International Classification of Diseases,
Clinical Modification, ICD-9-CM©.

HLT_JART_CODE VARCHAR2(6) Code allocated by the J-ART
terminology.

HLT_WHOART-
_CODE

VARCHAR2(7) Code allocated by the WHO-ART©
terminology.

Index name: Unique?: Columns indexed:

IX1_HLT01 No HLT_CODE

IX1_HLT02 No HLT_NAME

Column name: Data type: Description:
L_HLT_PREF_TERM panel 259

D
at

ab
as

e
S

tr
u

ct
u

re
s

L_SOC_HLGT_COMP panel

The L_SOC_HLGT_COMP panel stores information from the MedDRA
1_SOC_HLGT_COMP table.

Rows

One per record.

Columns

Indexes

Column name: Data type: Description:

HLGT_CODE NUMBER(8) 8-digit code to identify the High Level Group
Term.

SOC_CODE NUMBER(8) 8-digit code to identify the System Organ
Class.

Index name: Unique?: Columns indexed:

SOC_HLGT_COMP_DBIDX Yes SOC_CODE
HLGT_CODE

IX1_SOC_HLGT01 No SOC_CODE

IX1_SOC_HLGT03 No SOC_CODE
HLGT_CODE

<<OK thru here!>>
260 Chapter 12: CT_MEDDRA Protocol

D
atab

ase S
tru

ctu
res
L_SOC_INTL_ORDER panel

The L_SOC_INTL_ORDER panel stores information from the MedDRA
1_SOC_INTL_ORDER table.

Rows

One per record.

Columns

Indexes

Column name: Data type: Description:

INTL_ORD_CODE NUMBER(8) Serial code for international System Organ
Class sort order.

SOC_CODE NUMBER(8) 8-digit code to identify the System Organ
Class.

Index name: Unique?: Columns indexed:

IX1_INTL_ORD01 Yes INTL_ORD_CODE,
SOC_CODE
L_SOC_INTL_ORDER panel 261

D
at

ab
as

e
S

tr
u

ct
u

re
s

L_SPEC_CAT panel

The L_SPEC_CAT panel stores information about the Special Search Category
from the MedDRA 1_SPEC_CAT table.

Rows

One per record.

Columns

Indexes

Column name: Data type: Description:

SPEC_ABBREV VARCHAR2(10) Special Search Category abbreviation.

SPEC_CODE NUMBER(8) Serial code for Special Search Category.

SPEC_NAME VARCHAR2(100) Full name of Special Search Category.

Index name: Unique?: Columns indexed:

SPEC_CAT_DBIDX Yes SPEC_CODE

IX1_SPEC02 No SPEC_NAME

IX1_SPEC03 No SPEC_ABBREV
262 Chapter 12: CT_MEDDRA Protocol

D
atab

ase S
tru

ctu
res
L_SPEC_PREF_COMP panel

The L_SPEC_PREF_COMP panel stores information from the MedDRA
1_SPEC_PREF_COMP table.

Rows

One per record.

Columns

Indexes

Column name: Data type: Description:

PT_CODE NUMBER(8)) 8-digit code to identify the Preferred Term..

SPEC_CODE NUMBER(8) Serial code for Special Search Category.

Index name: Unique?: Columns indexed:

SPEC_PREF_COMP_DBIDX Yes SPEC_CODE
PT_CODE

IX1_SPEC_PT02 No PT_CODE
SPEC_CODE
L_SPEC_PREF_COMP panel 263

D
at

ab
as

e
S

tr
u

ct
u

re
s

LLT_PT_SOC panel

The LLT_PT_SOC panel stores information about the aggregated data for Low
Level Term (LLT), Preferred Term (PT) and System Organ Class (SOC).

Rows

One per record.

Columns

Column name: Data type: Description:

HLGT_CODE NUMBER(8) 8-digit code to identify the High Level Group
Term.

HLGT_NAME VARCHAR2(100) Full name of the High Level Group Term.

HLT_CODE NUMBER(8) 8-digit code to identify the High Level Term.

HLT_NAME VARCHAR2(100) Full name of the High Level Term.

LLT_CODE NUMBER(8) 8-digit code to identify the Low Level Term.

LLT_CODE_CHR VARCHAR2(8) Derived from LLT_CODE for Character
Text.

LLT_ENGLISH_TE
XT

VARCHAR2(100) English Text for the Low Level Term.

LLT_NAME VARCHAR2(100) Full name of the Low Level Term.

PT_CODE NUMBER(8) 8-digit code to identify the Preferred Term.

PT_CODE_CHR VARCHAR2(8) Derived from PT_CODE for Character Text.

PT_NAME VARCHAR2(100) Full name of the Preferred Term.
264 Chapter 12: CT_MEDDRA Protocol

D
atab

ase S
tru

ctu
res
SYNONYMS panel

The SYNONYMS panel stores information about thesaurus synonyms.

Rows

One per synonym.

Columns

Index

SOC_CODE NUMBER(8) 8-digit code to identify the System Organ
Class.

SOC_CODE_CHR VARCHAR2(8) Derived from SOC_CODE for Character
Text.

SOC_NAME VARCHAR2(100) Full name of the System Organ Class.

Column name: Data type: Description:

CODE1 VARCHAR2(8) Synonym code.

CODE2 VARCHAR2(8) Synonym code.

ENGLISH_TEXT VARCHAR2(100) Full text of the synonym.

Index name: Unique?: Columns indexed:

LLT_SYNONYMS_ENGLISH-
_THIDX

No ENGLISH_TEXT

Column name: Data type: Description:
SYNONYMS panel 265

D
at

ab
as

e
S

tr
u

ct
u

re
s

STOPWORDS panel

The STOPWORDS panel stores stopwords that thesaurus algorithms use in
coding.

Rows

One per stopword.

Column

Index

Column name: Data type: Description:

ENGLISH_TEXT VARCHAR2(100) Full text of the stopword.

Index name: Unique?: Columns indexed:

STOPWORDS_ENGLISH_THIDX Yes ENGLISH_TEXT
266 Chapter 12: CT_MEDDRA Protocol

D
atab

ase S
tru

ctu
res
Thesaurus views

Six thesaurus views are provided for use with the CT_MEDDRA thesaurus
protocol.

View name: For coding on: Based on panel: Text item: Code1 item:

PT_VIEW Preferred Terms L_PREF_TERM PT_ENGLISH
_TEXT

PT_CODE_C
HR

PT_LLT_VIEW Preferred Terms L_LOW_LEVEL-
_TERM

LLT_ENGLIS
H_TEXT

PT_CODE_C
HR

PT_SYNONYMS SYNONYMS ENGLISH_TE
XT

CODE1

LLT_VIEW Low Level
Terms

L_LOW_LEVEL_
TERM

LLT_ENGLIS
H-_TEXT

LLT_CODE_
CHR

LLT
_SYNONYMS

SYNONYMS ENGLISH-
_TEXT

CODE1

STOPWORDS STOPWORDS ENGLISH-
_TEXT
Thesaurus views 267

D
at

ab
as

e
S

tr
u

ct
u

re
s

Thesaurus algorithms

Three thesaurus coding algorithms are provided for use with the CT_MEDDRA
thesaurus protocol.

Algorithm
name:

For coding on: Based on views: Preferred view:

LLT_PT_SOC
_ALG

LLT, PT, SOC LLT_PT_SOC_VIEW LLT_PT_SOC_VIEW

PT_ALG Preferred Terms PT_VIEW
PT_LLT_VIEW
PT_SYNONYMS
STOPWORDS

PT_VIEW

LLT_ALG Low Level Terms LLT_VIEW
LLT_SYNONYMS
STOPWORDS

LLT_VIEW
268 Chapter 12: CT_MEDDRA Protocol

D
atab

ase S
tru

ctu
res
IMPORT_PARAMS 270

13 PXFR_RECV Account
 269

D
at

ab
as

e
S

tr
u

ct
u

re
s

Note: This account has not been documented previously, because all the tables
were identical to those in the CTS or CTSDD accounts.

IMPORT_PARAMS

The PXFR_RECV.IMPORT_PARAMS table stores information for each
protocol in the process of being imported. This allows the protocol import
process to be continued after reconciliation of codelists, flags and notes.

Rows

One for each protocol in the process of being imported.

Columns

Index

Column name: Data type: Description:

PROTOCOL VARCHAR2(20) Name of the protocol.

DIRECTORY VARCHAR2(30) Oracle directory for the dump file.

FILENAME VARCHAR2(240) Name of the dumpfile.

LOGDIR VARCHAR2(30) Oracle directory for the log file.

LOGNAME VARCHAR2(240) Name of the log file.

LOAD_DATA NUMBER(1) Include data in load?

1 — Yes

0 — No

Index name: Unique?: Columns indexed:

IMPORT_PARAMS_PK Yes PROTOCOL
270 Chapter 13: PXFR_RECV Account

D
atab

ase S
tru

ctu
res
IMPORT_PARAMS 271

D
at

ab
as

e
S

tr
u

ct
u

re
s

272 Chapter 13: PXFR_RECV Account

D
atab

ase S
tru

ctu
res
CTL_DUPLICATE table 274

CTL_CONTROL_FILE table 275

CTL_MAP table 276

CTL_MAP_ITEM table 278

14 Lab Loader Tables
 273

D
at

ab
as

e
S

tr
u

ct
u

re
s

CTL_DUPLICATE table

The protocol-name.CTL_DUPLICATE table exists only in protocols that use
Lab Loader to receive transferred data. This table stores record-level information
about Lab Loader duplicates. It is created in a destination protocol account at the
first attempt to transfer records into a table in the protocol.

Rows

One per duplicate record detected.

Columns

Index

Column name: Data type: Description:

JOB_ID NUMBER(10) Job ID of the transfer job in which the
duplicate was detected.

MAP_ID NUMBER(15) Name of the transfer map used for the
transfer.

PROTOCOL VARCHAR2(20) Name of the source protocol from
which the record was transferred.

PANEL VARCHAR2(20) Name of the destination panel where
the duplicate resides.

CT_RECID_U VARCHAR2(40) CT_RECID of the duplicate record in
the update table.

CT_RECID_D VARCHAR2(40) CT_RECID of the duplicate record in
the data table. This column can be
NULL.

Index name: Unique?: Columns indexed:

CTL_DUPLICATE_INDX No JOB_ID
274 Chapter 14: Lab Loader Tables

D
atab

ase S
tru

ctu
res
CTL_CONTROL_FILE table

The CTSDD.CTL_CONTROL_FILE table exists only if Lab Loader is installed
on the server. This table stores information about control files in the Lab Loader
control file library.

Rows

One per control file saved to the control file library.

Columns

Column name: Data type: Description:

PROTOCOL VARCHAR2(20) Name of the protocol with which the
control file is associated.

NAME VARCHAR2(20) Name of the control file.

DESCRIP VARCHAR2(240) Text description of the control file.
This column value can be NULL.

OBJECT_ID NUMBER(15) A unique identifier for the object,
taken from the CTSDD.OBJINDX
table.

MODDATE DATE Date and time at which the
control file was created or last
modified.

MODUSER VARCHAR(20) User account that created or last
modified the control file.

DB_ID NUMBER(5) Obsolete.
CTL_CONTROL_FILE table 275

D
at

ab
as

e
S

tr
u

ct
u

re
s

Index

CTL_MAP table

The CTSDD.CTL_MAP table exists only if Lab Loader is installed on the
server. This table stores information about Lab Loader transfer maps.

Rows

One per transfer map.

Columns

Index name: Unique?: Columns indexed:

CTL_CONTROL_FILE_PK Yes PROTOCOL, NAME

Column name: Data type: Description:

MAP_ID NUMBER(15) A unique internal tracking
number. Used to index
CTSDD.CTL_MAP_ITEM.

NAME VARCHAR2(20) Name of the transfer map.

DEST_PROTOCOL VARCHAR2(20) Name of the destination
protocol.

SRC_PROTOCOL VARCHAR2(20) Name of the source protocol.

SRC_PANEL VARCHAR2(20) Name of the source panel.

DESCRIP VARCHAR2(240) Text of the map comment field. This
column value can be NULL.
276 Chapter 14: Lab Loader Tables

D
atab

ase S
tru

ctu
res
Index

STATUS NUMBER(1) Status of the transfer map.

0 — The map is known to be valid.

1 — The map is known to be
invalid. For example, the source
protocol, source panel, or
destination protocol has been
deleted after the map was created, or
the Data types of items no longer
match.

2 — The map is outdated. One of the
source or destination protocols or
panels has been edited more recently
than the map.

3 — The map is incomplete. That is,
the map was saved before all
necessary changes were entered. For
example, panel keys have not yet
been mapped.

MODDATE DATE Date and time at which the
transfer map was created or
last modified.

MODUSER VARCHAR(20) User account that created or last
modified the transfer map.

DB_ID NUMBER(5) Obsolete.

Index name: Unique?: Columns indexed:

CTL_MAP_PK Yes NAME, DEST_PROTOCOL,
SRC_PROTOCOL, SRC_PANEL

Column name: Data type: Description:
CTL_MAP table 277

D
at

ab
as

e
S

tr
u

ct
u

re
s

CTL_MAP_ITEM table

The CTSDD.CTL_MAP_ITEM table exists only if Lab Loader is installed on
the server. This table stores information about the items in Lab Loader transfer
maps.

Rows

One for each item within each transfer map.

For each transfer map, there is one row for:

• Each non-context, non-system item with every destination panel.

• Each context item for the destination protocol, if any of the destination
panels is Type 1-4. There is only one entry for each context item, even if that
context item appears in more than one of the destination panels.

• The [Destination Protocol] transfer map item.

Columns

Column name: Data type: Description:

MAP_ID NUMBER(15) The MAP_ID for a transfer map, taken
from the CTSDD.CTL_MAP table. This
column has the same value for all
entries for a given map.

DEST_PANEL VARCHAR2(20) Identifies the panel to which
the source expression is being mapped.
For [Destination Protocol] the value is
“-”.

DEST_ITEM VARCHAR2(20) Identifies the item to which the source
expression is being mapped.

For [Destination Protocol] the value is
“[Dest Protocol]”.
278 Chapter 14: Lab Loader Tables

D
atab

ase S
tru

ctu
res
Index

SRC_EXPR_TYPE NUMBER(1) With SRC_EXPR, determines the value
that maps into a given destination item.
It can have one of the following values:

0 — The destination item is unmapped.
Its value will be NULL after the transfer
has been formed.

1 — The value of the destination item is
taken from an item within the source
panel.

2 — The value of the destination item is
the job ID of the transfer job.

SRC_EXPR VARCHAR2(240) With SRC_EXPR_TYPE, determines
the value that maps into a given
destination item. It can have one of the
following values:

NULL — The destination item is
unmapped.

Source-item-name — The value of the
destination item is taken from this item.

[Job Id] — The value of the destination
item is the job ID of the transfer job.

DB_ID NUMBER(5) Obsolete.

Index name: Unique?: Columns indexed:

CTL_MAP_ITEM_PK Yes MAP_ID, DEST_PANEL, DEST_ITEM

Column name: Data type: Description:
CTL_MAP_ITEM table 279

D
at

ab
as

e
S

tr
u

ct
u

re
s

280 Chapter 14: Lab Loader Tables

 281

L
evel 1 b

leed
P

rogram
m

in
g

L
evel 3 b

leed

Part II: Programming

Chapter 15: Using PL/SQL in the Clintrial Software 283

Chapter 17: Using Data-Entry Processing Procedures 385

Chapter 16: Using Clintrial Software Functions 307

282

L
ev

el
 1

 b
le

ed
L

ev
el

 3
 b

le
ed

P
ro

gr
am

m
in

g

L
evel 1 b

leed
P

rogram
m

in
g

L
evel 3 b

leed
PL/SQL basics 285

What is PL/SQL? 285

What is a block? 285

Stored functions 286

Example: PL/SQL function 286

Stored procedures 287

Example: PL/SQL procedure 287

What is a package? 288

Package specification 288

Example: package specification 289

Package body 289

Example: package body 290

PL/SQL in the Clintrial software 291

How the term “function” is used 291

Types of functions 291

Copying functions between instances 292

Packages delivered with the Clintrial software 292

Calling a function 293

What are Clintrial software variables? 294

How to use Clintrial software variables 294

Process-related variables 294

Record-related variables 295

Rule-related variables 295

Derivation-related variable 296

“this” identifier 296

Converting values 297

Site-specific and protocol-specific functions 297

Where to store customized functions 297

Required system privileges 298

15 Using PL/SQL in the
Clintrial Software
 283

L
ev

el
 1

 b
le

ed
P

ro
gr

am
m

in
g

L
ev

el
 3

 b
le

ed
Parameter settings 298

Packaging customized functions 299

Steps to create a function 300

Compiling a function 300

Granting the EXECUTE privilege 301

Creating public synonyms 302

PL/SQL in derivations and rules 303

Using functions in derivations and rules 303

Using variables in derivations and rules 304

Validation procedures 305
284 Chapter 15: Using PL/SQL in the Clintrial Software

L
evel 1 b

leed
P

rogram
m

in
g

L
evel 3 b

leed
PL/SQL basics

What is PL/SQL?

PL/SQL is Oracle’s procedural language extension to SQL. Working with the
Clintrial software, you can use PL/SQL in:

• Derivations that are attached to panels.

• Rules that are attached to panels.

• Data-entry processing procedures that are attached to page templates, page
sections, or items.

For complete information about PL/SQL programming, see your Oracle
documentation.

What is a block?

The basic programming unit in PL/SQL is a block. A PL/SQL block is a unit of
PL/SQL code that groups together logically related declarations and statements.
A block consists of the following sections:

There are two types of blocks:

Section: Contents:

Header Mandatory section for named blocks. Includes the name,
parameter list, and RETURN clauses (for a function only). Does
not apply to anonymous blocks.

Declaration Optional section that declares variables, cursors, and sub-blocks
that are referenced in the execution and exception sections.

Execution Mandatory section that contains IF_THEN_ELSEs, LOOPs,
assignments, and calls to other blocks. Must contain at least one
executable statement.

Exception Optional section that handles exceptions to normal processing.
PL/SQL basics 285

L
ev

el
 1

 b
le

ed
P

ro
gr

am
m

in
g

L
ev

el
 3

 b
le

ed
• Anonymous block – A block that does not have a name, and cannot be called
by other PL/SQL code. An anonymous block can be run as a script or can be
nested in a named block or in another anonymous block.

• Named block – A block that has a name, and can be called by other PL/SQL
code. There are two types of named blocks: stored functions and stored
procedures.

Stored functions

A stored function returns a single value. You can pass information to a function
using the function’s parameter list.

The format of a stored function is:

FUNCTION function-name (parameter-list)
RETURN datatype
IS
declaration-statements

BEGIN
executable-statements

EXCEPTION
exception-handler-statements

END function-name;

Example: PL/SQL function

The following example is a stored function that compares the value of two dates
and determines whether the second date is greater than the first date:

FUNCTION date_compare
(date1 DATE,
date2 DATE)
return BOOLEAN IS

BEGIN
if (date2 > date1) then
return TRUE;
else
return FALSE;
end if;

END date_compare;
/

286 Chapter 15: Using PL/SQL in the Clintrial Software

L
evel 1 b

leed
P

rogram
m

in
g

L
evel 3 b

leed
Stored procedures

A stored procedure performs one or more actions. You can pass information into
and out of a procedure using its parameter list.

The format of a stored procedure is:

PROCEDURE procedure-name(parameter-list)
IS
declaration-statements

BEGIN
executable-statements

EXCEPTION
exception-handler-statements

END procedure-name;

Example: PL/SQL procedure

The following example is a stored procedure that sets the focus to the AECODE
item:

CREATE OR REPLACE PROCEDURE item_focus
(i_protocol VARCHAR2,
i_panel VARCHAR2,
i_table VARCHAR2,
i_colname VARCHAR2,
i_ct_recid VARCHAR2,
i_colvalue VARCHAR2,
i_itemvalues VARCHAR2,
o_result OUT INTEGER,
o_new_value OUT VARCHAR2,
o_message OUT VARCHAR2,
o_new_itemvalues OUT VARCHAR2)
IS

BEGIN
ct_event.item_focus(’AECODE’);

o_result := 1;
o_message := ‘Cursor moves to AE code.’;

END item_focus;
/

PL/SQL basics 287

L
ev

el
 1

 b
le

ed
P

ro
gr

am
m

in
g

L
ev

el
 3

 b
le

ed
What is a package?

A package is a saved collection of PL/SQL objects that are grouped together
within a BEGIN-END syntax. The objects can be cursors, variables, constants,
exception names, PL/SQL table and record TYPE statements, procedures, and
functions.

A package consists of:

• A package specification

• A package body

Package specification

The package specification contains the definition of public elements in the
package, that is, elements that can be referenced from outside the package. A
package can contain:

• Variable declarations

• TYPE declarations

• Exception declarations

• Cursor specifications

• Function specifications

• Procedure specifications

If the package specification includes specifications for a cursor, function, or
procedure, then there must be a package body.

The format of a package specification is:

PACKAGE package-name
IS
declarations-of-variables-and-types]

specifications-of-cursors

specifications-of-functions-and-procedures

END package-name;
288 Chapter 15: Using PL/SQL in the Clintrial Software

L
evel 1 b

leed
P

rogram
m

in
g

L
evel 3 b

leed
Example: package specification

The following example is a package specification for a package named
ct_valprocs:

CREATE OR REPLACE PACKAGE ct_valprocs
IS

FUNCTION date_compare
(date 1 DATE,
date 2 DATE)
return BOOLEAN;

FUNCTION item_not_null
(item1 VARCHAR2)
return BOOLEAN;

END ct_valprocs;
/

Package body

The package body contains the code that implements the package specification.
There must be a package body if the package specification includes specification
of cursors, functions, or procedures.

The format of a package body is:

PACKAGE BODY package_name
IS
declarations-of-variables-and-types

specification-and-SELECT-statements-of-cursors

specification-and-body-of-functions-and-procedures

BEGIN
executable-statements

EXCEPTION
exception-handler-statements

END package-name;
PL/SQL basics 289

L
ev

el
 1

 b
le

ed
P

ro
gr

am
m

in
g

L
ev

el
 3

 b
le

ed
Example: package body

The following example is a package named ct_valprocs, which stores two
functions, named date_compare and item_not_null:

CREATE OR REPLACE PACKAGE BODY ct_valprocs
IS

FUNCTION date_compare (date1 DATE, date2 DATE)
return BOOLEAN
IS

BEGIN

if (date2 > date1) then
return TRUE;
else
return FALSE;
end if;

END date_compare;

FUNCTION item_not_null
(item1 VARCHAR2)
return BOOLEAN
IS

BEGIN
if (item1 is not null) then
return TRUE;
else
return FALSE;
end if;
END item_not_null;

END ct_valprocs;
/

290 Chapter 15: Using PL/SQL in the Clintrial Software

L
evel 1 b

leed
P

rogram
m

in
g

L
evel 3 b

leed
PL/SQL in the Clintrial software

How the term “function” is used

In this chapter, and in the Clintrial software user interface, the term “function” is
used to refer to a PL/SQL stored function, procedure, or package. However,
where the distinction between these different types of objects is essential, the
specific type of object is identified.

Types of functions

You can use the following types of functions:

• Clintrial software functions, which are delivered with the Clintrial software
in packages. These packages are listed below and are described in detail in
Chapter 16. There are six types of Clintrial software functions:

– Basic functions

– String functions

– Resolve functions

– Lab Loader functions

– MedDRA functions

– Event utility functions

• Site-specific functions, which are defined by your site for use by multiple
protocols. For example, if you create a generic procedure to compare two
dates, you would probably set it up as site-specific because it would be useful
for multiple protocols. The next section describes how to create site-specific
functions.

• Protocol-specific functions, which are defined by your site for use by specific
protocols. For example, if a protocol is related to a drug used for joint pain,
and a procedure determines a score index for joint pain and joint swelling,
you would probably set up the procedure as protocol-specific. The next
section describes how to create protocol-specific functions.

Copying functions between instances

If you are using Multisite, you can copy customized functions between database
instances. One effect of the PROC_SITE_ACCOUNT and PROC_ACCOUNT
parameters (described on page 298) is to determine which customized functions
are available for copying in Multisite.
PL/SQL in the Clintrial software 291

L
ev

el
 1

 b
le

ed
P

ro
gr

am
m

in
g

L
ev

el
 3

 b
le

ed
For more information about copying functions between instances, see Multisite.

Packages delivered with the Clintrial software

the Clintrial software is delivered with predefined PL/SQL packages containing
variables, functions, and procedures that you can reference when using PL/SQL
for Clintrial software derivations, rules, or data-entry processing procedures.
These packages are listed in the following table:

PL/SQL package: Contents:

CT_GLOBAL Clintrial software variables, described on page 294.
Available for derivations and rules (but not data-entry
processing procedures).

CT_FUNC Basic functions, described in "Basic functions" on page 310.
Available for derivations, rules, and data-entry processing
procedures.

CT_STRING String functions, described in "String functions" on page
329. Available for derivations, rules, and data-entry
processing procedures.

CT_PROC-
_ACCOUNT

Privilege functions, described in "Privilege functions" on
page 344. Available for granting privileges to site-specific or
protocol-specific functions.

CTV_CORE Resolve functions, described in "Resolve functions" on page
345. Available for derivations and rules (but not data entry
processing procedures).

CTL_CORE Lab Loader functions, described in "Lab Loader functions"
on page 345. Available for derivations and rules (but not
data-entry processing procedures).

CT_MEDDRA MedDRA functions, described in "MedDRA functions" on
page 352. Available for derivations and rules (but not data-
entry processing procedures). Also used in Retrieve queries
for clinical data coded with a MedDRA thesaurus.

CT_EVENT Event utility functions, described in "Event utility functions"
on page 359. Available for data-entry processing procedures
(but not derivations and rules).
292 Chapter 15: Using PL/SQL in the Clintrial Software

L
evel 1 b

leed
P

rogram
m

in
g

L
evel 3 b

leed
Calling a function

To call a function (or procedure) from within the Clintrial software, use the
following format:

package-name.function-name

For the packages delivered with the Clintrial software (for example, CT_FUNC),
public synonyms have already been created. Thus, you do not need to specify the
owner account.

To call a site-specific or protocol-specific function (or procedure) from within
the Clintrial software, use the following format:

owner-account.function-name

If the function (or procedure) is in a package, use the following format:

owner-account.package-name.function-name

Page 302 describes how to create public synonyms. If you create a public
synonym for a function, procedure, or package, then you can use the public
synonym from within the Clintrial software.

What are Clintrial software variables?

The CT_GLOBAL package delivered with the Clintrial software contains
variables that you can reference in rules and derivations. For example,
ct_global.cts$panel is a Clintrial software variable that points to the current
panel; you can specify ct_global.cts$panel instead of the specific panel.

Note: The Clintrial software variables cannot be used in data-entry processing
procedures.

How to use Clintrial software variables

To use a Clintrial software variable within a rule or derivation, you must preface
the Clintrial software variable with ct_global. For example:

ct_global.variable-name
PL/SQL in the Clintrial software 293

L
ev

el
 1

 b
le

ed
P

ro
gr

am
m

in
g

L
ev

el
 3

 b
le

ed
Process-related variables

The following process-related variables are available:

Record-related variables

The following record-related variables are available:

Clintrial software
variable: Description:

cts$protocol Name of the current protocol.

cts$panel Name of the current panel.

cts$table Table type of the current Clintrial software table:

• UPDATE for the panel-name_UPDATE table

• DATA for the panel-name_DATA table

cts$tbl Name of the current table, for example,
MEDIKA_CLINICAL.ADV_UPDATE.

cts$err_date Date on which an error occurred for the current record. This is
the value of the ERRDT column in the protocol-
name.ERRORLOG table.

cts$err_type Process during which an error occurred for the current record;
this value is always VALIDATE. This is the value of the
ERRTYPE column in the protocol-name-.ERRORLOG table.

Clintrial software
variable: Description:

cts$ct_recid Value of the CT_RECID (a system item) for the record.

cts$subject_id Value of the SUBJECT_ID (a system item) for the record.

cts$subject Value of the subject item, as a text string.

cts$block Value of the block key item, as a text string.

cts$page Value of the page key item, as a text string.
294 Chapter 15: Using PL/SQL in the Clintrial Software

L
evel 1 b

leed
P

rogram
m

in
g

L
evel 3 b

leed
Rule-related variables

The following rule-related variables are available:

Derivation-related variable

The following derivation-related variable is available:

“this” identifier

Within a Clintrial software derivation or rule, you can refer to any item in the
current record by using the Clintrial software identifier “this” in the following
format:

this.item-name

cts$block_repeat Value of the block repeat key item, as a text string.

cts$page_repeat Value of the page repeat key item, as a text string.

cts$rec_moddate Value of the system item MERGE_DATETIME.

Clintrial software
variable: Description:

cts$rule_name Name of the current rule.

cts$err_msg Message text for the current rule.

cts$err_action Error action (REPORT or REJECT) resulting from the
current rule.

Clintrial software
variable: Description:

cts$deriv_name Name of the current derivation.

Clintrial software
variable: Description:
PL/SQL in the Clintrial software 295

L
ev

el
 1

 b
le

ed
P

ro
gr

am
m

in
g

L
ev

el
 3

 b
le

ed
The “this” identifier is a convenience. If you do not specify “this”, you must
specify the whole table name, including the protocol account name.

For example, suppose that you want to check whether values exist for the TEMP
and PULSE items in the update table or data table of the VITALS panel. You can
write the following rule in the Clintrial software:

ct_func.msg_if_empty(‘TEMP, PULSE’,
ct_string.make_list(this.temp,this.pulse));

This rule would apply regardless of whether validation is run for records in the
update table or the data table.

You cannot use the “this” identifier in CONTEXT_INIT, PANEL_INIT,
CONTEXT_END, and PANEL_END derivations, because there is no current
record. For the CONTEXT_INIT and PANEL_INIT derivations, all values are
NULL. For the CONTEXT_END and PANEL_END derivations, all values are
the same as for the last record that was processed.

Note: The “this” identifier cannot be used in the text of PL/SQL functions that
are stored outside of the Clintrial software. Thus, it cannot be used in data-entry
processing procedures.

Converting values

The following functions perform conversion of values to an appropriate Clintrial
software or Oracle format:

• CT_STRING.CHAR_TO_DATE

• CT_STRING.CHAR_TO_DATETIME

• CT_STRING.CHAR_TO_FLOAT

• CT_STRING.DATETIME_TO_CHAR

• CT_STRING.DATE_TO_CHAR

• CT_STRING.FLOAT_TO_CHAR

These functions are described in detail in Chapter 16.

Use these functions to pass values to and from the Clintrial software, for
example, when writing data entry processing procedures. Additionally, if you
use Multisite, you can use these functions to ensure that values are not
interpreted according to Oracle settings (such as the decimal separator or the
NLS_DATE_FORMAT parameter), which may vary on different servers.
296 Chapter 15: Using PL/SQL in the Clintrial Software

L
evel 1 b

leed
P

rogram
m

in
g

L
evel 3 b

leed
Site-specific and protocol-specific functions

Where to store customized functions

The Clintrial software does not provide support for customizations of the content
of the CTPROC account (or any other system account). The CTPROC account is
a privileged Oracle account containing Clintrial software code. To store
customized functions, you should set up special Oracle accounts.

You can set up the following Oracle accounts for customized
functions:

• An Oracle account to store site-specific, systemwide functions that are
available to all protocols in the Clintrial software database instance.

• For each protocol, an Oracle account to store protocol-specific functions that
are available to that protocol only. You may also choose to store protocol-
specific functions for more than one protocol in the same Oracle account.

Note: You can name these accounts whatever you want. This guide uses as
examples an account named CTSITEPROC to store site-specific functions, and
accounts named KA001PROC and FR001PROC to store protocol-specific
functions.

Required system privileges

An Oracle account that contains site-specific or protocol-specific functions
should have the following Oracle system privileges:

• CREATE SESSION

• CREATE PROCEDURE

• CREATE PUBLIC SYNONYM

• DROP PUBLIC SYNONYM

• ALTER ANY PROCEDURE

Parameter settings

If you set up an Oracle account to store site-specific functions, the protocol
parameter PROC_SITE_ACCOUNT should specify the name of that account. If
you set up an Oracle account to store protocol-specific functions, the protocol
parameter PROC_ACCOUNT should specify the name of that account.
Site-specific and protocol-specific functions 297

L
ev

el
 1

 b
le

ed
P

ro
gr

am
m

in
g

L
ev

el
 3

 b
le

ed
The accounts specified by these parameters are automatically given the
following Oracle object privileges:

• When a protocol is created, the SELECT privilege on the protocol’s
SUBJECT_BLOCK, SUBJECT_PAGE, TAGS, and TAGS_AUDIT tables

• When a panel is installed, the SELECT privilege on update table, data table,
and audit table for the panel, and on the panel-name_ALL view

Note: If you change the setting of PROC_SITE_ACCOUNT or
PROC_ACCOUNT, then the Clintrial software asks if you want to retroactively
grant privileges. If you answer Yes, then the preceding SELECT privileges are
granted to the protocol (or all protocols).

Additionally, the settings of the PROC_SITE_ACCOUNT and
PROC_ACCOUNT parameters:

• Affect the GRANT_EXECUTE_PRIVS function (described on
page 301).

• Determine which customized functions are listed in Design as available
when you create Clintrial software derivations and rules.

• Determine which customized functions are available for copying in
Multisite.

Note: It is not essential that you set the PROC_SITE_ACCOUNT or
PROC_ACCOUNT parameters to use customized functions; however, it is
recommended.

Packaging customized functions

You can store customized functions as stored functions or stored procedures, or
you can store them in packages. See your Oracle documentation for information
about the advantages of using PL/SQL packages.

Packages allow you to group together particular types of functions and
procedures. For example, you could create the following packages:

• A package to store site-specific functions and procedures used by Clintrial
software validation procedures (derivations and rules)

• A package to store site-specific Clintrial software data-entry processing
procedures

• For each protocol, a package to store protocol-specific functions and
procedures used in Clintrial software validation procedures (derivations and
rules)

• For each protocol, a package to store protocol-specific Clintrial software
data-entry processing procedures
298 Chapter 15: Using PL/SQL in the Clintrial Software

L
evel 1 b

leed
P

rogram
m

in
g

L
evel 3 b

leed
The following table is an example of accounts and packages that store site-
specific functions and protocol-specific functions for the KA001
protocol and FR001 protocols:

Steps to create a function

To create a site-specific or protocol-specific function for use with the Clintrial
software, you can use any third-party tools that enable you to write, compile, and
work with PL/SQL. You must do the following:

1. Write and save the function as a script file.

2. Compile the script file.

3. Grant the EXECUTE privilege on the function.

Note: This is necessary for functions called by derivations or rules, but not
for functions called by data-entry processing procedures.

4. Optionally create a public synonym for the function.

Compiling a function

To compile a site-specific or protocol-specific function, log in to the account that
should own the package, and compile the file(s) containing the function.

Note: The account in which you compile a function is referred to as the owner-
account in this guide.

For example, suppose that you write a site-specific function to be owned by the
CTSITEPROC account (or whatever you name the Oracle account that you
created to store site-specific functions). You create and save the following two
files and store them in your \Ct43 folder:

• ct_valprocs.sqh

Oracle account: Parameter setting: Packages:

CTSITEPROC PROC_SITE_ACCOUNT =
CTSITEPROC

ct_valprocs
ct_deprocs

KA001PROC PROC_ACCOUNT =
KA001PROC

ka001_valprocs
ka001_deprocs

FR001PROC PROC_ACCOUNT =
FR001PROC

fr001_valprocs
fr001_deprocs
Site-specific and protocol-specific functions 299

L
ev

el
 1

 b
le

ed
P

ro
gr

am
m

in
g

L
ev

el
 3

 b
le

ed
• ct_valprocs.sql

To compile the function:

1. Log in to the CTSITEPROC account.

2. Compile the function, for example:

SQL> @ C:\ct43\ct_valprocs.sqh;
SQL> @ C:\ct43\ct_valprocs.sql;

For a package containing protocol-specific functions, you would log in to the
account that stores the protocol-specific functions and perform the compilation.

Granting the EXECUTE privilege

Each protocol whose derivations or rules refer to a site-specific or protocol-
specific function must have the EXECUTE privilege on the function. To grant
the EXECUTE privilege, you can use the GRANT_EXECUTE_PRIVS in the
CT_PROC_ACCOUNT package that is delivered with the Clintrial software.

Note: You do not need to grant the EXECUTE privilege to data-entry
processing procedures; these procedures are called by Clintrial software code
that automatically has the required privileges. Also, the packages delivered with
the Clintrial software (for example, CT_FUNC) have already been granted the
EXECUTE privilege to PUBLIC.

To grant the EXECUTE privilege for a site-specific function:

1. Log in to the account that stores site-specific functions.

2. Enter the following:

SQL> execute ct_proc_account.grant_execute_privs (‘function-name’);

The Clintrial software grants the EXECUTE privilege on the function to all
protocols whose system parameter PROC_SITE_ACCOUNT is set to the
current account.

To grant the EXECUTE privilege for a protocol-specific function:

1. Log in to the account that stores protocol-specific functions.

2. Enter the following:

SQL> execute ct_proc_account.grant_execute_privs (‘function-name’);

The Clintrial software grants the EXECUTE privilege to all protocols whose
protocol parameter PROC_ACCOUNT is set to the current account.

For customized functions stored in accounts that are not specified by the
PROC_SITE_ACCOUNT or PROC_ACCOUNT, you must explicitly grant the
EXECUTE privileges to PUBLIC or to specific protocols.
300 Chapter 15: Using PL/SQL in the Clintrial Software

L
evel 1 b

leed
P

rogram
m

in
g

L
evel 3 b

leed
Creating public synonyms

You can create public synonyms for the following:

• Stored functions and stored procedures that are not in a package

• Packages (You can create a synonym for a package itself, but you cannot
create synonyms for the functions and procedures that are in the package.)

Although it is not mandatory, it is recommended that you create a public
synonym for each site-specific or protocol-specific package. If you do so, then
references to the package from Clintrial software derivations, rules, and data-
entry processing procedures, do not need to include the owner account.

Note: For the packages delivered with the Clintrial software (for example,
CT_FUNC), public synonyms have already been created.

To create a public synonym:

1. Log in to the Oracle account created to store site-specific or protocol-specific
functions. (These accounts should have the privileges needed to create and
drop public synonyms.)

2. Enter the following commands:

SQL> drop public synonym synonym-name;
SQL> create public synonym synonym-name for
SQL> owner-account.package-name;

Note: If the public synonym does not already exist, you do not need to drop it
before creating it.

For example, the following statement creates the public synonym ct_valprocs for
the ct_valprocs package owned by (compiled by) the ctsiteproc account:

SQL> create public synonym ct_valprocs for ctsiteproc.ct_valprocs;

Suppose that the ct_valprocs package includes a date_compare function. Once
you have created the public synonym ct_valprocs, then from within the Clintrial
software, you can write a rule as follows:

ct_valprocs.date_compare(this.stopdate,this.startdate);

If you had not created a public synonym, you would need to include the owner
account when calling the package:

ctsiteproc.ct_valprocs.date_compare(this.stopdate, this.startdate);
Site-specific and protocol-specific functions 301

L
ev

el
 1

 b
le

ed
P

ro
gr

am
m

in
g

L
ev

el
 3

 b
le

ed
PL/SQL in derivations and rules

Using functions in derivations and rules

When you are specifying the text of a derivation or rule in Design, you can use
the Syntax menu’s Functions command to cut and paste references to Clintrial
software functions, site-specific functions, and protocol-specific functions. The
Functions dialog box opens:

The following table describes the entries in the Functions dialog box:

Entry: What is available:

Clintrial 4 Clintrial software functions contained in the following
packages:

• CT_FUNC

• CT_STRING

Note: The CT_EVENT package is not in this list
because it is only available for data-entry processing
procedures, and not for derivations or rules.
302 Chapter 15: Using PL/SQL in the Clintrial Software

L
evel 1 b

leed
P

rogram
m

in
g

L
evel 3 b

leed
Using variables in derivations and rules

When you are specifying the text of a derivation or rule in Design, you can use
the Syntax menu’s Variables command to cut and paste references to items. The
Variables dialog box opens:

Site - account-name Site-specific functions that are owned by the account
identified by the system parameter
PROC_SITE_ACCOUNT.

Each package owned by the account is listed. For each
package, each function or procedure in that package is
listed.

The NONPACKAGED entry lists stored functions and
procedures that are owned by the account, but are not
stored in packages.

Protocol - account-name Protocol-specific functions that are owned by the
account identified by the protocol parameter
PROC_ACCOUNT.

Each package owned by the account is listed. For each
package, each function or procedure in that package is
listed.

The NONPACKAGED entry lists stored functions and
procedures that are owned by the account, but are not
stored in packages.

Entry: What is available:
PL/SQL in derivations and rules 303

L
ev

el
 1

 b
le

ed
P

ro
gr

am
m

in
g

L
ev

el
 3

 b
le

ed
The following table describes the entries in the Variables dialog box:

Validation procedures

When you install a Clintrial software panel (or implement revisions to it), the
Clintrial software automatically builds a validation procedure for the panel. The
validation procedure is named VLD_panel-name. For more information about
validation procedures, see the Design section of Admin and Design.

You should compile functions that are called by validation procedures before the
validation procedures are compiled. Otherwise, the following situation occurs:

1. The validation procedure is compiled and has the status invalid, because the
functions that the validation procedure calls have not been compiled.

2. You compile the functions.

3. You cannot run validation because the validation procedure status is invalid.

4. You must recompile the validation procedure using the Panel menu’s
Compile command, or the SQL statement ALTER PROCEDURE.

To use the ALTER PROCEDURE statement, enter the following:

SQL> alter procedure owner-account.VLD_panel-name compile;

If you import a protocol whose derivations and rules are valid, the derivations
and rules remain valid in the new protocol; however, the validation procedure
may be invalid. For example, if a function called by a derivation or rule is not
compiled, then the validation procedure is invalid. You must compile the

Entry: What is available:

CONTEXT_DECLARE
Variables

Name of each temporary variable that is declared by the
CONTEXT_DECLARE derivation.

Context Items Name (prefaced by “this”) of each item in the
CONTEXT panel.

PANEL_DECLARE
Variables

Name of each temporary variable that is declared by the
PANEL_DECLARE derivation.

Panel Items Name (prefaced by “this”) of each item in the current
panel.

System Group Items Name (prefaced by “this”) of each system item.
304 Chapter 15: Using PL/SQL in the Clintrial Software

L
evel 1 b

leed
P

rogram
m

in
g

L
evel 3 b

leed
function, grant the EXECUTE privilege on it, and recompile the validation
procedure using the Panel menu’s Compile command (or the SQL statement
ALTER PROCEDURE).
PL/SQL in derivations and rules 305

L
ev

el
 1

 b
le

ed
P

ro
gr

am
m

in
g

L
ev

el
 3

 b
le

ed
306 Chapter 15: Using PL/SQL in the Clintrial Software

L
evel 1 b

leed
P

rogram
m

in
g

L
evel 3 b

leed
Basic functions 310

What is a basic function? 310

How to call a basic function 310

BLOCK_HAS_DATA 310

CLOSE_LOOKUP 312

CONVERT_DATE 313

FIND_N_RECORDS 314

IS_EMPTY 316

IS_NOTEMPTY 317

LOOKUP_FLAG 318

LOOKUP_VARS 320

MSG_IF_EMPTY 323

MSG_IF_NOTEMPTY 324

PAGE_HAS_DATA 326

SECTION_HAS_DATA 327

String functions 329

What is a string function? 329

How to call a string function 329

Other data types 329

ADD_ELEMENT (for names) 330

ADD_ELEMENT (for name/value pairs) 331

CHAR_TO_DATE 332

CHAR_TO_DATETIME 333

CHAR_TO_FLOAT 334

COUNT_LIST 335

DATE_TO_CHAR 336

DATETIME_TO_CHAR 337

FLOAT_TO_CHAR 338

GET_ARRAY_VALUE 339

GET_ITEM 340

16 Using Clintrial Software
Functions
 307

L
ev

el
 1

 b
le

ed
P

ro
gr

am
m

in
g

L
ev

el
 3

 b
le

ed
INIT_NAME_VALUE_ARRAYS 341

MAKE_LIST 342

Privilege functions 344

What is a privilege function? 344

How to call a privilege function 344

Resolve functions 345

What is a Resolve function? 345

How to call a Resolve function 345

Lab Loader functions 345

What is a Lab Loader function? 345

How to call a Lab Loader function 346

CALC_NORMALCY_STATUS 346

CALC_NORMAL_RANGE 348

CALC_SI_VALUE 350

LOOKUP_SUBJECT_ID 351

MedDRA functions 352

What is a MedDRA function? 352

How to call a MedDRA function 353

GET_CODE_LLT 353

GET_CODE_PT 354

GET_CODE_HLT 355

GET_CODE_HLGT 356

GET_TERM 358

Event utility functions 359

What is an event utility function? 359

How to call an event utility function 359

DELETE_RPT 359

DEL_FLAG 360

DEL_FLAG_RPT 361

DEL_NOTE 363

DEL_NOTE_RPT 364

DISABLE 365

DISABLE_DEL 366

DISABLE_RPT 367

ENABLE 369
308 Chapter 16: Using Clintrial Software Functions

L
evel 1 b

leed
P

rogram
m

in
g

L
evel 3 b

leed
ENABLE_DEL 370

ENABLE_RPT 371

FLAG 372

FLAG_RPT 374

ITEM_FOCUS 375

ITEM_FOCUS_RPT 377

NOTE 378

NOTE_RPT 380

SECTION_FOCUS 381

SET_ITEM 382

SET_RPT 383
 309

L
ev

el
 1

 b
le

ed
P

ro
gr

am
m

in
g

L
ev

el
 3

 b
le

ed
Basic functions

What is a basic function?

A basic function is a Clintrial software function that is defined in the CT_FUNC
package, which is delivered with the Clintrial software. The basic functions are
available for use in Clintrial software derivations, rules, and data-entry
processing procedures.

Note: The Design interface for creating derivations and rules may list
procedures that are not described in this guide. Procedures that are not described
in this guide are intended for Clintrial software internal use only.

How to call a basic function

To call a basic function, preface the function name with CT_FUNC (the package
name). For example:

ct_func.block_has_data(ct_global.cts$protocol,
ct_global.cts$block,null,ct_global.cts$subject_id)

BLOCK_HAS_DATA

Function

FUNCTION BLOCK_HAS_DATA(
i_protocol IN VARCHAR2,
i_block_key IN VARCHAR2,
i_block_repeat_key IN VARCHAR2,
i_subject_id IN INTEGER)

RETURN OUT INTEGER

Action

Determine if a specified block has existing records.
310 Chapter 16: Using Clintrial Software Functions

L
evel 1 b

leed
P

rogram
m

in
g

L
evel 3 b

leed
Arguments

This function uses the following arguments:

Returned values

If the block does not have existing records, returns 0.

If the block has existing records, returns 1.

If the protocol does not exist, returns -1.

Example

The following example determines if a block has data:

ret_status := ct_func.block_has_data(ct_global.cts$protocol, ct_global.cts$block,
null,ct_global.cts$subject_id);

CLOSE_LOOKUP

Function

FUNCTION CLOSE_LOOKUP(
i_lookup_id IN NUMBER)

Argument: Description:

i_protocol Name of the protocol.

i_block_key Block key value.

i_block_repeat-
_key

Block repeat key value.

i_subject_id Value of the system item SUBJECT_ID. For a derivation or rule, use
the variable ct_global.cts$subject_id. If i_subject_id is Null, the
function checks for any subjects.
CLOSE_LOOKUP 311

L
ev

el
 1

 b
le

ed
P

ro
gr

am
m

in
g

L
ev

el
 3

 b
le

ed
Action

Close the cursors that were opened by a lookup.

Argument

This function uses the following argument:

Example

The following example uses the CLOSE_LOOKUP function:

// the user has looked up value and wants to close the cursor

io_lookuip_id integer;
o_value_list varchar2(240);
tbl_found varchar2(20);

tbl_found := ct_func.lookup_vars(ct_global.cts$protocol,'LABS',
 'UD',('TEST_NAME = WBC'),'SUBJECT =, VISNO = ', '120,2',
 'TEST_NAME, UNITS, RESULT' o_value_list, io_lookup_id);

ct_func.close_lookup(io_lookup_id);

CONVERT_DATE

Function

FUNCTION CONVERT_DATE(
i_year_part IN VARCHAR2
i_month_part IN VARCHAR2,
i_day_part IN VARCHAR2,

Argument: Description:

i_lookup_id Lookup number returned by the CT_FUNC.LOOKUP_VARS
function.
312 Chapter 16: Using Clintrial Software Functions

L
evel 1 b

leed
P

rogram
m

in
g

L
evel 3 b

leed
i_default_month IN VARCHAR2,
i_default_day IN VARCHAR2,
 i_yearmask_19 IN BOOLEAN)

RETURN OUT DATE

Action

Convert day, month, and year into a format that can be stored in Oracle as a date.
This function is useful only if you store dates as multipart text items, which you
may do to handle partial dates.

Arguments

This function uses the following arguments:

Argument: Description:

i_year_part Two-digit or four-digit string that represents the year, enclosed in
single quotes. For example, ‘98’ or ‘1998’. You should use a four-
digit string to ensure Y2K compliance. This argument is required.

i_month_part Two-digit string or text string that represents a month, enclosed in
single quotes. For example, ‘03’, ‘MAR’, or ‘MARCH’. The default
is Null.

i_day_part Two-digit string that represents the day, enclosed in single quotes.
For example, ‘21’. The default is Null.

i_default_month Default month, enclosed in single quotes. For example: ‘12’. The
default is ‘01’. This argument is used if i_month_part is Null.

i_default_day Default day, enclosed in single quotes. For example: ‘23’. The
default is ‘01’. This argument is used if i_day_part is Null.

i_yearmask_19 Applies only if a two-digit value i_year part is a two-digit string. If
TRUE (the default), the year is stored as the 20th century. If FALSE,
Oracle’s default mask ‘RR’ is used, allowing you to store date values
in other centuries.

Note: The CONVERT_DATEI function is the same as
CONVERT_DATE except that i_yearmask_19 is an integer.
CONVERT_DATE 313

L
ev

el
 1

 b
le

ed
P

ro
gr

am
m

in
g

L
ev

el
 3

 b
le

ed
Returned values

If a valid date is obtained, it is returned. Otherwise, it returns Null.

Example

Suppose that you store the birth date as three text items: B_MONTH, B_DAY,
and B_YEAR, but you want to store the date as a date item, BIRTH_DATE. You
could use the convert_date function as follows:

birth_date := ct_func.convert_date(this.b_year, this.b_month, this.b_day);

FIND_N_RECORDS

Function

FUNCTION FIND_N_RECORDS(
_protocol IN VARCHAR2,
i_panel IN VARCHAR2,
i_source IN VARCHAR2,
i_where_clause IN VARCHAR2)

RETURN OUT NUMBER

Action

Determine the number of records matching a specified SQL WHERE clause.
314 Chapter 16: Using Clintrial Software Functions

L
evel 1 b

leed
P

rogram
m

in
g

L
evel 3 b

leed
Arguments

This function uses the following arguments:

Returned values

Returns the number of values that match the specified condition. If no records
are found, it returns 0.

Example

The following example determines the number of records in the
HEMATOLOGY panel for the current subject:

Argument: Description:

i_protocol One of the following:

• Clinical protocol.

• Null when you search for a codelist.

• Table owner when you search in an Oracle table not maintained
by the Clintrial software.

i_panel One of the following:

• Clintrial software panel that contains the records to search.

• Codelist name.

• Table name of an Oracle table not maintained by the Clintrial
software.

i_source Type of table to search:

• U — Clintrial software update table for a panel.

• D — Clintrial software data table for a panel.

• UD — Clintrial software update table, then the Clintrial software
data table, if necessary.

• DU — Clintrial software data table, then the Clintrial software
update table, if necessary.

• C — Clintrial software codelist table.

• O — Other Oracle table, not maintained by the Clintrial
software.

i_where_clause SQL WHERE clause to use, or Null.
FIND_N_RECORDS 315

L
ev

el
 1

 b
le

ed
P

ro
gr

am
m

in
g

L
ev

el
 3

 b
le

ed
rec_nbr := ct_func.find_n_records(ct_global.cts$protocol,
‘HEMATOLOGY’,‘UD’,(‘sid = ‘ ||this.sid));

The following example determines the number of records in the RACE codelist:

code_nbr := ct_func.find_n_records(NULL,‘RACE’,‘C’,NULL);

IS_EMPTY

Function

FUNCTION IS_EMPTY(
i_item_values IN VARCHAR2)

RETURN OUT BOOLEAN

Note: The previous version of this function included the arguments
i_item_names and i_item_values. The i_item_names argument is unnecessary.
However, to maintain compatibility with your existing customized functions and
procedures, the previous version of the function is available in addition to this
new version.

Action

Check a list of items to determine if they are empty. An item is empty if its value
is NULL, has zero length, or is a string containing only spaces.

Argument

This function uses the following argument:

Argument: Description:

i_item_values Delimiter-separated list of item values. Use the
CT_STRING.MAKE_LIST function to create the list of item values.
316 Chapter 16: Using Clintrial Software Functions

L
evel 1 b

leed
P

rogram
m

in
g

L
evel 3 b

leed
Returned values

If all item values in the list of item values to check are empty, returns TRUE.
Otherwise returns FALSE.

Example

The following example determines if the TEMP and PULSE items are empty:

ct_func.is_empty(ct_string.make_list(this.temp,this.pulse))

IS_NOTEMPTY

Function

FUNCTION IS_NOTEMPTY(
i_item_values IN VARCHAR2)
RETURN OUT BOOLEAN

Note: The previous version of this function included the arguments
i_item_names and i_item_values. The i_item_names argument is unnecessary.
However, to maintain compatibility with your existing customized functions and
procedures, the previous version of the function is available in addition to this
new version.

Action

Check a list of items to determine if they are not empty.
IS_NOTEMPTY 317

L
ev

el
 1

 b
le

ed
P

ro
gr

am
m

in
g

L
ev

el
 3

 b
le

ed
Argument

This function uses the following argument:

Returned values

If all items in a list are not empty, returns TRUE. Otherwise returns FALSE.

Example

The following example checks that five items (FNAME, LNAME, DOB, SSN,
and VISIT_DATE) are not empty:

ct_func.is_notempty(
ct_string.make_list(this.fname,this.lname,this.dob, this.ssn,this.visit_date))

LOOKUP_FLAG

Function

FUNCTION LOOKUP_FLAG(
i_protocol IN VARCHAR2,
i_panel IN VARCHAR2,
i_ctrecid IN VARCHAR2,
i_cat_name IN VARCHAR2,
i_flag_name IN VARCHAR2,
i_level IN VARCHAR2,
i_item_name IN VARCHAR2,
o_comment OUT VARCHAR2,
io_tagid IN OUT NUMBER)

RETURN OUT BOOLEAN

Argument: Description:

i_item_values Delimiter-separated list of item values. Use the
CT_STRING.MAKE_LIST function to create the list of item values.
318 Chapter 16: Using Clintrial Software Functions

L
evel 1 b

leed
P

rogram
m

in
g

L
evel 3 b

leed
Action

Determines whether a specified flag exists.

Arguments

This function uses the following arguments:

Returned values

If the flag exists, returns True, and the tag ID number of the flag and the flag
comment.

If the flag does not exist, returns False.

Argument: Description:

i_protocol Protocol name.

i_panel Panel name.

i_ctrecid Value of the system item CT_RECID.

i_cat_name Flag category.

i_flag_name Flag name.

i_level I — The flag is attached to an item.

R — The flag is attached to a record.

O — The flag is attached to an observation.

i_item_name Item name, if i_level is I.

o_comment Flag comment.

io_tagid Tag ID number of the flag. If you do not pass in the io_tagid, you
must pass in the i_cat_name and i_flag_name.
LOOKUP_FLAG 319

L
ev

el
 1

 b
le

ed
P

ro
gr

am
m

in
g

L
ev

el
 3

 b
le

ed
Example

The following example uses the LOOKUP_FLAG function:

// presume the user wants to determine if a flag
// exists on an item in the VITAL panel of the
// MEDIKA_CLINICAL protocol

o_comment VARCHAR2(100);
io_tagid INTEGER;
b_flag_exists boolean;

b_flag_exists := ct_func.lookup_flag('MEDIKA_CLINICAL','VITAL',
 ct_global.cts$ct_recid,'VERIFICATION','AUTOFLAG','I',
'PULSE',o_comment,io_tagid);

LOOKUP_VARS

Function

FUNCTION LOOKUP_VARS(
i_protocol IN VARCHAR2,
i_panel IN VARCHAR2,
i_source IN VARCHAR2,
i_where IN VARCHAR2,
i_key_list IN VARCHAR2,
i_key_values IN VARCHAR2,
i_fetch_list IN VARCHAR2,
o_value_list OUT VARCHAR2,
io_lookup_id IN OUT NUMBER)

RETURN OUT VARCHAR2

Note: Previous versions of this function did not include the i_key_list,
i_key_values, and io_lookup_id arguments, and they should be used if those
arguments are not needed.

Action

Look up values for a list of items in specified tables, and place the values in a
string.
320 Chapter 16: Using Clintrial Software Functions

L
evel 1 b

leed
P

rogram
m

in
g

L
evel 3 b

leed
Arguments

This function uses the following arguments:

Argument: Description:

i_protocol One of the following:

• Clinical protocol.

• Null to search a codelist.

• Table owner when you search in an Oracle table not maintained
by the Clintrial software.

i_panel One of the following:

• Clintrial software panel.

• Codelist name.

• Name of an Oracle table not maintained by the Clintrial software.

i_source Table designator for the Clintrial software table to search:

• U — Update table of a panel only.

• D — Data table of a panel only.

• UD — Update table, then the data table, if necessary.

• DU — Data table, then the update table, if necessary.

• C — Clintrial software codelist table.

• O — Other Oracle table, not maintained by the Clintrial
software.

i_where SQL WHERE clause to use when looking up records, or Null.

i_key_list Comma-separated list of key items, with each item name followed by
an operator. For example:

‘SUBJECT=, VISNO=’

i_key_values Comma-separated list of key values. For example:

‘120,2’

i_fetch_list Comma-separated list of items. For example:

‘SEX, RACE’

o_value_list A delimiter-separated list of values for the items. (You can enter a
variable that represents the list of values.) You can use the
CT_STRING.GET_ITEM function to retrieve a value from
o_value_list.
LOOKUP_VARS 321

L
ev

el
 1

 b
le

ed
P

ro
gr

am
m

in
g

L
ev

el
 3

 b
le

ed
Returned values

Returns a string containing a delimiter-separated list of items. Also returns the
table designator and lookup number.

Example

The following example first looks up the TEST_NAME, UNITS, and RESULT
items in the LABS_UPDATE table, and then in the LABS _DATA table, if
necessary. In this example, the variable value_list contains the delimiter-
separated list of values for the items.

tbl_found := ct_func.lookup_vars(ct_global.cts$protocol, ‘LABS’,‘UD’,(‘TEST_NAME
= WBC’),‘SUBJECT=,VISNO=’,‘120,2’
‘TEST_NAME,UNITS,RESULT’,o_value_list,io_lookup_id);

To get the value of the RESULT from the o_value_list, you can use the
CT_STRING.GET_ITEM function:

result_value := ct_string.get_item(o_value_list,3);

MSG_IF_EMPTY

Function

FUNCTION MSG_IF_EMPTY(
i_item_names IN VARCHAR2,
i_item_values IN VARCHAR2)
RETURN OUT VARCHAR2

io_lookup_id For the first call with a particular combination of the protocol, panel,
and source (the i_where, i_key_list, and i_fetch_list arguments), pass
in Null as the io_lookup_id argument. The function will return a
lookup number. For subsequent calls with the same combination of
the protocol, panel, and source, pass in the lookup number as the
io_lookup_id; this will cause the cursors to be reused, resulting in
better performance.

Argument: Description:
322 Chapter 16: Using Clintrial Software Functions

L
evel 1 b

leed
P

rogram
m

in
g

L
evel 3 b

leed
Action

Check a list of items to determine if they are empty, and display a message if any
items are empty. An item is empty if its value is Null, has zero length, or is a
string containing only spaces.

Arguments

This function uses the following arguments:

Returned values

If an item is empty, returns the following error message that contains a list of
missing items

Missing values for items: item1,item2,item3

If an item is not empty, returns Null.

Example

The following example determines if values exist for the TEMP and PULSE
items:

temp_pulse$msg := ct_func.msg_if_empty(‘TEMP,PULSE’,
ct_string.make_list(this.temp,this.pulse));

If no value for the PULSE item exists, the following error message is displayed:

Missing values for items: PULSE

Argument: Description:

i_item_names Comma-separated list of item names, enclosed in single quotes.

i_item_values Delimiter-separated list of item values. You can use the
CT_STRING.MAKE_LIST function to create the list of item values.
MSG_IF_EMPTY 323

L
ev

el
 1

 b
le

ed
P

ro
gr

am
m

in
g

L
ev

el
 3

 b
le

ed
MSG_IF_NOTEMPTY

Function

FUNCTION MSG_IF_NOTEMPTY(
i_item_names IN VARCHAR2,
i_item_values IN VARCHAR2)
RETURN OUT VARCHAR2

Action

Check a list of items to determine if they are not empty.

Arguments

This function uses the following arguments:

Returned values

If an item is not empty, returns the following error message that contains a list of
items that are not empty:

The following items should be empty but have values: item1, item2,item3

If an item is empty, returns Null.

Example

The following example determines if three items (FNAME, LNAME, DOB) are
not empty:

Argument: Description:

i_item_names Comma-separated list of item names, enclosed in single quotes.

i_item_values Delimiter-separated list of item values. Use the
CT_STRING.MAKE_LIST function to create the list of item values.
324 Chapter 16: Using Clintrial Software Functions

L
evel 1 b

leed
P

rogram
m

in
g

L
evel 3 b

leed
demog_empty$msg := ct_func.msg_if_notempty(‘FNAME,LNAME,
DOB’,ct_string.make_list(this.fname,this.lname,this.dob));

If the DOB item is not empty, the following error message is displayed:

The following items should be empty but have values: DOB

PAGE_HAS_DATA

Function

FUNCTION PAGE_HAS_DATA(
i_protocol IN VARCHAR2,
i_block_key INVARCHAR2,
i_block_repeat_key IN VARCHAR2,
i_page_key IN VARCHAR2,
i_page_repeat_key IN VARCHAR2,
i_subject_id IN INTEGER)

RETURN OUT INTEGER

Action

Determine if a page has existing records.

Arguments

This function uses the following arguments:

Argument: Description:

i_protocol Name of the protocol.

i_block_key Block key value.

i_block_repeat-
_key

Block repeat key value.
PAGE_HAS_DATA 325

L
ev

el
 1

 b
le

ed
P

ro
gr

am
m

in
g

L
ev

el
 3

 b
le

ed
Returned values

If the page does not have existing records, returns 0.

If the page has existing records, returns 1.

If the protocol does not exist, returns -1.

Example

The following example determines if a page has existing records:

ret_status := ct_func.page_has_data(ct_global.cts$protocol, ct_global.cts$block,
null,ct_global.cts$page,null, ct_global.cts$subject_id);

SECTION_HAS_DATA

Function

FUNCTION SECTION_HAS_DATA(
i_protocol IN VARCHAR2,
i_block_key IN VARCHAR2,
i_block_repeat_key IN VARCHAR2,
i_page_key IN VARCHAR2,
i_page_repeat_key IN VARCHAR2,
i_panel IN VARCHAR2,

i_page_key Page key value.

i_page_repeat-
_key

Page repeat key value.

i_subject_id Value of the system item SUBJECT_ID. For a derivation or rule, use
the variable ct_global.cts$subject_id. If i_subject_id is Null, the
function checks for any subjects.

Argument: Description:
326 Chapter 16: Using Clintrial Software Functions

L
evel 1 b

leed
P

rogram
m

in
g

L
evel 3 b

leed
i_subject_id IN INTEGER)

RETURN OUT INTEGER

Action

Determine if a specified page section has existing records in a specific panel, and
the table type of table (update table, data table, or both) that contains the records.

Arguments

This function uses the following arguments:

Returned values

If the section does not have existing records, returns 0.

If the section has existing records in the update table, returns 1.

If the section has existing records in the data table, returns 2.

Argument: Description:

i_protocol Name of the protocol.

i_block_key Block key value.

i_block_repeat-
_key

Block repeat key value.

i_page_key Page key value.

i_page_repeat-
_key

Page repeat key value.

i_panel Panel name.

i_subject_id Value of the system item SUBJECT_ID. For a derivation or rule, use
the variable ct_global.cts$subject_id. If i_subject_id is Null, the
function checks for any subjects.
SECTION_HAS_DATA 327

L
ev

el
 1

 b
le

ed
P

ro
gr

am
m

in
g

L
ev

el
 3

 b
le

ed
If the section has existing records in both the update table and the data table,
returns 3.

If the protocol or panel does not exist, returns -1.

Example

The following example determines if a page section has existing records:

ret_status := ct_func.section_has_data(ct_global.cts$protocol,
ct_global.cts$block,ct_global.cts$block_repeat,
ct_global.cts$page,ct_global.cts$page_repeat,
ct_global.cts$panel,ct_global.cts$subject_id);

String functions

What is a string function?

A string function is a Clintrial software function or procedure that is in the
CT_STRING package, which is delivered with the Clintrial software. The string
functions and procedures are available for use in Clintrial software derivations
and rules, and two of the functions (INIT_NAME_VALUE-_ARRAYS and
GET_ARRAY_VALUE) are available for data-entry processing procedures.

Note: The Design interface for creating derivations and rules may list
procedures that are not described in this guide. Procedures that are not described
in this guide are intended for Clintrial software internal use only.

How to call a string function

To call a string function, preface the function name with CT_STRING (the
package name). For example:

ct_string.make_list(this.temp, this.pulse)

Other data types

The CT_STRING package also include two special data types:
328 Chapter 16: Using Clintrial Software Functions

L
evel 1 b

leed
P

rogram
m

in
g

L
evel 3 b

leed
• NameList — A list of names. The i_items argument for functions in the
CT_EVENT package has this data type.

• NameValueList — A list of name/value pairs. The i_keys argument for
functions in the CT_EVENT package has this data type.

You can also use these data types for the io_list argument in the
ADD_ELEMENT function in the CT_STRING function.

To declare variables of these data types and construct an empty list, enter the
following:

myNameList ct_string.NameList := ct_string.NameList();
myValueList ct_string.NameValueList := ct_string.NameValueList();

ADD_ELEMENT (for names)

Function

PROCEDURE ADD_ELEMENT(
io_list IN OUT ct_string.NameList,
i_name IN VARCHAR2)

Action

Add a specified name to a list of names. This procedure is intended for adding to
lists created by functions and procedures in the CT_EVENT package.

Arguments

This procedure uses the following arguments:

Argument: Description:

io_list List of one or more names.

i_name Name.
ADD_ELEMENT (for names) 329

L
ev

el
 1

 b
le

ed
P

ro
gr

am
m

in
g

L
ev

el
 3

 b
le

ed
Example

The following example uses the ADD_ELEMENT procedure:

// presume the user wants to enable the item named 'TEMPC’ based
// on the value of the item 'TEMPF'

myNameList ct_string.NameList := ct_string.NameList();

if (i_colname = 'TEMPF') AND (i_colvalue IS NULL) then
 ct_string.add_element(myNameList,'TEMPC');
 ct_event.enable(myNameList); -- re-enable the TEMPC field

end if;

ADD_ELEMENT (for name/value pairs)

Function

PROCEDURE ADD_ELEMENT(
io_list IN OUT ct_string.NameValueList,
i_name IN VARCHAR2,
i_value IN VARCHAR2)

Action

Add the specified name to a list of names. This procedure is intended for adding
to lists created by functions and procedures in the CT_EVENT package.

Arguments

This procedure uses the following arguments:

Argument: Description:

io_list List of one or more name/value pairs.

i_name Name.
330 Chapter 16: Using Clintrial Software Functions

L
evel 1 b

leed
P

rogram
m

in
g

L
evel 3 b

leed
Example

The following example uses the ADD_ELEMENT procedure:

// presume the user wants to set the value of the
// item named 'WGTKG' based on the value of item 'WGTLBS'
// whose value is passed in as i_colvalue

x number(4);
myValueList ct_string.NameValueList := ct_string.NameValueList();

x := to_number(i_colvalue);
ct_string.add_element(myValueList,'WGTKG',to_char(x * .454));
ct_event.set_item(myValueList);

CHAR_TO_DATE

Function

FUNCTION CHAR_TO_DATE(
i_char IN VARCHAR2)
RETURN OUT DATE

Action

Convert a text string to an Oracle datetime. This function interprets the input
argument as a text string in the Clintrial software internal format for a date,
which is YYYYMMDDHH24MISS.

i_value Value of the name specified by i_name.

Argument: Description:
CHAR_TO_DATE 331

L
ev

el
 1

 b
le

ed
P

ro
gr

am
m

in
g

L
ev

el
 3

 b
le

ed
Arguments

This function uses the following argument:

Returned value

Returns an Oracle datetime.

Example

The following example uses the CHAR_TO_DATE function:

bdate := ct_string.char_to_date(‘19521123000000’);

CHAR_TO_DATETIME

Function

FUNCTION CHAR_TO_DATETIME(
i_char IN VARCHAR2)
RETURN OUT DATE

Action

Convert a text string to an Oracle datetime. This function interprets the input
argument as a text string in the Clintrial software internal format for a datetime,
which is YYYYMMDDHH24MISS.

Argument: Description:

i_char Text string.
332 Chapter 16: Using Clintrial Software Functions

L
evel 1 b

leed
P

rogram
m

in
g

L
evel 3 b

leed
Arguments

This function uses the following argument:

Returned value

Returns an Oracle datetime.

Example

The following example uses the CHAR_TO_DATETIME function:

bdate := ct_string.char_to_datetime(‘19620314121042’);

CHAR_TO_FLOAT

Function

FUNCTION CHAR_TO_FLOAT(
i_char IN VARCHAR2)
RETURN OUT NUMBER

Action

Convert a text string to an Oracle floating point number. This function interprets
the input argument as a text string in the Clintrial software internal format for a
floating point number. The Clintrial software internal format for a floating point
number uses a period (.) as the decimal separator, and has at least one digit on
each side of the decimal separator.

Argument: Description:

i_char Text string.
CHAR_TO_FLOAT 333

L
ev

el
 1

 b
le

ed
P

ro
gr

am
m

in
g

L
ev

el
 3

 b
le

ed
Arguments

This function uses the following argument:

Returned value

Returns an Oracle floating point number.

Example

The following example uses the CHAR_TO_FLOAT function:

tempf := ct_string.char_to_float(‘98.6’);

COUNT_LIST

Function

FUNCTION COUNT_LIST(
i_list_of_items IN VARCHAR2,
i_delimiter IN VARCHAR2)
RETURN OUT INTEGER

Action

Count the number of items in a list of items.

Argument: Description:

i_char Text string.
334 Chapter 16: Using Clintrial Software Functions

L
evel 1 b

leed
P

rogram
m

in
g

L
evel 3 b

leed
Arguments

This function uses the following arguments:

Returned values

Returns the number of items in the list. If the list is NULL, returns 0.

Example

The following example determines the number of items in a list:

nitems := ct_string.count_list(‘1,2,3,4,5’,‘,’);

The following example determines how many items are in a list separated by the
‘~’ character:

nitems := ct_string.count_list(‘A~2~BC3~DE’,‘~’);

DATE_TO_CHAR

Function

FUNCTION DATE_TO_CHAR(
i_date IN DATE)
RETURN OUT VARCHAR2

Argument: Description:

i_list_of_items Delimiter-separated list of items, enclosed in single quotes.

i_delimiter Character string to use as a delimiter. The default is ‘~*~’.
DATE_TO_CHAR 335

L
ev

el
 1

 b
le

ed
P

ro
gr

am
m

in
g

L
ev

el
 3

 b
le

ed
Action

Convert an Oracle datetime to a text string. The returned value is a text string in
the Clintrial software internal format for a date, which is
YYYYMMDDHH24MISS.

Arguments

This function uses the following argument:

Returned value

Returns a text string in the Clintrial software internal format for a date.

Example

The following example uses the DATE_TO_CHAR function:

txt_str := ct_string.date_to_char(birth_date);

If the birth_date variable has a value that means March 14, 1981, then the
returned value is ‘19810314000000’.

DATETIME_TO_CHAR

Function

FUNCTION DATETIME_TO_CHAR(
i_date IN DATE)
RETURN OUT VARCHAR2

Argument: Description:

i_date Datetime.
336 Chapter 16: Using Clintrial Software Functions

L
evel 1 b

leed
P

rogram
m

in
g

L
evel 3 b

leed
Action

Convert an Oracle datetime to a text string. The returned value is a text string in
the Clintrial software internal format for a datetime, which is
YYYYMMDDHH24MISS.

Arguments

This function uses the following argument:

Returned value

Returns a text string in the Clintrial software internal format for a datetime.

Example

The following example uses the DATETIME_TO_CHAR function:

txt_string := ct_string.datetime_to_char(test_datetime);

If the test_datetime variable has a value that means 2:12:17 P.M. on May 23,
1999, then the returned value is ‘19990523141217’.

FLOAT_TO_CHAR

Function

FUNCTION FLOAT_TO_CHAR(
i_float IN NUMBER)
RETURN OUT VARCHAR2

Argument: Description:

i_date Datetime.
FLOAT_TO_CHAR 337

L
ev

el
 1

 b
le

ed
P

ro
gr

am
m

in
g

L
ev

el
 3

 b
le

ed
Action

Convert an Oracle floating point number to a text string. This function interprets
the input argument using the floating point number format for the Oracle server
on which the function runs. The returned value is a text string in the Clintrial
software internal format for a datetime. (the Clintrial software internal format for
a floating point number uses a period (.) as the decimal separator, and has at least
one digit on each side of the decimal separator.)

Arguments

This function uses the following argument:

Returned value

Returns a text string in the Clintrial software internal textual format for a floating
point number.

Example

The following example uses the FLOAT_TO_CHAR function:

txt_string := ct_string.float_to_char(tempf);

If the tempf variable has a value that means 98.6, then the returned value is
‘98.6’.

Argument: Description:

i_float Number
338 Chapter 16: Using Clintrial Software Functions

L
evel 1 b

leed
P

rogram
m

in
g

L
evel 3 b

leed
GET_ARRAY_VALUE

Function

FUNCTION GET_ARRAY_VALUE(
i_item IN VARCHAR2)

RETURN OUT VARCHAR2

Action

Retrieve the value of a specified item from the array that is returned by the
CT_STRING.INIT_NAME_VALUE_ARRAYS procedure.

Arguments

This function uses the following argument:

Returned value

Returns the value of the specified item.

Example

The following example uses the GET_ARRAY_VALUE function:

// presume the user wants to get the value of the item
// 'VISNO'. i_keys is an input parameter

x varchar2(20);

ct_string.init_name_value_arrays(i_keys);
x := ct_string.get_array_value('VISNO');
visitno := to_number(x);

Argument: Description:

i_item Name of an item.
GET_ARRAY_VALUE 339

L
ev

el
 1

 b
le

ed
P

ro
gr

am
m

in
g

L
ev

el
 3

 b
le

ed
GET_ITEM

Function

FUNCTION GET_ITEM(
i_list_of_items IN VARCHAR2,
i_number IN INTEGER)

RETURN OUT VARCHAR2

Action

Retrieve a specified item from a list of items.You can use this function to retrieve
items from lists of items that were created by the CT_STRING.MAKE_LIST
function or the CT_FUNC.LOOKUP_VARS function.

Arguments

This function uses the following arguments:

Returned value

Returns a particular item from the list, or NULL.

Example

The following example retrieves the third item from a list of item values. The list
of item values is built by the CT_STRING.MAKE_LIST function and stored in
the item_values variable:

one_value := ct_string.get_item(item_values,3)

Argument: Description:

i_list_of_items Delimiter-separated list of items.

i_number Number of the list element to return.
340 Chapter 16: Using Clintrial Software Functions

L
evel 1 b

leed
P

rogram
m

in
g

L
evel 3 b

leed
For an example of using the CT_STRING.GET_ITEM function with the
CT_FUNC.LOOKUP_VARS function, see page 320.

INIT_NAME_VALUE_ARRAYS

Function

FUNCTION INIT_NAME_ VALUE_ARRAYS(
i_items IN VARCHAR2)

Action

Create an array to store the values of a specified string of items.

Arguments

This function uses the following argument:

Example

The following example uses the INIT_NAME_VALUE_ARRAYS function:

// presume the user wants to get the value of the item
// 'VISNO'. i_keys is an input parameter

x varchar2(20);

ct_string.init_name_value_arrays(i_keys);
x := ct_string.get_array_value('VISNO');
visitno := to_number(x);

Argument: Description:

i_items Comma-separated list of item names and values, enclosed in single
quotes.
INIT_NAME_VALUE_ARRAYS 341

L
ev

el
 1

 b
le

ed
P

ro
gr

am
m

in
g

L
ev

el
 3

 b
le

ed
MAKE_LIST

Function

FUNCTION MAKE_LIST (

i_elm1 IN VARCHAR2,

i_elm2 IN VARCHAR2,

i_elm3 IN VARCHAR2,

i_elm4 IN VARCHAR2,

i_elm5 IN VARCHAR2,

i_elm6 IN VARCHAR2,

i_elm7 IN VARCHAR2,

i_elm8 IN VARCHAR2,

i_elm9 IN VARCHAR2,

i_elm10 IN VARCHAR2,

i_elm11 IN VARCHAR2,

i_elm12 IN VARCHAR2,

i_elm13 IN VARCHAR2,

i_elm14 IN VARCHAR2,

i_elm15 IN VARCHAR2,

i_elm16 IN VARCHAR2,

i_elm17 IN VARCHAR2,

i_elm18 IN VARCHAR2,

i_elm19 IN VARCHAR2,
342 Chapter 16: Using Clintrial Software Functions

L
evel 1 b

leed
P

rogram
m

in
g

L
evel 3 b

leed
i_elm20 IN VARCHAR2)

RETURN OUT VARCHAR2

Action

Create a list of up to 20 items that are separated by a constant delimiter (‘~*~’).

Arguments

This function uses the following argument:

Returned values

Returns a string containing a concatenated list of items using a constant delimiter
‘~*~’.

Example

The following example creates a concatenated list of two items, TEMP and
PULSE:

vallist:= ct_string.make_list(this.temp,this.pulse));

Arguments Description:

i_elm1 to i_elm20 Up to 20 items to use in creating the list. This function is
most often used to create a list of Clintrial software item
values. The default is ‘!&@^#%$’.
MAKE_LIST 343

L
ev

el
 1

 b
le

ed
P

ro
gr

am
m

in
g

L
ev

el
 3

 b
le

ed
Privilege functions

What is a privilege function?

A privilege function is a Clintrial software function that is in the
CT_PROC_ACCOUNT package, which is delivered with the Clintrial software.

How to call a privilege function

To call a privilege function, preface the function name with
CT_PROC_ACCOUNT (the package name).

The only available privilege function is GRANT_EXECUTE_PRIVS. For
information about this function, see page 301.

Resolve functions

What is a Resolve function?

A Resolve function is a Clintrial software function that is specifically related to
Resolve. Resolve functions are available for use in Clintrial software derivations
and rules (but not data-entry processing procedures). The Resolve functions are
in the CTV_CORE package, which is created automatically when you install
Resolve. (The CTV_CORE package also contains other CTV_CORE functions,
which are used internally by Resolve and should not be called by derivations and
rules.)

How to call a Resolve function

To call a Resolve function, preface the function name with CTV_CORE (the
package name).

For information about the Resolve functions, see the Resolve section of Enter,
Resolve, and Retrieve. The Resolve functions include:

• FLAG_TO_DISCREPANCY
344 Chapter 16: Using Clintrial Software Functions

L
evel 1 b

leed
P

rogram
m

in
g

L
evel 3 b

leed
• INV_ID

• SETUP_ERROR_ITEM

Lab Loader functions

What is a Lab Loader function?

A Lab Loader function is a Clintrial software function that is specifically related
to Lab Loader. Lab Loader functions are available for use in Clintrial software
derivations and rules (but not data-entry processing procedures). The Lab Loader
functions are in the CTL_FUNC package, which is created automatically when
you install Lab Loader (the CTL_FUNC package also contains other functions,
which are used internally by Lab Loader and should not be called by derivations
and rules).

How to call a Lab Loader function

To call a Lab Loader function, preface the function name with CTL_FUNC (the
package name). For example:

ctl_func.calc_normal_status(this.labid,this.testcode, this.testdt, this.testvalues);

Note: The LOOKUP_SUBJECT_ID function is installed as part of the
CT_FUNC package.

CALC_NORMALCY_STATUS

Function

FUNCTION CALC_NORMALCY_STATUS(
i_labid IN VARCHAR2,
i_testcode IN VARCHAR2,
i_testdt IN DATE,
i_testvalue IN VARCHAR2,
i_protocol IN VARCHAR2,
i_dmg_panel IN VARCHAR2,
Lab Loader functions 345

L
ev

el
 1

 b
le

ed
P

ro
gr

am
m

in
g

L
ev

el
 3

 b
le

ed
i_subject IN INTEGER,
i_sex_item IN VARCHAR2,
i_age_item IN VARCHAR2,
i_age_unit IN VARCHAR2,
i_wt_item IN VARCHAR2,
i_wt_unit IN VARCHAR2)
RETURN OUT VARCHAR2

Action

Calculates the normalcy status of a lab result value based on the normal range of
values. The low and high range is calculated by calling
CALC_NORMAL_RANGE.

Arguments

This function uses the following arguments:

Argument: Description:

i_labid Unique record identifier (required).

i_testcode Lab test code (required).

i_testdt Date of lab test (required).

i_testvalue Value of lab test result (required).

i_protocol Protocol name.

i_dmg_panel Name of the panel with the demographic information.

i_subject The record’s subject_id.

i_sex_item Name of item where sex is stored.

i_age_item Name of item where age is stored.

i_age_unit Name of item where age units are stored.

i_wt_item Name of item where weight is stored.
346 Chapter 16: Using Clintrial Software Functions

L
evel 1 b

leed
P

rogram
m

in
g

L
evel 3 b

leed
Note: Required arguments must have non-null values. The i_protocol,
i_dmg_panel, and i_subject arguments must be non-null if the lab normal ranges
depend on sex, age or weight.

Returned value

Returns an H (above high normal), L (below low normal), N (normal) or null (no
range defined, or normal ranges do not apply).

Example

The following example calculates the normalcy status of the value of a lab test
result:

normalcy_status := ctl_func.calc_normalcy_status(LAB_ID,TEST_CODE,
TEST_DATE, TEST_RESULT,);

CALC_NORMAL_RANGE

Function

FUNCTION CALC_NORMAL_RANGE(
i_labid IN VARCHAR2,
i_testcode IN VARCHAR2,
i_testdt IN DATE,
i_testvalue IN VARCHAR2,
i_protocol IN VARCHAR2,
i_dmg_panel IN VARCHAR2,
i_subject_ IN INTEGER,
i_sex_item IN VARCHAR2,
i_age_item IN VARCHAR2,
i_age_unit IN VARCHAR2,
i_wt_item IN VARCHAR2,
i_wt_unit IN VARCHAR2)

i_wt_unit Name of item where weight units are stored.

Argument: Description:
CALC_NORMAL_RANGE 347

L
ev

el
 1

 b
le

ed
P

ro
gr

am
m

in
g

L
ev

el
 3

 b
le

ed
o_low_range IN VARCHAR2,
o_high_range IN VARCHAR2)
RETURN OUT VARCHAR2

Action

Calculates the low and high normal ranges for a series of lab test values.

Arguments

This function uses the following arguments:

Argument: Description:

i_labid Unique record identifier (required).

i_testcode Lab test code (required).

i_testdt Date of lab test (required).

i_testvalue Value of lab test result (required).

i_protocol Protocol name.

i_dmg_panel Name of the panel with the demographic information.

i_subject The record’s subject_id.

i_sex_item Name of item where sex is stored.

i_age_item Name of item where age is stored.

i_age_unit Name of item where age units are stored.

i_wt_item Name of item where weight is stored.

i_wt_unit Name of item where weight units are stored.

o_low_range Low normal value.

o_high_range High normal value.
348 Chapter 16: Using Clintrial Software Functions

L
evel 1 b

leed
P

rogram
m

in
g

L
evel 3 b

leed
Note: Required arguments must have non-null values. The i_protocol,
i_dmg_panel, and i_subject arguments must be non-null if the lab normal ranges
depend on sex, age or weight.

Returned value

Returns the high and low normal ranges.

Example

The following example calculates the low and high normal ranges for a lab test:

normalcy_range := ctl_func.calc_normal_range(LAB_ID,TEST_CODE, TEST_DATE,
TEST_RESULT,);

CALC_SI_VALUE

Function

FUNCTION CALC_SI_VALUE(
i_src_unit IN VARCHAR2,
i_dest_unit IN VARCHAR2,
i_testvalue IN NUMBER,
i_testcode IN VARCHAR2)
RETURN OUT NUMBER

Action

Calculates the value of a lab test result in SI units.
CALC_SI_VALUE 349

L
ev

el
 1

 b
le

ed
P

ro
gr

am
m

in
g

L
ev

el
 3

 b
le

ed
Arguments

This function uses the following arguments:

Note: Required arguments must have non-null values.

Returned value

Returns the value of the lab result in SI units.

Example

The following example calculates the result of a lab test in SI units:

si_value := ctl_func.calc_si_value(LAB_UNITS,SI_UNITS, TEST_VALUE);

LOOKUP_SUBJECT_ID

Function

FUNCTION LOOKUP_SUBJECT_ID(
i_protocol IN VARCHAR2,
i_subject IN VARCHAR2)
RETURN OUT INTEGER

Note: This function is installed as part of the CT_FUNC package.

Argument: Description:

i_src_unit Lab unit to be converted from (required).

i_dest_unit Lab unit to be converted to (required).

i_testvalue Lab test result value to be converted (required).

i_testcode Value of lab test result.
350 Chapter 16: Using Clintrial Software Functions

L
evel 1 b

leed
P

rogram
m

in
g

L
evel 3 b

leed
Action

Looks up a patient’s SUBJECT_ID.

Arguments

This function uses the following arguments:

Returned value

Returns the SUBJECT_ID of a patient.

Example

The following example finds the SUBJECT_ID of a patient:

patient_subject_id := ct_func.lookup_subject_id(‘MEDIKA_CLINICAL’,
PATIENT_ID);

MedDRA functions

What is a MedDRA function?

A MedDRA function is a Clintrial software function that is specifically related to
the CT_MEDDRA thesaurus protocol. The Clintrial software provides
MedDRA-related functions to:

• Create indexes on panels in the CT_MEDDRA protocol supplied by the
Clintrial software

• Use in SELECT statements through SQL Tools or in derivations

Argument: Description:

i_protocol Protocol name.

i_subject Subject item name.
MedDRA functions 351

L
ev

el
 1

 b
le

ed
P

ro
gr

am
m

in
g

L
ev

el
 3

 b
le

ed
• Use in Retrieve queries supplied by the Clintrial software that query clinical
data coded to the MedDRA dictionary

The MedDRA functions are contained within the thesaurus protocol created for
Meddra. These functions should be created during the setup of the Meddra
thesaurus protocol. For information on setting up these functions for a sample
thesaurus protocol named CT_MEDDRA, see the Clintrial 4.7 Admin & Design
manual, Chapter 14: Coding Thesauruses in the section entitled, "Setting up
CT_MEDDRA protocol."

Note: The source code is open and any of the functions below could be altered
to accept the names, rather than the codes as input parameters.

How to call a MedDRA function

To call a MedDRA function, preface the function name with CT_MEDDRA (the
package name). For example:

ct_meddra.get_code_llt(this.i_llt, this.i_return_type);

GET_CODE_LLT

Function

FUNCTION GET_CODE_LLT(
i_llt IN VARCHAR2,
i_return_type IN INTEGER)
RETURN OUT NUMBER

Action

Retrieves the code associated with a low level term code.
352 Chapter 16: Using Clintrial Software Functions

L
evel 1 b

leed
P

rogram
m

in
g

L
evel 3 b

leed
Arguments

This function uses the following arguments:

Returned value

Returns the code associated with a specified low level term code.

Example

The following example finds the code for a specified low level term:

meddra_LLT_code := ct_meddra.get_code_llt(LLT_CODE, 4);

GET_CODE_PT

Function

FUNCTION GET_CODE_PT(
i_pt IN VARCHAR2,
i_return_type IN INTEGER)
RETURN OUT NUMBER

Argument: Description:

i_llt Low level term code (required).

i_return_type Type of MedDRA code:
1 — system organ class
2 — high level group term
3 — high level term
4 — preferred term (default)
5 — low level term
GET_CODE_PT 353

L
ev

el
 1

 b
le

ed
P

ro
gr

am
m

in
g

L
ev

el
 3

 b
le

ed
Action

Retrieves the code associated with a preferred term code.

Arguments

This function uses the following arguments:

Returned value

Returns the code associated with a specified preferred term code.

Example

The following example finds the code for a specified preferred term:

meddra_PT_code := ct_meddra.get_code_pt(PT_CODE, 4);

Argument: Description:

i_pt Preferred term code (required).

i_return_type Type of MedDRA code:
1 — system organ class
2 — high level group term
3 — high level term
4 — preferred term (default)
5 — low level term
354 Chapter 16: Using Clintrial Software Functions

L
evel 1 b

leed
P

rogram
m

in
g

L
evel 3 b

leed
GET_CODE_HLT

Function

FUNCTION GET_CODE_HLT(
i_hlt IN VARCHAR2,
i_return_type IN INTEGER)
RETURN OUT NUMBER

Action

Retrieves the code associated with a high level term code.

Arguments

This function uses the following arguments:

Returned value

Returns the code associated with a specified high level term code.

Example

The following example finds the code for a specified high level term:

meddra_HLT_code := ct_meddra.get_code_hlt(HLT_CODE, 4);

Argument: Description:

i_hlt High level term code (required).

i_return_type Type of MedDRA code:
1 — system organ class
2 — high level group term
3 — high level term
4 — preferred term (default)
5 — low level term
GET_CODE_HLT 355

L
ev

el
 1

 b
le

ed
P

ro
gr

am
m

in
g

L
ev

el
 3

 b
le

ed
GET_CODE_HLGT

Function

FUNCTION GET_CODE_HLGT(
i_hlgt IN VARCHAR2,
i_return_type IN INTEGER)
RETURN OUT NUMBER

Action

Retrieves the code associated with a high level group term code.

Arguments

This function uses the following arguments:

Returned value

Returns the code associated with a specified high level group term code.

Example

The following example finds the code for a specified high level group term:

meddra_HLGT_code := ct_meddra.get_code_hlgt(HLGT_CODE, 4);

Argument: Description:

i_hlgt High level group term code (required).

i_return_type Type of MedDRA code:
1 — system organ class
2 — high level group term
3 — high level term
4 — preferred term (default)
5 — low level term
356 Chapter 16: Using Clintrial Software Functions

L
evel 1 b

leed
P

rogram
m

in
g

L
evel 3 b

leed
GET_TERM

Function

FUNCTION GET_TERM(
i_code IN INTEGER,
i_input_type IN INTEGER)
RETURN OUT VARCHAR2

Action

Retrieves the name associated with a low level code.

Arguments

This function uses the following arguments:

Returned value

Returns the name associated with a MedDRA code.

Example

The following example finds the low level term name for a specified low level
term code:

Argument: Description:

i_code Code (required).

i_input_type Type of MedDRA code:
1 — system organ class
2 — high level group term
3 — high level term
4 — preferred term
5 — low level term
GET_TERM 357

L
ev

el
 1

 b
le

ed
P

ro
gr

am
m

in
g

L
ev

el
 3

 b
le

ed
meddra_LLT_name := ct_meddra.get_term(‘LLT_CODE’, 5);

Event utility functions

What is an event utility function?

An event utility function is a Clintrial software function or procedure that is in
the CT_EVENT package, which is delivered with the Clintrial software. The
event utility functions are available for use in Clintrial software data-entry
processing procedures (but not in derivations or rules).

How to call an event utility function

To call an event utility function, preface the function name with CT_EVENT
(the package name). For example, use the following PL/SQL:

ct_event.ENABLE

DELETE_RPT

Procedure

PROCEDURE DELETE_RPT(
i_keys IN ct_string.NameValueList,
i_delete_reason IN VARCHAR2)

Action

Applies only to the Initializing Page Section and Value Changed events.

Delete the records (and associated tags and discrepancies) identified by the
specific keys if the row is not protected. A row can be protected by user security,
panel security, or the CT_EVENT.DISABLE_DEL function.

Note: If this procedure is used for a non-repeating page section, an error occurs.
358 Chapter 16: Using Clintrial Software Functions

L
evel 1 b

leed
P

rogram
m

in
g

L
evel 3 b

leed
Note: To use DELETE_RPT in Verify, remove preset sequences from the page
section, and use ct_string.add_element(), ct_event.set_rpt(),
ct_event.enable_del(); ct_event.delete_rpt().

Arguments

This procedure uses the following arguments:

DEL_FLAG

Procedure

PROCEDURE DEL_FLAG(
i_category_name IN VARCHAR2,
i_flag_name IN VARCHAR2,
i_aggregation IN VARCHAR2,
i_item IN VARCHAR2)

Action

Applies only to the Initializing Page Section and Value Changed events.

Delete a flag that meets the specified criteria.

Argument: Description:

i_keys List of key item name and item value pairs that may include the
subject item, block key item, page key item, and, if defined, the block
repeat key item, page repeat key item, and subset page section key
item. If fewer keys are specified, then the procedure acts on all rows
with the specified keys.

i_delete_reason Reason for the deletion.
DEL_FLAG 359

L
ev

el
 1

 b
le

ed
P

ro
gr

am
m

in
g

L
ev

el
 3

 b
le

ed
Arguments

This procedure uses the following arguments:

Example

The following examples use the DEL_FLAG procedure:

// presume that the user wants to remove the 'GENERAL'
// 'DELTA_BP' flag that has been attached
// to the item 'BPDIA'

ct_event.del_flag('GENERAL','DELTA_BP','I', 'BPDIA');

DEL_FLAG_RPT

Procedure

PROCEDURE DEL_FLAG_RPT(
i_keys IN ct_string.NameValueList,
i_category_name IN VARCHAR2,
i_flag_name IN VARCHAR2,
i_aggregation IN VARCHAR2,
i_item IN VARCHAR2)

Argument: Description:

i_category_name Flag category.

i_flag_name Flag name.

i_aggregation I — The flag is attached to an item.

R — The flag is attached to a record.

O — The flag is attached to an observation.

i_item Name of an item, if i_aggregation is I.
360 Chapter 16: Using Clintrial Software Functions

L
evel 1 b

leed
P

rogram
m

in
g

L
evel 3 b

leed
Action

Applies only to the Initializing Page Section and Value Changed events.

Delete a flag that meets the specified criteria from records identified by the
specified keys.

Note: If this procedure is used for a non-repeating page section, an error occurs.

Arguments

This procedure uses the following arguments:

Example

The following example uses the DEL_FLAG_RPT procedure:

Argument: Description:

i_keys List of key item name and item value pairs that may include the
subject item, block key item, page key item, and, if defined, the
block repeat key item, page repeat key item, and subset page
section key item. If fewer keys are specified, then the procedure
acts on all rows with the specified keys.

i_category-_name Flag category.

i_flag_name Flag name.

i_aggregation I — The flag is attached to an item.

R — The flag is attached to a record.

O — The flag is attached to an observation.

i_item Name of an item, if i_aggregation is I.
DEL_FLAG_RPT 361

L
ev

el
 1

 b
le

ed
P

ro
gr

am
m

in
g

L
ev

el
 3

 b
le

ed
// presume that the user wants to remove the 'VERIFICATION'
// 'AUTOFLAG' flag that has been attached
// to the repeating item 'PULSE'. i_itemvalues is an
// input parameter

ct_string.init_name_value_arrays(i_itemvalues);
ct_string.add_element(KeyNameValue, 'PID',
ct_string.get_array_value('PID'));
ct_string.add_element(KeyNameValue, 'VISIT',
ct_string.get_array_value('VISIT'));
ct_string.add_element(KeyNameValue, 'VISRPT',
ct_string.get_array_value('VISRPT'));
ct_event.DEL_FLAG_RPT(KeyNameValue,'VERIFICATION','AUTOFLAG',
 'I', 'PULSE');

DEL_NOTE

Procedure

PROCEDURE DEL_NOTE(
i_category_name IN VARCHAR2,
i_note_name IN VARCHAR2,
i_aggregation IN VARCHAR2,
i_item IN VARCHAR2)

Action

Applies only to the Initializing Page Section and Value Changed events.

Delete a note that meets the specified criteria.

Arguments

This procedure uses the following arguments:

Argument: Description:

i_category_name Note category.

i_note_name Note name.
362 Chapter 16: Using Clintrial Software Functions

L
evel 1 b

leed
P

rogram
m

in
g

L
evel 3 b

leed
Example

The following example uses the DEL_NOTE procedure:

// presume the user wants to delete a
// note attached to the item PULSE

ct_event.DEL_NOTE('VERIFICATION','AUTOFLAG','I','PULSE') ;

DEL_NOTE_RPT

Procedure

PROCEDURE DEL_NOTE_RPT(
i_keys IN ct_string.NameValueList,
i_category_name IN VARCHAR2,
i_note_name IN VARCHAR2,
i_aggregation IN VARCHAR2,
i_item IN VARCHAR2)

Action

Applies only to the Initializing Page Section and Value Changed events.

Delete a note that meets the specified criteria from records identified by the
specified keys.

Note: If this procedure is used for a non-repeating page section, an error occurs.

i_aggregation I — The note is attached to an item.

R — The note is attached to a record.

O — The note is attached to an observation.

i_item Name of an item, if i_aggregation is I.

Argument: Description:
DEL_NOTE_RPT 363

L
ev

el
 1

 b
le

ed
P

ro
gr

am
m

in
g

L
ev

el
 3

 b
le

ed
Arguments

This procedure uses the following arguments:

DISABLE

Procedure

PROCEDURE DISABLE(
i_items IN ct_string.NameList)

Action

Applies only to the Initializing Page Section and Value Changed events.

Prevent (disable) editing of the specified items. If used from a repeating page
section, this procedure applies to the current row.

Argument: Description:

i_keys List of key item name and item value pairs that may include the
subject item, block key item, page key item, and, if defined, the block
repeat key item, page repeat key item, and subset page section key
item. If fewer keys are specified, then the procedure acts on all rows
with the specified keys.

i_category-_name Note category.

i_note_name Note name.

i_aggregation I — The note is attached to an item.

R — The note is attached to a record.

O — The note is attached to an observation.

i_item Name of an item, if i_aggregation is I.
364 Chapter 16: Using Clintrial Software Functions

L
evel 1 b

leed
P

rogram
m

in
g

L
evel 3 b

leed
Arguments

This procedure uses the following argument:

Example

The following example uses the DISABLE function:

// presume the user wants to disable input to an item named 'ABNCOMM'
// based on the value of another item. This example could be coded in //thevalue changed
event (where i_colvalue is an input param)

myNameList ct_string.NameList := ct_string.NameList();

if (i_colvalue IS NOT NULL) then
 if i_colvalue = 1 then
 ct_string.add_element(myNameList,'ABNCOMM');
 ct_event.disable(myNameList);
 end if;

end if;

DISABLE_DEL

Procedure

PROCEDURE DISABLE_DEL(
i_keys IN ct_string.NameValueList)

Action

Applies only to the Initializing Page Section and Value Changed events.

Prevent (disable) deletion of records identified by the specified keys.

Argument: Description:

i_items List of one or more item names.
DISABLE_DEL 365

L
ev

el
 1

 b
le

ed
P

ro
gr

am
m

in
g

L
ev

el
 3

 b
le

ed
Arguments

This procedure uses the following argument:

Example

The following example uses the DISABLE_DEL procedure:

// presume the user wants to disable deletion of
// the item PID

KeyNameValue ct_string.NameValueList := ct_string.NameValueList();

ct_string.init_name_value_arrays(i_itemvalues);
ct_string.add_element(KeyNameValue, 'PID',ct_string.get_array_value('PID'));
ct_string.add_element(KeyNameValue, 'VISIT', ct_string.get_array_value('VISIT'));

ct_event.DISABLE_DEL(KeyNameValue);

DISABLE_RPT

Procedure

PROCEDURE DISABLE_RPT(
i_keys IN ct_string.NameValueList,
i_items IN ct_string.NameList)

Action

Applies only to the Initializing Page Section and Value Changed events.

Argument: Description:

i_keys List of key item name and item value pairs that may include the
subject item, block key item, page key item, and, if defined, the block
repeat key item, page repeat key item, and subset page section key
item. If fewer keys are specified, then the procedure acts on all rows
with the specified keys.
366 Chapter 16: Using Clintrial Software Functions

L
evel 1 b

leed
P

rogram
m

in
g

L
evel 3 b

leed
Prevent (disable) editing of the specified items for records identified by the
specified keys.

Note: If this procedure is used for a non-repeating page section, an error occurs.

Arguments

This procedure uses the following arguments:

Example

The following example uses the DISABLE_RPT procedure:

// presume the user wants to disable editing
// of the the repeating item TEMPC

KeyNameValue ct_string.NameValueList := ct_string.NameValueList();
myNameList ct_string.NameList := ct_string.NameList();

ct_string.init_name_value_arrays(i_itemvalues);

ct_string.add_element(KeyNameValue, 'PID',
ct_string.get_array_value('PID'));
ct_string.add_element(KeyNameValue, 'VISIT', ct_string.get_array_value('VISIT'));
ct_string.add_element(KeyNameValue, 'VISRPT', ct_string.get_array_value('VISRPT'));
ct_string.add_element(myNameList,'TEMPC');

ct_event.DISABLE_RPT(KeyNameValue, myNameList) ;

Argument: Description:

i_keys List of key item name and item value pairs that may include the
subject item, block key item, page key item, and, if defined, the
block repeat key item, page repeat key item, and subset page
section key item. If fewer keys are specified, then the procedure
acts on all rows with the specified keys.

i_items List of one or more item names.
DISABLE_RPT 367

L
ev

el
 1

 b
le

ed
P

ro
gr

am
m

in
g

L
ev

el
 3

 b
le

ed
ENABLE

Procedure

PROCEDURE ENABLE(
i_items IN ct_string.NameList)

Action

Applies only to the Initializing Page Section and Value Changed events.

Allow (enable) editing of the specified items if the items were disabled by CT
_EVENT.DISABLE.

Arguments

This procedure uses the following argument:

Example

The following example uses the ENABLE procedure:

// presume the user wants to enable input to an item named 'ABNCOMM'
// based on the value of another item. This example could be coded in
// the value changed event (where i_colvalue is an input param)

myNameList ct_string.NameList := ct_string.NameList();

if (i_colvalue IS NOT NULL) then
 if i_colvalue = 2 then
 ct_string.add_element(myNameList,'ABNCOMM');
 ct_event.enable(myNameList);
 end if;

end if;

Argument: Description:

i_items List of one or more item names.
368 Chapter 16: Using Clintrial Software Functions

L
evel 1 b

leed
P

rogram
m

in
g

L
evel 3 b

leed
ENABLE_DEL

Procedure

PROCEDURE ENABLE_DEL(
i_keys IN ct_string.NameValueList)

Action

Applies only to the Initializing Page Section and Value Changed events.

Allow (enable) deletion of records identified by the specified keys.

Arguments

This procedure uses the following argument:

Example

The following example uses the ENABLE_DEL procedure:

// presume the user wants to enable deletion of
// the item PID

KeyNameValue ct_string.NameValueList := ct_string.NameValueList();

ct_string.init_name_value_arrays(i_itemvalues);
ct_string.add_element(KeyNameValue, 'PID',ct_string.get_array_value('PID'));

ct_event.ENABLE_DEL(KeyNameValue) ;

Argument: Description:

i_keys List of key item name and item value pairs that may include the
subject item, block key item, page key item, and, if defined, the block
repeat key item, page repeat key item, and subset page section key
item. If fewer keys are specified, then the procedure acts on all rows
with the specified keys.
ENABLE_DEL 369

L
ev

el
 1

 b
le

ed
P

ro
gr

am
m

in
g

L
ev

el
 3

 b
le

ed
ENABLE_RPT

Procedure

PROCEDURE ENABLE_RPT(
i_keys IN ct_string.NameValueList,
i_items IN ct_string.NameList)

Action

Applies only to the Initializing Page Section and Value Changed events.

Allow (enable) editing of the specified items for records identified by the
specified keys.

Note: If this procedure is used for a non-repeating page section, an error occurs.

Arguments

This procedure uses the following arguments:

Example

The following example uses the ENABLE_RPT procedure:

Argument: Description:

i_keys List of key item name and item value pairs that may
include the subject item, block key item, page key item,
and, if defined, the block repeat key item, page repeat
key item, and subset page section key item. If fewer
keys are specified, then the procedure acts on all rows
with the specified keys.

i_items List of one or more item names.
370 Chapter 16: Using Clintrial Software Functions

L
evel 1 b

leed
P

rogram
m

in
g

L
evel 3 b

leed
// presume the user wants to enable editing
// of the the repeating item TEMPC
// i_itemvalues is an input parameter

KeyNameValue ct_string.NameValueList := ct_string.NameValueList();
myNameList ct_string.NameList := ct_string.NameList();

ct_string.init_name_value_arrays(i_itemvalues);

ct_string.add_element(KeyNameValue, 'VISIT', ct_string.get_array_value('VISIT'));
ct_string.add_element(KeyNameValue, 'VISRPT', ct_string.get_array_value('VISRPT'));
ct_string.add_element(myNameList,'TEMPC');

ct_event.ENABLE_RPT(KeyNameValue, myNameList) ;

FLAG

Procedure

PROCEDURE FLAG(
i_category_name IN VARCHAR2,
i_flag_name IN VARCHAR2,
i_aggregation IN VARCHAR2,
i_item IN VARCHAR2,
i_comment IN VARCHAR2,
i_append IN INTEGER)

Action

Applies only to the Initializing Page Section and Value Changed events.

Create or edit a flag for the current record.
FLAG 371

L
ev

el
 1

 b
le

ed
P

ro
gr

am
m

in
g

L
ev

el
 3

 b
le

ed
Arguments

This procedure uses the following arguments:

Example

The following example uses the FLAG procedure:

// presume the user wants to create a 'GENERAL' 'DELTA_BP'
// flag on the item 'BPDIA'

flag_text varchar2(240);

flag_text := 'Diastolic Delta-BP > 10% since last visit';
ct_event.flag('GENERAL', 'DELTA_BP', 'I','bpdia',flag_text,0);

Argument: Description:

i_category-_name Flag category. Flags in the VERIFICATION category can be added
only during verification.

i_flag_name Flag name; must be a flag name defined in Design. Flags with the
name AUTOFLAG cannot be added with the function.

i_aggregation I — The flag is attached to an item.

R — The flag is attached to a record.

O — The flag is attached to an observation.

i_item Name of an item, if i_aggregation is I.

i_comment Flag comment.

i_append 0 — Replace the existing comment; this is the default.

1 — Append the specified comment to the existing comment.
372 Chapter 16: Using Clintrial Software Functions

L
evel 1 b

leed
P

rogram
m

in
g

L
evel 3 b

leed
FLAG_RPT

Procedure

PROCEDURE FLAG_RPT(
i_keys IN ct_string.NameValueList,
i_category_name IN VARCHAR2,
i_flag_name IN VARCHAR2,
i_aggregation IN VARCHAR2,
i_item IN VARCHAR2,
i_comment IN VARCHAR2,
i_append IN INTEGER)

Action

Applies only to the Initializing Page Section and Value Changed events.

Create or edit a flag for records identified by the specified keys.

Note: If this procedure is used for a non-repeating page section, an error occurs.

Arguments

This procedure uses the following arguments:

Argument: Description:

i_keys List of key item name and item value pairs that may include the
subject item, block key item, page key item, and, if defined, the
block repeat key item, page repeat key item, and subset page
section key item. If fewer keys are specified, then the procedure
acts on all rows with the specified keys.

i_category_name Flag category. Flags in the VERIFICATION category can be added
only during verification.

i_flag_name Flag name; must be a flag name defined in Design. Flags with the
name AUTOFLAG cannot be added with the function.
FLAG_RPT 373

L
ev

el
 1

 b
le

ed
P

ro
gr

am
m

in
g

L
ev

el
 3

 b
le

ed
Example

The following example uses the FLAG_RPT procedure:

// presume the user wants to create a 'GENERAL' 'DELTA_BP'
// flag on the repeating item 'BPDIA'. i_keys is an input parameter

flag_text varchar2(240);

flag_text := 'Diastolic Delta-BP > 10% since last visit';
ct_event.flag_rpt(i_keys, 'GENERAL', 'DELTA_BP', 'I','bpdia',flag_text,0);

ITEM_FOCUS

Procedure

PROCEDURE ITEM_FOCUS(
i_item IN VARCHAR2)

Action

Applies only to the Value Changed event.

i_aggregation I — The flag is attached to an item.

R — The flag is attached to a record.

O — The flag is attached to an observation.

i_item Name of an item, if i_aggregation is I.

i_comment Flag comment.

i_append 0 — Replace the existing comment; this is the default.

1 — Append the specified comment to the existing comment.

Argument: Description:
374 Chapter 16: Using Clintrial Software Functions

L
evel 1 b

leed
P

rogram
m

in
g

L
evel 3 b

leed
Moves the cursor to an item in the current record if the item is enterable. If the
item is not enterable, the cursor does not move.

Arguments

This procedure uses the following argument:

Example

The following example uses the ITEM_FOCUS procedure:

l_col_name :='RACEOTH';
l_other_col_name := 'ALLERG';
ct_string.add_element(myNameList,l_col_name);
ct_string.add_element(myOtherNameList,l_other_col_name);
if i_colvalue = '5'
then
 ct_event.enable(myNameList);
 ct_event.item_focus(l_col_name);
else
 ct_event.disable(myNameList);
 ct_event.item_focus(l_other_col_name);
end if;
o_result :=1;
END itemfocus;

Argument: Description:

i_item One of the following:

• Name of an item.

• CTS$NEXT_SECTION - Place the cursor on the first enterable
item in the first row of the next page section.

• CTS$PREV_SECTION - Place the cursor on the first enterable
item in the first row of the previous page section.
ITEM_FOCUS 375

L
ev

el
 1

 b
le

ed
P

ro
gr

am
m

in
g

L
ev

el
 3

 b
le

ed
ITEM_FOCUS_RPT

Procedure

PROCEDURE ITEM_FOCUS_RPT(
i_keys IN ct_string.NameValueList,
i_item IN VARCHAR2)

Action

Applies only to the Value Changed event.

Move the cursor to an item in the first record that matches the specified keys, if
the item is enterable. If the item is not enterable, the cursor does not move.

Note: If this procedure is used for a non-repeating page section, an error occurs.

Arguments

This procedure uses the following arguments:

Argument: Description:

i_keys List of key item name and item value pairs that may include the
subject item, block key item, page key item, and, if defined, the block
repeat key item, page repeat key item, and subset page section key
item. If fewer keys are specified, then the procedure acts on all rows
with the specified keys.

i_item One of the following:

• Name of an item

• CTS$NEXT_SECTION — Place the cursor on the first enterable
item in the first row of the next page section.

• CTS$PREV_SECTION — Place the cursor on the first enterable
item in the first row of the previous page section.
376 Chapter 16: Using Clintrial Software Functions

L
evel 1 b

leed
P

rogram
m

in
g

L
evel 3 b

leed
Example

The following example uses the ITEM_FOCUS_RPT procedure:

// presume the user wants to set focus to a repeating item TEMPC,
// i_itemvalues is an input parameter

KeyNameValue ct_string.NameValueList := ct_string.NameValueList();
myNameList ct_string.NameList := ct_string.NameList();

ct_string.init_name_value_arrays(i_itemvalues);

ct_string.add_element(KeyNameValue, 'VISIT', ct_string.get_array_value('VISIT'));
ct_string.add_element(KeyNameValue, 'VISRPT', ct_string.get_array_value('VISRPT'));
ct_string.add_element(myNameList,'TEMPC');

ct_event.ITEM_FOCUS_RPT(KeyNameValue, myNameList) ;

NOTE

Procedure

PROCEDURE NOTE(
i_category_name IN VARCHAR2,
i_note_name IN VARCHAR2,
i_aggregation IN VARCHAR2
i_item IN VARCHAR2
i_comment IN VARCHAR2,
i_append IN INTEGER)

Action

Applies only to the Initializing Page Section and Value Changed events.

Create or edit a note for the current record.
NOTE 377

L
ev

el
 1

 b
le

ed
P

ro
gr

am
m

in
g

L
ev

el
 3

 b
le

ed
Arguments

This procedure uses the following arguments:

Example

The following example uses the NOTE procedure:

// presume the user wants to create an 'INVESTIGATOR' 'UNSPECIFIED'
// note on the item 'BPDIA'

note_text varchar2(240);

note_text := 'Data illegible';
ct_event.note('INVESTIGATOR', 'UNSPECIFIED', 'I','bpdia',note_text,0);

Argument: Description:

i_category_name Note category.

i_note_name Note name; must be note name defined in Design.

i_aggregation I — The note is attached to an item.

R — The note is attached to a record.

O — The note is attached to an observation.

i_item Name of an item, if i_aggregation is I.

i_comment Note comment.

i_append 0 — Replace the existing comment; this is the default.

1 — Append the specified comment to the existing comment.
378 Chapter 16: Using Clintrial Software Functions

L
evel 1 b

leed
P

rogram
m

in
g

L
evel 3 b

leed
NOTE_RPT

Procedure

PROCEDURE NOTE_RPT(
i_keys IN ct_string.NameValueList,
i_category_name IN VARCHAR2,
i_note_name IN VARCHAR2,
i_aggregation IN VARCHAR2,
 i_item IN VARCHAR2,
i_comment IN VARCHAR2,
i_append IN INTEGER)

Action

Applies only to the Initializing Page Section and Value Changed events.

Create or edit a note for records identified by the specified keys.

Note: If this procedure is used for a non-repeating page section, an error occurs.

Arguments

This procedure uses the following arguments:

Argument: Description:

i_keys List of key item name and item value pairs that may include the
subject item, block key item, page key item, and, if defined, the block
repeat key item, page repeat key item, and subset page section key
item. If fewer keys are specified, then the procedure acts on all rows
with the specified keys.

i_category_name Note category.

i_note_name Note name; must be a note name defined in Design.
NOTE_RPT 379

L
ev

el
 1

 b
le

ed
P

ro
gr

am
m

in
g

L
ev

el
 3

 b
le

ed
Example

The following example uses the NOTE_RPT procedure:

// presume the user wants to create a 'INVESTIGATOR', 'UNSPECIFIED'
// note on the repeating item 'BPDIA'. i_keys is an input parameter

note_text varchar2(240);

note_text := 'Data Illegible';
ct_event.note_rpt(i_keys, 'INVESTIGATOR', 'UNSPECIFIED,
 'I','bpdia',note_text,0);

SECTION_FOCUS

Procedure

PROCEDURE SECTION_FOCUS(
i_section_name IN VARCHAR2)

Action

Applies only to the Value Changed event.

i_aggregation I — The note is attached to an item.

R — The note is attached to a record.

O — The note is attached to an observation.

i_item Name of an item, if i_aggregation is I.

i_comment Note comment.

i_append 0 — Replace the existing comment; this is the default.

1 — Append the specified comment to the existing comment.

Argument: Description:
380 Chapter 16: Using Clintrial Software Functions

L
evel 1 b

leed
P

rogram
m

in
g

L
evel 3 b

leed
Move the cursor to the first enterable item in the next occurrence of the specified
page section. If there is no enterable item, the cursor is not moved.

Arguments

This procedure uses the following argument:

Example

The following example uses the SECTION_FOCUS procedure:

// presume the user wants to set focus to
// the section INCLUS

ct_event.SECTION_FOCUS ('INCLUS');

SET_ITEM

Procedure

PROCEDURE SET_ITEM(
i_item_values IN ct_string.NameValueList)

Action

Applies only to the Initializing Page Section and Value Changed events.

Set the specified items to the specified values, except that:

• Context items can be changed only if the current page section is the context
page section. Changes to context items are propagated to each record on a
page.

Argument: Description:

i_section_name Name of the page section.
SET_ITEM 381

L
ev

el
 1

 b
le

ed
P

ro
gr

am
m

in
g

L
ev

el
 3

 b
le

ed
• The item cannot be a subject item, block key item, page key item, block
repeat key item, page repeat key item, a subset page section key item, master
key item, or detail key item.

When used in a repeating page section, this procedure applies to the current row.

When used in the non-repeating page section of a within-panel master-detail
relationship, then changes are propagated to the associated repeating page
section when the page is saved.

Arguments

This procedure uses the following argument:

SET_RPT

Procedure

PROCEDURE SET_RPT(
i_keys IN ct_string.NameValueList,
i_item_values IN ct_string.NameValueList)

Action

Applies only to the Initializing Page Section and Value Changed events.

Set the specified items to the specified values for records identified by the
specified keys, except that:

• Context items cannot be changed.

• The item cannot be a subject item, block key item, page key item, block
repeat key item, page repeat key item, a subset page section key item, master
key item, or detail key item.

Argument: Description:

i_item_values List of item/value pairs. Use the CT_STRING.ADD_ELEMENT
function to populate the list.
382 Chapter 16: Using Clintrial Software Functions

L
evel 1 b

leed
P

rogram
m

in
g

L
evel 3 b

leed
If the panel is the detail of a cross-panel master-detail relationship, then a record
with the specified keys must exist in the master panel.

If there are no existing records with the specified keys, then records are created.

If the panel is the detail of master panel that is repeating, then the master key
must be included in the i_keys argument.

Note: If this procedure is used for a non-repeating page section, an error occurs.

Arguments

This procedure uses the following arguments:

Argument: Description:

i_keys List of key item name and item value pairs that may include the
subject item, block key item, page key item, and, if defined, the block
repeat key item, page repeat key item, and subset page section key
item. If fewer keys are specified, then the procedure acts on all rows
with the specified keys.

i_item_values List of item and value pairs. Use the CT_STRING.ADD_ELEMENT
function to populate the list.
SET_RPT 383

L
ev

el
 1

 b
le

ed
P

ro
gr

am
m

in
g

L
ev

el
 3

 b
le

ed
384 Chapter 16: Using Clintrial Software Functions

L
evel 1 b

leed
P

rogram
m

in
g

L
evel 3 b

leed

Overview 386

What is a data-entry processing procedure? 386

What is a data processing event? 386

Value Changed procedures 387

When procedures are run 387

Format 389

Arguments 389

PL/SQL code 391

Page-related procedures 391

When procedures are run 391

Format 392

Arguments 392

PL/SQL code 394

Attaching data-entry processing procedures 394

Attaching a procedure to a page template 394

Attaching a procedure to a page section 395

Attaching a procedure to an item 396

Examples 397

Example 1: itemfocus procedure 397

Example 2: convertweight procedure 399

17 Using Data-Entry Processing
Procedures
 385

L
ev

el
 1

 b
le

ed
P

ro
gr

am
m

in
g

L
ev

el
 3

 b
le

ed
Overview

What is a data-entry processing procedure?

A data-entry processing procedure (DEPP) is a PL/SQL procedure that runs
when the Enter user performs a particular action related to a study page, page
section, or item.

For example, a data-entry processing procedure attached to an item can convert
an entered value to another value, or move the cursor to a particular field based
on the value entered in the current field. Or, a data-entry processing procedure
attached to a page section could carry forward values from the previous page
section.

You write data-entry processing procedures in PL/SQL, and attach the
procedures to page templates, page sections, or items in Design. Data-entry
procedures must be set up outside of Design, and called from within it. This
differs from derivations and rules, which can be either set up outside of Design
and called from within it, or set up within Design.

What is a data processing event?

A data processing event is a Clintrial software action to which a data-entry
processing procedure can be attached. The following table lists the data
processing events:

Event: This event occurs when:

Page Opened The user opens the study page.

Page Saved The user has saved data on the study page. The data-entry
processing procedure runs after changes are committed to the
database.

Page Deleted The user has deleted data on the study page. The data-entry
processing procedure runs after changes are committed to the
database.
386 Chapter 17: Using Data-Entry Processing Procedures

L
evel 1 b

leed
P

rogram
m

in
g

L
evel 3 b

leed
Value Changed procedures

When procedures are run

The following steps explain when a Value Changed procedure is run in relation
to other types of checks performed on an entered value:

1. The user enters a value in the field, by typing it in, selecting a value from a
codelist (or checklist), or changing the state of a radio button or check box.
At this point, the following checks are performed:

– For a text field, the length of the value cannot be longer than the length
specified by the item’s database format.

– For numeric fields, the value must be digits, +, -, or the appropriate
decimal point character. If appropriate, a decimal point is inserted
automatically. If a decimal grouping character is entered, it is ignored.

Initializing Page
Section

The user opens a study page.

Note: Even though this procedure is related to a page section, it
runs when the study page is opened. If there are also Page Opened
procedures, then they run before the Initializing Page Section
procedures.

Saving Page
Section

The user saves data on the study page. The data-entry processing
procedure runs before changes are committed to the database.

Note: Even though this procedure is related to a page section, it
runs when the study page is saved. If there is also a Page Saved
procedure, then the Saving Page Section procedures run before the
Page Saved procedure.

Value Changed The user changes the value of an item on a study page and leaves
the field. The data-entry processing procedure runs before changes
are committed to the database. For more detail about when a Value
Changed procedure is run, see the next section.

Note: Value Changed procedures are an enhancement of
conversion procedures, which were available in previous releases
of Clintrial software. Your existing conversion procedures from
prior releases will work in the Clintrial software.

Event: This event occurs when:
Value Changed procedures 387

L
ev

el
 1

 b
le

ed
P

ro
gr

am
m

in
g

L
ev

el
 3

 b
le

ed
The decimal grouping character is a comma in American notation and a
period in European notation. The decimal point character is a period in
American notation and a comma in European notation. The length of the
value cannot be longer than the length specified by the item’s database
format.

– For date and datetime fields, no checking is performed until the user
leaves the field.

2. The user then leaves the field by tabbing out of it, placing the cursor on
another field, or saving the page. For a date or date time field,
the Clintrial software ensures at this point that the value can be interpreted as
a date or datetime.

3. If the item is a verbatim text item of a coding target, then the associated
coding-related fields are cleared.

4. If the item has an associated Value Changed procedure, then the procedure is
run. If the procedure returns a new value, then the Clintrial software checks
the item’s data type. For numeric values, the new value is verified against the
item’s database format.

Note: The procedure does not run if the user has not entered a value in the
field. Also, the procedure does not run when a value changes as a result of
another data-entry processing procedure.

5. The following checks are performed in the order specified below. If there is
no Value Changed procedure attached to the item, or the Value Changed
procedure o_result parameter equals 0, then the checks are performed on the
value that was entered in the field. If there is a Value Changed procedure
attached to the item and its o_result parameter equals 1 or 2, then the checks
are performed on the value returned by the procedure.

a. If the item is a master key, it is checked against its original value. If the
original value is not null, then the new value cannot be null.

b. If the item has an attached codelist, the Clintrial software checks that the
value has not been deleted from the code list.

c. If the item is a master key with a non-null value, the Clintrial software
checks that the master key value is unique on the study page.

d. If the item has upper or lower bounds, the Clintrial software checks that
the value is within these bounds.

Note: You do not need to grant the EXECUTE privilege to each Enter user
account, as you do for each user account to be able to use functions, procedures,
or packages used in validation procedures. The Clintrial software automatically
grants user accounts the EXECUTE privilege for conversion procedures.
388 Chapter 17: Using Data-Entry Processing Procedures

L
evel 1 b

leed
P

rogram
m

in
g

L
evel 3 b

leed
Format

The format of a Value Changed procedure is as follows:

PROCEDURE procedure-name
 i_protocol VARCHAR2,
 i_panel VARCHAR2,
 i_table VARCHAR2,
 i_colname VARCHAR2,
 i_ct_recid VARCHAR2,
 i_colvalue VARCHAR2,
 i_itemvalues VARCHAR2,
 o_result OUT INTEGER,
 o_new_value OUT VARCHAR2,
 o_message OUT VARCHAR2,
 o_new_itemvalues OUT VARCHAR2)
 IS
 BEGIN
 PL/SQL CODE
END procedure-name;

Note: These are the same arguments as used for conversion procedures in prior
releases of the Clintrial software. For Value Changed procedures in 4.5, you
must include the o_new_itemvalues argument in the procedure call, but you do
not need to use it.

Arguments

The following table lists the arguments:

Argument: Data type: Description:

i_protocol VARCHAR2 Name of the protocol containing the item to
which the procedure is attached.

i_panel VARCHAR2 Name of the panel.

i_table VARCHAR2 Indication of the table type:

• UPDATE

• DATA

i_colname VARCHAR2 Name of the item.

i_ct_recid VARCHAR2 Value of the CT_RECID system item.
Value Changed procedures 389

L
ev

el
 1

 b
le

ed
P

ro
gr

am
m

in
g

L
ev

el
 3

 b
le

ed
PL/SQL code

In a Value Changed procedure, you can use any of the procedures in the
CT_EVENT package, which is described in "Event utility functions" on page
359.

i_colvalue VARCHAR2 Value entered by the user (not the value of the
item in the database).

i_itemvalues VARCHAR2 List of item name and item value pairs for all
items displayed in Enter for the record. To
unpack this string, use the following two
procedures:

• CT_STRING.INIT_NAME_VALUE-
_ARRAYS to create an array of values from
this string.

• CT_STRING.GET_ARRAY_VALUE to get
the value of an item from the array created
by INIT_NAME_VALUE_ARRAYS.

o_result INTEGER 0 — No value is placed in the field and focus
remains on the field.

1 — The value entered by the user is placed in
the field, and focus moves to the next field in the
tab sequence.

2 — The new value calculated by the procedure
is placed in the field, and focus moves to the
next field in the tab sequence.

o_new_value VARCHAR2 New value to be placed in the field if the
o_result is 2.

o_message VARCHAR2 Message text, if any, to be displayed.

o_new-
_itemvalues

VARCHAR2 This argument was used for conversion
procedure in prior releases of the Clintrial
software. For Value Changed procedures in 4.5,
you must include the o_new_itemvalues
argument in the procedure call, but you do not
need to use it.

Argument: Data type: Description:
390 Chapter 17: Using Data-Entry Processing Procedures

L
evel 1 b

leed
P

rogram
m

in
g

L
evel 3 b

leed
Note: Changes to the database should not be committed by a Value Changed
procedure.

Page-related procedures

When procedures are run

When the Enter user opens a study page, the following procedures are run
automatically (in this order):

• Page Opened procedure.

• Initializing Page Section procedures, in the order of page sections
represented on the study page.

When the Enter user saves data on a study page (regardless of whether the user
closes the page), the following procedures are run automatically (in this order):

• Saving Page Section procedures, in the order of page sections represented on
the study page.

• Page Saved.

Note: Procedures related to page sections are run when a study page is opened
or saved, not when the user navigates to or from the particular page section.
Initializing Page Section procedures are not run for page sections that are read-
only.

Format

The format of a procedure attached to a page or page section is as
follows:
Page-related procedures 391

L
ev

el
 1

 b
le

ed
P

ro
gr

am
m

in
g

L
ev

el
 3

 b
le

ed
PROCEDURE procedure-name
i_protocol VARCHAR2,
i_layout_name VARCHAR2,
i_pane_usage_seq VARCHAR2,
i_table VARCHAR2,
i_page_status VARCHAR2,
i_keys VARCHAR2,
o_result OUT INTEGER,
o_message OUT VARCHAR2)
IS
 BEGIN
 PL/SQL CODE
END procedure-name;

Arguments

The following table lists the arguments passed into and out of the page-related
data-entry processing procedure using the format described in the previous
section:

Argument: Data type: Description:

i_protocol VARCHAR2 Name of the protocol containing the item to which
the procedure is attached.

i_layout-
_name

VARCHAR2 Name of the page template.

i_pane-
_usage_seq

VARCHAR2 Number indicating the page section in the page
template. This is the value of the
PANE_USAGE_SEQ item in the
CTSDD.PAGE_USAGE table. For procedures
related to a page template, this argument is 0.
392 Chapter 17: Using Data-Entry Processing Procedures

L
evel 1 b

leed
P

rogram
m

in
g

L
evel 3 b

leed
i_keys VARCHAR List of key item name and item value pairs that
includes the subject item, block key item, page
key item, and, if defined, the block repeat key
item, page repeat key item, and subset page
section key item. (The list does not include the
master key item or detail key item.)

To unpack this string, use the following two
procedures:

• CT_STRING.INIT_NAME_VALUE_ARRAYS
to create an array of values from this string.

• CT_STRING.GET_ARRAY_VALUE to get
the value of an item from the array created by
INIT_NAME_VALUE-_ARRAYS.

i_page-_status VARCHAR2 0 — The page is new.

 1 — The page already exists.

 2 — Verify mode; the page already exists.

-1 — Test mode in Design.

i_table VARCHAR2 Indication of the table type:

• UPDATE

• DATA

o_result INTEGER For Page Opened events:

0 — Stop processing and close the page.

1 — Continue processing.

For Initializing Page Section and Saving Page
Section events:

0 — Stop processing.

1 — Continue processing.

For Saved Page and Page Deleted events:

1 — Continue processing.

o_message VARCHAR2 Message text, if any, to be displayed.

Argument: Data type: Description:
Page-related procedures 393

L
ev

el
 1

 b
le

ed
P

ro
gr

am
m

in
g

L
ev

el
 3

 b
le

ed
PL/SQL code

In an Initializing Page Section procedure, you can use any of the procedures in
the CT_EVENT package (described in "Event utility functions" on page 359)
except the ITEM_FOCUS, ITEM_FOCUS_RPT, and SECTION FOCUS
procedure.

Note: Changes to the database should not be committed by an Initializing Page
Section.

The CT_EVENT package is not available to the Page Opened, Page Saved, Page
Deleted, and Saving Page Section events.

Note: Only panel items can be included. Inclusion of context items can cause
the procedure to fail.

Attaching data-entry processing procedures

Attaching a procedure to a page template

To attach a data-entry processing procedure to a page template:

1. From Design’s Objects menu, select Page Template.

2. From the Page Template menu, select Modify. Then, from the Page
Template menu, select Page Template Events. The Page Template Events
dialog box opens.

3. In the Procedure Name field for the appropriate event (Page Opened, Page
Saved, or Page Deleted), enter the name of the data-entry processing
procedure.

If the procedure is in a package, enter:

owner-account.package-name.procedure-name

or:

synonym-name.procedure-name (if there is a public synonym for the
package)

If the procedure is not in a package, enter:

owner-account.procedure-name

or:

synonym-name (if there is a public synonym for the procedure)
394 Chapter 17: Using Data-Entry Processing Procedures

L
evel 1 b

leed
P

rogram
m

in
g

L
evel 3 b

leed
In the following example, there is a crftrack procedure attached to the VITAL
page template. There are no page sections listed in the dialog box because
you are working with the page template.

4. Test the procedure in page template test mode, or in Enter.

Attaching a procedure to a page section

To attach a data-entry processing procedure to a page section:

1. From the Objects menu, select Page Template.

2. From the Page Template menu, select Modify.

3. Select a page section in the page template. Then, from the Page Template
menu, select Modify Page Section Events. The Page Template Events
dialog box opens.

4. In the Procedure Name field for the appropriate event (Initializing Page
Section or Saving Page Section), enter the name of the data-entry processing
procedure.

If the procedure is in a package, enter:

owner-account.package-name.procedure-name

or:

synonym-name.procedure-name (if there is a public synonym for the
package)

If the procedure is not in a package, enter:

owner-account.procedure-name

or:

synonym-name (if there is a public synonym for the procedure)
Attaching data-entry processing procedures 395

L
ev

el
 1

 b
le

ed
P

ro
gr

am
m

in
g

L
ev

el
 3

 b
le

ed
In the following example, there is a locksubject procedure attached to the VITAL
page template:

5. Test the procedure in page template test mode, or in Enter.

Attaching a procedure to an item

To attach a data-entry processing procedure to an item on a study page:

1. From Design’s Objects menu, select Page Section.

2. From the Page Section menu, select Modify.

3. Place the cursor in the field to which you want to attach the procedure, and,
from the Design menu, select Attributes.

4. In the Value Changed Procedure field for the appropriate item, enter the
name of the procedure.

If the procedure is in a package, enter:

owner-account.package-name.procedure-name

or:

synonym-name.procedure-name (if there is a public synonym for the
package)

If the procedure is not in a package, enter:

owner-account.procedure-name

or:

synonym-name (if there is a public synonym for the procedure)
396 Chapter 17: Using Data-Entry Processing Procedures

L
evel 1 b

leed
P

rogram
m

in
g

L
evel 3 b

leed
In the following example, there is a conv_hgt procedure attached to the
HGTIN item:

5. Test the procedure in page template test mode, or in Enter.

Examples

Example 1: itemfocus procedure

Suppose that the DMG panel includes the RACE, RACEOTH, and ALLERG
items, and the page section includes those items in that order. You want a site-
specific procedure to move the cursor to the RACEOTH item if ’5’ is entered for
RACE. Otherwise, you want the cursor to skip the RACEOTH field and go to
the next item in the page section, which is ALLERG.

You could create the following procedure:
Examples 397

L
ev

el
 1

 b
le

ed
P

ro
gr

am
m

in
g

L
ev

el
 3

 b
le

ed
CREATE OR REPLACE PROCEDURE itemfocus
 i_protocol VARCHAR2,
 i_panel VARCHAR2,
 i_table VARCHAR2,
 i_colname VARCHAR2,
 i_ct_recid VARCHAR2,
 i_colvalue VARCHAR2,
 i_itemvalues VARCHAR2,
 o_result OUT INTEGER,
 o_new_value OUT VARCHAR2,
 o_message OUT VARCHAR2,
 o_new_itemvalues OUT VARCHAR2)
IS

BEGIN

if i_colvalue = ’5’
then

ct_event.item_focus(’RACEOTH’);
else
ct_event.item_focus(’ALLERG’);
end if:
o_result := 1;

END itemfocus;
/

398 Chapter 17: Using Data-Entry Processing Procedures

L
evel 1 b

leed
P

rogram
m

in
g

L
evel 3 b

leed
You would then do the following:

1. Compile the procedure in the Oracle account that stores site-specific or
protocol-specific procedures. This example assumes that you compile the
procedure in a site-specific account named CTSITEPROC.

2. In Design, attach the itemfocus procedure to the RACE item in the DMG
panel:

Example 2: convertweight procedure

Suppose that the VITAL panel contains the items WGTLB and WGTKG. In the
Vital Signs page section, you want a site-specific procedure to convert the value
entered for the WGTLB item to kilograms and place the result in the WGTKG
item.

Or, enter the name of
the public synonym, if
one exists.
Examples 399

L
ev

el
 1

 b
le

ed
P

ro
gr

am
m

in
g

L
ev

el
 3

 b
le

ed
You could create the following procedure:

CREATE OR REPLACE PROCEDURE convertweight
 i_protocol VARCHAR2,
 i_panel VARCHAR2,
 i_table VARCHAR2,
 i_colname VARCHAR2,
 i_ct_recid VARCHAR2,
 i_colvalue VARCHAR2,
 i_itemvalues VARCHAR2,
 o_result OUT INTEGER,
 o_new_value OUT VARCHAR2,
 o_message OUT VARCHAR2,
 o_new_itemvalues OUT VARCHAR2)

IS

x number(4);
myValueList ct_string.NameValueList := ct_string.NameValueList();

BEGIN

x := to_number(i_colvalue);

ct_string.add_element(myValueList,’WGTKG’,to_char((x * .454));
ct_string.set_item(myValueList);

o_result := 1;

END convertweight;
/

400 Chapter 17: Using Data-Entry Processing Procedures

L
evel 1 b

leed
P

rogram
m

in
g

L
evel 3 b

leed
You would then do the following:

1. Compile the procedure in the Oracle account that stores site-specific or
protocol-specific procedures. This example assumes that you compile the
procedure in a site-specific account named CTSITEPROC.

2. In Design, attach the convertweight procedure to the WGTLB item in the
VITAL panel:

Or, enter the name of
the public synonym, if
one exists.
Examples 401

L
ev

el
 1

 b
le

ed
P

ro
gr

am
m

in
g

L
ev

el
 3

 b
le

ed
402 Chapter 17: Using Data-Entry Processing Procedures

L
evel 1 b

leed
L

evel 2 b
leed

C
om

m
on

 In
form

ation
Part III: Common Information

Chapter 18: Data Format 405

Chapter 19: Naming Clintrial Software Objects 409

Chapter 20: Restricting Records 411

Chapter 21: Using SQL in the Clintrial Software 419

Chapter 22: Using Custom Menus 425

Chapter 23: Running Batch Jobs 431

Chapter 24: Glossary 435
 403

L
ev

el
 1

 b
le

ed
L

ev
el

 2
 b

le
ed

C
om

m
on

 I
n

fo
rm

at
io

n

404

L
evel 1 b

leed
L

evel 2 b
leed

C
om

m
on

 In
form

ation
Data types 406

What is a data type? 406

Valid data types 406

Database formats 407

What is a database format? 407

Valid database formats 407

18 Data Format
 405

L
ev

el
 1

 b
le

ed
L

ev
el

 2
 b

le
ed

C
om

m
on

 I
n

fo
rm

at
io

n

Data types

What is a data type?

A data type is an item attribute that indicates the format in which a value for an
item is entered and displayed in the Clintrial software.

Valid data types

The following table lists valid data types:

The format in which dates are entered and displayed is determined by your PC’s
date setting. To ensure Y2K compliance, set the date setting (a regional setting)
on your PC to a four-digit year format, and enter four digits years.

If your PC’s date setting is set to a two-digit year, the Clintrial software
interprets the entered year as follows:

• 00 through 49 — The 2000s

• 50 through 99 — The 1900s

Data type: Description: Example:

FIXED Integer, which optionally begins with a
plus or minus sign.

100

FLOAT Number, which optionally includes a
decimal point and optionally begins with a
plus or minus sign.

98.6

TEXT String of characters, including letters,
numbers, punctuation, spaces, or special
characters.

Center 101

DATE Combination of day, month, and year. 05/01/2000

DATETIME Date and time, separated by a blank space. 05/01/2000 21:20:00
406 Chapter 18: Data Format

L
evel 1 b

leed
L

evel 2 b
leed

C
om

m
on

 In
form

ation
Database formats

What is a database format?

A database format is an item attribute that determines the format in which a
value for an item is stored in the Clintrial software database, that is,
Oracle database tables.

Valid database formats

The following table lists valid database formats:

Database format: Description:

VARCHAR2(n) Character string of up to 2,000 characters, where n
indicates the number of characters.

DATE A date or datetime, in Oracle’s own internal format. Years
are stored as four-digit years.

NUMBER(xx) Any number with a maximum of xx digits with no decimal
places. The maximum number of digits is 10.

For example, if xx=5, the number could be 12345 or
 -12345.

NUMBER(xx,yy) Any number with a maximum of xx digits, where yy
indicates the number of decimal places, that is, digits to the
right of the decimal point. The maximum number of digits
is 10.

For example, if xx=5 and yy=2, the number could be 123.45
or -123.45.
Database formats 407

L
ev

el
 1

 b
le

ed
L

ev
el

 2
 b

le
ed

C
om

m
on

 I
n

fo
rm

at
io

n

408 Chapter 18: Data Format

L
evel 1 b

leed
L

evel 2 b
leed

C
om

m
on

 In
form

ation
Naming conventions 410

Reserved words 410

19 Naming Clintrial Software
Objects
 409

L
ev

el
 1

 b
le

ed
L

ev
el

 2
 b

le
ed

C
om

m
on

 I
n

fo
rm

at
io

n

Naming conventions

When naming a Clintrial software object, use the following conventions:

• Do not exceed 20 characters.

• Ensure that the first character is alphabetic.

• Use either alphabetic or numeric characters, or both.

• Do not use any special characters, except the underscore (_).

• Do not use reserved words.

Object names are not case-sensitive.

Reserved words

Clintrial software reserved words include the following:

• The names of system items (MERGE_DATETIME, STATUS, ENTRY_ID,
ENTRY_DATETIME, CT_RECID, DB_ID, CT$REASON and
SUBJECT_ID).

• The words TODAY, EMPTY and the letters CT.

• Words designated as reserved in PL/SQL.

• Words designated as reserved in SQL.

• Words designated as reserved in Oracle 10g.
410 Chapter 19: Naming Clintrial Software Objects

L
evel 1 b

leed
L

evel 2 b
leed

C
om

m
on

 In
form

ation
Restricting records based on a SQL restriction 412

What is a SQL restriction? 412

How to create a SQL restriction 413

Comparison operators 413

Logical operators 414

Syntax 415

Levels of precedence 415

Items 415

Restricting records based on flags and notes 416

Flags 416

Notes 416

Restricting records based on date and time 416

What is a date and time range? 416

From date 417

To date 417

20 Restricting Records
 411

L
ev

el
 1

 b
le

ed
L

ev
el

 2
 b

le
ed

C
om

m
on

 I
n

fo
rm

at
io

n

Restricting records based on a SQL restriction

For some Clintrial software tasks in which you work with records, you can select
records based on one of the following:

• A SQL restriction

• Flags and notes

• Date and time

What is a SQL restriction?

A SQL restriction is a SQL WHERE clause that is used to restrict the records
with which you are working to those that meet specified conditions. The SQL
restriction can consist of one or more valid SQL conditions connected by logical
operators.

For example, suppose that you want to work with only records for which the
value of the item SEX is F, and the value of the item AGE is less than 18 or
greater than 65. You can specify the following SQL restriction, which consists of
two conditions connected by the logical operator AND:

SEX = ’F’ AND (AGE < 18 OR AGE > 65)

The first condition, SEX = ‘F’, consists of one expression. The second condition,
AGE < 18 OR AGE > 65, consists of two expressions.

There is, however, a limitation to the kind of cross-panel sub-query you can add
to a SQL Restriction in Clintrial. A sub-query which needs to use an alias for the
primary panel (the panel selected for the batch job, as shown in the SELECT
clause below), cannot be implemented. This is due to a limitation in Clintrial.

Note: When you specify an SQL Restriction for a batch job, the SQL statement
is generated by appending the restriction to the system-generated SELECT
clause:

SELECT * FROM PROTOCOL.PANEL_UPDATE WHERE;

The content of the SELECT clause is always as shown above, no matter what
kind of SQL restriction is used.

Caution: When sub-queries are used in SQL Restriction inappropriately, the
batch job will run, and the user will interpret the batch log as saying that the
restriction worked, when it did not.
412 Chapter 20: Restricting Records

L
evel 1 b

leed
L

evel 2 b
leed

C
om

m
on

 In
form

ation
How to create a SQL restriction

You can create a SQL restriction using the SQL Restriction Clause Builder
dialog box:

You can also import a SQL restriction that you previously saved.

For information on how to use the SQL Restriction Clause Builder dialog box,
see the Help.

Comparison operators

The following table lists the comparison operators that you can use within a SQL
expression:

Comparison
operator: Description: Example:

= Equal to INVNO = 316

!=
<>
><

Not equal to INVNO != 316

> Greater than RESULT > 120

>= Greater than or equal to RESULT >= 120
Restricting records based on a SQL restriction 413

L
ev

el
 1

 b
le

ed
L

ev
el

 2
 b

le
ed

C
om

m
on

 I
n

fo
rm

at
io

n
 Logical operators

The following table lists the logical operators that you can use to connect
conditions:

< Less than RESULT < 120

<= Less than or equal to RESULT <= 120

BETWEEN...
AND

Between or equal to specified
values

AGE BETWEEN 17 AND 65

IN In a specified list of values VISITNUM IN (1,2,3)

LIKE Like a specific value DRUGNAME LIKE ‘ANTI%’

IS NULL Has no value LABNAME IS NULL

NOT
BETWEEN...
AND

Not between or equal to
specified values

AGE NOT BETWEEN 17 AND
65

NOT IN Not in a specified list of
values

VISITNUM NOT IN (1,2,3)

NOT LIKE Does not have a specified
pattern

DRUGNAME NOT LIKE
‘%ANTI%’

IS NOT
NULL

Has a value LABNAME IS NOT NULL

Logical operator: Description:

NOT Evaluates to TRUE if the following condition is FALSE

AND Evaluates to TRUE if both conditions are TRUE

OR Evaluates to TRUE if either condition is TRUE

Comparison
operator: Description: Example:
414 Chapter 20: Restricting Records

L
evel 1 b

leed
L

evel 2 b
leed

C
om

m
on

 In
form

ation
Syntax

In a SQL restriction:

• You can use any valid SQL functions.

• You can use any valid SQL wildcard characters.

• Do not specify the SQL keyword WHERE.

• Do not end a restriction with a semicolon (;).

Levels of precedence

The levels of precedence among SQL operators are:

• Comparison operators

• The logical operator NOT

• The logical operator AND

• The logical operator OR

You can use parentheses in an expression to override the operator
precedence.

Items

Within a SQL expression:

• You can compare items to either specified values or to the values of other
items.

• You can refer to the system items STATUS, ENTRY_DATETIME,
ENTRY_ID, MERGE_DATETIME, CT_RECID, DB_ID, SUBJECT_ID,
and CTS$REASON. These items exist for all panel types. If you refer to
STATUS, use the numeric code for the record status.

• You must use the item names, rather than the field names. For example, if the
Gender field on a study page is associated with the item SEX, specify SEX
(not Gender) in the restriction clause.

• For items of data type TEXT, you must enclose the value in single quotation
marks (for example, SEX = 'MALE'). Also, the case of the value that you
specify must match the case (upper or lower) of the value in the database.

• For items of data type DATE or DATETIME, you must enclose the value in
single quotation marks.
Restricting records based on a SQL restriction 415

L
ev

el
 1

 b
le

ed
L

ev
el

 2
 b

le
ed

C
om

m
on

 I
n

fo
rm

at
io

n

• For items of the data type DATE or DATETIME, use the format that is
specified for by the server’s setting for the Oracle parameter
NLS_DATE_FORMAT. You can use the SQL function TO_DATE to change
the specified date to the format in which dates are stored in the database.

Restricting records based on flags and notes

Flags

When performing certain tasks in the Clintrial software, you can restrict the
records with which you are working to those that have specified flags.

Note: Only records (not items or observations) with the specified flag are
selected.

Notes

When performing certain tasks in the Clintrial software, you can restrict the
records with which you are working to those that have specified notes.

Note: Only records (not items or observations) with the specified note are
selected.

Restricting records based on date and time

What is a date and time range?

When performing certain tasks in the Clintrial software, you can restrict records
on the basis of a date and time range. The date and time that you specify are
compared to the value of a record’s MERGE_DATETIME (a system item) for
clinical data records.

For tasks that allow restriction on the basis of date and time, you enter a From
date and time or a To date and time.
416 Chapter 20: Restricting Records

L
evel 1 b

leed
L

evel 2 b
leed

C
om

m
on

 In
form

ation
From date

If you specify a From date and time, records whose ENTRY-_DATETIME is on
or later than the specified date and time will be included.

If you do not specify a From date, there is no lower limit on the
ENTRY_DATETIME of records to be selected.

To date

If you specify a To date, records whose ENTRY_DATETIME is on or earlier
than the specified date and time will be included.

If you do not specify a To date, there is no upper limit on the
ENTRY_DATETIME of records selected.
Restricting records based on date and time 417

L
ev

el
 1

 b
le

ed
L

ev
el

 2
 b

le
ed

C
om

m
on

 I
n

fo
rm

at
io

n

418 Chapter 20: Restricting Records

L
evel 1 b

leed
L

evel 2 b
leed

C
om

m
on

 In
form

ation
Types of SQL statements 420

How to use the SQL command 420

Database structures 421

SELECT statement syntax 421

DESCRIBE statement syntax 423

Saving statements and results 423

21 Using SQL in the Clintrial
Software
 419

L
ev

el
 1

 b
le

ed
L

ev
el

 2
 b

le
ed

C
om

m
on

 I
n

fo
rm

at
io

n

Types of SQL statements

Using SQL from within the Clintrial software, you can run the following types of
SQL statements:

• A SELECT statement, which retrieves from the database those records that
meet specified conditions.

• A DESCRIBE statement, which displays and describes the columns in a
database table or view.

See your Oracle SQL documentation for details about specifying SQL
statements.

How to use the SQL command

From the Tools menu, select SQL. The SQL window opens:

For information on how to use the SQL window to specify SQL statements, see
the Help.

Note: You use the File menu’s Import command to import an existing SQL
statement that you have saved.
420 Chapter 21: Using SQL in the Clintrial Software

L
evel 1 b

leed
L

evel 2 b
leed

C
om

m
on

 In
form

ation
Database structures

When using SQL, you need to specify full table names (including the account
name) and column names. For information about accounts, tables, and columns,
see Part I of this guide.

Often, you use SQL to work with protocol accounts. In this case:

• The account name is the name of the protocol.

• The table name is a panel name followed by _UPDATE, _DATA, or
_AUDIT. The panel-name_ALL syntax includes records from both the
update and the data tables

• The column name is the name of an item in the panel.

SELECT statement syntax

The syntax of a SELECT statement is:

SELECT column FROM account-name.table-name WHERE restriction-clause;

You must end the statement with a semicolon (;). The WHERE clause is
optional.

The following example retrieves values for the SUBJECT, PULSE, and TEMPF
items from the update table for the VITALS panel in the MEDIKA_CLINICAL
protocol, if the value of the WGTLB item is greater than 180:

select subject, pulse, tempf from medika_clinical.vital_update where wgtlb > 180;
Database structures 421

L
ev

el
 1

 b
le

ed
L

ev
el

 2
 b

le
ed

C
om

m
on

 I
n

fo
rm

at
io

n

The result of the statement is:

Within a SQL expression:

• You must use the item names, rather than the field names. For example, if the
Gender field on a study page is associated with the item SEX, specify SEX
(not Gender) in the restriction clause.

• For items of data type TEXT, you must enclose the value in single quotation
marks (for example, SEX = 'MALE'). Also, the case of the value that you
specify must match the case (upper or lower) of the value in the database.

• For items of data type DATE or DATETIME, you must enclose the value in
single quotation marks.

• For items of the data type DATE or DATETIME, use the format that is
specified for by the server’s setting for the Oracle parameter
NLS_DATE_FORMAT. You can use the SQL function TO_DATE to change
the specified date to the format in which dates are stored in the database.
422 Chapter 21: Using SQL in the Clintrial Software

L
evel 1 b

leed
L

evel 2 b
leed

C
om

m
on

 In
form

ation
DESCRIBE statement syntax

The syntax of a DESCRIBE statement is:

DESCRIBE account-name.table_name;

You must end the statement with a semicolon (;).

For example, the following statement describes the columns of the update table
for the VITAL panel in the MEDIKA_CLINICAL protocol:

DESCRIBE MEDIKA_CLINICAL.VITAL_UPDATE;

The result of the statement is:

Saving statements and results

You can click Save to save a SQL statement or the results of a SQL statement to
a file, in a variety of file formats. For information, see the Help.
DESCRIBE statement syntax 423

L
ev

el
 1

 b
le

ed
L

ev
el

 2
 b

le
ed

C
om

m
on

 I
n

fo
rm

at
io

n

424 Chapter 21: Using SQL in the Clintrial Software

L
evel 1 b

leed
L

evel 2 b
leed

C
om

m
on

 In
form

ation
Overview 426

Defining the Custom menu 427

Replacement variables 428

Example 428

22 Using Custom Menus
 425

L
ev

el
 1

 b
le

ed
L

ev
el

 2
 b

le
ed

C
om

m
on

 I
n

fo
rm

at
io

n

Overview

On the Custom menu, you can place commands that are shortcuts to other
Windows applications (for example, Notepad or Excel) and document files (for
example, text files or spreadsheets). You can then use those commands to open
applications and documents directly from the Clintrial software.

To add a command, you use the Custom menu’s Edit Custom Menu command.
Initially, this is the only command on the Custom menu.

The commands that you add appear as additional entries on the Custom menu.
You can specify whether the command will appear in all Clintrial software
modules, or in only the module in which you create it. You can create up to eight
commands of each type.

The Custom menu entries are stored in your computer’s Windows Registry.
Thus, they appear only on the computer on which they are created. If you are
running Windows NT, the Custom menu entries are also specific to the user who
created them.
426 Chapter 22: Using Custom Menus

L
evel 1 b

leed
L

evel 2 b
leed

C
om

m
on

 In
form

ation
Defining the Custom menu

To add an entry to the Custom menu, or to modify existing entries:

1. From the Custom menu, select Edit Custom Menu.

The Edit Custom Menu dialog box opens:

In the Common Menu Items or Module Specific Menu Items section of the
dialog box, use the Add, Insert, and Delete buttons to create or remove
entries.

2. In the Text field, enter the name of the command to be added to the Custom
menu. To create an accelerator key, preface one of the letters in the name
with an ampersand (&). For example:

&Notepad

3. In the Command field, enter the path and name of the application that the
shortcut will run. If the shortcut is to a document, the Command field must
also include the path and file name:

For example:

c:\windows\notepad.exe

or:

c:\windows\notepad.exe d:\enter\notes.doc

Note: If a directory name in the path contains a space, the path must be
placed in quotes. For example:

“c:\Program Files\winedit\winedit.exe”
Defining the Custom menu 427

L
ev

el
 1

 b
le

ed
L

ev
el

 2
 b

le
ed

C
om

m
on

 I
n

fo
rm

at
io

n

4. To test whether a command works as it should, select it and click Test.

5. When you are satisfied with the Command menu, click OK.

Replacement variables

You can use the following replacement variables in the command that you
specify in the Edit Custom Menu dialog box:

• CTS$USERNAME — Substitutes the user name of the current user.

• CTS$DATABASE— Substitutes @ followed by the value that you entered in
the Database field in the Database Connection dialog box when you log in to
the Clintrial software.

• CTS$PROTOCOL — Substitutes the name of the current protocol.

The following example logs you in to SQL*Plus as the current user in the current
database instance:

c:\orant80\bin\plus80w.exe CTS$USERNAMECTS$DATABASE

Example

In the following example from Design, the Notepad and Calculator applications
have been added to the Custom menu for all the Clintrial software modules. For
Design only, the Custom menu includes the Enter Specifications and Protocol
Design Specifications commands, which open document files using Word.
428 Chapter 22: Using Custom Menus

L
evel 1 b

leed
L

evel 2 b
leed

C
om

m
on

 In
form

ation
Note: This example assumes that there is a Word document named
protocol-name.doc at d:\enter and another document with the same name at
d:\design.

The resulting Custom menu appears as follows:

In other modulesIn Design
Example 429

L
ev

el
 1

 b
le

ed
L

ev
el

 2
 b

le
ed

C
om

m
on

 I
n

fo
rm

at
io

n

430 Chapter 22: Using Custom Menus

L
evel 1 b

leed
L

evel 2 b
leed

C
om

m
on

 In
form

ation
Submitting a batch job 432

Using the batch job queue 432

23 Running Batch Jobs
 431

L
ev

el
 1

 b
le

ed
L

ev
el

 2
 b

le
ed

C
om

m
on

 I
n

fo
rm

at
io

n

Submitting a batch job

What is a batch job?

In Manage, you can perform many tasks either immediately or as a batch job.
When you submit a batch job, you can specify a time at which the job should
run, or intervals at which the job should run.

How to submit a batch job

To perform a task as a batch job, check Submit Batch in the active window and
specify values for the following fields:

• Submit At — The date and time at which you want the batch job to begin

• Submit Every — Optionally, the time interval at which the batch job should
run after the initial job (that is, the job that begins when specified in the
Submit At field); if null, the batch job runs only once.

Using the batch job queue

What is the batch job queue?

The batch job queue shows currently submitted Manage batch jobs.

How to display the batch job queue

From the Tools menu, select Batch Job Queue. The Batch Jobs window opens:

You can use the View menu to filter or sort the batch job queue.
432 Chapter 23: Running Batch Jobs

L
evel 1 b

leed
L

evel 2 b
leed

C
om

m
on

 In
form

ation
Batch job queue contents

The Batch Jobs report provides the following information:

• Job — Job number

• User — User name

• Description — SQL restriction for the job

• Next Date — Next date and time the batch job is scheduled to run

• Interval — Space of time that indicates whether batch job will run on an
hourly, daily, weekly, or monthly basis

• This Date — Current date

• Last Date — Date and time the last batch job ran

How to modify entries

Select the entry you want to edit, and from the Edit menu, select Modify. The
Modify Job dialog box opens:

 Specify values for the following fields:

• Submit At — The date and time at which you want the batch job to begin.

• Submit Every — Optionally, the time interval at which the batch job should
run after the initial job (that is, the job that begins when specified in the Sub-
mit At field); if null, the batch job runs only once.

How to run a batch job immediately

Select the batch job that you want to run, and from the File menu, select Run.
The batch job runs immediately if there are no other jobs already running.

To find out if jobs are running, execute the following SELECT statement:

SELECT job_id, job_type, protocol FROM cts.job_log WHERE
overall_status='RUNNING';
Using the batch job queue 433

L
ev

el
 1

 b
le

ed
L

ev
el

 2
 b

le
ed

C
om

m
on

 I
n

fo
rm

at
io

n

How to delete entries

Highlight the entry you want to delete from the batch job queue, and from the
Edit menu, select Delete.

The above is all that is necessary to delete a batch job that has not yet started
running. If it has already started running, you first must delete it as above, but
then you must switch over to Oracle and kill the session there. For details on how
to kill a session in Oracle, see your Oracle documentation.

Note: A session running unattended may cause data corruption. Do not allow
running batch jobs deleted from the queue to continue to run in Oracle.
434 Chapter 23: Running Batch Jobs

L
evel 1 b

leed
L

evel 2 b
leed

C
om

m
on

 In
form

ation
In this glossary you will find definitions related to the following Clintrial
software modules:

• Admin

• Design

• Enter

• Manage

• Retrieve

• Classify

• Lab Loader

• Resolve

There is a separate glossary for Multisite.

Note: You can also access an online version of this glossary using the
Clintrial software Help.

24 Glossary
 435

L
ev

el
 1

 b
le

ed
L

ev
el

 2
 b

le
ed

C
om

m
on

 I
n

fo
rm

at
io

n

A

access level

A level of security that determines what type of access the user has to the activities defined by an access
right. For example, the Full access level allows complete access to the activities described in an access
right. See also access right.

access right

A predefined set of Clintrial software activities that can be associated with a usergroup or a user. Some
access rights relate to activities that require access to protocols and must be associated with a protocol
as well as with a usergroup or user. Access rights in each Clintrial software module determine which
combinations of activities users can perform. There are two types of access rights: non-protocol access
rights and protocol access rights. See also access level, non-protocol access right, protocol access right.

account

See system account, protocol account, user account.

Ad Hoc Query

A query method in Retrieve that allows you to use a graphical query builder to create lists of subject
records, then browse those subject records, or save detail data for those subjects.

aggregated codelist

A codelist that is stored in a single Oracle database table with other codelists. See also codelist, unag-
gregated codelist, view codelist.

attribute

A characteristic of an object that defines the object. The definition of an object is the set of its
attributes. For example, the attributes of an item include its name, database format, and whether it is
required. See also object.

auditing

The tracking of changes to clinical data, and of notes associated with clinical data. Depending on the
audit start point, auditing tracks changes to records and notes in the update table, the data table, or both.
See also audit start point.

In revision control, the tracking of changes to metadata in the source object or the destination object.
See also source object, destination object.

audit start point

The data management activity after which auditing begins, set by the designer. For example, auditing
can begin after data-entry, verification, validation, validity, or merging. See also auditing.
436 Glossary

L
evel 1 b

leed
L

evel 2 b
leed

C
om

m
on

 In
form

ation
audit table

An Oracle database table that stores copies of clinical data records as they existed before modification
or deletion. There is one audit table for each installed panel. The name of the audit table is panel-
name_AUDIT; for example, LAB_AUDIT. See also data table, update table.

automatic coding

A method of coding in which the Clintrial software uses an algorithm to search the coding thesaurus
and assign an appropriate code to verbatim text. See also thesaurus algorithm, coding thesaurus, inter-
active coding, verbatim text.

automatic skipping (Autoskip)

An optional feature that advances the cursor automatically from one field to the next once the maxi-
mum number of characters has been entered. Autoskip only affects fields for which the designer has set
the Autoskip attribute. Typically, these are fields for which there is a fixed entry length (for example,
date fields).

B

base protocol

The clinical data protocol on which a view protocol is based. See also clinical data protocol, view pro-
tocol.

batch ID

An identifying value assigned to an Oracle batch job. See also batch job.

batch job

A process that is submitted to an Oracle batch job queue, rather than run interactively. Batch jobs can
be run immediately, or they can be run later at a specified date and time, or a regularly scheduled inter-
val. See also batch ID.

batch loading

The process of taking data that is stored in an ASCII file and placing that data directly into a Clintrial
software database table. See also control file, input file.

blind verification

A way of checking that clinical data has been entered correctly. To perform blind verification, you reen-
ter values in fields in a study page that require verification. The Clintrial software checks the reentered
data when you exit a study page, attaches a VERIFICATION/AUTOFLAG flag to any conflicting
items, and adds an entry for each item to the Verification Report. Blind verification is performed as
heads-down data entry. See also interactive verification, verification.
 437

L
ev

el
 1

 b
le

ed
L

ev
el

 2
 b

le
ed

C
om

m
on

 I
n

fo
rm

at
io

n

block

A group of related study pages in a study book. Blocks usually represent subject evaluation check-
points, such as subject visits. For example, a block named VISIT1 can include the following study
pages: Vital Signs, Concomitant Medications, and Laboratory Exams. See also study book, study page.

block key item

A visit-related context item that is a key for identifying data by block. For a nonrepeating block, the
value of the block key item uniquely identifies the block; for a repeating block, the values of the block
key item and the block repeat key item uniquely identify the block.
Typically, the block key item is the context item for identifying the visit. For example, you may use the
Laboratory Exams page to collect laboratory exam data during several subject visits. The block key
item distinguishes which visit’s data to display in a study page. See also block key value, block value,
block repeat key item, block repeat key value, special context item.

block key value

The value given to the block key item, which must be a visit-related context item. You must specify the
block key value in Design when you create a block in the study book layout
editor. The block key value can be modified only if there is no clinical data that refers to the value, and
if the block has no study pages. See also block key item, block repeat key item, block repeat key value,
block value, special context item.

block repeat key item

A visit-related context item that is the key, with the block key item, for uniquely identifying data in a
repeating block. See also block key item, block key value, block repeat key value, block value, special
context item.

block repeat key value

The value given to the optional block repeat key item, which must be a visit-related context item. You
must specify the block repeat key value in Design when you create a repeating block in the study book
layout editor, or in Enter when you create a repeating block. See also block key item, block key value,
block repeat key item, block value, special context item.

block title

A name or a phrase that describes a block as it appears in a study book.

block value

Optional initial values given to any visit-related context item other than the block key item or block
repeat key item. You can specify the block values when you modify a block in the study book layout
editor. See also block key item, block key value, block repeat key item, block repeat key value, context
item.
438 Glossary

L
evel 1 b

leed
L

evel 2 b
leed

C
om

m
on

 In
form

ation
C

carried value

In data entry, a value that is carried from one field in a previous study page to the same field in the cur-
rent study page. Carried values are displayed only in context page sections of study pages. If you can
place the cursor in a field that contains a carried value, you can change the initial value to a new value.
See also context page section.

case report form (CRF)

A paper form used to record clinical data for study subjects. In the Clintrial software, CRFs are repre-
sented online by clinical data study books. See also study book, study page.

checklist

In data entry, a type of codelist used to view suggested entries for a field. See also codelist, value field
type.

checkpoint date

A date specified in a view protocol. The Clintrial software creates the appearance of the clinical data
stored in the base protocol’s clinical data table as it existed on the checkpoint date. For example, a
checkpoint view protocol might present the clinical data as it existed on June 1, 2000. See also view
panel, view protocol.

clinical data

Data that is collected during clinical trials; for example, data about a subject collected on a case report
form (CRF) such as demographic data, previous medications, or laboratory test results. See also flag,
metadata, note.

clinical data management

The process of describing, managing, and reporting on the data generated by a clinical trial. See also
clinical trial.

clinical data protocol

A protocol that can contain both clinical data and metadata definitions of Clintrial software objects.
Some clinical data protocols contain only metadata definitions of Clintrial software objects. Optionally,
a clinical data protocol creates clinical data tables that store clinical data. See also coding thesaurus pro-
tocol, dictionary protocol, Lab Loader protocol, view protocol.

clinical data table

An Oracle database table that contains clinical data or information about clinical data for an associated
panel. When a panel is installed, three types of clinical data tables are created: update table, data table,
and audit table.
 439

L
ev

el
 1

 b
le

ed
L

ev
el

 2
 b

le
ed

C
om

m
on

 I
n

fo
rm

at
io

n

clinical protocol

A detailed plan for a clinical study that describes how investigators will conduct each study in a clinical
trial. The clinical protocol sets the guidelines for the study, describes the conditions of the study, and
contains a set of forms on which clinical data will be collected. See also clinical study, Clintrial soft-
ware protocol, protocol account.

clinical study

In clinical trials, a research procedure defined by a clinical protocol to determine the safety or efficacy
of a drug, medical treatment, or medical device. See also clinical protocol, Clintrial software protocol,
protocol account.

clinical trial

See clinical study.

Clintrial software administrator

The Clintrial software user who maintains user accounts and manages access to all Clintrial software
modules using Admin. The Clintrial software administrator also sets systemwide parameters for the
Clintrial software.

Clintrial software protocol

A logical container that organizes the Clintrial software objects and clinical data for a clinical study.
See also clinical protocol, protocol account.

code

A unique alphabetic or numeric identifier for a clinical term. Codes and their descriptions are stored in
coding thesaurus protocols. Codes are used to standardize the data collected from different investiga-
tors, sites, and languages to allow accurate comparison and analysis.

code field type

A field type that defines whether the code from a codelist is stored as text or as a number in the coded
item in the panel. The code field type must be of the same data type as the coded item in the panel. See
also codelist, field, value field type.

codelist

A set of codes and corresponding set of values. If a codelist is attached to an item, you can only enter
codes (or values) from the codelist for the item. See also code field type, checklist, value field type,
view codelist, subset codelist.

codelist status

A codelist attribute that can have the values Valid or Invalid. Valid indicates that the codelist can be
used by Enter. Invalid indicates that the codelist cannot be used. You can specify an Invalid status for a
codelist provided that it is not associated with an item and it is not the base codelist for a subset.
440 Glossary

L
evel 1 b

leed
L

evel 2 b
leed

C
om

m
on

 In
form

ation
coding

The process of assigning a standard code from a coding thesaurus to a value that has been entered for an
item. For example, an entered drug could be assigned a standard code from the WHODRL thesaurus.
You can perform coding using two methods: automatic coding or interactive coding. See also automatic
coding, coding thesaurus, interactive coding, verbatim text.

coding target

A Clintrial software object that identifies a set of items in a panel of a clinical data protocol; these items
are used with a coding thesaurus protocol during coding. See also coding, coding thesaurus protocol,
verbatim text.

coding thesaurus

A dictionary thesaurus that contains standard codes for a particular type of clinical data. There are two
types of thesauruses: industry-standard and user-defined. For example, the industry-standard COS-
TART and WHOART thesauruses contain standard codes for clinical events. You can also create a user-
defined thesaurus for your study, and add synonyms to a standard coding thesaurus. See also coding
thesaurus protocol.

coding thesaurus protocol

A protocol that stores the database tables containing a coding thesaurus. See also clinical data protocol,
coding thesaurus, dictionary protocol, extended thesaurus protocol, protocol account, view protocol.

container object

An object that contains other objects that exist only within the container object. For example, a panel is
a container object, which contains rules, derivations, items, and coding targets.

context item

An item in a context panel that provides context information for a record in a clinical data table. Con-
text items are included as columns in all clinical data tables defined by a panel of Type 1, 2, 3, 4, or 5.
Special context items, such as the subject item, are used as keys (either alone, in combination with each
other, or in combination with items in the non-context panels) to uniquely identify a record. See also
context panel, context page section, special context item, subject item.

context page section

A section of a study page, based on the context panel, that contains context items that uniquely identify
a record, such as subject and visit. Each study page in which you enter clinical data for a subject con-
tains a context page section. See also context item, context panel.

context panel

A special panel that contains context items that are included as columns in all clinical data tables
defined by a panel of Type 1, 2, 3, 4, or 5. There is one context panel for each protocol. The context
panel must be named CONTEXT. The context panel requires a corresponding context page section that
 441

L
ev

el
 1

 b
le

ed
L

ev
el

 2
 b

le
ed

C
om

m
on

 I
n

fo
rm

at
io

n

appears once on each study page, if that study page contains page sections based on panel Types 1, 2, 3,
4, or 5. See also context item, context page section, panel.

control file

A file that provides instructions for how data from an ASCII input file will be batch loaded into the
database table. See also batch loading, input file.

CT_MEDDRA protocol

A thesaurus protocol provided by the Clintrial software that provides Clintrial software support for a
single-language coding using the MedDRA dictionary. You can enhance CT_MEDDRA to meet your
coding needs, for example coding in multiple languages. See also Medical Dictionary for Regulatory
Activities.

CTL_REFERENCE protocol

A thesaurus protocol set up to contain lab normal ranges and SI unit conversions.

CTPROC account

A system account that stores internal Clintrial software procedures.

CTRESOLVEREF

A reference protocol supplied during Resolve installation. It contains panels, codelists, and other items
that structure your use of Resolve.

CTS account

A system account that stores information about protocols, user accounts, user access rights, parameters,
flag and note definitions, and other metadata that is not protocol-specific.

CTSCODES account

A system account that stores codelist information.

CTSDD account

A system account that stores protocol-specific data dictionary information such as item and panel defi-
nitions.

CTS$LOAD_protocol-name account

A system account that handles privileges for batch loading. There is one CTS$LOAD account for each
protocol, named CTS$LOAD_protocol-name.

CTSYS account

A user account supplied by the Clintrial software for system administration.
442 Glossary

L
evel 1 b

leed
L

evel 2 b
leed

C
om

m
on

 In
form

ation
Custom menu

The Custom menu is a user-modifiable menu on which you can place shortcuts to other Windows appli-
cations (for example, Notepad, Excel) and document files (for example, text files, spreadsheets). You
can then use those shortcuts to open applications and documents directly from the Clintrial software.

CXFR_RECV

A system account that handles the importing of the codelists from the codelist.dmp file.

CXFR_SEND

A system account that handles the exporting of the codelists to the codelist.dmp file.

D

database format

The format in which a value for an item entered in the Clintrial software is stored in the Oracle data-
base. The database format is an item attribute. The Oracle database formats are VARCHAR2(n), DATE,
NUMBER(xx), NUMBER(xx,yy), NUMBER(xx,0). See also
attribute, data type.

database ID

Registration number of the database instance. The default is 1.

database profile

A set of limits on Oracle database resources, associated with each user account. See also user account.

database table

An Oracle database table that stores clinical data or metadata. See also clinical data, clinical data table,
metadata.

data dictionary number

A number that the Clintrial software assigns to each item in an installed panel.

data dictionary table

An Oracle database table that contains metadata (objects and parameters). Data dictionary tables do not
contain clinical data.

data discrepancy form

A formatted report used to present one or more queries to the clinical investigator and to
capture resolution information.
 443

L
ev

el
 1

 b
le

ed
L

ev
el

 2
 b

le
ed

C
om

m
on

 I
n

fo
rm

at
io

n

data entry

The process of entering or editing clinical data using a study book.

data-entry operator

A Clintrial software user who enters data from a paper case report form (CRF) into a Clintrial software
study book. The data-entry operator usually has access rights only to data in the update table. See also
case report form (CRF).

data-entry processing procedure

A PL/SQL procedure that runs when the Enter user performs a particular action related to a study page,
page section, or field. For example, a data-entry processing procedure attached to a field could convert
an entered value to another value, or move the cursor to a particular field if a specific value is entered in
the current field.

data manager

The Clintrial software user who manages the clinical data for a study, using Manage to perform such
tasks as validating and merging records, making global modifications, or coding data.

data ownership

The ability of a site in a replication environment for a protocol or account to modify or delete data. See
also replication.

data processing event

A Clintrial software action to which a data-entry processing procedure can be attached.

data table

An Oracle database table that stores only data that has passed validation; that is, data that is clean.
There is one data table for each installed panel. The name of the data table is panel-name_DATA; for
example, LAB_DATA. See also update table, validation.

data transfer

The process of moving some or all of the records in a Lab Loader source protocol to records in a clini-
cal data destination protocol.

data type

The format in which a value for an item can be entered in a field in the Clintrial software. The data type
is a required item attribute. The Clintrial software data types are TEXT, FIXED, FLOAT, DATE, or
DATETIME. See also database format.

date field

In data entry, a field in which you can enter a value (with the data type DATE) that is interpreted as a
date.
444 Glossary

L
evel 1 b

leed
L

evel 2 b
leed

C
om

m
on

 In
form

ation
date/time field

In data entry, a field in which you can enter a value (with the data type DATETIME) that is interpreted
as a combination of the date and time.

default protocol (current protocol)

The protocol in which you are currently working in a Clintrial software module. If you want to work
with Clintrial software objects or clinical data in another protocol, you must change the default proto-
col.

default value

A predefined value for an item, displayed in a field in data entry. If you can place the cursor in a field
with a default value, you can change the default value.

derivation

A PL/SQL statement that is attached to a panel, and calculates the value of an item or a temporary vari-
able for records during validation. Derivations are part of the validation procedure that checks clinical
data before it is moved to the data table. For example, if the user has entered a birth date but no age, a
derivation could calculate the age based on the visit date and the birth date. See also rule, validation
procedure.

derived item

An item whose value is calculated by a derivation when the record is validated. See also derivation, val-
idation procedure.

derived value

A value that is calculated automatically and written to a derived item when a record is validated. In data
entry, derived values are not displayed until a record is validated. Some fields display derived values
only; you cannot enter a value in those fields. See also derivation, derived item, validation procedure.

designer

The Clintrial software user who designs Clintrial software studies and sets up and maintains Clintrial
software objects using Design.

destination object

In revision control, an object that has been copied from another object with a connection. See also revi-
sion control, source object.

destination protocol

A clinical data protocol that contains the clinical data for a study. You transfer the lab data into this pro-
tocol after preparing it in the source protocol. See also source protocol.
 445

L
ev

el
 1

 b
le

ed
L

ev
el

 2
 b

le
ed

C
om

m
on

 I
n

fo
rm

at
io

n

detail key item

An item in the detail record that is the key for uniquely identifying the master record associated with
the detail record. Users do not enter the value for the detail key item; the value is propagated from mas-
ter key item in the associated master record. See also detail page section, detail record, and master-
detail relationship.

detail page section

A page section based on the panel containing the detail key item. A detail page section may allow
repeating items. The detail page section is placed on a page template with the associated master page
section. In a study page, when a record is selected in the master page section, the associated detail
records are displayed in the detail page section. See also detail key item, detail record, and master-detail
relationship.

detail record

A record in the detail page section that is associated with a master record and distinguished by the value
of the detail key item. The detail record may be in a page section with repeating items, in which case
multiple instances of a detail record can be associated with a single master record. See also detail key
item, detail page section, and master-detail relationship.

dictionary protocol

A protocol that contains only metadata objects created within that protocol. A dictionary protocol can-
not create clinical data tables and cannot store clinical data. See also clinical data protocol, coding the-
saurus protocol, Lab Loader protocol, parent protocol, view protocol.

discrepancy

A potential or actual data problem, such as inconsistent or missing data, identified through automated
checking or manual inspection.

discrepancy flag

A flag in a flag category whose name begins DISCREPANCY_P. Using these flag categories helps
automate creation of discrepancy records.

discrepancy record

A record in Resolve that describes an error found in clinical data. Discrepancy records help you track a
data problem and manage its resolution. Each discrepancy record relates to a primary, or source, data
record item, but may also include references to other items in the same or other data records.

discrepancy status

Assigned to discrepancy records to indicate their progress through the Resolve workflow. Discrepancy
statuses allow transitions to one or more other statuses, or are terminal and close the investigation for a
data error.
446 Glossary

L
evel 1 b

leed
L

evel 2 b
leed

C
om

m
on

 In
form

ation
discrepancy transition

Regulates the order in which discrepancy statuses can be assigned to discrepancy records. By specify-
ing the set of allowable progressions among Resolve’s statuses, transitions prohibit all other status
changes.

distribution

In Multisite, the movement and management of metadata objects among multiple sites. Using Multisite,
you copy, or distribute, metadata objects from one site to one or more other sites, as well as control and
track revisions of those objects across sites.

double entry

A way to check whether data has been entered correctly in study pages by reentering the data; also
called interactive verification. See also interactive verification.

duplicate record

A record for which a record already exists for the same subject or visit and for the same panel.

E

enroll

To add a subject to a study. A subject must be enrolled before clinical data can be entered for the sub-
ject. See also enrollment panel, subject item.

enrollment panel

A panel that stores enrollment data that uniquely identifies each subject in a study. An enrollment panel
contains all context items (including one item that is designated as the subject item), and optionally,
other subject-related items defined for the panel. Each clinical data protocol must have an enrollment
panel; the enrollment panel is required to enter clinical data interactively using study pages. See also
enroll.

export

The process of using the Oracle Export Utility to store protocol and codelist metadata and data in files
that can be imported to the same or another database instance to create copies of protocols and
codelists.

extended thesaurus protocol

A Classify-specific coding thesaurus protocol designated by the CTG_THES_TYPE protocol parame-
ter. An extended thesaurus protocol allows Classify to display additional data contained in and specific
to the extended thesaurus protocol. See also coding thesaurus protocol, GCT_MEDDRA protocol,
GCT_WHODD protocol.
 447

L
ev

el
 1

 b
le

ed
L

ev
el

 2
 b

le
ed

C
om

m
on

 I
n

fo
rm

at
io

n

F

field

The data-entry area in which values for an item can be entered on a study page. A field name may differ
from the name of the actual item in the database. For example, a value for the item BIRTH_DATE
might be entered in a field named Date of birth. See also study page.

flag

An attachment to clinical data used to label and monitor data quality problems. For example, you might
attach a flag to a number that is illegible, missing, or out of the expected range. In data-entry, you can
attach a flag to an observation, a record, or an item. See also note.

G

GCT_MEDDRA protocol

A Classify extended thesaurus protocol designed to hold MedDRA data. See also extended
thesaurus protocol.

GCT_WHODD protocol

A Classify extended thesaurus protocol designed to hold WHO drug dictionary data. See also extended
thesaurus protocol.

global change

The process of changing the value of one or more items in multiple records.

global deletion

The process of deleting one or more items in multiple records.

grouping item

A sorting item that also functions as a key for grouping multiple records into observations in a page
section based on a Type 0 panel. See also sorting item.

grouping records

In screening, the process of grouping batch-loaded records into observations. See also batch loading,
observation.
448 Glossary

L
evel 1 b

leed
L

evel 2 b
leed

C
om

m
on

 In
form

ation
H

High Level Group Terms (HLGT)

A level of terms in the MedDRA dictionary hierarchy used to group together HLTs, and for data
retrieval purposes.

High Level Terms (HLT)

A level of terms in the MedDRA dictionary hierarchy used solely for data retrieval purposes.

hot key

A keystroke combination used to issue a command to a third party imaging/workflow system to per-
form an action, such as display a scanned image of a Case Report Form (CRF) or Data Correction Form
(DCF). Hot keys can be used while entering, editing, or viewing data on a study page in Enter or while
viewing a discrepancy detail in Resolve.

I

import

The process of using the Oracle Import Utility to create copies of protocols and codelists based on pro-
tocol and codelist metadata and data in files that was exported from the same or another database
instance. See also export, reconciliation.

input file

An ASCII file that contains data to be batch loaded into the Clintrial software. See also batch loading,
control file.

interactive coding

A method of coding in which you can browse the coding thesaurus and assign an appropriate code to
verbatim text. See also automatic coding, coding thesaurus.

interactive SQL

The use of SQL from within the Clintrial software to create or import a SQL statement and run it
against the Clintrial software database.

interactive verification

A way to check whether data has been entered correctly in study pages by reentering the data. When
you do interactive verification, the Clintrial software compares each value that you reenter on a field-
by-field basis and informs you if there is a conflict between the old and the new data. Interactive verifi-
cation is also referred to as double entry. See also blind verification,
verification.
 449

L
ev

el
 1

 b
le

ed
L

ev
el

 2
 b

le
ed

C
om

m
on

 I
n

fo
rm

at
io

n

International System of Units

A system of presenting units of measure in universally recognized formats. Also referred to as Système
International (d’Unités). See also SI unit.

investigator

In a clinical study, the person who fills out a case report form (CRF) for a subject.

investigator note

An annotation that the investigator attaches to clinical data, consisting of a note category, note name,
and note text. For example, an investigator note might be “Subject did not take full regimen of drug.”
See also investigator, sponsor note.

item

A Clintrial software object that stores a piece of data, for example, the data collected by a single field in
a study page, or a single field in a batch-loaded file. Items are defined within panels, and each corre-
sponds to one column in a clinical data table. For example, the DEMOG panel might contain the items
AGE and SEX. See also field, panel.

L

Lab Loader protocol

A protocol for use with batch-loaded data. For more information, see the Lab Loader
documentation.

LAB_NORMALS protocol

A Lab Loader source protocol set up to contain lab test results.

Lab normal ranges (also called reference values)

A set of laboratory test results that serve as reference values for subsequent laboratory test results.

local protocol

A temporary version of an imported protocol, used at the importing site to reconcile and install the
imported metadata, and optionally to load imported data. The local protocol is
then released to become a working protocol at the importing site. See also export, import,
reconciliation.

lookup step

A thesaurus algorithm step that attempts to match verbatim or normalized text to a term in a thesaurus.
When a single exact match is found, the code that corresponds to the term is assigned and automatic
coding succeeds.
450 Glossary

L
evel 1 b

leed
L

evel 2 b
leed

C
om

m
on

 In
form

ation
Lowest Level Terms (LLT)

The lowest hierarchical level of terms in the MedDRA dictionary.

M

mandatory item

An item for which a value is required. A value must be present in the database before a record in the
update table can be merged; that is, moved to the data table. Typically, a value for a mandatory item is
entered interactively, batch-loaded, or supplied by a data-entry processing procedure. See also screen-
ing.

master-detail relationship

A relationship between two page sections on a study page, in which each record in one page section
(the master page section) can have one or more associated records in the other page section (the detail
page section). During data entry, the displayed records in the detail page section are associated with the
selected record in the master page section. If you have multiple records in a master page section, you
can access different sets of records in the detail page section. There are two types of master-detail rela-
tionship, cross-panel and within-panel. In a cross-panel master-detail relationship, the detail page sec-
tion is based on a different panel than the master page section. In a within-panel master-detail
relationship, the detail page section is based on the same panel as the master page section. See also
detail key item, detail page section, detail record, master key item, master page section, and master
record.

master key item

An item in the master record that is the key for uniquely identifying the detail records associated with
the master record. When a user enters a value for the master key item, that value is propagated to the
associated detail records. See also master page section, master record, and master-detail relationship.

master page section

A page section based on the panel containing the master key item. A master page section may allow
repeating items. The master page section is placed on a page template with the associated detail page
section. In a study page, when a record is selected in the master page section, the associated records are
displayed in the detail page section. See also detail key item, detail record, and master-detail relation-
ship.

master record

A record in the master page section that is associated with one or more detail records and distinguished
by the value of the master key item. The master record may be in a page section with repeating items, in
which case each instance of a master record is associated with a different set of detail records. See also
master key item, master page section, and master-detail relationship.
 451

L
ev

el
 1

 b
le

ed
L

ev
el

 2
 b

le
ed

C
om

m
on

 I
n

fo
rm

at
io

n

Medical Dictionary for Regulatory Activities (MedDRA)

A mixed-case, hierarchical thesaurus that contains terminology applicable to all phases of drug devel-
opment, and to the health effects of devices.

medical reviewer

A Clintrial software user who uses query tools to retrieve data from the database for clinical review or
statistical analysis.

merged data and unmerged data

Merged data is data that has been validated (cleaned) in the update table and moved to the data table.
Unmerged data is data in the update table that has not yet been moved to the data table. See also clean
data, merging.

merging

The process of moving validated data from the update table to the data table.
See also validation.

metadata

Data that defines Clintrial software objects and their relationships. See also clinical data.

metadata report

A report that displays the metadata associated with a particular type of database object. For example,
the Items and Coding Targets Report lists item names, item attributes and coding targets for all selected
panels. The set of Clintrial software metadata reports includes all the primary metadata currently in the
Clintrial software data model.

N

navigation

In data entry, the process of moving through a study book to enter or edit data. See also
navigation order, page list, subject list.

navigation order

The order in which you navigate a study book during data entry. You can set a navigation order to nav-
igate a study book by page or by subject. The default navigation order is Navigate By Subject. The nav-
igation order also determines the sequence in which you view subjects, blocks, and study pages in the
Navigator and the way that you print study pages. See also
navigation, page list, subject list.
452 Glossary

L
evel 1 b

leed
L

evel 2 b
leed

C
om

m
on

 In
form

ation
Navigator

In Enter, the main browser for navigating study books and selecting subjects and study pages for data
entry, editing, and printing. The Navigator displays a hierarchical listing of pages and subjects in a
study book. See also navigation, navigation order.

non-patient data panel

A panel that stores data that is not related to a particular subject or visit, such as standard
coding thesauruses, view codelists, or laboratory normal ranges. See also context panel,
enrollment panel.

non-protocol access right

A type of access right for Clintrial software activities. A non-protocol access right is not associated
with a particular protocol, but only with a usergroup or a user. For example, the System access right in
Admin, which allows users to work on system parameters and security, is a non-protocol access right.
See also access right, protocol access right.

normalcy status

A value that indicates the measure of normality of the test result as compared to the lab
normal ranges.

normalized text

The result of applying one or more thesaurus algorithm transformations to verbatim text. Normalized
text retains the same meaning as the original verbatim text.

note

An attachment to clinical data used to record an annotation made by an investigator or sponsor on a
CRF. For example, an investigator might comment, “Subject did not take full regimen of drug.” During
data-entry, you can attach a note to an observation, a record, or an item. See also investigator note,
sponsor note.

numeric field

In data entry, a field in which you must enter a number for items with the data types FIXED or FLOAT.
If the data type of the item is FIXED, you cannot include a decimal point. If the data type of the item is
FLOAT, you can optionally include a decimal point. For items with the data types FIXED or FLOAT,
you can precede the number with a plus sign or a minus sign.

O

object

A data structure in the Clintrial software; for example, a protocol, a panel, an item, or a codelist.
 453

L
ev

el
 1

 b
le

ed
L

ev
el

 2
 b

le
ed

C
om

m
on

 I
n

fo
rm

at
io

n

object attribute

See attribute.

object browser

A window that displays a list of Clintrial software database objects of a specific type. You typically use
an object browser to select the object or objects with which you want to work. Object browsers are also
associated with menus that allow you to perform various operations on a selected object.

observation

A group of records in a page section that contains repeating items, or a group of records in a non-sub-
ject study book that has been configured for grouping. Any record added to the page section is automat-
ically included in the observation. This grouping allows the records to be treated as a single set during
data management tasks such as auditing and validation.

omission

A term or phrase in a verbatim text item field that fails to code when automatic coding runs. Coding
fails when either no matching terms, or more than one matching term, are found for the normalized ver-
sion of the verbatim text.

omission record

A record in Classify that stores information about each instance in which automatic coding fails. Used
to track, review, and find solutions for values that failed to code automatically.

omission status

A status assigned to omission records to indicate your progress in finding solutions for them.
Omission statuses are assigned automatically as a result of coding in Manage and actions
performed in Classify.

P

page key item

A page-related context item that is the key for retrieving data in clinical data tables by the study page
within a block. For a non-repeating study page, the value of the page key item uniquely identifies the
page within the block; for a repeating page, the values of the page key item and the page repeat key
item uniquely identify the study page within the block. Typically, the page key item is the context item
for identifying the study page number within a block. See also page key value, page repeat key item,
page repeat key value, page value, special context item.
454 Glossary

L
evel 1 b

leed
L

evel 2 b
leed

C
om

m
on

 In
form

ation
page key value

The value assigned to the page key item, which must be a page-related context item. You must specify
a page key value when you create a study page in the study book layout. The page key value can be
modified only if there is no clinical data that refers to the value. See also page key item, page value,
special context item.

page list

A list of pages that you can use to navigate a study book. For example, suppose that a study book
includes study pages 1 through 4. If you know that you only want to use pages 1, 4, and 2, in that order,
you can define a page list that will display those study pages in that order. See also navigation, naviga-
tion order.

page repeat key item

A page-related context item that is the key, with the page key item, for uniquely identifying data in a
repeating page within a block. See also page key item, page key value, page repeat key value, page
value, special context item.

page repeat key value

The value assigned to the optional page repeat key item, which must be a page-related context item.
You must specify the page repeat key value in Design when you create a repeating page in the study
book layout editor, or in Enter when you create a repeating page. See also page key item, page key
value, page repeat key item, page value, special context item.

page section

A section of a study page that collects a related clinical data. The data is then stored in clinical data
tables defined by a panel that is the base of the page section. For example, a study page might include a
page section for demographic data (DMG panel), a page section for vital signs (VITAL panel), and a
page section for physical examination result (PHYEXM panel). See also study page.

page template

A grouping of page sections that defines the layout of page sections in a study page. A page template
consists of one or more page sections, as well as a context page section, if the other page sections are
based on panel Types 1, 2, 3, 4, or 5. One or more study pages may be based on a single page template.
See also context page section, page section.

page value

Optional initial values assigned to any page-related context item other than the page key item. You can
specify the page values when you modify a study page in the study book layout editor. See also page
key value, page value.
 455

L
ev

el
 1

 b
le

ed
L

ev
el

 2
 b

le
ed

C
om

m
on

 I
n

fo
rm

at
io

n

panel

A collection of logically related or clinically related items. For example, the EXAM panel might define
items for physical examination results. When a panel is installed, three database tables are created
(update, data, and audit tables) for storing clinical data. The items in the panel are the columns of the
database tables. See also item, panel type.

panel type

A number (0 – 5) that defines how the database tables associated with the panel (the update, data, and
audit tables) are structured; that is, whether there can be one or multiple records for each subject item,
or subject item and block key item combination. See also panel.

parent protocol

A protocol that defines the default searchlist for another protocol. For a protocol that has a parent proto-
col, the protocol’s searchlist includes its parent protocol and its parent protocol’s searchlist. See also
protocol hierarchy, searchlist.

Preferred Terms (PT)

Distinct descriptors for the MedDRA terminology categories. PTs are hierarchically located above
LLTs, and are used to group together equivalent LLTs.

private query

A query in the query library that can be run only by the user who created the query. See also public
query, query library.

programmer

Clintrial software user who uses PL/SQL to build rules, derivations, and data-entry processing proce-
dures; integrates the Clintrial software with other applications; or uses a third-party tool to create for-
mal reports.

protected panel

A panel with the protected attribute that cannot be accessed unless a user is granted access through
Admin.

protocol

In the Clintrial software, generally used to refer to a Clintrial software protocol. See clinical protocol,
Clintrial software protocol, protocol account.

protocol access right

A type of access right for Clintrial software activities that are specific to a protocol. A protocol access
right is associated with a protocol and a usergroup or a user. For example, the Database access right in
Design, which allows users to work with items and panels in a particular protocol, is associated with a
protocol, and the user or usergroup. See also access right, non-protocol access right.
456 Glossary

L
evel 1 b

leed
L

evel 2 b
leed

C
om

m
on

 In
form

ation
protocol account

An Oracle account that consists of database tables that hold the clinical data, flags, and notes associated
with clinical data, audit and error log information, and one or more views of the clinical data stored in
the protocol. See also clinical protocol, Clintrial software protocol, system account, user account.

protocol hierarchy

A description of the relationships among protocols that determines how protocols can share data defini-
tions. The protocol hierarchy is structured like a data tree, defining relationships among protocols. See
also Clintrial software protocol, parent protocol, searchlist.

protocol-name_DATATRANS

A system account that contains all the protocol clinical data when the protocol is exported.

protocol parameter

Parameters that tailor the working environment for particular protocols. Protocol parameters take their
default values from corresponding system parameters. In Design, a user with access to a protocol can
change that protocol’s parameters. Not all system parameters have corresponding protocol parameters.

protocol type

One of five categories of protocols, used to group protocols depending on their use and properties. The
protocol types are clinical data protocol, Clintrace protocol, coding thesaurus protocol, Lab Loader pro-
tocol, and view protocol. See also Clintrial software protocol.

public query

A query in the query library that can be run by any Retrieve user with Read access to the protocol refer-
enced by the query. Public queries can be created only by users with Publish access to the protocol. See
also private query, query, query library.

PXFR_RECV

A system account that contains all the protocol metadata when the protocol is imported.

PXFR_SEND

A system account that contains all the protocol metadata when the protocol is exported.

Q

query

A statement composed of conditions that identifies data that you want to retrieve from database tables.
 457

L
ev

el
 1

 b
le

ed
L

ev
el

 2
 b

le
ed

C
om

m
on

 I
n

fo
rm

at
io

n

Query By Form (QBF)

A query method in Retrieve that allows you to create a query using the online study pages you use for
interactive data entry. See also query.

Query By Panel (QBP)

A query method in Retrieve that allows you to create a query using a graphical image of installed pan-
els from which you can build a SQL statement that includes simple joins, outer joins, WHERE clauses,
operators, and functions. See also query.

Query By SQL

A query method in Retrieve that allows you to create a query using Structured Query Language (SQL).
You can use Query By SQL to create SELECT and DESCRIBE statements. See also query.

query library

A collection of queries created in Retrieve and saved to the database for future use. The
queries in the query library are stored in an Oracle database table in the Clintrial software database. See
also private query, public query, query.

query results

Records from database tables that meet the conditions specified by a query. See also query, record.

query results destination

The location in which records retrieved by a query are stored. The results destination can be a window
on the computer monitor, an Oracle database table, or a SAS Data file. See also query, query results.

R

range checking

The process of applying tests to items to determine if data values fall within a defined range of values
having an upper and a lower bound. In data entry, range checking occurs at data entry. In batch loading,
range checking occurs during screening. See also batch loading,
screening.

recoding

For an item that has been successfully coded, the process of replacing the current code with a different
code.

reconciliation

The process of associating imported codelists, items, or flags and notes with the appropriate corre-
sponding objects in the database instance where you are importing. See also import.
458 Glossary

L
evel 1 b

leed
L

evel 2 b
leed

C
om

m
on

 In
form

ation
record

The data stored in one row in a database table. Depending on the panel type, the data
collected in a study page is stored in one or more records in the database. A database table can contain
one record per subject, multiple records per subject, one record per subject visit, or multiple records per
subject visit. For example, the data in a study page that contains
repeating items is stored in multiple records in the database.

record status (status)

A status that the Clintrial software assigns to records to track records internally as they go
through various stages of data management. For example, when an update table record
is first entered, its status is 2 (Unverified). When it is verified, its status changes automatically to 1
(Verified). Record statuses in the audit table reflect the location of the record when it was modified or
deleted, and the type of modification it underwent. For example, if you delete a record in the update
table with a status of 1 (Verified), the record’s status in the audit table
is -41 (Verified and deleted from update table).

regrouping records

In batch loading, the process of grouping batch-loaded records into observations.

request

A method of seeking more information about verbatim text that cannot be coded automatically, and that
results in an omission record.

repeating block

A single block that data-entry operators can use multiple times. The designer determines how many
times a block can repeat in a study book.

For example, a study book may contain a block called EXAM that contains study pages to record data
on medications, vital signs, and lab results. Anticipating that different subjects will need different num-
bers of exams, the designer could make EXAM a repeating block. The data-entry operator can then
record results of subsequent examinations as needed in repeats of the EXAM block.

Repeats of a block all use the same block key value, and are distinguished by block repeat key values.
The designer can either assign block repeat key values for repeats of the block, or allow these values to
be entered during data entry. See also block, block repeat key value.

repeating item

An item for which multiple values can be entered within a page section. If one item in a page section is
repeating, other items within the page section are also repeating.

repeating study page

A single study page that data-entry operators can use multiple times. The designer determines how
many times a study page can repeat.
 459

L
ev

el
 1

 b
le

ed
L

ev
el

 2
 b

le
ed

C
om

m
on

 I
n

fo
rm

at
io

n

For example, a block may contain a study page called VITALS that records data on a subject’s vital
signs. Anticipating that vital signs will need to be recorded several times during a visit for some sub-
jects, the designer can make VITALS a repeating study page. The data-entry operator can then record
results of subsequent readings as needed in repeats of the VITALS study page.

Repeats of a study page all use the same page key value, and are distinguished by page repeat key val-
ues. The designer can either assign page repeat key values for repeats of the study page, or allow these
values to be entered during data entry. See also case report form (CRF), study page, page repeat key
value.

replication

In Multisite, the movement of data in a protocol or account among multiple sites.

required item

See mandatory item.

revision control

A set of features in Design that help you to enforce metadata consistency throughout the
protocol hierarchies that you create.

rule

Part of a PL/SQL statement that is attached to a panel, and used to confirm that clinical data meets the
requirements of the clinical protocol. For example, a rule can confirm that all subjects meet a minimum
age requirement of 18. Rules become part of the validation procedure that validates clinical data before
it is moved to the data table. During validation, rules evaluate to TRUE or FALSE. See also rule action,
validation procedure.

rule action

A part of a rule definition that determines the status of a record when a rule applied to that record eval-
uates to FALSE. A rule action can be either REPORT or REJECT. If the rule action
is REPORT, the rule evaluated to FALSE, but the record will pass validation. If the rule action is
REJECT, the rule evaluated to FALSE, and the record will fail validation. See also rule,
validation procedure.

S

SAS Data file

A collection of files that contain the records retrieved by a query in a format that can be imported into
SAS for analysis. The SAS Data file consists of an ASCII text file (*.dat) and a SAS command file
(*.sas). Optionally, the SAS Data file can also contain a SAS proc format file (*.fmt). See also SAS
proc format.
460 Glossary

L
evel 1 b

leed
L

evel 2 b
leed

C
om

m
on

 In
form

ation
SAS format library

A file that contains SAS proc format statements for all Clintrial software codelists in a protocol. Proc
format statements are used in SAS to decode Clintrial software data. See also SAS proc format.

SAS proc format

A file that contains proc format statements, which are used in SAS to decode Clintrial software data.
See also SAS Data file, SAS format library.

screening

The process of updating system items, grouping the records into observations (if grouping records are
specified in Design), and applying data checks to data that has been batch loaded into the update table.
The data checks include confirming that values are provided for mandatory items, and applying the
range checks and checklist tests that are defined for those items. Records that have been batch loaded
and screened appear to be identical to those records entered interactively. See also batch loading, range
checking, mandatory item.

searchlist

A list of protocols from which you can copy Clintrial software object definitions into the current
protocol. See also parent protocol, protocol hierarchy.

sequence

A set of predefined default values for a repeating item. Sequences are associated with items through the
page section layout Design Sequence option. See also repeating item.

server restriction

A SQL statement used to limit the number of omission records displayed in Classify's Omission
Browser by restricting the protocols, thesaurus protocols, panels, or other general criteria from which
the omission records are derived.

SI unit

A standardized unit of measure from the International System of Units. See also International System
of Units.

sorting item

An item used to sort records in a page section based on a Type 0, Type 2, or Type 4 panel. A sorting
item can be used to sort records in ascending or descending order. See also grouping item.

source object

In revision control, an object from which one or more other objects have been copied with connections.
See also revision control, destination object.
 461

L
ev

el
 1

 b
le

ed
L

ev
el

 2
 b

le
ed

C
om

m
on

 I
n

fo
rm

at
io

n

source protocol

A Lab Loader protocol into which you batch load lab data. You work with the lab data in this protocol
to prepare it for transfer to the destination protocol. See also destination protocol.

special context item

A context item used as a key, alone or with another special context item, to uniquely identify clinical
data for a particular subject, block, or study page. The special context items are subject item, block key
item, block repeat key item, page key item, and page repeat key item. See also context item.

sponsor

The manufacturer or developer of the drug or biomedical device for which clinical data is
collected; that is, your company.

sponsor note

An annotation that the sponsor attaches to clinical data, consisting of a predefined note category, note
name, and note text. For example, a sponsor note might be “MISSING/Investigator confirmed measure-
ment not taken.” See also sponsor, investigator note.

SQL restriction

A SQL WHERE clause that is used to restrict the records you are working with to those that meet spec-
ified conditions. The SQL WHERE clause can consist of one or more valid SQL conditions connected
by logical operators. For example, you can use a SQL restriction to select all records where AGE is
greater than 30. See also view protocol, view restriction.

standardization

A method for ensuring consistency of data definitions and clinical data. For example, to standardize
data definitions, you can define database objects that are common to all clinical trials sponsored by
your company.

step types

The transformations and lookup steps that compose a thesaurus algorithm.

study book

In the Clintrial software, clinical data is recorded in study books – online representations of case report
forms (CRFs). Each study book contains an ordered list of study pages, corresponding to the pages in a
paper CRF. When you open a particular study book, you gain access to its study pages, which you can
then work on and navigate as a set.

In addition to clinical data study books, the Clintrial software also includes enrollment study books,
used to enroll study subjects, and non-subject study books, used to enter nonclinical data such as stan-
dard coding thesauruses or laboratory normal ranges. See also block, case report form, study page.
462 Glossary

L
evel 1 b

leed
L

evel 2 b
leed

C
om

m
on

 In
form

ation
study page

A data-entry window within a study book. In clinical data study books, each study page corresponds to
a page in a case report form (CRF). See also case report form (CRF), context page section, page sec-
tion, study book.

subject

A human subject, often a patient, in a clinical trial for whom clinical data is entered in
the Clintrial software.

subject item

A subject-related context item used in enrollment that uniquely identifies the subject in the clinical data
tables in a study. Typically, this is the subject identifier, but it can be any subject-related context item.
The designer must specify the subject item as a protocol attribute for a clinical data protocol. See also
context item, enroll, special context item.

subject list

A list of subjects that you can create to navigate a study book. For example, suppose that you usually
enter data for subjects 100, 78, and 149, in that order. You can define a subject list that will display
study pages for those subjects in that order. See also study book, study page,
subject.

subset codelist

An Oracle view onto a base codelist. By using an optional subset restriction clause, a subset codelist
can make available only certain codes from the base codelist. See also codelist, subset value.

subset key item

An item that is the key for uniquely identifying the records in a subset page section. The value of the
subset key item is determined when the subset page section is placed on a page template; this value can-
not be modified during data entry or editing. See also subset page section, subset key value.

subset key value

The value assigned to the subset key item when the subset page section is placed on a page template;
this value cannot be modified during data entry or editing. The subset key value must be unique and
must consist of a maximum of two characters. Subset key values can also be used to create within-panel
master-detail relationships among page sections on a page template. See also subset key item, subset
page section.

subset page section

One of a set of a page sections based on a Type 0, Type 2 or Type 4 panel that can occur multiple times
on a study page, with each different value of the subset key item representing distinct rows (subsets) of
data. Each occurrence of a subset page section constitutes a different observation. The subset page sec-
 463

L
ev

el
 1

 b
le

ed
L

ev
el

 2
 b

le
ed

C
om

m
on

 I
n

fo
rm

at
io

n

tions do not need to be the same. For example, they can include different items from the panel. See also
subset key item, subset key value.

subset value

A numeric value associated with a subset of code values in a codelist that serves as the base codelist for
subset codelists. A subset value can be used in a SQL restriction clause to create a subset codelist. See
also subset codelist.

support elements

The characters, words, and phrases that certain transformations require. For example, if the purpose of
a transformation is to remove words, you must define support elements that indicate which words to
remove.

synonyms view

The thesaurus view that stores standard codes for clinical events, and descriptions that you consider
synonymous with the standard descriptions in the terms view. There may be multiple synonyms views
(such as company-approved, project-specific, and interim) for each coding thesaurus protocol.

system account

An Oracle account for internal Clintrial software use. For example, the CTS account stores information
about Clintrial software protocols.

system item

Items internal to the Clintrial software that are attached automatically to the start of every record in the
Clintrial software. For example, some system items are the subject ID (SUBJECT_ID), record status
(STATUS), and the entry ID of the user who entered or last edited the current record in the database
(ENTRY_ID). The meanings of system items may depend on the type of database table (update, data,
or audit).

System Organ Class (SOC)

The highest level of the MedDRA hierarchy that provides the broadest concept for data retrieval.

system parameter

A parameter that defines the characteristics of the working environment for all users of an Oracle data-
base instance to which the users connect through the Clintrial software. For example, the
PASSWORD_MINIMUM system parameter sets the minimum password length for all Clintrial soft-
ware users. See also protocol parameter, user preference.
464 Glossary

L
evel 1 b

leed
L

evel 2 b
leed

C
om

m
on

 In
form

ation
T

tab order

The order in which you move through the enterable fields in a study page, set by the designer.

tags audit table

An Oracle table that stores copies of flags and notes that have been modified or deleted
while attached to clinical data. There is one tags audit table for each protocol. See also
auditing.

tags table

An Oracle database table that stores the flag and note data associated with clinical data. There is one
tags table for each protocol. See also flag, note.

term

The standard, accepted words and phrases that describe a clinical event such as a disease or drug. In a
coding thesaurus, a unique code is assigned to each term. A term can have one or more synonyms.

terms view

The thesaurus view that stores standard codes and their exact definitions. Every coding
thesaurus protocol contains one and only one terms view.

text field

In data entry, a field in which you can enter any combination of letters, numbers, punctuation marks,
spaces, or special characters (with the data type TEXT).

thesaurus account

See coding thesaurus protocol.

thesaurus algorithm

A sequence of steps that determines the most appropriate code match for the verbatim text (that is, text
entered by the user), such as a disease or a drug name. The Clintrial software supplies a default thesau-
rus algorithm. You can create a customized thesaurus algorithm. See also coding, coding thesaurus.

thesaurus language

A language name that determines which language-specific text items in the terms, synonyms, and stop-
words panels are used for coding. The Clintrial software uses the language name to select a correspond-
ing language-specific text item that contains the language name. See also coding.
 465

L
ev

el
 1

 b
le

ed
L

ev
el

 2
 b

le
ed

C
om

m
on

 I
n

fo
rm

at
io

n

thesaurus protocol

See coding thesaurus protocol.

thesaurus view

The Oracle view onto a panel in a coding thesaurus protocol. A thesaurus view is created automatically
for each panel added to a coding thesaurus protocol.

transfer map

Indicates the data to be transferred from a Lab Loader source protocol to a clinical data destination pro-
tocol by establishing a direct connection from the source items to the destination items.

transformation

A specific type of change made to verbatim text by a step in a thesaurus algorithm. Transformations
standardize the format of text and remove or replace extraneous words and characters; they do not
change the verbatim text’s meaning.

U

unaggregated codelist

A codelist that is stored in its own Oracle database table. See also aggregated codelist, codelist.

unimplemented derivations

Derivations that have been modified within a panel that is marked for revision. The derivations are
unimplemented if the revisions to the derivations have not yet been implemented.

unimplemented rules

Rules that have been modified within a panel that is marked for revision. The rules are unimplemented
if the revisions to the rules have not yet been implemented.

update table

An Oracle database table that stores clinical data when it is first entered in the Clintrial software. The
update table is a storage area for clinical data while it is being cleaned. You can edit, verify, and validate
clinical data in the update table. After you have validated clinical data successfully, you can move the
cleaned data from the update table to the data table. There is one update table for each installed panel.
The name of the data table is panel-name_UPDATE; for example, LAB_UPDATE. See also data table,
validation.
466 Glossary

L
evel 1 b

leed
L

evel 2 b
leed

C
om

m
on

 In
form

ation
user account

An Oracle account to which a Clintrial software user connects to begin a work session. A user account
must be granted access rights to the protocol account before the user can add, modify, display, or delete
the data associated with that protocol.

usergroup

A list of Clintrial software users (that is, user accounts) to which you grant and revoke access rights as
a group. See also access right.

user preference

Parameters that tailor the working environment for individual users. User preferences take their default
values from corresponding system parameters. Each user account can change the default values for that
account by changing the user preferences. Not all system parameters have corresponding user prefer-
ences.

For example, data-entry users can set a preference to automatically save data to the database when an
open study page is closed. See also protocol parameter, system parameter, user account, usergroup.

user procedure

A PL/SQL procedure or package created by the designer or programmer for use by rules, derivations,
and data-entry processing procedures. User procedures are also called customized functions or site-spe-
cific and protocol-specific functions.

V

validation

The process of running a validation procedure on clinical data to ensure that the data meets the require-
ments of the clinical trial for logical and consistent data. See also derivation, rule, validation procedure.

validation procedure

A PL/SQL procedure that is built automatically from derivations and rules associated with a panel.
There is one validation procedure for each panel.

value changed procedure

A type of data-entry processing procedure that runs automatically when the Enter user changes the
value of a field and then leaves the field. The designer attaches a value changed procedure to a field in
a page section.
 467

L
ev

el
 1

 b
le

ed
L

ev
el

 2
 b

le
ed

C
om

m
on

 I
n

fo
rm

at
io

n

value field type

A field type that defines whether the value from a codelist is stored as text or as a number in the check-
list item in a panel. The value field type must be of the same data type as the checklist item in the panel.
See also checklist, codelist.

verbatim text

In coding, the entered text for which you want to assign a standard code from a coding
thesaurus. See also coding, coding thesaurus.

verbatim text item

The item in a clinical data panel that stores verbatim text for a coding target. The Verbatim Text Item
field is its corresponding study book field, accessed through Enter.

verification

The reentry of data to ensure that the data has been transcribed correctly. Some panels require verifica-
tion before records can be validated and merged. There are two types of verification: interactive and
blind verification. See also interactive verification, blind verification.

view codelist

A codelist that does not contain actual data but provides a view onto a Type 0 panel or a non-Clintrial
Oracle database table. See also codelist, view protocol.

view panel

A view of the data in a panel that is part of a view protocol. See also checkpoint date, SQL restriction,
view protocol.

view protocol

A protocol that does not contain actual data, but provides a view onto another protocol (that is, a base
protocol). A view protocol displays records based on a specified date or a condition. See also base pro-
tocol, checkpoint date, view panel, view restriction.

view restriction

A SQL restriction clause on a view protocol that presents a select portion of clinical data that is in the
base protocol. A view protocol with a view restriction might present only clinical data for subjects 100
through 500. See also Clintrial software protocol, view protocol.
468 Glossary

L
evel 1 b

leed
L

evel 2 b
leed

C
om

m
on

 In
form

ation
 469

L
ev

el
 1

 b
le

ed
L

ev
el

 2
 b

le
ed

C
om

m
on

 I
n

fo
rm

at
io

n

470 Glossary

A
accounts

example of for protocol-specific 298

example of site-specific 298

ACTIVITY_LOG table

CTS account database table 47

ADD_ELEMENT

string function in CT_STRING 331

AGGREGATED_CODES table

CTSCODES account database table 92

algorithms

CT_MEDDRA protocol 268

anonymous block

PL/SQL 286

audit tables

schema 32

AUDIT_START_HISTORY table

CTSDD account database table 117

B
basic functions

Clintrial-supplied package for 292

definition 310

batch job

definition 432

submitting 432

batch job queue

contents 433

definition 432

deleting entries 434

displaying 432

modifying entries 433

block items

variable for value 295

block repeat items

variable for value 295

BLOCK_HAS_DATA

basic function in CT_FUNC 310

BLOCK_REF table

CTSDD account database table 118

BLOCK_REF_VALUE table

CTSDD account database table 119

BLOCK_REPEATS table

CTSDD account database table 120

blocks

PL/SQL, definition 285

types in PL/SQL 286

C
CALC_NORMAL_RANGE

Lab Loader function in CTL_FUNC 348

CALC_NORMALCY_STATUS

Lab Loader function in CTL_FUNC 346

CALC_SI_VALUE

Lab Loader function in CTL_FUNC 350

calling functions

from Clintrial 293

CATDEFS table

CTS account database table 48

CHANGEREC table

CTSRP account database table 210

CHAR_TO_DATE

string function in CT_STRING 332

Clintrial formats

functions for converting to Oracle 297

Clintrial functions 291

Clintrial variables

in CT_GLOBAL package 294

CLOSE_LOOKUP

basic function in CT_FUNC 312

CODE_INDEX table

CTSCODES account database table 93

CODE_VALUE_DIFF table

CTSRP account database table 188

CODELIST_ASSOC table

CTSCODES account database table 95

compiling

functions before validation procedures 305

Index
471

site-specific or protocol-specific functions 300

Context Items

variable, using 305

CONTEXT_DECLARE

variable 305

CONVERT_DATE

basic function in CT_FUNC 313

converting formats

to Clintrial or Oracle 297

copying

functions between instances 292

COUNT_LIST

string function in CT_STRING 335

creating

public synonyms 302

site-specific or protocol-specific functions 300

CT_EVENT package

 see also event utility functions

Clintrial-supplied package for 293

definition 359

event utility functions 359

use with page-related procedure 394

use with Value Changed procedure 391

CT_FUNC package

basic functions package 310

Clintrial package 292

CT_GLOBAL package

Clintrial package 292

Clintrial variables in 294

CT_MEDDRA functions

GET_CODE_HLGT 356

GET_CODE_HLT 355

GET_CODE_LLT 353

GET_CODE_PT 354

GET_TERM 358

CT_MEDDRA protocol

algorithms 268

LOW_LEVEL_TERM panel 249

MD_HIERARCHY panel 251, 253

MedDRA functions package 352

PREF_TERM panel 247

SPEC_CAT panel 261

SPEC_PREF_COMP panel 263

STOPWORDS panel 266

thesaurus views 267

CT_PROC_ACCOUNT

Clintrial functions 292

package, GRANT EXECUTE PRIVS in 301

privilege functions package 344

CT_RECID

variable for value 295

CT_STRING package

Clintrial package 292

string functions package 329

CT_STRING.CHAR_TO_DATE

conversion function 297

CT_STRING.CHAR_TO_DATETIME

conversion function 297

CT_STRING.CHAR_TO_FLOAT

conversion function 297

CT_STRING.DATE_TO_CHAR

conversion function 297

CT_STRING.DATETIME_TO_CHAR

conversion function 297

CT_STRING.FLOAT_TO_CHAR

conversion function 297

CTCLASSIFY account

database tables 100

GCT_CC_ID table 100

GCT_CC_OMISSION table 101

GCT_CTX_LOG table 103

GCT_DC_ID table 104

GCT_DC_OMISSION table 105

GCT_DC_PROTOCOL table 108

GCT_LEX_ELT table 109

GCT_SOLUTION table 111

CTL_CONTROL_FILE

protocol account database table 275

CTL_CORE package

Clintrial package 293
472 Index

CTL_DUPLICATE

protocol account database table 274

CTL_FUNC functions

CALC_NORMAL_RANGE 348

CALC_NORMALCY_STATUS 346

CALC_SI_VALUE 350

LOOKUP_SUBJECT_ID 351

CTL_FUNC package

Lab Loader functions package 345

CTL_MAP

protocol account database table 276

CTL_MAP_ITEM

protocol account database table 278

CTL_NORMAL_RANGE panel

CTL_REFERENCE protocol 242

CTL_REFERENCE protocol

CTL_NORMAL_RANGE panel 242

CTL_UNIT_CONVERSION panel 243

CTL_UNIT_CONVERSION panel

CTL_REFERENCE protocol 243

CTS account

ACTIVITY_LOG table 47

CATDEFS table 48

CTS_PROTOCOLS table 50

CTS_USERGROUPS table 58, 59

DATABASE table 63

EXCEPTION_MESSAGE table 64

JOB_LOG table 66

OBJINDX table 68

cts$block

record-related variable 295

cts$block_repeat

record-related variable 295

cts$ct_recid

record-related variable 295

CTS$DATABASE

replacement variable in Custom menu command
428

cts$deriv_name

derivation-related variable 296

cts$err_action

rule-related variable 296

cts$err_date

process-related variable 294

cts$err_type

process-related variable 295

cts$page

record-related variable 295

cts$page_repeat

record-related variable 295

cts$panel

process-related variable 294

CTS$PROTOCOL

replacement variable in Custom menu command
428

cts$protocol

process-related variable 294

cts$rec_moddate

record-related variable 295

cts$subject

record-related variable 295

cts$subject_id

record-related variable 295

cts$table

process-related variable 294

cts$tbl

process-related variable 294

CTS$USERNAME

replacement variable in Custom menu command
428

CTS_PROTOCOLS table

CTS account database table 50

CTS_REASON_CODES codelist 234

CTS_USERGROUPS table

CTS account database table 58, 59

CTSCODES account

AGGREGATED_CODES table 92

CODE_INDEX table 93

CODELIST_ASSOC table 95

database tables 92
473

IMPORT_LOG table 96

VIEW_CODELIST table 97

CTSDD account

AUDIT_START_HISTORY table 117

BLOCK_REF table 118

BLOCK_REF_VALUE table 119

BLOCK_REPEATS table 120

database tables 117

DERIVATION table 122

DERIVATION_AUDIT table 126

ENCODING_TARGET table 128

ENCODING_TARGET_AUDIT table 130

ITEM table 132

ITEM_NONDD table 135

OBJECT_AUDIT table 139

OBJECT_CONNECTION table 141

OBJINDX table 144

PAGE_LIST table 148

PAGE_LIST_MEMBER table 149

PAGE_REF table 150

PAGE_REF_VALUE table 152

PAGE_REPEATS table 153

PAGELAYOUT table 145

PAGELAYOUT_EVENT table 147

PANE table 154

PANE_ITEM table 156

PANE_ITEM_SEQ table 159

PANE_MASTER table 162

PANE_SEQ_VALUE table 166

PANE_USAGE table 167

PANEL table 160

PANEL_MASTER_NONDD table 163

PANEL_NONDD table 164

QUERY table 169

RULE table 170

RULE_AUDIT table 172

STUDYBOOK table 174

SUBJECT_LIST table 176

SUBJECT_LIST_MEMBER table 177

THESAURUS_ALGORITHM table 178

THESAURUS_ALGORITHM_STEP table 179

THESAURUS_LANGUAGE table 181

THESAURUS_VIEW table 182

CTSRP account

CHANGEREC table 210

CODE_VAL_DIFF table 188

database tables 188, 210

DBOTYPEINFO table 212

DCHANGERENUM table 211

DIFF_ANALYSIS table 189

ERRORLOG table 191

ERRORREC table 214

FUNCTION_RECV table 192

FUNCTION_SOURCE table 194

GROUPDIST table 215

HSUBVIEW table 217

LATEST_RECV view 205

ObjectTable_DIFF table 195

ObjectTable_SN table 197

OBJINDX_SN table 198

RELEASE_CHANGE table 199

RELEASE_RECV table 201

RELEASE_SEND table 202

RELEASE_VERSION table 203

RELEASED_OBJECT table 204

REPAUDIT table 218

REPGROUPOWN table 221

REPSITE table 222

REPTABLE table 224

CTV_CORE package

Clintrial package 292

Resolve functions package 345

cursor movement

using data-entry processing procedure for 386

Custom menus

defining 427

example 428

D
data

running procedure at deletion of 386

running procedure at save 387

running procedure at saving of 386, 391
474 Index

data tables

schema 29

database formats

definition 407

DATABASE table

CTS account database table 63

database tables

protocol account 26, 274

using SQL to query within Clintrial 421

data-entry processing procedure

see DEPP

DATE

database format 407

date and time

restricting records 416

DATE_TO_CHAR

string function in CT_STRING 336

DATETIME_TO_CHAR

string function in CT_STRING 337

DBOTYPEINFO table

CTSRP account database table 212

DCHANGENUM table

CTSRP account database table 211

declarations

PL/SQL 285

DEL_FLAG

event utility function in CT_EVENT 360

DEL_FLAG_RPT

event utility function in CT_EVENT 361

DEL_NOTE

event utility function in CT_EVENT 363

DEL_NOTE_RPT

event utility function in CT_EVENT 364

DELETE_RPT

event utility function in CT_EVENT 359

DEPP

event utility functions, using 359

granting privileges for 301

overview 386

PL/SQL in 285

DERIVATION table

CTSDD account database table 122

DERIVATION_AUDIT table

CTSDD account database table 126

derivation-related variables 296

derivations

granting privileges for 301

PL/SQL in 285

using functions in 303

using variables in 304

variable for name value 296

variables for values 295, 296

DESCRIBE

SQL statement used within Clintrial 420, 423

DIFF_ANALYSIS table

CTSRP account database table 189

DISABLE

event utility function in CT_EVENT 365

DISABLE_DEL

event utility function in CT_EVENT 366

DISABLE_RPT

event utility function in CT_EVENT 367

DISCREP_STATE panel

Resolve 226

DISCREP_TRANSITION panel

Resolve 229

E
ENABLE

event utility function in CT_EVENT 369

ENABLE_DEL

event utility function in CT_EVENT 370

ENABLE_RPT

event utility function in CT_EVENT 371

ENCODING_TARGET_AUDIT table

CTSDD account database table 130

ENDCODING_TARGET table

CTSDD account database table 128
475

ERRORLOG table

CTSRP account database table 191

ERRORREC table

CTSRP account database table 214

event utility functions

 see also CT_EVENT package

Clintrial-supplied package for 293

packages 359

use with page-related procedure 394

use with Value Changed procedure 391

examples

Custom menu 428

package body 290

stored function 286

stored packages 289

stored procedure 287

EXCEPTION_MESSAGE table

CTS account database table 64

exceptions

PL/SQL 285

executions

PL/SQL 285

F
FIND_N_RECORDS

basic function in CT_FUNC 314

FLAG

event utility function in CT_EVENT 372

FLAG_RPT

event utility function in CT_EVENT 374

flags

restricting records 416

FLOAT_TO_CHAR

string function in CT_STRING 338

FR001PROC

example account for protocol-specific functions
298

function

term as used in Clintrial 291

FUNCTION_RECV table

CTSRP account database table 192

FUNCTION_SOURCE table

CTSRP account database table 194

functions

ADD_ELEMENT 331

and validation procedures 305

basic 292, 310

BLOCK_HAS_DATA 310

CALC_NORMAL_RANGE 348

CALC_NORMALCY_STATUS 346

CALC_SI_VALUE 350

calling from Clintrial 293

CHAR_TO_DATE 332

CLOSE_LOOKUP 312

compiling site-specific or protocol-specific 300

CONVERT_DATE 313

copying between instances 292

COUNT_LIST 335

creating site-specific or protocol-specific 300

CT_EVENT 293, 359

CT_MEDDRA 352

CTL_FUNC 345

customized stored 299

DATE_TO_CHAR 336

DATETIME_TO_CHAR 337

DEL_FLAG 360

DEL_FLAG_RPT 361

DEL_NOTE 363

DEL_NOTE_RPT 364

DELETE_RPT 359

DISABLE 365

DISABLE_DEL 366

DISABLE_RPT 367

ENABLE 369

ENABLE_DEL 370

ENABLE_RPT 371

example of a stored function 286

FIND_N_RECORDS 314

FLAG 372

FLAG_RPT 374

FLOAT_TO_CHAR 338
476 Index

for converting to Clintrial or Oracle format 297

GET_ARRAY_VALUE 339

GET_CODE_HLGT 356

GET_CODE_HLT 355

GET_CODE_LLT 353

GET_CODE_PT 354

GET_ITEM 340

GET_TERM 358

INIT_NAME_VALUE_ARRAYS 341

IS_EMPTY 316

IS_NOTEMPTY 317

ITEM_FOCUS 375

ITEM_FOCUS_RPT 377

Lab Loader 345

Lab Loader, Clintrial-supplied package for 293

LOOKUP_FLAG 318

LOOKUP_SUBJECT_ID 351

LOOKUP_VARS 320

MAKE_LIST 342

MedDRA 352

MSG_IF_EMPTY 323

MSG_IF_NOTEMPTY 324

NOTE 378

NOTE_RPT 380

PAGE_HAS_DATA 326

privilege 292, 344

privileges required for site-specific or protocol-
specific 298

protocol-specific, and PROC_ACCOUNT
parameter 298

Resolve 292, 345

SECTION_FOCUS 381

SECTION_HAS_DATA 327

SET_ITEM 382

SET_RPT 383

site-specific and protocol-specific 297

site-specific, and PROC_SITE_ACCOUNT
parameter 298

stored 286

string 329

string, Clintrial-supplied package for 292

types 291

using in derivations and rules 303

G
GCT_CC_ID table

CTSDD account database table 100

GCT_CC_OMISSION table

CTSDD account database table 101

GCT_CTX_LOG table

CTSDD account database table 103

GCT_DC_ID table

CTSDD account database table 104

GCT_DC_OMISSION table

CTSDD account database table 105

GCT_DC_PROTOCOL table

CTSDD account database table 108

GCT_LEX_ELT table

CTSDD account database table 109

GCT_SOLUTION table

CTSDD account database table 111

GET_ARRAY_VALUE

string function in CT_STRING 339

GET_CODE_HLGT

MedDRA function in CT_MEDDRA 356

GET_CODE_HLT

MedDRA function in CT_MEDDRA 355

GET_CODE_LLT

MedDRA function in CT_MEDDRA 353

GET_CODE_PT

MedDRA function in CT_MEDDRA 354

GET_ITEM

string function in CT_STRING 340

GET_TERM

MedDRA function in CT_MEDDRA 358

GROUPDIST table

CTSRP account database table 215

H
headers
477

PL/SQL 285

HSUBVIEW table

CTSRP account database table 217

I
i_colname

Value Changed procedure argument 390

i_colval

Value Changed procedure argument 390

i_ct_recid

Value Changed procedure argument 390

i_itemvalues

Value Changed procedure argument 390

i_keys

page-related procedure argument 393

i_layout_name

page-related procedure argument 392

i_page_status

page-related procedure argument 393

i_pane_usage_seq

page-related procedure argument 392

i_panel

Value Changed procedure argument 389

i_protocol

page-related procedure argument 392

Value Changed procedure argument 389

i_table

page-related procedure argument 392, 393

Value Changed procedure argument 390

IMPORT_LOG table

CTSCODES account database table 96

INIT_NAME_VALUE_ARRAYS

string function in CT_STRING 341

Initializing Page Section

data processing event 387

data processing procedure 391

procedure format 392

instances

copying functions between 292

INVESTIGATOR panel

Resolve 232

IS_EMPTY

basic function in CT_FUNC 316

IS_NOTEMPTY

basic function in CT_FUNC 317

ITEM table

CTSDD account database table 132

ITEM_FOCUS

event utility function in CT_EVENT 375

ITEM_FOCUS_RPT

event utility function in CT_EVENT 377

ITEM_NONDD table

CTSDD account database table 135

items

attaching data-entry processing procedures to
386

block repeat, variable for value 295

block, variable for value 295

page repeat, variable for value 295

page, variable for value 295

restricting records by 415

running procedure at value change 387

subject, variable for value 295

system, variable for value 295

J
JOB_LOG table

CTS account database table 66

K
KA001PROC

example account for protocol-specific functions
298

L
Lab Loader

database tables for 274

functions, Clintrial-supplied package for 293
478 Index

Lab Loader functions 345

LATEST_RECV view

CTSRP account database table 205

LOOKUP_FLAG

basic function in CT_FUNC 318

LOOKUP_SUBJECT_ID

Lab Loader function in CTL_FUNC 351

LOOKUP_VARS

basic function in CT_FUNC 320

LOW_LEVEL_TERM panel

CT_MEDDRA protocol 249

M
MAKE_LIST

string function in CT_STRING 342

MD_HIERARCHY panel

CT_MEDDRA protocol 251, 253

MedDRA functions 352

menus

defining Custom 427

MERGE_DATETIME

variable for value 295

MSG_IF_EMPTY

basic function in CT_FUNC 323

MSG_IF_NOTEMPTY

basic function in CT_FUNC 324

Multisite

database tables 188, 210

N
named blocks

PL/SQL 286

naming objects

conventions 410

NOTE

event utility function in CT_EVENT 378

NOTE_RPT

event utility function in CT_EVENT 380

notes

restricting records 416

NUMBER(xx)

database format 407

NUMBER(xx,yy)

database format 407

O
o_message

page-related procedure argument 393

o_new_value

Value Changed procedure argument 390

o_result

page-related procedure argument 393

Value Changed procedure argument 390

OBJECT_AUDIT table

CTSDD account database table 139

OBJECT_CONNECTION table

CTSDD account database table 141

ObjectTable_DIFF table

CTSRP account database table 195

ObjectTable_SN table

CTSRP account database table 197

OBJINDX table

CTS account database table 68

CTSDD account database table 144

OBJINDX_SN

CTSRP account database table 198

Oracle

privileges required for account for site-specific or
protocol-specific functions 298

Oracle formats

functions for converting to Clintrial 297

P
package bodies

definition 289

example 290

package specifications
479

public element definition 288

packages

CT_EVENT 359

CT_FUNC 310

CT_MEDDRA 352

CT_PROC_ACCOUNT 344

CT_STRING 329

CTL_FUNC 345

CTV_CORE 345

customized stored functions in 299

delivered with Clintrial 292

example 289

stored 288

Page Deleted

data processing event 386

page items

variable for value 295

Page Opened

data processing procedure 391

procedure format 392

page repeat items

variable for value 295

Page Saved

data processing event 386

data processing procedure 391

procedure format 392

page sections

page section-related procedure format 392

running procedure at initialization 387, 391

running procedure at save 387, 391

PAGE_HAS_DATA

basic function in CT_FUNC 326

PAGE_LIST table

CTSDD account database table 148

PAGE_LIST_MEMBER table

CTSDD account database table 149

PAGE_REF table

CTSDD account database table 150

PAGE_REF_VALUE table

CTSDD account database table 152

PAGE_REPEATS table

CTSDD account database table 153

PAGELAYOUT table

CTSDD account database table 145

PAGELAYOUT_EVENT table

CTSDD account database table 147

page-related procedures, use of CT_EVENT with
394

PANE table

CTSDD account database table 154

PANE_ITEM table

CTSDD account database table 156

PANE_ITEM_SEQ table

CTSDD account database table 159

PANE_SEQ_VALUE table

CTSDD account database table 166

PANE_USAGE table

CTSDD account database table 167

Panel Items

variable, using 305

PANEL table

CTSDD account database table 160

PANEL_DECLARE

variable, using 305

PANEL_MASTER table

CTSDD account database table 162

PANEL_MASTER_NONDD table

CTSDD account database table 163

PANEL_NONDD table

CTSDD account database table 164

PL/SQL

block types 286

Clintrial reserved words 410

declarations 285

exceptions 285

executions 285

for derivations, rules, and data-entry processing
procedures 285

headers 285

programming elements 285
480 Index

PREF_TERM panel

CT_MEDDRA protocol 247

privilege functions

Clintrial-supplied package for 292

definition 344

privileges

granting for rules, derivations, and data entry
processing procedures 301

granting to protocols using functions 301

required, for accounts for site-specific or protocol-
specific functions 298

PROC_ACCOUNT

protocol parameter protocol-specific functions
298

PROC_SITE_ACCOUNT

protocol parameter site-specific functions 298

procedure

example 287

stored 287

process-related variables 294

protocol accounts

audit table 32

CTL_CONTROL_FILE table 275

CTL_DUPLICATE table 274

CTL_MAP table 276

CTL_MAP_ITEM table 278

data table 29

database tables for 26, 274

SUBJECT_BLOCK table 37

SUBJECT_PAGE table 38

TAGS table 39

TAGS_AUDIT table 41

update table 26

VCT_ERRORITEM_UPDATE table 43

VCT_ERRORSTATUS_UPDATE table 43

protocol parameters

PROC_ACCOUNT, for protocol-specific
functions 298

PROC_SITE_ACCOUNT, for site-specific
functions 298

protocols

functions for 297

protocol-specific functions 291

public synonyms

creating 302

Q
QUERY table

CTSDD account database table 169

R
record-related variables 295

RELEASE CHANGE table

CTSRP account database table 199

RELEASE_RECV table

CTSRP account database table 201

RELEASE_SEND table

CTSRP account database table 202

RELEASE_VERSION table

CTSRP account database table 203

RELEASED_OBJECT table

CTSRP account database table 204

REPAUDIT table

CTSRP account database table 218

REPGROUPOWN table

CTSRP account database table 221

replacement variables

in Custom menus 428

REPSITE table

CTSRP account database table 222

REPTABLE table

CTSRP account database table 224

reserved words

in Clintrial 410

Resolve

DISCREP_STATE panel 226

DISCREP_TRANSITION panel 229

functions 345

functions, Clintrial-supplied package for 292
481

INVESTIGATOR panel 232

VCT_ERRORITEM panel 233

VCT_ERRORSTATUS panel 235

RULE table

CTSDD account database table 170

RULE_AUDIT table

CTSDD account database table 172

rule-related variables 295

rules

granting privileges for 301

PL/SQL in 285

using functions in 303

using variables in 304

variables 296

S
Saving Page Section

data processing event 387

data processing procedure 391

procedure format 392

SECTION_FOCUS

event utility function in CT_EVENT 381

SECTION_HAS_DATA

basic function in CT_FUNC 327

SELECT

SQL statement used within Clintrial 420, 421

SET_ITEM

event utility function in CT_EVENT 382

SET_RPT

event utility function in CT_EVENT 383

sites

functions for 297

site-specific functions 291

SPEC_CAT panel

CT_MEDDRA protocol 261

SPEC_PREF_COMP panel

CT_MEDDRA protocol 263

SQL

Clintrial reserved words 410

SQL restriction

comparison operators 413

creating 413

definition 412

items 415

levels of precedence 415

logical operators 414

syntax 415

SQL statements

used within Clintrial 420, 421, 423

STOPWORDS panel

CT_MEDDRA protocol 266

stored functions 286

customized 299

stored packages 288

stored procedures 287

string functions

Clintrial-supplied package for 292

definition 329

study pages

page-related procedure format 392

running procedure at data deletion 386

running procedure at opening 391

running procedure at save 386, 391

STUDYBOOK table

CTSDD account database table 174

subject items

variable for value 295

SUBJECT_BLOCK

protocol account database table 37

SUBJECT_ID

variable for value 295

SUBJECT_LIST table

CTSDD account database table 176

SUBJECT_LIST_MEMBER table

CTSDD account database table 177

SUBJECT_PAGE

protocol account database table 38

System Group Items

variable, using 305
482 Index

system items

Clintrial reserved words 410

variable for value 295

T
TAGS

protocol account database table 39

TAGS_AUDIT

protocol account database table 41

thesaurus views

CT_MEDDRA protocol 267

THESAURUS_ALGORITHM table

CTSDD account database table 178

THESAURUS_ALGORITHM_STEP table

CTSDD account database table 179

THESAURUS_LANGUAGE table

CTSDD account database table 181

THESAURUS_VIEW table

CTSDD account database table 182

this

reference to item in current record 296

U
update tables 26

V
validation procedure 305

Value Changed

data processing event 387

procedure format 389

procedure, use of CT_EVENT with 391

VARCHAR2(n)

database format 407

variables

Clintrial package for 292

Clintrial, in CT_GLOBAL package 294

derivation-related 296

process-related 294

record-related 295

replacement, in Custom menus 428

rule-related 295

using in derivations and rules 304

VCT_ERRORITEM panel

Resolve 233

VCT_ERRORITEM_UPDATE

protocol account database table 43

VCT_ERRORSTATUS panel 235

Resolve 235

VCT_ERRORSTATUS_UPDATE

protocol account database table 43

Verbatim Text item 470

VIEW_CODELIST table

CTSCODES account database table 97
483

Clintrial 4.7.1
Reference Guide
Part Number: E27476

	Contents
	Part I: Database Structures
	Part II: Programming
	Part III: Common Information

	Preface
	Overview
	About this book
	About the Clintrial software documentation
	What are the Clintrial software books?
	Conventions
	Medika Sample Studies

	Clintrial 4.7 compatibility with other Oracle Health Sciences products
	If you need assistance

	Part I: Database Structures
	Introducing Database Structures
	How to use this part of the guide
	Types of accounts
	Protocol accounts
	System accounts

	Protocol Account
	panel-name_UPDATE
	Rows
	Columns
	Indexes

	panel-name_DATA
	Rows
	Columns
	Indexes

	panel-name_AUDIT
	Rows
	Columns
	Indexes

	ERRORLOG
	Rows
	Columns
	Index

	SUBJECT_BLOCK
	Rows
	Columns
	Index

	SUBJECT_PAGE
	Rows
	Columns
	Indexes

	TAGS
	Rows
	Columns
	Indexes

	TAGS_AUDIT
	Rows
	Columns
	Index

	VCT_ERRORITEM_UPDATE
	VCT_ERRORSTATUS_UPDATE

	CTS Account
	ACCESS_RIGHT
	Rows
	Columns
	Index

	ACTIVITY_LOG
	Rows
	Columns
	Index

	CATDEFS
	Rows
	Columns
	Index

	CC_DICTIONARY
	Rows
	Columns
	Index

	CC_DICTIONARY_LABEL
	Rows
	Columns
	Index

	CTS_PROTOCOLS
	Rows
	Columns
	Index

	CTS_USERGROUPS
	Rows
	Columns
	Index

	CTS_USERGROUPS_AUDIT
	Rows
	Columns
	Index

	CTS_USER
	Rows
	Columns
	Index

	CTS_USER_AUDIT
	Rows
	Columns
	Index

	DATABASE
	Rows
	Columns
	Index

	EXCEPTION_MESSAGE
	Rows
	Columns
	Index

	INVESTIGATOR_SITE
	Rows
	Columns
	Index

	JOB_LOG
	Rows
	Columns
	Indexes

	OBJINDX for Oracle parameters
	Rows
	Columns
	Index

	OBJINDX for Clintrial software parameters
	Rows
	Columns
	Index

	PARAM_AUDIT
	Rows
	Columns
	Index

	PROTOCOL_LOCK_HISTORY
	Rows
	Columns
	Index

	PROTOCOL_PARAM
	Rows
	Columns
	Index

	PROTOCOL_PARAM_AUDIT
	Rows
	Columns
	Index

	REGISTRY
	Rows
	Columns
	Index

	SEARCH_LIST
	Rows
	Columns
	Indexes

	TAGDEFS
	Rows
	Columns
	Indexes

	USERGROUP
	Rows
	Column
	Index

	USERGROUP_AUDIT
	Rows
	Column
	Index

	USERGROUP_ACCESS
	Rows
	Columns
	Index

	USERGROUP_ACCESS_AUDIT
	Rows
	Columns
	Index

	USERGROUP_ACCESS_PANEL
	Rows
	Columns
	Index

	USERGROUP_ACCESS_PANEL_AUDIT
	Rows
	Columns
	Index

	USER_PARAM
	Rows
	Columns
	Index

	CTPROC Account
	SUBJECT_AUDIT_RECORD
	Columns
	Index

	SUBJECT_AUDIT_ITEM
	Columns
	Index

	CTSCODES Account
	AGGREGATED_CODES
	Rows
	Columns
	Index

	CODE_INDEX
	Rows
	Columns
	Indexes

	CODELIST_ASSOC
	Rows
	Columns
	Index

	IMPORT_LOG
	Rows
	Columns
	Index

	VIEW_CODELIST
	Rows
	Columns
	Index

	CTCLASSIFY Account
	GCT_CC_ID
	Rows
	Columns
	Indexes

	GCT_CC_OMISSION
	Rows
	Columns
	Indexes

	GCT_CTX_LOC
	Rows
	Columns
	Index

	GCT_DC_ID
	Rows
	Columns
	Indexes

	GCT_DC_OMISSION
	Rows
	Columns
	Indexes

	GCT_DC_PROTOCOL
	Rows
	Columns
	Index

	GCT_LEX_ELT
	Rows
	Columns
	Index

	GCT_SOLUTION
	Rows
	Columns
	Index

	CTSDD Account
	AUDIT_START_HISTORY
	Rows
	Columns
	Index

	BLOCK_REF
	Rows
	Columns
	Index

	BLOCK_REF_VALUE
	Rows
	Columns
	Index

	BLOCK_REPEATS
	Rows
	Columns
	Index

	CC_TARGET
	Rows
	Columns
	Index

	CC_TARGET_ITEM
	Rows
	Columns
	Index

	DERIVATION
	Rows
	Columns
	Index

	DERIVATION_AUDIT
	Rows
	Columns
	Index

	ENCODING_TARGET
	Rows
	Columns
	Index

	ENCODING_TARGET_AUDIT
	Rows
	Columns
	Index

	ITEM
	Rows
	Columns
	Index

	ITEM_NONDD
	Rows
	Columns
	Indexes

	OBJECT_AUDIT
	Rows
	Columns
	Index

	OBJECT_CONNECTION
	Rows
	Columns
	Indexes

	OBJINDX
	Rows
	Columns
	Index

	PAGELAYOUT
	Rows
	Column
	Index

	PAGELAYOUT_EVENT
	Rows
	Column
	Index

	PAGE_LIST
	Rows
	Columns
	Indexes

	PAGE_LIST_MEMBER
	Rows
	Columns
	Index

	PAGE_REF
	Rows
	Columns
	Index

	PAGE_REF_VALUE
	Rows
	Columns
	Index

	PAGE_REPEATS
	Rows
	Columns
	Index

	PANE
	Rows
	Columns
	Index

	PANE_ITEM
	Rows
	Columns
	Index

	PANE_ITEM_SEQ
	Rows
	Columns
	Index

	PANEL
	Rows
	Columns
	Index

	PANEL_MASTER
	Rows
	Columns
	Index

	PANEL_MASTER_NONDD
	Rows
	Columns
	Index

	PANEL_NONDD
	Rows
	Columns
	Index

	PANE_SEQ_VALUE
	Rows
	Columns
	Index

	PANE_USAGE
	Rows
	Columns
	Index

	QUERY
	Rows
	Columns
	Index

	RULE
	Rows
	Columns
	Index

	RULE_AUDIT
	Rows
	Columns
	Index

	STUDYBOOK
	Rows
	Columns
	Index

	SUBJECT_LIST
	Rows
	Columns
	Index

	SUBJECT_LIST_MEMBER
	Rows
	Columns
	Index

	THESAURUS_ALGORITHM
	Rows
	Columns
	Index

	THESAURUS_ALGORITHM_STEP
	Rows
	Columns
	Index

	THESAURUS_LANGUAGE
	Rows
	Columns
	Index

	THESAURUS_VIEW
	Rows
	Columns
	Index

	CTSRM Account
	Overview
	CODE_VALUE_DIFF
	Rows
	Columns

	DIFF_ANALYSIS
	Rows
	Columns
	Index

	ERRORLOG
	Rows
	Columns
	Index

	FUNCTION_RECV
	Rows
	Columns
	Index

	FUNCTION_SOURCE
	Rows
	Columns
	Index

	ObjectTable_DIFF
	Rows
	Columns

	ObjectTable_SN
	Rows
	Columns

	OBJINDX_SN
	Rows
	Columns
	Index

	RELEASE_CHANGE
	Rows
	Columns
	Index

	RELEASE_RECV
	Rows
	Columns
	Index

	RELEASE_SEND
	Rows
	Columns
	Index

	RELEASE_VERSION
	Rows
	Columns
	Index

	RELEASED_OBJECT
	Rows
	Columns
	Index

	LATEST_RECV view
	Rows
	Columns

	CTSRP Account
	Overview
	CALLREC
	CHANGEREC
	Rows
	Columns
	Index

	DCHANGENUM
	Rows
	Columns
	Indexes

	DBOTYPEINFO
	Rows
	Columns
	Indexes

	ERRORREC
	Rows
	Columns
	Index

	GROUPDIST table
	Rows
	Columns
	Indexes

	HSUBVIEW
	Rows
	Columns
	Index

	REPAUDIT
	Rows
	Columns
	Index

	REPGROUP
	Rows
	Columns
	Indexes

	REPGROUPOWN
	Rows
	Columns
	Index

	REPPARAMS
	REPSITE
	Rows
	Columns
	Indexes

	REPTABLE
	Rows
	Columns
	Index

	CTRESOLVEREF Protocol
	Overview
	DISCREP_STATE panel
	Rows
	Columns
	Indexes
	Installed values

	DISCREP_TRANSITION panel
	Rows
	Columns
	Indexes
	Installed values

	INVESTIGATOR panel
	Rows
	Columns
	Indexes

	VCT_ERRORITEM panel
	Rows
	Columns
	Index

	VCT_ERRORSTATUS panel
	Rows
	Columns
	Indexes

	CTL_REFERENCE Protocol
	Overview
	CTL_NORMAL_RANGE panel
	Rows
	Columns
	Indexes

	CTL_UNIT_CONVERSION panel
	Rows
	Columns
	Indexes

	CT_MEDDRA Protocol
	Overview
	L_PREF_TERM panel
	Rows
	Columns
	Indexes

	L_LOW_LEVEL_TERM panel
	Rows
	Columns
	Indexes

	L_MD_HIERARCHY panel
	Rows
	Columns
	Indexes

	L_SOC_TERM panel
	Rows
	Columns
	Indexes

	L_HLT_PREF_COMP panel
	Rows
	Columns
	Indexes

	L_HLGT_HLT_COMP panel
	Rows
	Columns
	Indexes

	L_HLGT_PREF_TERM panel
	Rows
	Columns
	Indexes

	L_HLT_PREF_TERM panel
	Rows
	Columns
	Indexes

	L_SOC_HLGT_COMP panel
	Rows
	Columns
	Indexes

	L_SOC_INTL_ORDER panel
	Rows
	Columns
	Indexes

	L_SPEC_CAT panel
	Rows
	Columns
	Indexes

	L_SPEC_PREF_COMP panel
	Rows
	Columns
	Indexes

	LLT_PT_SOC panel
	Rows
	Columns

	SYNONYMS panel
	Rows
	Columns
	Index

	STOPWORDS panel
	Rows
	Column
	Index

	Thesaurus views
	Thesaurus algorithms

	PXFR_RECV Account
	IMPORT_PARAMS
	Rows
	Columns
	Index

	Lab Loader Tables
	CTL_DUPLICATE table
	Rows
	Columns
	Index

	CTL_CONTROL_FILE table
	Rows
	Columns
	Index

	CTL_MAP table
	Rows
	Columns
	Index

	CTL_MAP_ITEM table
	Rows
	Columns
	Index

	Part II: Programming
	Using PL/SQL in the Clintrial Software
	PL/SQL basics
	What is PL/SQL?
	What is a block?
	Stored functions
	Example: PL/SQL function
	Stored procedures
	Example: PL/SQL procedure
	What is a package?
	Package specification
	Example: package specification
	Package body
	Example: package body

	PL/SQL in the Clintrial software
	How the term “function” is used
	Types of functions
	Copying functions between instances
	Packages delivered with the Clintrial software
	Calling a function
	What are Clintrial software variables?
	How to use Clintrial software variables
	Process-related variables
	Record-related variables
	Rule-related variables
	Derivation-related variable
	“this” identifier
	Converting values

	Site-specific and protocol-specific functions
	Where to store customized functions
	Required system privileges
	Parameter settings
	Packaging customized functions
	Steps to create a function
	Compiling a function
	Granting the EXECUTE privilege
	Creating public synonyms

	PL/SQL in derivations and rules
	Using functions in derivations and rules
	Using variables in derivations and rules
	Validation procedures

	Using Clintrial Software Functions
	Basic functions
	What is a basic function?
	How to call a basic function

	BLOCK_HAS_DATA
	Function
	Action
	Arguments
	Returned values
	Example

	CLOSE_LOOKUP
	Function
	Action
	Argument
	Example

	CONVERT_DATE
	Function
	Action
	Arguments
	Returned values
	Example

	FIND_N_RECORDS
	Function
	Action
	Arguments
	Returned values
	Example

	IS_EMPTY
	Function
	Action
	Argument
	Returned values
	Example

	IS_NOTEMPTY
	Function
	Action
	Argument
	Returned values
	Example

	LOOKUP_FLAG
	Function
	Action
	Arguments
	Returned values
	Example

	LOOKUP_VARS
	Function
	Action
	Arguments
	Returned values
	Example

	MSG_IF_EMPTY
	Function
	Action
	Arguments
	Returned values
	Example

	MSG_IF_NOTEMPTY
	Function
	Action
	Arguments
	Returned values
	Example

	PAGE_HAS_DATA
	Function
	Action
	Arguments
	Returned values
	Example

	SECTION_HAS_DATA
	Function
	Action
	Arguments
	Returned values
	Example

	String functions
	What is a string function?
	How to call a string function
	Other data types

	ADD_ELEMENT (for names)
	Function
	Action
	Arguments
	Example

	ADD_ELEMENT (for name/value pairs)
	Function
	Action
	Arguments
	Example

	CHAR_TO_DATE
	Function
	Action
	Arguments
	Returned value
	Example

	CHAR_TO_DATETIME
	Function
	Action
	Arguments
	Returned value
	Example

	CHAR_TO_FLOAT
	Function
	Action
	Arguments
	Returned value
	Example

	COUNT_LIST
	Function
	Action
	Arguments
	Returned values
	Example

	DATE_TO_CHAR
	Function
	Action
	Arguments
	Returned value
	Example

	DATETIME_TO_CHAR
	Function
	Action
	Arguments
	Returned value
	Example

	FLOAT_TO_CHAR
	Function
	Action
	Arguments
	Returned value
	Example

	GET_ARRAY_VALUE
	Function
	Action
	Arguments
	Returned value
	Example

	GET_ITEM
	Function
	Action
	Arguments
	Returned value
	Example

	INIT_NAME_VALUE_ARRAYS
	Function
	Action
	Arguments
	Example

	MAKE_LIST
	Function
	Action
	Arguments
	Returned values
	Example

	Privilege functions
	What is a privilege function?
	How to call a privilege function

	Resolve functions
	What is a Resolve function?
	How to call a Resolve function

	Lab Loader functions
	What is a Lab Loader function?
	How to call a Lab Loader function

	CALC_NORMALCY_STATUS
	Function
	Action
	Arguments
	Returned value
	Example

	CALC_NORMAL_RANGE
	Function
	Action
	Arguments
	Returned value
	Example

	CALC_SI_VALUE
	Function
	Action
	Arguments
	Returned value
	Example

	LOOKUP_SUBJECT_ID
	Function
	Action
	Arguments
	Returned value
	Example

	MedDRA functions
	What is a MedDRA function?
	How to call a MedDRA function

	GET_CODE_LLT
	Function
	Action
	Arguments
	Returned value
	Example

	GET_CODE_PT
	Function
	Action
	Arguments
	Returned value
	Example

	GET_CODE_HLT
	Function
	Action
	Arguments
	Returned value
	Example

	GET_CODE_HLGT
	Function
	Action
	Arguments
	Returned value
	Example

	GET_TERM
	Function
	Action
	Arguments
	Returned value
	Example

	Event utility functions
	What is an event utility function?
	How to call an event utility function

	DELETE_RPT
	Procedure
	Action
	Arguments

	DEL_FLAG
	Procedure
	Action
	Arguments
	Example

	DEL_FLAG_RPT
	Procedure
	Action
	Arguments
	Example

	DEL_NOTE
	Procedure
	Action
	Arguments
	Example

	DEL_NOTE_RPT
	Procedure
	Action
	Arguments

	DISABLE
	Procedure
	Action
	Arguments
	Example

	DISABLE_DEL
	Procedure
	Action
	Arguments
	Example

	DISABLE_RPT
	Procedure
	Action
	Arguments
	Example

	ENABLE
	Procedure
	Action
	Arguments
	Example

	ENABLE_DEL
	Procedure
	Action
	Arguments
	Example

	ENABLE_RPT
	Procedure
	Action
	Arguments
	Example

	FLAG
	Procedure
	Action
	Arguments
	Example

	FLAG_RPT
	Procedure
	Action
	Arguments
	Example

	ITEM_FOCUS
	Procedure
	Action
	Arguments
	Example

	ITEM_FOCUS_RPT
	Procedure
	Action
	Arguments
	Example

	NOTE
	Procedure
	Action
	Arguments
	Example

	NOTE_RPT
	Procedure
	Action
	Arguments
	Example

	SECTION_FOCUS
	Procedure
	Action
	Arguments
	Example

	SET_ITEM
	Procedure
	Action
	Arguments

	SET_RPT
	Procedure
	Action
	Arguments

	Using Data-Entry Processing Procedures
	Overview
	What is a data-entry processing procedure?
	What is a data processing event?

	Value Changed procedures
	When procedures are run
	Format
	Arguments
	PL/SQL code

	Page-related procedures
	When procedures are run
	Format
	Arguments
	PL/SQL code

	Attaching data-entry processing procedures
	Attaching a procedure to a page template
	Attaching a procedure to a page section
	Attaching a procedure to an item

	Examples
	Example 1: itemfocus procedure
	Example 2: convertweight procedure

	Part III: Common Information
	Data Format
	Data types
	What is a data type?
	Valid data types

	Database formats
	What is a database format?
	Valid database formats

	Naming Clintrial Software Objects
	Naming conventions
	Reserved words

	Restricting Records
	Restricting records based on a SQL restriction
	What is a SQL restriction?
	How to create a SQL restriction
	Comparison operators
	Logical operators
	Syntax
	Levels of precedence
	Items

	Restricting records based on flags and notes
	Flags
	Notes

	Restricting records based on date and time
	What is a date and time range?
	From date
	To date

	Using SQL in the Clintrial Software
	Types of SQL statements
	How to use the SQL command
	Database structures
	SELECT statement syntax
	DESCRIBE statement syntax
	Saving statements and results

	Using Custom Menus
	Overview
	Defining the Custom menu
	Replacement variables
	Example

	Running Batch Jobs
	Submitting a batch job
	What is a batch job?
	How to submit a batch job

	Using the batch job queue
	What is the batch job queue?
	How to display the batch job queue
	Batch job queue contents
	How to modify entries
	How to run a batch job immediately
	How to delete entries

	Glossary
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V

