
Integration Platform
Technologies: Siebel
Enterprise Application
Integration
Siebel Innovation Pack 2017, Rev. B
December 2017

Copyright © 2005, 2017 Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions
on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in
your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast,
modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-
free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing
it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are “commercial computer software” pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed
on the hardware, and/or documentation, shall be subject to license terms and license restrictions
applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group. Android is a trademark of Google Inc.
Apple and iPad are registered trademark of Apple Inc.

This software or hardware and documentation may provide access to or information on content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use
of third-party content, products, or services, except as set forth in an applicable agreement between you
and Oracle.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website
at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle
Support. For information,
visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

3

Contents

Integration Platform Technologies: Siebel Enterprise Application Integration 1

Chapter 1: What’s New in This Release

Chapter 2: Integration Objects
About Integration Object Terminology 13

About Integration Objects 14

About Integration Object Base Object Types 15

About the Difference Between Integration Objects and Integration Object Instances
16

About Integration Object Wizards 16

About the Structure of Integration Objects 18
About the Cardinality of Child Integration Components 20
Custom Integration Component Fields 20
Integration Components and Associations 21
Multivalue Groups Within Business Components 22
Setting Primaries Through Multivalue Links 26
Validation of Integration Component Fields and Picklists 27
Calculated Fields and Integration Objects 28
Inner Joins and Integration Components 28
Defining Field Dependencies 29
Repository Objects 29

About Integration Component User Properties as Operation Controls 30
About Integration Component Keys 31
User Keys 31
Status Keys 35
Hierarchy Parent Keys 38
Hierarchy Root Keys 38

About EAI Siebel Adapter Access Control 39

Chapter 3: Creating and Maintaining Integration Objects
About the Integration Object Builder 42

About the EAI Siebel Wizard Business Service 42

Process of Creating Integration Objects 44

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Contents ■

4

Creating Integration Objects Using the EAI Siebel Wizard Business Service 45

Creating an Integration Object Based on Another Root Business Component 47

Creating an Integration Object with Many-To-Many Relationships 48

Creating Integration Object Instances Programmatically 49

Guidelines for Configuring Integration Objects 52

Validating Integration Objects 52

Testing Integration Objects 53

Deploying Integration Objects to the Run-Time Database 53

About Synchronizing Integration Objects 55
Synchronization Rules 56
Updating the Entire Integration Object 56
Deleting a Component from the Integration Object 58

Synchronizing Integration Objects 62

Resolving Synchronization Conflicts for Integration Objects and User Properties 65

Using Formatted Values in Integration Objects 69

Generating Integration Object Schemas 70

Optimizing the Performance of Integration Objects 71

About Business Component Restrictions for Integration Components 72

Guidelines for Using Integration Components 72

Chapter 4: Business Services
About Business Services 75

About Creating Business Services 76
Business Service Structure 76
Property Sets 77

Creating Business Services in Siebel Tools 78
Defining a Business Service in Siebel Tools 78
Defining Business Service Methods 79
Defining Business Service Method Arguments 79
Writing Business Service Scripts 80
Defining Business Service User Properties 80

Creating Business Services in Siebel Business Applications 81

Deploying Business Services as Web Services 82

Exporting and Importing Business Services in Siebel Tools 83

Importing Business Services into Siebel Business Applications 83

Contents ■

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

5

Testing Your Business Service in the Simulator 83

About Accessing a Business Service Using Siebel eScript or Siebel VB 84

Business Scenario for the Use of Business Services 85

Chapter 5: Web Services
About Web Services 89

About RPC-Literal and DOC-Literal Bindings 91
RPC-Literal Support 91
DOC-Literal Support 92

About One-Way Operations and Web Services 92

Invoking Siebel Web Services Using an External System 93
Publishing Inbound Web Services 93
Generating a WSDL File 95
About the Relationship of Port Types and Operations 95
About Defining the Web Service Inbound Dispatcher 96
Invoking Web Services on the Siebel Mobile Web Client 97

Consuming External Web Services Using Siebel Web Services 102
Creating an Outbound Web Service Based on a WSDL File 103
Creating an Outbound Web Service Manually 105
Integration Objects as Input Arguments to Outbound Web Services 107
Web Services Support for Transport Headers 108
Web Services Support for Transport Parameters 109
SHA2 Support for Outbound Web Service 109

Using the Local Business Service 112
Script Example for a Local Business Service 113
SOAP Document Generated by the Local Business Service 114
Using the Local Business Service in an Outbound Web Service 115
Mapping the xsd:any Tag in the WSDL Import Wizard 116
Mapping the xsd:any Tag in the XML Schema Wizard 116

Examples of Invoking Web Services 117

About Web Services Security Support 122
Configuring the Siebel Application to Use the
WS-Security Specification 122
About WS-Security UserName Token Profile Support 123
Proxy Configuration for Java Web Container 125

About Siebel Authentication and Session Management SOAP Headers 126
Combinations of Session Types and Authentication Types 130
Enabling Session Management on AI 131

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Contents ■

6

Session and Session Token Timeout-Related Parameters 132
Examples of Using SOAP Headers for Authentication and Session Management 133

About Web Services and Web Single Sign-On Authentication 136

About SOAP Fault Schema Support 137
Handling SOAP Faults in Siebel Business Applications 140

About Custom SOAP Filters 141
Handling Custom Headers Using Filters 142
Enabling SOAP Header Processing Through Filters 142
Inputting a SOAP Envelope to a Filter Service 145

About EAI File Streaming 145
About Inbound EAI Streaming Requests 146
About Outbound EAI Streaming Responses 147
About EAI Streaming Criteria 148

About Web Services Cache Refresh 148

Enabling Web Services Tracing 149

Chapter 6: EAI Siebel Adapter Business Service
About the EAI Siebel Adapter Business Service 151

EAI Siebel Adapter Business Service Methods 152
About the Examples in the EAI Siebel Adapter Business Service Methods Sections 152
Query Method 153
QueryPage Method 154
Synchronize Method 156
Insert Method 163
Upsert Method 165
Update Method 165
Delete Method 166
Execute Method 166

About Using Effective Dating with Siebel EAI Adapter Business Service 182

Enabling Effective Dating on Fields 182

Enabling Effective Dating on Links 186

About Using Language-Independent Code with the EAI Siebel Adapter Business
Service 190

Siebel EAI and Run-Time Events 191

Guidelines for Using the EAI Siebel Adapter Business Service 192

Troubleshooting the EAI Siebel Adapter Business Service 192

Enabling Logging for the EAI Siebel Adapter Business Service 193

Contents ■

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

7

Enabling Siebel Argument Tracing 195

Configuring the EAI Siebel Adapter Business Service for Concurrency Control 195
Modification Key 195
Modification IDs 196
Status IDs 199

Chapter 7: EAI UI Data Adapter Business Service
About the EAI UI Data Adapter Business Service 201

EAI UI Data Adapter Business Service Methods 203
QueryPage Method 203
UpdateLeaves Method 209
InitLeaves Method 211
InsertLeaves Method 213
DeleteLeaves Method 217
Execute Method 218

EAI UI Data Adapter Business Service Method Arguments 220

Chapter 8: Siebel Virtual Business Components
About Virtual Business Components 223

Using VBCs for Your Business Requirements 224
Usage and Restrictions for Virtual Business Components 225

Using Virtual Business Components 226
Creating a New Virtual Business Component 226
Setting User Properties for the Virtual Business Component 226

XML Gateway Service 228
XML Gateway Methods 229
XML Gateway Method Arguments 229
About Handling White Space 230

Examples of the Outgoing XML Format 231

Search-Spec Node-Type Values 234

Examples of the Incoming XML Format 235

External Application Setup 238

Custom Business Service Methods 238
Common Method Parameters 239
Business Services Methods and Their Property Sets 239

Custom Business Service Examples 254
Siebel eScript Business Service Example for a VBC 254

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Contents ■

8

Siebel VB Business Service Example for a VBC 261

Chapter 9: Siebel EAI and File Attachments
About File Attachments 265

Exchanging Attachments with External Applications 265

Using MIME Messages to Exchange Attachments 266
Creating an Attachment Integration Object 266
Creating Workflow Examples 268

About the EAI MIME Hierarchy Converter 272
Outbound Integration 273
Inbound Integration 274

About the EAI MIME Doc Converter 274

Using Inline XML to Exchange Attachments 278
Creating an Attachment 278
Creating a Test Workflow 279

Chapter 10: External Business Components
Process of Configuring External Business Components 282

Creating the External Table Definition 283
Mapping External Columns to Siebel CRM System Fields 288
Specifying the Data Source Object 289
Specifying Any Optional Table Properties 289
Configuring the External Business Component 290
Specifying Run-Time Parameters 290

Using Specialized Business Component Methods for EBCs 294

Usage and Restrictions for External Business Components 295

About Using External Business Components with the Siebel Web Clients 296

About Overriding Connection Pooling Parameters for the Data Source 296

About Joins to Tables in External Data Sources 296

About Distributed Joins 298
Configuring Distributed Joins and Federated Fields 298
Usage and Restrictions for Distributed Joins 299

Troubleshooting External Business Components 299

Appendix A: Predefined EAI Business Services
Predefined EAI Business Services 301

Contents ■

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

9

Appendix B: Property Set Representation of Integration
Objects

Property Sets and Integration Objects 305

Example Instance of an Account Integration Object 308

Appendix C: DTDs for XML Gateway Business Service
Outbound DTDs for the XML Gateway Business Service 311

Inbound DTDs for the XML Gateway Business Service 313

Index

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Contents ■

10

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

11

1 What’s New in This Release

What’s New in Integration Platform Technologies: Siebel Enterprise
Application Integration, Siebel Innovation Pack 2017, Rev. B
This guide has been updated to correct or remove obsolete product and component terms. The
following section was deleted as part of the update:

■ Enabling the EAI Streaming Process

What’s New in Integration Platform Technologies: Siebel Enterprise
Application Integration, Siebel Innovation Pack 2017, Rev. A
Table 1 lists the changes in this revision of the documentation to support this release of the software.

NOTE: Siebel Innovation Pack 2017 is a continuation of the Siebel 8.1/8.2 release.

Table 1. What’s New in Integration Platform Technologies: Siebel Enterprise Application
Integration, Siebel Innovation Pack 2017, Rev. A

Topic Description

“SHA2 Support for Outbound Web Service” on
page 109

Modified topic. Updated to reflect SHA2 support for
Windows and non-Windows platforms.

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

What’s New in This Release ■

12

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

13

2 Integration Objects

This chapter describes the structure of Siebel integration objects. It describes the Integration Object
Builder wizard, which assists you in building your own integration objects based on Siebel objects.

The chapter consists of the following topics:

■ About Integration Object Terminology on page 13

■ About Integration Objects on page 14

■ About Integration Object Base Object Types on page 15

■ About the Difference Between Integration Objects and Integration Object Instances on page 16

■ About Integration Object Wizards on page 16

■ About the Structure of Integration Objects on page 18

■ About Integration Component User Properties as Operation Controls on page 30

■ About Integration Component Keys on page 31

■ About EAI Siebel Adapter Access Control on page 39

About Integration Object Terminology
This chapter describes concepts that are often referred to using inconsistent terminology on different
systems. Table 2 has been included to clarify the information in this chapter by providing a standard
terminology for these concepts.

Table 2. Integration Object Terminology

Term Description

Component A constituent part of any generic object.

Field A generic reference to a data structure that can contain one data element.

Integration message A bundle of data consisting of two major parts:

■ Header information that describes what will be done with or to the
message itself

■ Instances of integration objects; that is, data in the structure of the
integration object

Integration object An integration object of any type, including the Siebel integration object,
the SAP BAPI integration object, and the SAP IDOC integration objects.

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Integration Objects ■ About Integration Objects

14

About Integration Objects
Siebel integration objects allow you to represent integration metadata for Siebel business objects,
XML, and other external data structures as common structures that the Enterprise Application
Integration (EAI) infrastructure can understand. Because these integration objects adhere to a set
of structural conventions, they can be traversed and transformed programmatically, using Siebel
eScript objects, methods, and functions, or transformed declaratively using Siebel Data Mapper.

NOTE: For more information on Siebel Data Mapper, see Business Processes and Rules: Siebel
Enterprise Application Integration.

The typical integration project involves transporting data from one application to another. For
example, if you want to synchronize data from a back-office system with the data in your Siebel
application. You might want to generate a quote in the Siebel application and perform a query against
your Enterprise Resource Planning (ERP) system transparently. In the context of Siebel EAI, data is
transported in the form of an integration message. A message, in this context, typically consists of
header data that identifies the message type and structure, and a body that contains one or more
instances of data-for example, orders, accounts, or employee records.

Integration object
instance

Actual data, usually the result of a query or other operation, which is
passed from one business service to another, that is structurally modeled
on a Siebel integration object.

Metadata Data that describes data. For example, the term data type describes data
elements such as char, int, Boolean, time, date, and float.

Siebel business
component

A Siebel object type that defines a logical representation of columns in one
or more database tables. A business component collects columns from the
business component’s base table, its extension tables, and its joined tables
into a single structure. Business components provide a layer of abstraction
over tables. Applets in Siebel Business Applications reference business
components; they do not directly reference the underlying tables.

Siebel business object A Siebel object type that creates a logical business model using links to tie
together a set of interrelated business components. The links provide the
one-to-many relationships that govern how the business components
interrelate in this business object.

Siebel integration
object

An object stored in the Siebel repository that represents a Siebel business
object.

Siebel integration
component

A constituent part of a Siebel integration object that represents a Siebel
business component.

Siebel integration
component field

A data structure that can contain one data element in a Siebel integration
component. Represents a Siebel business component field.

Table 2. Integration Object Terminology

Term Description

Integration Objects ■ About Integration Object Base Object Types

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

15

When planning your integration project, consider several issues:

■ How much data transformation does your message require?

■ At what point in the process do you perform the data transformation?

■ Is a confirmation message response to the sender required?

■ Are there data items in the originating data source that will not be replicated in the receiving
data source, or that will replace existing data in the receiving data source?

This guide can help you understand how Siebel EAI represents the Siebel business object structure.
It also provides descriptions of how Siebel EAI represents external SAP R/3 structures.

About Integration Object Base Object
Types
Each integration object created in Siebel Tools has to be based on one of the base object types
presented in Table 3. This property is used by adapters to determine whether the object is a valid
object for them to process.

NOTE: XML converters can work with any of the base object types.

Table 3. Integration Object Base Object Types

Base Object Type Description

None For internal use only.

SQL Used for manually creating integration objects. Only the EAI SQL Adapter
accepts integration objects of this type.

SQL Database Wizard Used by the Database Wizard for the integration object it creates. Only the
EAI SQL Adapter accepts integration objects of this type.

SQL Oracle Wizard Used by the Oracle Wizard for the integration object it creates. Only the
EAI SQL Adapter accepts integration objects of this type.

Siebel Business
Object

Used by the Integration Object Builder wizard for the integration object it
creates. The EAI Siebel Adapter accepts only the integration object of this
type.

Table Obsolete.

XML Used to represent external XML Schema such as DTD or XSD. For
information on DTD and XSD, see XML Reference: Siebel Enterprise
Application Integration.

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Integration Objects ■ About the Difference Between Integration Objects and Integration
Object Instances

16

About the Difference Between
Integration Objects and Integration
Object Instances
Understanding the difference between integration objects and integration object instances is
important, especially in regard to the way they are discussed in this chapter.

An integration object, in the context of Siebel EAI, is metadata; that is, it is a generalized
representation or model of a particular set of data. It is a schema of a particular entity.

An integration object instance is also referred to as a Siebel Message object.

An integration object instance is actual data organized in the format or structure of the integration
object. Figure 1 illustrates a simple example of an integration object and an integration object
instance, using partial data.

Any discussion of integration objects in this book will include clarifying terms to help make the
distinction, for example, metadata or Siebel instance.

About Integration Object Wizards
Within Siebel Tools, there are multiple wizards associated with integration objects:

■ One that creates integration objects for internal use by the Siebel application

■ Others that create integration objects for external systems based on Siebel objects

Figure 1. Integration Object and Integration Object Instance

Integration Objects ■ About Integration Object Wizards

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

17

Figure 2 shows the logic of the Integration Object Builder and Generate XML Schema wizards. The
Code Generator wizard (not shown) works in the same manner as the Generate XML Schema wizard,
but it generates Java classes.

The following are the integration object wizards:

■ Integration Object Builder wizard. This wizard lets you create a new object. It supplies the
functionality for creating integration objects from Siebel business objects or integration objects,
based on the representations of external business objects using XML Schema Definition (XSD)
or Document Type Definition (DTD). Access this wizard from the New Object Wizards dialog box
in Siebel Tools. After selecting the EAI tab, double-click Integration Object to start the
Integration Object Builder wizard.

■ Generate XML Schema wizard. This wizard lets you choose an integration object and output
XML schema in XML Schema Definition (XSD) standard, Document Type Definition (DTD), or
Microsoft’s XDR (XML Data Reduced) format. In the Integration Objects list in Siebel Tools, select
an integration object. Then click Generate Schema to start the Generate XML Schema wizard.

■ Code Generator wizard. The third wizard lets you create a set of Java class files based on any
available integration object or Siebel business service. In the Integration Objects list in Siebel
Tools, select an integration object. Then click Generate Code to start the Code Generator wizard.

NOTE: Specific instructions on how to use these wizards appear throughout the Siebel Enterprise
Application Integration documentation set where appropriate.

Figure 2. Integration Object Wizards

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Integration Objects ■ About the Structure of Integration Objects

18

About the Structure of Integration
Objects
The Siebel integration object provides a hierarchical structure that represents a complex data type.
Most specifically, prebuilt EAI integration objects describe the structure of Siebel business objects,
SAP IDOCs, SAP BAPIs, XML, and external data. Most integration projects require the use of an
integration object that describes Siebel business objects, either in an outbound direction such as a
query operation against a Siebel integration object, or in an inbound direction such as a synchronize
operation against a Siebel integration object.

Chapter 3, “Creating and Maintaining Integration Objects” describes how to create integration objects.
The initial process of using the Integration Object Builder wizard is essentially the same for every
integration object type currently supported.

CAUTION: Avoid using or modifying integration objects in the EAI Design project. Using or
modifying any objects in the EAI Design project can cause unpredictable results. The best practice
is to create a separate project for your integration objects, for example, ABC Integration Objects,
where ABC is the name of your company.

Siebel business objects conform to a particular structure in memory, although it is generally not
necessary to consider this structure when working with Siebel Business Applications. However, when
you are planning and designing an integration project, it is helpful to understand how a Siebel EAI
integration object represents that internal structure.

An integration object consists of one Parent Integration Component, sometimes referred to as the
root component, or the primary integration component. The Parent Integration Component
corresponds to the primary business component of the business object you chose as the model for
your integration object.

For example, assume you chose the Account business object (on the first panel of the Integration
Object Builder wizard) to base your integration object myAccount_01 on. The Account business
object in Siebel Tools has an Account business component as its primary business component. In the
myAccount_01 integration object, every child component will be represented as either a direct or
indirect child of the primary business component named Account.

Each child component can have one or more child components. In Siebel Tools, if you look at the
integration components for an integration object you have created, then you see that each
component can have one or more fields. Figure 3 on page 19 illustrates a partial view of a Siebel
integration object based on the Account business object, with the Business Address component and
the Contact component activated.

Integration Objects ■ About the Structure of Integration Objects

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

19

Figure 3 represents part of the structure of the Account integration object. The Account parent
integration component can have both fields and child integration components. Each integration
component can also have child integration components and fields. A structure of this sort represents
the metadata of an Account integration object. You can choose to inactivate components and fields.
By inactivating components and fields, you can define the structure of the integration object
instances entering or leaving the system.

The following topics are also discussed:

■ “About the Cardinality of Child Integration Components” on page 20

■ “Custom Integration Component Fields” on page 20

Figure 3. Partial Representation of Account Integration Object

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Integration Objects ■ About the Structure of Integration Objects

20

■ “Integration Components and Associations” on page 21

■ “Multivalue Groups Within Business Components” on page 22

■ “Setting Primaries Through Multivalue Links” on page 26

■ “Validation of Integration Component Fields and Picklists” on page 27

■ “Calculated Fields and Integration Objects” on page 28

■ “Inner Joins and Integration Components” on page 28

■ “Defining Field Dependencies” on page 29

■ “Repository Objects” on page 29

■ “About Integration Component User Properties as Operation Controls” on page 30

■ “About Integration Component Keys” on page 31

About the Cardinality of Child Integration Components
By default each child integration component created in Siebel Tools is assigned a cardinality value of
Zero or More. The values Zero or More, or Zero or One, mean that the corresponding integration
component is optional. Setting the value to One, or One or More, means at least one integration
component instance must be included in the hierarchy. When the cardinality value is set to One, you
must have one and only one instance of the integration component in the hierarchy. Table 4 lists
possible cardinality values.

Custom Integration Component Fields
In some cases, you might want to pass custom attributes that are not necessarily part of the actual
data but related to the context of the data. You can use various means such as SOAP headers and
transport headers to pass such custom fields, or you can have them as part of the integration schema
as custom integration component fields.

Table 4. Cardinality values of Child Integration Components

Cardinality Integration Component Instance

One An integration component is mandatory and limited to one
instance.

One or more An integration component is mandatory and must contain at
least one instance.

Zero or more An integration component is optional, and more than one
instance is allowed.

Zero or one An integration component is optional, but if there is one
present, then the limit is one.

Integration Objects ■ About the Structure of Integration Objects

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

21

Custom attributes can be added manually to integration objects as integration component fields. The
integration component field type (Type property in the Object List Editor, Field Type in the Properties
window) of custom attributes must be set to Custom. XML style can be chosen as Attribute or
Element, appearing in the schema as XML attributes and XML elements, respectively.

The new custom attributes will appear in the schema generated from the integration object, like any
other integration component field.

Integration Components and Associations
Siebel business objects are made up of business components that are connected by a link. An
association is a business component that represents the intersection table that contains these links.
The integration component definition of associations is similar to that of multivalue groups (MVGs).
User properties Association and MVGAssociation on the integration component denote that the
corresponding business component is an associated business component or an associated MVG,
respectively. For fields that are defined on MVG associations, External Name denotes the name of
the business component field as it appears on the parent business component, and the user property
AssocFieldName denotes the name of the business component field as it appears on the MVG
business component.

For example, the Contact business object is partly made up of the Contact and Opportunity business
components. The association between these two business components is represented by the
Contact/Opportunity link with a value or a table name in the Inter Table column. The Integration
Object Builder wizard creates a new integration component for the integration object, based on the
Contact business object that represents the association. As shown in Figure 4, the Opportunity
integration component has one user property defined: Association, set to a value of Y.

NOTE: When building an integration object, if an integration component is an association based on
an intersection table, then the user key for this integration component can contain fields based on
the same intersection table only if the integration component has an AllowMultipleAssociations
integration component user property set to Y in Siebel Tools.

Figure 4. Integration Component Representation of Association

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Integration Objects ■ About the Structure of Integration Objects

22

Multivalue Groups Within Business Components
Multivalue groups (MVGs) are used within Siebel business components to represent database
multivalue attributes. MVGs can be one of two types: regular MVGs or MVG Associations.

An integration object instance most often has multiple integration component instances. For
example, an Account can have multiple Business Addresses but only one of these addresses is
marked as the primary address. A business requirement might require that only the integration
component instance that corresponds to the primary MVG be part of the integration object instance.
In relation to Account and Business Addresses this means that only the primary address will be part
of the Account integration object instance. The primary address can be obtained by one of the
following steps:

■ Creating a new MVG on the Account business component that uses a link with a search
specification only returning the primary address record.

■ Exposing the primary address information on the Account business component level using a join
that has the primary ID as source field. Note that in this case the primary address information
corresponds to fields on the Account integration component instance and not the fields on a
separate Address component instance.

In Siebel Tools, if a Siebel business component contains an MVG, then the MVG is represented by
several objects as illustrated in the following topics.

Multivalue Fields in a Business Component
For example, as illustrated in Figure 5, the Account business component contains a multivalue field,
Address Id. The multivalue link property of Address Id has the value Business Address.

Figure 5. Address Id MVG Field in the Account Business Component

Integration Objects ■ About the Structure of Integration Objects

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

23

Multivalue Links in a Business Component
The Business Address multivalue link associated with the Address Id multivalue field in Figure 5 on
page 22 has the value Business Address as its Destination Business Component, as shown in Figure 6.

Fields in a Business Component After Adding a Multivalue Link
The fact that the Business Address multivalue link has Business Address as its Destination Business
Component means that there is another business component named Business Address. The Business
Address business component contains the fields that are collectively represented by Address Id in
the Account business component, as shown in Figure 7.

Figure 6. Destination Business Component

Figure 7. Business Address Business Component

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Integration Objects ■ About the Structure of Integration Objects

24

Graphical Representation of a Business Component and a Multivalue
Link
Figure 8 shows a graphical way to represent the relationship between Account business component
and the Business Address multivalue link.

The more table-like representation in Figure 8 shows how the Business Address multivalue link
connects the two business components. The child points to the Business Address business
component, which contains the multiple fields that make up the MVG.

NOTE: Two business components are used to represent an MVG.

Creating a Siebel Integration Component to Represent an MVG
To create a Siebel integration component to represent an MVG, it is necessary also to create two
integration components:

■ The first integration component represents the parent business component. In the example, this
is the Account business component. This integration component contains only the fields that are
defined in the parent business component, but which are not based on MVGs. The Multivalue Link
property and the Multivalue property are empty for these fields.

Figure 8. Address Id Field and Business Address Multivalue Link

Integration Objects ■ About the Structure of Integration Objects

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

25

■ The second integration component represents the MVG business component. In the example, this
is the Business Address business component. The second integration component has one
integration field for each field based on the given MVG in the parent business component. An
integration component user property will be set on this integration component to tell the EAI
Siebel Adapter that it is based on an MVG business component. If the MVG is a regular MVG, then
the user property is named MVG. If the MVG is an Association MVG, then the user property is
named MVGAssociation. In both cases, the value of the user property is Y.

Figure 9 shows an integration component based on an MVG and its user property value in Siebel
Tools.

Figure 9. Integration Component Based on MVG Business Component

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Integration Objects ■ About the Structure of Integration Objects

26

The EAI Siebel Adapter business service must know the names of the MVG fields as they are defined
in the parent business component, which in this example is Account, and also the names of the MVG
fields as they are known in the business component that represents the MVG, which in this example
is Account Business Address. As shown in Figure 10, the integration component fields represent the
MVG.

To represent both names, each field is assigned an integration component field user property named
MVGFieldName, or AssocFieldName if the integration component user property is MVGAssociation.
The value of the integration component field user property is the name of the field shown in the
parent business component, which in this example is Business Address.

Setting Primaries Through Multivalue Links
Primaries are set through multivalue links. However, do not use multivalue links for modifying the
linked component. To modify the linked component, use links. If you must set primaries in addition
to modifying the linked component, then use an MVG or MVGAssociation integration component user
property set to Y, and an MVGLink integration component user property whose value is the child
business component. For example, the Account_Business Address integration component of the
Account IO integration object has the integration component user properties MVG (whose value is Y)
and MVGLink (whose value is Business Address).

NOTE: It is highly recommended that you use the EAI Siebel Wizard to create integration objects,
so that the correct integration components and user properties will also be created. For more
information, see “Creating Integration Objects Using the EAI Siebel Wizard Business Service” on
page 45.

Figure 10. Integration Component Fields Representing MVG

Integration Objects ■ About the Structure of Integration Objects

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

27

Validation of Integration Component Fields and Picklists
If an integration component field is created for a Siebel business component field, and the business
component field is based on a picklist, then the EAI Siebel Adapter or the Object Manager validates
the field. To have the validation done using the EAI Siebel Adapter, the integration component field
has a user property with the name PICKLIST and a value of Y; otherwise, validation is done by the
Object Manager.

If the EAI Siebel Adapter validates the integration component field, and if the pickmap for the picklist
contains more than one field, then, when designing the integration object, you must decide the
following:

■ Which of the fields to use as a search criterion

■ Which fields to simply update if input values are different from those in the picklist (provided that
the picklist allows updates)

NOTE: Using the PICKLIST user property on an integration component field causes truncation to 30
characters (the length of the VAL column in the S_LST_OF_VAL Table) of the input value for searching
the static picklist data.

Do not use the PICKLIST property on custom integration component fields. It is designed for static
picklists, based on longer columns of the S_LST_OF_VAL table. Any input value provided in the input
integration component field for search in picklist fields based on columns such as DESC_TEXT
(Description field of the Picklist Generic business component) or NAME (Name field of the Picklist
Generic business component) will deliver no result or an incorrect result because the string in the
search expression will be truncated to 30 characters.

Example of an Integration Object Based on the Order Entry Business
Object
An example is an integration object based on Order Entry business object. The root component of
the Order Entry business object is Order Entry - Orders with a field Account, whose pickmap contains
a large number of fields such as Account, Account Location, Account Integration Id, Currency Code,
Price List, and so on. One of the tasks the integration object designer must perform is to determine
which of these fields is used to identify the account for an order.

If the PicklistUserKeys user property on the integration component field that is mapped to the field
with the picklist (in the previous example, Account) is not defined, then any integration component
fields that are mapped to columns in the U1 index of business component's base table, and are
present in the pickmap will be used by the EAI Siebel Adapter to find the matching record in the
picklist (in the previous example, Account and Account Location).

In cases where the default user key for the picklist does not satisfy your business requirements (for
example, you want to use only Account Integration Id instead of the default user key to pick an
Account), or you want to make the user key explicit for performance reasons, then use the
PicklistUserKeys user property.

The value of the PicklistUserKeys user property is a comma separated list of integration component
fields that are used to find the matching record in the picklist (for example, 'Account, Account
Location' or 'Account Integration Id').

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Integration Objects ■ About the Structure of Integration Objects

28

For the EAI Siebel Adapter to use the fields referenced in PicklistUserKeys user property, the fields
must be included in the pickmap of the underlying business component field. Note that if the business
component field names and integration component field names, listed in the PicklistUserKeys
property, are not the same, then the picklist must contain external names of the fields listed in the
PicklistUserKeys user property.

If there is a field present in the business component and in the pickmap, and it is stored in the base
table, then the EAI Siebel Adapter can use the picklist to populate this field, only if this field is
present and active in the integration component. This field must also be present in the input property
set, and cannot be empty.

Calculated Fields and Integration Objects
Calculated fields are inactive in an integration object when it is created. They are inactive for the
following reasons:

■ Performing calculations on fields requires extra processing time.

■ If the calculated field is based on a field that is not included in the integration object, then errors
might arise when the calculated field is updated but the field used for the calculation is not.

If your business needs require it, activate the calculated fields in integration objects.

NOTE: Calculated fields are those integration component fields that have the Calculated flag checked
on the corresponding business component field.

Inner Joins and Integration Components
When inner joins are used, records for which the inner joined field is not set are not returned in any
query. By default the wizard inactivates such fields. If your business needs require these fields,
activate them.

NOTE: If the inner join has a join specification that is based on a required field, then the wizard does
not inactivate the fields that are using that particular join.

For example, assume that Account business component has an inner join to the S_PROJ table, with
Project Id field being the source field in the join specification, and the Project Name field being based
on that join.

If an integration component, with an active Project Name field is mapped to the Account business
component, then when this integration component is queried only accounts with Project Id field
populated will be considered.

Because Project Id is not a required field in the Account business component, not every account in
the Siebel Database is associated with a project. So, having Project Name active in the integration
component limits the scope of the integration component to only accounts associated with a project.
This typically is not desirable, so the wizard inactivates the Project Name field in this example.

Integration Objects ■ About the Structure of Integration Objects

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

29

If the business requirement is to include the Project Name field, but not to limit the integration
component’s scope to only accounts with the project, then you can change the join to S_PROJ in the
Account business component to an outer join. For information on joins, see Using Siebel Tools.

NOTE: Activating an inner join can cause a query on that integration component not to find existing
rows.

Defining Field Dependencies
Define dependency between fields by using the user properties of the integration component field.
The names of these user properties must start with FieldDependency, and it is recommended that
the value of each property contain the name of the field on which the associated field is dependent.
The EAI Siebel Adapter processes fields in the order defined by these dependencies, and generates
an error if cyclic dependencies exist.

The EAI Siebel Adapter automatically takes into account the dependencies of the fields set by a
PickList on the fields used as constraints in that PickList. For example, if a PickList on field A also
sets field B, and is constrained by field C, then this implies dependencies of both A and B on C. As a
consequence, the EAI Siebel Adapter sets field C before fields A and B.

Repository Objects
For the EAI Siebel Adapter to deal with repository objects, a user property REPOBJ must be defined
on the root integration component. If this property is set to Y, then the EAI Siebel Adapter sets a
context on the repository so that the rest of the operations are performed in that context.

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Integration Objects ■ About Integration Component User Properties as Operation Controls

30

About Integration Component User
Properties as Operation Controls
Each business component, link, and MVG has properties such as No Update, No Delete, and No
Insert. So do integration components, in the form of integration component user properties. These
user properties, listed in Table 5, indicate the operations that can and cannot be performed on an
object.

For the EAI Siebel Adapter to successfully perform an operation, that operation must be allowed at
all levels. If the operation is allowed at every level except the field level, then a warning message is
logged in the log file and processing continues. Otherwise, an error message is returned, and the
transaction is rolled back.

Permissions on integration components are checked by the EAI Siebel Adapter, and permissions on
business components, links, and fields are checked by the Object Manager.

Table 5. Operation Controls for Integration Components

User Property Description

NoDelete, NoInsert, NoQuery,
NoSynchronize, NoUpdate

Indicate which operations cannot be performed on the
corresponding business component. Can take the value Y or
N.

If any of these user properties are set to Y, then the
corresponding business component method is used to
validate the operation. When the business component
attempts to perform a restricted operation, an error is raised.

NoUpdate can also be set on integration component fields.

For more information on business component properties, see
Configuring Siebel Business Applications.

IgnorePermissionErrorsOnUpdate,
IgnorePermissionErrorsOnInsert,
IgnorePermissionErrorsOnDelete

Suppress the errors that arise from having the NoUpdate,
NoInsert, and NoDelete user properties set to Y, respectively.
The errors are ignored and processing continues.

AdminMode When set to Y, indicates that the update of the corresponding
business component is to be performed in Admin Mode.
Admin Mode turns off all insert and update restrictions for
the business components used by a view, including those
specified by business component user properties.

You can set the AdminMode user property on integration
objects or integration components.

For more information on Admin Mode, see Configuring Siebel
Business Applications.

Integration Objects ■ About Integration Component User Properties as Operation Controls

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

31

About Integration Component Keys
There are multiple types of integration component keys:

■ User Key. See “User Keys” on page 31.

■ Status Key. See “Status Keys” on page 35.

■ Hierarchy Parent Key. See “Hierarchy Parent Keys” on page 38.

■ Hierarchy Root Key. See “Hierarchy Root Keys” on page 38.

■ Modification Key. See “Configuring the EAI Siebel Adapter Business Service for Concurrency
Control” on page 195.

NOTE: It is recommended to have only one integration component key for every type of key except
the user key. For example, if there are two hierarchy parent keys defined for an integration
component, then the EAI Siebel Adapter picks the first one and ignores the second one.

User Keys
A user key is a group of fields whose values must uniquely identify a Siebel business component
record. During inbound integration, user keys are used to determine whether the incoming data
updates an existing record or inserts a new one. The Integration Object Builder wizard automatically
creates some user keys based on characteristics discussed in “User Key Generation Algorithm” on
page 32. Make sure that the generated user keys match your business requirements; otherwise,
inactivate them or add new user keys as appropriate.

In Siebel Tools, user keys are defined as Integration Component Key objects, with the Key Type
property set to User Key.

Integration component keys are built by the Integration Object Builder wizard, based on values in
the underlying table of the business component on which the integration component is based.
Integration objects that represent Siebel business objects, and that are used in insert, update,
synchronize, or execute operations, must have at least one user key defined for each integration
component.

A sequence of integration component user keys is defined on each integration component definition,
each of which contains a set of fields. During processing of integration component instance, the EAI
Siebel Adapter chooses to use the first user key in the sequence that satisfies the condition that all
the fields of that user key are present in an integration component instance. The first instance of
each integration component type determines the user key used by all instances of that type.

For example, consider the Account integration object instance with only the Account Name and
Account Integration Id fields present. When the EAI Siebel Adapter performs validation, it first checks
the Account Name and Account Location fields (the first user key for the Account integration
component). In this example, because the Account Location field is missing, the EAI Siebel Adapter
moves to the second user key, Account Integration Id. The Account Integration Id field is present in
the integration component instance and has a value, so the EAI Siebel Adapter uses that as the user
key to match the record. Now if the same instance also had the Account Location field present, but
set to null, then the EAI Siebel Adapter would pick the Account Name and Account Location
combination as the user key. This is because Account Location is not a required field.

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Integration Objects ■ About Integration Component User Properties as Operation Controls

32

A new user key is picked for each integration object instance (root component instance). However,
for the child component instances, the user key is picked based on the first child instance, and then
used for matching all instances of that integration component within the parent integration
component instance.

For example, if a Siebel Message contains two orders, then the user key for order items is picked
twice, once for each order. Each time, the user key is selected based on the first order item record
and then used for all the siblings.

NOTE: The EAI Siebel Adapter uses user keys to match integration component instances with
business component records. Because the match is case sensitive there is a chance that records are
not matched if the cases of the user key fields do not match. You can use the Force Case property
on the business component field to make sure that user key fields are always stored in one case, but
only if you require case-insensitive matching for performance reasons. Routine use of the Force Case
property is not recommended.

NOTE: For performance reasons, user keys for child integration components are not included in the
WHERE clause of the SQL generated to query for child component records in the Siebel database. If
you must query the child component to find matching records, then consider redesigning your
integration objects, such as creating a new integration object where the child component becomes
the parent. For example, if Account is the parent and Asset the child, and you to query for specific
assets, then create a new integration object where Asset is the parent and Account is the child.

User Key Generation Algorithm
The Integration Object Builder wizard computes the user keys by traversing several Siebel objects,
including the business object, business component, table, and link. This is because not every table
user key meets the requirements to be used as the basis for integration object user keys.

To understand how the Integration Object Builder wizard determines valid integration component
keys, you can simulate the process of validating the user keys. For example, you can determine the
table on which your business component is based by looking in Siebel Tools.

To find the user keys for a table
1 Select the Business Component object in the Object Explorer.

The Business Components list appears in the Object List Editor.

2 Select a business component.

3 Click the link in the Table column.

The Tables list appears, displaying the table associated with the business component (for
example S_CONTACT).

4 Expand the Tables object in the Object Explorer, and then select User Key.

The User Keys list displays the user keys defined for that table.

Integration Objects ■ About Integration Component User Properties as Operation Controls

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

33

For example, as shown in Figure 11, the table S_CONTACT has several user keys.

Not every user key will necessarily be valid for a given business component. Multiple business
components can map to the same underlying table; therefore, it is possible that a table’s user key
is not valid for a particular business component, but is specific to another business component

Each User Key Column child object defined for a given user key must be exposed to the business
component in which you are interested. For example, Figure 12 shows three user key columns for
the user key S_CONTACT_U1.

Figure 11. User Keys for Table S_CONTACT

Figure 12. User Key Columns for the S_CONTACT_U1 User Key

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Integration Objects ■ About Integration Component User Properties as Operation Controls

34

If the columns of the user key are exposed in the business component, and those columns are not
foreign keys, then the Integration Object Builder wizard creates an integration component key based
on the table’s user key. The Integration Object Builder wizard also defines one integration component
key field corresponding to each of the table’s user key columns.

The Integration Object Builder wizard builds the integration component keys based on these table
user keys. As illustrated in Figure 13, the wizard defines one integration component key for each
table user key column.

Each valid integration component key contains fields. For example, as shown in Figure 14 on page 35,
for the Contact integration component, User Key 3 is made up of five fields: CSN, First Name, Last
Name, Middle Name, and Personal Contact.

CAUTION: Only modify user keys if you have a good understanding of the business component and
integration logic.

Figure 13. Integration Component Keys for Each Table User Key Column

Integration Objects ■ About Integration Component User Properties as Operation Controls

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

35

When the Integration Object Builder wizard creates these integration component keys, it attempts
to use the appropriate table user keys, that is the user keys that help to uniquely identify a given
record. In some cases, you might find that certain integration component keys created by the
Integration Object Builder wizard are not useful for your particular needs. In that case, you can
manually inactivate the keys you do not want to use by checking the Inactive flag on that particular
user key in Siebel Tools. You can also inactivate user key fields within a given user key.

NOTE: For ease of maintenance and upgrade, inactivate unnecessary generated user keys and user
key fields instead of deleting them.

Status Keys
It is useful to know the status of your integrations. For example, if you are sending an order request,
then you might want to know the ID of the Order created so that you can query on the order in the
future. You can set the StatusObject method argument of the EAI Siebel Adapter business service to
true to return an integration object instance as a status object.

The status returned is defined in the Integration Component using Status Keys. A Status Key is an
Integration Component key of the type Status Key. Fields defined as part of the Status Key are
included in the returned StatusObject.

If a Status Key is not defined for the Integration Component then neither the component nor any of
its children are included in the returned object:

■ To include descendants of an Integration Component without including any of its fields in the
returned status object, specify an empty Status Key.

Figure 14. Contact Integration Component Key Fields

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Integration Objects ■ About Integration Component User Properties as Operation Controls

36

■ To include information about which one of the update, insert, or delete operations was performed
during an upsert request or synchronize request, include a field named Operation in the Status
Key.

Status Key Examples
For example, the AccountAshish integration object has an Account integration component with an
integration component key called StatusKeyAshish, with the integration component key fields
AshishName, AshishId, and AshishHomePage (Figure 15).

Example with No StatusObject
When no StatusObject business service method argument is defined, as in this input XML file for an
upsert operation using the EAI Siebel Adapter business service

<?Siebel-Property-Set EscapeNames="true"?>

<PropertySet>

<SiebelMessage MessageId="42-1PGR" IntObjectName="AccountAshish"
MessageType="Integration Object" IntObjectFormat="Siebel Hierarchical">

<ListOfAccountAshish>

<Account Main_spcPhone_spcNumber="+33123456789" Primary_spcOrganization="Default
Organization" Home_spcPage="mycompany.com" Location="France" Name="Ashish 9
Telecom"/>

</ListOfAccountAshish>

</SiebelMessage>

</PropertySet>

Figure 15. Status Key

Integration Objects ■ About Integration Component User Properties as Operation Controls

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

37

all of the fields in the integration component are returned:

<?Siebel-Property-Set EscapeNames="true"?>

<PropertySet ErrorContextIntComp="" ErrorContextSearchSpec="" OMErrorCode=""
PrimaryRowId="42-C739Q" OMErrorSymbol="" ErrorCode="0x0" ErrorSymbol="">

<SiebelMessage MessageId="42-1PGR" MessageType="Integration Object"
IntObjectName="AccountAshish" IntObjectFormat="Siebel Hierarchical">

<ListOfAccountAshish>

<Account Main_spcPhone_spcNumber="+33123456789"
Primary_spcOrganization="Default Organization" Home_spcPage="mycompany.com"
Location="France" Name="Ashish 9 Telecom"/>

</ListOfAccountAshish>

</SiebelMessage>

</PropertySet>

Example with StatusObject
When the StatusObject method argument is set to true, as in this input XML file:

<?Siebel-Property-Set EscapeNames="true"?>

<PropertySet StatusObject="true">

<SiebelMessage MessageId="42-1PGR" IntObjectName="AccountAshish"
MessageType="Integration Object" IntObjectFormat="Siebel Hierarchical">

<ListOfAccountAshish>

<Account Main_spcPhone_spcNumber="+33123456789"
Primary_spcOrganization="Default Organization" Home_spcPage="mycompany.com"
Location="France" Name="Ashish 9 Telecom"/>

</ListOfAccountAshish>

</SiebelMessage>

</PropertySet>

only the fields in the status key are returned:

<?Siebel-Property-Set EscapeNames="true"?>

<PropertySet ErrorContextIntComp="" ErrorContextSearchSpec="" OMErrorCode=""
PrimaryRowId="42-C739Q" OMErrorSymbol="" ErrorCode="0x0" ErrorSymbol="">

<SiebelMessage MessageId="42-1PGR" MessageType="Integration Object"
IntObjectName="AccountAshish" IntObjectFormat="Siebel Hierarchical">

<ListOfAccountAshish>

<Account Id="42-C739Q" Home_spcPage="mycompany.com" Name="Ashish 9 Telecom"/>

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Integration Objects ■ About Integration Component User Properties as Operation Controls

38

</ListOfAccountAshish>

</SiebelMessage>

</PropertySet>

For more information on the EAI Siebel Adapter business service, see Chapter 6, “EAI Siebel Adapter
Business Service”.

Hierarchy Parent Keys
The Hierarchy Parent Key is used for integration objects that have a homogeneous hierarchy. This
key must have only the Parent Id. The Hierarchy Parent Key is used for maintaining the hierarchy
and keeping the data normalized.

For example, when you insert quotes, each quote item in turn can have more quote items. In this
case, the first quote item inserted by the EAI Siebel Adapter has the Parent Id set to blank, but for
each child quote item, the EAI Siebel Adapter checks the keys to figure out which fields are to be
set. If the Hierarchy Parent Key is not defined, then the child quote item is inserted as a new quote
item without a link to its parent (denormalized).

NOTE: You cannot rearrange the hierarchy after it has been created. For example, if A is a parent of
B, and you try to upsert B as a parent of A, then an error will occur. Instead you must delete the
hierarchy and then re-create it.

Hierarchy Root Keys
The Hierarchy Root Key is an optional key that is useful only when integration objects have a
homogeneous hierarchy. You can use this key to improve performance. The Hierarchy Root Key must
have only one field, Root Id, which the EAI Siebel Adapter populates with the value of the ID field in
the component instance that is in the root of the homogenous hierarchy. For example, assume quote
Q1 has quote items A, B, and C where each of the quote items has child quote items (A1, A2, B1,
B2, ...). If you want to update the quantity requested for all quote items starting with the root quote
item B, then it is faster if the data is denormalized. Using the Hierarchy Root Key, you can search for
all records with Root Id equal to the Row Id of B, and set the QuantityRequested field for each item.

NOTE: When the business component is hierarchy enabled, then the wizard automatically sets the
Hierarchy Parent Key for the complex integration component. To have a business component
hierarchy enabled you must set the property Hierarchy Parent Field.

Integration Objects ■ About EAI Siebel Adapter Access Control

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

39

About EAI Siebel Adapter Access Control
You can use the following mechanisms to control the access of the EAI Siebel Adapter to the
database:

■ Restricted access to a static set of integration objects. You can configure the EAI Siebel
Adapter business service, or any business service that is based on the
CSEEAISiebelAdapterService class, to restrict access to a static set of integration objects. To do
this, set a business service user property called AllowedIntObjects, which contains a comma-
separated list of integration object names that this configuration of the EAI Siebel Adapter can
use. This allows you to minimize the number of integration objects your users must expose
outside of Siebel Business Applications through HTTP inbound or MQSeries Receiver server
components. If this user property is not specified, then the EAI Siebel Adapter uses any
integration objects defined in the current Siebel Repository.

■ ViewMode. You can specify the visibility mode of business components that the EAI Siebel
Adapter uses. This mode is specified as the integration object user property ViewMode. This user
property can take different values, as defined by LOV type REPOSITORY_BC_VIEWMODE_TYPE.

NOTE: For information on ViewMode, see Siebel Tools Online Help.

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Integration Objects ■ About EAI Siebel Adapter Access Control

40

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

41

3 Creating and Maintaining
Integration Objects

This chapter describes how to use the Integration Object Builder wizard in Siebel Tools to create new
Siebel integration objects. This wizard guides you through the process of selecting objects (either
from the Siebel repository or from an external system) on which you can base your new Siebel
integration object. This chapter also describes how to fine-tune and refine the integration object you
have created.

The chapter consists of the following topics:

■ About the Integration Object Builder on page 42

■ About the EAI Siebel Wizard Business Service on page 42

■ Process of Creating Integration Objects on page 44

■ Creating Integration Objects Using the EAI Siebel Wizard Business Service on page 45

■ Creating an Integration Object Based on Another Root Business Component on page 47

■ Creating an Integration Object with Many-To-Many Relationships on page 48

■ Creating Integration Object Instances Programmatically on page 49

■ Guidelines for Configuring Integration Objects on page 52

■ Validating Integration Objects on page 52

■ Testing Integration Objects on page 53

■ Deploying Integration Objects to the Run-Time Database on page 53

■ About Synchronizing Integration Objects on page 55

■ Synchronizing Integration Objects on page 62

■ Resolving Synchronization Conflicts for Integration Objects and User Properties on page 65

■ Using Formatted Values in Integration Objects on page 69

■ Generating Integration Object Schemas on page 70

■ Optimizing the Performance of Integration Objects on page 71

■ About Business Component Restrictions for Integration Components on page 72

■ Guidelines for Using Integration Components on page 72

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Creating and Maintaining Integration Objects ■ About the Integration Object Builder

42

About the Integration Object Builder
The Integration Object Builder wizard in Siebel Tools builds a list of valid components from which you
can choose the components to include in your Siebel integration object.

NOTE: The Integration Object Builder provides a partial rendering of your data in the integration
object format. You must review the integration object definition and complete the definition of your
requirements. In particular, confirm that the user key definitions are defined properly. You might
have to enter keys and user properties manually or inactivate unused keys and fields in Siebel Tools.
Do not expect to use the integration object without modification.

About the EAI Siebel Wizard Business
Service
You can use the Integration Object Builder to create integration objects that represent Siebel
business objects. During the process of creating a new integration object, described in “Creating
Integration Objects Using the EAI Siebel Wizard Business Service” on page 45, you can choose the EAI
Siebel Wizard as the business service to help create the object. This wizard understands the structure
of Siebel business objects. It returns a list of the available business objects on which you can choose
to base your integration object.

Creating and Maintaining Integration Objects ■ About the EAI Siebel Wizard Business
Service

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

43

The wizard also returns a list of the available components contained within the object you have
chosen, shown in Figure 16. When you select certain components in the wizard, you are activating
those components in your integration object. Your integration object contains the entire structural
definition of the business object you selected in the first wizard dialog box. Only the components you
checked, or left selected, are active within your integration object. That means any instances you
retrieve of that integration object contains only data represented by the selected components.

Figure 16. Activated Components in the Contact Integration Object

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Creating and Maintaining Integration Objects ■ Process of Creating Integration Objects

44

After the wizard creates your integration object, you can edit the object in Siebel Tools, as shown in
Figure 17. You might choose to drill down into the integration components and activate or inactivate
particular components or even particular fields within one or more components.

NOTE: Always inactivate the fields rather than delete them. When you execute the synchronization
task, using the Integration Object Synchronize wizard in Siebel Tools, inactivated fields remain
inactive, while the deleted fields are created as active fields in the integration object.

Process of Creating Integration Objects
Perform the following tasks to create an integration object:

1 Log in to Siebel Tools or Web Tools as an administrator (see Using Siebel Tools).

2 Create a workspace.

3 “Creating Integration Objects Using the EAI Siebel Wizard Business Service” on page 45

4 (Optional) Configuring the integration object (see “Guidelines for Configuring Integration Objects”
on page 52)

5 “Validating Integration Objects” on page 52

6 Deliver the changes to the Integration Branch.

7 “Testing Integration Objects” on page 53

8 (Optional) “Deploying Integration Objects to the Run-Time Database” on page 53

Figure 17. Integration Component Fields in the Contact Integration Object

Creating and Maintaining Integration Objects ■ Creating Integration Objects Using the
EAI Siebel Wizard Business Service

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

45

Creating Integration Objects Using the
EAI Siebel Wizard Business Service
Siebel Tools provides the EAI Siebel Wizard business service to walk you through creating an
integration object. Use this wizard to create your integration object.

You can also use the wizard to deploy integration objects to the run-time database.

NOTE: If you deploy integration objects while the Siebel Server is running, then you must
subsequently clear the Web services cache in the Administration - Web Services screen, Inbound (or
Outbound) Web Services view.

This task is a step in “Process of Creating Integration Objects” on page 44.

To create a new Siebel integration object
1 In Siebel Tools, create a new project and lock it, or lock an existing project in which you want to

create your integration object.

2 From the File menu, choose New Object to display the New Object Wizards dialog box.

3 Select the EAI tab, and then double-click Integration Object.

The Integration Object Builder wizard appears.

4 On the first page of the Integration Object Builder wizard:

a Select the project you locked in Step 1.

b For the source system, select the EAI Siebel Wizard business service.

5 Click Next.

The second page of the Integration Object Builder wizard appears.

a Select the source object (business object). This is the object model for the new Siebel integration
object. Only business objects with Primary Business Components appear on this picklist.

b Select the source root (business object component).

c Type a unique name in the field for the new Siebel integration object and click Next.

NOTE: The name of an integration object must be unique among other integration objects.
There will be an error if the name already exists.

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Creating and Maintaining Integration Objects ■ Creating Integration Objects Using the
EAI Siebel Wizard Business Service

46

The next page of the wizard, the Integration Object Builder - Choose Integration Components
page, displays the available components of the object you chose.

6 Deselect the components you want the wizard to ignore. This means you cannot integrate data
for that component between the Siebel application and another system.

NOTE: Any component that has a plus sign (+) next to it is a parent in a parent-child relationship
with one or more child components. If you deselect the parent component, then the children
following that component are deselected as well. You cannot include a child component without
also including the parent. The Integration Object Builder enforces this rule by automatically
selecting the parent of any child you choose to include.

For example, assume you have chosen to build your Siebel integration object on the Siebel
Account business object, and you want to create an integration component based on the Account
and Contact business components:

a Deselect the Account integration component at the start of the scrolling list. This action deselects
the entire tree after Account.

b Select the Contact component. When selecting a child component, its parent component is also
selected, but none of the components after the child component are selected. You must
individually select the ones you want.

7 From the Container Naming Convention drop-down menu, choose either List Of Prefix or
Suffix s.

This allows flexibility when generating XML Schema Definition (XSD) files from integration
objects. For example, rather than generating container elements such as xsd:ListOfContact, you
can choose to have elements generated named xsd:Contacts.

Creating and Maintaining Integration Objects ■ Creating an Integration Object Based
on Another Root Business Component

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

47

8 Select the Lower CamelCase for XML Tags check box to use this convention for naming XML tags.

CamelCase is a naming convention in which a name is formed of multiple words that are joined
together as a single word, with the first letter of each of the multiple words capitalized so that
each word that makes up the name can easily be read. The name derives from the hump or
humps that seem to appear in any Camel Case name. In Lower CamelCase, the first letter of the
name is lowercase, for example myNewIntegrationObject.

The default convention is Upper CamelCase, for example MyNewIntegrationObject.

9 Click Next. The next page displays error or warning messages generated during the process.
Review the messages, and take the appropriate actions to address them.

10 (Optional) Select the Deploy the Integration Object check box to deploy the integration object to
the run-time database.

For more information, see “Deploying Integration Objects to the Run-Time Database” on page 53.

11 Click Finish.

Your new Siebel integration object appears in the list of integration objects in Siebel Tools.

On the Integration Components screen, the Account integration component is the only
component that has a blank field in the Parent Integration Component column. The blank field
identifies Account as the root component. The Siebel integration object also contains the other
components selected, such as Contact and its child components.

NOTE: When you create your integration object based on a Siebel business object, do not change
its integration component’s External Name Context; otherwise, the synchronization process will
not recognize the integration component, and will remove it from the integration object.

12 To view the fields that make up each integration component, select a component from the
integration component list in Siebel Tools.

The Integration Component Fields list displays the list of fields for that component. Note the
system fields Conflict Id, Created, Id, Mod Id, Updated, operation, and searchspec in the list.
This setting prevents the EAI Siebel Adapter Query and QueryPage method from outputting these
fields. For more details, see “About Using Language-Independent Code with the EAI Siebel Adapter
Business Service” on page 190.

13 When finished, compile the locked project.

Creating an Integration Object Based on
Another Root Business Component
The Integration Object Builder wizard, using the EAI Siebel Wizard, allows you to choose which
business object to use. However, the Integration Object Builder wizard will generate the Primary
Business Component as the root Integration Component. If it happens that the business object
contains multiple root business components (note the difference between root and primary business
component), and that the user requires the Integration Object to be created based on another root
business component, then you perform the following procedure.

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Creating and Maintaining Integration Objects ■ Creating an Integration Object with
Many-To-Many Relationships

48

To create an integration object based on another root business component
1 In Siebel Tools, lock the project containing the business object you want to modify.

2 Modify the business object definition to have that particular root business component as the
Primary Business Component.

3 Run the Integration Object Builder wizard and choose the business object you want to use.

4 Undo the changes to the business object definition that you made in Step 2.

NOTE: This is necessary because unless you are certain about what you are doing in terms of
changing the Primary Business Component of the business object, it is recommended that you
roll back the changes so that they do not affect any business logic.

5 Compile the locked project.

Creating an Integration Object with
Many-To-Many Relationships
The following is an example of how to create an integration object with two components that have a
many-to-many (M:M) relationship. In this example, an integration object uses the Contact business
object and the Contact and Opportunity business components.

To create an integration object with a many-to-many business component
1 In Siebel Tools, create a new project and lock it, or lock an existing project in which you want to

create your integration object.

2 From the File menu, choose New Object to display the New Object Wizards dialog box.

3 Select the EAI tab, and then double-click the Integration Object icon.

4 In the Integration Object Builder wizard:

a Select the project you locked in Step 1.

b Select the EAI Siebel Wizard business service.

5 Click Next and in the second page of the Integration Object Builder wizard:

a Select the source object Contact to be the base for the new Siebel integration object.

b Type a unique name in the field for the new Siebel integration object, for example Sample
Contact M:M, and then click Next.

c Select the source root for the new integration object from the list.

6 From the list of components, select Contact and Opportunity.

NOTE: There is also a component named Contact_Opportunity in the list. This component is an
MVGAssociation component, and you pick it only if you need this integration object to set the
primary opportunity for contact. For information on multivalue groups, see “About Multivalue
Groups in the EAI Siebel Adapter Business Service” on page 180.

Creating and Maintaining Integration Objects ■ Creating Integration Object Instances
Programmatically

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

49

7 Inactivate all integration component fields in the Contact integration component except First
Name, Last Name, Login Name, and Comment. (In this example, these are the only fields you
need for Contact.)

8 Inactivate all integration component fields in the Opportunity integration component except
Account, Account Location, Budget Amt, Name, and Description. (In this example, these are the
only fields you need for Opportunity.)

9 Compile the locked project.

Creating Integration Object Instances
Programmatically
Because integration objects adhere to a set of structural conventions, they can be traversed and
transformed programmatically, using Siebel eScript objects, methods, and functions, or transformed
declaratively using the Siebel Data Mapper.

This topic outlines the steps required to create an integration object instance programmatically,
using the EAI Account integration object as an example.

To create the correct integration object instance programmatically, follow these rules:

■ The root property set must have its type set to ListOf concatenated with the integration object
name (ListOfIOName).

■ The next property set of the hierarchy must have the root integration component name as its
type. The root integration component is the one that has no Parent Integration Component set
(RootICName).

■ All other integration components must have the Parent Integration Component set. For those
integration components, create a property set with type set to ListOf concatenated with the
integration component name (ListOfICName) and then add as child to this property set another
one with type set to the integration component name.

The following hierarchy demonstrates the rules:

ListOfIOName

RootICName

ListOfICName1

ICName1

ListOfICName1_1

ICName1_1

ListOfICName2

ICName2

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Creating and Maintaining Integration Objects ■ Creating Integration Object Instances
Programmatically

50

Figure 18 shows some of the integration components in the hierarchy of the EAI Account integration
object.

Based on its hierarchy, the integration object instance will have the following property set hierarchy:

ListOfEAI Account

Account

ListOfAccount_Business Address

Account_Business Address

ListOfContact

Contact

ListOfContact_Alternate Phone

Contact_Alternate Phone

The following Siebel eScript example creates an instance of the hierarchy shown in Figure 18:

// Local variable creation, error handling, and object destruction are omitted for
clarity.

psConAltPhone.SetType("Contact_Alternate Phone");

psConAltPhone.SetProperty("Alternate Phone #", "555-5555");

Figure 18. EAI Account Integration Object Hierarchy

Creating and Maintaining Integration Objects ■ Creating Integration Object Instances
Programmatically

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

51

psListOfConAltPhone.SetType("ListOfContact_Alternate Phone");

psListOfConAltPhone.AddChild(psConAltPhone);

psContact.SetType("Contact");

psContact.SetProperty("First Name", "John");

psContact.SetProperty("Last Name", "Smith");

psContact.AddChild(psListOfConAltPhone);

psListOfContact.SetType("ListOfContact");

psListOfContact.AddChild(psContact);

psAccBusAdd.SetType("Account_Business Address");

psAccBusAdd.SetProperty("Email Address", "john.smith@email.com");

psListOfAccBusAdd.SetType("ListOfAccount_Business Address");

psListOfAccBusAdd.AddChild(psAccBusAdd);

psAccount.SetType("Account");

psAccount.SetProperty("Name", "MyAccount");

// Add the children to the Account IC.

psAccount.AddChild(psListOfAccBusAdd);

psAccount.AddChild(psListOfContact);

psListOfEAIAccount.SetType("ListOfEAI Account");

psListOfEAIAccount.AddChild(psAccount);

...

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Creating and Maintaining Integration Objects ■ Guidelines for Configuring Integration
Objects

52

Guidelines for Configuring Integration
Objects
After you create your integration object you can configure it based on your business requirements.
The following is a list of guidelines for configuring an integration object:

■ In Siebel Tools, inactivate the fields that do not apply to your business requirements.

■ If necessary, activate the fields that have been inactivated by the Siebel Wizard. For information,
see Chapter 2, “Integration Objects”.

■ Add the fields that have not been included by the Siebel Wizard, including custom integration
component fields. For information on the implications of adding or activating such fields, see
“Custom Integration Component Fields” on page 20, “Calculated Fields and Integration Objects” on
page 28, and “Inner Joins and Integration Components” on page 28.

■ Validate the user keys. For information, see Chapter 2, “Integration Objects”.

■ Update the user properties for your integration object to reflect your business requirements. For
information, see:

■ “Resolving Synchronization Conflicts for Integration Objects and User Properties” on page 65

■ “Using Formatted Values in Integration Objects” on page 69

This task is a step in “Process of Creating Integration Objects” on page 44.

Validating Integration Objects
When you have created your integration object and made the necessary modifications to meet your
business requirements, you must validate it.

This task is a step in “Process of Creating Integration Objects” on page 44.

To validate your integration object
1 In Siebel Tools, select your integration object.

2 Right-click the integration object and select Validate.

3 Review the report, and modify your integration object as needed.

NOTE: Before creating or modifying any integration object, you need to create and open a
workspace. After validation, the integration objects you create in Siebel Tools must be delivered.

Creating and Maintaining Integration Objects ■ Testing Integration Objects

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

53

Testing Integration Objects
After validating and compiling integration objects, test them using the Workflow Simulator. For
information on creating, modifying, and simulating workflows, see Siebel Business Process
Framework: Workflow Guide.

This task is a step in “Process of Creating Integration Objects” on page 44.

To test a newly created integration object
1 In Siebel Tools, select the Workflow Process object in the Object Explorer.

2 Create a new workflow that runs the EAI Siebel Adapter business service against the new
integration object.

For example, create a workflow to query with the new integration object and write the output
message to an XML file, as in the following:

3 Test the workflow using the Workflow Simulator.

Deploying Integration Objects to the
Run-Time Database
You can deploy integration objects, which you have created in Siebel Tools, to the Siebel run-time
database. Siebel object manager processes build a cache of the deployed integration objects to
improve performance. These deployed integration objects are read from the cache at run time.

This saves time by allowing you to modify integration object definitions without having to shut down
your production environment, create and open a workspace in Siebel Tools or Web Tools, edit
integration objects in Siebel Tools, and deliver the changes to the Integration Branch.

Integration objects are read first from the cache and then from the runtime repository. The deployed
integration objects are maintained in the object manager cache so that performance is not slowed
by rereading these integration objects from the run-time database.

This task is a step in “Process of Creating Integration Objects” on page 44.

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Creating and Maintaining Integration Objects ■ Deploying Integration Objects to the
Run-Time Database

54

Deploying an Integration Object to the Run-Time Database
The following procedure is used to deploy integration objects that have already been created in
Siebel Tools. To deploy an integration object while creating it with the Integration Object Builder
wizard, see “Creating Integration Objects Using the EAI Siebel Wizard Business Service” on page 45.

CAUTION: If you make changes in Siebel Tools to a deployed integration object, then you must
redeploy it. If you do not redeploy it, then the object definitions will differ between Siebel Tools and
your production environment, which can cause unexpected application behavior.

To deploy an integration object to the run-time database
1 In the Object Explorer in Siebel Tools, select Integration Object.

The Integration Objects list appears.

2 Right-click the integration object to deploy, and then choose Deploy to Runtime Database.

The integration object is deployed.

3 In the Siebel client, navigate to the Administration- Web Services screen, Inbound (or Outbound)
Web Services view.

4 Click Clear Cache to invalidate the integration object and Web services definitions in the run-time
database.

NOTE: Object definitions are reloaded when requested in the client.

Deployed integration objects are shown in the Administration - Web Services screen, Deployed
Integration Objects view in the Siebel client.

Removing an Integration Object from the Run-Time Database
You can also remove deployed integration objects.

To remove a deployed integration object from the run-time database
1 In the Object Explorer in Siebel Tools, select Integration Object.

The Integration Objects list appears.

2 Right-click the integration object to remove, and then choose Undeploy.

The integration object is removed from the run-time database.

3 In the Siebel client, navigate to the Administration- Web Services screen, Inbound (or Outbound)
Web Services view.

4 Click Clear Cache to invalidate the integration object and Web services definitions in the run-time
database.

NOTE: Object definitions are reloaded when requested in the client.

Creating and Maintaining Integration Objects ■ About Synchronizing Integration
Objects

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

55

About Synchronizing Integration
Objects
Business objects often require updates to their definitions to account for changes in data type,
length, edit format, or other properties. It is common to want to alter database metadata, but if you
do so you have to also update your integration objects to account for these updates. Otherwise, you
can cause undesirable effects on your integration projects.

Some examples of these changes are:

■ A field removed

■ A new required field

■ A new picklist for a field

■ A change of relationship from one-to-many to many-to-many

■ An upgrade to a new version of Siebel Business Applications

To help simplify the synchronization task, Siebel EAI provides the Integration Object Synchronize
wizard. Although the process of synchronizing your integration object with its underlying business
object is straightforward, review the integration objects you have modified to make sure that you
have not inadvertently altered them by performing a synchronization. After synchronization, validate
your integration object.

NOTE: If business object changes are minor, such as adding a new single-value field, then it is best
to synchronize the integration object. However, if business object changes are extensive, such as
creating a new multivalue group, then it might be better to delete and re-create the integration
object.

The following topics are also covered:

■ “Synchronization Rules” on page 56

■ “Updating the Entire Integration Object” on page 56

■ “Deleting a Component from the Integration Object” on page 58

■ “Guidelines for Maintaining Integration Objects” on page 61

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Creating and Maintaining Integration Objects ■ About Synchronizing Integration
Objects

56

Synchronization Rules
During the synchronization process, the wizard follows particular update rules. Consider a simple
example involving the Siebel Account integration object with only Contact and its child components
marked as active in the object. Figure 19 helps you to visualize this example.

Because the Account component is the parent of Contact, it is also selected, even though you cannot
see it in Figure 19.

Updating the Entire Integration Object
Either the business object or the integration object might have changed since the integration object
was first created. The Synchronization wizard creates a new object that takes into account any
business object and integration object changes.

Figure 19. Example of Selected Integration Components

Creating and Maintaining Integration Objects ■ About Synchronizing Integration
Objects

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

57

Figure 20 illustrates how the Synchronization wizard takes into account any changes.

Figure 20. Synchronizing the Integration Object

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Creating and Maintaining Integration Objects ■ About Synchronizing Integration
Objects

58

Figure 21 shows how the resulting integration object is structured after the synchronization.

The integration object now contains two new components, Business Address and Opportunity. Other
components are updated with the definitions of the corresponding components in the business
object.

Deleting a Component from the Integration Object
If you choose to deselect a component in the Synchronization wizard, then you specify to the wizard
to delete the component in the integration object with the matching External Name Context property.
The integration object that exists in the database has a component with the same External Name,
External Name Sequence, and External Name Context as the unchecked component in the
component selection tree.

Figure 21. Completely Updated Integration Object

Creating and Maintaining Integration Objects ■ About Synchronizing Integration
Objects

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

59

In Figure 22, the Contact_Personal Address in the existing Account integration object is unchecked
in the Synchronization wizard tree. This is represented by an X in this figure. Figure 22 illustrates
this concept. Figure 23 on page 60 shows the integration object after synchronization.

Figure 22. Deleting a Component from the Integration Object

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Creating and Maintaining Integration Objects ■ About Synchronizing Integration
Objects

60

The component Contact_Personal Address has been deleted. When you use the updated integration
object, you cannot pass data for that component between a Siebel application and an external
application. This example shows you how you might cause unexpected results by deselecting
components. However, if you do want to delete a particular component from the integration object,
then deleting a component from the integration object method accomplishes that goal.

Figure 23. Synchronization Resulting in a Deleted Component

Creating and Maintaining Integration Objects ■ About Synchronizing Integration
Objects

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

61

Guidelines for Maintaining Integration Objects

Figure 24. Setting NoUpdate and NoDelete User Properties

Figure 25. Synchronizing the Integration Object with User Properties Set

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Creating and Maintaining Integration Objects ■ Synchronizing Integration Objects

62

As the examples illustrate, you must be aware of the possible changes that can occur when you
synchronize business objects and integration objects. The Integration Objects Synchronize wizard
can provide assistance in managing your integration objects, but you must have a clear
understanding of your requirements, your data model, and the Siebel business object structure
before undertaking a task as important as synchronization.

To make maintenance of integration objects easier, adhere to the following guidelines when creating
or editing your integration objects:

■ Use a meaningful name for any user key you have added that is different from the generated
user keys. Using meaningful names helps with debugging.

■ Inactivate user keys instead of deleting them.

■ Inactivate fields instead of deleting them.

Synchronizing Integration Objects
You use the Integration Object Synchronize wizard in Siebel Tools to update and synchronize
integration objects.

NOTE: The update process overrides the integration object and deletes user keys, user properties,
and so on. You can use the copy of the integration object made by the Synchronization wizard to see
how you have modified the object.

Figure 26. Synchronized Integration Object with One Component Unchanged

Creating and Maintaining Integration Objects ■ Synchronizing Integration Objects

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

63

To update an integration object with updated business object definitions
1 In Siebel Tools, select the integration object you want to update.

2 Click Synchronize in the Integration Objects list.

The Integration Object Synchronize wizard appears.

3 Click on the plus sign to list all the related integration components, as shown in the following
figure.

The process of retrieving Siebel integration objects and Siebel business object definitions can
take varying amounts of time, depending on the size of the selected objects.

4 Uncheck the boxes beside the objects and components you do not want to include in the
synchronization of your Siebel integration object. Note that only the objects that are included in
the new integration object are marked.

5 Choose to add new fields as active or inactive and click Next. Inactive is the default.

The process of performing the synchronization can take some time, depending on the complexity
of the selected objects.

The Integration Object Synchronize Summary screen appears, providing feedback from the
synchronization.

Each added field is checked as to whether or not it is required for use with the integration object.

6 Review the summary. If changes are needed, then click Back and make the needed changes.

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Creating and Maintaining Integration Objects ■ Synchronizing Integration Objects

64

7 If no changes are needed, then click Finish to synchronize the Siebel integration object and the
Siebel business object.

The Compare Objects dialog box appears. This tool allows you to move properties and objects between versions using arrow buttons.

When you synchronize the Siebel integration object and the Siebel business object, the
Synchronization wizard performs update, insert, and delete operations on the existing integration
object definition. The Synchronization wizard selects or deselects components to make the Siebel
integration object look like the definition of the Siebel business object you chose.

The wizard generally updates the Siebel integration object either by updating the object and its
components or by updating some components and deleting others. For information, see
“Updating the Entire Integration Object” on page 56 and “Deleting a Component from the
Integration Object” on page 58.

8 Copy custom properties and custom user keys as needed. The wizard includes any new fields
added to the business object in your integration object for the new version of your Siebel
application. All these fields are set to active.

9 Inactivate any new fields that you do not need in a component of your updated integration object.

10 Right-click on your integration object, and select the Validate option to validate your integration
object.

NOTE: If you want to synchronize any of the external integration objects, then follow this general
procedure to perform a synchronization operation.

Creating and Maintaining Integration Objects ■ Resolving Synchronization Conflicts for
Integration Objects and User Properties

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

65

Resolving Synchronization Conflicts for
Integration Objects and User Properties
This topic serves as a guide to resolving synchronization conflicts if any arise.

Table 6 illustrates the behavior of the merging logic for each of the integration object parts that have
to be synchronized.

Table 6. Merging Logic Used for Synchronizing Integration Objects

Integration Object Metadata Merging Rules

Objects Validate that Business Object still exists.

Components Present the tree of components based on current business
object definition. The components present in the current
integration object are checked in the UI tree, other
components presented as Inactive. User decides which
components to add or delete. This is done by the
Synchronization wizard UI.

Fields Keep the current integration component fields if still present
in the business component, otherwise delete. Add new fields
in a way that does not conflict with existing ones (see
External Sequence for more information).

System fields are created when appropriate (for example,
searchspec, IsPrimaryMVG, and operation). If the system
field is inconsistent with the integration component
definition, then delete it.

Active/Inactive. Preserve the current integration component
field value unless Business Component Field is Required
(field must be present during Insert). Otherwise, new fields
are created Inactive.

XML Properties Preserve the current integration object values to keep XML
compatible. Add new components/fields properties avoiding
conflict with existing XML.

XML Properties are processed according to the XML
sequence. New components/fields that sequence within the
parent component element will be higher than current.

Reuse existing processing code (and check for correct
behavior).

External Sequence

(on components or fields)

Preserve the component or field sequence within the parent
component. Set the sequence on new components or fields
higher than the existing ones.

Name Preserve Names in the current integration object.

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Creating and Maintaining Integration Objects ■ Resolving Synchronization Conflicts for
Integration Objects and User Properties

66

Table 7 shows the logic that is used when synchronizing user properties.

User key, Hierarchy key, Other keys
(for example, Status Key)

Existing Keys:

■ Keep existing keys as Active if all the key fields are
Active.

■ Keep existing keys Inactive if Inactive already or make
Inactive if any of the fields are Inactive.

■ If a field is Inactive in an integration component, then
make it Inactive in the key. Make the key Inactive.

■ If a field is not present in an integration component,
then delete it from the key. Make the key Inactive.

New Keys:

■ Create new keys as Inactive.

■ If any of the key fields are Inactive, then either:

■ Do not create the key.

■ Make fields Active in the integration component.

User Properties Preserve valid cases, remove invalid ones, and generate
warnings. See Table 7 on page 66 for more information.

Table 7. Logic Used for Synchronizing User Properties

User Property Name

Values
(Default is
in italics)

Level
(Object,
Component,
or Field) Merging Rules

AdminMode Y, N C, O Entered by the user; if the value exists,
then keep it. Otherwise, the wizard sets
the value to N.

AllLangIndependentVals Y,N O Entered by the user; if the value exists,
then keep it. Otherwise, the wizard sets
the value to N.

Table 6. Merging Logic Used for Synchronizing Integration Objects

Integration Object Metadata Merging Rules

Creating and Maintaining Integration Objects ■ Resolving Synchronization Conflicts for
Integration Objects and User Properties

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

67

AssocFieldName Any valid
field name in
the
Association
business
component

F Siebel Wizard generates the value
based on current business component
definition. The Wizard overwrites the
user change, because in order for the
integration component to be functional,
the User Property has to be consistent
with the business component.
(component MVGAssociation is set to
Y)

Association Y, N C Siebel Wizard generates the value
based on current business component
definition. The Wizard overwrites the
user change, because in order for the
integration component to be functional,
the User Property has to be consistent
with the business component.

EDEnabled Y, N F For each integration component field,
the Synchronize wizard adds an
integration component field user
property named EDEnabled with the
value set to Y if the corresponding
business component field is effective
dating enabled. The wizard will not
overwrite user changes.

FieldDependencyFieldNa
me

Any active
integration
component
name within
the same
integration
component

F Entered by the user. Keep the current
value if valid (if FieldName field is
Active).

ForceUpdate Y, N O Entered by the user. Keep the current
value.

Ignore Bounded Picklist Y, N O, C, F Entered by user, keep if valid (if
component Picklist is set to Y).

Table 7. Logic Used for Synchronizing User Properties

User Property Name

Values
(Default is
in italics)

Level
(Object,
Component,
or Field) Merging Rules

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Creating and Maintaining Integration Objects ■ Resolving Synchronization Conflicts for
Integration Objects and User Properties

68

IgnorePermissionErrors
OnUpdate,
IgnorePermissionErrors
OnInsert,
IgnorePermissionErrors
OnDelete

Y, N C Entered by the user. Keep the current
value.

MVG Y, N C Siebel Wizard generates the value
based on the current business
component definition. The Wizard
overwrites the user change, because in
order for integration component to be
functional, the User Property has to be
consistent with the business
component.

IsPrimaryMVG system field is created
in the merged integration object.

MVGAssociation Y, N C Siebel Wizard generates the value
based on the current business
component definition. The Wizard
overwrites the user change, because in
order for integration component to be
functional, the User Property has to be
consistent with the business
component.

IsPrimaryMVG system field is created
in merged integration object.

MVGFieldName Any valid
field name in
the MVG
business
component

F Siebel Wizard generates the value
based on current business component
definition. The Wizard overwrites the
user change, because in order for
integration component to be functional,
the User Property has to be consistent
with the business component.
(component MVG is set to Y)

NoInsert, NoDelete,
NoUpdate, NoQuery,
NoSynchronize

Y, N C, F
(NoUpdate)

Entered by the user. Keep the current
value.

Table 7. Logic Used for Synchronizing User Properties

User Property Name

Values
(Default is
in italics)

Level
(Object,
Component,
or Field) Merging Rules

Creating and Maintaining Integration Objects ■ Using Formatted Values in Integration
Objects

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

69

Using Formatted Values in Integration
Objects
The UseFormattedValues integration object user property allows you to configure the EAI Siebel
Adapter to use formatted values.

The Siebel application stores a phone number’s format as well as the phone number itself in the
Siebel Database to display the phone number in the GUI. How a phone number displays is dependent
on the preconfigured format for a specific country.

For example, a +55 555 5555 phone number in an English - ENU database is stored as +555555555
000 0000, where 000 0000 is the formatting mask.

Picklist Y, N F Siebel Wizard generated. The user
change is kept if valid (if Picklist
component).

Review the input object for a user
property of PICKLIST. Copy from the
current field.

PicklistUserKeys Any active
fields

F Entered by user, keep only Active
fields. User property is valid only if
PICKLIST is set to Y on the integration
component.

If no Active fields left, then remove the
user property.

SuppressQueryOnInsert Y, N C Entered by the user. Keep the current
value.

When using the Insert method for the
EAI Siebel Adapter, if this integration
component user property is defined,
then the EAI Siebel Adapter will not
perform a query before inserting a
record.

ViewMode All, Manager,
Sales Rep,
and any
others

O Entered by the user; if the value exists,
then keep it. Otherwise, the wizard sets
the value to All.

Table 7. Logic Used for Synchronizing User Properties

User Property Name

Values
(Default is
in italics)

Level
(Object,
Component,
or Field) Merging Rules

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Creating and Maintaining Integration Objects ■ Generating Integration Object Schemas

70

By default, the value of the UseFormattedValues user property is set to N, indicating no formatted
values are used. However, you can use scripting or a workflow to configure the EAI Siebel Adapter
to force the use of formatted values by setting an integration object’s UseFormattedValues user
property to Y. In the previous example, the EAI Siebel Adapter will then return the phone number as
+55 555 5555, ignoring the zeroes.

NOTE: UseFormattedValues is set at the integration object level and applies to all formattable fields
in the integration object.

Generating Integration Object Schemas
At certain points in your integration project, you might want to generate schemas from an integration
object. If you export Siebel integration objects as XML to other applications, then you might have to
publish the schemas of such objects so that other applications can learn about the structure of the
XML to expect.

To generate an integration object schema
1 In Siebel Tools, select the integration object for which you want to generate a schema.

2 Click Generate Schema to access the Generate XML Schema wizard.

3 Choose the business service to use to generate the schema:

■ EAI XML DTD Generator. Generates a Document Type Definition (DTD).

■ EAI XML XDR Generator. Generates an XML-Data Reduced (XDR) schema.

■ EAI XML XSD Generator. Generates an XML Schema Definition (XSD).

4 Choose an envelope type to use in the schema, either none or Siebel Message Envelope.

5 Choose a location where you want to save the resulting schema file.

6 (Optional) Select the Include length information for String type check box to generate simple
types for all string elements in the integration object schema.

7 Click Finish.

The wizard generates the selected type of schema for the integration object. Use this to help you
map external data directly to the integration object. The schema serves as the definition for the XML
elements you can create using an external application or XML editing tool.

NOTE: With the EAI XML DTD Generator, elements that appear more than once in the integration
object structure are forward declared in the schema. A list of shared elements is generated, for
example:

<!-- Shared Element List. These elements are guarenteed -->

<!-- to have the same datatype, length, precision, and scale.-->

<!ELEMENT ErrorMessage (#PCDATA) >

<!ELEMENT ErrorCode (#PCDATA) >

Creating and Maintaining Integration Objects ■ Optimizing the Performance of
Integration Objects

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

71

Optimizing the Performance of
Integration Objects
To optimize your integration object performance, you might want to consider the following:

Size of Integration Object
The size of an integration object and its underlying business components can have an impact on the
latency of the EAI Siebel Adapter operations. Inactivate unnecessary fields and components in your
integration objects.

Force-Active Fields
Reexamine any fields in the underlying business component that have the force-active specification.
Such fields are processed during the integration even if they are not included in the integration
component. You might want to consider removing the force-active specification from such fields,
unless you absolutely need them.

Picklist Validation
Siebel Business Applications have two classes of picklists: static picklists based on lists of values and
dynamic picklists based on joins.

Setting the property PICKLIST to Y in the integration object field directs the EAI Siebel Adapter to
validate that all operations conform to the picklist specified in the field. For dynamic picklists, this
setting is essential to make sure the joins are resolved properly. However, for unbounded static
picklists, this validation might be unnecessary and can be turned off by setting the PICKLIST property
to N. Even for bounded static picklists, you can turn off validation in the adapter, because the Object
Manager can perform the validation. Turning off the validation at the EAI Siebel Adapter level means
that picklist-related warnings and debugging messages do not show up along with other EAI Siebel
Adapter messages. This also means that bounded picklist errors will not be ignored, even if Ignore
Bounded Picklist is set to Y.

As well as certain warnings and messages not appearing, setting the integration component field user
property PICKLIST to N can also cause fields to be auto-completed. Providing only part of the value
for a particular field causes the field to be auto-filled with the first matching entry in the picklist. This
occurs especially when the picklist is based on a multilingual list of values (MLOV). For example, if
the incoming message contains the string “On-” and there exists an entry “On-Hold,” then the field
will be set to “On-Hold.”

If the EAI Siebel Adapter performs the validation (PICKLIST is set to Y), auto-filling of the field does
not occur. In this case, the EAI Siebel Adapter supports only an exact match for the particular field
(in the previous example, the value “On-” will fail; only “On-Hold” will pass).

NOTE: Performing the validation of a bounded picklist in the EAI Siebel Adapter is about 10% faster
than performing the validation in the Object Manager.

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Creating and Maintaining Integration Objects ■ About Business Component Restrictions
for Integration Components

72

About Business Component Restrictions
for Integration Components
The business components underlying the Integration Components might have certain restrictions.
For example, only an administrator can modify the Internal Product. The same restrictions apply
during integration. In many cases, the Siebel Integration Object Builder wizard detects the
restrictions, and sets properties such as No Insert or No Update on the integration components.

System Fields
Integration object fields marked as System are not exported during a query operation. This setting
prevents the EAI Siebel Adapter from treating the field as a data field, which means for the Query
and QueryPage method the EAI Siebel Adapter do not write to the field. For the Synchronize and
Update method, the field will not be directly set in the business component unless the ISPrimaryMVG
is set to Y.

If you want to include System fields in the exported message, then change the Integration
Component field type to Data.

NOTE: System fields are read-only. If you attempt to send a message with the value set for a System
field, then the setting will be ignored and a warning message will be logged. However, in order to
permit updates for the System field SSA Primary Field, change the field type from System to Data.
(SSA Primary Field is a pseudo-field that is used to mark the current instance of the child Integration
Component to be a primary on the link from the parent component.)

Guidelines for Using Integration
Components
The following are the guidelines for using integration components:

■ Familiarize yourself with the business logic in the business components. Integration designers
must use the presentation layer, or the user interface, to get a good sense of how the business
component behaves, and what operations are allowed and not allowed.

■ Design with performance in mind. For more information on performance and using integration
objects, see “Optimizing the Performance of Integration Objects” on page 71.

■ Design with maintenance in mind. For more information on maintenance, see “Guidelines for
Maintaining Integration Objects” on page 61.

Creating and Maintaining Integration Objects ■ Guidelines for Using Integration
Components

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

73

■ Resolve configuration conflicts. During the development of your integration points, you might
encounter issues with the configuration of business components that are configured to support
interactive GUI usage, but do not satisfy your integration requirements.

The following scenarios demonstrate two situations in which you might encounter such conflicts,
and a possible solution for each case:

Scenario 1. A business component such as Internal Product is made read-only for regular GUI
usage, but you want your integration process to be able to update the Internal Product business
component.

Solution. Set the AdminMode user property on the integration object to Y. This allows the EAI
Siebel Adapter to use the business component in an administrator mode.

Scenario 2. Similar to scenario 2, a business component such as Internal Product is made read-
only for regular GUI usage, but you want your integration process to be able to update the
Internal Product business component. The only difference in this scenario is that the business
component is used through a link that has NoUpdate property set to Y.

Solution. Because there is a link with NoUpdate property set to Y, setting the AdminMode user
property on the integration object to Y is not going to help. You must create the following
exclusively for integration purposes:

■ A new link based on the original link with NoUpdate property Set to N.

■ A copy of the original business object referencing the new link instead of the original. Note
that both links must use the same business component.

NOTE: Customized configurations are not automatically upgraded during the Siebel Repository
upgrade, so use this option as a last resort.

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Creating and Maintaining Integration Objects ■ Guidelines for Using Integration
Components

74

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

75

4 Business Services

This chapter outlines the basic concepts of a business service, its structure and purpose, and how
you can customize and create your own business service. This chapter also describes how to test
your business service before it is implemented. The following topics are included:

■ About Business Services on page 75

■ Creating Business Services in Siebel Tools on page 78

■ Creating Business Services in Siebel Business Applications on page 81

■ Deploying Business Services as Web Services on page 82

■ Exporting and Importing Business Services in Siebel Tools on page 83

■ Importing Business Services into Siebel Business Applications on page 83

■ Testing Your Business Service in the Simulator on page 83

■ About Accessing a Business Service Using Siebel eScript or Siebel VB on page 84

■ Business Scenario for the Use of Business Services on page 85

About Business Services
A business service is an object that encapsulates and simplifies the use of some set of functionality.
Business components and business objects are objects that are typically tied to specific data and
tables in the Siebel data model. Business services, on the other hand, are not tied to specific objects,
but rather operate or act upon objects to achieve a particular goal.

Business services can simplify the task of moving data and converting data formats between the
Siebel application and external applications. Business services can also be used outside the context
of Siebel EAI to accomplish other types of tasks, such as performing a standard tax calculation, a
shipping rate calculation, or other specialized functions.

The business service can be assessed either directly by way of workflows (business processes) or by
way of a scripting service written in Siebel VB or Siebel eScript.

The following topics are also covered:

■ “About Creating Business Services” on page 76

■ “Business Service Structure” on page 76

■ “Property Sets” on page 77

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Business Services ■ About Business Services

76

About Creating Business Services
A Siebel application provides a number of prebuilt business services to assist you with your
integration tasks. These services are based on specialized classes and are called Specialized Business
Services. Many of these are used internally to manage a variety of tasks.

CAUTION: As with other specialized code such as Business Components, use only the specialized
services that are documented in the Siebel Bookshelf. The use of undocumented services is not
supported and can lead to undesired and unpredictable results.

NOTE: The Siebel Bookshelf is available on Oracle Technology Network (OTN), Oracle Software
Delivery Cloud, or it might be installed locally on your intranet, or on a network location.

In addition to the prebuilt business services, you can build your own business service and its
functionality in two different ways to suit your business requirements:

■ In Siebel Tools. Created at design time in Siebel Tools using Siebel VB or Siebel eScript. Design-
time business services are stored in the Siebel design time repository, so you have to compile
the repository before testing them. When your test is completed, deliver the changes. The
business services stored in the repository automatically come over to the new repository during
the upgrade process. General business services are based on the class CSSService. However, for
the purposes of Siebel EAI, you base your data transformation business services on the
CSSEAIDTEScriptService class. For information, see “Creating Business Services in Siebel Tools”
on page 78.

■ In Siebel client. Created at run time in the Siebel client using the Business Service
Administration screens. Run-time business services are stored in the Siebel run-time database,
so they can be tested right away. The run-time business services have to be migrated manually
after an upgrade process. For information, see “Creating Business Services in Siebel Business
Applications” on page 81.

NOTE: To use the DTE scripts, write your business service in Siebel eScript; otherwise, you can write
them in Siebel VB.

Business Service Structure
Business services allow developers to encapsulate business logic in a central location, abstracting
the logic from the data it might act upon. A business service is much like an object in an object-
oriented programming language.

A business service has properties and methods, and maintains a state. Methods take arguments that
can be passed into the object programmatically or, in the case of Siebel EAI, declaratively by way of
workflows.

NOTE: For more information on business service methods and method arguments, see Siebel Object
Interfaces Reference.

Business Services ■ About Business Services

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

77

Property Sets
Property sets are used internally to represent Siebel EAI data. A property set is a logical memory
structure that is used to pass the data between business services. Figure 27 illustrates the concept
of a property set.

The property set consists of four parts:

■ Type. Used to describe what type of object is being represented.

■ Value. Used to hold serialized data, such as a string of XML data.

NOTE: In Siebel Tools, a Value argument to a method is shown with the name of <Value>,
including the angle brackets. You can also define a Display Name for the Value argument in Siebel
Tools. This Display Name appears in the Siebel Business Process Designer when you are building
integration workflows. In this guide, the Display Name Message Text is shown when referring to
the Value argument, and the Name <Value> is shown when referring to the Value of the Value
argument.

■ Properties. A table containing name-value pairs. You can use the properties to represent column
names and data, field names and data, or other types of name-value pairs.

■ Children. An array of child-level property sets. You can use the array to represent instances of
integration objects. For example, a result set might contain an Account with some set of contact
records from the database. Each contact record is represented as a child property set.

It is recommended that you treat input property sets in business services as constants. If you must
modify the inputs, then make a copy first. Otherwise, there might be interference between business
service scripts and workflows that also modify the inputs, leading to unpredictable application
behavior.

Figure 27. Property Set Structure

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Business Services ■ Creating Business Services in Siebel Tools

78

For example, when creating the XMLHierarchy property set using a custom business service in a
workflow, if the input property set is modified without making a copy, then the following error occurs:

Argument 'XMLHierarchy' in step 'Convert XMLHierarchy' is not correctly initialized
or does not return valid data.(SBL-BPR-00107)

NOTE: For more information on property sets and their methods, see Siebel Object Interfaces
Reference.

Creating Business Services in Siebel
Tools
The following procedures explain how to create business services and business service scripts in
Siebel Tools:

■ “Defining a Business Service in Siebel Tools” on page 78.

■ “Defining Business Service Methods” on page 79

■ “Defining Business Service Method Arguments” on page 79

■ “Writing Business Service Scripts” on page 80

■ “Defining Business Service User Properties” on page 80

NOTE: Business services you create in Siebel Tools must be delivered.

Defining a Business Service in Siebel Tools
You declaratively define the business service in Siebel Tools, and then add your scripts to the
business service in the Siebel Script Editor within Siebel Tools.

To define a business service in Siebel Tools
1 In Siebel Tools, select and lock the project with which you want to associate your business

service.

NOTE: Each business service must belong to a project, and the project must be locked. For more
information, see Using Siebel Tools.

2 Select the Business Services object in the Tools Object Explorer.

The list of predefined business services appears in the farthest panel.

3 Right-click, and then choose New Record.

4 Type a name in the Name field of the new business service.

5 From the pull-down menu in the Project field, pick the project you locked in Step 1.

6 Choose the appropriate class for your business service from the Class picklist:

■ Data transformation business services must use the CSSEAIDTEScriptService class.

Business Services ■ Creating Business Services in Siebel Tools

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

79

■ Other business services will typically use the CSSService class.

7 Step off the current record to save your changes.

Defining Business Service Methods
Business services contain related methods that provide the ability to perform a particular task or set
of tasks.

NOTE: For information on business service methods, see Siebel Object Interfaces Reference.

To define a business service method
1 With your business service selected in Siebel Tools, expand the Business Service tree in the

Object Explorer, and then select Business Service Method.

The Business Service Methods list appears in the Object List Editor. If you have already defined
methods for the selected business service, they appear in the Business Services Methods list.

2 Right-click, and then choose New Record.

3 Type the name of the method in the Name field of the new method.

Defining Business Service Method Arguments
Each method can take one or more arguments. The argument is passed to the method and consists
of some data or object that the method processes to complete its task.

To define business service method arguments
1 With your business service method selected in Siebel Tools, expand the Business Service Method

tree in the Object Explorer, and then select Business Service Method Args.

The Business Service Methods Args list appears in the Object List Editor.

2 Right-click, and then choose New Record.

3 Type the name of the argument in the Name field of the new method argument record.

NOTE: If you plan to use this business service in a Siebel Business Application, then specify the
Display Name as well.

4 Enter the data type in the Data Type field.

5 Check the Optional check box if you do not want the argument to be required for the method.

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Business Services ■ Creating Business Services in Siebel Tools

80

6 Choose a Type for the argument. Refer to the following table for a list of different types and their
descriptions.

Writing Business Service Scripts
Business service scripts supply the actual functionality of the business service in either Siebel VB or
Siebel eScript. As with any object, the script you provide is attached to the business service.

To write business service scripts
1 In Siebel Tools, select the business service for which you want to write a script.

2 Right-click, and then choose Edit Server Scripts.

The Siebel Script Editor appears.

3 Select either Siebel eScript or Visual Basic for your scripting language.

4 Select Service_PreInvokedMethod as the event handler.

NOTE: To write any Siebel VB script in the Business Services, the operating system you are using
must support Siebel VB. Siebel VB is not supported in the UNIX environments.

5 Type your script into the Script Editor.

NOTE: Write your business service in Siebel eScript if you want to use the DTE scripts. For
information on scripting, see Using Siebel Tools.

Defining Business Service User Properties
User properties are optional variables that you can use to define default values for your business
services in Siebel Tools. When a script or control calls your business service, one of the first tasks
the service performs is to check the user properties to gather any default values that will become
input arguments to the service’s methods.

To define business service user properties
1 With your business service selected in Siebel Tools, expand the Business Service tree in the

Object Explorer, and then select Business Service User Prop.

The Business Service User Props list appears in the Object List Editor.

Argument Description

Input This type of argument serves as input to the method.

Input/
Output

This type of argument serves as both input to the method
and output from the method.

Output This type of argument serves as output from the method.

Business Services ■ Creating Business Services in Siebel Business Applications

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

81

2 Right-click, then choose New Record.

3 Type the name of the user property in the Name field of the new record.

4 Type a value in the Value field.

The value can be an integer, a string, or a Boolean.

Creating Business Services in Siebel
Business Applications
You can define business services in Siebel Business Applications using the Business Service
Administration screens. The business services you create in the client are stored in the Siebel
Database. This topic illustrates the creation of business services using the Business Service Methods
view, which includes applets to create and display the business service.

To define a business service in the Siebel application
1 Navigate to the Administration - Business Service screen, Methods view.

2 Click New to create a new record in the Methods form applet:

■ Name. Name of the business service.

■ Cache. If checked then the business service instance remains in existence until the user’s
session is finished; otherwise, the business service instance will be deleted after it finishes
executing.

■ Inactive. Check if you do not want to use the business service.

3 Define methods for the business service in the Methods list applet:

■ Name. Name of the method.

■ Inactive. Check if you do not want to use the method.

4 Define method arguments for the methods in the Method Arguments list applet:

■ Name. Name of the method argument.

■ Type. The type of the business service method argument. Valid values are Output, Input,
and Input/Output.

■ Optional. Check if you do not want this argument to be optional.

■ Inactive. Check if you do not want to use the argument.

5 From the link bar, select Scripts.

6 Write your Siebel eScript or VB code in the Business Service Scripts list applet.

NOTE: To write any Siebel VB script in the Business Services, the operating system you are using
must support Siebel VB. Siebel VB is not supported in UNIX environments.

7 Click Check Syntax to check the syntax of the business service script.

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Business Services ■ Deploying Business Services as Web Services

82

Deploying Business Services as Web
Services
You can deploy business services, which you have created in Siebel Tools, as Web services. The Web
services can then be consumed by other applications.

To be deployed, a business service must have at least one accessible method that is supported in
Siebel inbound Web services. The business service must include a valid integration object name for
any hierarchical argument.

NOTE: The Hierarchy type is not supported unless a valid integration object name is specified.

For more information on Web services, see Chapter 5, “Web Services”.

To deploy a business service as a Web service
1 In the Object Explorer in Siebel Tools, select the Business Service object.

The Business Services list appears.

2 In the Object List Editor, right-click the business service to deploy, and then choose Deploy as
Web Service.

The Expose Business Service as Web Service dialog box appears.

3 Specify the following in the dialog box, and then click Finish:

■ Business service methods to expose. The operation names for the business service
methods are system generated. To edit an operation name, click it in the list.

■ URL for the Web service. Replace <webserver> with a valid host name and <lang> with a
valid language code, such as enu.

■ Generate WSDL check box. To generate a Web Services Description Language (WSDL) file,
select the check box, and then choose a location to save the WSDL file.

The business service is deployed. Deployed business services are shown in the Administration -
Business Services screen in the Siebel client. Deployed Web services are shown in the Administration
- Web Services screen, Inbound Web Services view.

You can also remove (undeploy) deployed business services from the Siebel run-time database.

To undeploy a business service
1 In the Siebel client, navigate to the Administration - Business Services screen.

The Details list appears.

2 Query for the deployed business service, and then select it.

3 Click Delete.

The business service is undeployed.

Business Services ■ Exporting and Importing Business Services in Siebel Tools

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

83

Exporting and Importing Business
Services in Siebel Tools
You can export business services into an XML file by clicking Export in the Business Services list in
the Object List Editor. This writes the definition of the business service, including every method,
method argument, and script, into the XML file.

You can import a business service from an external XML file by clicking Import in the Business
Services list in the Object List Editor.

Importing Business Services into Siebel
Business Applications
You can import business services, which you have created in Siebel Tools and exported as XML files,
into the Siebel run-time database. This saves time by allowing you to modify business service
definitions without having to shut down your production environment, edit the business services in
workspace of Siebel Tools or Web Tools, and then deliver the workspace.

To import a business service into Siebel Business Applications
1 Navigate to the Administration - Business Service screen, Details view.

2 From the Menu pull-down, choose Import Service.

3 The Business Service Import dialog appears.

4 Browse for a business service XML file, and then click Import.

Testing Your Business Service in the
Simulator
You can use the Business Service Simulator to test your business services in an interactive mode.

To run the Business Service Simulator
1 Navigate to the Administration - Business Service screen, Simulator view.

NOTE: The contents of the Simulator view are not persistent. To save the data entered in the
applets, click the Save To File button. This will save the data for the active applet in an XML file.
The data can then be loaded into the next session from an XML file by clicking on the Load From
File button.

2 In the Simulator list applet, click New to add the business service you want to test.

3 Specify the Service Name and the Method Name.

4 Enter the number of iterations you want to run the business service:

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Business Services ■ About Accessing a Business Service Using Siebel eScript or Siebel VB

84

■ Specify the input parameters for the Business Service Method in the Input Property Set
applet. Multiple input property sets can be defined and are identified by specifying a Test
Case #.

■ If the Input Property Set has multiple properties, then these can be specified by clicking on
the glyph in the Property Name field. Hierarchical property sets can also be defined by
clicking on the glyph in the Child Type field.

5 Click Run to run the business service.

The Simulator runs the specified number of iterations and loops through the test cases in order.
If you have defined multiple input arguments, then you can choose to run only one argument at
a time by clicking Run On One Input.

The result appears in the Output Property Set applet.

NOTE: When the Output arguments are created, you can click Move To Input to test the outputs
as inputs to another method.

About Accessing a Business Service
Using Siebel eScript or Siebel VB
In addition to accessing a business service through a workflow, you can use Siebel VB or eScript to
call a business service. The following Siebel eScript code calls the business service EAI XML Read
from File to read an XML file, and produces a property set as an output. The EAI Siebel Adapter uses
the output property set to insert a new account into the Siebel application:

var svcReadFile = TheApplication().GetService("EAI XML Read from File") ;

var svcSaveData = TheApplication().GetService("EAI Siebel Adapter");

var child = TheApplication().NewPropertySet();

var psInputs = TheApplication().NewPropertySet();

var psOutputs = TheApplication().NewPropertySet();

var psOutputs2 = TheApplication().NewPropertySet();

var svcSaveData = TheApplication().GetService("EAI Siebel Adapter");

psInputs.SetProperty("FileName", "c:\\NewAccount.xml");

psOutputs.SetType "SiebelMessage";

psOutputs.SetProperty "IntObjectName","Sample Account";

psOutputs.SetProperty "MessageId", "";

psOutputs.SetProperty "MessageType", "Integration Object";

svcReadFile.InvokeMethod("ReadEAIMsg",psInputs, psOutputs);

svcSaveData.InvokeMethod("Upsert",psOutputs,psOutputs2);

Business Services ■ Business Scenario for the Use of Business Services

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

85

The following Siebel VB sample code shows how to call the EAI File Transport business service to read
an XML file. It also shows how to use the XML Converter business service to produce a property set:

Set Inp = TheApplication.NewPropertySet

Inp.SetProperty "FileName", "c:\test.xml"

Inp.SetProperty "DispatchService", "XML Converter"

Inp.SetProperty "DispatchMethod" , "XMLToPropSet"

Set svc = theApplication.GetService("EAI File Transport")

Set XMLOutputs = theApplication.NewPropertySet

svc.InvokeMethod "ReceiveDispatch", Inp, XMLOutputs

TheApplication.RaiseErrorText Cstr(XMLOutputs.GetChildCount)

Business Scenario for the Use of
Business Services
Consider an example of a form on a corporate Web site. Many visitors during the day enter their
personal data into the fields on the Web form. The field names represent arguments, whereas the
personal data represent data. When the visitor clicks Submit on the form, the form’s CGI script
formats and sends the data by way of the HTTP transport protocol to the corporate Web server. The
CGI script can be written in JavaScript, Perl, or another scripting language.

The CGI script might have extracted the field names and created XML elements from them to
resemble the following XML tags:

First Name = <FirstName></FirstName>

Last Name = <LastName></LastName>

The CGI script might then have wrapped each data item inside the XML tags:

<FirstName>Hector</FirstName>

<LastName>Alacon</LastName>

To insert the preceding data into the Siebel Database as a Contact, your script calls a business
service that formats the XML input into a property set structure that the Siebel application
recognizes.

Code Sample Example for Creating a Property Set
The following is an example of the Siebel eScript code that you must write to create the property set:

x = TheApplication.InvokeMethod("WebForm", inputs, outputs);

var svc; // variable to contain the handle to the Service

var inputs; // variable to contain the XML input

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Business Services ■ Business Scenario for the Use of Business Services

86

var outputs; // variable to contain the output property set

svc = TheApplication().GetService("EAI XML Read from File");

inputs = TheApplication().ReadEAIMsg("webform.xml");

outputs = TheApplication().NewPropertySet();

svc.InvokeMethod("Read XML Hierarchy", inputs, outputs);

The following functions could be called from the preceding code. You attach the function to a business
service in Siebel Tools:

NOTE: You cannot pass a business object as an argument to a business service method.

Function Service_PreInvokeMethod(MethodName, inputs, outputs)

{

if (MethodName=="GetWebContact")

{

fname = inputs.GetProperty("<First Name>");

lname = inputs.GetProperty("<Last Name>");

outputs.SetProperty("First Name",fname);

outputs.SetProperty("Last Name", lname);

return(CancelOperation);

}

return(ContinueOperation);

}

Function Service_PreCanInvokeMethod(MethodName, CanInvoke)

{

if (MethodName="GetWebContact")

{

CanInvoke ="TRUE";

return (CancelOperation);

}

else

{

return (ContinueOperation);

Business Services ■ Business Scenario for the Use of Business Services

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

87

}

}

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Business Services ■ Business Scenario for the Use of Business Services

88

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

89

5 Web Services

This chapter describes Web services, their uses, and how to create, implement, and publish Siebel
Web services. This chapter also provides examples of how to invoke an external Web service and a
Siebel Web service. The following topics are included:

■ About Web Services on page 89

■ About RPC-Literal and DOC-Literal Bindings on page 91

■ About One-Way Operations and Web Services on page 92

■ Invoking Siebel Web Services Using an External System on page 93

■ Consuming External Web Services Using Siebel Web Services on page 102

■ Using the Local Business Service on page 112

■ About XML Schema Support for the xsd:any Tag on page 116

■ Examples of Invoking Web Services on page 117

■ About Web Services Security Support on page 122

■ About Siebel Authentication and Session Management SOAP Headers on page 126

■ About Web Services and Web Single Sign-On Authentication on page 136

■ About SOAP Fault Schema Support on page 137

■ About Custom SOAP Filters on page 141

■ About EAI File Streaming on page 145

■ About Web Services Cache Refresh on page 148

■ Enabling Web Services Tracing on page 149

About Web Services
Web services combine component-based development and Internet standards and protocols that
include HTTP, XML, Simple Object Access Protocol (SOAP), and Web Services Description Language
(WSDL). You can reuse Web services regardless of how they are implemented. Web services can be
developed on any platform and in any development environment as long as they can communicate
with other Web services using these common protocols.

Business services or workflows in Siebel Business Applications can be exposed as Web services to be
consumed by an application. Siebel Web Services framework has an ability to generate WSDL files
to describe the Web services hosted by the Siebel application. Also, the Siebel Web Services
framework can invoke external Web services. This is accomplished by importing a WSDL document,
described as an external Web service, using the WSDL Import Wizard in Siebel Tools.

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Web Services ■ About Web Services

90

To specify the structure of XML used in the body of SOAP messages, Web services use an XML
Schema Definition (XSD) standard. The XSD standard describes an XML document structure in terms
of XML elements and attributes. It also specifies abstract data types, and defines and extends the
value domains.

Users or programs interact with Web services by exchanging XML messages that conform to Simple
Object Access Protocol (SOAP). For Web services support, SOAP provides a standard SOAP envelope,
standard encoding rules that specify mapping of data based on an abstract data type into an XML
instance and back, and conventions for how to make remote procedure calls (RPC) using SOAP
messages.

Supported Web Services Standards
The following Web services standards are supported by Siebel Business Applications:

■ Web Services Description Language (WSDL) 1.1

■ Web Services Security (WS-Security) based on the clear-text UserName Token mechanism. For
information, see the following:

■ http://schemas.xmlsoap.org/ws/2002/07/secext

■ http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd

NOTE: Passing user credentials in the URL is not supported in the current release of Siebel CRM.
Also, Oracle supports only UserName token policy for 2004 WS-Security standard.

■ Web Services Interoperability (WS-I) Basic Profile 1.0

■ Simple Object Access Protocol (SOAP) 1.1

■ Hypertext Transfer Protocol (HTTP) 1.1

■ Extensible Markup Language (XML) 1.0

■ XML Schema

■ Extensible Stylesheet Language Transformation (XSLT) 1.0

For more details on supported elements and attributes, see XML Reference: Siebel Enterprise
Application Integration. For information on supported standards, see:

http://www.w3.org

Web Services ■ About RPC-Literal and DOC-Literal Bindings

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

91

About RPC-Literal and DOC-Literal
Bindings
In Siebel Business Applications, publishing a Siebel Web service as a Document-Literal (DOC-Literal)
or RPC-Literal bound Web service partly conforms to the specification as defined by the Web Services
Interoperability Organization’s (WS-I) Basic Profile specification. Adherence to this specification
makes sure that Siebel Business Applications can interoperate with external Web service providers.

WS-I is a trademark of the Web Services Interoperability Organization in the United States and other
countries.

RPC-Literal Support
RPC allows the use of transports other than HTTP (for example, MQ and MSMQ), because you do not
have to use the SOAPAction header to specify the operation.

The following specifications are required for using RPC-literal:

Specification R2717. An RPC-literal binding in a description must have the namespace attribute
specified, the value of which must be an absolute uniform resource identifier (URI), on contained
soapbind:body elements.

Specification R2729. A message described with an RPC-literal binding that is a response message
must have a wrapper element whose name is the corresponding wsdl:operation name suffixed with
the string Response.

Specification R2735. A message described with an RPC-literal binding must place the part
accessory elements for parameters and return value in no namespace.

Specification R2207. A message in a description can contain parts that use the elements attribute,
provided that those parts are not referred to by a soapbind:body element in an RPC-literal binding.

Making a Web Service an RPC-Literal Web Service
RPC literal processing is enabled by rendering a Web service as an RPC-literal Web service, and
choosing the correct binding on the Inbound Web Services view.

To make a Web service an RPC-literal Web service
1 Navigate to the Administration - Web Services screen, Inbound Web Services view.

2 Select or add a new namespace from the Inbound Web Services list following the instructions in
“Invoking Siebel Web Services Using an External System” on page 93.

3 Create a new inbound service port record in the Service Ports list, as indicated in “Invoking Siebel
Web Services Using an External System” on page 93

4 In the Binding column, select SOAP_RPC_LITERAL from the drop-down list.

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Web Services ■ About One-Way Operations and Web Services

92

DOC-Literal Support
When a SOAP DOC-literal binding is used, the SOAP envelope (the Body element) will contain the
document WSDL part without any wrapper elements. The SOAP operation is determined by way of a
SOAPAction HTTP header.

NOTE: SOAP:Body is in the instance SOAP message, but soapbind:body is the attribute in the WSDL
document.

The following is a restriction for using DOC-literal-Specification R2716. A document-literal binding in
a description must not have the namespace attribute specified on contained soapbind:body,
soapbind:header, soapbind:headerfault, and soapbind:fault elements.

Making a Web service a DOC-literal one is the same as described in “Making a Web Service an RPC-
Literal Web Service” on page 91. When creating the new inbound service port record in the Service
Ports list applet, select SOAP_DOC_LITERAL from the drop-down list in the Binding column.

About One-Way Operations and Web
Services
One-Way operations provide a means of sending a request to a Web service with the expectation that
a SOAP response will not be returned. The Siebel application provides the ability to publish and
consume Web services that implement one-way operations.

One-way operations come into play in both inbound and outbound scenarios:

■ Inbound. If the Business Service Workflow method does not have any output arguments, then
it is a one-way operation.

■ Outbound. If the service proxy method has no output arguments, then it is a one-way operation.

Consider using one-way operations when data loss is tolerable. In cases involving one-way
operations, you send a SOAP request and do not receive a SOAP response. The provider receives the
SOAP request and processes it.

NOTE: It is important to note that SOAP faults, if any, are not returned as well.

Defining Support for One-Way Operations
In defining support for one-way operations, the following WS-I Basic Profile specifications are taken
into account:

■ Specification R2714. For a one-way operation, an instance must not return a HTTP response
that contains a SOAP envelope. Specifically, the HTTP response entity-body must be empty.

■ Specification R2715. An instance must not consider transmission of one-way operations
complete until a HTTP response status code of either 200 OK or 202 Accepted is received by the
HTTP client.

■ Specification R2727. For one-way operations, an instance must not interpret the HTTP
response status code of 200 OK or 202 Accepted to mean the message is valid or that the receiver
would process it.

Web Services ■ Invoking Siebel Web Services Using an External System

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

93

Invoking Siebel Web Services Using an
External System
The Siebel application allows enterprises to publish any business service or business process as a
Web service. This process is also known as creating an inbound Web service. When the business
service or business process is defined, a Siebel administrator navigates to the Administration - Web
Services screen, Inbound Web Services view in the Siebel Web Client, and publishes it as a Web
service. When the business service or business process is published as a Web service, the
administrator generates the Web Service Definition Language (WSDL) document for the newly
created Web service. The resulting WSDL document is consumed by an external application to invoke
this Web service.

NOTE: You can deploy business services and workflows as Web services and generate WSDL files
directly from Siebel Tools. For information on deploying business services, see “Deploying Business
Services as Web Services” on page 82. For information on deploying workflows as Web services, see
Siebel Business Process Framework: Workflow Guide.

The following inbound Web services topics are covered:

■ “Publishing Inbound Web Services” on page 93

■ “Generating a WSDL File” on page 95

■ “About the Relationship of Port Types and Operations” on page 95

■ “About Defining the Web Service Inbound Dispatcher” on page 96

■ “Invoking Web Services on the Siebel Mobile Web Client” on page 97

Publishing Inbound Web Services
You can create and publish an inbound Web service using the Inbound Web Services view, as
illustrated in the following procedure. You can then use the new inbound Web service when
generating a WSDL document.

NOTE: If publishing an ASI as an inbound Web service, then make sure that the ASI is enabled for
external use in Siebel Tools.

To create an inbound Web service
1 Navigate to the Administration - Web Services screen, Inbound Web Services view.

2 In the Inbound Web Services list, create a new record:

a Enter the namespace for your organization’s Web services in the Namespace column.

NOTE: This step is required for generating various XML documents.

b Enter the name of the inbound Web service in the Name column.

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Web Services ■ Invoking Siebel Web Services Using an External System

94

c Select Active in the Status field to enable external applications to invoke the Web service.

NOTE: If the Web service is inactive, then the external applications cannot invoke the Web
service without clearing the cache.

d (Optional) Enter a description of the Web service in the Comment column.

3 Create an inbound service port record in the Service Ports list:

a Click New and enter the name of the port in the Name column.

b Pick the type of object published. If the required type is not available, then add a new type
following Step c through Step f; otherwise, move to Step g.

c Click New and select the implementation type (Business Service or Workflow Process).

d Select the implementation name (the business service or workflow that implements the port
type).

e Enter a name for the new type in the Name field and click Save.

f Click Pick in the Inbound Web Services Port Type Pick Applet to complete the process of adding
a new Type.

g Select the protocol or transport that will publish the Web service.

h Enter the address appropriate for the transport chosen:

❏ For the HTTP transport, enter an HTTP address of the Web service to be invoked, such as:

http://mycompany.com/webservice/orderservice

❏ For the JMS transport, enter the following:

jms://YourQueueName@YourConnectionFactory

❏ For the Local Web Service transport, enter the name of the inbound port.

❏ For the EAI MSMQ Server transport, enter one of the following:

mq://YourQueueName@YourQueueManagerName

msmq://YourQueueName@YourQueueMachineName

NOTE: With the EAI MQSeries, EAI MSMQ, and EAI JMS transports, the request and response
must be in the same queue. When publishing using EAI MQSeries, EAI MSMQ, or EAI JMS,
you cannot generate WSDL files.

i Select the binding that will publish the Web service.

NOTE: RPC_Encoded, RPC_Literal, and DOC_Literal styles of binding are supported for
publishing Web services.

j Enter a description of the Port in the Comment column.

4 In the Operations list, create a new operation record for the new service port:

NOTE: Only the operations created in this step will be published and usable by applications
calling the Web service. Other business service methods will not be available to external
applications and can only be used for internal business service calls.

a Enter the name of the Web service operation.

Web Services ■ Invoking Siebel Web Services Using an External System

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

95

b Select the name of the business service method in the Method Display Name column.

NOTE: The Method Display Name column displays RunProcess by default if you chose
Workflow Process as the type for your service port. However, you can change this to another
name.

c Select the authentication type from the drop-down list.

For more information on using the Username/Password Authentication Type, see “About RPC-
Literal and DOC-Literal Bindings” on page 91.

Generating a WSDL File
The WSDL file specifies the interface to the inbound Web service. This file is used by Web service
clients to support creation of code to call the Siebel Web service.

When you have created a new inbound Web service record you can generate a WSDL document, as
described in the following procedure.

To generate a WSDL file
1 In the Inbound Web Services view, choose the inbound Web services you want to publish, and

then click Generate WSDL.

A WSDL file is generated that describes the Web service.

2 Save the generated file.

3 Import the WSDL to the external system using one of the following utilities:

■ In Microsoft VisualStudio.Net, use the wsdl.exe utility, for example:

wsdl.exe /l:CS mywsdlfile.wsdl

■ In Apache AXIS, use the wsdl2java utility, for example:

java org.apache.axis.wsdl.WSDL2Java mywsdlfile.wsdl

■ In IBM WSADIE, depending on the version, add the WSDL file to the Services perspective and
then run the Create Service Proxy wizard.

■ In Oracle JDeveloper, use the Java Web Service from WSDL wizard.

NOTE: These utilities only generate proxy classes. Developers are responsible for writing code
that uses the proxy classes.

About the Relationship of Port Types and Operations
Port types are defined in the Inbound Web Services view, in the Service Ports applet. The Type and
Business Service/Business Process Name fields are based on the same dynamic picklist. Opening it
displays all the port types. Here you can create or delete port types.

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Web Services ■ Invoking Siebel Web Services Using an External System

96

After a port type has been created, you can create the operations that the port type will define. This
is done in the Operations applet. Clicking the New button displays any operations that are currently
defined for the specified port type. You can expose as many business service methods as you want,
but once defined they cannot be deleted or modified through the picklist or through the Operations
applet. You can only delete the link between the specified port and operation.

The business service methods are read from the runtime repository. When an operation is defined,
a new record is added to the S_WS_OPERATION table, with the Method Display Name field set to the
business service method.

Subsequent attempts to add new operations display the dynamic picklist of operations stored in the
S_WS_OPERATION table. Any changes to the business service definition made after the Web service
operation was created are not reflected, because operations are read from the database.

When generating a WSDL, the generator reads the port type definition from the database and
retrieves all associated operations. It processes the operations and then checks them against the
business service methods in the runtime repository. Any discrepancy causes an error to be thrown.

This design allows port types to be shared across Web services. Changes to a port type (including
the associated operations) made in one Web service definition do not affect other Web services. You
can only make changes to a port type (such as deletion) after no Web services are pointing to it.

Deleting Operations by Deleting the Port Type
Operations themselves cannot be deleted after being created. The only way to delete an operation
is to delete the associated port type.

NOTE: Deleting a port type will cause all associated operations to be deleted.

To delete a port type and its operations
1 Delete all Service Port records that use this port type.

2 Click New to display the picklist.

3 Delete the port type, which will trigger the deletion of all associated operations.

About Defining the Web Service Inbound Dispatcher
The Web Service Inbound Dispatcher is a business service that is called by an inbound transport
server component (or an outbound Web service dispatcher locally). This business service analyzes
input SOAP messages containing XML data, converts the XML data to an XML hierarchy, maps the
XML hierarchy to business service method arguments, and calls the appropriate method for the
appropriate service (business service or process). After the called method finishes its execution, the
Web Service Inbound Dispatcher converts the output arguments to XML data, and returns the XML
embedded in the SOAP envelope. During this process, any errors are returned as SOAP fault
messages.

Web Services ■ Invoking Siebel Web Services Using an External System

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

97

SOAP Fault Message Example
When the code within a Web service raises an exception anywhere in the Web services stack, the
exception is caught and transformed into a SOAP fault message.

For instance, the following example illustrates a particular case where mustUnderstand has been set
to 1; and therefore, the header is interpreted as being mandatory. However, the corresponding filter
and handler to process the header was not defined. This causes a SOAP fault message to be returned.

The format of the Siebel SOAP fault message for this example follows:

<?xml version="1.0" encoding="UTF-8" ?>
- <SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

- <SOAP-ENV:Body>
- <SOAP-ENV:Fault>

<faultcode>SOAP-ENV:MustUnderstand</faultcode>
<faultstring>Unable to process SOAP Header child element
'newns:AnotherUselessHeader' with 'mustUnderstand="1"'(SBL-EAI-08000)
</faultstring>

- <detail>
- <siebelf:errorstack xmlns:siebelf="http://www.siebel.com/ws/fault">
- <siebelf:error>

<siebelf:errorsymbol />
<siebelf:errormsg>Unable to process SOAP Header child element
'newns:AnotherUselessHeader' with 'mustUnderstand="1"'(SBL-EAI-08000)
</siebelf:errormsg>

</siebelf:error>
</siebelf:errorstack>
</detail>

</SOAP-ENV:Fault>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

For more information on SOAP fault handling, see “About SOAP Fault Schema Support” on page 137.

Invoking Web Services on the Siebel Mobile Web Client
The Siebel Mobile Web Client can serve the same Web services as those deployed on the Siebel
Server, while protecting access through simple authentication. This feature allows developers to
integrate external applications with Siebel Business Applications and test their integrations, without
having to install an entire Siebel Enterprise.

NOTE: All information provided in this topic for the Siebel Mobile Web Client also applies to the Siebel
Developer Web Client.

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Web Services ■ Invoking Siebel Web Services Using an External System

98

The Web service functionality is an extension of the Siebel Mobile Web Client, and runs as a separate
siebel.exe process. This second siebel.exe process is started by the Siebel Mobile Web Client as its
child process. The child process listens on the specified port for all Web service requests. The Web
service requests are processed and sent to the EAI Inbound Dispatch Service, and then the response
is sent back to the Siebel Mobile Web Client. The child process exits when the Siebel Mobile Web
Client exits.

NOTE: If any changes are made to Web services in the run time, then these will not be available to
the child process. You must restart the Siebel Mobile Web Client; you cannot clear the Web services
cache.

Exceptions to Web Service Support
The Siebel Mobile Web Client provides the same Web service support as an EAI-enabled Siebel
Server, with the following exceptions:

■ The Web service consumer, such as soapUI, must be on the same computer as the Siebel Mobile
Web Client.

■ HTTPS is not supported.

■ The Stateless, Stateful, and ServerDetermine session types are not supported. Only the None
session type is supported.

■ Concurrent requests are not serviced in parallel. There is only one siebel.exe process that serves
Web services, so concurrent requests are queued.

NOTE: When multiple Siebel Mobile Web Client instances are running, there will not be multiple
processes serving Web services. However, if the port number is modified in the application
configuration file, then with the next Siebel Mobile Web Client instance a new siebel.exe process
will start and listen to requests on the new port specified in the configuration file.

■ Anonymous Web service requests are not supported.

■ Chunked HTTP requests and responses are not supported.

Supported Authentication Formats
User authentication is the same as for the Siebel Mobile Web Client. The following authentication
formats are supported:

■ Username and password in the URL

■ Username and password inside the SOAP header

■ Username and password inside the Web Services-Security (WS-Security) header

Authentication Formats That Are Not Supported
The following authentication formats are not supported:

■ Single sign-on (SSO)

■ Stateful Web services using separate login and logout requests

■ Stateless Web services using a session token

Web Services ■ Invoking Siebel Web Services Using an External System

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

99

Enabling Web Services on the Siebel Mobile Web Client
Two new parameters have been added to the application configuration file to enable the Web service
functionality: EnableWebServices and WebServicesPort.

To enable Web services on the Siebel Mobile Web Client
■ Set the following parameters in the [Siebel] section of the application configuration file, such as

uagent.cfg:

The next time the Siebel Mobile Web Client starts, it will start the siebel.exe child process. After the
process has started, it can send requests and receive responses.

Starting the siebel.exe Process From the Command Line
When it is not required to start a Siebel Mobile Web Client instance, you can start the siebel.exe
process independently using the command line.

To start the siebel.exe process from the command line
■ Enter the following command:

SIEBEL_CLIENT_ROOT\bin\siebel.exe /l <language_code> /c <configuration_file> /u
<username> /p <password> /d <datasource_in_cfg> /webservice <port_number>

For example:

C:\Siebel\client\bin\siebel.exe /l enu /c enu\uagent.cfg /u SADMIN /p SADMIN /d
Sample /webservice 2330

NOTE: To stop a siebel.exe process started from the command line, you must end the process from
the Windows Task Manager.

Confirming that the siebel.exe Process is Listening
You can use the netstat utility from the DOS prompt to determine whether the siebel.exe child
process is listening for Web service calls.

To confirm that the siebel.exe process is listening
1 From the DOS prompt, type the following:

netstat -a -p TCP

Parameter Value

EnableWebServices TRUE

WebServicesPort Port number on which to listen.
The default is 2330.

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Web Services ■ Invoking Siebel Web Services Using an External System

100

2 Examine the output for the port number you set in the application configuration file, for example:

TCP mycomputer:2330 mycomputer.mycompany.com:0 LISTENING

LISTENING indicates that the siebel.exe process is listening for Web service calls.

Invoking Web Services on the Siebel Mobile Web Client
You can invoke Web services on the Siebel Mobile Web Client by passing credentials in the URL, in
the SOAP header, or in the WS-Security header.

Example of Passing User Credentials in the URL
The URL format is:

http://<host>:<port>?SWEExtSource=WebService&Username=<username>
&Password=<password>

For example:

http://localhost:2330?SWEExtSource=WebService&Username=<username>
&Password=<password>

The following is an example of a request:

soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:asi="http://siebel.com/asi/">

<soapenv:Header/>

<soapenv:Body>

<asi:SiebelAccountQueryById>

<PrimaryRowId>99-28B0A</PrimaryRowId>

</asi:SiebelAccountQueryById>

</soapenv:Body>

</soapenv:Envelope>

Example of Passing User Credentials in the SOAP Header
The URL format is:

http://<host>:<port>?SWEExtSource=WebService&WSSOAP=1

For example:

http://localhost:2330?SWEExtSource=WebService&WSSOAP=1

The following is an example of a request:

soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:asi="http://siebel.com/asi/">

Web Services ■ Invoking Siebel Web Services Using an External System

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

101

<soapenv:Header>

<UsernameToken xmlns="http://siebel.com/webservices">SADMIN</UsernameToken>

<PasswordText xmlns="http://siebel.com/webservices">SADMIN</PasswordText>

<SessionType xmlns="http://siebel.com/webservices">None</SessionType>

</soapenv:Header>

<soapenv:Body>

<asi:SiebelAccountQueryById>

<PrimaryRowId>99-28B0A</PrimaryRowId>

</asi:SiebelAccountQueryById>

</soapenv:Body>

</soapenv:Envelope>

Example of Passing User Credentials in the WS-Security Header
The URL format is:

http://<host>:<port>?SWEExtSource=SecureWebService&WSSOAP=1

For example:

http://localhost:2330?SWEExtSource=SecureWebService&WSSOAP=1

The following is an example of a 2002 request:

<soapenv:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:soapenv="http://
schemas.xmlsoap.org/soap/envelope/" xmlns:asi="http://siebel.com/asi/">

<soapenv:Header>

<wsse:Security xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/07/secext">

http://schemas.xmlsoap.org/ws/2002/07/secext

<wsse:UsernameToken xmlns:wsu="http://schemas.xmlsoap.org/ws/2002/07/utility">

<wsse:Username>SADMIN</wsse:Username>

<wsse:Password Type="wsse:PasswordText">SADMIN</wsse:Password>

</wsse:UsernameToken>

</wsse:Security>

</soapenv:Header>

<soapenv:Body>

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Web Services ■ Consuming External Web Services Using Siebel Web Services

102

<asi:SiebelContactQueryById soapenv:encodingStyle="http://schemas.xmlsoap.org/
soap/encoding/">

<PrimaryRowId xsi:type="xsd:string">04-LLSQ5</PrimaryRowId>

</asi:SiebelContactQueryById>

</soapenv:Body>

</soapenv:Envelope>

The following is an example of a 2004 request:

<wsse:Security mustUnderstand="1" xmlns:wsse="http://docs.oasis-open.org/wss/2004/
01/oasis-200401-wss-wssecuritysecext-1.0.xsd">

<wsse:UsernameToken wsu:Id="UsernameToken-zsXRc97TujDINUug8ibD2Q22"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wsswssecurity-
utility-1.0.xsd">

<wsse:Username>SADMIN</wsse:Username>

<wsse:Password Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
usernametoken-profile-1.0#PasswordText">SADMIN</wsse:Password>

<wsse:Nonce EncodingType="http://docs.oasis-open.org/wss/2004/01/oasis-
200401-wss-soap-message-security-1.0#Base64Binary">f61vAYvDD0t2sUFEmXSVU+FlOvA=</
wsse:Nonce>

<wsu:Created>2014-05-13T17:27:33Z</wsu:Created>

</wsse:UsernameToken>

</wsse:Security>

Consuming External Web Services Using
Siebel Web Services
An outbound Web service acts as a proxy to a Web service published by an external application. This
process creates services that you can then use in a business process, virtual business component
(VBC), run-time event, or any other mechanism within the Siebel application that can call a business
service.

Consumption of external Web services is a two-step process:

■ A WSDL file is imported using Siebel Tools.

■ The consumed Web service is published for run-time clients to use.

Additional steps can involve defining VBCs based on the Web service.

The following outbound Web services topics are covered:

■ “Creating an Outbound Web Service Based on a WSDL File” on page 103

■ “Creating an Outbound Web Service Manually” on page 105

Web Services ■ Consuming External Web Services Using Siebel Web Services

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

103

■ “Integration Objects as Input Arguments to Outbound Web Services” on page 107

■ “Web Services Support for Transport Headers” on page 108

■ “Web Services Support for Transport Parameters” on page 109

■ “SHA2 Support for Outbound Web Service” on page 109

Creating an Outbound Web Service Based on a WSDL
File
Consumption of external Web services is accomplished using the WSDL Import Wizard in Siebel Tools.
The procedure in this topic describes how to use this wizard to read an external WSDL document.

As of Siebel Innovation Pack 2014, you can import the following kinds of cyclic WSDL:

■ Different namespace for same type and same element name

■ Different element name for same type and same namespace

■ Indirect cycle

■ Direct cycle with same element name, type, and namespace

Note the following restrictions on WSDL import:

■ The WSDL Import Wizard expects each schema to have a unique target namespace. Using the
same namespace for more than one schema will generate an error.

■ Importing a WSDL with a mix of different SOAP operation styles (for example, RPC and
Document) within one service port binding is not supported. Modify the WSDL to have a service
port binding defined for each SOAP operation style.

To create an outbound Web service based on a WSDL file
1 In Siebel Tools, create a new project and lock the project, or lock an existing project.

2 From the File menu, choose New Object to display the New Object Wizards dialog box.

3 Click the EAI tab, and then double-click Web Service.

The WSDL Import Wizard appears.

a Select the project where you want the objects to be held after they are created from the WSDL
document.

b Specify the WSDL document that contains the Web service or Web services definition that you
want to import.

c Specify the file where you want to store the run-time data extracted from the WSDL document
or accept the default.

d Specify the log file where you want errors, warnings, and other information related to the import
process to be logged or accept the default.

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Web Services ■ Consuming External Web Services Using Siebel Web Services

104

e (Optional) Select the Process Fault Schema checkbox, and specify an existing Fault Integration
Object Name, to create and reuse SOAP fault integration objects.

NOTE: SOAP fault integration objects are prepended with Fault_.

For more information on SOAP fault integration objects, see “About SOAP Fault Schema
Support” on page 137.

4 Click Next.

A summary of your import information, as well as any errors, appears.

5 (Optional) Select the Deploy the Integration Object(s) and the Proxy Business Service(s)
checkbox to deploy these objects to the Siebel run-time database.

Deployed integration objects are shown in the Administration - Web Services screen, Deployed
Integration Objects view in the Siebel client. Deployed business services are shown in the
Administration - Business Services screen in the Siebel client.

NOTE: If you deploy integration objects while the Siebel Server is running, then you must
subsequently clear the Web services cache in the Administration - Web Services screen, Inbound
(or Outbound) Web Services view.

6 Click Finish to complete the process of importing the business service into the Siebel repository.

This procedure generates three objects in the Siebel repository:

■ An outbound proxy business service of CSSWSOutboundDispatcher class. This service acts as a
client-side implementation of the Web service and includes the operations and the arguments to
the operations defined in the WSDL document.

NOTE: For RPC services, the order of input arguments is important. You can set the order
through the Preferred Sequence property of the business service method argument in Siebel
Tools. By specifying this parameter, the outbound dispatcher makes sure that the sequence
parameters for an operation are in the correct order. The Preferred Sequence property is only
supported with outbound services.

■ Integration objects, representing input and output parameters of the service methods, if any of
the operations require a complex argument (XML Schema) to be passed. If the service does not
use complex arguments, then no integration object definitions will be created.

■ A Web service administration document (XML file) containing the run-time Web service
administration data to be imported into the Siebel Web Client, using the Outbound Web Services
view of the Administration - Web Services screen.

The purpose of the document is to allow administrators to modify run-time parameters such as
the URL and encoding rules. The data contained within the document is used by the Web Services
Dispatcher to assemble the SOAP document, to set any HTTP headers required (for example,
soapAction), and to route the request to the correct URL. For information, see “To import run-
time data about external Web services” on page 105.

Importing Run-time Data About External Web Services
The WSDL Import Wizard exports the data to a file that you can import to the run-time database (the
Web services address) using the Outbound Web Services view.

Web Services ■ Consuming External Web Services Using Siebel Web Services

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

105

To import run-time data about external Web services
1 Log in to Siebel Tools or Web Tools as an administrator (see Using Siebel Tools).

2 Create a workspace.

3 Import the WSDL and deliver the workspace.

NOTE: This ensures that the objects created by Web service Import wizard are delivered to the
runtime repository.

4 Navigate to the Administration - Web Services screen, Outbound Web Services view.

5 In the Outbound Web Services list applet, click Import to display the EAI Web Service Import
dialog box.

6 Specify the export file created by the Web Services Import Wizard.

7 Click Import to import the Web service definition into the database.

Creating an Outbound Web Service Manually
WSDL does not provide native bindings for EAI MQSeries and EAI MSMQ transports. If your business
requires you to pick up messages using these transports, then you can manually create an outbound
Web service definition and update a corresponding business service in Siebel Tools to point to that
Web service. The following procedure describes this process.

To manually create a new outbound Web service
1 Navigate to the Administration - Web Services screen, Outbound Web Services view.

2 In the Outbound Web Services list applet, create a new record:

a Enter the namespace of the Web service in the Namespace column.

b Enter the name of the Web service in the Name column.

c Select Active or Inactive in the Status field.

d Enter a description of the Web service in the Comment column.

NOTE: When importing an external Web service, you do not have to specify the proxy
business service, integration objects, or the run-time parameters.

3 In the Service Ports list applet, create a new outbound service ports record:

a Enter the name of the Web service port in the Name column.

b Select a transport name for the protocol or queuing system for the Transport.

4 Enter the address for the transport chosen to publish the Web service:

■ The URL format to publish using HTTP is:

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Web Services ■ Consuming External Web Services Using Siebel Web Services

106

http://webserver/eai_anon_lang/
start.swe?SWEExtSource=SecureWebService&SWEExtCmd=Execute

where:

webserver is the name of computer where the Siebel Web Server is installed

lang is the default language of the Object Manager that handles the request

■ The format to publish using the EAI JMS Transport is:

jms://queue name@connection factory

where:

queue name is the Java Naming and Directory Interface (JNDI) name of the queue

connection factory is the JNDI name of the JMS connection factory

NOTE: The JNDI name varies depending upon the JMS provider and your implementation.

■ The format to publish over the EAI MQSeries or EAI MSMQ transport is:

mq://queue name@queue manager name

msmq://queue name@queue machine name

where:

queue name is the name of the queue that is specified by either the EAI MQ Series or the EAI
MSMQ transport at the time of its design

queue manager name is the name of the EAI MQSeries Transport queue manager

queue machine name is the name of the computer that owns the queue specified by the
physical queue name for the EAI MSMQ Transport

NOTE: When publishing using EAI MQSeries or EAI MSMQ, you cannot generate WSDL files.

■ For the Local Workflow Process or Local Business Service transport, enter the name of the
workflow or business service to be called.

■ For the Local Web Service transport, enter the name of the inbound port.

5 Select the binding that will publish the Web service.

NOTE: RPC_Encoded, RPC_Literal, DOC_Literal, and Property Set styles of binding are supported
for publishing Web services.

Use the Property Set binding when the input property set to the proxy service is forwarded
without changes to the destination address. This is intended primarily for use in combination with
the Local Workflow Process or Local Business Service transport to avoid the overhead of
processing XML.

6 Enter a description of the port in the Comment column.

7 In the Operations list applet, create a new operation record for the new service port you created
in Step 3 on page 105:

Web Services ■ Consuming External Web Services Using Siebel Web Services

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

107

a Select the name of the business service method in the Method Display Name column to complete
the process.

b Select the authentication type from the drop-down list.

NOTE: For more information on using the Username/Password Authentication Type, see
“About Web Services Security Support” on page 122.

8 Generate the WSDL file. For information, see “Generating a WSDL File” on page 95.

Updating the Outbound Proxy Business Service
When you have created your outbound Web service, update a corresponding outbound proxy
business service in Siebel Tools to point to that Web service. This associates the outbound proxy
business service and the outbound Web service. The following procedure outlines the steps you take
to accomplish this task.

To update an outbound Web service proxy business service to point to an outbound
Web service
1 In Siebel Tools, select the outbound Web service proxy business service you want to use to call

your outbound Web service.

2 Add the following user properties for this business service and set their values based on the
outbound service port of your Web service:

■ siebel_port_name

■ siebel_web_service_name

■ siebel_web_service_namespace

Integration Objects as Input Arguments to Outbound
Web Services
It is recommended that the property set used as an input argument to the outbound Web service
have the same name as the input argument's outbound Web service proxy.

You can do this using one of the following options:

■ Change the output from all your business services that provide the input to the outbound Web
service from SiebelMessage to the actual outbound Web service argument name specified in
Siebel Tools.

Change the output from your business services in Siebel Tools, as well as the name of the
property set child that contains the integration object instance.

■ Change the property set type name from SiebelMessage to the actual outbound Web service
argument name by using Siebel eScript on a business service before calling the outbound Web
service.

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Web Services ■ Consuming External Web Services Using Siebel Web Services

108

The following Siebel eScript example shows how to pass an integration object and a session token
to a proxy business service using the integration object as an input argument. The script is written
on the Service_PreInvokeMethod event of the proxy business service.

function Service_PreInvokeMethod (MethodName, Inputs, Outputs) {

var childPS;

var newInputPS;

var svc;

for (var i = 0; i < Inputs.GetChildCount(); i++) {

if(Inputs.GetChild(i).GetType() == "SiebelMessage") {

childPS = Inputs.GetChild(i);

}

}

childPS.SetType("myBusSvcMethod:myIntegrationObject");

newInputPS = TheApplication().NewPropertySet();

newInputPS.SetProperty("myBusSvcMethod:sessionToken:string",
Inputs.GetProperty("token"));

newInputPS.AddChild(childPS);

svc = TheApplication().GetService("myBusSvc");

svc.InvokeMethod("myBusSvcMethod", newInputPS, Outputs);

return (CancelOperation); // must use CancelOperation with custom methods

}

Web Services Support for Transport Headers
The outbound Web service dispatcher supports input arguments for user-defined (or standard)
transport headers.

The following is the format for the outbound Web service dispatcher input arguments:

■ Name: siebel_transport_header:headerName

■ Value: Header value

Web Services ■ Consuming External Web Services Using Siebel Web Services

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

109

Table 8 shows examples of input arguments for transport headers.

Web Services Support for Transport Parameters
The outbound Web service dispatcher supports input arguments for transport parameters defined in
proxy business services such as EAI HTTP Transport.

The following is the format for the outbound Web service dispatcher input arguments:

■ Name: siebel_transport_param:parameterName

■ Value: Parameter value

Table 9 shows examples of input arguments for transport parameters.

For more information on transport parameters, see the topic on EAI HTTP Transport business service
method arguments in Transports and Interfaces: Siebel Enterprise Application Integration.

SHA2 Support for Outbound Web Service
NOTE: Non-Windows platforms use Mainwin library that does not support SHA2. In order to provide
SHA2 support on non-Windows platforms, Siebel uses the OUTBOUNDSHA2 named subsystem that
routes the outbound calls using a javacontainer. As Windows platforms support SHA2, they do not
require OUTBOUNDSHA2.

Table 8. Examples of Transport Headers as Input Arguments

Parameter Name Value

siebel_transport_header:UserDefinedHeader myData

siebel_transport_header:Authorization 0135DFDJKLJ

Table 9. Examples of Transport Parameters as Input Arguments

Parameter Name Value

siebel_transport_param:HTTPRequestMethod HTTP method to use with the data request,
such as Post or Get

siebel_transport_param:HTTPRequestURLTemplate Template for the request URL, which is the
address to which the data is sent or from
which a response is requested, for
example:

http://mycompany.com/*

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Web Services ■ Consuming External Web Services Using Siebel Web Services

110

Siebel supports SHA2 for outbound calls through the framework described here. This support for
SHA2 is through the introduction of a Config Agent between the Siebel Server and the external Web
Server. The Config Agent accepts local requests from mainwin within the Siebel server and transfers
the same to the external Web Server in SHA2 as seen in Figure 28. To configure certificates for the
Config Agent, see the chapter on communications and data encryption in the Siebel Security Guide.

The transfer is made possible by a servlet named outboundeai that resides on the Config Agent. This
servlet copies the outbound request body and Siebel server header information and transfers it to
the external Web Server. The servlet also collects the response from the Web Server and transfers it
back to the Siebel server as seen in Figure 29.

Configuring Siebel Server and Config Agent for SHA2 Outbound
The SHA2 support for HTTP outbound is achieved via configuring a named subsystem of type
JavaContainerSubSys. The name of this named subsystem is then set to the value of the
EAIOutboundSubSys component parameter as described in the following procedure.

Figure 28. Siebel outbound web service configuration for SHA2

Figure 29. Detailed Siebel outbound web service configuration for SHA2

Web Services ■ Consuming External Web Services Using Siebel Web Services

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

111

To configure the named subsystem for SHA2 support in outbound
1 Go to the Siebel Server Manager and search on OUTBOUNDSHA2 as follows:

list param for named subsystem OUTBOUNDSHA2

where:

OUTBOUNDSHA2 is the name of the new named subsytem

2 Set the name of this named subsystem as value of the EAIOutboundSubSys component
parameter:

change param EAIOutboundSubSys=OUTBOUNDSHA2 for comp SCCObjMgr_enu

where:

SCCObjMgr_enu is the Siebel Object Manager component

3 When the user makes an outbound call, the EAI Outbound Dispatcher checks for the value of the
component parameter.

a If the value is present, the dispatcher will make a http call to the servlet hosted in the Config
Agent specified in CONTAINERURL and the Config Agent will make the https call to the external
Web Server.

b If the value is not present for the component parameter or the named subsystem parameter, the
dispatcher makes a direct https call to the external Web Server.

4 Restart component.

stop comp sccobjmgr_enu

start comp sccobjmgr_enu

Parameters for the named subsystem
The named subsystem has three parameters as seen in Table 10.

NOTE: Only CONTAINERURL should be used for this configuration.

Table 10. Parameters for the named subsystem

Property Value

CLASSPATH Not applicable.

OPTIONS Not applicable.

CONTAINERURL URL for siebel-eaioutbound.war hosted on the Config Agent.

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Web Services ■ Using the Local Business Service

112

Using the Local Business Service
In many instances, Web services use specialized SOAP headers for common tasks such as
authentication, authorization, and logging. To support this common Web service extensibility
mechanism, the Local Business Service transport for outbound Web services can be used. When
specified as a transport, the Web services infrastructure will route the message to the specified
business service for additional processing and delivery to the Web service endpoint as shown in the
first half of Figure 30.

If the Web service to be invoked is within the sample application, then no need exists to call such a
Web service by using HTTP (or anything else).

An example of using a local business service is a department store developing a workflow in Siebel
Tools to perform credit card checks before purchases. The purchase is entered into the sales register
along with the credit card information (the outbound Web service proxy). If the credit card is issued
by the department store, then the information can be checked using the internal database (a local
business service). The send request stays within the department store’s own computer network. An
approval or denial is the output (the Web service endpoint). If the credit card is a MasterCard or a
Visa card, then the card information is passed over the Internet for verification. No local business
service would be involved.

The input to the local business service is a property set representation of the SOAP request. Once
within the local business service, additional SOAP headers can be added to address infrastructure
requirements by direct modification of the input property set by using Siebel eScript or Siebel VB.

The following local business service topics are also discussed:

■ “Script Example for a Local Business Service” on page 113

■ “SOAP Document Generated by the Local Business Service” on page 114

■ “Using the Local Business Service in an Outbound Web Service” on page 115

Figure 30. Local Business Service Used as a Transport

Web Services ■ Using the Local Business Service

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

113

Script Example for a Local Business Service
A portion of the sample script for a local business service used to add a custom SOAP header to an
outbound Web service request is shown in the following example. Local variables, error handling, and
object destruction are omitted for clarity.

// Create the SOAP header.

soapHdr.SetType("SOAP-ENV:header");

// Populate the SOAP header elements.

appId.SetType("ns1:ApplicationID");

appId.SetValue("Siebel");

pwd.SetType("ns1:PWS");

pwd.SetValue("123456789");

langCd.SetType("ns1:Lang");

langCd.SetValue("ENU");

uName.SetType("ns1:userID");

uName.SetValue("first.last@mycompany.com");

// Populate the profileHeader element.

profileHeader.SetType("authHeader");

profileHeader.SetProperty("xmlns:ns1", "http://siebel.com/authHeaders");

profileHeader.AddChild(appId);

profileHeader.AddChild(pwd);

profileHeader.AddChild(langCd);

profileHeader.AddChild(uName);

// SOAP header property set. Once this is complete, add the SOAP header as a child
of the Input property set (which contains the SOAP:body).

soapHdr.InsertChildAt(profileHeader, 0)

Inputs.InsertChildAt(soapHdr, 0);

// Convert the property set to a well-defined XML document.

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Web Services ■ Using the Local Business Service

114

// Using the XML Hierarchy Converter: must add a child element of type XMLHierarchy.

childPS.SetType("XMLHierarchy");

childPS.AddChild(Inputs);

inPs.AddChild(childPS);

inPs.SetProperty("EscapeNames", "FALSE");

inPs.SetProperty("GenerateProcessingInstructions", "FALSE");

xmlSvc.InvokeMethod("XMLHierToXMLDoc", inPs, outPs);

// Proxy the request through a trace utility to view the SOAP document.

// Set custom HTTP header - SOAPAction

outPs.SetProperty("HTTPRequestURLTemplate", "http://localhost:9000/search/beta2");

outPs.SetProperty("HTTPRequestMethod", "POST");

outPs.SetProperty("HTTPContentType", "text/xml; charset=UTF-8");

outPs.SetProperty("HDR.SOAPAction","customSOAPActionValue");

// Invoke the Web service using the standard HTTP protocol.

httpSvc.InvokeMethod("SendReceive", outPs, hpOut);

// Convert the SOAP document to a property set using the XML Converter, returning
the SOAP header and SOAP body.

xmlCtr.InvokeMethod("XMLToPropSet", hpOut, Outputs);

…

After you have created your business service, deliver its workspace.

SOAP Document Generated by the Local Business
Service
The following example displays the resulting SOAP document generated by the “Script Example for a
Local Business Service” on page 113. The addition of the authHeader element to the SOAP header
corresponds to the structure defined in the sample code sections that populate the SOAP header and
profileHeader elements.

<?xml version="1.0" encoding="UTF-8"?>

Web Services ■ Using the Local Business Service

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

115

<SOAP-ENV:Envelope

xmlns:SOAP-ENV=http://schemas.xmlsoap.org/soap/envelope/

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<SOAP-ENV:header>

<authHeader xmlns:ns1="http://siebel.com/authHeaders">

<ns1:ApplicationID>Siebel</ns1:ApplicationID>

<ns1:PWS>123456789</ns1:PWS>

<ns1:Lang>ENU</ns1:Lang>

<ns1:userID>first.last@mycompany.com</ns1:userID>

</authHeader>

</SOAP-ENV:header>

<SOAP-ENV:Body>

…

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Using the Local Business Service in an Outbound Web
Service
You use the Outbound Web Services view in the Administration - Web Services screen to configure
an outbound Web service to use the local business service created by “Script Example for a Local
Business Service” on page 113.

To use the local business service in an outbound Web service
1 In the Siebel client, navigate to the Administration - Web Services screen, Outbound Web

Services view.

2 In the Outbound Web Services list, select the desired outbound Web service.

3 In the Service Ports list, set the following properties:

Name Value

Transport Local Business Service

Address Name of the local business service

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Web Services ■ Using the Local Business Service

116

4 Restart the Siebel Server component to allow the changes to take effect.

About XML Schema Support for the xsd:any Tag

In the current framework, WSDL Import Wizard makes use of the XML Schema Import Wizard to
create integration objects to represent hierarchical data. Integration objects are meant to be strongly
typed in the Siebel application. You are now able to import a schema that uses the xsd:any tag, which
indicates a weakly typed data representation, and to possibly create an integration object from it.

Mapping the xsd:any Tag in the WSDL Import Wizard
In the WSDL Import Wizard, two possible mappings exist for the xsd:any tag. The tag can be mapped
as an integration component or as an XMLHierarchy on the business service method argument.

The xsd:any tag can contain a namespace attribute. If the value for that attribute is known, then
one or more integration components or even an integration object can be created. If the value for
that attribute is not known, then the business service method argument for that particular wsdl:part
tag is changed to data type Hierarchy, consequently losing any type information.

The value for the attribute being known refers to the following situations:

■ A schema of targetNamespace value, being the same as that of the namespace attribute value,
is imported by way of the xsd:import tag.

■ A schema of targetNamespace value, being the same as that of the namespace attribute value,
is a child of the wsdl:types tag.

For the case of being known, all the global elements belonging to the particular schema of that
targetNamespace will be added in place of the tag. One or more integration components can
potentially be created.

Another tag similar to the xsd:any tag is the xsd:anyAttribute tag. The mapping is similar to that of
the xsd:any tag. In this case, one or more integration component fields can be created.

The xsd:anyAttribute tag has a namespace attribute. If the namespace value is known (the
conditions for being known were previously noted in this topic), then all the global attributes for that
particular schema will be added in place of this tag. Therefore, one or more integration component
fields can potentially be created.

In the case where the namespace value is not known, then the wsdl:part tag that is referring to the
schema element and type will be created as data type Hierarchy.

Mapping the xsd:any Tag in the XML Schema Wizard
For the case of the XML Schema Wizard, there is only one possible mapping for the xsd:any tag,
namely as an integration component.

The xsd:any tag can contain a namespace attribute. If the value for that attribute is known, then
one or more integration components or even an integration object can be created. If the value for
that attribute is not known, then an error will be returned to the user saying that the integration
object cannot be created for a weakly typed schema.

Web Services ■ Examples of Invoking Web Services

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

117

The value for the attribute being known refers to the situation of the XML Schema Wizard where a
schema of targetNamespace value, being the same as that of the namespace value, has been
imported by way of the xsd:import tag.

For the case of being known, all the global elements belonging to the particular schema of that
targetNamespace will be added in place of the tag. So, one or more integration components can
potentially be created.

The mapping of the xsd:anyAttribute is similar to that of the xsd:any tag. In this case, one or more
integration component fields can be created.

The xsd:anyAttribute tag has a namespace attribute. If the namespace value is known (the condition
for being known was previously noted in this topic), then all the global attributes for that particular
schema will be added in place of this tag. Therefore, one or more integration component fields can
potentially be created.

In the case where the namespace value is not known, then an error is returned to the user stating
that an integration object cannot be created for a weakly typed schema.

Examples of Invoking Web Services
The following two examples show sample flows of how to call an external Web service from a Siebel
application, or how to call a Siebel Web service from an external application.

Invoking an External Web Service Using Workflow or Scripting
As illustrated on Figure 31 on page 118, the following steps are executed to call an external Web
service:

1 The developer obtains the Web service description as a WSDL file.

2 The WSDL Import Wizard is called.

3 The WSDL Import Wizard generates definitions for outbound proxy, integration objects for
complex parts, and administration entries.

4 The Outbound Web Service proxy is called with the request property set.

5 The request is converted to an outbound SOAP request and sent to the external application.

6 The external application returns a SOAP response.

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Web Services ■ Examples of Invoking Web Services

118

7 The SOAP response is converted to a property set that can be processed by the caller, for
example, Calling Function.

The following example shows how to invoke Web services using Siebel eScript:

function Service_PreCanInvokeMethod (MethodName, &CanInvoke) {
if (MethodName == "invoke") {

CanInvoke = "TRUE";
return (CancelOperation);

}
else

return (ContinueOperation);
}

function Service_PreInvokeMethod (MethodName, Inputs, Outputs) {
if (MethodName == "invoke") {

var svc = TheApplication().GetService("CustomerDBClientSimpleSoap");

Figure 31. Invoking an External Web Service

Web Services ■ Examples of Invoking Web Services

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

119

var wsInput = TheApplication().NewPropertySet();
var wsOutput = TheApplication().NewPropertySet();
var getCustInput = TheApplication().NewPropertySet();
var listOfGetCustomerName = TheApplication().NewPropertySet();
var getCustomerName = TheApplication().NewPropertySet();

try {
// obtain the customer ID to query on. This value will be provided in the input property set
var custId = Inputs.GetProperty("custId");

// set property to query for a customer ID with a value of '1'
getCustomerName.SetType("getCustomerName");
getCustomerName.SetProperty("custid", custId);

// set Type for listOfGetCustomerName
listOfGetCustomerName.SetType("ListOfgetCustomerName");

// set Type for getCustInput
getCustInput.SetType("getCustomerNameSoapIn:parameters");

// assemble input property set for the service.
listOfGetCustomerName.AddChild(getCustomerName);
getCustInput.AddChild(listOfGetCustomerName);
wsInput.AddChild(getCustInput);

// invoke the getCustomerName operation
svc.InvokeMethod("getCustomerName", wsInput, wsOutput);

// parse the output to obtain the customer full name check the type element on each PropertySet
(parent/child) to make sure we are at the element to obtain the customer name
if (wsOutput.GetChildCount() > 0) {

var getCustOutput = wsOutput.GetChild(0);
if (getCustOutput.GetType() == "getCustomerNameSoapOut:parameters") {

if (getCustOutput.GetChildCount() > 0) {
var outputListOfNames = getCustOutput.GetChild(0);
if (outputListOfNames.GetType() == "ListOfgetCustomerNameResponse") {

if (outputListOfNames.GetChildCount() > 0) {
var outputCustName = outputListOfNames.GetChild(0);
if (outputCustName.GetType() == "getCustomerNameResponse") {

var custName = outputCustName.GetProperty("getCustomerNameResult");
Outputs.SetProperty("customerName", custName);

}
}

}
}

}
}

return (CancelOperation);
}

catch (e) {
TheApplication().RaiseErrorText(e);
return (CancelOperation);
}

}
else

return (ContinueOperation);
}

Invoking a Siebel Web Service from an External Application
As illustrated in Figure 32 on page 120, the following steps are executed to invoke a Siebel Web
service from an external application:

1 The WSDL document for an active Web service is published in the Siebel Inbound Web Services
view. To allow processing of the Web service requests, the developer has to make sure:

a The Web Server and the Siebel Server are up and running.

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Web Services ■ Examples of Invoking Web Services

120

b The appropriate setup is done in the Siebel Server.

2 In the external application, the WSDL document is imported to create a proxy that can be used
to invoke the Siebel Web service from Step 1.

3 The external application sends the SOAP request into the Siebel application.

4 The Web Service Inbound Dispatcher converts the SOAP request to a property set. Depending on
the inbound Web service configuration, the property set is passed to a business service or a
business process.

5 The property set is returned from the business service or business process to the Web Service
Inbound Dispatcher.

6 Response is converted to a SOAP message and sent back to the invoking external application.

The following is an example of invoking a Siebel-published Web service using .NET.

// Removed using declaration

namespace sieOppClnt {

public class sieOppClnt : System.Web.Services.WebService {

Figure 32. Invoking a Siebel Web Service

Web Services ■ Examples of Invoking Web Services

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

121

public siebOptyClnt() {
InitializeComponent();
}

// WEB SERVICE CLIENT EXAMPLE

/* The optyQBE returns a list of opty based upon the required input params. Because
the input to the Siebelopty.QueryByExample method uses an Input/Output param,
ListOfInterOptyIntfaceTopElmt will be passed by ref to Siebel. To add the Siebel
Opportunity Web Service definition to the project, the wsdl.exe utility was run
to generate the necessary helper C# class for the service definition. */

[WebMethod]
public ListOfInterOptyIntfaceTopElmt optyQBE(string acctName, string acctLoc,
string salesStage) {

Siebelopty svc = new Siebelopty();
ListOfInterOptyIntfaceTopElmt siebelMessage = new
ListOfInterOptyIntfaceTopElmt();
ListOfInteroptyInterface optyList = new ListOfInteroptyInterface();
opty[] opty = new opty[1];
opty[0] = new opty();
opty[0].Account = acctName;
opty[0].AccountLocation = acctLoc;
opty[0].SalesStage = salesStage;

/* Assemble input to be provided to the Siebel Web service. For the sake of
simplicity the client will query on the Account Name, Location, and Sales
Stage. Ideally, also check to make sure that correct data is entered. */

optyList.opty = opty;
siebelMessage.ListOfInteroptyInterface = optyList;

// Invoke the QBE method of the Siebel Opportunity business service

svc.SiebeloptyQBE(ref siebelMessage);

/* Return the raw XML of the result set returned by Siebel. Additional
processing could be done to parse the response. */

return siebelMessage;
}

}

}

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Web Services ■ About Web Services Security Support

122

About Web Services Security Support
Oracle endorses the industry standard known as the Web Services Security (WS-Security)
specification. The WS-Security specification is a Web services standard that supports, integrates, and
unifies multiple security models and technologies, allowing a variety of systems to interoperate in a
platform- and language-independent environment.

By conforming to industry standard Web service and security specifications, secure cross-enterprise
business processes is supported. You can deploy standards-based technology solutions to solve
specific business integration problems.

For security support, you can also apply access control to business services and workflows. For more
information on configuring access control, see Siebel Security Guide.

Configuring the Siebel Application to Use the
WS-Security Specification
To use the WS-Security specification in the Siebel application, two parameters, UseAnonPool and
Impersonate, must be set. An example of configuring WS-Security for Siebel inbound Web services
follows.

To configure the Siebel application to use the WS-Security specification
1 Check Configure Anonymous Pool parameter in the basic information section of the eai_anon

application in the AI profile.

2 Start the Siebel Server.

3 Navigate to the Administration - Server Configuration screen, Enterprises view, and then Profile
Configuration.

4 In the Profile Configuration list, query the Alias field for SecureWebService.

5 Make sure that the SecureWebService profile (named subsystem) has parameters with the
following values:

6 When the client makes a call to the Web service, make sure that SWEExtSource points to the
correct application name and named subsystem, for example:

http://myserver/siebel/app/eai_anon/enu/?SWEExtCmd=Execute
&SWEExtSource=SecureWebService

Parameter Alias Value

Service Method to Execute DispatchMethod Dispatch

Service to Execute DispatchService Web Service Inbound Dispatcher

Impersonate Impersonate True

Web Services ■ About Web Services Security Support

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

123

About WS-Security UserName Token Profile Support
Siebel Business Applications support the WS-Security UserName token mechanism, which allows for
the sending and receiving of user credentials in a standards-compliant manner. The UserName token
is a mechanism for providing credentials to a Web service where the credentials consist of the
UserName and Password. The password must be passed in clear text. The UserName token
mechanism provides a Web service with the ability to operate without having the username and
password in its URL or having to pass a session cookie with the HTTP request.

NOTE: Using WS-Security is optional. If it is critical that the password not be provided in clear text,
then use HTTPS.

The following is an example of a UserName token showing the username and password:

<wsse:Security xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/07/secext">
<wsse:UsernameToken xmlns:wsu="http://schemas.xmlsoap.org/ws/2002/07/utility">

<wsse:Username>WKANDINSKY</wsse:Username>
<wsse:Password Type="wsse:PasswordText">AbstractArt123</wsse:Password>

</wsse:UsernameToken>
</wsse:Security>

NOTE: If you are using Web single sign-on (SSO), then use the Siebel trust token value in
wsse:Password instead of the password.

About Support for the UserName Token Mechanism
Support for the UserName Token mechanism includes the following:

■ Allows an inbound SOAP request to contain user credentials that can be provided to the inbound
SOAP dispatcher to perform the necessary authentication

■ Allows an inbound SOAP dispatcher to perform the necessary authentication on an inbound SOAP
request that contains user credentials

■ Allows an outbound SOAP request to contain user credentials that can be utilized by the external
application

NOTE: Passing user credentials in the URL is not supported in the current release of Siebel CRM.

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Web Services ■ About Web Services Security Support

124

Using the UserName Token for Inbound Web Services
The Inbound Web Services view provides an interface for associating operations with authentication
types. The names of the operations must be globally unique. The applet shown in Figure 33 can be
defined as requiring a UserName Token with username and password provided in clear text.

NOTE: If you want to use Siebel Authentication and Session Management SOAP headers, then set
the authentication type to None. For more information, see “About Siebel Authentication and Session
Management SOAP Headers” on page 126.

Figure 33. Inbound Web Services View and the UserName Token

Web Services ■ About Web Services Security Support

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

125

Using the UserName Token for Outbound Web Services
Each Web service operation in the Outbound Web Services list applet might be tied to an
authentication type by selecting from the Authentication Type picklist (see Figure 34) in the
Operations picklist, in the following applet.

Proxy Configuration for Java Web Container
If your enterprise network is connected to the Internet through a proxy Internet server then
configure the Java Web Container to route its traffic through the enterprise proxy server. To do so,
apply the following proxy configuration:

Figure 34. Outbound Web Services List Applet and the Operations PickList

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Web Services ■ About Siebel Authentication and Session Management SOAP Headers

126

HTTP proxy configuration
In the <installation_root>\ses\siebsrvr\javacontainer\javacontainer1\bin\setenv.bat file, add after
line:

set CATALINA_OPTS=-Dhttp.proxyHost=<proxy_server_name> -Dhttp.proxyPort=<port_num>

HTTPS proxy configuration:
In the <installation_root>\ses\siebsrvr\javacontainer\javacontainer1\bin\setenv.bat file, add after
line:

set CATALINA_OPTS=-Dhttps.proxyHost=<proxy_server_name> -Dhttps.proxyPort=<port_num>

To configure MainWin and import certificates in to it, see the chapter on communications and data
encryption in the Siebel Security Guide.

About Siebel Authentication and Session
Management SOAP Headers
You can use Siebel Authentication and Session Management SOAP headers to send and receive user
credentials and session information. You can send a username and password for login that calls one
of the following sessions:

■ One that closes after the outbound response is sent.

■ One that remains open after the response is sent.

For example, a custom Web application can send a request that includes a username and password,
and calls a stateless session, one that remains open after the outbound response is sent. The Siebel
Server generates an encrypted session token that contains user credentials and a session ID. The
Siebel Server includes the session token in the SOAP header of the outbound response. The client
application is responsible for capturing the returned session token and including it in the SOAP
header of the next request.

The Session Manager on the Application Interface (AI) extracts the user credentials and session ID
from the session token and reconnects to the session on the Siebel Server. If the original session has
been closed, then a new session is created.

You can use the SOAP headers listed in Table 11 on page 127 to call different types of sessions and
pass authentication credentials:

NOTE: The values entered are case insensitive.

Web Services ■ About Siebel Authentication and Session Management SOAP Headers

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

127

Table 11. Siebel Session Management and Authentication SOAP Headers

SOAP Header
Block Description

SessionType You use the SessionType SOAP header to define the type of session. Valid
values are None, Stateless, Stateful, and ServerDetermine:

■ None. A new session is opened for each request and then closed after a
response is sent out. The SessionType none might or might not include
UsernameToken and PasswordText SOAP headers. When UsernameToken
and PasswordText SOAP headers are included, these credentials are used
for authentication.

If the UsernameToken and PasswordText SOAP headers are excluded from
the SOAP header, then anonymous login is assumed. The anonymous login
requires additional configuration in the Siebel Application Interface profile
and Named Subsystem configuration (AllowAnonymous equals (=) True,
Impersonate equals (=) False).

For more information about configuring anonymous login, see Siebel
Security Guide.

■ Stateless. A new session is opened for an initial request and the session
remains open for subsequent requests. Relogin occurs automatically
(transparent to the user) if the session is closed. UsernameToken and
PasswordText must be included as SOAP headers in the initial request to
open a stateless session.

Stateless session management is the best method to use for high-load Web
service applications. Using Stateless mode, the application provides the
username and password only once, that is for the initial request. A session
is opened on the server and is dedicated for this user.

In the response Siebel Business Applications return the SessionToken,
which is an encrypted string containing the information about username,
password, and timestamp. For subsequent requests the application must
use the SessionToken to reuse the session.

For security reasons, SessionTokens are regenerated for each response.
The application must provide the last received SessionToken for the next
request.

The SessionToken-Siebel session map is maintained in the Siebel
Application Interface (AI); based on the SessionToken value, AI sends the
request to the correct Siebel session (task).

Although the session is persistent, authentication happens for each request
(AI decrypts the UserName and Password from the SessionToken).

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Web Services ■ About Siebel Authentication and Session Management SOAP Headers

128

SessionType ■ Stateful. A new, dedicated session is opened for an initial request and the
session remains open for subsequent requests. Relogin does not occur
automatically if the session is closed. UsernameToken and PasswordText
must be included as SOAP headers in the initial request to open a stateful
session.

As with Stateless sessions, Siebel Business Applications return the
SessionToken in the response. For subsequent requests the application
must use the SessionToken to reuse the session.

Unlike Stateless sessions, transparent failover (automatic relogin) is not
supported. This is because Stateful sessions might have state information
stored that makes it mandatory to connect to the same task for each
request.

■ ServerDetermine. A new session is established to Siebel, and a series of
subsequent requests is served. The Siebel Server is free to multiplex the
session to serve other users if possible, but the client is free to make
stateful calls to Siebel. Failover is not supported for this mode.

ServerDetermine provides the most flexibility: the session can be dedicated
or not. If the number of users increases and resources must be recovered,
then the session state is written to the database so that it can be restored.
The session can then serve other users.

If SessionType is absent, then the default value is None, and the session will
be closed after the request is processed.

UsernameToken You use the UsernameToken SOAP header to send the Login ID to the Siebel
Server.

Table 11. Siebel Session Management and Authentication SOAP Headers

SOAP Header
Block Description

Web Services ■ About Siebel Authentication and Session Management SOAP Headers

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

129

For examples of using SOAP headers for session management and authentication, see “Examples of
Using SOAP Headers for Authentication and Session Management” on page 133.

The namespace used with Siebel Authentication and Session Management SOAP headers is:

xmlns="http://siebel.com/webservices"

NOTE: The Siebel Session Management and Authentication SOAP headers are different from the
SOAP headers used for WS-Security. Do not use the two types of header together.

PasswordText You use the PasswordText SOAP header to send the password used by the login
ID to the Siebel server.

If using Web single sign-on (SSO), then use the Siebel trust token value in
PasswordText instead of the password.

SessionToken Session tokens are used with stateless requests. They are sent and received
using the SessionToken SOAP header. After receiving an initial request with
valid authentication credentials and a session type set to Stateless, the Siebel
Server generates a session token and includes it in the SOAP header of the
outbound response. The session token is encrypted and consists of a session
ID and user credentials. The custom Web application uses the session token for
subsequent requests. The Session Manager on the AI extracts a session ID and
user credentials from the session token, and then passes the information to the
Siebel Server. The session ID is used to reconnect to an existing session or
automatically log in again if the session has been terminated.

NOTE: Reconnecting or automatic logging in again will only happen if the token
has not timed out. If it times out, then the user must manually log in again.
Token timeout must be greater than or equal to session timeout. For more
information on session token timeout, see “Session and Session Token Timeout-
Related Parameters” on page 132.

However, the session token must be changed to the new one sent on every
response. The session token has a maximum time to live, which can invalidate
it even if its timeout (for being inactive) has not been reached. Always get the
newest session token returned by the response and use it on the next request.

The same session token must not be used by concurrent requests, because
having multiple requests point to the same session can cause errors.

Table 11. Siebel Session Management and Authentication SOAP Headers

SOAP Header
Block Description

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Web Services ■ About Siebel Authentication and Session Management SOAP Headers

130

Combinations of Session Types and Authentication
Types
Table 12 summarizes the combinations of authentication types and session types.

For examples that illustrate some of these combinations, see “Examples of Using SOAP Headers for
Authentication and Session Management” on page 133.

Table 12. Summary of Authentication Types and Session Types

Authentication Type Session Type Description

None None A single request is sent with an anonymous
user login, and the session is closed after the
response is sent out.

In order for the anonymous session to be
identified by the AI Plug-in, UsernameToken
and PasswordText must be excluded in the
SOAP headers.

Username and password None A single request is sent with the username and
password used to log in, and the session is
closed after the response is sent out.

Username and password Stateless The initial request to log in establishes a
session that is to remain open and available
for subsequent requests. Username/password
are used to log in and a session token is
returned in a SOAP header included in the
outbound response. The session remains
open.

Session token (stateless) Stateless Request to reconnect to an established
session, using the information contained in
the session token. If the session has been
closed, then automatic relogin occurs. The
Siebel servers include the session token in the
SOAP header of the response. The session
remains open.

Session token (stateless) None When a SOAP header carries a session token
and has the session type set to None, then the
Session Manager on the AI closes (logs out) of
this session, and invalidates the session
token. The session token is not used after the
session is invalidated.

Web Services ■ About Siebel Authentication and Session Management SOAP Headers

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

131

Enabling Session Management on AI
To enable Session Management on the Application Interface (AI) for SOAP header handling, the Web
service request must include the following URL parameter: WSSOAP=1. For example:

http://mywebserver/siebel/app/eai/enu/
swe?SWEExtSource=CustomUI&SWEExtCmd=Execute&WSSOAP=1

NOTE: When using Siebel Session Management and Authentication SOAP headers, then the WS-
Security authentication types for all Web service operations must be set to None. You set the WS-
Security authentication types in the Operations applets of the Inbound Web Services or Outbound
Web Services views in the Administration-Web Services screen.

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Web Services ■ About Siebel Authentication and Session Management SOAP Headers

132

Session and Session Token Timeout-Related
Parameters
You control the session timeout length and session token timeout length and maximum age by
setting the parameters listed in Table 13. These parameters are set in the eai application section of
the AI profile.

NOTE: If you set the value of SessionTokenTimeout longer than the value of SessionTimeout and
send a Web service request after the session times out, then a relogin occurs and the request is
executed.

For information on SessionTimeout, see Siebel Security Guide. For information on application
configuration parameters in general, see Siebel System Administration Guide.

Table 13. Session and Session Token Timeout-Related Parameters

Parameter Name Parameter Value Description

SessionTimeout Number in seconds The total number of seconds a session can remain
inactive before the user is logged out and the
session is closed.

The default value is 900 seconds (15 minutes).

GuestSessionTimeout Number in seconds The total number of seconds a guest session can
remain inactive before the guest is logged out and
the session is closed.

The default value is 300 seconds (5 minutes).

SessionTokenTimeout Number in minutes The Siebel Application Interface (AI) rejects the
session token if the token is inactive for more than
the SessionTokenTimeout value. Whenever the
token is used, this value is refreshed.

You typically set SessionTokenTimeout to the
same length of time as the global parameter
SessionTimeout, whose default is 900 seconds (15
minutes).

The default value is 15 minutes.

SessionTokenMaxAge Number in minutes The SessionTokenMaxAge parameter will make
the AI reject the token if it has been used for more
than the SessionTokenMaxAge value (for
example, 240 minutes, or 4 hours). This is
different from the SessionTokenTimeout because
it does not refresh every time the token is used.

The default value is 2880 minutes (two days).

Web Services ■ About Siebel Authentication and Session Management SOAP Headers

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

133

Examples of Using SOAP Headers for Authentication and
Session Management
The following examples illustrate using Siebel Authentication and Session Management SOAP
headers. These examples use various authentication and session type combinations. For more
information, see “Combinations of Session Types and Authentication Types” on page 130.

Anonymous Request No Session
This example illustrates an anonymous request and a session type of None, which closes the session
after the response is sent out:

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Header>

<SessionType xmlns="http://siebel.com/webservices">None</SessionType>
</soap:Header>
<soap:Body>

<!-- data goes here -->
</soap:Body>
</soap:Envelope>

Siebel Authorization No Session
This example illustrates a request that includes authentication credentials (username and password)
and a session type of None, which closes the session after the response is sent out:

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Header>

<UsernameToken xmlns="http://siebel.com/webservices">user</UsernameToken>
<PasswordText xmlns="http://siebel.com/webservices">hello123</PasswordText>
<SessionType xmlns="http://siebel.com/webservices">None</SessionType>

</soap:Header>
<soap:Body>

<!-- data goes here -->
</soap:Body>
</soap:Envelope>

Siebel Authorization Stateless Session
The following examples illustrate a request, response, and subsequent request for a session type set
to Stateless, which keeps the session open after the initial response is sent out.

Initial Request
This example illustrates the initial request that includes authentication credentials (username and
password) needed to log in:

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Header>

<UsernameToken xmlns="http://siebel.com/webservices">user</UsernameToken>
<PasswordText xmlns="http://siebel.com/webservices">hello123</PasswordText>

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Web Services ■ About Siebel Authentication and Session Management SOAP Headers

134

<SessionType xmlns="http://siebel.com/webservices">Stateless</SessionType>
</soap:Header>
<soap:Body>

<!-- data goes here -->
</soap:Body>
</soap:Envelope>

Response
This example illustrates the session token (encrypted) generated by the Siebel Server and sent back
in the SOAP header of the response:

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Header>

<siebel-header:SessionToken xmlns:siebel-header="http://siebel.com/
webservices">2-r-JCunnMN9SxI9Any9zGQTOFIuJEJfCXjfI0G-
9ZOOH4lJjbSd2P.G7vySzo07sFeJxUA0WhdnK_
</siebel-header:SessionToken>

</soap:Header>
<soap:Body>

<!-- data goes here -->
</soap:Body>
</soap:Envelope>

Subsequent Request Using Session Token
This example illustrates a subsequent request that includes the encrypted session token that was
generated by the Siebel Server and passed in a previous response. The session token includes the
user credentials and session information needed to reconnect to an existing session, or log in to a
new one if the initial session has been closed:

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Header>

<SessionType xmlns="http://siebel.com/webservices">Stateless</SessionType>
<SessionToken xmlns="http://siebel.com/webservices">
2-r-JCunnMN9SxI9Any9zGQTOFIuJEJfCXjfI0G-9ZOOH4lJjbSd2P.G7vySzo07sFeJxUA0WhdnK_
</SessionToken>

</soap:Header>
<soap:Body>

<!-- data goes here -->
</soap:Body>
</soap:Envelope>

Siebel Authorization Stateful Session
The following examples illustrate a request, response, and subsequent request for a session type set
to Stateful, which keeps the session open after the initial response is sent out.

Initial Request
This example illustrates the initial request that includes authentication credentials (username and
password) needed to log in:

Web Services ■ About Siebel Authentication and Session Management SOAP Headers

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

135

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Header>

<UsernameToken xmlns="http://siebel.com/webservices">user</UsernameToken>
<PasswordText xmlns="http://siebel.com/webservices">hello123</PasswordText>
<SessionType xmlns="http://siebel.com/webservices">Stateful</SessionType>

</soap:Header>
<soap:Body>

<!-- data goes here -->
</soap:Body>
</soap:Envelope>

Response
This example illustrates the session token (encrypted) generated by the Siebel Server and sent back
in the SOAP header of the response:

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Header>

<siebel-header:SessionToken xmlns:siebel-header="http://siebel.com/
webservices">Q7ABhvXBNUX5qTIoKJ9hZjhMzJ6lfTPa0oUDYxOBHkmOXB7j
</siebel-header:SessionToken>

</soap:Header>
<soap:Body>

<!-- data goes here -->
</soap:Body>
</soap:Envelope>

Subsequent Request Using Session Token
This example illustrates a subsequent request that includes the encrypted session token that was
generated by the Siebel Server and passed in a previous response. The session token includes the
user credentials and session information needed to reconnect to an existing session:

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Header>

<SessionType xmlns="http://siebel.com/webservices">Stateful</SessionType>
<SessionToken xmlns="http://siebel.com/
webservices">Q7ABhvXBNUX5qTIoKJ9hZjhMzJ6lfTPa0oUDYxOBHkmOXB7j
</SessionToken>

</soap:Header>
<soap:Body>

<!-- data goes here -->
</soap:Body>
</soap:Envelope>

Simple Query Starting With <soap:body>
This example illustrates data for a simple query starting with the <soap:body> element:

<soap:body>
<Account_spcService_Account_spcServiceQueryPage_Input
xmlns="http://siebel.com/CustomUI">

<ListOfTestAccount

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Web Services ■ About Web Services and Web Single Sign-On Authentication

136

xmlns="http://www.siebel.com/xml/Test%20Account/Query">
<Account>

<Name>A*</Name>
</Account>

</ListOfTestAccount>
</Account_spcService_Account_spcServiceQueryPage_Input>

</soap:body>

About Web Services and Web Single
Sign-On Authentication
Siebel Web services support Web single sign-on (SSO) deployment scenarios in which third-party
applications handle authentication, and then pass authentication information to the Siebel
application. When the third-party application authenticates it, users do not have to explicitly log in
to the Siebel application. Figure 35 illustrates a Web single SSO deployment scenario using Siebel
Web services. For more information about Web SSO, see Siebel Security Guide.

Each component in the SSO scenario shown in Figure 35 is described in the following:

■ SSO Access Manager. SSO Access Manager, configured in front of the Java EE server,
challenges user login, authenticates user credentials with LDAP, and sets a security token in the
browser (http header), which is forwarded to the Java EE server.

■ Java EE Server. This server extracts user credentials from the security token in the request.
The Session Manager Login method takes the request as an argument and forwards it to the AI.
The request contains the security token in the header.

■ AI. AI extracts the user credentials from the security token and sends user credentials and the
trust token to the Siebel Server.

■ Siebel Server. The Siebel Server validates user credentials with LDAP and validates the trust
token with security settings.

Figure 35. Web Single Sign-On Scenario

Web Services ■ About SOAP Fault Schema Support

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

137

About SOAP Fault Schema Support
Service-Oriented Architecture (SOA) applications typically use Web services to expose functionality.
The application describes a Web service through a WSDL document that is published. This WSDL
document carries information about the input and output schema for each operation.

A client that invokes the Web service can use this WSDL document to determine the format of the
request and response messages. Request and response messages are in SOAP format.

Siebel Business Applications consume external Web services by processing the WSDL document and
creating proxy business services. These proxy business services send requests to the external
application and receive responses in a SOAP format. The responses are presented to the caller as
Siebel property sets.

The WSDL document can optionally give a list of named faults (and their schema) that can occur for
each operation. If an application error occurs, then the SOAP Fault element is used to capture it. The
SOAP Fault element in the SOAP response body defines the following four subelements:

■ faultcode. Identifies the fault.

■ faultstring. Displays text that describes the fault.

■ faultactor. Indicates the source of the fault.

■ detail. Encodes application-specific errors.

The following WSDL example, which shows named faults, is from

http://www.gridlab.org:

<?xml version="1.0" encoding="UTF-8"?>

<definitions name="MyService" targetNamespace="urn:myuri:1.0"
xmlns:tns="urn:myuri:1.0"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:ns1="urn:myuri:1.0"
xmlns:SOAP="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:MIME="http://schemas.xmlsoap.org/wsdl/mime/"
xmlns:DIME="http://schemas.xmlsoap.org/ws/2002/04/dime/wsdl/"
xmlns:WSDL="http://schemas.xmlsoap.org/wsdl/"
xmlns="http://schemas.xmlsoap.org/wsdl/">

<types>

<schema targetNamespace="urn:myuri:1.0"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:ns1="urn:myuri:1.0"
xmlns="http://www.w3.org/2001/XMLSchema"
elementFormDefault="unqualified"
attributeFormDefault="unqualified">

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Web Services ■ About SOAP Fault Schema Support

138

<import namespace="http://schemas.xmlsoap.org/soap/encoding/"/>

<!-- fault element -->
<element name="MyFirstException">

<complexType>
<sequence>

<element name="text" type="xsd:string" minOccurs="1" maxOccurs="1"
nillable="false"/>

</sequence>
</complexType>

</element>

<!-- fault element -->
<element name="MySecondException">

<complexType>
<sequence>

<element name="number" type="xsd:int" minOccurs="1" maxOccurs="1"/>
</sequence>

</complexType>
</element>

<!-- operation request element -->
<element name="myOperation">

<complexType>
<sequence>

<element name="myInput" type="xsd:string" minOccurs="0" maxOccurs="1"
nillable="true"/>

</sequence>
</complexType>

</element>

<!-- operation response element -->
<element name="myOperationResponse">

<complexType>
<sequence>

<element name="myOutput" type="xsd:string" minOccurs="0" maxOccurs="1"
nillable="true"/>

</sequence>
</complexType>

</element>

</schema>

</types>

<message name="myOperationRequest">
<part name="parameters" element="ns1:myOperation"/>

</message>

<message name="myOperationResponse">
<part name="parameters" element="ns1:myOperationResponse"/>

</message>

<message name="MyFirstExceptionFault">

Web Services ■ About SOAP Fault Schema Support

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

139

<part name="fault" element="ns1:MyFirstException"/>
</message>

<message name="MySecondExceptionFault">
<part name="fault" element="ns1:MySecondException"/>

</message>

<portType name="MyType">

<operation name="myOperation">

<documentation>Service definition of function ns1__myOperation</documentation>

<input message="tns:myOperationRequest"/>

<output message="tns:myOperationResponse"/>

<fault name="MyFirstException" message="tns:MyFirstExceptionFault"/>

<fault name="MySecondException" message="tns:MySecondExceptionFault"/>

</operation>

</portType>

<binding name="MyService" type="tns:MyType">

<SOAP:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>

<operation name="myOperation">

<SOAP:operation soapAction=""/>

<input>
<SOAP:body use="literal"/>

</input>

<output>
<SOAP:body use="literal"/>

</output>

<fault name="MyFirstException">
<SOAP:fault name="MyFirstException" use="literal"/>

</fault>

<fault name="MySecondException">
<SOAP:fault name="MySecondException" use="literal"/>

</fault>

</operation>

</binding>

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Web Services ■ About SOAP Fault Schema Support

140

<service name="MyService">

<documentation>gSOAP 2.7.1 generated service definition</documentation>

<port name="MyService" binding="tns:MyService">
<SOAP:address location="http://localhost:10000"/>

</port>

</service>

</definitions>

The following SOAP message shows the first named fault from the example WSDL:

<?xml version="1.0" encoding="UTF-8"?>

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns1="urn:myuri:1.0">

<SOAP-ENV:Body>

<SOAP-ENV:Fault>

<faultcode>SOAP-ENV:Client</faultcode>

<faultstring>Deliberately thrown exception.</faultstring>

<detail>

<ns1:MyFirstException>

<text>Input values are wrong.</text>

</ns1:MyFirstException>

</detail>

</SOAP-ENV:Fault>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

For more information on fault handling in Web services, see the SOAP and WSDL standards listed in
“Supported Web Services Standards” on page 90.

Handling SOAP Faults in Siebel Business Applications
The fault schemas described in the WSDL are accepted and modeled in Siebel Business Applications
as integration objects. This is similar to how other input and output messages are modeled as strings
(simple type) or integration objects (complex type). These named faults are available as output
parameters.

Web Services ■ About Custom SOAP Filters

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

141

Having named faults available as output parameters is useful in SOA environments. For example,
Business Process Execution Language (BPEL) can only send named faults.

Handling SOAP Messages
SOAP messages are handled as follows:

1 An end user calls a proxy business service, for example, by clicking a button.

2 The proxy business service reads the input parameters and invokes the external Web service.

3 The proxy business service reads the SOAP response and checks for a SOAP Fault element.

4 If no SOAP fault is found, then the message is handled as normal.

5 If a SOAP fault is found, then the proxy business service tries to match the fault with a SOAP
fault integration object.

a If a match is found, then Siebel converts the fault into a fault integration object instance and
sets it in the output parameter.

b Whether or not a match is found, Siebel puts the fault into the XML Hierarchy (for backward
compatibility).

Handling WSDL Imports
The handling of SOAP faults while importing WSDL files into Siebel Business Applications is as
follows:

1 A developer uses the WSDL Import Wizard in Siebel Tools to import a WSDL document for
creating proxy business services.

2 If the operation has a named fault that is not defined in the WSDL, then it is put into the XML
Hierarchy.

3 If the operation has a named fault defined in the WSDL:

a If the Process Fault Schema check box is not selected, the named fault is ignored.

b If the Process Fault Schema check box is selected and an existing fault integration object is
specified, then that fault integration object is added as an output parameter.

c If the Process Fault Schema check box is selected and an existing fault integration object is not
specified, then a new fault integration object is added as an output parameter. The integration
object name is prepended with Fault_.

For information on using the WSDL Import Wizard, see “Creating an Outbound Web Service Based on
a WSDL File” on page 103.

About Custom SOAP Filters
Headers represent SOAP's extensibility mechanism and provide a flexible and standards-based
mechanism of adding additional context to a request or response. Custom SOAP header support
provides a flexible extensibility mechanism when integrating with external Web services, and a
means of providing additional context as required by the Web service implementation.

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Web Services ■ About Custom SOAP Filters

142

Handling Custom Headers Using Filters
SOAP headers provide the option of providing optional or mandatory processing information. To
process optional custom headers that are provided by external applications, a special business
service known as a filter might be defined. Filters can process both request and response headers.
A special attribute, mustUnderstand, is used to indicate whether or not the custom header is to be
processed:

■ If 'mustUnderstand' equals 1, then the custom header is interpreted as being mandatory and the
custom header is processed by the filter defined for this purpose.

■ If 'mustUnderstand' equals 1 and a filter is not specified, then the custom header is not read and
a SOAP:MustUnderstand fault is generated.

■ If 'mustUnderstand' equals 0, then no processing of the custom header is attempted.

You must keep SOAP body and header processing isolated. The inbound dispatcher and outbound
proxy can process the SOAP body, but cannot set or consume headers. Headers are application-
specific. Some customization is needed to set and consume custom headers. To process optional
custom headers that are provided by external applications, a special business service, a filter, is
defined. You can configure the Web service outbound proxy and the Web service inbound dispatcher
to call specific filters for the processing of individual (custom) headers.

NOTE: The SOAP header will not be passed to the underlying business service or workflow of the
inbound Web service. Any processing that must be done with the SOAP header must be done on the
filter business service.

Enabling SOAP Header Processing Through Filters
For each operation, you can set the inbound and outbound filters to be run. You can also define the
methods you want to call on the filter.

The following code sample illustrates a filter that has been written for the handling of custom SOAP
headers. The interface provided by this code sample lets you define the method on the filter that you
want to call, as well as the corresponding input and output parameters.

function Service_PreInvokeMethod (MethodName, Inputs, Outputs) {

if(MethodName == "StripHeader") {

if(Inputs.GetChildCount() > 0) {

// Set the input SOAP message property set as the output.

Outputs.InsertChildAt(Inputs.GetChild(0), 0);

var soapEnv = Outputs.GetChild(0);

if(soapEnv.GetChildCount() == 2) // headers and body {

// Here is where the header is found and processed.

var count = soapEnv.GetChildCount();

Web Services ■ About Custom SOAP Filters

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

143

var i = 0;

var headerParam1;

var headerParam2;

var headerParam3;

// Use a loop just in case the header is not the first hierarchy.

for (; i < count; i++) {

// For simplicity, the string comparison must be done using the exact same value
// as the SOAP message tag name.

if (soapEnv.GetChild(i).GetType() == "soapenv:Header") {

// Found the header. Now it is processed.

var soapHeader = soapEnv.GetChild(i);

// This example assumes that the following header hierarchy is received:

// <soapEnv:Header>

// <headerParam1>Value1</headerParam1>

// <headerParam2>Value2</headerParam2>

// <headerParam3>Value3</headerParam3>

// </soapEnv:Header>

// The parameters headerParam1, headerParam2, and headerParam3

// are saved into variables. Nothing further done with them.

headerParam1 = soapHeader.GetChild(0);

headerParam2 = soapHeader.GetChild(1);

headerParam3 = soapHeader.GetChild(2);

break; // Stop the loop after the header is found.

}

}

// Must remove the header from the SOAP property set.

soapEnv.RemoveChild(i);

}

}

}

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Web Services ■ About Custom SOAP Filters

144

else if(MethodName == "AddHeader") {

if(Inputs.GetChildCount() > 0) {

// Create the SOAP header hierarchy with the desired data.

var soapHeader = TheApplication().NewPropertySet();

soapHeader.SetType("soapEnv:Header");

soapHeader.SetProperty("xmlns:soapEnv",
"http://schemas.xmlsoap.org/soap/envelope/");

// These will be created as property sets because we want the following header:

// <soapEnv:Header>

// <headerParam1>Value1</headerParam1>

// <headerParam2>Value2</headerParam2>

// <headerParam3>Value3</headerParam3>

// </soapEnv:Header>

var param1PS = TheApplication().NewPropertySet();

var param2PS = TheApplication().NewPropertySet();

var param3PS = TheApplication().NewPropertySet();

param1PS.SetType("headerParam1");

param1PS.SetValue("Value1");

param2PS.SetType("headerParam2");

param2PS.SetValue("Value2");

param3PS.SetType("headerParam3");

param3PS.SetValue("Value3");

// Add the data to the SOAP header.

soapHeader.AddChild(param1PS);

soapHeader.AddChild(param2PS);

soapHeader.AddChild(param3PS);

// Get the SOAP envelope from the SOAP hierarchy.

var soapEnv = Inputs.GetChild(0);

// Add the header to the SOAP envelope.

soapEnv.InsertChildAt(soapHeader, 0);

Web Services ■ About EAI File Streaming

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

145

Outputs.InsertChildAt(soapEnv, 0);

}

}

return(CancelOperation);

}

Inputting a SOAP Envelope to a Filter Service
Using a SOAP envelope as the input to a filter service is the property set representation of an XML
document. For example, each tag in the XML document is a property set. Each attribute on the tag
is a property in the property set.

To pass the information in the headers further down the stack to the actual business service method
or workflow being called, the HeaderContext property set is passed to the business service or
workflow that is called. For example, on a call to an inbound Web service, if there are a couple of
headers in the SOAP message, the filter service extracts the header information. To use this
information in the business service or workflow execution call, it has to be contained in the
HeaderContext. Internally, the Siebel Web services infrastructure passes HeaderContext to the
eventual business service or workflow that is called.

About EAI File Streaming
Siebel Business Applications support streaming of EAI requests and responses encountered. This
feature allows the Siebel Web Engine (SWE) and the EAI Object Manager (OM) to process Web service
calls that involve large requests or responses. Large requests and responses can occur when
inserting or querying file attachments by way of a Web service. By transferring data internally in 100-
KB chunks, the memory footprints of the Siebel Web Engine and EAI Object Manager processes are
reduced and system scalability is improved.

This topic describes the streaming process for inbound EAI requests and outbound responses.

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Web Services ■ About EAI File Streaming

146

About Inbound EAI Streaming Requests
Figure 36 provides an overview of the components and process flow used for streaming an inbound
request.

Figure 36 illustrates the following process:

1 When the Application Interface (AI) Plug-in receives the request from the HTTP client by way of
the Web Server, it determines that this request must be chunked based on the HTTP request body
size, embeds streaming information in the request, and then sends the first chunk of the request
body to the SWE Server.

2 The SWE Server extracts the streaming information from the request, determines it is a
streaming request, and then writes the first chunk to the file system and sends a response to the
plug-in indicating that the request has been processed. The AI sends the next chunk and the
cycle continues until the last chunk has been written to the file system.

3 After the entire body of the HTTP request has been written to a file on the disk, the SWE Server
calls the Web service method on EAI Object Manager, passing the name of the file as an input
argument.

Figure 36. Request-Response Cycle for an Inbound EAI Streaming Request

Web Services ■ About EAI File Streaming

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

147

About Outbound EAI Streaming Responses
Figure 37 provides an overview of the components and process flow used for streaming an outbound
response.

Figure 37 illustrates the following process:

1 An EAI request from the HTTP client is received by the AI.

2 The AI forwards the request to the SWE Server.

3 The SWE Server then performs one of the following actions:

a If the request is not a streaming request, the SWE Server calls the EAI Object Manager method.

b If the request is a streaming request, then the file is first written to disk before the SWE Server
calls the EAI Object Manager method.

4 The EAI Object Manager forwards the response to the SWE Server, and SWE queries the output
arguments.

5 If a file reference is found, then the SWE Server transmits the file to the client.

Whether multiple chunks will be sent or not depends upon the size of the file. If chunking is
needed, then the SWE Server sends the first chunk to the plug-in, also embedding the streaming
information in the response.

6 The Plug-in sends the chunk to the client including the HTTP headers in the response, and then
it requeries the SWE Server to get the next chunk.

NOTE: The plug-in sends the HTTP response headers only for the first chunk.

The cycle continues until the entire file has been transmitted to the HTTP client.

Figure 37. Request-Response Cycle(s) for an Outbound Streaming Response

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Web Services ■ About Web Services Cache Refresh

148

About EAI Streaming Criteria
The following criteria are used internally to decide whether a particular request or response is
streamed:

1 The Application Interface initiates chunking of an inbound EAI request only if the following
conditions are met:

a The Configure EAI HTTP Inbound Transport parameter is selected in the basic information section
of the AI profile of the eai application.

b The size of the body of the inbound HTTP request is greater than 100 KB.

If these conditions are not met, then the plug-in does not stream the contents of the EAI request,
and the request is processed as one chunk.

2 The SWE server initiates outbound chunking only if the following conditions are met:

a The SWE finds a property named ExtSvcFileName in the output arguments after calling the EAI
Object Manager method.

The value of this property must be a fully qualified path, and the name of the response file
is written to disk by EAI.

b The file size is greater than 100 KB.

If these conditions are not met, then the plug-in does not stream the contents of the EAI response,
and the request is processed as one chunk.

About Web Services Cache Refresh
Both Siebel inbound and outbound Web services are typically cached into memory on the Siebel
Server. At times, administrators must update the definitions of these services to provide more
current or correct functionality. Administrators have the ability to directly refresh the memory cache
in real time, without stopping and restarting the Siebel server.

The Web services cache is used to store all the global administration information that can be
manipulated in the Inbound and Outbound Web Service administration views.

The Clear Cache feature is a button on the Administration - Web Services screen. This feature is
available for inbound and outbound Web services. When the administrator decides when the Web
service configuration must be refreshed, he or she clicks Clear Cache.

When Clear Cache is clicked, the integration object and Web services definitions in the run-time
database are invalidated. Object definitions are reloaded when requested in the client.

Web Services ■ Enabling Web Services Tracing

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

149

Enabling Web Services Tracing
You can enable Web services tracing on the Siebel Server to write all inbound and outbound SOAP
documents to a log file.

To enable Web services tracing
1 Navigate to the Administration - Server Configuration screen, Servers view.

The view that appears displays three different list applets. The first applet lists the Siebel Servers
for the enterprise. The middle applet has three tabs: Components, Parameters and Events. The
last applet has two tabs: Events and Parameters.

2 In the first list applet, select the Siebel Server that you want to configure.

3 In the middle applet, click the Components tab.

This list applet contains the components for the Siebel Server selected in the first applet.

Choose the relevant application object manager.

4 In the last applet, click the Parameters tab.

This list applet contains the parameters for the Component selected in the middle applet.

5 Set the Log Level to 4 for any or all of the following Event Types.

Event Type Alias Description Comment

Web Service
Performance

WebSvcPerf Web Service
Performance Event
Type

Used for
performance logging

Web Service
Outbound Argument
Tracing

WebSvcOutboundArgTrc Web Service
Outbound Run-time
Argument Tracing

Used for logging
arguments to the
outbound dispatcher

Web Service
Outbound

WebSvcOutbound Web Service
Outbound Run-time
Event Type

Used for run-time
logging of outbound
Web services

Web Service Loading WebSvcLoad Web Service
Configuration Loading
Event Type

Used for logging of
the loading of Web
services

Web Service Inbound
Argument Tracing

WebSvcInboundArgTrc Web Service Inbound
Run-time Argument
Tracing

Used for logging
arguments to the
inbound dispatcher

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Web Services ■ Enabling Web Services Tracing

150

6 In the middle applet, click the Components tab.

7 Select the EAI Object Manager component, and then click the Parameters tab.

The Component Parameters list appears.

8 Click Advanced to see the advanced parameters. (Click Reset to hide them again.)

9 Query for Enable Business Service Argument Tracing.

10 Set its Value and Value on Restart fields to True.

11 Restart or reconfigure the server component.

For information on restarting server components and on advanced and hidden parameters, see
Siebel System Administration Guide.

Web Service Inbound WebSvcInbound Web Service Inbound
Run-time Event Type

Used for logging at
Web service inbound
run time.
Information is
logged to the
inbound dispatcher

Web Service Design WebSvcDesign Web Service Design-
time Event Type

Used for logging at
Web service design
time. For example,
at the time of WSDL
import and
generation

Event Type Alias Description Comment

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

151

6 EAI Siebel Adapter Business
Service

EAI Siebel Adapter is a preconfigured business service that is used with any integration process that
runs through the Siebel business object layer. Integration objects are used to update data in business
objects and are used when retrieving data from business objects. These integration objects are
configurable and can be used during an integration process (for example, entering and retrieving
data from the Siebel Business Application).

This chapter describes the functionality of the EAI Siebel Adapter business service, and the different
methods and arguments you can use with it to manipulate the data in the Siebel Database. It
includes:

■ About the EAI Siebel Adapter Business Service on page 151

■ EAI Siebel Adapter Business Service Methods on page 152

■ EAI Siebel Adapter Business Service Method Arguments on page 176

■ About Multivalue Groups in the EAI Siebel Adapter Business Service on page 180

■ About Using Effective Dating with Siebel EAI Adapter Business Service on page 182

■ Enabling Effective Dating on Fields on page 182

■ Enabling Effective Dating on Links on page 186

■ About Using Language-Independent Code with the EAI Siebel Adapter Business Service on page 190

■ Siebel EAI and Run-Time Events on page 191

■ Guidelines for Using the EAI Siebel Adapter Business Service on page 192

■ Troubleshooting the EAI Siebel Adapter Business Service on page 192

■ Enabling Logging for the EAI Siebel Adapter Business Service on page 193

■ Enabling Siebel Argument Tracing on page 195

■ Configuring the EAI Siebel Adapter Business Service for Concurrency Control on page 195

About the EAI Siebel Adapter Business
Service
EAI Siebel Adapter is a general-purpose integration business service that allows you to:

■ Read Siebel business objects from the Siebel Database into integration objects.

NOTE: When called locally, the EAI Siebel Adapter business service creates an additional
database connection. If this second connection times out, then further transactions will not be
processed. To prevent this from happening, add the TrxDbConnReconnectIntervalSeconds
parameter to the [ServerDataSrc] section of the application configuration (CFG) file. A typical
value is 120.

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

EAI Siebel Adapter Business Service ■ EAI Siebel Adapter Business Service Methods

152

■ Write an integration object instance whose data originates externally in a Siebel business object.

■ Update multiple corresponding top-level (highest-level) parent business component records with
data from one XML file, for an example, see “Update Method” on page 165.

NOTE: The Siebel Message is considered to be one transaction. The transaction is committed
when there is no error. If there is an error, then the transaction is aborted and rolled back.

Node Types and the EAI Siebel Adapter Business Service
In an integration object hierarchy, nodes with at least one child are called internal nodes and nodes
without children are called leaf nodes. When either the insert or update method is called on the EAI
Siebel Adapter business service, the adapter performs the operation on both internal nodes and leaf
nodes. When the insert or update method is called on the EAI UI Data Adapter business service, the
adapter performs insert on leaf nodes only.

For more information on node types, see “About the EAI UI Data Adapter Business Service” on
page 201.

EAI Siebel Adapter Business Service
Methods
 The EAI Siebel Adapter supports the following methods:

■ “Query Method” on page 153

■ “QueryPage Method” on page 154

■ “Synchronize Method” on page 156

■ “Insert Method” on page 163

■ “Upsert Method” on page 165

■ “Update Method” on page 165

■ “Delete Method” on page 166

■ “Execute Method” on page 166

About the Examples in the EAI Siebel Adapter Business
Service Methods Sections
The following information is true for the examples used for the EAI Siebel Adapter methods:

■ The business object data is represented as integration object data in XML format.

■ The XML document or integration object instance might also be referred to as a Siebel Message.

■ Fields that contain null values are not included in the XML examples.

However, these fields might be revealed when you use EAI XML Write to File.WriteEAIMsg() to
print out the XML.

EAI Siebel Adapter Business Service ■ EAI Siebel Adapter Business Service Methods

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

153

Query Method
You can use a combination of input arguments when using the Query Business Service Method of the
EAI Siebel Adapter. The input arguments are as follows:

1 Query By Example (QBE). Pass in an integration object instance represented as a property set.

NOTE: EAI queries on integration objects do not use a search specification for child integration
components when the query obtains the parent integration component.

2 Primary Row Id. Pass in a string to the Object Id input argument. The string can be the row_id
of the primary business component of the Output Integration Object Name.

3 Output Integration Object Name. See the Primary Row Id for information.

4 Search Specification. Pass in a String expression.

The input arguments can be used in one of the following combinations:

■ 1

■ 2 and 3

■ 4

■ 3 and 4

■ 2, 3, and 4

The EAI Siebel Adapter uses this input as criteria to query the base business object and to return a
corresponding integration object instance.

For an example of using the search specification method argument to limit the scope of your query
see “About Using Language-Independent Code with the EAI Siebel Adapter Business Service” on
page 190.

When using the EAI Siebel Adapter, to query all the business component records, you are not
required to specify any value in the Object Id process property of the workflow. In this case, not
specifying an Object Id or a Search Specification works as a wildcard.

If you want to query Siebel data using the EAI Siebel Adapter with the Query method and an
integration object instance (property set) containing a query by example (QBE) search criterion, then
all the fields present in the QBE will be used in the query. To retrieve a unique record, include the
fields that make up the user key for the underlying integration object component instance to ensure
you retrieve a unique record. You can use an asterisk (*) as a wildcard for each one of the fields.

For example, the following is your QBE:

<?xml version = "1.0" encoding = "UTF-8"?>
<?Siebel-Property-Set EscapeNames="false"?>
<SiebelMessage MessageId = "1-2IOY" IntObjectName = "EAI Account" MessageType =
"Integration Object" IntObjectFormat = "Siebel Hierarchical">

<ListOfAccount>
<Account>

<CSN>*</CSN>
<HomePage>*</HomePage>
<Location>H*</Location>
<Name>A*</Name>

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

EAI Siebel Adapter Business Service ■ EAI Siebel Adapter Business Service Methods

154

<Type>*</Type>
</Account>

</ListOfAccount>
</SiebelMessage>

You would receive all of the Accounts with names that start with A* and have locations that start
with H*. The CSN, HomePage, and Type fields cannot be blank because they are used in the query.

The EAI Siebel Adapter converts the QBE into a user Search Expression of the following:

[CSN] ~ LIKE "*" AND [Home Page] ~ LIKE "*" AND [Location] ~ LIKE "H*" AND [Name] ~
LIKE "A*" AND [Type] ~ LIKE "*"

You can run this example and review the output XML generated.

When using search expressions that contain an apostrophe ('), you must use two apostrophes ('')
or the search will fail.

For example, you are searching for the string LUKE’S. The following search expression will fail in the
EAI Siebel Adapter:

[Account.Name] LIKE "*LUKE'S*"

Use the following search expression instead:

[Account.Name] LIKE "*LUKE''S*"

NOTE: The EAI Siebel Adapter explicitly overrides any Object Manager settings for the
MaxCursorSize parameter. The EAI Siebel Adapter uses a MaxCursorSize of -1. If you want to limit
the number of results received when using the Query method, then use the QueryPage Method. You
can combine the Object Id and Search Specification together to query for parent and child data.

NOTE: The EAI Siebel Adapter returns the output of the Query() method as one Siebel Message. This
integration object instance is stored in the process memory. If your query returns a large number of
records, this will result in your Siebel component's memory consumption being high.

QueryPage Method
This method is useful when the search specification retrieves a large number of records at the root
component. To avoid returning one huge Siebel Message, you can specify the number of records to
be returned using the PageSize argument, as presented in Table 25 on page 178. You can also use
method arguments such as OutputIntObjectName, SearchSpec, SortSpec, ViewMode, and
StartRowNum to dictate which records to return.

EAI Siebel Adapter Business Service ■ EAI Siebel Adapter Business Service Methods

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

155

Even though the QueryPage returns a limited number of records, it keeps the data in the cache, which
you can then retrieve by calling the EAI Siebel Adapter with a new value for the StartRowNum
method argument. Note that this is only possible if the method arguments OutputIntObjectName,
PageSize, SearchSpec, SortSpec, and ViewMode are not changed and the NewQuery method
argument is set to False.

NOTE: The EAI Siebel Adapter returns the output of the QueryPage() method as one Siebel Message.
This integration object instance is stored in the process memory. If your query returns a large
number of records, this will result in your Siebel component’s memory consumption being high.

The QueryPage method precedes each integration object instance. It is provided through the
SiebelMessage input argument when performing a query by example. Parameters such as
StartRowNum, PageSize, and others are applied to each integration object instance.

For example, a Siebel database contains four account records with the Name field set to: a1, a2, b1,
b2. An input SiebelMessage with two instances of the Account integration object with the first
instance’s name set to "a*" and the second instance’s name set to "b*" the result for
StartRowNum=0 is all four records (a1, a2, b2, b4), and for StartRowNum=1 only two records (a2
and b2). This example illustrates that the StartRowNum method argument counts records within
each single integration object instance of the query by example input SiebelMessage, once for "a*"
(a1, a2) and once for "b*" (b1, b2).

The following is an example of using the QueryPage() method in a business service.

var EAIService = TheApplication().GetService("EAI Siebel Adapter");
var writeSvc = TheApplication().GetService("EAI XML Write to File");
var EAIin = TheApplication().NewPropertySet();
var ResultSet= TheApplication().NewPropertySet();
var moreRecords = true;
var countOfObjects = 0;
var i = 1;

// set up input arguments, get 10 at a time
EAIin.SetProperty("OutputIntObjectName", "EAI Account");
EAIin.SetProperty("PageSize", "10");
EAIin.SetProperty("SearchSpec", "[Account.Name] LIKE '3*'");
EAIin.SetProperty("StartRowNum", i);
EAIin.SetProperty("NewQuery", "true");

// retrieve the business component data
EAIService.InvokeMethod("QueryPage", EAIin, ResultSet);

// loop through cached data
while ((ResultSet.GetChildCount() > 0) && (moreRecords)) {

countOfObjects = countOfObjects + ResultSet.GetProperty("NumOutputObjects");

// write out first chunk of data retrieved
ResultSet.SetProperty("FileName", "d:\\temp\\EAIaccount$$.xml”);
writeSvc.InvokeMethod("WriteEAIMsg", ResultSet, Outputs);

// reuse the existing input property set, except don't reissue query
EAIin.SetProperty("NewQuery", "false");
i= i+10; // get next 10 records
EAIin.SetProperty("StartRowNum", i);

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

EAI Siebel Adapter Business Service ■ EAI Siebel Adapter Business Service Methods

156

ResultSet.Reset(); // clear previous result set
EAIService.InvokeMethod("QueryPage", EAIin, ResultSet);

if (ResultSet.GetProperty("LastPage") == "true")
moreRecords = false;

}

Synchronize Method
You can use the Synchronize method to make the values in a business object instance match those
of an integration object instance. This operation can result in updates, insertions, or deletions in the
business components. The following rules apply to the results of this method:

■ If a child component is not present in the integration object instance, then the corresponding
child business component rows are left untouched.

■ If the integration object instance’s child component has an empty container, then all child records
in the corresponding business component are deleted.

■ For a particular child component, records that exist in both the integration object instance and
business component are updated. Records that exist in the integration object hierarchy and not
in the business component are inserted. Records in the business component and not in the
integration object instance are deleted.

■ Only the fields specified in the integration component instance are updated.

NOTE: When the EAI Siebel Adapter starts a database transaction (initiated to allow updates to the
Siebel database) it must ensure the data queried is committed and consistent. The results of these
queries dictate what changes are applied, so if reads that contain uncommitted data (dirty reads)
were enabled, it could cause incorrect updates by the EAI Siebel Adapter. Therefore, dirty reads are
disabled during database transactions started by the EAI Siebel Adapter.

Example of Synchronize Method on Deleted Unmatched Children
This first example demonstrates deleting unmatched children when using the Synchronize method.
This example uses data present in the sample database.

<?xml version = "1.0" encoding = "UTF-8"?>
<?Siebel-Property-Set EscapeNames="false"?>
<SiebelMessage MessageId = "1-2QY5" IntObjectName = "EAI Account" MessageType =
"Integration Object" IntObjectFormat = "Siebel Hierarchical">

<ListOfAccount>
<Account>

<AccountStatus>Active</AccountStatus>
<CSN>1-3JGO7</CSN>
<CurrencyCode>USD</CurrencyCode>
<LanguageCode>ENU</LanguageCode>
<Location>Test</Location>
<Name>ABC Corp</Name>
<ListOfAccount_BusinessAddress>

EAI Siebel Adapter Business Service ■ EAI Siebel Adapter Business Service Methods

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

157

<Account_BusinessAddress IsPrimaryMVG = "Y">
<AddressActiveStatus>Y</AddressActiveStatus>
<BillAddressFlag>Y</BillAddressFlag>
<City>ATown</City>
<Country>USA</Country>
<MainAddressFlag>Y</MainAddressFlag>
<ShipAddressFlag>Y</ShipAddressFlag>
<StreetAddress>123 Main St</StreetAddress>

</Account_BusinessAddress>
<Account_BusinessAddress IsPrimaryMVG = "N">

<AddressActiveStatus>Y</AddressActiveStatus>
<BillAddressFlag>Y</BillAddressFlag>
<City>BTown</City>
<Country>USA</Country>
<MainAddressFlag>Y</MainAddressFlag>
<ShipAddressFlag>Y</ShipAddressFlag>
<StreetAddress>456 Oak St</StreetAddress>

</Account_BusinessAddress>
</ListOfAccount_BusinessAddress>
<ListOfContact>

<Contact>
<ActiveStatus>Y</ActiveStatus>
<FirstName>User1</FirstName>
<LastName>User1</LastName>
<Organization>Default Organization</Organization>
<ListOfContact_Organization>

<Contact_Organization IsPrimaryMVG = "Y">
<Organization>Default Organization</Organization>
<OrganizationIntegrationId/>

</Contact_Organization>
</ListOfContact_Organization>
<ListOfContact_AlternatePhone/>

</Contact>
<Contact>

<ActiveStatus>Y</ActiveStatus>
<FirstName>User2</FirstName>
<LastName>User2</LastName>
<Organization>Default Organization</Organization>
<ListOfContact_Organization>

<Contact_Organization IsPrimaryMVG = "Y">
<Organization>Default Organization</Organization>
<OrganizationIntegrationId/>

</Contact_Organization>
</ListOfContact_Organization>
<ListOfContact_AlternatePhone/>

</Contact>
</ListOfContact>
<ListOfAccount_Organization>

<Account_Organization IsPrimaryMVG = "Y">
<Organization>Default Organization</Organization>
<OrganizationId>0-R9NH</OrganizationId>
<OrganizationIntegrationId/>

</Account_Organization>
</ListOfAccount_Organization>

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

EAI Siebel Adapter Business Service ■ EAI Siebel Adapter Business Service Methods

158

</Account>
</ListOfAccount>

</SiebelMessage>

Then the following XML (integration object instance) is submitted with Synchronize:

<?xml version = "1.0" encoding = "UTF-8"?>
<?Siebel-Property-Set EscapeNames="false"?>
<SiebelMessage MessageId = "1-2QY5" IntObjectName = "EAI Account" MessageType =
"Integration Object" IntObjectFormat = "Siebel Hierarchical">

<ListOfAccount>
<Account>

<AccountStatus>Active</AccountStatus>
<CSN>1-3JGO7</CSN>
<Competitor>Y</Competitor>
<CurrencyCode>USD</CurrencyCode>
<LanguageCode>CHS</LanguageCode>
<Location>test</Location>
<Name>ABC Corp</Name>
<ListOfContact>

<Contact>
<ActiveStatus>N</ActiveStatus>
<FirstName>User1</FirstName>
<LastName>User1</LastName>
<MiddleName></MiddleName>
<Organization>Default Organization</Organization>
</Contact>

<Contact>
<FirstName>User3</FirstName>
<LastName>User3</LastName>
<MiddleName></MiddleName>
<Organization>Default Organization</Organization>
</Contact>

</ListOfContact>
</Account>

</ListOfAccount>
</SiebelMessage>

Following is the result you will receive. Because the contact information is included in the integration
object instance, User2 in the database is deleted because it was an unmatched node. User1 is
updated because it is a matched node. User3 is inserted because it is a new node. Since Business
Address was not included in the integration object instance, it is left in the business object.

<?xml version = "1.0" encoding = "UTF-8"?>
<?Siebel-Property-Set EscapeNames="false"?>
<SiebelMessage MessageId = "1-2QY5" IntObjectName = "EAI Account" MessageType =
"Integration Object" IntObjectFormat = "Siebel Hierarchical">

<ListOfAccount>
<Account>

<AccountStatus>Active</AccountStatus>
<CSN>1-3JGO7</CSN>
<CurrencyCode>USD</CurrencyCode>
<LanguageCode>CHS</LanguageCode>
<Location>Test</Location>

EAI Siebel Adapter Business Service ■ EAI Siebel Adapter Business Service Methods

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

159

<Name>ABC Corp</Name>
<ListOfAccount_BusinessAddress>

<Account_BusinessAddress IsPrimaryMVG = "Y">
<AddressActiveStatus>Y</AddressActiveStatus>
<BillAddressFlag>Y</BillAddressFlag>
<City>ATown</City>
<Country>USA</Country>
<MainAddressFlag>Y</MainAddressFlag>
<ShipAddressFlag>Y</ShipAddressFlag>
<StreetAddress>123 Main St</StreetAddress>

</Account_BusinessAddress>
<Account_BusinessAddress IsPrimaryMVG = "N">

<AddressActiveStatus>Y</AddressActiveStatus>
<BillAddressFlag>Y</BillAddressFlag>
<City>BTown</City>
<Country>USA</Country>
<MainAddressFlag>Y</MainAddressFlag>
<ShipAddressFlag>Y</ShipAddressFlag>
<StreetAddress>456 Oak St</StreetAddress>

</Account_BusinessAddress>
</ListOfAccount_BusinessAddress>
<ListOfContact>

<Contact>
<ActiveStatus>N</ActiveStatus>
<FirstName>User1</FirstName>
<LastName>User1</LastName>
<Organization>Default Organization</Organization>
<ListOfContact_Organization>

<Contact_Organization IsPrimaryMVG = "Y">
<Organization>Default Organization</Organization>
<OrganizationIntegrationId/>

</Contact_Organization>
</ListOfContact_Organization>
<ListOfContact_AlternatePhone/>

</Contact>
<Contact>

<ActiveStatus>N</ActiveStatus>
<FirstName>User3</FirstName>
<LastName>User3</LastName>
<Organization>Default Organization</Organization>
<ListOfContact_Organization>

<Contact_Organization IsPrimaryMVG = "Y">
<Organization>Default Organization</Organization>
<OrganizationIntegrationId/>

</Contact_Organization>
</ListOfContact_Organization>
<ListOfContact_AlternatePhone/>

</Contact>
</ListOfContact>

</Account>
</ListOfAccount>

</SiebelMessage>

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

EAI Siebel Adapter Business Service ■ EAI Siebel Adapter Business Service Methods

160

Table 14 is a high level representation of the previous example.

This second example demonstrates how all records with an empty container are deleted when using
the Synchronize method.

If you start with this business component data:

<?xml version = "1.0" encoding = "UTF-8"?>
<?Siebel-Property-Set EscapeNames="false"?>
<SiebelMessage MessageId = "1-2QY5" IntObjectName = "EAI Account" MessageType =
"Integration Object" IntObjectFormat = "Siebel Hierarchical">

<ListOfAccount>
<Account>

<AccountStatus>Active</AccountStatus>
<CSN>1-3JGO7</CSN>
<CurrencyCode>USD</CurrencyCode>
<LanguageCode>ENU</LanguageCode>
<Location>test</Location>
<Name>ABC Corp</Name>
<ListOfAccount_BusinessAddress>

<Account_BusinessAddress IsPrimaryMVG = "Y">
<AddressId>1-3JGOA</AddressId>
<AddressActiveStatus>Y</AddressActiveStatus>
<BillAddressFlag>Y</BillAddressFlag>
<City>MyTown</City>
<Country>Canada</Country>
<MainAddressFlag>Y</MainAddressFlag>
<ShipAddressFlag>Y</ShipAddressFlag>
<StreetAddress>123 Main St</StreetAddress>

</Account_BusinessAddress>
<Account_BusinessAddress IsPrimaryMVG = "N">

<AddressActiveStatus>Y</AddressActiveStatus>
<BillAddressFlag>Y</BillAddressFlag>
<AddressId>1-3JGOB</AddressId>

Table 14. Representation of the Synchronize Method on Deleted Unmatched Children

Record In Database
Integration Object
Instance Record After Synchronize

Account: ABC Corp

■ Business Address: 123 Main St

■ Business Address: 456 Oak St

■ Contact: User1

■ Organization: Default Org.

■ Contact: User2

■ Organization: Default Org.

■ Organization: Default Org.

Account: ABC Corp

■ Contact: User1

■ Contact: User3

Account: ABC Corp

■ Business Address: 123 Main St

■ Business Address: 456 Oak St

■ Contact: User1

■ Organization: Default Org

■ Contact: User3

■ Organization: Default Org.

■ Organization: Default Org.

EAI Siebel Adapter Business Service ■ EAI Siebel Adapter Business Service Methods

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

161

<City>YourTown</City>
<Country>Canada</Country>
<MainAddressFlag>Y</MainAddressFlag>
<ShipAddressFlag>Y</ShipAddressFlag>
<StreetAddress>456 Oak St</StreetAddress>

</Account_BusinessAddress>
</ListOfAccount_BusinessAddress>
<ListOfContact>

<Contact>
<ActiveStatus>Y</ActiveStatus>
<FirstName>User1</FirstName>
<LastName>User1</LastName>

 <MiddleName/>
<Organization>Default Organization</Organization>
<ListOfContact_Organization>

<Contact_Organization IsPrimaryMVG = "Y">
<Organization>Default Organization</Organization>
<OrganizationIntegrationId/>

</Contact_Organization>
</ListOfContact_Organization>
<ListOfContact_AlternatePhone/>

</Contact>
<Contact>

<ActiveStatus>Y</ActiveStatus>
<FirstName>User2</FirstName>
<LastName>User2</LastName>
<MiddleName/>
<Organization>Default Organization</Organization>
<ListOfContact_Organization>

<Contact_Organization IsPrimaryMVG = "Y">
<Organization>Default Organization</Organization>
<OrganizationIntegrationId/>

</Contact_Organization>
</ListOfContact_Organization>
<ListOfContact_AlternatePhone/>

</Contact>
</ListOfContact>
<ListOfAccount_Organization>

<Account_Organization IsPrimaryMVG = "Y">
<Organization>Default Organization</Organization>
<OrganizationId>0-R9NH</OrganizationId>
<OrganizationIntegrationId/>

</Account_Organization>
</ListOfAccount_Organization>

</Account>
</ListOfAccount>

</SiebelMessage>

And the following integration object instance is passed in:

<?xml version = "1.0" encoding = "UTF-8"?>
<?Siebel-Property-Set EscapeNames="false"?>
<SiebelMessage MessageId = "1-2QY5" IntObjectName = "EAI Account" MessageType =
"Integration Object" IntObjectFormat = "Siebel Hierarchical">

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

EAI Siebel Adapter Business Service ■ EAI Siebel Adapter Business Service Methods

162

<ListOfAccount>
<Account>
<AccountStatus>Active</AccountStatus>
<CSN>1-3JGO7</CSN>
<Competitor>Y</Competitor>
<CurrencyCode>USD</CurrencyCode>
<LanguageCode>CHS</LanguageCode>
<Location>test</Location>
<Name>ABC Corp</Name>

<ListOfContact/>
</Account>

</ListOfAccount>
</SiebelMessage>

After the sync operation, all the children contacts are deleted because none of the nodes match.

<?xml version = "1.0" encoding = "UTF-8"?>
<?Siebel-Property-Set EscapeNames="false"?>
<SiebelMessage MessageId = "1-2QY5" IntObjectName = "EAI Account" MessageType =
"Integration Object" IntObjectFormat = "Siebel Hierarchical">

<ListOfAccount>
<Account>

<AccountStatus>Active</AccountStatus>
<CSN>1-3JGO7</CSN>
<CurrencyCode>USD</CurrencyCode>
<LanguageCode>ENU</LanguageCode>
<Location>test</Location>
<Name>ABC Corp</Name>
<ListOfAccount_BusinessAddress>

<Account_BusinessAddress IsPrimaryMVG = "Y">
<AddressId>1-3JGOA</AddressId>
<AddressActiveStatus>Y</AddressActiveStatus>
<BillAddressFlag>Y</BillAddressFlag>
<City>MyTown</City>
<Country>Canada</Country>
<MainAddressFlag>Y</MainAddressFlag>
<ShipAddressFlag>Y</ShipAddressFlag>
<StreetAddress>123 Main St</StreetAddress>

</Account_BusinessAddress>
<Account_BusinessAddress IsPrimaryMVG = "N">

<AddressActiveStatus>Y</AddressActiveStatus>
<BillAddressFlag>Y</BillAddressFlag>
<AddressId>1-3JGOB</AddressId>
<City>YourTown</City>
<Country>Canada</Country>
<MainAddressFlag>Y</MainAddressFlag>
<ShipAddressFlag>Y</ShipAddressFlag>
<StreetAddress>456 Oak St</StreetAddress>

</Account_BusinessAddress>
</ListOfAccount_BusinessAddress>
<ListOfAccount_Organization>

<Account_Organization IsPrimaryMVG = "Y">
<Organization>Default Organization</Organization>
<OrganizationId>0-R9NH</OrganizationId>

EAI Siebel Adapter Business Service ■ EAI Siebel Adapter Business Service Methods

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

163

<OrganizationIntegrationId/>
</Account_Organization>

</ListOfAccount_Organization>
</Account>

</ListOfAccount>
</SiebelMessage>

Table 15 is a high level representation of the operation.

This second example demonstrates how all records with an empty container are deleted when using
the Synchronize method.

Insert Method
This method is also similar to the Synchronize method with the exception that the EAI Siebel Adapter
generates an error if a matching root component is found; otherwise, it inserts the root component
and synchronizes all the children. It is important to note that when you insert a record, there is a
possibility that the business component would create default children for the record, which will be
removed by the Insert method. The Insert method synchronizes the children, which deletes all the
default children. For example, if you insert an account associated with a specific organization, then
it will also be automatically associated with a default organization. As part of the Insert method, the
EAI Siebel Adapter deletes the default association, and associates the new account with only the
organization that was originally defined in the input integration object instance. The EAI Siebel
Adapter achieves this by synchronizing the children.

Example of Using the Insert Method
If you use the Insert method with the example of the integration object instance represented in XML
that follows, then a new service request is created with two activities.

<?xml version = "1.0" encoding = "UTF-8"?>

Table 15. Representation of Records with Empty Containers Being Deleted Using Synchronize
Method

Record In Database
Integration Object
Instance

Record After Synchronize
Operation

Account: ABC Corp

■ Business Address: 123 Main St

■ Business Address: 456 Oak St

■ Contact: User1

■ Organization: Default Org.

■ Contact: User2

■ Organization: Default Org.

■ Organization: Default Org.

Account: ABC Corp

■ Contact:

Account: ABC Corp

■ Business Address: 123 Main St

■ Business Address: 456 Oak St

■ Organization: Default Org.

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

EAI Siebel Adapter Business Service ■ EAI Siebel Adapter Business Service Methods

164

<?Siebel-Property-Set EscapeNames="false"?>
<SiebelMessage MessageId = "1-2R6E" IntObjectName = "Sample Service Request"
MessageType = "Integration Object" IntObjectFormat = "Siebel Hierarchical">

<ListOfSampleServiceRequest>
<ServiceRequest>

<Account>Genesys Communications</Account>
<AccountLocation>San Francisco, CA</AccountLocation>
<Area>Network</Area>
<ClosedDate/>
<CommitTime/>
<ContactBusinessPhone>4155551100</ContactBusinessPhone>
<ContactLastName>Kastrup-Larsen</ContactLastName>
<Description>Setting up Router services<Description>
<Priority>3-Medium</Priority>
<SRNumber>1-MYUNIQUEVALUE</SRNumber>
<ServiceRequestType>External</ServiceRequestType>
<ListOfAction>

<Action>
<BillableFlag>N</BillableFlag>
<Description2>test activity1</Description2>
<EstWorkTimeRemaining>8</EstWorkTimeRemaining>
<Planned/>
<PrimaryOwnedBy>SADMIN</PrimaryOwnedBy>
<RowStatusOld>N</RowStatusOld>
<Status>Unscheduled</Status>
<Type>Appointment</Type>

</Action>
<Action>
<BillableFlag>N</BillableFlag>
<Description2>test activity2</Description2>
<EstWorkTimeRemaining>8</EstWorkTimeRemaining>
<Planned/>
<PrimaryOwnedBy>SADMIN</PrimaryOwnedBy>
<Status>Unscheduled</Status>
<Type>Appointment</Type>

</Action>
</ListOfAction>

</ServiceRequest>
</ListOfSampleServiceRequest>

</SiebelMessage>

For this example to work, you must have the contact, Kastrup-Larsen, in the database. If you try the
Insert method against a server database where the contact does not exist, then you will receive the
following error:

Picklist validation of field 'Contact Last Name' in integration component 'Service
Request' did not find any matches satisfying the query '[Last Name] = "Kastrup-
Larsen"', and an attempt to create a new record through the picklist failed (SBL-
EAI-04186)

Also, if you try to insert the previous instance a second time, then you will receive the following error
message:

EAI Siebel Adapter Business Service ■ EAI Siebel Adapter Business Service Methods

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

165

IDS_ERR_EAI_SA_INSERT_MATCH_FOUND. Insert operation on integration component
'Service Request' failed because a matching record in business component 'Service
Request' with search specification '[SR Number] = "1-MYUNIQUEVALUE" was found.(SBL-
EAI-04383).

Upsert Method
The Upsert method is similar to the Synchronize method with one exception; the Upsert method does
not delete any records.

The Upsert method will result in insert or update operations. If the record exists, then it will be
updated. If the record does not exist, then it will be inserted. Unlike the Synchronize method, upsert
will not delete any children.

To determine if an update or insert is performed, the EAI Siebel Adapter runs a query using user keys
fields or the search specifications to determine if the parent or primary record already exists. If the
parent record exists, it will be updated. If no matching parent record is found, then the new record
will be inserted. Once again, upsert will not delete any children. If existing children are found, then
they are updated.

You can update multiple corresponding top-level (highest-level) parent business component records
using one XML file, as in the following example:

<SiebelMessage MessageId="" MessageType="Integration Object"
IntObjectName="Transaction">

<ListofTransaction>
<Transaction>

<Field1>xxxx</Field1>
<Field2>yyyy</Field2>
...

</Transaction>
<Transaction>

<Field1>aaaa</Field1>
<Field2>bbbb</Field2>
...

</Transaction>
...

</ListofTransaction>
</SiebelMessage>

Update Method
This method is similar to the Synchronize method, except that the EAI Siebel Adapter returns an
error if no match is found for the root component; otherwise, it updates the matching record and
synchronizes all the children.

NOTE: During an update operation, the EAI Siebel Adapter expects a single record to be returned
from the user key search. If more than one record is returned, then EAI Siebel Adapter throws an
error.

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

EAI Siebel Adapter Business Service ■ EAI Siebel Adapter Business Service Methods

166

For example, if you send an order with one order item to the EAI Siebel Adapter, then it will take the
following actions:

1 Queries for the order, and if it finds a match, then it updates the record.

2 Updates or inserts the new order item depending on whether a match was found for the new
order item.

3 Deletes any other order items associated with that order.

Delete Method
You can delete one or more records in a business component that is mapped to the root integration
component, given an integration object instance. A business component record is deleted as
specified by an integration object instance. The integration component instance fields are used to
query the corresponding business component and any records retrieved will be deleted. You call the
Delete method using only one of the following method arguments:

■ A Query By Example (QBE) integration object instance.

■ A Primary Row Id and Output Integration Object Name.

■ A Search Specification.

NOTE: To have the EAI Siebel Adapter perform a delete operation, define an integration object that
contains the minimum fields on the primary business component for the business object. The EAI
Siebel Adapter attempts to delete matching records in the business component before deleting the
parent record.

For example, if you pass in this XML document, then the Test Account account is deleted.

<?xml version = "1.0" encoding = "UTF-8"?>
<?Siebel-Property-Set EscapeNames="false"?>
<SiebelMessage MessageId = "1-2IOY" IntObjectName = "EAI Account" MessageType =
"Integration Object" IntObjectFormat = "Siebel Hierarchical">

<ListOfAccount>
<Account>

<Name>Test Account</Name>
<Location>EMV</Location>

</Account>
</ListOfAccount>

</SiebelMessage>

Any child contacts that once belonged to the account will still remain in the database, but will not be
associated with this Account.

Execute Method
The Execute method can be specified on the EAI Siebel Adapter to perform combinations of various
operations on components in an integration object instance. This method uses the following
operations:

EAI Siebel Adapter Business Service ■ EAI Siebel Adapter Business Service Methods

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

167

■ query

■ querypage (same as query when used as children operation)

■ sync (the same method as Synchronize and is the default operation)

■ upsert

■ update

■ updatesync

■ insert

■ insertsync

■ delete

■ skipnode

■ skiptree

■ none

NOTE: A none operation is equivalent to operation sync.

These operations perform the same tasks as the related methods. For example, the delete operation
makes the EAI Siebel Adapter delete the business component record matched to the particular
integration component instance. However, what will be done to the children depends on the
combination of the parent operation and the child operation. For information, see Table 16 on
page 168.

NOTE: The operation method names are case sensitive. If you misspell an operation method, then
the EAI Siebel Adapter assumes the default operation.

An XML document sent to a Siebel application can include operations that describe whether a
particular data element must be inserted, updated, deleted, synchronized, and so on. These
operations can be specified as an attribute at the component level. They cannot be specified for any
other element.

The following XML example demonstrates using the upsert and delete operation to delete a particular
child record without updating the parent:

<SiebelMessage MessageId="" MessageType="Integration Object" IntObjectName="Sample
Account">

<ListofSampleAccount>
<Account operation="upsert">

<Name>A. K. Parker Distribution</Name>
<Location>HQ-Distribution</Location>
<Organization>North American Organization</ Organization>
<Division/>
<CurrencyCode>USD</CurrencyCode>
<Description>This is the key account in the AK Parker Family</

Description>
<HomePage>www.parker.com</HomePage>
<LineofBusiness>Manufacturing</LineofBusiness>
<ListOfContact>
<Contact operation="delete">

<FirstName>Stan</FirstName>

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

EAI Siebel Adapter Business Service ■ EAI Siebel Adapter Business Service Methods

168

<JobTitle>Senior Mgr of MIS</JobTitle>
<LastName>Graner</LastName>
<MiddleName>A</MiddleName>
<PersonalContact>N</PersonalContact>

<Account>A. K. Parker Distribution</Account>
<AccountLocation>HQ-Distribution</AccountLocation>
</Contact>
</ListOfContact>

</Account>
</ListofSampleAccount>

</SiebelMessage>

About Execute Method Operations
Specify an attribute named operation, in lowercase, to the component’s XML element. The legal
values for this attribute are upsert, sync, delete, query, update, insert, updatesync, insertsync,
skipnode, skiptree, and none. If the operation is not specified on the root component, then the sync
operation is used as the default.

NOTE: Specifying an operation within the ListOf tag is not supported. For information on the ListOf
tag, see XML Reference: Siebel Enterprise Application Integration.

Each child node inherits the operation from the parent if another operation is not explicitly specified.
If another operation is explicitly specified, then Table 16 represents the results of the operation on
the current node.

Table 16. Operation Outcomes for the Child Node

Operation
What Happens to the Current
Node

What Happens to Unmatched
Children of Current Node

upsert Update or insert Leave alone

sync Update or insert Delete

update Update Delete

updatesync Update Delete

insert Insert Leave alone

insertsync Insert Delete

skipnode Skip this node Leave alone

skiptree Skip the tree Not applicable

EAI Siebel Adapter Business Service ■ EAI Siebel Adapter Business Service Methods

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

169

Example of a Parent Node Using a Sync Operation
This example demonstrates the effects of records after a sync operation is performed. Table 17 is a
high level representation of a parent node using the sync operation of the Execute method.

Record in Database
The following code represents GENCOMM0 and GENCOMM1 being retrieved as the contacts for this
example:

<?xml version = "1.0" encoding = "UTF-8"?>
<?Siebel-Property-Set EscapeNames="false"?>
<SiebelMessage MessageId = "1-2QY5" IntObjectName = "EAI Account" MessageType =
"Integration Object" IntObjectFormat = "Siebel Hierarchical">

<ListOfAccount>
<Account>

<AccountStatus>Active</AccountStatus>
<CurrencyCode>USD</CurrencyCode>
LanguageCode>ENU</LanguageCode>
<Location>San Francisco, CA</Location>
<Name>GenComm</Name>
<ListOfContact>

<Contact>
<FirstName>GENCOMM0</FirstName>
<LastName>GENCOMM0</LastName>
<MiddleName/>
<Organization>Default Organization</Organization>

</Contact>
<Contact>
<FirstName>GENCOMM1</FirstName>
<LastName>GENCOMM1</LastName>
<MiddleName/>
<Organization>Default Organization</Organization>

</Contact>
</ListOfContact>

/Account>
</ListOfAccount>

</SiebelMessage>

Integration Object Instance
The following code represents the sync operation acting on the contacts from the database.

Table 17. Representation of a Parent Node Using the Sync Operation

Record In Database Integration Object Instance
Record After Execute
Operation

Account1

Contact0

Contact1

Account1 operation=sync

Contact1

Contact2

Account1

Contact1

Contact2

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

EAI Siebel Adapter Business Service ■ EAI Siebel Adapter Business Service Methods

170

<?xml version = "1.0" encoding = "UTF-8"?>
<?Siebel-Property-Set EscapeNames="false"?>
<SiebelMessage MessageId = "1-2QY5" IntObjectName = "EAI Account" MessageType =
"Integration Object" IntObjectFormat = "Siebel Hierarchical">

<ListOfAccount>
<Account operation="sync">

<AccountStatus>Inactive</AccountStatus>
<CurrencyCode>USD</CurrencyCode>
<LanguageCode>ENU</LanguageCode>
<Location>San Francisco, CA</Location>
<Name>GenComm</Name>
<ListOfContact>

<Contact>
<FirstName>GENCOMM1</FirstName>
<LastName>GENCOMM1</LastName>
<MiddleName/>
<Organization>Default Organization</Organization>

</Contact>
<Contact>
<FirstName>GENCOMM2</FirstName>
<LastName>GENCOMM2</LastName>
<MiddleName/>
<Organization>Default Organization</Organization>

</Contact>
</ListOfContact>

</Account>
</ListOfAccount>

</SiebelMessage>

Result Record in Database
The following code represents the results of the sync operation after acting on the two contacts from
the database.

<?xml version = "1.0" encoding = "UTF-8"?>
<?Siebel-Property-Set EscapeNames="false"?>
<SiebelMessage MessageId = "1-2QY5" IntObjectName = "EAI Account" MessageType =
"Integration Object" IntObjectFormat = "Siebel Hierarchical">

<ListOfAccount>
<Account>

<AccountStatus>Inactive</AccountStatus>
<CurrencyCode>USD</CurrencyCode>
<LanguageCode>ENU</LanguageCode>
<Location>San Francisco, CA</Location>
<Name>GenComm</Name>
<ListOfContact>

<Contact>
<FirstName>GENCOMM1</FirstName>
<LastName>GENCOMM1</LastName>
<MiddleName/>
<Organization>Default Organization</Organization>

</Contact>
<Contact>
<FirstName>GENCOMM2</FirstName>

EAI Siebel Adapter Business Service ■ EAI Siebel Adapter Business Service Methods

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

171

<LastName>GENCOMM2</LastName>
<MiddleName/>
<Organization>Default Organization</Organization>

</Contact>
</ListOfContact>

</Account>
</ListOfAccount>

</SiebelMessage>

In this case, if a matching Account1 exists in the database, then the EAI Siebel Adapter will perform
an update of that record. If no record matching Account1 exists, then the EAI Siebel Adapter will
insert a new account.

For all the matching child contacts, the sync operation is inherited. Therefore, if the child exists, then
it will be updated. If the child does not exist, then it is inserted. Any child contacts that exist in the
database but do not match the integration object instance (unmatched children) are deleted.

The reason for this logic is that the sync operation makes the record in the database look like the
integration object instance.

Example of a Parent Node Using an Update Operation
This example demonstrates the effects of records after an update operation is performed. Table 18
is a high level representation of a parent node using the update operation of the Execute method.

NOTE: The examples represented by Table 18, Table 19 on page 172, and Table 22 on page 173
basically have the same result. However, as reflected in Table 21 on page 173, the children do not
automatically inherit Update if it is only set for the root.

In this case, if a record matching Account1 exists in the database, then the EAI Siebel Adapter
updates that specific record. If no matching account exists, then the result of the EAI Siebel Adapter
is an error with this message:

Insert operation on integration component 'Account' failed because a matching record
in business component 'Account' with search specification '[Name] = "GenComm" AND
[Location] = "San Francisco, CA"' was found (SBL-EAI-04383)

For all the matching child contacts, the update operation is inherited. Therefore, if the child exists,
then it will be updated. If the child does not exist, then it is inserted. For child contacts that exist in
the database but do not match the integration object instance, they will be deleted. These might be
child contacts created or associated with the Account by default.

Table 18. Representation of a Parent Node Using the Update Method

Record In Database Integration Object Instance
Record After Execute
Operation

Account1

Contact0

Contact1

Account1 operation=update

Contact1

Contact2

Account1

Contact1

Contact2

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

EAI Siebel Adapter Business Service ■ EAI Siebel Adapter Business Service Methods

172

This is very similar to the previous example except the record must exist in the database.

Example of a Parent Using an Update Operation and One More Child
Using an Insert Operation
This example demonstrates the effects on records after an update operation acts on the parent, and
an insert operation acts on one of the children records. Table 19 is a high level representation of this
example.

In this case, if a record matching Account1 exists in the database, then the EAI Siebel Adapter
updates that record. If no record matching Account1 exists, then the result from the EAI Siebel
Adapter is an error.

 You can also override the parent operation as in the case for Contact2. Since Contact2 does not
exist, and there is an explicit insert operation, it will be inserted. Any unmatched children will be
deleted as part of the parent operation (update). This is the reason why Contact0 is deleted.

If you are explicitly overriding the parent operation, then you must make sure the operation applies.
For example, the two combinations in Table 20 and Table 21 on page 173 will fail. In Table 20, it fails
because an insert is attempted when Contact1 already exists in the database.

Table 19. Representation of Two Operations

Record In Database Integration Object Instance
Record After Execute
Operation

Account1

Contact0

Contact1

Account1 operation=update

Contact1

Contact2 operation=insert

Account1

Contact1

Contact2

Table 20. Representation of Overriding a Parent Operation Using Insert

Record In Database Integration Object Instance
Record After Execute
Operation

Account1

Contact0

Contact1

Account1 operation=update

Contact1 operation=insert

Contact2 operation=insert

None

EAI Siebel Adapter Business Service ■ EAI Siebel Adapter Business Service Methods

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

173

In Table 21, the update fails because SubContact3 inherits from Contact2's operation, and
Subcontact3 does not exist in the database.

Example of a Parent Using the Update Operation and One More Child
Using the Upsert Operation
This example demonstrates the effects of records after an update operation acts on the parent, and
an upsert operation acts on one of the children records. Table 22 is a high level representation of this
example.

In this case, if a record matching Account1 exists in the database, then the EAI Siebel Adapter
updates that record. If no record matching Account1 exists, then the result of the EAI Siebel Adapter
is an error.

For a record matching Contact2, the upsert operation overrides the update operation. Therefore, if
Contact2 exists, then it is updated. If no record matching Contact2 is found, then it is inserted.
Unmatched child contacts are deleted.

Table 21. Representation of Overriding a Parent Operation Using Update

Record In Database Integration Object Instance
Record After Execute
Operation

Account1

Contact1

Contact2

SubContact1

SubContact2

Account1

Contact1

Contact2 operation=update

SubContact1

SubContact3

None

Table 22. Representation of Overriding a Parent Operation Using Upsert

Record In Database Integration Object Instance
Record After Execute
Operation

Account1

Contact0

Contact1

Account1 operation=update

Contact1

Contact2 operation=upsert

Account1

Contact1

Contact2

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

EAI Siebel Adapter Business Service ■ EAI Siebel Adapter Business Service Methods

174

Example of a Parent Using the Upsert Operation and One More Child
Using the Sync Operation
This example demonstrates the effects of records after an update operation acts on the parent, and
a sync operation acts on one of the children records. Table 23 is a high level representation of this
example.

In this case, if a record matching Account1 exists in the database, then the EAI Siebel Adapter
updates that record. If no record matching Account1 exists, then the EAI Siebel Adapter inserts the
record.

For all child contacts, the upsert operation applies. Therefore, if the child exists, then it is updated.
If the child does not exist, then it is inserted. For child contacts that exist in the database, but do
not match the integration object instance, they will remain unchanged because upsert does not
delete children.

In the case of Contact2, which has the sync operation overriding the upsert operation, it is updated,
and its children are synchronized.

Skiptree Operation
The whole sub tree rooted at this node is not processed. It is the same as that whole sub tree not
existing in the integration object instance. Operations specified in child nodes do not affect
processing in any way since the EAI Siebel Adapter does not act on the child.

<?xml version="1.0" encoding="UTF-8"?>
<?Siebel-Property-Set EscapeNames="false"?>
<SiebelMessage MessageId="1-2RE" MessageType="Integration Object"
IntObjectName="Sample Account" IntObjectFormat="Siebel Hierarchical">

<ListOfSampleAccount>
<Account operation="upsert">

<Name>foo </Name>
<Location>cold storage</Location>

Table 23. Representation of Overriding a Parent Operation Using Sync

Record In Database Integration Object Instance
Record After Execute
Operation

Account1

Contact0

Organization2

Contact1

Organization2

Contact2

Organization2

Account1 operation=upsert

Contact1

Organization1

Contact2 operation=sync

Organization3

Account1

Contact0

Organization2

Contact1

Organization1

Organization2

Contact2

Organization3

EAI Siebel Adapter Business Service ■ EAI Siebel Adapter Business Service Methods

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

175

<ListOfContact>
<Contact operation="skiptree">
<FirstName>firstname</FirstName>
<LastName>contact1</LastName>
<Organization>Default Organization</Organization>
<PersonalContact>N</PersonalContact>
<ListOfBusinessAddress>
<BusinessAddress operation="insert">

<City>San Mateo</City>
<Zip>94402</Zip>
<AddressName>primary address</AddressName>

</BusinessAddress>
</ListOfBusinessAddress>

</Contact>
<Contact>
<FirstName>firstname</FirstName>
<LastName>contact2</LastName>
<Organization>Default Organization</Organization>
<PersonalContact>N</PersonalContact>

</Contact>
</ListOfContact>

</Account>
</ListOfSampleAccount>

</SiebelMessage>

Based on this example, the account is upserted. The processing of the first contact is completely
skipped although the business address child has an insert operation set. Also, the second contact is
upserted.

If the skiptree operation is specified for the account integration component, then the EAI Siebel
Adapter skips processing the complete account. This results in no operation. It is possible to have
many accounts with some having skiptree specified as shown in the following example. The EAI
Siebel Adapter processes the trees that do not have skiptree specified.

<?xml version="1.0" encoding="UTF-8"?>
<?Siebel-Property-Set EscapeNames="false"?>
<SiebelMessage MessageId="1-2RE" MessageType="Integration Object"
IntObjectName="Sample Account" IntObjectFormat="Siebel Hierarchical">

<ListOfSampleAccount>
<Account operation="skiptree">

<Name>foo</Name>
<Location>cold storage<Location/>

</Account>
<Account operation="upsert">

<Name>bar</Name>
<Location>cold storage<Location/>

</Account>
</ListOfSampleAccount>

</SiebelMessage>

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

EAI Siebel Adapter Business Service ■ EAI Siebel Adapter Business Service Methods

176

Skipnode Operation
Similar to all other Execute operations, the children nodes inherit the semantics of the operation from
the parent nodes. If a node has the skipnode operation set, then the EAI Siebel Adapter will skip
setting field values for all children unless a child has an explicit operation set that will override.

<?xml version="1.0" encoding="UTF-8"?>
<?Siebel-Property-Set EscapeNames="false"?>
<SiebelMessage MessageId="1-2RE" MessageType="Integration Object"
IntObjectName="EAI Account" IntObjectFormat="Siebel Hierarchical">

<ListOfAccount>
<Account operation="skipnode">

<Name>foo</Name>
<Location>cold storage</Location>
<ListOfContact>

<Contact operation="upsert">
<IntegrationId>1-123</IntegrationId>

<FirstName>firstname</FirstName>
<LastName>contact1</LastName>

<ListOfContact_Organization>
<Contact_Organization>

<Organization operation="insert">MyOrganization</Organization>
</Contact_Organization>

</ListOfContact_Organization>
</Contact>
<Contact operation="upsert">

<IntegrationId>2-123</IntegrationId>
<FirstName>firstname</FirstName>
<LastName>contact2</LastName>
</Contact>

</ListOfContact>
</Account>

</ListOfAccount>
</SiebelMessage>

Based on this example, the account is skipped. However, the EAI Siebel Adapter will attempt to insert
the two contacts.

EAI Siebel Adapter Business Service Method Arguments

Each of the EAI Siebel Adapter methods takes arguments that allow you to specify required and
optional information to the adapter. You can locate the arguments for each method (and whether it
can be used as an input argument, output argument, or both) in Table 24.

Table 24. EAI Siebel Adapter Business Service Method Arguments

Argument Query
Query
Page Sync Upsert Update Insert Delete Execute

BusObjCacheSize Input Input Input Input Input Input Input Input

DeleteByUserKey not
applica
ble

not
applicabl
e

not
applica
ble

not
applica
ble

not
applica
ble

not
applica
ble

Input Input

EAI Siebel Adapter Business Service ■ EAI Siebel Adapter Business Service Methods

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

177

ErrorOnNonExisting
Delete

not
applica
ble

not
applicabl
e

not
applica
ble

not
applica
ble

not
applica
ble

not
applica
ble

Input Input

ExecutionMode Input Input not
applica
ble

Input Input Input not
applica
ble

Input

IntObjectName not
applica
ble

not
applicabl
e

not
applica
ble

not
applica
ble

not
applica
ble

not
applica
ble

Input Input

LastPage not
applica
ble

Output not
applica
ble

not
applica
ble

not
applica
ble

not
applica
ble

not
applica
ble

Output

MessageId Input Input Input Input Input Input Input Input

NewQuery not
applica
ble

Input not
applica
ble

not
applica
ble

not
applica
ble

not
applica
ble

not
applica
ble

Input

NumOutputObjects Output Output Output Output Output Output Output Output

OutputIntObject
Name

Input Input not
applica
ble

not
applica
ble

not
applica
ble

not
applica
ble

not
applica
ble

Input

PageSize not
applica
ble

Input not
applica
ble

not
applica
ble

not
applica
ble

not
applica
ble

not
applica
ble

Input

PrimaryRowId Input not
applicabl
e

Output Output Output Output Input Input/
Output

QueryByUserKey Input not
applicabl
e

not
applica
ble

not
applica
ble

not
applica
ble

not
applica
ble

not
applica
ble

Input

SearchSpec Input Input not
applica
ble

not
applica
ble

not
applica
ble

not
applica
ble

Input Input

SiebelMessage Input/
Output

Output Input/
Output

Input/
Output

Input/
Output

Input/
Output

Input/
Output

Input/
Output

SortSpec not
applica
ble

Input not
applica
ble

not
applica
ble

not
applica
ble

not
applica
ble

not
applica
ble

Input

Table 24. EAI Siebel Adapter Business Service Method Arguments

Argument Query
Query
Page Sync Upsert Update Insert Delete Execute

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

EAI Siebel Adapter Business Service ■ EAI Siebel Adapter Business Service Methods

178

Table 25 presents each argument of the EAI Siebel Adapter business service methods.

StartRowNum not
applica
ble

Input not
applica
ble

not
applica
ble

not
applica
ble

not
applica
ble

not
applica
ble

Input

StatusObject not
applica
ble

not
applicabl
e

Input Input Input Input Input Input

ViewMode Input Input Input Input Input Input Input Input

Table 25. Defining EAI Siebel Adapter Business Service Method Arguments

Argument Display Name Description

BusObjCacheSize Business Object
Cache Size

Default is 5. Maximum number of Business Objects
instances cached by the current instance of the EAI
Siebel Adapter. If set to zero, then the EAI Siebel
Adapter does not use the cache.

DeleteByUserKey Delete By User
Key

A Boolean argument. Forces the EAI Siebel Adapter
to use only the user keys to identify a record.

ErrorOnNonExisting
Delete

Error On Non
Existing Delete

A Boolean argument. Determines whether or not the
EAI Siebel Adapter aborts the operation if no match
is found.

ExecutionMode Execution Mode Used to set the direction of a query on a business
component. Valid values are ForwardOnly and
Bidirectional. The default is Bidirectional.

ForwardOnly is more efficient than Bidirectional, and
is recommended in cases where you must process a
large number of records in the forward direction only
(such as for report generation). For operations that
are likely to return more than 10000 records, use
ForwardOnly to avoid errors.

For more information on executing queries, see the
topic on the ExecuteQuery business component
method in Siebel Object Interfaces Reference.

IntObjectName Integration Object
Name

Name of the integration object to delete.

LastPage Last Page Boolean indicating whether or not the last record in
the query result set has been returned.

Table 24. EAI Siebel Adapter Business Service Method Arguments

Argument Query
Query
Page Sync Upsert Update Insert Delete Execute

EAI Siebel Adapter Business Service ■ EAI Siebel Adapter Business Service Methods

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

179

MessageId Message Id The MessageId can be used to specify the ID for the
generated message. By default, the EAI Siebel
Adapter generates a unique ID for each message.
However, if you want to use the workflow instance ID,
then you can use this argument to specify the ID.

NewQuery New Query Default is False. Boolean indicating whether a new
query will be executed. If set to True, a new query is
executed flushing the cache for that particular
integration object.

NumOutputObjects Number of Output
Integration
Objects

Number of output integration objects.

OutputIntObjectName Output
Integration Object
Name

The name of the integration object that is to be
output.

PageSize Page Size Default is 10. Indicates the maximum number of
integration object instances to be returned.

PrimaryRowId Object Id The PrimaryRowId refers to the Id field in the
Business Component, Row_Id at the table level.

PrimaryRowId is only returned as an output
argument if you are passing in one integration object
instance. If you are passing multiple integration
object instances, then this argument is not returned
as an output argument. To obtain the ID field when
multiple integration objects are processed, use the
StatusObject argument.

QueryByUserKey Query By Key A Boolean argument. Forces the EAI Siebel Adapter
to use only the user keys to perform a query.

SearchSpec Search
Specification

This argument allows you to specify complex search
specifications as free text in a single method
argument. For information, see “About Using
Language-Independent Code with the EAI Siebel
Adapter Business Service” on page 190.

SiebelMessage Siebel Message The input or the output integration object instance.

SortSpec Sort Specification Default is the SortSpec of the underlying business
component. This argument allows you to specify
complex sort criteria as a free text in a single method
argument, using any business component fields and
standard Siebel sort syntax. For examples, see Using
Siebel Tools.

Table 25. Defining EAI Siebel Adapter Business Service Method Arguments

Argument Display Name Description

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

EAI Siebel Adapter Business Service ■ EAI Siebel Adapter Business Service Methods

180

About the SearchSpec Input Method Argument
The SearchSpec input method argument is applicable to the QueryPage, Query, Delete, and Execute
methods. This method argument allows you to specify complex search specifications as free text in
a single method argument. Expressions within a single integration component are restricted only by
the Siebel Query Language supported by the Object Manager. Integration components and fields are
referenced using the following notation:

[IntCompName.IntCompFieldName]

For example, given an integration object definition with two integration components, Account as the
root component and Contact as the child component, the following search specification is allowed:

([Account.Site] LIKE "A*" OR [Account.Site] IS NULL) AND [Contact.PhoneNumber] IS
NOT NULL

This search specification queries accounts that either have a site that starts with the character A, or
do not have a site specified. In addition, for the queried accounts, it queries only those associated
contacts who have a phone number.

NOTE: The operator between fields for a particular integration component instance can be AND
unless between the same field. You use the DOT notation to refer to integration components and their
fields.

You can include the child integration component in a search specification only if its parent
components are also included.

About Multivalue Groups in the EAI Siebel Adapter Business Service

Multivalue groups (MVGs) in the business components are mapped to separate integration
components. Such integration components are denoted by setting a user property MVG on the
integration component to Y. For information on MVGs, see Chapter 2, “Integration Objects”.

An integration component instance that corresponds to a primary MVG is denoted by the attribute
IsPrimaryMVG set to Y. This attribute is a hidden integration component field and does not have a
corresponding business component field.

StartRowNum Starting Row
Number

Default is 0 (first page). Indicates the row in the
result set for the QueryPage method to start
retrieving a page of records.

StatusObject Status Object This argument tells the EAI Siebel Adapter whether
or not to return a status message.

ViewMode View Mode Default is All. Visibility mode to be applied to the
Business Object. Valid values are: Manager, Sales
Rep, Personal, Organization, Sub-Organization,
Group, Catalog, and All. Note that the ViewMode user
property on the integration object has priority over
the ViewMode method argument.

Table 25. Defining EAI Siebel Adapter Business Service Method Arguments

Argument Display Name Description

EAI Siebel Adapter Business Service ■ EAI Siebel Adapter Business Service Methods

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

181

Each MVG that appears on the client UI is mapped to a separate integration component. For example,
in the Orders Entry - Orders screen, there is an account address, a bill-to address, and a ship-to
address. Each of these MVGs needs a separate integration component definition. Each field defined
for an integration component (represented by the class CSSEAIIntCompFieldDef) maps to a field in
the MVG. For such fields, External Name denotes the name of the business component field as it
appears on the master business component, and the user property MVGFieldName denotes the name
of the business component field as it appears on the MVG business component.

NOTE: Setting a primary record in an MVG is supported when the Auto Primary property of the
underlying multivalue link is specified as Selected, None, or Default.

Setting a Primary Position for a Contact
You have a contact with multiple contact positions in a Siebel application. None of these positions
are marked as the primary position for the contact, and you want to select one of them as the
primary position.

To specify a contact position as a primary
1 Create your XML file and insert <IsPrimaryMVG= 'Y'> before the contact position you want to

identify as the primary position for the contact as follows:

<?xml version="1.0" encoding="UTF-8" ?>
<?Siebel-Property-Set EscapeNames="false"?>

- <SiebelMessage MessageId="1-69A" IntObjectFormat="Siebel Hierarchical"
MessageType="Integration Object" IntObjectName="Sample Contact">
- <ListOfSampleContact>
- <Contact>

<FirstName>Pal888</FirstName>
<IntegrationId>65454398</IntegrationId>
<JobTitle>Manager</JobTitle>
<LastName>John888</LastName>
<MiddleName />
<PersonUId>1-Y88H</PersonUId>
<PersonalContact>N</PersonalContact>

- <ListOfContact_Position>
- <Contact_Position IsPrimaryMVG="Y">

<EmployeeFirstName>Siebel</EmployeeFirstName>
<EmployeeLastName>Administrator</EmployeeLastName>
<Position>Siebel Administrator</Position>
<RowStatus>N</RowStatus>
<SalesRep>SADMIN</SalesRep>
</Contact_Position>
</ListOfContact_Position>
</Contact>
</ListOfSampleContact>
</SiebelMessage>.

2 Use the Upsert or Sync method to update the account.

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

EAI Siebel Adapter Business Service ■ About Using Effective Dating with Siebel EAI
Adapter Business Service

182

About Using Effective Dating with Siebel
EAI Adapter Business Service
The Siebel EAI Adapter allows you to access effective dating data, which means the start date and
end date for a given field or link. Third-party applications can request and receive effective dating
data from the Siebel application.

To view XML samples for effective dating functionality see XML Reference: Siebel Enterprise
Application Integration.

You specify effective dating on fields of a given business component through a Siebel Web Client
administration screen. For more information, see “Enabling Effective Dating on Fields” on page 182.
Two integration component fields attributes allow you to set effective dating: EDStartDate and
EDEndDate. Standard querying techniques, such as query, insert, update, sync can be used to request
effective dating-enabled data.

As Figure 38 shows, the Siebel Object Manager framework features APIs which are called by the
Siebel EAI Adapter when an integration object with effective dating enabled fields or links is read by
the XML Converter.

The following two topics explain how effective dating works:

■ “Enabling Effective Dating on Fields” on page 182

■ “Enabling Effective Dating on Links” on page 186

Enabling Effective Dating on Fields
This topic explains how effective dating works on fields. It contains the following topics:

■ “Configuring Integration Components for Effective Dating on Fields” on page 183

Figure 38. Effective Dating Overview

EAI Siebel Adapter Business Service ■ Enabling Effective Dating on Fields

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

183

■ “How the XML Converter Reads Effective Dating Data from Fields” on page 184

■ “WSDL Schema Generation for Effective Dating on Fields” on page 184

Configuring Integration Components for Effective Dating on Fields
You can enable effective dating on a field in an existing integration object if the corresponding field
in the business component is effective dating-enabled. You enable fields for effective dating through
the Siebel Web Client administration Effective Dating screen.

To enable effective dating on fields
1 In the Siebel Web Client, navigate to Administration - Effective Dating, then Field.

2 In the Effective Dating Buscomp list, select the required business component.

The list displays the fields already enabled for ED.

3 If you want enable effective dating field not present in this list, click New, then in the Field field
click the Select button.

4 In the Business Component Fields window select the required field, then click OK.

This enables the fields for ED.

You use Siebel Tools to synchronize the object from your current repository, with its underlying
business object in the Siebel database which contains the new EDEnabled user property. For more
information on synchronizing integration objects, see “Synchronizing Integration Objects” on page 62.

To enable effective dating on an integration object
1 In Siebel Tools, select the integration object you want to enable for effective dating.

2 Click the Synchronize button in the Integration Objects list.

The Integration Object Synchronize wizard appears.

3 Click the plus symbol to display all the related integration components.

4 Uncheck the boxes beside the objects and components you do not want to include in the
synchronization of your Siebel integration object.

5 Locate the integration component containing the effective dating-enabled fields and drill down
on it.

6 Click the plus symbol to display all the user properties of the field.

7 Locate the EDEnabled user property from the list and add it to the repository side.

8 Review the summary, and if changes are needed, click Back and make the needed changes.

9 If no changes are needed, click Finish to synchronize the Siebel integration object and the Siebel
business object.

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

EAI Siebel Adapter Business Service ■ Enabling Effective Dating on Fields

184

How the XML Converter Reads Effective Dating Data from Fields
The XML converter reads effective dating attributes contained in an XML file, maps them to a
property set, and converts the property set to an integration object instance by embedding the
EDStartDate and EDEndDate attributes inside the field name.

For example: If a SOAP request contains the following query for an effective dating field:

<acc:EDListOfFirstName>

<acc:FirstName EDStartDate="04/01/2012" EDEndDate=">James</acc:FirstName>

</acc:EDListOfFirstName>

The data will be converted into a child property set of the integration component instance as follows:

c[0] CCFPropertySet@1DA79960 p#0 c#1 type="ListOfRelated Contact" vt=0 value="

{

c[0] CCFPropertySet@1D9FD870 p#1 c#2 type="Related Contact" vt=0 value="

{

p["Contact Id"] = "Contact1";

c[0] CCFPropertySet@1FD92BB0 p#0 c#1 type="EDListOfFirst Name" vt=0 value="

{

c[0] CCFPropertySet@13258470 p#2 c#0 type="First Name" vt=3 value="James"

{

["EDEndDate"] = ";

["EDStartDate"] = "04/25/2012";

}

}

}

}

The dates are now embedded into the field name.

WSDL Schema Generation for Effective Dating on Fields
Effective dating requires two complex type attributes StartDate and EndDate for each effective
dating-enabled field. In the following schema example the location field is enabled for effective
dating, as shown by the two additional attributes EDStartDate and EDEndDate. Historical data can
be retrieved by setting the cardinality of the effective dating-enabled XSD element to unbounded.

EAI Siebel Adapter Business Service ■ Enabling Effective Dating on Fields

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

185

WSDL Schema Example
<xsd:complexType name="RelatedContact">

<xsd:sequence>

<xsd:element name="ContactId" maxOccurs="1" minOccurs="0" type="xsd:string"/>

<xsd:element name="EDListOfFirstName" maxOccurs="1" minOccurs="0"
type="xsdLocal1:EDListOfFirstName"/>

<xsd:element name="ContactIntegrationId" maxOccurs="1" minOccurs="0"
type="xsd:string"/>

<xsd:element name="EDListOfLastName" maxOccurs="1" minOccurs="0"
type="xsdLocal1:EDListOfLastName"/>

. . . .

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="EDListOfFirstName">

<xsd:sequence>

<xsd:element name="FirstName" maxOccurs="unbounded" minOccurs="0"
type="xsdLocal1:FirstName"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="FirstName">

<xsd:simpleContent>

<xsd:extension base="xsd:string">

<xsd:attribute name="EDStartDate" type="xsd:string"/>

<xsd:attribute name="EDEndDate" type="xsd:string"/>

</xsd:extension>

</xsd:simpleContent>

</xsd:complexType>

SOAP Query Example
The previous WSDL schema example allows you to generate the following SOAP query:

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

EAI Siebel Adapter Business Service ■ Enabling Effective Dating on Links

186

<ElementName EDStartDate=dd1/mm1/yyyy1, EDEndDate = dd2/mm2/yyy2>value</ElementName>

For example:

<acc:RelatedContact>

<acc:ContactId>88-30ARL</acc:ContactId>

<acc:EDListOfFirstName>

<acc:FirstName EDStartDate="04/01/2012" EDEndDate=">James</acc:FirstName>

</acc:EDListOfFirstName>

<acc:EDListOfLastName>

<acc:LastName EDStartDate="04/01/2012" EDEndDate=">Bond</acc:LastName>

</acc:EDListOfLastName>

</acc:RelatedContact>

Similarly you can perform insert, update, and synchronize operations on data using the “WSDL
Schema Example” on page 185.

Enabling Effective Dating on Links
This topic explains how to enable effective dating on links. It contains the following topics:

■ “Enabling Effective Dating on Links” on page 186

■ “Siebel EAI Adapter Operations for Effective Dating on Links” on page 188

Enabling Effective Dating on Links
You can enable effective dating on a link in an existing integration object if the corresponding link in
the business component is effective dating-enabled. You enable link for effective dating through the
Siebel Web Client administration Effective Dating screen.

To enable effective dating on links
1 In the Siebel Web Client, navigate to Administration - Effective Dating, then Child Buscomp.

2 In the Effective Dating Buscomp list, select the required business component, then in the Child
Buscomp view select the required link if it is shown.

If you need to create a new link, see Step 3.

3 Click New, then in the Link Name field click the Select button.

4 In the Link window select the required link, then click OK.

EAI Siebel Adapter Business Service ■ Enabling Effective Dating on Links

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

187

Web Service Schema Example
The following Web service schema example shows a link between the Household and Related Contact
business components which have been enabled for effective dating. The effective dating attributes
are displayed in bold text.

<xsd:complexType name="Household">

<xsd:complexType name="RelatedContact">

<xsd:attribute name="EDStartDate" type="xsd:string" />

<xsd:attribute name="EDEndDate" type="xsd:string" />

<xsd:sequence>

<xsd:element name="ContactIntegrationId" maxOccurs="1" minOccurs="0"
type="xsd:string" />

<xsd:element name="EDListOfFirstName" maxOccurs="1" minOccurs="0"
type="xsdLocal1:EDListOfFirstName"/>

<xsd:element name="EDListOfLastName" maxOccurs="1" minOccurs="0"
type="xsdLocal1:EDListOfLastName"/>

<xsd:element name="MiddleName" maxOccurs="1" minOccurs="0" type="xsd:string"
/>

<xsd:element name="PersonUId" maxOccurs="1" minOccurs="0" type="xsd:string" /
>

<xsd:element name="PersonalContact" maxOccurs="1" minOccurs="0"
type="xsd:string" />

<xsd:element name="ContactId" maxOccurs="1" minOccurs="0" type="xsd:string" /
>

<xsd:element name="DateEnteredHousehold" maxOccurs="1" minOccurs="0"
type="xsd:string" />

<xsd:element name="DateExitedHousehold" maxOccurs="1" minOccurs="0"
type="xsd:string" />

<xsd:element name="PrimaryOrganizationId" maxOccurs="1" minOccurs="0"
type="xsd:string" />

<xsd:element name="Relationship" maxOccurs="1" minOccurs="0"
type="xsd:string" />

</xsd:sequence>

<xsd:attribute name="IsPrimaryMVG" type="xsd:string" />

 </xsd:complexType>

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

EAI Siebel Adapter Business Service ■ Enabling Effective Dating on Links

188

</xsd:complexType>

This will produce the following XML:

<hous:Household>

<hous:ListOfRelatedContact>

<hous:RelatedContact EDStartDate="1/1/2003" EDEndDate="">

<hous:ContactId>88-30KSP</hous:ContactId>

< hous:EDListOfFirstName>

< hous:FirstName EDStartDate="04/01/2012" EDEndDate="">SF1N6</acc:James>

</ hous:EDListOfFirstName>

< hous:EDListOfLastName>

< hous:LastName EDStartDate="04/01/2012" EDEndDate=">SL1N6</acc:Bond>

</ hous:EDListOfLastName>

< hous:MiddleName>MN1</hous:MiddleName>

</hous:RelatedContact>

</hous:ListOfRelatedContact>

 </hous:Household>

Siebel EAI Adapter Operations for Effective Dating on Links
The Siebel EAI Adapter receives the integration object in the format described in the “Web Service
Schema Example” on page 187. Depending on the specified operations the effective dates are used
as described in the following:

EAI Siebel Adapter Business Service ■ Enabling Effective Dating on Links

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

189

Insert operation
Once the record is inserted into the parent and child business component, the Siebel EAI Adapter
reads the EDStartDate and the EDEndDate from the integration object and inserts these values into
the corresponding effective dating business component.

Update operation
Once the record is inserted into the parent and child business component, the Siebel EAI Adapter
removes all history records from the effective dating enabled business component and then reads
the EDStartDate and EDEndDate values from the integration object and inserts these dates as fresh
records into the business component.

NOTE: The Update operation is only possible for currently active links (in other words, update is not
possible if a link has been soft deleted by giving a end date value for most recent history record).

Upsert and Synchronize Operations
If the upsert attribute is specified for the operation in the integration component then no history
records are deleted, instead the history given in the XML input is inserted into the history table.

The synchronize operation can result in the insert, update or deletion of the child integration
component as specified in the conditions set in the “Synchronize Method” on page 156.

XML Example
This example illustrates what is required if you want to perform an insert or upsert operation to insert
or update multiple history records for the same child business component.

NOTE: Multiple entries must be specified in the input XML code with same user key.

<hous:Household>

<hous:ListOfRelatedContact>

 <hous:RelatedContact EDStartDate="1/1/2003" EDEndDate=">

<hous:ContactId>88-30KSP</hous:ContactId>

</hous:RelatedContact>

<hous:RelatedContact EDStartDate="1/1/2002" EDEndDate="12/31/2002">

<hous:ContactId>88-30KSP</hous:ContactId></hous:RelatedContact>

<hous:RelatedContact EDStartDate="1/1/2001" EDEndDate="12/31/2001">

<hous:ContactId>88-30KSP</hous:ContactId>

</hous:RelatedContact>

<hous:RelatedContact EDStartDate="1/1/2000" EDEndDate="12/31/2000">

<hous:ContactId>88-30KSP</hous:ContactId>

</hous:RelatedContact>

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

EAI Siebel Adapter Business Service ■ About Using Language-Independent Code with the
EAI Siebel Adapter Business Service

190

<hous:ListOfRelatedContact>

 </hous:Household>

About Using Language-Independent
Code with the EAI Siebel Adapter
Business Service
If the user property AllLangIndependentVals is set to Y at the integration object level, then the EAI
Siebel Adapter uses the language-independent code for its LOVs.

In the outbound direction, for example, the Query method, if the AllLangIndependentVals is set to
Y, then the EAI Siebel Adapter translates the language-dependent values in the Siebel Database to
their language-independent counterpart based on the List Of Values entries in the database.

In the inbound direction, for example the Synchronize method, if the AllLangIndependentVals is set
to Y, then the EAI Siebel Adapter expects language-independent values in the input message, and
translates them to language-dependent values based on the current language setting and the entries
in the List Of Values in the database.

NOTE: The LOV-based fields are always validated using language-dependent values. Using language
independent values for LOVs and MLOVs increases the EAI Siebel Adapter CPU usage by about five
percent, but allows easier communication between systems that operate on different languages.

About LOV Translation and the EAI Siebel Adapter Business Service
The Siebel application distinguishes two types of lists of values (LOV):

■ Multilingual LOV (MLOV). Stores a language-independent code (LIC) in the Siebel Database
that is translated to a language-dependent value (LDV) for active language by Object Manager.
MLOVs are distinguished by having the Translation Table specified in the Column definition.

■ Single-language LOV. Stores the LDV for the current language in the Siebel Database. The
Boolean integration object user property AllLangIndependentVals determines whether the EAI
Siebel Adapter will use LDV (No = no translation necessary) or LIC (Yes = translation needed)
for such LOVs.

Translating to LIC affects performance, but allows easier cooperation between systems that operate
on different languages. This option is especially used by various import and export utilities.

The AllLangIndependentVals integration object user property is undefined for integration objects
when the base object type is not Siebel Business Object. When the base object is Siebel Business
Object, AllLangIndependentVals is defined with a default value of N.

EAI Siebel Adapter Business Service ■ Siebel EAI and Run-Time Events

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

191

Table 26 explains the behavior of the EAI Siebel Adapter according to the AllLangIndependentVals
integration object user property values.

Siebel EAI and Run-Time Events
The Siebel application allows triggering workflows based on run-time events or workflow policies.

Run-Time Events. Siebel EAI supports triggering workflows based on run-time events such as Write
Record, which is triggered whenever a record is written. If you use the EAI Siebel Adapter to import
data into Siebel Business Applications, and use run-time events, then consider the following:

For the EAI Siebel Adapter, one call to the EAI Siebel Adapter with an input message is a transaction.
Within a transaction, the EAI Siebel Adapter makes multiple Write Record calls. At any point in the
transaction, if the EAI Siebel Adapter encounters a problem the transaction is rolled back entirely.
However, if you have specified events to trigger at Write Record, such events are called as soon as
the EAI Siebel Adapter makes Write Record calls even though the EAI Siebel Adapter might be in the
middle of a transaction. If you have export data workflows triggered on such events, this might lead
to exporting data from Siebel Business Applications that is not committed and might be rolled back.
It is also possible that your events are triggered when the record is not completely populated, which
leads to situations that are not handled by your specified event processing workflow.

To avoid the effects of this interaction between the EAI Siebel Adapter and run-time events use the
business service EAI Transaction Service to figure out if a transaction (typically, the EAI Siebel
Adapter) is in progress. You might then want to skip processing that is not desirable when the EAI
Siebel Adapter is in progress.

For example, suppose you have a workflow to export orders from Siebel Business Applications, which
is triggered whenever the order record is written. You also import orders into Siebel Business
Applications using EAI. In such a situation, you do not want to export orders while they are being
imported, because the import might be aborted and rolled back. You achieve this using the EAI
Transaction Service business service as the first step of the export workflow. If you find that a
transaction is in process you can branch directly to the end step.

Workflow Policies. In addition to Run-Time Events, Siebel Business Applications also support
Workflow Policies as a triggering mechanism for workflows. You can use workflow policies instead of
run-time events to avoid the situation discussed in this topic. Use Workflow Policies instead of Run-
Time Events when possible.

Table 26. EAI Siebel Adapter’s Behavior for the User Property AllLangIndependentVals

AllLangIndependentVals Yes No Undefined

LOV LIC LDV LDV

MLOV LIC LDV LIC

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

EAI Siebel Adapter Business Service ■ Guidelines for Using the EAI Siebel Adapter
Business Service

192

Guidelines for Using the EAI Siebel
Adapter Business Service
The following guidelines are to be considered when using the EAI Siebel Adapter:

■ Keep the integration objects small. Basically, inactivate any unused fields in the integration
component. Avoid creating large integration object instances.

■ Test the developed object definitions using the EAI Siebel Adapter before adding to production.
You must test your input and output using working and negative scenarios. Also do performance
testing to make sure you are satisfied with the performance of the input and the output.

■ Oracle does not support the use of EAI to update data that is based on administration-type
business components such as Client - Mobile or Position. Only the System Administrator updates
these types of data.

■ Always use a search specification with the Query() method to avoid receiving every object when
run.

■ To optimize database performance, you can explicitly specify that the EAI Siebel Adapter use only
user key fields. This feature is available for the methods Query, Delete, and Execute. To use it,
set the input property QueryByUserKey to True for the EAI Siebel Adapter business service and
pass an integration object instance (for example, a Siebel Message) as an input as well. By
default, the Siebel adapter uses all the fields in the input integration object instance.

Troubleshooting the EAI Siebel Adapter
Business Service
The EAI Siebel Adapter natively accesses Siebel objects definitions using the business objects,
integration objects, and business component classes. Because of this design, you might get an EAI
Siebel Adapter error that contains an error message from the Siebel Object Manager. See Figure 1
on page 16 for a logical overview of the Siebel architectural layers. Figure 1 on page 16 also shows
the component events that will help you determine in which layer of the application the problem is
occurring.

The EAI Siebel Adapter functionality must be considered in light of the entire application
functionality. For example, the Siebel Communications product line provides preconfigured Asset
Based Ordering functionality that uses Siebel workflows and business services. The workflows use
the EAI Siebel Adapter business service to extract data from the database and to update the
database.

When using this functionality, the possibility exists that you might get an error in a step of the
workflow that indicates a problem with the EAI Siebel Adapter, such as the asset you want to insert
already exists in the system. In this case, first verify that you are not inserting a duplicate asset. If
you have validated that the asset is new and not a duplicate, then you must research the specifics
as to why the EAI Siebel Adapter failed to insert the new asset or attempted to insert a duplicate
asset.

EAI Siebel Adapter Business Service ■ Enabling Logging for the EAI Siebel Adapter
Business Service

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

193

If you have modified the preconfigured Asset integration object or business object, it could be one
of your customizations. For example, perhaps your asset requires additional fields, and you are not
providing those fields in your inbound integration object instance. Therefore, it uses any default
values, thus creating a potential duplicate asset.

Enabling Logging for the EAI Siebel
Adapter Business Service
Using component events, logging can be done in the Siebel application. Components are used to
assist with the debugging of problems in the Siebel application. A list of useful and relevant
component events for debugging EAI Siebel Adapter problems are listed in Table 27. These
components events can be enabled on any server component that is capable of running an EAI
process and on the Siebel client. You might want to enable other events not listed in Table 27.

Table 27. Component Events for Debugging EAI Siebel Adapter Problems

Event Alias Name Logging Level Description

EAISiebAdpt 4 or 5 Captures EAI Siebel Adapter related events, including
integration component and integration component
fields accessed and the values for the fields; business
components and business component fields accessed
and the values for the fields.

This is the main event to enable for EAI Siebel Adapter
troubleshooting.

EAISiebAdptPerf 4 Captures EAI Siebel Adapter performance related
events, including operation performed and time for the
operation in milliseconds.

This event summarizes the result of the EAI Siebel
Adapter operation. For more information on
performance logging, see “Troubleshooting the EAI
Siebel Adapter Business Service” on page 192 and
Doc ID 476905.1 on My Oracle Support. This document
was previously published as Siebel FAQ 1840.

EAISiebAdptSvcArgTrc 3 or 4 Dumps the inputs and output arguments for the EAI
Siebel Adapter when EnableServiceArgTracing=true.

For more information on argument tracing, see
“Enabling Siebel Argument Tracing” on page 195.

EAITransaction 4 Captures when an EAI Transaction starts.

EAIInfra 4 Output Message: IntObjType=Contact Interface

Format=Siebel Hierarchical

EAIQrySpec 4 Captures the search specification if one is specified.

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

EAI Siebel Adapter Business Service ■ Enabling Logging for the EAI Siebel Adapter
Business Service

194

For all the events listed in Table 27, setting the logging level to level 4 is sufficient for most types of
testing. You can set the component event to level 5 if you want to see debug level output, but it is
not generally recommended as it adds more lines of data to the log file that might or might not be
helpful. Logging level 4/5 represents that a logging level of 4 or 5 is supported.

To enable EAI Siebel Adapter logging
1 Navigate to the Administration - Server Configuration screen, Servers view.

2 In the starting applet, select the Siebel Server that you want to enable EAI Siebel Adapter
logging.

3 In the middle applet, select the Components tab, and highlight the component.

4 In the lower applet, select the Events tab, and set component events.

When you enable the component event logging, make sure you select the appropriate server
component or components involved in the process. For example, if you are testing receiving XML data
in the MQSeries Server Receiver, then you would enable logging on the MQSeriesSrvRcvr component.

You can also use the same srvrmgr command to turn on the component event logging. You will use
the "%" shortcut syntax to enable events. An example of this syntax is "change evtloglvl
EAISIEB%=4 for comp BusIntMgr".

SQL 4 Captures SQL executed against the database.

SQLParseAndExecute 4 Captures SQL statements and shows SQL bind
parameters executed. Shows SQL executed against the
database. Might sometimes be different than the SQL
show in ObjMgrSQLLog.

ObjMgrLog 4 or 5 Logs error code and error message encountered by
various Siebel objects.

ObjMgrDataLog 4 Logs the beginning of a transaction for the database
connection.

ObjMgrBusServiceLog 4 Captures creation, deletion and invocation of a
Business Service.

ObjMgrBusCompLog 4 4 or 5 Captures the beginning and end of the Business
Component creation and deletion.

Table 27. Component Events for Debugging EAI Siebel Adapter Problems

Event Alias Name Logging Level Description

EAI Siebel Adapter Business Service ■ Enabling Siebel Argument Tracing

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

195

Enabling Siebel Argument Tracing
You can also export input and output arguments in XML format to a file for the EAI Siebel Adapter.
These XML files represent the input and output arguments integration object instances. This is a
useful technique as it writes to a file the integration object instances in the directory where your
Siebel process is running. For example, in the Siebel Developer Web Client, it might be c:/siebel/
bin.

To enable output arguments tracing
1 Set the server parameter EnableServiceArgTracing to True:

■ If you are running the Siebel Developer Web Client, then add the following to your .cfg file:

[EAISubsys]

EnableServiceArgTracing = TRUE

■ If you are running the Siebel Web Client, modify the following Siebel Server parameter for
your object manager:

"EnableServiceArgTracing" = true

2 Set the appropriate component event level on your server component through the server
manager on the server or SIEBEL_LOG_EVENTS in the Siebel Developer Web Client.

If you set event to:

=3, then input arguments will be written out to a file when an error happens.

=4, then input and output arguments will be written to a file.

Configuring the EAI Siebel Adapter
Business Service for Concurrency
Control
The EAI Siebel Adapter supports concurrency control to guarantee data integrity and avoid overriding
data by simultaneous users or integration processes. To do so, the EAI Siebel Adapter uses the
Integration Component Key called the Modification Key.

Modification Key
A Modification Key is an Integration Component Key of the type Modification Key. A Modification Key
is a collection of fields that together are used to verify the version of an integration component
instance. Typically, Modification Key fields are Mod Id fields for the tables used. Multiple Modification
Key fields might be needed, because a business component might be updating multiple tables, either
as extension tables, or through implicit or explicit joins.

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

EAI Siebel Adapter Business Service ■ Configuring the EAI Siebel Adapter Business
Service for Concurrency Control

196

The EAI Siebel Adapter methods (Insert, Update, Synchronize, Upsert) check for the existence of a
Modification Key. If no Modification Key is specified in the integration component definition, or if
Modification Key fields are not included in the XML request, then the EAI Siebel Adapter does not
check for the record version and proceeds with the requested operation. If a valid Modification Key
is found, but the corresponding record cannot be found, then the EAI Siebel Adapter assumes that
the record has been deleted by other users and returns the error SSASqlErrWriteConflict.

If a valid Modification Key as well as the corresponding record can be found, then the EAI Siebel
Adapter checks if the Modification Key fields in the XML request and the matched record are
consistent. If any of the fields are inconsistent, then the EAI Siebel Adapter assumes that the record
has been modified by other users and returns the error SSASqlErrWriteConflict. If all the fields are
consistent, then the EAI Siebel Adapter proceeds with the requested operation.

Modification IDs
To determine which Mod Id fields must be used as part of a Modification Key, you expose Mod Id
fields for tables whose columns might be updated by that integration object. In some situations you
might have to add corresponding integration component fields as well as business component fields.

NOTE: The EAI Siebel Adapter can update base and extension tables. It might even update joined
table columns through picklists that allow updates.

When using Modification IDs, the following behaviors are present:

■ All fields must be present in the integration object instance for the Mod Key to be used.

■ Only one defined Modification Key is present for each integration component. Unlike for User
Keys, multiple Mod Keys are not allowed.

About the Modification ID for a Base Table
The integration component field Mod Id for a base table is created by the Integration Object Builder
Wizard, but you must make sure it is active if it is needed for your business processes.

About the Modification ID for an Extension Table
An extension table’s Mod Id field is accessible as extension table name.Mod Id in the business
component, for example, S_ORG_EXT_X.Mod Id. However, if your business processes require this
field, then you must manually add it to the integration object definition by copying the Mod Id field
and changing the properties.

About the Modification ID for a Joined Table
A joined table’s Mod Id field must be manually added in both business component and integration
object definitions. Business component Mod Id fields for joined tables must:

■ Be prefixed with CX string and preferably followed by the name of the join

■ Be Joined over the correct join

■ Have MODIFICATION_NUM specified as underlying column of type DTYPE_INTEGER

EAI Siebel Adapter Business Service ■ Configuring the EAI Siebel Adapter Business
Service for Concurrency Control

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

197

About MVG and MVGAssociation Integration Components
For integration components that are of type MVG or MVGAssociation, in addition to the preceding
steps, you must create user properties MVGFieldName and AssocFieldName for each Modification ID
integration component field, respectively, and set the name of the field shown in the parent business
component as the value.

To configure the EAI Siebel Adapter business service for concurrency control
1 For each integration component, identify all needed Modification IDs:

NOTE: In addition to the Modification ID for the base table, Modification IDs for tables that are
used through one-to-one extension as well as through implicit joins are relevant. For example,
on modifying an account record MODIFICATION_NUM column on S_ORG_EXT is updated, not the
MODIFICATION_NUM column on S_PARTY.

a Identify all active fields in an integration component that will be updated and have to be
concurrency safe.

b Select the corresponding business component, the value in the External Name property of the
integration component.

c For each field identified in Step a, check the value of the Join property of the field. If the join is
not specified, then the field belongs to the base table; otherwise, note the name of the join.

d In the Object Explorer, select Business Component, then Join, and query for the business
component from Step b. Search whether there is an entry whose Alias property matches the
name of the join from Step c:

❏ If a matching Alias is found, then this field belongs to a Joined Table. The name of the
join in Step c is the join name, and the value of the Table property is the joined table.

❏ If no Alias matches, then this is an implicit join to an Extension Table. The name of the
join in Step c is the name of the extension table.

2 Create business component fields for Mod Ids of Joined Tables. For the previous example, create
a new field in the business component Account with the following settings:

■ Name. CX_Primary Organization-S_BU.Mod Id

■ Join. Primary Organization-S_BU

■ Column. MODIFICATION_NUM

■ Type. DTYPE_INTEGER

3 Expose all Modification IDs identified in Step 1 as integration component fields.

4 For MVG and MVG Association integration components, add user property MVGFieldName and
AssocFieldName respectively, on all Modification ID fields as follows:

a Check the Integration Component User Prop sub type for user properties of the integration
component.

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

EAI Siebel Adapter Business Service ■ Configuring the EAI Siebel Adapter Business
Service for Concurrency Control

198

b If there is a user property called MVGAssociation, then the integration component is a MVG
Association, but if there is a user property called Association then the integration component is
a MVG.

NOTE: If the integration component is neither an MVG nor an MVG Association, then nothing
is required to be done.

5 Repeat the following steps for each Modification ID field on the integration component:

a Add user property MVGFieldName if MVG, or AssocFieldName if MVG Association.

b Set the value of the user property to the same as the field name, for example, Mod Id, extension
table name.Mod Id, or CX_join.Mod Id.

6 Create Modification Key.

Define a new integration component key of type Modification Key, and include all the integration
component fields exposed in Step 3 on page 197 to this key.

7 Validate integration objects and deliver the workspace.

8 Modify client program to use the Modification Key mechanism:

a The client program must store the value of the Modification IDs when it queries data from the
Siebel Database.

b The client program must send exactly the same values of the Modification IDs that it retrieved
from the Siebel Database when sending an update.

c The client program must not send any Modification IDs when sending a new record to the Siebel
application. If this is violated, then the client program generates an error indicating that the
record has been deleted by another user.

Integration Component Account Example
Consider an integration component Account of the business component Account:

■ Field Home Page has property Join set to S_ORG_EXT. This is an implicit join, because it is not
listed in the joins; therefore, this field belongs to Extension Table S_ORG_EXT.

■ Field Primary Organization has property Join set to Primary Organization-S_BU. This is an explicit
join, because it is listed in the joins. The value of Table property is S_BU; therefore, this field
belongs to Joined Table S_BU joined over Primary Organization-S_BU.

■ Activate integration component field Mod Id:

■ Set Name, External Name, XML Tag properties to Mod Id

■ Set External Data Type property to DTYPE_NUMBER

■ Set External Length property to 30

■ Set Type property to System

■ Add integration component field S_ORG_EXT.Mod Id:

■ Set Name, External Name, XML Tag properties to S_ORG_EXT.Mod Id

■ Set External Data Type property to DTYPE_NUMBER

■ Set External Length property to 30

EAI Siebel Adapter Business Service ■ Configuring the EAI Siebel Adapter Business
Service for Concurrency Control

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

199

■ Set Type property to System

■ Add integration component field CX_Primary Organization-S_BU.Mod Id:

■ Set Name, External Name, XML Tag properties to CX_Primary Organization-S_BU.Mod Id

■ Set External Data Type property to DTYPE_NUMBER

■ Set External Length property to 30

■ Set Type property to System

Integration Component Account_Organization Example
Consider the integration component Account_Organization of the Sample Account integration object.
Account_Organization is an MVG Association as denoted by the presence of the user property
MVGAssociation. Assume two Modification IDs, Mod Id and S_ORG_EXT.Mod Id, were exposed on this
integration component:

■ For field Mod Id create a new user property with the name of AssocFieldName with a value of
Mod Id.

■ For field S_ORG_EXT.Mod Id create a new user property with the name of AssocFieldName with
a value of S_ORG_EXT.Mod Id.

In this integration component example, Account of the Sample Account integration object, takes the
following action:

■ Create a new Integration Component key called Modification Key.

■ Set the type of the key as Modification Key.

■ Add integration component fields Mod Id, S_ORG_EXT.Mod Id, and S_BU.Mod Id to the
Modification Key.

Status IDs
When using Status IDs with Modification IDs, the following behavior can be present:

■ All fields must be present in the integration object instance for the Modification Key to be used.

■ Only one defined Modification Key is present for each integration component. Unlike User Keys,
multiple Modification Keys are not used with Status IDs.

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

EAI Siebel Adapter Business Service ■ Configuring the EAI Siebel Adapter Business
Service for Concurrency Control

200

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

201

7 EAI UI Data Adapter Business
Service

The EAI UI Data Adapter business service is used for exposing Siebel data to external user interfaces.
This chapter includes the following topics:

■ About the EAI UI Data Adapter Business Service on page 201

■ EAI UI Data Adapter Business Service Methods on page 203

■ EAI UI Data Adapter Business Service Method Arguments on page 220

About the EAI UI Data Adapter Business
Service
The EAI UI Data Adapter business service exposes an interface with weakly typed arguments that
can query and update data in the Siebel database. The EAI UI Data Adapter service is called indirectly
by UI Data Sync Services, which are published externally as Web services.

The EAI UI Data Adapter is similar to the EAI Siebel Adapter business service, but contains key
differences that make it more suitable for UI rendering by custom Web applications. The differences
are summarized as follows:

■ Row Id as User Key. Unlike the EAI Siebel Adapter, the EAI UI Data Adapter does not use user
keys defined in the integration object. It uses an implicit, hard-coded user key, which comprises
the Row Id field.

For more information about how User Keys are used with the EAI Siebel Adapter, see “About
Integration Component Keys” on page 31.

■ Row Id and Mod Id as Status Key. Unlike the EAI Siebel Adapter, the EAI UI Data Adapter
does not use status keys defined in the integration object. It uses an implicit, hard-coded status
key, which comprises the fields Row Id and Mod Id.

For more information about how Status Keys are used with the EAI Siebel Adapter, see “About
Integration Component Keys” on page 31.

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

EAI UI Data Adapter Business Service ■ About the EAI UI Data Adapter Business Service

202

■ Operation Semantics on Leaf Nodes. In an integration object hierarchy, nodes with at least
one child are called internal nodes and nodes without children are called leaf nodes. When either
the insert or update method is called on the EAI Siebel Adapter, the adapter performs the
operation on both internal nodes and leaf nodes. When the insert or update method is called on
the EAI UI Data Adapter, the adapter performs insert on leaf nodes only as represented in
Figure 39.

The match nodes in Figure 39 reflects that the database contains a record with the same user
keys as the integration object instance.

■ Predefined Queries. The EAI UI Data Adapter extends the Query Page functionality of the EAI
Siebel Adapter. The EAI UI Data Adapter can take the name of a predefined query and execute
the query.

For detailed information about the QueryPage method, see “QueryPage Method” on page 203.

■ Child Pagination. The EAI UI Data Adapter supports child pagination, enabling custom UIs to
render one page of data at a time.

For more information, see “Root and Child Pagination” on page 204.

■ Strongly Typed Data. Unlike the EAI Siebel Adapter, the EAI UI Data Adapter supports the
exchange of strongly typed data.

The EAI UI Data Adapter is most suitable for use in custom UI development where the service is
called indirectly by Web services. In other types of integration scenarios, the EAI Siebel Adapter is
a more suitable choice. For more information about the EAI Siebel Adapter, see “EAI Siebel Adapter
Business Service” on page 151.

Figure 39. Operation Semantics on Leaf Nodes

EAI UI Data Adapter Business Service ■ EAI UI Data Adapter Business Service Methods

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

203

EAI UI Data Adapter Business Service
Methods
The EAI UI Data Adapter service provides access to the following methods:

■ “QueryPage Method” on page 203

■ “UpdateLeaves Method” on page 209

■ “InitLeaves Method” on page 211

■ “InsertLeaves Method” on page 213

■ “DeleteLeaves Method” on page 217

■ “Execute Method” on page 218

QueryPage Method
Custom UIs can use the QueryPage method to query data in the Siebel database one page at a time.
QueryPage supports both query-by-example (QBE) and predefined queries (PDQ). However, it is
recommended that you use either QBE or a PDQ, but not both at the same time. If both QBE and
PDQ are specified, then PDQ overrides QBE. In this case, the EAI UI Data Adapter executes the PDQ,
ignores the QBE, and does not generate an error.

QueryPage Method Arguments
Table 28 lists the method arguments used with the QueryPage method. For a description of the
arguments, see “EAI UI Data Adapter Business Service Method Arguments” on page 220.

Table 28. Method Arguments for QueryPage

Method Argument Name Type

ExecutionMode Input

LOVLanguageMode Input

NamedSearchSpec Input

NewQuery Input

NumOutputObjects Output

OutputIntObjectName Input

SiebelMessage Input / Output

ViewMode Input

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

EAI UI Data Adapter Business Service ■ EAI UI Data Adapter Business Service Methods

204

Root and Child Pagination
The EAI UI Data Adapter supports pagination for both root and child components. To support root
and child pagination, the EAI UI Data Adapter requires that you set the attributes listed in Table 29
as part of the integration component instance.

NOTE: Pagination over root components benefits performance because, as long as the search
specification, sort specification, and view mode remain the same, the business component is not re-
executed with each invocation of QueryPage. However, for pagination over child components, the
component is reexecuted every time you call QueryPage.

Example of QueryPage on Parent and Child Components
This example demonstrates querying on both parent and child components. In this example, the
query is for accounts that begin with ‘A’ and any associated contacts (First Name and Last Name).
Note that pagesize is 10 and an approximate record count is requested and returned in the response.

Request
<SiebelMessage MessageType="Integration Object" IntObjectName="Account"
IntObjectFormat="Siebel Hierarchical">

<ListOfAccount pagesize="10" startrownum="0" recordcountneeded = "true">
<Account>

<Name>='A'</Name>
<ListOfContact>
<Contact>

<FirstName></FirstName>

Table 29. Attributes for Root and Child Pagination

Attribute Description

pagesize The number of records to be returned for a component. The
default page size is 10. Note that there is a server parameter that
controls the maximum page size (MaximumPageSize). If the
pagesize attribute is greater than the maximum pagesize defined
in the server parameter, then an error occurs.

startrownum Determines the starting point for record retrieval. The 0-based
index of the record within the recordset.

lastpage Indicates whether the record being returned is the last record in
the record set. The value is set by the EAI UI Data Adapter. Valid
values are true or false.

recordcountneeded When set to true, indicates that a record count is needed for this
component. Valid values are true or false.

recordcount Value set by the EAI UI Data Adapter indicating the approximate
record count provided by the object manager based on the search
specification.

child pagination When set to true, enables pagination of child records. Valid values
are true or false.

EAI UI Data Adapter Business Service ■ EAI UI Data Adapter Business Service Methods

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

205

<LastName></LastName>
</Contact>

</ListOfContact>
</Account>

</ListOfAccount>
</SiebelMessage>

Response
SiebelMessage MessageType="Integration Object" IntObjectName="Account"
IntObjectFormat="Siebel Hierarchical">

<ListOfAccount recordcount="2" lastpage="true">
<Account>

<Name>Adams Tech</Name>
<ListOfContact lastpage="true">
<Contact>

<FirstName>Sally</FirstName>
<LastName>Brown</LastName>

</Contact>
<Contact>

<FirstName>Terry</FirstName>
<LastName>Smith</LastName>

</Contact>
</ListOfContact>

</Account>
<Account>

<Name>Aleph Inc.</Name>
<ListOfContact lastpage="true">
<Contact>

<FirstName>Bill</FirstName>
<LastName>Jones</LastName>

<Contact>
<Contact>

<FirstName>Roland</FirstName>
<LastName>Smith</LastName>

</Contact>
</ListOfContact>

</Account>
</ListOfAccount>

</SiebelMessage>

Example of QueryPage using Child Pagination
This example demonstrates querying using child pagination. In this example, the query is for account
with name as ABC Mart #18 and any associated contacts (First Name and Last Name). Note that only
10 records are retrieved though there are 4999 records. This is because the page size is 10 and child
pagination parameters is also set.

Request
<SiebelMessage MessageId="" IntObjectName="EAI Account" MessageType="Integration
Object" IntObjectFormat="Siebel Hierarchical">

<ListOfEAI_spcAccount>

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

EAI UI Data Adapter Business Service ■ EAI UI Data Adapter Business Service Methods

206

<Account Name="ABC Mart #18">
<ListOfContact recordcountneeded="true" startrownum="0"

ChildPagination="true" pagesize="10">
 <Contact>

 </Contact>
</ListOfContact>

</Account>
<ListOfEAI_spcAccount>

</SiebelMessage>

Response
<SiebelMessage MessageId="" MessageType="Integration Object" IntObjectName="EAI
Account" IntObjectFormat="Siebel Hierarchical">

<ListOfEAI_spcAccount lastpage="true">
<Account Name="ABC Mart #18">

<ListOfContact recordcount="4999" lastpage="false">
<Contact First_spcName="M*" Last_spcName="A*"></Contact>
<Contact First_spcName="MAYA" Last_spcName="ANDERSON"></Contact>
<Contact First_spcName="ABS_ADMIN_EMP1"

Last_spcName="ABS_ADMIN_EMP1"></Contact>
<Contact First_spcName="ABS_ADMIN_EMP2"

Last_spcName="ABS_ADMIN_EMP2"></Contact>
<Contact First_spcName="ABS_ADMIN_EMP3"

Last_spcName="ABS_ADMIN_EMP3"></Contact>
<Contact First_spcName="ABS_ADMIN_EMP4"

Last_spcName="ABS_ADMIN_EMP4"></Contact>
<Contact First_spcName="HARRY" Last_spcName="ADAMS"></Contact>

<Contact First_spcName="VERNON" Last_spcName="AJAX" ></Contact>
<Contact First_spcName="THOMAS" Last_spcName="ALEX" ></Contact>
<Contact First_spcName="MAY" Last_spcName="ALLISON" ></Contact>

</ListOfContact>
</Account>

</ListOfEAI_spcAccount>
</SiebelMessage>

Sort Specification
You can specify a sort specification on one or more integration component fields of an integration
component. For each field you want sort on, you must define the attributes listed in Table 30. If both
attributes are not specified, then the field is not considered as a sort field.

Table 30. Sort Specification Attributes

Attribute Description

sortorder Determines whether the sort order is ascending or descending.
Valid values are ASC or DEC.

sortsequence Determines the order in which the sort specification is applied.
Valid values are integer numbers.

EAI UI Data Adapter Business Service ■ EAI UI Data Adapter Business Service Methods

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

207

Example of Sort Specification
This example demonstrates using the QueryPage method with an ascending sort order.

Request
<SiebelMessage MessageType="Integration Object" IntObjectName="Account"
IntObjectFormat="Siebel Hierarchical">

<ListOfAccount>
<Account>

<Row_Id>2-1111</Row_Id>
<ListOfContact pagesize="40" startrownum="0" recordcountneeded="true">

<Contact>
<FirstName sortorder="ASC" sortsequence="1"></FirstName>

</Contact>
</ListOfContact>

</Account>
</ListOfAccount>

</SiebelMessage>

Response
<SiebelMessage MessageType="Integration Object" IntObjectName="Account"
IntObjectFormat="Siebel Hierarchical">

<ListOfAccount lastpage="true">
<Account>

<Row_ID>2-1111</Row_ID>
<ListOfContact recordcount="3" lastpage="true">

<Contact>
<FirstName>Alice</FirstName>

</Contact>
<Contact>

<FirstName>Bill</FirstName>
</Contact>
<Contact>

<FirstName>Casey</FirstName>
</Contact>

</ListOfContact>
</Account>

</ListOfAccount>
</SiebelMessage>

Predefined Query
You can specify the name of a PDQ using the method argument NamedSearchSpec. The EAI UI Data
Adapter uses this value to set the search specification at the business object level.

Search Specification
You can use the searchspec attribute on a component instance for complicated queries.

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

EAI UI Data Adapter Business Service ■ EAI UI Data Adapter Business Service Methods

208

For example, query by example (QBE) uses AND as the implicit operator between fields. You could
implement OR semantics by using multiple integration component instances, but this would result in
a query for each integration component instance and might result in duplicate records being
returned. Using the searchspec attribute could avoid this problem.

The syntax for the searchspec attribute is as follows:

■ Expression: Expression [Binary Operator Expression]

■ Expression: [Field XML tag] Operator 'Value'

■ Expression: (Expression)

NOTE: Parentheses can be nested.

■ Expression: [Field XML tag] IS NULL | [Field XML tag] IS NOT NULL

■ Expression: EXISTS(Expression) | NOT EXISTS(Expression)

NOTE: In EXISTS and NOT EXISTS expressions, use the business component field names of
multivalue group (MVG) fields, not the integration component XML tag names.

■ Operator: = | ~= | < | <= | > | >= | <> | LIKE | ~LIKE

■ Binary Operator: AND | OR

The EAI UI Data Adapter parses the searchspec (unlike the EAI Siebel Adapter) and performs the
following operations before setting the search specification on the business component:

■ Converts Field XML tags into business component field names. For example, assume two business
component fields, First Name and Last Name, have XML tags FirstName and LastName
respectively. The EAI UI Data Adapter converts the XML tags as shown in Table 31.

■ If the input argument LOVLanguageMode is set to LIC, then LOV values are converted to
language dependent codes. See “EAI UI Data Adapter Business Service Method Arguments” on
page 220.

■ Validates operators, binary operators, and the syntax of the searchspec.

For more information about query language, see Siebel Developer’s Reference.

Example of Using the searchspec Attribute
This example demonstrates using the searchspec attribute for the QueryPage method.

Table 31. Example Search Specification Conversion

This Search Spec Will be converted to this

[FirstName] LIKE '*Jon*' AND
[LastName] = 'Doe'

[First Name] LIKE '*Jon*' AND [Last
Name] = 'Doe'

[FirstName] LIKE '*Jon*' OR
[LastName] LIKE 'Doe*'

[First Name] LIKE '*Jon*' OR [Last
Name] LIKE 'Doe'

EAI UI Data Adapter Business Service ■ EAI UI Data Adapter Business Service Methods

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

209

<SiebelMessage MessageType="Integration Object" IntObjectName="Account"
IntObjectFormat="Siebel Hierarchical">

<ListOfAccount>
<Account>

<Id>2-1111</Id>
<ListOfContact pagesize="10" startrownum="0">

<Contact searchspec="[FirstName] LIKE '*Jon*' AND [LastName] = 'Doe'">
<FirstName></FirstName>
<LastName></LastName>

</Contact>
</ListOfContact>

</Account>
</ListOfAccount>

</SiebelMessage>

UpdateLeaves Method
Use UpdateLeaves to update existing records in the Siebel database. When UpdateLeaves is called
on an integration object hierarchy, the EAI UI Data Adapter updates leaf nodes only and uses internal
nodes for maintaining parent-child relationships.

Both internal nodes and leaf nodes must have Row Ids specified or the EAI UI Data Adapter generates
an error. The EAI UI Data Adapter also generates an error if it does not find a match for the internal
node and leaf node for a given Row Id.

UpdateLeaves Method Arguments
Table 32 lists the method arguments used with UpdateLeaves. For a complete description of the
method arguments, see “EAI UI Data Adapter Business Service Method Arguments” on page 220.

Example of Updating Root Component
The following example demonstrates updating a root component.

Request
The following is an example of a request:

<SiebelMessage MessageType="Integration Object" IntObjectName="Account"
IntObjectFormat="Siebel Hierarchical">

<ListOfAccount>

Table 32. Method Arguments for UpdateLeaves

Method Argument Name Type

BusObjCacheSize Input

LOVLanguageMode Input

SiebelMessage Input / Output

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

EAI UI Data Adapter Business Service ■ EAI UI Data Adapter Business Service Methods

210

<Account>1-1-1111</Account>
<Employees>4900</Employees>

</ListOfAccount>
</SiebelMessage>

Response
The following is an example of a response:

<SiebelMessage MessageId="P-3ITT" MessageType="Integration Object"
IntObjectName="Account" IntObjectFormat="Siebel Hierarchical">

<ListOfAccount>
<Account>

<Id>1-1-1111</Id>
<Mod_Id>2</Mod_Id>

</Account>
</ListOfAccount>

</SiebelMessage>

Example of Updating Child Component
This example demonstrates updating a child component.

Request
The following is an example of a request:

<SiebelMessage MessageType="Integration Object" IntObjectName="Account"
IntObjectFormat="Siebel Hierarchical">

<ListOfAccount>
<Account>

<Id>1-1-1111</Id>
<Employees>5000</Employees>
<ListOfBusiness_Address>

<Business_Address>
<Id>2-2-2222</Id>
<Postal_Code>94404</Postal_Code>

</Business_Address>
</ListOfBusiness_Address>

</Account>
<ListOfAccount>

</SiebelMessage>

Response
The following is an example of a response:

<SiebelMessage MessageId="P-3ITW" MessageType="Integration Object"
IntObjectName="Account" IntObjectFormat="Siebel Hierarchical">

<ListOfAccount>
<Account>

<Id>1-1-1111</Id>
<Mod_Id>2</Mod_Id>

EAI UI Data Adapter Business Service ■ EAI UI Data Adapter Business Service Methods

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

211

<ListOfAccount_Business_Address>
<Business_Address>

<Id>2-2-2222</Id>
<Mod_Id>2</Mod_Id>

</Business_Address>
</ListOfAccount_Business_Address>

</Account>
</ListOfAccount>

</SiebelMessage>

InitLeaves Method
Use InitLeaves to retrieve pre-default values. When InitLeaves is called on an integration object
hierarchy, it retrieves the pre-default values for all leaf nodes. All internal nodes must exist in the
database and Row Id must be specified.

InitLeaves Method Arguments
Table 33 lists the method arguments used with the InitLeaves Method. For a complete description of
the method arguments, see “EAI UI Data Adapter Business Service Method Arguments” on page 220.

Example of Using InitLeaves on a Root Component
The following code snippet demonstrates using InitLeaves to retrieve default values for a root
component. In this example the root component is Account.

Request
The following is an example of a request:

<?xml version="1.0" encoding="UTF-8"?>
<SiebelMessage MessageType="Integration Object" IntObjectName="Account"
IntObjectFormat="Siebel Hierarchical">

<ListOfAccount>
<Account>

<Currency_Code></Currency_Code>
<Account_Status></Account_Status>
<Location_Type></Location_Type>

Table 33. Method Arguments for InitLeaves

Method Argument Type

BusObjCacheSize Input

LOVLanguageMode Input

SiebelMessage Input / Output

ViewMode Input

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

EAI UI Data Adapter Business Service ■ EAI UI Data Adapter Business Service Methods

212

</Account>
</ListOfAccount>

</SiebelMessage>

Response
The following is an example of a response:

<?xml version="1.0" encoding="UTF-8"?>
<SiebelMessage MessageType="Integration Object" IntObjectName="Account"
IntObjectFormat="Siebel Hierarchical">

<ListOfAccount>
<Account>

<Account_Status>Active</Account_Status>
<Currency_Code>USD</Currency_Code>
<Location_Type>Corporate Training Center</Location_Type>

</Account>
</ListOfAccount>

</SiebelMessage>

Example of Using InitLeaves on a Child Component
The following code snippets demonstrate using InitLeaves to retrieve pre-default values for a child
component. In this example the parent component is Account and the child component is Business
Address.

Request
The following is an example of a request:

<?xml version="1.0" encoding="UTF-8"?>
<SiebelMessage MessageType="Integration Object" IntObjectName="Account"
IntObjectFormat="Siebel Hierarchical">

<ListOfAccount>
<Account>

<Id>1-111112</Id>
<ListOfBusiness_Address>

<Business_Address>
<Active_Status></Active_Status>
<Main_Address_Flag></Main_Address_Flag>

</Business_Address>
</ListOfBusiness_Address>

</Account>
</ListOfAccount>

</SiebelMessage>

Response
The following is an example of a response:

<?xml version="1.0" encoding="UTF-8"?>
<SiebelMessage MessageType="Integration Object" IntObjectName="Account"
IntObjectFormat="Siebel Hierarchical">

EAI UI Data Adapter Business Service ■ EAI UI Data Adapter Business Service Methods

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

213

<ListOfAccount>
<Account>

<ListOfBusiness_Address>
<Business_Address>

<Active_Status>Y</Active_Status>
<Main_Address_Flag>Y</Main_Address_Flag>

</Business_Address>
</ListOfBusiness_Address>

</Account>
</ListOfAccount>

</SiebelMessage>

InsertLeaves Method
Use InsertLeaves to insert records into the Siebel database. When InsertLeaves is called on an
integration object hierarchy, the EAI UI Data Adapter inserts leaf nodes only and uses internal nodes
for maintaining parent-child relationships:

■ Internal Nodes. All internal nodes must already exist in the database and Row Id must be
specified (Row Id is the implicit, hard-coded user key used by the EAI UI Data Adapter). If the
internal node does not exist or Row Id is not specified, then the EAI UI Data Adapter returns an
error. For more information about user keys, see “About the EAI UI Data Adapter Business Service”
on page 201.

■ Leaf Nodes. Whether or not Row Id must be specified for leaf nodes depends on the type of
integration component:

■ If the integration component represents a normal business component or MVG business
component, Row Id must not be defined, because records for these components are being
inserted.

■ If the integration component represents an association business component or an MVG
association business component, leaf nodes might or might not have Row Ids defined. If Row
Ids are specified, then the EAI UI Data Adapter creates an association record only. If Row Ids
are not specified, then both a child record and an association record are created.

InsertLeaves returns an integration object hierarchy. Each integration component instance in the
hierarchy has two fields: Row Id and Mod Id (implicit status keys used by the EAI UI Data Adapter).
You can use these fields to retrieve the Row Id of the newly created record.

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

EAI UI Data Adapter Business Service ■ EAI UI Data Adapter Business Service Methods

214

InsertLeaves Method Arguments
Table 34 lists the method arguments used with the InsertLeaves method. For descriptions of the
methods, see “EAI UI Data Adapter Business Service Method Arguments” on page 220.

Example of Inserting a Root Component
This example code snippet demonstrates inserting a non-existing account.

Request
The following is an example of a request:

<SiebelMessage MessageType="Integration Object" IntObjectName="Account"
IntObjectFormat="Siebel Hierarchical">

<ListOfAccount>
<Account>

<Type>Competitor</Type>
<Name>Dixon Inc.</Name>

</Account>
</ListOfAccount>

</SiebelMessage>

Response
The following is an example of a response:

<SiebelMessage MessageId="P-3ITI" MessageType="Integration Object"
IntObjectName="Account" IntObjectFormat="Siebel Hierarchical">

<ListOfAccount>
<Account>

<Id>P-5NA84</Id>
<Mod_Id>0</Mod_Id>

</Account>
</ListOfAccount>

</SiebelMessage>

Table 34. Method Arguments for InsertLeaves

Method Argument Name Type

BusObjCacheSize Input

LOVLanguageMode Input

SiebelMessage Input / Output

EAI UI Data Adapter Business Service ■ EAI UI Data Adapter Business Service Methods

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

215

Example of Inserting a Child Component
The code snippets in this example demonstrate inserting a non-existing business address for an
existing account.

Request
The following is an example of a request:

<SiebelMessage MessageType="Integration Object" IntObjectName="Account"
IntObjectFormat="Siebel Hierarchical">

<ListOfAccount>
<Account>

<Id>P-5NA84</Id>
<ListOfBusiness_Address>

<Business_Address>
<City>San Carlos</City>
<Street_Address>1145 laurel street</Street_Address>
<State>CA</State>
<Country>USA</Country>
<Postal_Code>94063</Postal_Code>

</Business_Address>
</ListOfBusiness_Address>

</Account>
</ListOfAccount>

</SiebelMessage>

Response
The following is an example of a response:

<SiebelMessage MessageId="P-3ITJ" MessageType="Integration Object"
IntObjectName="Account" IntObjectFormat="Siebel Hierarchical">

<ListOfAccount>
<Account>

<Id>P-5NA84</Id>
<Mod_Id>1</Mod_Id>
<ListOfBusiness_Address>

<Business_Address>
<Id>P-5NA8B</Id>
<Mod_Id>0</Mod_Id>

</Business_Address>
</ListOfBusiness_Address>

</Account>
</ListOfAccount>

</SiebelMessage>

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

EAI UI Data Adapter Business Service ■ EAI UI Data Adapter Business Service Methods

216

Example of Inserting an Association Child Component
This example demonstrate inserting an existing organization for an existing account. This operation
associates the organization with the account. If the organization does not exist, then the EAI UI Data
Adapter generates an error.

Request
The following is an example of a request:

<SiebelMessage MessageType="Integration Object" IntObjectName="Account"
IntObjectFormat="Siebel Hierarchical">

<ListOfAccount>
<Account>

<Id>P-5NA84</Id>
<ListOfAccount_Organization>
<Account_Organization>

<Id>1-123</Id>
</Account_Organization>

</ListOfAccount_Organization>
</Account>

</ListOfAccount>
</SiebelMessage>

Response
The following is an example of a response:

<SiebelMessage MessageId="P-3ITL" MessageType="Integration Object"
IntObjectName="Account" IntObjectFormat="Siebel Hierarchical">

<ListOfAccount>
<Account>

<Id>P-5NA84</Id>
<Mod_Id>1</Mod_Id>
<ListOfAccount_Organization>

<Account_Organization IsPrimaryMVG="Y">
<Id>0-R9NH</Id>
<ModId>9</ModId>

</Account_Organization>
<Account_Organization IsPrimaryMVG="N">

<Id>1-123</Id>
<ModId>0</ModId>

</Account_Organization>
</ListOfAccount_Organization>

</Account>
</ListOfAccount>

</SiebelMessage>

EAI UI Data Adapter Business Service ■ EAI UI Data Adapter Business Service Methods

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

217

DeleteLeaves Method
The DeleteLeaves method deletes leaf nodes only. If the Cascade Delete on the Link object is set to
TRUE, then child records are also deleted. Row Ids are required for both internal nodes and leaf
nodes. DeleteLeaves does not return a value when the operation is successful.

Method Arguments for DeleteLeaves
Table 35 lists the method arguments used with DeleteLeaves. For descriptions of the arguments, see
“EAI UI Data Adapter Business Service Method Arguments” on page 220.

Example of Deleting a Root Component
This example demonstrates deleting a root component.

<SiebelMessage MessageType="Integration Object" IntObjectName="Account"
IntObjectFormat="Siebel Hierarchical">

<ListOfAccount>
<Account>

<Id>P-5NA84</Id>
</Account>

</ListOfAccount>
</SiebelMessage>

Example of Deleting a Child Component
This example demonstrates deleting a child component.

<SiebelMessage MessageType="Integration Object" IntObjectName="Account"
IntObjectFormat="Siebel Hierarchical">

<ListOfAccount>
<Account>

<Id>P-5NA84</Id>
<ListOfBusiness_Address>

<Business_Address>
<Id>P-5NA8B</Id>
</Business_Address>

</ListOfBusiness_Address>
</Account>

</ListOfAccount>
</SiebelMessage>

Table 35. Method Arguments for DeleteLeaves

Method Argument Name Type

IntObjectName Input

LOVLanguageMode Input

SiebelMessage Input / Output

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

EAI UI Data Adapter Business Service ■ EAI UI Data Adapter Business Service Methods

218

Execute Method
The Execute method allows you to perform multiple operations on multiple business components. It
is the only method that operates on internal nodes. The Execute method returns the same kind of
object that the InsertLeaves method returns. For more information, see “InsertLeaves Method” on
page 213.

NOTE: the Execute method requires a status object only when it contains an insert operation on a
child integration component instance. However, because the EAI UI Data Adapter processes in a top-
down fashion, it adds a status object to the integration object instance even if an insert operation is
not present.

The operations are defined by the operation attribute on the integration component instance. An
integration component instance can have the following operations as defined in Table 36.

CAUTION: Operations must be specified on every integration component instance. If an operation
is not specified, then an implicit Synchronize operation will be performed, which will delete all
unmatched child integration component instances.

Execute Method Arguments
Table 37 lists the method arguments used with the Execute method. For a description of the methods,
see “EAI UI Data Adapter Business Service Method Arguments” on page 220.

Example of Using the Execute Method
The following example demonstrates using the Execute method to perform update, insert, and delete
operations on child object. Note that the skipnode operation is defined on the parent object.

Table 36. Operation Attributes for Execute Method

Operation Description

update Updates the integration component instance

insert Inserts the integration component instance

delete Deletes the integration component instance

skipnode Matches integration component instances and process children

Table 37. Method Arguments for Execute

Method Argument Name Type

BusObjCacheSize Input

LOVLanguageMode Input

SiebelMessage Input / Output

EAI UI Data Adapter Business Service ■ EAI UI Data Adapter Business Service Methods

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

219

Request
The following is an example of a request:

<SiebelMessage MessageType="Integration Object" IntObjectName="Account"
IntObjectFormat="Siebel Hierarchical">

<ListOfAccount>
<Account operation="skipnode">

<Id>1-1-1111</Id>
<ListOfBusiness_Address>

<Business_Address operation="update">
<Id>2-2-2222</Id>
<Postal_Code>94402</Postal_Code> <!--Postal Code changed-->

</Business_Address>
<Business_Address operation="insert">

<Postal_Code>94402</Postal_Code>
<City>San Mateo</City>
<Street_Address>2215 Bridgepointe Parkway</Street_Address>
<State>CA</State>
<Country>USA</Country>

</Business_Address>
</ListOfBusiness_Address>
<ListOfContact>

<Contact operation="delete">
<Id>4-4-4444</Id>

</Contact>
</ListOfContact>

</Account>
</ListOfAccount>

</SiebelMessage>

Response
The following is an example of a response:

<SiebelMessage MessageId="42-21YQ" MessageType="Integration Object"
IntObjectName="Account" IntObjectFormat="Siebel Hierarchical">

<ListOfAccount>
<Account>

<Id>1-1-1111</Id>
<Mod_Id>3</Mod_Id>
<ListOfBusiness_Address>

<Business_Address>
<Id>2-2-2222</Id>
<Mod_Id>1</Mod_Id>

</Business_Address>
<Business_Address>

<Id>42-53Q2W</Id>
<Mod_Id>0</Mod_Id>

</Business_Address>
</ListOfBusiness_Address>

</Account>
</ListOfAccount>

</SiebelMessage>

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

EAI UI Data Adapter Business Service ■ EAI UI Data Adapter Business Service Method
Arguments

220

EAI UI Data Adapter Business Service
Method Arguments
The methods exposed in the EAI UI Data Adapter business service take arguments that you use to
specify information that the adapter uses when processing the request. Table 38 summarizes these
method arguments.

Table 38. EAI UI Data Adapter Business Service Method Arguments

Argument Display Name Description

BusObjCacheSize Business Object
Cache Size

Maximum Number of Business Objects that can be
cached at one time.

ExecutionMode Execution Mode Used to set the direction of a query on a business
component. Valid values are ForwardOnly and
Bidirectional. The default is Bidirectional.

ForwardOnly is more efficient than Bidirectional,
and is recommended in cases where you must
process a large number of records in the forward
direction only (such as for report generation). For
operations that are likely to return more than
10000 records, use ForwardOnly to avoid errors.

For more information on executing queries, see
the topic on the ExecuteQuery business
component method in Siebel Object Interfaces
Reference.

LOVLanguageMode LOV Language Mode Indicates whether the EAI UI Data Adapter must
translate the LOV value before sending it to the
object manager. Valid values are LIC or LDC. If LIC
is specified, then the EAI UI Data Adapter expects
language independent values in the input message
and translates them to language dependent values
(based on the current language setting) before the
request is sent to the object manager. If LDC is
specified, then the EAI UI Data Adapter does not
translate the value before sending it to the object
manager.

NamedSearchSpec Predefined Query Name of a PDQ. The EAI UI Data Adapter sets the
name of the PDQ on the business object instance.
If NamedSearchSpec and QBE are specified, then
NamedSearchSpec is used.

NewQuery New Query Default is False. Boolean indicating whether a new
query will be executed. If set to True, then a new
query is executed flushing the cache for that
particular integration object.

EAI UI Data Adapter Business Service ■ EAI UI Data Adapter Business Service Method
Arguments

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

221

NumOutputObjects Number of Output
Integration Objects

Number of Integration Objects output

OutputIntObjectName Not applicable The name of the integration object that will be
sent in the output.

SiebelMessage Siebel Message Input or output integration object instance.

ViewMode View Mode Visibility algorithm used in addition to a search
specification to determine which records will be
retrieved. The ViewMode method argument is
used to set the View Mode property for all business
components corresponding to the integration
object. Valid values are Manager, Sales Rep,
Personal, Organization, Sub-Organization, Group,
Catalog, and All.

Table 38. EAI UI Data Adapter Business Service Method Arguments

Argument Display Name Description

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

EAI UI Data Adapter Business Service ■ EAI UI Data Adapter Business Service Method
Arguments

222

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

223

8 Siebel Virtual Business
Components

This chapter describes the virtual business component (VBC), its uses, and restrictions. This chapter
also describes how you can create a new VBC in Siebel Tools. The following topics are included:

■ About Virtual Business Components on page 223

■ Using Virtual Business Components on page 226

■ XML Gateway Service on page 228

■ Examples of the Outgoing XML Format on page 231

■ Search-Spec Node-Type Values on page 234

■ Examples of the Incoming XML Format on page 235

■ External Application Setup on page 238

■ Custom Business Service Methods on page 238

■ Custom Business Service Examples on page 254

About Virtual Business Components
A virtual business component (VBC) provides a way to access data that resides in an external data
source using a Siebel business component. The VBC does not map to an underlying table in the Siebel
Database. You create a new VBC in Siebel Tools workspace and deliver the workspace. The VBC calls
a Siebel business service to provide a transport mechanism.

You can take two approaches to use VBCs, as illustrated in Figure 40 on page 224:

■ Use the XML Gateway business service to pass data between the VBC and one of the Siebel
transports, such as the EAI HTTP Transport or the EAI MSMQ Transport.

■ Write your own business service in Siebel eScript or in Siebel VB to implement the methods
described in this chapter.

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Siebel Virtual Business Components ■ About Virtual Business Components

224

Using VBCs for Your Business Requirements
The following features enhance the functionality of VBCs to better assist you in meeting your
business requirements:

■ VBCs support drilldown behavior:

■ You can drill down on a VBC to a standard business component, another VBC, or the same
VBC.

■ You can drill down onto a VBC from a standard business component, another VBC, or the
same VBC.

■ A parent applet can be based on a VBC.

■ You can define VBCs that can participate as a parent in a business object. The VBC you define
can be a parent to a standard BC or a VBC.

■ You still can use an older version of the XML format or property set by setting the VBC
Compatibility Mode parameter to the appropriate version. For information, see Table 39 on
page 226.

■ You can pass search and sort specifications to the business service used by a VBC.

■ You can use the Validation, Pre Default Value, Post Default Value, Link Specification, and No Copy
attributes of the VBC fields.

■ You can use predefined queries with VBCs.

Figure 40. Two Approaches to Building Virtual Business Components

Siebel Virtual Business Components ■ About Virtual Business Components

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

225

■ You can have picklists based on VBCs, and use picklist properties such as No Insert, No Delete,
No Update, No Merge, Search Specification, and Sort Specification.

■ You can use the Cascade Delete, Search Spec, Sort Spec, No Insert, No Update, and No Delete
link properties when a VBC is the child business component on the link.

■ You can use the No Insert, No Update, No Delete, Search Spec, Sort Spec, and Maximum Cursor
Size business component properties.

Usage and Restrictions for Virtual Business Components
The following are the uses and restrictions of VBCs:

■ You can define a business object as containing both standard business components and VBCs.

■ When configuring applets based on VBCs, use CSSFrame (Form) and CSSFrameList (List) instead
of specialized applet classes.

■ (Optional) Using the same name for the VBC field names and the remote data source field names
can reduce the amount of required programming.

■ VBCs cannot be docked, so they do not apply to remote users.

■ VBCs cannot contain a multivalue group (MVG).

■ VBCs do not support many-to-many relationships.

■ A pick applet based on a VBC instantiates the VBC without any parent reference (no link is used).
As result, the VBC business service does not receive the source field value from the parent
component If the VBC business service must access the current parent business component
context, then you can use the ActiveBusObject method of the TheApplication object in a business
service server script to do the following:

■ Obtain the current business object instance (assuming this is the instance with this VBC).

■ Instantiate the parent business component (assuming the name of the parent BC is known).

■ Obtain the parent business component field for referencing it as a source (the field must be
active in the current parent business component).

■ VBCs cannot be loaded using Enterprise Integration Manager.

■ Standard business components cannot contain multivalue groups based on VBCs.

■ VBCs cannot be implemented using any business component class other than CSSBCVExtern.
This means specialized business components such as Quotes and Forecasts cannot be
implemented as VBCs.

■ You cannot use Workflow Monitor to monitor VBCs.

■ You cannot execute queries against VBCs when the search specification uses a function that is
normally supported for Query mode against regular business components, such as
ParentFieldValue().

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Siebel Virtual Business Components ■ Using Virtual Business Components

226

Using Virtual Business Components
To use VBCs to share data with an external application, perform the following high-level tasks:

■ “Creating a New Virtual Business Component” on page 226

■ “Setting User Properties for the Virtual Business Component” on page 226

■ Configuring your VBC business service:

■ Configure your XML Gateway Service or write your own business service.

For information, see “XML Gateway Service” on page 228 and “Custom Business Service
Methods” on page 238.

■ Configure your external application.

For information, see “External Application Setup” on page 238.

Creating a New Virtual Business Component
You create a new VBC in Siebel Tools.

To create a new virtual business component
1 In Siebel Tools, lock the appropriate project.

2 In the Object Explorer, select the Business Component object.

3 Right-click, and then choose New Record.

4 Name the business component.

5 Select the project you locked in Step 1.

6 Set the class to CSSBCVExtern. This class provides the VBC functionality.

Setting User Properties for the Virtual Business
Component
When defining the VBC, you must provide the user properties shown in Table 39.

Table 39. Setting Virtual Business Component User Properties

User Property Description

Service Name The name of the business service.

Service Parameters (Optional) Any parameters required by the business service. The
Siebel application passes this user property, as an input argument, to
the business service.

Siebel Virtual Business Components ■ Using Virtual Business Components

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

227

To define user properties for a virtual business component
1 In the Object List Editor in Siebel Tools, select the virtual business component for which you want

to define user properties.

2 In the Object Explorer, expand the Business Component tree, and then select Business
Component User Prop.

3 In the Object List Editor, click in the Business Component User Props list, right-click, and then
choose New Record.

4 Type the name of the user property, such as Service Name, in the Name field.

5 Type the value of the user property, such as a business service name, in the Value field.

6 Repeat the process for every user property you want to define for this VBC.

NOTE: For the list of different property sets and their format, see “Examples of the Outgoing XML
Format” on page 231 and “Examples of the Incoming XML Format” on page 235.

Remote Source (Optional) External data source that the business service is to use.
This property allows the VBC to pass a root property argument to the
underlying business service, but it does not allow a connection directly
to the external datasource. The Siebel application passes only this
user property as an input argument.

VBC Compatibility Mode (Optional) Determines the format of the property set passed from a
VBC to a business service, or the format in which the outgoing XML
from the XML Gateway will be. A valid value is Siebel xxx, where xxx
can be any Siebel release number. Some examples would be Siebel 6
or Siebel 7.0.4. If xxx is less than 7.5, the format will be in a release
that is earlier than release 7.5. Otherwise, a new property set, and the
XML format will be passed.

If you are creating a VBC in version 7.5 or higher, then it is not
necessary to define this new user property, because the default is to
use the new PropertySet from a VBC and the new outgoing XML from
the XML Gateway.

For your existing VBC implementation, update your VBC definition by
adding this new user property, and setting it to Siebel xxx, where xxx
is the version number that you want.

Table 39. Setting Virtual Business Component User Properties

User Property Description

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Siebel Virtual Business Components ■ XML Gateway Service

228

XML Gateway Service
The XML Gateway business service communicates between Siebel Business Applications and external
data sources using XML as the data format. For information on XML format, see “Examples of the
Outgoing XML Format” on page 231 and “Examples of the Incoming XML Format” on page 235. The XML
Gateway business service can be configured to use one of the following transports:

■ EAI MQSeries Server Transport

■ EAI HTTP Transport

■ EAI MSMQ Transport

You can configure the XML Gateway by specifying the transport protocol and the transport
parameters you use in the Service Parameters User Property of the VBC, as shown in Table 40. When
using the XML Gateway, specify the following user properties for your VBC.

NOTE: You can concatenate multiple name-value pairs using a semicolon (;), but do not use any
spaces between the name, the equal sign, the value, and the semicolon.

For example, if you want to specify the EAI HTTP Transport, then you can use something like the
following:

"Transport=EAI HTTP Transport;HTTPRequestURLTemplate=<your
URL>;HTTPRequestMethod=POST"

You can also implement a VBC with MQSeries. The following procedure lists the steps you take to
implement this.

To implement a VBC with MQSeries
1 Call the EAI Business Integration Manager (Server Request) business service.

2 Define another service parameter for the name of a workflow to run, with the following user
properties on the VBC:

■ Service Name. XML Gateway.

■ Service Parameters. Transport=EAI Business Integration Manager (Server
Request);ProcessName=EAITEST.

Table 40. User Properties

Name Value

Service Name XML Gateway

Service Parameters variable1 name=variable1 value;
variable2 name=variable2 value>;...

Remote Source External Data Source

VBC Compatibility Mode Siebel xxx, where xxx can be any Siebel release number.

Siebel Virtual Business Components ■ XML Gateway Service

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

229

3 Define a workflow, EAITEST, to call the EAI MQSeries Server Transport with the SendReceive
method.

4 Define a new process property, <Value>, on the workflow, and use it as an output argument on
the EAI MQSeries Server Transport step in the workflow.

XML Gateway Methods
The XML Gateway provides the methods presented in Table 41.

XML Gateway Method Arguments
The XML Gateway init, delete, insert, preInsert, query, and update methods take the arguments
presented in Table 42.

Table 41. XML Gateway Methods

Method Description

Init Initializes the XML Gateway business service for every business component.

Delete Deletes a given record in the remote data source.

Insert Inserts a record into a remote data source.

PreInsert Performs an operation that tests for the existence of the given business component.
Only default values are returned from the external application.

Query Queries the given business component from the given data source.

Update Updates a record in the remote data source.

Table 42. XML Gateway Arguments

Argument Description

Remote Source The VBC Remote Source user property. The remote source from
which the service is to retrieve data for the business component.
This must be a valid connect string. When configuring the
repository business component on top of the specialized business
component class CSSBCVExten, you can define a user property
Remote Source to allow the Transport Services to determine the
remote destination and any connect information. If this user
property is defined, then it is passed to every request as the
remote-source tag.

Business Component Id Unique key for the given business component.

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Siebel Virtual Business Components ■ XML Gateway Service

230

About Handling White Space
White space is handled by the XML parser while processing the request from the XML Gateway
business service. When the white space is part of the XML syntax, it must be discarded by the XML
parser and not preserved (passed on to the processing application). If the white space is in any other
location (such as in element content within a document), then it must be preserved according to the
XML specification, because it might have some meaning.

For example:

<mydata>

<mytag>stuff</mytag>

</mydata>

and

<mydata><mytag>stuff</mytag></mydata>

are different to an XML parser.

To preserve white space, use the xml:space attribute with the value preserve, for example:

<mydata xml:space=”preserve”>

<mytag>stuff and more stuff</mytag>

</mydata>

The value of xml:space applies to all children of the element containing the attribute unless
overridden by one of the children.

For more information on white space handling and the xml:space attribute, see Microsoft Developer
Network (http://msdn.microsoft.com).

Business Component Name Name of the business component or its equivalent, such as a table
name.

Parameters The VBC Service Parameters user property. A set of string
parameters required for initializing the XML Gateway.

Table 42. XML Gateway Arguments

Argument Description

Siebel Virtual Business Components ■ Examples of the Outgoing XML Format

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

231

Examples of the Outgoing XML Format
Examples of the XML documents generated and sent by the XML Gateway to the external system are
presented in Table 43 on page 231. These examples are based on the Siebel eScript example in
“Custom Business Service Examples” on page 254. See Appendix C, “DTDs for XML Gateway Business
Service” for examples of the DTDs that correspond to each of these methods.

NOTE: The XML examples in this chapter have extraneous carriage returns and line feeds for ease
of reading. Delete all the carriage returns and line feeds before using any of the examples.

Table 43. Outgoing XML Tags and Descriptions

Method Format of the XML Stream Description

Delete Request <siebel-xmlext-delete-req>
 <buscomp id="1">Contact</
buscomp>
 <remote-source>http://throth/
servlet/VBCContacts</remote-
source>
 <row>
 <value
field="AccountId">146</value>
 <value field="Name">Max
Adams</value>
 <value
field="Phone">(408)234-1029</
value>
 <value field="Location">San
Jose</value>
 <value
field="AccessId">146</value>
 </row>
</siebel-xmlext-delete-req>

siebel-xmlext-delete-req

This tag requests removal of a single
record in the remote system.

Init Request <siebel-xmlext-fields-req>
<buscomp id="1">Contact</buscomp>
<remote-source>http://throth/
servlet/VBCContacts</remote-
source>
</siebel-xmlext-fields-req>

■ siebel-xmlext-fields-req

This tag fetches the list of fields
supported by this instance.

■ buscomp Id

The business component ID.

■ remote-source

The remote source from which the
service is to retrieve data for the
business component.

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Siebel Virtual Business Components ■ Examples of the Outgoing XML Format

232

Insert Request <siebel-xmlext-insert-req>
 <buscomp id="1">Contact</
buscomp>
 <remote-source>http://throth/
servlet/VBCContacts</remote-
source>
 <row>
 <value field="AccountId">1-
6</value>
 <value field="Name">Max
Adams</value>
 <value
field="Phone">(398)765-1290</
value>
 <value
field="Location">Troy</value>
 <value field="AccessId"></
value>
 </row>
</siebel-xmlext-insert-req>

siebel-xmlext-insert-req

This tag requests the commit of a new
record in the remote system.

The insert-req XML stream contains
values for fields entered through the
business component.

PreInsert Request <siebel-xmlext-preinsert-req>
 <buscomp id="1">Contact</
buscomp>
 <remote-source>http://throth/
servlet/VBCContacts</remote-
source>
</siebel-xmlext-preinsert-req>

siebel-xmlext-preinsert-req

This tag allows the connector to
provide default values. This operation
is called when a new row is created,
but before any values are entered
through the business component
interface.

Table 43. Outgoing XML Tags and Descriptions

Method Format of the XML Stream Description

Siebel Virtual Business Components ■ Examples of the Outgoing XML Format

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

233

Query Request <siebel-xmlext-query-req>
 <buscomp id="1">Contact</
buscomp>
 <remote-source>http://throth/
servlet/VBCContacts</remote-
source>
 <max-rows>6</max-rows>
 <search-string>=([Phone] IS NOT
NULL) AND ([AccountId] = "1-6")</
search-string>
 <search-spec>
 <node node-type="Binary
Operator">AND
 <node node-type="Unary
Operator">IS NOT NULL
 <node node-
type="Identifier">Phone</node>
 </node>
 <node node-type="Binary
Operator">=
 <node node-
type="Identifier">AccountId</
node>
 <node value-type="TEXT"
node-type="Constant">1-6</node>
 </node>
 </node>
 </search-spec>
 <sort-spec>
 <sort
field="Location">ASCENDING</
sort>
 <sort field="Name">DESCENDING</
sort>
 </sort-spec>
</Siebel-xmlext-query-req>

■ siebel-xmlext-query-req

This tag queries by example. The
query-req XML stream contains
parameters necessary to set up
the query. In this example, the
query requests that record
information be returned from the
remote system.

■ max-rows

Maximum number of rows to be
returned. The value is the
Maximum Cursor Size defined at
the VBC plus one. If the Maximum
Cursor Size property is not
defined at the VBC, then the max-
rows property is not passed.

■ search-string

The search specification used to
query and filter the information.

■ search-spec

Hierarchical representation of the
search-string. For information,
see “Search-Spec Node-Type
Values” on page 234.

■ sort-spec

List of sort fields and sort order.

NOTE: In some cases you might
retrieve external data for display in a
child list applet, using a link to a
parent business component. If the
parent business component field on
which the link is based is empty, then
the query request is sent without a
search-spec tag, but instead with the
following tag:

<match field=”Child BC

Fieldname”/>

Table 43. Outgoing XML Tags and Descriptions

Method Format of the XML Stream Description

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Siebel Virtual Business Components ■ Search-Spec Node-Type Values

234

Search-Spec Node-Type Values
The search-string is in the Siebel query language format. The search-string is parsed by the Siebel
query object and then turned into the hierarchical search-spec. Table 44 shows the different search-
spec node-types and their values.

Update Request <siebel-xmlext-update-req>
 <buscomp id="2">Contact</
buscomp>
 <remote-source>http://throth/
servlet/VBCContacts</remote-
source>
 <row>
 <value changed="false"
field="AccountId">1-6</value>
 <value changed="false"
field="Name">Max Adams</value>
 <value changed="true"
field="Phone">(408)234-1029</
value>
 <value changed="true"
field="Location">San Jose</value>
 <value changed="false"
field="AccessId">146</value>
 </row>
</siebel-xmlext-update-req>

siebel-xmlext-update-req

This tag requests changes to the field
values for an existing row.

All values for the record are passed
with the value tags, and with the
changed attribute identifying the
ones that have been changed through
the Siebel application.

Table 44. Search-Spec Node-Types

Node-Type PropertySet and XML Representation

Constant Example: <node node-type = "Constant"

 value-type="NUMBER">1000</node>

The valid value-types are TEXT, NUMBER, DATETIME, UTCDATETIME, DATE, and
TIME.

Identifier Example: <node node-type="Identifier">Name</node>

The value Name is a valid business component field name.

Unary Operator Example: <node node-type="Unary Operator">NOT</node>

The valid values are NOT, EXISTS, IS NULL, IS NOT NULL.

Binary Operator Example: <node node-type= "Binary Operator" >AND</node>

The valid values are LIKE, NOT LIKE, SOUNDSLIKE, =, <>, <=, <, >=, >, AND,
OR, +, -, *, /, ^.

Table 43. Outgoing XML Tags and Descriptions

Method Format of the XML Stream Description

Siebel Virtual Business Components ■ Examples of the Incoming XML Format

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

235

Examples of the Incoming XML Format
Table 45 contains examples of XML documents that are sent from an external system to the XML
Gateway in response to a request. These examples are based on the Siebel eScript example in
“Custom Business Service Examples” on page 254. See Appendix C, “DTDs for XML Gateway Business
Service” for examples of the DTDs that correspond to each of these methods.

Table 45. Incoming XML Tags and Descriptions

Method Format of the XML Stream Description

Delete Return <siebel-xmlext-delete-ret /> siebel-xmlext-delete-ret.

Only the XML stream tag is returned.

Error <siebel-xmlext-status>

<status-code>4</code>

<error-field>Name</error-field>

<error-text>Name must not be
empty</error-text>

</siebel-xmlext-status>

Format of the XML stream expected by
the Siebel application in case of an error
in the external application. If the error is
specific to a field, then the field name
must be specified.

The tags for this XML stream, and the
entire XML stream, are optional:

■ siebel-xmlext-status

This tag is used to check the status
returned by the external system.

■ status-code

This tag overrides the return value.

■ error-text

This tag specifies textual
representation of the error, if it is
available. This tag appears in
addition to the standard error
message. For example, if the Siebel
application attempts to update a
record in the external system with a
NULL Name, and this is not allowed
in the external system, then the
error text is set to: “Name must not
be empty.”

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Siebel Virtual Business Components ■ Examples of the Incoming XML Format

236

Init Return <siebel-xmlext-fields-ret>

 <support field="AccountId"/>

 <support field="Name"/>

 <support field="Phone"/>

 <support field="Location"/>

 <support field="AccessId"/>

</siebel-xmlext-fields-ret>

siebel-xmlext-fields-ret

The fields-ret XML stream return
contains the list of VBC fields supported
by the external application for this
instance.

The following field names are reserved
by the Siebel application, and must not
appear in this list:

■ Id

■ Created

■ Created By

■ Updated

■ Updated By

Insert Return <siebel-xmlext-insert-ret>

 <row>

 <value field="AccountId">1-6</
value>

 <value field="Name">Max
Adams</value>

 <value field="Phone">(398)765-
1290</value>

 <value field="Location">Troy</
value>

 <value field="AccessId">146</
value>

 </row>

</siebel-xmlext-insert-ret>

siebel-xmlext-insert-ret

If the remote system has inserted
records, then they can be returned to be
reflected in the business component in
an insert-ret XML stream in the row tag
format as the insert-ret stream.

PreInsert
Return

<siebel-xmlext-preinsert-ret>

 <row>

 <value field="Location">San
Jose</value>

 </row>

</siebel-xmlext-preinsert-ret>

siebel-xmlext-preinsert-ret

Returns default values for each field, if
there is any default value.

Table 45. Incoming XML Tags and Descriptions

Method Format of the XML Stream Description

Siebel Virtual Business Components ■ Examples of the Incoming XML Format

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

237

Query Return <siebel-xmlext-query-ret>

 <row>

 <value field="AccountId">1-6</
value>

 <value field="Name">Sara
Chen</value>

 <value field="Phone">(415)298-
7890</value>

 <value field="Location">San
Francisco</value>

 <value field="AccessId">128</
value>

 </row>

 <row>

 <value field="AccountId">1-6</
value>

 <value field="Name">Eric
Brown</value>

 <value field="Phone">(650)123-
1000</value>

 <value field="Location">Palo
Alto</value>

 <value field="AccessId">129</
value>

 </row>

</siebel-xmlext-query-ret>

■ siebel-xmlext-query-ret

The query-ret XML stream contains
the result set that matches the
criteria of the query.

■ row

This tag indicates the number of
rows returned by the query. Each
row must contain one or more value
tags. The attributes that appear in
row tags must be able to uniquely
identify the rows. If there is a unique
key in the remote data source, then
it appears in the result set. If not, a
unique key is generated. It is
necessary to identify specific rows
for DML operations.

■ value

This tag specifies the field and value
pairs and must be the same for each
row in the set.

Table 45. Incoming XML Tags and Descriptions

Method Format of the XML Stream Description

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Siebel Virtual Business Components ■ External Application Setup

238

External Application Setup
When you have your XML Gateway Service configured, set up your external application accordingly
to receive and respond to the requests. At a minimum, the external application must support the
Init() and Query() methods, and depending upon the functionality provided by the VBC, the
remaining methods might or might not be necessary.

Custom Business Service Methods
Your business service must implement the Init and Query methods as described in this topic. The
Delete, PreInsert, Insert, and Update methods are optional, and depend on the functionality required
by the VBC.

NOTE: Custom business services can be based only on the CSSService class, as specified in Siebel
Tools.

These methods pass property sets between the VBC and the business service. VBC methods take
property sets as arguments. Each method takes two property sets: an Inputs property set and an
Outputs property set. The methods are called by the CSSBCVExtern class in response to requests
from other objects that refer to, or are based on the VBC.

If VBCs are used, then custom business services are written to access external relational databases.
However, it is recommended that you use external business components (EBCs) to access these
databases instead of writing custom business services. For more information on EBCs, see
Chapter 10, “External Business Components”.

Update
Return

<siebel-xmlext-update-ret>

 <row>

 <value field="Location">San
Jose</value>

 <value field="Phone">(408)234-
1029</value>

 </row>

</siebel-xmlext-update-ret>

siebel-xmlext-update-ret

If the remote system updated fields,
then the fields can be returned to be
reflected in the business component in
an update-ret XML stream in the row tag
format as the update-ret stream.

Table 45. Incoming XML Tags and Descriptions

Method Format of the XML Stream Description

Siebel Virtual Business Components ■ Custom Business Service Methods

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

239

Common Method Parameters
Table 46 shows the input parameters common to every method. Note that all these parameters are
at the root property set.

When a response has been received, the method packages the response from the external data
source into the output’s property set.

Business Services Methods and Their Property Sets
The following examples display each method's input and output property sets for a VBC Contact that
displays simple contact information for a given account. These examples are based on the example
in the “Custom Business Service Examples” on page 254.

The output property set of the Insert and Update methods for VBC does not affect the data in the
business component, unlike the Query method, which uses the output property set to populate the
business component. The output property set for Insert and Update is used to indicate that what
fields or record has been changed.

NOTE: All the optional parameters have been omitted from these examples to simplify them.

Table 46. Common Input Parameters

Parameter Description

Remote Source (Optional) Specifies the name of an external data source. This
is the VBC’s Remote Source user property, if defined. For
information, see Table 39 on page 226.

Business Component Name Name of the active VBC.

Business Component Id Internally generated unique value that represents the VBC.

Parameters (Optional) The VBC’s Service Parameters user property, if
defined. For information, see Table 39 on page 226. A set of
parameters required by the business service.

VBC Compatibility Mode (Optional) This is the VBC’s Compatibility Mode user property, if
defined. For information, see Table 39 on page 226.

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Siebel Virtual Business Components ■ Custom Business Service Methods

240

Delete Method
The Delete method is called when a record is deleted. Figure 41 illustrates the property set for the
Delete input.

The following is the XML representation of the property set shown in Figure 41:

<?xml version="1.0" encoding="UTF-8" ?>

<?Siebel-Property-Set EscapeNames="true"?>

<PropertySet

Business_spcComponent_spcId="1"

Business_spcComponent_spcName="Contact">

<PropertySet

AccountId="1-6"

Name="Max Adams"

Phone="(408)234-1029"

Location="San Jose"

AccessId="146" />

Figure 41. Delete Input Property Set

Siebel Virtual Business Components ■ Custom Business Service Methods

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

241

</PropertySet>

Figure 42 illustrates the property set for the Delete output.

The following is the XML representation of the property set shown in Figure 42:

<?xml version="1.0" encoding="UTF-8" ?>

<?Siebel-Property-Set EscapeNames="true"?>

<PropertySet />

Error Return Method
Figure 43 illustrates the property set for the Error Return, when an error is detected.

Figure 42. Delete Output Property Set

Figure 43. Error Return Property Set

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Siebel Virtual Business Components ■ Custom Business Service Methods

242

The following is the XML representation of the property set shown in Figure 43 on page 241:

<?xml version="1.0" encoding="UTF-8" ?>

<?Siebel-Property-Set EscapeNames="true"?>

<PropertySet>

<Status Status="4"

Error_spcField="Name"

Error_spcText="Name must not be empty"/>

</PropertySet>

Init Method
The Init method is called when the VBC is first instantiated. It initializes the VBC. It expects to receive
the list of fields supported by the external system.

NOTE: When a field is not initialized in the Init method of the VBC, the Update method is not fired
when the field gets updated.

Figure 44 illustrates the property set for the Init input.

The following is the XML representation of the property set shown in Figure 44:

<?xml version="1.0" encoding="UTF-8"?>

<?Siebel-Property-Set EscapeNames="true"?>

<PropertySet

Business_spcComponent_spcId="1"

Business_spcComponent_spcName="Contact"/>

Figure 44. Init Input Property Set

Siebel Virtual Business Components ■ Custom Business Service Methods

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

243

Figure 45 illustrates the property set for the Init output.

The following is the XML representation of the property set shown in Figure 45:

<?xml version="1.0" encoding="UTF-8" ?>

<?Siebel-Property-Set EscapeNames="true"?>

<PropertySet

AccountId=""

Name=""

Phone=""

Location=""

AccessId="" />

Figure 45. Init Output Property Set

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Siebel Virtual Business Components ■ Custom Business Service Methods

244

Insert Method
The Insert method is called when a New Record is committed. Figure 46 illustrates the property set
for the Insert input.

The following is the XML representation of the property set shown in Figure 46:

<?xml version="1.0" encoding="UTF-8" ?>

<?Siebel-Property-Set EscapeNames="true"?>

<PropertySet

Business_spcComponent_spcId="1"

Business_spcComponent_spcName="Contact">

<PropertySet

AccountId="1-6"

Name="Max Adams"

Phone="(398)765-1290"

Location="Troy"

Figure 46. Insert Input Property Set

Siebel Virtual Business Components ■ Custom Business Service Methods

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

245

AccessId="" />

</PropertySet>

Figure 47 illustrates the property set for the Insert output.

NOTE: The property set for the Insert output does not affect the data in the business component.
The output property set for Insert is used to indicate what fields or records were changed.

The following is the XML representation of the property set shown in Figure 47:

<?xml version="1.0" encoding="UTF-8" ?>

<?Siebel-Property-Set EscapeNames="true"?>

<PropertySet

<PropertySet

AccountId="1-6"

Name="Max Adams"

Phone="(398)765-1290"

Location="Troy"

Figure 47. Insert Output Property Set

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Siebel Virtual Business Components ■ Custom Business Service Methods

246

AccessId="146" />

</PropertySet>

PreInsert Method
The PreInsert method is called when a New Record operation is performed. It supplies default values.
Figure 48 illustrates the property set for the PreInsert input.

The following is the XML representation of the property set shown in Figure 48:

<?xml version="1.0" encoding="UTF-8"?>

<?Siebel-Property-Set EscapeNames="true"?>

<PropertySet

Business_spcComponent_spcId="1"

Business_spcComponent_spcName="Contact"/>

Figure 48. PreInsert Input Property Set

Siebel Virtual Business Components ■ Custom Business Service Methods

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

247

Figure 49 illustrates the property set for the PreInsert output.

The following is the XML representation of the property set shown in Figure 49:

<?xml version="1.0" encoding="UTF-8" ?>

<?Siebel-Property-Set EscapeNames="true"?>

<PropertySet>

<PropertySet Location="San Jose" />

</PropertySet>

Query Method
The Query method is called when a search is performed. The Query method must be supported by
every VBC. Each record that matches the query is represented as a property set. For example, if 5
records match the query, then there will be 5 child property sets. Each property set contains a list
of field names, that is field value pairs representing the values of each field for that particular record.
Figure 50 on page 248 illustrates the property set for the Query input and is followed by its XML
representation.

Figure 49. PreInsert Output Property Set

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Siebel Virtual Business Components ■ Custom Business Service Methods

248

Figure 50. Query Input Property Set

Siebel Virtual Business Components ■ Custom Business Service Methods

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

249

The following is the XML representation of the property set shown in Figure 50 on page 248:

<?xml version="1.0" encoding="UTF-8" ?>

<?Siebel-Property-Set EscapeNames="true"?>

<PropertySet

max-rows="6"

search-string="([Phone] IS NOT NULL) AND ([AccountId] = "1-6")"

Business_spcComponent_spcId="1"

Business_spcComponent_spcName="Contact">

<PropertySet AccountId="1-6" />

<search-spec>

<node node-type="Binary Operator">AND

<node node-type="Unary Operator">IS NOT NULL

<node node-type="Identifier">Phone</node>

</node>

<node node-type="Binary Operator">=

<node node-type="Identifier">AccountId</node>

<node value-type="TEXT" node-type="Constant">1-6</node>

</node>

</node>

</search-spec>

<sort-spec>

<sort field="Location">ASCENDING</sort>

<sort field="Name">DESCENDING</sort>

</sort-spec>

</PropertySet>

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Siebel Virtual Business Components ■ Custom Business Service Methods

250

Figure 51 illustrates the property set for the Query output.

The following is the XML representation of the property set shown in Figure 51:

<?xml version="1.0" encoding="UTF-8" ?>

<?Siebel-Property-Set EscapeNames="true"?>

<PropertySet>

<PropertySet

AccountId="1-6"

Name="Sara Chen"

Phone="(415)298-7890"

Location="San Francisco"

AccessId="128" />

<PropertySet

AccountId="1-6"

Name="Eric Brown"

Figure 51. Query Output Property Set

Siebel Virtual Business Components ■ Custom Business Service Methods

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

251

Phone="(650)123-1000"

Location="Palo Alto"

AccessId="129" />

</PropertySet>

Update Method
The Update method is called when a record is modified. Figure 52 illustrates the property set for the
Update input.

The following is the XML representation of the property set shown in Figure 52:

<?xml version="1.0" encoding="UTF-8" ?>

<?Siebel-Property-Set EscapeNames="true"?>

<PropertySet

Business_spcComponent_spcId="1"

Business_spcComponent_spcName="Contact">

Figure 52. Update Input Property Set

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Siebel Virtual Business Components ■ Custom Business Service Methods

252

<PropertySet

Field_spcName="AccountId"

Changed="false"

Field_spcValue="1-6"/>

<PropertySet

Field_spcName="Name"

Changed="false"

Field_spcValue="MaxAdams"/>

<PropertySet

Field_spcName="Phone"

Changed="true"

Field_spcValue="(408)234-1029"/>

<PropertySet

Field_spcName="Location"

Changed="true"

Field_spcValue="SanJose"/>

<PropertySet

Field_spcName="AccessId"

Changed="false"

Field_spcValue="146" />

</PropertySet>

Siebel Virtual Business Components ■ Custom Business Service Methods

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

253

Figure 53 illustrates the property set for the Update output.

NOTE: The property set for Update output does not affect the data in the business component. The
output property set for Update is used to indicate what fields or records were changed.

The following is the XML representation of the property set shown in Figure 53:

<?xml version="1.0" encoding="UTF-8" ?>

<?Siebel-Property-Set EscapeNames="true"?>

<PropertySet

<PropertySet

Phone=="(408)234-1029"

Location="San Jose" />

</PropertySet>

Figure 53. Update Output Property Set

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Siebel Virtual Business Components ■ Custom Business Service Examples

254

Custom Business Service Examples
These examples show the implementation of a business service for a VBC in both Siebel eScript and
Siebel VB:

■ “Siebel eScript Business Service Example for a VBC” on page 254

■ “Siebel VB Business Service Example for a VBC” on page 261

Siebel eScript Business Service Example for a VBC
The following is an example of Siebel eScript implementation of a business service for a VBC. The
fields configured for this simple VBC are AccountId, Name, Phone, Location, and AccessId. AccessId
is the primary key in the external data source. AccessId is included in the VBC fields to make
updating and deleting the fields simple and is configured as a hidden field.

CAUTION: Do not use Siebel CRM system fields, such as Id, as output properties. Undesired
application behavior might result.

function Service_PreInvokeMethod (MethodName, Inputs, Outputs) {
if (MethodName == "Init") {

return(Init(Inputs, Outputs));
}
else if (MethodName == "Query") {

return(Query(Inputs, Outputs));
}
else if (MethodName == "PreInsert") {

return(PreInsert(Inputs, Outputs));
}
else if (MethodName == "Insert") {

return(Insert(Inputs, Outputs));
}
else if (MethodName == "Update") {

return(Update(Inputs, Outputs));
}
else if (MethodName == "Delete") {

return(Delete(Inputs, Outputs));
}
else {

return (ContinueOperation);
}

}

function Init (Inputs, Outputs) {
// For debugging purposes...
logPropSet(Inputs, "InitInputs.xml");
Outputs.SetProperty("AccountId", "");
Outputs.SetProperty("Name", "");
Outputs.SetProperty("Phone", "");
Outputs.SetProperty("AccessId", "");
Outputs.SetProperty("Location", "");
// For debugging purposes...

Siebel Virtual Business Components ■ Custom Business Service Examples

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

255

logPropSet(Outputs, "InitOutputs.xml");
return (CancelOperation);

}

function Query(Inputs, Outputs) {
// For debugging purposes...
logPropSet(Inputs, "QueryInputs.xml");
var selectStmt = "select * from Contacts ";
var whereClause = "";
var orderbyClause = "";
// You have the following properties if you want to use them
// Inputs.GetProperty("Business Component Name")
// Inputs.GetProperty("Business Component Id")
// Inputs.GetProperty("Remote Source")
// If you configured Maximum Cursor Size at the buscomp,
// get max-rows property
var maxRows = Inputs.GetProperty("max-rows");
// get search-string
var searchString = Inputs.GetProperty("search-string");
if (searchString != "")

{

// convert the search-string into a where clause
searchString = stringReplace(searchString, '*', '%');
searchString = stringReplace(searchString, '[', ' ');
searchString = stringReplace(searchString, ']', ' ');
searchString = stringReplace(searchString, '~', ' ');
searchString = stringReplace(searchString, '"', "'");
whereClause = " where ";
whereClause = whereClause + searchString;

}
// match, search-spec, sort-spec
var childCount = Inputs.GetChildCount();
var child, sortProp;
for (var i = 0; i < childCount; i++)
{

child = Inputs.GetChild(i);
if (child.GetType() == "")
{
// Use this child property set if you want to use the old match field list.
// We are not using this in this example. We'll use search-string instead.
}
else if (child.GetType() == "search-spec")
{
// Use this child property set if you want to use the hierarchical
// representation of the search-string.
// We are not using this in this example. We'll use search-string instead.
}
else if (child.GetType() == "sort-spec")
{
// This child property set has the sort spec. We'll use this in this example
orderbyClause = " order by ";

var sortFieldCount = child.GetChildCount();

for (var j = 0; j < sortFieldCount; j++)

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Siebel Virtual Business Components ■ Custom Business Service Examples

256

{
// Compose the order by clause.
sortProp = child.GetChild(j);
orderbyClause += sortProp.GetProperty("field");
var sortOrder = sortProp.GetValue();
if (sortOrder == "DESCENDING")

orderbyClause += " desc";
if (j < sortFieldCount-1)

orderbyClause += ", ";
}

}
}
// Now, our complete select statement is...
selectStmt += whereClause + orderbyClause;
// Now, query the data source.
var conn = getConnection();
var rs = getRecordset();
rs.Open(selectStmt, conn);
// We will return no more than maxRows of records.
var count = rs.RecordCount;
if (maxRows != "")

if (count > maxRows)
count = maxRows

// Iterate through the record set and add them to the Outputs PropertySet.
var fcount, fields, row;
for (i = 0; i < count; i++)
{

row = TheApplication().NewPropertySet();
fields = rs.Fields();
fcount = fields.Count;
for (j = 0; j < fcount; j++)
{
var fieldValue = fields.Item(j).Value;
if (fieldValue == null)

row.SetProperty(fields.Item(j).Name, "");
else

row.SetProperty(fields.Item(j).Name, fieldValue);
}
Outputs.AddChild(row);
rs.MoveNext();

}
// For debugging purposes...
logPropSet(Outputs, "QueryOutputs.xml");
// clean up
child = null;
sortProp = null;
row = null;
rs.Close();
rs = null;
conn.Close();
conn = null;
return (CancelOperation);

}

Siebel Virtual Business Components ■ Custom Business Service Examples

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

257

function PreInsert (Inputs, Outputs) {
// For debugging purposes...
logPropSet(Inputs, "PreInsertInputs.xml");
var defaults = TheApplication().NewPropertySet();
defaults.SetProperty("Location", "KO");
Outputs.AddChild(defaults);
// For debugging purposes...
logPropSet(Outputs, "PreInsertOutputs.xml");
// Cleanup
defaults = null;
return (CancelOperation);

}

function Insert (Inputs, Outputs) {
// For debugging purposes...
logPropSet(Inputs, "InsertInputs.xml");
var fieldList = "";
var valueList = "";
// Inputs must have only 1 child property set.
var child = Inputs.GetChild(0);
var fieldName = child.GetFirstProperty();
var fieldValue;
while (fieldName != "")
{

fieldValue = child.GetProperty(fieldName);
if (fieldValue != "")
{
if (fieldList != "")
{

fieldList += ", ";
valueList += ", ";

}
fieldList += fieldName;
valueList += "'" + fieldValue + "'";
}
fieldName = child.GetNextProperty();

}
// The insert statement is...
var insertStmt = "insert into Contacts (" + fieldList + ") values (" + valueList + ")";
// Now, inserting into the data source...
var conn = getConnection();
conn.Execute (insertStmt);
// In this example, we must query back the record just inserted to get
// the value of its primary key. We made this primary key part of the buscomp
// to make update and delete easy. The primary key is "AccessId".
var selectStmt = "select * from Contacts where ";
var whereClause = "";
child = Inputs.GetChild(0)
fieldName = child.GetFirstProperty();
while (fieldName != "")
{

fieldValue = child.GetProperty(fieldName);
if (fieldName != "AccessId")
{

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Siebel Virtual Business Components ■ Custom Business Service Examples

258

if (whereClause != "")
whereClause += " and ";

if (fieldValue == "")
whereClause += fieldName + " is null";

else
whereClause += fieldName + "='" + fieldValue + "'";

}
fieldName = child.GetNextProperty();

}
// The select statement is...
selectStmt += whereClause;
// Now, let's select the new record back
var rs = getRecordset();
rs.Open(selectStmt, conn);
// We're expecting only one row back in this example.
var fcount, fields, row, fieldValue;
row = TheApplication().NewPropertySet();
fields = rs.Fields();
fcount = fields.Count();
for (var j = 0; j < fcount; j++)
{

fieldValue = fields.Item(j).Value();
if (fieldValue == null)

row.SetProperty(fields.Item(j).Name(), "");
else

row.SetProperty(fields.Item(j).Name(), fieldValue);
}
Outputs.AddChild(row);
// For debugging purpose...
logPropSet(Outputs, "InsertOutputs.xml");
// Cleanup
child = null;
row = null;
rs.Close();
rs = null;
conn.Close();
conn = null;
return (CancelOperation);

}

function Update (Inputs, Outputs) {
// For debugging purposes...
logPropSet(Inputs, "UpdateInputs.xml");
var child;
var childCount = Inputs.GetChildCount();
var fieldName, fieldValue;
var updateStmt = "update Contacts set ";
var setClause = "";
var whereClause;
// Go through each child in Inputs and construct the
// necessary sql statements for update and query
for (var i = 0; i < childCount; i++)
{

child = Inputs.GetChild(i);

Siebel Virtual Business Components ■ Custom Business Service Examples

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

259

fieldName = child.GetProperty("Field Name");
fieldValue = child.GetProperty("Field Value");
// We only have to update changed fields.
if (child.GetProperty("Changed") == "true")
{

if (setClause != "")
setClause += ", ";

if (fieldValue == "")
setClause += fieldName + "=null";

else
setClause += fieldName + "='" + fieldValue + "'";

}
if (fieldName == "AccessId")

whereClause = " where AccessId = " + fieldValue;
}
// The update statement is...
updateStmt += setClause + whereClause;
// Now, updating the data source...
var conn = getConnection();
conn.Execute (updateStmt);
// How to construct the Outputs PropertySet can vary, but in this example
// We'll query back the updated record from the data source.
var selectStmt = "select * from Contacts" + whereClause;
// Now, let's select the updated record back
var rs = getRecordset();
rs.Open(selectStmt, conn);
// We expect only one row back in this example.
// In this example, we're returning all the fields and not just
// the updated fields. You can only return those updated
// fields with the new value in the Outputs property set.
var fcount, fields, row, fieldValue;
row = TheApplication().NewPropertySet();
fields = rs.Fields();
fcount = fields.Count();
for (var j = 0; j < fcount; j++)
{

fieldValue = fields.Item(j).Value();
if (fieldValue == null)

row.SetProperty(fields.Item(j).Name(), "");
else

row.SetProperty(fields.Item(j).Name(), fieldValue);
}
Outputs.AddChild(row);
// For debugging purposes...
logPropSet(Outputs, "UpdateOutputs.xml");
// Cleanup
child = null;
row = null;
rs.Close();
rs = null;
conn.Close();
conn = null;
return (CancelOperation);

}

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Siebel Virtual Business Components ■ Custom Business Service Examples

260

function Delete (Inputs, Outputs) {
// For debugging purposes...
logPropSet(Inputs, "DeleteInputs.xml");
// Inputs must have only 1 child property set.
var child = Inputs.GetChild(0);
// In this example, we're only using the AccessId
// (it is the primary key in the Contacts db)
// for the delete statement for simplicity.
var deleteStmt = "delete from Contacts where AccessId = " +

child.GetProperty("AccessId");
// Now, delete the record from the data source.
var conn = getConnection();
conn.Execute(deleteStmt);
// For debugging purposes...
logPropSet(Outputs, "DeleteOutputs.xml");
// Returning empty Outputs property set.
// clean up
conn.Close();
conn = null;
return (CancelOperation);

}

The following functions are helper functions:

function getConnection () {
// VBCContact is the ODBC data source name
var connectionString = "DSN=VBCContact";
var uid = "";
var passwd = "";
var conn = COMCreateObject("ADODB.Connection");
conn.Mode = 3;
conn.CursorLocation = 3;
conn.Open(connectionString , uid, passwd);
return conn;

}

function getRecordset() {
var rs = COMCreateObject("ADODB.Recordset");
return rs;

}

function logPropSet(inputPS, fileName) {
// Use EAI XML Write to File business service to write
// inputPS property set to fileName file in c:\temp directory.
var fileSvc = TheApplication().GetService("EAI XML Write to File");
var outPS = TheApplication().NewPropertySet();
var fileLoc = "c:\\temp\\" + fileName;
var tmpProp = inputPS.Copy();
tmpProp.SetProperty("FileName", fileLoc);
fileSvc.InvokeMethod("WritePropSet", tmpProp, outPS);
// clean up
outPS = null;
fileSvc = null;
tmpProp = null;

}

Siebel Virtual Business Components ■ Custom Business Service Examples

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

261

function stringReplace (string, from, to) {
// Replaces from with to in string
var stringLength = string.length;
var fromLength = from.length;
if ((stringLength == 0) || (fromLength == 0))
return string;
var fromIndex = string.indexOf(from);
if (fromIndex < 0)

return string;
var newString = string.substring(0, fromIndex) + to;
if ((fromIndex + fromLength) < stringLength)

newString += stringReplace(string.substring(fromIndex+fromLength, stringLength),
from, to);

return newString;
}

Siebel VB Business Service Example for a VBC
The following is an example of Siebel VB implementation of a business service for a VBC. The fields
configured for this simple VBC are AccountId, Name, Phone, and Location.

CAUTION: Do not use Siebel CRM system fields, such as Id, as output properties. Undesired
application behavior might result.

(declarations)
Option Explicit
Declare Function stringReplace(mystr As String, fromchar As String, tochar As
String) As String
Declare Function getData(execSQL As String, Results As PropertySet) As Integer

Function getData(execSQL As String, Results As PropertySet) As Integer
Dim sSrv As String, sDbn As String
Dim sUsr As String, sPsw As String
Dim oCon As Object, oRec As Object
Dim Row As PropertySet
Dim FileName, TextToSave
' *** SQL Server connectivity parameters
sSrv = "v817.siebel.com" '*** Oracle tns
sUsr = "system" '*** SQL Server: a user's login Id
sPsw = "manager" '*** SQL Server: a user's password
' *** Create SQL Server ADODB connection dynamically
Set oCon = CreateObject("ADODB.Connection")
oCon.Open "Provider=MSDAORA;" & _

"Data Source=" & sSrv & ";" & _
"User ID=" & sUsr & ";" & "Password=" & sPsw & ";"

' *** Perform SQL query
Set oRec = oCon.Execute(execSQL)
' *** Process SQL query result and save into file
While Not oRec.Eof
Set Row=TheApplication.NewPropertySet()
Row.SetProperty "AccountId", oRec.Fields.Item("AccountId").Value
Row.SetProperty "Name", oRec.Fields.Item("Name").Value

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Siebel Virtual Business Components ■ Custom Business Service Examples

262

Row.SetProperty "Location", oRec.Fields.Item("Location").Value
Row.SetProperty "Phone", oRec.Fields.Item("Phone").Value
Results.AddChild Row
Set Row = Nothing
oRec.MoveNext

Wend
' *** Object cleanup
Set oRec = Nothing
Set oCon = Nothing
getData = 0
End Function

Sub Init(Inputs As PropertySet, Outputs As PropertySet)
Outputs.SetProperty "AccountId", ""
Outputs.SetProperty "Name", ""
Outputs.SetProperty "Phone", ""
Outputs.SetProperty "Location", ""
End Sub

Sub Query(Inputs As PropertySet, Outputs As PropertySet)
Dim sselectStmt As String
Dim swhereClause As String
Dim sorderbyClause As String
Dim ssearchstring As String
Dim child As PropertySet
Dim sortProp As PropertySet
Dim childCount As Integer
Dim i As Integer
Dim ret As Integer
Dim FileName, TextToSave
sselectStmt = "select * from siebel.Contact2 "
swhereClause = "where "
sorderbyClause= "order by "
ssearchstring = Inputs.GetProperty("search-string")
If Len(ssearchstring) > 0 Then
ssearchstring = stringReplace(ssearchString, "*", "%")
ssearchstring = stringReplace(ssearchString, "[", " ")
ssearchstring = stringReplace(ssearchString, "]", " ")
ssearchstring = stringReplace(ssearchString, "~", " ")
ssearchstring = stringReplace(ssearchString, chr$(34), "'")
sselectStmt = sselectStmt & swhereClause & ssearchstring

End If
' Write select statement to this file
FileName = "C:\Test.txt"
TextToSave = "select is " & sselectStmt
Open FileName For Append As #1
Print #1, TextToSave
Close #1
ret = getData(sselectStmt, Outputs)
End Sub

Function stringReplace(mystr As String, fromchar As String, tochar As String) As
String
'Replace all occurrences of fromchar in mystr with tochar

Siebel Virtual Business Components ■ Custom Business Service Examples

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

263

Dim i As Long
If Len(mystr) = 0 Or Len(fromchar) = 0 Then

stringReplace = mystr
Else

i = InStr(1, mystr, fromchar)
Do While i > 0
mystr = Left(mystr, i - 1) & tochar & Mid(mystr, i + Len(fromchar))
i = i + Len(fromchar)
i = InStr(i, mystr, fromchar)
Loop
stringReplace = mystr

End If
End Function

Function Service_PreInvokeMethod (MethodName As String, Inputs As PropertySet,
Outputs As PropertySet) As Integer
Service_PreInvokeMethod = ContinueOperation
If MethodName = "Init" Then

Service_PreInvokeMethod = CancelOperation
Init Inputs, Outputs
Exit Function

End If
If MethodName = "Query" Then

Service_PreInvokeMethod = CancelOperation
Query Inputs, Outputs
Exit Function

End If
End Function

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Siebel Virtual Business Components ■ Custom Business Service Examples

264

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

265

9 Siebel EAI and File Attachments

Siebel EAI supports file attachments for exchanging business documents such as sales literature,
activity attachments, and product defect attachments with another Siebel instance or an external
system such as Oracle Applications. It includes the following topics:

■ About File Attachments on page 265

■ Exchanging Attachments with External Applications on page 265

■ Using MIME Messages to Exchange Attachments on page 266

■ About the EAI MIME Hierarchy Converter on page 272

■ About the EAI MIME Doc Converter on page 274

■ Using Inline XML to Exchange Attachments on page 278

About File Attachments
For example, if you are exchanging service requests with another application or partner, then you
can include attachments such as screen captures, email, log files, and contract agreements that are
associated with the service request in the information being exchanged. Siebel EAI support for file
attachments allows comprehensive integration.

To use file attachments you first must create integration objects. For information, see Chapter 2,
“Integration Objects”, and Chapter 3, “Creating and Maintaining Integration Objects”.

Siebel EAI offers the choice of integrating file attachments using MIME (the industry standard for
exchanging multipart messages), or including the attachment within the body of the XML document,
referred to as an inline XML attachment. Consider using inline XML attachments when integrating
two instances of Siebel Business Applications using file attachments.

Exchanging Attachments with External
Applications
Siebel EAI supports bidirectional attachment exchange with external applications using the following
two message types:

■ MIME (Multipurpose Internet Mail Extensions). MIME is the industry standard for
exchanging multipart messages. The first part of the MIME message is an XML document
representing the business object being exchanged and attachments to the object are included as
separate parts of the multipart message. MIME is the recommended choice for integrating Siebel
Business Applications with other applications. For more information, see “Using MIME Messages
to Exchange Attachments” on page 266.

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Siebel EAI and File Attachments ■ Using MIME Messages to Exchange Attachments

266

■ Inline XML attachments (Inline Extensible Markup Language). With inline XML
attachments, the entire business object you are exchanging, including any attachments, is sent
as a single XML file. Consider using inline XML attachments when integrating two instances of
Siebel Business Applications using file attachments. For more information, see “Using Inline XML
to Exchange Attachments” on page 278.

Using MIME Messages to Exchange
Attachments
To send or receive file attachments using MIME messages, Siebel EAI uses the MIME Hierarchy
Converter and MIME Doc Converter.

You must perform the following procedures to use MIME to exchange attachments between Siebel
Business Applications and another external system:

■ Create an attachment integration object using the EAI Siebel Wizard business service.

For information, see “Creating an Attachment Integration Object” on page 266.

■ Create an inbound or outbound workflow.

For information, see “Creating Workflow Examples” on page 268.

■ Test your workflow using the Workflow Simulator.

For information, see Business Processes and Rules: Siebel Enterprise Application Integration.

Creating an Attachment Integration Object
The following procedure guides you through the steps of creating an attachment integration object.

To create a new attachment integration object
1 In Siebel Tools or Web Tools, create a new workspace.

2 From the File menu, choose New Object to display the New Object Wizards dialog box.

3 Select the EAI tab, and then double-click Integration Object.

The Integration Object Builder wizard appears.

Siebel EAI and File Attachments ■ Using MIME Messages to Exchange Attachments

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

267

4 Follow the procedure in “Creating Integration Objects Using the EAI Siebel Wizard Business Service”
on page 45 to create the new integration object, for example SourceObject Attachment.

NOTE: When creating your integration object you must select the Attachment integration
component. The following figure illustrates this when the source object is Account.

5 In the Object Explorer, select Integration Object, and then select your new integration object in
the Object List Editor.

6 In the Object Explorer, expand the Integration Object tree to show the Integration Component
object.

7 Select the SourceObject Attachment integration component, and set its External Sequence and
XML Sequence properties so that they are greater than those of the other integration components
(that is, last in sequence), if not already set.

If they are not last, the situation can arise where the attachment is processed successfully (and
the file system is physically updated). Then a subsequent integration component causes a failure
(for example, an attempt to insert to the database causes a duplicate error). In this case, the
database transaction is rolled back, but the file system is not restored.

8 With the SourceObject Attachment integration component selected, expand the Integration
Component object, and then select the Integration Component Field object.

The Integration Components and Integration Component Fields lists appear.

9 Inactivate all integration component fields except the following:

■ SourceObject Attachment Id, for example, Accnt Attachment Id

■ SourceObjectFileExt, for example, AccntFileExt

■ SourceObjectFileName, for example, AccntFileName

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Siebel EAI and File Attachments ■ Using MIME Messages to Exchange Attachments

268

■ Comment

10 Select the SourceObject Attachment Id component field, and then verify that its Data Type
property is set to DTYPE_ATTACHMENT.

11 Deliver the workspace.

Creating Workflow Examples
Depending on whether you are preparing for an outbound or an inbound attachment exchange,
design different workflows as described in the following two procedures.

For more information on creating workflows, see Siebel Business Process Framework: Workflow
Guide.

Outbound Workflow
To process the attachment for an outbound request you must create a workflow to query the
database, convert the integration object and its attachments into a MIME hierarchy, and then create
a MIME document to send to the File Transport business service.

To create an outbound workflow
1 In Siebel Tools, select the Workflow Process object in the Object Explorer.

2 Right-click, then choose New Record.

3 Give the new workflow a name and associate it with a locked project.

4 Right-click, and then choose Edit Workflow Process.

The Workflow Process Designer appears.

5 Create a workflow consisting of Start, End, and four Business Services. Set up each Business
Service according to the task it must accomplish.

6 Define your process properties.

Set process properties when you need global properties for the entire workflow.

Name
Data
Type Default String

SiebelMessage Hierarchy Leave blank.

Error Message String Leave blank.

Error Code String Leave blank.

Object Id String Leave blank.

Process Instance Id String Leave blank.

Siebel Operation Object Id String Leave blank.

Siebel EAI and File Attachments ■ Using MIME Messages to Exchange Attachments

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

269

7 The first business service queries the Account information from the database using the EAI Siebel
Adapter business service with the Query method. This step requires the following input and
output arguments.

NOTE: For more information on using the EAI Siebel Adapter, see Chapter 6, “EAI Siebel Adapter
Business Service”.

8 The second business service in the workflow converts the Account integration object and its
attachments to a MIME hierarchy using the EAI MIME Hierarchy Converter business service with
the SiebelMessage to MIME Hierarchy method. This step requires the following input and output
arguments.

NOTE: For more information on the EAI MIME Hierarchy Converter, see “About the EAI MIME
Hierarchy Converter” on page 272.

MIMEHierarchy Hierarchy Leave blank.

SearchSpec String [Account.Name] = 'Sample
Account'

<Value> String Default output is binary.

Input
Argument Type Value Property Name

Property Data
Type

Output
Integration
Object Name

Literal Sample Account not applicable not applicable

SearchSpec Process Property not applicable SearchSpec String

Property Name Type Output Argument

SiebelMessage Output Argument Siebel Message

Input
Argument Type Property Name

Property Data
Type

Siebel Message Process Property SiebelMessage Hierarchy

Property Name Type Output Argument

MIMEHierarchy Output Argument MIME Hierarchy

Name
Data
Type Default String

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Siebel EAI and File Attachments ■ Using MIME Messages to Exchange Attachments

270

9 The third business service of the workflow converts the MIME hierarchy to a document to be sent
to File Transport business service. This step uses the EAI MIME Doc Converter business service
with the MIME Hierarchy To MIME Doc method. This step requires the following input and output
arguments.

NOTE: For more information on the EAI MIME Doc Converter, see “About the EAI MIME Doc
Converter” on page 274.

10 For the final step, set up the last business service of the workflow to write the information into
a file using the EAI File Transport business service with the Send method. This step requires the
following input arguments.

NOTE: For information on File Transport, see Transports and Interfaces: Siebel Enterprise
Application Integration.

Inbound Workflow Example
To process the attachment for an inbound request, you must create a workflow to read the content
from a file, convert the information into a Siebel Message, and send to the EAI Siebel Adapter to
update the database accordingly.

NOTE: When passing the process property value for a workflow from an external application (or
another business service) as the input property set, the corresponding property name in the input
property set must be same name as the process property and is case sensitive.

To create an inbound workflow
1 In Siebel Tools, select the Workflow Process object in the Object Explorer.

2 Right-click, and then choose New Record.

3 Give the new workflow a name and associate it with a locked project.

Input Argument Type Property Name Property Data Type

MIME Hierarchy Process Property MIMEHierarchy Hierarchy

Property Name Type Output Argument

<Value> Output Argument MIME Message

Input
Argument Type Value

Property
Name

Property
Data Type

Message Text Process Property not applicable <Value> String

File Name Literal c:\temp\account.txt not applicable not
applicable

Siebel EAI and File Attachments ■ Using MIME Messages to Exchange Attachments

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

271

4 Right-click, then choose Edit Workflow Process.

The Workflow Process Designer appears.

5 Create a workflow consisting of Start, End and four Business Services. Set up each Business
Service according to the task it must accomplish.

6 Define your process properties.

Set process properties when you need global properties for the entire workflow:

7 The first business service in the workflow reads the Account information from a file using the EAI
File Transport business service with Receive method. This step requires the following input and
output arguments.

NOTE: For information on File Transport, see Transports and Interfaces: Siebel Enterprise
Application Integration.

Name Data Type

SiebelMessage Hierarchy

Error Message String

Error Code String

Object Id String

Siebel Operation Object Id String

MIMEHierarchy Hierarchy

MIMEMsg Binary

Input Argument Type Value

File Name Literal c:\temp\account.txt

Property Name Type Output Argument

<Value> Output Argument Message Text

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Siebel EAI and File Attachments ■ About the EAI MIME Hierarchy Converter

272

8 The second business service of the workflow converts the Account information to a MIME
hierarchy using the EAI MIME Doc Converter business service with the MIME Doc to MIME
Hierarchy method. This step requires the following input and output arguments.

9 The third business service of the workflow converts the MIME hierarchy to a document, and sends
it to the EAI Siebel Adapter business service. This step uses the EAI MIME Hierarchy Converter
business service with the MIME Hierarchy to Siebel Message method. This step requires the
following input and output arguments.

10 The last step of the workflow writes the information into the database using the EAI Siebel
Adapter business service with the Insert or Update method. This step requires the following input
argument.

About the EAI MIME Hierarchy Converter
The EAI MIME Hierarchy Converter transforms the Siebel Message into a MIME (Multipurpose Internet
Mail Extensions) hierarchy for outbound integration. For inbound integration, it transforms the MIME
Hierarchy into a Siebel Message.

Input Argument Type Property Name Property Data Type

MIME Message Process Property <Value> Binary

Property Name Type Output Argument

MIMEHierarchy Output Argument MIME Hierarchy

Input Argument Type Property Name Property Data Type

MIME Hierarchy Process Property MIMEHierarchy Hierarchy

Property Name Type Output Argument

SiebelMessage Output Argument Siebel Message

Input Argument Type Property Name Property Data Type

Siebel Message Process Property SiebelMessage Hierarchy

Siebel EAI and File Attachments ■ About the EAI MIME Hierarchy Converter

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

273

Outbound Integration
The EAI MIME Hierarchy Converter transforms the input Siebel Message into a MIME Hierarchy.
Figure 54 illustrates the Siebel Message of a sample Account with attachments. This figure represents
both input and output to the MIME Hierarchy Converter.

The output of this process is illustrated in Figure 55.

The first child of a MIME Hierarchy is the XML format of the Sample Account Integration Object
instance found in the Siebel Message. The remaining two children are the corresponding children
found under Attachments. If there is no child of type Attachments in the Siebel Message, then the
output is just a MIME Hierarchy with a child of type Document. This document will contain the XML
format of the Sample Account integration object instance.

Figure 54. Sample Account with Attachments as Input to the MIME Hierarchy Converter

Figure 55. Output of a MIME Hierarchy Converter

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Siebel EAI and File Attachments ■ About the EAI MIME Doc Converter

274

Inbound Integration
The MIME Hierarchy Converter transforms a MIME Hierarchy input into a Siebel Message. For the
inbound process, the first child of the MIME Hierarchy has to be the XML format of the Integration
Object instance; otherwise, an error is generated. Figure 56 illustrates the incoming hierarchy.

The output of this process is illustrated in Figure 54 on page 273. The output for this process is the
same as the input.

About the EAI MIME Doc Converter
The MIME Doc Converter converts a MIME Hierarchy into a MIME Message and a MIME Message into
a MIME Hierarchy. A MIME Hierarchy consists of two different types of property sets, as shown in
Table 47.

Figure 56. Output of a MIME Hierarchy Converter

Table 47. Property Sets in a MIME Hierarchy

Property Description

MIME Hierarchy Mapping to a MIME multi-part

Document Mapping to MIME basic-part

Siebel EAI and File Attachments ■ About the EAI MIME Doc Converter

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

275

EAI MIME Doc Converter Properties
Table 48 illustrates some examples of how a MIME Message maps to a MIME Hierarchy.

Table 48. Examples of MIME Message and MIME Hierarchy

MIME Message MIME Hierarchy

MIME-Version: 1.0

Content-Type: application/xml

Content-Transfer-Encoding: 7bit

This is a test.

Type: Document

Value: This is a test

MIME-Version: 1.0

Content-Type: multipart/related; type="application/
xml"; boundary=--abc

----abc

Content-Type: application/xml

Content-Transfer-Encoding: 7bit

This is test2.

----abc--

Type: MIMEHierarchy

Type: Document

Value: This is a test2

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Siebel EAI and File Attachments ■ About the EAI MIME Doc Converter

276

The business service needs the following properties on the child property set as shown in Table 49.
These properties reflect the most accurate information on the data contained in the child property
set.

Table 49. Properties for EAI MIME Doc Converter

Property Possible Values Type Description

ContentId Any value Document No Default. The ContentId is the value
used to identify the file attachment when
the receiver parses the MIME message.
When importing attachments, use a
unique value for this property and not
repeat it for the rest of the file
attachments. This is required in the actual
document. This property is automatically
populated when you are exporting an
attachment from a Siebel application.

Extension txt, java, c, C, cc,
CC, h, hxx, bat, rc,
ini, cmd, awk, html,
sh, ksh, pl, DIC,
EXC, LOG, SCP, WT,
mk, htm, xml, pdf,
AIF, AIFC, AIFF, AU,
SND, WAV. gif, jpg,
jpeg, tif, XBM, avi,
mpeg, ps, EPS, tar,
zip, js, doc, nsc,
ARC, ARJ, B64, BHX,
GZ, HQX

Document No Default. If ContentType and
ContentSubType are not defined, then
Extension is used to retrieve the
appropriate values from this property. If
all three values are specified, then
ContentType and ContentSubType values
override the values retrieved from the
Extension. If either the Extension or both
ContentType and ContentSubType are not
specified, then ContentType will be set to
application and ContentSubType will have
the value of octet-stream.

Siebel EAI and File Attachments ■ About the EAI MIME Doc Converter

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

277

NOTE: On the inbound direction, the business service is independent of the transport. It assumes
that the input property set contains the MIME message, and writes a property set representation of
the MIME message. A property set is used to represent each part of the MIME message. When
decoding the MIME message, the business service automatically sets the properties based on the
values in the MIME message.

ContentType application, audio,
image, text, video

Document Default is application. The ContentType
value has to be specified if you want to set
the content type of the document instead
of using the extension to get a value from
the MIME utility function. If the value is
not provided, then the default value is
used. The ContentType of multipart is
used to represent file attachments in a
MIME message. Other values to describe
a multipart message are not supported.

ContentSubType plain, richtext, html,
xml (used with
ContentType of Text)

octet-stream, pdf,
postscript, x-tar, zip,
x-javascript,
msword, x-
conference, x-gzip
(used with
ContentType of
application)

aiff, basic, wav (used
with ContentType of
audio)

gif, jpeg, tiff, x-
xbitmap (used with
ContentType of
image)

avi, mpeg (used with
ContentType of
video)

Document Default is octet-stream. The
ContentSubType value has to be specified
if you want to set the content subtype of
the document instead of using the
extension to get a value from the MIME
utility function. If the value is not
provided, then the default value is used.

NOTE: Octet-stream is transparent and
uses nonencoded 8-bit bytes. The MIME
message will contain the binary file data
as is, which might cause issues in data
transmission over networks that remove
bit number 8 (the hi-bit) for special
needs.

Table 49. Properties for EAI MIME Doc Converter

Property Possible Values Type Description

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Siebel EAI and File Attachments ■ Using Inline XML to Exchange Attachments

278

Using Inline XML to Exchange
Attachments
To exchange attachments between applications, you use the EAI Siebel Adapter business service:

■ To send a message to an external application, call the EAI Siebel Adapter with an integration
object that has an integration component from an attachment business component. The EAI
Siebel Adapter generates the integration object hierarchy and then converts it to an XML
document. The attachment is included in the XML in the SourceObjectFileBuffer element.

■ To insert an attachment into a Siebel Business Application, the external application uses the
same integration object hierarchy, making sure the required fields are present, and puts the
base64 string corresponding to the attachment into this message. The XML converter converts
the message into an integration object hierarchy, and the EAI Siebel Adapter inserts the
attachment.

NOTE: Attachments must be in base64 format.

Perform the following tasks to create and test inline XML attachments using an integration object and
a workflow:

■ Creating an attachment integration object using the EAI Siebel Wizard business service

For information, see “Creating an Attachment Integration Object” on page 266.

CAUTION: To avoid SQL errors, you must inactivate all integration component fields in the
integration object except those in Step 9 on page 267.

■ “Creating an Attachment” on page 278

■ “Creating a Test Workflow” on page 279

■ Testing your workflow using the Workflow Simulator

For information, see Business Processes and Rules: Siebel Enterprise Application Integration.

Creating an Attachment
You create an attachment to a record in the Siebel client whose row ID you know.

To create the attachment
1 In the Siebel client, navigate to a record that can take an attachment, for example, an account.

2 Choose Help, then About Record from the application-level menu to obtain the row ID of the
record.

3 Drill down on the record, then select the Attachments tab.

4 Add an attachment to the record if none exists.

Siebel EAI and File Attachments ■ Using Inline XML to Exchange Attachments

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

279

Creating a Test Workflow
You create a workflow in Siebel Tools to do the following:

■ Query the Siebel database for the record with the attachment.

■ Convert the integration object and its attachment into a Siebel Message.

■ Read an external XML file (containing an attachment) and convert it into a Siebel Message.

NOTE: The XML file must use the exact integration object hierarchy as the attachment
integration object you created.

■ Insert the record into the Siebel database.

To create a test workflow to exchange attachments
1 Create the following workflow:

2 Define the process properties as shown in the following table.

Name
Data
Type

Error Code String

Error Message String

Object Id String

Process Instance Id String

Siebel Operation Object Id String

SiebelMessage Hierarchy

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Siebel EAI and File Attachments ■ Using Inline XML to Exchange Attachments

280

3 The first business service step queries the database using the EAI Siebel Adapter business
service with the Query method. This step requires the following input and output arguments:

4 The second business service step writes the integration object hierarchy to an XML file using the
EAI XML Write to File business service with the WriteEAIMsg method. This step requires the
following input arguments:

5 The third business service step reads an XML hierarchy and converts it into a Siebel Message
using the EAI XML Read From File business service with the ReadEAIMsg method. This step
requires the following input and output arguments:

6 The fourth business service step reads the Siebel Message and inserts the record into the Siebel
database using the EAI Siebel Adapter business service with the Insert method. This step
requires the following input argument:

Input Argument Type Value

OutputIntObjectName Literal Attachment integration object you created, for example,
Account Attachment

PrimaryRowId Literal Row ID of the record to which you added an attachment

Property Name Type Output Argument

SiebelMessage Output Argument SiebelMessage

Input Argument Type Value

FileName Literal File to write, for example,
d:\temp\AttachmentTest_write.xml

SiebelMessage Process Property SiebelMessage

Input Argument Type Value

FileName Literal File to read, for example, d:\temp\AttachmentTest_read.xml

NOTE: For testing purposes, you can use a modified form of the
file written in the second business step, which will automatically
have the correct hierarchy.

Property Name Type Output Argument

SiebelMessage Output Argument SiebelMessage

Input Argument Type Value

SiebelMessage Process Property SiebelMessage

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

281

10 External Business Components

The external business component feature provides a way to access data that resides in a non-Siebel
table or view, using a Siebel business component.

This chapter consists of the following topics:

■ Process of Configuring External Business Components on page 282

■ Using Specialized Business Component Methods for EBCs on page 294

■ Usage and Restrictions for External Business Components on page 295

■ About Using External Business Components with the Siebel Web Clients on page 296

■ About Overriding Connection Pooling Parameters for the Data Source on page 296

■ About Joins to Tables in External Data Sources on page 296

■ About Distributed Joins on page 298

■ Troubleshooting External Business Components on page 299

Before continuing with configuring and implementing external business components (EBCs), review
the following books on the Siebel Bookshelf:

■ Configuring Siebel Business Applications

■ Siebel Developer’s Reference

■ Siebel Tools Online Help

■ Using Siebel Tools

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

External Business Components ■ Process of Configuring External Business Components

282

Process of Configuring External
Business Components
Before proceeding, review “Configuring the External Business Component” on page 290. To configure
EBCs, you perform the following high-level tasks:

1 “Creating the External Table Definition” on page 283.

Import the external table definition into Siebel Tools using the External Table Schema Import
Wizard.

This wizard creates a new Table object definition in the Siebel Repository, based upon the
contents of a DDL (data definition language) file, or from an Open Database Connectivity (ODBC)
data source.

2 “Mapping External Columns to Siebel CRM System Fields” on page 288.

Map columns in the external table or view to Siebel CRM system fields.

NOTE: One column in the external table or view must be mapped to the Id system field by setting
the System Field Mapping property for the column.

3 “Specifying the Data Source Object” on page 289.

Configure the table definition and specify the data source object.

The Data Source object is a child object of the Table Object in Siebel Tools and will have to be
exposed in the Object Explorer if not already visible. For information on exposing objects in the
Object Explorer of Siebel Tools, see Using Siebel Tools.

This object tells the object manager which data source to use to access the object.

4 “Specifying Any Optional Table Properties” on page 289.

When the table is imported, specify additional table properties for the corresponding external
table.

5 “Configuring the External Business Component” on page 290.

Configure the EBC and specify the data source object. This data source name will be the same
as that specified for the Table object.

6 “Specifying Run-Time Parameters” on page 290.

After the data source definition is named in Siebel Tools, specify the run-time parameters by
completing the following:

■ Configure the data source definition.

■ Update the server component definition.

External Business Components ■ Process of Configuring External Business Components

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

283

Creating the External Table Definition
You use Siebel Tools and the External Table Schema Import Wizard to import your external table
definition into the Siebel Repository.

You can create the table definition in one of two ways:

■ “Creating the External Table Definition from a DDL File” on page 283

■ “Creating the External Table Definition from an ODBC Data Source” on page 284

For more information about using Siebel Tools, see Using Siebel Tools.

This task is a step in “Process of Configuring External Business Components” on page 282.

Creating the External Table Definition from a DDL File
You can use the External Table Schema Import Wizard to create the table definition from a data
definition language (DDL) file.

It is possible to import an external view definition rather than a table definition. When a view rather
than a table definition is imported, it is necessary to amend the Type property of the created Table
definition to reflect External View.

NOTE: You can import a database view definition as well as a table definition here. While no
difference exists in the resulting Siebel Table object, if it references an external database view, only
read access from the Siebel Application is supported.

To create the external table definition from a DDL file
1 In Siebel Tools, check out and lock the appropriate project.

2 From the File menu, choose New Object to display the New Object Wizards dialog box.

3 Click the General tab, then double-click External Table Schema Import.

4 In the External Table Schema Import Wizard, specify the following values, then click Next:

a Choose the project with which the new Table object definition will be associated.

b Specify DDL/Analytics as the schema source type.

c Choose the three-digit group code for table name generation. For example, if you choose AXA,
then the format of the table names generated will be:

EX_AXA_00000001

5 In the Import External Schema - DDL dialog box, specify the following, then click Next:

a Specify the database where the external table resides. The value specified must correspond to
the database used by the Siebel schema, for example, Oracle Server Enterprise Edition.

b Provide the full path for the location of the SQL/DDL file that contains the external table
definition.

6 Confirm the entries, then click Finish to import the DDL file.

A Table object definition is added to the Siebel Repository, corresponding to the external table.

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

External Business Components ■ Process of Configuring External Business Components

284

7 Repeat Step 2 through Step 6 for every external table definition you want to import.

Creating the External Table Definition from an ODBC Data Source
You can use the External Table Schema Import Wizard to create the table definition from an Open
Database Connectivity (ODBC) data source.

To create the external table definition from an ODBC data source
1 In Siebel Tools, check out and lock the appropriate project.

2 From the File menu, choose New Object to display the New Object Wizards dialog box.

3 Click the General tab, then double-click External Table Schema Import.

4 In the External Table Schema Import Wizard, specify the following values, then click Next:

a Choose the project with which the new Table object definition will be associated.

b Specify ODBC as the schema source type.

c Choose the three-digit group code for table name generation. For example, if you choose AXA,
then the format of the table names generated will be:

EX_AXA_00000001

5 In the next dialog box, click Select Data Source.

The Select Data Source dialog box appears.

6 Click the Machine Data Source tab, select the appropriate data source name, and then click OK.

7 In the Connect to Database Type dialog box, on the Login tab enter the database user ID and
password, then click OK.

8 Enter the table owner for the data source, then click Next.

9 Select the tables to import, then click Next.

10 Confirm the entries, then click Finish.

A Table object definition is added to the Siebel Repository for each external table selected.

About Data Type Mappings for Importing Table Definitions
When importing table definitions, certain data type mappings are supported for use with the Siebel
application. Table 50 contains the data type mappings you can use when importing table definitions.

Table 50. Supported Data Type Mappings by Product

Supported Data Type Siebel Data Type

Microsoft SQL Server Data Types

int Numeric with scale of 0

bigint Numeric with scale of 0

External Business Components ■ Process of Configuring External Business Components

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

285

smallint Numeric with scale of 0

tinyint Numeric with scale of 0

float Numeric

real Numeric

decimal Numeric

money Numeric

smallmoney Numeric

bit Numeric with a value of 0 or 1

char Character

nchar Character

varchar Varchar

nvarchar Varchar

text Long

ntext Long

datetime Date Time

smalldatetime Date Time

IBM DB2 UDB Data Types

UINT Numeric with scale of 0

BIGUINT Numeric with scale of 0

SMALLUINT Numeric with scale of 0

FLOAT Numeric

REAL Numeric

DECIMAL Numeric

NUMERIC Numeric

CHAR Character

VARGRAPHIC Varchar

LONG VARGRAPHIC Long

CLOB CLOB

DATE Datetime

TIME Datetime

TIMESTAMP Datetime

Table 50. Supported Data Type Mappings by Product

Supported Data Type Siebel Data Type

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

External Business Components ■ Process of Configuring External Business Components

286

Oracle Database Data Types

Number Numeric

TIMESTAMP WITH TIME
ZONE

Numeric

TIMESTAMP WITH LOCAL
TIME ZONE

Numeric

Char Character

Nchar Character

varchar2 Varchar

nvarchar2 Varchar

Long Long

CLOB CLOB

date Datetime

Oracle Business Intelligence (BI) Server Data Types

Integer Numeric with scale of 0

Smallint Numeric with scale of 0

Tinyint Numeric with scale of 0

Float Numeric

Double Numeric

Bit Character (1)

Boolean Character (1)

Char Character

Varchar Varchar

Longvarchar Long

Datetime Datetime

Date Datetime

Time Datetime

Table 50. Supported Data Type Mappings by Product

Supported Data Type Siebel Data Type

External Business Components ■ Process of Configuring External Business Components

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

287

Table 51 contains the data types that are not supported for importing table definitions.

About the New Imported Table Definition
After the table definition is imported using the External Table Schema Import Wizard, the external
table and the external column names are generated.

Table 51. Unsupported Data Type Mappings by Product

Database Unsupported Data Types

Microsoft SQL Server timestamp

varbinary

binary

image

cursor

uniqueidentifier

IBM DB2 UDB DBCLOB

BLOB

Oracle Database TIMESTAMP

NCLOB

BLOB

BFILE

ROWID

UROWID

RAW

LONG RAW

INTERVAL YEAR TO MONTH

INTERVAL DAY TO SECOND

Oracle BI Server Timestamp

Varbinary

Longvarbinary

Binary

Object

Unknown

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

External Business Components ■ Process of Configuring External Business Components

288

The external table name is stored in the Table object’s Alias property. This external table name
consists of the following:

■ An EX prefix (for external table)

■ A three-digit batch code specified in the External Table Schema Import Wizard

■ An automatically generated seven-digit number

An example of the Table name is EX_ABC_0000001.

The external column name is stored in the Column child object’s Alias property. An X is added as the
prefix and a four-digit number is added as the suffix for the external column name, for example,
X_ABC_0000001_0001.

The Table object’s Type property is set to External or External View (if a view was imported). This
column denotes that the table resides outside of the Siebel database.

Mapping External Columns to Siebel CRM System Fields
This task is a step in “Process of Configuring External Business Components” on page 282.

When the EBC is defined, you must map the Siebel CRM system fields to the corresponding external
table column. System field mapping is accomplished at the column level, rather than using business
component user properties. Specify the System Field Mapping column attribute if you want to map
a Siebel system field to a column.

NOTE: At a minimum, the Id field must be mapped to a unique column defined in the external table
and in the Table object definition, which is specified in the business component’s Table property.

By default, the Siebel CRM system fields are not included in the generated SQL for external tables.

System Field Mapping is used to specify the mapping between table columns and Siebel CRM system
fields. The following is a list of the system fields that can be mapped to external table columns:

■ Conflict Id. (Optional).

■ Created. (Optional) Datetime corresponding to when the record was created.

■ Created By. (Optional) String containing the user name of the person and the system that
created the records.

■ Extension Parent Id. (Optional).

■ Mod Id. (Optional).

■ Non-system. (Optional).

■ Updated. (Optional) Datetime corresponding to when the record was last updated.

■ Updated By. (Optional) String containing the user name of the person and system that last
updated the record.

■ Id. Mandatory. The single column unique identifier of the record. A column in the external table
must be mapped to the Id field.

NOTE: The System Field Mapping property must be used in conjunction with external tables only.

External Business Components ■ Process of Configuring External Business Components

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

289

Specifying the Data Source Object
This task is a step in “Process of Configuring External Business Components” on page 282.

When the external table has been defined, specify the data source for the corresponding external
table. The Data Source child object of the Table object specifies the data source for the corresponding
external table:

■ The Data Source child object corresponds to a data source defined in the application
configuration file (.cfg) or in the Application - Server Configuration screen, Profile Configuration
view.

■ The Data Source child object instructs the Application Object Manager to use the data source for
a specific table. If a Data Source child object is not specified, then the default data source for
the application will be used.

NOTE: The Data Source child object is specified for external tables only.

For more information about the Data Source child object, see Siebel Tools Online Help.

Specifying Any Optional Table Properties
When the table is imported, you can specify additional table properties for the corresponding
external table:

■ External API Write. Allows you to perform reads directly from the database and have write
operations processed by way of a script.

A Boolean property is used to indicate whether or not inserts, updates, or deletes to external
tables will be handled by an external API. If this property is set to TRUE, then add scripts to the
BusComp_PreWriteRecord and BusComp_PreDeleteRecord events to publish the insert, update,
or delete operation to an external API.

■ Key Generation Business Service. Allows a business service to generate a primary key (Id
field) for a business component. If this is not specified, then the Siebel application will generate
a row_id value for the column that corresponds to the Id system field.

■ Key Generation Service Method. Allows a business service method to be called when
generating a primary key for a business component.

This method returns a property with the name set to the external table's key column name, and
the value set to the generated key:

Outputs.SetProperty(<my_external_key_column_name>, <generated_key>);

For more information about these table properties, see Siebel Tools Online Help.

This task is a step in “Process of Configuring External Business Components” on page 282.

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

External Business Components ■ Process of Configuring External Business Components

290

Configuring the External Business Component
When a Table object definition corresponding to the external table exists in the repository, you can
configure a business component to use the new Table object definition.

In general, configuring an EBC is similar to configuring a standard business component with the
following exceptions:

■ Data Source business component property. Specify the Data Source business component
property. Set the value for this property to the name of the corresponding Table Data Source.

■ Log Changes property. Set the Log Changes property to False (unchecked). This will prevent
Siebel Remote or Replication transactions from being created. (The default is true.)

■ Intersection table. When configuring a many-to-many relationship, the intersection table
resides in the same database instance as the child table.

■ CSSBusComp class. It is recommended that all EBCs use the CSSBusComp class.

NOTE: Substituting a Siebel-provided table with an external table can result in significant
downstream configuration work, and in some cases can restrict or prevent the use of standard
functionality provided for the Siebel Business Applications.

This task is a step in “Process of Configuring External Business Components” on page 282.

Specifying Run-Time Parameters
After the data source definition is named in Siebel Tools, you specify the run-time parameters by
configuring the data source definition, and updating the server component definition.

If you are testing by using the Siebel Developer Web Client, then add a [DataSource] section to the
client .cfg file.

This task is a step in “Process of Configuring External Business Components” on page 282.

Configuring the Data Source Definition
As part of specifying the run-time parameters, configure the data source definition.

To configure the data source definition
1 Navigate to the Administration - Server Configuration screen, Enterprises view, then Profile

Configuration.

2 Copy an existing InfraDatasources named subsystem type.

3 Change the Profile and Alias properties to the Data Source name configured in Siebel Tools.

4 Update the profile parameters to correspond to the external RDBMS:

■ DSConnectString = data source connect string

❏ For Microsoft SQL Server or IBM DB2, create an ODBC or equivalent connection and input
the name of this in the parameter.

External Business Components ■ Process of Configuring External Business Components

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

291

❏ For Oracle Database, this value must specify the TNS name associated with the database
and not an ODBC or other entry.

■ DSSQLStyle = database SQL type

See Table 52 on page 293 for a listing of the supported SQL types.

■ DSDLLName = DLL or library name corresponding to the SQL type

See Table 52 on page 293 for a listing of the supported connector Dynamic Link Library (DLL,
Windows) or library (shared object, UNIX) names and SQL styles.

■ DSTableOwner = data source table owner

■ DSUsername = default username used for connections (Optional)

■ DSPassword = default password used for connections (Optional)

NOTE: The DSUsername and the DSPassword parameters are optional. However, to avoid
receiving a login prompt when accessing the external data source, specify DSUsername and
DSPassword. If specified, they will override the default username and password.

The DSUsername and the DSPassword parameters are activated only when using the Database
Security Adapter. For more information, see “Configuring a User in LDAP or ADSI Security Adapter To
Access EBCs” on page 291.

Configuring a User in LDAP or ADSI Security Adapter To Access EBCs
You do not typically use Lightweight Directory Access Protocol (LDAP) or Microsoft Active Directory
Service Interfaces (ADSI) to retrieve the database username and password to be used for the EBC.
Instead, you specify a common DSUsername and DSPassword as described in “Configuring the Data
Source Definition” on page 290.

NOTE: You do not need to configure LDAP or ADSI authentication unless you need different database
users for the EBC (more than one for all users), for example, to have all call center users access the
EBC data source with a specific database user, or to be able to set a specific database user for one
or more Siebel login IDs.

When LDAP or ADSI authentication is used, the username and password values for the external data
source are provided in the ADSI SharedCredentialsDN parameter and the CredentialAttributeType
attribute.

NOTE: The CredentialAttributeType attribute must be able to hold multiple values, for example,
url. It cannot be single-value, such as mail.

For example, the name of your external data source is MyExtDataSrc, and your ADSI is configured
with the following parameters:

SharedCredentialsDN= cn=sharedcred,ou=people,dc=siebel,dc=com

CredentialAttributeType = url

In your ADSI server modify the url attribute for the following entry:

cn=sharedcred,ou=people,dc=siebel,dc=com

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

External Business Components ■ Process of Configuring External Business Components

292

Before modifying, one value must already exist (assuming sadmin and db2 are the user name and
password for the ServerDataSrc data source, which is the primary data source):

type=ServerDataSrc username=sadmin password=db2

Add additional values to the url attribute (assuming mmay and mmay are the user name and password
for the MyExtDataSrc data source, which is the external data source):

type=MyExtDataSrc username=mmay password=mmay

After adding the new value for the external data source to the url attribute, you are able to access
EBCs.

Configuring the Data Source Definition for the Siebel Developer Web
Client
If testing using the Siebel Developer Web Client, then add a [DataSource] section to the client .cfg
file for the data source definition named in Siebel Tools. In this example, WindyCity is the data source
being added.

To configure the data source definition in the Siebel Developer Web Client
1 Add the data source definition named in Siebel Tools. In this example, the data source definition

named is WindyCity:

[DataSources]

Local = Local

Sample = Sample

ServerDataSrc = Server

GatewayDataSrc = Gateway

WindyCity = WindyCity

2 In the data source section of the application’s .cfg file, add the following parameters (for the
supported SQL types and connector DLL names, see Table 52 on page 293):

[WindyCity]

Docked = TRUE

ConnectString = data source connect string

SqlStyle = database SQL type

TableOwner = data source table owner

DLL = DLL Name corresponding to the SQL type

DSUsername = user id (Optional)

DSPassword = password (Optional)

External Business Components ■ Process of Configuring External Business Components

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

293

Supported Connector Names and SQL Styles
When defining the DLL (Windows) or library (UNIX) and SQL files for importing the external schema,
the external database being used might not be the same as the Siebel database. Table 52 contains
the supported connector DLL and library names and their corresponding SQL styles. The extension
for the DLL or library name is optional.

Updating the Server Component to Use the New Data Source
As part of specifying the run-time parameters, update the server component to use the new data
source.

To update the server component to use the new data source
1 Navigate to the Administration - Server Configuration screen, Enterprises view, then Component

Definitions.

2 In the Component Definitions list applet, select your Application Object Manager Component. For
example, select the Call Center Object Manager (ENU).

3 Choose Start Reconfiguration from the Menu drop-down list on the Component Definitions list
applet.

The Definition State of the component will be set to Reconfiguring. Reselect your application
component after selecting the Start Reconfiguring menu item.

4 In the Component Parameters list applet, query for OM - Named Data Source name, and update
the Value by adding the alias name of the data source specified in “Specifying Run-Time
Parameters” on page 290.

The format of the OM - Named Data Source name parameter is a comma-delimited list of data
source aliases. It is recommended that you do not modify the default values, and that you add
their new data sources to the preexisting list.

5 After the parameter values are reconfigured, commit the new configuration by selecting Commit
Reconfiguration from the Menu drop-down list on the Component Definitions list applet.

The new parameter values are merged at the enterprise level.

To cancel the reconfiguration before it has been committed, select Cancel Reconfiguration from
the Menu drop-down list on the Component Definitions list applet.

Table 52. Supported Connector DLL and Library Names and SQL Styles

External Database
DLL Name
(Windows)

Library Name
(UNIX) SQL Style

IBM DB2 sscddcli.dll sscddcli.so DB2

Microsoft SQL Server sscdms80.dll Not supported MSSqlServer

Oracle Database sscdo90.dll sscdo90.so OracleCBO

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

External Business Components ■ Using Specialized Business Component Methods for
EBCs

294

Using Specialized Business Component
Methods for EBCs
The following are the specialized business component methods that are supported for use with EBCs:

■ IsNewRecordPending

■ GetOldFieldValue

■ SetRequeryOnWriteFlag (PreWriteRecord event)

■ SetRequeryOnWriteFlag (WriteRecord event)

IsNewRecordPending Business Component Method
This method can be called by using a script in the PreWriteRecord event to determine if the current
record is newly created. If the record is a new record, then this method returns the value TRUE.

An example script for the use of this method follows:

var isNewRecord = this.InvokeMethod("IsNewRecordPending");

GetOldFieldValue Business Component Method
This method can be called by using a script in the PreWriteRecord event to retrieve an old field value
if needed. This method takes an input parameter, which must be a valid field name, and returns a
string containing the old field value.

An example script for the use of this method follows:

var oldLoc = this.InvokeMethod("GetOldFieldValue", "Location");

SetRequeryOnWriteFlag (PreWriteRecord event) Business
Component Method
In the PreWriteRecord event, this method can be used to put the business component into a mode
where the current record refreshes from the data source after the write operation. EBCs typically use
this method to refresh database sequencing column values on new record operations. This method
takes an input parameter of TRUE or FALSE.

An example script for the use of this method follows:

var requery = this.InvokeMethod("SetRequeryOnWriteFlag", "TRUE");

SetRequeryOnWriteFlag (WriteRecord event) Business Component
Method
In the WriteRecord event, this method informs the object manager that the write operation to the
data source is processed by using a script rather than a database connector. At the end of the
operation, the business component method, SetRequeryOnWriteFlag, can be called again with the
FALSE parameter to reset the requery on write mode, if needed.

An example script for the use of this method follows:

External Business Components ■ Usage and Restrictions for External Business
Components

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

295

var extWrite = this.InvokeMethod("SetRequeryOnWriteFlag", "TRUE");
// insert script here to commit the record via an mechanism channel
var resetWrite = this.InvokeMethod("SetRequeryOnWriteFlag", "FALSE");

Usage and Restrictions for External
Business Components
The following usage guidelines and restrictions apply to EBCs:

■ Creating and populating the external table is the responsibility of the customer. Consult your
database administrator for the appropriate method to use.

■ EBCs cannot be docked, so they do not apply to mobile users on the Siebel Mobile Web Client.
Siebel Remote is not supported.

■ EBCs support many-to-many relationships with the limitation that for such relationships the
intersection table must be from the same data source as the child business component.

■ EBCs cannot be loaded using the Enterprise Integration Manager.

■ EBCs rely on the Business Object Layer of the Siebel Architecture. Therefore, EBCs are used only
in Siebel Server components using this layer such as the Application Object Manager (for
example, the Call Center Object Manager), Workflow Process Manager, and so on. EBCs are not
used on components not using this layer, such as Workflow Policies (the Workflow Monitor agent)
and Assignment Manager.

■ The Id field must be mapped to an underlying column in the external table to support insert,
update, delete, and query operations.

■ Using the Oracle Sequence Object to populate the Id system field is not supported. The value of
the Id system field has to be known by the object manager at the record commit time, while the
Oracle Sequence Object value is populated by the database server when the change is being
processed inside the database.

■ If the column that was mapped to the Id system field has Primary Key checked, then row ID
values are generated by the object manager. Otherwise, a user-entered row ID value is assumed,
and the object manager does not generate a row ID value for it.

However, in either configuration, the Primary Key column must not use the Oracle Sequence
Object.

■ EBCs with non-English data require the Siebel S_APP_VER and S_SYS_PREF tables to be present
in the external database.

Siebel Business Applications use the UNICD_DATATYPS_FLG column of the S_APP_VER table to
indicate whether the database is a Unicode database. A value of 8 means UTF-8, and Y means
UTF-16. For Non-Unicode databases, the Enterprise DB Server Code Page system preference is
also required to have the correct setting.

For help with creating and populating these tables, contact your Oracle sales representative for
Oracle Advanced Customer Services to request assistance from Oracle’s Application Expert
Services.

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

External Business Components ■ About Using External Business Components with the
Siebel Web Clients

296

■ For EBCs that contain multivalue groups, if a primary join is enabled, then both the parent and
the child business components must be from the same data source. Multivalue groups are also
supported as long as such configuration does not require that a distributed join or a subquery be
performed.

■ Siebel visibility control (for example, ViewMode) is not supported for EBCs.

■ An external join alias must have the same name as the name used for the external table.

■ EBCs based on Database views can be used for queries only; updates are not supported.

■ For EBCs that have a parent-child relationship, their related external tables must not have a
foreign key constraint set between them on the external database. If they do have a foreign key
constraint, then Copy and Deep Copy functionality will not work.

NOTE: Significant configuration effort and changes might be required if you choose to reconfigure a
standard Siebel business component on an external table. For example, existing join and link
definitions are unlikely to function, because the source fields and underlying columns might not exist
in the external table.

About Using External Business
Components with the Siebel Web Clients
If EBCs are used with the Siebel Web or Mobile Web Clients, then new data sources corresponding
to the data sources specified for the external tables must be added to the specific Siebel application
configuration file. If the user name and password for the external data source are different from the
current data source, then a log-in window appears to initiate logging into the external data source.

About Overriding Connection Pooling
Parameters for the Data Source
Overriding the connection pooling parameters for the data source is supported. If connection pooling
is enabled for the component but not for the data source, then set to zero (0) the following:

■ DB Multiplex - Max Number of Shared DB Connections (DSMaxSharedDbConns)

■ DB Multiplex - Min Number of Shared DB Connections (DSMinSharedDbConns)

■ DB Multiplex - Min Number of Dedicated DB Connections (DSMinTrxDbConns) parameters for the
data source

About Joins to Tables in External Data
Sources
Joins from business components, based on the default data source to a table in an external data
source, are supported in the Siebel application.

Like other joined fields, the fields based on the join to the EBC are read-only.

External Business Components ■ About Joins to Tables in External Data Sources

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

297

The limitations for joining business components to tables in an external data source are as follows:

■ The source field for the join must be based on a table in the default data source.

■ The destination column of the join must be the column mapped to System Field Id.

■ Multiple single join specifications are not supported for the join to the external table.

■ Reverse navigation (for example, a call to go to the last record) is not supported when fields from
multiple data sources are active.

Join Constraints are supported. Joins to more than one external table might be specified. However,
increasing the number of external joined data sources can cause degradation in performance.

Searching and Sorting on Fields Joined to External Tables
Fields based on a join to an external table can be searched and sorted. However, limitations do exist.
The limitations for searching and sorting on fields joined to an external table follow:

■ All fields in the sort specification must either be based on columns in the same external table, or
be based on columns in the default data source.

■ Named search specifications cannot be set on fields from an external data source.

For information on named search specifications, see the topic on the SetNamedSearch method
in Siebel Object Interfaces Reference.

Performance tests are recommended if searching and sorting are permitted on fields based on joins
to the external tables. The Siebel application does not have information on the data shape in the
external tables. The Siebel application follows a rule-based approach to decide the order in which to
query the external tables.

For example, consider the case where there are search and sort specifications on the fields in the
Siebel Data Source but none on the fields from the external data source. The Siebel application
decides to query the Siebel tables first. Only the rows matching the query specification in the current
workset are retrieved from the external data source. As more rows are retrieved from the tables in
the Siebel Data Source, the rows from the external data source are also retrieved.

The rules become complex when Search and Sort Specifications are applied to multiple data sources.
The rules followed are based on the following requirements:

1 Retrieving the first few rows quickly

2 Shipping the least amount of data between the Siebel and external data sources

3 Eliminating a sort step

Step 2 and Step 3 might produce competing results. In that case, Step 2 takes precedence.

If, as result of the search and sort specifications in effect, then the external table on which the Sort
is based is not the driving table, the Siebel application raises an error if more than 1000 rows are
retrieved. Refine the query specification in the event of this error.

Directives specified using the Business Component User property External DataSource Field Priority
On Search to allow hinting of the order in which the tables in the data sources will be queried are
supported. These directives can be applied based on a knowledge of the data shape in the Siebel and
external tables.

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

External Business Components ■ About Distributed Joins

298

For example, using the following property values:

A query on Field A is likely to be selective. If there is a search specification on Field A, then the table
that field A is based on is considered the driving table.

A query on Field B is likely to be selective. If there is a search specification on Field B and none on
Field A, then the table that field B is based on is considered the driving table.

About Distributed Joins
Just as join objects can be configured in Siebel Tools and represent a 1:1 relationship between tables
resident within the Siebel data model, join objects can be configured to represent a 1:1 relationship
with tables external to the Siebel database. A distributed join is a 1:1 relationship between tables
that spans two relational data sources. This allows a single, logical record to span multiple data
sources. In using distributed joins, the join fields are read-only, and the join specification can consist
only of a single field. This federated field support provides the ability for the Object Manager to
perform the cross-database join.

Distributed joins are configured the same as standard joins. The query is distributed when the Data
Source child object of the table provides a hint to the Object Manager (OM) to federate the query.

Configuring Distributed Joins and Federated Fields
To configure distributed joins, you perform the following high-level tasks:

■ Implement the external data source (similar to what was done for EBCs).

■ The Datasource child object of the Table provides a hint to the object manager to federate the
query.

■ Create the Join.

■ Add the fields to the business component.

To configure distributed joins and federated fields
1 Create the Join point to your external table.

2 Create the Join Specification.

This is similar to what you do when creating a standard Siebel join.

3 Add Field to Business Component.

Add the fields from the external table to the business component using the join specified.

Property Value

External DataSource Field Priority On Search: FieldA 1

External DataSource Field Priority On Search: FieldB 2

External Business Components ■ Troubleshooting External Business Components

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

299

Usage and Restrictions for Distributed Joins
The following usage guidelines and restrictions apply to distributed joins:

■ The source field for the distributed join must be based on a table in the business component’s
data source.

■ The destination column of the distributed join must be a column mapped to the Id System Field.

■ Multiple join specifications are not supported for a distributed join. However, join constraints are
supported.

■ Inner join is not supported for a distributed join.

■ Reverse navigation (for example, a call to go to the last record) is not supported when the fields
from multiple data sources are active.

■ All fields in the sort specification must be from the same data source.

■ All fields in the named search specifications must be from the default data source.

Troubleshooting External Business
Components
As you create EBCs, it is recommended that you consider the following steps:

1 Configure EBCs for read and make sure that the data is displayed correctly in the application.

If the development team feels that some fields require script in order to display correctly then
defer the implementation of these fields until testing is complete for a simple read.

2 Add any data transformation script or configuration required in order to provide read access to
the more complex fields for display.

3 Configure EBCs for update and make sure that the data is stored correctly in the external
database(s) and displayed correctly in the Siebel application.

Do not add any validation logic to the EBC at this time.

4 Once testing of data update is complete, establish any data transformation configuration or script
required to update the fields.

Make sure that the configuration uses script, which is preferred. However, it is recommended that
any data transformation scripts be written on the Pre event.

Data manipulation configuration and scripts must be attached to Post events.

As part of the troubleshooting process associated with EBCs, increasing the tracing level for a
number of component events is suggested.

To increase the tracing level of component events
1 Navigate to the Administration - Server Configuration screen, Servers view, Components, Events,

and then select the object manager being used.

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

External Business Components ■ Troubleshooting External Business Components

300

2 Change the Log Level for the following Event Types to a higher value (the default is 1).

Initially a value of 4 is recommended.

■ Task Configuration

■ DBC Log

■ SQL

■ Object Manager DB Connection Operation Log

■ General Object Manager Log

■ Object Manager Session Operation and SetErrorMsg Log

■ Object Manager runtime repository Operation and SetErrorMsg Log

■ Security Adapter Log

Following this change, restarting the affected components is recommended. With the increase log
level, more information is stored in the relevant log files. Reset these values back to 1 when
troubleshooting is completed.

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

301

A Predefined EAI Business
Services

This appendix lists the business services provided for Siebel EAI. Siebel Business Applications
provide a number of business services. These services do not require any modification, but they do
require that you choose and configure them to suit your requirements. It includes the following topic:

■ “Predefined EAI Business Services” on page 301

For general information on using business services, see Chapter 4, “Business Services”.

Predefined EAI Business Services
Table 53 presents the predefined Siebel EAI business services.

Table 53. Predefined EAI Business Services

Business Service Class Description

EAI BTS COM Transport CSSEAIBtsComService EAI Siebel to BTS COM Transport.

EAI Data
Transformation Engine

CSSDataTransformationEngine EAI Data Transformation Engine
(DTE). For information, see Business
Processes and Rules: Siebel
Enterprise Application Integration.

The display name for this business
service is EAI Data Mapping Engine.

EAI Dispatch Service CSSEAIDispatchService Dispatch Service. For information, see
Business Processes and Rules: Siebel
Enterprise Application Integration.

EAI DLL Transport CSSDllTransService EAI DLL Transport. For information,
see Transports and Interfaces: Siebel
Enterprise Application Integration.

EAI HTTP Transport CSSHTTPTransService EAI HTTP Outbound Transport. For
information, see Transports and
Interfaces: Siebel Enterprise
Application Integration.

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Predefined EAI Business Services ■ Predefined EAI Business Services

302

EAI Import Export CSSEAIImportExportService EAI Import Export Service. Imports
integration objects from, or exports
them to, XML files.

NOTE: This business service is
intended only for Siebel user interface
sessions in the Siebel Web Client or
Siebel Mobile Web Client. For
information on converting integration
objects to and from XML files, see the
chapter on Siebel XML converters in
XML Reference: Siebel Enterprise
Application Integration.

EAI Integration Object
to XML Hierarchy
Converter

CSSEAIIntObjHierCnvService EAI Integration Object Hierarchy (also
known as SiebelMessage) to XML
hierarchy converter service. For
information, see XML Reference:
Siebel Enterprise Application
Integration.

EAI MIME Doc
Converter

CSSEAIMimeService MIME Document Conversion Service.
For information, see Chapter 9,
“Siebel EAI and File Attachments”.

EAI MIME Hierarchy
Converter

CSSEAIMimePropSetService EAI MIME Hierarchy Conversion
Service. For information, see
Chapter 9, “Siebel EAI and File
Attachments”.

EAI MQSeries Server
Transport

CSSMqSrvTransService EAI MQSeries Server Transport.

EAI MSMQ Transport CSSMsmqTransService EAI MSMQ Transport.

EAI Null Envelope
Service

CSSEAINullEnvelopeService EAI Null Envelope Service. For
information, see XML Reference:
Siebel Enterprise Application
Integration.

EAI Query Spec Service CSSEAIQuerySpecService Used internally by the EAI Siebel
Adapter to convert the SearchSpec
method argument as a string to an
Integration Object Instance that the
EAI Siebel Adapter can use as a Query
By Example object.

EAI Siebel Adapter CSSEAISiebelAdapterService EAI Siebel Adapter. For information,
see Chapter 6, “EAI Siebel Adapter
Business Service”.

Table 53. Predefined EAI Business Services

Business Service Class Description

Predefined EAI Business Services ■ Predefined EAI Business Services

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

303

EAI Transaction Service CSSBeginEndTransactionService EAI Transaction service for working
with Siebel transactions, such as
begin and end, to find out whether in
transaction.

EAI UI Data Adapter CSSEAIUDAdapterService EAI UI Data Adapter. For information,
see Chapter 7, “EAI UI Data Adapter
Business Service”.

EAI XML Converter CSSEAIXMLCnvService Converts between XML and EAI
messages. For information, see XML
Reference: Siebel Enterprise
Application Integration.

EAI XML Read from File CSSEAIXMLPrtService Reads an XML file and parses to a
property set. For information, see
XML Reference: Siebel Enterprise
Application Integration.

EAI XML Write to File CSSEAIXMLPrtService Prints a property set to a file as XML.
For information, see XML Reference:
Siebel Enterprise Application
Integration.

EAI XML XSD Generator CSSEAISchXSDService Used to generate an XSD file from an
integration object.

EAI XSD Wizard CSSXMLSchemaWizard Used to create integration objects
based on XSD files.

EAI XSLT Service CSSXSLTService EAI XSL Transformation Service.

Supports the Apache Xalan API as the
XLST processor and Xerces as the XML
parser.

Read CSV File CSSCsvParserService Converts a CSV file to a property set,
and can then convert the property set
to XML.

Siebel Message
Envelope

CSSEAISMEnvelopeService EAI Siebel Message Envelope Service.
For information, see XML Reference:
Siebel Enterprise Application
Integration.

Table 53. Predefined EAI Business Services

Business Service Class Description

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Predefined EAI Business Services ■ Predefined EAI Business Services

304

XML Converter CSSXMLCnvService Converts between XML documents
and arbitrary Property Sets. For
information, see XML Reference:
Siebel Enterprise Application
Integration.

XML Hierarchy
Converter

CSSXMLCnvService Converts between XML documents
and XML Property Set or Arbitrary
Property Set. For information, see
XML Reference: Siebel Enterprise
Application Integration.

Table 53. Predefined EAI Business Services

Business Service Class Description

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

305

B Property Set Representation of
Integration Objects

This appendix describes the relationship between property sets and integration objects. Property sets
are in-memory representations of integration objects. For an overview of property sets, see Using
Siebel Tools. It includes the following topics:

■ Property Sets and Integration Objects on page 305

■ Example Instance of an Account Integration Object on page 308

Property Sets and Integration Objects
Many EAI business services operate on integration object instances. Because business services take
property sets as inputs and outputs, it is necessary to represent integration objects as property sets.
The mapping of integration objects, components, and fields to property sets is known as the
Integration Object Hierarchy.

Using this representation, you can pass a set of integration object instances of a specified type to an
EAI business service. You pass the integration object instances as a child property set of the business
service method arguments. This property set always has a type of SiebelMessage. You can pass the
SiebelMessage property set from one business service to another in a workflow without knowing the
internal representation of the integration objects.

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Property Set Representation of Integration Objects ■ Property Sets and Integration
Objects

306

Property Set Node Types
When passing integration object instances as the input or output of a business service, you can use
property sets to represent different node types, as presented in Table 54.

Table 54. Property Set Node Types

Name Parent
Value of Type
Attribute Properties Description

Service Method
Arguments

Not applicable Ignored The properties of
this property set
contain the service
specific
parameters, such
as PrimaryRowId
for the EAI Siebel
Adapter.

This is the top-
level (highest-
level) property set
of a business
service’s input or
output. The
properties of this
property set
contain the
service-specific
parameters (for
example,
PrimaryRowId for
the EAI Siebel
Adapter).

SiebelMessage Service Method
Arguments

SiebelMessage The properties of
this property set
contain header
attributes
associated with
the integration
object, for
example,
IntObjectName.

This property set is
a wrapper around
a set of integration
object instances of
a specified type. To
pass integration
objects between
two business
services in a
workflow, this
property set is
copied to and from
a workflow process
property of type
Hierarchy.

Object List SiebelMessage ListOfObjectType Not used. This property set
identifies the
object type that is
being represented.
The root
components of the
object instances
are children of this
property set.

Property Set Representation of Integration Objects ■ Property Sets and Integration
Objects

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

307

Root
Component

Object List Root Component
Name

The property
names of the
property set
represent the field
names of the
component, and
the property
values are the field
values.

This property set
represents the
root component of
an integration
object instance.

Child
Component
Type

Root
Component or
Component

ListOfComponent
Name

Not used. An integration
component can
have a number of
child component
types, each of
which can have
zero or more
instances. The
Integration Object
Hierarchy format
groups the child
components of a
given type under a
single property
set. This means
that child
components are
actually
grandchildren of
their parent
component’s
property set.

Child
Components

Child
Component
Type

Component Name The property
names of the
property set
represent the field
names of the
component, and
the property
values are the field
values.

This property set
represents a
component
instance. It is a
grandchild of the
parent
component’s
property set.

Table 54. Property Set Node Types

Name Parent
Value of Type
Attribute Properties Description

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Property Set Representation of Integration Objects ■ Example Instance of an Account
Integration Object

308

Example Instance of an Account
Integration Object
This example shows an Account integration object in which the object has two component types:
Account and Business Address (which is a child of Account). The hierarchy of component types, from
the perspective of Oracle’s Siebel Tools, looks like that shown in Figure 57.

Figure 58 on page 309 shows an example instance of this object type, using the Integration Object
Hierarchy representation. There are two Sample Account instances. The first object instance has an
Account component and two Business Address child components. The second object instance has
only an Account component with no child components.

Figure 57. Sample Account Integration Object

Property Set Representation of Integration Objects ■ Example Instance of an Account
Integration Object

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

309

Figure 58. Partial Instance of Sample Account Integration Object

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Property Set Representation of Integration Objects ■ Example Instance of an Account
Integration Object

310

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

311

C DTDs for XML Gateway Business
Service

This appendix lists the various inbound and outbound Document Type Definitions (DTDs) for the XML
Gateway business service. It covers the following topics:

■ Outbound DTDs for the XML Gateway Business Service on page 311

■ Inbound DTDs for the XML Gateway Business Service on page 313

Outbound DTDs for the XML Gateway
Business Service
The following sections contain examples of DTDs representing the %methodName% request sent
from the XML Gateway to the external application.

Delete
The following DTD is for the Delete request:

<!ELEMENT siebel-xmlext-delete-req (buscomp, remote-source, row)>

<!ELEMENT buscomp (#PCDATA)>

<!ATTLIST buscomp id NMTOKEN #REQUIRED>

<!ELEMENT remote-source (#PCDATA)*>

<!ELEMENT row (value+)>

<!ELEMENT value (#PCDATA)*>

<!ATTLIST value field CDATA #REQUIRED>

Init
The following DTD is for the Init request:

<!ELEMENT siebel-xmlext-fields-req (buscomp, remote-source?)>

<!ELEMENT buscomp (#PCDATA)>

<!ATTLIST buscomp id NMTOKEN #REQUIRED >

<!ELEMENT remote-source (#PCDATA)*>

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

DTDs for XML Gateway Business Service ■ Outbound DTDs for the XML Gateway Business
Service

312

Insert
The following DTD is for the Insert request:

<!ELEMENT siebel-xmlext-insert-req (buscomp, remote-source?, row)>

<!ELEMENT buscomp (#PCDATA)>

<!ATTLIST buscomp id NMTOKEN #REQUIRED>

<!ELEMENT remote-source (#PCDATA)*>

<!ELEMENT row (value+)>

<!ELEMENT value (#PCDATA)*>

<!ATTLIST value field CDATA #REQUIRED>

PreInsert
The following DTD is for the PreInsert request:

<!ELEMENT siebel-xmlext-preinsert-req (buscomp, remote-source?)>

<!ELEMENT buscomp (#PCDATA)>

<!ATTLIST buscomp id NMTOKEN #REQUIRED >

<!ELEMENT remote-source (#PCDATA)*>

Query
The following DTD is for the Query request:

<!ELEMENT siebel-xmlext-query-req (buscomp , remote-source?, max-rows?, search-
string?, match?, search-spec?, sort-spec?)>

<!ELEMENT buscomp (#PCDATA)>

<!ATTLIST buscomp id NMTOKEN #REQUIRED>

<!ELEMENT remote-source (#PCDATA)*>

<!ELEMENT max-rows (#PCDATA)>

<!ELEMENT search-string (#PCDATA)>

<!ELEMENT match (#PCDATA)>

<!ATTLIST match field CDATA #REQUIRED>

<!ELEMENT search-spec (node)>

<!ELEMENT node (#PCDATA | node)*>

<!ATTLIST node node-type (Constant | Identifier | Unary Operator | Binary Operator)
#REQUIRED>

DTDs for XML Gateway Business Service ■ Inbound DTDs for the XML Gateway Business
Service

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

313

<!ATTLIST node value-type (TEXT | NUMBER | DATETIME | UTCDATETIME | DATE | TIME)
#IMPLIED>

<!ELEMENT sort-spec (sort+)>

<!ELEMENT sort (#PCDATA)>

<!ATTLIST sort field CDATA #REQUIRED>

Update
The following DTD is for the Update request:

<!ELEMENT siebel-xmlext-update-req (buscomp, remote-source?, row)>

<!ELEMENT buscomp (#PCDATA)>

<!ATTLIST buscomp id NMTOKEN #REQUIRED>

<!ELEMENT remote-source (#PCDATA)*>

<!ELEMENT row (value+)>

<!ELEMENT value (#PCDATA)*>

<!ATTLIST value changed (true | false) #REQUIRED>

<!ATTLIST value field CDATA #REQUIRED>

Inbound DTDs for the XML Gateway
Business Service
The following sections contain examples of DTDs representing the %methodName% response sent
from the external application to the XML Gateway.

Delete Response
The following DTD is for the Delete response:

<!ELEMENT siebel-xmlext-dekete-ret EMPTY >

Init Response
The following DTD is for the Init response:

<!ELEMENT siebel-xmlext-fields-ret (support+)>

<!ELEMENT support EMPTY >

<!ATTLIST support field CDATA #REQUIRED>

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

DTDs for XML Gateway Business Service ■ Inbound DTDs for the XML Gateway Business
Service

314

Insert Response
The following DTD is for the Insert response:

<!ELEMENT siebel-xmlext-preinsert-ret (row)>

<!ELEMENT row (value+)>

<!ELEMENT value (#PCDATA)*>

<!ATTLIST value field CDATA #REQUIRED >

PreInsert Response
The following DTD is for the PreInsert response:

<!ELEMENT siebel-xmlext-preinsert-ret (row)>

<!ELEMENT row (value)*>

<!ELEMENT value (#PCDATA)*>

<!ATTLIST value field CDATA #REQUIRED >

Query Response
The following DTD is for the Query response:

<!ELEMENT siebel-xmlext-query-ret (row*)>

<!ELEMENT row (value+)>

<!ELEMENT value (#PCDATA)*>

<!ATTLIST value field CDATA #REQUIRED >

Update Response
The following DTD is for the Update response:

<!ELEMENT siebel-xmlext-update-ret (row)>

<!ELEMENT row (value+)>

<!ELEMENT value (#PCDATA)>

<!ATTLIST value field CDATA #REQUIRED >

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

315

Index

Symbols
%methodName% request, sample outbound

DTDs 311
%methodName% response, sample inbound

DTDs 313
* (asterisk), using as querying wildcard 153

A
activating fields, about 44
AI

See Siebel Application Interface (AI)
AI profile 122, 148
AllowedIntObjects business service user

property 39
application

external application, about setting up 238
Application Interface (AI) 126, 127, 132
arguments

Init method, XML Gateway business
service 229

IsPrimaryMVG 180
AssocFieldName user property

associations with 21
Association user property

associations with 21
association, defined 21

B
base object types, for integration

components (table) 15
base table, using Mod Id 196
body data, contents of 14
buscomp Id tag 231
Business Component Id argument, XML

Gateway method 229
Business Component Name argument, XML

Gateway method 230
business components

association, role of 21
integration restrictions 72
linking 24
multivalue field example 22
multivalue group example 25
relation to business services 75
specialized 225

business objects

business service methods, as arguments
to 86

EAI Siebel Adapter business service, role
of 151

external data, creating from 152
integration object maintenance, about 62
relation to business services 75
structure of 18
user key requirement 31

business service methods
arguments, defining 79
business objects as arguments 86
defining 79
described 76

Business Service Methods screen, using 81
business service methods, custom

about 238
common input parameters (table) 239
connecting methods, list of 238
Delete method, example 240
Error Return property set, example 241
Init method, example 242
Insert method, example 244
output parameters (table) 239
PreInsert method, example 246
Query method, example 247
Update method, example 251

Business Service Simulator, running 83
business services

accessing using Siebel eScript or Siebel
VB 84

argument types 80
customized business services, type of 76
defined 75
deploying as Web services 82
deploying to run-time database from WSDL

Import Wizard 104
EAI MIME Hierarchy Converter, creating

inbound workflow (example) 272
EAI MIME Hierarchy Converter, creating

outbound workflow (example) 269
EAI Siebel Adapter, about 151
EAI Siebel Wizard, about 42
EAI UI Data Adapter, about 201
general uses 75
importing and exporting in Siebel Tools 83
importing into the Siebel application 83

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Index ■ C

316

predefined business services, table of 303
property set code example 85
property sets, about and role of 77
scripts, writing 80
Siebel Business Application, creating in 81
Siebel Tools, creating process overview 78
Siebel Tools, defining in 78
Specialized Business Services, about 76
testing 83
user properties, defining 80
XML Gateway 228

BusObjCacheSize argument, about 176,
178, 220

C
calculated fields 28
CamelCase, choosing naming convention 47
child integration components

about 18
structure example 19

child property sets, about 77
classes

associated with predefined EAI business
services (table) 301

CSSBCVExtern 226
CSSBCVXMLExten 229
CSSEAIDTEScriptService 76

components, defined 13
concurrency control

about support for 195
Account_Organization integration component

example 199
configuring 197
configuring example 198
Modification IDs, using 196
Modification Key, about 195

Config Agent 110
Configure EAI HTTP Inbound Transport

parameter 148
ContentId property, value and

description 276
ContentSubType property 277
ContentType property 277
CSEEAISiebelAdapterService class 39
CSSBCVExtern class 226
CSSBCVXMLExten class 229
CSSBeginEndTransactionService class 303
CSSDataTransformationEngine class 301
CSSDllTransService class 301
CSSEAIBtsComService class 301
CSSEAIDispatchService class 301
CSSEAIDTEScriptService class 76
CSSEAIImportExportService class 302

CSSEAIIntObjHierCnvService class 302
CSSEAIMimePropSetService class 302
CSSEAIMimeService class 302
CSSEAINullEnvelopeService class 302
CSSEAIQuerySpecService class 302
CSSEAISiebelAdapterService class 302
CSSEAISMEnvelopeService class 303
CSSEAIUDAdapterService class 303
CSSEAIXMLCnvService class 303
CSSEAIXMLPrtService class 303
CSSHTTPTransService class 301
CSSMqSrvTransService class 302
CSSMsmqTransService class 302
CSSXMLCnvService class

XML Converter business service 304
XML Hierarchy Converted business

service 304
CSSXSLTService class 303
custom business service

Delete method, example 240
sample code, eScript 254
sample code, VB 261

D
data and arguments, contrasted 85
data definition language (DDL) file, creating

an external table definition 283
Data Type Definitions

See DTDs
databases

access, controlling 39
multivalued attributes 22

Delete business service method
custom business service example 240
DTD example 311
overview 166
XML code example 167

Delete Response method, DTD example 313
DeleteByUserKey argument, about 176, 178
DeleteLeaves method, EAI UI Data Adapter

business service 217
Display Name field 77
docking, restrictions on 225
DOC-literal support 92
DTDs

Integration Object Builder wizard, about 17
sample inbound DTDs 313
sample outbound DTDs 311

E
EAI BTS COM Transport business

service 301
EAI Data Mapping Engine business

Index ■ E

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

317

service 301
EAI Design project, editing integration

objects, caution 18
EAI Dispatch Service business service 301
EAI DLL Transport business service 301
EAI file streaming

about 145
criteria 148
inbound requests 146
outbound responses 147

EAI HTTP Transport
business service, description 301
XML Gateway business service, configuring for

use by 228
EAI Import Export business service 302
EAI Integration Object to XML Hierarchy

Converter business service 302
EAI MIME Doc Converter business

service 302
EAI MIME Hierarchy Converter business

service 302
EAI MQSeries Server Transport business

service 302
EAI MQSeries Transport, configuring for use

by XML Gateway business
service 228

EAI MSMQ Transport business service 302
EAI MSMQ Transport, configuring for use by

XML Gateway business service 228
EAI Query Spec Service business

service 302
EAI Siebel Adapter business service

about 151
concurrency control, about support for 195
database access, controlling 39
Delete method 166
Execute method, overview 166
Insert method, overview 163
IsPrimaryMVG argument 180
language-independent code, using 190
method arguments (table) 176
methods, list of 152
Modification IDs, using 196
Modification Key, about 195
multivalue groups 180
predefined EAI business services, table

of 302
QueryPage method, overview 154
run-time events, about using 191
Synchronize method, overview 156
Update method, overview 165
Upsert method, overview 165
XML code example 167

EAI Siebel Wizard business service

about 42
integration objects, creating 45

EAI Transaction Service business
service 303

EAI UI Data Adapter business service
about 201
DeleteLeaves method 217
Execute method 218
InitLeaves method 211
InsertLeaves method 213
method arguments (table) 220
method arguments, table of 220
methods, list of 203
predefined EAI business services, table

of 303
QueryPage method 203
Update Leaves method 209

EAI XML Converter business service 303
EAI XML Read from File business

service 303
EAI XML Write to File business service 303
EAI XSLT Service business service 303
Error Return property set example 241
ErrorOnNonExistingDelete argument,

about 177, 178
error-text tag 235
eScript

See scripts, Siebel eScript
Execute business service method

EAI UI Data Adapter business service 218
overview 166

Execute method
operations (table) 167
specifying and supported parent and child

components (table) 168
ExecutionMode argument

about 177
ExecutionMode argument, about 178, 220
Extensible Markup Language (XML)

standard 90
Extensible Stylesheet Language

Transformation (XSLT) standard 90
Extension property, value and

description 276
extension table, using Mod Id 196
external application

sample inbound DTDs 313
sample outbound DTDs 311
setting up, about 238

external business components (EBCs)
configuration process 282
configuring 290
creating external table definition 283
distributed joins 297, 298

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Index ■ F

318

distributed joins, configuring 298
distributed joins, usage and restrictions 299
joins to tables in external data sources 296
overriding connection parameters for the data

source 296
troubleshooting 299
usage and restrictions 295
using specialized business component

methods 294
using with Siebel Web Client 296

external data source, specifying 227
External Name user property 21
External Table Schema Import Wizard,

creating external table
definitions 283

F
faults, SOAP 137
field dependencies, defining 29
fields

activating and inactivating 44
calculated 28
definition 13
integration component fields, viewing 47
multivalue groups, working with 24
picklist, validating and example 27
property set fields 77
user keys, about 31

file attachments
about and using 265
message types 265

file streaming
about 145
criteria 148
inbound requests 146
outbound responses 147

force active fields, performance
considerations 71

function code sample 86

H
header data, contents of 14
hierarchy parent key, about and example 38
hierarchy root key, about and example 38
Hypertext Transfer Protocol (HTTP)

standard 90

I
inactivating fields, about 44
incoming XML format, tags and descriptions

(table) 235
Init method, DTD example 311
Init property set example 242

Init Response method, DTD example 313
InitLeaves business service method

EAI UI Data Adapter business service 211
inline XML attachments

about 266
using 278

inner joins, and integration components 28
input parameters, common (table) 239
Input/Output type 80
Insert business service method

EAI Siebel Adapter business service 163
Insert business service method, DTD

example 312
Insert property set example 244
InsertLeaves business service method

EAI UI Data Adapter business service 213
instance, defined 14
integration component fields

custom 20
defined 14
field names, assigning 26
multivalue groups, working with 24
user properties 27, 29

integration component keys
See user keys

integration component user properties
as operation controls 30
REPOBJ user property 29

integration components
activating 43
component fields, viewing 47
defined 14
deleting during synchronization 58
guidelines and scenarios 72
inner joins 28
multivalue groups, working with 24
operation controls 30
selecting 46
user properties 30

integration messages
body data 14
defined 13
header data 14

Integration Object Builder wizard
about 17
Code Generator wizard 17
EAI Siebel Wizard 43
Generate XML Schema wizard 17
integration components, selecting 46
integration objects, creating 45
user keys, about building 31
user keys, validating 32

integration object instance
actual data, about and diagram 16

Index ■ J

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

319

defined 14
integration objects

about 14
base object types (table) 15
calculated fields 28
child integration components 18
Container Naming Convention menu 46
creating 45
creating programmatically 49
creating, based on another root business

component 48
creating, with many-to-many business

component 48
defined 13
deploying to run-time database from EAI

Siebel Wizard 47
deploying to run-time database from Siebel

Tools 53
deploying to run-time database from WSDL

Import Wizard 104
EAI Design project, editing caution 18
external data, creating from 152
fine-tuning practices, list of 52
in-memory updating 56
instance example 308
integration components, deleting during

synchronization 58
Lower CamelCase for XML tags check box 47
maintaining, about 62
metadata, about synchronizing 55
metadata, relation to 16
MIME message objects, creating 266
passing custom attributes 20
performance considerations 71
picklist, validating and example 27
primaries, about setting 26
property set representation 305
removing from run-time database 54
schema, generating 70
simple hierarchy example 308
structure example 19
synchronizing with business objects 63
System fields, about treatment of 72
terminology 13
testing newly created integration object 53
undeploying from run-time database 54
updating 63
UseFormattedValues user property 69
validating 52
wizards process diagram 17

integration projects
integration objects, use described 18
planning 15

IntObjectName argument

described 178
locating arguments for 177

IsPrimaryMVG argument 180

J
Java class files, generating 17
Java container

configuring 110
joined table, using Mod Id 196

L
language-independent code

list of values, types of 190
outbound and inbound direction, about

using 190
LastPage argument, about 177, 178
links

associations, and 21
between business components 24

local business services
about and using 112
script example 113
using in outbound Web service 115

LOVLanguageMode argument, about 220
LOVs, language-independent code

translation 190

M
many-to-many relationships, virtual

business components 225
MessageId argument

described 179
locating arguments for 177

metadata
defined 14
integration objects, updating 63
processing example 85
relation to integration objects 16
synchronizing, integration objects, about 55

method arguments
EAI Siebel Adapter business service

(table) 176
EAI UI Data Adapter business service

(table) 220
methods

business objects as arguments 86
business service method arguments,

defining 79
business service method arguments, types

of 80
business services methods, about 76
business services methods, defining 79
EAI Siebel Adapter business service,

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Index ■ N

320

supported methods 152
EAI UI Data Adapter business service,

supported methods 203
incoming XML tags by method 235
outgoing XML tags by method 231
XML Gateway business service method

arguments (table) 229
XML Gateway business service methods,

listed 229
MIME

about 265
EAI MIME Doc Converter properties

(table) 275
inbound workflow, creating (example) 270
integration objects, creating 266
messages and hierarchies 274
MIME hierarchy, converting to 272
outbound workflow, creating (example) 268
sending and receiving attachments, process

overview 266
workflow process properties, creating an

inbound workflow 271
workflow process properties, creating an

outbound workflow 268
MIME Doc Converter

about 274
converting hierarchy to document 270
converting to a hierarchy 272
EAI MIME Doc Converter properties

(table) 275
properties 277

MIME hierarchy
converting hierarchy to document 270
converting to a hierarchy 272
EAI MIME Doc Converter properties

(table) 275
inbound transformation 274
integration object, converting to MIME

hierarchy 269
MIME Doc Converter 274
outbound transformation 272
property sets 274

MIME Hierarchy Converter
business service, creating inbound workflow

(example) 272
business service, creating outbound workflow

(example) 269
inbound transformation 274
outbound transformation 272

mobile users and virtual business
components 225

Modification Key
about 195
Account_Organization integration component

example 199
Mod Id field, using for tables 196
MVG and MVGAssociation integration

components, configuring 197
MVG and MVGAssociation integration

components, configuring
example 198

Multi Value Link field 23
Multipurpose Internet Mail Extensions

See MIME
multivalue groups

EAI Siebel Adapter business service,
overview 180

example 22
field names, assigning 26
integration components, creating 24
mapping to separate integration objects 180
multiple fields 24
primary record, setting 181
types of 22
virtual business components, restriction 225

multivalue links, setting primaries 26
multivalued attributes 22
MVG

See multivalue groups
MVG integration components

Account_Organization integration component
example 199

configuring for concurrency control 197
example 198

MVGAssociation integration components
Account_Organization integration component

example 199
configuring for concurrency control 197
example 198

MVGAssociation user property
about 21
MVG, creating a Siebel integration component

to represent 25

N
Named subsystem

configuring 110
parameters 111

NamedSearchSpec argument, about 220
name-value pairs

concatenating 228
role in property sets 77

NewQuery argument 179
NewQuery argument, about 220
No envelope business service 302
None session type, SOAP header

examples 133

Index ■ O

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

321

NumOutputObjects argument
described 179
locating arguments for 177

NumOutputObjects argument, about 221

O
Open Database Connectivity (ODBC) data

source, creating an external table
definition 284

operations, relationship to Web service port
types 95

outgoing XML format, tags and descriptions
(table) 231

Output Integration Object Name argument,
about 179

output parameters, (table) 239
Output type 80
OutputIntObjectName argument,

about 177, 221

P
PageSize

EAI Siebel Adapter business service method
argument 179

locating arguments for 177
parameters

common input parameters (table) 239
output parameters (table) 239

Parameters argument, XML Gateway
method 230

parent business component
multivalue group example 24
multivalue group field names, assigning 26

parent integration component
about 18
identifying 47
structure example 19

performance
force-active fields, considerations 71
integration object considerations 71
picklist considerations 71

picklists
performance considerations 71
validating, about and example 27

port types, relationship to Web service
operations 95

PreInsert method, DTD example 312
PreInsert property set example 246
PreInsert Response method, DTD

example 314
primaries, about setting 26
primary business component 18
primary integration component

See parent integration component
PrimaryRowId argument

described 179
locating arguments for 177

property sets
about 305
about and role of 77
child 77
code sample 85
Delete method example 240
Display Name field 77
EAI MIME Doc Converter properties

(table) 275
Error Return example 241
fields 77
hierarchy example 308
Init example 242
Insert example 244
integration objects, and 305
MIME hierarchy 274
nodes types (table) 306
PreInsert example 246
Query example 247
Update example 251

Proxy Configuration for Java Web
Container 125

Proxy server
See Proxy Configuration for Java Web

Container

Q
Query method

business component records, about querying
all 153

DTD example 312
wildcard querying, about using asterisk

(*) 153
query operation

integration component keys, role of 31
role in integration projects 18

Query property set example 247
Query Response method, DTD example 314
QueryByUserKey argument, about 177, 179
QueryPage method

EAI UI Data Adapter business service 203
overview 154

R
Remote Source argument, XML Gateway

method 229
Remote Source user property

virtual business component 227
XML Gateway business service 228

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Index ■ S

322

repository objects, REPOBJ user
property 29

REPOSITORY_BC_VIEWMODE_TYPE 39
root component

See parent integration component
row tag 237
RPC-literal support 91
run-time database

deploying business services to 104
deploying integration objects to 47, 53, 104

run-time events, about using 191

S
schema

Generate XML wizard 17
generating 70

scripts
business service, attaching to 80
business service, using to access 84

SearchSpec argument
described 179
locating arguments for 177

ServerDetermine session type, about 128
Service Name user property

virtual business component 226
XML Gateway business service 228

Service Parameters user properties, table
of 228

Service Parameters user property
virtual business component 226
XML Gateway business service 228

session timeout parameters
about and table 132
SessionTimeout 132
SessionTokenMaxAge 132
SessionTokenTimeout 132

SHA2 Support for Outbound Web
Service 109

Siebel Application Interface (AI) 126
enabling Session Management 131

Siebel Business Application, defining
business services 81

Siebel business component, defined 14
Siebel business objects

defined 14
structure of 18

Siebel Developer Web Client, invoking Web
services 97

Siebel EAI
See individual EAI entries

Siebel eScript
using to access a business service 84
using to invoke Web services 118

Siebel integration components
See integration components

Siebel integration objects
See integration objects

Siebel Message envelope business
service 303

Siebel Message object
See integration object instance

Siebel Mobile Web Client, invoking Web
services 97

Siebel Tools
business services, creating process

overview 78
business services, defining 78
integration objects, creating 45
user key, identifying 31
virtual business component, creating 226

Siebel VB, using to access a business
service 84

SiebelMessage argument
EAI Siebel Adapter business service method

argument 179
locating arguments for 177

SiebelMessage argument, about 221
siebel-xmlext-fields-req tag 231
siebel-xmlext-fields-ret tag 236
siebel-xmlext-Insert-req tag 232
siebel-xmlext-insert-ret tag 236
siebel-xmlext-preinsert-req tag 232
siebel-xmlext-preinsert-ret tag 236
siebel-xmlext-query-req tag 233
siebel-xmlext-query-ret tag 237
siebel-xmlext-status tag 235
siebel-xmlext-Update-req tag 234
siebel-xmlext-Update-ret tag 238
Simple Object Access Protocol (SOAP)

about 90
custom filters 141
header examples 133
Siebel Authentication and Session

Management headers (table) 126
standard 90

simulation, business service 83
SOAP faults

handling in Siebel Business Applications 140
schema support 137

SortSpec argument
EAI Siebel Adapter business service method

argument 179
locating arguments for 177

Specialized Business Services, about 76
StartRowNum argument

EAI Siebel Adapter business service method
argument 180

Index ■ T

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

323

locating arguments for 178
Stateful session type, SOAP header

example 134
Stateless session type, SOAP header

example 133
status keys, about and example 35
status-code tag 235
StatusObject argument

described 180
locating arguments for 178

synchronization process
about 55
in-memory updating 56
integration object components, deleting 58
integration objects, updating 63
role in integration projects 18
update rules, about 56

Synchronize business service method,
overview 156

System fields, about treatment of 72

T
tables, using Mod Id 196
testing business services 83
transports, used with XML Gateway 228

U
Update business service method,

overview 165
Update Leaves business service method, EAI

UI Data Adapter business
service 209

Update method, DTD example 313
Update property set example 251
Update Response method, DTD

example 314
Upsert business service method

overview 165
XML code example 167

UseFormattedValues integration object user
property 69

user keys
building and validating, example 32
defined 31
definitions, confirming after integration object

creation 42
field in Siebel Tools 31
hierarchy parent key, about and example 38
hierarchy root key, about and example 38
inactivating, caution 35
Integration Component key 31
locating in Tables screen 32
Object Builder wizard, about building with 31

status keys, about and example 35
validity, checking 33

user properties
AssocFieldName 21
Association 21
business service user properties, defining 80
External Name 21
MVGAssociation 21
UseFormattedValues 69
virtual business components (table) 226
virtual business components, defining

for 227

V
value tag 237
VBC Compatibility Mode user property 227,

228
VBCs

See virtual business components
ViewMode argument

EAI Siebel Adapter business service method
argument 180

locating arguments for 178
ViewMode argument, about 221
ViewMode integration object user

property 39
virtual business components

about 223
custom code example, eScript 254
custom code example, VB 261
docking restrictions 225
external application setup, about 238
incoming XML format, tags and descriptions

(table) 235
mobile users, restriction 225
MQSeries, implementing with 228
multivalue groups 225
new virtual business component,

creating 226
outgoing XML format, tags and descriptions

(table) 231
specialized business components,

restriction 225
user properties (table) 226
user properties, defining 227
XML Gateway business service,

configuring 228
virtual business components, methods

Delete method example 240
Error Return property set, example 241
Init method, example 242
Insert method, example 244
PreInsert property set, example 246

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Index ■ W

324

Query property set, example 247
Update property set, example 251

virtual business services
See business service methods

W
Web services

about 89
cache refresh 148
consuming external Web services 102
custom SOAP filters 136, 141
defining Web Service Inbound Dispatcher 96
deploying business services as 82
DOC-literal support 92
EAI file streaming 145
enabling tracing 149
Extensible Markup Language (XML)

standard 90
Extensible Stylesheet Language

Transformation (XSLT) standard 90
generating a WSDL file 95
Hypertext Transfer Protocol (HTTP)

standard 90
inbound, about port types and operations 95
invoking on the Siebel Developer Web

Client 97
invoking on the Siebel Mobile Web Client 97
invoking using an external system 93
invoking, examples of 116, 117
Local Business Service 112
one-way operations 92
outbound, creating based on WSDL file 103
outbound, creating manually 105
outbound, importing run-time data 104
outbound, integration objects as input

arguments 107
outbound, using local business service 115
publishing inbound 93
RPC-literal support 91
security support 122
Session Management SOAP headers

(table) 126
Siebel Authentication 126
Simple Object Access Protocol (SOAP)

standard 90
single sign-on authentication 136
SOAP fault message example 97
SOAP fault schema support 137
support for transport headers 108
support for transport parameters 109
Web Services Description Language (WSDL)

standard 90
Web Services Interoperability (WS-I)

standard 90
Web Services Security (WS-Security)

standard 90
XML Schema standard 90
XML schema support for the xsd:any tag 116

Web Services Description Language (WSDL)
about 89
consuming an external Web service using the

WSDL Import Wizard 103
generating a WSDL file 95
importing a WSDL file 103
invoking an external Web service 117
standard 90

Web Services Interoperability (WS-I)
standard 90

Web Services Security (WS-Security)
standard

about and reference 90
support for UserName Token

mechanism 123
white space, handling in XML

documents 230
workflows

inbound MIME request 270
outbound MIME request 268
policies, about using 191

WSDL Import Wizard
deploying business services 104
deploying integration objects 104
invoking an external Web service 117
using to consume an external Web

service 103

X
XML

attribute-named operation, specifying 168
business services, importing and

exporting 83
Generate XML Schema wizard 17
handling white space 230
inline XML attachments 266, 278
metadata example 85
upsert and delete code example 167

XML Converter business service 304
XML format

incoming tags and descriptions (table) 235
outgoing tags and descriptions (table) 231

XML Gateway business service
about 228
configuring 228
incoming XML tags and descriptions 235
init method arguments 229
methods (table) 229

Index ■ X

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

325

methods arguments (table) 229
name-value pairs, concatenating 228
outgoing XML tags and descriptions 231
sample inbound DTDs 313
sample outbound DTDs 311
Virtual Business Component, implementing

with MQSeries 228

XML Hierarchy Converter business
service 304

XML Schema standard 90
XSD container elements, choosing naming

convention 46
xsd:any tag, XML schema support 116

Integration Platform Technologies: Siebel Enterprise Application
Integration Siebel Innovation Pack 2017, Rev. B

Index ■ X

326

	Contents
	1 What’s New in This Release
	What’s New in Integration Platform Technologies: Siebel Enterprise Application Integration, Siebe...
	What’s New in Integration Platform Technologies: Siebel Enterprise Application Integration, Siebe...

	2 Integration Objects
	About Integration Object Terminology
	About Integration Objects
	About Integration Object Base Object Types
	About the Difference Between Integration Objects and Integration Object Instances
	About Integration Object Wizards
	About the Structure of Integration Objects
	About the Cardinality of Child Integration Components
	Custom Integration Component Fields
	Integration Components and Associations
	Multivalue Groups Within Business Components
	Multivalue Fields in a Business Component
	Multivalue Links in a Business Component
	Fields in a Business Component After Adding a Multivalue Link
	Graphical Representation of a Business Component and a Multivalue Link
	Creating a Siebel Integration Component to Represent an MVG

	Setting Primaries Through Multivalue Links
	Validation of Integration Component Fields and Picklists
	Example of an Integration Object Based on the Order Entry Business Object

	Calculated Fields and Integration Objects
	Inner Joins and Integration Components
	Defining Field Dependencies
	Repository Objects

	About Integration Component User Properties as Operation Controls
	About Integration Component Keys
	User Keys
	User Key Generation Algorithm

	Status Keys
	Status Key Examples
	Example with No StatusObject
	Example with StatusObject

	Hierarchy Parent Keys
	Hierarchy Root Keys

	About EAI Siebel Adapter Access Control

	3 Creating and Maintaining Integration Objects
	About the Integration Object Builder
	About the EAI Siebel Wizard Business Service
	Process of Creating Integration Objects
	Creating Integration Objects Using the EAI Siebel Wizard Business Service
	Creating an Integration Object Based on Another Root Business Component
	Creating an Integration Object with Many-To-Many Relationships
	Creating Integration Object Instances Programmatically
	Guidelines for Configuring Integration Objects
	Validating Integration Objects
	Testing Integration Objects
	Deploying Integration Objects to the Run-Time Database
	Deploying an Integration Object to the Run-Time Database
	Removing an Integration Object from the Run-Time Database

	About Synchronizing Integration Objects
	Synchronization Rules
	Updating the Entire Integration Object
	Deleting a Component from the Integration Object
	Guidelines for Maintaining Integration Objects

	Synchronizing Integration Objects
	Resolving Synchronization Conflicts for Integration Objects and User Properties
	Using Formatted Values in Integration Objects
	Generating Integration Object Schemas
	Optimizing the Performance of Integration Objects
	Size of Integration Object
	Force-Active Fields
	Picklist Validation

	About Business Component Restrictions for Integration Components
	System Fields

	Guidelines for Using Integration Components

	4 Business Services
	About Business Services
	About Creating Business Services
	Business Service Structure
	Property Sets

	Creating Business Services in Siebel Tools
	Defining a Business Service in Siebel Tools
	Defining Business Service Methods
	Defining Business Service Method Arguments
	Writing Business Service Scripts
	Defining Business Service User Properties

	Creating Business Services in Siebel Business Applications
	Deploying Business Services as Web Services
	Exporting and Importing Business Services in Siebel Tools
	Importing Business Services into Siebel Business Applications
	Testing Your Business Service in the Simulator
	About Accessing a Business Service Using Siebel eScript or Siebel VB
	Business Scenario for the Use of Business Services
	Code Sample Example for Creating a Property Set

	5 Web Services
	About Web Services
	Supported Web Services Standards

	About RPC-Literal and DOC-Literal Bindings
	RPC-Literal Support
	Making a Web Service an RPC-Literal Web Service

	DOC-Literal Support

	About One-Way Operations and Web Services
	Defining Support for One-Way Operations

	Invoking Siebel Web Services Using an External System
	Publishing Inbound Web Services
	Generating a WSDL File
	About the Relationship of Port Types and Operations
	Deleting Operations by Deleting the Port Type

	About Defining the Web Service Inbound Dispatcher
	SOAP Fault Message Example

	Invoking Web Services on the Siebel Mobile Web Client
	Exceptions to Web Service Support
	Supported Authentication Formats
	Authentication Formats That Are Not Supported

	Enabling Web Services on the Siebel Mobile Web Client
	Starting the siebel.exe Process From the Command Line
	Confirming that the siebel.exe Process is Listening
	Invoking Web Services on the Siebel Mobile Web Client
	Example of Passing User Credentials in the URL
	Example of Passing User Credentials in the SOAP Header
	Example of Passing User Credentials in the WS-Security Header

	Consuming External Web Services Using Siebel Web Services
	Creating an Outbound Web Service Based on a WSDL File
	Importing Run-time Data About External Web Services

	Creating an Outbound Web Service Manually
	Updating the Outbound Proxy Business Service

	Integration Objects as Input Arguments to Outbound Web Services
	Web Services Support for Transport Headers
	Web Services Support for Transport Parameters
	SHA2 Support for Outbound Web Service
	Configuring Siebel Server and Config Agent for SHA2 Outbound
	Parameters for the named subsystem

	Using the Local Business Service
	Script Example for a Local Business Service
	SOAP Document Generated by the Local Business Service
	Using the Local Business Service in an Outbound Web Service
	Mapping the xsd:any Tag in the WSDL Import Wizard
	Mapping the xsd:any Tag in the XML Schema Wizard

	Examples of Invoking Web Services
	Invoking an External Web Service Using Workflow or Scripting
	Invoking a Siebel Web Service from an External Application

	About Web Services Security Support
	Configuring the Siebel Application to Use the WS-Security Specification
	About WS-Security UserName Token Profile Support
	About Support for the UserName Token Mechanism
	Using the UserName Token for Inbound Web Services
	Using the UserName Token for Outbound Web Services

	Proxy Configuration for Java Web Container
	HTTP proxy configuration
	HTTPS proxy configuration:

	About Siebel Authentication and Session Management SOAP Headers
	Combinations of Session Types and Authentication Types
	Enabling Session Management on AI
	Session and Session Token Timeout-Related Parameters
	Examples of Using SOAP Headers for Authentication and Session Management
	Anonymous Request No Session
	Siebel Authorization No Session
	Siebel Authorization Stateless Session
	Initial Request
	Response
	Subsequent Request Using Session Token

	Siebel Authorization Stateful Session
	Initial Request
	Response
	Subsequent Request Using Session Token

	Simple Query Starting With <soap:body>

	About Web Services and Web Single Sign-On Authentication
	About SOAP Fault Schema Support
	Handling SOAP Faults in Siebel Business Applications
	Handling SOAP Messages
	Handling WSDL Imports

	About Custom SOAP Filters
	Handling Custom Headers Using Filters
	Enabling SOAP Header Processing Through Filters
	Inputting a SOAP Envelope to a Filter Service

	About EAI File Streaming
	About Inbound EAI Streaming Requests
	About Outbound EAI Streaming Responses
	About EAI Streaming Criteria

	About Web Services Cache Refresh
	Enabling Web Services Tracing

	6 EAI Siebel Adapter Business Service
	About the EAI Siebel Adapter Business Service
	Node Types and the EAI Siebel Adapter Business Service

	EAI Siebel Adapter Business Service Methods
	About the Examples in the EAI Siebel Adapter Business Service Methods Sections
	Query Method
	QueryPage Method
	Synchronize Method
	Example of Synchronize Method on Deleted Unmatched Children

	Insert Method
	Example of Using the Insert Method

	Upsert Method
	Update Method
	Delete Method
	Execute Method
	About Execute Method Operations
	Example of a Parent Node Using a Sync Operation
	Record in Database
	Integration Object Instance
	Result Record in Database

	Example of a Parent Node Using an Update Operation
	Example of a Parent Using an Update Operation and One More Child Using an Insert Operation
	Example of a Parent Using the Update Operation and One More Child Using the Upsert Operation
	Example of a Parent Using the Upsert Operation and One More Child Using the Sync Operation
	Skiptree Operation
	Skipnode Operation
	About the SearchSpec Input Method Argument
	Setting a Primary Position for a Contact

	About Using Effective Dating with Siebel EAI Adapter Business Service
	Enabling Effective Dating on Fields
	Configuring Integration Components for Effective Dating on Fields
	How the XML Converter Reads Effective Dating Data from Fields
	WSDL Schema Generation for Effective Dating on Fields
	WSDL Schema Example
	SOAP Query Example

	Enabling Effective Dating on Links
	Enabling Effective Dating on Links
	Web Service Schema Example

	Siebel EAI Adapter Operations for Effective Dating on Links
	Insert operation
	Update operation
	Upsert and Synchronize Operations
	XML Example

	About Using Language-Independent Code with the EAI Siebel Adapter Business Service
	About LOV Translation and the EAI Siebel Adapter Business Service

	Siebel EAI and Run-Time Events
	Guidelines for Using the EAI Siebel Adapter Business Service
	Troubleshooting the EAI Siebel Adapter Business Service
	Enabling Logging for the EAI Siebel Adapter Business Service
	Enabling Siebel Argument Tracing
	Configuring the EAI Siebel Adapter Business Service for Concurrency Control
	Modification Key
	Modification IDs
	About the Modification ID for a Base Table
	About the Modification ID for an Extension Table
	About the Modification ID for a Joined Table
	About MVG and MVGAssociation Integration Components
	Integration Component Account Example
	Integration Component Account_Organization Example

	Status IDs

	7 EAI UI Data Adapter Business Service
	About the EAI UI Data Adapter Business Service
	EAI UI Data Adapter Business Service Methods
	QueryPage Method
	QueryPage Method Arguments
	Root and Child Pagination
	Example of QueryPage on Parent and Child Components
	Request
	Response
	Example of QueryPage using Child Pagination
	Request
	Response

	Sort Specification
	Example of Sort Specification
	Request
	Response

	Predefined Query
	Search Specification
	Example of Using the searchspec Attribute

	UpdateLeaves Method
	UpdateLeaves Method Arguments
	Example of Updating Root Component
	Request
	Response

	Example of Updating Child Component
	Request
	Response

	InitLeaves Method
	InitLeaves Method Arguments
	Example of Using InitLeaves on a Root Component
	Request
	Response

	Example of Using InitLeaves on a Child Component
	Request
	Response

	InsertLeaves Method
	InsertLeaves Method Arguments
	Example of Inserting a Root Component
	Request
	Response

	Example of Inserting a Child Component
	Request
	Response

	Example of Inserting an Association Child Component
	Request
	Response

	DeleteLeaves Method
	Method Arguments for DeleteLeaves
	Example of Deleting a Root Component
	Example of Deleting a Child Component

	Execute Method
	Execute Method Arguments
	Example of Using the Execute Method
	Request
	Response

	EAI UI Data Adapter Business Service Method Arguments

	8 Siebel Virtual Business Components
	About Virtual Business Components
	Using VBCs for Your Business Requirements
	Usage and Restrictions for Virtual Business Components

	Using Virtual Business Components
	Creating a New Virtual Business Component
	Setting User Properties for the Virtual Business Component

	XML Gateway Service
	XML Gateway Methods
	XML Gateway Method Arguments
	About Handling White Space

	Examples of the Outgoing XML Format
	Search-Spec Node-Type Values
	Examples of the Incoming XML Format
	External Application Setup
	Custom Business Service Methods
	Common Method Parameters
	Business Services Methods and Their Property Sets
	Delete Method
	Error Return Method
	Init Method
	Insert Method
	PreInsert Method
	Query Method
	Update Method

	Custom Business Service Examples
	Siebel eScript Business Service Example for a VBC
	Siebel VB Business Service Example for a VBC

	9 Siebel EAI and File Attachments
	About File Attachments
	Exchanging Attachments with External Applications
	Using MIME Messages to Exchange Attachments
	Creating an Attachment Integration Object
	Creating Workflow Examples
	Outbound Workflow
	Inbound Workflow Example

	About the EAI MIME Hierarchy Converter
	Outbound Integration
	Inbound Integration

	About the EAI MIME Doc Converter
	EAI MIME Doc Converter Properties

	Using Inline XML to Exchange Attachments
	Creating an Attachment
	Creating a Test Workflow

	10 External Business Components
	Process of Configuring External Business Components
	Creating the External Table Definition
	Creating the External Table Definition from a DDL File
	Creating the External Table Definition from an ODBC Data Source
	About Data Type Mappings for Importing Table Definitions
	About the New Imported Table Definition

	Mapping External Columns to Siebel CRM System Fields
	Specifying the Data Source Object
	Specifying Any Optional Table Properties
	Configuring the External Business Component
	Specifying Run-Time Parameters
	Configuring the Data Source Definition
	Configuring a User in LDAP or ADSI Security Adapter To Access EBCs
	Configuring the Data Source Definition for the Siebel Developer Web Client
	Supported Connector Names and SQL Styles
	Updating the Server Component to Use the New Data Source

	Using Specialized Business Component Methods for EBCs
	IsNewRecordPending Business Component Method
	GetOldFieldValue Business Component Method
	SetRequeryOnWriteFlag (PreWriteRecord event) Business Component Method
	SetRequeryOnWriteFlag (WriteRecord event) Business Component Method

	Usage and Restrictions for External Business Components
	About Using External Business Components with the Siebel Web Clients
	About Overriding Connection Pooling Parameters for the Data Source
	About Joins to Tables in External Data Sources
	Searching and Sorting on Fields Joined to External Tables

	About Distributed Joins
	Configuring Distributed Joins and Federated Fields
	Usage and Restrictions for Distributed Joins

	Troubleshooting External Business Components

	A Predefined EAI Business Services
	Predefined EAI Business Services

	B Property Set Representation of Integration Objects
	Property Sets and Integration Objects
	Property Set Node Types

	Example Instance of an Account Integration Object

	C DTDs for XML Gateway Business Service
	Outbound DTDs for the XML Gateway Business Service
	Delete
	Init
	Insert
	PreInsert
	Query
	Update

	Inbound DTDs for the XML Gateway Business Service
	Delete Response
	Init Response
	Insert Response
	PreInsert Response
	Query Response
	Update Response

	Index

