
CRM On Demand

Oracle CRM On Demand JavaScript
API Developer’s Guide

Release 36
March 2018

Copyright © 2005, 2018 Oracle. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions
on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in
your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast,
modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-
free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing
it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are “commercial computer software” pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed
on the hardware, and/or documentation, shall be subject to license terms and license restrictions
applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use
of third-party content, products, or services, except as set forth in an applicable agreement between you
and Oracle.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website
at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle
Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Oracle CRM On Demand JavaScript API Developer’s Guide Release 36 3

Contents

Oracle CRM On Demand JavaScript API Developer’s Guide 1

Chapter 1: What’s New in This Release

Chapter 2: Overview of the JavaScript API
Overview of Customizing Buttons 9

Creating Custom Buttons 9
Examples of Uses for Custom Buttons 10
Hiding and Disabling Buttons 10
Creating Tooltips for Buttons 10
Changing the Look and Feel of a Button 10
Changing the Behavior of Buttons 11
Error Handling 12

Contexts in Which You Can Customize Buttons 12

Color Coding of Fields and Rows 13
Color Coding of Fields in Detail and Edit Pages 13
Color Coding of Fields and Rows in Lists 13
Restrictions That Apply to Color Coding of Fields 14

Chapter 3: Getting Started with the JavaScript API
Overview of Using Custom JavaScript Code 15

Privileges Required 15

Uploading JavaScript Libraries 16

Guidelines for Uploading Client-Side Extensions 16

Managing HTML Head Additions 17

Guidelines for Managing HTML Head Additions 18

About Enabling and Disabling Customized Code in Oracle CRM On Demand 18

Security Considerations 19

Chapter 4: JavaScript API Reference
Classes Exposed 21

TitleBar Class 21
Button Class 22

Oracle CRM On Demand JavaScript API Developer’s Guide Release 36

Contents ■

4

Context Class 22

JavaScript API 22
Chaining of Methods 23

Methods for the oraclecrmod Object 23
Considerations for Specifying Tooltips with HTML Formatting 27

Methods for the TitleBar Object 27

Methods for the Button Object 28
Defining an Event Handler for a Button 32
Identifying the IDs of Buttons and TitleBars 33

Methods for the Field Object 33
Finding Field Names 37
Getting and Setting Screen Values 38
Guidelines for Setting Screen Values 39
Getting and Setting LIC Values of Picklists 39
Color Values for JSONObjects 40

Methods for the Form Object 40
Example of a Custom Handler for a Form Object 41
Callback Handler for the commitValues() Method 42

Methods for the List Object 43
About the Custom Handler for a List Object 44
Finding List Names 45

Methods for the ListRow Object 46

Methods for the Context Object 47

Methods for CRUD Operations 49
Parameters and Return Values for CRUD Methods 51
Finding Record Type Names 52
Guidelines for Performing CRUD Operations 53
User-Defined Callback Function 53
Helper Functions for Callback Functions 54
Sample Code for Callback Function 54

Method for Setting the Search Specification for the Solutions Popup Window
Associated with Service Requests 55

Errors and Error Handling 56

Appendix A: JavaScript API Code Samples
Getting Started with the Code Samples 59

Code Sample 1 for Creating a Custom Button for Validation 60

Contents ■

Oracle CRM On Demand JavaScript API Developer’s Guide Release 36 5

Code Sample 2 for Creating a Custom Button for Validation 61

Code Sample for a Custom Button That Creates a Record 62

Code Sample for a Custom Button That Creates a Child Record 63

Code Sample for a Custom Button That Updates a Record 65

Code Sample for a Custom Button That Gets a Shipping Address to Pass to an External
Site 67

Code Sample for a Custom Button That Creates a Task 68

Code Sample for Hiding a Button 69

Code Sample for Changing the Behavior of a Save Button 70

Code Sample for a Read Operation on an Account Record 70

Code Sample for Color Coding of Fields and Rows 71

Index

Oracle CRM On Demand JavaScript API Developer’s Guide Release 36

Contents ■

6

Oracle CRM On Demand JavaScript API Developer’s Guide Release 36 7

1 What’s New in This Release

What’s New in Oracle CRM On Demand JavaScript API Developer’s
Guide, Release 36
No new features have been added to this guide for this release. This guide has been updated to
reflect only product version changes.

Oracle CRM On Demand JavaScript API Developer’s Guide Release 36

What’s New in This Release ■

8

Oracle CRM On Demand JavaScript API Developer’s Guide Release 36 9

2 Overview of the JavaScript API

This chapter provides an overview of the public JavaScript application programming interface (API)
available with Oracle CRM On Demand. It contains the following topics:

■ Overview of Customizing Buttons

■ Contexts in Which You Can Customize Buttons on page 12

■ Color Coding of Fields and Rows on page 13

NOTE: Custom JavaScript code and other customized code can be disabled and enabled in Oracle
CRM On Demand pages. For more information, see “About Enabling and Disabling Customized Code in
Oracle CRM On Demand” on page 18.

Overview of Customizing Buttons
You can use the methods of the JavaScript API to customize buttons in the Oracle CRM On Demand
UI as follows:

■ To create custom buttons

■ To hide and show buttons

■ To disable and enable buttons

■ To change the look and feel of preconfigured and custom buttons

■ To change the behavior of preconfigured and custom buttons

■ To add tooltips for preconfigured and custom buttons

More information about the various ways in which you can customize buttons is given in the following
topics. For information about the types of pages on which you can customize buttons, see “Contexts
in Which You Can Customize Buttons” on page 12.

Creating Custom Buttons
The JavaScript API provides methods to create new custom buttons, for example, on record Detail
pages, on related information applets, or on applets on My Homepage. To create custom buttons,
you can use the createButton() method.

To retrieve both preconfigured buttons and custom buttons, you use the getButton() method. For
more information about these methods, see “Methods for the oraclecrmod Object” on page 23.

Oracle CRM On Demand JavaScript API Developer’s Guide Release 36

Overview of the JavaScript API ■ Overview of Customizing Buttons

10

Examples of Uses for Custom Buttons
Some examples of the uses for custom buttons are as follows:

■ A custom button on Account record pages to validate the DUNS number

■ A custom button to validate entered data and return error messages and details of fields that
must be corrected

■ A custom button to change the owner record or assign a book.

Hiding and Disabling Buttons
The JavaScript API provides methods to hide buttons and show buttons that were previously hidden.
This feature is useful for situations when preconfigured buttons in Oracle CRM On Demand are not
required by the user. You can hide buttons unconditionally or hide buttons based on some specified
condition, for example, based on user roles.

You can use methods to disable buttons so that they are grayed out, and to enable buttons that were
previously disabled. For information about all of these methods, see “Methods for the Button Object”
on page 28.

Creating Tooltips for Buttons
The JavaScript API allows you to specify tooltip text when you create a custom button and provides
a method to specify tooltip text for multiple existing buttons in a single call.

You can use methods to get and set tooltip text for a button and to get and set the tooltip format,
which can be HTML or plain text. For information about these methods, see “Methods for the Button
Object” on page 28.

Changing the Look and Feel of a Button
The JavaScript API provides methods to change the look and feel of a button. You can do the
following:

■ Set or change the display text for a button.

■ Set or change the image for a button by providing a URL to the image.

You can use methods to get information about the text and image for a button. For information about
these methods, see “Methods for the Button Object” on page 28.

Overview of the JavaScript API ■ Overview of Customizing Buttons

Oracle CRM On Demand JavaScript API Developer’s Guide Release 36 11

Changing the Behavior of Buttons
The JavaScript API enables you to specify the onclick event handling for a custom button or modify
the onclick event handling of a custom button or preconfigured button (such as New, Save, and
Cancel), and thereby change its behavior.

You can change the click event handling of custom and preconfigured buttons to do the following:

■ Set or retrieve on-screen values.

■ Create, read, update, and delete (CRUD) off-screen records.

For information about registering and removing event handlers, see “Methods for the Button Object”
on page 28 and “Defining an Event Handler for a Button” on page 32.

Getting and Setting On-Screen Values
You can use getter and setter methods to retrieve and set the values of fields on the current page
when a user clicks a button. For all fields, language dependent code (LDC) values are retrieved,
however for picklists, there are also additional getter and setter methods to retrieve and set
language independent code (LIC) values. For information about these methods, see “Methods for the
Field Object” on page 33 and “Getting and Setting LIC Values of Picklists” on page 39.

Creating, Reading, Updating, and Deleting Records
You can use methods to perform the following operations on off-screen records when you click a
button:

■ Create record. You can create a record and specify the record type, its fields, and their values.

■ Read record. You can retrieve the fields from a record. You can specify the record type, record
row ID, and a list of field names to be returned with their values.

■ Update record. You can update a record identified with a specific row ID. You can specify the
field names and values to update the record.

■ Delete record. You can delete a record identified with a specific row ID.

For all of these create, read, update, and delete (CRUD) operations, you must have access to the
record. If you do not, then the operation fails. You must implement a callback function to handle the
results of the CRUD operation, when they become available. For information about the CRUD
methods, see “Methods for CRUD Operations” on page 49.

NOTE: For the CRUD operations, only top-level record types and not child-level record types are
supported.

TIP: Use the Oracle CRM On Demand REST API for data manipulation with off-screen records. The
REST API is more powerful for data manipulation of off-screen records and it has more functionality
such as support for CRUD operations on child-level record types. For more information, see Oracle
CRM On Demand REST API Developer’s Guide.

Oracle CRM On Demand JavaScript API Developer’s Guide Release 36

Overview of the JavaScript API ■ Contexts in Which You Can Customize Buttons

12

Error Handling
For methods of the JavaScript APIs that return an object or value, null is returned when an issue
occurs. However, the methods for CRUD operations are an exception as they return an error object.

When using the JavaScript API you must implement your own error handling, which gives you the
flexibility to either show the error, or capture and handle it. For more information about error
handling, see “Errors and Error Handling” on page 56.

Contexts in Which You Can Customize
Buttons
Using the JavaScript API you can customize buttons in the following contexts:

■ On the Homepage for a record type, such as Account, Contact, Lead, and so on

■ On the Detail page for a record type

■ On the Edit Page for a record type

■ On related information (child) applets for record types, for example, the Account Related
Information applet on contact records

■ On applets on My Homepage

■ On Administration pages

■ On pop-up windows, including the following:

■ Quick create windows (new record form) available from the action bar

■ Single-association Lookup windows

■ Multiassociation Lookup windows

■ Multi-select picklist pop-up windows

■ Currency pop-up windows

Customizing buttons on any other page is not supported. Menu buttons are also not supported, and
you cannot add custom buttons to the action bar.

Customizing buttons on both standard and customized page layouts is supported, and you can create
custom buttons on customized page layouts. Different page layouts can have the same buttons with
different behavior.

In the related information sections for records (child applets), button customizations will appear in
both the tab view and the expanded view. For example, if you disable a button for a child applet,
then it appears disabled in both the tab view of the related records and on the expanded view for
the child record.

You can use methods to determine the context in which your code runs, including the page type and
information about the currently logged-in user. For more information about these methods, see
“Methods for the Context Object” on page 47.

Overview of the JavaScript API ■ Color Coding of Fields and Rows

Oracle CRM On Demand JavaScript API Developer’s Guide Release 36 13

Color Coding of Fields and Rows
You can use methods of the JavaScript API to highlight fields and rows in different colors in the Oracle
CRM On Demand UI when particular conditions are met. You can change the colors of the following:

■ In Detail pages, the background color and text color of field labels and field values.

■ In Edit pages, the background color and text color of field labels and the background color of field
values.

■ In List pages (and related item lists), the background color and text color of field values. Also,
the background color for entire rows.

As an example, on account records the Account Name field might be used for highlighting key
accounts. On the Account Detail page the color of the Account Name field could change, for example,
to green, when the sales representative changes the value of the Account Revenues field to a
threshold value. On the Account List page, rows for key account records would be highlighted in
green.

For a code sample, see “Code Sample for Color Coding of Fields and Rows” on page 71.

The color coding that is set using the JavaScript API takes precedence over system or theme colors.
For example, if you set a required field to another text color, the color coding overrides the red text
color for the required field.

Color Coding of Fields in Detail and Edit Pages
To support color coding in Detail and Edit pages, a Form object is required and a custom handler
must be registered for the form. For information about methods of the Form object, see Table 6 on
page 40, and for an example of a custom handler, see “Example of a Custom Handler for a Form
Object” on page 41.

The custom handler is automatically executed when the form initially loads or refreshes due to any
other actions on the screen such as inline editing. In the custom handler you can use methods of the
Field object to get and set colors for the labels and values of fields, see Table 5 on page 34.

Color Coding of Fields and Rows in Lists
To support color coding in lists (on List pages and in related item lists), a List object and ListRow
object are required respectively for the list, and specific rows in the list. A custom handler must be
registered for the List object and this handler is automatically executed on initial page load, on
paging, and when a field on any of the rows is edited inline. For information about methods of the
List object, see Table 7 on page 43, and for an example of a custom handler, see “About the Custom
Handler for a List Object” on page 44.

In the custom handler you can use:

■ Methods of the ListRow object to get and set the background color of rows, see Table 8 on
page 46.

Oracle CRM On Demand JavaScript API Developer’s Guide Release 36

Overview of the JavaScript API ■ Color Coding of Fields and Rows

14

■ Methods of the Field object to get and set colors for the values of fields within rows, see Table 5
on page 34.

NOTE: In lists, if both the background and text color for a specific field within a row, and the
background color for the entire row are set using the JavaScript API, then within the row, the color
coding for the specific field overrides the color coding for the row.

For information about finding the field names that you must use when working with these methods,
see “Finding Field Names” on page 37.

For information about finding list names, see “Finding List Names” on page 45.

Restrictions That Apply to Color Coding of Fields
Using the JavaScript API, you can set the color coding of entire concatenated fields. However, the
color coding of constituent fields of a concatenated field is ignored, as partial coloring of a field is
not possible. For example, you might have the Account Name field included in a concatenated field.
The field value text color of Account Name may be coded to red, but the Account Name part of the
concatenated field will not be red unless the field value text color for the whole concatenated field is
coded as red.

There is no display text for check boxes, or for visual indicator fields such as Star Rating and
Stoplight fields, therefore attempts to set text colors on these fields are ignored.

Oracle CRM On Demand JavaScript API Developer’s Guide Release 36 15

3 Getting Started with the
JavaScript API

This chapter provides an overview of how to get started with using the JavaScript API in Oracle CRM
On Demand. It contains the following topics:

■ Overview of Using Custom JavaScript Code

■ Privileges Required

■ Uploading JavaScript Libraries

■ Guidelines for Uploading Client-Side Extensions on page 16

■ Managing HTML Head Additions on page 17

■ Guidelines for Managing HTML Head Additions on page 18

■ About Enabling and Disabling Customized Code in Oracle CRM On Demand on page 18

■ Security Considerations on page 19

Overview of Using Custom JavaScript
Code
To use custom JavaScript code you must create appropriate custom HTML head additions so that the
custom code is executed in the Oracle CRM On Demand pages. You add the custom HTML head
additions in the Application Customization section in the Oracle CRM On Demand UI. For more
information, see “Managing HTML Head Additions” on page 17.

Your custom HTML head additions can reference JavaScript libraries or external JavaScript files to
make their functions available. You upload JavaScript libraries as client-side extensions in the
Application Customization section in the Oracle CRM On Demand UI. For more information, see
“Uploading JavaScript Libraries” on page 16.

Privileges Required
To upload JavaScript libraries and manage custom HTML head tags, your user role must include the
privilege: Upload Client Side Extensions and Manage Custom HTML Head Tag. If you do not have this
privilege, then the links for Client Side Extensions and Custom HTML Head Tag are not available on
the Application Customization page in the Oracle CRM On Demand UI. Contact Oracle Customer Care
if you do not have the privilege.

Oracle CRM On Demand JavaScript API Developer’s Guide Release 36

Getting Started with the JavaScript API ■ Uploading JavaScript Libraries

16

Uploading JavaScript Libraries
You can upload JavaScript library files as client-side extensions in Oracle CRM On Demand. These
files can include custom functions and global variables, as well as other JavaScript libraries that you
require.

To upload a JavaScript library
1 In the upper-right corner of any page, click the Admin global link.

2 In the Application Customization section, click Application Customization.

3 In the Application Setup section, click Client Side Extensions.

4 Click New.

5 Enter the following details:

■ File. Click the paperclip icon to find the file that you want to upload.

■ MIME Type. (Optional) This field indicates the Internet media type. If you provide a value,
then enter the following:

text\javascript

When you refer to the client side extension file from a custom HTML head addition, you use
a <script> element as in the following example:

<script src="url to the client side extension" type="text/javascript"></script>

■ Name. A name for the client side extension. This field is required.

■ URL Name. A meaningful name used in the URL that points to the client side extension. It
is recommended that you keep this field as short as possible. This field changes only when a
user edits it. Therefore, if you replace the uploaded file, or if you change the client-side
extension name, then the URL Name field value is unchanged. As a result, you can update,
maintain and deploy multiple versions of the client-side extension without having to
reconfigure the HTML head additions. This field is required.

6 Click Save.

After you click save, the Relative URL and Full URL fields are generated for the client-side
extension and displayed in the Client Side Extension list.

For more information about managing client-side extensions, see Oracle CRM On Demand Online
Help.

Guidelines for Uploading Client-Side
Extensions
The guidelines for uploading client-side extensions are as follows:

■ Keep all client-side extensions in as few files as possible. This guideline improves
performance. Preferably, refer to only one JavaScript file from custom HTML head additions.

Getting Started with the JavaScript API ■ Managing HTML Head Additions

Oracle CRM On Demand JavaScript API Developer’s Guide Release 36 17

■ Allow your browser to cache your client-side extensions. If you allow your browser to
cache the client-side extensions, then the content does not have to be downloaded from the
Oracle CRM On Demand servers each time that a user loads the page. If the client-side extension
changes, then you must clear your cache so that Oracle CRM On Demand loads the page
containing the extension. By default, client-side extensions are cached for 30 days.

Managing HTML Head Additions
When you add custom HTML head additions, you specify the appropriate code in <script> elements
to be included in the HTML <head> element of your pages. The <script> elements can contain your
custom JavaScript code and can also reference JavaScript files uploaded through client-side
extensions or external JavaScript files. HTML head additions apply to all pages in Oracle CRM On
Demand. There is a limit of 50,000 characters to the code that you enter as HTML head additions.

On the Edit Custom HTML Head Tag page, a Preview button enables you to validate any changes that
you have made. Depending on your browser settings, errors might be displayed if badly formed HTML
or JavaScript is added.

You can disable the custom HTML head additions by appending disableCustomJS=Y as a parameter
to the URL for a page. If you navigate away from the page by clicking another link, then the URL
parameter is not retained. You must specify the URL parameter each time that you require it. The
parameter is used only when the current user’s role includes the Upload Client Side Extensions and
Manage Custom HTML Head Tag privilege.

NOTE: Any custom code is the responsibility of the person or persons who created the code. Oracle
Customer Care does not support custom code or the contents of linked-in code. When adding custom
code, keep in mind that Oracle supports only calls to published APIs for different versions of Oracle
CRM On Demand.

To add a custom HTML head addition
1 In the upper-right corner of any page, click the Admin global link.

2 In the Application Customization section, click Application Customization.

3 In the Application Setup section, click Custom HTML Head Tag.

4 In the Custom HTML Head Tags Detail page, click Edit.

5 In the HTML Head Additions text box, enter the <script> elements that you require.

The <script> element can contain JavaScript code or can reference JavaScript files through the
src attribute. The following is an example of a reference to a file uploaded as a client side
extension:

<script type="text/javascript" src="../user/content/Test.js"></script>

The following is a reference to an external file:

<script type="text/javascript" src="http://www.external.com/js/Test.js"></script>

6 Click Preview to validate any changes you have made.

7 Click Save.

Oracle CRM On Demand JavaScript API Developer’s Guide Release 36

Getting Started with the JavaScript API ■ Guidelines for Managing HTML Head
Additions

18

For more information about managing HTML head additions, see Oracle CRM On Demand Online Help.

Guidelines for Managing HTML Head
Additions
To minimize the time taken to load pages, reference JavaScript files, either as client-side extensions
or external JavaScript files, to include your business logic. Using referenced JavaScript files also
leverages the browser's cache to speed up the loading time for a page.

About Enabling and Disabling
Customized Code in Oracle CRM On
Demand
Administrators can enable and disable custom JavaScript code and other types of customized code
for a user by setting the Customized Code Enablement field in a user's profile. Also, if the
administrator adds the Customized Code Enablement field to the User Owner page layout for a user
role, then users who have that role can disable and enable customized code for themselves by setting
the Customized Code Enablement field in their personal profile.

Disabling all customized code can be helpful in troubleshooting technical issues you experience while
working in Oracle CRM On Demand. If the issue no longer occurs when the customized code is
disabled, then it is likely that the customized code is the cause of the issue.

The Customized Code Enablement picklist field determines whether all customized code on the pages
in Oracle CRM On Demand is enabled or disabled for the user, and whether the customized code
indicator is enabled or disabled for the user. The following options are available:

■ Enabled. This is the default setting in the standard application. When this option is selected, all
of the customized code that is available in the pages in Oracle CRM On Demand is enabled, but
the customized code indicator is not enabled.

■ Enabled with indicator. When this option is selected, all of the customized code that is
available in the pages in Oracle CRM On Demand is enabled. In addition, the customized code
indicator is enabled.

■ Disabled with indicator. When this option is selected, all of the customized code that is
available in the pages in Oracle CRM On Demand is disabled. In addition, the customized code
indicator is enabled.

When the customized code indicator is enabled, one of the following messages appears at the bottom
of each page that you access in Oracle CRM On Demand:

■ Customized code active. Customized code is detected and is active in the current page.

■ Customized code not detected. No customized code is detected in the current page.

■ Customized code disabled. Customized code is detected in the current page, but the
customized code is disabled.

Getting Started with the JavaScript API ■ Security Considerations

Oracle CRM On Demand JavaScript API Developer’s Guide Release 36 19

When customized code is active in a page, the customized code is visible in the source code for the
page, with comments to mark the start and end of the customized code. When the customized code
is disabled, the customized code is not included in the source code for the page. Instead, the source
code includes a comment to indicate that the customized code is disabled.

For more information about enabling and disabling customized code see Oracle CRM On Demand
Online Help.

Security Considerations
Securing against Web browser-based attacks is a requirement when developing custom code and is
the responsibility of the persons creating the custom code. Browser caches are only as secure as the
computers or other devices that are browsing Oracle CRM On Demand.

The JavaScript API feature has been disabled for customer service representative (CSR)
impersonation.

Oracle CRM On Demand JavaScript API Developer’s Guide Release 36

Getting Started with the JavaScript API ■ Security Considerations

20

Oracle CRM On Demand JavaScript API Developer’s Guide Release 36 21

4 JavaScript API Reference

This chapter describes the public JavaScript application programming interfaces (API) available with
Oracle CRM On Demand. It includes the following topics.

■ Classes Exposed

■ JavaScript API on page 22

■ Methods for the oraclecrmod Object on page 23

■ Methods for the TitleBar Object on page 27

■ Methods for the Button Object on page 28

■ Methods for the Field Object on page 33

■ Methods for the Form Object on page 40

■ Methods for the List Object on page 43

■ Methods for the ListRow Object on page 46

■ Methods for the Context Object on page 47

■ Methods for CRUD Operations on page 49

■ Method for Setting the Search Specification for the Solutions Popup Window Associated with Service
Requests on page 55

■ Errors and Error Handling on page 56

Classes Exposed
The Oracle CRM On Demand JavaScript API exposes the classes described in the following topics. The
top-level namespace is oraclecrmod.

NOTE: Although the JavaScript language does not have classes, it is common for JavaScript
frameworks to simulate classes, and this approach has been taken with the Oracle CRM On Demand
JavaScript API.

TitleBar Class
The TitleBar class represents the title bar on Oracle CRM On Demand pages and is a container for
the buttons in Oracle CRM On Demand. Each TitleBar instance on a page has its own unique ID that
is assigned by the Oracle CRM On Demand framework. You can identify the TitleBar’s ID from
examining the id attribute of the TitleBar's Document Object Model (DOM) element, or by following
the procedure described in “Identifying the IDs of Buttons and TitleBars” on page 33.

Oracle CRM On Demand JavaScript API Developer’s Guide Release 36

JavaScript API Reference ■ JavaScript API

22

You can get the existing TitleBar instance through the TitleBar's ID. With the TitleBar instance, you
can then call custom JavaScript code to create custom buttons on the TitleBar. See Table 2 for
information about the API method used to get a TitleBar instance.

You cannot create a new title bar or hide an existing title bar, using JavaScript code.

Button Class
The Button class represents buttons in the Oracle CRM On Demand UI. Each Button instance must
have a unique ID. Preconfigured buttons are assigned a unique ID by the Oracle CRM On Demand
framework, and you must specify a unique ID for custom buttons that you create with JavaScript
code. If no ID is supplied when creating a custom button, then an internal unique ID is assigned to
the Button instance.

A TitleBar instance is not required to create a Button object. However, a button must be displayed
inside a title bar, so the TitleBar instance is required when trying to display the button.

For most Edit pages, Oracle CRM On Demand has a title bar at the top of the form and also at the
bottom of the form and the same named button, say New, appears on both the top and bottom title
bars. However, the buttons are not linked and are treated as different buttons. So, for example, if
you want to hide the New button, then you must hide the two buttons in each title bar explicitly.

See Table 2 on page 24 and Table 3 on page 27 for information about the API methods used to get
Button IDs and create buttons, and Table 4 on page 28 for information about the API methods that
operate on Button instances.

Context Class
The Context class (oraclecrmod.ctx) represents a global object. The ctx object has attributes
including those for the current object (record type), page type, and logged-in user that allow you to
determine the context in which you run your code. For information about the attributes, see “Methods
for the Context Object” on page 47, in particular, Table 10 on page 48.

Not all attributes are available on all pages. For example, the object attribute is not available on My
Homepage, and Layout attributes are not available on association Lookup windows.

Some helper functions are available as alternatives to using attributes directly. For information about
the helper methods, see Table 9 on page 47.

JavaScript API
The following topics describe the methods that are available through the JavaScript API. For each
method the parameters and return types are listed with examples of the calling method. These topics
also provide information usage information about the various methods.

JavaScript API Reference ■ Methods for the oraclecrmod Object

Oracle CRM On Demand JavaScript API Developer’s Guide Release 36 23

Chaining of Methods
The oraclecrmod library uses chained API style for those methods that do not usually have a return
value (for example, setter methods). You can chain many methods together to make the code easier
to read and write. However, you cannot chain methods that return real values, for example, getXXX
or isXXX methods.

The following is an example of chaining:

btn.setText("Sample").setImage(url).on("click",fun1);

Methods for the oraclecrmod Object
This topic describes the methods for the top-level object, oraclecrmod. Table 1 lists the methods
associated with events.

Table 1. Methods for oraclecrmod That Are Associated with Events

Method Name
Return
Type Description Sample Code

onReady(custo
mFunction)

oraclecrmod Registers a custom
function that is executed
by the framework when
the DOM tree is
constructed. This
method is the entry
point for running custom
code.

oraclecrmod.onReady(function()

{

oraclecrmod.createButton({...});

});

onLoad(custom
Function)

oraclecrmod Calls a custom
JavaScript function
when the onload event is
triggered for the
document body.

This method is similar to
onReady(), but it is
rarely used because the
onReady() method is
preferred.

oraclecrmod.onLoad(onLoadFun);

onUnload(custo
mFunction)

oraclecrmod Calls a custom
JavaScript function
when the onunload
event is triggered for the
document body.

oraclecrmod.onUnload(onUnloadFun
);

Oracle CRM On Demand JavaScript API Developer’s Guide Release 36

JavaScript API Reference ■ Methods for the oraclecrmod Object

24

Table 2 lists the methods that are associated with UI components. The getTitleBar() and getButton()
methods use the ID of the title bar or button as a parameter. For information about how to find these
IDs, see “Identifying the IDs of Buttons and TitleBars” on page 33.

Table 2. Methods for oraclecrmod That Are Associated with UI Components

Method Name
Return
Type Description Sample Code and Notes

getTitleBar(Id) TitleBar Returns a TitleBar
instance referenced by
the Id parameter. You
can use this TitleBar
instance to add another
button to the TitleBar.

var tb =
oraclecrmod.getTitleBar("TitleBarId");

oraclecrmod.createButton(

{id:"TestBtn",text:"Text
Button",parent:tb});

getButton(Id) Button Returns a Button
instance referenced by
the Id parameter.

This method can
retrieve both
preconfigured buttons
and custom buttons.

var btn =
oraclecrmod.getButton("ButtonId");

JavaScript API Reference ■ Methods for the oraclecrmod Object

Oracle CRM On Demand JavaScript API Developer’s Guide Release 36 25

createButton
(config)

Button Creates a custom
button. You can call this
shortcut method to
create a button, instead
of using code like the
following:

new
oraclecrmod.componen
t.Button(config);

The config parameter
has the following
properties:

■ id. The ID of the
button (String).

■ text. The display
text of the button
(String).

■ img. The URL of the
image used by the
button (String).

■ disabled. Whether
the button is
disabled (Boolean).

■ display. Whether
the button is
displayed
(Boolean).

■ toolTipText. The
text to be displayed
in the tooltip of the
button (String).

■ toolTipFormat.
The format of the
tooltip text to be
displayed (HTML or
Plain Text, which is
the default).

oraclecrmod.createButton({

id:"MyBtnId",

text:"Click to Invoke",

img:"images/yourimage.gif",

disabled:false,

toolTipText:"<p>Click this</p>",

toolTipFormat:"HTML"});

Null is returned if a call to createButton()
fails. This return value might result, for
example, from trying to create a button that
has a duplicate ID.

For more information about tooltip
formatting, see “Considerations for
Specifying Tooltips with HTML Formatting” on
page 27.

Table 2. Methods for oraclecrmod That Are Associated with UI Components

Method Name
Return
Type Description Sample Code and Notes

Oracle CRM On Demand JavaScript API Developer’s Guide Release 36

JavaScript API Reference ■ Methods for the oraclecrmod Object

26

registerButton
ToolTip
(tooltipInfoList
)

Registers tooltips for a
set of buttons in one
call.

The input object is an
array of button names
and the associated
tooltip text and tooltip
format for each button.

For more information
about tooltip
formatting, see
“Considerations for
Specifying Tooltips with
HTML Formatting” on
page 27.

var tooltipInfoList = [

["BTN_TB_AccountForm_AccountNewNav","<
p>Helps to create new account</
p>","HTML"],

["BTN_TB_AccountForm_AccountEditNav","
Helps to edit the existing account",
"Plain Text"],

["BTN_TB_AccountForm_AccountPreCopyNav
","Helps to copy this account and
create new one", "Plain Text"]

];

oraclecrmod.registerButtonToolTip(tool
tipInfoList);

getList(listnam
e)

List Gets a List object on a
List or Detail page, on
which a custom display
handler can be
registered or
unregistered.

The List object is the
starting point for getting
Row objects from the
list, and Field objects
from rows. For more
information, see
“Methods for the List
Object” on page 43.

listObj =
oraclecrmod.getList("AccountList");

listObj =
oraclecrmod.getList("AddressChildList"
);

listObj = oraclecrmod.getList();

If there are no lists with the listname value
on the screen, null is returned.

In full list pages there is only one list, so the
listname parameter can be omitted.

For information about finding list names, see
“Finding List Names” on page 45.

getForm() Form Gets a Form object on
an Edit or Detail page,
on which a custom
display handler can be
registered or
unregistered.

For more information,
see “Methods for the
Form Object” on
page 40.

oraclecrmod.getForm();

If there is no Form object on the screen,
then null is returned.

If getForm() is used, for example, on a
homepage or list page, null is returned.

Table 2. Methods for oraclecrmod That Are Associated with UI Components

Method Name
Return
Type Description Sample Code and Notes

JavaScript API Reference ■ Methods for the TitleBar Object

Oracle CRM On Demand JavaScript API Developer’s Guide Release 36 27

Considerations for Specifying Tooltips with HTML
Formatting
When calling the createButton(), registerButtonToolTip(), or setToolTipText() methods, you can
specify tooltip text with HTML formatting. When specifying tooltip text with HTML formatting,
performance is better if you avoid complex HTML and reduce the number of images displayed in the
tooltip. Interactive controls, such as hyperlinks, are not supported. It is also recommended that you
specify the padding properties of elements to make the tooltip text easier to read.

Quote characters in HTML code must be escaped, otherwise the entire script does not render on the
page at all, and the tooltip does not appear. The following is an example of HTML code with padding
specified and with the quotes escaped:

<div style=\"background-color:red;padding:3px 8px;border-radius:5px;\">This is a div</
div>

NOTE: When you use the HTML tag <DIV>, it is recommended to use a border to ensure that the
content in the <DIV> tag stays in the tooltip box.

Methods for the TitleBar Object
Table 3 describes the methods that are available for the TitleBar object. The getButton() method is
useful for the rare cases where preconfigured button IDs are not unique.

Table 3. Methods for the TitleBar Object

Method
Name

Return
Type Description Sample Code

getButton
(buttonId)

Button Gets a Button instance with a given button ID
within a TitleBar instance.

In most cases, this method works in the
same way as the oraclecrmod.getButton()
method, and sometimes the
oraclecrmod.getButton() method is simpler
because you do not have to get a reference
to the TitleBar. The only difference is that if
there are two buttons that share the same
ID, then the oraclecrmod.getButton()
method cannot return both buttons. In this
case, you can get the TitleBar instance first,
then get the Button instance within that
TitleBar. Buttons should not have the same
ID.

var tb =
oraclecrmod.getTitleBar
("TitleBarID");

var btn = tb.getButton
("ButtonID");

Oracle CRM On Demand JavaScript API Developer’s Guide Release 36

JavaScript API Reference ■ Methods for the Button Object

28

Methods for the Button Object
Table 4 describes the methods that are available for the Button object. For information about defining
the event handler for a button, see “Defining an Event Handler for a Button” on page 32. For
information about getting the ID of a title bar or button, see “Identifying the IDs of Buttons and
TitleBars” on page 33.

Table 4. Methods for the Button Object

Method Name
Return
Type

Chain-
able Description Sample Code

disable() this Yes Disables the button. btn.disable();

enable() this Yes Enables the button. btn.enable();

getId() String No Returns the ID of the
button. You can use the
returned ID to find the
button again.

var sBtnId = btn.getId();

getImage() String No Returns the URL to the
image that was assigned
to the button.

var sBtnImg =
btn.getImage();

getParent() TitleBar No Returns the parent
TitleBar instance of this
button. You can call this
method to get the parent
TitleBar of a known Button
and add more buttons to
the TitleBar.

var tb = btn.getParent();

oraclecrmod.createButton({
id:"NewBtnId",text: "New
Button", parent: tb});

getText() String No Returns the text of the
button.

var text = btn.getText();

getToolTipText(
)

String No Returns the tooltip text of
the button.

var toolTipText =
btn.getToolTipText();

getToolTipForm
at()

String No Returns the tooltip format
of the button

var toolTipFormat =
btn.getToolTipFormat();

hide() this Yes Hides the button. btn.hide();

JavaScript API Reference ■ Methods for the Button Object

Oracle CRM On Demand JavaScript API Developer’s Guide Release 36 29

invokeDefault
(evt)

Not
applic-
able

No Invokes the default event
handler for the
preconfigured button. This
is useful if you want to add
additional functionality to
a preconfigured button,
but then still want to
invoke the default event
handler.

For example, you might
want to validate a form
before the record is saved.
You can redefine the
onclick event for the Save
button to include your
own validation logic. After
the validation, you still
want to save the record,
so you can then call
invokeDefault("click")
on the Save button.

var btn =
oraclecrmod.getButton
("Save Button ID");

btn.offDefault("click").on(
"click",function(){

if(data is valid){

this.invokeDefault
("click");

}else{

alert("validation
failed");

}

});

isDisabled() Boolean No Returns whether the
button is currently
disabled.

if(btn.isDisabled()){

//do something here

}

isHidden() Boolean No Returns whether the
button is hidden.

if(btn.isHidden()){

//do something here

}

off(evt,custom
Function)

this Yes Removes the registered
event listener for the
given event.

NOTE: The event handler
must be the original event
handler that was used to
register the event.

For information about how
to define the event
handler function, see
“Defining an Event Handler
for a Button” on page 32.

btn.off("click",myClickHand
ler);

Table 4. Methods for the Button Object

Method Name
Return
Type

Chain-
able Description Sample Code

Oracle CRM On Demand JavaScript API Developer’s Guide Release 36

JavaScript API Reference ■ Methods for the Button Object

30

offAll(evt) this Yes Removes all event
handlers attached to the
Button for the given
event.

This method is useful
when you want to change
the default behavior of a
button, for example, to
remove the default onclick
event.

btn.offAll("click");

offDefault(evt) this Yes Removes the default
event handler for the
preconfigured button.
Because the event handler
for preconfigured buttons
is not added by the user,
you do not have the
reference to the original
event handler, and so you
cannot remove the event
handler by calling the off()
method.

btn.offDefault("click");

Table 4. Methods for the Button Object

Method Name
Return
Type

Chain-
able Description Sample Code

JavaScript API Reference ■ Methods for the Button Object

Oracle CRM On Demand JavaScript API Developer’s Guide Release 36 31

on(evt,custom
Function, data)

this Yes Registers an event
handler for the given
event type.

The data parameter is an
optional parameter. It is
useful when you want to
pass more information to
the customFunction.

NOTE: You can use an
anonymous function as
the event handler.
However, in that case, you
cannot remove the event
handler unless you call
offAll(), which removes all
the registered event
handlers for the given
event type. So, if you plan
to remove the event
handler, then do not use
the anonymous function
as the event handler.

btn.on("click",myClickHandl
er);

The following sample code uses
the optional data parameter:

btn.on("click",
function(evt,
customerNumber)
{alert(customerNumber); },
1234);

In this case, the additional
data, 1234, is passed to the
custom function through the
customerNumber parameter.

For a further example of using
the on() function, see “Defining
an Event Handler for a Button”
on page 32.

setImage(url) this Yes Sets an image for the
button. You can use a
relative URL or absolute
URL for an image. If the
URL is null, then the
image is removed.

btn.setImage("http://
domain/imgs/img.gif");

or

btn.setImage("/images/
test.png");

setParent(tb) this Yes Sets the given TitleBar as
the parent of this button.

You can create a button
first, without giving it a
parent. You can then call
this method to add the
button to a TitleBar.

If a button is already
added to a TitleBar, and if
you call this method for a
different TitleBar, then the
calls fails and an alert is
displayed.

btn.setParent(titlebar);

Table 4. Methods for the Button Object

Method Name
Return
Type

Chain-
able Description Sample Code

Oracle CRM On Demand JavaScript API Developer’s Guide Release 36

JavaScript API Reference ■ Methods for the Button Object

32

Defining an Event Handler for a Button
To define an event handler for a button, you must define a JavaScript function in the following
format:

function YourFunName(evt,data){

this.xxxxx();

}

The evt parameter is the regular event object from the browser. The data parameter is the additional
data that you want to pass to the event handler. Both of these parameters are optional.

Inside the function body, the this keyword points to the current Button object to which this event
handler is attached.

You can attach the event handler to your button using this code:

setText(text) this Yes Sets the text of this
button. No text is
displayed if a null or
empty string is passed.

btn.setText("Text is
Changed");

setToolTipText(
toolTipText)

this Yes Sets the tooltip text of the
button. If a null or empty
string is passed, no tooltip
is set for this button.

NOTE: If you use
oraclecrmod.enableIdHint
() in your code, the tooltip
for enableIdHint() is
displayed on top of the
tooltip text for
setToolTipText().

btn.setToolTipText ("Tool
Tip Text for Button");

setToolTipForm
at()

this Yes Sets the tooltip format of
the button, which can be
either HTML or plain text.
If a null or empty string is
passed, the format is set
as Plain Text. The
default value is Plain
Text.

btn.setToolTipFormat
("HTML");

For more information about
tooltip formatting, see
“Considerations for Specifying
Tooltips with HTML Formatting”
on page 27.

show() this Yes Shows the button if the
button is currently hidden.

btn.show();

Table 4. Methods for the Button Object

Method Name
Return
Type

Chain-
able Description Sample Code

JavaScript API Reference ■ Methods for the Field Object

Oracle CRM On Demand JavaScript API Developer’s Guide Release 36 33

btn.on("click",YourFunName,"Your String");

In this example, "Your String" is passed as the data parameter to the event handler function
YourFunName() when the button is clicked.

Identifying the IDs of Buttons and TitleBars
To get a TitleBar or Button instance, you must know the ID of the title bar or button. To find out the
ID, you can use the following procedure:

To find the ID of a title bar or button
1 Log in to Oracle CRM On Demand in a browser that allows dynamic JavaScript code execution.

Examples of such browsers include Mozilla Firefox with Firebug, Google Chrome, and Microsoft
Internet Explorer Version 8 and later.

2 Open Developer tools, usually by pressing the F12 button, and go to the Console view.

3 Execute the following JavaScript code:

oraclecrmod.enableIdHint();

4 Make sure that the browser window is the active window.

5 Move your mouse over the title bar or button that you want to get the ID of.

The browser displays a tooltip near the title bar or button that displays its ID.

Methods for the Field Object
Table 5 on page 34 describes the methods that are available for the Field object. These methods are
used in the getting and setting of field values and in the color coding of field colors.

Oracle CRM On Demand JavaScript API Developer’s Guide Release 36

JavaScript API Reference ■ Methods for the Field Object

34

For information about finding the field names that you must use when working with these methods, see
“Finding Field Names” on page 37.

Table 5. Methods for the Field Object

Method Name Return Type Description Sample Code Notes

getField(fieldNa
me)

A field object
exposing the
getValue and
setValue
methods or
null, if the
field is not
found on the
screen

Gets the field
on the
current
screen that is
identified by
the
fieldName
parameter.

oraclecrmod.getFie
ld('Parent Account
Name');

For information about
the ListRow getField()
method, see Table 8 on
page 46.

getValue() The field
value string

Gets a value
for a field in
the current
screen.

oraclecrmod.getFie
ld('Location').get
Value();

For a check box field,
the return values are Y
for selected, and N for
deselected.

getLICValue() The field’s
language
independent
code (LIC)
value as a
string

Gets the LIC
value for a
field in the
current
screen.

oraclecrmod.getFie
ld("Type").getLICV
alue();

For more information,
see “Getting and
Setting LIC Values of
Picklists” on page 39.

setValue
(fieldValue)

The new field
value string
that was just
set, or null if
the method
fails

Sets a value
for a field in
the current
screen. This
can be a New
page, an Edit
page, a Detail
page, or a
List page.

For a New, Edit, or
Detail page:

oraclecrmod.getFie
ld('Type').setValu
e("Customer");

For a list, including a
related item list:

oraclecrmod.getLis
t("AccountList").g
etRow(0).getField(
"Type").setValue("
Customer");

For information about
the limitations of
setValue(), such as
field types not
supported, see
“Limitations When Using
the setValue() Method”
on page 38.

NOTE: On Detail
pages, and for lists,
setValue() does not
commit values to the
database and update
the screen. The
commitValues()
method must be called
to commit the values.
See Table 6 on page 40
and Table 7 on page 43.

JavaScript API Reference ■ Methods for the Field Object

Oracle CRM On Demand JavaScript API Developer’s Guide Release 36 35

setLICValue(field
Value)

The new
language
independent
code (LIC)
field value
string that
was just set,
or null if the
method fails

Sets a LIC
value for a
field in the
current
screen.

oraclecrmod.getFie
ld('Type').setLICV
alue("Customer");

For a Detail page:

oraclecrmod.getFie
ld("Priority").set
LICValue("Low");
oraclecrmod.getFie
ld("Region").setLI
CValue("West");
oraclecrmod.getFor
m().commitValues(c
ommitValuesHandler
);

The LIC value is used to
set the field’s value.
The language
dependent code (LDC)
value will still be
displayed on the
screen.

For more information,
see “Getting and
Setting LIC Values of
Picklists” on page 39.

setColor(JSONO
bject)

this Sets the
colors for a
Field by
passing in a
JSONObject.

field.setColor({"l
abelBgColor":"Red"
,"labelTextColor":
"Yellow","valueBgC
olor":"Yellow","va
lueTextColor":"Red
"});

Elements supported in
the JSONObject:

■ labelBgColor. The
field label
background color.

■ labelTextColor.
The field label text
color.

■ valueBgColor. The
field value
background color.

■ valueTextColor.
The field value text
color (not
applicable on Edit
pages).

Any other elements are
ignored.

For information about
the color values the
elements can have, see
“Color Values for
JSONObjects” on
page 40.

Table 5. Methods for the Field Object

Method Name Return Type Description Sample Code Notes

Oracle CRM On Demand JavaScript API Developer’s Guide Release 36

JavaScript API Reference ■ Methods for the Field Object

36

NOTE: For fields like Modified that have a user name link and a date, getColor() returns the user
name link color. However, setColor() can set the color on both the link and text.

getColor() JSONObject Returns the
JSONObject
that was set
for color
coding the
field.

color =
field.getColor();

If no JSONObject was
set using setColor(),
getColor() returns the
colors based on the
system or theme
colors.

The getColor() method
always returns RGB
values or
"transparent".

On Edit pages, text
color values are not
returned.

Text color values are
not returned for field
types that are not text
based, such as check
boxes or visual
indicators.

getId() String Returns the
row ID of an
associated
record based
on the
associated
record field
displayed on
the screen.

For example, if an
Account’s Primary
Contact field is on
the screen, then to
return the Primary
Contact ID value:

getField("Primary
Contact").getId();

For an associated
record on a List
page:

oraclecrmod.getLis
t().getRow(0).getF
ield("Owner").getI
d();

The getId() method is
supported on Detail,
Edit, and List pages.
For New pages, it
returns null.

The getId() method on
a field only works for
associated record fields
and returns null for
other types of fields.

Multi-association fields
are not supported, for
example, the Users and
Contacts fields of
Activity.

Table 5. Methods for the Field Object

Method Name Return Type Description Sample Code Notes

JavaScript API Reference ■ Methods for the Field Object

Oracle CRM On Demand JavaScript API Developer’s Guide Release 36 37

Finding Field Names
For methods that reference fields, you must use the correct field names, which you can find from the
HTML Field Tag column in the Fields page in the UI for each record type, if your role includes the
Upload Client Side Extensions and Manage Custom HTML Head Tag privilege. In recent versions of
browsers, you can also use developer tools to find field names.

To find field names in the Fields page
1 In the upper-right corner of any page, click the Admin global link.

2 In the Application Customization section, click the Application Customization link.

3 In the Record Type Setup section, click the link for the required record type.

4 In the Field Management section, click record type Field Setup.

The record type Fields page displays the HTML Field Tag column. This column contains the
language-independent field name for each field.

To find field names using browser developer tools
1 Right click in the field for which the name is required.

2 Select the appropriate option, for example, Inspect element or Inspect with.

The name of the option varies with browser versions. The browser opens developer tools and
highlights the relevant element of the HTML source. The HTML source element has name and id
attributes that indicate the field name.

3 For New or Edit pages, check the field name, which is in the format: FormName.FieldName.

For example, in AccountEditForm.Location the part after the dot, Location, is the field name.

In some browser versions you may also see an id attribute with a value like the following, where
the part after the final dot is the field name:

A0.R0.Location

4 For Detail and List pages, check the id attribute value of the <td> element containing the field,
which is in the format AX.RY.FieldName, for example, A0.R1.Location. In the attribute value, X
is the applet index and Y is the row index. For Detail forms, the prefix is always A0.R0, while for
full lists, the prefix is A0.RY. The part after the last dot, for example, Location, is the field name.

NOTE: For check boxes and multi-select picklist fields, the HTML source element highlighted by
developer tools is not the element that indicates the field name. In this case, the next element
contains the attributes that indicate the real field name.

Oracle CRM On Demand JavaScript API Developer’s Guide Release 36

JavaScript API Reference ■ Methods for the Field Object

38

Getting and Setting Screen Values
You can use the getValue() and setValue() methods to get and set values for fields on the current
screen. The methods are supported for New and Edit pages, and also for Detail pages (including
related information sections) and lists (including related item lists). For information about the
getValue() and setValue() methods, see Table 5 on page 34.

Using the setValue() method on Detail pages or List pages is similar to inline editing in the Oracle
CRM On Demand UI. When you use the setValue() method for Detail pages and List pages, the value
is not set and updated in the database immediately. You must use a commitValues() method to
commit the setting of values on Detail or List pages. For information about the commitValues()
method, see Table 6 on page 40 and Table 7 on page 43.

For information about finding the field names that you must use when working with these methods,
see “Finding Field Names” on page 37.

Limitations When Using the setValue() Method
The setValue() method is not supported for the following types of field:

■ Analytics fields

■ Color fields (that is, fields used for color definitions in themes)

■ Currency code fields

■ Multi-association fields

■ Shared address fields

■ Single-association fields for which the Auto-Resolve Enabled check box is deselected. Such fields
are grayed out on the UI.

If you call setValue() for the above field types, null is returned.

Single-association fields and fields such as Sales Stage (on Opportunity) only support setting by row
ID on Detail pages.

Concatenated fields are not supported, but you can set the values for constituent fields of
concatenated fields for both Detail and Edit pages, regardless of whether the fields are on the page
layout.

For a check box field, only the values Y or N are accepted for the input parameter. Any other values
are ignored.

Support for Address Fields When Using the setValue() Method
For addresses on both Edit and Detail pages, you can change the Country field using the setValue()
method and at the same time set other fields in the address layout relevant to the new country
setting.

The field names for address fields have the format:

ParentAddressName.ChildAddressName

For example, for an Account billing address Country field:

JavaScript API Reference ■ Methods for the Field Object

Oracle CRM On Demand JavaScript API Developer’s Guide Release 36 39

Parent Bill To Address.Bill To Country

As a code example, you might change the country from Canada to USA, then set the state as follows:

oraclecrmod.getField(“Parent Bill To Address.Bill To Country”).setValue(“USA”);
oraclecrmod.getField(“Parent Bill To Address.Bill To State”).setValue(“NY”);
oraclecrmod.getForm().commitValues(Handler);

Guidelines for Setting Screen Values
When you have multiple fields for which you want to set a value, and if setting a value for one of
those fields triggers a page refresh (for example, Sales Stage, Dynamic Layout driving field), then
you must call the setValue() method on all the other fields before you call setValue() on the field that
triggers the page refresh. Otherwise, all the setValue() calls following the page refresh will be
ignored.

Getting and Setting LIC Values of Picklists
You can use the getLICValue() and setLICValue() methods to respectively get and set language
independent code (LIC) values for picklists as opposed to the language dependent code (LDC) values
that are displayed on the screen.

You can use the getLICValue() and setLICValue() methods for New, Edit, Detail, and List pages
(including related item lists). On Detail pages, and for lists, setLICValue() does not commit values
to the database and update the screen. The commitValues() method must be called to commit the
values. For information about the commitValues() method, see Table 6 on page 40 and Table 7 on
page 43.

You can use the getLICValue() and setLICValue() methods for preconfigured picklists, custom
picklists, and cascading picklists are supported, but multi-select picklists are not supported. Calling
the getLICValue() and setLICValue() methods on multi-select picklists or on non-picklist fields results
in the same behavior as for the getValue() and setValue() methods, that is, the displayed (LDC) value
is returned.

As an example, the Priority picklist on the Opportunity record type has LIC values: Low, Medium,
High, which are displayed in French as Faible, Moyen, Eleve.

Therefore, if the user's language is French, and the Priority picklist field is set to Low:

■ getValue() returns Faible

■ getLICValue() returns Low

For some preconfigured picklist fields such as Industry (on the Account record type), Sales Stage (on
Opportunity), and Role (on various record types) the LIC values are row ID values.

For these fields the getLICValue() method retrieves the row ID of the selected value for the picklist.
For example:

■ Industry.getValue() returns High Technology

■ IndustryField.getLICValue() returns 1QA2-11RH89

Oracle CRM On Demand JavaScript API Developer’s Guide Release 36

JavaScript API Reference ■ Methods for the Form Object

40

The setLICValue() method allows you to set the picklist value using a row ID, for example:

field.setLICValue("ROWID")

When set, the on-screen value is updated to the display value associated with the row ID.

You can determine the row ID for each value in the fields by using browser developer tools as
described in “Finding Field Names” on page 37.

Color Values for JSONObjects
For the setColor() methods used in color coding of fields, the following types of color value can be
specified for each element in the JSONObject:

■ The name of a color, for example: Red, Yellow, Black. The values are not case sensitive.

■ A hexadecimal number for a color, for example: #FF0000, the number for red.

■ An RGB value for a color, for example: rgb(0, 0, 255), the value for blue.

Methods for the Form Object
Table 6 shows the methods that are available for the Form object. These methods are used, together
with the field.setColor() and field.getColor() methods in the color coding of fields in Detail and Edit
pages. For more information about the setColor() and getColor() methods, see Table 5 on page 34.

Table 6. Methods for the Form Object

Method
Name

Return
Type Description Sample Code Notes

on(event,cust
omfunction)

this Registers a
custom
handler for
the form.

form.on("display",
myColorHandler);

The custom handler is
automatically executed
when the form initially
loads or refreshes due
to any other actions on
the screen such as
inline editing.

The event parameter
must be "display". If
not, it is ignored and
the custom handler is
not registered.

off(event) this Removes the
custom
handler for
the form.

form.off("display"); If the event parameter
is not "display", it is
ignored and the custom
handler is not
removed.

JavaScript API Reference ■ Methods for the Form Object

Oracle CRM On Demand JavaScript API Developer’s Guide Release 36 41

Example of a Custom Handler for a Form Object
The following is a pseudocode example of a custom handler for a Form object. The example includes
an RGB value (rgb(255,255,0)) for the field value background color of yellow, and a hexadecimal
value (#ff0000) for the field value text color of red.

function myColorHandler()

{

var accountValue = oraclecrmod.getField("AccountValue").getValue();

var field = oraclecrmod.getField("AccountName");

if (accountvalue>1000000) then

{

field.setColor({"labelBgColor":"Red","labelTextColor":"Yellow",

"valueBgColor":"rgb(255,255,0)","valueTextColor":"#ff0000"});

}

else {

field.setColor({"labelBgColor":"","labelTextColor":"",

"valueBgColor":"","valueTextColor":""});

}

}

//set up the color handler

oraclecrmod.getForm().on("display",myColorHandler)

commitValues
(callback)

JSONObj
ect in
callback

Commits
values set on
Detail pages
using the
setValue()
method.

oraclecrmod.getForm().co
mmitValues(callback);

For information about
the callback handler,
see “Callback Handler
for the commitValues()
Method” on page 42.

getId() String Returns the
row ID of the
record on the
screen.

oraclecrmod.getForm().ge
tId();

The getId() method is
supported for Detail
and Edit pages. For
other types of pages,
including New pages, it
returns null.

Table 6. Methods for the Form Object

Method
Name

Return
Type Description Sample Code Notes

Oracle CRM On Demand JavaScript API Developer’s Guide Release 36

JavaScript API Reference ■ Methods for the Form Object

42

For a full code sample, see “Code Sample for Color Coding of Fields and Rows” on page 71.

Callback Handler for the commitValues() Method
When the commitValues() method completes processing, and if there is an error, a custom error
callback handler is called.

The callback handler returns a JSONObject, which has the following properties:

■ status. The status as a string: "OK" or "ERROR".

■ errors. Any errors in a JSONArray object. The errors object specifies null or an array of objects
in the following format:

{

fac : "error code",

msg : "error message"

}

There are two types of error:

1 Errors where validation failed on the JavaScript side.

In this case, the error code is one of:

■ OCCAM_JS_INLINE_FIELD_REQUIRED

■ OCCAM_JS_INLINE_TEXT_TOO_LONG

■ OCCAM_JS_INLINE_INVALID_FORMAT

The error message has the format: %Field_Name% : %Failed_Reason%

2 Errors returned from the OM side.

In this case, the error code has the format SLB-XXX-XXXXX, and the error codes and messages
are similar to those described in “CRUD Error Codes and Messages” on page 58.

For information about handling errors in your code, see “Errors and Error Handling” on page 56.

The callback handler is not only an error handler, it is also where your logic resumes.

JavaScript API Reference ■ Methods for the List Object

Oracle CRM On Demand JavaScript API Developer’s Guide Release 36 43

Methods for the List Object
Table 7 describes the methods that are available for the List object. These methods are used for color
coding in lists.

Table 7. Methods for the List Object

Method Name
Return
Type Description Sample Code Notes

getRow(Row#) ListRow Returns the
specific row in
the displayed
list based on
the Row#
parameter.

listRow=
listObject.getRow(0);

The first row has
index 0 and the
last row has index
getDisplayedCount
()-1.

If the Row# value
is invalid, then null
is returned.

getDisplayedCo
unt()

Integer Returns the
total number
of rows
displayed on
the screen.

x =
listObject.getDisplayedCoun
t();

None

Oracle CRM On Demand JavaScript API Developer’s Guide Release 36

JavaScript API Reference ■ Methods for the List Object

44

About the Custom Handler for a List Object
The custom handler for a List object has the format colorFunction(row). The JavaScript API
framework provides the row parameter, corresponding to a ListRow object, when calling the custom
function.

For inline editing, the row object corresponds to the row in which the inline editing occurs.

For initial page load and paging, the custom handler is called for each row in the list with the same
logic applying for each row. For example, for a list of 25 rows, the JavaScript API framework calls
the custom handler 25 times, providing the row parameter with values 0 through 24 (that is row# 0
through row count -1). Rather than looping, you only need to focus on the logic for row criteria and
color setting. If you need to apply some special logic for a particular row, you can check the
listRow.rowNum property.

on(event,custo
mhandler)

this Registers a
custom
handler for the
list currently
displayed on
the screen.

NOTE: The
framework
passes the
custom
handler a row
parameter,
see “About the
Custom
Handler for a
List Object” on
page 44.

function
myColorHandler(row){

//Change column YYY's color
based on column XXX's value

if
(row.getField("XXX").getVal
ue()=="High"){

row.getField("YYY").setColo
r(...);

}

//Special logic for first
row

if (row.rowNum == 0){

row.setColor(...);

}

}

listObj.on("display",myColo
rHandler);

For initial page
load and paging,
the handler is
called for each row
on the list.

For inline editing,
the row object that
is passed to the
custom handler is
based on the row
on which the inline
edit was
processed.

The event
parameter must
be "display".

off(event) this Removes the
custom
handler

listObj.off("display"); If the event
parameter is not
"display", it is
ignored and the
custom handler is
not removed.

Table 7. Methods for the List Object

Method Name
Return
Type Description Sample Code Notes

JavaScript API Reference ■ Methods for the List Object

Oracle CRM On Demand JavaScript API Developer’s Guide Release 36 45

The following is an example of pseudocode for a custom handler for a List object:

function otherColorHandler(row) {

if (row.getField("Location").getValue() = "Hometown") then

{

row.getField("Location").setColor("valueBgColor":"Black","valueTextColor":"Yellow");

}

}

listA = oraclecrmod.getList("AccountList");

listA.on("display",otherColorHandler);

For a full code sample, see “Code Sample for Color Coding of Fields and Rows” on page 71.

Finding List Names
You can use recent versions of browsers to find the name of lists on List and Detail pages.

To find list names using browser developer tools
1 Right click on the list for which the name is required.

2 Select the appropriate option, for example, Inspect element or Inspect with.

The name of the option varies with browser versions. The browser opens developer tools and
displays the HTML source.

3 Check the id attribute value of the <table> element containing the list, which is in the format
listnameLIST, for example, AddressChildListLIST. The part before LIST, for example,
AddressChildList, is the list name.

Oracle CRM On Demand JavaScript API Developer’s Guide Release 36

JavaScript API Reference ■ Methods for the ListRow Object

46

Methods for the ListRow Object
Table 8 describes the methods that are available for the ListRow object. These methods are used for
color coding in lists:

Table 8. Methods and Properties for the ListRow Object

Method Name
Return
Type Description Sample Code Notes

setColor(JSON
Object)

this Sets the
colors for the
row by
passing in a
JSONObject.

listRow.setColor({"row
BgColor":"Black"});

Elements supported in
the JSONObject:

■ rowBgColor. The
row’s background
color.

Any other elements are
ignored.

For information about
the values the element
can have, see “Color
Values for JSONObjects”
on page 40.

getColor() JSONO
bject

Returns the
row’s RGB
value in a
JSONObject.

color =
listRow.getColor();

The getColor() method
always returns the
row's background color
in RGB values or
"transparent".

getField(fieldna
me)

Field Returns a
specific field
object in the
row based on
the field
name.

listRow.getField("Acco
unt Name");

The only methods of the
Field object available
when used in a list are:

■ getValue()

■ setColor() and
getColor() but
labelBgColor and
labelTextColor do
not apply.

For more information
about these methods,
see Table 5 on page 34.

rowNum N/A Property
containing
the row
number.

if (row.rowNum == 0){

row.setColor(...);

None

JavaScript API Reference ■ Methods for the Context Object

Oracle CRM On Demand JavaScript API Developer’s Guide Release 36 47

Methods for the Context Object
You can get information about the current page and logged-in user to make decisions in your custom
JavaScript code, for example, to determine when a script executes.

The methods shown in Table 9 are helper functions that wrap the attributes for the context object
shown in Table 10 on page 48. As a guideline use the helper methods, which are more convenient
than using the attributes directly because they return Boolean values. If you use an attribute
directly, then you have to do a comparison, such as the following:

if(oraclecrmod.ctx.pageType == "D")

Whereas using a helper method like the following is simpler and clearer:

if(oraclecrmod.ctx.isDetailPage()

getId() String Returns the
row ID of the
record in a
row in a list
on the
screen.

Related item
lists are also
supported.

oraclecrmod.getList().
getRow(0).getId();

In some related item
lists, for example, for
Account Contact,
getRow(#).getId()
returns the intersection
row ID. In this case, to
get the ID of the actual
contact associated to
the account through the
Contact child list, you
must call
getRow(#).getField

(“Contact Full

Name”).getId();

commitValues(ca
llback)

JSONO
bject in
callback

Commits field
values set on
list pages
using the
setValue()
method

oraclecrmod.getList("A
ccountList").getRow(0)
.commitValues(callback
);

For information about
the callback handler,
see “Callback Handler for
the commitValues()
Method” on page 42

Table 9. Helper Methods for the Context Object

Method Name Description Parameters and Notes

isHomePage Returns whether the current page
type is Homepage

None

isListPage Returns whether the current page
is a List page

None

Table 8. Methods and Properties for the ListRow Object

Method Name
Return
Type Description Sample Code Notes

Oracle CRM On Demand JavaScript API Developer’s Guide Release 36

JavaScript API Reference ■ Methods for the Context Object

48

All of the helper methods have a Boolean return type. Table 10 shows the attributes for the context
object.

isDetailPage Returns whether the current page
type is Detail page

None

isEditPage Returns whether the current page
type is Edit page

None

isNewPage Returns whether the current page
type is New page

None

isEditOrNewPage Returns whether the current page
type is Edit page or New page

None

isAdminPage Returns whether the current page
type is Admin page

None

isObject(object) Returns whether the current
page’s primary object is the
record type in the parameter

The String object parameter is the record
type, for example:
oraclecrmod.ctx.isObject("Account")

Table 10. Attributes for the Context Object

Attribute Type Description Sample Values and Code

servlet String The current servlet path. oraclecrmod.ctx.servlet == "/
user/AccountHomePage"

pageType String An alphabetic character
representing the current
page type.

H for Homepage, L for List page, D for
Detail page, N for New page, E for Edit
page, and A for Admin page.

if
(oraclecrmod.ctx.pageType=="D")
{...}

object String The current record type
name.

"Account", "CustomObject4"

layoutId String The row ID for the current
layout in use, which you
can find in the URL of the
Page Layout Wizard editing
page. For a standard
layout, the URL has no row
ID, and this attribute has
the value of the standard
layout name.

"1QA2-P4F9O", "Lead"

layoutName String The display name for the
current layout.

"myAcctLayout"

Table 9. Helper Methods for the Context Object

Method Name Description Parameters and Notes

JavaScript API Reference ■ Methods for CRUD Operations

Oracle CRM On Demand JavaScript API Developer’s Guide Release 36 49

Methods for CRUD Operations
This topic describes the methods available for create, read, update and delete (CRUD) operations on
off-screen records. Table 11 on page 50 lists the methods, which are under oraclecrmod.dataSvc. The
parameters for the methods are discussed in “Parameters and Return Values for CRUD Methods” on
page 51. For a code sample that performs a create operation, see “Code Sample for a Custom Button
That Creates a Record” on page 62.

For the CRUD operations, only top-level record types are supported and not child-level record types.
To access child-level record types, you can use the Oracle CRM On Demand REST API. For more
information, see Oracle CRM On Demand REST API Developer’s Guide.

roleId String The row ID for the current
user’s role, which you can
find in the URL of the Role
Management Wizard
editing page.

"1-G4WZO"

roleName String The name of the current
user role, unlocalized

"Administrator"

lang String The current user’s
language as a three-
character code

NOTE: See Oracle
Migration Tool On Demand
Guide for a list of the
language codes supported
for Oracle CRM On
Demand.

"enu", "deu"

userId String The user ID of the currently
logged-in user.

"1QA3-HTE12"

userCountryLIC String The country (LIC value) of
the currently logged-in
user.

"Korea"

userEmail String The email of the currently
logged-in user.

"mini.me@acme.com"

userAlias String The user alias of the
currently logged-in user.

"minime"

userFullName String The full name of the
currently logged-in user.

"Mini Me"

Table 10. Attributes for the Context Object

Attribute Type Description Sample Values and Code

Oracle CRM On Demand JavaScript API Developer’s Guide Release 36

JavaScript API Reference ■ Methods for CRUD Operations

50

To handle the results of a CRUD operation you must define a callback function as described in “User-
Defined Callback Function” on page 53.

TIP: All of the methods run asynchronously, so you must implement the callback function and
subsequent function calls to allow for this.

The methods are asynchronous because CRUD operations need to communicate with the server to
complete and this involves remote communication across the network using AJAX technology.
Because of this, these operations normally take a significantly longer time to complete compared to
other operations that happen inside the browser.

In the browser, all the JavaScript code runs in a single thread. If synchronous calls were used for the
CRUD operations, the browser would not be able to handle any user interaction when the CRUD
operations were in process. Asynchronous calls are therefore used for CRUD operations. During the
CRUD operations the user can still interact with the page, and when the operation is finished, the
framework calls the callback function to handle the result. This results in a much better user
experience.

Table 11. Create, Read, Update, and Delete Methods

Method Name
Return
Type Description Sample Code

createRecord
(objectName,
fieldNameValuePairs,
createParameters,
callback)

JSONObject Creates an off-screen
record. The
parameters specify
the record type, and
field name-value
pairs for the record.
The method returns
the row ID and mod
ID of the record.

oraclecrmod.dataSvc.createRecor
d ("Account", {"Name" : "Account
1", "Account Contact Role" :
"Admin", "Type" : "Customer",
"Description" : "Description
Test"}, null, callback);

readRecord
(objectName,
fieldNames,
readParameters,
callback)

JSONObject Retrieves fields not
exposed for the
current record or
from an off-screen
record. The
parameters specify
the record type, list
of field names, and
search type and
search specification.
The method returns a
list of the field names
and their values.

NOTE: Only row ID
values are supported
for the searchType
parameter.

oraclecrmod.dataSvc.readRecord
("Account", "Name, Description",
{ searchType: "rowId", "rowId":
"1QA2-TNRWW"}, callback);

JavaScript API Reference ■ Methods for CRUD Operations

Oracle CRM On Demand JavaScript API Developer’s Guide Release 36 51

For create and update operations on required and read-only fields in off-screen records, only default
preconfigured fields and not custom fields are supported.

If a preconfigured required field is missing, then the create or update operation fails. If an operation
attempts to populate a read-only field, then it is ignored.

Parameters and Return Values for CRUD Methods
The following are the parameter values for the CRUD methods listed in Table 11:

■ objectName. The name of the record type, for example, "Account"

updateRecord
(objectName,
fieldNameValuePairs,
updateParameters,
callback)

JSONObject Updates an off-
screen record. The
required parameters
specify the record
type, field name-
value pairs, and
search type and
search specification.
The method returns
the row ID and mod
ID of the updated
record.

NOTE: Only row ID
values are supported
for the searchType
parameter.

oraclecrmod.dataSvc.updateRecor
d ("Account", {"Name" : "Account
1", "Account Contact Role" :
"Admin", "Type" : "Customer",
"Description" : "Description
Test"}, {searchType: "rowId",
"rowId": "1QA2-TNRWW"},
callback);

deleteRecord
(objectName,
deleteParameters,
callback)

JSONObject Deletes an off-screen
record. The required
parameters specify
the record type, and
search type and
search specification.
The method deletes
the specified record
and returns the
deletion results.

NOTE: Only row ID
values are supported
for the searchType
parameter.

oraclecrmod.dataSvc.deleteRecor
d ("Account", "1QA2-TNRWW",
callback);

Table 11. Create, Read, Update, and Delete Methods

Method Name
Return
Type Description Sample Code

Oracle CRM On Demand JavaScript API Developer’s Guide Release 36

JavaScript API Reference ■ Methods for CRUD Operations

52

■ fieldNames (for readRecord). A list of business component field names for which values are
returned. You can specify the list of fields as a comma-separated string, or as an array. For
example, the string:

"Name, Location, Type, Description"

or the array:

["Name", "Location", "Type", "Description"]

■ fieldNameValuePairs (for createRecord and updateRecord). An object containing field
name-value pairs. For example:

{"Name" : "Account 1", "Account Contact Role" : "Admin", "Type" : "Customer",
"Description" : "Description Test"}

For create operations, if a required field is missing, then the operation fails. Read-only fields are
ignored. For update operations, if a required field is missing a value, then the operation fails.
Attempts to populate read-only fields are ignored.

■ readParameters, updateParameters, deleteParameters. A search type and search
specification. For example:

{ searchType: rowId, rowId: "1QA2-TNRWW"}

You can also specify just a string, which by default means search by row ID, for example:

"1QA2-TNRWW"

NOTE: Only row ID values are supported for the searchType parameter. To retrieve all searchable
fields, you can use the REST API instead. Note that the REST API uses integration tag names
rather than the HTML field tag names used by the JavaScript API. For more information, see
Oracle CRM On Demand REST API Developer’s Guide.

■ createParameters. A value for a parameter reserved for future use. Specify the value null.

■ callback. A user-defined function to process the results of the CRUD operations. For more
information, see “User-Defined Callback Function” on page 53.

All of the CRUD methods return a JSONObject object, which has the following properties:

■ status. The status as a string: "OK" or "ERROR".

■ errors. Any errors in a JSONArray object. The format of the error object returned is as follows:

[Object {Code="MSG_NUM", Message="MSG_TEXT"}]

■ fieldNameValuePairs. A list of the field names and values in a JSONArray object. The format
of the object is as follows or null:

[Object { Name="Account Val", Location="Location Val", Type="Partner", more...}]

Finding Record Type Names
For methods like the CRUD methods that reference record types, you must use the correct record
type names.

To find record type names, you can:

JavaScript API Reference ■ Methods for CRUD Operations

Oracle CRM On Demand JavaScript API Developer’s Guide Release 36 53

■ Use the oraclecrmod.ctx.isObject() method, see “Methods for the Context Object” on page 47.

■ Find the name in the URL for the record type Application Customization page in the UI. The value
for the ActiveObj parameter in the URL gives the record type name.

Guidelines for Performing CRUD Operations
For update operations on records, first do a read operation and obtain an object, then change the
object values, and perform the update operation.

User-Defined Callback Function
You can use a callback function to handle responses to CRUD operations, as shown in Table 12.

The parameters for a callback function are as follows:

■ request. The request object containing the command, row ID, and other field objects passed in
the initial request.

■ response. The response object containing the result of the CRUD operation. The object
properties are as follows:

■ status. The status of the request, which is either OK or ERROR.

■ data. The name-value pair of the fields whose values are returned (fieldNameValuePairs).
For example:

Name="Account Test", Location="Account Location", Type="Competitor"

■ errors. Any error returned, which can be null or an error object.

■ helper function. The name of a helper function, for example, getRowId(), getModId(). For
more information, see “Helper Functions for Callback Functions” on page 54.

Table 12. Callback Function for CRUD Operations

Method
Name Description Sample Code

Callback
function
name

callback (request, response)

User-defined JavaScript function to process
the results of the CRUD operations.

callback(request,response)

{

}

Oracle CRM On Demand JavaScript API Developer’s Guide Release 36

JavaScript API Reference ■ Methods for CRUD Operations

54

Helper Functions for Callback Functions
Table 13 describes the helper functions that are available for callback functions.

Sample Code for Callback Function
The following is an example of code for a callback function:

function callback(request,response){

if (response.status == "OK")

{

//Using helper functions to get value

var desc = response.getFieldValue("Description");

var type = response.getFieldValue("Type");

var rowID = response.getRowId();

}

}

Refer to “Example Code of How to Deal with the Error Object” on page 57 for an example of a callback
function that performs error handling.

Table 13. Helper Functions for Callback Functions

Method
Name

Return
Type

CRUD
Operations Description Sample Code

getRowId() row ID Create,
read,
update

Gets the row ID of the record
in the response object.

var rowID =
response.getRowId();

getModId() mod ID Create,
Read,
Update

Gets the mod ID of the record
in the response object.

var modId =
response.getModId();

getFieldValue
(fieldName)

Field
value

Read Gets the field value of the
corresponding field name
passed in the function.

var desc =
response.getFieldValu
e("Description");

JavaScript API Reference ■ Method for Setting the Search Specification for the
Solutions Popup Window Associated with Service Requests

Oracle CRM On Demand JavaScript API Developer’s Guide Release 36 55

Method for Setting the Search
Specification for the Solutions Popup
Window Associated with Service
Requests
You can use the setPopupSearchSpec() method to specify the search specification for a popup
window as shown in Table 14.

NOTE: The setPopupSearchSpec() method is only supported for the multiassociation Lookup window
for solutions associated with a service request.

The parameters for the setPopupSearchSpec() method are as follows:

■ popUpBtn. The Add button that triggers the popup. You can use the getButton() method to
obtain the button, for example:

var addBtn = oraclecrmod.getButton('BTN_TB_SolutionChildList_AddButton')

■ searchSpec. The search specification for filtering the results returned in the Solutions
multiassociation Lookup window. The following shows an example of a search specification:

var searchSpec = "Name='Training' and Status='Approved'"

The length of the search specification must be less than 4096 characters.

The following is an example of how you can use the setPopupSearchSpec() method. The sample code
creates a filter for the multiassociation Lookup window that is displayed on clicking the Add button
in the Solutions section on the Service Request Detail page. The search specification filters for
solutions where the values of the Area, Sub Area 1, and Sub Area 2 fields are equal respectively to
the values of the Area, Sub Area 1, and Sub Area 2 fields of the Service Request.

oraclecrmod.onReady(function()

{

if (oraclecrmod.ctx.isObject("Service Request") && oraclecrmod.ctx.isDetailPage())

{

// Define function that sets searchSpec of Solutions popup window

function addMultiAssocSearchSpec()

{

Table 14. setPopupSearchSpec Method

Method Name Description Limitations

setPopupSearch
Spec
(popUpBtn,
searchSpec)

Adds a search specification parameter in
the HTTP POST request for a popup
window. The method adds the parameter if
it does not exist, and updates it if the
parameter already exists.

For searchSpec, only the AND
operation and String and Picklist
fields are supported.

Oracle CRM On Demand JavaScript API Developer’s Guide Release 36

JavaScript API Reference ■ Errors and Error Handling

56

// Get the Area, Sub Area 1, Sub Area 2 fields of the Service Request

var SRArea = oraclecrmod.getField('Area');

var SRSubArea1 = oraclecrmod.getField('ZPick_0');

var SRSubArea2 = oraclecrmod.getField('ZPick_1');

if (SRArea != null && SRSubArea1 != null && SRSubArea2 != null)

{

// ZPick_0, ZPick_1, Z_Pick_2 are the HTML tags of fields Area, Sub Area

// and Sub Area 2 for Solution respectively

setPopupSearchSpec(this, "ZPick_0='" + SRArea.getValue() + "' AND
ZPick_1='" + SRSubArea1.getValue() + "' AND ZPick_2='"+ SRSubArea2.getValue()
+"'");

}

}

// Find the Add Solution popup button in the Service Request Page

var addBtn = oraclecrmod.getButton('BTN_TB_SolutionChildList_AddButton');

if (addBtn != null)

{

// When the mouse is over the button update the searchSpec for the button

addBtn.on ("mouseover", addMultiAssocSearchSpec);

}

}

});

Errors and Error Handling
For CRUD operations, the errors object specifies null or an array of objects in the following format:

{

fac : "SBL-ODU-MSG_NUMBER", // error code

msg : "MSG_TEXT" // error message

}

For example, for response.errors[0]:

{

fac : "SBL-ODU-00271",

JavaScript API Reference ■ Errors and Error Handling

Oracle CRM On Demand JavaScript API Developer’s Guide Release 36 57

msg : "Invalid value for the parameter:objectName."

}

Example Code of How to Deal with the Error Object
You must implement your own error handing in custom JavaScript code. As an example of how to
deal with the error object, the following is a callback function that displays error codes and error
messages from CRUD operations.

function callback(request,response){

var data = "data: ";

var status = response.status;

var error = "error: "

if (status == "OK")

error += status;

else

error += response.errors[0].fac + "\n" + response.errors[0].msg;

var dataObj = response.data;

if (dataObj != null)

data += "Id = " + response.getRowId() + ", Mod Id = " + response.getModId();

else

data += "Data is Null";

alert(data + "\n" + status + "\n" + error);

}

});

A guideline is to use the error code in error handling rather than the error message. This is
recommended because the error code is language independent, but the error message is not. Code
like the following only works in English:

if (response.errors[0].msg == "No records found")

Oracle CRM On Demand JavaScript API Developer’s Guide Release 36

JavaScript API Reference ■ Errors and Error Handling

58

CRUD Error Codes and Messages
Table 15 shows some error codes and messages that might be returned.

Table 15. Error Codes and Messages

Code Message Description

SBL-ODU-00251 The requested operation has
encountered an error.

An internal configuration error
occurred. This error is rare.

SBL-ODU-00271 Invalid value for the parameter:
parameter_name.

The parameter for the CRUD operation
specified a null or empty objectName
parameter, a nonexistent objectName
(for example, “Acount”), or a null or
empty row ID.

SBL-ODU-57081 No records found. An operation tried to read a nonexistent
record.

SBL-DAT-00398 Field 'field_name' does not exist in
definition for business component
'record_type'. Please ask your
systems administrator to check your
configuration.

An operation specified a nonexistent
field name.

SBL-DAT-00498 '<field>field_name</field>' is a
required field. Please enter a value
for the field.

An operation did not specify a value for
a field that is required.

SBL-ODS-50006 A record that contains identical
values to the record you are trying
to create already exists. If you
would like to enter a new record,
please ensure that the field values
are unique.

An operation tried to create a record
that already exists.

Oracle CRM On Demand JavaScript API Developer’s Guide Release 36 59

A JavaScript API Code Samples

This appendix contains code samples for the public JavaScript APIs available with Oracle CRM On
Demand. It includes the following topics:

■ Getting Started with the Code Samples

■ Code Sample 1 for Creating a Custom Button for Validation on page 60

■ Code Sample 2 for Creating a Custom Button for Validation on page 61

■ Code Sample for a Custom Button That Creates a Record on page 62

■ Code Sample for a Custom Button That Creates a Child Record on page 63

■ Code Sample for a Custom Button That Updates a Record on page 65

■ Code Sample for a Custom Button That Gets a Shipping Address to Pass to an External Site on
page 67

■ Code Sample for a Custom Button That Creates a Task on page 68

■ Code Sample for Hiding a Button on page 69

■ Code Sample for Changing the Behavior of a Save Button on page 70

■ Code Sample for a Read Operation on an Account Record on page 70

■ Code Sample for Color Coding of Fields and Rows on page 71

Getting Started with the Code Samples
To use the sample code in this appendix:

1 Log in to Oracle CRM On Demand with an administrator role that includes the privilege: Upload
Client Side Extensions and Manage Custom HTML Head Tag.

2 Navigate to Admin, Application Customization, Custom HTML Head Tag.

3 In the Custom HTML Head Tags Detail page, add the sample code.

For more information about getting started, see Chapter 3, “Getting Started with the JavaScript API,”
and in particular see “Privileges Required” on page 15 and “Managing HTML Head Additions” on
page 17.

For each of the code samples, the entry point for running the custom code is either a call to the
onReady() method, which is associated with the ready event, or the onLoad() method, which is
associated with the onload event. The ready event occurs after the HTML document has been loaded,
while the onload event occurs later, when all content (for example, images) has also been loaded.

NOTE: When including JavaScript code within HTML, remember to include the code within <script>
tags.

Oracle CRM On Demand JavaScript API Developer’s Guide Release 36

JavaScript API Code Samples ■ Code Sample 1 for Creating a Custom Button for
Validation

60

Code Sample 1 for Creating a Custom
Button for Validation
The following sample code creates a custom button labeled Validate on the Opportunity Detail page.
When the button is clicked, a validate function is called to validate the values of the Primary Revenue
Amount and Next Step fields. The sample code also hides the Add button on the Contact related
information applet.

// entry point for running custom code

oraclecrmod.onReady(function()

{

// when on the Opportunity Detail page

if(oraclecrmod.ctx.object == "Opportunity" && oraclecrmod.ctx.isDetailPage())

{

// define validate function

function validate()

{

var revenue = oraclecrmod.getField("Primary Revenue Amount").getValue();

var nextstep = oraclecrmod.getField("Next Step").getValue();

// validate custom business logic goes here based on field values retrieved

}

// get the title bar

titleBar = oraclecrmod.getTitleBar("OpportunityFormTB");

// create the new Validate button

button = oraclecrmod.createButton({id:"ValidateButton", text:"Validate",
parent:titleBar});

// associate the validate function with the button click event

button.on("click", validate);

// get the Add button and hide it

oraclecrmod.getButton("BTN_TB_ContactRoleChildList_ContactRoleNewNav").hide();

}

});

JavaScript API Code Samples ■ Code Sample 2 for Creating a Custom Button for
Validation

Oracle CRM On Demand JavaScript API Developer’s Guide Release 36 61

Code Sample 2 for Creating a Custom
Button for Validation
The following sample code creates a custom button labeled Validate on the Opportunity Detail page.
When the button is clicked, a validate function is called to validate the values of the Primary Revenue
Amount field. The sample code also hides the Add button on the Contact related information applet.

// entry point for running custom code

oraclecrmod.onReady(function()

{

// OPPORTUNITY VALIDATE EXAMPLE //

// when on the Opportunity Detail page

if(oraclecrmod.ctx.object == "Opportunity" && oraclecrmod.ctx.isDetailPage())

{

// define validate function

function validate()

{

var revenue = oraclecrmod.getField("Primary Revenue Amount").getValue();

// convert to currency string to number

var number = Number(revenue.replace(/[^0-9\.]+/g, ""));

// validate custom business logic goes here based on field values retrieved

if (number > 0) {

var alertStr = "Recommendation is to fill in the field(s):\n";

alertStr += "Next Step\n\n";

alertStr += "Based on the rule(s):\n";

alertStr += "Revenue is greater than 0\n\n";

alertStr += "For this record:\n";

alertStr += "Revenue is: " + revenue;

alert(alertStr);

}

}

// get the title bar

titleBar = oraclecrmod.getTitleBar("OpportunityFormTB");

// create the new Validate button

button = oraclecrmod.createButton({

id:"ValidateButton",

Oracle CRM On Demand JavaScript API Developer’s Guide Release 36

JavaScript API Code Samples ■ Code Sample for a Custom Button That Creates a
Record

62

text:"Validate",

parent:titleBar

});

// associate the validate function with the button click event

button.on("click", validate);

// get the Add button and hide it

oraclecrmod.getButton("BTN_TB_ContactRoleChildList_ContactRoleNewNav").hide();

}

});

Code Sample for a Custom Button That
Creates a Record
The following code sample illustrates the use of the createRecord() method to create an Account
record with three fields, Location, Type, and Description, when a button created with the
createButton() method and labeled Test Create is clicked.

oraclecrmod.onReady(

function()

{

if(oraclecrmod.ctx.isObject("Account") && oraclecrmod.ctx.isDetailPage())

{

var callback = function(request,response)

{

var data = "Response Data: ";

var status = response.status;

var error = "Error message: "

if (status == "OK")

{

error += status;

}

else

{

error += response.errors;

}

JavaScript API Code Samples ■ Code Sample for a Custom Button That Creates a
Child Record

Oracle CRM On Demand JavaScript API Developer’s Guide Release 36 63

var dataObj = response.data;

if (dataObj != null)

{

data += "Id = " + response.getRowId() + ", Mod Id = " +
response.getModId();

}

else

{

data += "Data is Null";

}

alert(data + "\n" + status + "\n" + error);

};

var createRecord = function()

{

oraclecrmod.dataSvc.createRecord("Account", {Name : "Account Name
Create123",Location : "Location Test", Type : "Customer", Description :
"Description Test"}, "", callback);

};

var tb = oraclecrmod.getTitleBar("AccountFormTB");

var bt = oraclecrmod.createButton({id:"TestCreateBtn",text:"Test
Create",parent:tb});

bt.on("click",createRecord);

}

}

);

Code Sample for a Custom Button That
Creates a Child Record
This following code sample creates a custom button labeled Create Task on the Opportunity Detail
page. When the button is clicked, the REST API is used to create a child Activity record. In the
createTask() function, you must replace <PodURL> with the URL for your pod. The Restful Services
Integration privilege is required to send REST requests.

function createHttpRequest (httpmethod)

{

var xmlhttpRequest = null;

Oracle CRM On Demand JavaScript API Developer’s Guide Release 36

JavaScript API Code Samples ■ Code Sample for a Custom Button That Creates a
Child Record

64

xmlhttpRequest = new XMLHttpRequest();

if (typeof xmlhttpRequest.overrideMimeType != 'undefined')

{

xmlhttpRequest.overrideMimeType('application/json');

}

return xmlhttpRequest;

}

oraclecrmod.onReady(function()

{

// when on the Opportunity Detail page

if(oraclecrmod.ctx.object == "Opportunity" && oraclecrmod.ctx.isDetailPage())

{

function createTask()

{

var id = oraclecrmod.getField("Id").getValue();

var insertPayload = "{\"Activities\":[\

{ \

\"Activity\": \"Appointment\", \

\"Subject\": \"Opp Auto Appointment\", \

\"Type\": \"Other\", \

\"Location\": \"Markham\", \

\"OpportunityId\":\"" + id + "\" \

} \

]}"

//Calls REST API to create Task

var url = "<PodURL>/OnDemand/user/Rest/026/Activities";

var req = createHttpRequest ("POST");

req.open('POST', url, false);

req.setRequestHeader("Content-Type","application/
vnd.oracle.adf.resource+json");

req.send(insertPayload);

JavaScript API Code Samples ■ Code Sample for a Custom Button That Updates a
Record

Oracle CRM On Demand JavaScript API Developer’s Guide Release 36 65

alert(req.responseText);

//success

if (req.readyState == 4 && req.status == 201)

{

alert("success");

}

}

// get the title bar

titleBar = oraclecrmod.getTitleBar("OpportunityFormTB");

// create the new button

button = oraclecrmod.createButton({id:"CreateTaskButton", text:"Create
Task",parent:titleBar});

// associate the createTask function with the button click event

button.on("click", createTask);

}

}

);

Code Sample for a Custom Button That
Updates a Record
The following code sample illustrates the use of the updateRecord() method to update an Account
record when a button created with the createButton() method and labeled Test Update is clicked.

oraclecrmod.onReady(

function()

{

if(oraclecrmod.ctx.isObject("Account") && oraclecrmod.ctx.isDetailPage())

{

var callback = function(request,response)

{

var data = "Response Data: ";

var status = response.status;

var error = "Error message: "

if (status == "OK")

Oracle CRM On Demand JavaScript API Developer’s Guide Release 36

JavaScript API Code Samples ■ Code Sample for a Custom Button That Updates a
Record

66

{

error += status;

}

else

{

error += response.errors;

}

var dataObj = response.data;

if (dataObj != null)

{

data += "Id = " + response.getRowId() + ", Mod Id = " +
response.getModId();

}

else

{

data += "Data is Null";

}

alert(data + "\n" + status + "\n" + error);

};

var updateRecord = function()

{

oraclecrmod.dataSvc.updateRecord("Account", {Name : "Account Name
Update123"}, "AUDA-1HSXSB", callback);

};

var tb = oraclecrmod.getTitleBar("AccountFormTB");

var bt = oraclecrmod.createButton({id:"TestUpdateBtn",text:"Test
Update",parent:tb});

bt.on("click",updateRecord);

}

}

);

JavaScript API Code Samples ■ Code Sample for a Custom Button That Gets a
Shipping Address to Pass to an External Site

Oracle CRM On Demand JavaScript API Developer’s Guide Release 36 67

Code Sample for a Custom Button That
Gets a Shipping Address to Pass to an
External Site
The following code creates a custom button labeled Map Shipping Address on the Account Detail
page. When the button is clicked, the shipping address is passed to an external URL, in this case,
the URL for Google Maps.

// example: create a map button

// entry point for running custom code

oraclecrmod.onReady(function()

{

// when on the Account Detail page

if(oraclecrmod.ctx.object == "Account" && oraclecrmod.ctx.isDetailPage())

{

// define map function

function map()

{

var wholeAddress = "";

if (oraclecrmod.getField("Ship To Street Address") != null)

wholeAddress += oraclecrmod.getField("Ship To Street Address").getValue() + "
";

if (oraclecrmod.getField("Ship Street Address 2") != null)

wholeAddress += oraclecrmod.getField("Ship To Street Address 2").getValue() +
" ";

if (oraclecrmod.getField("Ship Street Address 3") != null)

wholeAddress += oraclecrmod.getField("Ship To Street Address 3").getValue() +
" ";

if (oraclecrmod.getField("Ship To County") != null)

wholeAddress += oraclecrmod.getField("Ship To County").getValue() + " ";

if (oraclecrmod.getField("Ship To Postal Code") != null)

wholeAddress += oraclecrmod.getField("Ship To Postal Code").getValue() + " ";

if (oraclecrmod.getField("Ship To Country") != null)

wholeAddress += oraclecrmod.getField("Ship To Country").getValue() + " ";

window.open("http://maps.google.com?q=" + encodeURIComponent(wholeAddress));

Oracle CRM On Demand JavaScript API Developer’s Guide Release 36

JavaScript API Code Samples ■ Code Sample for a Custom Button That Creates a
Task

68

}

// get the title bar

titleBar = oraclecrmod.getTitleBar("AccountFormTB");

// create the new map button

button = oraclecrmod.createButton({id:"mapButton", text:"Map Shipping Address",
parent:titleBar});

// associate the map function with the button click event

button.on("click", map);

}

});

Code Sample for a Custom Button That
Creates a Task
The following sample code creates a custom button labeled Assign Next Step Task on the Opportunity
Detail page. When the button is clicked, a function is called to open the Task Open page with
appropriate values. The task can then be saved and used to follow up on the next step for the
opportunity.

// entry point for running custom code

oraclecrmod.onReady(function()

{

// when on the Opportunity Detail page

if (oraclecrmod.ctx.object == "Opportunity" && oraclecrmod.ctx.isDetailPage()) {

// define createTask function

function createTask() {

var Id = oraclecrmod.getField("Id").getValue();

var oppName = oraclecrmod.getField("Name").getValue();

var nextstep = oraclecrmod.getField("Next Step").getValue();

var desc = "Please follow up on the next step for this opportunity: " +
nextstep;

var subject = "Follow up on next step for " + oppName;

var date1 = new Date();

date1.setDate(date1.getDate() + 2);

JavaScript API Code Samples ■ Code Sample for Hiding a Button

Oracle CRM On Demand JavaScript API Developer’s Guide Release 36 69

var dd = date1.getDate();

var mm = date1.getMonth()+1; // month starts at 0 e.g. Jan = 0

var y = date1.getFullYear();

var date1Formatted = mm + '/' + dd + '/' + y;

window.open("/OnDemand/user/
TaskNew?OMRET0=OpportunityDetail%3fOpptyDetailForm.Id%3d" + Id + "&OMCR0=" +
Id +
"&OCTYPE=&OMTGT=TaskEditForm&OMTHD=ActivityNewNav&OMCBO=Opportunity&TaskEdit
Form.Due Date=" + encodeURIComponent(date1Formatted) +
"&TaskEditForm.Comment=" + encodeURIComponent(desc) +
"&TaskEditForm.Description=" + encodeURIComponent(subject), "_self");

} //createTask

// get the title bar

titleBar = oraclecrmod.getTitleBar("OpportunityFormTB");

// create the new TASK button

button = oraclecrmod.createButton({

id: "createTaskButton",

text: "Assign Next Step Task",

parent: titleBar

});

// associate the createTask function with the button click event

button.on("click", createTask);

}

});

Code Sample for Hiding a Button
The following sample code hides the copy button on the Opportunity Detail page.

oraclecrmod.onReady(function()

{

// when on the Contact Detail page

if(oraclecrmod.ctx.object == "Opportunity" && oraclecrmod.ctx.isDetailPage())

{

Oracle CRM On Demand JavaScript API Developer’s Guide Release 36

JavaScript API Code Samples ■ Code Sample for Changing the Behavior of a Save
Button

70

// get the Copy button

button = oraclecrmod.getButton("BTN_TB_OpportunityForm_OpportunityPreCopyNav");

// hide the button

button.hide();

}

});

Code Sample for Changing the Behavior
of a Save Button
The following code customizes the Save button on the Account Edit page so that the code changes
the owner of the record:

oraclecrmod.onReady(

function(){

if(oraclecrmod.ctx.isObject("Account") && oraclecrmod.ctx.isEditPage()){

var btnSave = oraclecrmod.getButton("BTN_TB_AccountEditForm_Save");

if(btnSave != null){

btnSave.offAll("click").on("click",function(){

//set on screen value api to set the value.

oraclecrmod.getField('Owner Alias').setValue("User1");

btnSave.invokeDefault("click");

});

}

}

});

Code Sample for a Read Operation on an
Account Record
The following sample code is for a read operation to get details of an account and display them in
the Description field on the Contact Edit page. A call is made to the readRecord() method to get the
values for the Type and Location fields of the associated account.

// entry point for running custom code - only before the page loads

JavaScript API Code Samples ■ Code Sample for Color Coding of Fields and Rows

Oracle CRM On Demand JavaScript API Developer’s Guide Release 36 71

oraclecrmod.onLoad(function () {

// CONTACT EXAMPLE //

var contactCallback = function (request, response) {

if (response.status == "OK") {

var type = response.getFieldValue("Type");

var location = response.getFieldValue("Location");

//update the description field with account record info

oraclecrmod.getField('Comment').setValue("This contact is created by the
account with type " + type + " and located at " + location);

}

}

// when on the Contact new page

if (oraclecrmod.ctx.object == "Contact" && oraclecrmod.ctx.isNewPage()) {

//get the Account Id

var acctId = oraclecrmod.getField("Account Id").getValue();

if (acctId != null) {

oraclecrmod.dataSvc.readRecord("Account", "Location,Type", {

searchType: "rowId",

"rowId": acctId

}, contactCallback);

}

}

});

Code Sample for Color Coding of Fields
and Rows
The following code sets colors on pages as follows:

■ On the Opportunity Detail or Edit page, the colors of the label and value for the Primary Revenue
Win Probability field are set, depending on the percentage value entered in the field.

■ On the Opportunity List page, the colors for the Primary Revenue Win Probability field are set,
depending on the percentage value entered in the field, and rows where the Priority field has the
value High are colored yellow.

Oracle CRM On Demand JavaScript API Developer’s Guide Release 36

JavaScript API Code Samples ■ Code Sample for Color Coding of Fields and Rows

72

■ On the Contact related item list of the Opportunity page, the color of the Role field is set, if the
value of the field is Decision Maker.

■ On any page where there is a Name field, the field label background color is set to black, the field
label text color to red, the field value background color to red, and the field value text color to
black.

//color function for coloring the Opp detail/edit page

function colorOppty()

{

//on the Opportunity detail/edit page, change the color for the Probability field
depending on the percentage entered

var percent= oraclecrmod.getField("Primary Revenue Win Probability");

colorPercent(percent);

}

//color function for coloring the Opp List

function colorOpptyList(row)

{

var percent= row.getField("Primary Revenue Win Probability");

var priority = row.getField("Priority");

colorPercent(percent);

if (priority != null)

{

//set the row to Yellow in the list if the priority is High

if (priority.getValue()=="High")

{

row.setColor({rowBgColor:"yellow"});

} else {

row.setColor({rowBgColor:""}); //this clears previous set color and will
display based on theme color

}

}

}

//common color function to color the Probability field in the same way in the list page
as it is colored on the detail/edit page

function colorPercent(percent)

{

JavaScript API Code Samples ■ Code Sample for Color Coding of Fields and Rows

Oracle CRM On Demand JavaScript API Developer’s Guide Release 36 73

var myred = "#e71832";

var myblue = "rgb(66,97,156)";

var myyellow= "rgb(255,215,181)";

if (percent != null)

{

if(percent.getValue()> 50)

{

percent.setColor({"labelBgColor":myred,"labelTextColor":myblue,"valueBgColor
":myblue,"valueTextColor":myred});

}

else {

percent.setColor({"labelBgColor":"","labelTextColor":"","valueBgColor":"","v
alueTextColor":""}); //this clears previous set color and will display based
on theme color

}

}

}

//color function for coloring the Opp's Contact Child List

function colorOpptyContactChildList(row)

{

var role = row.getField("Role");

if (role != null)

{

//set the row to Cyan in the list if the contact's role is Decision maker

//change text of role to Red as well

if (role.getValue()=="Decision Maker")

{

row.setColor({rowBgColor:"cyan"});

role.setColor({valueTextColor:"Red"});

}

else {

row.setColor({rowBgColor:""}); //this clears previous set color and will
display based on theme color

role.setColor({valueTextColor:""}); //this clears previous set color and will
display based on theme color

Oracle CRM On Demand JavaScript API Developer’s Guide Release 36

JavaScript API Code Samples ■ Code Sample for Color Coding of Fields and Rows

74

}

}

}

// entry point for running custom code

oraclecrmod.onReady(function()

{

//if Name field exists on the form, then set the field label background to Black,
field label text to Red, value background to red and value text to black

//for example, this applies to Account Name on Account detail/edit page and
Opportunity Name on Opportunity detail/edit page

var name = oraclecrmod.getField("Name");

if (name != null) name.setColor({"labelBgColor":
"Black","labelTextColor":"#ff0000","valueBgColor":
"#ff0000","valueTextColor":"Black"});

//get the form on the page for Opportunity

if(oraclecrmod.ctx.object == "Opportunity")

{

//for the opportunity list page

if (oraclecrmod.ctx.isListPage())

{

var oppList = oraclecrmod.getList();

if(oppList != null)

{

oppList.on("display", colorOpptyList);

}

} else {

//for detail/edit pages, etc

if (oraclecrmod.getForm() != null)

{

oraclecrmod.getForm().on("display", colorOppty); //set the custom function
to run on display of the form

}

var contactList = oraclecrmod.getList("ContactRoleChildList");

if(contactList != null) {

contactList.on("display", colorOpptyContactChildList);

}

JavaScript API Code Samples ■ Code Sample for Color Coding of Fields and Rows

Oracle CRM On Demand JavaScript API Developer’s Guide Release 36 75

}

}

});

Oracle CRM On Demand JavaScript API Developer’s Guide Release 36

JavaScript API Code Samples ■ Code Sample for Color Coding of Fields and Rows

76

Oracle CRM On Demand JavaScript API Developer’s Guide Release 36 77

Index

B
Button class 22
Button object

event handler 32
IDs 33
methods 28

buttons
changing behavior 11
contexts for customization 12
creating 9
disabling 10
event handler 32
hiding 10
look and feel 10
tooltips 10

C
callback function 53
classes

Button 22
Context 22
TitleBar 21

client-side extensions 16
code sample

callback function 54
changing behavior of a button 70
color coding of fields and rows 71
create operation 62
creating a custom button for validation 61
creating a custom button that creates a child

record 63
creating a custom button that creates a

record 62
creating a custom button that creates a

task 68
creating a custom button to get a shipping

address 67
creating a custom button to update a

record 65
hiding a button 69
read operation 70

color values
JSONObjects 40

commitValues method (Form object) 41
commitValues method (ListRow object) 47
Context class 22
Context object

attributes 48
guidelines 47
methods 47

createButton method 25
createRecord method 50
CRUD operations

guidelines 53
methods 49
parameters 51
return values 51

custom buttons
contexts for customization 12
creating 9

custom HTML head additions 17
Customized Code Enablement field 18
customized code indicator 18

D
deleteRecord method 51
disable method 28
disableCustomJS URL parameter 17
disabling customized code 18

E
enable method 28
enableIdHint method 32
errors

codes 58
handling 56
messages 58
object 42, 53, 56

F
features, what’s new 7
field names 37
Field object

methods 33
fields

color coding 13
Form object

methods 40

G
getButton method 24, 27
getColor method (field) 36
getColor method (row) 46

Oracle CRM On Demand JavaScript API Developer’s Guide Release 36

Index ■ H

78

getDisplayedCount method 43
getField method 34
getField method (row) 46
getFieldValue helper function 54
getForm method 26
getId method (field) 36
getId method (form) 41
getId method (ListRow) 47
getId methods 28
getImage method 28
getLICValue method 34
getList method 26
getModId helper function 54
getParent method 28
getRow method 43
getRowId helper function 54
getter and setter methods 38
getText method 28
getTitleBar method 24
getToolTipFormat method 28
getToolTipText method 28
getValue method 34

H
helper functions

getFieldValue 54
getModId 54
getRowId 54

hide method 28
HTML formatting, tooltips 27
HTML head additions 17

I
invokeDefault method 29
isAdminPage method 48
isDetailPage method 48
isDisabled method 29
isEditOrNewPage method 48
isEditPage method 48
isHidden method 29
isHomePage method 47
isListPage method 47
isNewPage method 48
isObject method 48, 53

J
JavaScript libraries 16

L
language dependent code values 39
language independent code values 39
list names 45

List object
methods 43

ListRow object
methods 46

M
methods

Button object 28
chaining of 23
commitValues (Form object) 41
commitValues (ListRow object) 47
Context object 47
createButton 25
createRecord 50
CRUD operations 49
deleteRecord 51
disable 28
enable 28
enableIdHint 32
Field object 33
Form object 40
getButton 24, 27
getColor (field) 36
getColor (row) 46
getDisplayedCount 43
getField 34
getField (row) 46
getForm 26
getId 28
getId (field) 36
getId (form) 41
getId (ListRow) 47
getImage 28
getLICValue 34
getList 26
getParent 28
getRow 43
getter and setter methods 38
getText 28
getTitleBar 24
getToolTipFormat 28
getToolTipText 28
getValue 34
hide 28
invokeDefault 29
isAdminPage 48
isDetailPage 48
isDisabled 29
isEditOrNewPage 48
isEditPage 48
isHidden 29
isHomePage 47
isListPage 47

Index ■ N

Oracle CRM On Demand JavaScript API Developer’s Guide Release 36 79

isNewPage 48
isObject 48, 53
List object 43
ListRow object 46
off (events) 29
off (Form object) 40
off (List object) 44
offAll 30
offDefault 30
on (events) 31
on (Form object) 40
on (List object) 44
onLoad 23
onReady 23
onUnload 23
oraclecrmod object 23
readRecord 50
registerButtonToolTip 26
setColor (field) 35
setColor (row) 46
setImage 31
setLICValue 35
setParent 31
setPopupSearchSpec 55
setText 32
setToolTipFormat 32
setToolTipText 27, 32
setValue 34
show 32
TitleBar object 27
updateRecord 51

N
new features 7

O
off method (events) 29
off method (Form object) 40
off method (List object) 44
offAll method 30
offDefault method 30
on method (events) 31
on method (Form object) 40
on method (List object) 44
onLoad method 23

onReady method 23
onUnload method 23
oraclecrmod object

methods 23
namespace 21

P
privileges 15

R
readRecord method 50
record type names 52
registerButtonToolTip method 26
release, what’s new 7
rows

color coding 13

S
screen values

getting 38
guidelines for setting 39
setting 38

security 19
setColor method (field) 35
setColor method (row 46
setImage method 31
setLICValue method 35
setParent method 31
setPopupSearchSpec method 55
setText method 32
setToolTipFormat method 32
setToolTipText method 32
setValue method 34
show method 32

T
TitleBar class 21
TitleBar object

IDs 33
methods 27

tooltips 10

U
updateRecord method 51

Oracle CRM On Demand JavaScript API Developer’s Guide Release 36

Index ■ U

80

	Contents
	1 What’s New in This Release
	What’s New in Oracle CRM On Demand JavaScript API Developer’s Guide, Release 36

	2 Overview of the JavaScript API
	Overview of Customizing Buttons
	Creating Custom Buttons
	Examples of Uses for Custom Buttons
	Hiding and Disabling Buttons
	Creating Tooltips for Buttons
	Changing the Look and Feel of a Button
	Changing the Behavior of Buttons
	Getting and Setting On-Screen Values
	Creating, Reading, Updating, and Deleting Records

	Error Handling

	Contexts in Which You Can Customize Buttons
	Color Coding of Fields and Rows
	Color Coding of Fields in Detail and Edit Pages
	Color Coding of Fields and Rows in Lists
	Restrictions That Apply to Color Coding of Fields

	3 Getting Started with the JavaScript API
	Overview of Using Custom JavaScript Code
	Privileges Required
	Uploading JavaScript Libraries
	Guidelines for Uploading Client-Side Extensions
	Managing HTML Head Additions
	Guidelines for Managing HTML Head Additions
	About Enabling and Disabling Customized Code in Oracle CRM On Demand
	Security Considerations

	4 JavaScript API Reference
	Classes Exposed
	TitleBar Class
	Button Class
	Context Class

	JavaScript API
	Chaining of Methods

	Methods for the oraclecrmod Object
	Considerations for Specifying Tooltips with HTML Formatting

	Methods for the TitleBar Object
	Methods for the Button Object
	Defining an Event Handler for a Button
	Identifying the IDs of Buttons and TitleBars

	Methods for the Field Object
	Finding Field Names
	Getting and Setting Screen Values
	Limitations When Using the setValue() Method
	Support for Address Fields When Using the setValue() Method

	Guidelines for Setting Screen Values
	Getting and Setting LIC Values of Picklists
	Color Values for JSONObjects

	Methods for the Form Object
	Example of a Custom Handler for a Form Object
	Callback Handler for the commitValues() Method

	Methods for the List Object
	About the Custom Handler for a List Object
	Finding List Names

	Methods for the ListRow Object
	Methods for the Context Object
	Methods for CRUD Operations
	Parameters and Return Values for CRUD Methods
	Finding Record Type Names
	Guidelines for Performing CRUD Operations
	User-Defined Callback Function
	Helper Functions for Callback Functions
	Sample Code for Callback Function

	Method for Setting the Search Specification for the Solutions Popup Window Associated with Servic...
	Errors and Error Handling
	Example Code of How to Deal with the Error Object
	CRUD Error Codes and Messages

	A JavaScript API Code Samples
	Getting Started with the Code Samples
	Code Sample 1 for Creating a Custom Button for Validation
	Code Sample 2 for Creating a Custom Button for Validation
	Code Sample for a Custom Button That Creates a Record
	Code Sample for a Custom Button That Creates a Child Record
	Code Sample for a Custom Button That Updates a Record
	Code Sample for a Custom Button That Gets a Shipping Address to Pass to an External Site
	Code Sample for a Custom Button That Creates a Task
	Code Sample for Hiding a Button
	Code Sample for Changing the Behavior of a Save Button
	Code Sample for a Read Operation on an Account Record
	Code Sample for Color Coding of Fields and Rows

	Index

