
Siebel Portal Framework
Guide
Siebel Innovation Pack 2017
July 2017

Copyright © 2005, 2017 Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions
on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in
your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast,
modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-
free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing
it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are “commercial computer software” pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed
on the hardware, and/or documentation, shall be subject to license terms and license restrictions
applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group. Android is a trademark of Google Inc.
Apple and iPad are registered trademark of Apple Inc.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use
of third-party content, products, or services, except as set forth in an applicable agreement between you
and Oracle.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website
at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle
Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Siebel Portal Framework Guide Siebel Innovation Pack 2017 3

Contents

Siebel Portal Framework Guide 1

Chapter 1: What’s New in This Release

Chapter 2: Siebel Portal Framework
Portal Framework Overview 9

Portal Framework Architecture 10

Chapter 3: Integrating External Content
About Portal Agents 11

Portal Agents and Authentication Strategies 12
About Disposition Types 12
Inline Disposition Type 13
IFrame Disposition Type 13
Web Control Disposition Type 14
Form Redirect Disposition Type 14
Portal Agent Restrictions 15
Disposition Types Summary 16

Process of Creating Portal Agents 17

Determining the Login Requirements 17

Portal Agent Configuration 19
Configuring Business Components to Handle External Data 19
Displaying External Content Within an Applet 20
Displaying External Content Outside of an Applet 20

Portal Agent Administration 21
Defining the External Host 21
Defining Web Applications 22
Defining Symbolic URLs 23
Defining Symbolic URL Arguments 25
Configuring Multiple Symbolic URLs and Hosts for Alternative Execution Locations 27
Defining Content Fixup 28

Defining End-User Login Credentials 29

Example Portal Agent 30
Review the Login Form 30

Siebel Portal Framework Guide Siebel Innovation Pack 2017

Contents 

4

Define the External Host 31
Define the Symbolic URL 32
Define Symbolic URL Arguments 33
Define User Login Credentials 33
Testing the Integration 34

Reviewing the SWE Log File 34

Portal Agent Command Reference 34
EncodeURL Command 35
FreePopup Command 35
IFrame Command 36
IsRecordSensitive Command 36
NoCache Command 37
NoFormFixup Command 37
PreLoadURL Command 37
PostRequest Command 38
UserLoginId Command 38
UserLoginPassword Command 38
UseSiebelLoginId Command 39
UseSiebelLoginPassword Command 39
WebControl Command 39

Chapter 4: Delivering Content to External Web Applications
Overview of the XML Web Interface 41

Accessing Siebel XML 42

Siebel Object Manager and Web Server Configuration and Markup Determination 43

Connecting to the XML Web Interface 44
Query String 44
XML Command Block 46

XML Request Structure 47
Query String 47
XML Command Block 48

XML Response Structure 54
XML Error Response 54
XML Response 54
XML Response Syntax 59
HTML Response 61
WML Response 61

Common Operations 61
Logging In 61

Contents 

Siebel Portal Framework Guide Siebel Innovation Pack 2017 5

Logging Off 62
Navigating to a Screen 62
Navigating Within a Screen 63
Querying Items 64
Modifying Records 66
Deleting Records 69
Picking Records 70

SWE API 73
SWE Commands 73
SWE Commands Available in Siebel Open UI 78
SWE Methods 79
SWE Arguments 85

Document Type Definition 88

Manipulating Siebel XML with XSL Style Sheets and XSLT 95
Defining SWE Style Sheet Tags 96
XML-Specific Template Tag 96
Sample XSLT 96

Chapter 5: Web Engine HTTP TXN Business Service
About the Web Engine HTTP TXN Business Service 101

Web Engine HTTP TXN Business Service API 102

Example of Using Web Engine HTTP TXN Business Service 105

Sample Code for Invoking Methods of Web Engine HTTP TXN Business Service 110

Index

Siebel Portal Framework Guide Siebel Innovation Pack 2017

Contents 

6

Siebel Portal Framework Guide Siebel Innovation Pack 2017 7

1 What’s New in This Release

What’s New in Siebel Portal Framework Guide, Siebel Innovation Pack
2017
No new features have been added to this guide for this release. This guide has been updated to
reflect only product name changes.

What’s New in Siebel Portal Framework Guide, Siebel Innovation Pack
2016
No new features have been added to this guide for this release. This guide has been updated to
reflect only product name changes.

What’s New in Siebel Portal Framework Guide, Siebel Innovation Pack
2015
Table 1 lists the changes in this revision of the documentation to support this release of the software.

Table 1. What’s New in Siebel Portal Framework Guide, Siebel Innovation Pack 2015

Topic Description

“SWE Commands Available in
Siebel Open UI” on page 78

Modified topic. It describes updated SWE commands available
in Siebel Open UI.

Siebel Portal Framework Guide Siebel Innovation Pack 2017

What’s New in This Release 

8

Siebel Portal Framework Guide Siebel Innovation Pack 2017 9

2 Siebel Portal Framework

This chapter provides an overview of Oracle’s Siebel Portal Framework and summarizes the
technologies that make up the Portal Framework. It contains the following information:

 Portal Framework Overview on page 9

 Portal Framework Architecture on page 10

Portal Framework Overview
Enterprises are often composed of many different information technology resources, such as:

 Shared network directories.

 Department intranet sites.

 Legacy applications.

 Applications developed in-house.

 Purchased Web applications.

With many disparate applications and technologies, IT resources are difficult to maintain and difficult
to use. For example, applications:

 Follow different user interface guidelines.

 Are rendered with different themes.

 Track profile attributes differently.

 Vary in the quality of online assistance.

 Have separate login and password credentials.

 Have different search functionality.

One solution to this problem is to integrate the various applications and content sources used in an
enterprise and present them in a single user interface, called a portal. The Siebel Portal Framework
allows you to do this. The Portal Framework provides you with the tools and supporting technologies
that allow you to:

 Aggregate external data with Siebel data and present it in the Siebel user interface.

 Deliver Siebel CRM data to external applications.

 Integrate external application business logic and data with Siebel Business Applications.

Siebel Portal Framework Guide Siebel Innovation Pack 2017

Siebel Portal Framework  Portal Framework Architecture

10

Portal Framework Architecture
The portal framework includes the following framework components:

 Enterprise Application Integration

 Portal Agents that integrate external content into the Siebel user interface

 XML Web interface for delivery of Siebel content to external applications

Enterprise Application Integration
Siebel EAI provides mechanisms for sharing data and business logic with other applications,
including:

 Integration objects

 Virtual business objects

 Programming APIs

 Predefined adapters and connectors

For more information about Siebel EAI, see Overview: Siebel Enterprise Application Integration and
other EAI titles on the Siebel Bookshelf. The Siebel Bookshelf is available on Oracle Technology
Network (OTN) and Oracle Software Delivery Cloud. It might also be installed locally on your intranet
or on a network location.

Portal Agents
Portal Agents provide you with a mechanism to retrieve content from a non-Siebel source and display
it in the Siebel user interface. The Portal Agent retrieves content on behalf of the user, logging on
to the external application using the user’s credentials and retrieving only the content that is
targeted for the user. Portal Agents provide single sign-on capability and a profile tracking
mechanism. For more information about Portal Agents, see “About Portal Agents” on page 11.

XML Web Interface
In enterprises where a non-Siebel portal framework is already established, you might have to be able
to deliver Siebel content to other applications and frameworks.

If you have configured your Siebel application to display data in a high interactivity client, then the
XML Web interface provides you with a mechanism to deliver Siebel data to external applications as
XML documents. For more information, see Chapter 4, “Delivering Content to External Web
Applications.”

NOTE: The Siebel Open UI client supports HTML markup only. If you have configured your Siebel
application to display data in a Siebel Open UI client, then you must use a different technology to
send this content. For information about how to send this content from Siebel Open UI, see
Configuring Siebel Open UI. The SWE API described in “SWE API” on page 73 includes several SWE
commands that are available in Siebel Open UI.

Both methods provide the external application with a flexible format for integrating Siebel data into
its user interface.

Siebel Portal Framework Guide Siebel Innovation Pack 2017 11

3 Integrating External Content

This chapter provides an overview of Portal Agents. It describes the configuration and administration
tasks necessary to display external content in the Siebel user interface. It also includes a reference
topic that lists all of the commands available for use with Portal Agents. This chapter contains the
following information:

 About Portal Agents on page 11

 Process of Creating Portal Agents on page 17

 Determining the Login Requirements on page 17

 Portal Agent Configuration on page 19

 Portal Agent Administration on page 21

 Defining End-User Login Credentials on page 29

 Example Portal Agent on page 30

 Reviewing the SWE Log File on page 34

 Portal Agent Command Reference on page 34

About Portal Agents
Portal Agents allow you to integrate external data into the Siebel user interface. Portal Agents
retrieve data by sending HTTP requests to external applications, and then display the HTML results
in a Siebel applet or on some other portion of a Siebel application Web page.

Portal Agents combine a set of features and technologies that allow you to integrate external content
at the user interface layer, including the following:

 Single sign-on technology (SS0). For applications that are participating in a single sign-on
framework, this feature eliminates the need for the user to enter login credentials, such as user
name and password, more than once for each work session. For more information about single
sign on, see Siebel Security Guide.

 Session management and session reuse. Allows the Siebel application and the external
application to maintain a user’s session context, without reauthenticating for subsequent
requests. This minimizes session resource overhead on the external application, and allows the
user to retain session context, such as shopping cart contents.

 Time-out handling. The Siebel Server automatically reauthenticates when a request is
submitted after the external application’s timeout period has passed.

 Symbolic URLs, with multiple disposition types. Allows content to be displayed in different
ways, such as in a new browser window, inline with the other content, in an <iframe> tag. For
more information, see “About Disposition Types” on page 12.

Siebel Portal Framework Guide Siebel Innovation Pack 2017

Integrating External Content  About Portal Agents

12

 Session proxy. For content integrated using a disposition type of Inline, the Siebel Server
manages the interactions with external applications on behalf of the user. For more information
about the Inline disposition type, see “Inline Disposition Type” on page 13.

 Symbolic URL commands. Commands that direct the Portal Agent to assemble the URL for the
external application in several ways. These include dynamically referencing the user’s user name
and password, retrieving stored user name and password values, retrieving data from the user’s
personalization profile, establishing the size of an <iframe> tag, and determining whether to set
the browser cookies from the application server’s login page. For a complete list of commands,
see “Portal Agent Command Reference” on page 34.

NOTE: Portal Agents do not integrate data at the data layer or integrate business logic. Other
mechanisms in the Siebel Portal Framework, such as Integration Objects and Virtual Business
Components, are designed to meet those types of integration needs. For more information about
Siebel EAI, see Overview: Siebel Enterprise Application Integration.

This topic contains the following information:

 “Portal Agents and Authentication Strategies” on page 12

 “About Disposition Types” on page 12

Portal Agents and Authentication Strategies
Portal Agents can be configured to support different authentication strategies:

 Simple Portal Agents. The external application does not require any authentication
parameters.

 Single Sign-On Portal Agents. The external application requires authentication parameters.
Form-based Portal Agents send authentication parameters as part of the body portion of the
HTTP request.

For more information about authentication, see Siebel Security Guide.

About Disposition Types
One of the steps in setting up a Portal Agent is creating a symbolic URL. The symbolic URL specifies
the information necessary to construct the HTTP request to send to the external application.
Symbolic URLs can be one of several disposition types. The disposition type determines the
following:

 The interaction between the browser, the Siebel Server, and the external application.

 How external content is displayed in the user interface.

It is important to understand these disposition types and determine which one suits your integration
needs. Each disposition type is discussed in one of the following topics:

 “Inline Disposition Type” on page 13

 “IFrame Disposition Type” on page 13

Integrating External Content  About Portal Agents

Siebel Portal Framework Guide Siebel Innovation Pack 2017 13

 “Web Control Disposition Type” on page 14

 “Form Redirect Disposition Type” on page 14

For information about defining symbolic URLs, see “Defining Symbolic URLs” on page 23.

Inline Disposition Type
With a symbolic URL disposition type of Inline, the Siebel Server receives content sent by an external
application. It combines the external content with Siebel-produced content and composes a single
HTML page, which it then sends to the client browser for display to the user. Optionally, links in the
aggregated content are rewritten so they reference the Siebel Server (proxy), rather than
referencing the external application server directly. This allows the Siebel Server to handle links in
the aggregated content in such a way that it appears to the user as one integrated application rather
than from different application servers.

The Inline disposition type supports session management. The Siebel Server uses session
management to manage session cookies and automatically log in again to an external application
after a time out occurs.

The Inline disposition type requires that:

 The page you are integrating does not include complex JavaScript and does not reference frames.

 The maximum number of characters in the calling URL is 2048.

 No methods other than the GET method are invoked.

If the Inline disposition type is not appropriate, then you might try the IFrame disposition type.

IFrame Disposition Type
Use this disposition type when aspects of the external application do not allow content to be
aggregated with other Siebel content. For more information, see “Portal Agent Restrictions” on
page 15.

The IFrame disposition type uses the <iframe> tag to create an internal frame as part of the page
generated by the Siebel Server. It allows the Portal Agent to retrieve content to populate the internal
frame. This content does not pass through the Siebel Server, but is directly requested by the client
and sent by the application server to the user’s browser. Although this disposition type is not as
preferable as the Inline disposition type, in most cases, it is a method that works.

The IFrame disposition type supports JavaScript and frames. Therefore, if the Inline disposition type
does not work, then the IFrame option is the best option. The IFrame disposition type also supports
the Session Keep Alive feature. However, it does not support session management.

The IFrame disposition type works in many cases. However, it does not work when frames displayed
within the <iframe> tag refer to top-level JavaScript objects. If frames in the page that you are trying
to integrate refer to top-level JavaScript objects, then you might use the Web Control disposition
type instead, if it is applicable.

Siebel Portal Framework Guide Siebel Innovation Pack 2017

Integrating External Content  About Portal Agents

14

Contextual Navigation Between Siebel Business Applications and
Oracle Business Intelligence Pages
When an Oracle® Business Intelligence (Oracle BI) page is integrated with a Siebel application
through the portal framework and the portal content is dependent on the Siebel record, any change
or update of the record in the Siebel application must also be reflected in the portal content. For
example, for an Oracle BI applet embedded in a view with the Account List applet, its content
dynamically changes at the same time that the content is changed within the Account List applet. To
enable this behavior, you must do the following:

 Define a symbolic URL. For more information, see “Defining Symbolic URL Arguments” on page 25.

 Set parameters for the symbolic URL. For more information, see “Portal Agent Command
Reference” on page 34.

Web Control Disposition Type
For the high interactivity client only, you can use the Web Control disposition type when the IFrame
or Inline disposition types do not work. Typically, this is because of hardcoded references to specific
frame names in the external application’s HTML. For more information, see “Portal Agent Restrictions”
on page 15.

The Web Control disposition type embeds an Internet Explorer ActiveX object in the Siebel page and
provides it to the external application. In the Web Control disposition type, similar to the IFrame
type, the external application sends content directly to the user’s browser, bypassing the Siebel
Server. The external application then behaves as if the ActiveX IE instance is an independent Web
browser.

NOTE: The Web Control disposition type is not available in Siebel Open UI.

Form Redirect Disposition Type
In the Form Redirect scenario, the Siebel Web client submits a request to the Siebel Server. The
Siebel Server creates a form with the necessary authentication information in it, and then sends the
form back to the browser. The browser loads the form and then submits it to the external host for
processing. The external host sends back the results, which the browser displays in a new window.

The Form Redirect disposition type is usually displayed in a new window, rather than inline with other
Siebel applets.

The Form Redirect disposition type is not commonly used with Siebel Business Applications.

Integrating External Content  About Portal Agents

Siebel Portal Framework Guide Siebel Innovation Pack 2017 15

Portal Agent Restrictions
Portal Agents are meant to bring existing applications and content into the Siebel user interface
without requiring additional modifications of the external application. However, this is not always
possible due to the way HTML and Web browsers are designed. For example:

 The use of frames by an external application might not be amenable to inline aggregation
methods.

 Specific frame references in the returned content referring to global frames (_NEW, _TOP,
.parent()) might not be amenable to inline aggregation methods.

 Reliance on JavaScript functions defined in (assumed) external frames might not be amenable
to inline aggregation methods.

 URLs that are created dynamically by JavaScript might not be amenable to any fixup techniques,
because the URLs would not be easily parsed on the HTML content.

For these reasons, an Inline disposition type does not work often. However, if you control both the
Siebel application instance and the external application, and can resolve some of these issues, then
the Inline disposition type might work correctly. For more information about the Inline disposition
type, see “Inline Disposition Type” on page 13.

If you do not have control over the external application, the IFrame disposition type is the method
most likely to provide satisfactory results. It works with about 80% of the form-based application
sites tested. For more information about the IFrame disposition type, see “IFrame Disposition Type”
on page 13.

Siebel Portal Framework Guide Siebel Innovation Pack 2017

Integrating External Content  About Portal Agents

16

Disposition Types Summary
Table 2 summarizes the characteristics of each disposition type.

Table 2. Disposition Types Summary

Disposition
Type Benefits Limitations

Inline  Inline integration with the
Siebel user interface.

 Session management, including
managing session cookies and
automatic re-login after time
out.

 Opens an external URL in a new
popup window.

 Only works in very few cases.

 Does not work with complex
JavaScript.

 Does not work if there are reference to
frames.

 Supports the GET method only.

 URL limited to 2048 characters.

IFrame  Inline integration with the
Siebel user interface. Supports
complex JavaScript.

 Supports references to frames.

 Session Keep Alive supported.

 Works for most cases.

 No session management.

 Does not support frames that
reference top-level JavaScript objects.

 Does not open an external URL in a
popup window.

Web Control Supports frames that reference top-
level JavaScript Objects, because
JavaScript does not refer to objects
outside of the Web control.

 For the high interactivity client only.

 No session management.

 Browser functionality, such as the back
button, is only available by right-
clicking in the Web control.

 ActiveX objects that contain other
objects are reset if you change tabs
and then return to the Web control.

 Does not open an external URL in a
popup window.

 Web Control requires more system
overhead than IFrame.

Integrating External Content  Process of Creating Portal Agents

Siebel Portal Framework Guide Siebel Innovation Pack 2017 17

Process of Creating Portal Agents
To create a Portal Agent, perform the following tasks:

1 “Determining the Login Requirements” on page 17.

2 “Configuring Business Components to Handle External Data” on page 19.

3 Complete one of the following:

 “Displaying External Content Within an Applet” on page 20.

 “Displaying External Content Outside of an Applet” on page 20.

4 “Defining Web Applications” on page 22.

5 “Defining Symbolic URLs” on page 23.

6 “Defining Symbolic URL Arguments” on page 25.

Determining the Login Requirements
Before you configure Portal Agents, you must understand what information is required by the
external application to authenticate users. Typically, this information is gathered using a form page,
also called a login page, and then sent to the external application. You must determine exactly what
information the form gathers from the user and sends to the external application, including field
names and values.

In cases where you have specific knowledge about how an external application is implemented and
can consult with authoritative sources regarding how the application authenticates users,
determining the required input fields and values is relatively simple.

In cases where you do not have specific knowledge about how an external application is
implemented, you must attempt to understand its authentication method by examining the
application’s login page. The steps below describe an approach that you can use to reverse-engineer
a login page and provide related Portal Agent configuration tips.

NOTE: It is not always possible to reverse-engineer a login page. For example, JavaScript might
process login field values prior to delivering the POST back to the application server, session values
might be encoded in the form itself, or session values might be stored in the browser's session
cookies.

This task is a step in “Process of Creating Portal Agents” on page 17.

To reverse-engineer a login page
1 Navigate to the external application’s login page and determine whether the external application

uses authentication.

For more information, see “Defining Symbolic URLs” on page 23.

2 If the external application uses form-based authentication, then view the login page’s HTML
using your browser’s view source command.

Siebel Portal Framework Guide Siebel Innovation Pack 2017

Integrating External Content  Determining the Login Requirements

18

3 Identify the form on the login page that asks for user credentials (the form might ask for other
information as well) and identify the input fields in this form used to authenticate users.

It is usually best to strip out all non-form lines of HTML and to isolate the <input> tags. That is,
remove lines previous to <form ...> and after </form> and remove lines that are not part of the
<input> tags.

4 Determine whether the method attribute of the <form> tag is POST.

If it is POST, then you must define the PostRequest command as an argument of the symbolic
URL. For more information, see “Defining Symbolic URL Arguments” on page 25 and “PostRequest
Command” on page 38.

If it is GET, then you do not have to define a symbolic URL command, because the default method
of symbolic URLs is GET.

5 Determine the target of the form’s action attribute, which is usually specified as action="some
string".

If the target of the action attribute is an absolute URL, one that begins with http or a forward
slash (/), then use this URL as the base of the Portal Agent.

If it is a relative address, then you also have to determine where the root of the URL is defined.
It could be defined relative to the URL of the login page itself (most common), in a <codebase>
tag (rare) or in JavaScript (hard to determine).

The target URL is defined using the Host Administration View and the Symbolic URL
Administration view. For more information, see “Defining the External Host” on page 21 and
“Defining Symbolic URLs” on page 23.

6 Determine any argument values defined in the target URL.

These are the characters after the ? character. Usually, these are simple field-value constants.
The exception is when a field or a value is a session identifier that is dynamically assigned by the
external application server and is only valid for a period before it times out. In this case, it might
not be possible to configure a Portal Agent. Define any argument values contained in the target
URL as symbolic URL arguments. For more information, see “Defining Symbolic URL Arguments”
on page 25.

7 Identify each of the form’s <input> tags and determine which ones are necessary to send to the
external application for authentication.

Often there are <input> tags in the form with a type attribute of hidden that are not evident
when interacting with the application. Determining whether hidden fields are optional or required
is often process of trial and error.

Some <input> tags might not have values identified. Either these fields are awaiting input to be
entered by the user (for example, login name or password) or they are hidden fields with no
values.

 If the input field is specific to the user (it asks for the user’s login name and password), then
you can use UserLoginId Command and UserLoginPassword Command commands to instruct
the Portal Agent to retrieve the user’s credentials from the user’s My Logins view. For more
information, see “Defining End-User Login Credentials” on page 29.

Integrating External Content  Portal Agent Configuration

Siebel Portal Framework Guide Siebel Innovation Pack 2017 19

 If there are hidden fields with no values, then, when you enter them as symbolic URL
arguments, make sure that the Required Argument column is not checked. If it is checked,
and the input field has no value, then the Portal Agent does not send this request to the
target application server, because there is no value to put in its place.

You define the input fields and values as symbolic URL arguments. For more information, see
“Defining Symbolic URL Arguments” on page 25.

NOTE: The Mozilla browser includes a page info command (^I) that analyzes forms on a page and
displays the method, input fields, and so on.

Portal Agent Configuration
Using Portal Agents to integrate external content into the Siebel user interface requires some simple
configuration in Siebel Tools. You must configure a field on the business component to handle
external data and then configure either an applet or a Web page item to display the content in the
user interface. An applet displays external content inside the applet container on a view. A Web page
item displays external content outside of an applet, such as in the banner frame for example.

NOTE: This topic describes the configuration tasks that are unique to integrating external content
with the Siebel user interface. It does not describe standard configuration tasks that you might be
required to perform. For example, after you configure an applet to display external content, you
might have to associate that applet with a view, add the view to a responsibility, and so on. These
additional tasks are standard procedures for configuring Siebel Business Applications and are outside
the scope of this book. For more information about configuring Siebel Business Applications, see
Configuring Siebel Business Applications.

This topic contains the following information:

 “Configuring Business Components to Handle External Data” on page 19

 “Displaying External Content Within an Applet” on page 20

 “Displaying External Content Outside of an Applet” on page 20

Configuring Business Components to Handle External
Data
To configure business components to handle external data using a symbolic URL, you must create a
new calculated field on the business component. Rather than representing structured content, such
as records in a database, this field represents the HTML content sent from an external host.

NOTE: Although a symbolic URL displays data that is not stored in the database, the business
component must have at least one record stored in an underlying table so that it is instantiated at
run time.

This task is a step in “Process of Creating Portal Agents” on page 17.

Siebel Portal Framework Guide Siebel Innovation Pack 2017

Integrating External Content  Portal Agent Configuration

20

To configure a business component to handle external data using a symbolic URL
1 Create a new field on the business component.

2 Set the field’s Calculated property to TRUE.

3 Set the field’s Type property to DTYPE_TEXT.

4 In the Calculated Value field, enter the name of the symbolic URL (enclosed in double quotes)
that you want to use to submit the HTTP request.

The name of the symbolic URL in the Calculated Value field must be enclosed in double quotes
so that it evaluates as a constant. See the business component named AnalyticsSSO in the Siebel
Repository for an example of fields configured this way.

Displaying External Content Within an Applet
After you have created the calculated field on the business component, you expose it in the user
interface. You display the external content using a control in a form applet or list applet.

NOTE: You can also expose external content outside an applet, such as in the banner area. See
“Displaying External Content Outside of an Applet” on page 20.

This task is a step in “Process of Creating Portal Agents” on page 17.

To display external content within an applet
1 Create an applet that you want to use to display the external content.

The applet must be based on the business component that you configured in “Configuring
Business Components to Handle External Data” on page 19.

2 Add a new control or list column to the applet.

3 Associate the control or list column with a calculated field on the business component that is
configured to represent the external data.

4 Set the control or list column’s Field Retrieval Type property to Symbolic URL.

5 Set the control or list column’s HTML Type property to Field.

Displaying External Content Outside of an Applet
After you have created the calculated field on the business component, you expose it in the user
interface. You can display the external content outside of an applet using Web Page Items.

NOTE: You can also expose external content inside an applet, by using an Applet Control or List
Column. For more information, see “Displaying External Content Within an Applet” on page 20.

This task is a step in “Process of Creating Portal Agents” on page 17.

Integrating External Content  Portal Agent Administration

Siebel Portal Framework Guide Siebel Innovation Pack 2017 21

To display content outside of an applet
1 Start Siebel Tools.

2 Go to the Web Page object type and select the Web page on which to display external data.

3 Create a new Web Page Item or use an existing one.

4 Set the Type property of the Web Page Item to Field.

5 Create the following two Web Page Item Parameters:

NOTE: The symbolic URL is mapped to the calculated field defined for the business component.

Portal Agent Administration
You administer Portal Agents through several views located under the Administration - Integration
screen in the Siebel Web client. As described in the following topics, these views allow you to define
how to handle links, define the external host, and define the HTTP request that is sent to the external
host.

This topic contains the following information:

 “Defining the External Host” on page 21

 “Defining Web Applications” on page 22

 “Defining Symbolic URLs” on page 23

 “Defining Symbolic URL Arguments” on page 25

 “Configuring Multiple Symbolic URLs and Hosts for Alternative Execution Locations” on page 27

 “Defining Content Fixup” on page 28

Defining the External Host
You define the external data hosts in the Host Administration view. This view allows you to do the
following:

 Maintain external host names in a single place.

 Define how to handle (fix) links after external HTML content is rendered.

Name Value

FieldRetrievalType Symbolic URL

SymbolicURL [name of symbolic URL]

Siebel Portal Framework Guide Siebel Innovation Pack 2017

Integrating External Content  Portal Agent Administration

22

To define a data host
1 Navigate to the Administration - Integration screen, and then WI Symbolic URL List.

2 From the drop-down menu, select Host Administration.

3 Enter a new record and define the necessary fields.

Some of the fields are described in the following table:

Defining Web Applications
Web applications allow multiple symbolic URLs to send requests to the same Web application and
share the same session. This is useful if you have two different applet controls that use symbolic
URLs to submit requests to the same Web application. You can associate these symbolic URLs to a
single Web application and specify whether they share the same session.

There might be cases in which you do not want requests to share the same session. For example,
you might not want to share a session when a session cookie contains more information than the
session ID, as this could result in unexpected behavior. When you define a Web application, you
specify whether it shares sessions.

Web applications also allow you to define the Time Out value for the session time out feature. The
Session Time Out feature is only applicable to symbolic URLs with a disposition type of Inline.

This task is a step in “Process of Creating Portal Agents” on page 17.

To define a Web application
1 Navigate to the Administration - Integration screen, and then WI Symbolic URL List.

2 From the drop-down menu, select Web Application Administration.

3 Enter a record and complete the fields.

Some of the fields are described in the following table:

Field Comments

Name Name of the external host.

Virtual Name User-defined name for the host.

Authentication
Type

Leave this value blank. For more information, see “Defining Symbolic URLs”
on page 23.

Field Description

Shared Indicates whether requests generated by symbolic URLs associated with
this Web application share the same session.

Time Out Defines the time out parameter for the session management feature, which
is only applicable to symbolic URLs with a disposition type of Inline.

Integrating External Content  Portal Agent Administration

Siebel Portal Framework Guide Siebel Innovation Pack 2017 23

Defining Symbolic URLs
You use the Symbolic URL Administration view to specify how to construct the HTTP request to the
external application and to define any arguments and values to be sent as part of the request.

This task is a step in “Process of Creating Portal Agents” on page 17.

To define a symbolic URL
1 Navigate to the Administration - Integration screen, and then WI Symbolic URL List.

2 From the drop-down menu, select Symbolic URL Administration.

3 In the Symbolic URL Administration list view, enter a new record.

Some of the fields are defined in the following table:

Field Description

URL Use the URL field to enter a URL for the external application. A best practice is
to substitute the host’s Virtual Name, the one that you defined in the Host
Administration view, for the host’s actual name. Doing this makes
administering host names easier, because you might have many symbolic URLs
pointing to one host. If the host name changes, then you only need to change
it in the Host Administration applet rather than having to change it in several
symbolic URL definitions.

For example, https://Virtual_Host/path...

NOTE: Use the Secure Sockets Layer protocol (SSL) with symbolic URLs to
ensure that communication is secure. For more information about using SSL,
see Siebel Security Guide.

For applications that use form-base authentication, the URL is identified by the
action attribute of the <form> tag. For more information, see “Determining the
Login Requirements” on page 17.

Host Name The Virtual Name of the host defined in the Host Administration view.

Siebel Portal Framework Guide Siebel Innovation Pack 2017

Integrating External Content  Portal Agent Administration

24

Fixup Name Name of the fixup type defined in the Fixup Administration view. The fixup type
defines how links embedded in the external HTML content are rendered. For
example:

 Default. Use this fixup type with the IFrame disposition type. Link fixup is
inside the view. This fixup does not affect any of the links. The links
(relative or absolute) remain as they are with the content being passed
back in its original form.

 InsideApplet. This fixup converts all of the relative links to absolute links
and any links using a host defined in the Host Administration view are
proxied in order to maintain SWE context.

 OutsideApplication. This fixup converts all of the relative links to
absolute links using the host and path of the parent URL. No links are
proxied.

Multivalue
Treatment

Determines how arguments are handled. Possible values are:

 Comma Separated. Instructs SWE to insert a comma between the values
defined in the symbolic URL arguments when appending the arguments to
the URL. It inserts a comma after the value in the first Argument Value field
and the first value in the second Argument Value field. The second
Argument Value field is simply a text string entered by the user.

 Separate Arguments. Instructs SWE to enter separate arguments for
each value defined in the two Argument Value fields.

 Use First Record Only. Uses the first record in the current record set.

Field Description

Integrating External Content  Portal Agent Administration

Siebel Portal Framework Guide Siebel Innovation Pack 2017 25

Defining Symbolic URL Arguments
Symbolic URL Arguments allow you to configure Portal Agents in several ways. You use symbolic URL
arguments for two purposes, to define data to be sent to an external host and to submit commands
to SWE that affect the behavior of Portal Agents.

When defining arguments that send data, such as authentication requirements, the Argument Name
and Argument Value are appended to the URL as an attribute-value pair. You can define symbolic
URL arguments that send data as constants or that dynamically retrieve data from the Siebel
database. Symbolic URLs allow you to retrieve data from the user’s instantiated Siebel business
component, such as Service Request or Account, or retrieve data from the Siebel Personalization
business component, such as the user’s ZIP Code or Language.

For information about how to determine required data for applications that use form-based
authentication, see “Determining the Login Requirements” on page 17.

Symbolic URL arguments also allow you to implement commands which you use to define the
behavior of Portal Agents. For usage descriptions of available commands, see “Portal Agent Command
Reference” on page 34.

SSO
Disposition

The value selected in this field determines how the HTTP request is constructed
and sent and how the external content is rendered in the user interface.
Possible values are:

 Inline. Proxies the request through the Siebel Server and displays content
inline with other applets on a view.

 IFrame. Uses the <iframe> tag to display content inline with other applets
on a view.

 Web Control. Uses an ActiveX control to display content inline with other
applets on a view. Browsers displaying symbolic URLs of type Web Control
must be set to handle ActiveX controls. For more information about
browser security settings, see Siebel Security Guide.

 Form Redirect. SWE constructs a form which it sends back to the browser,
which the browser then sends to the external host. The content received is
displayed in a new window.

 Server Redirect. SWE sends the browser a 302 Response with the value
of the external host’s URL in the header. The browser is redirected to the
external host. The content received is displayed in a new window. Note that
for Server Redirect there is a required Symbolic URL argument. For more
information, see “Portal Agent Restrictions” on page 15.

For detailed descriptions of each disposition type, see “About Portal Agents” on
page 11.

Web
Application
Name

Associates a Web application with this symbolic URL. For more information
about Web applications, see “Defining Web Applications” on page 22.

Field Description

Siebel Portal Framework Guide Siebel Innovation Pack 2017

Integrating External Content  Portal Agent Administration

26

This task is a step in “Process of Creating Portal Agents” on page 17.

To define symbolic URL arguments
1 Navigate to the Administration - Integration screen, and then WI Symbolic URL List.

2 From the drop-down menu, select Symbolic URL Administration.

3 In the Symbolic URL Administration list view, select the symbolic URL that you want to configure.

4 In the Symbolic URL Arguments form, enter the arguments that need to be sent to the external
host.

Some of the fields are defined in the following table:

Field Description

Name Name of the argument. For arguments of type Constant, Field, and
Personalization Attribute, this field defines the exact field name expected by the
external application. It is the first part of an attribute-value pair appended to the
URL.

For argument types of commands, the Name can usually be anything. The only
exception to this is for the EncodeURL and PreloadURL commands. For more
information, see “Portal Agent Command Reference” on page 34.

Required
Argument

When this field is checked (default) the argument must have a value. If you are
configuring an argument that does not have a value, then uncheck the Required
field. If an argument has no value and the Required field is checked, then the
request is not sent because there is no value to append to the URL.

Argument
Type

The Argument Type determines the source of the data to be send along in the
HTTP request. Possible values are:

 Constant. Sends the value defined in the Argument Value field in the
request.

 Field. Sends the value of a single-value or multi-value field from the current
Siebel business component.

 Profile Attribute. Sends the value of a field from the Siebel Personalization
business component.

 URL Argument. Data comes from the named argument of the current
request.

 Language Value. The user’s current language setting; for example, ENU.

 Command. Implements commands that allow you to affect the behavior of
the symbolic URL. For a complete list of commands, see “Portal Agent
Command Reference” on page 34.

Integrating External Content  Portal Agent Administration

Siebel Portal Framework Guide Siebel Innovation Pack 2017 27

Configuring Multiple Symbolic URLs and Hosts for
Alternative Execution Locations
You can configure multiple symbolic URLs and symbolic URL hosts, to execute applications in
alternative locations (for example, for testing or demonstration purposes). This topic contains the
following information:

 “Configuring Alternative Symbolic URLs” on page 28

 “Configuring Alternative Symbolic URL Hosts” on page 28

NOTE: When you use an alternative symbolic URL host, all symbolic URLs in the application that are
configured to use that host will use the alternative host name. In contrast, when you use alternative
symbolic URLs, each symbolic URL used in the application must have its own alternative symbolic
URL. Therefore, you can reduce the effort required to execute the application in an alternative
location by using an alternative symbolic URL host rather than a symbolic URL.

Argument
Value

The value of the argument varies depending on the Argument Type. Descriptions
of possible values for each argument type are described below.

If the Argument Type is one of the following:

 Constant. The Argument Value is the second part of the attribute-value pair
that is appended to the URL.

 Field. The Argument Value defines a field name from the current business
component. The data from this field is the second part of an attribute-value
pair that is appended to the URL.

 Profile Attribute. The Argument Value defines a field name on the Siebel
Personalization business component. The data from this field is the second
part of an attribute-value pair that is appended to the URL

 URL Argument. The Argument Value defines the name of the argument on
the incoming SWE request.

 Language Value. The Argument Value is left null.

 Command. The Argument Value typically defines the name of the command.
For more information, see “Portal Agent Command Reference” on page 34.

Append as
Argument

When this field is checked (default), the value is added as a URL argument on
the outgoing request. If this field is not checked, then the value is substituted in
the text of the outgoing URL.

Sequence Determines the sequence of the arguments. In some cases the target host
requires arguments in a particular order.

Field Description

Siebel Portal Framework Guide Siebel Innovation Pack 2017

Integrating External Content  Portal Agent Administration

28

Configuring Alternative Symbolic URLs
To use an alternative symbolic URL, define the additional symbolic URL at the Symbolic URL
Administration view, and specify the following parameter in the [DataSources] section of the
application’s configuration file:

SymbolicURLSuffix. The value of this parameter is appended to the end of the name of the default
symbolic URL to specify the name of the alternative symbolic URL.

For example, if the parameter SymbolicURLSuffix is set to _MyDemo in the application’s
configuration file, and the default symbolic URL name is AccountNews, then the symbolic URL that
is used when the application is executed is AccountNews_MyDemo. The URL value associated with
the AccountNews_MyDemo symbolic URL in the Symbolic URL Administration page is used.

NOTE: When you define the alternative symbolic URL, its name must match the name of the existing
symbolic URL with the value of the SymbolicURLSuffix parameter appended to it.

For more information about defining symbolic URLs, see “Defining Symbolic URLs” on page 23.

Configuring Alternative Symbolic URL Hosts
To use an alternative symbolic URL host, define the additional symbolic URL host at the Host
Administration view, and specify the following parameter in the [DataSources] section of the
application’s configuration file:

SymbolicURLHostSuffix. This value is appended to the end of the name of the existing symbolic
URL host to specify the name of the alternative symbolic URL host.

For example, if the parameter SymbolicURLHostSuffix is set to _demo in the application’s
configuration file, and the existing host name is ABC, then the new host name is ABC_demo. The
host name value associated with ABC_demo in the Host Administration page is used.

NOTE: When you define the alternative symbolic URL host, its name must match the name of the
existing symbolic URL host with the value of the SymbolicURLHostSuffix parameter appended to it.

For more information about defining hosts, see “Defining the External Host” on page 21.

Defining Content Fixup
The Fixup Administration view allows you to define how links embedded within external HTML content
are rendered in the Siebel user interface. The fixup types that you define here will be associated with
symbolic URLs.

To define a fixup type
1 Navigate to the Administration - Integration screen, and then WI Symbolic URL List.

2 From the drop-down menu, select Fixup Administration.

Integrating External Content  Defining End-User Login Credentials

Siebel Portal Framework Guide Siebel Innovation Pack 2017 29

3 Enter a new record and define the fields.

Some of the fields are described in the following table:

NOTE: Fixup is required for all links within high interactivity applications.

Defining End-User Login Credentials
The Portal Framework provides a mechanism to store user login credentials for external Web
applications. The SSO Systems Administration view allows you to specify an external application and
then enter login credentials on behalf of users. The My Logins view, located in the User Preferences
screen, is used by end users to maintain their own credentials.

To specify an external Web application and define login credentials
1 Navigate to the Administration - Integration screen, and then SSO Systems Admin List.

Field Comments

Link Context Select one of the following values:

 Do Nothing. This fixup does not affect any of the links. The links (relative
or absolute) remain as they are with the content being passed back in its
original form.

 Outside Application. This fixup converts all of the relative links to
absolute links using the host and path of the parent URL. No links are
proxied.

 Inside Application. This fixup converts all of the relative links to
absolute links and any links using a host defined in the Host
Administration view are proxied in order to maintain SWE context. After
the user clicks a link, this fixup type renders HTML in the view, using the
entire view for display.

 Inside Applet. This fixup handles links the same way as the Inside
Application fixup type. However, in this case, when a user clicks a link, it
renders HTML within an applet. The other applets remain present on the
view.

Context View
Name

Name of the view that displays the link. This is optional.

Link Target Specifies the name of a specific target frame of the link. For example, _blank
for a new browser window or AnyName to open a window of that name. This
option is not often used.

Siebel Portal Framework Guide Siebel Innovation Pack 2017

Integrating External Content  Example Portal Agent

30

2 In the SSO Systems list, enter a new record and define the following:

3 If you are defining login credentials on behalf of end users, then, in the SSO System Users list,
enter end-user login names and passwords.

Example Portal Agent
This topic provides an example of using a symbolic URL to integrate content from an external site.
The high-level steps to do this are:

1 “Review the Login Form” on page 30.

2 “Define the External Host” on page 31.

3 “Define the Symbolic URL” on page 32.

4 “Define Symbolic URL Arguments” on page 33.

5 “Define User Login Credentials” on page 33.

6 “Testing the Integration” on page 34.

Each of these steps is described in the topics that follow. This example uses www.example.com,
which does not have the login page and other elements described here; substitute your actual site.

NOTE: This example assumes that the underlying objects are already configured to support the
symbolic URL. For more information, see “Portal Agent Configuration” on page 19.

Review the Login Form
By reviewing the login page at www.example.com, you can determine the target URL of the Action
attribute and the required arguments that are being passed to the Web application. Assume that
www.example.com has a login page that contains the following <form> and <input> tags:

<form action="/index.shtm" method="POST" name="frmPassLogin" onsubmit="return
logincheck();">

<input TYPE="TEXT" NAME="SearchString" SIZE="18" MAXLENGTH="100" VALUE="">

Field Description

System Name Name of the external Web application.

Symbolic URL Name Select the name of the symbolic URL that interacts with the external
Web application.

The symbolic URL must be configured with the UserLoginId Command
and UserLoginPassword Command commands as arguments. These
arguments instruct the symbolic URL to pass the stored login
credentials when authenticating with an external Web application.

Description Enter a description of the Web application.

Integrating External Content  Example Portal Agent

Siebel Portal Framework Guide Siebel Innovation Pack 2017 31

<input type="hidden" value="All" name="sc">

<input type="hidden" value="ON" name="FreeText">

<input type="image" src="/images/nav/button/bttn_form_arrow.gif" NAME="Action"
border="0"/ alt="Submit Search"></td>

<input type="text" name="username" size="18">

<input type="password" name="password" size="18">

<input type="image" src="/images/nav/button/bttn_form_arrow.gif" border="0"
name='login' />

<input type="checkbox" name="remember" checked/> <span
class="bdDkGray">Remember my Login
</span

</form>

From the action attribute of the <form> tag, you can determine that the target URL is relative to the
root of the login page’s URL. Therefore, the target URL is:

www.example.com/index.shtm

You can also determine that the method attribute of the <form> tag is POST:

method="POST"

After reviewing the <input> tags, you can determine that the required arguments are:

username

password

NOTE: Notice that not all input fields are necessary for login.

For more information about reviewing login forms, see “Determining the Login Requirements” on
page 17.

Define the External Host
The external host is simply the address of the login page. In this example, it is www.example.com.
Be sure to provide a meaningful name in the Virtual Host Name field. This value is used instead of
the actual host name when you define the symbolic URL. This makes administration easier if the host
name changes. Also notice that there is no value for the Authentication Type.

Siebel Portal Framework Guide Siebel Innovation Pack 2017

Integrating External Content  Example Portal Agent

32

Figure 1 shows the external host defined for this example.

For more information, see “Defining the External Host” on page 21.

Define the Symbolic URL
After you define the external host, you can define the symbolic URL. Notice that the URL defined here
uses the Virtual Name of the host, not the actual name. Also notice that, when you select the external
host from the Host Name field, it is populated with the actual host name. When SWE constructs the
URL, it substitutes the actual Host Name for the Virtual Name in the URL. In this example, the fixup
type is Default, because the page is displayed in the browser using the <iframe> tag and therefore,
it is recommended that links not be fixed up in any way.

Figure 2 shows the symbolic URL defined for this example.

For more information about defining symbolic URLs, see “Defining Symbolic URLs” on page 23.

Figure 1. External Host Administration

Figure 2. Symbolic URL

Integrating External Content  Example Portal Agent

Siebel Portal Framework Guide Siebel Innovation Pack 2017 33

Define Symbolic URL Arguments
You use symbolic URL Arguments to define the information that you want to append as arguments
to the URL. You also use symbolic URL arguments to define commands that you want to execute. In
this case, the following arguments are required:

 PostRequest. This command instructs SWE to submit the request using a POST method rather
than GET, which is the default. In this case, you know that POST is required because the method
attribute of the <form> tag specifies POST.

 UserLoginPassword. This command instructs SWE to retrieve the password stored for the user
and pass it to the external application. The name of this argument is the name of the input field
expected by the external application. In this case, it is password.

 UserLoginID. This command instructs SWE to retrieve the stored login name for the user and
pass it to the external application. The name of this argument is the name of the input field
expected by the external application. In this case, it is username.

Figure 3 shows the symbolic URL arguments defined for this example.

For more information about symbolic URL arguments, see “Defining Symbolic URL Arguments” on
page 25. For more information about symbolic URL commands, see “Portal Agent Command
Reference” on page 34.

Define User Login Credentials
Finally you must define login credentials for a user. The values defined here are appended as
arguments to the URL constructed by SWE. In this case, the following user name and password are
defined:

 The user name is Joe_Smith@example.com.

 The password is abracadabra.

Figure 3. Symbolic URL Arguments

Siebel Portal Framework Guide Siebel Innovation Pack 2017

Integrating External Content  Reviewing the SWE Log File

34

Testing the Integration
After completing the previous steps, you can test the integration.

To test the integration
1 Log out of the application.

2 Log back in as the test user.

3 Navigate to the applet or Web page item that is associated with the symbolic URL.

Content from the external host, in this case example.com, is displayed in the Siebel user
interface.

Reviewing the SWE Log File
Reviewing the SWE log file can help you to debug errors in your Portal Agent configuration.

 The location of the log file is SIEBSRVR_ROOT\log.

 The name of the log files are swelog_pid.txt and sweusage_pid.txt, where pid is the process ID
of the corresponding Siebel process.

For more information about log files and about configuring log levels, see Siebel System Monitoring
and Diagnostics Guide.

Portal Agent Command Reference
Portal Agent commands allow you to carry out actions such as use a set of stored credentials for
authentication or define additional attributes for the <iframe> tag. These commands are entered as
symbolic URL arguments. For more information, see “Defining Symbolic URLs” on page 23.

The following commands are described in this topic:

 “EncodeURL Command” on page 35

 “FreePopup Command” on page 35

 “IFrame Command” on page 36

 “IsRecordSensitive Command” on page 36

 “NoCache Command” on page 37

 “NoFormFixup Command” on page 37

 “PreLoadURL Command” on page 37

 “PostRequest Command” on page 38

 “UserLoginId Command” on page 38

 “UserLoginPassword Command” on page 38

Integrating External Content  Portal Agent Command Reference

Siebel Portal Framework Guide Siebel Innovation Pack 2017 35

 “UseSiebelLoginId Command” on page 39

 “UseSiebelLoginPassword Command” on page 39

 “WebControl Command” on page 39

EncodeURL Command
Use the EncodeURL command to specify whether to encode arguments appended to the symbolic
URL. By default, the URL is encoded. However, some servers do not recognize standard encoding, in
which case you can use this command to not encode the URL.

Define the fields in the Symbolic Arguments applet. See Table 3.

FreePopup Command
Use the FreePopup command to show portal contents in a popup window.

The high interactivity and standard interactivity modes are implemented differently for FreePopup.

 For high interactivity, when the symbolic URL contains the FreePopup command, it notifies the
client that the popup is a free one and the client displays the contents in the popup window.

 For standard interactivity, the client opens a new window from the first popup and closes the old
one. The second popup is a free popup.

FreePopup is supported for FormRedirect, the only disposition type available for opening a portlet in
a popup.

To start the external application as a full browser window, use the values in Table 4.

Table 3. Symbolic URL Arguments

Field Value

Name EncodeURL

Argument Value TRUE or FALSE

Table 4. Symbolic URL Arguments

Name
Required
Argument

Argument
Type

Argument
Value Sequence

Append as
Argument

FreePopup True Command True 1 True

FullWindow True Command True 2 True

Siebel Portal Framework Guide Siebel Innovation Pack 2017

Integrating External Content  Portal Agent Command Reference

36

To start the external application as a modal window, use the values in Table 5.

IFrame Command
Use the IFrame command to define additional HTML attributes for the <iframe> tag.

Define the fields in the Symbolic URL Arguments applet. See Table 6.

Disposition Types
Use the IFrame command with the IFrame disposition type.

IsRecordSensitive Command
Use the IsRecordSensitive command to turn on or off the record-sensitive feature. Set the value to
TRUE to ensure that a child applet with a symbolic URL is refreshed on the parent record, for
instance, when you embed an Analytics report as a child applet with a requirement that it display
contextual information.

This command is turned off by default. Set this argument value to TRUE in the Symbolic URL
Arguments configuration.

Define the fields in the Symbolic URL Arguments applet. See Table 7.

Table 5. Symbolic URL Arguments

Name
Required
Argument

Argument
Type

Argument
Value Sequence

Append as
Argument

PopupSize True Command 750x500 1 True

FreePopup True Command True 2 True

Table 6. Symbolic URL Arguments

Field Value Example

Name Any Name None

Argument Value IFrame [attribute]=[value] IFrame Height=100 Width=500

Table 7. Symbolic URL Arguments

Field Value

Name IsRecordSensitive

Argument Value TRUE

Integrating External Content  Portal Agent Command Reference

Siebel Portal Framework Guide Siebel Innovation Pack 2017 37

NoCache Command
Use the NoCache command to instruct SWE not to cache Inline responses on the server. This
command is only valid for the Inline disposition type.

Define the fields in the Symbolic URL Arguments applet. See Table 8.

NoFormFixup Command
Use the NoFormFixup command to instruct SWE not to fix up a form by putting proxy SWE arguments
into links that appear on the page.

Define the fields in the Symbolic URL Arguments applet. See Table 9.

PreLoadURL Command
Use this command to specify a preloaded URL. Use this command when the external application
gathers information from a preloaded cookie on the client machine. Use this command with
disposition types of IFrame and Web Control.

Define the fields in the Symbolic URL Arguments applet. See Table 10.

Table 8. Symbolic URL Arguments

Field Value

Name Any name

Argument Value NoCache

Table 9. Symbolic URL Arguments

Field Value

Name Any name

Argument Value NoFormFixup

Table 10. Symbolic URL Arguments

Field Value

Name PreLoadURL

Argument Value [URL]

Siebel Portal Framework Guide Siebel Innovation Pack 2017

Integrating External Content  Portal Agent Command Reference

38

PostRequest Command
Use PostRequest to configure the Portal Agent to use the POST method instead of the GET method,
which is the default. Use this command when the method of the action attribute is POST. This method
avoids displaying user information on a Web page or browser status bar. Use this command with
disposition types of IFrame and Web Control only.

Define the fields in the Symbolic URL Arguments applet. See Table 11.

UserLoginId Command
Use the UserLoginId command to send the stored user login ID for a particular Web application. The
command gets the user’s Login ID from the My Login Credential business component.

For more information about how user login IDs are entered into this business component, see
“Defining End-User Login Credentials” on page 29.

Define the fields in the Symbolic URL Arguments applet. See Table 12.

UserLoginPassword Command
Use the UserLoginPassword command to send the stored user password for a particular Web
application. The command gets the user’s password from the My Login Credential business
component.

For more information about how user passwords are entered into this business component, see
“Defining End-User Login Credentials” on page 29.

Table 11. Symbolic URL Arguments

Field Value

Name Any Name

Argument Value PostRequest

Table 12. Symbolic URL Arguments

Field Value

Name [input field name]

Argument Value UserLoginId

Integrating External Content  Portal Agent Command Reference

Siebel Portal Framework Guide Siebel Innovation Pack 2017 39

Define the fields in the Symbolic URL Arguments applet. See Table 13.

UseSiebelLoginId Command
Use the UseSiebelLoginId command to retrieve the user’s Siebel login ID from the stored set of
credentials.

Define the fields in the Symbolic URL Arguments applet. See Table 14.

UseSiebelLoginPassword Command
Use the UseSiebelLoginPassword command to retrieve the user’s Siebel password from the stored
set of credentials.

Define the fields in the Symbolic URL Arguments applet. See Table 15.

WebControl Command
Use the WebControl command to define additional HTML attributes for Portal Agents with a
disposition type of Web Control.

Table 13. Symbolic URL Arguments

Field Value

Name [input field name]

Argument Value UserLoginPassword

Table 14. Symbolic URL Arguments

Field Value

Name [input field name]

Argument Value UseSiebelLoginId

Table 15. Symbolic URL Arguments

Field Value

Name [input field name]

Argument Value UseSiebelLoginPassword

Siebel Portal Framework Guide Siebel Innovation Pack 2017

Integrating External Content  Portal Agent Command Reference

40

Define the fields in the Symbolic URL Arguments applet. See Table 16.

Table 16. Symbolic URL Arguments

Field Value Example

Name Any Name None

Argument Value WebControl [attribute]=[value] WebControl Height=100 Width=500

Siebel Portal Framework Guide Siebel Innovation Pack 2017 41

4 Delivering Content to External
Web Applications

This chapter describes how to use the XML Web Interface to deliver content to external portal
frameworks and Web application environments when you configure your Siebel application to display
data in a high interactivity client. This chapter contains the following information:

 Overview of the XML Web Interface on page 41

 Accessing Siebel XML on page 42

 Siebel Object Manager and Web Server Configuration and Markup Determination on page 43

 Connecting to the XML Web Interface on page 44

 XML Request Structure on page 47

 XML Response Structure on page 54

 Common Operations on page 61

 SWE API on page 73

 Document Type Definition on page 88

 Manipulating Siebel XML with XSL Style Sheets and XSLT on page 95

Overview of the XML Web Interface
You can use the XML Web Interface to deliver content to external portal frameworks and Web
application environments when you configure your Siebel application to display data in a high
interactivity client.

NOTE: The Siebel Open UI client supports HTML markup only. If you configure your Siebel
application to display data in a Siebel Open UI client, then you must use a different technology to
send this content. For information about how to send this content from Siebel Open UI, see
Configuring Siebel Open UI. The SWE API described in “SWE API” on page 73 includes several SWE
commands that are available in Siebel Open UI.

The XML interface provides industry-standard integration to third-party development environments,
such as ASP and JSP, as well as providing a model consistent with emerging Web technologies. Some
specialized applets might have limited support for the XML interface.

Developers can configure Siebel Business Applications to support different markups, such as cHTML
and xHTML, by combining the XML interface with XSL style sheets and the EAI XSLT Business Service.

Siebel Portal Framework Guide Siebel Innovation Pack 2017

Delivering Content to External Web Applications  Accessing Siebel XML

42

The XML interface provides access to Siebel Business Applications through the Siebel Web Engine
(SWE). SWE generates the user interface in HTML or WML, using views, applets, and Siebel Web
templates. These UI constructs provide access to and filtering for business object and business
component data. They also provide access to visibility, navigation, and security. By rendering the
XML based on the underlying SWE technology, the XML interface exposes business object and
business component data, and UI elements and constructs, such as visibility, navigation, edit
presence, personalization, and security.

NOTE: Most Siebel applets, with the exception of applets based on specialized applet classes, can
be rendered in XML through the XML interface.

The XML interface can be invoked using the following methods:

 Server configuration parameters

 Inbound URL query string parameters

 Inbound HTTP post of XML document

Accessing Siebel XML
By default, Siebel Business Applications present a standard HTML-based user interface (UI) to end
users. When you use the XML interface, the standard architecture changes slightly; an XML interface
layer is introduced. The XML interface layer accesses Siebel Business Applications through the SWE
using the UI constructs, views, applets, and Siebel Web templates. It provides visibility into Siebel
business objects and business components. These UI constructs provide not only filtering and access
to business object and business component data, but also provide access to visibility, navigation, and
security.

You can use the XML interface to retrieve data and UI constructs from your Siebel Business
Applications and display it to end users according to your business needs. You can also combine this
interface with XSL style sheets and the XSLT business service to generate custom HTML or other
markup languages directly from the Siebel application.

For example, you can display a Siebel view using XML format rather than HTML by using a SWE
command to set the markup language to XML. This example uses the Account view as an example.

NOTE: The Siebel Open UI client supports HTML markup only. For more information, see “Overview
of the XML Web Interface” on page 41.

To view the Accounts view in XML
1 Log in to your Siebel application.

Delivering Content to External Web Applications  Siebel Object Manager and Web
Server Configuration and Markup Determination

Siebel Portal Framework Guide Siebel Innovation Pack 2017 43

2 Type the following SWE commands and arguments appended to the URL in your browser:

SWEcmd=GotoPageTab&SWEScreen=Accounts+Screen&SWESetMarkup=XML

For example, using the Mobile Web Client, the URL would look like the following:

http://localhost/start.swe
?SWECmd=GotoPageTab&SWEScreen=Accounts+Screen&SWESetMarkup=XML

The Accounts view is rendered in XML format.

Siebel Object Manager and Web Server
Configuration and Markup
Determination
The Siebel Web Engine (SWE) can be configured to produce output in HTML, WML, and XML markup
languages. The default markup is set using the SWEMarkup parameter for the Application Object
Manager. Based on browser or device detection or parameters set on the inbound request, this
default markup might be overridden.

NOTE: The Siebel Open UI client supports HTML markup only. For more information, see “Overview
of the XML Web Interface” on page 41.

The following is a summary of how the markup is determined for a given request. The following three
steps are used in the markup determination process for a given request. They are listed by priority.

1 SWESetMarkup parameter. This is an optional inbound request parameter that can be used to
override the User Agent Service and Server configuration. Valid values for this are XML, WML, or
HTML. The User Agent Service and server configuration are not used to determine the markup
when the SWESetMarkup parameter is defined on the inbound request.

2 User agent service. This service is used to determine the markup based on the device or
browser that generated the request. The service takes information from the request header and
look up the designated markup in the device table. The resulting markup is passed to the next
step. If no match is found in the device table, then the default markup is HTML.

3 Dynamic markup comparison. Assuming that no markup is specified by the inbound request
SWESetMarkup parameter, the markup from the user agent service is compared to the server
default configuration to determine what markup is generated. The server default markup is
designated by the SWEMarkup parameter the Application Object Manager.

Siebel Portal Framework Guide Siebel Innovation Pack 2017

Delivering Content to External Web Applications  Connecting to the XML Web Interface

44

Table 17 shows a summary of the markup that is generated for a given request based on the
intersection of the server configuration markup and the markup from the user agent service.

Connecting to the XML Web Interface
The XML Web Interface can be used against any Siebel Business Applications. Requests to generate
XML from a Siebel application can be submitted through a Siebel Web Server using a query string or
an XML command block. Examples of these two methods are provided.

NOTE: The Siebel Open UI client supports HTML markup only. For more information, see “Overview
of the XML Web Interface” on page 41.

This topic contains the following information:

 “Query String” on page 44

 “XML Command Block” on page 46

Query String
You can send HTTP requests to SWE using a query string. For example, the following code sample
illustrates an Active Server Page that uses MSXML to make an HTTP request. The request logs in to
the Siebel application and navigates to the Account List View. The XML response from SWE is
transformed into HTML using XSLT.

NOTE: For code snippets that demonstrate transforming an XML response from SWE into HTML, see
“Sample XSLT” on page 96.

<% @LANGUAGE="VBScript" %>

<%

'--

'Open HTTP connection and send XML command req

'--

Table 17. Markup Summary

Server
Configuration
Value

User Agent Markup Value

HTML WML XML

HTML HTML HTML XML

WML XML WML XML

XML XML XML XML

Delivering Content to External Web Applications  Connecting to the XML Web Interface

Siebel Portal Framework Guide Siebel Innovation Pack 2017 45

strURL = "http://" & Request.form ("swe") & "/
start.swe?SWECmd=ExecuteLogin&SWEDataOnly=1&SWEUserName=sadmin&SWEPassword=sadmin&
SWESetMarkup=XML
ZOSet xmlhttp = Server.CreateObject("MSXML2.ServerXMLHTTP")
 xmlhttp.open "GET", strURL, False
 xmlhttp.send ()
 Set ologinXmlDoc = xmlhttp.responseXML

 strCookie = xmlhttp.getResponseHeader ("Set-Cookie")
 On Error Resume Next
 If strCookie = "" Then

Response.Write ("Unable to connect to Siebel Web Server. Please check Login
Name, Password, and Siebel Web Server URL")
 Response.End

 End If
 strSessionId = mid(strCookie,inStr(strCookie,"!"),inStr(strCookie,";")-
inStr(strCookie,"!"))

strURL = "http://" & Request.form ("swe") & "/
start.swe?SWECmd=GotoView&SWEView=Account+List+View&SWESetMarkup=XML&SWEDataOnly=1
" & "&_sn=" & strSessionId
 Set xmlhttp = Nothing
 Set xmlhttp = Server.CreateObject("MSXML2.ServerXMLHTTP")
 xmlhttp.open "GET", strURL, False
 xmlhttp.send ()
 Set oXmlDoc = xmlhttp.responseXML

'-----------

'Session Var

'-----------

 Session ("SWESessionId") = strSessionId
 Session ("swe") = Request.form ("swe")

 '-----------

'Prepare XSL

'-----------

 sXsl = "acctresponse.xsl"
 Set oXslDoc = Server.CreateObject("Msxml2.DOMDocument")
 oXslDoc.async = false
 oXslDoc.load(Server.MapPath(sXsl))

%>

<HTML>

<HEAD>

<TITLE>My Portal</TITLE>...

<BODY>

Siebel Portal Framework Guide Siebel Innovation Pack 2017

Delivering Content to External Web Applications  Connecting to the XML Web Interface

46

...

<TD colSpan=2><%Response.Write (oXmlDoc.transformNode(oXslDoc))%> </TD>

...

</BODY>

</HTML>

XML Command Block
You can use an XML command block to send the HTTP request through the Siebel Web server. For
example, you can submit inbound XML documents to SWE as the HTTP request body data. In the
Java code sample below, the XML command block opens a socket connection to the Web server and
writes the request data stream to the socket’s OutputStream.

public static final String FULL_XML_PROC_STR = "<?xml version=\"1.0\"
encoding=\"UTF-8\"?>\n";

InputStream in;
BufferedReader fromServer;
PrintWriter toServer;
Socket socket;
String payload;
String line;

try

{

if (request != null && request.length() > 0)

{

// send request

socket = new Socket(url.getHost(), url.getPort());

toServer = new PrintWriter(new
OutputStreamWriter(socket.getOutputStream()));
in = socket.getInputStream();
payload = FULL_XML_PROC_STR + request;

toServer.println("POST " + url.toString() + " HTTP/1.0");

toServer.println("Cookie: " + sessionID);
toServer.println("Content-Type: text/xml");
toServer.print("Content-Length: ");
toServer.println(payload.length());
toServer.println("");
toServer.println(payload);
toServer.flush();

fromServer = new BufferedReader(new InputStreamReader(in));

Delivering Content to External Web Applications  XML Request Structure

Siebel Portal Framework Guide Siebel Innovation Pack 2017 47

// read the response
while ((line = fromServer.readLine()) != null)
{
. . .
}
fromServer.close();
toServer.close();
socket.close();

}
}

catch (Exception ex)

{

System.err.println(ex.toString());

}

XML Request Structure
The XML API offers developers access to the objects within Siebel Business Applications. Although it
is not required that you have a complete understanding of Siebel object definitions and architecture,
it is strongly recommended that you be familiar with them. You can structure requests using a query
string or a command block.

NOTE: The Siebel Open UI client supports HTML markup only. For more information, see “Overview
of the XML Web Interface” on page 41.

This topic contains the following information:

 “Query String” on page 47

 “XML Command Block” on page 48

Query String
To construct a request using a query string, you append SWE commands and arguments to a URL.
Each command or argument and its value is separated by an & character. For example:

SWECmd=ExecuteLogin&SWEDataOnly=1&SWEUserName=sadmin&SWEPassword=sadmin&SWESetMark
up=XML

For a list of commonly used SWE commands and arguments, see “SWE API” on page 73.

Siebel Portal Framework Guide Siebel Innovation Pack 2017

Delivering Content to External Web Applications  XML Request Structure

48

XML Command Block
To initiate an action on a Siebel Business Applications XML screen, you must use a specific set of XML
tags and they must conform to a specific structure. Table 18 lists the three valid XML tags that are
used to perform a command.

For example, using the information from Table 18, a valid syntax format for an XML command block
is as follows:

<EXEC>

<CMD NAME=”SWEcmd” VALUE=”command name”>

<ARG NAME=”argumentName”>argument1Value</ARG>

<ARG NAME=”argumentName”>argument2Value</ARG>

...

<ARG NAME=”argumentName”>argumentNValue</ARG>

<ARG NAME="SWESetMarkup"> XML | HTML </ARG>

<ARG NAME="SWEDataOnly"> TRUE | FALSE </ARG>

<ARG NAME="SWESetNoTempl"> TRUE </ARG>

</CMD>

</EXEC>

Each <EXEC> tag encloses a complete command block. The <CMD> and <ARG> tags are enclosed within
the <EXEC> tag, and their attributes and values specify which commands are executed by the SWE.

A valid XML command block must conform to a specific structure. It must have a valid execute tag
followed by a command tag that encloses the arguments. The syntax of the name-value pairs and
the attributes that accompany the XML tags within a command block must follow a specific format.
This topic describes the syntax of each XML tag. For the DTD for the inbound XML document, see
“Inbound DTD” on page 89.

Table 18. XML Tags

Tag Description

<EXEC> This is the root tag for each command that you want to send to the SWE. The <EXEC>
tag encloses the <CMD> and <ARG> tags. This tag represents a single command.

<CMD> This tag indicates the SWE command that you want to access and encloses all of the
arguments for the command.

<ARG> This tag indicates the object on which the command is to be executed and any
additional parameters that are required. Unlike the <EXEC> and <CMD> tags, which
are used only once in a command block, you can have multiple arguments within a
command block.

Delivering Content to External Web Applications  XML Request Structure

Siebel Portal Framework Guide Siebel Innovation Pack 2017 49

EXE Tag
The Execute tag is the root tag for each command that you want to execute.

Description
Think of the Execute tag as a container. Each container represents a single SWE command or screen
action. Enclosed within an Execute tag are the commands, arguments, and information required to
complete a single command. Use only one <EXEC> tag for each command that you want to execute.
The PATH attribute is the only attribute used by the <EXEC> tag, although it is not required.

Attributes
Table 19 lists the attribute used with the Execute tag:

Example
The following example uses the Execute tag to enclose the login command.

<?xml version="1.0" encoding="UTF-8"?>

<EXEC PATH="/callcenter/start.swe">

<CMD NAME="SWECmd" VALUE="ExecuteLogin">

<ARG NAME="SWEUserName">jdoe</ARG>

<ARG NAME="SWEPassword">jdoepassword</ARG>

<ARG NAME="SWESetMarkup">XML</ARG>

<ARG NAME="SWEDataOnly">TRUE</ARG>

<ARG NAME="SWESetNoTempl">TRUE</ARG>

</CMD>

</EXEC>

CMD Tag
The Command tag is required for each command block and is used to indicate the SWE command
that you want to execute.

Table 19. EXEC Tag Attribute

Attribute Description

PATH The PATH attribute is used to indicate the location of the SWE object manager. By
default, the SWE XML application looks in its root directory for the SWE object
manager. If you want to specify an Application Object Manager for the Web
application to use, then you must indicate its location using the PATH attribute.

Siebel Portal Framework Guide Siebel Innovation Pack 2017

Delivering Content to External Web Applications  XML Request Structure

50

Description
Like the Execute tag, the Command tag also acts as a container. Enclosed between the open and
close Command tags are the arguments required to complete a command. Use only one <CMD> tag
for each command block that you want to execute.

Attributes
Table 20 lists the attributes that are used with the Command tag:

Example
Using the information from the table above, the following example illustrates how to use the
Command tag to execute a login command:

<?xml version="1.0" encoding="UTF-8"?>
<EXEC PATH="/callcenter/start.swe">

<CMD NAME="SWECmd" VALUE="ExecuteLogin">

<ARG NAME="SWEUserName">jdoe</ARG>

<ARG NAME="SWEPassword">jdoepassword</ARG>

<ARG NAME="SWESetMarkup">XML</ARG>

<ARG NAME="SWEDataOnly">TRUE</ARG>

<ARG NAME="SWESetNoTempl">TRUE</ARG>

</CMD>

</EXEC>

ARG Tag
A command block can contain multiple Argument tags. Each Argument tag indicates an additional
command parameter required to complete the action specified in the command block.

Table 20. CMD Tag Attributes

Attribute Description

NAME The NAME attribute must be set to SWECmd. This indicates that the type of
command you want to execute is a SWE command.

VALUE The VALUE attribute specifies which SWECmd you want to execute. Listed below are
the SWE commands most commonly used with Business:

 ExecuteLogin

 GotoPageTab

 InvokeMethod

 LogOff

Delivering Content to External Web Applications  XML Request Structure

Siebel Portal Framework Guide Siebel Innovation Pack 2017 51

Description
The Argument tag uses name-value pairs to send command parameters to the SWE. A command
does not execute without having all the appropriate parameters passed to the SWE.

Attributes
Table 21 lists the attributes that are used with the Argument tag.

Example
For each argument name that you include in a command block, you must also indicate a value for
the argument. For example, to use the InvokeMethod command, you must indicate which method
you want to invoke. Additionally, if the method is one that requires parameters, as is the case with
the WriteRecord, then you must send those parameters to the SWE. With the WriteRecord method,
you must indicate the view and the applet that you are working with. You also must indicate the
column to which you want to write the record, and you must indicate what information you want to
write.

Table 21. ARG Tag Attributes

Attribute Description

NAME This is the only attribute used by the Argument tag. The NAME attribute is used to
indicate an argument, or the name of a parameter, for which you are sending
additional information. The parameter’s value is entered between the open and close
Argument tags.

Listed below are the parameter names most commonly used with Business:

 SWEApplet

 SWEDataOnly

 SWEMethod

 SWEPassword

 SWEScreen

 SWESetNoTempl

 SWESetMarkup

 SWESetRowCount

 SWEStyleSheet

 SWEUserName

 SWEView

Table 22 on page 53 lists the values that are most commonly used with these
parameter names.

Siebel Portal Framework Guide Siebel Innovation Pack 2017

Delivering Content to External Web Applications  XML Request Structure

52

The following example illustrates how to use Argument tags to send the required parameters for a
WriteRecord method:

<?xml version="1.0" encoding="UTF-8"?>

<EXEC PATH="/callcenter/start.swe">

<CMD NAME="SWECmd" VALUE="InvokeMethod">

<ARG NAME="SWEMethod">WriteRecord</ARG>

<ARG NAME="SWEView">Account List View</ARG>

<ARG NAME="SWEApplet">Account List Applet</ARG>

<ARG NAME="Lot Name">65 metal car</ARG>

<ARG NAME="Starting Price">3.00</ARG>

<ARG NAME="SWESetMarkup">XML</ARG>

<ARG NAME="SWEDataOnly">TRUE</ARG>

<ARG NAME="SWESetNoTempl">TRUE</ARG>

</CMD>

</EXEC>

Required Arguments
The following arguments are required for each command block sent to the SWE:

<ARG NAME="SWESetMarkup">XML | HTML | WML</ARG>

<ARG NAME="SWEDataOnly">TRUE | FALSE</ARG>

<ARG NAME="SWESetNoTemp">TRUE</ARG>

For detailed information about these arguments, see the following:

 SWESetMarkup. The SWE returns a response for each command block it receives. You can use
the SWESetMarkup attribute to indicate whether a response is returned as XML, HTML, or WML.

You can also set the response markup format by allowing the User Agent (UA) service to retrieve
the default markup from the UA device table, or by setting the SWESetMarkup property in the
appropriate Siebel Server configuration file. The SWESetMarkup tag is not required in the
payload when you use one of these alternatives. The examples in this chapter specify the
response markup format using the SWESetMarkup attribute in the payload.

NOTE: SWESetMarkup is not used for the Siebel Open UI client, which supports HTML only.

 SWEDataOnly. In addition to specifying the type of markup language for a SWE response, you
must also indicate whether the response includes data only or data and user interface
information, such as non-data controls (anchors and navigation controls). Set the SWEDataOnly
attribute to TRUE to indicate that only data can be returned or set it to FALSE to indicate that
both data and user interface information can be returned.

Delivering Content to External Web Applications  XML Request Structure

Siebel Portal Framework Guide Siebel Innovation Pack 2017 53

NOTE: If the SWEDataOnly parameter is not included, then the default is FALSE.

 SWESetNoTempl. By default, Siebel Business Applications XML uses a server-side Web
template to filter specific items and controls from SWE responses. When using XML, you can
control whether a response returns all the information related to the request or a subset of it
dictated by the Web template. Setting the attribute to TRUE makes sure that the Web template
is not used and that the SWE response contains all the necessary information to complete an
action. When a SWESetNoTempl attribute is set to FALSE, the Web template is used and the page
items and controls specified in the template are filtered from the response.

NOTE: If the SWESetNoTempl parameter is not included, then the default is FALSE.

Common Name-Value Pairs
Table 22 lists commonly used argument name-value pairs.

NOTE: When determining what arguments to define, it is a good idea to look at the XML Response.
The response includes the expected arguments.

Table 22. ARG Parameter Name-Value Pairs

Parameter Name Parameter Values

SWEApplet Applet name

SWEDataOnly TRUE

FALSE

SWEMethod DeleteRecord

EditRecord

ExecuteQuery

GoToNextSet

GotoPageTab

NewRecord

NewQuery

WriteRecord

SWEPassword Password

SWEScreen Screen name

SWESetMarkup HTML

XML

SWEUserName User name

SWEView View name

Siebel Portal Framework Guide Siebel Innovation Pack 2017

Delivering Content to External Web Applications  XML Response Structure

54

XML Response Structure
When you send a command block to a SWE XML application, you access the Siebel Business
Applications XML application screens. If the action specified in the command block is successfully
executed, then the data and all of the objects from the resulting screen are returned within an HTTP
response. The format of the response is XML, HTML, or WML, depending on the SWESetMarkup
setting that was sent in the request payload.

You must develop the mechanism by which your Web server handles XML responses. Using the
information provided in this topic, you can develop a parser, a Web application, or another control to
extract the necessary data from XML responses and display the appropriate information to users. For
the DTD for the outbound XML document, see “Outbound DTD” on page 89.

NOTE: The Siebel Open UI client supports HTML markup only. For more information, see “Overview
of the XML Web Interface” on page 41.

This topic contains the following information:

 “XML Error Response” on page 54

 “XML Response” on page 54

 “XML Response Syntax” on page 59

 “HTML Response” on page 61

 “WML Response” on page 61

XML Error Response
If a command block contains an error or is unsuccessful, then the specified action is not executed.
Instead, the Siebel Business Applications XML user interface retains its current state and the SWE
returns an error. Based on the markup format that you have specified, an error response is returned
as XML, HTML, or WML.

An XML error response contains an <ERROR> tag within the payload. Descriptive text for the error is
enclosed between the open and close <ERROR> tags.

XML Response
When the SWESetMarkup attribute in a command block is set to XML, the response payload from the
Siebel Business Applications XML Web server is returned in XML format. The payload consists of an
XML declaration followed by the core XML tags that contain and describe the data.

Each XML tag represents an object from a Siebel Business Applications XML application screen that
you requested. The attributes within each tag are read-only and represent the properties of the
object.

Table 23 on page 55 lists the major XML tags that are returned in a response in which the
SWEDataOnly attribute is set to TRUE.

Delivering Content to External Web Applications  XML Response Structure

Siebel Portal Framework Guide Siebel Innovation Pack 2017 55

NOTE: The response tags described in this chapter are a subset of the tags that can be returned by
the SWE.

Table 23. XML Response Tags

Tag Description and Attributes

<APPLICATION> The root tag for each response that is returned from the SWE. The
<APPLICATION> tag encloses all the XML response data.

Attribute:

 NAME. This attribute indicates the name of the application from which the
response is generated. For XML requests, the application name in the
response is always Siebel XML.

<SCREEN> This tag identifies the Siebel Business Applications screen that is the result of,
or is accessed by, the command in your request. The <SCREEN> tag also
encloses all of the XML tags that identify the data within the Siebel Business
Applications screen.

Attributes:

 CAPTION. This attribute indicates the caption of the Siebel Business
Applications screen.

 ACTIVE. A value of TRUE indicates that the Siebel Business Applications
screen is active. A value of FALSE indicates that the Siebel Business
Applications screen is inactive.

 NAME. This attribute indicates the Siebel Business Applications screen
name, which is used to identify the Siebel Business Applications screen.

<VIEW> This tag identifies the view that is the result of, or is accessed by, the command
block in your request. This tag also encloses all of the XML tags that identify
the data within the view.

Attributes:

 TITLE. This attribute indicates the title of the view.

 ACTIVE. A value of TRUE indicates that the view is active. A value of FALSE
indicates that the view is inactive.

 NAME. This attribute indicates the view name, which is used to identify the
view.

Siebel Portal Framework Guide Siebel Innovation Pack 2017

Delivering Content to External Web Applications  XML Response Structure

56

<APPLET> This tag identifies the applet that is the result of, or is accessed by, the
command block in your request. It also encloses all of the XML tags that
identify the data within the applet.

Attributes:

 ROW_COUNTER. This attribute indicates how many records out of the
entire set of records are currently displayed. The ROW_COUNTER attribute
is a string of the form, 1 - n of N.

 NO_DELETE. A value of TRUE indicates that the records in the applet
cannot be deleted. A value of FALSE indicates that the records in the applet
can be deleted.

 NO_EXEC_QUERY. A value of TRUE indicates that a query cannot be
executed in the applet. A value of FALSE indicates that a query can be
executed in the applet.

 NO_UPDATE. A value of TRUE indicates that the records in the applet
cannot be updated. A value of FALSE indicates that the records in the
applet can be updated.

 MODE. Indicates the mode of the applet, which can be one of the
following: Base, Edit, New, Query, Sort.

 TITLE. This attribute title of the applet.

 NO_INSERT. A value of TRUE indicates that records cannot be inserted
into the applet.

 CLASS. Indicates the class being used by the applet.

 NO_MERGE. A value of TRUE indicates that records in the applet have not
been merged. A value of FALSE indicates that the records in the applet
have been merged.

 ACTIVE. A value of TRUE indicates that the applet is active. A value of
FALSE indicates that the applet is inactive.

 ID. This attribute indicates the applet ID, and can be used to identify the
applet.

 NAME. This attribute indicates the applet name, which is used to identify
the applet.

<LIST> This tag encloses the table of records that is returned from your request. The
following two tags and their subordinate tags are enclosed within the <LIST>
tag:

 <RS_HEADER>

 <RS_DATA>

There are no attributes associated with the <LIST> tag.

Table 23. XML Response Tags

Tag Description and Attributes

Delivering Content to External Web Applications  XML Response Structure

Siebel Portal Framework Guide Siebel Innovation Pack 2017 57

<RS_HEADER> This tag encloses all the header information about the columns in a list that
your request returns. The <COLUMN>, <METHOD>, and <ERROR> tags can be
enclosed within this tag.

<COLUMN> A response can return multiple <COLUMN> tags. Each <COLUMN> tag within an
<RS_HEADER> tag indicates another column within the parent list.

Attributes:

 NUMBER_BASED. A value of TRUE indicates that the data in the column
are numeric. A value of FALSE indicates that the data are not numeric.

 CALCULATED. A value of TRUE indicates that the data in the column are
calculated from other values, as opposed to being input. A value of FALSE
indicates that the data are not calculated.

 LIST_EDITABLE. A value of TRUE indicates that the data in the column
are editable. A value of FALSE indicates the data are not editable.

 HTML_TYPE. This attribute is used to indicate the type of object that is
represented in the column.

 SCALE. A value of TRUE indicates that the data in the column are scaled.
A value of FALSE indicates that the data are not scaled.

 FIELD. This attribute indicates the field name associated with the column.
The value in the field name is the same as the column name.

 HIDDEN. A value of TRUE indicates that the data in the column are hidden
on the Siebel Business Applications screen. A value of FALSE indicates that
the data are visible on the screen.

Table 23. XML Response Tags

Tag Description and Attributes

Siebel Portal Framework Guide Siebel Innovation Pack 2017

Delivering Content to External Web Applications  XML Response Structure

58

<COLUMN>  DATATYPE. This attribute indicates the Siebel data-type of the data in the
column.

 DISPLAY _NAME. This attribute indicates the text string that would
appear in the user interface.

 TEXT_LENGTH. This attribute indicates the maximum length of field
entries in the column.

 TYPE. This attribute is used to indicate the type of object that is
represented in the column.

 ID. This attribute indicates the unique ID of the column.

 TEXT_BASED. A value of TRUE indicates that the data in the column is
text based. A value of FALSE indicates that the data is not text-based.

 NAME. A value of TRUE indicates that the data in the column are hidden
on the Siebel Business Applications screen. A value of FALSE indicates that
the data are visible on the screen.

 REQUIRED. A value of TRUE indicates that the data in the column are
required. A value of FALSE indicates that the data are not required.

 READ_ONLY. A value of TRUE indicates that the data in the column are
read-only and cannot be modified. A value of FALSE indicates that the data
are editable.

<RS_DATA> This tag encloses table rows that are returned from your request. The
<RS_DATA> tag encloses the <ROW> tag and the <ROW> tag’s subordinate tags.

Table 23. XML Response Tags

Tag Description and Attributes

Delivering Content to External Web Applications  XML Response Structure

Siebel Portal Framework Guide Siebel Innovation Pack 2017 59

XML Response Syntax
A valid syntax format for an XML response is as follows:

<?xml version="1.0" encoding="UTF-8"?>

<APPLICATION NAME="Siebel eAuction XML">

<SCREEN CAPTION="caption" ACTIVE="TRUE" NAME="screen name">

<VIEW TITLE="title" ACTIVE="TRUE | FALSE" NAME="view name">

<APPLET ROW_COUNTER="n - N of X" NO_DELETE="TRUE | FALSE" NO_EXEC_QUERY="TRUE
| FALSE" NO_UPDATE="TRUE | FALSE" MODE="Base" TITLE="applet title"
NO_INSERT="TRUE | FALSE" CLASS="CSSSWEFrameLotList" NO_MERGE="TRUE | FALSE"
ACTIVE="TRUE | FALSE" ID="N" NAME="applet name">

<LIST>

<RS_HEADER>

<COLUMN NUMBER_BASED="TRUE | FALSE" CALCULATED="TRUE | FALSE"
LIST_EDITABLE="Y | N" HTML_TYPE="Field" SCALE="TRUE | FALSE"
FIELD="Accept Less" HIDDEN="TRUE | FALSE" DATATYPE="text"

<ROW> A response can return multiple <ROW> tags. Each <ROW> tag within an <RS_DATA>
tag indicates another record within the table. The <ROW> tag encloses the
<FIELD> tag.

Attributes:

 SELECTED. This attribute indicates whether the current row is selected. A
value of TRUE indicates that the row is selected. A value of FALSE indicates
it is not.

 ROWID. This attribute is used to identify the row.

<FIELD> A response can return multiple <FIELD> tags. Each <FIELD> tag within a <ROW>
tag indicates another item of data within the record. The field’s value is entered
between the open and close <FIELD> tags.

Attributes:

 VARIABLE. This attribute indicates the column to which the field is
associated. The value of the VARIABLE attribute coincides with the NAME
attribute of a column.

 NAME. This attribute is used to identify the field. In most cases, the field
name is identical to the column name.

Table 23. XML Response Tags

Tag Description and Attributes

Siebel Portal Framework Guide Siebel Innovation Pack 2017

Delivering Content to External Web Applications  XML Response Structure

60

TEXT_LENGTH="255" TYPE="Field" TOTAL_REQUIRED="TRUE | FALSE" ID="N"
TEXT_BASED="TRUE | FALSE" NAME="Accept Less" REQUIRED="TRUE | FALSE"
READ_ONLY="TRUE | FALSE"/>

</RS_HEADER>

<RS_DATA>

<ROW SELECTED="TRUE | FALSE" ROWID="id number1">

<FIELD VARIABLE="column name" NAME="field name1">

field value1

</FIELD>

...

<FIELD VARIABLE="column name" NAME="field nameN">

field valueN

</FIELD>

</ROW>

...

<ROW SELECTED="TRUE | FALSE" ROWID="id number1">

<FIELD VARIABLE="column name" NAME="field name1">

field value1

</FIELD>

...

<FIELD VARIABLE="column name" NAME="field nameN">

field valueN

</FIELD>

</ROW>

</RS_DATA>

</LIST>

</APPLET>

</VIEW>

</SCREEN></APPLICATION>

Delivering Content to External Web Applications  Common Operations

Siebel Portal Framework Guide Siebel Innovation Pack 2017 61

HTML Response
When the SWESetMarkup attribute in a command block is set to HTML, the response payload from
the Siebel Business Applications Web server is going to be in HTML format. The HTML option allows
you to display the returned data in a read-only mode. The HTML response includes all the data and
navigation controls that are exposed in the user interface.

WML Response
When the SWESetMarkup attribute in a command block is set to WML, the response payload from
the Siebel Business Applications XML Web server is going to be in WML format.

Common Operations
You can use various combinations of XML commands to execute an action in a Siebel Business
Applications XML application. Each of the following topics offers one solution for executing a Siebel
Business Applications action:

 “Logging In” on page 61

 “Logging Off” on page 62

 “Navigating to a Screen” on page 62

 “Navigating Within a Screen” on page 63

 “Querying Items” on page 64

 “Modifying Records” on page 66

 “Deleting Records” on page 69

 “Picking Records” on page 70

TIP: To get a better understanding of the objects available on a specific screen, you can use a Web
browser to access the user interface by navigating to the following URL: http://<computer name>/
callcenter/start.swe. <computer name>. This is the Web server where the Siebel Business
Applications are installed.

NOTE: The Siebel Open UI client supports HTML markup only. For more information, see “Overview
of the XML Web Interface” on page 41.

Logging In
Logging in is required to start a new Siebel XML session. The first command block of a new session
must be an ExecuteLogin command.

Siebel Portal Framework Guide Siebel Innovation Pack 2017

Delivering Content to External Web Applications  Common Operations

62

The following is an example of how to construct a login command block for XML:

<?xml version="1.0" encoding="UTF-8"?>

<EXEC PATH="/callcenter/start.swe">

<CMD NAME="SWECmd" VALUE="ExecuteLogin">

<ARG NAME="SWEUserName">user name</ARG>

<ARG NAME="SWEPassword">user’s password</ARG>

<ARG NAME="SWESetMarkup">XML</ARG>

<ARG NAME="SWEDataOnly">TRUE</ARG>

<ARG NAME="SWESetNoTemp">TRUE</ARG>

</CMD>

</EXEC>

Logging Off
The last command block of a session must be a Logoff command.

The following is an example of how to construct a logoff command block for XML:

<?xml version="1.0" encoding="UTF-8"?>

<EXEC PATH="/callcenter/start.swe">

<CMD NAME="SWECmd" VALUE="Logoff">

<ARG NAME="SWEUserName">user name</ARG>

<ARG NAME="SWESetMarkup">XML</ARG>

<ARG NAME="SWEDataOnly">TRUE</ARG>

<ARG NAME="SWESetNoTemp">TRUE</ARG>

</CMD>

</EXEC>

Navigating to a Screen
You use the GotoPageTab command to navigate to a specific screen. The Web application returns
either an XML or HTML response containing data about the screen’s views and applets. For a
complete list of the screen names to which you can navigate, see Table 23 on page 55.

Delivering Content to External Web Applications  Common Operations

Siebel Portal Framework Guide Siebel Innovation Pack 2017 63

<?xml version="1.0" encoding="UTF-8"?>

<EXEC PATH="/callcenter/start.swe">

<CMD NAME="SWECmd" VALUE="GotoPageTab">

<ARG NAME="SWEScreen">screen name</ARG>

<ARG NAME="SWESetMarkup">XML</ARG>

<ARG NAME="SWEDataOnly">TRUE</ARG>

<ARG NAME="SWESetNoTemp">TRUE</ARG>

</CMD>

</EXEC>

Navigating Within a Screen
When you use InvokeMethod to execute an XML command, you must also indicate the view and the
applet that you want to access. For example, you might want to modify or add a record. To add a
record, you must first issue the NewRecord command, and then you must indicate to which view and
applet you want the record to be added. To perform an action on a screen, you must navigate to the
object within the screen that is to receive the action. The following two arguments are used to
navigate within a screen:

 SWEView

 SWEApplet

For a complete list of the view and applet names to which you can navigate, see Table 23 on page 55.
The example below shows how to specify the view and applet:

<?xml version="1.0" encoding="UTF-8"?>

<EXEC PATH="/callcenter/start.swe">

<CMD NAME="SWECmd" VALUE="InvokeMethod">

<ARG NAME="SWEMethod">method name</ARG>

<ARG NAME="SWEView">view name</ARG>

<ARG NAME="SWEApplet">applet name</ARG>

<ARG NAME="SWESetMarkup">XML</ARG>

<ARG NAME="SWEDataOnly">TRUE</ARG>

<ARG NAME="SWESetNoTemp">TRUE</ARG>

</CMD>

</EXEC>

Siebel Portal Framework Guide Siebel Innovation Pack 2017

Delivering Content to External Web Applications  Common Operations

64

Querying Items
To successfully perform a query, you must first navigate to a screen that allows queries. You must
then send two separate requests to the SWE XML application. The first request executes the Create
New Query action, and the second executes the Execute Query action.

NewQuery
<?xml version="1.0" encoding="UTF-8"?>

<EXEC PATH="/callcenter/start.swe">

<CMD NAME="SWECmd" VALUE="InvokeMethod">

<ARG NAME="SWEMethod">NewQuery</ARG>

<ARG NAME="SWEView">view name</ARG>

<ARG NAME="SWEApplet">applet name</ARG>

<ARG NAME="SWESetMarkup">XML</ARG>

<ARG NAME="SWEDataOnly">TRUE</ARG>

<ARG NAME="SWESetNoTemp">TRUE</ARG>

</CMD>

</EXEC>

ExecuteQuery
In the ExecuteQuery command block, you must include an <ARG> tag. The tag must include a NAME
parameter to identify the column (the field that you want to search), and a value to indicate the
search criteria.

<?xml version="1.0" encoding="UTF-8"?>

<EXEC PATH="/callcenter/start.swe"

<CMD NAME="SWECmd" VALUE="InvokeMethod">

<ARG NAME="SWEMethod">ExecuteQuery</ARG>

<ARG NAME="SWEView">view name</ARG>

<ARG NAME="SWEApplet">applet name</ARG>

<ARG NAME="column name">search criteria</ARG>

<ARG NAME="SWESetMarkup">XML</ARG>

<ARG NAME="SWEDataOnly">TRUE</ARG>

<ARG NAME="SWESetNoTemp">TRUE</ARG>

Delivering Content to External Web Applications  Common Operations

Siebel Portal Framework Guide Siebel Innovation Pack 2017 65

</CMD>

</EXEC>

The auction items that match the query are returned in the response. The returned payload contains
complete lot names and IDs for each item.

TIP: Each row (or record) within a response contains an ID that uniquely identifies it. You can use
a row ID as a parameter in a query to identify a record so that you can modify or delete it.

Adding Records
To successfully add a record to a list, you must first navigate to a screen that allows records to be
inserted. Then, you must send two separate requests to the SWE XML application. The first request
executes the New Record action. The second executes the WriteRecord action.

NewRecord
In a NewRecord command block, you use <ARG> tags to indicate the view and applet to which you
want to add the new record.

<?xml version="1.0" encoding="UTF-8"?>

<EXEC PATH="/callcenter/start.swe">

<CMD NAME="SWECmd" VALUE="InvokeMethod">

<ARG NAME="SWEMethod">NewRecord</ARG>

<ARG NAME="SWEView">view name</ARG>

<ARG NAME="SWEApplet">applet name</ARG><

ARG NAME="SWESetMarkup">XML</ARG>

<ARG NAME="SWEDataOnly">TRUE</ARG>

<ARG NAME="SWESetNoTemp">TRUE</ARG>

</CMD>

</EXEC>

WriteRecord
In a WriteRecord command block, you must include an <ARG> tag for the row ID of the record
(SWERowID) and another <ARG> tag to indicate that the row ID is required for the operation
(SWEReqRowId).

<?xml version="1.0" encoding="UTF-8"?>

<EXEC PATH="/callcenter/start.swe">

<CMD NAME="SWECmd" VALUE="InvokeMethod">

Siebel Portal Framework Guide Siebel Innovation Pack 2017

Delivering Content to External Web Applications  Common Operations

66

<ARG NAME="SWEMethod">WriteRecord</ARG>

<ARG NAME="SWEReqRowId">1</ARG>

<ARG NAME="SWEView">view name</ARG>

<ARG NAME="SWERowId">row id of record to be saved</ARG>

<ARG NAME="SWEApplet">applet name</ARG>

<ARG NAME="SWESetMarkup">XML</ARG>

<ARG NAME="SWEDataOnly">TRUE</ARG>

<ARG NAME="SWESetNoTemp">TRUE</ARG>

</CMD>

</EXEC>

Modifying Records
To successfully modify a record using XML, you must first navigate to a screen that allows records
to be modified. Then, the following four requests must be sent separately to the SWE XML
application:

1 Activate a new query. See “NewQuery” on page 64.

2 Execute the query. See “ExecuteQuery” on page 67.

3 Activate the edit record method. See “EditRecord” on page 67.

4 Write the record. See “WriteRecord” on page 68.

NOTE: When modifying a record, use a primary key (such as a row ID) as the parameter for the
query. This makes sure that only one record is returned and selected in the response. If you do not
use a primary key to perform the query, then several records might be returned in the response.
There is a chance that the record that you want to update is not the one selected.

NewQuery
When you modify a record, you must first execute a query to find the record that you want to modify.
The records that are returned as a result of the query are then accessible through XML.

<?xml version="1.0" encoding="UTF-8"?>

<EXEC PATH="/callcenter/start.swe">

<CMD NAME="SWECmd" VALUE="InvokeMethod">

<ARG NAME="SWEMethod">NewQuery</ARG>

<ARG NAME="SWEView">view name</ARG>

<ARG NAME="SWEApplet">applet name</ARG>

Delivering Content to External Web Applications  Common Operations

Siebel Portal Framework Guide Siebel Innovation Pack 2017 67

<ARG NAME="SWESetMarkup">XML</ARG>

<ARG NAME="SWEDataOnly">TRUE</ARG>

<ARG NAME="SWESetNoTemp">TRUE</ARG>

</CMD>

</EXEC>

ExecuteQuery
When you use the ExecuteQuery command block in an effort to modify a record, you must include
an <ARG> tag that identifies the primary key of the record that you want to modify. This makes sure
that the query returns only one record, which is automatically selected. You can then use the
EditRecord command to update the selected record.

<?xml version="1.0" encoding="UTF-8"?>

<EXEC PATH="/callcenter/start.swe">

<CMD NAME="SWECmd" VALUE="InvokeMethod">

<ARG NAME="SWEMethod">ExecuteQuery</ARG>

<ARG NAME="SWEView">view name</ARG>

<ARG NAME="SWEApplet">applet name</ARG>

<ARG NAME="primary key column name">primary key value</ARG>

<ARG NAME="SWESetMarkup">XML</ARG>

<ARG NAME="SWEDataOnly">TRUE</ARG>

<ARG NAME="SWESetNoTemp">TRUE</ARG>

</CMD>

</EXEC>

EditRecord
After executing the query the screen is populated with the record that you want to modify. You use
the EditRecord to access the record.

NOTE: If you do not use a primary key to perform the query, then several records might be returned
in the response.

<?xml version="1.0" encoding="UTF-8"?>

<EXEC PATH="/callcenter/start.swe">

<CMD NAME="SWECmd" VALUE="InvokeMethod">

<ARG NAME="SWEMethod">EditRecord</ARG>

Siebel Portal Framework Guide Siebel Innovation Pack 2017

Delivering Content to External Web Applications  Common Operations

68

<ARG NAME="SWEView">view name</ARG>

<ARG NAME="SWEApplet">applet name</ARG>

<ARG NAME="column name1">field value</ARG>

<ARG NAME="column name2">field value</ARG>

...

<ARG NAME="column nameN">field value</ARG>

<ARG NAME="SWESetMarkup">XML</ARG>

<ARG NAME="SWEDataOnly">TRUE</ARG>

<ARG NAME="SWESetNoTemp">TRUE</ARG>

</CMD>

</EXEC>

WriteRecord
In a WriteRecord command block, you must include an <ARG> tag for the row ID of the record
(SWERowID) and an argument to indicate the row ID is required for the operation (SWEReqRowId).

<?xml version="1.0" encoding="UTF-8"?>

<EXEC PATH="/callcenter/start.swe">

<CMD NAME="SWECmd" VALUE="InvokeMethod">

<ARG NAME="SWEMethod">WriteRecord</ARG>

<ARG NAME="SWEReqRowId">1</ARG>

<ARG NAME="SWEView">view name</ARG>

<ARG NAME="SWERowId">row id of record to be saved</ARG>

<ARG NAME="SWEApplet">applet name</ARG>

<ARG NAME="SWESetMarkup">XML</ARG>

<ARG NAME="SWEDataOnly">TRUE</ARG>

<ARG NAME="SWESetNoTemp">TRUE</ARG>

</CMD>

</EXEC>

Delivering Content to External Web Applications  Common Operations

Siebel Portal Framework Guide Siebel Innovation Pack 2017 69

Deleting Records
To successfully remove a record from the database, you must first navigate to a screen that allows
records to be deleted. Then, the following three requests must be sent separately to the SWE XML
application:

1 Activate a new query. See “NewQuery” on page 69.

2 Execute the query. See “ExecuteQuery” on page 69.

3 Delete the selected record. See “DeleteRecord” on page 70.

NOTE: When deleting a record, use a primary key (such as a row ID) as the parameter for the query.
This makes sure that only one record is returned and selected in the response. If you do not use a
primary key to perform the query, then several records might be returned in the response. There is
a chance that the record that you want to delete is not the one selected.

NewQuery
When you delete a record, you must first execute a query to find the record you want to delete. Use
search criteria, such as a primary key, to make sure that the query returns only one record.

<?xml version="1.0" encoding="UTF-8"?>

<EXEC PATH="/callcenter/start.swe">

<CMD NAME="SWECmd" VALUE="InvokeMethod">

<ARG NAME="SWEMethod">NewQuery</ARG>

<ARG NAME="SWEView">view name</ARG>

<ARG NAME="SWEApplet">applet name</ARG>

<ARG NAME="SWESetMarkup">XML</ARG>

<ARG NAME="SWEDataOnly">TRUE</ARG>

<ARG NAME="SWESetNoTemp">TRUE</ARG>

</CMD>

</EXEC>

ExecuteQuery
When you use the ExecuteQuery command block in an effort to delete a record, you must include an
<ARG> tag that identifies the primary key of the record that you want to delete. This makes sure that
the query returns only one record, which is automatically selected. You can then use the
DeleteRecord command to delete the selected record.

<?xml version="1.0" encoding="UTF-8"?>

<EXEC PATH="/callcenter/start.swe">

<CMD NAME="SWECmd" VALUE="InvokeMethod">

Siebel Portal Framework Guide Siebel Innovation Pack 2017

Delivering Content to External Web Applications  Common Operations

70

<ARG NAME="SWEMethod">ExecuteQuery</ARG>

<ARG NAME="SWEView">view name</ARG>

<ARG NAME="SWEApplet">applet name</ARG>

<ARG NAME="primary key column name">primary key value</ARG>

<ARG NAME="SWESetMarkup">XML</ARG>

<ARG NAME="SWEDataOnly">TRUE</ARG>

<ARG NAME="SWESetNoTemp">TRUE</ARG>

</CMD>

</EXEC>

DeleteRecord
You use <ARG> tags to indicate the view and applet that contain the selected record that you want to
delete.

<?xml version="1.0" encoding="UTF-8"?>

<EXEC PATH="/callcenter/start.swe">

<CMD NAME="SWECmd" VALUE="InvokeMethod">

<ARG NAME="SWEMethod">DeleteRecord</ARG>

<ARG NAME="SWEView">view name</ARG>

<ARG NAME="SWEApplet">applet name</ARG>

<ARG NAME="SWESetMarkup">XML</ARG>

<ARG NAME="SWEDataOnly">TRUE</ARG>

<ARG NAME="SWESetNoTemp">TRUE</ARG>

</CMD>

</EXEC>

Picking Records
To pick a value from a pick list and save the value in the database, you need to navigate to a screen
and then submit three requests:

1 Navigate to a screen. See “GotoPageTab” on page 71.

2 Get a pick list. See “EditField” on page 71.

3 Get the row ID of the record to pick. See “PickRecord” on page 72.

Delivering Content to External Web Applications  Common Operations

Siebel Portal Framework Guide Siebel Innovation Pack 2017 71

4 Write the record to the database. See “WriteRecord” on page 72.

GotoPageTab
First, you need to navigate to a screen. For example:

<EXEC PATH="/callcenter/start.swe">

<CMD VALUE="GotoPageTab" NAME="SWECmd">

<ARG NAME="SWEScreen">Accounts Screen</ARG>

<ARG NAME="SWENeedContext">false</ARG>

<ARG NAME="SWEBID">-1</ARG>

</CMD>

<INFO NAME="SWEC">12</INFO>

</EXEC>

EditField
To return the pick list using the EditField method, you must define arguments that identify the applet,
view, and field on which the pick list is based. For example:

<EXEC PATH="/callcenter/start.swe">

<CMD VALUE="InvokeMethod" NAME="SWECmd">

<ARG NAME="SWEApplet">Account Entry Applet</ARG>

<ARG NAME="SWEW">0</ARG>

<ARG NAME="SWEView">Account List View</ARG>

<ARG NAME="SWERowId">1-6</ARG>

<ARG NAME="SWEField">Currency</ARG>

<ARG NAME="SWEDIC">true</ARG>

<ARG NAME="SWENeedContext">true</ARG>

<ARG NAME="SWEH">0</ARG>

<ARG NAME="SWEReqRowId">1</ARG>

<ARG NAME="SWESP">true</ARG>

<ARG NAME="SWEMethod">EditField</ARG>

</CMD>
<INFO NAME="SWEC">9</INFO>

</EXEC>

Siebel Portal Framework Guide Siebel Innovation Pack 2017

Delivering Content to External Web Applications  Common Operations

72

PickRecord
The PickRecord method returns the row ID of the record to be picked. For example:

<EXEC PATH="/callcenter/start.swe">

<CMD VALUE="InvokeMethod" NAME="SWECmd">

<ARG NAME="SWEApplet">Currency Pick Applet</ARG>

<ARG NAME="SWEView">Account List View</ARG>

<ARG NAME="SWERowId">0-5129</ARG>

<ARG NAME="SWENeedContext">false</ARG>

<ARG NAME="SWEReqRowId">1</ARG>

<ARG NAME="SWEP">14_Account Entry Applet9_EditField3_1-68_Currency1_1</ARG>

<ARG NAME="SWEMethod">PickRecord</ARG>

</CMD>

<INFO NAME="SWEC">1</INFO>

</EXEC>

NOTE: The value for the SWEP argument can be found in the XML response from the EditField
method.

WriteRecord
The WriteRecord method writes the record to the database. For example:

<EXEC PATH="/callcenter/start.swe">

<CMD VALUE="InvokeMethod" NAME="SWECmd">

<ARG NAME="SWEApplet">Account Entry Applet</ARG>

<ARG NAME="SWEView">Account List View</ARG>

<ARG NAME="SWERowId">1-6</ARG>

<ARG NAME="SWENeedContext">true</ARG>

<ARG NAME="SWEReqRowId">1</ARG>

<ARG NAME="SWEMethod">WriteRecord</ARG>

</CMD>
<INFO NAME="SWEC">2</INFO>

</EXEC>

Delivering Content to External Web Applications  SWE API

Siebel Portal Framework Guide Siebel Innovation Pack 2017 73

SWE API
This topic contains reference information about SWE commands, methods, and arguments:

 “SWE Commands” on page 73

 “SWE Commands Available in Siebel Open UI” on page 78

 “SWE Methods” on page 79

 “SWE Arguments” on page 85

NOTE: The Siebel Open UI client supports HTML markup only. For more information, see “Overview
of the XML Web Interface” on page 41.

SWE Commands
Table 24 on page 74 provides a list of commonly used SWE commands.

NOTE: A subset of these SWE commands are available in Siebel Open UI. These commands are listed
in Table 25 on page 78.

Siebel Portal Framework Guide Siebel Innovation Pack 2017

Delivering Content to External Web Applications  SWE API

74

Table 24. SWE Commands

Supported
Values

Short
Format Description

Required Args
(with
Description)

Optional Args
(with Description)

CanInvokeMethod

For a list of
commonly used
methods, see
Table 26 on
page 79.

C Checks whether a
method can be invoked
on an applet, a business
service, a business
component, or the SWE
application.

Called only when the
Object Manager is in
high interactivity mode.

Use the optional
SWEService,
SWEBusComp, and
SWEApplet arguments
to specify the Siebel
object on which the
method is invoked. If
none of these are
specified, then SWE
checks the
CanInvokeMethod state
of the method on the
SWE application object,
which currently supports
a limited set of
InvokeMethod, such as
Logoff, SortOrder,
SaveQuery, and
SaveQueryAs.

SWEMethod -
name of the
method.

SWEService - name of
the business service to
check whether the
method can be
invoked.

SWEBusComp - name
of the business
component to check
whether the method
can be invoked.

SWEApplet - name of
the applet to check
whether the method
can be invoked.

ExecuteLogin Xlg Executes login for a
user.

SWEUserName
- user name.

SWEPassword
- password.

None

GotoPage Gp Goes to a Siebel Web
page (this is the Web
page object defined in
Siebel Tools).

SWEPage -
name of the Web
page.

None

GotoPageTab Gt Goes to a Siebel screen.
Shows the default view
for the screen.

SWEScreen -
name of the
screen.

None

Delivering Content to External Web Applications  SWE API

Siebel Portal Framework Guide Siebel Innovation Pack 2017 75

GotoView Gv Goes to a Siebel view.

If the SWEPostnApplet
and SWEPostnRowId
arguments are
specified, then it
executes a search for
the specified row ID in
the specified applet.

NOTE: If the queried
applet is part of a toggle
cycle, then set
SWEPostnApplet to the
default (top) applet in
the toggle cycle or the
application displays an
error, View: %1 does not
contain applet: %2.
For more information
about applet toggles,
see Configuring Siebel
Business Applications.

If SWEQMApplet and
SWEQMMethod
arguments are
specified, then it invokes
the method after going
to the view.

SWEView -
name of the
view.

SWEKeepContext - if
TRUE, keeps the
current business object
context, when
requesting to a view
based on the same
business object.

SWEPostnApplet -
name of the applet on
which to execute the
search.

SWEPostnRowId -
row ID to search for.

SWEQMApplet - name
of the QueueMethod
applet where the
method (as specified in
SWEQMMethod) is
invoked after going to
the view.

SWEQMMethod -
name of the
QueueMethod method
to be invoked. You can
invoke only one
method.

SWEQMArgs -
arguments of the
QueueMethod method.

Table 24. SWE Commands

Supported
Values

Short
Format Description

Required Args
(with
Description)

Optional Args
(with Description)

Siebel Portal Framework Guide Siebel Innovation Pack 2017

Delivering Content to External Web Applications  SWE API

76

InvokeMethod

For a list of
commonly used
methods, see
Table 26 on
page 79.

Inv Invokes a method on an
applet, a business
service, a business
component, or the SWE
application.

Use the optional
SWEService,
SWEBusComp, and
SWEApplet arguments
to specify the Siebel
object on which the
method is invoked. If
none of these are
specified, then SWE
invokes on the SWE
application object,
which currently supports
a limited set of
InvokeMethod such as
Logoff, SortOrder,
SaveQuery, and
SaveQueryAs.

SWEMethod -
name of the
method.

SWEService - name of
the business service to
invoke the method.

SWEBusComp - name
of the business
component to invoke
the method.

SWEApplet - name of
the applet to invoke the
method.

SWEView - name of
the view to invoke the
method

LoadService None Loads a business service
on the server side.

SWEService -
name of the
business service
to load.

None

Login Lg Loads the login view or
login page. SWE first
looks at the
Acknowledgment Web
View property of the
application object in the
repository for the login
view to show. If not
specified, then the
default is the
"Acknowledgment Web
Page" property to show
the login page.

None None

Table 24. SWE Commands

Supported
Values

Short
Format Description

Required Args
(with
Description)

Optional Args
(with Description)

Delivering Content to External Web Applications  SWE API

Siebel Portal Framework Guide Siebel Innovation Pack 2017 77

Logoff Bye Executes the database
logoff, then shows the
logoff view or page.
SWE first looks at the
Logoff Acknowledgment
Web Page property of
the application object in
the repository for the
login page to show. If
none is specified, then
SWE shows the login
view or login page,
depending on how you
log in.

None None

ReloadCT None Reloads personalization
info. SWE loads the
initial personalization on
startup, and when the
personalization rules are
changed, SWE does not
update the info
automatically since
there is cost in
performance, so SWE
provides this command
to reload the info.

None None

Table 24. SWE Commands

Supported
Values

Short
Format Description

Required Args
(with
Description)

Optional Args
(with Description)

Siebel Portal Framework Guide Siebel Innovation Pack 2017

Delivering Content to External Web Applications  SWE API

78

SWE Commands Available in Siebel Open UI
You can use several SWE commands to display a Siebel portlet in Siebel Open UI. For security
reasons, you can use only the GotoView and GetApplet methods to call a Siebel portlet from an
external application. GotoPage and GotoPageTab are not applicable in Siebel Open UI. You can use
the commands listed in Table 25 within a Siebel portlet. You cannot use them to call a portlet. For
more information about these commands, see Configuring Siebel Open UI.

Table 25. SWE Commands Available in Siebel Open UI

Supported
Values

Inside Siebel
Application

Called from UI Element
Inside Siebel Portlet
Container

Called from Outside
Siebel Portlet
Container

CanInvokeMethod Yes Yes No

ExecuteLogin Yes

This is not supported
for HTTP GET. It is
supported through
HTTP POST.

Not applicable for this use
case.

Yes

This is not supported
for HTTP GET. It is
supported through
HTTP POST.

GotoView Yes

Use only when invoked
from the browser
address bar by refresh
or history navigation.

Yes Yes

GetAplet Yes Yes Yes

InvokeMethod Yes Yes No

For more information
about allowing
blocked methods for
HTTP GET access, see
Configuring Siebel
Open UI.

LoadService Yes Yes No

Login Yes Not applicable to Siebel
Open UI.

Not applicable to
Siebel Open UI (use
SSO or similar).

Logoff Yes Not applicable to Siebel
Open UI.

No

ReloadCT Yes Yes No

Delivering Content to External Web Applications  SWE API

Siebel Portal Framework Guide Siebel Innovation Pack 2017 79

SWE Methods
The InvokeMethod command allows you to invoke SWE methods on an applet, business component,
business service, or application. Table 26 lists SWE methods commonly used with the InvokeMethod
SWE command.

Table 26. SWE Methods

Supported Values Description
Required Args
(with Description)

Optional Args
(with Description)

CollapseTreeItem Used in a tree control to
collapse an expanded
item on the tree.

SWETreeItem: Specify
the path of the item
relative to root. The path
is a string of the form
n.n.n.n…where n is an
index of an item within
its level. The index starts
from 1. Example: 1.1.2.
SWEView: Name of the
view. SWEApplet: Name
of the applet.

None

CopyRecord Performs initialization,
then calls CopyRecord
on the business
component.

None None

CreateRecord Performs initialization,
then calls NewRecord on
the business
component.

None None

DeleteQuery Deletes a named query. SweNamedQueries:
Specify the name of the
named query to be
deleted.

None

DeleteRecord Deletes a record. None None

Drilldown Drills down on the field
as specified in the
argument SWEField.

SWEField: Specify the
name of the applet field
that you want to
drilldown on. The
drilldown information is
specified in the
repository.

None

Siebel Portal Framework Guide Siebel Innovation Pack 2017

Delivering Content to External Web Applications  SWE API

80

EditRecord Changes the Applet Web
Template from base
mode to edit mode, so
the record can be
edited. Use EditRecord
with applets running in
standard interactivity.

For applets running in
high interactivity, it is
not necessary to change
the Applet Web
Template mode to edit
the record. For high
interactivity applets,
use WriteRecord. Siebel
Open UI uses high
interactivity applets.

SWESeq: Specify the
sequence number of the
Edit template. You can
have many Edit
templates for an applet
in Siebel Tools, each
identified by the
sequence number.

List of arguments with
name and value,
where the name
specifies the field
name and the value
specifies the field
query specification.
Sets the field query
specification before
executing the query.

ExecuteQuery Executes a query. The
query specification of
the fields is specified in
the list of arguments.

None None

ExecuteNamedQuery Executes a predefined
query (PDQ) on the
current view. Use with
standard interactivity
applications.

SWEQueryName -
name of the PDQ.

None

ExpandTreeItem Used in a tree control to
expand an item on the
tree.

SWETreeItem: Specify
the path of the item
relative to root. The path
is a string of the form
n.n.n.n…where n is an
index of an item within
its level. The index starts
from 1. Example: 1.1.2.
SWEView: Name of the
view. SWEApplet: Name
of the applet.

None

GotoFirstSet Goes to the first set of
records. The number of
rows in a set is specified
in the repository.

None None

Table 26. SWE Methods

Supported Values Description
Required Args
(with Description)

Optional Args
(with Description)

Delivering Content to External Web Applications  SWE API

Siebel Portal Framework Guide Siebel Innovation Pack 2017 81

GotoLastSet Goes to the last set of
records.

None None

GotoNextSet Goes to the next set of
records.

None None

GotoPreviousSet Goes to the previous set
of records.

None None

GotoView Goes to a Siebel view.

If the
SWEPostnApplet and
SWEPostnRowId
arguments are
specified, then this
method executes a
search for the specified
row ID in the specified
applet.

NOTE: If the queried
applet is part of a toggle
cycle, then set
SWEPostnApplet to the
default (top) applet in
the toggle cycle or the
application displays an
error, View: %1 does
not contain applet: %2.
For more information
about applet toggles,
see Configuring Siebel
Business Applications.

If SWEQMApplet and
SWEQMMethod
arguments are
specified, then this
method invokes the
method after going to
the view.

SWETargetView - name
of the view.

SWEKeepContext -
if TRUE, then this
method keeps the
current business
object when the user
navigates to a view
that uses the same
business object.

SWEPostnApplet -
name of the applet on
which to execute the
search.

SWEPostnRowId -
row ID to search for.

SWEQMApplet -
name of the
QueueMethod applet
where the method (as
specified in
SWEQMMethod) is
invoked after going to
the view.

SWEQMMethod -
name of the
QueueMethod
method. The method
to be invoked. You can
invoke only one
method.

SWEQMArgs -
arguments of the
QueueMethod
method.

Table 26. SWE Methods

Supported Values Description
Required Args
(with Description)

Optional Args
(with Description)

Siebel Portal Framework Guide Siebel Innovation Pack 2017

Delivering Content to External Web Applications  SWE API

82

Indent For a hierarchical
applet, moves the
current record down the
hierarchy by one level.

None None

MoveDown For a hierarchical
applet, moves the
current record down the
hierarchy within the
same level.

None None

MoveUp For a hierarchical
applet, moves the
current record up the
hierarchy within the
same level.

None None

NewQuery Begins a new query. None None

NewRecord If the applet has an
association applet, then
this method shows the
association popup
applet. Otherwise, it
creates a new record.

None None

NextTreeItem Used in a tree control to
scroll the tree to the
next set of record.

SWETreeItem:
Specifies the path of the
item relative to root. The
path is a string of the
form n.n.n.n…where n is
an index of an item
within its level. The index
starts from 1. Example:
1.1.2. SWEView: Name
of the view. SWEApplet:
Name of the applet.

None

Outdent For a hierarchical
applet, moves the
current record down the
hierarchy by one level.

None None

PickNone Makes sure the parent
applet field has nothing
picked from the pick
applet.

None None

Table 26. SWE Methods

Supported Values Description
Required Args
(with Description)

Optional Args
(with Description)

Delivering Content to External Web Applications  SWE API

Siebel Portal Framework Guide Siebel Innovation Pack 2017 83

PickRecord Picks the current row in
a pick applet.

None None

PositionOnRow Positions the record as
specified in the list of
required arguments.

SWEView: Name of the
view.
SWEApplet: Name of
the Applet.
SWERowId: The row ID
of the desired record.
SWESetRowCnt: Sets
the number of rows to be
returned for XML
requests. When used
during PositionOnRow,
the specified number of
rows are returned, and
the selected row remains
highlighted.
SWEReqRowId:
Indicates that the row is
required in the
operation.

None

PostChanges Sets the field values as
specified in the list of
arguments to the record
being created or edited.

None List of arguments with
name and value
where the name
specifies the field
name and the value
specifies the field
value. Sets these field
values before
committing the
record.

PreviousTreeItem Used in a tree control to
scroll the tree to the
previous set of records.

SWETreeItem: Specify
the path of the item
relative to root. The path
is a string of the form
n.n.n.n…where n is an
index of an item within
its level. The index starts
from 1. Example: 1.1.2.
SWEView: Name of the
view. SWEApplet: Name
of the applet.

None

Table 26. SWE Methods

Supported Values Description
Required Args
(with Description)

Optional Args
(with Description)

Siebel Portal Framework Guide Siebel Innovation Pack 2017

Delivering Content to External Web Applications  SWE API

84

RefineQuery Keeps the current field
query specification and
queries again.

None None

SaveQueryAs Saves the current query
as a named query. The
name is specified in the
argument
_SweNamedQueries.

SweNamedQueries:
Specify the name to save
the query as.

None

SelectTreeItem Used in a tree control to
select an item of the
tree.

SWETreeItem:
Specifies the path of the
item relative to root. The
path is a string of the
form n.n.n.n…where n is
an index of an item
within its level. The index
starts from 1. Example:
1.1.2. SWEView: Name
of the view. SWEApplet:
Name of the applet.

None

SortAscending Sorts the field as
specified in the
argument SWEField in
ascending order.

SWEField: Specifies the
name of the applet field
that you want to sort in
ascending order.

None

SortDescending Sorts the field as
specified in the
argument SWEField in
descending order.

SWEField: Specifies the
name of the applet field
that you want to sort in
descending order.

None

ToggleTo Toggles to a different
toggle applet.

SWESeq: Sequence
number of the toggle
applet to toggle to.

None

UndoRecord Undoes a record that is
being created or edited.

None None

WriteRecord Commits a record that is
being created or edited.

SWERowId: Is the row
ID of the record to be
saved. SWEReqRowId:
Indicates that the row ID
is required in the
operation.

None

Table 26. SWE Methods

Supported Values Description
Required Args
(with Description)

Optional Args
(with Description)

Delivering Content to External Web Applications  SWE API

Siebel Portal Framework Guide Siebel Innovation Pack 2017 85

SWE Arguments
Table 27 lists some commonly used SWE arguments.

Table 27. SWE Arguments

URL Argument
Short
Format Description Usage Examples

SWEAC None Allows login
manager to string
two SWE
commands in a
single request.
(Formerly known
as SWEAuxCmd.)

SWECmd=ExecuteLogin
(followed by)
SWEAC=GotoPageTab

SWECmd=ExecuteLogin
&SWEUserName=joe&SW
EPassword=passwd&SW
EAC=SWECmd=GotoPage
Tab&SWEScreen=Accou
nts+Screen&SWEReloa
dFrames=1

SWEBU None Indicates that a
URL is a
bookmarked URL.
It is retrieved in
the UI by using
the Get Bookmark
URL command.

SWEBU=1 (if used as a
bookmark URL)

None

SWECount C Dynamically
generates an
index number for
each hyperlink for
the purpose of
bookmarking
each request.

SWEC=n (where n is a
positive integer number)
(or) <ARG
NAME="SWEC">n</ARG>

SWEC=1 (or) <ARG
NAME="SWEC">1</ARG>

SWEDataOnly None Discards all UI
content
(including
anchors) if set to
TRUE.

SWEDataOnly={TRUE|FAL

SE} (or) <ARG
NAME=”SWEDataOnly”>TR

UE|FALSE</ARG>

SWEDataOnly=TRUE

(or) <ARG
NAME=”SWEDataOnly”>

TRUE</ARG>

SWEExclude None Uses the comma-
separated UI
element names
specified as the
value of the
parameter to
exclude UI
elements from
appearing in the
output document.

SWEExclude=”list of

names” (names can be
MENU, SCREENBAR,
TOOLBAR, THREADBAR,
PAGEITEM, VIEWBAR) (or)
<ARG

NAME=”SWEExclude”>lis

t of names</ARG>

SWEExclude=”MENU,SC

REENBAR” (or) <ARG
NAME=”SWEExclude”>

MENU,SCREENBAR</

ARG>

Siebel Portal Framework Guide Siebel Innovation Pack 2017

Delivering Content to External Web Applications  SWE API

86

SWEField F Specifies the
name of the
applet field.

SWEField=<field name>

(or) <ARG
NAME=”SWEField”>field

name</ARG>

SWEField=Revenue
(or) <ARG
NAME=”SWEField”>Rev

enue</ARG>

SWEFullRefresh None Forces a full
refresh of the
Siebel Web Client,
for applications
deployed in
Siebel Open UI or
high interactivity.

Used by the
Siebel Open UI or
high interactivity
client to send a
SWE command to
load the
completely.
Typically used for
session
interleaving from
a non-Siebel
session.

SWEFullRefresh={TRUE|

FALSE} (or) <ARG
NAME=”SWEFullRefresh”

>TRUE|FALSE</ARG>

SWEFullRefresh=TRUE
(or) <ARG
NAME=”SWEFullRefres

h”>TRUE</ARG>

SWEGetApplet None This parameter is
used to filter the
outbound XML
document so only
the applet named
as the value of
the parameter is
allowed in the
output. All other
document
content is
discarded.

SWEGetApplet=<name of

the applet> (or) <ARG
NAME=”SWEGetApplet”>n

ame of the applet</

ARG>

SWEGetApplet=Accoun

t+List+Applet (or)
<ARG

NAME=”SWEGetApplet”

>Account List

Applet</ARG>

SWEGetPDQ None Discards all XML
content and
returns only PDQ
list when set to
TRUE.

SWEGetPDQ={TRUE|FALSE

} (or) <ARG
NAME=”SWEGetPDQ”>TRUE

|FALSE</ARG>

SWEGetPDQ=TRUE (or)
<ARG

NAME=”SWEGetPDQ”>TR

UE</ARG>

Table 27. SWE Arguments

URL Argument
Short
Format Description Usage Examples

Delivering Content to External Web Applications  SWE API

Siebel Portal Framework Guide Siebel Innovation Pack 2017 87

SWEKeepContext Kx Keeps the current
business object if
going to a view
that uses the
same business
object, if set to
TRUE.

SWEKeepContext={TRUE|

FALSE} (or) <ARG
NAME=”SWEKeepContext”

>TRUE|FALSE</ARG>

SWEKeepContext=TRUE
(or) <ARG
NAME=”SWEKeepContex

t”>TRUE</ARG>

SWENeedContext Nct Skips restoring
the state of the
view, applet,
business object,
and business
component when
going back to a
previously viewed
page, if set to
FALSE.

Default is TRUE
for a view or
applet and FALSE
for a Web page.

SWENeedContext={TRUE|

FALSE} (or) <ARG
NAME=”SWENeedContext”

>TRUE|FALSE</ARG>

SWENeedContext=TRUE
(or) <ARG
NAME=”SWENeedContex

t”>TRUE</ARG>

SWENoAnchor None Discards all
anchors if set to
TRUE.

SWENOAnchor={TRUE|FAL

SE} (or) <ARG
NAME=”SWENoAnchor”>TR

UE|FALSE</ARG>

SWENoAnchor=TRUE

(or) <ARG
NAME=”SWENoAnchor”>

TRUE</ARG>

SWEReloadFrames RF Forces the
reloading of all
HTML frames
when set to
TRUE.

SWERF={TRUE|FALSE}
(or) <ARG
NAME="SWERF">TRUE|FAL

SE</ARG>

SWERF=TRUE (or) <ARG
NAME="SWERF">TRUE</

ARG>

SWEReqRowId Rqr Needs to position
to the row
specified in the
argument
SWERowId, if set
to TRUE.

SWEReqRowId={TRUE|FAL

SE} (or) <ARG
NAME=”SWEReqRowId”>TR

UE|FALSE</ARG>

SWEReqRowId=TRUE
(or) <ARG
NAME=”SWEReqRowId”>

TRUE</ARG>

SWERows Rs Specifies the
number of rows
to be used as an
attribute of an
HTML frameset.

SWERs=n (where n is a
positive integer number)
(or) <ARG
NAME="SWERs">n</ARG>

SWERs=1 (or) <ARG
NAME="SWERs">1</

ARG>

Table 27. SWE Arguments

URL Argument
Short
Format Description Usage Examples

Siebel Portal Framework Guide Siebel Innovation Pack 2017

Delivering Content to External Web Applications  Document Type Definition

88

Document Type Definition
This topic lists Document Type Definitions (DTD) for the inbound and outbound documents used with
the XML Web Interface.

NOTE: The Siebel Open UI client supports HTML markup only. For more information, see “Overview
of the XML Web Interface” on page 41.

SWERowId R The row ID of the
record to position
to.

SWERowId=<rowid><ARG
NAME=”SWERowId”>
rowid</ARG>

SWERowId=12-
XI46FG<ARG
NAME=”SWERowId”>12-
XI46FG</ARG>

SWERowIds Rs A string
specifying the
row ID of the
parent business
components.

SWERowIds=<string of
rowids><ARG
NAME=”SWERowId”>
string of rowids</
ARG>

SWERowIds=SWERowId0
%3d12-61W25L<ARG
NAME=”SWERowId”>SWE
RowId=12-61W25L</
ARG>

SWESetMarkup None Temporarily sets
the markup
language to use
in the output
document.

SWESetMarkup=<name of
the markup
language><ARG
NAME=”SWESetMarkup”>m
arkup language</ARG>

SWESetMarkup=HTML<A
RG
NAME=”SWESetMarkup”
>HTML</ARG>

SWESetNoTempl None Disables the use
of templates
during the
generation of the
outbound
document.

SWESetNoTempl={TRUE |
FALSE}<ARG
NAME=”SWESetNoTempl”>
TRUE|FALSE</ARG>

SWESetNoTempl=TRUE<
ARG
NAME=”SWESetNoTempl
”>TRUE</ARG>

SWESetRowCnt None Temporarily sets
the workset size
or row number of
list applets in the
view.

SWESetRowCnt=<number
of list rows><ARG
NAME=”SWESetRowCnt”>n
umber of list rows</
ARG>

SWESetRowCnt=50<ARG
NAME=”SWESetRowCnt”
>number of list
rows</ARG>

SWEXslStyleSheet None Specifies the
name of the XSLT
style sheet to use
to perform the
XSLT on the XML
output document.

SWEXslStyleSheet=<sty

lesheet name> (The
style sheet needs to be
in the application’s
webtempl directory.)
<ARG

NAME=”SWEXslStyleShee

t”>name of the XSLT

stylesheet</ARG>

SWEXslStyleSheet=ui
.xsl<ARG
NAME=”SWEXslStyleSh
eet”>ui.xsl</ARG>

Table 27. SWE Arguments

URL Argument
Short
Format Description Usage Examples

Delivering Content to External Web Applications  Document Type Definition

Siebel Portal Framework Guide Siebel Innovation Pack 2017 89

Inbound DTD
The following is the DTD for the inbound documents used with the XML Web Interface.

<!ELEMENT EXEC (CMD, INFO*) >
<!ATTLIST EXEC

ATTR CDATA #IMPLIED
PATH CDATA #IMPLIED
TARGET CDATA #IMPLIED

>
<!ELEMENT CMD (ARG*) >
<!ATTLIST CMD

NAME CDATA #REQUIRED
VALUE CDATA #REQUIRED

>
<!ELEMENT ARG (#PCDATA) >
<!ATTLIST ARG

NAME CDATA #REQUIRED

>
<!ELEMENT INFO (#PCDATA) >
<!ATTLIST INFO

NAME CDATA #REQUIRED

>

Outbound DTD
The following is the DTD for the outbound documents used with the XML Web Interface.

<!ELEMENT APPLICATION (ERROR*, (USER_AGENT?, NAVIGATION_ELEMENTS*,
(SCREEN | APPLET | FORM | PDQ_BAR)*), ERROR*) >

<!ATTLIST APPLICATION

 NAME CDATA #REQUIRED

>
<!ELEMENT USER_AGENT EMPTY>
<!ATTLIST USER_AGENT

MARKUP CDATA #REQUIRED
TYPE CDATA #IMPLIED

>
<!ELEMENT NAVIGATION_ELEMENTS (MENU*,

TOOL_BAR*,
SCREEN_BAR*,
THREAD_BAR*,
VIEW_BAR*,
PAGE_ITEM*) >

Siebel Portal Framework Guide Siebel Innovation Pack 2017

Delivering Content to External Web Applications  Document Type Definition

90

<!ELEMENT MENU (MENU_ITEM | ERROR)* >
<!ATTLIST MENU

NAME CDATA #REQUIRED

>
<!ELEMENT MENU_ITEM (#PCDATA | ANCHOR | MENU_ITEM | ERROR)* >
<!ATTLIST MENU_ITEM

NAME CDATA #IMPLIED
ENABLED (TRUE | FALSE) #IMPLIED
TYPE CDATA #IMPLIED

>
<!ELEMENT ANCHOR ((CMD, INFO*) | ERROR*) >
<!ATTLIST ANCHOR

ATTR CDATA #IMPLIED
PATH CDATA IMPLIED
TARGET CDATA #IMPLIED

>
<!ELEMENT CMD (ARG*) >
<!ATTLIST CMD

NAME CDATA #REQUIRED
VALUE CDATA #REQUIRED

>
<!ELEMENT ARG (#PCDATA) >
<!ATTLIST ARG

NAME CDATA #REQUIRED

>
<!ELEMENT INFO (#PCDATA) >
<!ATTLIST INFO

NAME CDATA #REQUIRED

>
<!ELEMENT TOOL_BAR (TOOL_ITEM | ERROR)* >
<!ATTLIST TOOL_BAR

NAME CDATA #REQUIRED
PATH CDATA #IMPLIED

>
<!ELEMENT TOOL_ITEM (#PCDATA | ANCHOR | ERROR)* >
<!ATTLIST TOOL_ITEM

NAME CDATA #REQUIRED
TYPE CDATA #REQUIRED
ATTR CDATA #IMPLIED
MAX_LENGTH CDATA#IMPLIED

Delivering Content to External Web Applications  Document Type Definition

Siebel Portal Framework Guide Siebel Innovation Pack 2017 91

>
<!ELEMENT SCREEN_BAR (SCREEN_TAB | VIEW_BAR | ERROR)* >
<!ELEMENT SCREEN_TAB (#PCDATA | VIEW_BAR | ANCHOR | ERROR)* >
<!ATTLIST SCREEN_TAB

NAME CDATA #REQUIRED
ACTIVE (TRUE | FALSE) "FALSE"
CAPTION CDATA #IMPLIED

>
<!ELEMENT THREAD_BAR (THREAD | ERROR)* >
<!ELEMENT THREAD (#PCDATA | ANCHOR | ERROR)* >
<!ATTLIST THREAD

TITLE CDATA #REQUIRED

>
<!ELEMENT VIEW_BAR (VIEW_TAB | ERROR)* >
<!ATTLIST VIEW_BAR

MODE CDATA #IMPLIED
SCREEN CDATA #IMPLIED
TYPE CDATA #IMPLIED

>
<!ELEMENT VIEW_TAB (#PCDATA | ANCHOR | ERROR)* >
<!ATTLIST VIEW_TAB

NAME CDATA #REQUIRED
SELECTED (TRUE | FALSE) "FALSE"
TITLE CDATA #IMPLIED

>
<!ELEMENT PAGE_ITEM (#PCDATA | ANCHOR | ERROR)* >
<!ATTLIST PAGE_ITEM

NAME CDATA #REQUIRED
ATTR CDATA #IMPLIED
CAPTION CDATA #IMPLIED
TYPE CDATA #REQUIRED

><!ELEMENT SCREEN (VIEW | ERROR*) >
<!ATTLIST SCREEN

NAME CDATA #REQUIRED
ACTIVE (TRUE | FALSE) "FALSE"
CAPTION CDATA #IMPLIED

>
<!ELEMENT VIEW (SUB_VIEW_BAR | PDQ_BAR | APPLET | IMG | FORM | ERROR)* >
<!ATTLIST VIEW

NAME CDATA #REQUIRED
ACTIVE (TRUE | FALSE) "FALSE"
CATEGORY CDATA #IMPLIED
TITLE CDATA #IMPLIED

Siebel Portal Framework Guide Siebel Innovation Pack 2017

Delivering Content to External Web Applications  Document Type Definition

92

>
<!ELEMENT APPLET (FORM | CONTROL | CALENDAR | TREE | (LIST | (RS_HEADER,

RS_DATA)) | SORT_FIELD | APPLET_TOGGLE | ERROR)* >

<!ATTLIST APPLET

NAME CDATA #REQUIRED
ACTIVE CDATA #IMPLIED
CLASS CDATA #IMPLIED
ID CDATA #IMPLIED
MODE CDATA #IMPLIED
NO_DELETE (TRUE | FALSE) "FALSE"
NO_EXEC_QUERY (TRUE | FALSE) "FALSE"
NO_INSERT (TRUE | FALSE) "FALSE"
NO_MERGE (TRUE | FALSE) "FALSE"
NO_UPDATE (TRUE | FALSE) "FALSE"
ROW_COUNTER CDATA #IMPLIED
TITLE CDATA #IMPLIED

>
<!ELEMENT FORM ((CONTROL | CALENDAR | TREE | (LIST | (RS_HEADER, RS_DATA))

| SORT_FIELD | APPLET_TOGGLE | PDQ_BAR | SUB_VIEW_BAR)* | ERROR*) >

<!ATTLIST FORM

NAME CDATA #IMPLIED
ACTION CDATA #IMPLIED
ATTR CDATA #IMPLIED
METHOD CDATA #IMPLIED
TARGET CDATA #IMPLIED

>
<!ELEMENT CONTROL (#PCDATA | IMG | ANCHOR | PICK_LIST | ERROR)* >
<!ATTLIST CONTROL

NAME CDATA #REQUIRED
ATTR CDATA #IMPLIED
CALCULATED (TRUE | FALSE) "FALSE"
CAPTION CDATA #IMPLIED
DATATYPE CDATA #IMPLIED
ENABLED (TRUE | FALSE) "FALSE"
FIELD CDATA #IMPLIED
FORMAT CDATA #IMPLIED
HIDDEN (TRUE | FALSE) "FALSE"
HTML_TYPE CDATA #IMPLIED
ID CDATA #IMPLIED
MAX_LENGTH CDATA #IMPLIED
NUMBER_BASED (TRUE | FALSE) "FALSE"
READ_ONLY (TRUE | FALSE) "FALSE"
REQUIRED (TRUE | FALSE) "FALSE"
REQUIRED_INDICATOR CDATA #IMPLIED
SCALE CDATA #IMPLIED
TEXT_ALIGN CDATA #IMPLIED

Delivering Content to External Web Applications  Document Type Definition

Siebel Portal Framework Guide Siebel Innovation Pack 2017 93

TEXT_BASED (TRUE | FALSE) "FALSE"
TYPE CDATA #IMPLIED
VARIABLE CDATA #IMPLIED

>
<!ELEMENT PICK_LIST (OPTION | ERROR)* >
<!ATTLIST PICK_LIST

NAME CDATA #IMPLIED
ATTR CDATA #IMPLIED
VALUE CDATA #IMPLIED

>
<!ELEMENT OPTION (#PCDATA | ERROR)* >
<!ATTLIST OPTION

CAPTION CDATA #IMPLIED
SELECTED (TRUE | FALSE) "FALSE"

>
<!ELEMENT LIST ((RS_HEADER, RS_DATA) | ALERT | ERROR*) >

<!ELEMENT RS_HEADER (METHOD | COLUMN | ERROR)* >

<!ELEMENT RS_DATA (ROW | ERROR)* >

<!ELEMENT METHOD (#PCDATA | ANCHOR)* >

<!ATTLIST METHOD

NAME CDATA #REQUIRED
CAPTION CDATA #IMPLIED
FIELD CDATA #IMPLIED

>
<!ELEMENT COLUMN (METHOD | ERROR)* >
<!ATTLIST COLUMN

NAME CDATA #REQUIRED
CALCULATED (TRUE | FALSE) "FALSE"
DISPLAY_NAME CDATA #IMPLIED
DATATYPE CDATA #IMPLIED
FIELD CDATA #IMPLIED
FORMAT CDATA #IMPLIED
HIDDEN (TRUE | FALSE) "FALSE"
HTML_TYPE CDATA #IMPLIED
ID CDATA #IMPLIED
LIST_EDITABLE CDATA #IMPLIED
NUMBER_BASED (TRUE | FALSE) "FALSE"
READ_ONLY (TRUE | FALSE) "FALSE"
REQUIRED (TRUE | FALSE) "FALSE"
SCALE CDATA #IMPLIED
TEXT_ALIGN CDATA #IMPLIED
TEXT_BASED (TRUE | FALSE) "FALSE"

Siebel Portal Framework Guide Siebel Innovation Pack 2017

Delivering Content to External Web Applications  Document Type Definition

94

TEXT_LENGTH CDATA #IMPLIED
TOTAL_REQUIRED (TRUE | FALSE) "FALSE"
TYPE CDATA #IMPLIED

>
<!ELEMENT ROW (#PCDATA | FIELD | ERROR)* >
<!ATTLIST ROW

ROWID CDATA #REQUIRED
SELECTED (TRUE | FALSE) "FALSE"

>
<!ELEMENT FIELD (#PCDATA | PICK_LIST | ANCHOR | ERROR)* >
<!ATTLIST FIELD

NAME CDATA #REQUIRED
VARIABLE CDATA #IMPLIED

>
<!ELEMENT TREE (ITEM | ERROR)* >
<!ATTLIST TREE

NAME CDATA #REQUIRED

>
<!ELEMENT ITEM (#PCDATA | ACTION | ITEM | ERROR)* >

<!ATTLIST ITEM

ATTR CDATA #IMPLIED
CAPTION CDATA #IMPLIED
PATH CDATA #REQUIRED
SELECTED (TRUE | FALSE) "FALSE"
TYPE CDATA #IMPLIED

>
<!ELEMENT ACTION (#PCDATA | ANCHOR)* >
<!ATTLIST ACTION

ATTR CDATA #IMPLIED
TYPE CDATA #REQUIRED

>
<!ELEMENT CALENDAR EMPTY>
<!ATTLIST CALENDAR

TITLE CDATA #IMPLIED

>
<!ELEMENT SORT_FIELD (PICK_LIST | ERROR)* >
<!ATTLIST SORT_FIELD

NAME CDATA #REQUIRED
SEQUENCE CDATA #IMPLIED

Delivering Content to External Web Applications  Manipulating Siebel XML with XSL
Style Sheets and XSLT

Siebel Portal Framework Guide Siebel Innovation Pack 2017 95

>
<!ELEMENT APPLET_TOGGLE (TOGGLE_ITEM | ERROR)* >
<!ATTLIST APPLET_TOGGLE

TYPE CDATA #IMPLIED

>
<!ELEMENT TOGGLE_ITEM (#PCDATA | ANCHOR | ERROR)* >
<!ATTLIST TOGGLE_ITEM

APPLET_NAME CDATA #REQUIRED
TITLE CDATA #IMPLIED
SELECTED (TRUE | FALSE) "FALSE"

>
<!ELEMENT SUB_VIEW_BAR (VIEW_TAB | ERROR)* >

<!ELEMENT PDQ_BAR (PDQ | ERROR)* >

<!ELEMENT PDQ (#PCDATA | ANCHOR | ERROR)* >
<!ATTLIST PDQ

NAME CDATA #REQUIRED
SELECTED (TRUE | FALSE) "FALSE"

>
<!ELEMENT IMG (#PCDATA) >
<!ATTLIST IMG

ALT CDATA #IMPLIED
SRC CDATA #IMPLIED

>
<!ELEMENT ERROR (#PCDATA | ERROR)* >

<!ELEMENT ALERT (#PCDATA) >

Manipulating Siebel XML with XSL Style
Sheets and XSLT
SWE can perform embedded XSL transformation on outbound XML documents. In this way, you can
generate outbound documents in the desired markup language or format directly from SWE, without
requiring a middle-tier server to perform the transformation. To do so, application developers must
provide the XSL style sheets used for the transformation and specify the names of the style sheets
to SWE.

NOTE: The Siebel Open UI client supports HTML markup only. For more information, see “Overview
of the XML Web Interface” on page 41.

This topic contains the following information:

 “Defining SWE Style Sheet Tags” on page 96

 “XML-Specific Template Tag” on page 96

Siebel Portal Framework Guide Siebel Innovation Pack 2017

Delivering Content to External Web Applications  Manipulating Siebel XML with XSL
Style Sheets and XSLT

96

 “Sample XSLT” on page 96

Defining SWE Style Sheet Tags
There are two ways in which you can request SWE to transform the outbound XML document into the
desired format using XSLT. You can either pass in a query parameter SWEXslStyleSheet=name-of-
the-stylesheet, or you can specify the style sheets to use in the Siebel templates by means of the
<swe:xsl-stylesheet> tag. For more information, see “XML-Specific Template Tag” on page 96.

XML-Specific Template Tag
The XML-specific template tag looks like this:

<swe:xsl-stylesheet>

Purpose
Specifies the name of the XSLT style sheet to perform the XSLT on the XML output document. The
style sheet must reside in the application’s webtempl directory. There is only one <swe:xsl-
stylesheet> tag for each view. If more than one <swe:xslstylesheet> tag is specified in the view,
then the last tag found gets used.

Attributes
Two attributes are used with the XSLT style sheet:

 name. Specifies the name of the style sheet.

 mode. You can set the mode to either process or embed. When set to process, SWE performs
XSLT processing on the XML output and sends the transformed document as the response back
to the client. When this attribute is set to embed, SWE inserts an XML processing instruction in
the beginning of the XML document for external XSLT processing.

Example
The following example illustrates how to specify the attributes for a style sheet.

swe:xsl-stylesheet name= ”table.xsl” mode= “process”/>

Sample XSLT
The following example shows how XSLT code snippets transform an XML response from SWE into
HTML. The XSLT snippets are based on the XML response generated from the Query String example
described in “Connecting to the XML Web Interface” on page 44.

<xsl:template match="/">
<TABLE bgcolor="#CCCCFF" width="100%" cellpadding="2"
cellspacing="0" Border="0" >

Delivering Content to External Web Applications  Manipulating Siebel XML with XSL
Style Sheets and XSLT

Siebel Portal Framework Guide Siebel Innovation Pack 2017 97

<TBODY>
<xsl:apply-templates select="//APPLET/LIST"/>

</TBODY>
</TABLE>

</xsl:template>

<xsl:template match="LIST">
<xsl:apply-templates select="RS_HEADER"/>
<xsl:apply-templates select="RS_DATA"/>

</xsl:template>

<xsl:template match="RS_HEADER">
<TR>

<xsl:for-each select="COLUMN">
<xsl:if test="@NAME='Name'">

<TD colspan="3" bgcolor="#CCCCFF" class="sub2viewon" width="60%">
<xsl:value-of select="@DISPLAY_NAME"/></B
</TD>

</xsl:if>
<xsl:if test="@NAME='Location'">

<TD bgcolor="#CCCCFF" class="sub2viewon" width="40%">
<xsl:value-of select="@DISPLAY_NAME"/>
</TD>

</xsl:if>
</xsl:for-each>

</TR>
</xsl:template>

<xsl:template match="RS_DATA">
<xsl:for-each select="ROW">

<TR>
<xsl:for-each select="FIELD">
<xsl:if test="@NAME='Name'">

<TD bgcolor="#FFFFFF">
<xsl:element name="IMG">

<xsl:attribute name="SRC">
portal_files/w.gif

</xsl:attribute>
<xsl:attribute name="height">

1
</xsl:attribute>
<xsl:attribute name="width">

3
</xsl:attribute>

</xsl:element>
</TD>
<TD bgcolor="#FFFFFF" valign="top">

<xsl:element name="IMG>
<xsl:attribute name="SRC">

portal_files/dot.gif
</xsl:attribute>
<xsl:attribute name="height">

6
</xsl:attribute>

Siebel Portal Framework Guide Siebel Innovation Pack 2017

Delivering Content to External Web Applications  Manipulating Siebel XML with XSL
Style Sheets and XSLT

98

<xsl:attribute name="width">
6

</xsl:attribute>
</xsl:element>

</TD>
<TD bgcolor="#FFFFFF" align="left" valign="top"
width="60%">

<xsl:choose>
<xsl:when test="string-length(normalize
space(.))> 0"

<xsl:choose>
<xsl:when test="@NAME='Name'">
<xsl:call-template name="link"/>
</xsl:when>
<xsl:otherwise>
<xsl:value-of select="."/>
</xsl:otherwise>

</xsl:choose>
</xsl:when>
<xsl:otherwise>
<xsl:text> </xsl:text>
</xsl:otherwise>

</xsl:choose>
</TD>

</xsl:if>
<xsl:if test="@NAME='Location'">

<TD bgcolor="#FFFFFF" align="left" valign="top"
width="40%">

<xsl:choose>
<xsl:when test="string-length(normalize-space(.))
< 0">

<xsl:choose>
<xsl:when test="@NAME='Name'">
<xsl:call-template name="link"/>
</xsl:when>
<xsl:otherwise>
<xsl:value-of select="."/>
</xsl:otherwise>

</xsl:choose>
</xsl:when>
<xsl:otherwise>
<xsl:text> </xsl:text>
</xsl:otherwise>

</xsl:choose>
</TD>

</xsl:if>
</xsl:for-each>

</TR>
<tr>

<td colspan="4" width="40%"></td>
</tr>

</xsl:for-each>
</xsl:template>

Delivering Content to External Web Applications  Manipulating Siebel XML with XSL
Style Sheets and XSLT

Siebel Portal Framework Guide Siebel Innovation Pack 2017 99

Siebel Portal Framework Guide Siebel Innovation Pack 2017

Delivering Content to External Web Applications  Manipulating Siebel XML with XSL
Style Sheets and XSLT

100

Siebel Portal Framework Guide Siebel Innovation Pack 2017 101

5 Web Engine HTTP TXN Business
Service

This chapter describes the Web Engine HTTP TXN Business Service. It contains the following
information:

 About the Web Engine HTTP TXN Business Service on page 101

 Web Engine HTTP TXN Business Service API on page 102

 Example of Using Web Engine HTTP TXN Business Service on page 105

 Sample Code for Invoking Methods of Web Engine HTTP TXN Business Service on page 110

About the Web Engine HTTP TXN
Business Service
HTTP provides several means to allow Web servers to obtain information from the browser. The most
familiar example is when a user enters data into a form on a Web page and the data is sent to the
Web server, which can access the value of each form field. This example illustrates sending form
field parameters to the Web server with a POST method. In general, a browser can send cookies,
headers, query string parameters, and form field parameters to the Web server. Web servers can
also respond to the browser with cookies and custom headers. The Web Engine HTTP TXN Business
Service allows Siebel Business Applications to retrieve or set cookies, headers, and query string and
form field parameters.

The Web Engine HTTP TXN Business Service can be invoked by scripts or by workflow. The inbound
HTTP request to the Siebel Web Engine (SWE) is parsed and the business service returns property
sets containing cookies, headers, or parameters. In addition, server variables, which are not a part
of the HTTP request header, can also be retrieved. The business service can also set a custom cookie
or header in the HTTP response header generated by the SWE. The business service gives complete
control over the request header received and the response header sent by the SWE.

For more information, see the following topics:

 “Web Engine HTTP TXN Business Service API” on page 102

 “Example of Using Web Engine HTTP TXN Business Service” on page 105

 “Sample Code for Invoking Methods of Web Engine HTTP TXN Business Service” on page 110

Siebel Portal Framework Guide Siebel Innovation Pack 2017

Web Engine HTTP TXN Business Service  Web Engine HTTP TXN Business Service API

102

Web Engine HTTP TXN Business Service
API
Table 28 lists the methods exposed by the Web Engine HTTP TXN Business Service.

Table 28. Web Engine HTTP TXN Business Service API

Method Description Parameters

GetAllRequestCookies Retrieves all request cookies
sent from the client to the
server.

InputArguments: Ignored.
OutputArguments: Property Set
hierarchy. Each cookie is a child
Property Set with the TYPE property
set to the cookie name.

GetAllRequestHeaders Retrieves all request headers
sent from the client to the
server.

InputArguments: Ignored.
OutputArguments: Property Set
containing the HTTP Parameter
name-value pairs.

GetAllRequestParameters Retrieves all request
parameters sent from the
client to the server.

InputArguments: Ignored.
OutputArguments: Property Set
containing the HTTP Parameter
name-value pairs.

GetAllResponseCookies Retrieves all response cookies
sent from the server to the
client.

InputArguments: Ignored.
OutputArguments: Property Set
hierarchy. Each cookie is a child
Property Set with the TYPE property
set to the cookie name.

GetAllResponseHeaders Retrieves all response headers
sent from the server to the
client.

InputArguments: Ignored.
OutputArguments: Property Set
containing the HTTP Header name-
value pairs.

GetAllServerVariables Retrieves all server variables. InputArguments: Ignored.
OutputArguments: Property Set
containing the Server Variable
name-value pairs.

GetClientCertificate Retrieves the client certificate
info.

InputArguments: Ignored.
OutputArguments: Property Set
containing certificate name-value
pairs. Currently only returns
Common Name (CN) property of the
certificate.

Web Engine HTTP TXN Business Service  Web Engine HTTP TXN Business Service API

Siebel Portal Framework Guide Siebel Innovation Pack 2017 103

GetRequestCookies Retrieves the request cookies
named in InputArguments.

InputArguments: Property Set
containing the cookie names to
retrieve.
OutputArguments: Property Set
hierarchy. Each cookie is a child
Property Set with the TYPE property
set to the cookie name.

GetRequestHeaders Retrieves the request headers
named in InputArguments.

InputArguments: Property Set
containing the header names to
retrieve.
OutputArguments: Property Set
containing the HTTP Header name-
value pairs.

GetRequestInfo Retrieves the request Web
Session, Headers, Cookies,
Parameters and Client
Certificate information in one
call.

InputArguments: Ignored
OutputArguments: Property Set
hierarchy. Each section is a child
Property Set with the TYPE property
set to 'Headers', 'Cookies',
'Parameters' or 'ClientCertificate'.
The Web Session information is
simply stored as properties of
OutputArguments.

GetRequestParameters Retrieves the request
parameters named in
InputArguments.

InputArguments: Property Set
containing the parameter names to
retrieve.
OutputArguments: Property Set
containing the HTTP Parameter
name-value pairs.

GetResponseCookies Retrieves the response
cookies named in
InputArguments.

InputArguments: Property Set
containing the cookie names to
retrieve.
OutputArguments: Property Set
hierarchy. Each cookie is a child
Property Set with the TYPE property
set to the cookie name.

GetResponseHeaders Retrieves the response
headers named in
InputArguments.

InputArguments: Property Set
containing the header names to
retrieve.
OutputArguments: Property Set
containing the HTTP Header name-
value pairs.

Table 28. Web Engine HTTP TXN Business Service API

Method Description Parameters

Siebel Portal Framework Guide Siebel Innovation Pack 2017

Web Engine HTTP TXN Business Service  Web Engine HTTP TXN Business Service API

104

GetResponseInfo Retrieves the response
Headers and Cookies in one
call.

InputArguments: Ignored.
OutputArguments: Property Set
hierarchy. Each section is a child
Property Set with the TYPE property
set to 'Headers' or 'Cookies'. Content
Type and Status are simply stored as
properties of OutputArguments.

GetServerVariables Retrieves the server variables
named in InputArguments.

InputArguments: Property Set
containing the server variable names
to retrieve.
OutputArguments: Property Set
containing the Server Variable
name-value pairs.

GetWebSessionInfo Retrieves the client's Web
session information.

InputArguments: Ignored.
OutputArguments: Property Set
containing the Web session name-
value pairs—SessionName;
Cookie Name;
SessionId;
Web Session ID;
SessionFrom (Value is 'URL' or
'COOKIE').

SetResponseCookies Sets the response cookies to
the values in InputArguments.

InputArguments: Property Set
hierarchy. Each cookie is a child
Property Set with the TYPE property
set to the cookie name. The
PERSISTENT property determines
whether the cookie persists between
sessions. If the value is Y, then the
cookie persists between browser
sessions. Otherwise, the cookie
exists for one session at a time.

OutputArguments: Ignored.

Table 28. Web Engine HTTP TXN Business Service API

Method Description Parameters

Web Engine HTTP TXN Business Service  Example of Using Web Engine HTTP TXN
Business Service

Siebel Portal Framework Guide Siebel Innovation Pack 2017 105

Example of Using Web Engine HTTP TXN
Business Service
To invoke each method of the Web Engine HTTP TXN Business Service and write the results to a text
file, use the following two procedures:

 “Adding Sample Code for Displaying Results of Using the Business Service” on page 105

 “Adding Sample Code for Invoking Methods of the Business Service” on page 107

Adding Sample Code for Displaying Results of Using the Business
Service
The following procedure shows how to add sample code for displaying results of the Web Engine HTTP
TXN Business Service.

To add sample code for displaying results of Web Engine HTTP TXN Business Service
1 In Oracle’s Siebel Tools, navigate to the desired Applet object, in the Object Explorer.

2 Lock the project, if required.

3 Right click and select the Edit Server Script option.

4 Add the following three functions, individually to the declarations section:

 WebApplet_OutputChildPropertySets

 WebApplet_OutputProperties

 WebApplet_OutputPropertySet

SetResponseHeaders Sets the response headers to
the values in InputArguments.

InputArguments: Property Set
containing the HTTP Header name-
value pairs.
OutputArguments: Ignored.

SetResponseInfo Sets the response Headers
and Cookies in one call.

InputArguments: Property Set
hierarchy. Each section is a child
Property Set with the TYPE property
set to 'Headers' or 'Cookies'. Content
Type and Status are simply stored as
properties of InputArguments.
OutputArguments: Ignored.

Table 28. Web Engine HTTP TXN Business Service API

Method Description Parameters

Siebel Portal Framework Guide Siebel Innovation Pack 2017

Web Engine HTTP TXN Business Service  Example of Using Web Engine HTTP TXN
Business Service

106

Sample Code Functions
Sample code for the WebApplet_OutputChildPropertySets Function:

function WebApplet_OutputChildPropertySets(oPropertySet, nLevel, fp)
{
var oChildPropSet;
var nChild = 0;

Clib.fputs('-------------------------------------\n',fp);
Clib.fputs('CHILD PROPERTY SETS\n',fp);
Clib.fputs('-------------------------------------\n',fp);

if (oPropertySet.GetChildCount() == 0)
{

Clib.fputs('(NONE)\n',fp);
}
else
{
for (nChild = 0; (nChild <= oPropertySet.GetChildCount() - 1) ; nChild++)
{
oChildPropSet = oPropertySet.GetChild(nChild);
WebApplet_OutputPropertySet (oChildPropSet, nLevel+1, fp);
}
}
}

Sample code for the WebApplet_OutputProperties Function:

function WebApplet_OutputProperties(oPropertySet, nLevel , fp)
{
var strName;
var strValue;

Clib.fputs('-------------------------------------\n',fp);
Clib.fputs('PROPERTIES\n',fp);
Clib.fputs('-------------------------------------\n',fp);

if (oPropertySet.GetPropertyCount() == 0)
{
Clib.fputs('(NONE)\n',fp);
}
else
{
strName = oPropertySet.GetFirstProperty();
while (strName != '')
{
Clib.fputs(strName + ' : ' + oPropertySet.GetProperty(strName) + '\n' ,fp);
strName = oPropertySet.GetNextProperty();
}
}
}

Web Engine HTTP TXN Business Service  Example of Using Web Engine HTTP TXN
Business Service

Siebel Portal Framework Guide Siebel Innovation Pack 2017 107

Sample code for the WebApplet_OutputPropertySet Function:

function WebApplet_OutputPropertySet(oPropertySet, nLevel, fp)
{
Clib.fputs('\n',fp);
Clib.fputs('-------------------------------------\n',fp);
Clib.fputs('START' + ' ',fp);
Clib.fputs('LEVEL : ' + nLevel + '\n', fp);
Clib.fputs('-------------------------------------\n',fp);

Clib.fputs('TYPE : ' + oPropertySet.GetType() + '\n',fp);
Clib.fputs('VALUE : ' + oPropertySet.GetValue() + '\n',fp);

WebApplet_OutputProperties(oPropertySet, nLevel, fp);
WebApplet_OutputChildPropertySets(oPropertySet, nLevel, fp);

Clib.fputs('-------------------------------------\n',fp);
Clib.fputs('END' + ' ',fp);
Clib.fputs('LEVEL : ' + nLevel + '\n',fp);
Clib.fputs('-------------------------------------\n',fp);
}

Adding Sample Code for Invoking Methods of the Business Service
The following procedure shows how to add sample code for invoking methods of the Web Engine
HTTP TXN Business Service.

To add sample code for invoking methods of Web Engine HTTP TXN Business Service
1 Add the code from “Sample Code for Invoking Methods of Web Engine HTTP TXN Business Service”

on page 110 to the WebApplet_InvokeMethod event.

2 Compile the project.

3 Start the Siebel application.

4 Navigate to the applet where the server script has been placed.

5 Perform an action on the applet that invokes a SWE method (for example, change the record or
create a new record).

The code generates a text file in the bin directory where the Siebel application is installed
containing results of each method of the Web Engine HTTP TXN Business Service.

Sample Output
The following is an excerpt of the resulting text file.

=====================================
WebApplet InvokeMethod event:
=====================================

=====================================
Method: GetAllRequestCookies
=====================================

Siebel Portal Framework Guide Siebel Innovation Pack 2017

Web Engine HTTP TXN Business Service  Example of Using Web Engine HTTP TXN
Business Service

108

START LEVEL : 0

TYPE : COOKIES
VALUE :

PROPERTIES

(NONE)

CHILD PROPERTY SETS

START LEVEL : 1

TYPE : SWEUAID
VALUE : 1

PROPERTIES

Max-Age : -1
Domain :
Path :

CHILD PROPERTY SETS

(NONE)

END LEVEL : 1

END LEVEL : 0

=====================================
Method: GetAllRequestHeaders
=====================================

START LEVEL : 0

TYPE : HEADERS
VALUE :

PROPERTIES

HOST : <host computer name>
CACHE-CONTROL : no-cache
CONNECTION : Keep-Alive
COOKIE : SWEUAID=1
USER-AGENT : Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; Q312461; SV1; .NET
CLR 1.1.4322)
CONTENT-TYPE : application/x-www-form-urlencoded

Web Engine HTTP TXN Business Service  Example of Using Web Engine HTTP TXN
Business Service

Siebel Portal Framework Guide Siebel Innovation Pack 2017 109

ACCEPT-ENCODING : deflate
CONTENT-LENGTH : 348

CHILD PROPERTY SETS

(NONE)

END LEVEL : 0

=====================================
Method: GetAllRequestParameters
=====================================

START LEVEL : 0

TYPE : PARAMETERS
VALUE :

PROPERTIES

SWEActiveView : Account List View
SWERowIds :
SWEP :
SWESP : false
SWECmd : InvokeMethod
SWEMethod : PositionOnRow
SWER : 1
SWEControlClicked : 0
SWEIgnoreCtrlShift : 0
SWEVI :
SWEActiveApplet : Account List Applet
SWERPC : 1
SWEReqRowId : 1
SWEView : Account List View
SWEC : 3
SWERowId : 1-6
SWEShiftClicked : 0
SWETS : 1118939959734
SWEApplet : Account List Applet

CHILD PROPERTY SETS

(NONE)

END LEVEL : 0

Siebel Portal Framework Guide Siebel Innovation Pack 2017

Web Engine HTTP TXN Business Service  Sample Code for Invoking Methods of Web
Engine HTTP TXN Business Service

110

Sample Code for Invoking Methods of
Web Engine HTTP TXN Business Service
This topic contains the sample code for invoking the methods of the Web Engine HTTP TXN Business
Service and writing the results to a text file. For more information, see “Example of Using Web Engine
HTTP TXN Business Service” on page 105.

Add the following sample code to the WebApplet_InvokeMethod event:

function WebApplet_InvokeMethod (MethodName)
{
var fp = Clib.fopen('testfile.txt','a');
if (fp == null)
{
TheApplication().RaiseErrorText(" ERROR Opening File ")
}
else
{
var oBS = TheApplication().GetService('Web Engine HTTP TXN');
var Inputs = TheApplication().NewPropertySet();
var Outputs = TheApplication().NewPropertySet();
var Headers = TheApplication().NewPropertySet();
var Cookies = TheApplication().NewPropertySet();
var tmpCookie = TheApplication().NewPropertySet();

Clib.fputs('=====================================\n',fp);
Clib.fputs('WebApplet InvokeMethod event:\n',fp);
Clib.fputs('=====================================\n',fp);

Clib.fputs('\n',fp);
Clib.fputs('=====================================\n',fp);
Clib.fputs('Method: GetAllRequestCookies\n',fp);
Clib.fputs('=====================================\n',fp);

Inputs.Reset();
Outputs.Reset();
oBS.InvokeMethod ('GetAllRequestCookies', Inputs, Outputs);
WebApplet_OutputPropertySet(Outputs, 0, fp);

Clib.fputs('\n',fp);
Clib.fputs('=====================================\n',fp);
Clib.fputs('Method: GetAllRequestHeaders\n',fp);
Clib.fputs('=====================================\n',fp);

Inputs.Reset();
Outputs.Reset();
oBS.InvokeMethod ('GetAllRequestHeaders', Inputs, Outputs);
WebApplet_OutputPropertySet(Outputs, 0, fp);

Clib.fputs('\n',fp);
Clib.fputs('=====================================\n',fp);
Clib.fputs('Method: GetAllRequestParameters\n',fp);
Clib.fputs('=====================================\n',fp);

Web Engine HTTP TXN Business Service  Sample Code for Invoking Methods of Web
Engine HTTP TXN Business Service

Siebel Portal Framework Guide Siebel Innovation Pack 2017 111

Inputs.Reset();
Outputs.Reset();
oBS.InvokeMethod ('GetAllRequestParameters', Inputs, Outputs);
WebApplet_OutputPropertySet(Outputs, 0, fp);

Clib.fputs('\n',fp);
Clib.fputs('=====================================\n',fp);
Clib.fputs('Method: GetAllResponseCookies\n',fp);
Clib.fputs('=====================================\n',fp);

Inputs.Reset();
Outputs.Reset();
oBS.InvokeMethod ('GetAllResponseCookies', Inputs, Outputs)
WebApplet_OutputPropertySet(Outputs, 0, fp);

Clib.fputs('\n',fp);
Clib.fputs('=====================================\n',fp);
Clib.fputs('Method: GetAllResponseHeaders\n',fp);
Clib.fputs('=====================================\n',fp);

Inputs.Reset();
Outputs.Reset();
oBS.InvokeMethod ('GetAllResponseHeaders', Inputs, Outputs);
WebApplet_OutputPropertySet(Outputs, 0, fp);

Clib.fputs('\n',fp);
Clib.fputs('=====================================\n',fp);
Clib.fputs('Method: GetAllServerVariables\n',fp);
Clib.fputs('=====================================\n',fp);

Inputs.Reset();
Outputs.Reset();
oBS.InvokeMethod ('GetAllServerVariables', Inputs, Outputs);
WebApplet_OutputPropertySet(Outputs, 0, fp);

Clib.fputs('\n',fp);
Clib.fputs('=====================================\n',fp);
Clib.fputs('Method: GetRequestCookies\n',fp);
Clib.fputs('=====================================\n',fp);

Inputs.Reset();
Outputs.Reset();

Inputs.SetProperty ('MY-COOKIE', '');
Inputs.SetProperty ('TestCookie', '');
Inputs.SetProperty ('Test1Cookie', '');

oBS.InvokeMethod ('GetRequestCookies', Inputs, Outputs);
WebApplet_OutputPropertySet(Outputs, 0, fp);

Clib.fputs('\n',fp);
Clib.fputs('=====================================\n',fp);
Clib.fputs('Method: GetRequestHeaders\n',fp);
Clib.fputs('=====================================\n',fp);

Siebel Portal Framework Guide Siebel Innovation Pack 2017

Web Engine HTTP TXN Business Service  Sample Code for Invoking Methods of Web
Engine HTTP TXN Business Service

112

Inputs.Reset();
Outputs.Reset();

Inputs.SetProperty ('MyHEADER', '');
Inputs.SetProperty ('MY_TEST', '');
Inputs.SetProperty ('CONTENT-TYPE', '');
Inputs.SetProperty ('CONTENT-LENGTH', '');

oBS.InvokeMethod ('GetRequestHeaders', Inputs, Outputs);
WebApplet_OutputPropertySet(Outputs, 0, fp);

Clib.fputs('\n',fp);
Clib.fputs('=====================================\n',fp);
Clib.fputs('Method: GetRequestInfo\n',fp);
Clib.fputs('=====================================\n',fp);

Inputs.Reset();
Outputs.Reset();

oBS.InvokeMethod ('GetRequestInfo', Inputs, Outputs);
WebApplet_OutputPropertySet(Outputs, 0, fp);

Clib.fputs('\n',fp);
Clib.fputs('=====================================\n',fp);
Clib.fputs('Method: GetRequestParameters\n',fp);
Clib.fputs('=====================================\n',fp);

Inputs.Reset();
Outputs.Reset();

Inputs.SetProperty ('TestQstr', '');
Inputs.SetProperty ('SWEActiveView', '');
Inputs.SetProperty ('SWECmd', '');
Inputs.SetProperty ('SWEMethod', '');
Inputs.SetProperty ('TestParam', '');

oBS.InvokeMethod ('GetRequestParameters', Inputs, Outputs);
WebApplet_OutputPropertySet(Outputs, 0, fp);

Clib.fputs('\n',fp);
Clib.fputs('=====================================\n',fp);
Clib.fputs('Method: GetResponseCookies\n',fp);
Clib.fputs('=====================================\n',fp);

Inputs.Reset();
Outputs.Reset();

Inputs.SetProperty ('My-Test-COOKIE', '');
Inputs.SetProperty ('_sn', '');

oBS.InvokeMethod ('GetResponseCookies', Inputs, Outputs);
WebApplet_OutputPropertySet(Outputs, 0, fp);

Web Engine HTTP TXN Business Service  Sample Code for Invoking Methods of Web
Engine HTTP TXN Business Service

Siebel Portal Framework Guide Siebel Innovation Pack 2017 113

Clib.fputs('\n',fp);
Clib.fputs('=====================================\n',fp);
Clib.fputs('Method: GetResponseHeaders\n',fp);
Clib.fputs('=====================================\n',fp);

Inputs.Reset();
Outputs.Reset();

Inputs.SetProperty ('Content-Language', '');
Inputs.SetProperty ('MyHeader', '');

oBS.InvokeMethod ('GetResponseHeaders', Inputs, Outputs);
WebApplet_OutputPropertySet(Outputs, 0, fp);

Clib.fputs('\n',fp);
Clib.fputs('=====================================\n',fp);
Clib.fputs('Method: GetResponseInfo\n',fp);
Clib.fputs('=====================================\n',fp);

Inputs.Reset();
Outputs.Reset();

oBS.InvokeMethod ('GetResponseInfo', Inputs, Outputs);
WebApplet_OutputPropertySet(Outputs, 0, fp);

Clib.fputs('\n',fp);
Clib.fputs('=====================================\n',fp);
Clib.fputs('Method: GetServerVariables\n',fp);
Clib.fputs('=====================================\n',fp);

Inputs.Reset();
Outputs.Reset();

Inputs.SetProperty ('AUTH-USER-ID', '');
Inputs.SetProperty ('SERVER-NAME', '');

oBS.InvokeMethod ('GetServerVariables', Inputs, Outputs);
WebApplet_OutputPropertySet(Outputs, 0, fp);

Clib.fputs('\n',fp);
Clib.fputs('=====================================\n',fp);
Clib.fputs('Method: GetWebSessionInfo\n',fp);
Clib.fputs('=====================================\n',fp);

Inputs.Reset();
Outputs.Reset();

oBS.InvokeMethod ('GetWebSessionInfo', Inputs, Outputs);
WebApplet_OutputPropertySet(Outputs, 0, fp);

Clib.fputs('\n',fp);
Clib.fputs('=====================================\n',fp);
Clib.fputs('Method: SetResponseCookies\n',fp);
Clib.fputs('=====================================\n',fp);

Siebel Portal Framework Guide Siebel Innovation Pack 2017

Web Engine HTTP TXN Business Service  Sample Code for Invoking Methods of Web
Engine HTTP TXN Business Service

114

Inputs.Reset();
Outputs.Reset();

tmpCookie = null;
tmpCookie = TheApplication().NewPropertySet();

tmpCookie.SetType ('My_Test_Cookie');
tmpCookie.SetValue ('Cookie Value for My_Test_Cookie');
tmpCookie.SetProperty ('Max-Age', '23434343');
tmpCookie.SetProperty ('Domain', '.example.com');
tmpCookie.SetProperty ('Path', 'eapps/test/cookie/path');

Inputs.AddChild (tmpCookie);

tmpCookie = null;
tmpCookie = TheApplication().NewPropertySet();

tmpCookie.SetType ('Another_Cookie');
tmpCookie.SetValue ('Cookie Value for Another_Cookie');
tmpCookie.SetProperty ('Max-Age', '23434343');
tmpCookie.SetProperty ('Domain', 'esales.example.com');
tmpCookie.SetProperty ('Path', 'esales/cookie/path');

Inputs.AddChild (tmpCookie);

oBS.InvokeMethod ('SetResponseCookies', Inputs, Outputs);
Clib.fputs('------------------------------------\n',fp);
Clib.fputs('Input Cookies\n',fp);
Clib.fputs('------------------------------------\n',fp);
WebApplet_OutputPropertySet(Inputs, 0, fp);

oBS.InvokeMethod ('GetAllResponseCookies', Inputs, Outputs);
Clib.fputs('------------------------------------\n',fp);
Clib.fputs('Output Cookies\n',fp);
Clib.fputs('------------------------------------\n',fp);
WebApplet_OutputPropertySet(Outputs, 0, fp);

Clib.fputs('\n',fp);
Clib.fputs('=====================================\n',fp);
Clib.fputs('Method: SetResponseHeaders\n',fp);
Clib.fputs('=====================================\n',fp);

Inputs.Reset();
Outputs.Reset();

Inputs.SetProperty ('MyHeader', 'THIS is MyHeader');

oBS.InvokeMethod ('SetResponseHeaders', Inputs, Outputs);
Clib.fputs('------------------------------------\n',fp);
Clib.fputs('Input Headers\n',fp);
Clib.fputs('------------------------------------\n',fp);
WebApplet_OutputPropertySet(Inputs, 0, fp)

Web Engine HTTP TXN Business Service  Sample Code for Invoking Methods of Web
Engine HTTP TXN Business Service

Siebel Portal Framework Guide Siebel Innovation Pack 2017 115

oBS.InvokeMethod ('GetAllResponseHeaders', Inputs, Outputs);
Clib.fputs('------------------------------------\n',fp);
Clib.fputs('Output Headers\n',fp);
Clib.fputs('------------------------------------\n',fp);
WebApplet_OutputPropertySet(Outputs, 0, fp);

Clib.fputs('\n',fp);
Clib.fputs('=====================================\n',fp);
Clib.fputs('Method: SetResponseInfo\n',fp);
Clib.fputs('=====================================\n',fp);

Inputs.Reset();
Outputs.Reset();
Headers.Reset();
Cookies.Reset();

Headers.SetType ('HEADERS');
Headers.SetProperty ('ABC_RESPONSE_HEADER1', 'RESPONSE_HEADER1 Value');
Headers.SetProperty ('ABC_RESPONSE_HEADER2', 'RESPONSE_HEADER2 Value');
Headers.SetProperty ('ABC_RESPONSE_HEADER3', 'RESPONSE_HEADER3 Value');
Headers.SetProperty ('ABC_RESPONSE_HEADER4', 'RESPONSE_HEADER4 Value');
Inputs.AddChild(Headers);

Cookies.SetType('COOKIES');

tmpCookie = null;
tmpCookie = TheApplication().NewPropertySet();

tmpCookie.SetType ('My_Test_Cookie2');
tmpCookie.SetValue ('Cookie Value for My_Test_Cookie2');
tmpCookie.SetProperty ('Max-Age', '23434343');

Cookies.AddChild (tmpCookie);

tmpCookie = null;
tmpCookie = TheApplication().NewPropertySet();

tmpCookie.SetType ('Another_Cookie2');
tmpCookie.SetValue ('Cookie Value for Another_Cookie2');
tmpCookie.SetProperty ('Max-Age', '23434343');

Cookies.AddChild (tmpCookie);

Inputs.AddChild (Cookies);

oBS.InvokeMethod ('SetResponseInfo', Inputs, Outputs);
Clib.fputs('------------------------------------\n',fp);
Clib.fputs('Input Info\n',fp);
Clib.fputs('------------------------------------\n',fp);
WebApplet_OutputPropertySet(Inputs, 0, fp);

oBS.InvokeMethod ('GetResponseInfo', Inputs, Outputs);
Clib.fputs('------------------------------------\n',fp);
Clib.fputs('Output Info\n',fp);
Clib.fputs('------------------------------------\n',fp);
WebApplet_OutputPropertySet(Outputs, 0, fp);

Siebel Portal Framework Guide Siebel Innovation Pack 2017

Web Engine HTTP TXN Business Service  Sample Code for Invoking Methods of Web
Engine HTTP TXN Business Service

116

Clib.fclose(fp);
}
}

Siebel Portal Framework Guide Siebel Innovation Pack 2017 117

Index

A
Accounts View, viewing in XML 42
<APPLET> XML response tag, about and

attributes 56
applet

external content, displaying outside 20
external content, displaying within 20

<APPLICATION> XML response tag, about
and attributes 55

architecture
Enterprise Application Integration,

about 10
Portal Agents, about 10
XML Web interface 10

ARG tag XML command block
ARG parameter name-value pairs, table

of 53
attributes, table of 51
description 51
example 52
required arguments 52

authentication strategies, list of Portal
Agents 12

B
business components, configuring to handle

external data 19

C
CMD tag XML command block

attributes, table of 50
description 49
example 50

<COLUMN> XML response tag, about and
attributes 57

content, integrating external
See Portal Agent

D
DeleteRecord command, about and

example 70
deleting

DeleteRecord, about and example 70
Execute Query, about and example 69
New Query, about and example 69
records, process of 69

disposition types
list of 12
summary, table 16

Document Type Definitions (DTD)
Inbound DTD 89
Outbound DTD 89

E
EditField command, about and

example 71
EditRecord command, about and

example 67
EncodeURL command, about 35
Enterprise Application Integration

architecture, about 10
errors

SWE log file, using to debug errors 34
XML response structure error, about

contained in command block 54
EXE tag XML command block

attributes, table of 49
description 49
example 49

ExecuteLogin command, about and
example 61

ExecuteQuery command
deleting records, about and example 69
modifying records, about and example 67
querying items, about and example 64

external content
applet, displaying outside 20
applet, displaying within 20

external data, configuring business
components to handle 19

external host, defining 21

F
<FIELD> XML response tag, about and

attributes 59
Fixup Administration view, using to define a

fixup type 28
fixup type, defining 28
Form Redirect disposition type, about and

scenario 14
FreePopup command, about 35

Siebel Portal Framework Guide Siebel Innovation Pack 2017

Index  G

118

G
GotoPageTab command

navigating to a screen, about and
example 62

picking records, about and example 71

H
high interactivity applications, fixup type,

about using for links 29
HTML attributes

IFrame command, about using to
define 36

WebControl command, about using to define
additional attributes 39

I
IFrame command, about 36
IFrame disposition type

about 13
summary, table 16

Inbound DTD Document Type
Definitions 89

Inline disposition type
about 13
restriction, use of 15
summary, table 16

InvokeMethod command, about and
example 63

L
<LIST> XML response tag, about and

attributes 56
log file, reviewing SWE log file 34
login

credential, defining 29
page, reverse-engineering 17

login ID
Siebel login ID, about using

UseSiebelLoginId 39
UserLoginId, about using to define for Web

application 38
Logoff command, about and example 62

M
Mozilla browser, about 19

N
NewQuery command

deleting records, about and example 69
modifying records, about and example 66
querying items, example 64

NewRecord command, about and

example 65
NoCache command, about 37
NoFormFixup command, about 37

O
Outbound DTD Document Type

Definition 89

P
password

Siebel password, about using
UseSiebelLoginPassword
command 39

UserLoginPassword command, about
using 38

PickRecord command, about and
example 72

Portal Agent
about and features 11
architecture, about 10
authentication strategies, list of 12
creating, overview of required tasks 17
data layer, about integrating data 12
disposition types summary, table of 16
disposition types, list of 12
Form Redirect disposition type, about and

scenario 14
IFrame disposition type, about 13
Inline disposition type, about 13
login requirements, determining 17
restrictions 15
SWE log file, reviewing 34
symbolic URL commands, about 12
Web Control disposition type 14

Portal Agent, administration
content fixup, defining 28
external host, defining 21
symbolic URL arguments, defining 25
symbolic URL, defining 23
Web applications, defining 22

Portal Agent, command reference
EncodeURL, about 35
FreePopup about 35
IFrame, about 36
NoCache, about 37
NoFormFixup, about 37
PostRequest, about 38
PreLoadURL, about 37
UserLoginId, about 38
UserLoginPassword, about 38
UseSiebelLoginId, about 39
UseSiebelLoginPassword, about 39
WebControl, about 39

Index  Q

Siebel Portal Framework Guide Siebel Innovation Pack 2017 119

Portal Agent, configuring
about 19
business components, configuring 19
external content, displaying outside an

applet 20
external content, displaying within an

applet 20
SWE log file, reviewing 34

Portal Agent, example
external host, defining 31
login page, reviewing 30
step overview 30
symbolic URL arguments, defining 33
symbolic URL, defining 32
test 34
user login credentials, defining 33

POST method, about using PostRequest to
configure Portal Agent 38

PostRequest command, about 38
PreLoadURL command, about 37

Q
query string

Web server, submitting HTTP requests
through 44

XML request structure, constructing 47
querying commands

ExecuteQuery command, about and
example 64

NewQuery command, example 64

R
records, adding

NewRecord command, about and
example 65

WriteRecord command, about and
example 65

records, deleting
DeleteRecord, about and example 70
ExecuteQuery, about and example 69
NewQuery, about and example 69
process of 69

records, modifying
EditRecord command, about and

example 67
ExecuteQuery command, about and

example 67
NewQuery command, about and

example 66
process of 66
WriteRecord command, about and

example 68
records, picking

EditField command, about and example 71
GotoPageTab command, about and

example 71
PickRecord command, about and

example 72
process of 70
WriteRecord command, about and

example 72
<ROW> XML response tag, about and

attributes 59
<RS_DATA> XML response tag, about 58
<RS_HEADER> XML response tag,

about 57

S
sample code

Web Engine HTTP TXN Business
Service 107, 110

WebApplet_OutputChildPropertySets
function 106

WebApplet_OutputPropertySet
function 107

<SCREEN> XML response tag, about and
attributes 55

screen
navigating to 62
navigating within 63

session management, about 11
session proxy, about 12
session re-use, about 11
Siebel login ID, about using

UseSiebelLoginId command 39
Siebel Object Manager, Web server

configuration and markup
determination 43

Siebel Open UI, SWE commands for 78
Siebel password, about using

UseSiebelLoginPassword
command 39

Siebel Web Engine (SWE)
See also individual SWE entries
HTML output, about configuring for 43

Siebel XML
See also XML
accessing, about 42
manipulating with style sheets and

XSLT 96
XML-specific template tag, about and

example 96
Simple Portal Agents, about authentication

strategy 12
Single Sign-On Portal Agents authentication

strategy, about 12

Siebel Portal Framework Guide Siebel Innovation Pack 2017

Index  T

120

Single Sign-On technology (SS0),
about 11

SSO Systems Administration view, using to
specify Web application 29

style sheets, defining SWE style sheet
tags 96

SWE API
SWE commands for Siebel Open UI, table

of 78
SWE commands, table of 73
SWE methods, table of 79
SWEAC command, using to string commands

together 85
SWE commands for Siebel Open UI, table

of 78
SWE commands, table of 73
SWE log file, reviewing 34
SWE methods, table of 79
SWEAC command, using to string commands

together 85
symbolic URL

arguments, defining 25
business component, configuring 19
commands, about 12
defining 23
disposition types, list of 12
EncodeURL, about using to specify encoding

arguments 35
Inline disposition type 13
multiple disposition types, about 11
PreLoad URL, about using 37

T
time-out handling, about 11

U
UserLoginId command, about 38
UserLoginPassword command, about 38
UseSiebelLoginId command, about 39
UseSiebelLoginPassword command,

about 39

V
<VIEW> XML response tag, about and

attributes 55

W
Web application

defining 22
specifying and defining login

credentials 29
Web Control disposition type

about 14
summary, table 16

Web Engine HTTP TXN Business Service
about invoking 101
methods, example 105
methods, table of 102
sample code 107, 110

Web server
query string, using to send HTTP

requests 44
XML command block, using to send HTTP

requests 46
WebApplet_OutputChildPropertySets

function
sample code 106

WebApplet_OutputPropertySet function
sample code 107

WebControl command, about 39
WriteRecord command

adding records, about and example 65
modifying records, about and example 68
picking records, about and example 72

X
XML

See also Siebel XML
HTTP response, WML response 89
HTTP response, XML response tags

(table) 54
markup determination, process steps 43
XML-specific template tag, about and

example 96
XML command block

ARG tag 50
CMD tag 49
EXE tag 49
Web server, using to send HTTP

requests 46
XML tags, table of 48

XML commands
deleting records 69
ExecuteLogin command, about and

example 61
ExecuteQuery command, about and

example 64
GotoPageTab command, about and

example 62
InvokeMethod command, about and

example 63
Logoff command, about and example 62
modifying records 66
New Query command, example 64
NewRecord command, example 65

Index  X

Siebel Portal Framework Guide Siebel Innovation Pack 2017 121

objects available on screen, viewing 61
picking records 70
WriteRecord command, example 65

XML request structure
query string, constructing 47
XML command block, constructing 48

XML response structure
about 54
error, about contained in command

block 54
XML response tags, about and table of 54

XML response tag
HTML response, about 61

response syntax format (example) 59
table of tags, description, and

attributes 55
XML Web interface

Accounts View, viewing in 42
architecture, about 10
Siebel XML, about accessing 42

XML Web interface, connecting to
query string, using to send HTTP

requests 44
XML command block, using to send HTTP

requests 46
XSL style sheets, defining tags 96

Siebel Portal Framework Guide Siebel Innovation Pack 2017

Index  X

122

	Contents
	1 What’s New in This Release
	What’s New in Siebel Portal Framework Guide, Siebel Innovation Pack 2017
	What’s New in Siebel Portal Framework Guide, Siebel Innovation Pack 2016
	What’s New in Siebel Portal Framework Guide, Siebel Innovation Pack 2015

	2 Siebel Portal Framework
	Portal Framework Overview
	Portal Framework Architecture
	Enterprise Application Integration
	Portal Agents
	XML Web Interface

	3 Integrating External Content
	About Portal Agents
	Portal Agents and Authentication Strategies
	About Disposition Types
	Inline Disposition Type
	IFrame Disposition Type
	Contextual Navigation Between Siebel Business Applications and Oracle Business Intelligence Pages

	Web Control Disposition Type
	Form Redirect Disposition Type
	Portal Agent Restrictions
	Disposition Types Summary

	Process of Creating Portal Agents
	Determining the Login Requirements
	Portal Agent Configuration
	Configuring Business Components to Handle External Data
	Displaying External Content Within an Applet
	Displaying External Content Outside of an Applet

	Portal Agent Administration
	Defining the External Host
	Defining Web Applications
	Defining Symbolic URLs
	Defining Symbolic URL Arguments
	Configuring Multiple Symbolic URLs and Hosts for Alternative Execution Locations
	Configuring Alternative Symbolic URLs
	Configuring Alternative Symbolic URL Hosts

	Defining Content Fixup

	Defining End-User Login Credentials
	Example Portal Agent
	Review the Login Form
	Define the External Host
	Define the Symbolic URL
	Define Symbolic URL Arguments
	Define User Login Credentials
	Testing the Integration

	Reviewing the SWE Log File
	Portal Agent Command Reference
	EncodeURL Command
	FreePopup Command
	IFrame Command
	IsRecordSensitive Command
	NoCache Command
	NoFormFixup Command
	PreLoadURL Command
	PostRequest Command
	UserLoginId Command
	UserLoginPassword Command
	UseSiebelLoginId Command
	UseSiebelLoginPassword Command
	WebControl Command

	4 Delivering Content to External Web Applications
	Overview of the XML Web Interface
	Accessing Siebel XML
	Siebel Object Manager and Web Server Configuration and Markup Determination
	Connecting to the XML Web Interface
	Query String
	XML Command Block

	XML Request Structure
	Query String
	XML Command Block
	EXE Tag
	CMD Tag
	ARG Tag

	XML Response Structure
	XML Error Response
	XML Response
	XML Response Syntax
	HTML Response
	WML Response

	Common Operations
	Logging In
	Logging Off
	Navigating to a Screen
	Navigating Within a Screen
	Querying Items
	NewQuery
	ExecuteQuery
	Adding Records
	NewRecord
	WriteRecord

	Modifying Records
	NewQuery
	ExecuteQuery
	EditRecord
	WriteRecord

	Deleting Records
	NewQuery
	ExecuteQuery
	DeleteRecord

	Picking Records
	GotoPageTab
	EditField
	PickRecord
	WriteRecord

	SWE API
	SWE Commands
	SWE Commands Available in Siebel Open UI
	SWE Methods
	SWE Arguments

	Document Type Definition
	Inbound DTD
	Outbound DTD

	Manipulating Siebel XML with XSL Style Sheets and XSLT
	Defining SWE Style Sheet Tags
	XML-Specific Template Tag
	Sample XSLT

	5 Web Engine HTTP TXN Business Service
	About the Web Engine HTTP TXN Business Service
	Web Engine HTTP TXN Business Service API
	Example of Using Web Engine HTTP TXN Business Service
	Adding Sample Code for Displaying Results of Using the Business Service
	Sample Code Functions
	Adding Sample Code for Invoking Methods of the Business Service
	Sample Output

	Sample Code for Invoking Methods of Web Engine HTTP TXN Business Service

	Index

