Regression Testing Tool

Oracle Financial Services Lending and Leasing
Release 14.4.0.0.0

Part No. £89525-01
[Octobet] [2017]

ORACLE’
FINANCIAL SERVICES

Glossary

Term Description

OFSLL Oracle Financial Services Lending and Leasing
DLS Oracle Daybreak Lending Suite

Bl Business Intelligence Publisher

XML Extensible Mark-up Language

ul User Interface

WSDL Web services Description Language

API Application Programming Interface

SQL Structured Query Language

Table of Contents

1. REGRESSIONS TESTING TOOL....cccoitiiiitrietiisieteisieeesie e seesassesassssesessssessssesessssssessssesessssssessssesessnss 1-1
A 0] = TSRS 2-1

2.1 ORIGINATION ...t tetertiteseststereseatesessssesessssesessssesesessasessssesessasesessssesesessesessssesessssesessssesessssesessssesessssesessasesessnses 2-1

2.2 CUSTOMER SERVICE ...cutuititiiatesetsestesessesessssesessssesessssesessssessssssesessssesessssesessssesessssesessssesessssesessssesessssesesnses 2-2
3. ARCHITECTURE / TECHNICAL DESIGNcccoiiitiiiietie ettt st 3-1
4., STEPS TO CLONE BASE OFSLL ENVIRONMENTcocoiiiitiiseese sttt 4-1
5. AUTOMATED TESTING PROCEDUREccoi ittt ettt nnne s 5-1
L N I =t =S T 1 N L 1 SRR 6-1
7. VALIDATIONS AND CHECKS.ooii ittt sttt et e st e et e e te e e nte e e staeesbaeensaeennee s 7-1
8. COMPARING RESULTS ...ttt ittt te e st e st e st e e be e et e e be e e be e e ateeatee e teeeteeestaeesseeensaeenneen 8-1
9. TESTING TOOL EXCEPTIONScooitiitiiitsteisistee st ste ettt ettt st se et stese s saese e saesessssesennnas 9-1

LB R A I T3 = Y T OSSR 9-1

9.2 B) SCENARIO 2 — THIS SCENARIO RESULTS IN AN EXCEPTION DUE TO MISMATCH OF BALANCES 9-2
10. TESTING TOOL TEST CASEScciitiiiitiieetstse sttt ettt e sttt ss st e st e st e ssenens 10-1
11, FOR NEXT RELEASES......cco ottt sttt ettt et e st e et ne st 11-1

ORACLE

1. Regressions testing tool

The purpose of this document is to outline the high level requirements of the scope of the Testing
tool for regression tests during DLS/OFSLL upgrades by performing a parallel testing between a
lower version of DLS/OFSLL (production) and a higher one (test).

1 ORACLE

2.1

2. Scope

The testing tool will log certain operations done in the production system and replicate them in the
Test system. This will enable parallel testing by comparison of the production and test systems,
specifically with regards to the General Ledger transactions. The aim is not to replicate user
keystrokes in the Production system but instead is to ensure that the eventual Posted values are
captured in the Test system in the same way they were in the Production system.

..

Log Tables

—— - —— ——— -

Production System
(Lower Version)

Test System
(Higher Version)

o ——
_——— e = = -

Final
Results Automated
Regression

Testing Tool

This tool was designed to work for all DLS/OFSLL upgrades, independently of versions and
customizations.

The Testing Tool covers the Origination (App Entry, Funding, Account Creation) and Customer
Service, as detailed below:

Origination

The testing tool will perform the following: -
App Entry:

1. Applications entered in Production on that day will be replicated in the Application tables of
the Test system.

2. The application will pass through the Data Entry and Pre screen edits

21 ORACLE

2.2

3. The application will pull the Credit bureau as defined by the current system parameter
configuration

4. The application will be placed in a New: Review Required status

Funding:
1. All applications funded in Production on that day will be replicated in the Test environment.

The application in the Test environment will be funded using the same values that were used
to fund the application in Production.

Assumptions/Restrictions:

e Changes to the application values by the users in the Underwriting screen will not be
replicated in the Test Environment.

e Intermediate steps between Application Entry and Funding viz. Fax/Letters on Status
change, NADA pulls will not be replicated in the test system. This will require manual
testing efforts. (The final values in the Production system will be used to fund the
application)

e As part of the manual testing the user will not set the Application to Approved: Funded
since it is possible that the values used by the user in the test system will be
different from the values used in Production resulting indifferent GL entries.

e As part of the manual testing, the Fax numbers of all producers must be set to an internal
fax number to avoid fax documents being set back to producers.

Customer Service

The testing tool will perform the following: -

Monetary Transactions posted on Accounts in Production will be replicated in Test for that
particular day. This will allow comparison of the Transaction history on Accounts in the Test and
Production instances. To replicate the monetary transactions, the Testing tool will perform the
following

1. Payments applied to Accounts in Production will be replicated in Test

e Payment batches and details will be created in the replicated in the test system
(TXNS_GROUP_TEMP, TXNS_TEMP table will be created)

2. Monetary transactions posted on Accounts in Production will be replicated in Test

e Corresponding entries in the Customer Service > Maintenance tab will be available
(BATCH_MODE_TXNS, BATCH_MODE_TXNS_TEMP)

3. Assessment of Work Order expenses on an Account will be handled as a monetary
transaction on an account.

Assumptions

e Work Order actions will not be replicated. Work Order Expenses assessed on an account
will be handled by the monetary transactions replication.

e A one-time refresh at the beginning of the testing will be done instead of a daily refresh.
The only caveat would be that any errors, that affect data found during the testing, would
remain in the database till the fix is received.

e The need for subsequent refreshes during the testing period will be discussed.

22 ORACLE

e Test environment Setup will be in sync with the setup in the Production environment.
Setup changes to the production environment during the day will be replicated in the Test
environment, before the Testing tool is run for that day.

23 ORACLE

3. Architecture / Technical Design

The Testing Tool was only possible due to OFSLL architecture, based on a wrapper- engine
model. Like in OFSLL customizations, the Testing Tool takes advantage of the existing Exit
Points to log and re-post the actions done by the users, allowing an automated parallel testing
between the Production (lower version) and Test (higher version) environments of OFSLL.

Fre-processing
Bt FainE

Frocessing
Feplacement
=i

Engine Froe

Fost-processing
= i

(Exit Point Diagram)

31 ORACLE

The next two Diagrams show where in the Transaction Processing Engine the Testing Tool was

introduced:

Non Monetary Transaction Processing Engine

Library Function Grid User Interface (GUI)
tnmfn_el_ 100 _ 01 ucsbmt_el_ 100 _0F

Engine Wiapper Batch hiode Tan
thmbmit _ew _ 100 _01

Engine Batch Mede Transaction Processing
tnmbmit _em_ 100 _01

Engine Wrapper Mon honetary Transaction Processing
tnmprc _ew_ 100 _01

Engine Mon Monetary Transaction Processing
trmpre _em_ 100 _01

Engine BExits Non honetary Transaction Processing
tnmprs _ex_ 100 _01

Funetion Az count Funetion Customer
thmacc_en _ 100 _0M trmeus _en_ 100 _ 01

Library Function Grid
tnmufn_el_ 100 _01

ORACLE

Menetary Transaction Processing Engine

mipr_b) 111_m

Banch Job Adiusl Bal Balch Job Charge O Balch Jab Firsl Pl dediction Balch Job Rate Change
b by 100 01 ki B 00 brchyg bj 100 01 Exnfipd bj 100 01 wrrat B 100 0 iragper Advanga | Wirgmer Advanoa
p——. = Geracks_eew 10007 | berackd_emw 10003
in
Bafch Acoourt Acivaticn Banch Join Account Close Baich Made Tan Post Banch Joi Month To Date
Frograss ‘Weapper Paymeni | Weapper Payment
tanaai_b|_100 99 tanats_bj_100_01 tarbe_bl_ 10001 ey 10001 e B 100,01 it w100 01 | bengnt w100 02
WS FIs el |
Batrh Job Aerinversary Baich Job Payment Posting | Deteh Jobt Schiedule for Batch Job Promerion Esrch o ¥T0 Reand ""'{W'p':"ﬂg*t"é
tiann_bj_106)_(4 gty 10004 ; W 100 01 tpr_tj 10001 penyd_bj_ 1001 {4 g gw 100 i | iR ew 100
- - Viragper Bakn | Man Engina Batch
Batch Job Prst POYMEnt | pgc o Advarce Posting. | Baich Job Lt Chorge | Bech Jobs Pt Ceneel e
torady_bj_112.01 rikc_ty_100_01 gt 100 03

Engine Wrapper Moretar
[

Engine: Monietary Tan

Ergire Maretry Tan
[
torpre_em_121_01

Processing
bergr_em_ 11201

Enge: Pagiret.
Process
benprn_sem_100_01

Engre Payment
Pracessing
bargrnt_em_100 (2

wngrt_ein_100_03

Engine: Pagrment
Procrsi
bergeni_em_10_04

Ergire First Prir
Refured Precsssg
aarr_em_11_01

Engna Aance Frocessing
Tmadv_am 1001

Engine Exits Manatary Transacson Processi
benpre_ax_111_(1, beree_eo_111_0N femor_e 112,01 torooe_ex_121_{1 {xocx = anging funcion

Engine Exits Mon Perfamming Transactions
tennpf_ax_t11_01

Eurctian Acerisl Stop Furction Acoount Furcticn Crei Funchion Credit Functian Din Gaureer | Funzion Definguency Furcfion _Error Funcion .Enu Furciion Experse Function Payaiz
taraes_en_ 101 Clase Burea Feundd tovz_en 10001 | tanclg_en_ 10001 Processing Frocessing Fiocess swap_en_ 140001
B ixnde en 100 01 ek en 100001 txncem_en 100 01 Tt = [xner en 100 01 toreeer_en 100 0Z b an 100 09 ST
Funcion Fes Furctian FTF Function Funding Functian GL Funczion ¥TD Function MTD Function ngert Tan
arde: en_1 prfp_en 100 01 | enfn_en 10001 | towgla en 100 04 oy en 100 01 | barered_an 100 01 | benite_an 100 01
Furction Athance . Funzion Anniversary Create Relred Tims . " . Funcion Extension
PUOANNE | (Bofoevand ser) | "I MRS | ot der) | CrESS PHEEITMS | pctors ang e | TUTEO7 e Do Fuchon ExErth | ector ant #her
Enack_en_1n, bradv_en_11n nann, gn,_ inn, tenann_en_im_(2 Bl gn_1n, mnert_en_irn_{ Ah.Thn biméd,_an,_1ri, tnext_en_fnn (2
Funcion Ireurance | Functionirewrarnce | Funcon Menrty | Funsion Payment Function eyt fﬂfaf:ﬁi: Fungaon Promatian F"E&ﬂﬁmﬂm Function Rate Chang F"Ez'f:; qm‘:r"lgr
bring en_1in. 01 | womeen Tn 03) veemalen tmn 01 | beprman i 01) e en i 0t |y e g gz | CTRTLEIIT] en i gz | PELELINOY] e tin a2
FIT -
Furction Rescherie: F?gmgmb Funcion Senuiizasion F""“'“"ngfm Cheangs (Beforeard | Function Stement Upebwe Account | Eunctiorialidate Cther | Funciion Reschedile Fuv;u[ag?gﬁmme
i ! !
tenese_en_11n_01 wrrse an I 02 tenser_en_11n_{1 mrelz e 1o 1 hber] terssim_en_trn_01 terapd_en_tnn_(1 tenust_en_tnn_ 01 brwsc_en_111_04 vt e 111 05
tmsa an dnn 2
Furetion Credt Limit Furctian CTD Furision Insurenzs Furision Loss Gan Furrtion Leass oy Fureticn Rent Furizion Sake of fesel Functian Tax Funetion Terminate Furition Receivatie
ned_en_112 01 wred en 11201 tanist_en_112_01 g = 121_01 teiker_en_121_01 terme_en_121_01 e _en_ 121_01 stz en 12101 tantrm_en_121_01 tmrey_en 100_01
- TV TR T
Functicn Dur: Date: Fumzion ﬁlalmnls Furetion P;r_.\l'm'.nls Functian Stahks Furctian Raschadule | Funmon Reschanie Function Escraw Peloeig Perkcminyg | Betore & Furctian Daaler Loss
{ Esmmw) | Escraw) i Escrow | | Esgromw) | Escrow | Trarsactions [T —— Al) Resrrea
tandrt_en_111_03 bratm_en_111_03 srpmt_en_111_03 hirata_en_111_03 tonrse_er_111_000 tarese_pn_111_05 tamesc_en_111_{01 . ! tunirs_en_111_(1
- T = TR | FOTCTeeT Rer LTare TR Sty FOTeT ST
P = | Procasang patees | oo s | proosssng Pricesang (Bt | Precasang (sizon | FunargDra Fenod | Parameters (Ghangs | Fraosssing (sokder & | Frossseing (SCRA)
Buine &n llﬁ i aril Atar] aning :g 111 DGI (BackDated} v Atiar Fundirg Draw Period) (Batora & After) Paramenars) Salior B¢t {Before & Afar)
1T | eeen 11 = — | omenioo |l {ugea o | eoveninn [oo iz | meeinn | nreaolng |

The Testing Tool is divided in 3 main processes:

» Logging: Transactions done by users in Production environment

CMN_TEST_TOOL_LOGGING (Y/N)

> Posting: done sequentially and automatically by the Testing Tool in Test environment

> Reporting: Comparison between Production and Test Environments

3-3

ORACLE

I. Logging: Transactions done by users in Production environment

The logging process in Production environment can be turned on/off by setting the System
Parameter CMN_TEST_TOOL_LOGGING. When its value is “N” system will behave normally.
When its value is “Y”, the system will log all the transactions done by the users.

Systerm Parameter

DLSMFSLL Wrapper
Before Exit Point Yes
Testing Tool Logaing Engine

Main P . Serializes &

ain Frocessimng Mo Capturing Transaction

Data hefore posting
After Exit Point |
Log Tables

34 ORACLE

Posting: Done sequentially and automatically by the Testing Tool in Test environment

— e

Log Tables

From Production

Testing Tool Paosting Engine

Selects & Inserts
Transaction Data
Sequentially

Call

3-5

OFSLL Wrapper

Before Exit Point

Main Processing

After Exit Point

ORACLE

Reporting: Comparison between Production and Test Environments

Production System
(Lower Version)

Test System
(Higher Version)

— i ———

Final
Results

36 ORACLE

o & 0N

o

10.
11.
12.
13.
14.

15.

16.

4. Steps to Clone Base OFSLL Environment

Copy x* packages and so from production to test after patch up of test schema. (some of
these objects in production are newer versions than ones in upgrade patches.)

Perform export from production schema.
Confirm that CMN_SERVER_HOME path is identical between test and production servers.
Run ‘alter table’ and ‘alter index’ scripts against production schema.

Run ‘compare schema’ scripts between the production and test schemas. Reconcile
differences.

Perform export (no data) from test (upgraded) schema.

Perform import (ignore=yes) on production schema from step five’s export. Confirm that
packages, views, and types are correct versions.

Perform export from test (upgraded) schema of ‘setup’ tables (LESS producers tables!).
Copy schema specific system parameters values from production schema

Truncate ‘setup’ tables on production schema.

Perform import on production schema from step seven’s export.

Overlay system parameters value from step 8

Create backup copies of folders in the CMN_SERVER_HOME tree on production app server.

Copy CMN_SERVER_HOME tree from test to production app servers. Consider results of
step two.

Copy any other patch objects (.s0’s, etc.) into production environment. (If step 1 is done, we
can copy without risk of overwriting newer versions in prod)

Restore any X* packages necessary. (if step 1 is done, we can copy without risk of
overwriting newer versions in prod).

41 ORACLE

5. Automated Testing Procedure

Following is the ‘suggested’ sequence of steps that would need to be performed on a daily basis
as part of the ‘Automated Testing’

Day 1

Test Database to be refreshed with Production values *

1. Truncate the Log tables in Production

2. Logging is Turned On in Production after last job has completed

Cut of time for manual transactions/user activities in the Production Environment. Logging by
testing tool will be turned off.

1. Take a Production database snapshot (S1) of the required tables

2. Ensure sequences on test match sequences on Production (for applications and accounts)

3. Dat files and log tables are moved to the Test database

4. Testing tool is Run on Test instance (Ensure previous files are removed)

Comparison/Validation scripts are run against S1 and the Test database. Report (R1) is
generated. (This gives us the comparison before the jobs are run)

A copy of input file in Production (lockbox) should be available in Test

Batch jobs are run (Batch job setup is identical to production) on both Test & Production

Take a Production database snapshot (S2) of the required tables

Comparison Scripts are run against S2 and the Test database. Report (R2) is generated. (This
gives us the comparison before the jobs are run)

Day 2

Validates R1 & R2 and reports discrepancies to OFSLL

Investigate the discrepancies. Some may be reconciled and some may require a fix

Manual testing proceeds in the interim

Next run is planned

>1 ORACLE

Test Database to be refreshed with Production values.

* Refresh Test database

Example: To run the testing tool in the Test environment on 4/23, a snapshot of the Production
database AFTER the batch jobs have completed on the morning of 4/23 and before any other
user activity for 4/23 begins needs to be taken. This snapshot will be used to refresh the test
database for the testing tool to be run on the evening of 4/23.

52 ORACLE

6. Steps to Run

On production environment

Turn off Logging (after SET-LBT3)

Take snapshot of prod before end of day batch jobs have run

Remove old .dat files

Run SET-TST1->GET APPLICATION DATA to create the .dat files

Move .dat files to test system

Move log tables to test system (execute steps 2-6 on test environment as listed
below)

Run batch jobs

Take snapshot of prod after end of day batch jobs have run

On Test environment

Refresh from backup of Production data.

Run after_refresh_before_import.sql — This steps needs to be executed ONLY for a
fresh export-import.

Run all_refreshes.sql

Run before_import_log.sql

Fetch the log tables

Copy the .dat files from the production environment.

Run after_import_log.sql

Tool execution (on Test)

Reset the sequences (reset_sequences_origination_log.sql)

Run Jobs under SET-TST1

61 ORACLE

APPLICATION DATA LOAD

FUNDED DATA LOAD

GENERATE ACCOUNTS FOR TESTING TOOL

Run SET-TST2

Run Testing Tool reports - save results (Test before EOD)

Turn the Scheduler on - Run the required batch jobs

Run Testing Tool reports - save results (Test after EOD)

Compare the 3 reports extracted during the process

ORACLE

7. Validations and Checks

Before txns posting

Set logging parameter to 'N'

Turn scheduler off on Test system

Ensure that setup tables are not truncated before refresh (only in case of a new
refresh).

Ensure that jobs, job_sets, job_threads and job_buckets are copied over from Prod
onto test (only in the case of new refresh).

Make sure that the batch jobs are setup the same in Prod and Test.

Ensure sequences are in sync with Production

Bump up sequences - recreate sequences

Ensure that the Test specific setup scripts are run for 1) all seed data 2) DML scripts to
create data in the new tables

Check GL post date

Check log tables have just one day's transactions

Query by txn_tcd_code, check numbers match on Prod and Test

Drop index TXNT_LOG_UDX

Make sure that the batch jobs have no sequence numbers overlapping - the scheduler
might not start because of this.

Run all the DML scripts - for seed data and others

Check for database locks on both test systems

Check run_dt_nxt on all batch jobs - should be updated correctly

1 ORACLE

8.

Comparing Results

Once the tool run, we will be able to start comparing the results. Below is an example of a high
level results extracted from a Production and a Test environment, where the tool replicated all the

user actions executed during one day.

PRODUCTION TEST
TXN_TCD_CO | SUM(TXN_AM TXN_TCD_CO | SUM(TXN_AM
DE T) DE T)
ACCRUAL_ST |0 ACCRUAL_ST | 0
opP oP
ACC_MAINT_ | -1 ACC_MAINT_ | -1
MONETARY_ MONETARY_
CBT CBT
ACTIVE 0 ACTIVE 0
ADV_RECOU | 5.25 CHGOFF 0
RSE_CHGOFF
_CBT
ADV_WAIVE |7 CREDIT_REF | 6312.85
UND_REV
CHGOFF 0 DDT 29034.13
CREDIT_REF | 2875.01 DDT_REV 12494.97
UND
CREDIT_REF | 6762.65 ERPO 15262
UND_REV
DDT 403310.84 ERPO_REV | 855
DDT_REV 12494.97 ERPO_WAIVE | 90
ERPO 18762 ERPO_WAIVE |5
_REV
ERPO_REV | 4355 ESVC 175
ERPO_WAIVE | 108.42 ESVC_REV 75
ERPO_WAIVE |5 EXTENSION | 606.9
_REV

ORACLE

ESVC 175
ESVC_REV 75
ESVC_WAIVE | 0.2
EXTENSION | 606.9
EXTENSION_ | 0

REV

FEXT 2093.28
FEXT_REV 68.18
FIN_1 2521.19
FIN_2 2357.28
FIN_3 10210
FLC 8071.77
FLC_REV 209.44
FLC_WAIVE |15
FNSF 0
FOTHL WAIV |5

E

FPHP 1659
FUN_1 630790.18
FUN_2 13648.2
FUN_3 85
FUN_4 284.55

EXTENSION_ | 0
REV

FEXT 2093.28
FEXT_REV 68.18
FIN_1 2521.19
FIN_2 2357.28
FIN_3 10605
FLC 263.63
FLC_REV 195.15
FLC_WAIVE |15

FNSF 0

FUN_1 658203.33
FUN_2 14259.2
FUN_3 85
FUN_4 305.55
INT 88904.16
INT_ESTIMAT | 128900.35
ED

INT_REBATE | 8654.78
INT_REV 3038.93
LNR 788796.75
NP_EXCESS | 2388.78

Based on the results above, we are able to investigate further the reason for each discrepancy, if

any.

ORACLE

9.1

9. Testing Tool Exceptions

Following is the list of exceptions/limitations of the testing tool

1. Direct Reversal of an Indirect transaction
2. Multiple Payment Hold Assessments/Reversals

3. Payment not allocated to Phone Pay Fee

Direct Reversal of an ‘Indirect’ transaction.

An Indirect transaction is one that is created by a different transaction. For example, FNSF is an
indirect transaction created by the PAYMENT_VOID transaction. The tool replicates the
PAYMENT_VOID transaction that in turn creates the FNSF. Along the same lines, reversal of the
PAYMENT_VOID transaction will result in the reversal of the FNSF transaction (This is normal
Ofsll processing) and will be replicated by the tool.

However when the FNSF transaction is reversed directly, by using the Reverse button on the
Transactions screen, the tool is unable to replicate that.

Another example is the PAYMENT_NONCASH created by modifying the PAYMENT_ERROR
transaction on the Payment Maintenance screen. The non-cash transaction is an indirect
transaction and directly reversing it or further modifying it will not get replicated in the Test
environment. To summarize direct reversal/modification of the ‘child’ transaction is not replicated.

Note, the above restriction applies only for the same dataset. If the database is refreshed after
the creation of the ‘child’ transaction and before its direct reversal, the tool replicates the reversal.

Multiple Payment Hold Assessment/Reversals

Since the tool is not recording the call activities, multiple payment holds applied or removed on
the same day is NOT replicated. To paraphrase, the existence/absence of the Payment Hold
condition will match that in production, however intermediate changes will not be reflected.

Examples

A) Scenario 1

Production

e Pmt Hold condition exists on an Account
e Payment applied, payment goes into PAYMENT_ERROR
e Pmt Hold removed on the same day

e Payment reapplied from Payment Maintenance > Suspense screen. Payment
successfully applied to the account as a PAYMENT_NONCASH

e Removal of Pmt hold is replicated on Test
e Payment will be applied successfully to the Account as a PAYMENT.
¢ No PAYMENT_ERROR is created

o1 ORACLE

9.2

B) Scenario 2 — This scenario results in an exception

due to mismatch of balances

Production
e Pmt Hold condition exists on an Account
e Payment applied, payment goes into PAYMENT_ERROR
e Pmt Hold removed on the same day

e Payment reapplied from Payment Maintenance > Suspense screen. Payment
successfully applied to the account as a PAYMENT_NONCASH

e Payment Hold condition reapplied

e Since the final state of the account is a PMT HOLD condition no change will be made to
the account in test

e Consequently the payment will go into a PAYMENT_ERROR and will not get applied to
the account

In this scenario the account balances DO NOT match.

Phone Pay Fee

Currently in Production One time Phone Pays created during the day are picked up by the SET-
CBT-ACHO > ACCOUNT ACH PROCESSING JOB in the middle of the day (3:15 pm). This job
creates the Phone Pay fee (FPHP) (The payment batch is created by the same job). The
payments, which post later in the day, get allocated to the FPHP.

On the test environment, the tool posts transactions including Phone pay payments for the entire
day. The SET-CBT-ACHO > ACCOUNT ACH PROCESSING JOB runs AFTER the tool posting is
complete. When the payment hits the account, the FPHP is not present on the account. This
results in: -

$7 - additional Principal (ADV) being paid

$.01 — less interest being accrued since additional principal has been paid

92 ORACLE

10. Testing Tool Test Cases

Module Function SI. No | Test cases
Origination
App Entry

1 Direct loan
2 Indirect loan
3 With CRB pull
4 Without CRB pull
5 Application in different stages: New Review

Required, Auto Approved,
Approved Blank, Approved Verifying, Approved

Verified
Funding
6 Loan with Insurances
7 Loan without Insurances
8 Loan with Dealer's commission
9 PreCompute loan
10 Simple interest loan
Customer
Service
Payments
11 Back dated payment posting across billing for

Simple Interest Loan.

12 Back dated payment reversal across billing for
Simple Interest Loan

Payment reversal from Payment Maintenance
screen.

13 Back dated payment reversal across billing for
Simple Interest Loan

Already existing payment.

Payment reversal from Payment Maintenance
screen.

101 ORACLE

Module Function Sl. No | Test cases

14 Back dated payment posting across billing for
PreCompute Loan.

15 Back dated payment reversal across billing for
PreCompute Loan

Payment reversal from Payment Maintenance
screen.

16 Back dated payment reversal across billing for
PreCompute Loan

Already existing payment.

Payment reversal from Payment Maintenance

screen.
17 Overpayment to an account within tolerance.
18 Overpayment to an account outside tolerance.
19 Erroneous Payment Batch posting.
20 ACH Payment Batch posting.
21 Post backdated payment across billing and NSF the
same.

NSF from Payment Maintenance screen.

22 NSF already existing payment.

NSF from Payment Maintenance screen.
23 Create a Payment Batch and Hold the same.
24 Erroneous Payment Batch posting.

Correct the same erroneous transaction and repost
successfully.

Already existing erroneous Payment Batch posting.
Correct the same erroneous transaction:

Add one row

Update one row for date as well as for amount and
repost successfully.

Already existing Open/Hold payment batch:

Add one row

Remove one row

Update one row for date as well as for amount and
repost successfully.

25 Create open Payment Batch and posting the same
by running SET-LBT: PAYMENT POSTING

Payments

10-2 ORACLE

Module Function Sl. No | Test cases

Combinations

26 Create sequence of Payment Batch & post the
same, having mix of valid and erroneous batches.
Few erroneous payment batches not corrected and
reposted and few corrected and reposted.

27 Post payments thru lock box with the ach file
having:

- hon-existing a/c no

- closed alc

- a/c having payment hold condition

- a/c having non-accrual condition, and txn date for
the payment is before non-accrual

Correct the erroneous payment batches (suspense
payments) and repost it.

Reverse the payments:
- posted correctly first time
- corrected and reposted

28 Post the already existing hold payment batch.
Reverse the payment.

29 Create an erroneous payment batch.
Correct the payment batch.
Put it on hold.

Post the payment batch.
Reverse the payment

30 Create a payment batch with:

- more than one payments

- correct and incorrect payments
Post the payment batch.
Reverse payments:

- one which was valid initially

- one which was invalid initially

31 Crete payment batches with:

- more than one payments

- correct and incorrect payment batches
Run the SET-LBT batch job.

Reverse the payments:

- one which was valid initially

- one which was invalid initially

Transactions

32 PreCompute loan put into non-performing.

33 PreCompute loan to Simple Interest conversion.

10-3 ORACLE

Module Function Sl. No | Test cases

34 Simple Interest loan put into non-performing

35 Work order Service Expense assessment.

36 Post Extension.

37 Post Due Date Change.

38 Charge off an account.

39 Pay off an account.

40 Insurance cancellation on a PreCompute loan a/c.

41 Insurance cancellation on a Simple Interest loan
alc.

42 Waive Late Charge on an a/c.

43 Waive Advance on an a/c.

44 Waive Interest on an a/c.

45 Reduce Interest Rebate for PreCompute loan a/c.

46 A/c Monetary maintenance on an a/c to change the

advance, rate, payment amount and maturity dates.

47 Account Due Paid Amount Maintenance posted on
an a/c to update the amount paid in due buckets 1
through 4

48 Post any of the non-monetary transaction.

49 Reverse any of the already existing monetary
transaction.

50 Post and reverse any of the monetary transaction.

51 Reverse the charge off transaction for an a/c

already charged off.

52 Post and reverse the charge off transaction.

53 Reverse the paid off transaction for an a/c already
paid off.

54 Post and reverse the paid off transaction.

55 Post a monetary erroneous transaction from

maintenance screen.

10-4 ORACLE

Module Function Sl. No | Test cases

56 Post a non-monetary erroneous transaction from
maintenance screen.

57 Post an erroneous monetary transaction for which
we get the error result in the results pane, correct
the same and repost successfully.

58 Post an erroneous monetary transaction for which
we get the popup error message, correct the same
and repost successfully.

59 Void any monetary transaction.

60 Void any non-monetary transaction.
Transactions
Combinations

61 Put a PreCompute loan into non-performing.

Convert the same to Simple Interest.
Put the converted loan into non-performing.

62 Sequence of monetary transactions from
maintenance screen, having mix of:

- erroneous monetary transaction, for which we get
the error result in the results pane

- successful non-monetary transactions

- erroneous monetary transaction, for which we get
the error result in the results pane, corrected and
reposted successfully

- erroneous transactions for which we get the
popup error message

- erroneous transactions for which we get the
popup error message, corrected and reposted
successfully

- void monetary transactions

- successful monetary transactions

Full Run 63 - Fund a new backdated loan from scratch.
- Post payments.

- Post monetary transactions.

- Post non-monetary transactions.

105 ORACLE

11. For Next Releases

Though the Testing Tool is totally dynamic and automates the tests by logging all actions
executed on a Production environment, then replicating them in a Test environment, which will
have a higher version of OFSLL. This tool still requires technical people, with technical knowledge
of OFSLL processes and architecture to be installed and run. For future releases, we can create
an installation package and a user friendly front end in order to users to be able to do all the tests
independently. Also, some of the current exceptions and limitations could be worked on in order
to incorporate to the tool’s functionalities.

-1 ORACLE

ORACLE

Regression Testing Tool
October [2017]
Version 14.4.0.0.0

Oracle Financial Services Software Limited
Oracle Park

Off Western Express Highway

Goregaon (East)

Mumbai, Maharashtra 400 063

India

Worldwide Inquiries:

Phone: +91 22 6718 3000

Fax:+91 22 6718 3001
www.oracle.com/financialservices/
Copyright © [2008], [2017], Oracle and/or its affiliates. All rights reserved.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their
respective owners.

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs
installed on the hardware, and/or documentation, delivered to U.S. Government end users are “commercial computer
software” pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system,
integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and
license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate failsafe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates
disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish or display any part, in any form, or by any means. Reverse engineering, disassembly, or recompilation of
this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any
errors, please report them to us in writing.

This software or hardware and documentation may provide access to or information on content, products and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any
kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or
services.

	1. Regressions testing tool
	2. Scope
	2.1 Origination
	2.2 Customer Service

	3. Architecture / Technical Design
	4. Steps to Clone Base OFSLL Environment
	5. Automated Testing Procedure
	6. Steps to Run
	7. Validations and Checks
	8. Comparing Results
	9. Testing Tool Exceptions
	9.1 A) Scenario 1
	9.2 B) Scenario 2 – This scenario results in an exception due to mismatch of balances

	10. Testing Tool Test Cases
	11. For Next Releases

