ORACLE

Oracle® Documaker

Docupresentment SDK
Reference Guide

2.9.0
Part number: E&7307-01

May 2017

ORACLE

Copyright © 2009, 2017, Oracle and/or its affiliates. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information; they are provided under a license
agreement containing restrictions on use and disclosure and are also protected by copyright, patent, and other intellectual and industrial
property laws. Reverse engineering, disassembly, or decompilation of the Programs, except to the extent required to obtain
interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in the documentation, please
report them to us in writing. This document is not warranted to be error-free. Except as may be expressly permitted in your license
agreement for these Programs, no part of these Programs may be reproduced or transmitted in any form or by any means, electronic or
mechanical, for any purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on behalf of the United States
Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS

Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial
computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement, and, to the extent
applicable, the additional rights set forth in FAR 52.227-19, Commercial Computer Software--Restricted Rights (June 1987). Oracle
USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently dangerous applications. It shall
be the licensee's responsibility to take all appropriate fail-safe, backup, redundancy and other measures to ensure the safe use of such
applications if the Programs are used for such purposes, and we disclaim liability for any damages caused by such use of the Programs.

The Programs may provide links to Web sites and access to content, products, and services from third parties. Oracle is not responsible
for the availability of, or any content provided on, third-party Web sites. You bear all risks associated with the use of such content. If
you choose to purchase any products or services from a third party, the relationship is directly between you and the third party. Oracle is
not responsible for: (a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the third
party, including delivery of products or services and warranty obligations related to purchased products or services. Oracle is not
responsible for any loss or damage of any sort that you may incur from dealing with any third party.

Oracle, JD Edwards, and PeopleSoft are registered trademarks of Oracle Corporation and/or its affiliates. Other names may be
trademarks of their respective owners.

THIRD PARTY SOFTWARE NOTICES
This product includes software developed by Apache Software Foundation (http://www.apache.org/).

THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright © 2000-2009 The Apache Software Foundation. All rights reserved.
Apache Commons Math Copyright 2001-2008 The Apache Software Foundation

This product includes software translated from the odex Fortran routine developed by E. Hairer and G. Wanner and distributed
under the following license:

Copyright (c) 2004, Ernst Hairer

Apache License Version 2.0, January 2004 (http://www.apache.org/licenses/LICENSE-2.0)

THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE VISIGOTH SOFTWARE SOCIETY OR ITS CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Apache Commons Codec Copyright 2002-2009 The Apache Software Foundation
Copyright (C) 2002 Kevin Atkinson (kevina@gnu.org)

Apache Commons Pool
Copyright 2001-2011 The Apache Software Foundation

Apache Jakarta Commons Lang
Copyright 2001-2007 The Apache Software Foundation

Apache Jakarta Commons FileUpload
Copyright 2002-2006 The Apache Software Foundation

Apache Commons CLI
Copyright 2001-2009 The Apache Software Foundation

Apache Commons Collections
Copyright 2001-2008 The Apache Software Foundation

Apache Commons Logging
Copyright 2003-2013 The Apache Software Foundation

Barcode4]

Copyright 2002-2010 Jeremias Mérki

Copyright 2005-2006 Dietmar Biirkle

Portions of this software were contributed under section 5 of the

Apache License. Contributors are listed under: (http://barcode4;j.sourceforge.net/contributors.html)

Copyright 2002-2010 The Apache Software Foundation

This product includes software distributed via the Berkeley Software Distribution (BSD) and licensed for binary distribution
under the Generic BSD license.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright © 2009, Berkeley Software Distribution (BSD)

This product includes software developed by the JDOM Project (http://www.jdom.org/).

THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE JDOM AUTHORS OR THE PROJECT CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright (C) 2000-2004 Jason Hunter & Brett McLaughlin. All rights reserved.

This product includes software developed by the Massachusetts Institute of Technology (MIT).

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Copyright © 2009 MIT

This product includes software developed by Jean-loup Gailly and Mark Adler. This software is provided 'as-is', without any
express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software.

Copyright (c) 1995-2005 Jean-loup Gailly and Mark Adler

This software is based in part on the work of the Independent JPEG Group (http://www.ijg.org/).

This product includes software developed by the Dojo Foundation (http://dojotoolkit.org).

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF

SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright (c) 2005-2009, The Dojo Foundation. All rights reserved.

This product includes software developed by W3C.

Copyright © 2009 World Wide Web Consortium, (Massachusetts Institute of Technology, Institut National de Recherche en
Informatique et en Automatique, Keio University). All Rights Reserved. (http://www.w3.org/Consortium/Legal/)

This product includes software developed by Mathew R. Miller (http://www.bluecreststudios.com).
Copyright (c) 1999-2002 ComputerSmarts. All rights reserved.

This product includes software developed by Shaun Wilde and distributed via Code Project Open License (http:/
www.codeproject.com).

THIS WORK IS PROVIDED "AS IS", "WHERE IS" AND "AS AVAILABLE", WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES OR CONDITIONS OR GUARANTEES. YOU, THE USER, ASSUME ALL RISK IN ITS USE, INCLUDING
COPYRIGHT INFRINGEMENT, PATENT INFRINGEMENT, SUITABILITY, ETC. AUTHOR EXPRESSLY DISCLAIMS
ALL EXPRESS, IMPLIED OR STATUTORY WARRANTIES OR CONDITIONS, INCLUDING WITHOUT LIMITATION,
WARRANTIES OR CONDITIONS OF MERCHANTABILITY, MERCHANTABLE QUALITY OR FITNESS FOR A
PARTICULAR PURPOSE, OR ANY WARRANTY OF TITLE OR NON-INFRINGEMENT, OR THAT THE WORK (OR ANY
PORTION THEREOF) IS CORRECT, USEFUL, BUG-FREE OR FREE OF VIRUSES. YOU MUST PASS THIS
DISCLAIMER ON WHENEVER YOU DISTRIBUTE THE WORK OR DERIVATIVE WORKS.

This product includes software developed by Chris Maunder and distributed via Code Project Open License (http://
www.codeproject.com).

THIS WORK IS PROVIDED "AS IS", "WHERE IS" AND "AS AVAILABLE", WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES OR CONDITIONS OR GUARANTEES. YOU, THE USER, ASSUME ALL RISK IN ITS USE, INCLUDING
COPYRIGHT INFRINGEMENT, PATENT INFRINGEMENT, SUITABILITY, ETC. AUTHOR EXPRESSLY DISCLAIMS
ALL EXPRESS, IMPLIED OR STATUTORY WARRANTIES OR CONDITIONS, INCLUDING WITHOUT LIMITATION,
WARRANTIES OR CONDITIONS OF MERCHANTABILITY, MERCHANTABLE QUALITY OR FITNESS FOR A
PARTICULAR PURPOSE, OR ANY WARRANTY OF TITLE OR NON-INFRINGEMENT, OR THAT THE WORK (OR ANY
PORTION THEREOF) IS CORRECT, USEFUL, BUG-FREE OR FREE OF VIRUSES. YOU MUST PASS THIS
DISCLAIMER ON WHENEVER YOU DISTRIBUTE THE WORK OR DERIVATIVE WORKS.

This product includes software developed by PJ Arends and distributed via Code Project Open License (http://
www.codeproject.com).

THIS WORK IS PROVIDED "AS IS", "WHERE IS" AND "AS AVAILABLE", WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES OR CONDITIONS OR GUARANTEES. YOU, THE USER, ASSUME ALL RISK IN ITS USE, INCLUDING
COPYRIGHT INFRINGEMENT, PATENT INFRINGEMENT, SUITABILITY, ETC. AUTHOR EXPRESSLY DISCLAIMS
ALL EXPRESS, IMPLIED OR STATUTORY WARRANTIES OR CONDITIONS, INCLUDING WITHOUT LIMITATION,
WARRANTIES OR CONDITIONS OF MERCHANTABILITY, MERCHANTABLE QUALITY OR FITNESS FOR A
PARTICULAR PURPOSE, OR ANY WARRANTY OF TITLE OR NON-INFRINGEMENT, OR THAT THE WORK (OR ANY
PORTION THEREOF) IS CORRECT, USEFUL, BUG-FREE OR FREE OF VIRUSES. YOU MUST PASS THIS
DISCLAIMER ON WHENEVER YOU DISTRIBUTE THE WORK OR DERIVATIVE WORKS.

This product includes software developed by Erwin Tratar. This source code and all accompanying material is copyright (c) 1998-
1999 Erwin Tratar. All rights reserved.

THIS SOFTWARE IS PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY. USE IT AT YOUR OWN

RISK! THE AUTHOR ACCEPTS NO LIABILITY FOR ANY DAMAGE/LOSS OF BUSINESS THAT THIS PRODUCT MAY
CAUSE.

This product includes software developed by Sam Leffler of Silicon Graphics.

THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EXPRESS, IMPLIED OR
OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

IN NO EVENT SHALL SAM LEFFLER OR SILICON GRAPHICS BE LIABLE FOR ANY SPECIAL, INCIDENTAL,
INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER RESULTING FROM
LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY
THEORY OF LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE

Copyright (c) 1988-1997 Sam Leffler

Copyright (c) 1991-1997 Silicon Graphics, Inc.

This product includes software developed by Guy Eric Schalnat, Andreas Dilger, Glenn Randers-Pehrson (current maintainer),
and others. (http://www.libpng.org)

The PNG Reference Library is supplied "AS IS". The Contributing Authors and Group 42, Inc. disclaim all warranties, expressed
or implied, including, without limitation, the warranties of merchantability and of fitness for any purpose. The Contributing
Authors and Group 42, Inc. assume no liability for direct, indirect, incidental, special, exemplary, or consequential damages,
which may result from the use of the PNG Reference Library, even if advised of the possibility of such damage.

This product includes software components distributed by the Cryptix Foundation.

THIS SOFTWARE IS PROVIDED BY THE CRYPTIX FOUNDATION LIMITED AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
CRYPTIX FOUNDATION LIMITED OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE

Copyright © 1995-2005 The Cryptix Foundation Limited. All rights reserved.

This product includes software components distributed by Sun Microsystems.

This software is provided "AS IS," without a warranty of any kind. ALLEXPRESS OR IMPLIED CONDITIONS,
REPRESENTATIONS AND WARRANTIES, INCLUDING ANYIMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE HEREBY EXCLUDED. SUN AND ITS
LICENSORS SHALL NOT BELIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL SUN OR ITS
LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR DIRECT, INDIRECT, SPECIAL,
CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE
THEORY OF LIABILITY, ARISING OUT OF THE USE OF OR INABILITY TO USE SOFTWARE, EVEN IF SUN HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Copyright (c) 1998 Sun Microsystems, Inc. All Rights Reserved.

This product includes software components distributed by Dennis M. Sosnoski.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS

OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright © 2003-2007 Dennis M. Sosnoski. All Rights Reserved
It also includes materials licensed under Apache 1.1 and the following XPP3 license

THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright © 2002 Extreme! Lab, Indiana University. All Rights Reserved

This product includes software components distributed by CodeProject. This software contains material that is © 1994-2005 The
Ultimate Toolbox, all rights reserved.

This product includes software components distributed by Geir Landro.

Copyright © 2001-2003 Geir Landro (drop@destroydrop.com) JavaScript Tree - www.destroydrop.com/hjavascripts/tree/version
0.96

This product includes software components distributed by the Hypersonic SQL Group.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE

Copyright © 1995-2000 by the Hypersonic SQL Group. All Rights Reserved

This product includes software components distributed by the International Business Machines Corporation and others.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Copyright (c) 1995-2009 International Business Machines Corporation and others. All rights reserved.

This product includes software components distributed by the University of Coimbra.

University of Coimbra distributes this software in the hope that it will be useful but DISCLAIMS ALL WARRANTIES WITH
REGARD TO IT, including all implied warranties of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. In
no event shall University of Coimbra be liable for any special, indirect or consequential damages (or any damages whatsoever)
resulting from loss of use, data or profits, whether in an action of contract, negligence or other tortious action, arising out of or in
connection with the use or performance of this software.

Copyright (c) 2000 University of Coimbra, Portugal. All Rights Reserved.

This product includes software components distributed by Steve Souza.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

Copyright © 2002, Steve Souza (admin@jamonapi.com). All Rights Reserved.

This product includes software developed by the OpenSymphony Group (http://www.opensymphony.com/.)"
Copyright © 2001-2004 The OpenSymphony Group. All Rights Reserved.

PANTONE (R) Colors displayed in the software application or in the user documentation may not match PANTONE-identified
standards. Consult current PANTONE Color Publications for accurate color. PANTONE(R) and other Pantone LLC trademarks
are the property of Pantone LLC. (C) Pantone LLC, 2011.

Pantone LLC is the copyright owner of color data and/or software which are licensed to Oracle to distribute for use only in
combination with Oracle Documaker. PANTONE Color Data and/or Software shall not be copied onto another disk or into
memory unless part of the execution of Oracle Documaker.

This product includes software developed by Dave Gamble and distributed via SourceForge.net (http://sourceforge.net/projects/
cjson/)

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THEAUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Copyright (c) 2009 Dave Gamble

This product includes software developed by the Zxing Project.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Copyright (c) 2013 Zxing Project (https://github.com/zxing/zxing)

This product includes software developed by the Wintertree software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Copyright (c) 2015 Wintertree (https://wintertree-software.com/dev/ssce/windows/index.html)

Freemarker Copyright (c) 2003 The Visigoth Software Society. All rights reserved.

THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE VISIGOTH SOFTWARE SOCIETY OR ITS CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO,PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This software consists of voluntary contributions made by many individuals on behalf of the Visigoth Software Society. For more
information on the Visigoth Software Society, please see http://www.visigoths.org/

Copyright (c) 2000,2002,2003 INRIA, France Telecom (http://asm.ow2.org/) All rights reserved.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright© 2001-2016 ej-technologies GmbH (https://www.ej-technologies.com/products/install4j/overview.html) All rights
reserved.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This component is distributed with the following third party components: (1) Third party components licensed under EPL v1.0;
(2) JARGS (Stephen Purcell); JDOM (Brett McLaughlin & Jason Hunter); and (3) ORO (Apache Software Foundation). Please
see EPL v1.0 and applicable components (#2072, 2686, 2074) for restrictions/requirements.

Copyright 2001-2005 (C) MetaStuff, Ltd.(http://www.dom4j.org) All Rights Reserved.

THIS SOFTWARE IS PROVIDED BY METASTUFF, LTD. AND CONTRIBUTORS "AS IS" AND ANY EXPRESSED OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL METASTUFF, LTD. OR ITS
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE)ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

Little CMS Copyright (c) 1998-2011 (http://www.littlecms.com/) All Rights Reserved.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Marti Maria Saguer Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

Copyright (c) 2002-2007, Communications and Remote Sensing Laboratory, Universite catholique de Louvain (UCL), Belgium
Copyright (c) 2002-2007, Professor Benoit Macq

Copyright (c) 2001-2003, David Janssens

Copyright (c) 2002-2003, Yannick Verschueren

Copyright (c) 2003-2007, Francois-Olivier Devaux and Antonin Descampe

Copyright (c) 2005, Herve Drolon, Freelmage Team

All rights reserved.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THEIMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright (¢) 2004-2013 QOS.ch (http://www.qos.ch/shop/index) All rights reserved.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files
(the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

The Code Project Open License (CPOL) 1.02
Copyright © CodeProject, 1999-2016 (http://www.codeproject.com/info/cpol10.aspx) All Rights Reserved.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd and Clark Cooper
Copyright (c) 2001, 2002, 2003, 2004, 2005, 2006 Expat maintainers (http://expat.sourceforge.net/)
All Rights Reserved.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Copyright (c) 2002-2010 Atsuhiko Yamanaka, JCraft,Inc(http://www.jcraft.com/jsch/) All rights reserved.

THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL JCRAFT,INC. OR ANY CONTRIBUTORS TO THIS SOFTWARE BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OFLIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This product includes software developed by Christian Bach and distributed via (http://tablesorter.com/docs/)
All rights reserved.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Copyright (c) 2007 Christian Bach

This product includes software developed by Dmitry Baranovskiy and distributed via (https://github.com/DmitryBaranovskiy)
All rights reserved.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Copyright © 2008 Dmitry Baranovskiy.

This product includes software developed by John Resig and distributed via (http:/jquery.com/) All rights reserved.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Copyright (c) 2011 John Resig

Copyright (c) Monotype Imaging, Inc (http://www.monotype.com/) All rights reserved.

Monotype®, Albany®, Andale®, Cumberland®, Thorndale®, MT®, WorldType® is a trademark of Monotype Imaging, Inc.,
registered in U.S. Patent and Trademark Office and certain other jurisdictions.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

CONTENTS

Preface..... 16
Lo 1= o o = PP 16
Documentation ACCeSSIDIlItYoueeiiiiiiiiiiii 16
Related DOCUMENLS ... 18
CONVENTIONS ...ttt e e e e e e e e e e e e e e e e e nnnnes 18
Finding the Information You Needcoooiiiiiiiiiiiiiiiicsieeeees 23
Using the DSI APIs with C ... 25
Using Unicode in Attachment Variablescccccccovimmmrenciiiirrneenne. 28
Sample Program-DSIEXooo i 28
Writing Processing Rules in C ... 30
How the System Processes RUIES.............ccoooiiiiiiiiiiiiccciieee e 30
Creating RUIESuiiieieee e 31
Creating, Accessing, and Destroying Variables....................cccoooe. 33
Accessing the QUEUE...........uuuiiiiiiiiiiiiiieeeeee e 34
Using Utility FUNCHIONS ... 34
Creating Rules for Reserved Request Typescccoeeevviiiiiiiviiiiieeenn, 34
Using the Java Librariescccccocoiiiimmiecciiiirreeccs s e 37
Writing Processing Rules in Javaccccocciiiiiiiiineeeseeennnnnnneeenn 39
Java Rules vS. C RUIES........ciiiiiiiiiiiii e 41
Function Signature for Java Rul€s..............ccooooiiiiiiicceeee e 41
Using the IDSWebdav Serviet Client APIs and DPRLIB Rules ... 43
Writing Processing Rules in Visual Basicc....ccccvveeciiiinnneenne. 79
SAMPIES ... 86
Referencing Attachment Variablesccccociiiiiiieee 96
C APIFUNCLIONScooiiiiiiciirisssses s 98
Using JavaBean Componentscccccceiiiiiiiiiirrcsssnccessnssssssnnns 190
Returning a RecordSet Object ... 194
Using IDSJSP in a JSP Container..........coooeeeeiiiiiiiiceeeee e 196
DSIBEAN APIS ...t 196
Using the DSI Java Messaging Library for Client Applications . 197
Passing JVM Options to DSILIBccccociiiiiiimmiiinrrreeeeeenn 198
Generating Debug Output for Client Requestsccccceeeeeeeeeee. 199
Java APl ClasSescccccciiiiiiiiiiniiinnns s s s s s s s s s s s snnsnnns 200
Server RUIES ... 202
Putting and Getting Multiple Files ... 205
L0 = o 1 | =N 247
Using the Prototypes and Examples...........ccoemeciiiiiiiiecciiiinnneennen, 268
HaNdliNg ErrOrs e 268
Using the Web Services Example.........cccooiiiiiiiiiiieee 269

Visual Basic Methodscc.coviieiiiiiiiriririren e reres s sessassessessanse 270

Preface

Oracle has Internet solutions for managing your documents. Docupresentment helps
manage the flow of your documents. Docupresentment lets you access your
documents with a web browser from your intranet or the Internet. The standard web
browser interface includes security features, document database lookup, and
document viewing in PDF format using the Adobe Acrobat Reader.

AUDIENCE

This document is designed for system supervisors and developers and is intended to
help you provide reference for the Software Development Kit of Oracle
Documaker’s Docupresentment (previously known as Internet Document Server).

DOCUMENTATION ACCESSIBILITY

Accessibility of Links to External Websites in
Documentation

This documentation may contain links to websites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor
makes any representations regarding the accessibility of these websites.

Oracle Support

If you have any questions about the installation or use of our products, please call
+1.800.223.1711 or visit the My Oracle Support website:

http://www.oracle.com/us/support/index.html

Go to My Oracle Support to find answers in the Oracle Support Knowledge Base,
submit, update or review your Service Requests, engage the My Oracle Support
Community, download software updates, and tap into Oracle proactive support tools
and best practices.

Hearing impaired customers in the U.S. who need to speak with an Oracle Support
representative may use a telecommunications relay service (TRS); information about
TRS is available at http://www.fcc.gov/cgb/consumerfacts/trs.html, and a list of
phone numbers is available at http://www.fcc.gov/cgb/dro/trsphonebk.html.
International hearing impaired customers should use the TRS at 1.605.224.1837.

16

http://www.oracle.com/us/support/index.html
http://www.oracle.com/us/support/index.html.
http://www.fcc.gov/cgb/consumerfacts/trs.html

Preface

Contact

USA:+1.800.223.1711
Canada: 1.800.668.8921 or +1.905.890.6690
Latin America: 877.767.2253

For other regions including Latin America, Europe, Middle East, Africa, and Asia
Pacific regions: Visit- http://www.oracle.com/us/support/contact/index.html

Copyright ©2015 Oracle and/or its affiliates. All rights reserved.

Follow us

B https://blogs.oracle.com/insurance

n https://www.facebook.com/oracleinsurance
a https://twitter.com/oracleinsurance

m https://www.linkedin.com/groups?gid=2271161

17

http://www.oracle.com/us/support/contact/index.html
https://blogs.oracle.com/insurance
https://www.facebook.com/oracleinsurance
https://twitter.com/oracleinsurance
https://www.linkedin.com/groups?gid=2271161

Preface

RELATED DOCUMENTS

For more information, refer to the following Oracle resources:
* Documaker Administration Guide

e Output Management Guide

* Docupresentment User Guide

e Docupresentment Install Guide

CONVENTIONS
The following text conventions are used in this document:
Convention Description
bold Indicates information you enter.
italic Italic type indicates book titles, emphasis, or placeholder variables for which you
supply particular values.
monospace Monospace type indicates commands, URLSs, code in examples, and text that

appears on the screen.

18

Chapter 1

Using Docupresentment
SDK

This chapter tells you how to use the Document Server
Interface (DSI) APIs for creating rules and applications
to interface with Oracle Insurance's Docupresentment.
The various API functions and processing rules are
described in detail in this manual.

You can use the API C functions, Java methods, Visual
Basic methods, and processing rules to build either a
proprietary client interface or a custom set of rules
which work with Docupresentment.

The APIs provide a number of services, including...
* Interprocess communication

e DPersistent variables

* Accessible across function calls

e Error reporting

Several general purpose functions are also available.

The DSI API includes interfaces (APIs), for C, Java, and
Visual Basic so you can use these languages to build
custom rules and applications. You will also find sample
clients which you can use as a reference. For more
information, see...

* Finding the Information You Need on page 23
* Using the DSI APIs with C on page 25

e Writing Processing Rules in C on page 30

e Using the Java Libraries on page 37

* Using the IDSWebdav Servlet Client APIs and
DPRLIB Rules on page 43

* Writing Processing Rules in Visual Basic on page 79

The illustration on the following page shows how data
flows within the system and its overall architecture.

19

Chapter 1

Using Docupresentment SDK

Distributed Clients World Wide Web
or Intranet Client

World Wide Web
or Intranet Client
World Wide Web

or Intranet Client \

Local or Batch
Client

$

| Front-End (Client) Components |

Front-end components
talk to IDS via the DSI JSP or servlet Java-based ActiveX-based
API. These components based Web Custom Client Custom Client

provide communications Application Module Module
and an interface which

gather client request,
translate those requests
for Docupresentment, Custom Client
and then translate the Module
results for the client’s use.

Internet DSI API
Document
Server Request Request

Queue Queue
(input) (output)

Document Processing Server

DSI API

4 4

! Back-End Components |

Back-end components
include bridges to other
applications, the rules
which process the data,
the data or archives being
processed, and document
sets. These components
communicate with IDS
via the DSI APIL.

Bridges Processing Rules Data, Document

Sets or Archives

20

Two-tier and three-tier models are supported. In the three-tier model, the remote client
can take a variety of forms and paths. The remote can be a web browser using CGI, a web
browser using Java, or stand-alone, fa or #hin, Java or C clients. Notice that there are two
paths from the remote client, one through a front-end component, such as CGI, JSP or
servlet, and the other through a Java client. The two paths merge at the DSI API, one for
C the other for Java.

The system includes a CGI client, which supports rules. Because you can write your own
front-end client, the term front-end client applies to both. Discussions about rule processing
in the front-end client, however, refer to a CGI client.

Similarly, the two-tier model can be supported by writing local applications, such as those
that do not use remote communications. You can write these local applications in either
Java or C. These local applications use their own APIs. The DSIEX.C sample program,
discussed in the topic Sample Program-DSIEX on page 28, is an example of a local
application.

Aside from the languages there are these key differences:
* The front-end CGI client supports rules and relies on HTML scripts

* The Java browser applet has a persistent connection with the Java server console
application.

* The CGI script runs on a front-end client on the HTML server; the Java applet
processing is split between the remote web browser and the server.

The general structure of a DSI session depends upon whether you are writing an
executable program or a custom set of rules in C or an applet and application in Java. An
executable program requires additional calls to initialize and terminate Docupresentment
and its database access subsystems. To keep things from getting too confusing, the
markers below indicate the steps unique to CGI or Java:

Java

CGI

Java

CGI

CGI

1 The browser makes a request to a web application (JSP or servlet)
2 The browser loads an HTML page with a reference to a CGI script

The web application accepts user input, creates a request and adds the request to the
> q q
3 server’s request queue

4 The client executable on the server (CGI or Java) receives user input.
5 Based upon data supplied by the user, the rules create an attachment and a queue record
6 The data compiled by the rules is added to the server's request queue.

The setver retrieves the request from its queue, and, based upon the request, executes its
7 own set of rules

The rules read the attachment record and use the supplied information to create a new
8 attachment and queue record

9 The data compiled by the server rules is posted to the servet's result queue

10 The client retrieves the results and executes yet another set of rules

21

Chapter 1

Using Docupresentment SDK

22

CGI

Java

CGI

The rules read the attachment created by the server and use this information to format
1 output to be provided to the user

The information is passed to the web application, which formats a reply and passes the
12 reply to the browser

13 An HTML page is formatted and passed to the browser

NOTE: An attachment is a block of information accessed in the form of name/value
pairs. Attachments are used to pass information between the client and the server
rules, as well as the APL

This sequence is greatly simplified, ignoring the details of how rules compile data and
determine what information needs to be provided at each stage of the process. These
details may include database accesses, requests from the user for additional information,
the creation of files, and other tasks.

Queues

Typically, you will have more than one browser active at a time so input and output to

Docupresentment is organized around queues. These queues serialize the requests and

process them on a first in, first out basis. The DSI queues also let you prevent conflicts
as several clients perform several tasks at a time.

FINDING THE
INFORMATION
You NEED

Finding the Information You Need

Depending on how you implement the system, you may not need to install or use all of
the components. Below is a table which shows the order in which you should read the
chapters and appendices in this manual and in the other Docupresentmen related guides
and briefly describes these chapters or appendixes.

To... Read...

Find an overview of Chapter 1 of the Docupresentment Guide
Docupresentment

Install and set up Docupresentment Installation Guide.
Docupresentment.

Create PDF, HTML, or XML Docupresentment Guide
output

Once you install Docupresentment, you will typically use one of the following bridges:

Documaker Bridge This bridge lets you retrieve and display form sets stored in
Documaker’s archive module. It also lets you convert
Metacode and AFP output created by the Documerge
system into PDF files used by Docupresentment.

For more information, see Using the Documaker Bridge.

Docuflex Bridge This bridge lets Docupresentment use Docuflex as a
composition engine.

For more information, see Using the Docuflex Bridge.
If you plan to customize Docupresentment, either by building custom client modules or

by adding processing rules, install the Internet Server SDK and refer to the appropriate
chapters of this manual for additional information.

Install and learn about Chapter 1, Using Docupresentment SDK, beginning on
Docupresentment SDK page 19

Use C to customize Chapter 2, DSI C APIs on page 97.

Docupresentment

Use Java to customize Chapter 3, DSI Java APIs on page 189
Docupresentment

Have Docupresentment run Chapter 4, DSI Processing Rules on page 201

specific processing rules

Create Visual Basic programs, Chapter 5, DSI Visual Basic APIs on page 267
Active X components and ASP

components,

For help resolving any errors which may occur:

See a listing of all error messages Appendix B of Docupresentment Guide

For information about system files:

See this appendix Appendix A of Docupresentment Guide

23

http://docs.oracle.com/cd/E87307_01/Docupresentment_ug_2.9.pdf
http://docs.oracle.com/cd/E87307_01/Docupresentment_ug_2.9.pdf
http://docs.oracle.com/cd/E87307_01/Docupresentment_ig_2.9.pdf
http://docs.oracle.com/cd/E87307_01/DocuflexBridge_ug_2.9.pdf
http://docs.oracle.com/cd/E87307_01/DocumakerBridge_ug_2.9.pdf
http://docs.oracle.com/cd/E87307_01/Docupresentment_ig_2.9.pdf
http://docs.oracle.com/cd/E87307_01/Docupresentment_ug_2.9.pdf
http://docs.oracle.com/cd/E87307_01/Docupresentment_ug_2.9.pdf
http://docs.oracle.com/cd/E87307_01/Docupresentment_ug_2.9.pdf

Chapter 1
Using Docupresentment SDK

Keep in mind that XML standards, as defined by the W3C, require you to substitute text
characters that are not in XML tags (for example, between <entry> and </entry> tags) as
escape sequences. The characters that require substitution are listed in the following table. If
you cut and paste an XML example from this or other Docupresentment documentation
into an XML configuration file, you will have to manually make these substitutions.

For this character Use this escape sequence
< (less than) <

> (greater than) >

& (ampersand) &

' (apostrophe) '

“ (quotation mark) "

24

USING THE DSI
APIS WiTH C

Using the DSI APIs with C

A front-end client has a number of convenient and powerful features for access to
Docupresentment using the DSI C API. Note that access to all of the client functionality
is not provided through the DSI C APIL.

You must handle memory management, rule processing, HTML formatting, and other
calls to the operating system. The DSI API does, however, handle communication with
the server. You can find prototypes for all of the DSI C API functions in DSILIB.H. For
executable programs, access to the DSIW32.DLL file must be explicitly included in your
link by including the implib DSTW32.lib.

In addition, a number of functions are available expressly for use in custom front-end
clients. If you are writing an executable program, note that the client must call the DSIInit
and DSIInitInstance functions before it calls any of the other DSI functions.

NOTE: You cannot call the DSIInit and DSIInitInstance functions more than once
without an intervening call to the DSITerm and DSITermlInstance functions.

The DSIInit function returns a process-level handle used for calls to the DSIInitInstance
function, which in turn returns a thread-level handle. The instance handle is used for all
subsequent calls to DSI functions.

/* for .EXE only */
hApp = DSIInit () ;
hInstance = DSIInitInstance(hApp);

If you are writing rules and not an executable program, the opposite is true. You should
not call the DSIInit and/or DSIInitInstance functions because the program running the
rules has already made those calls. As you will see in the topic Writing Processing Rules
in C on page 30, you will be passed the instance handle every time the rule is called.

NOTE: The functions DSIInit, DSIInitInstance, DSITermInstance, and DSITerm
functions are required for EXEs only. Do not use them when writing rules.

If you are using the queue APIs, the next task is to call DSIInitQueue once for each of
the input and output queues. These calls initialize the communication channels between
a front-end client and server and create the attachment lists.

DSIInitQueue(hInstance, DSI_INPUTQUEUE, “RESULTQ”)

Once the queues have been initialized, you can implement your design. The queue fields
required by the server ate:

* the request type (see the table on page 34.) DSIQSET_REQTYPE
* your user ID (your choice) DSIQSET_USERID
e aglobally unique identifier, DSIQSET_UNIQUE_ID

Once the rule processing has been completed and the attachment list filled, a front-end
client must fill the appropriate queue fields and add the record to the queue for retrieval
by the server. Additionally, if a front-end client provides attachment data to
Docupresentment, you must set the DSIQSET_ATTACHMENT field.

25

Chapter 1

Using Docupresentment SDK

NOTE: You set the DSIQSET_ATTACHMENT field to add a single attachment buffer
that the caller maintains. For other situations, you would use the
DSIAddAttachVar and DSIStoreAttachment functions.

Since your process or thread likely will not be the only user of the server, the
DSIQSET_UNIQUEL_ID field, which you will use to locate the response, should be
unique to a given request. The easiest way to do this is to use the DSIGetUniqueString
function, as shown here:

/* set the request type */
DSISetQField(hInstance,
DSI_OUTPUTQUEUE,
DSIQSET REQTYPE,
"gss,
sizeof ("SSS"));

/* set the user id */

DSISetQField(hInstance,
DSI_OUTPUTQUEUE,
DSIQSET USERID,
"MyID",
sizeof ("MyID"));

/* set the unique id

first the field length */

DSIGetQFieldLength (hInstance,
DSI_OUTPUTQUEUE,
DSIQSET UNIQUE_ID)

/* next get a unique identifier from DSI */
DSIGetUniqueString(hInstance, szUnique, cbUnique);

/* put unique id into the queue record */
DSISetQField(hInstance,
DSI_OUTPUTQUEUE,
DSIQSET_UNIQUE ID,
szUnique,
cbUnique) ;

Once the above fields have been filled, call the DSIAddToQueue function to post the
message to the server.

DSIAddToQueue (hInstance, DSI_OUTPUTQUEUE) ;

To use a proprietary attachment format, retrieve each attachment variable in turn, copying
them all into a single buffer in the format desired, and pass the result to the DSISetQField
function. The length of this buffer cannot exceed 64K.

To retrieve results from Docupresentment, call the DSIFindInQueue or
DSIGetQueueRec function with the pszId parameter set to the value used for the
DSIQSET_UNIQUE_ID (we recommend that you use the DSIGetUniqueString
function to generate this value).

26

Using the DSI APIs with C

You can then retrieve the attachment from the result record using the DSIGetQField
function and parse it into individual attachment variables. Alternatively, you can use the
DSIParseAttachment function to produce a list of name/value pairs that can be retrieved
using the DSIAttachCursorFirst, DSIAttachCursorNext, DSIAttachCursorPrev,
DSIAttachCursorLast functions, as shown below:

DSIGetQueueRec (hInstance,

DSI_INPUTQUEUE,

szUnique,

1000L,

10000L) ;
DSIParseAttachment (hInstance, DSI_INPUTQUEUE) ;
DSIOpenAttachCursor (hInstance, DSI_INPUTQUEUE) ;
DSIAttachCursorFirst (hCursor,

szName,

sizeof (szName),
szValue,

sizeof (szValue));

DSIAttachCursorNext (hCursor,

szName,

sizeof (szName),
szValue,

sizeof (szValue));

DSICloseAttachCursor (hCursor);

/* for .EXE only*/

if (hInstance != DSINULLHANDLE) {
DSITermQueue (hInstance, DSI_ INPUTQUEUE) ;
DSITermQueue (hInstance, DSI_OUTPUTQUEUE) ;
DSITermInstance(hInstance) ;

if (hApp != DSINULLHANDLE) {
DSITerm(hApp) ;

27

Chapter 1

Using Docupresentment SDK

USING UNICODE

IN ATTACHMENT

28

VARIABLES

IDS now supports Unicode, via UTF-8 encoding, in the setting and retrieving of values
from attachment variables. The support is implemented via new functions and defined
constants in the DSILIB library. The new functions are:

DSIAddAttachVarEx
DSIAddToAttachRecEx
DSILocateAttachvVarEx
DSIAttachVarLengthEx
DSIAttachCursorFirstEx
DSIAttachCursorNextEx
DSIAttachCursorPrevEx
DSIAttachCursorLastEx
DSIAttachCursorValueEx
DSIAttachCursorValueLengthEx
DSIEncryptValueEx

These functions are similar to the base versions of the functions, but have an extra
encoding parameter that you can set to either DSIENCODING_SINGLE_BYTE or
DSIENCODING_UTF_S.

For example, when adding an attachment variable a rule writer can either use
DSIAddAttachVar (hdsi, DSI_OUTPUTQUEUE, "FIELD", szValue);
or

DSIAddAttachVarEx (hdsi, DSI_OUTPUTQUEUE, "FIELD", szValue,
DSIENCODING_ SINGLE BYTE) ;

or

DSIAddAttachVarEx (hdsi, DSI_OUTPUTQUEUE, "FIELD", szValue,
DSIENCODING UTF_8) ;

When using the base versions of these functions, the default encoding is
DSIENCODING_SINGLE_BYTE, so the first two function calls would do the same
thing.

DSIENCODING_SINGLE_BYTE uses code page 1252 encoding, which has a one-to-
one mapping between bytes and Unicode characters between 32 and 255, exceps from 128
to 159, which maps some Unicode characters down into this range. For example, the

Unicode character for the Euro symbol (hex 20ac) is converted to a 128 (hex 80) and vice
versa. This makes IDS compatible with how Documaker handles the Euro symbol.

DSIENCODING_UTF_8 uses UTF-8 encoding, which is a way to translate Unicode
multibyte characters into a format compatible with null-terminated C language strings
while retaining all the character information.

SAMPLE PROGRAM-DSIEX

As an aid, Docupresentment includes a sample program named DSIEX.C and its
executable DSIEXW32.EXE. It is a simple, single-threaded console application, which
opens an input and output queue, requests the server status, and dumps the results to
sysout. It also checks the installation and setup.

To run DSIEXW32.EXE, follow these steps:

1 Start Docupresentment in the \DOCSERV directory.

Using Unicode in Attachment Variables

2 Run DSIEXW32.EXE.

The DSIEX program will run for a few seconds and stop after producing 30+ lines of
output. If you want to look more closely at the output, which includes a listing of all the
libraries used by Docupresentment, redirect the output to a file.

Take a look at DSIEX.C and you will see it includes all the steps outlined above, especially
those required for an executable program, such as the calls to the DSIInit,
DSIlInitInstance, DSITermInstance, and DSITerm functions.

29

Chapter 1

Using Docupresentment SDK

WRITING
PROCESSING
RULES IN C

DSI MSGINIT message

DSI MSGRUNF and
DSI MSGRUNR
messages

DSI_MSGTERM message

30

A rule is an entry point in a DLL that follows a standard parameter set or convention. You
can use rules to customize how your system operates. The processing rules run either in
a front-end client, such as the CGI client, or in Docupresentment.

Please refer to Chapter 3 in Docupresentment Guide, for a discussion on configuring the
rules in the configuration file. The standard rules you can use are explained in the topic
Server Rules on page 202.

The rules run by the front-end CGI client are contained in DLLs, which the system loads
when it receives a request that requires the use of a rule. Because rules run within the
process address space of the executable program, memory violations within a rule are
memory violations within the server. This is not a result you want to occur so take steps
to prevent them.

The same may be said of memory leaks and performance bottlenecks. For this reason, you
should carefully write and test the rule before you place it in service. There are some good
tools available to help you look for bugs, memory leaks and performance bottle necks,
such as Bounds Checker and Heap Agent. The results are well worth the effort. It is
assumed that you are familiar with the C programming language.

HOW THE SYSTEM PROCESSES RULES

To process the various rules, the system loops through a list of rules and calls each in turn
with this set of messages:

* DSI_MSGINIT

* DSI_MSGRUNF
* DSI_MSGRUNR
* DSI_MSGTERM

The DSI_MSGINIT message lets a rule initialize lists and other data structures that will
be used during processing of the following messages or by other rules.

NOTE: This rule list is run in _forward ordet.

The DSI_MSGRUNF and DSI_MSGRUNR are the actual processing messages. Two
processing messages are provided so rules have a chance to provide additional processing
after other rules have done their work. The rule list is run in forward order during the
processing of the DSI_MSGRUNF message and in reverse order while processing the
DSI_MSGRUNR message.

Finally, the DSI_MSGTERM message allows rules to release any resources that were
allocated during the previous three stages.

NOTE: This rule list is run in reverse order.

http://docs.oracle.com/cd/E87307_01/Docupresentment_ug_2.9.pdf

Writing Processing Rules in C

The rules processing engine provides no means to abort this processing loop. It is your
responsibility to check at each stage to make sure that prior rules completed successfully,
that necessary data has been provided, and react accordingly.

Used with a front-end CGI client and Docupresentment, most transactions involve three
runs of the rules processing engine. The first run, by the front-end CGI client, transforms
user input into data usable by the server. The second run of the rules processing engine
by Docupresentment performs the actual work of the transaction. The final run of the
rules processing engine is again done by a front-end CGI client and transforms the
server's results into user output.

During each run of the engine, a different set of data is available for use by the rules.
Entering the first run, a front-end client has read and parsed the request, such as a URL
provided by the web browser to the CGI client, as well as the environment variables. In
the CGI client, each element of the URL and each environment variable are added to the
output attachment list to make them available for use by rules.

To provide a front-end client with access to the attachment, be sure the
ATCUnloadAttachment rule is present in the client's rule list. The
ATCUnloadAttachment rule performs its processing during the DSI_MSGRUNR
message. Keep this in mind when you order the rule list. Make sure all necessary
attachment variables are created before the attachment is unloaded.

When Docupresentment rules run, certain fields in the Request queue record are
accessible. To make sure the attachment variables provided by a front-end client are also
accessible, include the ATCLoadAttachment rule in the rule list before any rules that
require attachment data.

To provide the result processing loop of the client with access to the attachment variables
created by the server, make sure the ATCUnload Attachment rule is in the server's rule list.
The ATCUnloadAttachment rule performs its processing during the DSI_MSGRUNR
message. Keep this in mind when ordering the rule list so that all necessary attachment
variables are created before the attachment is unloaded.

NOTE: See also Chapter 3 of Docupresentment Guide for more information.

When a front-end client begins to process results, certain fields of the result queue record
are again available. As with the server run, any necessary attachment data must be made
available with a call to ATCLoadAttachment in the rule list before attempting to access
that data.

CREATING RULES

The rules you write in C for the client or server must follow this prototype:

_DSIEXPORT long _DSIAPI MyRule (DSIHANDLE hInstance,
char *pszParms,
unsigned long ulMsg,
unsigned long ulOptions) ;

* Jlnstance is created by a call to the DSIInit function

* pszParms contains the rule parameters, as specified in the configuration file

31

http://docs.oracle.com/cd/E87307_01/Docupresentment_ug_2.9.pdf

Chapter 1
Using Docupresentment SDK

* #lMsgis the current message, as discussed above

* #/Options is reserved for future use

NOTE: Rules written for use with the front-end CGI client or server must not call the
DSIInit or DSIInitInstance functions. These calls are handled elsewhere.

Each rule will generally have a switch statement with cases for each of the defined
messages. Inside the rule, you can do just about anything you want. Remember, though,
that allocated memory must be freed, and that performance bottlenecks in a rule create

performance bottlenecks for the server.

Rule template ~ Here’s a template for a rule that will help you get started.

_DSIEXPORT long _DSIAPI MyRule (DSIHANDLE hInstance,
char * pszParms,
unsigned long ulMsg,
unsigned long ulOptions)

switch (ulMsg)

/* ___________________________
* Initialization Message
* Add data initialization here

*/
case DSI_MSGINIT:
break;
/* ___________________________
* Run Rule Forward Message
* Do desired processing
*/
case DSI_MSGRUNF:
break;
/* ___________________________
* Run Rule Reverse Message
* Do desired processing
*/
case DSI_MSGRUNR:
break;
/* ___________________________
* Termination Message
* Clear data, free any memory allocated
*/
case DSI_MSGTERM:
break;

}

return DSIERR_SUCCESS;

32

Writing Processing Rules in C

CREATING, ACCESSING, AND DESTROYING VARIABLES

The DSICreateValue, DSIQueryValueSize, DSILocateValue, and DSIDestroyValue
functions provide easy access to persistent variables you can access from any rule.

NOTE: Variable names are case sensitive and must be unique.

Accessing the Attachment

The attachment is attached to the queue record passed between the client and server.
Attachment variables are similar to those created by the DSICreateValue function, except
attachment variables are passed between processes. If a value does not need to find its
way from the client to the server or vice versa, use the DSICreateValue rule to create the
variable.

The functions you can use to access the attachment are...
* DSIAddAttachVar

* DSILocateAttachVar

* DSIDeleteAttachVar

e DSIOpenAttachCursor

* DSICloseAttachCursor

* DSIAttachCursorFirst

* DSIAttachCursorNext

* DSIAttachCursorPrev

* DSIAttachCursorLast

In addition to these rules, there ate several additional functions and rules you can use to
access the attachment:

* The DSIAddAttachRec and DSIAddToAttachRec functions let you create szen
variables, similar to the C language struct type. These stems allow for multiple
records each with members having the same name.

* The HTML formatting rule, IRCUnloadPage, replaces special tags in an HTML
template with the values in these variables. See Chapter 3 of Docupresentment Guide
for more information.

e The DSICopyAttachVars function lets you copy an entire attachment from one
queue to another.

* The DSIErrorMessage function lets you send formatted error messages to the user.
The DSIErrorMessage function uses the stem variable capabilities of attachments
and the HTML formatting support of the IRCUnloadPage rule so you can precisely
report errors.

33

http://docs.oracle.com/cd/E87307_01/Docupresentment_ug_2.9.pdf

Chapter 1

Using Docupresentment SDK

ACCESSING THE QUEUE

As a general rule, you should not have to access the queue record, as opposed to the
attachment, from within custom rules. There may be times, however, when you want to
change the request type or priority, or to use a proprietaty attachment format. To query
and set queue fields, use the DSIGetQField and DSISetQField functions.

There are several field identifiers you can use with these functions. As queue field lengths
can change, call the DSIGetQFieldLLength function before you retrieve the field. Be very
careful when you modify fields, particularly when you use the provided client and server
programs, because these programs rely on certain fields.

It is practically inevitable that a queue error will occur at some point. To get information
regarding the nature of the error, use the DSIGetQError function.

There are additional queue APIs that should only be used when creating an executable.
These APIs will be discussed shortly.

NOTE: The queue names DSI-INPUTQUEUE and DSI-OUTPUTQUEUE are
relative, depending on your perspective. For example, the input queue in a rule is
the output queue in a client.

USING UTILITY FUNCTIONS

At times, you may need to create and later delete temporary files. The DSI SDK includes
two APIs you can use to perform these tasks:

To... Use this function...
Generate unique file names and avoid naming conflicts DSIGetUniqueString
Remove temporary files after a specified time period DSICacheFile with the

IRLPurgeCache rule

CREATING RULES FOR RESERVED REQUEST TYPES

Several request types are reserved for use within the setver and/or client. You cannot use
these request types for transactions. While a default set of rules is provided for these
reserved request types, in some cases you may want to change these defaults.

Here is a list of the reserved requests and a description of each. These requests may or
may not be in use at any given time, and the default processing for these requests is subject

to change.
Reserved request types
Request type Description
ADM Reserved
CAD Reserved

34

Writing Processing Rules in C

Request type Description

CLF Clear log file

DEFAULT Used if no rules are listed for a request CAD client
administration

ERR Error message

ERS Relay daemon stop

ESS Server stop

INI Initialization/termination rules

THREADINI Initialization/termination rules for threads

RAD Relay daemon administration

RRS Relay daemon restart

RSS Setver restart

SAR Setver autorun

SCS Client statistics

SSS Setver statistics

UNK Unknown

VLF View log file

Messages beginning with a digit Reserved for internal use. Do ot override.

To extend the existing rules for one of these request types, construct the rule as discussed.
Then insert a call to the rule in the appropriate place in the configuration file (refer to
Using the Documaker Bridge for more information).

For instance, to add MyPeriodicCleanupFunction in the MYDLL.DLL library after the
IRLPurge rule has completed, modify the ReqType:SAR control group as shown here:

< section name="ReqType:SAR" >
<entry name="function”>irlw32->IRLPurge</entrys>
<entry name="function”>mydll->MyPeriodicCleanupFunction</entry>

</section>

If you are replacing the functionality provided for one of the reserved request types, make
sure the replacement rule provides adequate functionality. Then, simply remove (or
comment) the existing rules and insert the replacements.

NOTE: The system does not check the status of rules. Processing continues even if your
rule fails. You must make sure the previous steps of the process were completed
without error.

35

http://docs.oracle.com/cd/E87307_01/DocumakerBridge_ug_2.9.pdf

Chapter 1

Using Docupresentment SDK

36

USING THE JAVA
LIBRARIES

Using the Java Libraries

A front-end client has convenient Java libraries available from Oracle Insurance for
accessing IDS. Docupresentment Java Libraries handle communication with the server,
the bundling of data and formatting the data for sending to the server, in addition to useful
utility functions.

The libraries are available in the DocuCorpUltil.jar and DocucorpMsg.jar files. These files
must be part of the CLASSPATH of the Java client program.

You will also need files for the parsing and writing of XML files, xerces.jar and xalan.jar.
If you are running Java version 1.3 these files will need to be included in your
CLASSPATH. These files are part of the Java runtime version 1.4 and later.

Docupresentment Java Libraries provide support for setting up queues for
communicating with IDS. This is done through a guene factory, which creates input and
output queues. The queue factory can be created using the getQueueFactory method of
the class com.docucorp.messaging.DocucorpMsgUtil. Configuration parameters for the
queue factory are passed in using a java.util. Properties object. The queue factory can then
create the needed queues.

DSIMessageQueueFactory queueFactory =
DocucorpMsgUtil.getQueueFactory (props) ;

DSIMessageQueue inputQueue =
_queueFactory.createMessageQueue (DSIMessageQueueFactory. INPUTQUEUE)

DSIMessageQueue outputQueue =

_queueFactory.createMessageQueue (DSIMessageQueueFactory . OUTPUTQUEUE
)

Requests sent and results retrieved from the server are held in instances of the
com.docucorp.messaging. DSIMessage class. This class has methods for storing name/
value pairs called message variables and strings or binary data in atachments. There are also
methods for setting the request type and unique ID of the request.

DSIMessage requestDSIMessage = new DSIMessage() ;
requestDSIMessage.setRequestType ("SSS") ;
requestDSIMessage.setMsgVar ("USERID", "USER") ;
requestDSIMessage.setMsgVar ("PASSWORD", "PASS");

Before the request can be sent the data in the DSIMessage object must be changed to a
format that can be sent through the queues. This process is called marshalling. A Java object
that marshals a DSIMessage can be created using the getMarshaller method of the class
com.docucorp.messaging. DocucorpMsgUtil. The marshaller will read the information in
the DSIMessage and create an object that can be sent through the queues.
DSIMessageMarshaller marshaller =
DocucorpMsgUtil.getMarshaller (props) ;
Object request = marshaller.marshall (requestDSIMessage) ;

Since more than one client application can be communicating with the server through the
queues, each message should be sent with a unique identifying string so the client
application can get the correct result record back from the result queue. The Java class
com.docucorp.util. UniqueStringGenerator can be used to make a unique string.

UniqueStringGenerator usg = new UniqueStringGenerator() ;
String uniqueID = generateUniqueString() ;

With the marshaled request and unique ID, IDS can send the request to the server.

outputQueue.putMessage (uniquelID, request) ;

37

Chapter 1

Using Docupresentment SDK

38

The client application now waits for the server to process the request and make a result
that will go in the client’s input queue. The result is marked with the unique ID string sent
with the request.

Object result = inputQueue.getMessage (uniquelID, 1000, 3);

The result is in the same format that the marshaller used to send the request. To get the
data in a usable format, the system uses the same kind of marshaller to #nmarshall the result
object into a DSIMessage.

DSIMessage resultDSIMessage = new DSIMessage () ;
marshaller.unmarshall (result, resultDSIMessage) ;

You can now use DSIMessage methods to retrieve message variables and any attachments
that the server may have sent back.

Map messageVariables = resultDSIMessage.getAllMsgVars() ;
Map attachments = resultDSIMessage.getAllAttachments() ;

Using the MsgClient Sample Program

As an aid, IDS includes a sample program named MsgClient.java and its compiled form
MsgClient.class. It is a single-threaded console Java program that will fill in a DSIMessage
from a data file, open an output and input queue, send a request, get the result back and
display the result on the screen. for this example, assume...

e IDSis running

* The Docucorp Java Libraries, supporting files, and the MsgClient.class file is in a
subdirectory called /b

* The client configuration file (dsimsgclient.properties) is in the current directory
* The data file (ssstest.txt) is in the cutrrent directory

Then you run MsgClient under Windows using this command:
java -cp lib;lib\DocucorpMsg.jar MsgClient ssstest.txt

The MsgClient sample has all the steps outlined above.

WRITING
PROCESSING
RULES IN JAVA

MSG_INIT message

MSG RUNF and
MSG_RUNR messages

MSG_TERM message

Writing Processing Rules in Java

A rule is a method in a Java class that follows a standard parameter set or convention. The
method may be an instance method or a static (class) method. You can use rules to
customize how IDS operates.

How the System Processes Rules

Each request sent to IDS corresponds to a list of rules. Each rule in the list is called with
a set of messages (from the Java class com.docucorp.ids.data.IDSConstants):

e IDSConstants. MSG_INIT

e IDSConstants. MSG_RUNF
* IDSConstants. MSG_RUNR
* IDSConstants. MSG_TERM

The MSG_INIT message lets a rule initialize any data that will be used by itself or other
rules during the processing the other messages.

MSG_INIT is run in forward order, starting with the first rule in the request’s list of rules
and proceeding to the last.

These messages are intended for the main data processing the rules have to do. Two
messages are provided so every rule has a chance to run after the rules have been run once

MSG_RUNF is run in forward order, starting with the first rule in the request’s list of
rules and proceeding to the last. MSG_RUNR is run in reverse order, starting with the last
rule in the request’s list of rules and proceeding to the first.

The MSG_TERM message lets the rules release any non-memory related resources
allocated during the run of the other messages.

Developing and Deploying Java Rules

Java rules are methods in Java classes. The Java class should include a no-argument
constructor (unless you are using a static method) and a method that has the rule function
signature, described below.

Java rules are deployed by placing the Java executable code in the ru/es subdirectory of the
main IDS directory; there is no need to modify the CLASSPATH of IDS to run the rule.
If the executable code is in a .jar file it can be put directly in the rules directory. If the
executable code is separate .class files then it needs to have a directory structure that
matches the package structure of the Java class.

For example, if the Java rule is CustomRule and its package is com.sampeo, then the
CustomRule.class file would need to be in the rules/com/sampco directory under the
main IDS directory.

In addition to custom rules, any third party Java libraries needed to run the custom rules
should be put in the rules subdirectoty, such as database drivers, communications code,
and so on. Java rules deployed also have access to Java code that is part of IDS. This code
is in the /b subdirectory under the main IDS directory.

39

Chapter 1
Using Docupresentment SDK

Every time IDS is restarted the rules subdirectory is checked for rules code. It is not
necessary to shut down IDS and start it again to deploy new or updated Java rules.

Setting up Java rules in the ~ 'To run a Java rule in a request, add a line to the request as follows:
configuration file
< entry
name="function">java;classname;objectname; scope;method;arguments</
entry>
Parameter Description
classname Name of your Java class, in full package form. For example, if you have class
CustomRule in the com.sampco package, the classname would be
com.sampco.CustomRule
objectname Name used to refer to the object. Required if using global scope. Multiple Java

rules in different requests with global scope and the same object name would
refer to the same Java object.

scope Scope can be one of the following values.
global — The object will remain until IDS is restarted.

transaction — The object will be created during the MSG_INIT message and will
remain until the request has processed all the MSG_INIT, MSG_RUNTF,
MSG_RUNR and MSG_TERM messages.

local — The object is created and destroyed for every message run during the
request.

static — No object is created; the method is a static method of the class and will
be run as such.

method Name of the method in the Java class to run as the rule.

arguments Any additional arguments from the configuration line.

Setting up IDS 1.x Java Java rules were also implemented in IDS version 1.x but the function sighature was closer
rules in the configuration to C rules, including the use of a DSI Handle. Although new Java rules should use the new
file function signature, mentioned below, version 1.x Java rules will run as-is in IDS 2.x.

To run an IDS 1.x Java rule in a request, add a line to the request as follows:

<entry name="function">dsijrule-
>JavaRunRule, ;classname;objectname; scope;method;arguments</entry>

Parameter Description

classname Name of your Java class, in full package form, using JNI formatting. For
example, if you have class CustomRule in the com.sampco package, the
classname would be com/sampco/CustomRule. This makes for easier
conversion of IDS 1.x rule lines to IDS 2.

objectname Name used to refer to the object. Required if using global scope. Multiple
Java rules in different requests with global scope and the same object name
would refer to the same Java object.

40

Writing Processing Rules in Java

Parameter Description

scope Scope can be one of the following values.
global — The object will remain until IDS is restarted.

transaction — The object will be created during the MSG_INIT message and
will remain until the request has processed all the MSG_INIT, MSG_RUNTF,
MSG_RUNR and MSG_TERM messages.

local — The object is created and destroyed for every message run during the
request.

static — No object is created; the method is a static method of the class and
will be run as such.

method Name of the method in the Java class to run as the rule.

arguments Any additional arguments from the configuration line.

JAVA RULES VS. C RULES

C rules are functions with no data associated with them. This means that if a C rule needs
data to operate it usually needs to allocate data structures in the DSI_MSGINIT message,
use the data in DSI_ MSGRUNF and DSI_MSGRUNR, and free it in DSI_MSGTERM.

Since the setup of Java rules can include the creation of Java objects from classes, data can
automatically be associated with the Java rule. For example a Java rule run under
transaction scope can allocate data structures it needs in the object’s member variables at
object construction or during the run of the MSG_INIT message. If the resources
allocated by the Java object are only memory resources, the memory will be de-allocated
during garbage collection some time after the object goes out of scope. If the rule allocates
non-memory resources (files, database connections, etc.) then it should follow the usual
convention of allocating resources during MSG_INIT and freeing resources during
MSG_TERM.

FUNCTION SIGNATURE FOR JAVA RULES

The methods for Java rules must follow this function signature:

public int ruleMethod (RequestState requestState, String arg, int msg)

Parameter Description

requestState the object that holds the current running state of the request at this point of
execution. This includes a DSIMessage with the input message variables and
attachments, a DSIMessage with the output message variables and
attachments being built, configuration information to read, and so on.

arg the arguments from the rule line of the configuration file.

msg the message that is currently being run, either MSG_INIT, MSG_RUNTF,
MSG_RUNR or MSG_TERM.

The return code should be either IDSConstants. RET_SUCCESS if the rule ran
successfully, or IDSConstants. RET_FAIL if not.

41

Chapter 1

Using Docupresentment SDK

Example Here is an example of a Java class that can be used as a starting point for rule writing:

import com.docucorp.ids.data.*;
public class SampleRule {

public SampleRule () {
/*
* You may want to do some data setup here.

*/

public int runRule (RequestState requestState,
String arg,
int msg) {

try {
switch (msg) {
case IDSConstants.MSG_INIT:

/*
* Do any non-memory related setup here.
*/
break;
case IDSConstants.MSG_RUNF:
/*
* Do main processing here.
*/
break;
case IDSConstants.MSG_RUNR:
/*
* Do main processing here.
*/
break;
case IDSConstants.MSG_TERM:
/*
* Do any non-memory related cleanup here.
*/
break;

}

return IDSConstants.RET SUCCESS;
} catch (Exception ex)
return IDSConstants.RET FAIL;

42

Using the IDSWebdav Servlet Client APIs and DPRLIB Rules

USING THE The IDSWde’;VSCf;é@tb cD]ient z]?PIs and servcelr side rules let you update libraries or file
systems using these WebDav client commands:
IDSWEBDAV

SERVLET options Is d
CLIENT APIS propgetall propfind propget
AND DPRLIB
RULES get put lock
unlock delete copy
move proppatch mkcol

Library management rules You can use these DPRLIB rules to update libraries maintained by Library Manager using
WebDav commands.

* DPRLbyGet on page 46

* DPRLbyPut on page 48

* DPRLbyLock on page 49

* DPRLbyUnlock on page 50

e DPRLbyDelete on page 51

* DPRLbyOptions on page 52

* DPRLbyCopy on page 53

* DPRLbyPropPatch on page 54
* DPRLbyMKCol on page 55

File system rules ~ You can also use the following file system trules:
* propFind on page 60
* geton page 62
* puton page 63
* lock on page 64
* unlock on page 65
* delete on page 66
* options on page 67
* copy on page 67
* move on page 68
e propPatch on page 69
* mkCol on page 70

43

Chapter 1

Using Docupresentment SDK

DPRLbyPropFind
Use this rule to return:
* The properties for a file if the resource you specify is a file

* Alistof files and their properties if the resource you specify is a collection o file type
(FAP, LOG, DDT, DAL, FOR, GRP, BDF)

* Alist of collections or file types if the resource you specify is root (/).

This rule supports these WebDav commands by querying Library Manager for the
configuration specified:

Use this command To

Is [path] List the contents of a collection.

cd [path] Change directories.

propget [path] [property] Get a property.

propfind [path] [property] Find a property.

propgetall [path] List all properties for a resource.
Input attachments

Variable Description

RESOURCEURI A resource URI specifying a user ID, config, file type, and resource. Here
are some examples of resource URIs:

/userid/config/filetype/resource/
/userid/config/filetype/
/userid/config/

/userid/

DEPTH Enter a depth of One (1) for collections or file types in Library Manager.
Enter a depth of zero (0) for file resources.

44

Output attachments

Using the IDSWebdav Servlet Client APIs and DPRLIB Rules

Variable Description
PROPERTIES A rowset of rows that match each of the file resources available
for a particular collection/file type. If DEPTH is one (1) and
RESOURCEURI specifies a collection or file type in Library
Manager, the PROPERTIES rowset returns a row for each
resource available in the collection/file type.
If DEPTH is zero (0) and RESOURCEURI specifies a file
resource, the PROPERTIES rowset returns a single row with the
properties for the resource you specified.
Each row in the PROPERTIES rowset contains the following
propetties for a file resource:
supportedlock - If locking is allowed, this XML string appears:
property: <lockentry>
<lockscope>
<exclusive/>
</lockscope>
<locktype>
<write/>
</locktype>
</lockentry>
getContentLanguage - currently returns ez_US.
resourcetype - blank if the resource is a file, otherwise collection if
the resource is a file type/directoty.
displayname - the display name of the resource.
HREEF - the resource URL for this resoutce
getlastmodified - the date and time indicating when the resoutce
was last modified. This is a long value that contains the number
of milliseconds since January 1, 1970.
getContentLength - currently zero (0) because there is no support
for retrieving the file size of a document stored in Library
Manager (reserved for future use).
If a resource is locked these additional propetties are returned:
LOCKOWNER - The user ID that set the lock.
LOCKSCOPE - The scope of the lock (exclusive).
LOCKSUBJECT - The name of the resource locked.
LOCKDEPTH - The depth of the resoutce locked (0).
LOCKTYPE - The type of lock (write).
LOCKTIMEOUT - The time-out value after which the lock will
expire (infinity).
LOCKTOKEN - A unique ID that identifies the resource locked.
This rowset is only present if RESULTS contains SUCCESS.
RESULTS Success or error

45

Chapter 1

Using Docupresentment SDK

Variable Description

WEBDAVERRORCODE This attachment vatiable is only present if RESULTS equals
ERROR. It can contain one of these values:

404 - (WebDav ’not found’ error code) - The RESOURCEURI
cannot be found.

409 - (WebDav ’conflict’ etror code) - The RESOURCEURI
specified is invalid.

420 - (WebDav 'method errot’ error code) - An internal API error
or memoty etrot occurred.

INI options Use these options in the DAP.INI file to see a listing of the configurations that support
Library Manager.

< LbyConfigs >
Config = RPEX1
Config = RPEX2

DPRLbyGet

Use this rule to get or check out a resource file from Library Manager. This rule can
retrieve a resource file by version and revision or by name, in which case it retrieves the
latest version and revision for the resource specified. This rule supports these WebDav
commands:

Use this command To

get [path] file Get a resource.

head [path] file Get header info for a resource. (currently works same as get)
Input attachments

Variable Description

RESOURCEURI The resource URI of the resource you want to retrieve from Library
Manager. Here is an example of the format for the resource URI:

/userid/config/filetype/resource

Here are some examples:

/cjr/rpexl/ddt/master.ddt
/jdoe/RPEXl/DDT/MASTER_O000100001_20030707.DDT

If the resource file name does not contain version, revision, and archive
effective date information, the DPRLbyGet rule retrieves the last version
and revision for the resource specified. Use the DPRLbyGet rule to get or
check out a resource from Library Manager.

USERID (Optional) The user ID you want to use for the get operation. If you
include this attachment variable, it overrides the user ID provided as part
of the resource URIL

If the user ID is missing as an attachment variable and in the resource
URLI, the rule will fail.

46

Input rule arguments

Output attachments

Argument

Using the IDSWebdav Servlet Client APIs and DPRLIB Rules

Description

CHECKOUT

If you include this rule argument and set its value to Yes, the rule tries to check
out (get and lock) the resource specified. This is useful for configuring this rule
for a check-out or get request type.

Variable

Description

PROPERTIES

RESULTS

A rowset with a row for the resource specified in
RESOURCEURI. The row contains the following properties
for a file resource:

supportedlock - If locking is allowed, this XML string appears:
property: <lockentry>
<lockscope>
<exclusive/>
</lockscope>
<locktype>
<write/>
</locktype>
</lockentry>
getContentlanguage - currently returns ez_US.

resourcetype - blank if the resource is a file, otherwise collection if
the resource is a file type/directory.

displayname - the display name of the resource.
HREEF - the resource URL for this resource

getlastmodified - a date and time indicating when the resource
was last modified. This is a long value that contains the number
of milliseconds since Januaty 1, 1970.

getContentlLength - currently zero (0) because there is no
support for retrieving the file size of a document stored in
Library Manager.

If a resoutce is locked these additional propetties are returned:
LOCKOWNER - The user ID that set the lock.
LOCKSCOPE - The scope of the lock (exclusive).
LOCKSUBJECT - The name of the resource locked.
LOCKDEPTH - The depth of the resoutce locked (0).
LOCKTYPE - The type of lock (write).

LOCKTIMEOUT - The time-out value after which the lock will
expire (infinity).

LOCKTOKEN - A unique ID that identifies the resource
locked.

This rowset is only present if RESULTS contains SUCCESS.

Success or error

47

Chapter 1

Using Docupresentment SDK

48

Input attachments

Variable Description

WEBDAVERRORCODE This attachment variable is only present if RESULTS equals
ERROR. It can contain one of these values:

404 - (WebDav 'not found’ error code) - The RESOURCEURI
cannot be found.

409 - (WebDav ’conflict’ etror code) - The RESOURCEURI
specified is invalid.

420 - (WebDav ’method error’ error code) - An internal API

error or memoty etror occurred.

423 - (WebDav locked’ error code) - The resoutce is locked and
the system attempted a check out operation.

DPRLbyPut

Use this rule to add a new resource or to check in (unlock and put) an existing resource
into Library Manager. You can add a new resource or put an existing resource into Library
Manager.

If the resource is new, its version and revision will be 00001. If the resource is an existing
one and it is locked by the same user ID performing the put operation, the resource will
be put into Library Manager with a new version and revision.

This rule supports the following WebDav commands:

Use this command To

put [path] Put a file into Library Manager.

Keep in mind that if a put operation is attempted on an existing resource and the version
and revision specified is not the latest one, the put operation will fail. The system only
supports put operations for new documents or for the last existing version and revision
which must be locked prior to the put call.

Variable Description

RESOURCEURI A resource URI specifying the resource you want to place into
Library Manager. Here is an example of the format of the URI:

/userid/config/filetype/resource/

Here are some examples:

/cjr/rpexl/ddt/master.ddt

/jdoe/RPEX1/DDT/
MASTER 0000100001 20030707 .DDT

Keep in mind that if the resource file name in RESOURCEURI
does not contain version, revision, and archive effective date
information, the DPRLbyPut rule tries to put the last version and
revision of the file resource you specified.

Using the IDSWebdav Servlet Client APIs and DPRLIB Rules

Variable Description

USERID (Optional) The user ID you want to use for the put operation. If
this attachment variable is present, it overrides the user ID
provided in the resource URL.

If the user ID is missing from the attachment variable and from
the resource URI, the rule will fail. For put operations with an
existing resource, the user ID must match that of the locked
record or the put operation will fail.

ARCEFFECTIVEDATE (Optional) An archive effective date. Here is the format for this
attachment vatiable:
MM/DD/YYYY

If this variable is present, its value is used as the archive effective
date for the put operation. If it is missing, the rule uses the current
date as the archive effective date.

Output attachments

Variable Description

RESULTS Success or etrot.

WEBDAVERRORCODE This attachment variable only exists if RESULTS equals
ERROR. It can contain one of these values:

404 - (WebDav 'not found’ etror code) - The RESOURCEURI
cannot be found.

409 - (WebDav ’conflict’ error code) - The RESOURCEURI
specified is invalid.

420 - (WebDav ’method error’ error code) - An internal API
error or memoty error occurred.

423 - (WebDav ’locked’ error code) - The resource is locked
under a different user ID.

DPRLbyLock

Use this rule to lock a resource in Library Manager. This rule supports the following
WebDav commands:

Use this command To

lock [path] file Locks a resource.

49

Chapter 1

Using Docupresentment SDK

Input attachments

Variable Description

RESOURCEURI The resoutce URI of the resource you want to lock in Library Manager.
Here is an example of the format for a resource URI:

/userid/config/filetype/resource

Here are some examples:

/cjr/rpexl/ddt/master.ddt
/jdoe/RPEXl/DDT/MASTER_OOOO100001_20030707 .DDT

If the resource file name in RESOURCEURI does not contain vetrsion,
revision, and archive effective date information, the DPRLbyLock rule
tries to lock the last version and revision of the file resource you specified.

USERID (Optional) The user ID you want to use for the lock operation. If this
attachment variable is present, it overrides the user ID provided as part
of the resource URL. If the user ID is omitted from the attachment
variable and from the resource URI, the rule will fail.

Output attachments

Variable Description

LOCKOWNER The user ID that owns the lock.

LOCKSCOPE The scope of the lock (exclusive).

LOCKSUBJECT The name of the resource locked.

LOCKDEPTH The depth of the resource locked (0).

LOCKTYPE The type of lock (write).

LOCKTIMEOUT The time-out value after which the lock will expire (infinity).
LOCKTOKEN A unique ID that identifies the resource locked.

RESULTS Success or error.

WEBDAVERRORCODE This attachment variable only exists if RESULTS equals
ERROR. It can contain one of these values:

404 - (WebDav "not found’ error code) - The RESOURCEURI
cannot be found.

409 - (WebDav ’conflict’ error code) - The RESOURCEURI
specified is invalid.

420 - (WebDav *method etrot’ etror code) - An internal API
error or memoty error occurred.

423 - (WebDav "locked’ error code) - The resource is already
locked.

DPRLbyUnlock

Use this rule to unlock a resource file in a library maintained by Library Manager. This rule
supports the following WebDav commands:

50

Input attachments

Output attachments

Using the IDSWebdav Servlet Client APIs and DPRLIB Rules

Use this command To

unlock [path] file Unlock a resource.

Variable Description

RESOURCEURI The resource URI of the resource you want to unlock in Library Manager.
Here is an example of the format for a resource URI:

/userid/config/filetype/resource

Here are some examples:

/cjr/rpexl/ddt/master.ddt
/jdoe/RPEXl/DDT/MASTER_OOOOIOOOOI_Z0030707.DDT

If the resource file name in RESOURCEURI does not contain vetsion,
revision, and archive effective date information, the DPRLbyUnlock rule
tries to unlock the last version and revision of the file resource specified.

USERID (Optional) The user ID you want to use for the unlock operation. If this
attachment variable is present, it overrides the user ID provided in the
resource URIL.

If the user ID is omitted from the attachment variable and from the
resource URI, the rule fails. If the user ID does not match the one for the
locked record, the rule fails.

Variable Description

RESULTS Success or etrot.

WEBDAVERRORCODE This attachment variable only exists if RESULTS equals
ERROR. It can contain one of these values:

404 - (WebDav 'not found’ error code) - The RESOURCEURI
cannot be found.

409 - (WebDav ’conflict’ etror code) - The RESOURCEURI
specified is invalid.

420 - (WebDav 'method error’ error code) - An internal API error
or memoty error occurred.

423 - (WebDav ’locked’ error code) - The resource is locked by

another uset.

DPRLbyDelete

Use this rule to remove a resource or collection from Library Manager. This rule can
remove a resource file by version and revision or by name, in which case the rule removes
the latest version and revision for the resource file you specified.

If the resource you specify is a collection (file type), all resources for the collection will be
removed, provided none are locked. This rule supports these WebDav commands:

Use this command To

delete [path] file Delete a resource.

51

Chapter 1

Using Docupresentment SDK

Input attachments
Variable

Description

RESOURCEURI

RESULTS

WEBDAVERRORCODE

The resource URI of the resource you want to delete from
Library Manager. Here is an example of the format you should
use:

/userid/config/filetype/resource

Here are some examples:

/cjr/rpexl/ddt/master.ddt

/jdoe/RPEX1/DDT/
MASTER_ 0000100001 20030707 .DDT

If the resource file name in RESOURCEURI does not contain
version, revision, and archive effective date information, the
DPRLbyDelete rule tries to delete the last version and revision
of the file resource you specified.

(Optional) This variable is only generated by the DPRLby rules
running prior to this rule in the same request type, such as the
DPRLbyGet and DPRLbyCopy rules running in the
WEBDAVMOVE request type.

If this variable exists and is set to ERROR — indicating either
the DPRLbyGet or DPRLbyCopy rule failed — this rule will not
execute.

(Optional) This variable is only generated by DPRLby rules
running prior to this rule in the same request type, such as the
DPRLbyGet and DPRLbyCopy rules running in the
WEBDAVMOVE request type.

If this variable exists — indicating that either the DPRLbyGet
or DPRLbyCopy rule failed — this rule will not execute.

Output attachments
Variable

Description

RESULTS

WEBDAVERRORCODE

Success or etrot.

This attachment variable is only present if RESULTS equals
ERROR. It can contain one of these values:

404 - (WebDav ’not found’ error code) - The RESOURCEURI
cannot be found.

409 - (WebDav ’conflict’ etror code) - The RESOURCEURI
specified is invalid.

420 - (WebDav ’method error’ error code) - An internal APT

etrot ot memoty etrror occurred.
423 - (WebDav ’locked” error code) - The resource is locked.

DPRLbyOptions

Use this rule to display the WebDav commands supported by Library Manager. This rule
supports these WebDav commands:

52

Input attachments

Output attachments

Input attachments

Using the IDSWebdav Servlet Client APIs and DPRLIB Rules

Use this command To

options [path / utl] Displays the options available for a path or URL.

This rule displays the following WebDav commands that are supported by Library

Manager:
options get head
propfind propgetall lock
unlock delete copy
move proppatch mkcol
None
Variable Description

OPTIONS A comma-delimited string of WebDav commands supported by Library
Manager.

RESULTS Success.

DPRLbyCopy

Use this rule to copy a resource from one location to another, such as from one library to
another. Keep in mind...

* The resource and destination file names #zust match.
* The config value for the resource must differ from the config value for the destination.

If the resource you are copying does not exist in the destination library, it will be added as
a new resource with a version and revision of 00001. If the resource being copied exists
in the destination, it will be added as a new version and revision; this is true regardless of
what version and revision was specified for the resource or destination file names. The
DPRLbyCopy rule supports these WebDav commands:

Use this command To

copy [source] [destination] Copies a resource from one location to another.

Variable Description

LBYFILE The resource you want to use for the copy operation. A full path

and file name generated by DPRLbyGet rule, which should be run
before this rule in the WEBDAVCOPY request type.

53

Chapter 1

Using Docupresentment SDK

Variable

DESTINATIONURI

OVERWRITE

USERID

ARCEFFECTIVEDATE

Description

A URI that contains the destination of the resource you want to
copy. Here are some examples of destination URIs:

/cjr/rpexl/ddt/master.ddt

/jdoe/RPEX1/DDT/
MASTER 0000100001 20030707 .DDT

(Optional) An overwrite flag indicator. A T'means to overwrite the
destination if it exists. An F indicates the rule will fail if the
destination exists. Reserved for future use.

(Optional) The user ID you want to use for the copy operation. If
this attachment variable exists, it overrides the user ID provided in
the destination URL. If the user ID is omitted from the attachment
variable and the destination URI, the rule will fail.

(Optional) An archive effective date. Here is an example of the
format you should use:

MM/DD/YYYY

If this variable exists, its value is used as the archive effective date
for the copy operation. Otherwise, the rule uses the current date
for the archive effective date.

Output attachments
Variable

Description

RESULTS

WEBDAVERRORCODE

Success or etrot.

This attachment variable only exists if RESULTS equals ERROR.
It can contain one of these values:

403 (Webdav *forbidden’ error code) - The soutce and destination
URIs ate the same.

409 (Webdav ’conflict’ error code) - The resource cannot be
created at the destination.

412 (Webdav *precondition failed’ error code) - The overwrite
header is F and the state of the destination resource is non-null.
420 (Webdav ’method failure’ error code) - An internal error or

memoty error occurred.

423 (Webdav ’locked’ etror code) - The destination resource was
locked.

DPRLbyPropPatch

Use this rule to set or remove properties defined on the resource identified by the
RESOURCEURI. This rule supports these WebDav commands:

Use this command To

proppatch

Not supported by Library Manager.

54

Input attachments

Output attachments

Input attachments

Output attachments

Using the IDSWebdav Servlet Client APIs and DPRLIB Rules

The proppatch command is not supported by Library Manager. You cannot modify the
properties for records in Library Manager. This rule always returns RESULTS set to
ERROR and WEBDAVERRORCODE set to method not allowed.

None
Variable Description
RESULTS ERROR.

WEBDAVERRORCODE This attachment variable only exists if RESULTS contains
ERROR, which in this case is always true. It will contain this value:

405 - (WebDav ’method not allowed’ etror code) - The server
does not allow or support this method.

DPRLbyMKCol

Use this rule to create a collection in Library Manager. This rule supports these WebDav
commands:

Use this command To

mkcol Not supported by Library Manager.

Keep in mind the mkcol command is not supported by Library Manager. You cannot
make new collections (file types) in Library Manager without first adding a resource of
that type.

This rule always returns RESULTS set to ERROR and WEBDAVERRORCODE set to
unsupported media type.

None
Variable Description
RESULTS ERROR.

WEBDAVERRORCODE This attachment variable only exists if RESULTS equals ERROR,
which in this case is always true. It contains this value:

415 - (WebDav "unsupported media type’ error code) - The server
does not support or understand the mkcol request type.

55

Chapter 1

Using Docupresentment SDK

WebDav Request Types for Library Manager
You should use the following request types with Library Manager:

<section name="ReqgType:WEBDAVOPTIONS" >
<entry name="function">atcw32->ATCLoadAttachment</entrys>
<entry name="function">atcw32->ATCUnloadAttachment</entry>
<entry name="function">dprw32->DPRLbyOptions</entrys>
</section>
<section name="ReqType:WEBDAVPROPFIND">
<entry name="function"s>atcw32->ATCLoadAttachment</entry>
<entry name="function">atcw32->ATCUnloadAttachment</entry>
<entry name="function">dprw32->DPRSetConfig</entry>
<entry name="function">dprw32->DPRInitLby</entry>
<entry name="function">dprw32->DPRLbyPropFind</entry>
</section>
<section name="ReqgType:WEBDAVGET" >
<entry name="function">atcw32->ATCLoadAttachment</entrys>
<entry name="function">atcw32->ATCUnloadAttachment</entry>
<entry name="function">dprw32->DPRSetConfig</entry>
<entry name="function">dprw32->DPRInitlLby</entrys>
<entry name="function">dprw32->DPRLbyGet</entry>

<entry name="function"s>atcw32-
>ATCSendFile, RESOURCE, LBYFILE, BINARY</entry>

</section>

<section name="ReqType:WEBDAVHEAD" >
<entry name="function"s>atcw32->ATCLoadAttachment</entry>
<entry name="function">atcw32->ATCUnloadAttachment</entry>
<entry name="function">dprw32->DPRSetConfig</entry>
<entry name="function">dprw32->DPRInitLby</entry>
<entry name="function">dprw32->DPRLbyGet</entry>

<entry name="function"satcw32-
>ATCSendFile, RESOURCE, LBYFILE, BINARY</entry>

</section>
<section name="ReqgType:WEBDAVPUT" >
<entry name="function"s>atcw32->ATCLoadAttachment</entry>
<entry name="function"s>atcw32->ATCUnloadAttachment</entry>
<entry name="function">dprw32->DPRSetConfig</entry>
<entry name="function">dprw32->DPRInitLby</entry>
<entry name="function">dprw32->DPRLbyPut</entry>
</section>
<section name="ReqgType:WEBDAVCHECKOUT" >
<entry name="function"s>atcw32->ATCLoadAttachment</entry>
<entry name="function"s>atcw32->ATCUnloadAttachment</entry>
<entry name="function">dprw32->DPRSetConfig</entry>
<entry name="function">dprw32->DPRInitLby</entry>
<entry name="function">dprw32->DPRLbyGet, CheckOut=Yes</entry>

<entry name="function"satcw32-
>ATCSendFile, RESOURCE, LBYFILE, BINARY</entry>

</section>
<section name="ReqType:WEBDAVCHECKIN" >
<entry name="function"s>atcw32->ATCLoadAttachment</entry>
<entry name="function"s>atcw32->ATCUnloadAttachment</entry>
<entry name="function">dprw32->DPRSetConfig</entrys>
<entry name="function">dprw32->DPRInitLby</entry>
<entry name="function">dprw32->DPRLbyPut</entry>
</section>

56

Using the IDSWebdav Servlet Client APIs and DPRLIB Rules

<section name="ReqType:WEBDAVLOCK" >
<entry name="function"s>atcw32->ATCLoadAttachment</entry>
<entry name="function">atcw32->ATCUnloadAttachment</entry>
<entry name="function">dprw32->DPRSetConfig</entry>
<entry name="function">dprw32->DPRInitLby</entry>
<entry name="function">dprw32->DPRLbyLock</entry>
</section>
<section name="ReqType:WEBDAVUNLOCK" >
<entry name="function">atcw32->ATCLoadAttachment</entry>
<entry name="function"s>atcw32->ATCUnloadAttachment</entry>
<entry name="function">dprw32->DPRSetConfig</entry>
<entry name="function">dprw32->DPRInitLby</entry>
<entry name="function">dprw32->DPRLbyUnlock</entry>
</section>
<section name="ReqType:WEBDAVDELETE" >
<entry name="function"s>atcw32->ATCLoadAttachment</entry>
<entry name="function"s>atcw32->ATCUnloadAttachment</entry>
<entry name="function">dprw32->DPRSetConfig</entry>
<entry name="function">dprw32->DPRInitLby</entry>
<entry name="function">dprw32->DPRLbyDelete</entry>
</section>
<section name="ReqType:WEBDAVCOPY">
<entry name="function"s>atcw32->ATCLoadAttachment</entry>
<entry name="function"s>atcw32->ATCUnloadAttachment</entry>
<entry name="function">dprw32->DPRSetConfig</entry>
<entry name="function">dprw32->DPRInitLby</entry>
<entry name="function">dprw32->DPRLbyGet</entry>
<entry name="function">dprw32->DPRLbyCopy</entrys>
</section>
<section name="ReqType:WEBDAVMOVE" >
<entry name="function"s>atcw32->ATCLoadAttachment</entrys>
<entry name="function"s>atcw32->ATCUnloadAttachment</entry>
<entry name="function">dprw32->DPRSetConfig</entry>
<entry name="function">dprw32->DPRInitLby</entry>
<entry name="function">dprw32->DPRLbyGet</entry>
<entry name="function">dprw32->DPRLbyCopy</entry>
<entry name="function">dprw32->DPRLbyDelete</entry>
</section>
<section name="ReqType:WEBDAVPROPPATCH" >
<entry name="function"s>atcw32->ATCLoadAttachment</entry>
<entry name="function"satcw32->ATCUnloadAttachment</entry>
<entry name="function">dprw32->DPRLbyPropPatch</entry>
</section>
<section name="ReqType:WEBDAVMKCOL" >
<entry name="function">atcw32->ATCLoadAttachment</entry>
<entry name="function">atcw32->ATCUnloadAttachment</entry>
<entry name="function">dprw32->DPRLbyMKCol</entry>
</section>

57

Chapter 1

Using Docupresentment SDK

File system request types

58

Using File System Rules

In addition to the DPRLIB Library Manager rules for WebDav support, version 2.0 also
comes with a set of Java rules you can use to perform file system updates on the server
side via WebDav commands submitted by the IDSWebdavServlet client component.

The file system rules include:
* propFind on page 60
* geton page 62

* puton page 63

* lock on page 64

* unlock on page 65

* delete on page 66

* options on page 67

* copy on page 67

* move on page 63

* propPatch on page 69
* mkCol on page 70

To use the file system rules, replace Library Manager request types with the following file
system request types:

<!-- ***Begin WebDav rules for a file system. -->
<section name="ReqType:WEBDAVOPTIONS" >
<entry

name="function">java;com.docucorp.ids.rules.WebdavFileSystemRule; ;s
tatic;options;FILE,webdavfilesystem.properties</entry>

</section>
<section name="ReqgType:WEBDAVPROPFIND" >

<entry
name="function">java;com.docucorp.ids.rules.WebdavFileSystemRule; ;t
ransaction;propFind;FILE, webdavfilesystem.properties</entry>

</section>
<section name="ReqType :WEBDAVGET" >

<entry
name="function">java;com.docucorp.ids.rules.WebdavFileSystemRule; ;t
ransaction;get;FILE,webdavfilesystem.properties</entrys>

</section>
<section name="ReqgType:WEBDAVPUT" >

<entry
name="function">java;com.docucorp.ids.rules.WebdavFileSystemRule; ;t
ransaction;put;FILE,webdavfilesystem.properties</entrys>

</section>
<section name="ReqType :WEBDAVHEAD" >

<entry
name="function">java;com.docucorp.ids.rules.WebdavFileSystemRule; ;t
ransaction;get;FILE,webdavfilesystem.properties</entrys>

</section>
<section name="ReqgType:WEBDAVLOCK" >

Using the IDSWebdav Servlet Client APIs and DPRLIB Rules

<entry
name="function">java;com.docucorp.ids.rules.WebdavFileSystemRule; ;t
ransaction;lock;FILE, webdavfilesystem.properties</entry>

</section>
<section name="ReqType : WEBDAVUNLOCK" >
<entry

name="function">java;com.docucorp.ids.rules.WebdavFileSystemRule; ;t
ransaction;unlock;FILE,webdavfilesystem.properties</entry>

</section>
<section name="ReqType:WEBDAVCOPY" >

<entry
name="function">java;com.docucorp.ids.rules.WebdavFileSystemRule; ;t
ransaction;copy;FILE, webdavfilesystem.properties</entry>

</sections>
<section name="ReqType :WEBDAVMOVE" >

<entry
name="function">java;com.docucorp.ids.rules.WebdavFileSystemRule; ;t
ransaction;move;FILE, webdavfilesystem.properties</entry>

</section>
<section name="ReqType:WEBDAVDELETE" >

<entry
name="function">java;com.docucorp.ids.rules.WebdavFileSystemRule; ;t
ransaction;delete;FILE,webdavfilesystem.properties</entry>

</section>
<section name="ReqType : WNEBDAVPROPPATCH" >

<entry
name="function">java;com.docucorp.ids.rules.WebdavFileSystemRule; ;t
ransaction;propPatch;FILE, webdavfilesystem.properties</entry>

</section>
<section name="ReqType:WEBDAVMKCOL" >

<entry
name="function">java;com.docucorp.ids.rules.WebdavFileSystemRule; ;t
ransaction;mkCol;FILE,webdavfilesystem.properties</entry>

</sections>

You must also create a file system directory on the IDS side. The file system directory
must reside on a location accessible to IDS and should contain the resources that should
be updated via WebDav commands. In addition, each of the Java rules listed above uses
a FILE argument which points to a properties file with settings for the file system. Here
is a sample properties file:

WDROOTNAME=/idswebdav/
WDROOTDIR=c:/ids/idswebdav/

59

Chapter 1

Using Docupresentment SDK

propFind

Use this rule to return properties for a resource or collection. This rule supports these
WebDav commands:

Command Description
Is [path] Lists contents of a collection.
cd [path] Changes a directory.

propget [path| [property] Gets a property.
propfind [path] [property] Finds a property.

propgetall [path] Lists all properties for a resource.

Input attachments

Variable Description

RESOURCEURI A resource URI specifying a collection or resource. Hete are some
examples:

/collection/resource/
/resource
/collection

/

DEPTH Enter one (1) for collections. Enter zero (0) for file resources.

60

Output attachments

Variable

Using the IDSWebdav Servlet Client APIs and DPRLIB Rules

Description

PROPERTIES

RESULTS

A rowset of rows that match each of the file resources available for
a particular collection. If you set DEPTH to one (1) and
RESOURCEURI specifies a collection, the PROPERTIES rowset
returns a row for each resource available in the collection.

If you set DEPTH to zero (0) and RESOURCEURI specifies a file
resource, the PROPERTIES rowset returns a single row with the
properties for the resource specified.

Each row in the PROPERTIES rowset contains the following
propertties for a file resource:

supportedlock - If locking is allowed, the following XML string is
displayed for this propetty:

<lockentry>
<lockscope>
<exclusive/>
</lockscope>
<locktypes>
<write/>
</locktype>
</lockentrys>
getContentlanguage - currently, the value ez_US.

resourcetype - blank if the resource is a file, otherwise collection if the
resource is a file type or directory.

displayname - the display name of the resource.
HREEF - the resource URI for this resoutrce.

getlastmodified - a date and time indicating when the resource was
last modified. This is a long value that contains the number of
milliseconds since January 1, 1970.

getContentLength - currently, always zero because there is no
support for retrieving the file size of a document stored in Library
Manager.

If a resource is locked, these additional properties are returned:
LOCKOWNER - The user ID that owns the lock.
LOCKSCOPE - The scope of the lock (exclusive).
LOCKSUBJECT - The name of the resource locked.
LOCKDEPTH - The depth of the resource locked (0).
LOCKTYPE - The type of lock (write).

LOCKTIMEOUT - The time-out value after which the lock will
expire (infinity).

LOCKTOKEN - A unique ID that identifies the resource locked.
This rowset is only present if RESULTS equals SUCCESS.

Success or errot.

61

Chapter 1

Using Docupresentment SDK

Variable

Description

WEBDAVERRORCODE This attachment variable only exists if RESULTS equals ERROR.

It can contain one of these values:

404 - (WebDav 'not found' etrot code) - The RESOURCEURI
cannot be found.

409 - (WebDav 'conflict' etror code) - The RESOURCEURI
specified is invalid.

420 - (WebDav 'method etrot' etrot code) - An internal API etror
or memoty etror occutred.

get

Use this rule to return a resource from the file system. This rule supports these WebDav

commands:

Command

Description

get [path] file

head [path] file

Gets a resource.

Gets header information for a resource. (works same as get)

Input attachments
Variable

Description

RESOURCEURI

The resource URI of the resource you want to retrieve. Here is an example:

/collection/resource

62

Output attachments

Variable

Using the IDSWebdav Servlet Client APIs and DPRLIB Rules

Description

PROPERTIES

RESULTS

WEBDAVERRORCODE

A rowset with a row for the resource specified in
RESOURCEURI. The row contains the following propetties for
a resource:

supportedlock - If locking is allowed, the following XML string is
displayed for this property:
<lockentry>
<lockscope>
<exclusive/>
</lockscope>
<locktypes>
<write/>
</locktype>
</lockentrys>

getContentlanguage - currently, the value ez_US.

resourcetype - blank if the resource is a file, otherwise collection if
the resource is a file type or directory.

displayname - the display name of the resource.
HREEF - the resource URI for this resource

getlastmodified - a date and time indicating when the resource
was last modified. This is a long value that contains the number
of milliseconds since January 1, 1970.

getContentLength - currently, always zero because there is no
support for retrieving the file size of a document stored in Library
Manager.

LOCKOWNER -The user ID that owns the lock.
LOCKSCOPE - The scope of the lock (exclusive).
LOCKSUBJECT - The name of the resource locked.
LOCKDEPTH - The depth of the resoutce locked (0).
LOCKTYPE - The type of lock (write).

LOCKTIMEOUT -The time-out value after which the lock will
expite (infinity).

LOCKTOKEN - A unique ID that identifies the resource locked.
This rowset is only present if RESULTS equals SUCCESS.

Success or errot.

This attachment variable is only present if RESULTS equals
ERROR. It can contain one of these values:

404 - (WebDav 'not found' etrror code) - The RESOURCEURI
cannot be found.

409 - (WebDav 'conflict' etror code) - The RESOURCEURI
specified is invalid.

420 - (WebDav 'method error' error code) - An internal API error
or memory error occutred.

put

commands:

Use this rule to put a resource into the file system. This rule supports these WebDav

63

Chapter 1

Using Docupresentment SDK

Command Description

put [path Puts the specified file into Library Manager.

If the resource is locked, the put operation will fail.

Input attachments

Variable Description

RESOURCEURI A resource URI that specifies the resource you want to place into the file
system. Here is an example:

/collection/resource/

Output attachments

Variable Description

RESULTS Success or etrot.

WEBDAVERRORCODE This attachment variable only exists if RESULTS equals ERROR.
It can contain one of these values:

404 - (WebDav 'not found' etror code) - The RESOURCEURI
cannot be found.

409 - (WebDav 'conflict' error code) - The RESOURCEURI
specified is invalid.
420 - (WebDav 'method errot' error code) - An internal API error

or memory error occurred.
423 - (WebDav 'locked' error code) - The resource is locked.

lock
Use this rule to lock a resource in the file system. This rule supports these WebDav
commands:
Command Description
lock [path] file Locks a resource.
Input attachments
Variable Description

RESOURCEURI The resource URI of the resource that should be locked in the file system.
Here is an example:

/collection/resource

Output attachments

Variable Description
LOCKOWNER The user ID that owns the lock.
LOCKSCOPE The scope of the lock (exclusive).

64

Input attachments

Output attachments

Variable

LOCKSUBJECT
LOCKDEPTH

LOCKTYPE

LOCKTIMEOUT

LOCKTOKEN

RESULTS

Using the IDSWebdav Servlet Client APIs and DPRLIB Rules

Description

The name of the resource locked.

The depth of the resource locked (0).

The type of lock (wtite).

The time-out value after which the lock will expire (infinity).
A unique ID that identifies the resource locked.

Success ot errot.

WEBDAVERRORCODE This attachment variable only exists if RESULTS equals

ERROR. It can contain one of these values:

404 - (WebDav 'not found' etrot code) - The RESOURCEURI
cannot be found.

409 - (WebDav 'conflict' etror code) - The RESOURCEURI
specified is invalid.
420 - (WebDav 'method errot' error code) - An internal API error

or memoty etror occutred.

423 - (WebDav 'locked' etror code) - The resource is already
locked.

unlock

Use this rule to unlock a resource in the file system. This rule supports these WebDav

commands:

Command

Description

unlock [path] file

Unlock a resource.

Variable Description
RESOURCEURI The resource URI of the resource that should be unlocked. Here is an
example:
/collection/resource
Variable Description
RESULTS Success or errot.

65

Chapter 1

Using Docupresentment SDK

Variable Description

WEBDAVERRORCODE This attachment variable only exists if RESULTS equals ERROR.
It can contain one of these values:

404 - (WebDav 'not found' etrot code) - The RESOURCEURI
cannot be found.

409 - (WebDav 'conflict' etror code) - The RESOURCEURI
specified is invalid.

420 - (WebDav 'method error' error code) - An internal API error

or memoty error occutred.

423 - (WebDav 'locked' etror code) - The resource is locked by
another user.

delete

Use this rule to remove a resource or collection from the file system. If the resource you
specified is a collection, all resources for the collection will be removed, provided none
are locked. This rule supports these WebDav commands:

Command Description

delete [path] file Delete a resoutce.
Input attachments

Variable Description

RESOURCEURI The resource URI of the resoutce you want to delete. Here ate some
examples:

/collection/resource
/collection

The delete operation will fail if the resource is locked or if the resource is
a collection and any of its resources are locked.

DEPTH (Optional) If a depth value is specified for collections, its value must be
set to zufinity. If a depth value is omitted, the rule assumes a depth of
infinity. You do not have to provide a depth value for a file resource.

Output attachments

Variable Description

RESULTS Success or errot.

WEBDAVERRORCODE This attachment variable only exists if RESULTS equals ERROR.
It can contain one of these values:

404 - (WebDav 'not found' etror code) - The RESOURCEURI
cannot be found.

409 - (WebDav 'conflict' error code) - The RESOURCEURI
specified is invalid.
420 - (WebDav 'method errot’ error code) - An internal API etror

or memory error occurred.
423 - (WebDav 'locked' error code) - The resource is locked.

66

Input attachments

Output attachments

Input attachments

Using the IDSWebdav Servlet Client APIs and DPRLIB Rules

options

Use this rule to display the WebDav commands supported by the file system. This rule
supports these WebDav commands:

Command Description

options [path / utl] display options available for path or URL.

This rule displays these WebDav commands that are supported by the file system:

options get head

propfind propgetall lock

unlock delete copy

move proppatch mkcol
None

Variable Description

OPTIONS A comma-delimited string of WebDav commands supported by the file system.

RESULTS Success.

copy

Use this rule to copy a resource or collection from one location to another. This rule
supports these WebDav commands:

Command Description

copy [source] [destination] Copies a resource.

If any destination resource exists and is locked, the copy operation fails. If any destination
resource exists and the overwrite flag is set to false, the copy operation fails.

Variable Description
RESOURCEURI The resource you want to use for the copy operation. Here is an
example:

/collection/resource

DESTINATIONURI A URI containing the destination of the resource you want to copy.
Here is an example:

/collection/destination

67

Chapter 1

Using Docupresentment SDK

Variable Description

DEPTH A depth indicator. Used for copying collections. If you omit the depth
for a collection, the rule assumes a depth of infinity. If you enter
anything other than zxfinity for a collection, the rule only copies the
collection directory. You do not have to provide a depth value for a
file resource.

OVERWRITE An overwrite flag indicator. If any resource in the destination already
exists and the overwrite flag is set to True, the copy operation
proceeds, otherwise it will fail.

Output attachments

Variable Description

RESULTS Success or errot.

WEBDAVERRORCODE This attachment variable only exists if RESULTS equals ERROR.
It can contain one of these values:

403 (WebDav 'forbidden' error code) - The source and
destination URIs are the same.

409 (WebDav 'conflict' etror code) - The resource cannot be
created at the destination.

420 (WebDav 'method failure' error code) - An internal error or
memory etrot occurred.

423 (WebDav 'locked' error code) - The destination resource was
locked.

move

Use this rule to move a resource or collection from one location to another. This rule
supports these WebDav commands:

Command Description

move [source] [destination] Moves a resource.

If any destination or source resource exists and is locked, the move operation fails. If any
destination resource exists and the overwrite flag is set to False, the move operation fails.
If the resource you specify is a collection and its depth value is something other than
infinity, the move operation fails.

Input attachments

Variable Description
RESOURCEURI The resource you want to use for the move operation. Here is an
example:

/collection/resource

DESTINATIONURI A URI containing the destination of the resource you want to move.
Here is an example:

/collection/destination

68

Output attachments

Input attachments

Output attachments

Using the IDSWebdav Servlet Client APIs and DPRLIB Rules

Variable Description

DEPTH A depth indicator used for moving collections. If you omit the depth
for a collection, the rule assumes a depth of infinity. If you enter
anything other than infinity for a collection, the rule fails. You do not
have to provide a depth value for a file resource.

OVERWRITE An overwrite flag indicator. If any resource in the destination already
exists and the overwrite flag is set to True, the move operation
proceeds, otherwise it fails.

Variable Description

RESULTS Success or etrot.

WEBDAVERRORCODE This attachment variable only exists if RESULTS equals ERROR.
It can contain one of these values:

403 (WebDav 'forbidden' etror code) - The source and
destination URIs atre the same.

409 (WebDav 'conflict' error code) - The resource cannot be
created at the destination.

420 (WebDav 'method failute' error code) - An internal error or
memory error occurred.

423 (WebDav 'locked' etror code) - A soutce or existing
destination resource was locked.

propPatch

Use this rule to set and remove properties defined on the resource identified by
RESOURCEURI. This rule supports these WebDav commands:

Command Description

proppatch Not supported by the file system.

The proppatch command is not supported by the file system. The system does not allow
modification of properties for a resource in the file system.

None
Variable Description
RESULTS Etrror.

WEBDAVERRORCODE This attachment vatiable only exists if RESULTS equals ERROR,
which in this case is always true. It will contain the following
value:

405 - (WebDav 'method not allowed' error code) - The setver
does not allow or support this method.

69

Chapter 1

Using Docupresentment SDK

mkCol

Use this rule to creates a collection in the file system. This rule supports these WebDav
commands:

Command Description

mkcol Makes a collection.

The rule will fail if the collection already exists or if it failed to create the collection
because one or more parents specified in RESOURCEURI does not exist.

Input attachments

Variable Description

RESOURCEURI The collection you want to create. Here is an example:

/collection
Output attachments
Variable Description
RESULTS Success or error.

WEBDAVERRORCODE This attachment variable only exists if RESULTS equals
ERROR. It can contain one of these values:

409 (WebDav 'conflict' etror code) - The tesource cannot be
created at the destination.

420 (WebDav 'method failute' etror code) - An internal etror or
memoty etror occurred.

70

Using the IDSWebdav Servlet Client APIs and DPRLIB Rules

Using the IDSWebdavServlet

The IDSWebdavServlet client component is a Java servlet that receives WebDav requests

from WebDav client programs and submits them to IDS for processing.

Follow these steps to use the IDSWebdavServlet:

1

Create an zdswebday directory under the JSP engine webapps directory. Make sure the

name is in lowercase.

Add IDSWebDavServlet.jar to the common\lib directory of the JSP engine.

Make sute the idswebdav directory contains a sub directory named WEB-INF. Make
sure the name is in uppercase.

Add the following web.xml file to the WEB-INF directory.

<?xml version="1.0" encoding="ISO-8859-1"7?>

< !DOCTYPE web-app

PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.7//EN"
"http://java.sun.com/dtd/web-app 2 3.dtd">

<web-app>

<servlet>

<servlet-names>idswebdav</servlet-name>

<servlet-class>com.docucorp.ids.webdav.IDSWebdavServlet</

servlet-class>

<init-param>

<param-name>debug</param-name>

<param-value>0</param-value>

</init-params>
<init-params>

<param-name>listings</param-name>

<param-values>true</param-values>

</init-params>

<!-- Uncomment this to enable read and write access -->

<!l--

<init-params>

<param-name>readonly</param-name>

<param-value>false</param-value>

</init-params>

<!--load-on-startup>1l</load-on-startup-->
</servlets>
<!-- The mapping for the webdav servlet -->

<servlet-mapping>

<servlet-names>idswebdav</servlet-name>

<url-pattern>/</url-patterns>

</servlet-mapping>

<!-- Establish the default MIME type mappings -->

<mime-mapping>

<extensions>txt</extensions>

<mime-types>text/plain</mime-type>

71

Chapter 1

Using Docupresentment SDK

</mime-mapping>

<mime-mapping>
<extension>html</extension>
<mime-type>text/html</mime-type>

</mime-mapping>

<mime-mapping>
<extensions>htm</extensions>
<mime-types>text/html</mime-type>

</mime-mapping>

<mime-mapping>
<extension>gif</extensions>
<mime-type>image/gif</mime-types>

</mime-mapping>

<mime-mapping>
<extension>jpg</extensions>
<mime-type>image/jpeg</mime-type>

</mime-mapping>

<mime-mapping>
<extension>jpe</extension>
<mime-type>image/jpeg</mime-type>

</mime-mapping>

<mime-mapping>
<extension>jpeg</extensions>
<mime-type>image/jpeg</mime-type>

</mime-mapping>

<mime-mapping>
<extension>java</extension>
<mime-type>text/plain</mime-type>

</mime-mapping>

<mime-mapping>
<extension>body</extension>
<mime-types>text/html</mime-type>

</mime-mapping>

<mime-mapping>
<extension>rtx</extension>
<mime-type>text/richtext</mime-type>

</mime-mapping>

<mime-mapping>
<extension>tsv</extension>
<mime-type>text/tab-separated-values</mime-type>

</mime-mapping>

<mime-mapping>
<extensionsetx</extensions>
<mime-types>text/x-setext</mime-type>

</mime-mapping>

<mime-mapping>
<extension>ps</extension>
<mime-type>application/x-postscript</mime-type>

</mime-mapping>

<mime-mapping>
<extension>class</extension>
<mime-type>application/java</mime-types>

</mime-mapping>

<mime-mapping>
<extensions>csh</extension>

72

Using the IDSWebdav Servlet Client APIs and DPRLIB Rules

<mime-types>application/x-csh</mime-types>
</mime-mapping>
<mime-mapping>
<extensions>sh</extension>
<mime-type>application/x-sh</mime-type>
</mime-mapping>
<mime-mapping>
<extensions>tcl</extensions
<mime-type>application/x-tcl</mime-type>
</mime-mapping>
<mime-mapping>
<extensions>tex</extensions>
<mime-typesapplication/x-tex</mime-types>
</mime-mapping>
<mime-mapping>
<extensions>texinfo</extensions>
<mime-type>application/x-texinfo</mime-type>
</mime-mapping>
<mime-mapping>
<extensionstexi</extensions>
<mime-type>application/x-texinfo</mime-type>
</mime-mapping>
<mime-mapping>
<extensions>t</extension>
<mime-typesapplication/x-troff</mime-type>
</mime-mapping>
<mime-mapping>
<extensionstr</extensions>
<mime-type>application/x-troff</mime-type>
</mime-mapping>
<mime-mapping>
<extensionsroff</extensions>
<mime-type>application/x-troff</mime-type>
</mime-mapping>
<mime-mapping>
<extensions>man</extensions>
<mime-type>application/x-troff-man</mime-type>
</mime-mapping>
<mime-mapping>
<extensions>me</extensions>
<mime-types>application/x-troff-me</mime-types>
</mime-mapping>
<mime-mapping>
<extensions>ms</extensions
<mime-type>application/x-wais-source</mime-types>
</mime-mapping>
<mime-mapping>
<extensions>src</extensions>
<mime-types>application/x-wais-source</mime-type>
</mime-mapping>
<mime-mapping>
<extension>zip</extensions>
<mime-types>application/zip</mime-type>
</mime-mapping>
<mime-mapping>

73

Chapter 1

Using Docupresentment SDK

<extension>bcpio</extensions>
<mime-typesapplication/x-bcpio</mime-type>
</mime-mapping>
<mime-mapping>
<extension>cpio</extensions>
<mime-types>application/x-cpio</mime-type>
</mime-mapping>
<mime-mapping>
<extension>gtar</extensions>
<mime-type>application/x-gtar</mime-type>
</mime-mapping>
<mime-mapping>
<extensionsshar</extensions>
<mime-typesapplication/x-shar</mime-type>
</mime-mapping>
<mime-mapping>
<extension>sv4cpio</extension>
<mime-type>application/x-sv4cpio</mime-type>
</mime-mapping>
<mime-mapping>
<extension>svécrc</extension>
<mime-type>application/x-svicrc</mime-types>
</mime-mapping>
<mime-mapping>
<extensionstar</extensions>
<mime-typesapplication/x-tar</mime-types>
</mime-mapping>
<mime-mapping>
<extension>ustar</extension>
<mime-types>application/x-ustar</mime-type>
</mime-mapping>
<mime-mapping>
<extension>dvi</extension>
<mime-type>application/x-dvi</mime-type>
</mime-mapping>
<mime-mapping>
<extensions>hdf</extensions>
<mime-types>application/x-hdf</mime-types>
</mime-mapping>
<mime-mapping>
<extensions>latex</extension>
<mime-types>application/x-latex</mime-type>
</mime-mapping>
<mime-mapping>
<extension>bin</extension>
<mime-type>application/octet-stream</mime-types>
</mime-mapping>
<mime-mapping>
<extensions>oda</extension>
<mime-types>application/oda</mime-type>
</mime-mapping>
<mime-mapping>
<extension>pdf</extension>
<mime-type>application/pdf</mime-type>
</mime-mapping>

74

Using the IDSWebdav Servlet Client APIs and DPRLIB Rules

<mime-mapping>
<extensions>ps</extensions>
<mime-type>application/postscript</mime-type>
</mime-mapping>
<mime-mapping>
<extension>eps</extensions>
<mime-types>application/postscript</mime-type>
</mime-mapping>
<mime-mapping>
<extensionsai</extensions>
<mime-type>application/postscript</mime-type>
</mime-mapping>
<mime-mapping>
<extensionsrtf</extensions
<mime-type>application/rtf</mime-type>
</mime-mapping>
<mime-mapping>
<extensions>nc</extensions>
<mime-typesapplication/x-netcdf</mime-type>
</mime-mapping>
<mime-mapping>
<extensions>cdf</extensions>
<mime-type>application/x-netcdf</mime-type>
</mime-mapping>
<mime-mapping>
<extensionscer</extensions
<mime-type>application/x-x509-ca-cert</mime-type>
</mime-mapping>
<mime-mapping>
<extensionsexe</extensions>
<mime-types>application/octet-stream</mime-types>
</mime-mapping>
<mime-mapping>
<extension>gz</extensions>
<mime-type>application/x-gzip</mime-type>
</mime-mapping>
<mime-mapping>
<extensions>Z</extension>
<mime-type>application/x-compress</mime-type>
</mime-mapping>
<mime-mapping>
<extensions>z</extension>
<mime-types>application/x-compress</mime-type>
</mime-mapping>
<mime-mapping>
<extension>hgx</extensions>
<mime-types>application/mac-binhex40</mime-type>
</mime-mapping>
<mime-mapping>
<extensions>mif</extensions
<mime-type>application/x-mif</mime-type>
</mime-mapping>
<mime-mapping>
<extensions>ief</extensions>
<mime-type>image/ief</mime-type>

75

Chapter 1

Using Docupresentment SDK

76

</mime-mapping>
<mime-mapping>
<extension>tiff</extension>
<mime-type>image/tiff</mime-type>
</mime-mapping>
<mime-mapping>
<extensions>tif</extensions>
<mime-type>image/tiff</mime-type>
</mime-mapping>
<mime-mapping>
<extension>ras</extension>
<mime-type>image/x-cmu-raster</mime-type>
</mime-mapping>
<mime-mapping>
<extensions>pnm</extensions
<mime-type>image/x-portable-anymap</mime-types>
</mime-mapping>
<mime-mapping>
<extension>pbm</extension>
<mime-type>image/x-portable-bitmap</mime-type>
</mime-mapping>
<mime-mapping>
<extension>pgm</extensions>
<mime-type>image/x-portable-graymap</mime-type>
</mime-mapping>
<mime-mapping>
<extension>ppm</extensions
<mime-type>image/x-portable-pixmap</mime-types>
</mime-mapping>
<mime-mapping>
<extension>rgb</extension>
<mime-type>image/x-rgb</mime-types>
</mime-mapping>
<mime-mapping>
<extension>xbm</extensions>
<mime-type>image/x-xbitmap</mime-type>
</mime-mapping>
<mime-mapping>
<extensions>xpm</extensions
<mime-type>image/x-xpixmap</mime-type>
</mime-mapping>
<mime-mapping>
<extensionsxwd</extensions>
<mime-type>image/x-xwindowdump</mime-type>
</mime-mapping>
<mime-mapping>
<extensions>au</extension>
<mime-type>audio/basic</mime-types>
</mime-mapping>
<mime-mapping>
<extension>snd</extension>
<mime-type>audio/basic</mime-types>
</mime-mapping>
<mime-mapping>
<extensionsaif</extension>

Using the IDSWebdav Servlet Client APIs and DPRLIB Rules

<mime-type>audio/x-aiff</mime-type>

</mime-mapping>

<mime-mapping>
<extensions>aiff</extension>
<mime-type>audio/x-aiff</mime-type>

</mime-mapping>

<mime-mapping>
<extensionsaifc</extension>
<mime-type>audio/x-aiff</mime-type>

</mime-mapping>

<mime-mapping>
<extensions>wav</extensions>
<mime-type>audio/x-wav</mime-types>

</mime-mapping>

<mime-mapping>
<extensions>mpeg</extensions>
<mime-type>video/mpeg</mime-type>

</mime-mapping>

<mime-mapping>
<extensions>mpg</extension>
<mime-type>video/mpeg</mime-type>

</mime-mapping>

<mime-mapping>
<extensions>mpe</extensions>
<mime-type>video/mpeg</mime-type>

</mime-mapping>

<mime-mapping>
<extension>gt</extension>
<mime-type>video/quicktime</mime-type>

</mime-mapping>

<mime-mapping>
<extensionsmov</extensions
<mime-type>video/quicktime</mime-type>

</mime-mapping>

<mime-mapping>
<extensions>avi</extension>
<mime-types>video/x-msvideo</mime-type>

</mime-mapping>

<mime-mapping>
<extensions>movie</extensions>
<mime-types>video/x-sgi-movie</mime-type>

</mime-mapping>

<mime-mapping>
<extensionsavx</extensions
<mime-type>video/x-rad-screenplay</mime-type>

</mime-mapping>

<mime-mapping>
<extensions>wrl</extension>
<mime-types>x-world/x-vrml</mime-type>

</mime-mapping>

<mime-mapping>
<extension>mpv2</extensions
<mime-type>video/mpeg2</mime-type>

</mime-mapping>

71

Chapter 1

Using Docupresentment SDK

78

<!-- Establish the default list of welcome files -->
<welcome-file-list>
<welcome-file>index.jsp</welcome-file>
<welcome-file>index.html</welcome-file>
<welcome-file>index.htm</welcome-file>
</welcome-file-lists>

<!l--

<security-constraints
<web-resource-collections>
<web-resource-name>The Entire Web Application</web-resource-

name>

<url-patterns>/*</url-patterns
</web-resource-collection>
<auth-constraints>
<role-name>tomcat</role-name>
</auth-constraints>
</security-constraint>

<login-config>
<auth-method>BASIC</auth-methods>
<realm-name>Tomcat Supported Realm</realm-names>

</login-config>

<security-roles>
<descriptions>
An example role defined in "conf/tomcat-users.xml"
</description>
<role-name>tomcat</role-name>
</security-role>

-—>

</web-app>

Restart the JSP engine.

To send requests to the servlet, use the following URL format:

http://userid@boxname :port#/idswebdav/

where userid is the user ID used for the WebDav operations, boxname is the name of
the box hosting the JSP engine plus the new idswebdav directory plus the por## is the
port number, if any, of the JSP engine.

(An example WebDav client program that can be downloaded and used to send
requests to the IDSWebdavServlet is the Jakarta slide client program.)

You can also use Windows” Add Network Places wizard and add a new network place
using a URL with the following format:

http://boxname:port#/idswebdav/userid/

WRITING
PROCESSING
RULES IN
VISUAL BASIC

Structure

Writing Processing Rules in Visual Basic

In this topic, you will learn how to write rules for Docupresentment using Microsoft
Visual Basic (VB). Here you will learn how to:

* Use the VB rule wizard

* Add your rule to the DOCSERYV configuration file

* Use general debugging techniques

You will also find a general overview of server support for Visual Basic rules.

You can write rules for Docupresentment in Visual Basic 5 by building VB class files into
ActiveX DLLs. Using the DSI Visual Basic rule wizard and the steps outlined below, you
can easily put together a rule.

The DSI Visual Basic API includes a project in the samples with a sample rule, Fish.vpb,
which we’ll refer to in the discussion.

—> | IBASS:: StopFishing
IDS _ = DSICoRul —

— | IBASS:: GoFish

——> | [Trout:: StopTheBoat

'——— | ITrout:: GoFish

This illustration shows the general structure of Visual Basic rule processing. Notice that:
e All VB rule processing is routed through DSICoRul. DLL

* A VB rule DLL can have many rules within multiple classes in a single DLL

An ActiveX DLL created under VB has these naming levels:
DLL name
Class module name
Rule name
VB does not articulate COM interfaces.

Multiple class modules are permitted as are multiple functions within each class module.
As in C++, the function names are valid only when attached to their class—you can have
the same function name in multiple classes.

Visual Basic maps these names to COM in this manner:
ProgID= <DLL name>.<Class Module name>

The COM ProglD appears in the registry and is the most common human-readable
means by which a COM object is identified.

For instance, if you create a VB project Fish, with two classes, IBass and I'Trout, each with
two rules, the following will appear in the registry after you run regsvr32.exe Fish.DLL

ProgID Fish.IBass

79

Chapter 1

Using Docupresentment SDK

Installing the DST VB rule

80

wizard

Building rules with the
wizard

Interface: IBass
Methods: GoFish
StopFishing
ProgID Fish.ITrout
Interface: ITrout
Methods: GoFish
StopTheBoat

The DLL must be an ActiveX DLL and must contain at least one class module (.cls) with
the public functions to be called by IDS. Continuing the above example, there will be
these files in the ActiveX DLL project:

File Description
Fish.vpb Fish project
Fish.vpw Fish work space
IBass.cls IBass Class Module
ITrout.cls ITrout Class Module

To help you create VB rules, the system includes a VB add-in wizard. To install this
wizard, run this command:

addinst.exe

The VB rule wizard will either work with an existing project or it can start a new one for
you. Likewise, the wizard will create a new class for you or use one that’s already in an

To use, start the Visual Basic IDE and select Add-Ins, DSI Rule Wizard. The wizard
guides you through the process of creating a template DSI VB rule. After the wizard has
run, you will have at least the following:

* A Visual Basic project (.vbp)
* A Visual Basic workgroup (.vpw)
* A Visual Basic class file (.cls)

The code the rule wizard generates contains references to all possible messages that can
be sent to a DSI rule. Although the VB compiler will drop processing of case statements
that do not have any code, remove the unneeded case statements to make your code easier
to read.

Next, add in your business logic.

Compile your ActiveX DLL. When you compile the project, DLL, LIB, and EXP files
will be created. After you debug the project, you only need to copy the DLL to the IDS
directory and register it—if and only if the server is on a djfferent machine.

Troubleshooting

DOCSERYV configuration
file

Writing Processing Rules in Visual Basic

NOTE: If you ate developing on a system different from IDS, you must move your DLL
into the IDS directory.

If you are developing on the same system that is running IDS you should not move
the DLL without registering it.

Add your rule to the DOCSERV configuration file (see below).

Test your rule under the server using DSICoTB — the DSI Test Bed program.

If you are getting messages about not being able to find your rule, consider the following:

DSICoRul may not be able to find your DLL in the IDS directory. ActiveX DLLs must
be registered (they are COM objects). DSICoRul will register your DLL if you have not
already done so but to do this it must be able to find the DLL. If you don’t want your
DLL to be in the IDS directory, register it using this command:

regsvr32.exe <dllname>

DSICoRul first attempts to locate your rule in the system registry which contains a path
to your DLL. When you compile your rule DLL, VB automatically registers it for you. If
you then move the DLL, the registry will not be able to find it, which causes an error.
Therefore, if you are developing on the same system as IDS, do 7ot move your DLL to the
server directory.

If the DLL is in the server directory or you have registered it yourself and DSICoRul is
still complaining that it cannot find it, then it is time to start looking with the
OLEVIEW.EXE program. If you do not already have this program on your system, you
can find it on the MDSN CD or on Microsoft’s web site.

Start the OLEVIEW program and choose the File, View option. Enter Lib and point it
at your DLL. The CoClasses folder will contain the names of your classes and within
those, eventually, your methods (which are your rules). Check the program ID against the
DOCSERYV configuration file.

All VB rules will be specified as follows

<entry name="function” >5DSICoRUL->Invoke, COM OBJECT NAME-
>METHOD, OTHERPARMS< /entry>

Parameter Description

DSICoRul->Invoke> Invoke provides the interface between the server and Visual Basic.
When a rule is to be executed, IDS calls the Invoke entry point of
DISCoRUL.DLL with the remainder of the line as parameters:

COM_OBJECT_NAME a COM ProgID which flows naturally from VB and is composed of
the name of the name of the DLL and the VB class separated by a
period. The server user must register the COM object before
starting the server.

METHOD your VB rule

OTHERPARMS other parameters in an alphabetic string

81

Chapter 1

Using Docupresentment SDK

You must add at least two entries into the configuration file:
In the ReqType:INI control group, initialize DSICoRul by including this reference:

<section name="ReqType:THREADINI” >

<entry name="function”>DSICORUL->Init</entry>
</section>

Then add the specifications of your rule to the appropriate request. For instance, to add
the TestRule,

<section name="ReqType:SSS”>

<entry name="function” >DSICoRul-gt;Invoke, TestRule.ITestRule-
>HelloWorld</entrys>

</section>

Interface Each class module must contain at least one Public Function which will be the rule.
Functions must be used as Subs do not support return values, which all rules must
provide.

Each Public Function must conform to the following prototype:

Public Function GoFish (ByRef oDSI As DSICOAPI, _
ByVal hInstance As Long, _
ByVal pszParms As String, _
ByVal ulMsg As Long, _
ByVal ulOptions As Long) As Long

Parameter Description

ByRef oDSICoAPI as The DSICoAPI object will provide access to the DSI API
DSICoAPI ByVal hlnstance as long

ByVal iMsg As Long The server message,

dsiMSG_INIT
dsiMSG_RUNF
dsiMSG_RUNR

dsiMSG_TERM
ByVal sParms As String The parameter string passed in from the configuration file
ByVal ulOptions As Long Resetved for future use

The public function will return the appropriate dsiERR, usually dsiERR_SUCCESS. If
the message is unsupported, then dsiERR_MSGNOTFOUND must be returned to avoid
the overhead of subsequent calls.

Using global data methods You can use global methods with DSICo. This lets you store data in one location for use
with multiple IDS Servers. To do this, your configuration files must have identical settings
for the Path option:

82

DSI API support

Error handling

Registration

Testing with IDS

Writing Processing Rules in Visual Basic

<section name="ReqType:SSS”>

<entry name="function”>DSICoRul-gt;Invoke, TestRule.ITestRule-
>HelloWorld</entrys>

</sections>

NOTE: All servers that are required to share global data must have access to a single
global data folder.You can use these global methods:

Method Description

GlobalDataCreate Lets you create a global entry file which you can retrieve later. The data
is stored in the directory you define in the configuration file.

GlobalDataDestroy Lets you remove the global data entty associated with GUID.

GlobalDataSize Use this method to get the size of the data associated with GUID. You
can use this information to create a buffer before calling the
GlobalDataRead method.

GlobalDataRead Use this method to read the contents of the global data entry.

GlobalDataClean Use this method to remove expired files from the global data directory.

The DSICoAPI object is passed into the rule to provide easy access to the DSI API. If
you want to write to the DSI API directly, DSI.bas contains the function prototypes but
the advantages are few and the details that must be managed are many. For instance, VB
strings are not null terminated so all strings must have + Chr(0) at the end.

When IDS encounters fatal errors it passes those errors to your On Error routine, if there
is one. In general, your error routine should pass the fatal error to DSI for logging. Errors
which your program is normally expected to handle, like dsiERR_NOTFOUND
(ERR.RAISE), will be available as a return value from DSIcoAPI and should not be
passed to the server.

Visual Basic automatically registers your ActiveX DLL when you compile it. DSICoRul
will automatically register your ActiveX DLL if necessary, provided it can find the DLL
and the file name is well formed.

To test under IDS you must also have the Visual C++ 5.0 debugger. The general
procedure is detailed in Microsoft knowledge base article Q166275 (http://
suppott.microsoft.com/support/kb/articles/q166/2/75.asp). The following procedure
assumes you have read and understood this article.

Make sure your rule is compiled with Debug Info.

Bring up OLEVIEW.EXE, locate your rule DLL under “All Objects”. Click on the “+”
sign to make OLEVIEW display the supported interfaces. This loads your ActiveX DLL.

83

Chapter 1
Using Docupresentment SDK

Follow the procedure outlined in the knowledge base article. Since this is a DLL you must
specify DSRVW32.EXE as the debug target in the settings. Also take care to set the
working directory to the directory in which DSRVW32.EXE normally runs.

At this point you may use any program you like to initiate the transaction your rule will
process. If you don’t have an application of your own, DSICoTB lets you build an
attachment and hand it off to the server for processing.

Miscellaneous Notes

GUIDs GUIDs are 128-bit values used to identify COM objects globally. IDS handles VB rules
in such a way that you don’t have to worry about GUIDs in spite of the COM
documentation’s warnings that you should never change a GUID once it goes into
production.

State and threads ~ IDS can call yout tule on any thread—that’s what the instance handle is for—and the
thread state is held in the server. This means that your rules should be stafeless. Stateless
means that you don’t retain any information from one call to the next in the rule itself. If
you want to pass some value from one rule to another or from one thread to another, use
CreateValue and LocateValue.

Sharing violations ~ IDS holds a reference to your ActiveX DLL from the first time it is called until IDS is
shut down. Expect a sharing violation if you try to replace your rule DLL without first
shutting down the server.

Crashing the server ~ Remember, your rule will be running in-process. Loops (polling and bugs) can hang the
server or degrade performance. Memory leaks can exhaust server memory, given enough
time, so be careful.

Check the server log ~ Assuming the server survives the experience, many fatal errors, such as not being able to
load your rule, are logged to DUTTRACE.LOG, found in the IDS directory.

Performance If you are concerned about first-execution performance, such as how long it takes to load
your rule DLL the first time, change the DLL load address in your VB project from the
default. Using the default makes it likely there will be an expensive collision and relocation
at load time.

COM, ProgIDs, and VB The ProgID is a string that shows up in the registry to identify your classes. There are
many Win32 APIs that deal with ProgID and scripting languages, such as VB Script, use
it to locate and load ActiveX DLLs. DSI VB rule processing uses the ProgID you put into
the configuration file.

The ProgID is very important. Unless you get in the way, VB generates a ProgID from
the combination of DLL name and class name and DSI VB rule processing depends on
this convention. Unless you leave it blank, the project description in the VB project
properties will be used by VB to assign your ProgID. Therefore, it is important to leave
the Project Description field blank.

Example This example was created using the DSI rule wizard and can be found in the samples:

' GoFish - DSI rule

84

Writing Processing Rules in Visual Basic

' Arguments
! oDSI - object to access the DSI API
! pszParms - parameter string from the .INI file

! ulMsg - message number from the server. See case statement below

! ulOptions - reserved for future use

' Generated by the DSI Rule Wizard version 1.0
Public Function GoFish (ByRef oDSI As DSICOAPI,
ByVal hInstance As Long,
ByVal pszParms As String,
ByVal ulMsg As DSI_MSG,
ByVal ulOptions As Long) As Long
ByVal hInstance As Long

On Error GoTo ErrorHandler

' TO DO: for each of the messasges you support, add logic to the

' case statement. For the messages you don't support, delete

' the entire case statement so processing falls through to the else

' TO DO: Include your rule in the docserv.ini. The syntax is

! function = DSICoORul->Invoke,Fish.IBass->GoFish

GoFish = dsiSUCCESS
Select Case ulMsg

Case dsiMSGRUNF ' Forward (ie, inbound) logic

oDSI.AddAttachVar hInstance, dsiOUTPUTQUEUE, "MyStatistics",

"Honest !"

Dim sRecName As String

oDSI.AddAttachRec hInstance, dsiOUTPUTQUEUE, "Libraries",
sRecName

oDSI.AddToAttachRec hInstance, dsiOUTPUTQUEUE, sRecName,
"Name" , "FiSh"

oDSI.AddToAttachRec hInstance, dsiOUTPUTQUEUE, sRecName,
I|Datel| , l|datel|

oDSI.AddToAttachRec hInstance, dsiOUTPUTQUEUE, sRecName,
"Version", "1.0"

Case Else ' We don't support the other messages
GoFish = dsiMSGNOTFOUND
End Select

Exit Function

ErrorHandler:

' This error handler will pass the error on to the error handling

routine in the caller
' You should not display messages in a DSICo Rule

85

Chapter 1

Using Docupresentment SDK

86

Err.Raise Err.Number, "GoFish: " + Err.Source,

+ " " + Err.Description
GoFish = dsiRULECRASH

End Function

SAMPLES

"Msg=" + Str (ulMsg)

Docupresentment includes several samples you can use. These include:

e DSICoTB on page 86

* DSITest on page 87

¢ DSIDiag on page 89

* DSIDiag.exe on page 89
* Debug.ASP on page 90

* DSICoSAM on page 91

* DSICoExV on page 92

¢ DSICoEx.cpp on page 93

* DSICoAdm and ADMAsp on page 94

* DSI COM Objects under ASP on page 94

DSICoTB

DSICoTB—the Visual Basic Test Bed—Ilets you test customer rules. In addition to
executing the server administration requests, you can build your own requests and

attachment lists.

To use the custom attachment list, select the Roll Your Own button and then enter the

request code you want.

DSICoTB - DSICo Test Bed
Fle Help

Log Copy to Clpboad

[_[O[x]

Output Copy to Clipboard

ntSession
Submi

config sampeo

USERID USERID

FASSWORD FASSWORD
GellueuRecord

GethitachmertAl

S

Execute

Rl Your Own

Exit

SR

I Tioce

corfig _sampeo
PASSWORD PASSWOFD
REPORTTD FORMAKER
RESULTS SUCCESS
FIGHTS §

SECURITY

4l results of pou test_ncluding the attachmenty)

The grid on the left can be filled with your name/value pairs.

Writing Processing Rules in Visual Basic

Click Execute to send your attachment to the server and return to the main form, which
displays the calls to Visual Basic and the results.

w. Transaction

Transaction name/value pairs RequestCode

M [=] E3

Name [value

LGN -

Confiy § sampeo
USERID USERID

PASSWORD PASSWORD

Erecute

Cancel

Done

This sample includes these files:

File Description
DSICoTB.frm VB form
DSICoTTr.frm VB form layout
DSICoTB.frx VB form layout
DSICoTB.vbp VB project
DSICoTB.vbw VB work space
About.frm VB form
About.frx VB form layout
DSICoTB.bas common data
DSITest

This version includes the DSITEST program which you can use to test sending files to
IDS and receiving files from IDS.

dsitestw /time /waitonlast / display /nowait /regtype /msg /notrans
/noattachs /norcvs /atcfile /rcvfile

Parameter Description

Time Displays total seconds for all operations.
Do not include NoRCVs, ATCFile, or RCVFile with this parameter because
those parameters contain user prompts that affect the time.

WaitOnLast Wiaits on the last message before capturing the ending time.

87

Chapter 1

Using Docupresentment SDK

Parameter

Display

NoWait
ReqType
MSG
NoTrans

NoAttchs

NoRCVs

ATCFile

RCVFile

Description

Displays the resulting DSI Soap XML message that contains the name/value
pairs for each transaction.

Do not wait for the server before adding next message to queue.

The IDS request type. The default is SSS.

The name of the file that contains the request name/value paits.

The total number of transactions to process.

The total number of file attachments to send per transaction using the
DSISendFile APIL If you include this parameter, the program expects an input
file named SENDFILES.MSG that contains the information for each
attachment to send.

The total number of file attachments to receive per transaction via the
DSIReceiveFile API. If you include this parameter, the program expects an
input file named RECEIVEFILES.MSG that contains the information for each

attachment to receive.

A single file attachment to send via the DSISendFile API. The program
prompts the user for the attachment ID, file name, and encoding type.

A single file attachment to receive via the DSIReceiveFile API. The program
prompts the user for the attachment ID and file name.

Neither the case nor the order of the parameters is important.

You can include these parameters on the command line or place them in an input file
named PARAMS.MSG. On the command line, separate parametets with slashes (/),
dashes (), ot spaces:

DSITESTW /time=yes
DSITESTW -time=yes
DSITESTW time=yes

If you include the parameters in the PARAMS.MSG file, format them as shown in this
example of the PARAMS.MSG file:

time=yes

waitonlast=no

display=yes

nowait=no

reqgtype=LGN

notrans=50

msg=prt.msg

noattchs=0

norcvs=0

atcfile=yes

rcviile=yes

Here is an example of how you could execute this program from the command line:

dsitesw time=yes display=yes notrans=2 reqtype=prt msg=c:\prt.msg

Here is an example of the PRT.MSG file:

88

Writing Processing Rules in Visual Basic

USERID=FORMAKER

Arckey=00345A0D5600000008

regtype=PRT

config=RPEX1

company=1199999

lob=Lee

policynum=Roswell, Ga 30015

rundate=020698
printpath=\10.8.10.137\Websrvr client\html

If the NoAttchs parameter is greater than zero, the program expects an input file named
SENDFILES.MSG which contains a list of the attachments to send. Use either NoAttchs
or ATCFile, but not both.

Use the ATCFile parameter when you only want to send one file attachment. The
ATCFile parameter uses command line parameters for the attachment ID, file name, and

encoding type.
Here is an example of the ATTACHMENTS.MSG file:

name=RPEX1INT
file=X:\IDS\AddlSrvrs\rpexl.ini
type=TEXT

name=TESTPDF

file=X:\websrvr client\html\test.pdf
type=BINARY

If the NoCRVs parameter is greater than zero, the program expects an input file named
RECEIVEFILES.MSG, which contains a list of attachments to receive. Include either
NoCRVs or RCVFile, but not both.

Use the RCVFile parameter when you only want to receive one attachment. The RCVFile
parameter uses command line parameters for the attachment ID and file name.

Here is an example of the RECEIVEFILES.MSG file:

name=PDFFILELl
file=X:\\IDS\\AddlSrvrs\\Output\\filel.pdf
name=PDFFILE2
file=X:\\IDS\\AddlSrvrs\\Output\\file2.pdf

If you omit the request type from the command line or the PARAMS.MSG file, the
program uses SSS as the default request type.

DSIDiag

DSIDiag consists of two samples, an application written Visual Basic (VB), DSIDiag.exe,
and an Active Server Page (ASP), Debug.ASP.

DSIDiag.exe

DSIDiag interrogates the DSI diagnostic interface to display key information, including
the current directory and the location of the queue files. You can also print the
information. You do not have to have IDS running to get this information.

The content and layout of the information displayed is context-sensitive and can change
with new system versions and updates. Refer to your latest documentation or read.me
updates for information on how to interpret the content.

&9

Chapter 1

Using Docupresentment SDK

90

Setup

Execution

Setup

Execution

Run DSIDiag from the same directory as your client application or web server to get
accurate information.

DSIDiag displays diagnostic information as soon as you start it. You can refresh the
information, print it, or copy it to the clipboard.

DSI Diagnostics [-[O]x]

DacuCarp Server DumpDebualnfo Fri dug 14 13:32:30 1998 a

Running on the Client

Cunent working directary: F:\nt01 34 nt1 00VD5 1 DiaghW32EXE

Cunent N cartest beging -

| REQUESTA] Befiesh
hame = g \dsiserver\requestq
[RESULTE]
hame = ghdsiserver\resultq
Brint

Cunent IN| contest ends -~
Input Bueue information. Copyto
. Clipboard
Using queue handler: DCB
Queue name: q\dsiserverviesullg
Queve fields
Empty attachment list Exit

This sample includes these files:

File Description

DSIDiag.frm VB form source file
DSIDiag. frx VB form layout file
DSIDiag.vbp VB IDE project file

DSIDiag.vbw VB IDE work space file

Debug.ASP

This Active Server Page recovers the same information as DSIDiag using your browser.
Debug.asp references an ASP ActiveX component that makes the necessary calls to the
DSI library.

The content and layout of the information displayed is context-sensitive and can change
with new system versions and updates. Refer to your latest documentation or read.me
updates for information on how to interpret the content.

The IDS setup routine places the DLL and Debug.ASP files in their proper locations.

Select DEBUG.ASP using your browser. First the system PATH appears, followed by the
debug information.

Execution

Writing Processing Rules in Visual Basic

Internet Document Server Debug Info

PATH=
CAWINNT\system 32, C\WINNT,C:MSSQLIBINMN, C\MTX, ¢ \program files\devstudio\sharedide\bintide; c \program
il ciprogram fil ¢ util, CAWINDITY \ENGLISH;Ddocserv;Z:

\eltestADLLLC:DecSery

DocuCorp Server DumpDebuglafo Fri Aug 14 13:2903 1958
Ruring on the Clint

Current working dircctory: CAWINNTsystem32

Current TNT context beging -------------------

[REQUESTQ]
name = didosservirequestq
[RESULTQ |

name = d\docservireslty

Current INT context ends -------------------
Tnput Ques information.

o ||

DSICoSAM

DSICoSAM is a Visual Basic application which contains much of the sample code that
appears in the documentation. This makes it a good source of working code you can cut-
and-paste into applications you build. In addition, you can use it as a guide by taking a
working program and modifying it.

There are two list boxes to choose from before you run the test. The first, Choose Object,

chooses the COM object to test, such as DSICoAPI; the second chooses the individual
method to test.

DSI Diagnostics A=l

DocuCorp Server DumpD ebualnfo Fri dug 14 13:32:30 1938 N
Running on the Client

Current working directony: F:\nt01 35Int1004DSIDiag i 32EXE

Current INI contest beging ---eeeeeeee

|REQUESTE] Retresh
name = g \dsiserver\iequesty
[RESULTY]
hame = g \dsizerverviesultg X
Biint
Curert INI contest gnds -eeeeerees o
Irput Qugue informeatian. Copyto
. Cliphoard
Using queue hander: DCB
Qugue name: g \dsiservervesulty
Queue fields:
Ermply attachment list Exit

2l

To execute the test (or all the tests) select the appropriate button. The left pane shows a
log of the activity, the right the output or results. If you want to retain the log or output,
you can copy both panes to the clipboard by pressing their respective Copy To Clipboard
buttons.

Of course, IDS must be running and configured. The IDS setup routine configures IDS
for you, which includes the following:

< ReqType:INI >
Function = DSICoRul->Init
.< ReqType:ECH >
Function = atcw32->ATCLoadAttachment

91

Chapter 1

Using Docupresentment SDK

Function = DSICoRul->Invoke,Docucorp_ IDS_ SAMSupp.CSAMSupp->Echo
Function = atcw32->ATCUnloadAttachment

This sample includes these files:

File

Description

csamapi.cls
csamsupp.cls

csamtobj.cls

Tests class file
ECH (Echo) rule class file

Test object used in some tests. Has no code.

DSICoSAM.frm DSICoSAM form source code
DSICoSAM.frx DSICoSAM layout

Dsicosam.vbp DSICoSAM VB project

DSICOSAM.VBW DSICoSAM VB work space

samsupp.vbp ECH (Echo) rule VB project
SAMSUPP.VBW CH (Echo) rule VB work space

samtobj.vbp Test object used in some tests; VB project
SAMTOBJ.VBW Test object used in some tests; VB work space
DSICoExV

DSICoExV is the Visual Basic version of DSIEx.c, duplicating the functionality of DSIEx
and more-or-less duplicating the logic. Instead of calling the DSI API directly, it calls the
equivalent Visual Basic COM objects.

NOTE: Although there is a simpler way under Visual Basic to accomplish the
functionality using, for instance, InitSession instead of Init, the direct calls were
used to make easier the comparison with DSIEx.c.

The application, after initializing COM, establishes a connection with IDS and places the
selected IDS Server administration command (such as SSS) in the queue. Each Visual
Basic call is logged in the left pane and the output in the right pane.

Execution Run DSICoExV.exe. Select the server administration command to run. SSS, the server

statistics, is set up as the default.

92

Setup:

Execution:

Writing Processing Rules in Visual Basic

DSICEsx - DSICo everciser AR
Loy o o Ciboad Output Cop tolnbrad
[PtacCusalet H TEFAFIES AT InZ6 1658 B
et Cusalent LEFAIESIHAME b
Aot Cusallet LGRAFESITNE 161731
Aot Cusallest LERAFIESVERSION JtEn)
[Attact Cursorllest LIBRARIES4.DATE Jun261438
[AttackCurserllest LIBRARIESA NAME. 1343
Aachusalen UBRARESATNE 160712
Atachusale LBRAFIESAERSON o
tactCusaien UERARIESS DATE 261558
tactCusatlet O A oo
et Cusalent JEARESH TNE fi)
et Cusalent LERAFIES5 RSN e
et Cusalent LEFAFIESE DATE 3018
Aot Cusallet Beote | |LIBRAFIESS IAVE it
Aot Cusallest 5 LGRFESSTNE 112422
[Attact Cursorllest LIBRARIESBYERSION 100013.001
[AttackCurserllest LIBRARIES7.DATE Jun231438
Aachusalen Bt | |LBRARIESTAAE 5]
Atachusale UBRARESTINE 17106
tactCusaien LBRAFIESTVERSON o
tactCusatlet LERAFIESEDATE JinZ61558
et Cusalent LERAFIESEHANE R
et Cusalent LBRRESETNE 17523
et Cusalent LERAFIESEVERSION JtEn]
Aot Cusallet LERAFIES3DATE 3018
Aot Cusallest LERAIESHAE
[Attact Cursorllest LIBRARIESSTIME 11:3619
[AttackCurserllest LIBRARIESIYERSION 100013001
Aachusallen RESARTCONT 0
Cosedteckouse RESUL'S SlocEss
Temcesin SUCCESSOQUNT 3 L
UFTHE Fidug 14 T304 1958 I

This sample includes these files:

File Description
DSICoExV.frm VB form
DSICoExV. frx VB form layout
DSICoExV.vbp VB project
DSICoExV.vbw VB work space

DSICoEx.cpp

DSICoEx is the Visual Basic version of DSIEx.c. DSICoEx duplicates the functionality
of DSIEx and, essentially, duplicates its logic.

Instead of calling the DSI API directly, DSICoEx calls the equivalent Visual Basic COM
objects. Although there is a simpler way under Visual Basic to accomplish this
functionality—for instance by using InitSession instead of Init—the direct calls were used
to make easier the comparison with DSIEx.c.

The application, after initializing COM, establishes a connection with IDS and places
IDSIDS administration command S5 in the queue. The response attachment is written
in its entirety to stdout.

Visual Basic must be installed on the system. To use, the VC project file %DSICO% must
point to the head of the DSICo directory tree. To compile, load DSICoEx.dsp into VC
and compile.

DSICoEx.exe is included in the installation. DSICoEx is a console application and should
be run from the command line. It outputs to sysout. DSICo.dll should be registered as
part of the installation.

This sample includes these files:

File Description

DSICoEx.cpp source files

93

Chapter 1

Using Docupresentment SDK

94

Setup

File Description

DSICoEx.dsp VC project file

Visual Basic files used:

File Description

DSICo.hpp Visual Basic specific macros

DSICo.tlb Visual Basic type library created by the Visual Basic MIDL

DSICoAdm and ADMAsp

DSICoADM and ADMAsp are versions of the same function, which interrogates IDS
Server statistics.

* DSICoADM is a Visual Basic application which interrogates IDS statistics and
presents them in a Visual Basic grid.

* ADMAsp is an Active Server Page which does the same thing through an ActiveX
component and presents IDS statistics on the browser.

These files are included in this sample:

File Description
DSICoADM.frm VB form

DSICoADM. frx VB form layout
DSICoADM.vbp VB project

DSICoADM.vbw VB work space

ADMASsp.vbp VB project

ADMAsp.vbw VB work space

SSS.cls ASP ActiveX component class

DSI COM Objects under ASP

This sample shows you how to use DSI COM objects and Visual Basic to create ActiveX
DLLs that run under the Microsoft Internet Information Server and Active Server Page
(ASP) to interface with Oracle Insurance's Docupresentment.

Load the projectinto the VB IDE and select the Make AdmASP.dll option. You may have
to shut down the IIS and IIS administration to unlock the DLL.

Move the ADMIN.ASP and DOCC.BMP files into the wwwroot directory. Once you
have compiled the project, you do not have to relocate or register the DLL.

Execution

Writing Processing Rules in Visual Basic

Point your web browser to Admin.asp. The server statistics appear. Click Server Statistics

to refresh the display with new values.

This sample includes these files:

File Description
AdmASP.vbp Project
AdmASP.vpw Work space
SSS.cls Class file
Admin.asp ASP script file
docc.bmp Docucorp logo

95

Chapter 1

Using Docupresentment SDK

96

REFERENCING ATTACHMENT VARIABLES

This feature lets you reference the attachment variable from a configuration file. You can
use this technique with the DAP.INI, CONFIG.INI and DOCSERV. XML files.

NOTE: This capability was previously added for the ATCSendFile and ATCReceiveFile
rules. With version 2.0, this capability should work for all requests and rules in
DOCSERV. XML, as well as the other sections imported from a DOCSERV.INI
file.

Here is an example of how you reference an attachment variable via a configuration file
option:
< Group >
Option = ~GetAttach VARNAME, INPUT

To reference a message variable in a configuration XML file use the following syntax:

<section name="Group">
<entry name="Option">~GetAttach VARNAME, INPUT</entrys>
</section>

The VARNAME is the name of the variable. INPUT or OUTPUT specify which queue
to search for this value. For example, assume the attachment variable PRINTERTYPE
specifies the printer type to use for output. IDS rules use this configuration XML option
to determine the printer type (<Print>, PrtType =). In this case the XML can be modified
to read:

<section name="Print"s>
<entry name="PrtType">~GetAttach PRINTERTYPE, INPUT</entrys>
</section>

So when the rule gets a configuration option the value will equal the value of the input
queue variable PRINTERTYPE.

When the rule gets a configuration XML option, the value equals the value of attachment
variable PRINTERTYPE.

You can also use this to dynamically specify the file extension for the file created by
ATCReceiveFile rule when you want to import that file into Documanage. You can do
this as shown here in the DOCSERV.XML file:
<entry name="function"s>atcw32->ATCReceiveFile, IMPORTFILE, V2IMP, *.
~GetAttach FILETYPE, INPUT,KEEP</entry>
The ATCReceiveFile rule finds the attachment variable FILETYPE and uses its value as
the file extension of the generated file name. Note that there are no spaces between the
asterisk and period (*.) and the tilde (~) prefacing GezAztach. If you include a space there,
it will also be in the file extension.

Chapter 2
DSI C APIs

Use this chapter as a reference to the DSI C API
functions you can use to create applications to interface
with Oracle Insurance's Docupresentment.

This information will help you build either a proprietary
client interface or a custom set of rules which will
interact with Docupresentment.

The APIs documented on the following pages provide a
large number of services, including...

* Interprocess communication

e DPersistent variables

e Accessible across function calls
. Error reporting

Several general purpose utility functions are also
available.

NOTE: The DSI API includes multiple interfaces
(APIs). This lets you use the language you
choose to build custom rules and applications.
You will also find sample clients written in each
language, which you can use as a reference as
you build your own solution.

97

Chapter 2

DSI C APIs
C API Here is a list of DSI C APIs, grouped by functional area. Following this list is a discussion
of each function, listed in alphabetical order.
FUNCTIONS
Client functions ~ Use these functions for writing a client program:
e DSIAddToQueue on page 107
* DSICopyQRecord on page 136
* DSIFindInQueue on page 144
* DSIGetFirstFromQueue on page 145
* DSIGetSOAPMessage on page 146
* DSIGetSOAPMessageSize on page 147
¢ DSIGetQError on page 148
* DSIGetQField on page 149
* DSIGetQFieldLength on page 151
* DSISetQField on page 173
* DSIGetQueueRec on page 152
e DSIInit on page 154
e DSllInitlnstance on page 155
* DSIInitQueue on page 156
* DSIParseAttachment on page 161
* DSIStoreAttachment on page 174
e DSITerm on page 175
e DSITermlnstance on page 176
* DSITermQueue on page 177
* LDAPGetErrorCode on page 178
* LDAPGetErrorMessage on page 179
* LDAPInit on page 180
* LDAPSearchDirectory on page 185
* LDAPTerm on page 186
Server functions ~ Use these functions for writing rules on the server:
* DSIErrorMessage on page 142
* DSIErrorMsg on page 143
Common functions You can use these functions for both a client or a server:

98

DSIAddAttachRec on page 101
DSIAddAttachVar on page 102
DSIAddToAttachRec on page 104
DSIAddToQueue on page 107
DSIAttachCursorFirst on page 108
DSIAttachCursorLast on page 112
DSIAttachCursorName on page 116
DSIAttachCursorNext on page 118
DSIAttachCursorPrev on page 122
DSIAttachCursorValue on page 126
DSICacheFile on page 133
DSICloseAttachCursor on page 134
DSICopyAttachVars on page 135
DSICreateValue on page 137
DSIDeleteAttachVar on page 138
DSIDestroyValue on page 139
DSIGetUniqueString on page 153
DSILocateAttachVar on page 157
DSILocateValue on page 159
DSIOpenAttachCursor on page 160
DSIQueryValueSize on page 163
DSIReceiveFile on page 164
DSIReceiveFileAsBuffer on page 165
DSIReceivelileAsBufferSize on page 167
DSIRowset2XML on page 169
DSIRowset2XMLSize on page 170
DSISendBuffer on page 171
DSISendFile on page 172
DSISetQField on page 173
DSIStoreAttachment on page 174
DSITerm on page 175

DSITermlInstance on page 176

C API Functions

99

Chapter 2

DSI C APIs

e DSITermQueue on page 177

100

DSIAddAttachRec

DSIAddAttachRec

Use this function to create a stem variable in the attachment list. This function returns the

new record name with its sequence number.

Syntax long DSIAddAttachRec (DSIHANDLE hInstance, long iQueue, char*
szRecName, char* szRecID, size t cbReclID) ;

Parameters
Parameter Description
hlnstance handle to instance returned by DSIInitInstance
iQueue queue attachment to which record should be added
szRecName name of stem variable to be added
szRecID buffer in which to store record name with sequence number. The calling
function should pass this to DSIAddToAttachRec

cbRecID size of szZRecID parameter

Return values
Value Description
DSIERR_SUCCESS no error

DSIERR_INVPARM invalid parameter

DSIERR._ MEMORY out of memory

DSIERR_UNKNOWN unknown error

Example Here is an example:

char szRecName [DSI_MAXNAMESIZE] ;
DSIAddAttachRec (hInstance,

DSI OUTPUTQUEUE,
"Employee",

szRecName,

sizeof (szRecName));

DSIAddToAttachRec(..., szRecName, ...);

Seealso DSIAddToAttachRec on page 104

101

Chapter 2

DSI C APIs

DSIAddAttachVar

Use this function to add an attachment variable. This function will overwrite the variable,
if one exists, with the new value.

After you use this function, you must next call DSIStoreAttachment.

Syntax long DSIAddAttachVar (DSIHANDLE hInstance, long iQueue, char* szName,
char* szValue) ;

Parameters

Parameter Description

hlnstance handle to instance returned by DSIInitInstance

iQueue queue attachment to which variable should be added

szName name of the variable to be added

szValue data to be associated with attachment vatiable
Return values

Value Description

DSIERR_SUCCESS no error
DSIERR_INVPARM invalid parameter
DSIERR_MEMORY out of memory

DSIERR_UNKNOWN unknown error

Example Hete is an example:

DSIAddAttachVar (hInstance, DSI_OUTPUTQUEUE, "RESULTS", "SUCCESS”);

See also DSILocateAttachVar on page 157
DSIDeleteAttachVar on page 138

DSIStoreAttachment on page 174

102

DSIAddAttachVarEx

Use this function to add an attachment variable. This function will overwrite the variable,

Syntax

Parameters

Return values

Example

See also

DSIAddAttachVarEx

if one exists, with the new value.

After you use this function, you must next call DSIStoreAttachment.

long DSIAddAttachVarEx (DSIHANDLE hdsi, long iQueue, char*
szName, char* szValue, long IEncoding) ;

Parameter Description

hlnstance handle to instance returned by DSIInitInstance

encoding DSIENCODING_SINGLE_BYTE or DSIENCODING_UTF_S8.
DSIENCODING_SINGLE_BYTE uses code page 1252 encoding, similar to
ASCII but is compatible with Documaker handles Euro characters and othets.
DSIENCODING_UTF_8 translates Unicode into a format compatible with
null-terminated C language strings.

iQueue queue attachment to which vatiable should be added
szName name of the variable to be added

szValue data to be associated with attachment variable
Value Description

DSIERR_SUCCESS
DSIERR_INVPARM
DSIERR_MEMORY

DSIERR_UNKNOWN

no error
invalid parameter
out of memory

unknown error

Here is an example:

DSIAddAttachVarEx (hInstance, DSI_OUTPUTQUEUE, "RESULTS", "SUCCESS”
DSIENCODING UTF_8) ;

DSILocateAttachVar on page 157

DSIDeleteAttachVar on page 138

DSIStoreAttachment on page 174

103

Chapter 2

DSI C APIs

DSIAddToAttachRec

Use this function to append a value to a stem variable.

Syniax long DSIAddToAttachRec (DSIHANDLE hInstance, long iQueue, char*
szRecName, char* szVarName, char* szValue) ;
Parameters
Parameter Description
hlnstance handle to instance returned by DSIInitInstance
iQueue queue attachment to which value should be added
szRecName record to which vatiable should be added, generally returned by the
DSTAddAttachRec function
szVarName name of field within record
szValue data to be associated with variable
Return values
Value Description
DSIERR_SUCCESS no error
DSIERR_INVPARM invalid parameter
DSIERR_ MEMORY out of memory

DSIERR_UNKNOWN unknown etror

Example Here is an example:

char szRecName [DSI_MAXNAMESIZE];
DSIAddAttachRec (hInstance,

DSI_ OUTPUTQUEUE,
"Employee",

szRecName,

sizeof (szRecName)) ;

DSIAddToAttachRec(hInstance,

DSI_OUTPUTQUEUE,
szRecName,

"Name",

"H. R. Pufnstuf");

DSIAddToAttachRec(hInstance,

DSI_OUTPUTQUEUE,
szRecName,
"DependentName",
"Jimmy") ;

See also DSIAddAttachRec on page 101

104

DSIAddToAttachRecEx

DSIAddToAttachRecEx

Use this function to append a value to a stem variable.

Syntax long DSIAddToAttachRecEx (DSIHANDLE hdsi, long iQueue, char*
szRecName, char* szFieldName, char* szValue, long IEncoding) ;

Parameters

Parameter Description

encoding DSIENCODING_SINGLE_BYTE or DSIENCODING_UTF_S.
DSIENCODING_SINGLE_BYTE uses code page 1252 encoding, similar to
ASCII but is compatible with Documaker handles Euro characters and others.
DSIENCODING_UTE_S8 translates Unicode into a format compatible with
null-terminated C language strings.

hlnstance handle to instance returned by DSIInitInstance
iQueue queue attachment to which value should be added
szRecName record to which variable should be added, generally returned by the

DSIAddAttachRec function

szVarName name of field within record

szValue data to be associated with variable
Return values

Value Description

DSIERR_SUCCESS no error

DSIERR_INVPARM invalid parameter
DSIERR._ MEMORY out of memory

DSIERR_UNKNOWN unknown error

Example Here is an example:

char szRecName [DSI_MAXNAMESIZE] ;

DSIAddAttachRec (hInstance,
DSI_OUTPUTQUEUE,
"Employee",
szRecName,
sizeof (szRecName));
DSIAddToAttachRecEx(hInstance,
DSI OUTPUTQUEUE,
szRecName,
"Name" ,
"H. R. Pufnstuf",
DSIENCODING UTF_8) ;
DSIAddToAttachRecEx(hInstance,
DSI_OUTPUTQUEUE,
szRecName,
"DependentName",
n Jimmy"

DSIENCODING UTF_8) ;

105

Chapter 2

DSI C APIs

See also DSIAddAttachRec on page 101

106

DSIAddToQueue

DSIAddToQueue

Use this function to add a record to a queue.
Syntax long DSIAddToQueue (DSIHANDLE hInstance, long iQueue) ;

Parameters

Parameter Description

hlnstance handle to instance teturned by DSIInitInstance
iQueue Queue on which to post

Return values
Value Description
DSIERR_SUCCESS no error
DSIERR_INVPARM invalid parameter
DSIERR_ MEMORY out of memory

DSIERR_NOTFOUND no more elements in the list

DSIERR_UNKNOWN unknown etrror

DSIERR_QERR uninitialized queue
DSIERR_TIOERR end of file
Example Here is an example:

DSIAddToQueue (hInstance, DSI_OUTPUTQUEUE) ;

107

Chapter 2
DSI C APIs

DSIAttachCursorFirst

Use this function to retrieve the first element from the attachment list and get the cursor.

Syntax long DSIAttachCursorFirst (DSIHANDLE hCursor, char* pszName, size t
cbName, char* pszValue, size_t cbvValue);

Parameters
Parameter Description
hCursor handle to cursor initialized by prior call to DSIOpenAttchCursor
pszName buffer in which to retrieve the name of the first element of the attachment
cbName size of buffer in pszName parameter
pszValue buffer in which to retrieve the value of the first element of the attachment
cbValue size of buffer in pszValue parameter

NOTE: The parameters pszName and pszValue will be zero-filled to the length specified

in cbName and cbValue.
Return values
Value Description
DSIERR_SUCCESS no error

DSIERR_INVPARM invalid parameter

DSIERR_NOTFOUND empty list

Example Here is an example:

DSIHANDLE hApp;

DSIHANDLE hInstance;

DSIHANDLE hCursor;

char szName [DSI_MAXNAMESIZE];
char szValue [DSI_MAXVALUESIZE 1;

hApp = DSIInit();

hInstance = DSIInitInstance(hApp);

hCursor = DSIOpenAttachCursor(hInstance,
DSI_INPUTQUEUE

if (DSIAttachCursorFirst(hCursor,

szName,

sizeof (szName) ,

szValue,

sizeof (szValue)) == DSIERR SUCCESS)
printf ("The first element is: %s = %$s", szName, szValue);

}

108

See also

DSIAttachCursorNext on page 118
DSIAttachCursorLast on page 112
DSIAttachCursorPrev on page 122
DSICloseAttachCursor on page 134

DSIParseAttachment on page 161

DSIAttachCursorFirst

109

Chapter 2
DSI C APIs

DSIAttachCursorFirstEx

Use this function to retrieve the first element from the attachment list and get the cursor.

Syntax long DSIAttachCursorFirstEx (DSIHANDLE hCursor, char* pszName, size t
cbName, char* pszValue, size_t cbValue, long IEncoding) ;

Parameters

Parameter Description

encoding DSIENCODING_SINGLE_BYTE or DSIENCODING_UTF_S.
DSIENCODING_SINGLE_BYTE uses code page 1252 encoding, similar to
ASCII but is compatible with Documaker handles Euro characters and others.
DSIENCODING_UTEF_S8 translates Unicode into a format compatible with
null-terminated C language strings.

hCursor handle to cursor initialized by prior call to DSIOpenAttchCursor
pszName buffer in which to retrieve the name of the first element of the attachment
cbName size of buffer in pszName parameter

pszValue buffer in which to retrieve the value of the first element of the attachment
cbValue size of buffer in pszValue parameter

NOTE: The parameters pszName and pszValue will be zero-filled to the length specified

in cbName and cbValue.
Return values
Value Description
DSIERR_SUCCESS no error
DSIERR_INVPARM invalid parameter

DSIERR_NOTFOUND empty list

Example Hete is an example:

DSIHANDLE hApp;

DSIHANDLE hInstance;

DSIHANDLE hCursor;

char szName [DSI_MAXNAMESIZE];
char szValue [DSI_MAXVALUESIZE];

hApp = DSIInit();

hInstance = DSIInitInstance(hApp);

hCursor = DSIOpenAttachCursor(hInstance,
DSI_INPUTQUEUE) ;

110

DSIAttachCursorFirstEx

if (DSIAttachCursorFirstEx(hCursor,
szName,
sizeof (szName) ,
szValue,
sizeof (szValue)

DSIENCODING UTF_8) == DSIERR_SUCCESS)

{

printf ("The first element is: %s = %s", szName, szValue);

}

See also DSIAttachCursorNext on page 118
DSIAttachCursorLast on page 112
DSIAttachCursorPrev on page 122
DSICloseAttachCursor on page 134

DSIParseAttachment on page 161

111

Chapter 2

DSI C APIs

DSIAttachCursorLast

Use this function to retrieve the last element from the attachment list.

Syntax long DSIAttachCursorLast (DSIHANDLE hCursor, char* pszName, size t
cbName, char* pszValue, size_t cbvValue);

Parameters
Parameter Description
hCursor handle to attachment cursor initialized by a prior call to DSIOpenAttachCursor
pszName buffer in which to retrieve the name of the first element of the attachment
cbName size of buffer in pszName parameter
pszValue buffer in which to retrieve the value of the first element of the attachment
cbValue size of buffer in pszValue parameter

NOTE: The parameters pszName and pszValue will be zero-filled to the length specified

in cbName and cbValue.
Return values
Value Description
DSIERR_SUCCESS no error
DSIERR_INVPARM invalid parameter

DSIERR_NOTFOUND empty list

DSIERR_UNKNOWN unknown etror

Example Here is an example:
DSIHANDLE hApp;
DSIHANDLE hInstance;
DSIHANDLE hCursor;

char szName [DSI_MAXNAMESIZE 1;
char szValue [DSI_MAXVALUESIZE];

See also DSIOpenAttachCursor on page 160
DSICloseAttachCursor on page 134
DSIAttachCursorFirst on page 108
DSIAttachCursorNext on page 118
DSIAttachCursorPrev on page 122
DSIParseAttachment on page 161

112

DSIAttachCursorLast

hApp = DSIInit();
hInstance = DSIInitInstance(hApp);
hCursor = DSIOpenAttachCursor(hInstance,

DSI INPUTQUEUE) ;
if (hCursor)

{
if (DSIAttachCursorLast (hCursor,
szName,
sizeof (szName) ,
szValue,
sizeof (szValue)) == DSIERR _ SUCCESS)

printf ("The last element is %s=%s", szName,szValue);
while(DSIAttachCursorPrev(hCursor,
szName,
sizeof (szName) ,
szValue,
sizeof (szvValue))
== DSIERR_SUCCESS)
{

printf ("The previous element is %$s=%s", szName,szValue);

}

113

Chapter 2

DSI C APIs

DSIAttachCursorLastEx

Use this function to retrieve the last element from the attachment list.

Syntax long DSIAttachCursorLastEx (DSIHANDLE hCursor, char* pszName, size t
cbName, char* pszValue, size_t cbValue, long IEncoding) ;

Parameters

Parameter Description

encoding DSIENCODING_SINGLE_BYTE or DSIENCODING_UTF_S.
DSIENCODING_SINGLE_BYTE uses code page 1252 encoding, similar to
ASCII but is compatible with Documaker handles Euro characters and others.
DSIENCODING_UTEF_S8 translates Unicode into a format compatible with
null-terminated C language strings.

hCursor handle to attachment cursor initialized by a prior call to DSIOpenAttachCursor
pszName buffer in which to retrieve the name of the first element of the attachment
cbName size of buffer in pszName parameter

pszValue buffer in which to retrieve the value of the first element of the attachment
cbValue size of buffer in pszValue parameter

NOTE: The parameters pszName and pszValue will be zero-filled to the length specified

in cbName and cbValue.
Return values
Value Description
DSIERR_SUCCESS no etror
DSIERR_INVPARM invalid parameter

DSIERR_NOTFOUND empty list

DSIERR_UNKNOWN unknown error

Example Here is an example:

DSIHANDLE hApp;

DSIHANDLE hInstance;

DSIHANDLE hCursor;

char szName [DSI_MAXNAMESIZE];
char szValue [DSI_ MAXVALUESIZE 1;

114

DSIAttachCursorLastEx

hApp = DSIInit();
hInstance = DSIInitInstance(hApp);
hCursor = DSIOpenAttachCursor(hInstance,
DSI INPUTQUEUE) ;
if (hCursor)
{
if (DSIAttachCursorLastEx(hCursor,
szName,
sizeof (szName) ,
szValue,
sizeof (szValue)

DSIENCODINGfUTF78) == DSIERR_ SUCCESS)
{
printf("The last element is %s=%s", szName,szValue);
while(DSIAttachCursorPrev(hCursor,
szName,
sizeof (szName) ,
szValue,

sizeof (szValue)

DSIENCODING UTF_8)
== DSIERR_SUCCESS)

{

printf ("The previous element is %$s=%s", szName,szValue);

}

See also DSIOpenAttachCursor on page 160
DSICloseAttachCursor on page 134
DSIAttachCursorFirst on page 108
DSIAttachCursorNext on page 118
DSIAttachCursorPrev on page 122
DSIParseAttachment on page 161

115

Chapter 2

DSI C APIs

DSIAttachCursorName

116

Syntax

Parameters

Return values

Example

Use this function to retrieve the name of the current element from the attachment list.

long DSIAttachCursorName (DSIHANDLE hCursor, char* pszName, size t

cbName) ;
Parameter Description
hCursor handle to attachment cursor initialized by a prior call to DSIOpenAttachCursor
and positioned by calls to DSIAttachCursor* call
pszName buffer in which to retrieve the name of the element of the attachment
cbName size of buffer in pszName parameter

NOTE: The parameter pszName will be zero-filled to the length specified in cbName.

Value Description

DSIERR_SUCCESS no error
DSIERR_INVPARM invalid parameter
DSIERR_NOTFOUND no such element in the list

DSIERR_UNKNOWN unknown error

Here is an example:

DSIHANDLE hApp;

DSIHANDLE hInstance;

DSIHANDLE hCursor;

char szName [DSI_MAXNAMESIZE];

char szValue [DSI MAXVALUESIZE 1;

hApp = DSIInit();

hInstance = DSIInitInstance(hApp);

hCursor = DSIOpenAttachCursor(hInstance,
DSI_INPUTQUEUE) ;

if (hCursor)

{

if (DSIAttachCursorLast (hCursor,

NULL,
0,
NULL,
0) == DSIERR_SUCCESS)
{
DSIAttachCursorName (hCursor, szName, sizeof (szName)) ;
DSIAttachCursorValue (hCursor, szValue, sizeof (szValue)) ;
printf ("The last element is %s=%s", szName, szValue);
}

See also

DSIOpenAttachCursor on page 160
DSICloseAttachCursor on page 134
DSIAttachCursorFirst on page 108
DSIAttachCursorNext on page 118
DSIAttachCursorLast on page 112
DSIAttachCursorPrev on page 122
DSIAttachCursorValue on page 126

DSIParseAttachment on page 161

DSIAttachCursorName

117

Chapter 2

DSI C APIs

DSIAttachCursorNext

Use this function to retrieve the next element from the attachment list.

Syntax long DSIAttachCursorNext (DSIHANDLE hCursor, char* pszName, size t
cbName, char* pszValue, size_t cbvValue);

Parameters
Parameter Description
hCursor handle to attachment cursor initialized by a prior call to DSIOpenAttachCursor
pszName buffer in which to retrieve the name of the first element of the attachment
cbName size of buffer in pszName parameter
pszValue buffer in which to retrieve the value of the first element of the attachment
cbValue size of buffer in pszValue parameter

NOTE: The parameters pszName and pszValue will be zero-filled to the length specified

in cbName and cbValue.
Return values
Value Description
DSIERR_SUCCESS no error
DSIERR_INVPARM invalid parameter

DSIERR_NOTFOUND no motre elements in the list

DSIERR_UNKNOWN unknown etror

Example Here is an example:
DSIHANDLE hApp;
DSIHANDLE hInstance;
DSIHANDLE hCursor;

char szName [DSI_MAXNAMESIZE 1;
char szValue [DSI_MAXVALUESIZE];

See also DSIOpenAttachCursor on page 160
DSIAttachCursorPrev on page 122

DSIParseAttachment on page 161

118

DSIAttachCursorNext

hApp = DSIInit();

hInstance = DSIInitInstance(hApp);

hCursor = DSIOpenAttachCursor(hInstance,
DSI INPUTQUEUE,
szName,
sizeof (szName) ,
szValue,

sizeof (szvValue)) ;
if (hCursor)

{

printf ("The first element is %s", szValue);
while(DSIAttachCursorNext (hCursor,
szName,
sizeof (szName)
szValue,

sizeof (szvalue))
== DSIERR_SUCCESS)

printf ("The next element is %s=%s”, szName,szValue);

'

119

Chapter 2

DSI C APIs

DSIAttachCursorNextEx

Use this function to retrieve the next element from the attachment list.

Syntax long DSIAttachCursorNextEx (DSIHANDLE hCursor, char* pszName, size t
cbName, char* pszValue, size_t cbValue, long IEncoding) ;

Parameters

Parameter Description

encoding DSIENCODING_SINGLE_BYTE or DSIENCODING_UTEF_S8.
DSIENCODING_SINGLE_BYTE uses code page 1252 encoding, similar to
ASCII but is compatible with Documaker handles Euro characters and others.
DSIENCODING_UTEF_S8 translates Unicode into a format compatible with
null-terminated C language strings.

hCursor handle to attachment cursor initialized by a prior call to DSIOpenAttachCursor
pszName buffer in which to retrieve the name of the first element of the attachment
cbName size of buffer in pszName parameter

pszValue buffer in which to retrieve the value of the first element of the attachment
cbValue size of buffer in pszValue parameter

NOTE: The parameters pszName and pszValue will be zero-filled to the length specified
in cbName and cbValue.

Return values

Value Description
DSIERR_SUCCESS no etror
DSIERR_INVPARM invalid parameter

DSIERR_NOTFOUND no more elements in the list

DSIERR_UNKNOWN unknown error

Example Here is an example:

DSIHANDLE hApp;
DSIHANDLE hInstance;
DSIHANDLE hCursor;
char szName [DSI_MAXNAMESIZE];
char szValue [DS I _MAXVALUESIZE 1;
hApp = DSIInit();
hInstance = DSIInitInstance(hApp);
hCursor = DSIOpenAttachCursor(hInstance,
DS I_INPUTQUEUE) ;
if (hCursor)

{

if (DSIAttachCursorFirstEx(hCursor,

120

DSIAttachCursorNextEx

szName,
sizeof (szName) ,
szValue,
sizeof (szValue) ,

DSIENCODING UTF_8)==DSIERR_SUCCESS)

printf ("The first element is %s", szValue);
while(DSIAttachCursorNextEx(hCursor,
szName,
sizeof (szName)
szValue,

sizeof (szValue)

DSIENCODING UTF_8)
== DSIERR SUCCESS)

printf ("The next element is %s=%s”, szName,szValue);

}

See also DSIOpenAttachCursor on page 160
DSIAttachCursorPrev on page 122
DSIParseAttachment on page 161

121

Chapter 2

DSI C APIs

DSIAttachCursorPrev

Use this function to retrieve the previous element from the attachment list.

Syntax long DSIAttachCursorPrev (DSIHANDLE hCursor, char* pszName, size t
cbName, char* pszValue, size_t cbvValue);

Parameters
Parameter Description
hCursor handle to attachment cursor initialized by a ptior call to

DSIOpenAttachCursor

pszName buffer in which to retrieve the name of the first element of the attachment
cbName size of buffer in pszName parameter
pszValue buffer in which to retrieve the value of the first element of the attachment
cbValue size of buffer in pszValue parameter

NOTE: The parameters pszZName and pszValue will be zero-filled to the length specified
in cbName and cbValue.

Return values

Value Description
DSIERR_SUCCESS no error
DSIERR_INVPARM invalid parameter

DSIERR_NOTFOUND no more elements in the list

DSIERR_UNKNOWN unknown error

Example Here is an example:
DSIHANDLE hApp;
DSIHANDLE hInstance;
DSIHANDLE hCursor;

char szName [DSI_MAXNAMESIZE];
char szValue [DSI_MAXVALUESIZE];

See also DSIOpenAttachCursor on page 160
DSICloseAttachCursor on page 134
DSIAttachCursorFirst on page 108
DSIAttachCursorNext on page 118
DSIAttachCursorLast on page 112
DSIParseAttachment on page 161

122

DSIAttachCursorPrev

hApp = DSIInit();
hInstance = DSIInitInstance(hApp);
hCursor = DSIOpenAttachCursor(hInstance,

DSI INPUTQUEUE) ;
if (hCursor)

{
if (DSIAttachCursorLast (hCursor,
szName,
sizeof (szName) ,
szValue,
sizeof (szValue)) == DSIERR _ SUCCESS)

printf ("The last element is %s=%s", szName,szValue);
while(DSIAttachCursorPrev(hCursor,
szName,
sizeof (szName) ,
szValue,
sizeof (szvValue))
== DSIERR_SUCCESS)

printf ("The previous element is %$s=%s", szName,szValue);

123

Chapter 2

DSI C APIs

DSIAttachCursorPrevEx

Use this function to retrieve the previous element from the attachment list.

Syntax long DSIAttachCursorPrevEx (DSIHANDLE hCursor, char* pszName, size t
cbName, char* pszValue, size_t cbValue, long IEncoding) ;

Parameters

Parameter Description

encoding DSIENCODING_SINGLE_BYTE or DSIENCODING_UTEF_S8.
DSIENCODING_SINGLE_BYTE uses code page 1252 encoding, similar to
ASCII but is compatible with Documaker handles Euro characters and others.
DSIENCODING_UTEF_S8 translates Unicode into a format compatible with
null-terminated C language strings.

hCursor handle to attachment cursor initialized by a prior call to
DSIOpenAttachCursor

pszName buffer in which to retrieve the name of the first element of the attachment

cbName size of buffer in pszName parameter

pszValue buffer in which to retrieve the value of the first element of the attachment

cbValue size of buffer in pszValue parameter

NOTE: The parameters pszZName and pszValue will be zero-filled to the length specified
in cbName and cbValue.

Return values

Value Description
DSIERR_SUCCESS no error
DSIERR_INVPARM invalid parameter

DSIERR_NOTFOUND no more elements in the list

DSIERR_UNKNOWN unknown error

Example Hete is an example:

DSIHANDLE hApp;

DSIHANDLE hInstance;

DSIHANDLE hCursor;

char szName [DSI_MAXNAMESIZE];
char szValue [DSI_MAXVALUESIZE];

124

DSIAttachCursorPrevEx

hApp = DSIInit();
hInstance = DSIInitInstance(hApp);
hCursor = DSIOpenAttachCursor(hInstance,

DSI INPUTQUEUE) ;
if (hCursor)

{
if (DSIAttachCursorLastEx(hCursor,
szName,
sizeof (szName) ,
szValue,
sizeof (szValue) ,

DSIENCODING UTF_8) == DSIERR SUCCESS)
printf ("The last element is %s=%s", szName,szValue);
while(DSIAttachCursorPrev(hCursor,

szName,
sizeof (szName) ,
szValue,

sizeof (szValue))
== DSIERR_SUCCESS)

{
}

printf ("The previous element is %$s=%s", szName,szValue);

Seealso DSIOpenAttachCursor on page 160
DSICloseAttachCursor on page 134
DSIAttachCursorFirst on page 108
DSIAttachCursorNext on page 118
DSIAttachCursorLast on page 112

DSIParseAttachment on page 161

125

Chapter 2

DSI C APIs

DSIAttachCursorValue

126

Syntax

Parameters

Return values

Example

Use this function to retrieve the value of the current element from the attachment list.

long DSIAttachCursorValue (DSIHANDLE hCursor, char* pszValue, size t
cbvalue) ;

Parameter Description

hCursor handle to attachment cursor initialized by a prior call to DSIOpenAttachCursor

and positioned by calls to the DSTAttachCursorFirst, Next, Prev, Last calls.

pszValue buffer in which to rettieve the value of the element of the attachment

cbValue size of buffer in pszValue parameter

NOTE: The parameter pszValue will be zero-filled to the length specified in cbValue.

Description Description
DSIERR_SUCCESS no error
DSIERR_INVPARM invalid parameter

DSIERR_NOTFOUND the position of the cursor is invalid

DSIERR_UNKNOWN unknown error

Here is an example:

DSIHANDLE hApp;
DSIHANDLE hInstance;
DSIHANDLE hCursor;
char szName [DSI_MAXNAMESIZE];
char szValue [DSI MAXVALUESIZE 1;
hApp = DSIInit();
hInstance = DSIInitInstance(hApp);
hCursor = DSIOpenAttachCursor(hInstance,
DSI_INPUTQUEUE) ;
if (hCursor)
{
if (DSIAttachCursorLast (hCursor,
NULL,
0,
NULL,
0) == DSIERR_SUCCESS)

DSIAttachCursorName (hCursor, szName, sizeof (szName)) ;
DSIAttachCursorValue (hCursor, szValue, sizeof (szValue)) ;
printf ("The last element is %s=%s”, szName, szValue);

See also

DSIOpenAttachCursor on page 160
DSICloseAttachCursor on page 134
DSIAttachCursorFirst on page 108
DSIAttachCursorNext on page 118
DSIAttachCursorLast on page 112
DSIAttachCursorPrev on page 122
DSIAttachCursorValue on page 126

DSIParseAttachment on page 161

DSIAttachCursorValue

127

Chapter 2

DSI C APIs

DSIAttachCursorValueEx

Use this function to retrieve the value of the current element from the attachment list.

Syntax long DSIAttachCursorValueEx (DSIHANDLE hCursor, char* pszValue,
size_t cbValue, long IEncoding) ;

Parameters

Parameter Des

cription

encoding DSIENCODING_SINGLE_BYTE or DSIENCODING_UTF_S.
DSIENCODING_SINGLE_BYTE uses code page 1252 encoding, similat to
ASCII but is compatible with Documaker handles Euro characters and others.
DSIENCODING_UTE_S8 translates Unicode into a format compatible with
null-terminated C language strings.

hCursor handle to attachment cursor initialized by a prior call to DSIOpenAttachCursor
and positioned by calls to the DSTAttachCursorFirst, Next, Prev, Last calls.

pszValue buffer in which to rettieve the value of the element of the attachment

cbValue size of buffer in pszValue parameter

NOTE: The parameter pszValue will be zero-filled to the length specified in cbValue.

Return values

Description Description
DSIERR_SUCCESS no error
DSIERR_INVPARM invalid parameter

DSIERR_NOTFOUND the position of the cursor is invalid

DSIERR_UNKNOWN unknown etror

Example Here is an example:

DSTHANDLE
DSIHANDLE
DSTHANDLE
char
char

128

hApp;

hInstance;

hCursor;

szName [DSI_MAXNAMESIZE 1;
szValue [DSI_MAXVALUESIZE 1;

See also

DSIAttachCursorValueEx

hApp = DSIInit();
hInstance = DSIInitInstance(hApp);
hCursor = DSIOpenAttachCursor(hInstance,
DSI INPUTQUEUE) ;
if (hCursor)

{

if (DSIAttachCursorLast (hCursor,
NULL,
0,
NULL,
0) == DSIERR_SUCCESS)
DSIAttachCursorName (hCursor, szName, sizeof (szName)) ;
DSIAttachCursorValueEx (hCursor, szValue, sizeof (szValue) , DSIENCODING

UTF 8) ;
printf ("The last element is %s=%s”, szName,szValue);

DSIOpenAttachCursor on page 160
DSICloseAttachCursor on page 134
DSIAttachCursorFirst on page 108
DSIAttachCursorNext on page 118
DSIAttachCursorLast on page 112
DSIAttachCursorPrev on page 122
DSIAttachCursorValue on page 126
DSIParseAttachment on page 161

129

Chapter 2

DSI C APIs

DSIAttachVarLength

Locates an attachment variable and returns it’s length. Useful for getting the value when
the size is unknown and can be huge.

Syntax long DSIAttachVarLength (DSIHANDLE hdsi, long iQueue, char* szName,
size_t *pstSize);

Parameters

Parameter Description
hlnstance handle to instance returned by DSIInitInstance
iQueue queue attachment in which variable is to be found
pstSize the size of the value including nul terminator
szName name of the vatiable to locate

Return values
Value Description
DSIERR_SUCCESS no error
DSIERR_INVPARM invalid parameter

DSIERR_NOTFOUND variable not found

DSIERR_UNKNOWN unknown error

Example Here is an example:

char *pszVar;

size t size;

DSIAttachVarLength(hdsi,
DSI_INPUTQUEUE,
"FileName",
&size) ;

pszVar = malloc(size) ;
DSILocateAttachvVar (hdsi,
DSI_INPUTQUEUE,
“FileName”,
pszVar,
size) ;
printf (“File is: %s\n”,pszVar) ;
free (pszvar) ;

See also DSIAddAttachVar on page 102
DSIDeleteAttachVar on page 138

DSIParseAttachment on page 161

130

DSIAttachVarLengthEx

Locates an attachment variable and returns it’s length. Useful for getting the value when

Syntax

Parameters

Return values

Example

the size is unknown and can be huge.

DSIAttachVarLengthEx

long DSIAttachVarLengthEx (DSIHANDLE hdsi, long iQueue, char* szName,

size_t *pstSize,

long encoding) ;

Parameter Description

encoding DSIENCODING_SINGLE_BYTE or DSIENCODING_UTEF_S.
DSIENCODING_SINGLE_BYTE uses code page 1252 encoding, similar to
ASCII but is compatible with Documaker handles Euro characters and others.
DSIENCODING_UTF_8 translates Unicode into a format compatible with
null-terminated C language strings.

hlnstance handle to instance returned by DSIInitInstance

iQueue queue attachment in which variable is to be found

pstSize the size of the value including nul terminator

szName name of the variable to locate

Value Description

DSIERR_SUCCESS no erfror

DSIERR_INVPARM
DSIERR_NOTFOUND

DSIERR_UNKNOWN

invalid parameter
vatriable not found

unknown error

Here is an example:

char *pszVar;
size_t size;

DSIAttachVarLengthEx (hdsi,

DSI_INPUTQUEUE,
"FileName",
&size

DSIENCODING UTF_8) ;

pszVar = malloc (size) ;
DSILocateAttachVarEx (hdsi,

printf (“File is:

free (pszVar) ;

DSI_INPUTQUEUE,
“FileName”,

pszVar,

size,

DSIENCODING UTF_8) ;

$s\n” ,pszvVar) ;

131

Chapter 2

DSI C APIs

See also DSIAddAttachVar on page 102
DSIDeleteAttachVar on page 138

DSIParseAttachment on page 161

132

DSICacheFile

DSICacheFile

Use this function to add a file to the cache. You can only use this API from a server rule.

This API adds a row to the table of cached files. The server purges these files as time
expires in the autorun rules. This API only works if you have registered the IRLInit rule
as an INIT rule on the server.

Syntax long DSICacheFile (DSIHANDLE hInstance, char* szFileName, long
lExpire) ;
Parameters
Parameter Description
hlnstance handle to instance returned by DSIInitInstance

szFileName full name of file to be added

IExpire time period until file should be purged, in seconds
Return values

Value Description

DSIERR_SUCCESS no error

DSIERR_INVPARM invalid parameter
DSIERR_MEMORY out of memoty

DSIERR_UNKNOWN unknown error

Example Here is an example that sets the file to expire in one hour:

DSICacheFile(hInstance, "File.dat", 3600L);

133

Chapter 2

DSI C APIs

DSICloseAttachCursor

Use this function to close an attachment cursor and free the associated memory.

134

Syntax

Parameters

Return values

Example

See also

long DSICloseAttachCursor (DSIHANDLE hCursor) ;

Parameter Description

hCursor

handle of the cursor previously created by a call to DSIOpenAttachCursor

Value

Description

DSIERR_SUCCESS no etror

DSIERR_INVPARM invalid parameter

DSIERR_UNKNOWN unknown error

Here is an example:

DSIHANDLE hApp;
DSIHANDLE hInstance;
DSIHANDLE hCursor;

char
char

hApp

szName [DSI_MAXNAMESIZE];
szValue [DSI_MAXVALUESIZE];

= DSIInit();

hInstance = DSIInitInstance(hApp);
hCursor = DSIOpenAttachCursor(hInstance,

if (

{

DSI INPUTQUEUE,
szName,

sizeof (szName) ,
szValue,

sizeof (szValue)) ;

hCursor)

if (DSIAttachCursorFirst(hCursor,
szName,
sizeof (szName) ,
szValue,
sizeof (szValue))
== DSIERR_SUCCESS)

{
}

printf ("The first element is %$s=%s",szName, szValue);

DSICloseAttachCursor (hCursor);

}

DSIOpenAttachCursor on page 160

DSICopyAttachVars

DSICopyAttachVars

Use this function to copy all attachment variables from one queue to another.
Syntax long DSICopyAttachVars (DSIHANDLE hInstance, long iSourceQ) ;

Parameters

Parameter Description

hlnstance handle to instance returned by DSIInitInstance

iSourceQ queue attachment from which variables are to be copied
Return values

Value Description

DSIERR_SUCCESS no error

DSIERR_INVPARM invalid parameter
DSIERR_ MEMORY out of memory

DSIERR_UNKNOWN unknown error

Example This code copies the attachment variables from the input queue to the output queue.
DSICopyAttachVars(hInstance, DSI_INPUTQUEUE) ;
See also DSIAddAttachVar on page 102
DSILocateAttachVar on page 157
DSIDeleteAttachVar on page 138

135

Chapter 2

DSI C APIs

DSICopyQRecord

Use this function to copy a queue record from one queue to another.
Syntax long DSICopyQRecord (DSIHANDLE hInstance, long iSrcQ) ;

Parameters

Parameter Description

hlnstance handle to instance returned by DSIInitInstance

iSrcQ queue from which to copy (destination is assumed to be the other queue
belonging to the hlnstance parameter)

Return values

Value Description

DSIERR_SUCCESS no error
DSIERR_INVPARM invalid parameter
DSIERR_MEMORY out of memory
DSIERR_EOF no queue records available

DSIERR_UNKNOWN unknown error

DSIERR_QERR uninitialized queue
DSIERR_IOERR end of file
Example Here is an example:
DSICopyQRecord(hInstance, DSI_OUTPUTQUEUE); / * copy output
input */

136

DSICreateValue

Syntax

Parameters

Return values

Example

See also

DSICreateValue

Use this function to create a persistent DSI variable. These variables are not part of the
queue records or attachments. They exist so rules can pass information to one another.
You must destroy these persistent variables using a call to the DSIDestroyValue function.

long DSICreateValue (DSIHANDLE hInstance, char* szName, void*
pvValue, size_t cbValueSize);

Parameter Description

hlnstance handle to instance returned by DSIInitInstance
szName name of the variable

pvValue pointer to the data (may be NULL)
cbValueSize size of data

Value Description

DSIERR_SUCCESS no error

DSIERR_INVPARM invalid parameter
DSIERR_MEMORY out of memory

DSIERR_UNKNOWN unknown etror

Here is an example:

int iCount;
iCount = 123;
DSICreateValue (hInstance, "MY ICOUNT", &iCount, sizeof (iCount)) ;

DSIDestroyValue on page 139
DSILocateValue on page 159
DSIQueryValueSize on page 163

137

Chapter 2

DSI C APIs

DSIDeleteAttachVar

Use this function to remove an attachment variable.

Syntax long DSIDeleteAttachvVar (DSIHANDLE hInstance, long iQueue, char*
szName) ;
Parameters
Parameter Description
hlnstance handle to instance returned by DSIInitInstance
iQueue queue attachment from which variable is to be removed
szName name of the vatiable to be removed

Return values

Value Description
DSIERR_SUCCESS no error
DSIERR_INVPARM invalid parameter

DSIERR_NOTFOUND variable not known

DSIERR_UNKNOWN unknown error

Example Here is an example:

DSIDeleteAttachVar(hInstance, DSI_OUTPUTQUEUE, "DonotWantThis");

See also DSIAddAttachVar on page 102
DSILocateAttachVar on page 157

138

DSIDestroyValue

DSIDestroyValue

Use this function to destroy a persistent DSI variable. To prevent resource leaks, you must
use this function to destroy a// variables created with the DSICreateValue function.

Syntax long DSIDestroyValue (DSIHANDLE hInstance, char* szName) ;
Parameters
Parameter Description
hlnstance handle to instance returned by DSIInitInstance
szName name of the variable to destroy

Return values

Value Description
DSIERR_SUCCESS no error
DSIERR_INVPARM invalid parameter

DSIERR_NOTFOUND value not found

DSIERR_UNKNOWN unknown error

Example Here is an example:

DSIDestroyValue(hInstance, "DISPOSABLE");

See also DSICreateValue on page 137
DSILocateValue on page 159
DSIQueryValueSize on page 163

139

Chapter 2

DSI C APIs

DSIEncryptValue

Encrypt a text value to a unique string. It is useful for encrypting USERID or
PASSWORD, for example.

Syntax long DSIEncryptValue (DSIHANDLE hdsi, char* szName, char *pszValue,
size t valSize);

Parameters
Parameter Description
hdsi handle to instance returned by DSIInitInstance
pszInValue Input buffer of the text string to be encrypted

pszOutValue Output buffer of the encrypted text string

valSize size of the output buffer
Return values

Value Description

DSIERR_SUCCESS no error

DSIERR_INVPARM invalid parameter

DSIERR_NOTFOUND value not found

Example Here is an example:

DSIHANDLE hApp;
DSIHANDLE hInstance;
char outValue ?7?(DSI_MAXVALUESIZE ?°?);

hApp=DSIInit () ;

hInstance=DSIInitInstance(hApp) ;
DSIEncryptValue (hInstance, invValue, outValue, sizeoff (outvalue)) ;

140

DSIEncryptValueEx

DSIEncryptValueEx

Encrypt a text value to a unique string. It is useful for encrypting USERID or
PASSWORD, for example.

Syntax long DSIEncryptValueEx (DSTHANDLE hdsi, char* szName, char *pszValue,
size_t valSize, long IEncoding) ;

Parameters

Parameter Description

encoding DSIENCODING_SINGLE_BYTE or DSIENCODING_UTF_S.
DSIENCODING_SINGLE_BYTE uses code page 1252 encoding, similar
to ASCII but is compatible with Documaker handles Euro characters and
others. DSIENCODING_UTF_8 translates Unicode into a format
compatible with null-terminated C language strings.

hdsi handle to instance returned by DSIInitInstance
pszInValue Input buffer of the text string to be encrypted

pszOutValue Output buffer of the encrypted text string

valSize size of the output buffer
Return values

Value Description

DSIERR_SUCCESS no error

DSIERR_INVPARM invalid parameter

DSIERR_NOTFOUND value not found

Example Here is an example:

DSIHANDLE hApp;
DSIHANDLE hInstance;
char outValue ??(DSI_MAXVALUESIZE ?7?);

hApp=DSIInit () ;
hInstance=DSIInitInstance(hApp);

DSIEncryptValueEx (hInstance, inValue, outValue, sizeoff (outvValue),
DSIENCODING UTF_8) ;

141

Chapter 2

DSI C APIs

DSIErrorMessage

Use this function to add an error message to an attachment.

Syniax long DSIErrorMessage (DSIHANDLE hInstance, long iQueue, char*
pszCode, ...);
Parameters
Parameter Description
hlnstance handle to instance returned by DSIInitInstance
iQueue queue attachment to which message should be added
pszCode error code

error parameter name/value paits, terminated by NULL

The variable arguments must be in this format:

<ERR.MSG>, <ParameterName><ParameterValue>
<ParameterName><ParameterValue>
.. .NULL

Return values

Value Description

DSIERR_SUCCESS no error
DSIERR_INVPARM invalid parameter
DSIERR_ MEMORY out of memory

DSIERR_UNKNOWN unknown efrror

Example Here is an example:
DSIErrorMessage (hInstance,
DSI_ OUTPUTQUEUE,
"IRL0023", /* error code */
"FILE", /* error parameter name */
szFile, /* error parameter value */
NULL) ; /* NULL terminator */

142

DSIErrorMsg

DSIErrorMsg

Use this function to add an error message to an attachment. This function serves as a
replacement for the DSIErrorMessage function in situations where a variable number of
arguments is not supported, such as with languages other than C and C++.

Syntax long DSIErrorMsg (DSIHANDLE hdsi, long iQueue, long lLevel, char
**pgzCode) ;

Parameters

Parameter Description

hdsi handle to instance returned by DSIInitInstance
iQueue queue attachment to which message should be added
1Level DSI_ERROPT_ value, level of the error. Valid values ate:

DSI_ERROPT_INFO, DSI_ERROPT_WARNING,
DSI_ERROPT_SEVERE (not currently implemented and is ignored).

pszCode pointer to the array of strings, the last string has to be NULL, the first string is the
error code. The strings ate in NAME/VALUE paits.

To add the error message to the attachment, pass to it this array of strings:

"XXX0001", - error code
"FILENAME", - name of the parameter
"C:\docser\file.dat", - name of the file
NULL
Return values
Value Description

DSIERR_SUCCESS no error
DSIERR_INVPARM invalid parameter

DSIERR_INTERNAIL internal error

Example Here is an example:

char *err ??(??) =

{

"XXX0023", /* error code
"FILE", /* error parameter name
"c:\\docserv\\file.dat", /* error parameter value
NULL /* NULL terminator
}i
DSIErrorMsg (hInstance,
DSI_OUTPUTQUEUE,
err);

143

Chapter 2

DSI C APIs

DSIFindInQueue

144

Syntax

Parameters

Return values

Example

Use this function to search for a record in a queue.

long DSIFindInQueue (DSIHANDLE hInstance, long iQueue,

char* pszId);

Parameter Description

hlnstance handle to instance returned by DSIInitInstance

iQueue queue in which to search

pszld unique record identifier. Use DSISetQField(..., DSIQSET_UNIQUE_ID, ...)

to place this value in the queue record

Value Description
DSIERR_SUCCESS no etror
DSIERR_INVPARM invalid parameter
DSIERR_EOF record not found
DSIERR_MEMORY out of memory

DSIERR_UNKNOWN unknown etrror
DSIERR_QERR uninitialized queue

DSIERR_IOERR end of file

Here is an example:

char szId [11 1;

DSIGetUniqueString(hInstance, szId, sizeof(szId));

DSISetQField(hInstance,

DSI_OUTPUTQUEUE,

DSIQSET UNIQUE_ID,

szId,

sizeof (szId));
DSIAddToQueue (hInstance, DSI_OUTPUTQUEUE) ;
/* wait for server to process */

DosSleep(5000);
DSIFindInQueue (hInstance, DSI_ INPUTQUEUE, szId);

DSIGetFirstFromQueue

DSIGetFirstFromQueue

Use this function to get the first record in a queue.

Syntax long DSIGetFirstFromQueue (DSTHANDLE hInstance, long iQueue) ;
Parameters
Parameter Description
hlnstance handle to instance returned by DSIInitInstance
iQueue queue from which to retrieve

Return values

Value Description

DSIERR_SUCCESS no error
DSIERR_INVPARM invalid parameter
DSIERR_ MEMORY out of memory
DSIERR_EOF no elements in the list

DSIERR_UNKNOWN unknown error

DSIERR_QERR uninitialized queue
DSIERR_IOERR end of file
Example Here is an example:

DSIGetFirstFromQueue (hInstance, DSI_INPUTQUEUE) ;

145

Chapter 2

DSI C APIs

DSIGetSOAPMessage

Use this rule to retrieve an IDS message as an XML file in memory.

Syntax long DSIGetSOAPMessage (DSIHANDLE hdsi, long IQueue, long
szXMLBuffer, long szXMLBuffer, long stBuffSize, long IOptions;

Parameters
Parameter Description
hdsi handle to instance returned by DSIInitInstance
iQueue queue attachment

szXMLBuffer buffer into which the XML is to be unloaded
stBuffSize size of buffer in szZXMILBuffer including the zero (0) terminator

10ptions RFU, currently not used

Returns DSIERR_SUCCESS
DSIERR_INVPARM

Example Here is an example:

char *buf;

size t size;

DSIGetSOAPMessageSize (hdsi,DSI_INPUT, &size,0) ;
buf = malloc(size);

DSIGetSOAPMessage (hdsi,DSI_INPUT, buf, size,0) ;

. use buffer here

free (buf) ;

146

DSIGetSOAPMessageSize

DSIGetSOAPMessageSize

Use this rule to get the size of an IDS message as an XML file in memory.

Syntax long DSIGetSOAPMessageSize (DSIHANDLE hdsi, long IQueue, long
pstBuffSize, long IOptions;

Parameters
Parameter Description
hdsi handle to instance returned by DSIInitInstance
iQueue queue attachment

pstBuffSize size of buffer in szZXMIBuffer including the zero (0) terminator

1Options RFU, currently not used

Returns DSIERR_SUCCESS
DSIERR_INVPARM

Example Here is an example:

char *buf;
size t size;

DSIGetSOAPMessageSize (hdsi,DSI_INPUT, &size,0) ;
buf = malloc(size) ;
DSIGetSOAPMessage (hdsi,DSI_INPUT, buf,size,0);

. use buffer here

free (buf) ;

147

Chapter 2

DSI C APIs

DSIGetQError

Use this function to get the last queue error from a queue.

Syntax long DSIGetQError (DSIHANDLE hInstance, long iQueue) ;
Parameters
Parameter Description
hlnstance handle to instance returned by DSIInitInstance
iQueue queue from which to retrieve error

Return values

Value Description

DSIERR_SUCCESS no error
DSIERR_INVPARM invalid parameter
DSIERR._ MEMORY out of memory

DSIERR_UNKNOWN unknown efrror

DSIERR_QERR uninitialized queue
Example Here is an example:
long QErr;

if (DSIGetFirstFromQueue (hInstance, DSI_ INPUTQUEUE, OL)
!= DSIERR_SUCCESS)
{

}

QErr = DSIGetQError(hInstance, DSI_INPUTQUEUE) ;

148

DSIGetQField

Syntax

Parameters

Return values

Example

DSIGetQField

Use this function to retrieve the value of a queue field.

NOTE: Since each field has a different length which may vary from one release to the

next, the system queries the length before it allocates memory and performs this

function.

long DSIGetQField (DSIHANDLE hInstance, long iQueue, long iField,
void* pvvValue, size_t cbValue);

Parameter Description
hlnstance handle to instance returned by DSIInitInstance
iQueue queue to which operation applies
iField DSIQSET_* field identifier. For example:
REQTYPE (must be three characters in length)
STATUS
INTIME
OUTTIME
USERID
PRIORITY
UNIQUE_ID
ATTACHMENT
pvValue buffer in which the data should be placed
cbValue length of the buffer
Value Description
DSIERR_SUCCESS no error

DSIERR_INVPARM invalid parameter

DSIERR_ MEMORY out of memoty

DSIERR_EOF queue record not found

DSIERR_UNKNOWN unknown error

DSIERR_QERR uninitialized queue

DSIERR_IOERR end of file

Here is an example:

char szRequest [8];

149

Chapter 2

DSI C APIs

DSIGetQField (hInstance,
DSI_INPUTQUEUE,
DSIQSET REQTYPE,
szRequest,
sizeof (szRequest));
if (!strcmp(szRequest, "LGN"))

{

}

Seealso DSISetQField on page 173

150

DSIGetQFieldLength

DSIGetQFieldLength

Use this function to get the length of one of the pre-defined fields in a queue.

Syntax long DSIGetQFieldLength (DSIHANDLE hInstance, long iQueue, long
iField) ;
Parameters

Parameter Description

hlnstance handle to instance returned by DSIInitInstance

iQueue queue from which to retrieve data

iField DSIQSET_* field identifier. For example:
REQTYPE (must be three characters in length)
STATUS
INTIME
OUTTIME
USERID
PRIORITY
UNIQUE_ID
ATTACHMENT

Return values

Value Description

0 error

0 length of field
Example Here is an example:

void *pvAttach;
long cbField;
cbField = DSIGetQFieldLength (hInstance,
DSI INPUTQUEUE,
DSIQSET_ATTACHMENT) ;
if (cbField > 0)
{
DosAllocMem ((PPVOID) &pvAttach,
cbField,
PAG_READ | PAG _WRITE | PAG_COMMIT) ;

151

Chapter 2

DSI C APIs

DSIGetQueueRec

Use this function to search for a record in a queue.

Syntax long DSIGetQueueRec (DSIHANDLE hInstance, long iQueue, char* pszId,
long 1lWait, long 1TimeOut) ;

Parameters
Parameter Description
hlnstance handle to instance returned by DSIInitInstance
iQueue queue in which to search
pszld unique record identifier. Use DSISetQField(..., DSIQSET_UNIQUE_ID, ...)

to place this value in the queue record

IWait number of milliseconds to wait between tetties, zero (0) is invalid for this
parameter and is replaced with 1000.

ITimeOut number of milliseconds to keep trying, if zero (0) the system does not retry
Return values

Value Description

DSIERR_SUCCESS no error

DSIERR_INVPARM invalid parameter
DSIERR_ MEMORY out of memory
DSIERR_EOF record set not found

DSIERR_UNKNOWN unknown error

DSIERR_QERR uninitialized queue
DSIERR_IOERR end of file
Example Here is an example:

char szId [11];
DSIGetUniqueString(hInstance, szId, sizeof(szId));
DSISetQField(hInstance,
DSI_OUTPUTQUEUE,
DSIQSET UNIQUE_ID,
szId,
sizeof (szId));
DSIAddToQueue (hInstance, DSI_OUTPUTQUEUE) ;
/* wait for server to process */
DSIGetQueueRec (hInstance, DSI_INPUTQUEUE, szId, 1000L, 10000L);
/* tries every second for 10 seconds */

152

DSIGetUniqueString

DSIGetUniqueString

Use this function to fill the buffer pointed to by pszString with a unique string. You can
use this function to generate unique file names. The buffer is filled with characters of the
size specified by the cbSize parameter less one. So, if you need to generate an 8-character
unique file name, specify a buffer size of 9. The output string is unique for the current
instance of Docupresentment.

Syntax long DSIGetUniqueString (DSIHANDLE hInstance, char* pszString, size t
cbSize) ;
Parameters
Parameter Description
hlnstance handle to instance returned by DSIInitInstance
pszString pointer to the output buffer
cbSize size of buffer in pszString

Return values

Value Description
DSIERR_SUCCESS no error
DSIERR_INVPARM Invalid parameter
hlnstance is NULL
pszString is NULL
cbSize is 0
DSIERR_MEMORY memory errors

DSIERR_UNKNOWN unknown etrror

Example Here is an example:

char szFileName DIM (9);

if (DSIGetUniqueString (hInstance,
szFileName,
sizeof (szFileName) != DSIERR_SUCCESS)

Some code to display error message

153

Chapter 2

DSI C APIs

DSIlInit

Syntax
Parameters

Return values

Example

See also

154

Use this function to initialize the systems and structures necessary for DSI calls. This
should be called by the application only once.

This rule loads the DSLINTI file, which you can use to store DSI internal INI options, such
as queue names. If the INI does not exist, no error is given.

DSIHANDLE DSIInit () ;

None
Value Description
DSIHANDLE handle to application data to be used for subsequent calls to

DSIInitInstance and DSITerm

DSINULLHANDLE on failure

Here is an example:

DSIHANDLE hApp;
if((hApp = DSIInit()) == DSINULLHANDLE)

return(FALSE) ;

}

DSITerm on page 175

DSIInitInstance

Syntax

Parameters

Return values

Example

See also

DSIInitInstance

Use this function to initialize the structures necessary for DSI calls. This should be called

once per thread.

DSIHANDLE DSIInitInstance (DSIHANDLE hApp) ;

Parameter Description
hApp handle of application data returned by a prior call to DSIInit
Value Description

DSIHANDLE hlnstance handle to instance data, returns 0 on error

DSINULLHANDLE returns on failure

Here is an example:

DSIHANDLE hApp;
DSIHANDLE hInstance;

hApp = DSIInit();

hInstance = DSIInitInstance(hApp);
DoSomeStuff (hInstance,
DSITermInstance(hInstance

DSITerm(hApp);
return(-10368) ;

DSlIlnit on page 154

DSITermlInstance on page 176

andSomeOtherParameters

155

Chapter 2

DSI C APIs

DSIInitQueue

Use this function to initialize a queue.

Syntax long DSIInitQueue (DSIHANDLE hInstance, long iQueue, char* pszQName) ;
Parameters
Parameter Description
hlnstance handle to instance returned by DSIInitInstance
iQueue queue to initialize

pszQName name of queue to initialize.

The IQueue parameter tells the system whether to initialize the request (REQUESTQ) or
result (RESULTQ) queue. If the pszQName parameter is NULL, the rule uses the Name
INI option in the REQUESTQ or RESULTQ control group. If found, it will use this
name for the output (or input) queue name. These names have default values which are
used when the name passed in is NULL and no INI option is specified in the DSL.INI
file. The default names are REQUESTQ for output and RESULTQ for input queues.

Return values

Value Description
DSIERR_SUCCESS no error
DSIERR_INVPARM invalid parameter
DSIERR_MEMORY out of memoty
DSIERR_EOF record not found

DSIERR_NOTFOUND no more elements in the list

DSIERR_UNKNOWN unknown etror

DSIERR_QERR uninitialized queue
DSIERR_IOERR end of file
Example Here is an example:
long rc;

if (DSIInitQueue(hInstance, DSI_INPUTQUEUE, "InputQ")
!= DSIERR_ SUCCESS)
{

}

rc = DSIGetQError(hInstance, DSI_INPUTQUEUE) ;

See also DSITermQueue on page 177

156

DSILocateAttachVar

DSILocateAttachVar

Use this function to locate an attachment variable. You must call the
DSIParseAttachment function before you use this function.

Syntax long DSILocateAttachvVar (DSIHANDLE hInstance, long iQueue, char*
szName,

char* szValue, size t cbvalSize);

Parameters

Parameter Description
hlnstance handle to instance returned by DSIInitInstance
iQueue queue attachment in which variable is to be found
szName name of the variable to locate
szValue buffer for the variable
cbValSize size of buffer in szValue

Return values
Value Description
DSIERR_SUCCESS no error
DSIERR_INVPARM invalid parameter

DSIERR_NOTFOUND variable not found

DSIERR_UNKNOWN unknown etror

Example Here is an example:

char szvar [32];

DSILocateAttachVar (hInstance,
DSI_INPUTQUEUE,
"FileName",
szVar,
sizeof (szVar));

See also DSIAddAttachVar on page 102
DSIDeleteAttachVar on page 138

DSIParseAttachment on page 161

157

Chapter 2

DSI C APIs

DSILocateAttachVarEx

Use this function to locate an attachment variable. You must call the
DSIParseAttachment function before you use this function.

Syniax long DSILocateAttachVarEx (DSIHANDLE hdsi, long iQueue, char* szName,
char* szValue, size_t cbValSize, long IEncoding) ;
Parameters
Parameter Description
encoding DSIENCODING_SINGLE_BYTE or DSIENCODING_UTF_S.
DSIENCODING_SINGLE_BYTE uses code page 1252 encoding, similar to
ASCII but is compatible with Documaker handles Euro characters and others.
DSIENCODING_UTF_8 translates Unicode into a format compatible with
null-terminated C language strings.
hlnstance handle to instance returned by DSIInitInstance
iQueue queue attachment in which variable is to be found
szName name of the variable to locate
szValue buffer for the variable
cbValSize size of buffer in szValue
Return values
Value Description
DSIERR_SUCCESS no error

DSIERR_INVPARM
DSIERR_NOTFOUND

DSIERR_UNKNOWN

invalid parameter
variable not found

unknown error

Example Here is an example:
char szvar [32
DSILocateAttachVarEx(hInstance,
DSI_INPUTQUEUE,
"FileName",
szVar,
sizeof (szVar),
DSIENCODING UTF_8) ;
See also DSIAddAttachVar on page 102

DSIDeleteAttachVar on page 138

DSIParseAttachment on page 161

158

DSILocateValue

DSILocateValue

Use this function to locate a persistent DSI variable.

Syntax long DSILocateValue (DSIHANDLE hInstance, char* szName, void*
pvValue, size_t cbValueSize);

Parameters
Parameter Description
hlnstance handle to instance returned by DSIInitInstance
szName name of the variable to locate
pvValue buffer in which to place to the data

cbValueSize size of buffer

Return values

Value Description
DSIERR_SUCCESS no error
DSIERR_INVPARM invalid parameter

DSIERR_NOTFOUND named value not found

DSIERR_UNKNOWN unknown etror

Example Here is an example:

char szFile [CCHMAXPATH 1];
DSILocateValue (hInstance, "FILENAME", szFile, sizeof(szFile));

See also DSICreateValue on page 137
DSIDestroyValue on page 139
DSIQueryValueSize on page 163

159

Chapter 2

DSI C APIs

DSIOpenAttachCursor

Use this function to open a cursor into the attachment list for the specified queue.

160

Syntax

Parameters

Return values

Example

See also

DSIHANDLE DSIOpenAttachCursor (DSIHANDLE hInstance, long 1Q);

Parameter Description

hlnstance handle to instance data initialized by a prior call to DSIInitInstance

iQ queue identifier

Value Description

DSIHANDLE handle to cursor which you can use for subsequent calls to the

DSTIAttachCursorFirst, DSIAttachCursorNext, DSIAttachCursorPrev

and DSICloseAttachCursor functions.

DSINULLHANDLE on failure

Here is an example:

DSIHANDLE hApp;

DSIHANDLE hInstance;

DSIHANDLE hCursor;

char szName [DSI_MAXNAMESIZE];
char szValue [DSI_MAXVALUESIZE];
hApp = DSIInit();

hInstance = DSIInitInstance(hApp);

hCursor = DSIOpenAttachCursor(hInstance,
DSI_INPUTQUEUE

if (DSIAttachCursorFirst (hCursor,
szName,

sizeof (szName) ,

szValue,

sizeof (szValue))

{
}

printf("The first element is: %s = %s",

DSIAttachCursorFirst on page 108
DSIAttachCursorNext on page 118
DSIAttachCursorLast on page 112
DSIAttachCursorPrev on page 122
DSIAttachCursorName on page 116
DSIAttachCursorValue on page 126
DSICloseAttachCursor on page 134
DSIParseAttachment on page 161

== DSIERR SUCCESS)

szName, szValue) ;

DSIParseAttachment

DSIParse Attachment

Use this function to parse the attachment field in the queue record into an internal
attachment list of name/value pairs.

Syntax long DSIParseAttachment (DSTHANDLE hInstance, long iQueue) ;
Parameters
Parameter Description
hlnstance handle to instance returned by DSIInitInstance
iQueue queue in which the attachment is to be parsed

Return values

Value Description

DSIERR_SUCCESS no error
DSIERR_INVPARM invalid parameter
DSIERR_ MEMORY out of memory

DSIERR_UNKNOWN unknown etror

Example Here is an example:

DSIParseAttachment (hInstance, DSI_INPUTQUEUE) ;

See also DSIStoreAttachment on page 174

161

Chapter 2

DSI C APIs

DSIQueryEnvOptions

Use this function to return DSI-specific environment options via DSIENV_* flags. You
can use this function to determine if a rule is running on the client or on the server.

Syniax _DSIEXPORT long DSIAPI DSIQueryEnvOptions (DSIHANDLE hInstance,
long *plOptions) ;

These flags are currently available:

Flag Available on the...

DSIENV_SERVER server
DSIENV_CLIENT client

DSIENV_SERVICE server as an N'T service

Parameters
Parameter Description
hlnstance handle to instance returned by DSIInitInstance
plOptions pointer to a long for returning the DSIENV_* values.

Return values DSIERR_SUCCESS or an etror code

Example Here is an example:

long 1Opt;
if (DSIQueryEnvOptions (hInstance,&lOpt) != DSIERR SUCCESS) {
. display error message

}

if (10pt & DSIENV_SERVER)

{

printf ("Running on the server\n");

}

if (10pt & DSIENV_CLIENT)

{

printf ("Running on the client\n");

}

162

DSIQueryValueSize

DSIQueryValueSize

Use this function to find the length of a persistent DSI variable.

Syntax size t DSIQueryValueSize (DSIHANDLE hInstance, char* szName) ;
Parameters
Parameter Description
hlnstance handle to instance returned by DSIInitInstance
szName name of the variable to locate

Return values

Value Description

0 error

0 variable size
Example Here is an example:

size t cbVar;
cbVar = DSIQueryValueSize(hInstance, "FILENAME");

See also DSICreateValue on page 137
DSIDestroyValue on page 139
DSILocateValue on page 159

163

Chapter 2

DSI C APIs

DSIReceiveFile

Use this function to get a file from an attachment and write that file to disk. This function
supports text (such as XML or RTF) and binary files. The size of file is limited to the
queue message size. Use this function with the DSISendFile function.

NOTE: XML files can have very long lines. If the line length is over 1K, use the binary
file send/receive option. The binaty send/receive works with any file, including

XML and other text files.
Syniax DSIReceiveFile (hdsi, iQueue, pszFileName, pszAttachName, iOptions);
Parameters
Parameter Description
hdsi The handle to the instance returned by DSIInitInstance.
iQueue The queue attachment to which the file was added by the DSISendFile
function.
pszFileName The full name of the output file you want to create.
pszAttachName The name of the attachment variable to find file data.
1Options Currently supported options are DSIFILE_TEXT and

DSIFILE_BINARY. These options are mutually exclusive. This value
should be the same as was used with the DSISendFile function.

Return values DSIERR_SUCCESS
DSIERR_INVPARM
DSIERR_IOERR

Example Here is an example:
DSIReceiveFile (hdsi,
DSI INPUTQUEUE,
"c:\\docserv\\a.txt", /* file name
"FILESEND", /* attachment variable name
DSIFILE TEXT); /* option, file is text file

164

DSIReceiveFileAsBuffer

DSIReceiveFileAsBuffer

Syntax

Parameters

Return values

Example

Use this function to get a file from an attachment and copy it into a passed in buffer. This
function supports both text and binary files. The size of file is limited to the one queue
message size. You must use this function with the DSISendFile function.

DSIReceiveFileAsBuffer (hdsi, iQueue, pszFileName, pszAttachName,

pBuffer, cbSize, iOptions);

Parameter Description

hdsi handle to instance returned by DSIInitInstance

iQueue queue attachment to which the file was added by DSISendFile

pszAttachName name of the attachment variable to find file data

pBuffer output, the buffer to receive file data, buffer should be large enough to
hold the whole file data. Use the DSIReceiveFileAsBuffetSize function to
determine the size.

cbSize allocated size of buffer in pBuffer

iOptions RFU, currently not used

DSIERR_SUCCESS
DSIERR_INVPARM

Here is an example:

size t size;

char *buffer;

if (DSIReceiveFileAsBufferSize (hdsi,
DSI_INPUTQUEUE,

"FILESEND",

&size,

0) != DSIERR_SUCCESS)

{

printf ("Error in DSIReceiveFileAsBufferSize\n") ;
return -1;

}

buffer = malloc(size); /* allocate the right size
if (buffer == NULL)

{

printf ("Cannot allocate buffer\n") ;

}

if (DSIReceiveFileAsBuffer (hdsi,
DSI_INPUTQUEUE,

165

Chapter 2

DSI C APIs

"FILESEND",

buffer,

size,

0) != DSIERR_SUCCESS)

{

printf ("ReceiveFile failed\n");

}

here application can do whatever is needed with the buffer ..

free (buffer); /* free the buffer

166

DSIReceiveFileAsBufferSize

DSIReceiveFileAsBufferSize

Syntax

Parameters

Return values

Example

Use this function to get the actual size of file from an attachment. This function supports
both text and binary files. The size of file is limited to the one queue message size. You
must use this function with the DSISendFile function.

DSIReceiveFileAsBufferSize (hdsi, iQueue, pszAttachName, pstSize,
iOptions) ;

Parameter Description

hdsi handle to instance returned by DSIInitInstance

iQueue queue attachment to which the file was added by DSISendFile
pszAttachName name of the attachment variable to find file data,

pstSize output, the size of file data in attachment

10ptions RFU, currently not used

DSIERR_SUCCESS
DSIERR_INVPARM

Here is an example:

size t size;

char *buffer;

if (DSIReceiveFileAsBufferSize (hdsi,
DSI_INPUTQUEUE,

"FILESEND",

&size,

0) I= DSIERR_SUCCESS)

{

printf ("Error in DSIReceiveFileAsBufferSize\n") ;
return -1;

}

buffer = malloc(size); /* allocate the right size
if (buffer == NULL)
{

printf ("Cannot allocate buffer\n") ;
1

if (DSIReceiveFileAsBuffer (hdsi,
DSI INPUTQUEUE,

"FILESEND",

buffer,

size,

0) != DSIERR_SUCCESS)

{

printf ("ReceiveFile failed\n");

}

here application can do whatever is needed with the buffer

167

Chapter 2

DSI C APIs

free (buffer); /* free the buffer

On the ASP side, you can use this code:

buff = DSI.ReceiveFileAsBuffer ("ZZLPDF")

Response.ContentType = "application/PDF"

Response.BinaryWrite buff
Where ZZI.PDF is the name used in the ATCSendFile rule in DOCSERYV configuration
file.

168

DSIRowset2XML

DSIRowset2 XML

Use this function to get a row set back as XML in memory. A row set is a collection of
attachment variables created using the DSIAddRecord and DSIAddToRecord functions.

Syntax

Parameters

Returns

Example

See also

DSIRowset2XML (hdsi, iQueue, pszRowset, szXMLBuffer stBuffSize,

iOptions) ;
Parameter Description
hdsi handle to instance returned by DSIInitInstance
iQueue queue attachment to which the row set was added by DSIAddRecord
pszRowset name of the row set to get

szXMLBuffer buffer into which the XML is to be unloaded
stBuffSize size of buffer in szZXMILBuffer including the zero terminator

1Options RFU, currently not used

DSIERR_SUCCESS
DSIERR_NOTFOUND
DSIERR_INVPARM

Here is an example:

char *buf;

size t size;
DSIRowset2XMLSize (hdsi, DSI INPUT, "LIBRARIES", &size,0);
buf = malloc(size) ;
DSIRowset2XML (hdsi, DSI_INPUT, "LIBRARIES", buf, size,0);
. use buffer here

free (buf) ;

DSIRowset2XMLSize on page 170

169

Chapter 2

DSI C APIs

DSIRowset2XMLSize

Use this function to get the size of row set back as XML in memory. A row set is a
collection of attachment variables created using the DSIAddRecord and
DSIAddToRecord functions.

Syniax DSIRowset2XMLSize (hdsi, iQueue, pszRowset, pstSize, iOptions);
Parameters
Parameter Description
hdsi handle to instance returned by DSIInitInstance
iQueue queue attachment to which the row set was added by DSIAddRecord
pszRowset name of the row set to get
pstSize output, the size of row set in XML format
10ptions RFU, currently not used

Returns DSIERR_SUCCESS
DSIERR_NOTFOUND
DSIERR_INVPARM

Example Here is an example:

char *buf;

size_t size;
DSIRowset2XMLSize (hdsi, DSI_INPUT, "LIBRARIES", &size,0) ;
buf = malloc(size) ;
DSIRowset2XML (hdsi, DSI_INPUT, "LIBRARIES", buf,size,0);
. use buffer here

free (buf) ;

See also DSIRowset2XML on page 169

170

DSISendBuffer

Syntax

Parameters

Returns

Example

DSISendBuffer

Use this function to add a file to an attachment so it can be received on the other end.
This function supports text and binary files. The size of file is limited to the one queue

message size.

The file being sent is provided to this API as a buffer in memory. It can be used when the
data is in memory to eliminate unnecessary IO operation.

When text buffer is used, the new line character is the delimiter for each line. For text,
send the lines delimited only by the new line character. Do not use carriage returns. If the

line is longer than 1024 bytes, use the binary send method.

DSISendBuffer (hdsi, iQueue, pszAttachName, pBuffer, cbsize, iOptions

)i

Parameter Description

hdsi The handle to the instance returned by DSIInitInstance.

iQueue The queue attachment to which the file should be added, usually output.
pszAttachName The name of the attachment variable to use for the file data. This name is

used on the receiving end to retrieve file data from the queue.

pBuffer The buffer with file data.

cbSize The size of data in pBuffer, if text is being sent the size does not need to
include the null terminator character.

10ptions Cutrently supported options are DSIFILE_TEXT and
DSIFILE_BINARY. These options are mutually exclusive.

DSIERR_SUCCESS
DSIERR_INVPARM
DSIERR_MEMORY

Here is an example:

DSISendBuffer(hdsi,
DSI_OUTPUTQUEUE,
"FILESEND",
buffer,
strlen (buffer),
DSIFILE TEXT) ;

/*
/*
/*
/*

attachment variable name
file data

length of file data
option, file is text file

171

Chapter 2

DSI C APIs

DSISendFile

Use this function to add a file to an attachment so it can be received on the other end.
This function supports text (such as XML or RTF) and binary files. The size of file is
limited to the queue message size.

NOTE: XML files can have very long lines. If the line length is over 1K, use the binary
file send/receive option. The binaty send/receive works with any file, including

XML and other text files.
Syniax DSISendFile(hdsi, iQueue, pszFileName, pszAttachName, iOptions);
Parameters
Parameter Description
hdsi The handle to the instance returned by DSIInitInstance.
iQueue The queue attachment to which the file should be added.
pszFileName The full name of the output file you want to send.
pszAttachName The name of the attachment variable to use for file data. You must use this

same name in the DSIReceiveFile rule to get the file.

10ptions Cutrently supported options are DSIFILE_TEXT and
DSIFILE_BINARY. These options are mutually exclusive.

Return values DSIERR_SUCCESS
DSIERR_INVPARM
DSIERR_IOERR

Example Here is an example:
DSISendFile (hdsi,
DSI_OUTPUTQUEUE,
"c:\\docserv\\a.txt", /* file name
"FILESEND", /* attachment variable name
DSIFILE_ TEXT) ; /* option, file is text file

172

DSISetQField

Syntax

Parameters

Return values

Example

See also

DSISetQField

Use this function to set a queue field. The system includes several pre-defined queue fields
(see IQueue in the table below) which you can set and retrieve. These fields are used by
the standard rules and the rule engine.

long DSISetQField (DSIHANDLE hInstance, long iQueue, long iField,
void* pvValue, size_t cbValue);

Parameter Description
hlnstance handle to instance returned by DSIInitInstance
iQueue queue to which operation applies
iField DSIQSET_* field identifier. For example:
REQTYPE (must be three characters in length)
STATUS
INTIME
OUTTIME
USERID
PRIORITY
UNIQUE_ID
pvValue data to copy into queue field
cbValue length of pvValue parameter (including the trailing null)
Value Description
DSIERR_SUCCESS no etror

DSIERR_INVPARM invalid parameter

DSIERR_UNKNOWN unknown error

DSIERR_ MEMORY out of memory
DSIERR_EOF record not found
DSIERR_QERR uninitialized queue
DSIERR_IOERR end of file

Here is an example:

DSISetQField(hInstance,

DSI_OUTPUTQUEUE,
DSIQSET REQTYPE,
||LGN|| ,

sizeof ("LGN"));

DSIGetQField on page 149

173

Chapter 2

DSI C APIs

DSIStoreAttachment

174

Syntax

Parameters

Return values

Example

See also

Use this function to update the attachment field in the queue record from the internal
attachment list. The system does not clear the internal attachment list.

Use this function after you use the DSIAddAttachVar function to move your additions
to the attachment list.

long DSIStoreAttachment (DSIHANDLE hInstance, long iQueue) ;

Parameter Description

hlnstance handle to instance returned by DSIInitInstance
iQueue queue in which the attachment is to be updated
Value Description
DSIERR_SUCCESS no error

DSIERR_INVPARM invalid parameter

DSIERR._ MEMORY out of memory

DSIERR_UNKNOWN unknown etrror

Here is an example:

DSIStoreAttachment (hInstance, DSI_OUTPUTQUEUE) ;

DSIParseAttachment on page 161
DSIAddAttachVar on page 102
DSIAddAttachRec on page 101
DSIAddToAttachRec on page 104
DSISetQField on page 173

DSITerm

DSITerm

Use this function to terminate DSI use. This should be called by the application only once.
Syntax long DSITerm(DSIHANDLE hApp) ;

Parameters

Parameter Description

hApp handle to application data returned by a prior call to DSIInit

Return values DSIERR_SUCCESS

Example Here is an example:

DSIHANDLE hApp;

DSIHANDLE hInstance;

hApp = DSIInit();

hInstance = DSIInitInstance(hApp);

DoSomeStuff (hInstance, andSomeOtherParameters) ;
DSITermInstance(hInstance);

DSITerm(hApp);

return(-10368) ;

See also DSIInit on page 154

175

Chapter 2

DSI C APIs

DSITermlInstance

Use this function to terminate instance data.

Syntax long DSITermInstance (DSIHANDLE hInstance) ;
Parameters
Parameter Description
hlnstance handle of instance data previously initialized by a call to DSIInitInstance

Return values

Value Description
DSIERR_SUCCESS no error
DSIERR_INVPARM invalid parameter

DSIERR_UNKNOWN unknown error

Example Here is an example:

DSIHANDLE hApp = DSIInit () ;
DSIHANDLE hInstance = DSIInitInstance(hApp);

DoSomeStuff (hApp, SomeOtherParameters) ;
DSITermInstance (hInstance) ;

DSITerm(hApp);

return(22);

See also DSlInitInstance on page 155

176

DSITermQueue

DSITermQueue

Use this function to terminate the usage of a queue.

Syntax long DSITermQueue (DSIHANDLE hInstance, long iQueue) ;
Parameters
Parameter Description
hlnstance handle to instance returned by DSIInitInstance
iQueue queue to terminate

Return values

Value Description
DSIERR_SUCCESS no error
DSIERR_INVPARM invalid parameter

DSIERR_UNKNOWN unknown error

DSIERR_ MEMORY out of memoty

DSIERR_EOF record not found

DSIERR_QERR uninitialized queue

DSIERR_IOERR end of file
Example Here is an example:

DSITermQueue (hInstance, DSI_INPUTQUEUE) ;

See also DSIInitQueue on page 156

177

Chapter 2

DSI C APIs

LDAPGetErrorCode

Use this function to return the last LDAP error code.

Returns An integer value that represents the last LDAP error code.

Example Here is an example:
char *args = "ldap.host=localhost,ldap.port=389,ldap.timeout=5000";
char *file = "c:\\docserv\\openldap.properties") ;
char *userid = "demol";

VMMHANDLE listH = VMMNULLHANDLE;
void *1ldap = NULL;

if ((ldap = LDAPInit (args,
file)) != NULL){

listH = LDAPSearchDirectory (userid,

ldap) ;
if (listH == VMMNULLHANDLE | |
VMMCountList (1istH) == 0) {
UTLLogTrace ("LDAP Error Code: %d\n" \
"LDAP Error Message: %s",

LDAPGetErrorCode (1dap) ,
LDAPGetErrorMessage (1dap)) ;
LDAPTerm (ldap) ;

LDAPTerm(1ldap) ;

See also LDAPGetErrorMessage on page 179

178

LDAPGetErrorMessage

LDAPGetErrorMessage

Use this function to return the last error message.

Returns

Example Here is an example:

A character pointer to the last LDAP error message.

char *args = "ldap.host=localhost,ldap.port=389,ldap.timeout=5000";

char *file =
char *userid = "demol";

"c:\\docserv\\openldap.properties") ;

VMMHANDLE listH = VMMNULLHANDLE;

void *ldap = NULL;

if ((ldap = LDAPInit (args,
file))

!= NULL) {

listH = LDAPSearchDirectory (userid,

ldap) ;

if (listH == VMMNULLHANDLE | |

VMMCountList (listH) == 0) {

UTLLogTrace ("LDAP Error Code: %d\n" \
"LDAP Error Message: %s",
LDAPGetErrorCode (1ldap) ,
LDAPGetErrorMessage (ldap)) ;

LDAPTerm (1ldap) ;

LDAPTerm(ldap) ;

Seealso LDAPGetErrorCode on page 178

179

Chapter 2

DSI C APIs

LDAPInit

180

Properties

Use this function to initialize and start an SSL. or non-SSL connection to an LDAP server.

This function reads the connection and search options from a comma-delimited list of
arguments, a properties file, an INI file, ot from input message vatiables/ GVMs, in that
order.

The options found in more than one location override the previous one. Option names
are not case sensitive. This function supports option values encrypted through the cryrun
program. Precede encrypted option values with the keyword ~ENCRYPTED and a
space.

Be sure to call this function before calling the LDAPSearchDirectory function to set the
connection and search options and to establish a connection session to an LDAP server.

Property Description
LDAP.HOST (Optional) The host name or IP address of the LDAP server.
The default is localhost.

LDAP.PORT (Optional) The port in which the LDAP server is listening on.
The default is 389 when SSL is not used, 636 otherwise (see
the LDAP.USE.SSL option).

LDAP.URL (Optional) The URL the LDAP server is listening on. If a

value is specified for this propetty, it overrides the values
specified for LDAP.HOST and LDAP.PORT.

LDAP.UID (Optional) The user ID for logging onto the LDAP server. If
this value is provided and LDAP.USER is not provided, the
user ID is derived from this value and the value provided for
LDAP.DOMAIN option, such as Administrator@pd.com.

LDAP.USER (Optional) An explicit value to use for the user ID for the
purpose of login into the LDAP server. Define this option to
override the behavior used to determine the user ID when
LDAP.UID and LDAP.DOMAIN are defined - see
LDAP.DOMAIN.

LDAP.PWD (Optional) The password used to login into the LDAP server.

LDAP.AUTHENTICATION. (Optional) The method of authentication used to login into

MODE the LDAP server. Acceptable values are (simple) which
provides clear-text password authentication and (none) which
provides anonymous authentication. The default is (simple).

LDAP.TIMEOUT (Optional) The amount of time (in milliseconds) after which a
connection attempt or query should expire. The default is
10000 (10 seconds).

LDAP.SEARCH.BASE (Optional) The base of the search in the DIT (Directory
Information Tree). This is the starting point (node location) of
a search in the DIT. If you omit this property, the system
looks for the LDAP.DOMAIN option and builds a search
base from it.

Property

LDAP.DOMAIN

LDAP.OBJECTS

LDAP.OBJECTS.SEARCH.
STRING

LDAP.OBJECT.
ATTRIBUTES

LDAP.MATCH.
ATTRIBUTES

LDAP.SEARCH.
SCOPE

LDAP.DEREF.LINK

LDAPInit

Description

(Optional) This is the domain of the LDAP server. It is used
to build the user ID for login into the LDAP server by
appending the at symbol (@) plus the value of this option to
the LDAP.UID value. The value of LDAP.DOMAIN is
further parsed into domain components which are used as the
default value for LDAP.SEARCH.BASE, if not alteady
defined.

(Optional) A semicolon-delimited filter list of object classes to
search in the LDAP server. If defined, it overrides the default
filter list of object classes to search: group and
groupOfNames.

(Optional) An explicit string value used as the filter of object
classes to search. If defined, it overrides any value provided
for LDAP.OBJECTS option. The value provided for this
option must be specified in the appropriate LDAP protocol
filter format. Also, if the search filter contains a question mark
(?), the system replaces it with the user ID passed in as an
argument to this function. Here are some examples:

(| (objectClass=group) (objectClass=groupO
fNames)) .

Cn="?

(Optional) The name of the attributes to retrieve for each
object class which contain a value used to determine a match
for USERID specified. The default values are member and cn
(cn is always included).

(Optional) The name of one or more attributes contained
within the value returned by a search for the
LDAP.OBJECT.ATTRIBUTES option. This is the name of
an attribute whose value is used to compate as opposed to the
USERID specified to determine a match.

For example, if LDAP.OBJECTS contains a value of
groupOfUniqueNames and LDAP.OBJECT.ATTRIBUTES
contains a value of uniqueMember and the value returned for
the uniqueMember attribute of groupOfUniqueNames object
class is uid=admin,ou=people, dc=mycompany,dc=com and
you want to match the USERID value with the value for uid,
you would supply a value of uid for this option. The default is
en.

(Optional) The scope of the search. Acceptable values are:
(base) - search only the named context

(one) - search one level below the named context but not the
named context

(sub) - search the entire subtree, including the named context.
The default is (sub).

(Optional) Enter Yes or No to indicate whether or not to
remove reference links to other nodes during a search. The
default is No.

181

Chapter 2

DSI C APIs

182

Property

LDAP.VERSION

LDAP.SEARCH.LEVEL

LDAP.DN.IDENTIFIER

Description

(Optional) An integer value that indicates the LDAP protocol
version to use. You can choose from:

2 - Version 2
3 - Version 3
The default is three (3).

(Optional) An integer value that indicates the search level. You
can choose from:

1 - User type objects

2 - Group type objects

3 - Any objects

The default is one (1), user type objects.

(Optional) The value for this property is used in the following
ways:

1)-In cases were LDAP.SEARCH.LEVEL is equal to 1
(USER) and there is no
LDAP.OBJECTS.SEARCH.STRING value specified, the
system generates a default search filter of the format
identifier=userid, where identifier is the value of this property
and userid is the user ID passed in as an argument to this
function.

2)-In cases were LDAP.SEARCH.LEVEL is equal to 2
(GROUPS) and there is no
LDAP.OBJECTS.SEARCH.STRING value specified, the
system generates a default search filter from LDAP.OBJECTS
and LDAP.OBJECT.ATTRIBUTES, where each attribute
value in the search filter is an asterisk (*), which tells the
system to match any value for the attributes specified. If the
LDAP.RDNDS property is also provided, the asterisk (*) is
replaced with identifer=userid, followed by a comma and the
LDAP.RDNS value to fine tune the search, where identifier is
the value for this property and userid is the user ID passed in
as an argument to this function. Here is an example of a
default search filter:

(& ((objectClass=groupOfNames) (member=%*))
)
If a value of
'CN=Userts, DC=PDDC,DC=DOCUCORP,DC=COM' is
specified for LDAP.RDNS and this property contains a value
of 'CN, the search filter generated would look like this:

(& ((objectClass=groupOfNames) (member=CN=
Administrator,

CN=Users, DC=PDDC, DC=DOCUCORP, DC=COM))) .

3)-The default is 'CN'.

LDAPInit

LDAP.SEARCH.LEVEL is equal to 2 (GROUPS) and when
LDAP.OBJECTS.SEARCH.STRING is not specified. In this

LDAP.OBJECTS and LDAP.OBJECT.ATTRIBUTES.
Attribute values specified in the default search filter contain an
asterisk (*), which tells the system to match any value for the

attributes specified. When you specify this property, the

LDAP.DN.IDENTIFIER to replace the asterisk and fine
tune the search, thereby speeding the process. Here is an

(& ((objectClass=groupOfNames) (member=*))

'CN=Users,DC=PDDC,DC=DOCUCORP,DC=COM' is
specified for this property and LDAP.DN.IDENTIFIER
contains a value of 'CN', the search filter generated would look

(& ((objectClass=groupOfNames) (member=CN=

CN=Users, DC=PDDC, DC=DOCUCORP, DC=COM))) .

(Optional) Enter Yes to enable encrypted communication

through an SSL channel. For SSL connections to work, the
LDAP server must be configured for SSL with a certificate
from a trusted certification authority. This configuration is
vendor specific — please consult your vendor documentation.

Property Description
LDAP.RDNS (Optional) This property is only used when
situation, the system builds a default search filter from
system uses the value along with the value for
example of a default search filter:
)
In a case were a value of
like this:
Administrator,
LDAP.USE.SSL
LDAP.DEBUG

file.

(Optional) Enter Yes to log debugging information to a trace

Here is an example of a properties file:

ldap.host=1localhost
ldap.port=389
ldap.timeout=5000

ldap.uid=cn=Administrator,

dc=pdldap,

ldap.pwd=marks99

ldap.authentication.mode=simple

ldap.objects=groupOfNames ; group

ldap.search.base=dc=pdldap,

dc=com

ldap.object.attributes=member

ldap.match.attributes=cn

ldap.search.scope=sub

ldap.version=3
ldap.deref.link=Yes
ldap.debug=yes

Here is an example of an INI file:

< LDAP >

ldap.host=PDDC.pd.com
ldap.port=389
ldap.timeout=5000

dc=com

183

Chapter 2

DSI C APIs

ldap.uid=jroberts

ldap.pwd=~ENCRYPTED 251U0jhIgWhSGnr702Yg5A000
ldap.authentication.mode=simple
ldap.domain=PDDC.pd.com

ldap.objects=group

ldap.debug=yes

ldap.object.attributes=member
ldap.match.attributes=cn

Returns An LDAP error code.

Example Here is an example:
char *args = "ldap.host=localhost,ldap.port=389,ldap.timeout=5000";
char *file = "c:\\docserv\\openldap.properties") ;
char *userid = "demol";

VMMHANDLE listH = VMMNULLHANDLE;
void *ldap = NULL;

if ((ldap = LDAPInit (args,
file)) != NULL) {

listH = LDAPSearchDirectory (userid,

ldap) ;
if (listH == VMMNULLHANDLE | |
VMMCountList (1istH) == 0) {
UTLLogTrace ("LDAP Error Code: %d\n" \
"LDAP Error Message: %s",

LDAPGetErrorCode (1ldap) ,
LDAPGetErrorMessage (1dap)) ;
LDAPTerm (ldap) ;

LDAPTerm(1ldap) ;

Seealso LDAPTerm on page 186
LDAPSearchDirectory on page 185

184

LDAPSearchDirectory

LDAPSearchDirectory

Use this function to search a user ID for group or role membership in an LDAP server
DIT (Directory Information T'ree).

Call this function after the LDAPInit function, followed by the LDAPTerm function
when the session is no longer needed. This function supports encrypted communications
through an SSL channel (see the LDAP.USE.SSL property in the LD APInit function) and
encrypted option values.

Returns

A VMMHANDLE to a VMMList of string values corresponding to each group or role

the user ID belongs to.

Example

Here is an example:

char *args = "ldap.host=localhost,ldap.port=389,ldap.timeout=5000";

char *file = "c:\\docserv\\openldap.properties™") ;

char *userid =

"demol";

VMMHANDLE listH = VMMNULLHANDLE;

void *ldap =

if

}

See also

((1ldap =

NULL;

LDAPInit (args,

file)) != NULL) {

listH = LDAPSearchDirectory (userid,

ldap) ;
if (listH == VMMNULLHANDLE | |

VMMCountList (1istH) == 0) {
UTLLogTrace ("LDAP Error Code: %d\n" \
"LDAP Error Message:
LDAPGetErrorCode (1ldap) ,
LDAPGetErrorMessage (ldap)) ;
LDAPTerm (1ldap) ;

o
$s",

LDAPTerm(ldap) ;

LDAPTerm on page 186

LDAPInit on page 180

185

Chapter 2
DSI C APIs

LDAPTerm

Use this function to terminate a connection to an LDAP server.

Example Here is an example:
char *args = "ldap.host=localhost,ldap.port=389,ldap.timeout=5000";
char *file = "c:\\docserv\\openldap.properties") ;
char *userid = "demol";

VMMHANDLE listH = VMMNULLHANDLE;
void *ldap = NULL;

if ((ldap = LDAPInit (args,
file)) != NULL) {

listH = LDAPSearchDirectory (userid,
ldap) ;
if (listH == VMMNULLHANDLE | |

VMMCountList (1istH) == 0) {

UTLLogTrace ("LDAP Error Code: %d\n" \
"LDAP Error Message: %s",
LDAPGetErrorCode (1dap) ,
LDAPGetErrorMessage (1dap)) ;

LDAPTerm (ldap) ;

LDAPTerm(ldap) ;

See also LDAPInit on page 180
LDAPSearchDirectory on page 185

186

LDAPTerm

187

Chapter 2

DSI C APIs

188

Chapter 3
DSI Java APIs

This chapter provides a reference to the Document
Server Interface (DSI) Java APIs you can use to create
applications to interface with Oracle Insurance's
Docupresentment.

This information will help you build either a proprietary
client interface or a custom set of rules which will
interact with Docupresentment.

The DSI Java API provides the DSI API. Since Java is
an object-oriented language, the API is implemented as
three classes:

* Class DSIJSession
* Class DSIJException
e Class DSIJQueue

These classes provide access to Docupresentment. All
three classes are in a single package,
com.Docucorp.DIS.util, which should be imported into
any Java source file.

NOTE: The DSI API includes multiple intetfaces
(APIs). This lets you choose the language to
build custom rules and applications. You will
also find sample clients written in each
language, which serve as a reference when
building your own solution.

The topic, Java API Classes on page 200 provides a list
of all Java methods, grouped by class. Each method is
then discussed in alphabetical order, by class.

You will also find information on using the included
JavaBean component in the topic, Using JavaBean
Components on page 190.

189

Chapter 3

DSI Java APIs

190

USING
JAVABEAN
COMPONENTS

com.docucorp.ids.jsp.dsi is a JavaBean component which lets you create an interface
between Java server pages (JSPs) and IDS rules.

The request name/value string from the browser is passed to JavaBean using these
methods:

* AddRequest(Object name, Object value)
* AddAllRequest(javax.servlet.ServletRequest request)

AddRequest adds one request name/value at a ime. AddAllRequest adds all name/values
from the http request object.

This illustration shows how it works:

Browser

3

Java Web Server
(Jakarta-Tomcat or 118 with the Tomcat plugin)

7]
i

Java Beans

(com.docucorp.ids.jsp.dsi)

i
IDS
(DS1java)

i

Rules

Using JavaBean Components

The name REQTYPE is resetved for the request type to the IDS rule. Once the request
name/value has been passed to the dsi JavaBean, ProcessRequest is called to send the
name/value and request type to the IDS rules.

After the IDS rule is processed, ProcessRequest returns the name/value records from the
IDS rules as a HashMap object. sezW aittine() sets the retry time to read the return records
from IDS. sefTimeont() sets the timeout period to read the return records from IDS.

debug_on(javax.servlet.ServletResponse response) sets a flag to send the request name/value and
return name/value from IDS to the passing response object and then calls the
AddRequest and ProcessRequest methods.

AddAllRequest ClearRequest

Send output to response Obj

ProcessRequest

Debug_off

getWaittime
getTimeout

191

Chapter 3

DSI Java APIs

Here is a summary of how the methods work:

Step Method Description
void Sets the flag to send the request name/value and return
debug_on(javax.servlet.Ser name/value from IDS to the passing response object.
vletResponse response) Then calls the AddRequest and ProcessRequest
1 methods.
void debug_off() Clears the debug flag.
int getWaittime() Gets the amount of retry time to read the IDS return
2 record.
int setWaittime(int Sets the retry time (in milliseconds) to read the IDS
3 waittime) return record.
4 int getTimeout() Gets the timeout to read the IDS return record.

int setTimeout(int timeout) Sets the timeout (in milliseconds) to read the IDS return
5 record.

void AddRequest(Object Adds the name/value field to the record to send to the
6 key, Object value) IDS rule.

void Adds all name/value fields from the request object to
AddAllRequest(javax.servl the records to send to the IDS rule.
et.ServletResponse

7 request)
HashMap Sends all name/values and request types to the IDS
ProcessRequest() rules. Processes the IDS rule and gets the return records
8 from the IDS rule. Returns the record as type HashMap.
String GetResult(Object Gets the return record value from the IDS rule index
9 key) using the key from internal result.
10 void ClearRequest() Clears the JavaBean internal request object.
1 void ClearResult() Clears the JavaBean internal result object.

192

Using JavaBean Components

echotest.jsp Here is an example:

<html>
<!l--

Copyright (c) 2001 Docucorp International. All rights reserved.

-->
<%@ page language="java'"$%>

<body bgcolor="white">
<jsp:useBean id='dsi' scope='page' class='com.docucorp.ids.jsp.dsi'/
>
<%
dsi.setTimeout (20000) ; //Set Timeout
%>

WaitTime: is <jsp:getProperty name="dsi" property="waittime"/>
TimeOut: is <jsp:getProperty name="dsi" property="timeout"/>

<%

//dsi.debug_on (response) ;

(
dsi.AddRequest ("Regtype", "ECH") ; //Set IDS rule to Echo
dsi.AddRequest ("Namel", "Valuel") ; //Pass name value
dsi.AddRequest ("Name2", "Value2") ;
java.util.HashMap Rst = dsi.ProcessRequest(); //Process the rule

//dsi.debug off () ;

java.util.Set st = Rst.entrySet();
java.util.Iterator it = st.iterator();
//Loop thorugh the return HashMap
while (it.hasNext())

{

java.util .Map.Entry me = (java.util.Map.Entry) it.next();

o°
\%

<%=(String) me.getKey () %> =
<%=(String) Rst.get (me.getKey())%>

N
o°

%>
</uls>

</body>
</html>

This JSP calls an echo rule in IDS and pass two name/value paits.

193

Chapter 3

DSI Java APIs

194

RETURNING A RECORDSET OBJECT

The processRequest method in dsimsg class returns a user-defined RecordSet object for
requests that execute SQL queries through the SQLQueryDB rule. The RecordSet object
is built from the output message XML rowsets: RECORDS and SELECTIONFIELDS.

Use this capability with the SQLQueryDB rule, which adds the rowsets RECORDS and
SELECTIONFIELDS to the result message. This lets you process queries with dsimsg
class instead of using idssql package — and a RecordSet object can still be returned. The
RecordSet object is identical to the idsrs object in the idssql package, so all method
definitions and calls are the same.

Here is a sample JSP page:

<%@ page language="java" import="java.util.*,
java.net.*,

java.io.*" %>

<jsp:useBean id='dsi' scope='page'
class='com.docucorp.ids.jsp.dsimsg'/>
<jsp:useBean id='rs' scope='page'
class='com.docucorp.ids.jsp.RecordSet'/>

A
o

/***always call at the beginning of a jsp page
***when calling processRequest more than
***once with the same dsimsg bean instance.

*/

dsi.initInstance() ;

for (int x = 0; x < 20; x++){

dsi.setTimeOut (30000) ;
//dsi.debugOn (response) ;

dsi.addRequest ("REQTYPE", "TEST3") ;
dsi.addRequest ("USERID", "FORMAKER") ;
dsi.addRequest ("PASSWORD", "FORMAKER") ;
("PROCNAME", "YYZ ");
(

"INSTANCE", String.valueOf (x));

dsi.addRequest
dsi.addRequest

String record = "SQLPARAMETERS";

String rec = dsi.addAttachRec (record) ;

if (rec !'= null){

dsi.addToAttachRec (rec, "PARAM1", "PASSWORD") ;
dsi.addToAttachRec (rec, "PARAM2", "USERID ") ;
dsi.addToAttachRec (rec, "PARAM3", "SERVERTIMESPENT") ;
dsi.addToAttachRec (rec, "PARAM4", "TRANLOG20030602") ;
dsi.addToAttachRec (rec, "PARAM5", "FORMAKER") ;
dsi.addToAttachRec (rec, "PARAM6", "FORMAKER") ;

}

rs = dsi.processRequest () ;

Using JavaBean Components

if (rs == null){
out.println("rs == null");
1

else{

out.println("
INSTANCE:" + String.valueOf (x) + "
");

for(int i=1; i<= rs.getRecordCount () ;i++) {
out.println("===========" + "
");

out.println("RECORD " + i + ":" 4+ "
");
out.println("===========" + "
");

for (int j=1;j<= rs.getColumnCount () ;j++) {
out.println(rs.getColumn(j) + ":" + rs.getString(j) + "
");
}

rs.next () ;

}
}

/***always call in between requests to reset / clear the messages in
the

***queues.

*/

dsi.resetInstance() ;

}

/***always call at the end of a jsp page
***when calling processRequest more than
***once with the same dsimsg bean instance.
*/

dsi.termInstance() ;

op°
\%2

195

Chapter 3
DSI Java APIs

USING IDSJSP IN A JSP CONTAINER

Here is an example JSP page that uses IDSJSP to send an SSS request type using the
message bus properties in the dsimsgclient.propetties file:

<%@ page language="java" import="java.util.*,
java.net.*,
java.io.*" %>

<jsp:useBean id='dsi' scope='page' class='com.docucorp.ids.jsp.dsi'/
>
<%

dsi.setTimeout (30000) ;

dsi.debugOn (response) ;

dsi.AddRequest ("REQTYPE", "SSS");

HashMap Rst = dsi.ProcessRequest () ;
if (Rst.get ("RESULTS") == null){
out.println("No response from server");
}
>

o°

Alternatively, you can specify the properties in the JSP page, in which case the
dsimsgclient.properties file is not needed. Here is an example JSP page that uses the
HTTP message bus properties to send an SSS request type to IDS:

<%@ page language="java" import="java.util.*,
java.net.*,
java.io.*" %>

<jsp:useBean id='dsi' scope='page' class='com.docucorp.ids.jsp.dsi'/
>
<%

Properties props = new Properties();

props.put ("queuefactory.class",
"com.docucorp.messaging.http.DSIHTTPMessageQueueFactory") ;

props.put ("marshaller.class",
"com.docucorp.messaging.data.marshaller.SOAPMIMEDSIMessageMarshalle
rll) ’.

props.put ("http.url", "http://localhost:49152");
dsi.debugOn (response) ;
dsi.AddRequest ("REQTYPE", "SSS");

HashMap Rst = dsi.ProcessRequest (props) ;
if (Rst.get ("RESULTS") == null){
out.println("No response from server");
}
>

o°

DSI BEAN APIS

Please refet to the docs/com/docucorp/ids/jsp/dsihtml documentation that is shipped
with the Java SDK for a description of the methods available in the dsi bean.

196

USING THE DSI
JAVA
MESSAGING
LIBRARY FOR
CLIENT
APPLICATIONS

Using the DSI Java Messaging Library for Client Applications

If you are deploying a Java client application you can use the DSI Java messaging library,
DSIJavaMsg.jar. This library provides the same functionality as the DSI Java APIs but
uses only Java code. The DSI Java APIs use native code related to the DSI C APIs.

NOTE: This product includes software developed by the Apache Software Foundation
(http:/ /www.apache.org/).

By using only Java code, the DSI Java messaging library lets you have Java client
applications wherever you have a Java runtime so you do not need to port Document
Server Interface code to your target platform.

The DSI Java messaging library only works with IBM's MQSeries as the messaging
service. It cannot be used with Java rules for Docupresentment.

NOTE: If you are running the DSI Java Messaging Libraty inside a Java 2 Enterprise
Edition (J2EE) Application Server, such as IBM's WebSphere or BEA's
WebLogic, the JavaMail API and Javabeans Activation Framework are already
installed as a part of the application server.

The DSI Java messaging library also requires XML processing libraries from the Apache
group, xerces.jar and xalan.jar. These libraries are included. Copy these libraries into the
same directory as DocucorpMsg.jar.

197

http://www.apache.org/

PASSING JVM
OPTIONS TO
DSILIB

Windows

UNIX

DSILIB uses Java through JNI (Java Native Interface) and as such it creates a Java Virtual
Machine (JVM) at runtime. DSILIB lets you pass JVM options before the JVM is created,
so you can fine-tune what is created.

For instance, you can specify the size of memory for the JVM. This is helpful, for example,
if you need to set memory higher to handle large files transmitted via the message bus

(queue).

To pass JVM options, use the dsi_extended_properties environment variable. This
environment variable should contain a comma-delimited list of additional JVM options to
pass during creation of a JVM.

Here is an example of how you would set the environment variable from a command

prompt:

set dsi extended properties=-Xmx256m, -
Dlog4j.configuration=logclientconf.xml

export dsi_extended properties=-Xmx256m, -
Dlog4j.configuration=logclientconf.xml

Examples of client-based applications that use DSILIB include:

e ASP pages using IDSASP.DLL

* JSP pages using IDSJSP.jar

* DSIjava.jar files, which use the C code (DSILIB)

* The DSICOTB.EXE, DSITEST.EXE, and DSIEX.EXE test programs

198

GENERATING
DEBUG OUTPUT
FOR CLIENT
REQUESTS

Generating Debug Output for Client Requests

IDS supports the following log4j categories and appenders which you can use in a log4;
client configuration file to produce debugging output for client requests:

<category name="Receive-Message">
<priority value="DEBUG"/>
<appender-ref ref="receive-message"/>
</category>

<category name="Send-Message">
<priority value="DEBUG"/>
<appender-ref ref="send-message"/>

</category>

<appender class="com.docucorp.util.logging.IDSFileAppender"
name="receive-message">

<param value="false" name="Append"/>

<param value="client-receive.msg" name="File"/>

<param value="true" name="Close"/>

<param value="IS0O-8859-1" name="Encoding"/>

<layout class="org.apache.log4j.PatternLayout"s>

<param value="%m" name="ConversionPattern"/>

</layouts>

</appenders>

<appender class="com.docucorp.util.logging.IDSFileAppender"
name="send-message">

<param value="false" name="Append"/>

<param value="client-send.msg" name="File"/>

<param value="true" name="Close"/>

<param value="I1S0-8859-1" name="Encoding"/>

<layout class="org.apache.log4j.PatternLayout">

<param value="%m" name="ConversionPattern"/>

</layout>

</appender>

NOTE: See the logclientconf.xml file for an example.

199

Chapter 3

DSI Java APIs

JAVA API Here are the methods you can use with Java, grouped into these classes:
CLASSES ¢ DSJJession

Refer to the dsidocs/com/Docucorp/DSI/util/DSIJession.html documentation
shipped with the Java SDK for a description of the methods that are available.

¢ DSIJQueue

Refer to the dsidocs/com/Docucorp/DSI/util/DSIJession.html documentation
shipped with the Java SDK for a description of the methods that are available.

* DSIJException

Refer to the dsidocs/com/Docucorp/DSI/util/DSIJession.html documentation
shipped with the Java SDK for a description of the methods that are available.

200

Chapter 4
DSI Processing Rules

Docupresentment includes processing rules you can use
to control what happens to data. These rules are divided
into the following groups and explained in this chapter.

* Server Rules on page 202
e Client Rules on page 247

Within each group, the rules are listed in alphabetical
order.

These rules run on all supported platforms except where
noted.

NOTE: The rule names are case sensitive.

201

Chapter 4

DSI Processing Rules

SERVER RULES

202

These rules may only be run on Docupresentment.

With version 2.0, the built-in server rules in IDS were replaced with Java rules. When IDS

finds a mention of an IDS 1.x server rule, it is automatically replaced with the

corresponding IDS Java rule.

Here is a list of the IDS 1.x rules that have Java substitutes. All Java classes mentioned are

in the com.docucorp.ids.rules package.

Version 1.x rule

Version 2.x rule

ATCSendFile on page 254
ATCReceiveFile on page 251
ATCLogTransaction on page 250
ATCUnloadAttachment on page 257
IRLInitF'TP on page 220
IRLFileFTP on page 213
IRLCleanDirectory on page 207
IRLClearLog on page 209
IRLCopyAttachment on page 210
IRLInit on page 212

IRLLog on page 221
IRLPurgeCache on page 222
IRLSearch on page 223
IRLSendVersion on page 224
IRLStatistics on page 226

IRLDectyptValue on page 211

AttachmentFilterRule on page 229
AttachmentFilterRule on page 229
LogTransactionRule on page 244
IDSTransactionRule on page 243
FTPRule on page 235

FTPRule on page 235

LogTransactionRule on page 244
CopyDataRule on page 233

IDSInitRule on page 242

BLPPurgeRule on page 231

BLPStatisticsRule on page 232

IDSEncryptionRule on page 241

processAttachments on page 246

NOTE: Both the old and new rules are discussed in this chapter. In future releases,

documentation on the old rules will be removed.

You can run these rules in IDS:
e AttachmentFilerRule
* BLPPurgeRule

* BLPStatisticsRule

CopyDataRule
FTPRule
IDSEncryptionRule
IDSInitRule
IDSTransactionRule

LogTransactionRule

203

Chapter 4

DSI Processing Rules

FTPRule

Use this rule to handle FTP file transfers. This rule is a Java class that implements an IDS
rule for this purpose. The FTPRule rule is a server rule which runs on both Windows and
Solaris, as opposed to the IRLInitFTP and IRLFileFTP rules which run only on
Windows.

Because the FTPRule rule tracks all FTP connections made across transactions, you
should run it using global scope.

There are two methods in FTPRule you must use:
* setupMethod

e transferMethod

setupMethod Use this method in the INI request type. This method creates the data needed to run
multiple FTP transfers in the DSI_MSGINIT message and destroys the data in the
DSI_MSGTERM message.

Add these lines into your INI request group:

function = dsijrule->JavaInitRule

function = dsijrule->JavaRunRule, ;com/docucorp/ids/rules/
FTPRule; JAVAFTP;global; setupMethod;

Like all Java rules, the FTPRule rule requires that JavalnitRule be run first in the INI
request group. In the second function description, you have these parameters:

Parameter Description

com/docucorp/ids/ Identifies the FTPRule class with full package naming required for JNI
rules/FTPRule loading.

JAVAFTP An example name for a named object with global scope; any name would
suffice here.

global Indicates that JavaRunRule will create an object with global scope and
that can be used in other transactions.

In the JavaRule control group in DOCSERYV configuration file, make sute the following
Java Archive (JAR) files are in your class path via the UserClassPath option:

¢ DSIJava.jar
* NetComponents.jar
* DocucorpUtil.jar

* IDSRules.jar

204

transferMethod

FTPRule

Use this method in your transaction control group to do the actual file transfer via FTP.
It gets files from the FTP server in the DSI_ MSGRUNF message and puts them onto the
FTP server in the DSI_MSGRUNR message.

Add these lines into your transaction's request group:

function = irlw32->IRLJavaFTPSetup

function = dsijrule->JavaRunRule, ;com/docucorp/ids/rules/
FTPRule; JAVAFTP;global;transferMethod; FTPRRCFILE->FTPRRCLOCALFILE,

function = dsijrule->JavaRunRule, ;com/docucorp/ids/rules/
FTPRule; JAVAFTP;global;transferMethod; , FTPUTLOCALFILE->FTPRRC2FILE

Parameter Description

com/docucorp/ids/ Identifies the FTPRule class with full package naming required for JNI
rules/FTPRule loading.

JAVAFTP An example name for a named object with global scope; use the same
name for the object that you used with setupMethod.

global Indicates that this rule is using an object with global scope, the same
object used when running setupMethod.

transferMethod The method in the FTPRule class that does the actual file transfers. The
argument after the method name follows the same convention as the
arguments for the IRLFileFTP rule. For more information, see
IRLFileFTP on page 213.

The IRLJavaFFTPSetup rule must be run before JavaRunRule with FTPRule.
IRLJavalFTPSetup reads the INI settings for the IRLFileF'TP rule and creates attachment
variables that can be understood by FTPRule. For more information on which
parameters, attachment variables and INI options to use with the FTPRule rule, see
IRLFileFTP on page 213.

In addition to the options for IRLFileF'TP, you can use the Javal.ogFileName option in
the FTP control group to specify a file for logging FTPRule's debugging messages when
the Debug option is set to Yes. If you omit this option, the system uses the name,
FTPRULE.LOG.

PUTTING AND GETTING MULTIPLE FILES

Before version 2.1, FTPRule used a message variable to hold the name of a file to get or
put, such as GETFILEREMOTE. In version 2.7, if the message variable listed ends with
an asterisk (¥), IDS scans all message variables for variables that begin with that name. For
example, if you set up FTPRule with these parameters:
<entry name="function">irlw32->IRLFileFTP,GETFILEREMOTE* -
>GETFILELOCAL*, </entry>
IDS matches the message variables GETFILEREMOTEA, GETFILEREMOTEB,
GETRFILEREMOTEC, and so on.

When a match is found on the first parameter, IDS looks for a corresponding match on
the second parameter with the same suffix. For example, for GETFILEREMOTEA,
GETFILEREMOTE is the matching prefix and A is the suffix, so IDS will look for a
message vatiable named GETFILEL.OCALA.

205

Chapter 4

DSI Processing Rules

206

Assuming all the message variables are there, this would be the same as running the
FTPRule three times, as shown here:

GETFILEREMOTEA->GETFILELOCALA
GETFILEREMOTEB->GETFILELOCALB
GETFILEREMOTEC->GETFILELOCALC

This also works when you are putting files. Here is an example:

<entry name="function">irlw32->IRLFileFTP, , PUTFILELOCAL* -
>PUTFILEREMOTE*</entry>

This would be the same as (with the message variables set up):

PUTFILELOCALA->PUTFILEREMOTEA
PUTFILELOCALB->PUTFILEREMOTEB
PUTFILELOCALC->PUTFILEREMOTEC

If a variable for a second parameter is missing, a unique name is generated and stored in
that variable, as happened previously.

The FTPRule now also reports its own results in the output, separate from the RESULTS
variable. If FTPRule is getting files from a remote FTP site, the results are placed in the
FTPGETRESULTS variable; for putting to a remote site, the results are placed in the
FTPPUTRESULTS variable. The variable will have either success ot error. Error messages
in the output can be checked for specific errors. For multiple file rule setups, all files must
be successfully gotten or put to be reported as SUCCESS.

IRLCleanDirectory

IRLCleanDirectory

Syntax

Attachment inputs

Attachment outputs

Parameters

Use the IRLCleanDirectory rule to remove expired files from a directory. To determine
if a file has expired, the operating system’s local time is compated against a file's last
modified time plus the expiration time supplied.

long DSIAPI IRLCleanDirectory (DSIHANDLE hInstance,
char * pszParms,
unsigned long ulMsg,
unsigned long ulOptions)

The input attachment variables for this rule are:

Variable Description

DIR (Optional) The name of the directory you want cleaned up. If this attachment
variable is present, it overtides any value specified as a rule argument. If a DIR
value is omitted as an attachment variable or as a rule argument, the rule sets the
RESULTS output attachment variable with a value of FAILURE and then exits.

EXPTIME (Optional) The expiration time in minutes after which files should be removed.
If this attachment vatiable is present, it overrides any value specified as a rule
argument. If an EXPTIME value is omitted as an attachment variable or rule
argument, the rule sets the RESULTS output attachment variable with a value of
FAILURE and then exits.

DEBUG (Optional) Enter Yes if you want the rule to output debug information. If this
attachment vatiable is present, it overrides any value specified as a rule argument.

The output message variables are:

Variable Description

RESULTS Contains SUCCESS or FAILURE.

The rule parameters are:

Parameter Description

DIR (Optional) The name of the directory you want to clean up. If a DIR value is
neither specified as a rule argument nor present as an attachment variable, the
rule sets the RESULTS output attachment variable with a value of FAILURE
and then exits.

EXPTIME (Optional) The expiration time in minutes after which files should be removed.
If an EXPTIME value is neither specified as a rule argument nor present as an
attachment variable, the rule sets the RESULTS output attachment variable with
a value of FAILURE and then exits.

DEBUG (Optional) Enter Yes if you want the rule to output debug information.

207

Chapter 4

DSI Processing Rules

Example Here is an example of a request type:

<section name="ReqType:TEST_ REMOVE">
<entry name="function">atcw32->ATCLoadAttachment</entrys>
<entry name="function"s>atcw32->ATCUnloadAttachment</entry>

<entry name="function">irlw32->
;IRLCleanDirectory,DIR=c:\temp, EXPTIME=10,DEBUG=T</entry>

</section>

208

IRLClearLog

IRLClearLog

Use this rule to remove all records from the server access log or error log files.

Syntax long DSIAPI IRLClearLog (DSIHANDLE hInstance,
char * pszParms,
unsigned long ulMsg,
unsigned long ulOptions)

Parameters
Parameter Description
DSIHANDLE hlnstance DSI instance handle
char * pszParms Pointer to rule parameter string
unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF
unsigned long ulOptions Options
The default DOCSERYV configuration file sets this rule with these INI settings.
< ReqType:CLF >
Function = irlw32->IRLClearLog
Returns Success or failure

209

Chapter 4

DSI Processing Rules

IRLCopyAttachment

Use this rule to copy attachment variables from the input queue to the output queue on
the DSI_MSGRUNR message.

Syniax long DSIAPI IRLCopyAttachment (DSIHANDLE hInstance,
char * pszParms,
unsigned long ulMsg,
unsigned long ulOptions)

Parameters
Parameter Description
DSIHANDLE hlnstance DSI instance handle
char * pszParms Pointer to rule parameter string
unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF
unsigned long ulOptions Options
Returns Success or failure

210

IRLDecryptValue

IRLDecryptValue

Syntax

Parameters

Use this rule to encrypt the attachment variables for use in the web browser and decrypt
them back for IDS on the next request.

For example, on initial login request you can use this rule to encrypt the POLICYNUM
in the output attachment. On the subsequent requests this rule will decrypt the
POLICYNUM value in the input attachment so any other IDS rule that needs this value
will be able to access it.

On the client side, POLICYNUM will be encrypted and not easy to change to point to
some other policy in archive. If the system cannot locate the attachment variable, or if the
encryption process fails, processing continues and no error is generated.

long _DSIAPI IRLDecryptValue (DSIHANDLE hInstance,
char * pszParms,
unsigned long ulMsg,
unsigned long ulOptions)

Parameter Description

DSIHANDLE hlnstance DSI instance handle

char * pszParms Pointer to rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF
unsigned long ulOptions Options

The system supports wild cards, such as
abc*xyz, *xyz, or abc*

This rule works with attachment variables in a case insensitive manner.

211

Chapter 4
DSI Processing Rules

IR LInit

Use this rule to initialize the server file cache and access log tables on the DSI_MSGINIT
message. This rule also terminates them on the DSI_MSGTERM message. This rule is
used on the REQTYPE INI, which means it has to run every time you start the server.

Syniax long DSIAPI IRLInit (DSIHANDLE hInstance,
char * pszParms,
unsigned long ulMsg,
unsigned long ulOptions)

Parameters
Parameter Description
DSIHANDLE hlnstance DSI instance handle
char * pszParms Pointer to rule parameter string
unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF
unsigned long ulOptions ~ Options
Uses the following INT values to specify the locations (full file name) of the server cache
and access log tables.
< DocSrvr >
CacheTbl = SRVCACHE
LogTable = SRVLOG
The default DOCSERYV configuration file sets this rule with these INI settings.
< ReqType:INI >
Function = irlw32->IRLInit
Returns Success or failure

212

IRLFileFTP

IRLFileFTP

Use this rule to get a file from the remote FTP server on the DSI_MSGRUNTF and put
another file back on the DSI_MSGRUNR.

NOTE: To use the IRLFileFTP rule, you must first run the IRLInitFTP rule. Be sure to
place the IRLInitFTP rule on the INI rules list to run it.

Syntax long DSIAPI IRLFileFTP (DSIHANDLE hInstance,
char * pszParms,
unsigned long ulMsg,
unsigned long ulOptions)

Parameters

Parameter Description

DSIHANDLE hlnstance DSI instance handle
char * pszParms Pointer to rule parameter string
unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

unsigned long ulOptions Options

You must register this rule using an INI request. Here is an example:

< ReqgType:INI >
function = irlw32->IRLInitFTP
< ReqType:FTPTest >

function = irlw32->IRLFileFTP,GetFileRemote->GetFileLocal,
PutFileLocal ->PutFileRemote

The following rule arguments are used in the following way:

¢ GetFileRemote and GetFileLocal rule arguments are used to look up the path and
file name of the remote and local files for the GET operation. They are looked up in
the following manner:

Look first in the input attachment and if not found look in the output attachment.

The rule argument names are just a representation and could be any other user
defined names, but there must be matching names in the input or output attachment.

* PutFileLocal and PutFileRemote rule arguments are used to look up the path and file
name of the local and remote put files for the PUT operation. They are looked up in
the following manner:

Look first in the output attachment and if not found look in the input attachment.

The rule argument names ate just a representation and could be any other user-
defined names, but there must be matching names in the input or output attachment.

213

Chapter 4

DSI Processing Rules

Parameter Description

GetFileRemote The name of the attachment variable which contains the name of the file to
get via FTP from the FTP server. This name is 7o a URL, it is the name of
a file and, optionally, an FTP directory name. For instance, for fip://
servername/ incoming/ file.dat you would enter the name incoming/ file.dat.

GetFileLocal The name of the attachment variable which contains the name of the
destination file (to be wtitten locally to the IDS machine).

If this value is not found, the rule generates a unique name and sets the value
of the variable to the generated name.

See FTPGetFilePath, below, for information on how to prefix this name
with a path. The generated name is a long file name, so your file system has
to support long file names.

If the file exists when the GET operation is executed, it is overwritten. If

the GET operation is successful and a unique file name is generated, the file
name is added an output attachment variable.

PutFilel.ocal The name of the attachment variable which contains the name of the local
(to IDS) source file to be put via FTP onto the FTP server.

PutFileRemote The name of the attachment variable which contains the name under which
the destination file is to be written to the FTP server. If you supply this
variable, bear in mind that the name it holds is not a URL, it is the name of
a file and, optionally, an FTP directory name.

For instance, for

ftp://servername/incoming/file.dat
you would enter

incoming/file.dat
If this value is not found, this rule generates a unique name and sets the
value of the variable to the generated name.
See FTPPutFilePath, below, for information on how to prefix this name
with an FTP directory. The generated name is a long file name, so your file
system has to support long file names.
If the file exists when the PUT operation is executed, the file will be
overwritten. If the PUT operation is successful and a unique file name is
generated, the file name is added an output attachment variable.

If the Ges names are missing, no FTP Gez action is performed by this rule and no error
message is generated. If the P##names are missing, no FTP Putaction is performed by this
rule and no error message is generated.

You can register multiple IRLFileFTP rules on the same request type if you need to FTP
multiple files. This rule maintains the list of open FTP connections and reuses
connections when possible.

Here is an example:

To transfer a file named FILE.DAT from the incoming directory on the FTP setrver to
the d:/temp directory and rename it to MYFILE.DAT on the IDS setver, you could set
up the IRLFileFTP rule on a rules list in the DOCSERYV configuration file as follows:

Function = irlw32->IRLFileFTP,GetRem->GetLoc,

214

Input options

IRLFileFTP

In this case, you put two variables on the input attachment: one named GETREM with
the value INCOMING/FILE.DAT, and one named GETLOC with the value d:/ tensp/
MYFILE.DAT. Notice that parameters for putting a file are omitted, so no PUT
operation occurs for this call to the IRLFileFTP rule.

Here is another example:

To transfer a file named FILE.DAT from the d:/temp ditectory on the IDS setver, and
let the IRLFileFTP rule generate the name under which it will be written to the FTP
server, you could set up the IRLFileFTP rule on a rules list in the DOCSERV
configuration file as follows:

Function = irlw32->IRLFileFTP, ,PutLoc->PutRem,

In this case, you would put one vatiable named PUTLOC with the value d:/ emp/
FILE.DAT on the output attachment. You would not create a variable named PUTREM.
The IRLFileFTP rule would automatically generate a file name, write the file to the FTP
server using that name, create a variable named Pu#Rem on the output attachment, and put
the generated file name into the variable. Notice that since the parameters for getting a
file were omitted, no GET operation occurs for this call to the IRLFileFTP rule.

NOTE: Keep in mind the FIP directories do not have drive letters.

If a connection is dropped, this rule reopens it. The default timeout value on an FTP
server is 900 seconds, so the connection will stay open for at least this amount of time
before it is dropped.

These options are looked up in the following manner:

GET OPERATIONS. Look for each option in the input attachment and then in the output
attachment using the value FTP value prefixed to the option name, such as FTPDEBUG.
Then look for the options in the FTP:ReqType control group, where ReqType is the value
of the REQTYPE input attachment variable and in the FTP control group. Each search
occurs in the order listed and stops when an option is found. GET operations do not look
up or use the RemoveOnPut or PutFilePath options.

PUT OPERATIONS. Look for each option in the output attachment and then in the input
attachment using the value 'TP value prefixed to the option name, such as FTPDEBUG.
Then look for the options in the FTP:ReqType control group, where ReqType is the value
of the REQTYPE input attachment variable and in the FTP control group. Each search
occurs in the order listed and stops when an option is found. PUT operations do not look
up or use the RemoveOnGet, GetFilePath, or CacheGetFile options.

Variable Description

Server The server name ot IP address for the FTP connection.
UserID The user ID for the FTP connection.

Password The password for the FTP connection.

Port The server port for the FTP connection.

215

Chapter 4

DSI Processing Rules

216

Variable

GetFilePath

PutFilePath

RemoveOnGet

RemoveOnPut

Debug

CacheGetFile

Description

generated.

FTP names such as #ncoming\datafiles\Oabedefy.ext to be generated.

you are debugging.

debugging.

Determines if the rule logs its actions to the DSRVTRC.LOG file. Set this
option to Yes for debugging putrposes, but be sure to change the option to
No when you are ready to use the system in a production environment. The
default is No. See the Sample debug log on page 218 for an example.

See also IRLPurgeCache on page 222.

Here is an example of the INI options:

< FTP:ReqType>

Server =
UserID =
Password =
Port =
GetFilePath =
PutFilePath =

< FTP >

Server =
UserID =
Password =
Port =
GetFilePath =
PutFilePath =
RemoveOnGet =
RemoveOnPut =
Debug =
CacheGetFile =

< Attachment >

Path =

The path to be prefixed to the unique name IRLFileFTP generates when the
variable for GetFileLocal is not found as an attachment variable. For
example, d-\7emp causes local names such as d:\temp\Oabedefg.ext to be

The FTP directory path (omit the drive specifier) to be prefixed to the
unique name IRLFileFTP generates when the variable for PutFileRemote is
not found as an attachment variable For example, incoming\ datafiles causes

If set to Yes, the rule issues the FTP command to remove the remote soutce
file after getting it—if the user ID used can remove files from the FTP site.
This is done to allow clean up activities. The default is No, which helps when

If set to Yes, the local source file is removed as soon as the Put operation is
complete. This reduces the number of temporary files. The file is removed
even if the Put operation failed. The default is No, which helps when you are

Enter the number of seconds the rule should store the file it got from the
remote FTP server using the IDS file cache. The default is 3600 (1 hour).

IRLFileFTP

Option Description

In the Attachment control group

Path Use this option to specify a path prefix for the file names this rule generates
when the names are not provided in the attachment (same as the attachment
vatiables FTPGetFilePath and FTPPutFilePath).

Since the value of this option can be used for a local or for an FTP file path,
you can experience problems results if the generated file names for both local
and FTP files depend on it.

For example, if you set this option to d-\zezp, it would be unsuitable as a path
for generating a file name for an FTP PUT operation. In that case, you need
to supply the variable for PutFileRemote or set the path via the
FTPPutFilePath attachment variable or the PutFilePath INI option.

If you omit the user ID and password in either the attachment or in the configuration file,
the system makes an anonymous connection. Keep in mind that if you set up your FIP
server to allow anonymous connections, anyone can FIP in and see your files and anyone
can put files in. You can solve this problem by setting the FTP server to refuse all
connections except those from specified IP addresses.

Both the configuration file options and the attachment variables can provide all of the
needed information for FTP operations (server address, user 1D, password, port), so the
same IDS setup can FTP to different FTP servers, if needed.

The web application is responsible for removing any file sent to it via FTP. For example,
when IDS FTPs the file to the web application, IDS removes the local file it created. The
web application must remove the file it got via FTP from IDS. IDS can also remove the
remote file it got via the FTP using the RemoveOnGet option.

NOTE: You can use multiple IRLFileFTP rules on the same request type with different
rule parameters if necessary for getting or putting multiple files.

Here is another example:

In this example, on DSI_MSGRUNR, you want to transfer a file called MYFILE.DOC
from the incoming directory on an FTP server called Zes#fip into the local directory called
e\temp and you want IRLFileFTP to generate a name for the local destination file.

Additionally, on DS_MSGRUNR, you want to transfer a file called MYFILE.PDF from
the local directory called e:\semp into the incoming directory on the FTP server and you
want IRLFileFTP to generate a name for the remote destination file. Assume you are
using anonymous FTP. Here's one way you would could set this up:

First, add these INI options in your DOCSERYV configuration file:
< ReqType:PRT >
Function = irlw32->IRLFileFTP,GETREM->GETLOC, PUTLOC->PUTREM
< FTP:PRT >
GetFilePath = e:\temp

< FTP >
Server = testftp

217

Chapter 4

DSI Processing Rules

PutFilePath = incoming
Debug = Yes

Then set these attachment variables:
* Input attachment: GETREM = incoming\myfile.doc
* Output attachment: PUTLOC = e:\temp\myfile.pdf

When running a transaction with these settings, IRLFile['TP creates the variable
GETLOC on the input attachment and will fill it with a temporary name such as
eNtemp\E0A79110D30D11D2AA2600104BD359C8.doc. It also creates the variable
PUTREM on the output attachment and fills it with a temporary name such as
incoming\E0A79111D30D11D2AA2600104BD359C8.pdf.

See the sample debug log for the results of running a transaction with the settings in this
example.

Attachment outputs

Variable Description

FIPGETRESULTS A value of SUCCESS or ERROR.
FTPPUTRESULTS A value of SUCCESS or ERROR.

RESULTS A value of SUCCESS, if the GET and PUT operations succeeded,
otherwise the last error code returned.

RemotePutFile Where RemotePutFile represents the rule argument name for the remote
put file. This is only present if the rule generated a unique file name for
the remote file in a PUT operation.

LocalGetFile Where LocalGetFile represents the rule argument name for the local get
file. This is only present if the rule generated a unique file name for the
local file in a PUT operation.

Returns Success or failure

Sample debug log Here is a sample debug log produced if you use the Debug option in the FTP control
group. This debug log is based on the example above.

1. IRLFileFTP after parsing using: <GETREM> for GetFileRemote,
<GETLOC> for GetFileLocal, <PUTLOC> for PutFileLocal, <PUTREM> for
PutFileRemote

2. Attachment value FTPUSERID is not found. Looking for INI value
<FTP:PRT> UserID =

3. INI value is not found. Looking for INI value <FTP> UserID =
4. USERID is not found.

5. Attachment value FTPPASSWORD is not found. Looking for INI value
<FTP:PRT> Password =

6. INI value is not found. Looking for INI value <FTP> Password =
7. PASSWORD is not found.

8. Attachment value FTPSERVER is not found. Looking for INI wvalue
<FTP:PRT> Server =

9. INI value is not found. Looking for INI value <FTP> Server =

10. Attachment value FTPSERVERPORT is not found. Looking for INI
value <FTP:PRT> Port =

11. INI value is not found. Looking for INI value <FTP> Port =

218

IRLFileFTP

12. Using FTP UserID <>.

13. Using FTP Password <>.

14. Using FTP Server <testftps>.

15. Using FTP port <21>.

16. Created new FTP connection

17. Succesful get current directory </>

18. Did not find <GETLOC> in the attachment. Generated name:
e:\temp\EOA79llOD3OD11D2AA2600104BD359C8.DOC>

19. Did not find <PUTREM> in the attachment. Generated name:
<e:\temp\incoming\E0A79111D30D11D2AA2600104BD359C8.PDF>

20. Successful GetFile

21. IRLFileFTP after parsing using: <GETREM> for GetFileRemote,
<GETLOC> for GetFileLocal, <PUTLOC> for PutFileLocal, <PUTREM> for
PutFileRemote

22. Attachment value FTPUSERID is not found. Looking for INI value
<FTP:PRT> UserID =

23. INI value is not found. Looking for INI value <FTP> UserID =
24. USERID is not found.

25. Attachment value FTPPASSWORD is not found. Looking for INI value
<FTP:PRT> Password =

26. INI value is not found. Looking for INI value <FTP> Password =
27. PASSWORD is not found.

28. Attachment value FTPSERVER is not found. Looking for INI value
<FTP:PRT> Server =

29. INI value is not found. Looking for INI value <FTP> Server =

30. Attachment value FTPSERVERPORT is not found. Looking for INI
value <FTP:PRT> Port =

31. INI value is not found. Looking for INI value <FTP> Port =
32. Using FTP UserID <>.

33. Using FTP Password <>.

34. Using FTP Server <testftp>.

35. Using FTP port <21>.

36. Found existing FTP connection

37. Successful get current directory </>

38. Successful PutFile.

219

Chapter 4

DSI Processing Rules

IRLInitFTP

Syntax

Parameters

Returns

220

Use this rule to create and destroy an InternetSession object. This rule creates and
destroys two global DSI variables: INTERNETSESSION and FTPCONNECTIONS.

long DSIAPI IRLInitFTP (DSIHANDLE hInstance,
char * pszParms,
unsigned long ulMsg,
unsigned long ulOptions)

Parameter Description

DSIHANDLE hlnstance ~ DSI instance handle
char * pszParms Pointer to rule parameter string
unsigned long ulMsg DSI_MSG???? message, such as DSI_ MSGRUNF

unsigned long ulOptions Options

You must register this rule using an INI request. Here is an example:

< ReqType:INI >
Function = irlw32->IRLInitFTP

Success or failure

IRLLog

Syntax

Parameters

Returns

IRLLog

Use this rule to return records from server access log or error log files.

long DSIAPI IRLLog (DSIHANDLE hInstance,
char * pszParms,
unsigned long ulMsg,
unsigned long ulOptions)

Parameter Description

DSIHANDLE hlnstance DSI instance handle

char * pszParms Pointer to rule parameter string
unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF
unsigned long ulOptions Options

The error log report is created in this format:

REQTYPE
TIME
USERID
RESULT
REASON
AREA

The access log includes these fields:
e USERID
e REM_ADDR

« REQTYPE
« STATUS
« RESULT
« INTIME

The default DOCSERYV configuration file sets this rule with this INI option:

< ReqType:VLF >
Function = irlw32->IRLLog

Success or failure

221

Chapter 4

DSI Processing Rules

IRLPurgeCache

Use this rule to remove expired files. The rule runs on the timer (SAR) request and
removes all files registered in the server cache table after the specified time has expired.

Syniax long DSIAPI IRLPurgeCache (DSIHANDLE hInstance,
char * pszParms,
unsigned long ulMsg,
unsigned long ulOptions)

Parameters
Parameter Description
DSIHANDLE hlnstance DSI instance handle
char * pszParms Pointer to rule parameter string
unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF
unsigned long ulOptions Options
This rule uses the following INI option to remove records from the result queue which
where not picked up by a front-end client.
< DOCSRVR >
ExpireTransactions = 86400
The default value is 86400 seconds, which is 24 hours. With this setting, all records in the
result queue with an iz #ime older than 24 hours will be removed.
The default DOCSERYV configuration file sets this rule with these INI settings.
< ReqType:SAR >
Function = irlw32->IRLPurgeCache
Returns Success or failure

222

IRLSearch

IRLSearch

Use this rule to return a list of matching table records.

Syntax long DSIAPI IRLSearch (DSIHANDLE hInstance,
char * pszParms,
unsigned long ulMsg,
unsigned long ulOptions)

Parameters
Parameter Description
DSIHANDLE hlnstance DSI instance handle
char * pszParms Pointer to rule parameter string
unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF
unsigned long ulOptions Options
You can use this INI option with this rule:
< ArcRet >
MaxRecords = 100
Returns Success or failure

223

Chapter 4

DSI Processing Rules

IRLSendVersion

Use this rule to report DLL version information.

Syniax long DSIAPI IRLSendVersion (DSIHANDLE hInstance,
char * pszParms,
unsigned long ulMsg,
unsigned long ulOptions)

Parameters
Parameter Description
DSIHANDLE hlnstance ~ DSI instance handle
char * pszParms Pointer to rule parameter string
unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF
unsigned long ulOptions Options
For each of the following DILs, this rule creates attachment variables on the
DSI_MSGRUNTF message.
¢ IRL
e IRP
- DQM
» IBASE
« DCB
* ATC
« DSJJ
Here is a list of the variables:
Variable Tells you the...
NAME name of the DLL
VERSION version of the DLL, such as 100.012.XXX
DATE date of the last compile in MMM DD YYYY format
TIME time of the last compile in HH:MM:SS format
These values only change when you upgrade to a newer version.
The default DOCSERYV configuration file sets this rule with this INI option.
< RegType:SSS >
Function = irlw32->IRLSendVersion
Returns Success or failure

224

IRLSendVersion

See also IRCSendVersion on page 263

225

Chapter 4

DSI Processing Rules

IRL Statistics

Use this rule to compile server statistics.

Syniax long DSIAPI IRLStatistics (DSIHANDLE hInstance,
char * pszParms,
unsigned long ulMsg,
unsigned long ulOptions)

Parameters

Parameter Description
DSIHANDLE hlnstance DSI instance handle
char * pszParms Pointer to rule parameter string
unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF
unsigned long ulOptions Options

This rule creates the following values in the attachment:
Value Tells you the...
UPTIME time the server started, in this format: Mon Dec 22 15:37:31 1999
SUCCESSCOUNT number of successful transactions
ERRORCOUNT number of transactions in error
ALLOCCOUNT number of memory allocations—used for debugging purposes
RESTARTCOUNT number of times Docupresentment been restarted
LASTRESTART time of the last restart, in this format: Mon Dec 22 15:37:31 1999
FREECOUNT number of memory deallocations—used for debugging purposes

The default DOCSERYV configuration file sets this rule with these INI settings.

< ReqgType:SSS >
Function = irlw32->IRLStatistics
Returns Success or failure

226

AddJobRule

Constructors

Methods

Parameters

Returns

Methods

AddJobRule

public class com.docucorp.ids.rules.AddJobRule

This class extends com.docucorp.ids.rules. AbstractIDSJavaRule. Use the rules in this
class to help Documaker Interactive set up database information when adding a
transaction. This class contains these methods:

. setupPool

* addJob

public AddJobRule ()

setupPool

Use this method to set up a pool of database connections which can be used by the
addJob method. This helps you manage resources and improve performance.

public static int setupPool (RequestState requestState, String arg,
int msg)

Place this method in the REQTYPE:INI control group of your configuration and set it
up as a static method.

The rule creates a pool of database connections in the MSG_INIT message. Then the
addJob rule adds connections to the pool. In the MSG_TERM message, the connections
in the pool are closed.

No arguments are expected.

Here is an example from a configuration file:
<entry

name="function">java;com.docucorp.ids.rules.AddJobRule; ;static;setu
pPool;</entry>

Parameter Description

requestState Object that holds the current running state of the request at this point of

execution.
arg Arguments from the rule line of the configuration file.
msg Message that is currently being run, either MSG_INIT,

MSG_RUNF,MSG_RUNR or MSG_TERM.

This rule returns RET_SUCCESS if successful, otherwise it returns RET_FAIL.

addJob

This method adds support for the DPRAddWipRecord rule. It adds a row to the Jobs
table and passes an identifier for the row on to the DPRAddWipRecord rule.

public int addJob (RequestState requestState, String arg, int msg)

No arguments are expected from the function line.

227

Chapter 4

DSI Processing Rules
Example Here is an example from a configuration file:
functions=
java;com.docucorp.ids.rules.AddJobRule;aj;transaction;addJob;
Parameter

Parameter Description

requestState Object that holds the current running state of the request at this point of

execution.
arg Arguments from the rule line of the configuration file.
msg Message that is currently being run, either MSG_INIT,

MSG_RUNF,MSG_RUNR or MSG_TERM.

Returns This rule returns RET_SUCCESS if successful, otherwise it returns RET_FAIL.

228

AttachmentFilterRule

AttachmentFilterRule

Constructors

Methods

Parameters

Returns

public class com.docucorp.ids.rules.AttachmentFilerRule

This class contains rule functions that send and receive files through attachments in
DSIMessages. The files can be binary or text. Create objects of this class with transaction
scope since receiveFile uses information in the object in both the MSG_RUNF and
MSG_RUNR messages.

This class implements the substitution for these IDS 1.x rules:
e ATCSendFile
* ATCReceiveFile

sendFile

public AttachmentFilerRule ()

public int sendFile(
RequestState requestState,
String arg,

int msg)

Use this method to read a file from disk in binary or text format and put it in an
attachment in the output DSIMessage to be sent back to the client application.

In the MSG_RUNR message this rule will read three parameters from arg, separated by
commas. The three parameters are attachment name, file name message variable, and file
type.

Attachment name is the name that the file data is stored in the output DSIMessage's
attachments.

File name message variable is the name of the message variable that has the file name in

it. The file type is either TEXT or BINARY, specifying the type of file to be read. For

example, if the rule is specified in the configuration as:
java;com.docucorp.ids.rules.AttachmentFilerRule; ;transaction;sendFi
le;2Z%, IMPORTFILE, TEXT

and the message variable IMPORTFILE contains '/home/docsetv/client/test.txt,’ then

the file 'test.txt' is added to the DSIMessage in a text attachment named "ZZZ".

Parameter Description

requestState ObjecF that holds the current running state of the request at this point of
execution.

arg Arguments from the rule line of the configuration file.

msg Message that is currently being run, either MSG_INIT, MSG_RUNF,

MSG_RUNR or MSG_TERM.

RET_SUCCESS if successful, else RET_FAIL, usually caused by the file not being found,
missing message variable, and so on.

229

Chapter 4

DSI Processing Rules

Methods

Parameters

Returns

230

receivekFile

public int receiveFile(
RequestState requestState,
String arg,

int msg)

Use this method to write a file to disk in binary or text format from an attachment in the
input DSIMessage, usually sent from a client application.

In the MSG_RUNTF message this rule reads these parameters from arg: attachment name,
file name attachment variable, file name, and disposition. The parameters should be
separated by commas.

Attachment name is the name that the file data is stored in the input DSIMessage's
attachments. The file type, text or binary, is stored in the attachment and the file is written
in the proper mode.

File name message variable is the name of the message variable that will have the file name
stored in it.

File name is the name of the file to write. If it is a regular file name the file is overwritten
each time the rule is run. If the file name has an asterisk (*) in it, the asterisk is replaced
with a unique string, causing different files to be written each time the rule is run. In either
case the file name that is used is stored in the file name message variable.

Disposition determines if the file is erased during the MSG_RUNR message. If
disposition is set to KEEP then the file is kept, otherwise it is erased.

For example, if the rule is specified in the configuration as:

java;com.docucorp.ids.rules.AttachmentFilerRule; ;transaction;receiv
eFile;ZZZ, IMPORTFILE, /home/docserv/client/test.txt, KEEP

then the file named test.txt is written to disk with data in the ZZZ attachment and the file
name is stored in the message variable IMPORTFILE.

If the file name was instead /home/docserv/client/*.txt, then a unique file name ending
with .zx7 would be generated and that would be stored in IMPORTFILE.

In the MSG_RUNR message the rule will erase the file written in the MSG_RUNF
message, unless the disposition was set to KEEP.

Parameter Description

requestState ObjecF that holds the cutrent running state of the request at this point of
execution.

arg Arguments from the rule line of the configuration file.

msg Message that is currently being run, either MSG_INIT, MSG_RUNF,

MSG_RUNR or MSG_TERM.

RET_SUCCESS if successful, else RET_FAIL, an invalid or empty parameter in arg.

BLPPurgeRule

Constructors

Methods

Parameters

Returns

BLPPurgeRule

public class com.docucorp.ids.rules.BLPPurgeRule

Extends com.docucorp.ids.rules.AbstractIDSJavaRule

Use this class to delete files in the file cache when the file’s expiration time has passed.
This class implements the substitution for the IDS 1.x rule IRLPurgeCache.

public BLPPurgeRule ()

public int purge (
RequestState requestState,
String arg,

int msg)

During the MSG_RUNR message this rule calls a function that checks the files that have
been cached to see if any of the file lifetimes have expired, and if they have then deletes
the files. No arguments are expected from the function line.

Parameter Description

requestState Object. that holds the cutrent running state of the request at this point of
execution.

arg Arguments from the rule line of the configuration file.

msg Message that is currently being run, either MSG_INIT, MSG_RUNF,

MSG_RUNR or MSG_TERM.

RET_SUCCESS.

231

Chapter 4

DSI Processing Rules

BLPStatisticsRule

public class com.docucorp.ids.rules.BLPStatisticsRule

Extends com.docucorp.ids.rules. AbstractIDSJavaRule

Use the rule in this class to add statistical information to the output attachment. This is
usually called as part of a SSS request.

This class implements the substitution of the IDS 1.x rule IRLStatistics.

Constructors public BLPStatisticsRule()
Methods public int addStatistics(
RequestState requestState,
String arg,
int msg)

During the MSG_RUNF message add statistical information to the output DSIMesage.
Currently includes number of successful transactions, number of errors, number of
restarts, time when BLP was started and time of the last restart. No arguments are
expected from the function line.

Parameters
Parameter Description
requestState Object that holds the cutrent running state of the request at this point of
execution.
arg Arguments from the rule line of the configuration file.
msg Message that is currently being run, either MSG_INIT, MSG_RUNTF,

MSG_RUNR or MSG_TERM.

Returns RET_SUCCESS if successful, else RET_FAIL.

232

CopyDataRule

Constructors

Methods

Parameters

Returns

Constructors

Methods

CopyDataRule

public class com.docucorp.ids.rules.CopyDataRule

Extends com.docucorp.ids.rules.AbstractIDSJavaRule

Use the rule in this class to copy message variables and attachments from the input
DSIMessage to the output DSIMessage.

copyData

This class implements the substitution of the IDS 1.x rule IRLCopyAttachment.

public CopyDataRule ()

public int copyData (
RequestState requestState,
String arg,

int msg)

During the MSG_RUNR message copy all message variables and attachments from the
input DSIMessage to the output DSIMessage. No arguments are expected from the
function line.

Parameter Description

requestState Object- that holds the current running state of the request at this point of
execution.

arg Arguments from the rule line of the configuration file.

msg Message that is currently being run, either MSG_INIT, MSG_RUNF,

MSG_RUNR or MSG_TERM.

RET_SUCCESS if successful, else RET_FAIL.

copyMessageVariables

Use this method to copy variables from the input queue to the output queue.
public class com.docucorp.ids.rules.CopyDataRule

public int copyMessageVariables (RequestState requestState, String
arg, int msg)

During the MSG_RUNR message, this method copies the listed message variables from
the input queue to the output queue.

This method is only for non-rowset message variables, meaning variables that were not
added with the DSIAddRecord function or the DSIMessage.addMsgRec method.

Arguments from the function line are a comma-delimited list of message variables to
copy. If the message variable does not exist, the variable is not copied and no error
appeats.

Here is an example from a configuration file:

233

Chapter 4

DSI Processing Rules
function= java;com.docucorp.ids.rules.CopyDataRule;copyit;
transaction;copyMessageVariables; TAG AND FOLLOW, CONFIG
This example copies the message variables TAG_AND_FOLLOW and CONFIG from
the input queue to the output queue, if they exist in the input queue.
Parameters

Parameter Description

requestState Object that holds the current running state of the request at this point of

execution.
arg Arguments from the rule line of the configuration file.
msg Message that is currently being run, either MSG_INIT,

MSG_RUNF,MSG_RUNR or MSG_TERM.

Returns This rule returns RET_SUCCESS if successful, otherwise it returns RET_FAIL.

234

FTPRule

Constructors

Methods

Parameters

Returns

FTPRule

public class com.docucorp.ids.rules.FTPRule

Extends com.docucorp.ids.rules. AbstractIDSRule

Use the rules in this class to transfer files back and forth over FTP connections. There are
two sets of rules in the class. One set is used in IDS 2.x, the other is used for IDS 1.x Java
rule compatibility. Each method is marked as to how it should be used.

There is a method that is run in the INI request that stores and caches FTP connections
and a method that does the actual file transfer. This class implements the substitution for
these IDS 1.x rules:

* IRLInitFTP
* IRLFieFTP

public FTPRule ()

All of these methods are used for IDS 1.x compatibility.

public int setupMethod (
int dsih,

String arg,

int ulMsg,

int ulOptions)

public int convertParameter=Description (
RequestState requestState,

String arg,

int msg)

public int transferMethod(
int dsih,

String arg,

int ulMsg,

int ulOptions)

public int setupConnections (
RequestState requestState,
String arg,

int msg)

Use these methods to create data to run multiple FTP transfers in the MSG_INIT
message and destroy the data in the MSG_TERM message. Use this rule in the INI
request type.

Parameter Description

requestState Object that holds the current running state of the request.

arg Arguments from the rule line of the configuration file.

msg Message currently being run, either MSG_INIT, MSG_RUNF, MSG_RUNR,
or MSG_TERM.

RET_SUCCESS if successful, otherwise RET_FAIL

235

Chapter 4

DSI Processing Rules

236

Methods

transferFiles

public int transferFiles(
RequestState requestState,
String arg,

int msg)

Use this method to do the actual file transfers through FTP. Files ate retrieved during the
MSG_RUNF message and sent during the MSG_RUNR message. For example, if the
rule is specified in the configuration as:
java;com.docucorp.ids.rules.FTPRule; ;transaction;transferFiles;GetF
ileRemote- PutFileRemote
GetFileRemote is the name of the message variable which contains the name of the file
to get via FTP from the FTP server. This variable must be in the input attachment. This
name is not a URL, it is the name of a file and, optionally, an FTP directory name. For
instance, for

ftp://servername/incoming/file.dat
you would enter the name
incoming/file.dat

GetFileLocal is the name of the message vatiable which contains the name of the
destination file (to be written locally to the IDS machine). If this variable exists, it must
be in the input DSIMessage. If this variable is not found, the rule generates a unique name,
adds the message variable to the input attachment, and sets the value of the variable to the
generated name. See FTPGetFilePath, below, for information on how to prefix this name
with a path. If the file exists when the GET operation is executed, it is overwritten.

PutFileLocal is the name of the message vatiable which contains the name of the local (to
IDS) source file to be put via FTP onto the FTP server. This variable must be in the
output DSIMessage.

PutFileRemote The name of the message variable which contains the name under which
the destination file is to be written to the FTP server. If this variable exists, it must be in
the output DSIMessage. If you supply this variable, bear in mind that the name it holds is
not a URL, it is the name of a file and, optionally, an FTP directory name. For instance,
for ftp://servername/incoming/file.dat you would enter incoming/file.dat If this
variable is not found in the output DSIMessage, this rule generates a unique name, adds
the variable to the output DSIMessage, and sets the value of the variable to the generated
name. See FTPPutFilePath, below, for information on how to prefix this name with an
FTP directory. If the file exists when the PUT operation is executed, the file is
overwritten.

If the Get names are missing, no FTP Get action is performed by this rule and no error
message is generated. If the Put names are missing, no FTP Put action is performed by
this rule and no error message is generated.

You can register multiple FTPRule rules on the same request type if you need more than
one file FTP. This rule maintains the list of open FTP connections and reuses connections
when possible. For example, if the rule is specified in the configuration as:

java;com.docucorp.ids.rules.FTPRule; ;transaction;transferFiles;GetF
ileRemote->GetFileLocal, PutFileLocal->PutFileRemote

FTPRule

GetFileRemote is the name of the message variable that contains the name of the file to
get via FTP from the FTP server. This variable must be in the input attachment. This
name is not a URL, it is the name of a file and, optionally, an FTP directory name.

For instance, for
ftp://servername/incoming/file.dat

you would enter the name
incoming/file.dat.

GetFileLocal is the name of the message variable that contains the name of the
destination file (to be written locally to the IDS machine). If this variable exists, it must
be in the input DSIMessage. If this variable is not found, the rule generates a unique name,
adds the message variable to the input attachment, and sets the value of the variable to the
generated name. See below, for information on how to prefix this name with a path. If
the file exists when the GET operation is executed, it is overwritten.

PutFileLocal is the name of the message variable that contains the name of the local (to
IDS) source file to be put via FTP onto the FTP server. This variable must be in the
output DSIMessage.

PutFileRemote is the name of the message variable that contains the name under which
the destination file is to be written to the FTP server. If this variable exists, it must be in
the output DSIMessage. If you supply this variable, bear in mind that the name it holds is
not a URL, it is the name of a file and, optionally, an FTP directory name.

For instance, for
ftp://servername/incoming/file.dat
you would enter
incoming/file.dat

If this variable is not found in the output DSIMessage, this rule generates a unique name,
adds the variable to the output DSIMessage, and sets the value of the variable to the
generated name. See below, for information on how to prefix this name with an FTP
directory. If the file exists when the PUT operation is executed, the file is overwritten.

If the Get names are missing, no FTP Get action is performed by this rule and no error
message is generated. If the Put names are missing, no FTP Put action is performed by
this rule and no error message is generated.

You can register multiple FTPRule rules on the same request type if you need more than
one file FTP. This rule maintains the list of open FTP connections and reuses connections
when possible.

If a connection is dropped, this rule reopens it. The default timeout value on an FTP
server is 900 seconds, so the connection will stay open for at least this amount of time

before it is dropped.

There are several FTP setup parameters required to transfer files, for example the Internet
address of the remote machine. There are multiple ways to specify these parameters, first
through message variables then through configuration options. This is also the order in
which the parameters are searched. For example, if the remote machine is specified
through a message variable this overrides any parameters in the configuration.

237

Chapter 4

DSI Processing Rules

238

There are several optional message variables which you can use with this rule. For
instance, you can set the values represented by these message variables in the
configuration. If, however, the message variable is present, its value will override any
corresponding value in the configuration.

You must specify the server through the FTPServer attachment variable or by using a
configuration option. You can omit any of the variables you do not need.

Variable Description

FTPSetver The setver name or IP address for the FTP connection.
FTPUserID The user ID for the FTP connection.

FTPPassword The password for the FTP Connection

FTPServerPort The server’s FTP port.

FTPGetFilePath The path to be prefixed to the unique name transferFiles generates

when the variable for GetFileLocal does not exist on the input
attachment. For example, /home/temp causes local names such as /
home/temp/0Oabcdefg.ext to be generated.

FTPPutFilePath The FTP directory path (omit the drive specifiet) to be prefixed to the
unique name transferFiles generates when the variable for
PutFileRemote does not exist on the output attachment. For example,
incoming/datafiles causes FTP names such as incoming/datafiles/
Oabcdefg.ext to be generated.

You must specify the setver through the FTPServer message vatiable or by using a
configuration option. You can omit any configuration option you do not need. The
transferFiles rule searches for each value that can be specified in the optional message
variables in this order:

First search the input DSIMessage for a message variable that contains the value
If not found, search the FTP:ReqType section for the corresponding value
If not found, search the FTP control section for the corresponding value
For get and put paths, if not found search the Attachment section

This search order lets you have unique values for a given transaction and unique values
for any given request type, or have the same values for all transactions and request types.
For example, you may have several request types that use the transferFiles rule. One
request type could be set up with a section that provides unique values, while all other
request types could use the values defined in the FTP section.

Here is an example of the configuration options:

<section name="FTP:ReqType">
<entry name="Server"s>ftp.yourcompany.com</entrys>
<entry name="UserID">customer</entry>
<entry name="Password">password</entry>
<entry name="RemoveOnGet">No</entrys>
<entry name="RemoveOnPut">No</entry>
<entry name="CacheGetFile">10</entry>

FTPRule

</sections>

<section

name="FTP">

<entry name="Server">ftp.yourcompany.com</entrys>

<entry name="UserID">guest</entry>

<entry name="Password">guestpassword</entry>

<entry name="RemoveOnGet">No</entry>

<entry name="RemoveOnPut">No</entry>

<entry name="CacheGetFile">10</entry>

</section>

<section

name="Attachment">

<entry name="Path">ftpdir</entry>

</section>

The options for the FTP:ReqType section are:

Option Description

Setver The server name or IP address for the FTP connection. Corresponds to message
variable FTPServer.

UserID The user ID for the FTP connection. Cotresponds to message vatiable
FTPUserID.

Password The password for the FTP Connection. Corresponds to message variable
FTPPassword.

ServerPort The server’s FTP port. Corresponds to message variable FTPServerPort.

GetFilePath The path to be prefixed to the unique name transferFiles generates when the
vatiable for GetFileLocal does not exist on the input attachment. Corresponds
to message vatiable FTPGetFilePath.

PutFilePath The FTP directory path (omit the drive specifier) to be prefixed to the unique

name transferFiles generates when the variable for PutFileRemote does not exist
on the output attachment. Corresponds to message variable FTPServer.

The options for the FTP section are:

Option

Description

RemoveOnGet

RemoveOnPut

CacheGetFile

If set to Yes, the rule issues the FTP command to remove the remote soutce
file after getting it, if the user ID used can remove files from the FTP site.
This is done to allow clean up activities. The default is Yes. Enter No for
debugging purposes.

If set to Yes, the local source file is temoved as soon as the Put operation is
complete. This reduces the number of temporary files.The default is Yes.
The file is removed even if the Put operation failed. Enter No for debugging

purposes.

Enter the number of seconds the rule should store the file it got from the
remote FTP server using the IDS file cache. The defaultis 3600 (1 hour). See
also BLPPurgeRule.purge.

The options for the Attachment section are:

239

Chapter 4

DSI Processing Rules

240

Parameters

Returns

Option Description

Path Use this option to specify a path prefix for the file names this rule generates
when the names are not provided in the attachment (same as the attachment
vatiables FTPGetFilePath and FTPPutFilePath).

Since the value of this option can be used for a local or for an FTP file path, you
can experience problems results if the generated file names for both local and
FTP files depend on it.

For example, if you set this option to d:\temp, it would be unsuitable as a path
for generating a file name for an FTP PUT operation. In that case, you need to
supply the variable for PutFileRemote or set the path via the FTPPutFilePath
attachment variable or the PutFilePath INI option.

If you omit the user ID and password in either the message variable or in the
configuration, the system makes an anonymous connection. Keep in mind that if you set
up your FTP server to allow anonymous connections, anyone can FTP in and see your
files and anyone can put files in. You can solve this problem by setting the FTP server to
refuse all connections except those from specified IP addresses. Both the configuration
options and the message variables can provide all of the needed information for FTP
operations (server address, user ID, password, port), so the same IDS setup can FTP to
different FTP servers, if needed.

The web application is responsible for removing any file sent to it via FTP. For example,
when IDS FTPs the file to the web application, IDS removes the local file it created. The
web application must remove the file it got via FTP from IDS. IDS can also remove the
remote file it got via the FTP using the RemoveOnGet option.

Parameter Description

requestState ObjecF that holds the cutrent running state of the request at this point of
execution.

arg Arguments from the rule line of the configuration file.

msg Message that is currently being run, either MSG_INIT, MSG_RUNF,

MSG_RUNR or MSG_TERM.

RET_SUCCESS if successful, else RET_FAIL.

IDSEncryptionRule

IDSEncryptionRule

Constructors

Methods

public class com.docucor.ids.rules.IDSEncryptionRule

Use the rule in this class to decrypt and encrypt message variables. All of the functions in
the class are static, so invoke the rule with static scope. All functions are thread-safe. This
class implements the substitution for the IDS 1.x IRLDecryptValue rule.

public IDSEncryptionRule ()

public static int cryptVariables(
RequestState requestState,

String arg,

int msg)

Use this rule to decrypt and encrypt message variables. The argument is a comma-
delimited list of message variables to work on.

On MSG_RUNTF the variables are taken from the input message, decrypted, and put back
in the input message.

On MSG_RUNR the variables are taken from the output message, encrypted, and put
back in the output message.

If a message variable is not found in the message a warning is generated but processing
continues on the other variables.

The rule also supports wildcard message variable names by putting an asterisk (*) in the
message variable name. The asterisk can go at the beginning, middle, or end of a message
variable name.

241

Chapter 4

DSI Processing Rules

IDSInitRule

public class com.docucorp.ids.rules.IDSInitRule

Extends com.docucorp.ids.rules. AbstractIDSJavaRule

Use the rule in this class to start IDS server utilities, such as those used for purging files
and logging transactions. This class implements the substitution for the IDS 1.x IRLInit
rule.

Constructors public IDSInitRule()

Methods public int init/(
RequestState requestState,
String arg,
int msg)

Use this rule to initialize and terminate IDS server-wide utilities.

In the MSG_INIT message this rule will do initialization for the server-wide file cache and
transaction log. In the MSG_TERM message this rule will terminate the file cache and
transaction log.

Parameters
Parameter Description
requestState Object that holds the current running state of the request at this point of
execution.
arg Arguments from the rule line of the configuration file.
msg Message that is currently being run, either MSG_INIT, MSG_RUNF,

MSG_RUNR or MSG_TERM.

Returns RET_SUCCESS

242

IDSTransactionRule

IDSTransactionRule

Constructors

Methods

Parameters

Returns

public class com.docucorp.ids.rules.IDSTransactionRule

Use the rule in this class to report transaction times to IDS clients.

This class implements the substitution of the non-attachment part of the IDS 1.x rule
ATCUnloadAttachment.

public IDSTransactionRule ()

public static int reportTimes (
RequestState requestState,
String arg,

int msg)

Use this rule to report the amount of time a request takes to run on the server. The IDS
1.x rule ATCUnloadAttachment would do this in addition to other functions now built
into IDS.

In the MSG_RUNR message this rule adds a message variable SERVERTIMESPENT to
the output DSIMessage listing the time spent on the transaction in seconds. If the
argument is INCLUDEMS then this rule also adds a message variable
SERVERTIMESPENTMS which lists the time in milliseconds.
SERVERTIMESPENTMS is useful if IDS is logging transactions since it is easier to sort
by time spent in this format.

If using this rule it should be the first rule in the request, or the second if also logging
transactions.

Parameter Description

requestState Object' that holds the current running state of the request at this point of
execution.

arg Arguments from the rule line of the configuration file.

msg Message that is currently being run, either MSG_INIT, MSG_RUNF,

MSG_RUNR or MSG_TERM.

RET_SUCCESS

243

Chapter 4

DSI Processing Rules

LogTransactionRule

244

Constructors

Methods

Parameters

Returns

Methods

public class com.docucorp.ids.rules.LogTransactionRule

Use the rules in this class to control the logging of transactions in databases. The rules log
message variables in a database specified in the configuration and purge expired database
tables.

All rule methods in this class should be called with static scope.

This class implements the substitution of the non-attachment part of these IDS 1.x rules:
* ATCLogTransaction

* IRLClearlLog

logTransaction
public LogTransactionRule ()

public static int logTransaction (
RequestState requestState,

String arg,

int msg)

Use this rule to store message variables in a database table set up in the IDS configuration.
In the MSG_RUNR message this rule will add a message variables from the output
DSIMessage to a database that can be browsed by other applications.

If using this rule it should be the first rule in the request.

Parameter Description

requestState Object. that holds the current running state of the request at this point of
execution.

arg Arguments from the rule line of the configuration file.

msg Message that is currently being run, either MSG_INIT, MSG_RUNF,

MSG_RUNR or MSG_TERM.

RET_SUCCESS

purgeOldTransactionTables

public static int purgeOldTransactionTables (
RequestState requestState,

String arg,

int msg)

Use this method to delete database tables that have expired. The expiration time is set up
in the IDS configuration. In the MSG_RUNR message this rule will drop database tables
that are no longer needed.

LogTransactionRule

Parameters
Parameter Description
requestState Object that holds the current running state of the request at this point of
execution.
arg Arguments from the rule line of the configuration file.
msg Message that is currently being run, either MSG_INIT, MSG_RUNF,

MSG_RUNR or MSG_TERM.

Returns RET_SUCCESS.

245

Chapter 4

DSI Processing Rules

processAttachments

public class oracle.documaker.ids.rules.ucm.UCMRules

This rule extends the oracle.documaker.ids.rules.BaseIDSJavaRuleUltils class. The rules in
this class are used for Docupresentment to communicate with an Oracle WebCenter
Content server (formerly known as Oracle Universal Content Management or UCM).

Methods public int processAttachments (RequestState requestState, String arg,
int msg)

This rule takes a list of attachments from the input queue, retrieves the attachments from
the Oracle WebCenter Content server, and writes them to files for further processing.

Here is an example from a configuration file:

function =
java;oracle.documaker.ids.rules.ucm.UCMRules; ;transaction;processAt
tachments;parm

Parameters

Parameter Description

requestState Object that holds the current running state of the request at this point of

execution.
arg Arguments from the rule line of the configuration file.
msg Message that is currently being run, either MSG_INIT,

MSG_RUNFMSG_RUNR or MSG_TERM.

Returns This rule returns RET_SUCCESS if successful, otherwise it returns RET_FAIL.

246

CLIENT RULES

Client Rules

These rules may only be run in the front-end client. The rules are listed in alphabetical
order, as shown below:

ATCAppend2Attachment on page 248
ATCLoadAttachment on page 249
ATCLogTransaction on page 250
ATCReceivelile on page 251
ATCSendFile on page 254
ATCSendMultipleFiles on page 256
ATCUnloadAttachment on page 257
IRClInit on page 259

IRCPrint on page 260

IRCRequest on page 261

IRCResult on page 262
IRLSendVersion on page 224
IRCUnloadPage on page 265

247

Chapter 4

DSI Processing Rules

ATCAppend2Attachment

Use this rule to append values from an INI file to the queue attachment.

Syniax long DSIAPI ATCAppend2Attachment (DSIHANDLE hInstance,
char * pszParms,
unsigned long ulMsg,
unsigned long ulOptions)

Parameters
Parameter Description
DSIHANDLE hlnstance DSI instance handle
char * pszParms Pointer to rule parameter string
unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF
unsigned long ulOptions Options
Use these optional INI control groups when REQTYPE is the REQUEST type.
< ATTACH:Default >
< ATTACH:REQTYPE >
All of the VALUE=OPTION pairs from the ATTACH:REQTYPE control group are
appended to the input queue attachment, followed by the ATTACH:Default control
group.
The default DOCCLNT.INI file sets this rule with these INI settings.
< ResType:Default >
Function = atcw32->ATCAppend2Attachment
Returns Success or failure

248

ATCLoadAttachment

ATCLoadAttachment

Use this rule to parse the attachment from the input queue into the internal format of the
DSI_MSGRUNF message. You can then access the attachment via DSI APIs, such as

Syntax

Parameters

Returns

See also

DSILocateAttachVar. This rule frees allocated memory for the internal format in the

input queue on the DSI_MSGTERM message.

long DSIAPI ATCLoadAttachment (DSIHANDLE hInstance,
char * pszParms,
unsigned long ulMsg,

unsigned long ulOptions)

Parameter Description

DSIHANDLE hlnstance DSI instance handle

char * pszParms pointer to rule parameter string
unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF
unsigned long ulOptions options

Use these INI settings to specify the location of the attachments.

< RequestQ >
AttachmentPath =

The default DOCCLNT.INI file sets this rule with these INI settings.

< ResType:Default >
Function = atcw32->ATCLoadAttachment

The default DOCSERYV configuration file sets this rule with these INI settings.

< ReqType:SSS >
Function = atcw32->ATCLoadAttachment

Success or failure

ATCUnloadAttachment on page 257

249

Chapter 4

DSI Processing Rules

ATCLogTransaction

Use this rule to write transaction information to log file.

Syniax long DSIAPI ATCLogTransaction (DSIHANDLE hInstance,
char * pszParms,
unsigned long ulMsg,
unsigned long ulOptions)

Parameters

Parameter Description

DSIHANDLE hlnstance DSI instance handle

char * pszParms Pointer to rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

unsigned long ulOptions Options
The default DOCSERYV configuration file sets this rule with these INI settings:

< ReqType:SSS >
Function = atcw32->ATCLogTransaction

The layout of the server log file is as follows:

Field Type Size

Userid Character 127

Rem_addr Character 15

Rem_host Character 127

Rem_user Character 32

Reqtype Character 25

Status Character 1

Result Character 8

Intime Numeric 10

Sloginfo Character 127
This rule runs on the RUNR message. It looks looking in the input attachment to get these
values. The rule locates the values with the same name as field name in the attachment
and puts those values into the record in the LOG table.
The Intime field is supplied by the rule. The Sloginfo field is available for application use.
If you want to use it, just add the value to the attachment using the name S/oginfo.

Returns Success or failure

250

ATCReceiveFile

Syntax

Parameters

ATCReceiveFile

Use this rule to merge a series of attachment variables into a file and write that file to disk.
Generally, this rule is used to re-assemble a file that has been posted in segments to an
IDS queue by the ATCSendFile rule. The file that is received can be either a binary or text
file.

long DSIAPI ATCReceiveFile (DSIHANDLE hInstance,
char * pszParms,
unsigned long ulMsg,
unsigned long ulOptions)

Parameter Description

DSIHANDLE hlnstance DSI instance handle

char * pszParms Pointer to rule parameter string

unsigned long ulMsg DSI_MSG message, such as DSI_MSGRUNF
unsigned long ulOptions Options

This rule accepts four parameters (Prefix, AttachmentVariable, FileName, and
Disposition) delimited with commas and specified immediately after the rule in the INI
file.

The file name you specified (see note below) is opened in write mode in the appropriate
manner (binary or text).

After the data is written into the file, the file is closed and the name of the disk file is saved
into the attachment variable indicated by the AttachmentVariable parameter. To keep the
file on disk after the IDS rules for this transaction have terminated, specify Keep in the
Disposition parameter. Otherwise, the file is deleted.

251

Chapter 4

DSI Processing Rules

252

Example

NOTE: The file name used in the FileName parameter can be specified as a constant file
name or as a dynamically generated file name. To use a constant file name, use a

name such as:

c:\docserv\testr.txt

With a constant file name, each time the ATCReceiveFile rule runs, it will replace
the contents of this file with the file that is re-assembled from the attachments.

This approach is useful when developing or debugging.

To indicate that you want the rule to generate a unique name each time the rule

is run, specify an asterisk (¥) in the path name. The rule then generates a 45-

character unique name and replaces the asterisk with that name. For example, if

you specify a dynamically generated file name such as this:

c:\docserv*.txt

the AT'CReceiveFile rule generates a file name similar to this:

c:\docserv\0lypCmGu3koAfeD7E-is 8yYxgfBlaybcSBIYihTgManZ. txt

To debug the receiving of files as attachments, use this INI option:

< Debug >
Attachments = Yes

The debug or trace information produced by specifying the Attachment option looks
something like this:

286 . ATCReceiveFile: entered,
pszParms=<ZZZ, IMPORTFILE, c: \docserv\testr. txt, keep>

287. ATCReceiveFile: Constructed filename=<c:\docserv\testr.txt>
288. ATCAttachment2File: entered,
pszFileName=<c:\docserv\testr.txt>, pszAttachName=<ZZZ>,
ulOptions=<TEXT>

289. ATCAttachment2File: For attachment <ZZZ>,szFileType=<TEXT>,
szNumRecs=<3>

290. ATCAttachment2File: Successful, created <c:\docserv\testr.txt>

291. ATCReceiveFile: Successful, Attachment
<IMPORTFILE=c:\docserv\testr.txt> added to Attachment List.

Because it degrades performance, be sure to turn off the Attachments option after you
finish debugging attachment processing.

Here is an example:

< ReqType:T1l >
function = atcw32-
>ATCReceiveFile, ZZZ, IMPORTFILE, c: \docserv\testr.txt, KEEP

The specified file name (c:\docsetv\testr.txt) is opened for write mode and text format.

Once the rule writes the contents of the three attachment variables to the file, it closes the
file.

ATCReceiveFile

Additionally, the file name is placed into the attachment variable you specified in the
AttachmentVariable parameter. If you specify the Disposition parameter Keep, the file is
kept on disk even after the rules for this transaction have terminated. This option can be
useful for debugging.

Returns Success or fail

Seealso ATCSendFile on page 254

253

Chapter 4

DSI Processing Rules

ATCSendFile

254

Syntax

Parameters

Use this rule to post a file in segments to the output attachment and send it over the IDS
queue. The ATCReceiveFile rule or the DSIReceiveFile API can then re-assemble the file
from the input attachment and save it. The file can be binary or text.

NOTE: Each IDS rule has a run forward and a run reverse step. The run forward step
usually contains most of the functionality. The run reverse step usually re-
initializes variables in preparation for the next request. The ATCSendFIle
function, however, does more in its reverse tun than in its forward run, including
sending the file.

When a request is used in IDS, all the forward run code runs (from the first rule
in the list until the last); then, the reverse run takes place — all functions are
considered again for any back out procedures. So, the reverse run for the
ATCSendFile takes place after the forward run or RunRP rules

long _DSIAPI ATCSendFile (DSIHANDLE hInstance,
char * pszParms,
unsigned long ulMsg,
unsigned long ulOptions)

Parameter Description

DSIHANDLE hlnstance DSI instance handle

char * pszParms Pointer to rule parameter string

unsigned long ulMsg DSI_MSG message, such as DSI_MSGRUNF
unsigned long ulOptions Options

This rule accepts three parameters (Prefix, Attachment Variable, and FileType), delimited
with commas, and specified immediately following the rule in the INI file.

The file name indicated in the Attachment Variable parameter is opened in read mode
based on the FileType parameter (text or binary).

You can use the ATCReceiveFile rule to write the file to disk.

Keep in mind that this rule removes the attachment variable named in its second
parameter and does not work with the default queues.

The prefix name is an important parameter and it has to match when the file is being
received. The format of the message and how the file data is stored in the message is
described in the message layout chapter.

If you need to debug the sending of files as attachments, include this INI option:

< Debug >
Attachments = Yes

The debug or trace information produced by the Attachments option will look something
like this:

Example

Returns

See also

ATCSendFile

9. ATCSendFile: entered, pszParms=<ZZZ, IMPORTFILE, TEXT>

10. ATCFile2Attachment: entered,
pszFileName=<c:\docserv\client\test.txt>, pszAttachName=<ZZZ>,
ulOptions=<TEXT>

11. ATCFile2Attachment: Successful, added Attachment Variable
<ZZZ=;TEXT;3;>

12. ATCSendFile: Successful, Attachment Variable <IMPORTFILE>
removed from Attachment List.

Because it degrades performance, be sure to turn off the Attachments option after you
finish debugging attachment processing.

< ReqType:T1 >
function = atcw32->ATCSendFile, ZZZ, IMPORTFILE, TEXT

In this example, suppose the attachment variable named IMPORTFILE contains this
value:

c:\docserv\client\test.txt

This file is added to the IDS message for later use for posting to the IDS queue.
Success or fail

ATCReceiveFile on page 251

255

Chapter 4

DSI Processing Rules

ATCSendMultipleFiles

256

Syntax

Parameters

Example

Use the ATCSendMultipleFiles rule to send multiple files as queue attachments.

long DSIAPI ATCSendMultipleFiles (DSIHANDLE hInstance,
char * pszParms,
unsigned long ulMsg,
unsigned long ulOptions)

Parameter Description

DSIHANDLE hlnstance DSI instance handle
char * pszParms Pointer to rule parameter string
unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF

unsigned long ulOptions Options

This rule accepts the name of the attachment variable that contains the name of the file
you want to send. The system uses partial name matching so if this parameter is provides
as FILETOSEND, the following attachment variables will be used to find the file names
to send:

FILETOSEND, FILETOSEND1, FILETOSENDABC
The name of the file without an extension and path is used as the attachment delimiter.

The rule also accepts the type (binary or text) to use for sending all files. No individual file
type can be provided, as all are handled as the same type. The default is binary because
this rule is used to send multiple PNG/JPG files cteated during HTML genetation.

This rule does not remove the attachment variables with original file names.

This rule is executed on the RUNR message.

Here is an example:

function=atcw32->ATCSendMultipleFiles, FILETOSEND

ATCUnloadAttachment

ATCUnloadAttachment

Syntax

Parameters

Use this rule to convert the attachment from internal format into the queue attachment
format in the output queue on the DSI_MSGRUNR message. This rule makes sure the
attachment name is present in the queue record. If this name is empty, this rule fills it in
with the unique name on the DSI_MSGINIT message. Use this rule to free allocated
memory for the internal format in the output queue on the DSI_MSGTERM message.
The reserved request type DEFAULT sets this rule.

long _DSIAPI ATCUnloadAttachment (DSIHANDLE hInstance,
char * pszParms,
unsigned long ulMsg,
unsigned long ulOptions)

Parameter Description

DSIHANDLE hlnstance DSI instance handle

char * pszParms Pointer to rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_ MSGRUNF
unsigned long ulOptions Options

This rule uses these INI options to determine the location of attachments:

< ResultQ >
AttachmentPath =

The default DOCCLNT.INI file sets this rule with these INI options:

< ReqgType: Default >
Function = atcw32->ATCUnloadAttachment

The default DOC:

< ReqType: SCS >
Function = atcw32->ATCUnloadAttachment

The default DOCSERYV configuration file sets this rule with these INI options:.

< ReqType:SSS >
Function = atcw32->ATCLoadAttachment

257

Chapter 4

DSI Processing Rules

NOTE: To calculate the time spent in the queue, IDS returns the ServerTimeSpent
attachment variable on every transaction. The value returned is in a form of
seconds.milliseconds.

The difference between this value and the TotalTimeSpent attachment variable
created by the client is the gueuing latency, which gives you an indication of how
much time a transaction spent in the queue.

The ATCUnloadAttachment rule creates the attachment to be sent back, so the
ServerTimeSpent value is put into that attachment. If there are any rules in the
list executed after the ATCUnload Attachment rule on RUNR message, their time
is not included. Nor is the time spent on the TERM message included. The rules
executed after the ATCUnloadAttachment rule on the RUNR message are the
rules listed before this rule in the DOCSERE configuration file.

Returns Success or failure

See also ATCLoadAttachment on page 249

258

IRClInit

IRClInit

Use this rule to initialize a client.

Syntax long DSIAPI IRCInit (DSIHANDLE hInstance,
char * pszParms,
unsigned long ulMsg,
unsigned long ulOptions)

Parameters
Parameter Description
DSIHANDLE hlnstance DSI instance handle
char * pszParms Pointer to rule parameter string
unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF
unsigned long ulOptions Options
The default DOCCNT.INI file sets this rule with this INI option.
< ReqgType:INI >
Function = ircltw32->IRCInit
Returns Success or failure

259

Chapter 4

DSI Processing Rules

IRCPrint

Use this rule to locate the print file created by Docupresentment.

Syniax long DSIAPI IRCPrint (DSIHANDLE hInstance,
char * pszParms,
unsigned long ulMsg,
unsigned long ulOptions)

Parameters
Parameter Description
DSIHANDLE hlnstance DSI instance handle
char * pszParms Pointer to rule parameter string
unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF
unsigned long ulOptions Options
This rule gets the REMOTEPRINTFILE attachment variable and creates a PRINTFILE
attachment vatiable. The rule mainly translates the file name from the file name on the
server, to the file name for a front-end client.
Returns Success or failure

260

IRCRequest

Syntax

Parameters

Returns

See also

IRCRequest

Use this rule to prepare a request for Docupresentment.

long DSIAPI IRCRequest (DSIHANDLE hInstance,
char * pszParms,
unsigned long ulMsg,
unsigned long ulOptions)

Parameter Description

DSIHANDLE hlnstance DSI instance handle

char * pszParms Pointer to rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF
unsigned long ulOptions Options

This rule checks for the REQTYPE and USERID in the attachment and sets the fields
into the request (output) queue. This rule also fills in the unique name in the request
queue.

This rule only responds to the DSI_MSGRUNF message.
The default DOCCNT.INI file sets this rule with these INI settings.

< ReqgType: Default >
Function = ircltw32->IRCRequest

Success or failure

IRCResult on page 262

261

Chapter 4

DSI Processing Rules

IRCResult

Syntax

Parameters

Returns

See also

262

Use this rule to retrieve a result for Docupresentment and prepares the result for the
client.

long DSIAPI IRCResult (DSIHANDLE hInstance,
char * pszParms,
unsigned long ulMsg,
unsigned long ulOptions)

Parameter Description

DSIHANDLE hlnstance DSI instance handle

char * pszParms Pointer to rule parameter string

unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF
unsigned long ulOptions Options

This rule checks results returned by the server. It checks for the RESULTS attachment
value in the result (input) queue attachment. If this value is not found or is not equal to
SUCCESS, the rule creates an attachment variable called ERROR and a value that
matches the value of the RESULTS variable. This lets you work with the ERRORS.HTM
template.

NOTE: If you have created your own rules and ate using only the IRCUnloadPage base
rule, which processes the HTML template, you do not need this rule in the rule
list.

This rule only responds to the DSI_MSGRUNF message.
The default DOCCNT.INI file sets this rule with these INI settings.

< ResType:Default >
Function = ircltw32->IRCResult

Success or failure

IRCRequest on page 261

IRCSendVersion

IRCSendVersion

Use this rule to report DLL version information.

Syntax long DSIAPI IRCSendVersion (DSIHANDLE hInstance,
char * pszParms,
unsigned long ulMsg,
unsigned long ulOptions)

Parameters
Parameter Description
DSIHANDLE hlnstance DSI instance handle
char * pszParms Pointer to rule parameter string
unsigned long ulMsg DSI_MSG???? message, such as DSI_MSGRUNF
unsigned long ulOptions Options
For each of the following DLLs, this rule creates attachment variables on the
DSI_MSGRUNF message.
« ATC
« DCB
e IRP
- DQM
« IBASE
e DSI
« DSJj
Here is a list of the variables:
Variable Tells you the...
NAME name of the DLL
VERSION version of the DLL, such as 100.012. XXX
DATE date of the last compile in MMM DD YYYY format
TIME time of the last compile in HH:MM:SS format
These values only change when you upgrade to a newer version.
The default DOCCNT.INI file sets this rule with these INI settings.
< ReqgType:SCS >
Function = ircltw32->IRCSendVersion
Returns Success or failure

263

Chapter 4

DSI Processing Rules

See also IRLSendVersion on page 224

264

IRCUnloadPage

IRCUnloadPage

Use this rule to unload an HTML page.

Syntax long DSIAPI IRCUnloadPage (DSIHANDLE hInstance,
char * pszParms,
unsigned long ulMsg,
unsigned long ulOptions)

Parameters
Parameter Description
DSIHANDLE hlnstance DSI instance handle
char * pszParms Pointer to rule parameter string
unsigned long ulMsg DSI_MSG???? message, such as DSI_ MSGRUNF
unsigned long ulOptions Options
Uses HTML setting in DOCCLNT.INI file for configuration settings. Refer to Chapter
3 in the Docupresentment Guide for an explanation of template variables and their
replacement by attachment variables.
The default DOCCNT.INI file sets this rule with these INI settings.
< ResType:Default >
Function = ircltw32->IRCUnloadPage
Returns Success or failure

265

http://docs.oracle.com/cd/E87307_01/Docupresentment_ug_2.9.pdf

Chapter 4

DSI Processing Rules

266

Chapter 5
DSI Visual Basic APIs

Users of the DSI Visual Basic (VB) API are expected to
fall into one of these groups:

* Fat client applications written in VB or VBA
e ASP ActiveX components
* VB rules

Fat clients should start with a call to InitSession and end
with a call to TermSession. The general work flow will

be to build a request into one or more attachment lists

which are submitted to IDS by a call to Submit.

When the server has completed its work the results will
be processed with calls to GetAttachmentAll,
GetAttachRecSet, GetAttachVarSet, or (occasionally)
LocateAttachVar. Testing and debugging will be easier
with DSICoTB than the IDE because the attachment
lists can be changed with the click of a mouse and the
edit/compile/test cycle is minimized.

ASP ActiveX components are structured differently.
The Visual Basic object should be created in a
GLOBAL.ASA file and not be new’d in the ActiveX
component. InitSession either should be called in
OnStartPage and the instance handle returned by
InitSession, eithet...

* Kept in the Session object or
e TermSession called in OnEndPage.

The instance handle should #ozbe kept in the application
object as IIS multi-threads every session and the
instance handle must be thread-specific.

VB rules are subject to the same conditions as other
rules. Certain methods should not be called, such as
InitSession, and the rules should be stateless.

267

Chapter 5

DSI Visual Basic APIs

USING THE
PROTOTYPES
AND EXAMPLES

In VB

In C++

in VB

in C++

NOTE: COM and ActiveX are designed to be language independent—the VB API class
can be called from Visual Basic, Visual J++, C, C++, VBA (Visual Basic for
Applications), or VBScript.

Nonetheless, it is expected that most, if not all users, will be using Visual Basic.
With that in mind, prototypes and examples are targeted toward these languages.

Developers using other languages such as C++ are most likely used to this kind of
discrimination and know how to adapt. For instance, COM always returns an HRESULT
but VB handles this silently. If there is value returned from a method, VB silently extracts
it from the argument list; C++ users must handle this explicitly.

Here are some examples:

Dim 1lRet as long
1Ret = oDSI.FindInQueue (hInstance,dsiINPUTQUEUE, "TROUT")

HRESULT hr;
long 1Ret;
hr = spDSI->FindInQueue
(hInstance, dsiINPUTQUEUE, BSTR (L"TROUT") , &1Ret) ;

HANDLING ERRORS

For subs, an error may be raised for any condition that prevents normal completion, so
On Error routines are very important.

For methods, the return code usually indicates a not found (dsiERR_NOTFOUND) or
end-of-file (dsiERR_EOF) condition and should always be checked. But for fatal errors
or any condition that prevents normal completion, an error will be raised, so On Error
routines are also very important.

Exceptions are not passed across COM interfaces: the HRESULT will tell you if
IErrorInfo should be interrogated. If the method provides a return code, it will generally
indicate an algorithmic error, such as dsiERR_NOTFOUND; in this case, the HRESULT
will also have the DSI error code in the lower two bytes.

268

USING THE WEB SERVICES EXAMPLE

The system includes a web services example which uses VB 6.0 DLL (DP018.dll) to
communicate with a remote IDS via MQSeries APIs and SOAP attachments built with
Microsoft's Imessage Interface.

There are two versions of this DLL file, a server version for MQSeries Server and a client
version for MQSeries Client.

The MQSeries and XML APIs will work on Windows N'T 4.0 and Windows 2000 Server.
The SOAP APIs will only work on Windows 2000 since Microsoft's Imessage interface is
only supported on Windows 2000 at this time. The demo resides on a Windows 2000
Server.

269

Chapter 5

DSI Visual Basic APIs

VISUAL BASIC
METHODS

Client methods

Here is a list of Visual Basic methods, grouped by functional area. Following this list is a

discussion of each method, listed in alphabetical order.

NOTE: These methods are only available on Windows 32-bit platforms.

Use these methods for writing a client program:

AddToQueue on page 278
AttachList on page 287
CopyQRecord on page 291
FindInQueue on page 303
GetAttachment on page 304
GetAttachmentAll on page 306
GetAttachRecSet on page 308
GetAttachVarSet on page 310
GetQTield on page 313
GetQFieldLength on page 314
GetQueueRec on page 315
Init on page 323

InitInstance on page 324
InitQueue on page 325
InitSession on page 326
ParseAttachment on page 334
SetAttachment on page 336
SetQField on page 339
StoreAttachment on page 344
Submit on page 345

Term on page 347
TermlInstance on page 348
TermQueue on page 349
TermSession on page 350
Trace on page 351
TraceAttach on page 352

270

Server methods

Common methods

Use these methods for writing rules on the server:

ErrorMessage on page 302
GetUserID on page 322

Use these methods for both the client and server:

AddAttachRec on page 273
AddAttachVar on page 275
AttachCursorFirst on page 279
AttachCursorLast on page 280
AttachCursorName on page 282
AttachCursorNext on page 283
AttachCursorPrev on page 284
AttachCursorValue on page 286
CacheFile on page 288
CloseAttachCursor on page 289
CopyAttachVars on page 290
CreateValue on page 292
CreateValueObj on page 294
DeleteAttachVar on page 296
DestroyValue on page 297
DestroyValueObj on page 299
DumpDebuglnfo on page 301
GetPriority on page 312
GetReqType on page 317
GetStatus on page 318
GetUniquelD on page 319
GetUniqueIDLength on page 320
GetUniqueString on page 321
LocateAttachVar on page 328
LocateValue on page 329
LocateValueObj on page 331
OpenAttachCursor on page 333

QueryValueSize on page 335

271

Chapter 5

DSI Visual Basic APIs

Properties

* SetPriority on page 338

* SetReqType on page 340

e SetStatus on page 341

e SetUniquelD on page 342

* SetUserID on page 343

* TraceEnableRule on page 353
* Tracelist on page 354

* TraceSnapshot on page 355

You can also use these properties:

e Property Signature on page 357

* Property TraceEnable on page 358
* Property TracePath on page 359

272

AddAttachRec

AddAttachRec

Use this method to create a stem variable in the attachment list.

Syntax AddAttachRec (hInstance as Long,DSIQUEUE QueueID, RecName as String,
NewVarName as String)

IDS supports records within an attachment. For instance, the following might be returned

from a rule:
FISHL1.TYPE BASS
FISH1.SIZE LARGE
FISH1.STATUS CAUGHT

FISH1.LOCATION BOAT

Using AddAttachRec, the stem variable that can be created by this call is FISH. FISH1 is
returned because it is the first FISH record in the attachment. You do not have to do
anything else to create a stem variable. The output of an SSS request is a stem variable.

Arguments
Argument Description
hlnstance The thread instance handle. This comes from the server if it was invoked by a
rule.

QueuelD Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.
RecName The record to add the stem variable.

RecID The record ID with a variable number, such as RECORD?2.

See also AddToAttachRec on page 276
GetAttachRecSet on page 308

Example From the CSamAPIL.cls file in the DSICOSAM example:

oDSI.AddAttachRec hInstance, dsiOUTPUTQUEUE, "FISH", sBuf

' Next we want to supply the values. To do this we use the
' add to attach record functionality. We supply the buffer

returned from or earlier add attach record call.

Add name of my DLL SBuf should be "FISH1" at this point
oDSI.AddToAttachRec hInstance, dsiOUTPUTQUEUE, sBuf, "TYPE", "BASS"

Add date DLL was built

oDSI.AddToAttachRec hInstance, dsiOUTPUTQUEUE, sBuf, "SIZE",
"LARGE"

’ Add time DLL was built

oDSI.AddToAttachRec hInstance, dsiOUTPUTQUEUE, sBuf, "STATUS",
"CAUGHT"

’ Add my DLL version number

oDSI.AddToAttachRec hInstance, dsiOUTPUTQUEUE, sBuf, "LOCATION",
I|BOATI|

273

Chapter 5
DSI Visual Basic APIs

’ Put the attachment into the queue record
oDSI.StoreAttachment hInstance, dsiOUTPUTQUEUE

274

AddAttachVar

Syntax

Arguments

See also

Example

AddAttachVar

Use this method to add name/value pait to an attachment.

AddAttachvar (hInstance as Long,QueuelID as DSIQUEUE, Name as String,
Value as String)

NOTE: An empty Value is allowed. An empty Name is not.

Argument Description
hlnstance The thread instance handle. This comes from the server if it was invoked by a
rule.

QueuelD Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.
Name A variable name.

Value A variable value.

LocateAttachVar on page 328
DeleteAttachVar on page 296
GetAttachmentAll on page 306
GetAttachVarSet on page 310

From the CSamAPIL.cls file in the DSICOSAM example:

oDSI.AddAttachVar hInstance, _
dsiOUTPUTQUEUE, _
"Hello", _
"Hello World!™"

oDSI.AddAttachVar hInstance, _
dsiOUTPUTQUEUE, _
"Good-bye", _
"Good-bye World!"

oDSI.StoreAttachment hInstance, dsiOUTPUTQUEUE

275

Chapter 5

DSI Visual Basic APIs

AddToAttachRec

Use this method to append a value to a stem variable

Syniax AddToAttachRec (hInstance as Long,QueuelID as DSIQUEUE, RecName as
String, Name as String, Value as String)

IDS supports records within an attachment. For instance, the following might be returned

from a rule:
FISH1.TYPE BASS
FISH1.SIZE LARGE
FISH1.STATUS CAUGHT

FISH1.LOCATION BOAT
To add to the FISH1 trecord,

AddToAttachRec (hInstance,dsiOUTPUTQUEUE, "ANGLER", "Mom")

FISH1.TYPE BASS
FISH1.SIZE LARGE
FISH1.STATUS CAUGHT
FISH1.LOCATION BOAT
FISH1.ANGLER Mom
Arguments
Argument Description
hlnstance The thread instance handle. This comes from the server if it was invoked by a
rule.

QueuelD Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.
RecName The record to which variable should be added.
Name The name of the field within the record.

Value The data associated with the variable.

See also AddAttachRec on page 273
GetAttachRecSet on page 308

Example From the CSamAPL.cls file in the DSICOSAM example:

oDSI.AddAttachRec hInstance, dsiOUTPUTQUEUE, "LIBRARIES", sBuf
'’ Next we want to supply the values. To do this we use the
’ add to attach record functionality. We supply the buffer

’ returned from or earlier add attach record call.

’ Add name of my DLL

oDSI.AddToAttachRec hInstance, dsiOUTPUTQUEUE, sBuf, "NAME",
"DSRVRLVB"

' Add date DLL was built
oDSI.AddToAttachRec hInstance, dsiOUTPUTQUEUE, sBuf, "DATE", "date"

’ Add time DLL was built

276

AddToAttachRec

oDSI.AddToAttachRec hInstance, dsiOUTPUTQUEUE, sBuf, "TIME", "time"

' Add my DLL version number

oDSI.AddToAttachRec hInstance, dsiOUTPUTQUEUE, sBuf, "VERSION",
||l.0||

' Put the attachment into the queue record
oDSI.StoreAttachment hInstance, dsiOUTPUTQUEUE

277

Chapter 5

DSI Visual Basic APIs

AddToQueue

Syntax

Arguments

See also

Example

Use this method to release a record into the queue for processing. Nothing happens on

the server until you make this call—or instead use the Submit method.

AddToQueue (hInstance as Long,QueueID as DSIQUEUE)

Argument Description
hlnstance The thread instance handle. This comes from the server if it was invoked by a
rule.

QueuelD Either dsiINPUTQUEUE ot dsiOUTPUTQUEUE.

GetQueueRec on page 315
StoreAttachment on page 344
Submit on page 345

From the CSamAPIL.cls file in the DSICoSAM example:

’

put in our attachment

oDSI.AddAttachVar hInstance, dsiOUTPUTQUEUE, "What",

'’ move our attachment from the buffer into the record
oDSI.StoreAttachment hInstance, dsiOUTPUTQUEUE

set the echo request type

"Me Worry?"

oDSI.SetQField hInstance, dsiOUTPUTQUEUE, dsiQSET REQTYPE, "ECH"

oDSI.UserID = "DocExample"

' if sUnique is empty, SetUniqueID will fill it in for us

oDSI.SetUniquelID hInstance, dsiOUTPUTQUEUE, sUnique

' release the queue record for processing
oDSI.AddToQueue hInstance, dsiOUTPUTQUEUE

278

AttachCursorFirst

AttachCursorFirst

Use this method to tecover the first name/value pait in the attachment and position the

cursor on the next pair.

Syntax AttachCursorFirst (hCursor as Long, Name as String, Value as String)
as Long
Arguments
Argument Description
hCursor the cursor obtained from OpenAttachCursor
Name returned name
Value returned value

Returns DSIERR_SUCCESS

DSIERR_NOTFOUND

See also AttachCursorLast on page 280

AttachCursorName on page 282

AttachCursorNext on page 283

AttachCursorPrev on page 284

AttachCursorValue on page 286

CloseAttachCursor on page 289

OpenAttachCursor on page 333

ParseAttachment on page 334

Example From the CSamAPIL.cls file in the DSICoOSAM example:

oDSI.ParseAttachment hInstance, dsiINPUTQUEUE

'’ Open a cursor for the attachment
’ This cursor will allow us to walk through the attachment serially
hCursor = oDSI.OpenAttachCursor (hInstance, dsiINPUTQUEUE)

' Position to the first element of the attachment’
1Ret = oDSI.AttachCursorFirst (hCursor, sName, sValue)

' Loop through all elements of the parsed attachment printing
' the name and value pairs and put them in the right hand list box
While 1Ret = dsiERR_SUCCESS
do something useful
1Ret = oDSI.AttachCursorNext (hCursor, sName, sValue)
Wend

' close out the cursor to free the resources
oDSI.CloseAttachCursor hCursor

279

Chapter 5

DSI Visual Basic APIs

AttachCursorLast

Use this method to recover the last name/value pait in the attachment and retard the

Syntax

Arguments

Returns

See also

Example

cursot to previous name/value pair.

AttachCursorLast (hCursor as Long, Name as String, Value as String)

as Long
Argument Description
hCursor cursor pointing into the attachment list
Name returned name
Value returned value

DSIERR_SUCCESS

DSIERR_NOTFOUND

AttachCursorFirst on page 279

AttachCursorName on page 282

AttachCursorNext on page 283

AttachCursorPrev on page 284

AttachCursorValue on page 286

CloseAttachCursor on page 289

OpenAttachCursor on page 333

ParseAttachment on page 334

From the CSamAPL.cls file in the DSICoOSAM example:

’

Parse and present our results.
oDSI.ParseAttachment hInstance, dsiINPUTQUEUE

Open a cursor for the attachment
This cursor will allow us to walk through the attachment serially
hCursor = oDSI.OpenAttachCursor (hInstance, dsiINPUTQUEUE)

Position to the last element of the attachment

Dim sName As String, sValue As String

Dim 1Ret

1Ret = oDSI.AttachCursorLast (hCursor, sName, sValue)

Loop through all elements of the parsed attachment printing
the name and value pairs and put them in the right hand list box
While 1Ret = dsiERR_SUCCESS
do something useful
1Ret = oDSI.AttachCursorPrev (hCursor, sName, sValue)
Wend

280

AttachCursorLast

' Close the attachment cursor’
oDSI.CloseAttachCursor hCursor

281

Chapter 5

DSI Visual Basic APIs

AttachCursorName

Syntax

Arguments

Returns:

See also

Example

Use this method to get the name value for the current position of the cursor.

AttachCursorName (hCursor as Long,Name as String) as Long

Argument Description
hCursor the cursor obtained from the OpenAttachCursor method
Name returned Name

DSIERR_SUCCESS
DSIERR_NOTFOUND

AttachCursorFirst on page 279
AttachCursorLast on page 280
AttachCursorNext on page 283
AttachCursorPrev on page 284
AttachCursorValue on page 286
CloseAttachCursor on page 289
OpenAttachCursor on page 333

ParseAttachment on page 334

From the CSamAPIL.cls file in the DSICoOSAM example:

' Parse the attachment in the current record
oDSI.ParseAttachment hInstance, dsiINPUTQUEUE

' obtain an attachment cursor

hCursor = oDSI.OpenAttachCursor (hInstance, dsiINPUTQUEUE)

' get the first name/value pair
1Ret = oDSI.AttachCursorFirst (hCursor, sName, sValue)

' get just the name from the name/value pair
1Ret = oDSI.AttachCursorName (hCursor, sName)

' get the value from the name/value pair
1Ret = oDSI.AttachCursorValue (hCursor, sValue)

’ drop the attachment cursor
oDSI.CloseAttachCursor hCursor

282

AttachCursorNext

Use this method to rettieve the next name/value pair from the attachment list.

Syntax

Arguments

Returns:

See also

Example

AttachCursorNext

AttachCursorNext (hCursor as Long, Name as String, Value as String)

as Long
Argument Description
hCursor cursor pointing into the attachment list
Name returned name
Value returned value

DSIERR_SUCCESS

DSIERR_NOTFOUND

AttachCursorFirst on page 279

AttachCursorLast on page 280

AttachCursorName on page 282

AttachCursorPrev on page 284

AttachCursorValue on page 286

CloseAttachCursor on page 289

OpenAttachCursor on page 333

ParseAttachment on page 334

From the CSamAPIL.cls file in the DSICOSAM example:

oDSI.ParseAttachment hInstance, dsiINPUTQUEUE

Open a cursor for the attachment
This cursor will allow us to walk through the attachment serially
hCursor = oDSI.OpenAttachCursor (hInstance, dsiINPUTQUEUE)

Position to the first element of the attachment’
1Ret = oDSI.AttachCursorFirst (hCursor, sName, sValue)

Loop through all elements of the parsed attachment printing
the name and value pairs and put them in the right hand list box
While 1Ret = dsiERR_SUCCESS
do something useful
1Ret = oDSI.AttachCursorNext (hCursor, sName, sValue)
Wend

close out the cursor to free the resources
oDSI.CloseAttachCursor hCursor

283

Chapter 5

DSI Visual Basic APIs

AttachCursorPrev

Use this method to rettieve the next name/value pait from the attachment list.

Syntax

Arguments

Returns:

See also

Example

AttachCursorPrev (hCursor as Long, Name as String, Value as String)

as Long
Argument Description
hCursor cursor pointing into the attachment list
Name returned name
Value returned value

DSIERR_SUCCESS

DSIERR_NOTFOUND

AttachCursorFirst on page 279

AttachCursorLast on page 280

AttachCursorName on page 282

AttachCursorNext on page 283

AttachCursorValue on page 286

CloseAttachCursor on page 289

OpenAttachCursor on page 333

ParseAttachment on page 334

From the CSamAPI.cls file in the DSICoSAM example:

’

Parse and present our results.
oDSI.ParseAttachment hInstance, dsiINPUTQUEUE

Open a cursor for the attachment
This cursor will allow us to walk through the attachment serially
hCursor = oDSI.OpenAttachCursor (hInstance, dsiINPUTQUEUE)

Position to the last element of the attachment

Dim sName As String, sValue As String

Dim 1Ret

1Ret = oDSI.AttachCursorLast (hCursor, sName, sValue)

Loop through all elements of the parsed attachment printing
the name and value pairs and put them in the right hand list box
While 1Ret = dsiERR_SUCCESS
do something useful
1Ret = oDSI.AttachCursorPrev (hCursor, sName, sValue)
Wend

Close the attachment cursor’

284

AttachCursorPrev

oDSI.CloseAttachCursor hCursor

285

Chapter 5

DSI Visual Basic APIs

AttachCursorValue

Syntax

Arguments

See also

Example

Use this method to get the value of the attachment at the current cursor position.

AttachCursorValue (hCursor as Long, Value as String)

Argument Description
hCursor the cursor obtained from the OpenAttachCursor method
Value returned value

AttachCursorFirst on page 279
AttachCursorNext on page 283
AttachCursorLast on page 280
AttachCursorPrev on page 284
CloseAttachCursor on page 289
OpenAttachCursor on page 333

ParseAttachment on page 334

From the CSamAPIL.cls file in the DSICOSAM example:

' Parse the attachment in the current record
oDSI.ParseAttachment hInstance, dsiINPUTQUEUE

' obtain an attachment cursor
hCursor - oDSI.OpenAttachCursor (hInstance, dsiINPUTQUEUE)

' get the first name/value pair
1Ret - oDSI.AttachCursorFirst (hCursor, sName, sValue)

' get just the name from the name/value pair
1Ret - oDSI.AttachCursorName (hCursor, sName)

' get the value from the name/value pair
1Ret - oDSI.AttachCursorValue (hCursor, sValue)

’ drop the attachment cursor
oDSI.CloseAttachCursor hCursor

286

Attachlist

Syntax

Arguments

See also

Example

AttachList

Use this method to attach the array of name/value pairs to the queue recotd.

AttachList (hInstance as Long,QueueID as DSIQUEUE, List ()

Argument Description

as String)

hlnstance The session/thread handle.

QueuelD Either dsiINPUTQUEUE ot dsiOUTPUTQUEUE.

List() A two-dimensional string atray with a set of name/value paits.

AddAttachVar on page 275

GetAttachmentAll on page 306

GetAttachVarSet on page 310

GetAttachRecSet on page 308

From the CSamAPIL.cls file in the DSICOSAM example:

sAttach
sAttach
sAttach
sAttach
sAttach
sAttach
sAttach
sAttach
sAttach
sAttach

0, 0
0, 1
1, 0
1, 1
2, 0
2, 1
3, 0
3, 1
4, 0
4, 1

’

()
()
()
()
()
()
()
()
()
()

]

"NameQ"
"ValueO"
"Namel"
"Valuel"
"Name2"
"Value2"
"Name3"
"Value3"
"Name4"
"Value4"

’ Add the list to the attachment

oDSI.AttachList hInstance,

dsiOUTPUTQUEUE, sAttach

' every queue record must have a request

oDSI.SetReqgType hInstance,

sUnique = ""

oDSI.SetUniqueID hInstance,

dsiOUTPUTQUEUE, sRequest

' make sure we get a new one this time

dsiOUTPUTQUEUE, sUnique

' move the attachment from the local buffer to the record
oDSI.StoreAttachment hInstance, dsiOUTPUTQUEUE

' release queue record to the queue for processing

oDSI.AddToQueue hInstance,

dsiOUTPUTQUEUE

287

Chapter 5

DSI Visual Basic APIs

CacheFile

Syntax

Arguments

Example

Use this method to add a file name to the cache.

CacheFile (hInstance as Long,FileName as String, Expire as long)

NOTE: Only for use in rules.

Argument Description
hlnstance The thread instance handle. This comes from the server if it was invoked by a
rule.

FileName the name and path of the file

Expire the life of the file, in seconds

oDSI.CacheFile hInstance, "temp.html",20000

288

CloseAttachCursor

CloseAttachCursor

Use this method to close an attachment cursor and free the associated resoutces.

Syntax CloseAttachCursor (hCursor as Long)
Arguments
Argument Description
hCutsor The cursor obtained from the OpenAttachCursor method

See also AttachCursorFirst on page 279

AttachCursorLast on page 280

AttachCursorName on page 282

AttachCursorNext on page 283

AttachCursorPrev on page 284

AttachCursorValue on page 286

OpenAttachCursor on page 333

ParseAttachment on page 334

Example From the CSamAPL.cls file in the DSICoOSAM example:

oDSI.ParseAttachment hInstance, dsiINPUTQUEUE

Open a cursor for the attachment
This cursor will allow us to walk through the attachment serially
hCursor = oDSI.OpenAttachCursor (hInstance, dsiINPUTQUEUE)

Position to the first element of the attachment’
1Ret = oDSI.AttachCursorFirst (hCursor, sName, sValue)

Loop through all elements of the parsed attachment printing
the name and value pairs and put them in the right hand list box
While 1Ret = dsiERR_SUCCESS
do something useful
1Ret = oDSI.AttachCursorNext (hCursor, sName, sValue)
Wend

close out the cursor to free the resources
oDSI.CloseAttachCursor hCursor

289

Chapter 5

DSI Visual Basic APIs

CopyAttachVars

Syntax

Arguments

See also

Example

Use this method to copy all attachment variables from one queue to the other.

CopyAttachvVars (hInstance as Long,QueuelID as DSIQUEUE)

Argument Description
hlnstance The thread instance handle. This comes from the server if it was invoked by a
rule.

QueuelD Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.

AddAttachVar on page 275
AttachList on page 287
LocateAttachVar on page 328
DeleteAttachVar on page 296

From the CSamSupp.cls file in the DSICoOSAM example:

Echo = dsiERR_SUCCESS
Select Case ulMsg

Case dsiMSG _RUNF ‘' Forward (ie, inbound) logic

oDSI.AddAttachVar hInstance, dsiOUTPUTQUEUE, "RESULTS",
"SUCCESS™"

oDSI.CopyAttachvVars hInstance, dsiINPUTQUEUE

Case Else ’ We don’t support the other messages
Echo = dsiERR_MSGNOTFOUND
End Select

290

CopyQRecord

CopyQRecord

Use this method to copy a queue record from one queue to another.

Syntax CopyQRecord (hInstance as Long,QueuelID as DSIQUEUE)
Arguments
Argument Description
hlnstance The thread instance handle. This comes from the server if it was invoked by a
rule.

QueuelD Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.

Examplc oDSI.CopyQueueRecord hInstance, dsiOUTPUTQUEUE

291

Chapter 5

DSI Visual Basic APIs

CreateValue

Syntax

Arguments

See also

Example

Use this method to create a DSI persistent variable.

CreateValue (hInstance as Long,Name as String,Value as VARIANT)

These variables are persistent and must be destroyed by a call to DestroyValue. They are
not associated with the queues or attachments and exist to aid communication or provide
state information between rules and calls to rules.

Keep in mind:
* SAFEARRAY’s are not supported

* Use the CreateValueObj method with objects

Argument Description

hlnstance The thread instance handle. This comes from the server if it was invoked by a
rule.

Name the name of the variable to be created

Value the variable to create (can be NULL)

CreateValueObj on page 294
LocateValue on page 329
DestroyValue on page 297
QueryValueSize on page 335

From the CSamAPI.cls file in the DSICoSAM example:

’ save our string
sTestValue = "Hello World"
oDSI.CreateValue hInstance, sSTRING TAG, sTestValue

’ now get it back
Dim 1Ret
1Ret = oDSI.LocateValue (hInstance, sSTRING TAG, sReturnedValue)
If 1Ret <> dsiERR SUCCESS _
Or sReturnedValue <> sTestValue Then
MsgBox ("Failed")
Else
MsgBox ("Success")
End If

' we’'re through with it so we destroy it
oDSI.DestroyValue hInstance, sSTRING TAG

'’ now lets see how integers fare

iTestValue = 234
oDSI.CreateValue hInstance, sINT TAG, iTestValue

292

1Ret = oDSI.LocateValue (hInstance, sINT TAG,
If 1Ret <> dsiERR_SUCCESS _
Or iTestValue <> iReturnedvValue Then
MsgBox ("Failed")
Else
MsgBox ("Success")
End If

we’re through with it so we destroy it
oDSI.DestroyValue hInstance, sINT_ TAG

CreateValue

iReturnedvalue)

293

Chapter 5
DSI Visual Basic APIs

CreateValueOb;

Use this method to create a DSI persistent variable that refers to an object (ActiveX
component).

Syniax CreateValueObj (hInstance as Long,Name as String,Value as Object)

These variables are persistent and must be destroyed by a call to DestroyValueOb;j. They
are not associated with the queues or attachments and exist to aid communication or
provide state information between rules and calls to rules.

NOTE: ActiveX components ate referenced counted and VB is very good about its
record keeping so few are even aware that it is going on. If you use this method
to save a reference to an object VB will take over that responsibility as much as
it can. If, however, you fail to call DestroyValueObj, even in On Error handlers,
you can leave a dangling reference which can tie up resources unnecessarily and
even lead to a server crash.

Arguments
Argument Description
hlnstance The thread instance handle. This comes from the server if it was invoked by a
rule.
Name the name of the variable to be created
Value the object reference to save

See also CreateValue on page 292
DestroyValueObj on page 299
LocateValueObj on page 331

Example From the CSamAPL.cls file in the DSICoOSAM example:

' Test with early bound object
oDSI.CreateValueObj hInstance, "MY OBJECT", oTestValue

’ clear our reference
Set oTestValue = Nothing

'’ get it back

1Ret = oDSI.LocateValueObj (hInstance, "MY OBJECT",
oOtherTestValue)

' use the object to make sure we got back what we sent out
MsgBox (oOtherTestValue.TestReturn("Hello World"))

’ clear our reference
Set oOtherTestValue = Nothing

' we don’t want a dangling reference
oDSI.DestroyValueObj hInstance, "MY OBJECT"

294

CreateValueObj

' Test with late bound object

Dim oObject As Object
Dim oOtherObject As Object

Set oObject = CreateObject ("Docucorp_ IDS_ SamTObj.CSamTObj")
oDSI.CreateValueObj hInstance, "MY OBJECT", oObject

' clear our reference
Set oObject = Nothing

' get it back
1Ret = oDSI.LocateValueObj (hInstance, "MY_ OBJECT", oOtherObject)
' use the object to make sure we got back what we sent out

MsgBox ("Object #2 Recovered: " + oOtherObject.TestReturn("Hello
World")

' clear our reference
Set oOtherObject = Nothing

we don’t want a dangling reference
oDSI.DestroyValueObj hInstance, "MY_OBJECT"

295

Chapter 5

DSI Visual Basic APIs

DeleteAttachVar

Use this method to remove an attachment variable.

Syniax DeleteAttachvVar (hInstance as Long,QueueID as DSIQUEUE, Name as
String)
Arguments
Argument Description
hlnstance The thread instance handle. This comes from the server if it was invoked by a
rule.

QueuelD Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.

Name The name of the variable you want to delete.

See also LocateAttachVar on page 328
AddAttachVar on page 275
GetAttachmentAll on page 306
GetAttachVarSet on page 310
GetAttachRecSet on page 308

Example From the CSamAPIL.cls file in the DSICoSAM example:

' parse the attachment into local storage
oDSI.ParseAttachment hInstance, dsiINPUTQUEUE

' delete what we do not like
oDSI.DeleteAttachVar hInstance, dsiINPUTQUEUE, "NameO"

' make sure it worked

1Ret = oDSI.LocateAttachVar (hInstance, dsiINPUTQUEUE, "NameO",
sValue)

If 1Ret <> dsiERR_SUCCESS Then

MsgBox ("Success: didn’t find NameO")
Else

MsgBox ("Failure: " + Hex(lRet), "data found")
End If

296

DestroyValue

Syntax

Arguments

See also

Example

Use this method to destroy a DSI persistent variable.

DestroyValue (hInstance as Long,Name as String)

DestroyValue

These variables are persistent and must be destroyed by a call to this method. They are

not associated with the queues or attachments and exist to aid communication or retain

state between rules and calls to rules.

NOTE: Ifyou do not call this routine for each call to CreateValue you will create memory

leaks.
Argument Description
hlnstance The thread instance handle. This comes from the server if it was invoked by a
rule.
Name the name of the persistent variable to be destroyed

CreateValue on page 292
LocateValue on page 329
DestroyValueObj on page 299
QueryValueSize on page 335

From the CSamAPL.cls file in the DSICoSAM example:

' save our string
sTestValue = "Hello World"

oDSI.CreateValue hInstance, sSTRING_TAG, sTestValue

'’ now get it back
Dim 1Ret

1Ret = oDSI.LocateValue (hInstance, sSTRING TAG,

If 1Ret <> dsiERR_SUCCESS _

Or sReturnedValue <> sTestValue Then
MsgBox ("Failed")

Else
MsgBox ("Success")

End If

' we’re through with it so we destroy it
oDSI.DestroyValue hInstance, sSTRING TAG

' now lets see how integers fare
iTestValue = 234

oDSI.CreateValue hInstance, sINT TAG, iTestValue

1Ret = oDSI.LocateValue (hInstance, sINT TAG,
If 1Ret <> dsiERR SUCCESS _

sReturnedvalue)

iReturnedvalue)

297

Chapter 5

DSI Visual Basic APIs

Or iTestValue <> iReturnedValue Then
MsgBox ("Failed")

Else
MsgBox ("Success")

End If

'’ we’re through with it so we destroy it
oDSI.DestroyValue hInstance, sINT TAG

298

DestroyValueObj

DestroyValueOb;

Syntax

Arguments

See also

Example

Use this method to destroy a DSI persistent variable that is an object (ActiveX
component).

DestroyValueObj (hInstance as Long,Name as String)

These variables are persistent and must be destroyed by a call to this method. They are
not associated with the queues or attachments and exist to aid communication or retain
state between rules and calls to rules.

NOTE: ActiveX and VB objects are referenced counted and VB is very good about its
record keeping so few are even aware that it is going on. If you use this method
to save a reference to an object VB will take over that responsibility as much as
it can. If, however, you fail to call DestroyValueObj, even in On Error handlers,
you can leave a dangling reference which can tie up resources unnecessarily and
perhaps even crash the server.

Argument Description

hlnstance The thread instance handle. This comes from the server if it was invoked by a
rule.

Name the name of the persistent variable to be destroyed

CreateValueODbj on page 294
LocateValueObj on page 331
DestroyValue on page 297

From the CSamAPIL.cls file in the DSICoOSAM example:

' Test with early bound object
oDSI.CreateValueObj hInstance, "MY OBJECT", oTestValue

' clear our reference
Set oTestValue = Nothing

' get it back

1Ret = oDSI.LocateValueObj (hInstance, "MY OBJECT",
oOtherTestValue)

'

use the object to make sure we got back what we sent out
MsgBox (oOtherTestValue.TestReturn("Hello World"))

' clear our reference
Set oOtherTestValue = Nothing

we don’t want a dangling reference
oDSI.DestroyValueObj hInstance, "MY_ OBJECT"

299

Chapter 5

DSI Visual Basic APIs

’ Test with late bound object

Dim oObject As Object
Dim oOtherObject As Object

Set oObject = CreateObject ("Docucorp IDS_SamTObj.CSamTObj")
oDSI.CreateValueObj hInstance, "MY_ OBJECT", oObject

’ clear our reference
Set oObject = Nothing

'’ get it back
1Ret = oDSI.LocateValueObj (hInstance, "MY_ OBJECT", oOtherObject)

use the object to make sure we got back what we sent out

MsgBox ("Object #2 Recovered: " + oOtherObject.TestReturn("Hello
World")

’ clear our reference
Set oOtherObject = Nothing

' we don’t want a dangling reference
oDSI.DestroyValueObj hInstance, "MY OBJECT"

300

DumpDebuglnfo

DumpDebuglInfo

Use this method to get the debug information as text for diagnostic purposes. This
information is also placed at various locations in the VB trace file and can be forced into
the VB trace file by a call to TraceSnapshot.

Syntax DumpDebugInfo (hInstance as Long,DebugInfo () as String)

To see the output run the DSICoDiag sample project or run DEBUG.ASP from your
browser.

This method is not dependent on TraceEnable.

NOTE: The information returned by this method is subject to change in both content
and format without notice. This information is provided to aid debugging only.
If you build a program around the returned contents, you will eventually get a
program that does not work.

Arguments
Argument Description
hlnstance The thread instance handle. This comes from the server if it was invoked by a
rule.
Debuglnfo () a one-dimensional string array which contains diagnostic text

See also TraceSnapshot on page 355

Example From the CSamAPL.cls file in the DSICoOSAM example:

Dim sInfo() as String
oDSI.DumpDebugInfo hInstance, sInfo

dim i

For i = 0 To UBound(sInfo, 1)
ListBox1l.Add (sInfo(i))

Next i

301

Chapter 5

DSI Visual Basic APIs

ErrorMessage

Syntax

Arguments

See also

Example

Use this method to add an error message to an attachment. It is expected that the first

element will be the etror number followed by the details as name/value pais.

ErrorMessage(hInstance as Long,QueuelID as DSIQUEUE, ErrorMsg

String)

This method is most commonly called in rules.

() as

Argument Description

hlnstance The thread instance handle. This comes from the server if it was invoked by
a rule.

QueuelD Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.

ErrorMessage ()

name/value pairs.

A one-dimensional array which consists of the error message followed by

StoreAttachment on page 344

From the CSamAPIL.cls file in the DSICoSAM example:

Dim sMsg (0 To 2) As String

i

sMsg (0) = "SAMOOL1"
sMsg (1) = "FileName"
sMsg(2) = "lostinspace.dat"

put our error into the queue
oDSI.ErrorMessage hInstance, dsiOUTPUTQUEUE, sMsg

this is not necessary in a rule
oDSI.StoreAttachment hInstance, dsiOUTPUTQUEUE

302

FindInQueue

FindInQueue

Use this method to search for a record in a queue. FindInQueue is the same as
GetQueueRec except that FindInQueue does not wait.

Syntax FindInQueue (hInstance as Long,QueueID as DSIQUEUE,UniqueID as
String) as Long

If the queue record is not immediately available it will return DSIERR_NOTFOUND
and you can try again at a later time.

Arguments
Argument Description
hlnstance The thread instance handle. This comes from the server if it was invoked by a
rule.

QueuelD Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.

UniquelD The search target.

Returns DSIERR_SUCCESS
DSIERR_NOTFOUND

See also GetQueueRec on page 315

Example Dim ctLook

1Ret = dSiERRiNOTFOUND

While lRet <> dsiERR SUCCESS _

And ctLook < 10000
1Ret = oDSI.FindInQueue (hInstance, dsiINPUTQUEUE, sUnique)
DoEvents
ctLook = ctLook + 1

Wend

303

Chapter 5

DSI Visual Basic APIs

GetAttachment

Syntax

Arguments

See also

Example

Use this method to get the unparsed attachment for the current queue record. Since

attachments can be quite large, expect a very long string.

GetAttachment (hInstance as Long,QueuelID as DSIQUEUE, Attachment as

String)
Argument Description
hlnstance The thread instance handle. This comes from the server if it was invoked by a

rule.

QueuelD Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.

Attachment The returned attachment.

DeleteAttachVar on page 296

GetAttachmentAll on page 306

GetAttachVarSet on page 310

GetAttachRecSet on page 308

LocateAttachVar on page 328

ParseAttachment on page 334

Dim sAttach

sAttach (0,
sAttach (
sAttach (
sAttach (
sAttach (
sAttach (
sAttach (
sAttach (
sAttach (
sAttach (

(0
0)
1)
0)
1)
0)
1)
0)
1)
0)
1)

To 4, 0 To

"NameQO"
"ValueO"
"Namel"
"Valuel"
"Name2"
"Value2"
"Name3"
"Value3"
"Name4 "
"Value4"

1) As String

' put all of these name/value pairs in the attachment
oDSI.AttachList hInstance, dsiOUTPUTQUEUE, sAttach

’ set up the echo requrest
oDSI.SetReqType hInstance, dsiOUTPUTQUEUE, "ECH"

oDSI.SetUniqueID hInstance, dsiOUTPUTQUEUE, sUnique

’ move the attachment from local storage to the queue record

oDSI.StoreAttachment hInstance, dsiOUTPUTQUEUE

'’ release the record to the queue
oDSI.AddToQueue hInstance, dsiOUTPUTQUEUE

'’ recover the attachment echoed back to us

304

GetAttachment

oDSI.GetQueueRec hInstance, dsiINPUTQUEUE, sUnique

get the unparsed attachment
oDSI.GetAttachment hInstance, dsiINPUTQUEUE, sAttach

text.Caption = sAttach

305

Chapter 5

DSI Visual Basic APIs

GetAttachmentAll

Use this method to return the entire parsed attachment as a two-dimensioned array of

Syntax

Arguments

See also

Example

name/value paits.

GetAttachmentAll (hInstance as Long,QueuelID as DSIQUEUE,Attach() as

String)

NOTE: Do not call the ParseAttachment method before you call this method.

Argument Description

hlnstance The thread instance handle. This comes from the server if it was invoked by a
rule.

QueuelD Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.

Attach () A two-dimensional array with the attachment name/value pairs.

DeleteAttachVar on page 296

GetAttachment on page 304

GetAttachRecSet on page 308

GetAttachVarSet on page 310

LocateAttachVar on page 328

ParseAttachment on page 334

From the CSamAPL.cls file in the DSICOSAM example:

sAttachl
sAttachl
sAttachl
sAttachl
sAttachl
sAttachl
sAttachl
sAttachl
sAttachl
sAttachl

sAttach2
sAttach2
sAttach2
sAttach2
sAttach2
sAttach2
sAttach2
sAttach2
sAttach2
sAttach2

= "NameO"
= "ValueO"
= "Namel"
= "Valuel"
= "Name2"
= "Value2"
= "Name3"
= "Value3"
= "Name4"
= "Value4"

0,
0,
1,
1,
2,
2,
3,
3,
4

4

1

H O M O H O O HFH O

’

= "Name20"
= "Value20"
= "Name2l"
= "Value2l"
= "Name22"
= "Value22"
= "Name23"
= "Value23"
= "Name24"
= "Value24"

0,
0,
1,
1,
2,
2,
3,
3,
4

4

i

H O BH» O H O O HFH O

1

306

GetAttachmentAll

' send the attachment to the server with the request it be echoed back
sUnique = "" ' to get us a new UniqueID
oDSI.Submit hInstance, "ECH", sUnique, sAttachl, sAttach2

' wait for the server to return the attachment
oDSI.GetQueueRec hInstance, dsiINPUTQUEUE, sUnique, 1000, nTIMEOUT

' get the attachment into an array
oDSI.GetAttachmentAll hInstance, dsiINPUTQUEUE, sAttachIn

For i = LBound(sAttachIn, 1) To UBound(sAttachIn, 1)

MsgBox (sAttachIn(i, 0) +": " + sAttachIn(i, 1))
Next i

307

Chapter 5

DSI Visual Basic APIs

GetAttachRecSet

Use this method for attachments which consist of a series of variables (RECORD1,
RECORD?2, and so on) with stem variables. The paradigm is that of a series of structures
or records so this method recovers the record set as a matrix. The top row in the matrix
contains the variable names, like in a spreadsheet.

Syniax GetAttachRecSet (hInstance as Long,QueuelID as DSIQUEUE, RecBase as
String,Vars () as String,
Optional Headings as Boolean,
Optional FirstRec as Long,Optional LastRec as Long)

IDS supports records within an attachment. For instance, the following might be returned

from a rule:
FISH1.TYPE BASS
FISH1.SIZE LARGE
FISH1.STATUS CAUGHT
FISH1.LOCATION BOAT
FISH2.TYPE GUPPY
FISH2.SIZE TINY
FISH2.STATUS RETURNED
FISH2.LOCATION LAKE
FISH3.TYPE SHARK
FISH3.SIZE LARGE

FISH3.STATUS APPROACHING
FISH3 .LOCATION CLOSE!

Calling this method will return:

TYPE SIZE STATUS LOCATION
BASS LARGE CAUGHT BOAT
GUPPY TINY RETURNED LAKE
SHARK LARGE APPROACHING CLOSE!

NOTE: You must use the Parse Attachment method before you call this method. You can
optionally specify the range of records to be extracted from the attachment.

Arguments

Argument Description

hlnstance The thread instance handle (from the setver if invoked by a rule.

QueuelD Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.

RecBase The record identification string (such as FISH).

Vars The output array.

Titles (Optional) Include record names as column headings. The default is TRUE.
FirstRec (Optional) The first record to recover. The default is one (1).

308

GetAttachRecSet

Argument Description
LastRec (Optional) The last record to recover. The default is zero (0), which is translated
to LONG_MAX.

Returns: DSIERR_SUCCESS
DSIERR_NOTFOUND

See also AddToAttachRec on page 276
AttachCursorFirst on page 279
AttachCursorLast on page 280
AttachCursorNext on page 283
AttachCursorPrev on page 284
GetAttachmentAll on page 306
ParseAttachment on page 334
Example From the CSamAPIL.cls file in the DSICOSAM example:

'

wait for the server to return the attachment
oDSI.GetQueueRec hInstance, dsiINPUTQUEUE, sUnique

' parse the attachment
oDSI.ParseAttachment hInstance, dsiINPUTQUEUE

oDSI.GetAttachRecSet hInstance, dsiINPUTQUEUE, sRecID, sRecSet
' show results
For 1 = 0 To UBound(sRecSet, 1)

MsgBox (sRecSet(i, 0) + " " + sRecSet(i, 1))
Next i

309

Chapter 5

DSI Visual Basic APIs

GetAttachVarSet

Syntax

Arguments

Returns

See also

Example

Use this method to help locate a set of variables in an attachment. This method lets you
pass in an array of the names you are looking for and get back the values associated with
those names.

GetAttachvVarSet (hInstance as Long,QueuelD as DSIQUEUE, Names() as
String,Values () as String) as Long

You will get back a dsiERR_NOTFOUND if and only if none of the names are found.

Argument Description
hlnstance The thread instance handle. This comes from the server if it was invoked by a
rule.

QueuelD Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.
Names The vector that contains the names you want to look for.

Values The array that contains the matching values, if any. The value can be a pointer
to an empty array, in which case the system dimensions it as a vector with the
same length as the name array.

If the array is defined before you call this method, it must be a two-dimensional
array and the method will append a column to it.

DSIERR_SUCCESS
DSIERR_NOTFOUND

AddToAttachRec on page 276

AttachCursorFirst on page 279
AttachCursorLast on page 280
AttachCursorNext on page 283
AttachCursorPrev on page 284
GetAttachmentAll on page 306
LocateAttachVar on page 328

ParseAttachment on page 334

From the CSamAPL.cls file in the DSICOSAM example:

Dim sDummyl () as String
Dim sDummy2 () as String
Dim sUnique as String
' there is no attachment for SSS, so we use empty arrays.
sUnique is empty so we will get back the unique ID we can use to
recover the server response
oDSI.Submit hInstance, "SSS", sUnique, sDummyl (), sDummy2 ()

’ get the server status record
oDSI.GetQueueRec hInstance, dsiINPUTQUEUE, sUnique

310

GetAttachVarSet

DoEvents

' parse the attachment
oDSI.ParseAttachment hInstance, dsiINPUTQUEUE

sNames (0) = "UPTIME"
sNames (1) = "LASTRESTART"
sNames (2) = "RESTARTCOUNT"
sNames (3) = "SUCCESSCOUNT"
sNames (4) = "ERRORCOUNT"
sNames (5) = "ALLOCCOUNT"
sNames (6) = "FREECOUNT"

' Get the current statistics from IDS

1Ret = oDSI.GetAttachVarSet (hInstance, dsiINPUTQUEUE, sNames,
asStats)

If 1Ret = dsiERR_EOF Then

MsgBox ("FAILED. Code = ", Val (lRet))
Else

Dim i

Dim L, U

L = LBound (sNames)

U = UBound (sNames)

For 1 = L To U

MsgBox (sNames(i) + ": " + asStats(i))

Next i

End If

311

Chapter 5
DSI Visual Basic APIs

GetPriority

Use this method to get the priority of the current queue record.

Syntax GetPriority (hInstance as Long,QueueID as DSIQUEUE) as String
Arguments
Argument Description
hlnstance The thread instance handle. This comes from the server if it was invoked by a
rule.

QueuelD Either dsiINPUTQUEUE ot dsiOUTPUTQUEUE.

Priority The priority as a string.

Seealso GetQFieldLength on page 314
GetUniquelD on page 319
GetReqType on page 317
GetStatus on page 318
SetPriority on page 338
SetQField on page 339

Example Dim sPri as String
sPri = oDSI.GetPriority (hInstance, dsiINPUTQUEUE)

312

GetQField

GetQField

Use this method to retrieve the value of a queue field.

Syntax GetQField (hInstance as Long,QueueID as DSIQUEUE, FieldID as
long, Field as String)

Arguments
Argument Description
hlnstance The thread instance handle. This comes from the server if it was invoked by a
rule.

QueuelD Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.

FieldID A field identifier, such as: dsiQSET_REQTYPE, dsiQSET_STATUS,
dsiQSET_INTIME, dsiQSET_OUTTIME, dsiQSET_USERID,
dsiQSET_PRIORITY, dsiQSET_UNIQUE_ID, or
dsiQSET_ATTACHMENT.

Field The returned field value as a string.

See also GetQFieldLength on page 314
GetPriority on page 312
GetUniquelD on page 319
GetReqType on page 317
GetStatus on page 318
SetPriority on page 338
SetQTield on page 339
SetUserID on page 343
SetReqType on page 340
SetStatus on page 341
SetUniquelD on page 342

Exanuﬂe oDSI.GetQField (hInstance,dsiINPUTQUEUE,dsiQSET REQTYPE, sReq)
MsgBox ("The request was " + sReq

313

Chapter 5

DSI Visual Basic APIs

GetQFieldLength

Use this method to get the field length of a field in a queue.

Syntax GetQFieldLength (hInstance as Long,QueueID as DSIQUEUE,FieldID as
Long) as Long

NOTE: This length can change from one release to the next so it is a good practice to
interrogate the length at least once at run time rather than rely on hard-coded

values.
Arguments
Argument Description
hlnstance The thread instance handle. This comes from the server if it was invoked by a
rule.

QueuelD Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.

FieldID A field identifier, such as: dsiQSET_REQTYPE, dsiQSET_STATUS,
dsiQSET_INTIME, dsiQSET_OUTTIME, dsiQSET_USERID,
dsiQSET_PRIORITY, dsiQSET_UNIQUE_ID, ot
dsiQSET_ATTACHMENT.

Returns FieldLen, which provides the length of the requested queue field.
See also GetQField on page 313

Example dim cbUniqueID

cbUniqueID = GetQFieldLength
(hInstance, dsiINPUTQUEUE, dsiQSET_UNIQUE_ID)

314

GetQueueRec

Syntax

Arguments

See also

Example

GetQueueRec

Use this method to look for a specific record in the queue.

GetQueueRec (hInstance as Long,QueueID as DSIQUEUE, UniqueID as
String, _ Optional Wait as Long,Optional TimeOut as Long)

Please note:

e Oracle Insurance supplies timing defaults of 1000 and 15000 in one millisecond ticks

* If the queue record fails to appear in the specified time, dsiERR_EOF is returned

* A time-out usually indicates the server is down or unreachable

Argument Description
hlnstance The thread instance handle. This comes from the setver if it was invoked by a
rule.

QueuelD Either dsiINPUTQUEUE ot dsiOUTPUTQUEUE.

UniquelD The record name.

Wait

The retry wait period in milliseconds.

TimeOut The timeout in milliseconds.

FindInQueue on page 303

From the CSamAPL.cls file in the DSICoOSAM example:

sAttach (0, 0) = "NameO"
sAttach (0, 1) = "ValueO"
sAttach (1, 0) = "Namel"
sAttach(1, 1) = "Valuel"
sAttach(2, 0) = "Name2"
sAttach(2, 1) = "Value2"
sAttach(3, 0) = "Name3"
sAttach(3, 1) = "Value3"
sAttach (4, 0) = "Name4"
sAttach(4, 1) = "Value4"

]

dim sDummy () as String

send the attachment to the server with the request it be echoed back
sUnique = "" ' to get us a new UniqueID

oDSI.Submit hInstance, "ECH", sUnique, sAttachl, sDummy

Look for the result.

The DSI Document server will process our request and put the
result in our result queue. We look for it in our result queue
providing wait and lock timeout.

If OnError gets invoked here, one of the error returns could
be time out.

oDSI.GetQueueRec hInstance, dsiINPUTQUEUE, sUnique

315

Chapter 5
DSI Visual Basic APIs

’ Parse and present our results.
oDSI.ParseAttachment hInstance, dsiINPUTQUEUE

’ Open a cursor for the attachment
hCursor = oDSI.OpenAttachCursor (hInstance, dsiINPUTQUEUE)

'’ Position to the first element of the attachment’
1Ret = oDSI.AttachCursorFirst (hCursor, sName, sValue)

’ Loop through all elements of the parsed attachment printing
’ the name and value pairs and put them in the right hand list box
While 1Ret = dsiERR_SUCCESS
MsgBox (sName + ":" + sValue)
1Ret = oDSI.AttachCursorNext (hCursor, sName, sValue)
Wend

’ Close the attachment cursor’
oDSI.CloseAttachCursor hCursor

316

GetReqType

Syntax

Arguments

Returns

See also

Example

GetReqType

Use this method to get the DSI request type, such as SSS or IMP, from the current queue
record.

GetReqType (hInstance as Long,QueuelID as DSIQUEUE) as String

Argument Description
hlnstance The thread instance handle. This comes from the server if it was invoked by a
rule.

QueuelD Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.

ReqType, which provides the request type.

GetQFieldLength on page 314
GetPriority on page 312
GetUniquelD on page 319
GetStatus on page 318

MsgBox ("Request type was " + oDSI.GetReqType (hInstance,
dsiINPUTQUEUE))

317

Chapter 5

DSI Visual Basic APIs

GetStatus

Syntax

Arguments

Returns

See also

Example

Use this method to get the status byte from the current queue record.

GetStatus (hInstance as Long,QueueID as DSIQUEUE) as String

Argument Description
hlnstance The thread instance handle. This comes from the server if it was invoked by a
rule.

QueuelD Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.

Status, which provides the status byte from the queue record.

GetQTieldLength on page 314
GetPriority on page 312
GetUniquelD on page 319
GetReqType on page 317

Dim sStatus as String
sStatus = oDSI.GetStatus (hInstance,dsiINPUTQUEUE)

318

GetUniquelD

Syntax

Arguments

Returns

See also

Example

GetUniquelD

Use this method to get the unique ID from a queue record.

GetUniquelID (hInstance as Long,QueueID as DSIQUEUE) as String

Argument Description
hlnstance The thread instance handle. This comes from the server if it was invoked by a
rule.

QueuelD Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.

UniquelD, which provides the unique ID for this record.

GetQFieldLength on page 314
GetPriority on page 312
GetReqType on page 317

From the CSamAPL.cls file in the DSICOSAM example:

MsgBox ("UniqueID is " + oDSI.GetUniquelID (hInstance, dsiINPUTQUEUE))

319

Chapter 5

DSI Visual Basic APIs

GetUniquelDLength

Syntax

Arguments

Returns

See also

Example

Use this method to get the length of the unique ID field the queue is expecting.

GetUniqueIDLength (hInstance as Long,QueueID as DSIQUEUE) as Long

NOTE: This length can change from release to release.

Argument Description
hlnstance The thread instance handle. This comes from the server if it was invoked by a
rule.

QueuelD Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.

UniqueLen, which provides the returned length of the dsiQSET_UNIQUE_ID field.

GetQField on page 313
GetQFieldLength on page 314
GetPriority on page 312
GetReqType on page 317
GetUniquelD on page 319

From the CSamAPIL.cls file in the DSICoOSAM example:

Dim cbField as Long
cbField = oDSI.GetUniqueIDLength (hInstance, dsiINPUTQUEUE)
MsgBox ("Unique ID field length is " + cbField)

320

GetUniqueString

GetUniqueString

Use this method to fill Unique with a unique string. You can, for instance, use this method
to generate unique file names.

Syntax GetUniqueString (hInstance as Long,Unique as String,Optional Long
LengthRequested)

If LengthRequested is zero, the length of the UniquelD field in the queue record will be
used. The GetUniquelD method is better suited for this purpose.

Arguments
Argument Description
hlnstance The thread instance handle. This comes from the server if it was invoked
by a rule.
Unique retutned unique ID. Unique will be space filled beyond 32 bytes.
LengthRequested length of string requested. If the result is zero, the default, then the

dsiQSET_UNIQUE_ID length is used.

See also GetPriority on page 312
GetQField on page 313
GetQFieldLength on page 314
GetReqType on page 317
GetUniquelD on page 319

Example Dim sUnique as String

GetUniqueString hInstance, sUnique, 8
MsgBox ("Here'’s your unique filename: " + sUnique + ".dat")

321

Chapter 5

DSI Visual Basic APIs

GetUserID

Syntax

Arguments

Returns

See also

Example

Use this method to get the user ID from the current queue record.

GetUserID (hInstance as Long,QueuelID as DSIQUEUE)

as String

Argument Description
hlnstance The thread instance handle. This comes from the server if it was invoked by a
rule.

QueuelD Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.

UserID, which provides the user ID returned as a string.

GetPriority on page 312
GetQTield on page 313
GetQTieldLength on page 314
GetReqType on page 317
GetUniquelD on page 319

From the CSamAPI.cls file in the DSICoSAM example:

Dim sField as String
sField = oDSI.GetUserID (hInstance, dsiINPUTQUEUE)

322

Init

Syntax

Arguments
Returns

See also

Example

Init

Use this method to make an API call to initialize an IDS session. It is also called by
InitSession, which is the preferred way to link up with IDS. Unless you want to administer
the session directly, there is no need to call this method.

Init () as Long

NOTE: This method should be called only once per process—without an intetvening call
to the Term method. You cannot use this method in a rule.

None
phApp, which provides the DSI session handle (not instance).

Term on page 347
InitSession on page 326

TermSession on page 350

From the CSamAPIL.cls file in the DSICoOSAM example:

hApp = oDSI.Init()
hInstance = oDSI.InitInstance (hApp)

' init the queues but use DSI.INI by passing in "" as the path
oDSI.InitQueue hInstance, dsiINPUTQUEUE, ""
oDSI.InitQueue hInstance, dsiOUTPUTQUEUE, ""

' do something useful

' shut down
oDSI.TermQueue hInstance, dsiINPUTQUEUE
oDSI.TermQueue hInstance, dsiOUTPUTQUEUE
oDSI.TermInstance hInstance
oDSI.Term

323

Chapter 5

DSI Visual Basic APIs

InitInstance

Use this method to make an APT call to initialize a thread instance. This method is also

called by InitSession, which is the preferred way to link to IDS. Unless you want to

administer the session directly, there is no need to call this routine.

Syniax InitInstance (LONG hApp) as Long
NOTE: You cannot use this method in a rule.
Arguments
Argument Description
hApp IDS Server session
Returns Instance, which provides the instance handle.

See also Termlnstance on page 348

InitSession on page 326

Example From the CSamAPIL.cls file in the DSICoSAM example:

’ initialize DSI for this process
hApp = oDSI.Init ()

’ initialize DSI for this thread
hInstance = oDSI.InitInstance (hApp)

’ init the queues but use DSI.INI by passing in "" as the path
oDSI.InitQueue hInstance, dsiINPUTQUEUE, ""
oDSI.InitQueue hInstance, dsiOUTPUTQUEUE, ""

' do something useful

’ shut down
oDSI.TermQueue hInstance, dsiINPUTQUEUE
oDSI.TermQueue hInstance, dsiOUTPUTQUEUE
oDSI.TermInstance hInstance
oDSI.Term

324

InitQueue

InitQueue
Use this method to initialize a DSI Queue for this instance. This method is also called by
InitSession, which is the preferred way to link to IDS and the queues.
NOTE: You cannot use this method in a rule.
Syntax InitQueue (hInstance as Long, QueuelD as DSIQUEUE, FileName as String)
If the file name is empty, DSI will look for the DSI.INI file in either the current working
directory or the directory which contains the DSIW32.DLL file. For greater flexibility in
your applications, do not specify the file name.
NOTE: Unless you want to administer the queues directly for a special purpose, this
method should not be used. InitSession will make the necessary calls.
Arguments
Argument Description
hlnstance thread instance handle
QueuelD queue index
FileName queue path. Most applications will set this to “”.

See also InitSession on page 326
TermQueue on page 349

TermSession on page 350

Example From the CSamAPIL.cls file in the DSICoOSAM example:

’ initialize DSI for this process
hApp = oDSI.Init()

' initialize DSI for this thread
hInstance = oDSI.InitInstance (hApp)

’ init the queues but use DSI.INI by passing in "" as the path
oDSI.InitQueue hlInstance, dsiINPUTQUEUE, ""
oDSI.InitQueue hlInstance, dsiOUTPUTQUEUE, ""

' do something useful

' shut down
oDSI.TermQueue hInstance, dsiINPUTQUEUE
oDSI.TermQueue hInstance, dsiOUTPUTQUEUE
oDSI.TermInstance hInstance
oDSI.Term

325

Chapter 5
DSI Visual Basic APIs

InitSession
Use this method to initialize your IDS session through the Visual Basic API for the
current thread. Most applications begin their processing with a call to InitSession.
Syniax InitSession(long hApp) as Long
NOTE: You cannot use this method in a rule.
Arguments

Argument Description

hApp The app handle returned by the Init method. This is available for diagnostic
purposes only.

Returns The thread instance handle.

See also TermSession on page 350
Init on page 323
InitInstance on page 324

InitQueue on page 325

Example Dim sUnique as String
Dim sDummy () as String

Dim sReturn as String

()

Dim sAttach(0 To 4, 0 To 1) As String
sAttach (0, 0) = "NameO"
sAttach (0, 1) = "ValueO"
sAttach (1, 0) = "Namel"
sAttach (1, 1) = "Valuel"
sAttach (2, 0) = "Name2"
sAttach (2, 1) = "Value2"
sAttach (3, 0) = "Name3"
sAttach (3, 1) = "Value3"
sAttach (4, 0) = "Name4"
sAttach (4, 1) = "Value4"

’

set up our server session
hInstance = oDSI.InitSession()

' send the attachment to the server with the request t be echoed back
sUnique = "" '’ to get us a new UniquelD

oDSI.Submit hInstance, "ECH", sUnique, sAttachl, sDummy

'’ Look for the result.
oDSI.GetQueueRec hInstance, dsiINPUTQUEUE, sUnique

' get the attachment into an array
oDSI.GetAttachmentAll hInstance, dsiINPUTQUEUE, sAttachIn

326

InitSession

' shut down
oDSI.TermSession hInstance

327

Chapter 5

DSI Visual Basic APIs

LocateAttachVar

Syntax

Arguments

Returns

See also

Example

Use this method to locate an attachment variable in the current queue record.

LocateAttachvVar (hInstance as Long,QueuelID as DSIQUEUE, Name as
String, Value as String) as Long

You must call the ParseAttachment method before you use this method.

Argument Description
hlnstance The thread instance handle. This comes from the server if it was invoked by a
rule.

QueuelD Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.
Name The search target.

Value The value found associated with that name returned as a string.

dsiERR_SUCCESS
dsiERR_NOTFOUND

AddAttachVar on page 275

DeleteAttachVar on page 296
ParseAttachment on page 334
GetAttachVarSet on page 310
GetAttachRecSet on page 308

From the CSamAPL.cls file in the DSICOSAM example:

oDSI.ParseAttachment hInstance, dsiINPUTQUEUE

1Ret = oDSI.LocateAttachVar (hInstance, dsiINPUTQUEUE, "RESULTS",
sValue)

If 1Ret = dsiERR_SUCCESS Then

MsgBox ("Success: found RESULTS = " + sValue)
Else

msgBox ("Failure: " + Hex(lRet) +" No data found: ")
End If

328

LocateValue

Syntax

Arguments

Returns

See also

Example

LocateValue

Use this method to locate a persistent value by name. These variables are persistent and
must be destroyed by a call to DestroyValue method. They are not associated with the
queues or attachments and exist to aid communication or provide state information
between rules and calls to rules.

LocateValue (hInstance as Long,Name as String, Value as VARIANT) as

Long
Argument Description
hlnstance The thread instance handle. This comes from the server if it was invoked by a
rule.
Name name of the persistent value
Value the value that is found

dsiERR_SUCCESS

dsiERR_NOTFOUND

CreateValue on page 292

DestroyValue on page 297

LocateValueObj on page 331

QueryValueSize on page 335

From the CSamAPL.cls file in the DSICoOSAM example:

'

save our string
sTestValue = "Hello World"

oDSI

.CreateValue hInstance, sSTRING TAG, sTestValue

now get it back
Dim 1lRet

1Ret

= oDSI.LocateValue (hInstance, sSTRING_TAG, sReturnedValue)

If 1Ret <> dsiERR_SUCCESS _
Or sReturnedValue <> sTestValue Then
MsgBox ("Failed")

Else

MsgBox ("Success")
End If

we’re through with it so we destroy it

oDSI.

DestroyValue hInstance, sSTRING TAG

now lets see how integers fare
iTestValue = 234

oDSTI.

1Ret

CreateValue hInstance, sINT_TAG, iTestValue

= oDSI.LocateValue (hInstance, sINT TAG, iReturnedvalue)

If 1Ret <> dsiERR SUCCESS

329

Chapter 5
DSI Visual Basic APIs

Or iTestValue <> iReturnedValue Then
MsgBox ("Failed")

Else
MsgBox ("Success")

End If

'’ we’re through with it so we destroy it
oDSI.DestroyValue hInstance, sINT TAG

330

LocateValueObj

LocateValueObj

Use this method to locate a persistent value containing the name of an object. These
variables are persistent and must be destroyed by a call to DestroyValueObj. These
variables are not associated with the queues or attachments and exist to aid
communication or provide state information between rules and calls to rules.

Syntax LocateValueObj (hInstance as Long,Name as String, oRef as Object) as
Long

NOTE: ActiveX components are referenced counted and VB is very good about its
record keeping so few are even aware that it is going on. If you use this method
to save a reference to an object VB will take over that responsibility as much as
it can. If, however, you fail to call DestroyValueObj, including in On Error
handlers, you can leave a dangling reference which can tie up resources
unnecessarily, perhaps even crash the server or your application.

Arguments
Argument Description
hlnstance The thread instance handle. This comes from the server if it was invoked by a
rule.
Name name of the persistent value
oRef a reference to an object

Returns dsiERR_SUCCESS
dsiERR_NOTFOUND

See also CreateValueObj on page 294
DestroyValueObj on page 299
LocateValue on page 329

Example From the CSamAPL.cls file in the DSICoOSAM example:

Dim oTestValue As New CSamTObj
Dim oOtherTestValue As CSamTObj

' Test with early bound object
oDSI.CreateValueObj hInstance, "MY OBJECT", oTestValue

' clear our reference
Set oTestValue = Nothing

' get it back

1Ret = oDSI.LocateValueObj (hInstance, "MY OBJECT",
oOtherTestValue)

' use the object to make sure we got back what we sent out
MsgBox (oOtherTestValue.TestReturn("Hello World"))

331

Chapter 5

DSI Visual Basic APIs

clear our reference
Set oOtherTestValue = Nothing

we don’t want a dangling reference
oDSI.DestroyValueObj hInstance, "MY OBJECT"

Test with late bound object

Dim oObject As Object
Dim oOtherObject As Object

Set oObject = CreateObject ("Docucorp IDS_SamTObj.CSamTObj")
oDSI.CreateValueObj hInstance, "MY OBJECT", oObject

clear our reference
Set oObject = Nothing

get it back

1Ret = oDSI.LocateValueObj (hInstance, "MY OBJECT", oOtherObject)

use the object to make sure we got back what we sent out

MsgBox ("Object #2 Recovered: " + oOtherObject.TestReturn ("Hello

New World"))

clear our reference
Set oOtherObject = Nothing

we don’t want a dangling reference
oDSI.DestroyValueObj hInstance, "MY_OBJECT"

332

OpenAttachCursor

OpenAttachCursor

Syntax

Arguments

Returns

See also

Example

Use this method to open a cursor into the attachment list for the specified queue. Be sure
to call the CloseAttachCursor method when you are through to free resources.

OpenAttachCursor(hInstance as Long, QueuelID as DSIQUEUE) as Long

Argument Description
hlnstance The thread instance handle. This comes from the server if it was invoked by a
rule.

QueuelD Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.

Cursor, which provides the newly-created cursor.

AttachCursorLast on page 280
AttachCursorNext on page 283
AttachCursorPrev on page 284
CloseAttachCursor on page 289

ParseAttachment on page 334

From the CSamAPIL.cls file in the DSICoOSAM example:

oDSI.ParseAttachment hInstance, dsiINPUTQUEUE

' Open a cursor for the attachment
' This cursor will allow us to walk through the attachment serially
hCursor = oDSI.OpenAttachCursor (hInstance, dsiINPUTQUEUE)

' Position to the first element of the attachment’
1Ret = oDSI.AttachCursorFirst (hCursor, sName, sValue)

' Loop through all elements of the parsed attachment printing
' the name and value pairs and put them in the right hand list box
While 1Ret = dsiERR_SUCCESS
do something useful
1Ret = oDSI.AttachCursorNext (hCursor, sName, sValue)
Wend

' close out the cursor to free the resources
oDSI.CloseAttachCursor hCursor

333

Chapter 5

DSI Visual Basic APIs

ParseAttachment

Syntax

Arguments

See also

Example

Use this method to parse the attachment field in the queue record into an internal list of
name/value pairs which can be accessed by other methods.

ParseAttachment (hInstance as Long, QueuelID as DSIQUEUE)

Argument Description
hlnstance The thread instance handle. This comes from the server if it was invoked by a
rule.

QueuelD Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.

GetAttachment on page 304
LocateAttachVar on page 328
DeleteAttachVar on page 296
GetAttachmentAll on page 306
GetAttachVarSet on page 310

From the CSamAPIL.cls file in the DSICoSAM example:

oDSI.ParseAttachment hInstance, dsiINPUTQUEUE

’ Open a cursor for the attachment
’ This cursor will allow us to walk through the attachment serially
hCursor = oDSI.OpenAttachCursor (hInstance, dsiINPUTQUEUE)

’ Position to the first element of the attachment’
1Ret = oDSI.AttachCursorFirst (hCursor, sName, sValue)

’ Loop through all elements of the parsed attachment printing
' the name and value pairs and put them in the right hand list box
While 1Ret = dsiERR_SUCCESS
do something useful
1Ret = oDSI.AttachCursorNext (hCursor, sName, sValue)
Wend

'’ close out the cursor to free the resources
oDSI.CloseAttachCursor hCursor

334

QueryValueSize

Syntax

Arguments

Returns

See also

Example

QueryValueSize

Use this method to get the length of a DSI persistent variable. These variables are
persistent and must be destroyed by a call to DestroyValue method. They are not
associated with the queues or attachments and exist to aid communication or provide
state information between rules and calls to rules.

QueryValueSize (hInstance as Long,sName as String) as Long

NOTE: Use of this method with a DSI petsistent variable that is an object will return a
value that is unreliable.

Argument Description

hlnstance The thread instance handle. This comes from the server if it was invoked by a
rule.

Name the name of the persistent variable

ValueLength, which provides the length in bytes.

CreateValue on page 292
DestroyValue on page 297
LocateValue on page 329
CreateValueODbj on page 294
LocateValueObj on page 331
DestroyValueObj on page 299

From the CSamAPL.cls file in the DSICoOSAM example:

sTestValue = "Hello World"
oDSI.CreateValue hInstance, "START STMT", sTestValue

Dim cbvalue
cbValue = oDSI.QueryValueSize (hInstance, "START STMT")
MsgBox ("returned size=", Str(cbValue))

335

Chapter 5

DSI Visual Basic APIs

SetAttachment

Syntax

Arguments

See also

Example

Use this method to insert an attachment as a single, continuous string (almost a BLOB)
into the queue record. Use for situations in which the name/value pait paradigm does not
support the needs of the application.

SetAttachment (hInstance as Long,QueuelID as DSIQUEUE,Attachment as
String)

Most applications which interact with IDS will not need to use this method.

Argument Description
hlnstance The thread instance handle. This comes from the server if it was invoked by a
rule.

QueuelD Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.

Attachment The attachment as a string.

GetAttachment on page 304

Here is an excerpt from the CSamAPI.cls file in the DSICoSAM example:

Dim sBLOB As String

sBLOB = "Of all the dispositions and habits, which lead to political
prosperity," + _

"Religion and Morality are indispensable supports. In vain would that
man " +

"claim the tribute of Patriotism, who should labor to subvert these
great " + _

"pillars of human happiness, these firmest props of the duties of Men
and " +

"Citizens. The mere Politician, equally with the pious man, ought to
respect " + _

"and to cherish them. A volume could not trace all their connexions
with " + _

"private and public felicity. Let it simply be asked, Where is the
security " + _

"for property, for reputation, for life, if the sense of religious
obligation " + _

"desert the oaths, which are the instruments of investigation in
Courts " + _

"of Justice? And let us with caution indulge the supposition, that
morality " + _

"can be maintained without religion. Whatever may be conceded to the
influence " + _

"of refined education on minds of peculiar structure, reason and
experience " + _

"both forbid us to expect, that national morality can prevail in
exclusion " + _

"of religious principle. -- George Washington"
oDSI.SetAttachment hInstance,dsiOUTPUTQUEUE, sBLOB

’set the Echo request type
oDSI.SetReqType hInstance, dsiOUTPUTQUEUE, "ECH"

336

'

SetAttachment

set up a unique id for our record
sUnique = "" ' make sure we get a new one this time
oDSI.SetUniqueID hInstance, dsiOUTPUTQUEUE, sUnique

insert record into queue for processing by the server
oDSI.AddToQueue hInstance, dsiOUTPUTQUEUE

get our record back after processing by the server
oDSI.GetQueueRec hInstance, dsiINPUTQUEUE, sUnique

Dim sBLOBOut
oDSI.GetAttachment hInstance, dsiINPUTQUEUE, sBLOBOut

MsgBox (sBLOBOut)

337

Chapter 5

DSI Visual Basic APIs

SetPriority

Syntax

Arguments

See also

Example

Use this method to set the priority of the current queue record.

SetPriority (hInstance as Long,QueuelID as DSIQUEUE,

Priority as

String)
Argument Description
hlnstance The thread instance handle. This comes from the server if it was invoked by a

rule.
QueuelD Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.

Priority The priority as a string.

SetQField on page 339
SetUserID on page 343
SetReqType on page 340
SetStatus on page 341
SetUniquelD on page 342
GetPriority on page 312

oDSI.SetPriority hInstance,dsiOUTPUTQUEUE, "1"
oDSI.AddToQueue hInstance, dsiOUTPUTQUEUE

oDSI.SetPriority hInstance,dsiOUTPUTQUEUE, "0O"
oDSI.AddToQueue hInstance, dsiOUTPUTQUEUE

338

SetQField

Syntax

Arguments

See also

Example

SetQField

Use this method to set a specific queue field in the current queue record.

SetQField (hInstance as Long,QueuelID as DSIQUEUE, FieldID as
Long,Value as String)

Argument Description
hlnstance The thread instance handle. This comes from the server if it was invoked by a
rule.

QueuelD Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.

FieldID A field identifier, such as: dsiQSET_REQTYPE, dsiQSET_STATUS,

Value

dsiQSET_USERID, dsiQSET_PRIORITY, dsiQSET_UNIQUE_ID, ot
dsiQSET_ATTACHMENT.

The value to be updated in current queue record.

GetQField on page 313

SetPriority on page 338

SetUserID on page 343

SetReqType on page 340

SetStatus on page 341

SetUniquelD on page 342

From the CSamAPL.cls file in the DSICoOSAM example:

'

put our message in the attachment
oDSI.AddAttachVar hInstance, dsiOUTPUTQUEUE, "What", "Me Worry?"

put the attachment into the queue record
oDSI.StoreAttachment hInstance, dsiOUTPUTQUEUE

set up the request type (all queue records must have a request type)
oDSI.SetQField hInstance, dsiOUTPUTQUEUE, dsiQSET REQTYPE, "ECH"

put a unique id in the queue record so we can get it from the server
sUnique = "" ' make sure we get a new one this time

oDSI.SetUniquelID hInstance, dsiOUTPUTQUEUE, sUnique

submit the queue record to the queue for processing by the server
oDSI.AddToQueue hInstance, dsiOUTPUTQUEUE

339

Chapter 5
DSI Visual Basic APIs

SetReqType

Use this method to set the DSI request type in the current queue record.

Syniax SetReqType (hInstance as Long,QueuelID as DSIQUEUE, Type as String)

Every queue record submitted to the server must have a request type. This request type
should also be found in the DOCSERYV configuration file. For instance, the ECH request
has the following entry in the DOCSERV configuration file:

< ReqType:ECH >
function = atcw32->ATCLoadAttachment
function = DSICoRul->Invoke,Docucorp_ IDS_SAMSupp .CSAMSupp->Echo
function = atcw32->ATCUnloadAttachment

Arguments
Argument Description
hlnstance The thread instance handle. This comes from the setver if it was invoked by a
rule.

QueuelD Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.

Type The request type as a string.

See also GetReqType on page 317
SetQField on page 339
SetPriority on page 338
SetUserID on page 343
SetStatus on page 341
SetUniquelD on page 342

Example From the CSamAPL.cls file in the DSICOSAM example:

’ put our message in the attachment
oDSI.AddAttachVar hInstance, dsiOUTPUTQUEUE, "What", "Me Worry?"

' put the attachment into the queue record
oDSI.StoreAttachment hInstance, dsiOUTPUTQUEUE

’ set up the request type (all queue records must have a request type)
oDSI.SetReqType hInstance, dsiOUTPUTQUEUE, "ECH"

’ put a unique ID in the queue record
sUnique = "" ' make sure we get a new one this time

oDSI.SetUniqueID hInstance, dsiOUTPUTQUEUE, sUnique

’ submit the queue record to the queue for processing by the server
oDSI.AddToQueue hInstance, dsiOUTPUTQUEUE

340

SetStatus

SetStatus

Use this method to set the status flag by OR’ing the bits, which will prevent the ERROR
bit from being reset. This field has a length of one byte.

Syntax SetStatus (hInstance as Long,QueuelID as DSIQUEUE, Status as String)
Arguments
Argument Description
hlnstance The thread instance handle. This comes from the server if it was invoked by a
rule.

QueuelD Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.

Status The status as a string.

See also GetStatus on page 318
SetQField on page 339
SetPriority on page 338
SetUserID on page 343
SetReqType on page 340
SetUniquelD on page 342

Example oDSI.SetStatus hInstance,dsiINPUTQUEUE, "E"

341

Chapter 5

DSI Visual Basic APIs

SetUniquelD

Syntax

Arguments

See also

Example

Use this method to set the UniquelD for a queue record. In a multiuser environment, this
is the way to keep your stuff separated from that of the other users. This value is supplied
to the GetQueueRec method to recover your queue record after it’s processed by the
server.

SetUniquelID (hInstance as Long,QueuelID as DSIQUEUE,UniquelD as

String)
Argument Description
hlnstance The thread instance handle. This comes from the server if it was invoked by a

rule.

QueuelD Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.

132

UniquelD UniquelD as a string. If UniquelD is empty or “”’, a new unique ID is returned.

GetUniquelD on page 319
SetQField on page 339
SetPriority on page 338
SetUserID on page 343
SetReqType on page 340
SetStatus on page 341

From the CSamAPL.cls file in the DSICoSAM example:

sUnique = "" ' make sure we get a new one this time
oDSI.SetUniqueID hInstance, dsiOUTPUTQUEUE, sUnique

' insert our record into the queue for processing by the server
oDSI.AddToQueue hInstance, dsiOUTPUTQUEUE

' recover our record from the server after processing
oDSI.GetQueueRec hInstance, dsiINPUTQUEUE, sUnique

342

SetUserlD

Syntax

Arguments

See also

Example

SetUserID

Use this method to set up a user ID for the current queue record. The server does not use
this, but a client can use it to keep separate various requests.

SetUserID (hInstance as Long,QueuelID as DSIQUEUE,UserID as String)

If the user ID is not going to change, you only need to make this call once. You can also
use the UserID property to set this field.

Argument Description
hlnstance The thread instance handle. This comes from the setver if it was invoked by a
rule.

QueuelD Either dsiINPUTQUEUE ot dsiOUTPUTQUEUE.

UserlD Any string.

GetUserID on page 322
SetQTield on page 339
SetPriority on page 338
SetReqType on page 340
SetStatus on page 341
SetUniquelD on page 342

From the CSamAPL.cls file in the DSICOSAM example:

oDSI.SetUserID hInstance, dsiOUTPUTQUEUE, "Walleye"

343

Chapter 5

DSI Visual Basic APIs

Store Attachment

Syntax

Arguments

See also

Example

Use this method to update the attachment field in the queue record from the internal
attachment list buffer.

StoreAttachment (hInstance as Long, DSIQUEUE QueuelD)

If you call the AddAttachVar or AttachList methods, you must call this method
afterwards. This method is not required after calls to the Submit method.

Argument Description
hlnstance The thread instance handle. This comes from the setver if it was invoked by a
rule.

QueuelD Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.

AddAttachVar on page 275
AttachList on page 287
Submit on page 345

From the CSamAPIL.cls file in the DSICoOSAM example:

oDSI.AddAttachRec hInstance, dsiOUTPUTQUEUE, "FISH", sBuf

Next we want to supply the values. To do this we use the

add to attach record functionality. We supply the buffer

returned from or earlier add attach record call.

Add name of my DLL
oDSI.AddToAttachRec hInstance, dsiOUTPUTQUEUE, sBuf, "TYPE", "BASS"

Add date DLL was built

oDSI.AddToAttachRec hInstance, dsiOUTPUTQUEUE, sBuf, "SIZE",
"LARGE"

’ Add time DLL was built

oDSI.AddToAttachRec hInstance, dsiOUTPUTQUEUE, sBuf, "STATUS",
"CAUGHT"

’ Add my DLL version number

oDSI.AddToAttachRec hInstance, dsiOUTPUTQUEUE, sBuf, "LOCATION",
n BOAT n

' Put the attachment into the queue record
oDSI.StoreAttachment hInstance, dsiOUTPUTQUEUE

344

Submit

Syntax

Arguments

See also

Example 1

Submit

Use this method for most client submissions to the setver.

Submit (hInstance as Long,Request as String,UniquelD as
String,parmsl () as String,parms2() as String)

The lists parms1() and parms2() can be empty.

NOTE: Each call to submit generates another OUTPUT queue record.

Argument Description

hlnstance The thread instance handle. This comes from the server if it was invoked by a
rule.

Request A server request, such as SSS.

UniquelD The unique ID for this submission. Any empty string will be returned with the

unique ID assigned to this queue record.

Parms1() A two-dimensional array with the parameter list to attach to the queue record.

Parms2() A two-dimensional array with the second parameter list to be also attached to

the queue record.

AddAttachVar on page 275

AttachList on page 287

From the CSamAPL.cls file in the DSICoOSAM example:

Dim sDummyl () as String

Dim sDummy2 () as String

Dim sUnique as String

there is no attachment for SSS, so we use empty arrays.

sUnique is empty so we will get back the unique ID we can use to
recover the server response

oDSI.Submit hInstance, "SSS", sUnique, sDummyl (), sDummy2 ()

get the server status record
oDSI.GetQueueRec hInstance, dsiINPUTQUEUE, sUnique
DoEvents

parse the attachment
oDSI.ParseAttachment hInstance, dsiINPUTQUEUE

sNames (0) = "UPTIME"
sNames (1) = "LASTRESTART"
sNames (2) = "RESTARTCOUNT"
sNames (3) = "SUCCESSCOUNT"
sNames (4) = "ERRORCOUNT"
sNames (5) = "ALLOCCOUNT"

345

Chapter 5

DSI Visual Basic APIs

’

sNames (6) = "FREECOUNT"

Get the current statistics from IDS
1Ret = oDSI.GetAttachVarSet (hInstance, dsiINPUTQUEUE, sNames,

asStats)

If 1Ret = dsiERR_EOF Then

MsgBox ("FAILED. Code = ", Val (lRet))
Else

Dim i

Dim L, U

L = LBound (sNames)

U = UBound (sNames)

For i = L To U

MsgBox (sNames (i) + ": " + asStats(i))
Next 1
End If
Example 2 From the CSamAPL.cls file in the DSICOSAM example:

sAttachl (0, 0) = "NameO"
sAttachl (0, 1) = "ValueO"
sAttachl (1, 0) = "Namel"
sAttachl (1, 1) = "Valuel"
sAttachl (2, 0) = "Name2"
sAttachl (2, 1) = "Value2"
sAttachl (3, 0) = "Name3"
sAttachl (3, 1) = "Value3"
sAttachl (4, 0) = "Name4"
sAttachl (4, 1) = "Value4"
sAttach2 (0, 0) = "Name20"
sAttach2 (0, 1) = "Value20"
sAttach2 (1, 0) = "Name2l"
sAttach2 (1, 1) = "Value2l"
sAttach2 (2, 0) = "Name22"
sAttach2 (2, 1) = "Value22"
sAttach2 (3, 0) = "Name23"
sAttach2 (3, 1) = "Value23"
sAttach2 (4, 0) = "Name24"
sAttach2 (4, 1) = "Value24"

1

1

send the attachment to the server with the request it be echoed back
sUnique = "" '’ to get us a new UniqueID
oDSI.Submit hInstance, "ECH", sUnique, sAttachl, sAttach2

wait for the server to return the attachment
oDSI.GetQueueRec hInstance, dsiINPUTQUEUE, sUnique, 1000, nTIMEOUT

get the attachment into an array
oDSI.GetAttachmentAll hInstance, dsiINPUTQUEUE, sAttachIn

For i = LBound(sAttachIn, 1) To UBound(sAttachIn, 1)

MsgBox (sAttachIn(i, 0) +": " + sAttachIn(i, 1))
Next i

346

Term

Term

Use this method to terminate the server session.

Syntax Term()

The InitSession and TermSession methods are the preferred means of managing your
connection to IDS. Unless you want to manage the server session directly, you should not
call this routine.

NOTE: This method will be automatically called when you exit. Most applications will
not use it. This method cannot be called from a rule.

Arguments None

See also Init on page 323

InitSession on page 326

Example From the CSamAPIL.cls file in the DSICoOSAM example:

' initialize DSI for this process
hApp = oDSI.Init()

/ initialize DSI for this thread
hInstance = oDSI.InitInstance (hApp)

' init the queues but use DSI.INI by passing in "" as the path
oDSI.InitQueue hInstance, dsiINPUTQUEUE, ""
oDSI.InitQueue hlInstance, dsiOUTPUTQUEUE, ""

* do something useful

' shut down
oDSI.TermQueue hInstance, dsiINPUTQUEUE
oDSI.TermQueue hInstance, dsiOUTPUTQUEUE
oDSI.TermInstance hInstance
oDSI.Term

347

Chapter 5

DSI Visual Basic APIs

TermlInstance

Use this method to terminate the thread instance. It is also called by TermSession, which
is the preferred way to unlink from IDS.

Syntax TermInstance (hInstance as Long)

NOTE: This method cannot be called from rules.

Arguments

Argument Description

hlnstance The thread instance handle. This comes from the server if it was invoked by a
rule.

See also InitInstance on page 324
InitSession on page 326

TermSession on page 350

Example From the CSamAPIL.cls file in the DSICoOSAM example:

’ initialize DSI for this process
hApp = oDSI.Init()

’ initialize DSI for this thread
hInstance = oDSI.InitInstance (hApp)

’ init the queues but use DSI.INI by passing in "" as the path
oDSI.InitQueue hInstance, dsiINPUTQUEUE, ""
oDSI.InitQueue hInstance, dsiOUTPUTQUEUE, ""

' do something useful

’ shut down
oDSI.TermQueue hInstance, dsiINPUTQUEUE
oDSI.TermQueue hInstance, dsiOUTPUTQUEUE
oDSI.TermInstance hInstance
oDSI.Term

348

TermQueue

TermQueue

Use this method to terminate the linkage to one of the two queues. Called by InitSession,
which is the preferred way to link to IDS.

Syntax TermQueue (hInstance as Long,QueueID as DSIQUEUE)

NOTE: This method cannot be called from rules.

Arguments

Argument Description

hlnstance The thread instance handle. This comes from the server if it was invoked by a
rule.

QueuelD Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.

See also InitQueue on page 325
InitSession on page 326

TermSession on page 350

Example From the CSamAPL.cls file in the DSICoOSAM example:

' initialize DSI for this process
hApp = oDSI.Init()

/ initialize DSI for this thread

hInstance = oDSI.InitInstance (hApp)

' init the queues but use DSI.INI by passing in "" as the path
oDSI.InitQueue hInstance, dsiINPUTQUEUE, ""
oDSI.InitQueue hInstance, dsiOUTPUTQUEUE, ""

' do something useful

' shut down
oDSI.TermQueue hInstance, dsiINPUTQUEUE
oDSI.TermQueue hInstance, dsiOUTPUTQUEUE
oDSI.TermInstance hInstance
oDSI.Term

349

Chapter 5
DSI Visual Basic APIs

TermSession
Use this method to end the relationship with IDS. You must pair this method with the
InitSession method.
Syntax TermSession (hInstance as Long)
NOTE: This method cannot be called from rules.
Arguments

Argument Description
hlnstance The thread instance handle.

See also InitSession on page 326

Init on page 323

Example From the CSamAPL.cls file in the DSICoOSAM example:

Dim sUnique as String
Dim sDummy () as String

Dim sReturn as String

()

Dim sAttach(0 To 4, 0 To 1) As String
sAttach (0, 0) = "NameO"
sAttach (0, 1) = "ValueO"
sAttach (1, 0) = "Namel"
sAttach (1, 1) = "Valuel"
sAttach (2, 0) = "Name2"
sAttach (2, 1) = "Value2"
sAttach (3, 0) = "Name3"
sAttach (3, 1) = "Value3"
sAttach (4, 0) = "Name4"
sAttach(4, 1) = "Value4"

1

hInstance = oDSI.InitSession()
' send the attachment to the server with the request it be echoed back
sUnique = "" ’ to get us a new UniqueID

oDSI.Submit hInstance, "ECH", sUnique, sAttachl, sDummy

’ Look for the result.
oDSI.GetQueueRec hInstance, dsiINPUTQUEUE, sUnique

’ get the attachment into an array
oDSI.GetAttachmentAll hInstance, dsiINPUTQUEUE, sAttachIn

’ shut down
oDSI.TermSession hInstance

350

Trace

Syntax

Arguments

See also

Example

Trace

Use this method to put a couple of strings in the VB trace file. If tracing is not enabled,
no action is taken.

Trace (hInstance as Long,Caller as String,Msg as String)

The trace file is named DSICO.TRC. This file is stored in the current working directory
of the application, IDS Server, or IIS Server, unless you specify otherwise using the
TracePath property.

Argument Description

hlnstance The thread instance handle.
Caller The routine making the call.
Msg A message string.

TraceSnapshot on page 355
TraceEnableRule on page 353
Property TracePath on page 359
TraceEnableRule on page 353

oDSI.Trace hInstance, "Fish Rule::GoFish", "Bass bait ignored"

351

Chapter 5

DSI Visual Basic APIs

TraceAttach

Syntax

Arguments

See also

Example

Use this method to write the entire attachment to the trace file.

TraceAttach (hInstance as Long,QueueID as DSIQUEUE)

The trace file is always named DSICO.TRC. It will go in the current working directory of
the application, IDS Server, or IIS Server, unless you specify otherwise using the
TracePath property.

Argument Description
hlnstance The thread instance handle. This comes from the setver if it was invoked by a
rule.

QueuelD Either dsiINPUTQUEUE or dsiOUTPUTQUEUE.

Trace on page 351
TraceEnableRule on page 353
TraceSnapshot on page 355
TraceEnableRule on page 353
TraceEnableRule on page 353
Property TracePath on page 359

From the CSamAPIL.cls file in the DSICoSAM example:

oDSI.TraceAttach hInstance,dsiINPUTQUEUE

352

TraceEnableRule

TraceEnableRule

Use this method to turn the tracing on and off in a rule. The TraceEnable property cannot
be used in rules.

Syntax TraceEnableRule (hInstance as Long,Enable as Boolean)

The trace file is always named DSICO.TRC. It will go in the current working directory of
the application, IDS Server, or IIS Server, unless you specify otherwise using the

TracePath property.
Arguments
Argument Description
hlnstance The thread instance handle. This comes from the setver if it was invoked by a
rule.
bEnable Enter True to enable tracing. Enter False to disable tracing.

See also Trace on page 351
TraceAttach on page 352
TraceEnableRule on page 353
TraceSnapshot on page 355
Property TracePath on page 359

Example oDSI.TraceEnableRule hInstance, TRUE

353

Chapter 5
DSI Visual Basic APIs

TraceList
Use this method to trace an attachment list of name/value pairs.
Syniax TraceList (ID as String,List() as String
Arguments
Argument Description
1D A list identifier.
List () A two-dimensional array of name/value pairs.

See also Trace on page 351
TraceAttach on page 352
TraceEnableRule on page 353
TraceEnableRule on page 353
TraceSnapshot on page 355

Example From the CSamAPIL.cls file in the DSICoOSAM example:

Dim sAttach(0 To 4, 0 To 1) As String
sAttach (0, 0) = "NameO"
sAttach (0, 1) = "ValueO"
sAttach (1, 0) = "Namel"
sAttach (1, 1) = "Valuel"
sAttach (2, 0) = "Name2"
sAttach (2, 1) = "Value2"
sAttach (3, 0) = "Name3"
sAttach (3, 1) = "Value3"
sAttach (4, 0) = "Name4"
sAttach(4, 1) = "Value4"

oDSI.TraceList "Initial list state",sAttach

354

TraceSnapshot

Syntax

Arguments

See also

Example

TraceSnapshot

Use this method to dump the current state of the queues, including attachments in the
current queue record, to the trace file. This method then closes and reopens the trace file
to flush the buffers.

TraceSnapshot (hInstance as Long)

Parameter Description
hlnstance The thread instance handle. This comes from the server if it was invoked by a
rule.
Trace on page 351

TraceAttach on page 352
TraceEnableRule on page 353

From the CSamAPIL.cls file in the DSICoOSAM example:

' recover the attachment echoed back to us
oDSI.GetQueueRec hInstance, dsiINPUTQUEUE, sUnique

oDSI.Trace "Fish::GoFish", "where are the worms?"
oDSI.TraceSnapshot hInstance

355

Chapter 5
DSI Visual Basic APIs

Property Instance

Use this property to return the DSI instance handle.

Syntax Property Instance as Long (read only)

This method is for diagnostic purposes only.

NOTE: Ina multi-threaded context, such as an ASP Active X component running under
Microsoft IIS, you cannot rely on this value.

See also Initlnstance on page 324
InitSession on page 326
TermInstance on page 348

TermSession on page 350

Example MsgBox ("Instance handle is " + Str (oDSI.Instance))

356

Property Signature

Property Signature

Use this property to return the DLL “signature” for diagnostic purposes.

Syntax Property Signature as String

NOTE: This information is subject to change in content and format without notice.

Returns A string with data identifying the VB ActiveX DLL.

Examplc MsgBox ("DSICoLib signature: " + Str (oDSI.Signature))

357

Chapter 5
DSI Visual Basic APIs

Property TraceEnable

Use this property to start and stop tracing.

Syniax Property TraceEnable as BOOL (read only)

The trace file is always named DSICO.TRC. It will go in the current working directory of
the application, IDS Server, or IIS Server, unless you specify otherwise using the
TracePath property.

The trace file will be automatically closed when the application exits.

See also TraceSnapshot on page 355
TraceAttach on page 352
Trace on page 351
TraceEnableRule on page 353
Property TracePath on page 359

Example From the CSamAPL.cls file in the DSICOSAM example:

oDSI.TraceEnable = true
oDSI.InitSession

358

Property TracePath

Property TracePath

Use this property to get the path and file name of the trace file, if the trace file has been
opened, the system will set the trace file name. This name will take effect only after the
trace file is opened.

Syntax Property TracePath as String

The trace file is always named DSICO.TRC. It will go in the current working directory of
the application, IDS Server, or IIS Server, unless you specify otherwise using this

property.
See also TraceEnableRule on page 353
Example oDSI.TracePath = "D:\TEMP"

oDSI.TraceEnable = true
oDSI.InitSession

359

	Start
	Notice
	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	Using Docupresentment SDK
	Finding the Information You Need
	Using the DSI APIs with C
	Using Unicode in Attachment Variables
	Sample Program-DSIEX

	Writing Processing Rules in C
	How the System Processes Rules
	Creating Rules
	Creating, Accessing, and Destroying Variables
	Accessing the Queue
	Using Utility Functions
	Creating Rules for Reserved Request Types

	Using the Java Libraries
	Writing Processing Rules in Java
	Java Rules vs. C Rules
	Function Signature for Java Rules

	Using the IDSWebdav Servlet Client APIs and DPRLIB Rules
	Writing Processing Rules in Visual Basic
	Samples
	Referencing Attachment Variables

	DSI C APIs
	C API Functions

	DSI Java APIs
	Using JavaBean Components
	Returning a RecordSet Object
	Using IDSJSP in a JSP Container
	DSI Bean APIs

	Using the DSI Java Messaging Library for Client Applications
	Passing JVM Options to DSILIB
	Generating Debug Output for Client Requests
	Java API Classes

	DSI Processing Rules
	Server Rules
	Putting and Getting Multiple Files

	Client Rules

	DSI Visual Basic APIs
	Using the Prototypes and Examples
	Handling Errors
	Using the Web Services Example

	Visual Basic Methods

