ORACLE

Oracle Utilities Billing Component
Installation and Configuration Guide, Volume 2
Release 1.6.1.22 for Windows

E18207-23

November 2017

Oracle Udlides Billing Component/Billing Component Installation and Configuration Guide, Volume 2,
Release 1.6.1.22 for Windows

E18207-23

Copyright © 1999, 2017 Oracle and/ ot its affiliates. All rights reserved.
Primary Author: Lou Prosperi

Contributor: Steve Pratt

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not watranted to be error-free. If
you find any errors, please report them to us in writing.

If this is softwate or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users ate
“commercial computer software” pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware, and/
or documentation, shall be subject to license terms and license restrictions applicable to the programs. No
other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe
use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software
or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

NOTIFICATION OF THIRD-PARTY LICENSES

Oracle Utilities software contains third party, open source components as identified below. Third- party license
terms and other third-party required notices are provided below.

License: Apache 1.1

Module: Crimson v1.1.1, Xalan]2

Copyright © 1999-2000 The Apache Software Foundation. All rights reserved.

Use of Crimson 1.1.1 and Xalan J2 within the product is governed by the following (Apache 1.1):

(1) Redistributions of source code must retain the above copyright notice, this list of conditions and the
disclaimer below. (2) Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the disclaimer below in the documentation and/or other matetials provided with the
distribution. (3) The end-user documentation included with the redistribution, if any, must include the
following acknowledgment: “This product includes software developed by the Apache Software Foundation
(http:/ /www.apache.org/) . Alternately, this acknowledgment may appear in the software itself, if and
wherever such third-party acknowledgments normally appear. (4) Neither the component name nor Apache
Software Foundation may be used to endorse or promote products derived from the software without specific
prior written permission. (5) Products derived from the software may not be called “Apache”, nor may
“Apache” appear in their name, without prior written permission.

THIS SOFTWARE IS PROVIDED “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIALDAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

License: CoolServlets.com

Module: CS CodeViewer v1.0 (Sun JRE Component)

Copyright © 1999 by CoolServlets.com

Use of this module within the product is governed by the following:

(1) Redistributions of source code must retain the above copyright notice, this list of conditions and the
disclaimer below. (2) Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the disclaimer below in the documentation and/ot other matetials provided with the
distribution. (3) Neither the component name nor Coolservlets.com may be used to endorse or promote
products derived from the software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY COOLSERVLETS.COM AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE."

License: Justin Frankel, justin@nullsoft.com
Module: NSIS 1.0j (Sun JRE Component)
Use of this module within the product is governed by the following:

(1) The origin of the module must not be misrepresented, and Oracle may not claim that it wrote the original
software. If Oracle uses this module in a product, an acknowledgment in the product documentation is
appreciated but not required. (2) Altered source versions of the module must be plainly marked as such, and

must not be misrepresented as being the original software. (3) The following notice may not be removed or
altered from any source distribution: “Justin Frankel justin@nullsoft.com”.

License: ICU4j License
Module: ICU4j
Copyright © 1995-2001 International Business Machines Corporation and others. All rights reserved.

Oracle may use the software without restriction, including without limitation the rights to use, copy, modify,
merge, publish, distribute, and/or sell copies of the software, and to permit persons to whom the software is
furnished to do so, provided that the above copyright notice and the permission notice appear in all copies of
the software and that both the above copyright notice and the permission notice appear in supporting
documentation.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY
RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS
NOTICE BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL
DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

License: Info-ZIP

Module: INFO-ZIP ZIP32.DLL (Binary Form)

Copyright (c) 1990-2005 Info-ZIP. All rights reserved

Use of this dll within the product is governed by the following:

(1) Redistributions of source code must retain the above copyright notice, this list of conditions and the
definition and disclaimer below. (2) Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the definition and disclaimer below in the documentation and/or other materials
provided with the distribution. The sole exception to this condition is redistribution of a standard UnZipSFX
binary (including SFEXWiz) as part of a self-extracting archive; that is permitted without inclusion of this
license, as long as the normal SFX banner has not been removed from the binary or disabled. (3) Altered
versions--including, but not limited to, ports to new operating systems, existing ports with new graphical
interfaces, and dynamic, shared, or static library versions--must be plainly marked as such and must not be
misrepresented as being the original source. Such altered versions also must not be misrepresented as being
Info-ZIP releases--including, but not limited to, labeling of the altered versions with the names “Info-ZIP” (or
any variation thereof, including, but not limited to, different capitalizations), “Pocket UnZip,” “WiZ” or
“MacZip” without the explicit permission of Info-ZIP. Such altered versions are further prohibited from
mistepresentative use of the Zip-Bugs or Info-ZIP e-mail addresses or of the Info-ZIP URL(s). (4) Info-ZIP
retains the right to use the names “Info-ZIP,” “Zip,” “UnZip,” “UnZipSFX,” “WiZ,” “Pocket UnZip,” “Pocket
Zip,” and “MacZip” for its own source and binary releases.

[Definition]: For the purposes of this copyright and license, “Info-ZIP” is defined as the following set of
individuals:

Mark Adler, John Bush, Karl Davis, Harald Denker, Jean-Michel Dubois, Jean-loup Gailly, Hunter Goatley, Ed
Gordon, Ian Gorman, Chris Herborth, Dirk Haase, Greg Hartwig, Robert Heath, Jonathan Hudson, Paul
Kienitz, David Kirschbaum, Johnny Lee, Onno van der Linden, Igor Mandrichenko, Steve P. Miller, Sergio
Monesi, Keith Owens, George Petrov, Greg Roelofs, Kai Uwe Rommel, Steve Salisbury, Dave Smith, Steven
M. Schweda, Christian Spieler, Cosmin Truta, Antoine Verheijen, Paul von Behren, Rich Wales, Mike White

[Disclaimer:] “This software is provided “as is,” without watranty of any kind, express or implied. In no event
shall Info-ZIP or its contributors be held liable for any direct, indirect, incidental, special or consequential
damages arising out of the use of or inability to use this software.”

License: Paul Johnston
Modules: md5.js
Copyright (C) Paul Johnston 1999 - 2002

Use of these modules within the product is governed by the following:

(1) Redistributions of source code must retain the above copyright notice, this list of conditions and the
disclaimer below. (2) Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the disclaimer below in the documentation and/or other materials provided with the
distribution. (3) Neither the component name nor the names of the copyright holders and contributors may be
used to endorse or promote products derived from the software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS 1S”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

License: Jef Poskanzer

Modules: DES, 3xDES (Sun JRE Components)

Copyright © 2000 by Jef Poskanzer <jef@acme.com>. All rights reserved
Use of these modules within the product is governed by the following:

(1) Redistributions of source code must retain the above copyright notice, this list of conditions and the
disclaimer below. (2) Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the disclaimer below in the documentation and/or other matetials provided with the
distribution. (3) Neither the component name nor the name of Jef Poskanzer may be used to endorse or
promote products derived from the software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

License: Sun Microsystems, Inc.

Modules: Sun Swing Tutorials

Copyright© 1995-2006 Sun Microsystems, Inc. All Rights Reserved.
Use of these modules within the product is governed by the following:

(1) Redistributions of source code must retain the above copyright notice, this list of conditions and the
disclaimer below. (2) Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the disclaimer below in the documentation and/or other matetials provided with the
distribution. (3) Neither the component name nor the name of Sun Microsystems, Inc. and contributors may
be used to endorse or promote products derived from the softwate without specific prior written permission.
(4) Oracle must acknowledge that the software is not designed, licensed or intended for use in the design,
construction, operation or maintenance of any nuclear facility.

THIS SOFTWARE IS PROVIDED “AS1S,” WITHOUT A WARRANTY OF ANY KIND. ALL EXPRESS
OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
NON-INFRINGEMENT, ARE HEREBY EXCLUDED. SUN MICROSYSTEMS, INC. (“SUN”) AND ITS
LICENSORS SHALL NOT BE LIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE AS A
RESULT OF USING, MODIFYING OR DISTRIBUTING THIS SOFTWARE OR ITS DERIVATIVES.
IN NO EVENT WILL SUN OR ITS LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT
OR DATA, OR FOR DIRECT, INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL OR

PUNITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF
LIABILITY, ARISING OUT OF THE USE OF OR INABILITY TO USE THIS SOFTWARE, EVEN IF
SUN HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

License: Tom Wu

Module: jsbn library

Copyright © 2003-2005 Tom Wu. All rights reserved

Use of this module within the product is governed by the following:

(1) Redistributions of source code must retain the above copyright notice, this list of conditions and the
disclaimer below. (2) Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the disclaimer below in the documentation and/or other matetials provided with the
distribution.

THE SOFTWARE IS PROVIDED “AS-1IS” AND WITHOUT WARRANTY OF ANY KIND, EXPRESS,
IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL TOM
WU BE LIABLE FOR ANY SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES
OF ANY KIND, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
PROFITS, WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY
THEORY OF LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

Contents

Chapter 1

Configuration Overview
Receivables Management Configuration

Workflow Management Configuration...........
What IS this DOOKP ...t 1-3
Oracle Utilities Billing Component GlOSSaIY ... 1-5
Part One
Receivables Management CoOnfiguration ... eueeiiriiieeiniiiieiiiniieeiniiiesiniieeesieeeeesiasessssssesssssssessssssssens 1-i
Chapter 2
Introduction to the Oracle Utilities Receivables COMPONENt.....ccuiiiiiiriniieiniiiiiiiriniieiiiecireneeesseessssesenes 2-1
What the Oracle Utilities Receivables Component DOEs ... 2-2
The Oracle Utilities Receivables Component Databasec.ocuiiciniieiciniicicinicncsicncseseeeeeees 2-2
The Oracle Utilities Receivables Component Messaginig SYStemcccureceecuriecencurecuneueeneeseeensneeens 2-2
How the Oracle Ultilities Receivables Component Is Usedcoccuniciniiniciniinicininincniencsicneieenas
The Financial Engine and the Financial Management Modulesccoeicinicncinicniciinceicsceeeeseneeens
The Financial ENZINE......ccciiiiiiiiiiiiici s
BALHNG .o
REMITEANCE. ...
IMAINEENAINCE ...t
Reports.............

Collections
The Oracle Utilities Receivables Component User Interface

Chapter 3

The Oracle Utilities Receivables Component Database.........ccoueiiiiiiiiiiiiiiiiniiiiiiiieciecceec e csseesssseenas 3-1
ACCOUNE DALA ..t 3-2
LOCALON TADIES ...ttt e e 3-3
SEIVICE TADLES ..ot 3-3
BUAZEL TADLES ...ttt 3-3
Meter Tables.......
Transaction Data.........
JOULNAING DIALA ..o
Chapter 4
Setting Up and Configuring the Oracle Utilities Receivables Component Databaseccocueeeencniieeinnnnennen. 4-1
Setting up the Oracle Utilities Receivables Component Database ... 4-2
LOOKUP TADIES ...ttt st 4-2
CUSTOMET/ ACCOUNT TADIES 1ottt ettt e ee e ee et e et eeeeteeseeeeeseeteneasereeseeesesereseenessaeeneeneneeneeens 4-5
Usage Data TaDIES ...t 4-7

TANSIATON TADLES.c.evvievieeeceeeteete ettt et te e te et ete e st st e s et essesseeseeseeseteeseesseneensensensensensens 4-7

Chapter 5

The Financial ENGINecouiiiiiiiiiiiiiiiiiciiecteceteciientreens st ssesssasesssasssssae e ssssnesssssssssesssnenes
Financial Engine Functions - Summary....

Transactions.....cceeeveveererverevrnnnans
Credit Application
Journaling
Sub-Ledger ROIUPceviiiiiiiiiiiii e
General Ledger UPdate ...
Balancing CONIOIS.......uiuiiiiiiiiiiiiii s
THANISACHIONS 1vvviviieterieesisiete ettt eteeet et et tes et b e te et et ebesase e e s esesesassesesase s esebesase s esesasassesessseseseses s sesesessesesesesesssesesessasesesans
THANSACHON DALA uiuiiireiieiieieietcitise ettt ettt et b b sase s b et e s e s b e b et asa st ebssesesesasessssesasesnassans
TTANSACON TYPES..ouviiuiiiiiiiiiciii bbb
Transaction PrOCESSINGcccuiiiiiiiiiiiiiiiiii s
Credit APPHCALION c..ceviieieiiiiiiiici s s
Credit Application Processing for Charge or Credit Transaction - Immediate........ccoocuvieiniiiiniaes
Credit Application Processing for Charge or Credit Transaction - Specifiedccccovueiviviiiiicnninas
Credit Application Processing for Charge or Credit Transaction - Invoice ID..............
Credit Application Processing for Charge or Credit Transaction - Receivable Type
Credit Application Processing for Cancel Charge Transaction

Credit Application Processing for Cancel Credit Transaction.............
JOUINAING. ...
Journaling Processing.......
Journal Translation Rules
Sub-Ledger ROIUP ..ot
Sub-Ledger ROI-UP ProCessing. ...t ssssssessssssnns
Using the Sub-Ledger Roll-Up Command Line Program ...
General Ledger UPAte ... s
General Ledger Update ProCessINg.......coivieiiiiiiiiiiiiii i
Using the General Ledger Update Command Line Program ...,
Balancing CONIOIS ...
Transaction BalanCing ..o
Journal Balancing ... s
Account BalanCIngcciiiiiiiiiii s
Chapter 6
BilliNg ccuvieiciieiiieeeiiecitenee et s e s s s b e e R e s R s e s R e e e e s s e e a s e s R b e e e s a e e R a s e snaeets 6-1
Billing Database TaADIESc.cvuiiiiiiiiiiiiiiiiii s 6-2
BillING FUNCHONS ..ttt bbb 6-3
Billing Function ProCessing........ciiiiiiiiiie s sssssss s 6-3
BilliNg FUNCHONS ...ttt 6-5
Deprecated FUNCHOMNS. ... bbb 6-14
Chapter 7
REMUTEANCE 1eeenrieeeitieeteeecte et e e s te e sae s e aa e s e e e s e e ae s e aae s sessaae s e e e sesaeeesaaeessnaaannes
Remittance Database Tables....
Payment TADIESc.cuiuiiiii et e
Payment AssiStance TabIEs. ..o 7-2
Remittance FUNCHOMS ..viieiiiiici bbb 7-4
Payment Data ... 7-4
Remittance Function ProCessing ... 7-7
Chapter 8
MAAINEENAIICE ... uteeetreeeteeeiteeeieeeeteeeitee et eee e eeste e e sa e s st a e e s s e e e aa e e et asesesaaaasaeasssssasssaesssassaessasasssessssseensssenssesans
Maintenance Functions

Maintenance Data
Maintenance Function Processing

Chapter 9
L0701 T o5 TP
Collections Database Tables
Collections Agency Tables.................

Collection Arrangements Tables
Collection Exemptions Tables..........
Collection Message Tables.........ciiiiiiiiii s
Other Collections TABLESc.cuiviiiiciiicicicc e saes
ColleCtions AfTANGEMENLSvuiuiiiiiiiiiiiiieii e b bbb
Creating Collections AffangemENLSccciieiiiiirieiiieiiie e
Collection Arrangement Data ...
Collections Arrangements PrOCESSING ..o
ColleCtion EXEMPLIONS c..cuvuiuiuiiiiiiisiitii s bbb
Creating Collections EXEMPHONS ...
Collection EXemption Data.......ccciiiiiiiiiiiiiiis st
Reviewing Collections EXEMPHONS......cccuiiiiiiiiiiiiiicc e esens
Collections Processing and Activities...................
Selecting Accounts for Collections
Collections Process ACtivitiescccouvieuneee

Chapter 10

o0 RPN
Report Database TaDIESccciiiiiiiiiii s
Oracle Utilities Receivables Component REPOTLts ...

Payment Posting REPOTLtccuiiiiiiiiiiiiiiici s s
Issue Refund REPOTt. ...
Account Balance RePOTt ...
AR Aging Repoftcccuviviirricinnnne.
G/L Activity Reportt........
System Balance Report
Market Participant Aging Report
Running Oracle Utilities Receivables Component Reports
Viewing Oracle Utilities Receivables Component Reports
Creating Custom REPOTLS ...cvuiuiiiiiiiiiiiiiic s et ns

Chapter 11

Configuring Oracle Utilities Receivables Component SECULitycccievieiiieiiineiniiienniieiniiieiniienieeesseessneenns 11-1
Oracle Utilities Receivables COMPONENt SECULILYuuiuuiuiciiiiiciiicinii et sasaesees 11-2
FINancials FEaAtULES ..ottt s 11-2

Important Notes about Assigning Oracle Utilities Receivables Component Permissions............... 11-3

Part Two

Workflow Management Configurationuuieiieiiiieiiiiiiniieiieinie et cssseesssesssssesssseesesssnesssssenes 1-i

Chapter 12
Setting Up Workflow Management Database Tables
COM Object Tables.......cccricuiurincuninincieiciricniieans
COM Object Type Table
COM Object Table.....cccoueucuriecunrrees
P1oCess CONLEXE TADLES ...vviviieietieiieeteietiete ettt ettt se bbbt ese s be s st ebeseses s bebesess s et ebesasnsnesesas
Variable SOULCE TADIE......ccviuiiiieieeiieeetetctceete ettt ettt b ettt bebesebebesn s s etesansasene
CONLEXE VAIUE TADIE ...viuiiieiciciiee ettt ettt b et et s e bes s b sesnasesebesennas
Process Context VAlUe TaBIec.ciivieiiiiiiicieceeteeee ettt s bbb bbb ss s s senas

Chapter 13
The WOorkflow ENGINe.....ccouiiiiiiiiiiiiniieiniiiniienisesiie sttt esssessasesssessssssesssssesssssssssns essssnssssssssssssssssnes
Workflow Engine Functions

Workflow Engine Components.....
Workflow Engine API
Workflow Engine Message Queue...
Workflow Engine Executable ...

Workflow ENgINe PrOCESSINGcciuiiiiiiiiiiiiiiiiicii s
SHALE PLOCESS.couviimiiiiciciii s
NAVIALE PLOCESS c..viviiiiiiiiiiciii s
SEALE ACHIVILY cvvueereiiniiereiiereicieiers ettt ettt ettt ettt bttt s st senstacnen
TELMINAE ACHVIEY ceucuvevirieeticeeretreeieteieeere sttt st sttt s s tae bt stst et st seae b et et testhesssacaesesnens
SUSPENA PIOCESSouviiiiiiiii e
ReESUME PLOCESS....vviiiiiiiii e s
TerMINALE PLOCESS....cuiuiiiiiiiiiiiic it
Activity FINISNEd .o
Activity Expired
Activity In Error........
Activity Event......c.........

Workflow Function Activities

Chapter 14

The Workflow SCheduler......uuuuiiiiiiiieieeiieieeeeeteeteee ettt se s e e s e e s s e s be s e e s e s s e s sasesasesneas 141
Workflow Scheduler Functions and Processing ... 14-2
Workflow Scheduler COMPONENLScuiiiuiiiiiiiiiciiiiiiit s 14-3

Workflow Scheduler APTL........cciiiiiiiiiiiiii e 14-3
Workflow Scheduler EXecutable ... 14-3

Chapter 15

The Rules Language ENGINecuuiiiiiiiiiiiiiiiiiiiiiiiiiie ettt csss e sas e sssss s ssssesssssssnnes 15-1
Rate Form Activities and the Rules Language ENgINec.cccviiiiciniiiiiiniciccisiccicec s 15-2
Rules Language Engine COMPONENLScvviuiuiiiiiiiiiniiiiciiciici st sssessssssssesens 15-3

Rules Language Engine Message QUEUE........cciiuviiiiiiniiciniiiicec s 15-3
Rules Language Execution Engine Executable ... 15-4
Creating Rate Forms for use with the Rules Language ENginecccociiiiiicinicnicncnicnicnccecseceenes 15-5
No Required INPut Data ... 15-5
Input Data fLom CONEEXL.....iuiiiiiciieeiiciieiiieicie ettt sa e 15-5

Part Three

Receivables Management INterfaces ... uuiiiiiiiiiiiiniiiiiiiiiiieiiniiieecnieeccieieecneeeesaaeecsssaassssssssasessssnsnsesns 1-i

Chapter 16

Oracle Utilities Receivables Component Financial Engine Interface
Methods, Interfaces, And SYMLAXcccviuriiuiiciiiicieiec e

INterface ATGUMENES ..ottt e
Input Values ...

xmlAccount........

xmlTransaction................

xmlGenlLedgerParams.....

xmlJournalParams............

KIMNIQUELY .o
REtUIN VAIUES ...ttt e

XMIGENLEdZEITILE ...

Chapter 17

Oracle Utilities Receivables Component Billing Interface
Methods, Interfaces, and Syntax

Interface Arguments........
Input Values.......ccooeviiivivininicin
xmlAcctTrans
XMITNSTAIMENTPIAN .ottt b et b b s e s bbb e s ase s ebesesssesassesesasasessesanas
XIMIACCOUNTIN o1ttt t ettt s s e b et e s et e s et eses e sesesesessesebesssesesesessasesesasasennas
RETUIN VAIUES ...ttt ettt et b s bbb ke s s et e b e s e s es e et e s et e s eseses s besesessesesesasessesesasn
XIMIACCOUNTO UL .vveviiietetiitete ettt ettt et ese s s et sesesesessesesesassesesesasasesesesasesssesasasesesessesesesasessasass
Deprecated MEthOds. ...
XML EXAMPLES ..ottt

Chapter 18

Oracle Utilities Receivables Component Remittance Interface
Methods, Interfaces, and Syntax
Interface ATGUMENTS ...
TOPUL VALUES . s
KIMIPAYINICIIE 1.t
XMIBAtChPayment ... s
XMIPAYMENLFILE ...t e
XIMLACCEBILL oottt ettt se bbb e s s bt e s s s b e bs s b ebesasaasesesesaseensenas

Chapter 19

Oracle Utilities Receivables Component Maintenance Interface
Methods, Interfaces, and Syntax

Interface Arguments

Input Values......ccccoovviiivivininicnns
KIN TEANSACHON c1evvetiietieieietetet ettt ettt et st et e e ebesaesestesessesessessesessesessesaesesessassesasassesesesessasassaneesanes
XMIBAtChREFUNA. ...ttt ettt et bbb b tesn s enenan
XIMIBAtChTIANSACHON e veuieteietiietistetsterte ettt et e st te st e e e be e e te e et e st esesseseesessesassesessasessessssesansesansenessanes
XM TTANSACHONTILE 1.ttt ettt et se b e se b ebe st ebassesassenessanes
Chapter 20

Oracle Utilities Receivables Component Collections Interface
Method, Interface, and Syntax
Interface Arguments

Input Values ...
XMICOIATTANGEMENEIN L.t
XITILALCCOUNT 1ttt ettt ettt et et b ettt e e et es s s eaeaeaeseses et eaesetesesebasaesesnsesesesetesesesesnen
KMIEXEMPUONIN (..ot
XMIATTANGEMENEINL .t
KMIPAYMENLIN 1o s
RETUIN VAIUES et bttt ettt bbbt b et e aebenin
XMICOIALTANGEMENEOUL ...ttt
KXITICOMEER Lttt ettt ettt ettt b b st b ettt b b et st ke b e st bbbttt e b et b e b e et et et ebene e ebebencn
XIMLCOIINTO ittt ettt ettt et s et s e s st e bt eaeneaeaesensansessansesens
XML TTANSACHONOIUL 1.ttt ettt b bttt eb et be e e et ettt et saenen
XIMTACCOUNTOUL .ttt t et ettt et et eaeaeaeseaessaeaesesesetesesneseasasssansesesasesans
XMIEXEMPUONOUL ...t
xmlArrangementOut ...
KMIPAYMENTOUL ..o

vi

Chapter 21

Messaging INtErface.....uuuuiiiiiiiiiiiiiiieiciece e e e s aae s aaaeses 21-1
Methods, Interfaces, ANd STNLAXcccviiiiiieriirieeeeeeie ettt eae ettt s e sesaes 21-2
Interface Arguments........ v 21-5
Input Values......ccccoviiivivinincnns e 21-6
xmlMessageln..... e 21-6
xmlMessageListln 21-8
REtUIN VAIUES ... bbb bbb 21-10
xmIMessageOut/XMIMESSAZELISTOUL ...cuuvverurermerereririrerserirerseeiseseeeiserseeieseesisesssessesssessesssessesssessesserines 21-10
Part Four
Workflow Management INtEIfacesueeivuieiiiiiiiiiiiiiiiiniiiieecie e sssae s aae s sanesssasenes 1-i
Chapter 22
Workflow Management Activity Implementations Interface........ccooueieuieeiieeniiiniiieniiiinnienieeniecceenneens 22-1
Methods, Interfaces, ANd STALAXcccvierriierrinieeeeeeier ettt sttt bbbt s et senaes 22-2
Interface ATGUMENTS ... 22-4
TOPUL VALUES . 22-5
xmlActivityImplementationIn. ... 22-5
XMIMESSAZELISIN 1o 22-5
REULN VAIUECS oo s s st aa s a e R st sn e sn e 22-7
xmlActivityImplOut/xmIACHVItIMPILISTOUE w.cvueerveerererrirermerieiseneseieneeienseisessesesscisesscssessnesenses 22-7
Chapter 23
Workflow Management Process Versions INterface.......uueevvieeeinniiiiiinniiieiinniiiennniiiennieeccieneennieeeseenns 23-1
Methods, Interfaces, And SYILAKXccccviiiciiiriiricieiecetc bbb 23-2
INterface ATGUMENES ..ottt e 23-7
INPUL VAIUES oo 23-9
XMIProCesSVErsionInl ...t s 23-9
XMIProcessVersionListIn ... 23-10
XMNIPIOCESSIN 1ottt 23-10
XMIPLOCESSTAStIN .ot 23-11
XMIPLOCESSACHVITY I ...ttt 23-11
XMIPLOCESSACHVITYLISTIN ..ottt 23-13
Rttt VAIUES ... 23-14
xmlProcessVersionOut/XmIProcess VersionTLiStOULo.ecveeeeeireeeeeeeeeeeeeeeeeeeeeeeeeeereeeeresseeseeseeaens 23-14
XMIProcessOUt/ XMIPIOCESSISTOULvevieeeieeeeereeeeeeeeeeeeteeeeteeeeteeteeeseeseeteseeseseeseetesesseressesesesssesensenes 23-14
xmlProcess ActivityOut/XmIProcess ACHVILYLISTOUL co..vvuvurieeveiieierieeeieeeeieiseieeiseseeeseeeseesenesesseaesenes 23-14
Chapter 24
Workflow Management Process Instance INterface.......uueeeieeeinniiiiinniiiiiinniiiiiniiiecnieecnieneeencieeeeeenns 241
Methods, Interfaces, And SYILAXccoiuiiciiriiiricieie et 24-2
INterface ATGUMENES ..ottt e 24-5
INPUL VAIUES oo s 24-7
XMIProcessINStanceln ... 24-7
XMIProcessInstancelistIn. ... 24-8
XMIACHVItYINStANCEIN ..ot s 24-8
XMIACVItyINStANCELISTIN L.uviiiiiiiciicc e s 24-9
XIMTACHVIETEVENL ..t e 24-9
Rttt VAIUES ... 24-10
xmlProcessInstanceOut/xmIProcessINStanCeliStOULcvverveeeereeeereeeeeeeeeeeeee e eeeeereeeereeteeesereeeeeens 24-10
xmlActivityInstanceOut/xmIACtivityInstanceLiStOULc.cuevcurivrceiireereinieeiseeiseieiseasessseseaseieeens 24-10

Part Five

L5 0T 1a e N 1-i
Appendix A
Oracle Utilities Data Repository Receivables Component Database Schemacoueeveiieeeieeninneennnienieeennns A-1
Oracle Utilities Receivables Component Database Schema........ccviciiiiiicccieccsiens A-2
Oracle Ultilities Receivables Component-Collections Database Schema.........ccoociiniciiinicininicnicic, A-3
Appendix B
Oracle Utilities Data Repository Workflow Management Database Schemacooueeveieinnieiieninnenenninennnns
Oracle Utilities Billing Component - Wortkflow Management / Reports Database Schema
Appendix C
MESSAGING c.vvvreeririiiiiiitiriiiieinir ettt e s st e b s b b e e e b b e s b e e e b b e s b b s e s b b s e b b e s bR e e s bbb e e b a e s b b e e e b b e e e b a e e s b e ees C-1
The Purpose of the MeSSAZING SYSTEIMcuiuiiuiuiiiiriciiieicirieseie sttt sa i C-2
Messaging Tables
Message Types
Message QUEUEScvuvivceerrircieriirinnens
Default Message Queues...........c.......
Message Queue Table Templates
Messaging Functions..........ocvvicvncnnicnninienns
How the Messaging Functions Workc.cc.cciiiiiicccicsscsece e
Appendix D
Financial Management Rules Language Statements.......couueivuieinieiiiiieiniiienniriniiecirecssenesesseessseessseeens D-1
Using the Financial Management StatemMENtsooceuiuiiieiiiieiiiiie s sssssesesns D-2
Using User-Defined AttrDULESccuiueiiiiciiciicieciece s sees D-6
Post Charge Or Credit STAtEMENT.....c..ccuiuiiieicieicieceice e sees D-7
Post Tax Statement........ccoevvicunnee.
Post Installment Statement
Post Statement Statement.......
Post Bill Statement..........cc......
Post Payment Statement.......... .
Post AdJUStMENt StALEIMENTcu ittt D-19
Post RefUnd StAtEMENL......cuieiiiiiiiiciiicicici it D-21
Post WIIteOff StALEMENT w.uvvuiviieiiiieciiiiicc s D-23
Post DEPOosit STATEMENTcuviiiiiiiiiiii s D-25
Post Deposit Interest StAtemMEnt......coviiuiiiiriiiiiiiic s D-27
Post Deposit APplication StALEMENL.cc.ucuiurieiieetrieeiieeiees e ssse e sese s sse s ssecssseees D-29
Cancel Transaction STATEMIENL. ... ucuiuucuieiieeieeieet st ss s e sas s sseees D-31
CALCULATE_LATEPAYMENT FUNCHON w.c.cvuiiiiiiiiiiiiicicnnncscsscssssssssssssssssssssssnss D-33
FMGETBILLINFO FUNCHON. ... sssssessssss e ssass
PROCESSAUTOPAYMENT FUNCHON. ...coiviiiriiiiiiiiitciircnsicsncss
DEPIecated SALEIMENES . c..uuiueeuiieeiiiieeiiteeae ettt
Post Service Charge StateMEntccuviiiiiviiiiiiiiiin s

Post Deferred Service Charge Statement
Post Budget Service Charge Statement...
Post Budget Bill Charge Statement.........
Post Budget Bill Trueup Statement......
Post Installment Charge StateMENt......coicucuiciiuriiiriciieeicisee et saeees

Appendix E
Workflow Management Rules Language Statementscccuueeeeiniiuireeiniiieeinniiieeiniieecomiieecnmiseesmmsseesnnes E-1
Using the Workflow Management StateMENILSccvueuireiiriieriiesisesiiseissise s ssss s sss s sssss s sss e E-2

Process Start StAtEMENT. ...t
Process Suspend Statement

Process RESUME StATEIMENT....c.cciviirieeiceietictecteeeee ettt ettt et e et eteeteeveeseeseeseessessessessessessensessessensensensens

Vii

Process TermMINAte StATEIMENTt . .c.iciiieieriereetiereeeeeteeerteet et eeteetesteeseeteeseeteeseeseeseessessessessessensesensesseseeseeseeseens E-9

Process EVENt STATEMENT c.vciiiiieieicieiecieiseees ettt e st se et te s sesse et essesessesessesessessesesessesessesensans E-11
Appendix F

XML Rules Language Statements and FUNCLIONScouuiiiiiiiiiiiiiiiiiiiiiiiciiieciriecceiiee s cssssseesesenns F-1
XML OVEIVIEW «.vvrvveveviniaieresesitesesesesestesesesestsesesasessesesesesessesesssssssesesensssssesesensssesesesssssesesesesesesensesesessnssesesessssesesesasenns F-2
XML Data TYPES cocvuiviuiiiiiiisiiiisisi s bbb F-2

Using Stem. Tail XML Identifierscccouiiuiiiiiiniiiiiiiii s F-3

XML SEALCITIEIES 1.vuvrurarevereeesirteresesestesesesesessesesesesessesesesessssesesessssesesesensnsesesesessnsesesesensnsesesenssesesessssesesensssesesessnsesesesasenns F-4
TAENHIIET STALEIMENT 1.vtuiveieieiiieieieeiieteieet ettt ettt et b et et st ses s sesesasasesesesessseseesesessssnsesesasanens F-4
OPTIONS StALEIMENT..ucuiierereieririerereeiieteeeetteseseestsseseseststesesesasessssesessssesesessssesesesesessssesesesassersssssesesssesess F-5

XML ELEMENT SEALEMENT c.cuveteteieiriereriiierereeristesesesestesesesestssesesesessssesesessssesessssssesesessssssesesssssssssssseseses F-6

FOR EACH x IN XMIL_ELEMENT_OF 0 StatemMentcccceceeverererererererereisisisssissssssssssssssssssssssssnens F-8
XIMIL_OP StALEIMENL.vcuiuirevereeiirierereistesesesttetesesestsseseseseessesesestssesesessssssesesessssesesessssesesesesesssssseseseseserssseseses F-9
XML/Document Object Management FUNCHONSc..cueveeerierereeierireeseneseieneseesenesesesssessesssessesssessessssesesiees F-12
DOMDOCCREATE FUNCHOMN .c.cuiitiicieieinieieieiereteesete ettt ssssssssssssssssssssssssasssssasesesesesesesesesessssas F-13
DOMDOCLOADFTLE FUNCHON c.c.cuttititeieteieieteteieteveietetese s sssssssssssssssessssssssesesesesesesesesesesessssseseas F-14
DOMDOCLOAD XML FUNCHOMN 1.tvetettteteieieietsteietseiteteesesesssseseseseesesesssssesesessssssesesessssesessssssssesesessnns F-15
DOMDOCSAVEFILE FUNCHON .vctitiietiteieteteieiesesetetetetesstsssssssssssssssssssssssssssssesssesesssesesesesesesesesesssssensas F-16
DOMDOCGETROOT FUNCHON w.cuttrieteieieteteietereteteteietet st ssssssssssssssssssssssesesssesesesesesesesesssesesssssesns F-17
DOMDOCADDDPI FUNCHON «.ttvttivieeerecieicisieieteietetesesesesesesesesssssssssssssssssssssssssssssssssssasssssasesesesesesesessssssssas F-18
DOMNODEGETNAME FUNCHOMN 1.ttt et ssese s sesesesasssesesessssssessssssesesesanens F-19
DOMNODEGETTYPE FUNCHON w.cuctetiteieieteieteteieteteieietsts it sssssssssssssssss st s esssetesesesesesesesesesesesans F-20
DOMNODEGETVALUE FUNCHON w.vevetiieieteieieteieieisiitseisssssesesssssesisssisssssse et esesesesesesesesesssssssssssses F-21
DOMNODEGETCHILDCT FUNCHON c..evetiteieteieieisieiiiisesssesesssssesssssisssssse et sesesesesesesesesesesesesssssesaes F-22
DOMNODEGETFIRSTCHILD FUNCHON wo.tttiiiiiieesecesesesisisesis s sietese s sesesesesesssesesssssssssssses F-23
DOMNODEGETSIBLING FUNCHON c.c.cveteteieieteieieisiitsissesssesesssssesisssssssssse et sesesesesesesesesesssssessssssses F-24
DOMNODECREATECHILDELEMENT FUNCHON «..cvcvititiecicininieieieieieieie e sssnas F-25
DOMNODESETATTRIBUTE FUNCHONctcietiiiiiieesicisisesistseses sttt se e sesesesesesesesesesesesesesesaes F-26
DOMNODEGETCHILDELEMENTCT FUNCHON ...cuciteteieteieverereietereietetsiiesssisssssssssssssssssssnsnes F-27
DOMNODEGETFIRSTCHILDELEMENT FUNCHON. ...ccieeteteteteieteieietetsieiisissssss s ssssenas F-28
DOMNODEGETSIBLINGELEMENT FUNCHON ...cccoieteieieieieieteteteieieeeietsiisssssssssssssssssssssssssnsnes F-29
DOMNODEGETATTRIBUTECT FUNCHONciiieieceeieecicteesieteieie et sesesese s sesssssssssssssssssssssssnans F-30
DOMNODEGETATTRIBUTEI FUNCHON ..ottt seseseresessissesssss s ssssssssssssssnss F-31
DOMNODEGETATTRIBUTEBYNAME Function.... F-32
DOMNODEGETBYNAME Functioncccceeeeveveeeennnnn ... F-33

Using the XML Statements and FUNCHONS ... F-34
Reading from XML Documents and FIles. ... F-34

Creating XML Documents and FIles ... s F-35

Index

viii

Chapter 1

Overview

This chapter provides an overview of the configuration of the receivables management and
workflow management functionality of Oracle Ultilities Billing Component, including:

* Configuration Overview

¢ What is this book?

Overview 1-1

Configuration Overview

Configuration Overview

Configuring the receivables management and workflow management functionality of Oracle

Utilities Billing Component involves the following steps:

Receivables Management Configuration

Set up Oracle Utilities Receivables Component database records as described in Chapter 4:
Setting Up and Configuring the Oracle Utilities Receivables Component Database.

Set up and configure any rate schedules needed by Oracle Utilities Receivables Component
using the Oracle Utilities Rules Language, including the financial management statements
described in Appendix D: Financial Management Rules Language Statements.

Set up and configure reports to run as described in Chapter 10: Reports.

Set up and configure security for use with Oracle Utilities Receivables Component as
described in Chapter 11: Configuring Oracle Utilities Receivables Component Security.

Workflow Management Configuration

Set up and configure workflow management database records as described in Chapter 12:
Setting Up Workflow Management Database Tables.

Set up and configure activity implementations, processes, process versions, and process
activities using the workflow management user interface. See the Part Four: Workflow
Management in the Oracle Utilities Billing Component User’s Guide for more information.

Set up and configure any rate schedules needed by the workflow processes using the Oracle
Utilities Rules Language, including the workflow management statements described in
Appendix E: Workflow Management Rules Language Statements and XML statements
and functions described in Appendix F: XML Rules Language Statements and
Functions.

Set up and configure security for use with workflow management as described in Chapter 11:
Configuring Oracle Utilities Receivables Component Security.

1-2 Billing Component Installation and Configuration Guide, Volume 2

What is this book?

What is this book?

This book describes how to configure the receivables management and workflow management

functionality of Oracle Utilities Billing Component. Configuration of the billing and contract

management functionality of Oracle Ultilities Billing Component is described in Volume 1. This

book includes the following:

Chapter 1: Overview (this chapter) provides an overview of the configuration process for
the receivables management and workflow management functionality of Oracle Ultilities
Billing Component.

Chapter 2: Introduction to the Oracle Utilities Receivables Component provides an
overview of the receivables management functionality of Oracle Ultilities Billing Component.

Chapter 3: The Oracle Utilities Receivables Component Database describes the
database tables primarily used receivables management functionality of Oracle Utilities Billing
Component.

Chapter 4: Setting Up and Configuring the Oracle Utilities Receivables Component
Database describes how to set up database records used by Oracle Utilities Receivables
Component

Chapter 5: The Financial Engine describes the financial engine and core functions used by
Oracle Utilities Receivables Component.

Chapter 6: Billing describes the billing functions of Oracle Ultilities Receivables Component.

Chapter 7: Remittance describes the remittence (payment) functions of Oracle Utilities
Receivables Component.

Chapter 8: Maintenance describes the maintenance functions of Oracle Ultilities Receivables
Component.

Chapter 9: Collections describes the collections functions of Oracle Utilities Receivables
Component.

Chapter 10: Reports describes the collections functions of Oracle Utilities Receivables
Component.

Chapter 11: Configuring Oracle Utilities Receivables Component Security describes
how to configure security for use with the receivable management functionality of Oracle
Utilities Billing Component.

Chapter 12: Setting Up Workflow Management Database Tables describes how to set up
database records used by the workflow management functionality of Oracle Utilities Billing
Component.

Chapter 13: The Workflow Engine describes the workflow engine used by the workflow
management functionality of Oracle Utilities Billing Component.

Chapter 14: The Workflow Scheduler describes the workflow scheduler used by the
workflow management functionality of Oracle Utilities Billing Component.

Chapter 15: The Rules Language Engine describes the Rules Language engine used by the
workflow management functionality of Oracle Utilities Billing Component.

Chapter 16: Oracle Utilities Receivables Component Financial Engine Interface
describes the Financial Engine interface, used to invoke the basic receivables management
functions of Oracle Ultilities Receivables Component.

Chapter 17: Oracle Utilities Receivables Component Billing Interface describes the
Billing interface, used to invoke the billing functions of Oracle Utilities Receivables
Component.

Overview 1-3

What is this book?

Chapter 18: Oracle Utilities Receivables Component Remittance Interface describes
the Remittance interface, used to invoke the remittance/payment functions of Oracle Utlities
Receivables Component.

Chapter 19: Oracle Utilities Receivables Component Maintenance Interface describes
the Maintenance interface, used to invoke the maintenance functions of Oracle Utilities
Receivables Component.

Chapter 20: Oracle Utilities Receivables Component Collections Interface describes
the Collections interface, used to invoke the collections functions of Oracle Utilities
Receivables Component.

Chapter 21: Messaging Interface describes the Messaging interface, used to invoke the
messaging functions of Oracle Ultilities Receivables Component (including workflow
management).

Chapter 22: Workflow Management Activity Implementations Interface describes the
Activity Implementation interface, used to invoke workflow management activity processing
functions.

Chapter 23: Workflow Management Process Versions Interface describes the Process
Versions interface, used to invoke workflow management process and process version
functions.

Chapter 24: Workflow Management Process Instance Interface describes the Process
Instance interface, used to invoke workflow management processing functions.

Appendix A: Oracle Utilities Data Repository Receivables Component Database
Schema provides a database schema diagram of the tables in the Oracle Utilities Data
Repository used by the receivables management functionality of Oracle Ultilities Billing
Component.

Appendix B: Oracle Utilities Data Repository Workflow Management Database
Schema provides a database schema diagram of the tables in the Oracle Utilities Data
Repository used by the workflow management functionality of Oracle Utilities Billing
Component.

Appendix C: Messaging describes the messaging functions used by the receivables
management and workflow management functionality of Oracle Utilities Billing Component.

Appendix D: Financial Management Rules Language Statements describes Rules
Languages statements used by the receivables management functionality of Oracle Ultilities
Billing Component.

Appendix E: Workflow Management Rules Language Statements describes Rules
Languages statements used by the workflow management functionality of Oracle Utilities
Billing Component.

Appendix F: XML Rules Language Statements and Functions describes XML Rules
Language statements and functions used by the WorkFlow Manager application.

1-4 Billing Component Installation and Configuration Guide, Volume 2

Oracle Utilities Billing Component Glossary

Oracle Utilities Billing Component Glossary

This appendix contains a glossary of terms used in Oracle Utilities Billing Component and other
Oracle Ultilities product documentation.

Term

Definition

Available

An account is “available” for billing if it is “eligible” and if all data
required to compute its bill is available to Oracle Ultilities Billing
Component.

Bill Determinant

A value used to compute a customer bill (e.g., kWh). Also referred
to as billing determinant.

Billing Mode Flag

A value in the Oracle Utilities Data Repository -- assigned at the
account-, rate code-, ot rate-schedule level -- that determines how
an account is billed (Approval Required, Fully Automatic, or
Manual Start).

Bill Month

Revenue month; the accounting month that the income from a bill
is assigned to.

Channel

An element on an interval data recorder assigned to measure a
specific end use or other quantity of interest at a specific unit of
measure.

Channel Group

Any user-specified combination of interval data channels whose
data you want to total for billing or other purposes.

CIS Account

(Note: your company may or may not use CLS accounts.) In some
Customer Information Systems, all billing entities are identified by
an account ID—for example, customers, accounts, account service
locations, or others. Oracle Utilities Billing Component, on the
other hand, recognizes these entities as different levels of the
billing hierarchy, and assigns them different ids accordingly. This
makes it possible for Oracle Ultilities Billing Component to
calculate usage and charges for flexible grouping of entities. In
Oracle Ultilities Billing Component, the CIS Account Table is an
optional table that lets you “map” entities recognized by your CIS
system to entities recognized by Oracle Utilities Billing
Component.

Contract

A rate form that contains special Rules Language statement
specific to an account.

Cut

A data record containing interval values for one recorder channel,
for the period between read dates.

Eligible

An account is “eligible” for billing if today's date falls within a user-
defined number of days before and after the account's scheduled
meter read date.

Group

See Channel Group.

IPH

Intervals per hour; reciprocal of minutes per interval (MPI).

Interval Data

A series of values that represents a customet' demand (kW) or
other quantity measured on a periodic basis, such as every 5, 15,
30, or 60 minutes. Also referred to as /bad data ot time-series data.

MPI

Minutes per interval; reciprocal of intervals per hour (IPH).

Overview 1-5

Oracle Utilities Billing Component Glossary

Term

Definition

Override

A modification to the tariffs normally used to compute an
account's bill. An override might be long-term, such as an
“economic development discount,” or it might be short-term,
coinciding with a “special event” such as an interruption or
maintenance period.

Post-window

Number of days after an account's scheduled read date that Oracle
Utilities Billing Component's Automatic and Approval Required
modules continue scanning for the account's billing data in order
to bill it.

Pre-window

Number of days before an account's scheduled read date that
Oracle Utilities Billing Component's Automatic and Approval
Required modules begin scanning for the accounts billing data in
order to bill it.

Rate Form

The generic term applied to a contract, rate schedule, or rider.

Rate Schedule

The rate form that Oracle Utilities Billing Component uses to
compute the bill for an account; may include contracts and/ot
riders.

Read Date

Date that an account's meter is scheduled to be read. It is
determined by the billing cycle code assigned to the account.
Oracle Ultilities Billing Component stores the read date in the
Billing History record, to associate the bill with the correct billing
cycle.

Recorder

A device used to capture and store interval data. The data is
retrieved either manually or by telecommunications means.

Rider

A set of Rules Language statements that can be included in another
rate form, avoiding the necessity of having to re-create often-used
sets of statements.

Special Events

An event which causes alternative charges (overrides) to be applied
to an account's bill. In Oracle Utilities Billing Component, the
terms special events and overrides are used somewhat interchangeably.

Tariff Rider A tariff rider that a billing analyst or other user has explicitly
attached to an account via the Account Rider History Table.
UOM Unit of Measure.

1-6 Billing Component Installation and Configuration Guide, Volume 2

Part One

Receivables Management Configuration

Part One describes configuration of the receivables management functionality of Oracle Ultilities

Billing Component (also known as Oracle Utilities Receivables Component), and contains the

following chapters:

Chapter 2: Introduction to the Oracle Utilities Receivables Component
Chapter 3: The Oracle Utilities Receivables Component Database

Chapter 4: Setting Up and Configuring the Oracle Utilities Receivables Component
Database

Chapter 5: The Financial Engine
Chapter 6: Billing

Chapter 7: Remittance

Chapter 8: Maintenance

Chapter 9: Collections

Chapter 10: Reports

Chapter 11: Configuring Oracle Utilities Receivables Component Security

Chapter 2

Introduction to the Oracle Utilities Receivables
Component

This chapter provides an overview of Oracle Utilities Receivables Component. This includes:
* What the Oracle Utilities Receivables Component Does

* The Financial Engine and the Financial Management Modules

Introduction to the Oracle Utilities Receivables Component 2-1

What the Oracle Utilities Receivables Component Does

What the Oracle Utilities Receivables Component Does

The Oracle Utilities Receivables Component performs a number of financial management and
accounts receivable functions, allowing users to process billing, remittance, adjustments, transfers,
writeoffs, refunds, and collections transactions.

At the core of Oracle Utilities Receivables Component is the Financial Engine, which is primarily
responsible for credit application and journaling. Transactions processed by the Financial Engine
come from a number of modules, each specific to a financial management area. These modules are
described in more detail in The Financial Engine and the Financial Management Modules
below.

The Oracle Utilities Receivables Component also provides interfaces for other systems, including
the Oracle Utilities Receivables Component User Interface, batch processes, an Event
Management System (EMS)/Enterprise Application Integration (EAI) systems, a Web Server, and
other Oracle Utilities products, such as Oracle Utilities Billing Component or the Oracle Utilities
Load Profiling and Settlement. These can trigger functions in one or more of the financial
management modules, which in turn trigger the Financial Engine. See Part Three: Receivables
Management Interfaces for more information about the Oracle Utilities Receivables
Component interfaces.

The Oracle Utilities Receivables Component Database

The transactions processed by the financial management modules are recorded in a set of database
tables in the Oracle Utilities Data Repository. These tables store the specific account data,
transaction data, and journaling data. The database tables used by Oracle Utilities Receivables
Component are described in Chapter 3: The Oracle Utilities Receivables Component
Database.

The Oracle Utilities Receivables Component Messaging System

The Oracle Utilities Receivables Component includes a messaging system, designed to support
external interfacing, control activities, work queues, and internal messages (such as collections
processing). The Oracle Utilities Receivables Component Messaging System is described in
Appendix C: Messaging.

How the Oracle Utilities Receivables Component Is Used

As noted above, the Oracle Utilities Receivables Component allows users to process billing,
remittance, adjustments, transfers, writeoffs, refunds, and other financial transactions.

Several of the Oracle Utilities Receivables Component functions operate ‘behind the scenes’,
meaning that the functions are triggered automatically when certain operations are performed by
external systems interfaced with the Financial Engine through one of the Oracle Utilities
Receivables Component modules. For instance, when a charge or credit transaction is posted from
a billing or remittance system, the Financial Engine creates a record in the Transaction Table in the
Oracle Utilities Data Repository. Depending on the specifics of that transaction, it then creates an
appropriate journal transaction record in another table that is later rolled up into a subledger
account. See Chapter 5: The Financial Engine for more information about how the AR Engine
processes transactions.

Several Oracle Utilities Receivables Component functions can be performed through the Oracle
Utilities Billing Component user interface, a web-enabled interface that allows users to process
adjustments, write-offs, refunds, and other functions (see the Oracle Utilities Billing Component User’s
Guide for more information).

2-2 Billing Component Installation and Configuration Guide, Volume 2

The Financial Engine and the Financial Management Modules

The Financial Engine and the Financial Management Modules

This section describes the Financial Engine and the modules that comprise the Oracle Ultilities
Receivables Component. Each is further described in later chapters.

The Financial Engine

Billing

Remittance

Maintenance

The Financial Engine is the central component in the Oracle Utilities Receivables Component.
Refer to Chapter 5: The Financial Engine for more information about how the Financial
Engine processes transactions, performs credit application, and performs journaling.

The Billing module provides functions to post service charges, budget bill charges, and installment
charges. Refer to Chapter 6: Billing for more information.

The Remittance modules provides interfaces to receive payments from multiple sources (lockbox,
direct debit, and credit cards). During the payment processing, the Remittance module performs
validations and exception handling for each payment, generating work queue items for unpostable
payments. Refer to Chapter 7: Remittance for more information.

The Maintenance module allows users to perform various maintenance operations on accounts,
including transfers, adjustments, refunds and write-offs. Each of these is described in more detail
below. Refer to Chapter 8: Maintenance for more information. Most of the Maintenance
module functions can be performed using the Oracle Utilities Receivables Component user
interface, or from external systems connected to Oracle Utilities Receivables Component through
an interface.

Transfers

The Transfers functions are used to transfer payments from one account to another. When a
transfer is processed, the Transfers module triggers the transfer function in the Financial Engine,
cancelling the transaction on the old (transferred from) account and creating a new transaction for
the new (transferred to) account. The specific steps performed by the Financial Engine when
processing a transfer are described in Chapter 5: The Financial Engine.

Adjustments

Refunds

Companies sometimes need to make account adjustments to charge or credit customers for non-
recurring events, including marketing incentive programs, concession credits, or billing errors that
could not be corrected through cancellation and rebilling. The Adjustments functions encompass
the financial and customer account management actions necessary to post adjustments to
customer accounts.

The Refunds functions are used to post and cancel refund transactions against an account, as well
as update the status of refunds in the system.

Write-Offs

The Write-Offs module is used to write off accounts that are deemed uncollectible. When a write-
off is processed for a given account, any outstanding charges for that account are cancelled
through the Financial Engine.

Introduction to the Oracle Utilities Receivables Component 2-3

The Financial Engine and the Financial Management Modules

Reports

Oracle Utilities Receivables Component also provides the capability to produce a number of
reports related to various types of activities performed by Oracle Ultilities Receivables Component,
including payment posting, issuance of refunds, account balances, accounts receivable aging, and
general ledger activity. Refer to Chapter 10: Reports for more information.

Collections

Collections encompasses the actions required to collect outstanding receivables. The Collections

module enables identification of delinquent accounts and tracking of the collection arrangements
and exemptions, as well as performing collections processing. Refer to Chapter 9: Collections for
mote information.

The Oracle Utilities Receivables Component User Interface

As noted earlier, a number of the Oracle Utilities Receivables Component functions can be
performed through the Oracle Utilities Receivables Component user interface. This application is
a web-based application used to perform system configuration, access business rule definition
information, and access account, transaction, ledger and journal, and payment and collections data
and functionality. It is also used to perform various financial transactions, including adjustments,
write-offs, and transfers, as well as managing work queues. The Oracle Utilities Billing Component

User’s Guide contains more information concerning the user interface.

2-4 Billing Component Installation and Configuration Guide, Volume 2

Chapter 3

The Oracle Utilities Receivables Component
Database

This chapter provides an overview and descriptions of several of the database tables in the Oracle
Utilities Data Repository that are used by the Oracle Utilities Receivables Component. The tables
described in this chapter relate to the core of most of the functions of Oracle Ultilities Receivables
Component and the Financial Engine. Other tables used by specific modules, such as Billing,
Remittance, etc., are described in later chapters.

The Oracle Utilities Receivables Component Database 3-1

Account Data

Account Data

Account data is data that defines specific accounts and how transactions related to specific
accounts are processed by Oracle Utilities Receivables Component and the Financial Engine.

Account Table

The Account Table stores information about individual accounts. An account is the smallest
billable entity in the system. Account entities typically are the root of virtually all activity in the
system. An account receives a single bill statement from its billing operating company per billing
period. Specific information relating to the Oracle Ultilities Receivables Component stored in the
Account Table includes:

* The Account’s Billing Address (from the Address Table), and
* Region (the region associated with the account, from the Region Table).

* Currency (the currency associated with the account, from the LS Currency table).

Account FME Table

Note

The Account FME Table stores information about individual accounts that is maintained by the
Oracle Utilities Receivables Component. Specific information relating to the Oracle Ultilities
Receivables Component stored in the Account FME Table includes:

* Unique ID of the Account,
* Last Balance Time (the date and time the account was last balanced),

* Last Account Balance (the account’s balance as of the last balance time. When the account is
balanced, the amount in the Activity field is added to the Balance field.),

* New Activity (the sum of the financial activity for the account since the account was last
balanced),

* Transferred To Account (applicable if the account balance has been transferred to another
account),

* Receivable Status (CURRENT, PAST DUE, COLLECTIONS, UNCOLLECTIBLE, or
UNREFUNDABLE),

* Write-Off Reason (from the Write-Off Reason Table. This field is applicable only if the
Receivable Status is “UNCOLLECTIBLE” or “UNREFUNDABLE”. Otherwise this should
be NULL)

* Last Transaction Number (the last transaction number used by the account. This is linked to
the most recent Transaction number in the Transaction Table; see below), and

* Allow Refund (a flag that indicates if automatic refunds are allowed for the account).

Values in the Last Balance, Last Balance Time, New Activity, and Last Transaction No. columns
should be created only by the Financial Engine, and should not be inserted or updated manually.

Auto Payment Plan Table

Records in the Auto Payment Plan Table represent automatic payment plans for a given account
for a specified time period. The existence of a current automatic payment plan for an account
triggers an automatic draft of the specified automatic payment vendor account when the account
is billed. More information concerning automatic payments can be found in Chapter 7:
Remittance.

3-2 Billing Component Installation and Configuration Guide, Volume 2

Account Data

Write-Off Reason Table

The Write-Off Reason Table stores reasons for writing off an account, such as “Sold”,
“Deceased”, “Bankrupt”, or “Bad Debt”. This is a lookup table used by the Account Table. If the
“Write-Off Reason” column in the Account Table is populated, the Account’s Receivable Status
should be “UNCOLLECTIBLE” or “UNREFUNDABLE”.

Location Tables

Location tables store information about the physical location of accounts and services. These
include the Address, Premise, and Region tables.

Address Table

The Address Table stores physical address information. Records in this table are used in the
Premise Table.

Premise Table
The Premise Table stores the physical location of service. This is typically a building, or a location
within a building.

Region Table

The Region Table stores additional geographical attributes that are optionally used by accounts.

Service Tables

The Service tables describe the types of services provided to accounts, and the relationships
among accounts, services, and locations.

Service Type Table
The Service Type Table is used to define all service-oriented businesses or commodities provided

by the client operating company. Typical service types might include “Electric”, “Gas”, or
“Cable”.

Service Plan Table
The Service Plan Table associates an account with a service type. An account may have several
services active at any one time.

Budget Tables

The Budget tables store data related to budget types and budget plans used by accounts.

Budget Type
Records in the Budget Type Table represent specific types of budget plans recognized by the
application. The application uses budget types to determine how true-ups should be handled.

Budget Plan

Records in the Budget Plan Table indicate that a given account is on a particular budget plan for a
specific time period.

The Oracle Utilities Receivables Component Database 3-3

Account Data

Meter Tables

The Meter tables store usage data for scalar meters and the relationships between meters and
accounts.

Meter Table

Records in the Meter Table represent scalar meters in the system.

Meter Read Table

Records in the Meter Read Table represent readings for a meter.

Meter History Table
Records in the Meter History Table represent snapshots of a meter’s use and related information.
The Meter History Table associates meters with accounts.

3-4 Billing Component Installation and Configuration Guide, Volume 2

Transaction Data

Transaction Data

Transaction data is at the heart of the functionality of the Oracle Utilities Receivables Component
and the Financial Engine. The following tables contain data concerning transactions and how

those transactions are processed by the Financial Engine.

Note

Records in the Transaction and Credit Application Tables should be created only by the Financial

Engine.

Transaction ID Table

The Transaction ID Table is used to configure different adjustment transaction types, refund

transaction types, etc. This table is configurable and can accommodate various financial

transaction IDs based on specific requirements. At least one Transaction ID is required for each

Transaction Type (see Transaction Type Table, below).

Transaction Type Table

Records in the Transaction Type Table represent different types of financial transactions

recognized by the application, including the following:

Transaction Type Code
Charge or Credit CHRGCRDT
Tax TAX
Installment INST
Statement STMT

Bill BILL
Payment PAYMENT
Deposit DEPOSIT
Deposit Interest DEPINT
Deposit Application DEPAPP
Adjustment AD]J
Refund RFND
Write-Off WRTOFF
Balance Transfer BALTXFR

The following transaction types have been effectively replaced by the Charge or Credit
(CHRGCRDT) transaction type, but ate still available for users of previous versions of Oracle

Utilities Receivables Component.

Transaction Type Code

Service Charge SRVCHG
Deferred Service Chatge DEFSRVCHG
Budget Service Charge BDGTSRVCHG
Budget Bill Charge BDGTCHG

The Oracle Utilities Receivables Component Database 3-5

Transaction Data

Transaction Type Code
Budget Bill True-up BDGTTRP
Installment Charge INSTCHG

Note: While additional Transaction Types can be added to the Transaction
Type Table, types on the list provided should NOT be deleted.

LSTransaction Table
Records in the LSTransaction Table represent financial transactions for an account. Each

transaction represents a single unit of work that occurs at a point in time and that may be cancelled
as a whole.

Some of the specific data stored in the LSTransaction Table includes:

Unique ID for the transaction,

Account ID (the parent account of the transaction),

Transaction Number (unique number for the transaction within the account),

Transaction ID and Type, and Time,

Revenue Month (the month to which any revenue associated with the transaction applies),
User ID (user identification associated with the transaction),

Application Method (indicates the credit application method)

Debit and Credit Account ID (optional debit and credit journal account IDs associated with
this transaction),

Cost Center ID (optional cost center ID associated with this transaction),

Cancel Time, Cancel Revenue Month, Cancel User 1D, Cancel Reason, Cancel Note , Cancel
Debit Account ID, Cancel Credit Account ID, and Cancel Cost Center ID (time, revenue
month, user ID, reason for the cancellation of the transaction, an optional note, optional
debit/credit accounts, and cost center associated with the cancellation of the transaction),

Charge or Credit (whether the transaction is a charge or credit),

Amount (the amount of the transaction, including the currency code for the transaction. In
the case of a consumption charge, the amount is the amount of consumption),

Balance (outstanding balance of charge or credit, including the currency code for the balance.
The Balance is NULL if the amount does not affect the balance of the account, such as in the
case of consumption charges, and deferred or budget service charges),

Billed Or Paid Date (date the charge was billed or credit paid),

Due Date (data that payment for a charge is due),

Receivable Type (from the Receivable Type Table; see below),

Charge Type (from the Charge Type Table; see below),

Rate Form, Rate Code, Operating Company, and Jurisdiction,

Statement Date (optional date of statement associated with the transaction),

Invoice ID and Date (optional ID and date of invoice associated with the transaction),
Cancel Statement Date (optional date of statement associated with cancelling the transaction),

Cancel Invoice ID and Cancel Invoice Date (optional ID and date of invoice associated with
cancelling the transaction),

Bill Cycle Date (optional date of bill cycle associated with the transaction),

3-6 Billing Component Installation and Configuration Guide, Volume 2

Transaction Data

* Unique ID of associated Bill History Record (from the Bill History Table),

* Unique ID of the subaccount from which the transaction originated (from the Account

Table),

* Transferred To Transaction/Transferred From Transaction (for transactions that have been
transferred from one account to another),

* Payment, Setvice Plan, Budget Plan (associated Payment, Service/Budget Plan records),

* Installment Plan (installment plan associated with deferred charge or installment
transactions),

* Deposit (unique ID of deposit associated with Deposit, Deposit Interest, Deposit
Application, or Installment transactions),

* Unique ID of batch in which the transaction was posted (from Batch Transaction table), and

* Unique ID of the batch in which the transaction was cancelled (from the Batch Transaction
table).

Batch Transaction Table
Records in this table represent a batch of transactions, each of which contains one or more
transactions on multiple accounts. Data stored in the Batch Payment Table includes:

* A unique ID for the batch transaction,

* Transaction File (a unique pathname of the transaction file that includes this batch),
* Batch No (unique number that identifies the batch within the transaction file),

* Date (the date on which the batch was received),

* Number of Transactions (the total number of transactions in the batch),

* Amount (the total amount of the batch transaction, including the currency code for the
transactions), and

* Cancel Time (the date/time at which the batch was cancelled).

Cancel Reason Table
Records in the Cancel Reason Table represent types of reasons for which a transaction might be
cancelled.

Receivable Type Table
Records in the Receivable Type Table represent types of receivables to which a financial
transaction amount might apply. Typical receivable types might include “Disco Electric” or “State
Tax”. Payments on an account are applied to receivable types based on the application priority of
the receivable type (see the description of the Application Priority Table below). Each charge
type (see below) is associated with one receivable type, but a given receivable type might be
associated with more than one charge type.

Charge Type Table
Records in the Charge Type Table represent types of detailed charges generated during bill
calculation. Charge types are defined to roll up to a receivable type when charges are posted as
financial transactions.

Though most chatge types are financial charges, tecords in the Charge Type Table can also
represent consumption charges; that is, charges that are based on consumption rather than dollars.
This is handled through the “Consumption?” and “Unit of Measure (UOM)” columns on the
Charge Type Table. If the “Consumption?” value is “Yes”, the UOM column indicates the specific
unit of measure for the consumption charge.

The Oracle Utilities Receivables Component Database 3-7

Transaction Data

Credit Application Table
Each record in the Credit Application Table represents an application of a credit. The rules for
how credits are applied to charges ate detailed in Chapter 5: The Financial Engine.

Application Priority Table
Records in the Application Priority Table indicate the application priority of the associated
receivable type. When credits are applied to charges with the same bill date, they will be applied in
order of the application priority of the receivable type of any outstanding charges. The highest
priority is 1. Receivable types with the same priority will be applied in the order in which they are
retrieved from the database (by age, and then by transaction number). The Ignore Age field is used
to specify whether age should be factored first in the application of credits. The default for this
field is NULL, which means that all charges are ordered by age. Any receivable types without a
corresponding application priority record will be applied last. More information concerning how
the Application Priority Table interacts with the Financial Engine can be found in Chapter 5: The
Financial Engine.

3-8 Billing Component Installation and Configuration Guide, Volume 2

Journaling Data

Journaling Data

Journaling data defines how transactions are journaled both at the sub-ledger level and the general
ledger level.

Note
Records in the Journal Transaction and Subledger Account tables should be created only by the
Financial Engine.

Cost Center Table

Records in the Cost Center Table represent cost centers used by the ledger.

Cost Center Translation Table
The Cost Center Translation Table associates a market/tax jurisdiction (tepresented by Operating
Company and Jurisdiction) combination with a cost center.

Journal Account Table
Records in the Journal Account Table represent journal accounts used by the ledger, including:

* Currency (the currency associated with the journal account, from the LS Currency table).

Journal Translation Table
The Journal Translation Table is used to indicate how transactions and credit applications are
journaled for the sub-ledger. A single transaction or credit application may have zero or two
journal entries associated with it.

Specific information stored in the Journal Translation Table includes:

* Translation Type (the type of record (‘I for TRANSACTION, ‘A’ for
CREDITAPPLICATION) the translation represents),

* Transaction ID (associated transaction 1D),

* Charge or Credit (whether the translation is for a charge (‘CH’) or credit (‘CR’) type
transaction),

* Receivable Type and Charge Type (associated Receivable and Charge type),

* Operating Company, Jurisdiction, Region, Revenue Code (based on the account associated
with the transaction),

* Rate Form and Rate Code (based on the transaction being journaled),
* Payment Method (associated payment method related to the transaction),
* Debit Account ID (associated journal account ID to be charged), and

* Credit Account ID (associated journal account ID to be credited).

The Oracle Utilities Receivables Component Database 3-9

Journaling Data

Journal Transaction Table
Records in the Journal Transaction Table represent journal entries for the ledger associated with
financial transactions. The Journal Transaction Table is not explicitly related to the financial
transaction tables so that it may be implemented in a separate database.

Specific information stored in the Journal Transaction Table includes:

Account ID,

Transaction No. (transaction number of related transaction),

Cancel Flag (indicates whether the related transaction was cancelled or posted (Yes/No)),
Credit Application No. (the credit application number of the related transaction),
Transaction Time (time of the associated transaction)

Subledger Account ID (associated subledger account for the transaction, from the Journal
Account Table)

Cost Center (the cost center to which the transaction amount applies)
Revenue Month (the month to which any associated revenue is applied)
Debit or Credit (whether the transaction is a debit or credit)

Amount (amount of the journal entry)

Rolled Up Date (the date the transaction was rolled up to the appropriate subledger account).

Subledger Account Table

The Subledger Account Table maintains financial account balances for all sub-ledger accounts

necessary to maintain the CIS database. The balances of the accounts in this table are updated

from the Journal Transaction Table at scheduled intervals. The accounts in this table may be

rolled up to accounts in the general ledger for the entire company at scheduled intervals.

Specific information stored in the Subledger Account Table includes:

Subledger Account ID

Cost Center (cost center to which the balance applies)

Revenue Month (revenue month to which the balance applies)

Balance (balance for the account for the indicated revenue month)

Balance Time (time of the balance for the account)

Balance to GL (amount of the balance that has been rolled up to the General Ledger)

Closed Date (the date when the associated revenue month for this account was closed. A Null
value indicates that the revenue month is still open).

3-10 Billing Component Installation and Configuration Guide, Volume 2

Chapter 4

Setting Up and Configuring the Oracle Utilities
Receivables Component Database

This chapter describes how to set up and configure the Oracle Utilities Data Repository used by
the Oracle Ultilities Receivables Component, including how to set up the necessary data in the

Oracle Utilities Data Repository, and how to configure specific tables in the database to properly
process transactions.

Setting Up and Configuring the Oracle Utilities Receivables Component Database 4-1

Setting up the Oracle Utilities Receivables Component Database

Setting up the Oracle Utilities Receivables Component Database

In order for Oracle Utilities Receivables Component to function propetly, the Oracle Utilities
Data Repository must contain specific types of data that is used by the Oracle Ultilities applications
when calculating charges and processing different types of financial transactions. These types of
data are stored in four primary types of tables in the Oracle Utilities Data Repository, including:

* Lookup Tables

¢ Customer/Account Tables
* Usage Data Tables

* Translation Tables

Tables corresponding to each of these types are described below. More information about the
tables described in this chapter can be found in previous chapters of this manual.

Lookup Tables

Lookup tables contain data that is used by other tables in the Oracle Utilities Data Repository.
This includes data such as operating companies, jurisdictions, addresses, and other information
that is referred to by other tables in the database.

Populating Lookup Tables
Lookup tables should be the first tables populated, since most of the other data makes use of one
or more lookup records. Lookup tables are populated through use of either the PLIMPORT
command line program or the Data Manager Import Utdlity. Refer to the Data Manager User's Guide
for more information about using these tools.

Individual Lookup Tables
Below are brief descriptions of the lookup tables used by Oracle Utilities Receivables Component.
In addition to providing a general description of the data stored in each table, any specific issues
related to records in the table are listed as well.

The following list does not include all the lookup tables in the Oracle Utilities Data Repository. It
only lists those specifically used by Oracle Utilities Receivables Component.

Address Table
The Address Table stores physical address information. Records in this table are used in the
Premise Table.

Budget Type Table
Records in the Budget Type Table represent specific types of budget plans recognized by the
application. The application uses budget types to determine how true-ups should be handled.

Cancel Reason Table
Records in the Cancel Reason Table represent types of reasons for which a transaction might be
cancelled.

Charge Type Table
Records in the Charge Type Table represent types of detailed charges generated during bill
calculation. Charge types are defined to roll up to a receivable type when charges are posted as
financial transactions.

Note: The Charge Type Table includes data from both the Units of Measure
Table and the Receivable Type Table. Be sure that both of these tables are
populated before populating the Charge Type Table.

4-2 Billing Component Installation and Configuration Guide, Volume 2

Setting up the Oracle Utilities Receivables Component Database

Though most chatge types are financial chatrges, records in the Charge Type Table can also

represent consumption charges; that is, charges that are based on consumption rather than dollars.
This is handled through the “Consumption?” and “Unit of Measure (UOM)” columns on the
Charge Type Table. If the “Consumption?” value is “Yes”, the UOM column indicates the specific
unit of measure for the consumption charge.

Cost Center Table

Records in the Cost Center Table represent cost centers used by the ledger.

Journal Account Table
Records in the Journal Account Table represent journal accounts used by the ledger.

LSCurrency Table
Records in the LSCurrency Table represent the available currency types. The LSCurrency table has

three columns:

Meter Table

Currency Code: Indicates the three-letter ISO 4217 code to be used. If the currency symbol
is not specified in the Currency Format column, the three-letter currency code is used to
format monetary values. For example, if CURRENCYCODE is set as USD, the positive
values are displayed as “12.34 USD” and negative values are displayed as “(12.34 USD)”.

Currency Format: Used to format currency output values. This column contains an XML
string containing the formatting information for currency. The format of the string is as
follows:

<currency [NumDigits=’Integer with max value 9’] [LeadingZero='Integer’]
[Grouping=’Integer’] [DecimalSep=’'String’] [ThousandSep=’String’]
[NegativeOrder='Integer’] [PositiveOrder='Integer’]
[CurrencySymbol=’String’] />

Attribute Descriptions:

* NumbDigits: An integer that specifies the number of decimal digits to display.

* LeadingZero: Specifies whether or not to use leading zeros in decimal fields.

* Grouping: Specifies the size of each group of digits to the left of the decimal separator.
Values in the range of 0 - 9 and 32 are valid. For example, grouping by thousands is
indicated by 3.

* DecimalSep: The character used as the decimal separator.

* ThousandSep: The character used as the thousands separator.
* NegativeOrder: Specifies the negative currency mode.

* PositiveOrder: Specifies the positive currency mode.

* Currency Symbol: String indicating the currency symbol for the currency. For example,
the currency symbol for US Dollars is “$”

All attributes are optional. If an attribute is not set, the value for the attribute is taken from
the Windows Regional Settings. If the Currency Symbol is not set, the Currency Code is used
for formatting. In this case, Positive/Negative order parameters set will not have any effect.

Is Default: A flag that indicates if the cutrency is the default for the database. If there are
more than one record in the LSCurrency table, one must be set as the default.

Records in the Meter Table represent scalar meters in the system.

Setting Up and Configuring the Oracle Utilities Receivables Component Database 4-3

Setting up the Oracle Utilities Receivables Component Database

Premise Table
The Premise Table stores the physical location of service. This is typically a building, or a location
within a building.

Note: The Premise Table includes data from the Address Table. Be sure that
the Address Table is populated before populating the Premise Table.

Payment Method Table
Records in the Payment Method Table represent the different payment methods (Check, Visa,
Ditect Debit) for payments coming into the system, including automatic payments.

Note: The Payment Method Table includes data from the Payment Soutce
Table. Be sure that the Payment Source Table is populated before populating
the Payment Method Table.

Payment Source Table
Records in the Payment Source Table represent the source of payments coming into the system,
including automatic payments. This represents the vendor from whom the payment was sent, such
as Chase, Lockbox, etc.

Receivable Type Table
Records in the Receivable Type Table represent types of receivables to which a financial
transaction amount might apply. Typical receivable types might include “Disco Electric” or “State
Tax”. Payments on an account are applied to receivable types based on the application priority of
the receivable type (see the description of the Application Priority Table below). Each charge
type (see below) is associated with one receivable type, but a given receivable type might be
associated with more than one charge type.

Service Type Table
The Service Type Table is used to define all service-oriented businesses or commodities provided
by the client operating company. Typical setvice types might include “Electric”, “Gas”, or
“Cable”.

Transaction ID Table
The Transaction ID Table is used to configure different adjustment transaction types, refund
transaction types, etc. This table is configurable and can accommodate various financial
transaction IDs as needed based on specific requirements. At least one Transaction ID is required
for each Transaction Type (see Transaction Type Table, below).

Note: The Transaction ID Table includes data from the Transaction Type
Table. Be sure that the Transaction Type Table is populated before populating
the Transaction ID Table.

Transaction Type Table
Records in the Transaction Type Table represent different types of financial transactions
recognized by the application, including the following:

Transaction Type Code

Charge or Credit CHRGCRDT
Tax TAX
Installment INST
Statement STMT

Bill BILL
Payment PAYMENT

4-4 Billing Component Installation and Configuration Guide, Volume 2

Setting up the Oracle Utilities Receivables Component Database

Transaction Type Code
Deposit DEPOSIT
Deposit Interest DEPINT
Deposit Application DEPAPP
Adjustment AD]J
Refund RFND
Write-Off WRTOFF
Balance Transfer BALTXFR

The following transaction types have been effectively replaced by the Charge or Credit
(CHRGCRDT) transaction type, but are still available for users of previous versions of Oracle
Utilities Receivables Component.

Transaction Type Code

Service Charge SRVCHG
Deferred Service Charge DEFSRVCHG
Budget Setvice Chatge BDGTSRVCHG
Budget Bill Charge BDGTCHG
Budget Bill True-up BDGTTRP
Installment Charge INSTCHG

Note: While additional Transaction Types can be added to the Transaction
Type Table, types on the list provided should NOT be deleted.

Write-Off Reason Table
The Write-Off Reason Table stores reasons for writing off an account, such as “Sold”,
“Deceased”, “Bankrupt”, or “Bad Debt”. This is a lookup table used by the Account Table. If the
“Write-Off Reason” column in the Account Table is populated, the Account’s Receivable Status
should be “UNCOLLECTIBLE”.

Customer/Account Tables

Customer/Account data is data that defines specific customers and accounts and how transactions
related to them are processed by Oracle Utilities Receivables Component and the Financial
Engine.

Populating Customer/Account Tables
Customet/Account tables should be populated after lookup tables, since many of them use of one
or mote lookup records. Customer/Account tables ate populated through use of either the
PLIMPORT command line program ot the Data Manager Import Utility. Refer to the Data
Manager User's Guide for more information about using these tools.

Individual Customer/Account Tables
Below ate brief descriptions of the Customer/Account tables used by Oracle Utdlities Receivables
Component. In addition to providing a general description of the data stored in each table, any
specific issues related to records in the table are listed as well.

Setting Up and Configuring the Oracle Utilities Receivables Component Database 4-5

Setting up the Oracle Utilities Receivables Component Database

The following list does not include all the customet/account-related tables in the Oracle Utlities
Data Repository. It only lists those specifically used by Oracle Ultilities Receivables Component.

Customer Table
The Customer Table stores information about customers. Customers are the parent records of
accounts in the Oracle Utilities Data Repository. Each account is associated to a single customer,
though a customer can be associated with more than one account.

Account Table
The Account Table stores information about individual accounts. An account is the smallest
billable entity in the system. Account entities typically are the root of virtually all activity in the
system. An account receives a single bill statement from its billing operating company per billing

period.

Setting Up the Default and Master/Summary Accounts: In addition to individual accounts in
the database, there are two specific types of accounts that need to be set up: the Default Account
and Master/Summary Accounts.

* Setting Up the Default Account: The Default Account is an account that acts as a catch-all
account for payment transactions that are unable to be posted to the proper account. When a
payment can’t be posted to the cotrect account, Oracle Utilities Receivables Component
posts it to the Default Account, so it can later be identified and posted to the proper account.
When setting up the Default Account, it’s a good idea to use an easily identifiable ID (such as
999999).

* Setting Up Master/Summary Accounts: Master/Summary accounts have a relationship to
their subordinate accounts that is similar to the relationship between customers and accounts.
They are the accounts that are billed for activity and charges of their subordinate accounts.
Master/Summary accounts are identified through association to specific Rate Codes in the
Rate Code History Table. See Chapter Three: Billing Rules and Definitions in the Oracle
Utilities Billing Component User’s Guide for more information.

Account FME Table
The Account FME Table stores information about individual accounts that is maintained by the
Oracle Utilities Receivables Component.

Important Note: Values in the Last Balance, Last Balance Time, New Activity,
and Last Transaction No. columns should be created only by the Financial
Engine, and should not be inserted through other means.

Auto Payment Plan Table
Records in the Auto Payment Plan Table represent automatic payment plans for a given account
for a specified time period. The existence of a current automatic payment plan for an account
triggers an automatic draft of the specified automatic payment vendor account when the account
is billed. More information concerning automatic payments can be found in Chapter Five:
Remittance.

Budget Plan Table

Records in the Budget Plan Table indicate that a given account is on a particular budget plan for a
specific time period.

Service Plan Table
The Service Plan Table associates an account with a service type. An account may have several
services active at any one time.

Note: The Auto Payment Plan, Budget Plan, and Service Plan tables includes
data from the Account Table. Be sure that the Account Table is populated
before populating these tables.

4-6 Billing Component Installation and Configuration Guide, Volume 2

Setting up the Oracle Utilities Receivables Component Database

Usage Data Tables

Usage Data tables store usage data for the individual accounts in the system. This includes data
such as kWh readings (in the Bill History Table), meter readings, and other data.

Populating Usage Data Tables
Usage tables are populated on a regular basis, as the usage data is collected by the client. Nearly all
usage records rely on both lookup data as well as customer/account data. Like other tables in the
database, usage tables are populated through use of cither the PLIMPORT command line
program or the Data Manager Import Utility. Refer to the Batch Executables Guide and the Data
Manager User's Guide for more information about using these tools.

Individual Usage Data Tables
Below are brief descriptions of the usage tables used by Oracle Utilities Receivables Component.
In addition to providing a general description of the data stored in each table, any specific issues
related to records in the table are listed as well.

Note that this does not include all the usage tables in the Oracle Utilities Data Repository. It only
lists those specifically used by Oracle Utilities Receivables Component.

Bill History Table
The Bill History and Bill History Value tables store account usage data for specified bill periods.

Meter Read Table

Records in the Meter Read Table represent readings for a meter.

Meter History Table
Records in the Meter History Table represent snapshots of the a given metet’s use and related
information. The Meter History Table associates meters with accounts and/or setvice plans.

Meter History records should be associated with either an Account or a Service Plan, but not
both.

Interval Data
Interval data is time-series data used to record usage (among other values) for a given
recorder,channel. This data can be used by Oracle Ultilities Billing Component to calculate billing
determinants, which are in turn used in bill calculations. If you use interval data to calculate billing
determinants, you need to supply interval data as well.

Translation Tables

Translation tables are tables in the Oracle Ultilities Data Repository that are used to determine how
records in other tables are processed by Oracle Ultilities Receivables Component. This includes
which cost centers (from the Cost Center Table) and journal accounts (from the Journal Account
Table) specific transactions should be applied to, as well as how credits should be applied to
charges.

Populating Translation Tables
Translation tables should be populated when Oracle Utilities Receivables Component is first
installed and implemented, and only changed or updated as needed. Translation records rely on
several types of lookup data and customer/account data. Like other tables, the translation tables
can be populated through use of either the PLIMPORT command line program or the Data
Manager Import Utility.

Setting Up and Configuring the Oracle Utilities Receivables Component Database 4-7

Setting up the Oracle Utilities Receivables Component Database

Individual Translation Tables
Below are brief descriptions of the translation tables used by Oracle Ultilities Receivables
Component. In addition to providing a general description of the purpose of each table, specific
guidelines for setting up and configuring the table are provided as well.

Application Priority Table
Records in the Application Priority Table indicate the application priority of the associated
receivable type. When credits are applied to charges with the same bill date, they will be applied in
order of the application priority of the receivable type of any outstanding charges. The highest
priority is 1. Receivable types with the same priority will be applied in the order in which they are
retrieved from the database (by age, and then by transaction number). The Ignore Age field is used
to specify whether age should be factored first in the application of credits. The default for this
field is NULL, which means that all charges are ordered by age. Any receivable types without a
corresponding application priority record will be applied last. More information concerning how
the Application Priority Table interacts with the Financial Engine can be found in Chapter
Three: The Financial Engine.

Records in the Application Priority Table consist of distinct combinations of the following:
* Receivable Type (Receivable Type of the transaction),

* Operating Company, and

e Jurisdiction.

Configuring the Application Priority Table: Assign a Priority to each unique combination of
Receivable Type, Operating Company, and Jurisdiction. Set the Ignore Age flag to Yes if the age of
the credit should be factored first in the application of credits.

Cost Center Translation Table
The Cost Center Translation Table associates a market/tax jurisdiction (tepresented by Operating
Company and Jurisdiction) combination with a cost center. Records in the Cost Center Translation
Table consist of distinct combinations of Operating Company and Jurisdiction. Each unique
combination of Operating Company and Jurisdiction is associated with a unique Cost Center ID
(from the Cost Center Table).

Configuring the Cost Center Translation Table: For each cost center to be set up in this table,

create a record that includes the appropriate Operating Company and Jurisdiction and Cost Center
1D.

Journal Translation Table
The Journal Translation Table is used to indicate how transactions and credit applications are
journaled for the sub-ledger. A single transaction or credit application may have zero or two
journal entries associated with it.

Records in the Journal Translation Table consist of distinct combinations of the following:
e Translation Type (the type of record the translation represents),
* Transaction ID (associated transaction ID),

* Charge or Credit (whether the translation is for a charge (‘CH’) or credit (‘CR’) type
transaction),

* Receivable Type and Charge Type (associated Receivable and Charge type),

* Operating Company, Jurisdiction, Region, Revenue Code (based on the account associated
with the transaction),

* Rate Code (based on the transaction being journaled), and

e Payment Method (associated payment method related to the transaction).

4-8 Billing Component Installation and Configuration Guide, Volume 2

Setting up the Oracle Utilities Receivables Component Database

Each unique combination of the above variables is associated with Credit and Debit Journal
Account IDs (both from the Journal Account Table). When a transaction is posted to Oracle
Utilities Receivables Component, the Financial Engine compates that transaction to the above
combination of variables to determine which Credit and Debit Journal Accounts the transaction
should be posted to.

Configuring the Journal Translation Table: Assign a Credit and Debit Account ID (from the
Journal Account Table) to each unique combination of the above variables. Note that you needn’t
use all the variables provided in the Journal Translation Table. It’s best to use only as many as
necessary.

We recommend that you set up two “Default” Journal Application records (one Credit
Application record, one Transaction record) in this table that serve as “catch alls” to ensure that all
transactions get posted to a Journal Account. These records should consist of a Transaction Type,
Credit Journal Account ID, and Debit Journal Account ID only. All other fields should be left
NULL. Ideally, the Credit/Debit Journal Accounts (which can be the same journal account)
should be specifically set up for this purpose, but can be any account from the Journal Account
Table.

Setting Up and Configuring the Oracle Utilities Receivables Component Database 4-9

Setting up the Oracle Utilities Receivables Component Database

4-10 Billing Component Installation and Configuration Guide, Volume 2

Chapter 5

The Financial Engine

This chapter describes the core functionality of the Oracle Utilities Receivables Component,

specifically, the Financial Engine and the specific functions it performs, including:

Transactions

Credit Application
Journaling

Sub-Ledger Rollup
General Ledger Update

Balancing Controls

Understanding how the Financial Engine performs these functions is a critical step in learning

how to use and operate the Oracle Utilities Receivables Component. The descriptions in this

chapter explain how the above functions are performed by the Financial Engine. Specific

applications of some of these processes, such as processing of Billing or Remittance transactions,

are described in more detail in later chapters of this manual.

The Financial Engine 5-1

Financial Engine Functions - Summary

Financial Engine Functions - Summary

Transactions

Credit Application

Journaling

Sub-Ledger Rollup

The Financial Engine performs six functions that are central to the overall functionality supported
by the Oracle Utilities Receivables Component. Each of these functions is briefly described below.

Processing of transactions is the primary function of the Financial Engine. The transactions
function posts charges, credits, and other transactions to the Financial Management database
tables in the Oracle Utilities Data Repository (see Chapter 3: The Oracle Utilities Receivables
Component Database for mote information). Processing transactions includes posting,
transferring, and cancelling transactions. In addition, each of the Oracle Utilities Receivables
Component Modules (p. 1-3) applies specific rules and conditions to transaction processing. See
Transactions on page 5-4 for a more detailed description.

The credit application function applies credit transactions to outstanding charges. How credits are
applied to an account’s charges is defined in the Application Priority Table in the Oracle Utilities
Data Repository (described in Chapter 3: The Oracle Utilities Receivables Component
Database). Sce Credit Application on page 5-13 for a more detailed description.

The journaling function creates journal entries that correspond to posted and cancelled
transactions and credit application records. Every time a transaction is posted or cancelled, or
credit application records are created, corresponding journal entries are created in the Journal
Transaction Table based on rules defined in the Journal Translation and Cost Center Translation
tables (see Chapter 3: The Oracle Utilities Receivables Component Database for mote
information on these tables). See Journaling on page 5-18 for a more detailed description.

The sub-ledger roll-up function “rolls up” records in the Journal Transaction Table to their
corresponding sub-ledger account records. This process can be performed using a command line
program or by an external system through an interface. See Sub-Ledger Rollup on page 5-20 for
a more detailed description.

General Ledger Update

The general ledger update function outputs records from the Sub-ledger Account table for
updating an external general ledger system. This process can be performed using a command line
program or by an external system through an interface. See General Ledger Update on page 5-
22 for a more detailed description.

5-2 Billing Component Installation and Configuration Guide, Volume 2

Financial Engine Functions - Summary

Balancing Controls

The balancing controls function operates on three levels: the transaction level, the journal level,
and the account level. Transaction-level balancing is triggered automatically every time a
transaction is posted or cancelled to verify that the latest activity for the corresponding account is
still in balance. Journal-level balancing is used at scheduled intervals to balance records in the
Journal Transaction Table against corresponding records in the Transaction and Credit
Application tables. Account-level balancing is used at scheduled intervals to balance the records in
the Transaction Table for a user-specified subset of accounts in the database. Account- and
journal-level balancing can be performed using a command line program or by an external system
through an interface. See Balancing Controls on page 5-24 for a more detailed description.

The Financial Engine 5-3

Transactions

Transactions

Transaction Data

Transactions post charges, credits, and other transactions to the Financial Management database

tables in the Oracle Ultilities Data Repository (see Chapter 3: The Oracle Utilities Receivables
Component Database for more information), and includes posting, transferring, and cancelling
transactions.

Each of the Financial Management modules applies specific rules, processes, and conditions to the
transactions functions described in this section. These are described in later chapters of this book.

Each transaction processed by the Financial Engine is represented by a record in the Transaction
Table (p. 3-6) in the Oracle Utilities Data Repository that contains the data required by the
Financial Engine to process the transaction cotrectly. This processing can include triggering a
credit application if appropriate (p. 5-13), creating corresponding journal entries (p. 5-18), or other
processes.

Transaction

The data that comprises a transaction in the Financial Engine includes the following:

* A unique identifier for the transaction,

* Transaction Number (a unique number for the transaction within the account),

* Application Method (indicates the appropriate credit application method),

* Defer Balance (indicates whether or not to defer the balance associated with the transaction),
* Account (from the Account Table),

* Transaction Type (from the Transaction Type Table),

* Transaction ID (from the Transaction ID Table),

* Transaction Time (the time of the transaction),

* Revenue Month (the month to which any revenue associated with the transaction applies),
* User ID (user identification associated with the transaction),

* Note (a note associated with posting of the transaction),

* Debit Account (an optional debit journal account ID associated with posting transaction,
from the Journal Account Table),

* Credit Account (an optional credit journal account ID associated with posting transaction,
from the Journal Account Table),

* Cost Center (an optional cost center ID associated with posting transaction (from the Cost
Center Table),

e Cancel Time, Cancel Revenue Month, Cancel User ID, Cancel Reason, Cancel Note, Cancel
Debit Account, Cancel Credit Account, Cancel Cost Center (time, revenue month, user 1D,
reason, note, debit account, credit account, and cost center for the cancellation of the
transaction),

* Charge or Credit (whether the transaction is a charge or credit),

* Amount (the amount of the transaction, including the currency code for the transaction. In
the case of a consumption charge, the amount is the amount of consumption),

* Balance (outstanding balance of charge or credit, including the currency code for the balance.
This is NULL if the amount does not affect the Balance),

* Billed Or Paid Date (date the charge was billed or credit paid),

5-4 Billing Component Installation and Configuration Guide, Volume 2

Transactions

Due Date (date that payment for a charge is due),

Receivable Type Data (from the Receivable Type Table),

Charge Type Data (from the Charge Type Table),

Rate Code Data (associated Rate Code and Rate Form from the Rate Code Table),

Operating Company (the associated operating company from the Operating Company
Table),

Jurisdiction (the associated jurisdiction from the Jurisdiction Table),

Statement Date (optional date of statement with which the transaction is associated),
Invoice ID (associated invoice ID for the transaction),

Invoice Date (associated invoice date for the transaction),

Cancel Statement Date (optional date of statement with which the cancellation of the
transaction is associated),

Cancel Invoice ID (associated invoice ID for the cancelled transaction),
Cancel Invoice Date (associated invoice date for the cancelled transaction),
Bill Cycle Date (associated bill cycle from the Bill Cycle Table),

Bill History (associated record from the Bill History Table),

Sub Account (optional unique ID of originating sub-account for summary billing, from the
Account Table),

Transferred To Transaction/Transferred From Transaction (for transactions that have been
transferred from one account to another),

Note: Payment data is populated only for Payment (PYMNT) transactions.
Payment, Service Plan, Budget Plan (associated Payment, Service/Budget Plan records),

Installment Plan (installment plan associated with deferred charge or installment
transactions),

Deposit (unique ID of deposit associated with Deposit, Deposit Interest, Deposit
Application, or Installment transactions)

Deposit Interest Rate (interest rate on deposits for Deposit transactions),

Tax Amount (tax amount for related taxed transactions, including the currency code for the
tax amount),

Tax Rate (tax rate for either Tax transactions or related taxed transaction),
Tax Exempt (indicates tax exempt status for related taxed transactions),
Bill Start and Stop Times (the start and stop times for BILL transactions),

Suspend Auto Payment (indicates that automatic payments for the bill transaction should be
suspended)

Batch Transactions (batch transaction from where the transaction came),
Batch Cancel (batch transaction that cancelled the transaction),

Related Transactions (any related transactions for this transaction. For transfer transactions,
this is the list of transferred transactions. For adjustments or refunds, this is an optional list of
transactions that are being adjusted or refunded), and

User-Defined Attributes (a collection of user-defined attributes for the transaction). These
include the following:

The Financial Engine 5-5

Transactions

* Name (the name for the attribute. This should be the actual column name in the
database),

* Type (the type of the attribute, i.e. CHAR, VARCHAR, DECIMAL, INTEGER, etc.),
* Size (optional size of the attribute. Required for CHAR and VARCHAR types),

* Precision (optional precision of the attribute. Required for DECIMAL types),

* Scale (optional scale of the attribute. Required for DECIMAL types),

* Value (the value of the attribute).

Note: Including user-defined attributes in transaction requires corresponding
columns in the Transaction Table (p. 3-6). It is an error to include user-defined
attributes in a transaction without corresponding columns in the Transaction
Table.

Batch Transactions
A batch transaction contains a number of transactions. The data that comprises a batch

transaction includes the following:

A unique identifier for the batch transaction,

Batch No (a unique number of the batch transaction within the payment file),
Cancel (indicates that the batch should be processed in Cancel mode),
Restart (indicates that the batch should be processed in Restart mode),

Transaction ID (the optional Transaction ID for the transaction in the batch). Forwarded to
individual transactions if not already provided,

Revenue Month (the optional revenue month for the transactions in the batch). Forwarded to
individual transactions if not already provided,

Transaction File (the transaction file from where the batch came). Optional for processing.
This includes the unique path and file name of the transaction file,

Date (the date of the batch transaction). Optional for processing. Forwarded to individual
transactions if not already provided,

Number of Transactions (the total number of transactions in the batch). Optional for
processing,

Amount (the total amount of all the transactions in the batch, including the currency code for
the amount). Optional for processing,

Note: All transactions within a batch must use the same currency.

Cancel Revenue Month (the optional revenue month for a cancelled batch. If not provided,
the current month will be used),

Cancel Reason Code (an optional reason code for canceling batch),
Cancel Note (an optional note associated with cancelled batch), and

Max Errors (the maximum number of transaction errors allowed prior to stopping the
process). Optional for processing, and

Transactions (the individual transactions in the batch). Required for processing.

5-6 Billing Component Installation and Configuration Guide, Volume 2

Transactions

Transaction Files
A transaction file contains a number of batch transactions. The data that comprises a transaction

file includes the following:

Name (the unique file path name of the transaction file) Required for processing,
Cancel (indicates that the file should be processed in Cancel mode),
Restart (indicates that the file should be processed in Restart mode),

Transaction ID (an optional Transaction ID for the batch transactions in the transaction file)
Forwarded to individual batch transactions if not already provided,

Revenue Month (the optional revenue month for the batch transactions in the transaction
file) Forwarded to individual batch transactions if not already provided,

Date (the optional date of the transaction file) Forwarded to individual batch transactions if
not already provided,

Number of Batches (the total number of batches in the transaction file) Optional for
processing,

Number of Transactions (the total number of transactions in the payment file) Optional for
processing,

Amount (the total amount of all transactions (or batch transactions) in the transaction file,
including the currency code for the amount) Optional for processing,

Note: All batches within a transaction file must use the same currency.

Cancel Revenue Month (the optional revenue month for a cancelled file. If not provided, the
current month will be used),

Cancel Reason Code (an optional reason code for canceling file),
Cancel Note (an optional note associated with cancelled file), and

Max Errors (the maximum number of batch transaction errors allowed prior to stopping the
process) Optional for processing,

Max Errors Per Batch (the maximum number of transaction errors allowed per batch
transaction prior to stopping the batch transaction process) Forwarded to individual batch
transactions if not already provided. Optional for processing, and

Batch Transaction (individual batch transactions in the transaction file) Required for
processing.

The Financial Engine 5-7

Transactions

Transaction Types

The following transaction types are currently supported by the Oracle Utilities Receivables

Component. All of these are initiated through one of the Financial Management modules (Billing,

Remittance, or Maintenance) or by an external system (such as an external payment or billing

system) through an interface.

Transaction Type Code
Charge or Credit CHRGCRDT
Tax TAX
Installment INST
Statement STMT

Bill BILL
Payment PAYMENT
Deposit DEPOSIT
Deposit Interest DEPINT
Deposit Application DEPAPP
Adjustment AD]J
Refund RFND
Write-Off WRTOFF
Balance Transfer BALTXFR

Deprecated Transaction Types

The following transaction types have been effectively replaced by the Charge or Credit
(CHRGCRDT) transaction type, but are still available for users of previous versions of the Oracle

Utilities Receivables Component.

Transaction Type Code

Service Charge SRVCHG
Deferred Setrvice Charge DEFSRVCHG
Budget Service Charge BDGTSRVCHG
Budget Bill Charge BDGTCHG
Budget Bill True-up BDGTTRP
Installment Charge INSTCHG

5-8 Billing Component Installation and Configuration Guide, Volume 2

Transactions

Transaction Processing

The transactions functions of the Financial Engine includes three primary types of processing:
posting transactions, transferring transactions, and cancelling transactions. Each is described
below.

Post Transaction
The Post Transaction function sends transactions from the various Oracle Utilities Receivables
Component modules (p. 2-3) and records them in the Financial Management tables of the Oracle
Utilities Data Repository. The Financial Engine uses this transaction data to process the
transaction. The diagram below provides a high-level illustration of the Post Transaction process.

When a transaction is posted by the Financial Engine, the following occurs:

1.

A transaction recotd is created and inserted into the Transaction Table.

During this step (between the creation and posting of the transaction record), a transaction-
level balancing control is triggered to verify that the account is in balance before posting the
transaction to the Transaction Table, and the Activity field on the Account record is updated
to reflect the current transaction. See Transaction Balancing on page 5-24 for more
information.

If the transaction is a credit and the Account has outstanding charges, or is a Bill Charge
transaction and there is an unapplied credit (see Chapter 6: Billing), a credit application
record is created and inserted into the Credit Application Table. The specific data contained
in this record is based on the Charge Type and Receivable Type of the transaction and the
configuration of the Application Priority Table. This step is described in this chapter in
Credit Application (p. 5-13).

Note: This step is skipped if the Application Method is DEFERRED.

Two journal records are created and inserted into the Journal Transaction Table. The specifics
of these journal records are based on the type of transaction and the corresponding Cost
Center, and the configuration of the Journal Translation Table. This step is described in more
detail later in Journaling (p. 5-18).

The Financial Engine 5-9

Transactions

Post Transaction Processing in Detail
The steps above describe the overall Transaction Posting process of the Financial Engine. The

steps outlined below describe the transaction posting process in more detail. Most of these steps

apply to all types of transactions. If a step applies to a specific transaction type, it is noted in
brackets ([]).

1.
2.

10.
11.

12.

Get data concerning the parent Account. (This is always provided.)

If account's Receivable Status is “Uncollectible”, then post an
“UNPOSTABLE_TRANSACTION” message that includes the appropriate message
structure and an appropriate error message, and stop processing.

Calculate the transaction number. Increment the value in the Last Transaction Number field
on the Account record and update the record.

Determine appropriate data for the transaction record (including any user-defined attributes)
as outlined under Transaction Data, above. The Amount of the transaction should be equal
to or greater than zero. The CURRENCY attribute of the Amount is checked against the
Currency value of the account against which the transaction is being posted using the
following rules: 1) If a currency type is specified for the account in the Account table then the
transaction must indicate the same cutrency type or it is an error. 2) If a currency type is not
specified for the account in the Account table, then the transaction must indicate either no
specific currency type or the default cutrency type or it is an etror. The Balance of the
transaction should equal the amount if not deferred, or NULL if deferred.

Create a transaction record with attributes from Step 4 above.

Perform transaction-level balancing controls (see p. 5-24), and update the Activity field on the
Account record. If error, then post message and fail. The message should include the
following,.

* The message type should be “POST_TXACTION_ERROR”.
* The error message.

Apply credits as specified by the Application Method (see Credit Application on page 5-13).
If the transaction is a charge transaction and an associated deposit is affected, then update the
deposit’s principal balance accordingly.

Perform transaction journaling (see Journaling on page 5-18).

Insert the transaction record (including any user-defined attributes) into the Transaction
Table.

If an associated budget plan is provided, then update the budget plan's variance accordingly.

If an installment plan is provided, then invoke the Create Installment Plan function of the
Billing module. [Deferred Charges]

Post a control activity message. The message should include the following.

* The message type should be “<transaction type>_TXACTION_POSTED”.
* The transaction using the <TRANSACTION> XML element format.

* The credit applications, if any.

* The journal transactions, if any.

Triggering the Post Transaction Function
The Post Transaction function is triggered by one of the Oracle Utilities Receivables Component

modules, such as Billing or Remittance. These modules are in turn triggered either by the user

interface, or by an external system (such as an external payment or billing system) through an

interface.

5-10 Billing Component Installation and Configuration Guide, Volume 2

Transactions

Transfer Transaction Amount
The Transfer Transaction Amount function is used to transfer a previously posted transaction

from one account to another. The transfer process is based on:

the transaction to be transferred (referred to as the “from” transaction),

the “from” account (which represents the account the transaction is being transferred from),
and

the “to” account (which represents the account the transaction is being transferred to).

The steps outlined below apply to all transaction types.

1.

The Financial Engine makes a copy of the transferred transaction and posts it to the “to”
account with the Revenue Month as provided or the current month, and “Transferred From
Transaction” unique ID (UIDTXFRFROMTRANS) equal to the unique ID of the
transferred transaction.

The Financial Engine cancels the transferred transaction with a cancel reason code of
“TXFR” and update its “Transferred To Transaction” (UIDTXFRTOTRANS) value to the
unique ID of transaction posted in Step 1 above.

Triggering the Transfer Transaction Amount Function
The Transfer Transaction Amount function is most often invoked through the Oracle Utilities
Receivables Component user interface, but can also be triggered through one of the modules by

an external system using an interface.

Cancel Transaction
The Cancel Transaction function is used to cancel a previously posted or transferred transaction.

The steps outlined below describe the transaction canceling process. Most of the steps apply to all

types of transactions. If a step applies to a specific transaction type, it is noted in brackets ([]).

1.

2
3
4,
5
6
7

10.
11.

12.

13.

Determine the transaction to be cancelled (this is always provided).
Calculate the cancel time (current time).

Determine the cancel revenue month (either provided or current month).
Determine the cancel user ID (provided via DataSource object).
Determine the cancel reason (this is either provided or NULL).
Determine the cancel note (this is either provided or NULL).

Perform transaction-level controls (see below). If error then post message and fail. The
message should include the following.

The message type should be “CANCEL_TXACTION_ERROR”.
The error message.

Unapply any previously applied credits (see Credit Application on page 5-13). If the
transaction is a charge transaction and an associated deposit is affected, then update the
deposit’s principal balance accordingly.

Perform transaction journaling (see Balancing Controls on page 5-24).
Update the transaction record.

If an associated installment plan exists then invoke the Cancel Installment Plan function of
the Billing module. [Deferred Charges|

If any taxes exist for the cancelled transaction then post the appropriate tax adjustments and
update the associated tax records.

If an associated budget plan is provided, then update the budget plan's variance accordingly.

The Financial Engine 5-11

Transactions

14. Post a control activity message. The message should include the following.
The message type should be “TXACTION_CANCELLED”.
The transaction using the KACCOUNT> and <TRANSACTION> XML element formats.
The credit applications, if any.
The journal transactions, if any.
Triggering the Cancel Transaction Function
The Cancel Transaction function is most often invoked through the Oracle Utilities Receivables

Component user interface, but can also be triggered through one of the modules or by an external
system using an interface.

Cancel Transfer Amount
The Cancel Transfer Amount function cancels a previous transfer amount transaction. The steps
outlined below apply to all transaction types.

1. The Financial Engine verifies that the transaction has been transferred. If not, it is an error.

2. 'The Financial Engine cancels the transferred “to” transaction, and sets the cancel Revenue
Month, Cancel Reason Code, and Cancel Note attributes, if provided.

3. The Financial Engine makes a copy of and re-posts the cancelled transferred “from”
transaction.

Triggering the Cancel Transfer Amount Function
The Cancel Transfer Amount function is most often invoked through the Oracle Utilities
Receivables Component user interface, but can also be triggered through one of the modules or by
an external system using an interface.

5-12 Billing Component Installation and Configuration Guide, Volume 2

Credit Application

Credit Application

The credit application function applies credit transactions to accounts that have outstanding
charges associated with them. The specific priority by which credits are applied to an account’s
charges are defined in the Application Priority Table in the Oracle Utilities Data Repository
(described in Chapter 3: The Oracle Utilities Receivables Component Database).

The Credit Application function is triggered by any one of a specific set of transactions. These
include:

* DPosting a charge transaction,

* Posting a credit transaction,

* Cancelling a charge transaction, and
* Cancelling a credit transaction.

Note: The triggering of the Credit Application function can be overridden if
the Application Method for the Transaction is DEFERRED.

Every time a charge or credit transaction is posted and every time a transaction is cancelled, the
Financial Engine creates appropriate credit application records. The Financial Engine performs
specific steps based on the specific action that triggers the Credit Application function, and the
specific credit application method. Oracle Utilities Receivables Component supportts five credit

application methods:

Deferred: Do not apply credits at this time
Immediate: Apply any unapplied credits to any outstanding charges
Specified: Apply current charge or credit transaction to specified transactions.

Invoice ID: Apply current charge or credit transaction to outstanding charges or unapplied
credits with same invoice ID.

Receivable Type: Apply current charge or credit transaction to outstanding charges or
unapplied credits with specific receivable types.

Each of the transaction types and credit application methods is described below.

Credit Application Processing for Charge or Credit Transaction - Immediate

1.

The Financial Engine finds any unapplied credit transactions (those in which the Balance is
greater than zero) and orders them by “Billed or Paid Date” and then by Transaction Number
(in ascending order). If there are no unapplied credits and the triggering transaction is a
charge or is deferred, then processing is done. If the triggering transaction is a credit
transaction or there are unapplied credit transactions, go on to Step 2.

The Financial Engine finds any outstanding charge transactions (those in which the Balance is
greater than zero) and orders by application priority (based on the configuration of the
Application Priority table), and then by Transaction Number (in ascending order). If there are
no outstanding charges and the triggering transaction is a credit or is deferred then processing
is done. See Application Priority Table on page 4-8 for more information about the
Application Priority table.

For each unapplied credit transaction and outstanding charge transaction, the Financial
Engine updates the Balance by subtracting either the current credit transaction balance or the
current charge transaction balance, whichever is the lesser amount, and inserts a record in the
Credit Application Table for the amount subtracted with a Credit Transaction unique ID
(UIDCREDITTRANYS) value equal to the unique ID of the current credit transaction
(UIDTRANSACTION) and a Charge Transaction unique ID (UIDCHARGETRANS) value
equal to the unique ID of the current charge transaction (UIDTRANSACTION). The Cancel
field should be “N” and the Trigger Translation unique ID (UIDTRIGGERTRANS) value

The Financial Engine 5-13

Credit Application

should be equal to the unique ID (UIDTRANSACTION) of the triggering credit or charge
transaction. When the balance reaches zero for either the current credit transaction or current
charge transaction, the Financial Engine then moves on to the next one. This process
continues until there are no more unapplied credit transactions ot no more outstanding
charge transactions. The Credit Application No. for the first credit application record for the
triggering transaction should be 1 and incremented for each successive credit application
record for the triggering transaction. If an unapplied credit is encountered that was posted
using the Receivable Type Application Method, the Financial Engine determines the
Receivable Type(s) that the credit may be applied to. The Financial Engine then checks each
outstanding charge transaction and applies as much of the credit to compatible charges as
possible, then advances to the next credit.

If the triggering transaction is a non-deferred credit and there are still remaining outstanding
charges, the Financial Engine applies the triggering credit transaction to the outstanding
charges in the same manner as in Step 3 above.

If the triggering transaction is a non-deferred charge and there are still remaining unapplied
credits, the Financial Engine applies the triggering charge transaction to the unapplied credits
in the same manner as in Step 3 above.

The Financial Engine creates journal records for each record inserted into the Credit
Application Table. The specifics of these journal records are based on the type of transaction
and the corresponding Cost Center, and the configuration of the Journal Translation Table.
This step is described in more detail later in this chapter in the section entitled Journaling on
page 5-18.

5-14 Billing Component Installation and Configuration Guide, Volume 2

Credit Application

Credit Application Processing for Charge or Credit Transaction - Specified

1.

If previous charge transactions are specified along with current credit transaction, the
Financial Engine orders the charges by application priority, then by Transaction Number (in
ascending order).

For each unapplied credit transaction and outstanding charge transaction as specified, the
Financial Engine updates the Balance values and inserts a record in the Credit Application
Table record, similar to the IMMEDIATE application method described above. The Directed
flag on each new Credit Application record should be set to “Yes”. For an unapplied credit
that was posted using the Receivable Type Application Method, the Financial Engine
determines the Receivable Type(s) to which that credit may be applied. The Financial Engine
then checks each outstanding charge transaction and applies as much of the credit as possible
to compatible charges, then advances to the next credit.

The Financial Engine creates journal records for each record inserted into the Credit
Application Table. The specifics of these journal records are based on the type of transaction
and the corresponding Cost Center, and the configuration of the Journal Translation Table.
This step is described in more detail later in Journaling on page 5-18).

Credit Application Processing for Charge or Credit Transaction - Invoice ID

1.

The Financial Engine finds all outstanding charge (if triggering transaction is a credit) or
credit (if triggering transaction is a charge) transactions (those in which the Balance is greater
than zero) with an Invoice ID value matching that of the triggering transaction (it is an error
if the credit transaction does not have an invoice id). It orders outstanding charges by
application priority, then Transaction Number (in ascending order).

If the sum of the balances of the outstanding transactions is less than the balance of the
triggering transaction, it is an error.

For each outstanding transaction found, along with the triggering transaction, the Financial
Engine updates the Balance values and inserts a record in the Credit Application Table record
in a manner similar to the IMMEDIATE application method described above. The Directed
flag on each new Credit Application record should be set to “Yes”. If an unapplied credit is
encountered that was posted using the Receivable Type Application Method, the Financial
Engine determines the Receivable Type(s) to which the credit may be applied. The Financial
Engine then checks each outstanding charge transaction and applies as much of the credit as
possible to compatible charges, then advances to the next credit.

The Financial Engine creates journal records for each record inserted into the Credit
Application Table. The specifics of these journal records are based on the type of transaction
and the corresponding Cost Center, and the configuration of the Journal Translation Table.
This step is described in more detail later in this chapter in the section entitled Journaling on
page 5-18).

Credit Application Processing for Charge or Credit Transaction - Receivable

Type

The Financial Engine finds any unapplied credit transactions (those in which the Balance is
greater than zero) and orders them by “Billed or Paid Date” and then by Transaction Number
(in ascending order). If there are no unapplied credits and the triggering transaction is a
charge or is deferred, then processing is done. If the triggering transaction is a credit
transaction or there are unapplied credit transactions, go on to Step 2.

The Financial Engine finds any outstanding charge transactions (those in which the Balance is
greater than zero) and orders by application priority (based on the configuration of the
Application Priority Table), and then by Transaction Number (in ascending order). If there
are no outstanding charges and the triggering transaction is a credit or is deferred then
processing is done.

The Financial Engine 5-15

Credit Application

3. For each unapplied credit transaction and outstanding charge transaction, the Financial
Engine updates the Balance by subtracting cither the current credit transaction balance or the
current charge transaction balance, whichever is the lesser amount, and inserts a record in the
Credit Application Table for the amount subtracted with a Credit Transaction unique ID
(UIDCREDITTRANS) value equal to the unique ID of the current credit transaction
(UIDTRANSACTION) and a Charge Transaction unique ID (UIDCHARGETRANS) value
equal to the unique ID of the current charge transaction (UIDTRANSACTION). The Cancel
field should be “N” and the Trigger Translation unique ID (UIDTRIGGERTRANS) value
should be equal to the unique ID (UIDTRANSACTION) of the triggering credit or charge
transaction. When the balance reaches zero for either the current credit transaction or current
charge transaction, the Financial Engine then moves on to the next one. This process
continues until there are no more unapplied credit transactions or no more outstanding
charge transactions. The Credit Application No. for the first credit application record for the
triggering transaction should be 1 and incremented for each successive credit application
record for the triggering transaction. If an unapplied credit is encountered that was posted
using the Receivable Type Application Method, the Financial Engine determines the
Receivable Type(s) that the credit may be applied to. The Financial Engine then checks each
outstanding charge transaction and applies as much of the credit to compatible charges as
possible, then advances to the next credit.

4. If the triggering transaction is a non-deferred credit and there are remaining outstanding
charges, the Financial Engine applies the triggering credit transaction to the outstanding
charges in the same manner as in Step 3.

5. If the triggering transaction is a non-deferred charge and there are remaining unapplied
credits, the Financial Engine applies the triggering charge transaction to the unapplied credits
in the same manner as in Step 3.

6. The Financial Engine creates journal records for each record inserted into the Credit
Application Table. The specifics of these journal records are based on the type of transaction
and the corresponding Cost Center, and the configuration of the Journal Translation Table.
This step is described in more detail later in Journaling on page 5-18).

Credit Application Processing for Cancel Charge Transaction

A cancel charge transaction cancels a previously posted charge. Credits previously applied to the
cancelled charge transaction will be unapplied. However, the actual credit applied to the charge
transaction may not be the credit transaction that is unapplied. Instead, the amount that was
applied to the charge transaction will be used to increase the balance of the most recently applied
credit transactions. Whenever a charge transaction is cancelled (see Cancel Transaction on page
5-11), the Credit Application function of the Financial Engine performs the following steps:

1. The Financial Engine determines the difference between the cancelled charge transaction’s
Amount and Balance. If the difference is zero, then processing is complete.

2. Unapply any directed credit applications for the cancelled charge.

3. The Financial Engine then finds all applied credit transactions for the account and orders by
“Billed or Paid Date”, and then by Transaction Number (in descending order).

4. For each credit transaction found in Step 3 above:

e Ifthis is a credit that was directed by Receivable Type, the Financial Engine checks to
make sure the triggering transaction’s Receivable Type is one of the acceptable
Receivable Types for the credit. If not, skip to next credit.

* The Financial Engine updates both the Balance of the current credit transaction and the
cancelled charge transaction by adding either the difference between the charge
transaction Amount and Balance or the credit transaction Amount and Balance,
whichever is the lesser amount, until the cancelled charge transaction Balance reaches its
Amount.

5-16 Billing Component Installation and Configuration Guide, Volume 2

Credit Application

The Financial Engine inserts a record in the Credit Application Table for each affected credit
transaction in Step 3 above. The unique ID for this record (UIDCREDITTRANS) should be
the unique ID (UIDTRANSACTION) of the credit transaction. The unique ID of the charge
transaction (UIDCHARGETRANS) should be the unique ID (UIDTRANSACTION) of the
cancelled charge transaction. The “Cancel” field should be Y’. The unique ID of the
triggering transaction (UIDTRIGGERTRANS) should be the unique ID value
(UIDTRANSACTION) of the cancelled charge transaction. The Credit Application No. for
the first credit application record for the triggering transaction should be 1, and is
incremented for each successive credit application record for the triggering transaction.

The Financial Engine creates journal records for each record inserted into the Credit
Application Table. The specifics of these journal records are based on the type of transaction
and the corresponding Cost Center, and the configuration of the Journal Translation Table.
This step is described in more detail later in Journaling on page 5-18).

Credit Application Processing for Cancel Credit Transaction

A cancel credit transaction cancels a previously posted credit. Whenever a credit transaction is

cancelled (see Cancel Transaction on page 5-11), the Credit Application functionality of the

Financial Engine performs the following steps:

1.

If the Balance of the cancelled credit transaction equals its Amount, then processing is
complete. Otherwise, go on to Step 2.

Unapply any directed credit applications for the cancelled charge.

The Financial Engine finds all paid charge transactions for the account and orders them
according to application priority (based on the configuration of the Application Priority
Table), and then by the Transaction Number (in descending order).

For each paid charge transaction found in Step 3 above:

* If the credit was directed by Receivable Type, the Financial Engine checks to make sure
the triggering transaction’s Receivable Type is one of the acceptable Receivable Types for
the credit. If not, the Financial Engine skips to the next credit.

* The Financial Engine updates both the Balance of the charge transaction and the
cancelled credit transaction by adding the lesser of the difference between the cancelled
credit transaction Amount and Balance or current charge transaction Amount and
Balance, until the cancelled credit transaction Balance reaches its Amount.

For each of the affected charge transactions from Step 3 above, a record is inserted into
Credit Application Table with the Amount added to the charge's Balance. The unique IDs of
the credit transaction (UIDCREDITTRANS) and the triggering transaction
(UIDTRIGGERTRANS) should be the same as the unique ID (UIDTRANSACTION) of
the cancelled credit transaction. The “Cancel” field should be Y’. The unique ID of the
charge transaction (UIDCHARGETRANS) should be the same as the unique ID
(UIDTRANSACTION) of the affected charge transaction. The Credit Application No. for
the first credit application record for the triggering transaction should be 1, and is
incremented for each successive credit application record for the triggering transaction.

The Financial Engine creates journal records for each record inserted into the Credit
Application Table. The specifics of these journal records are based on the type of transaction
and the corresponding Cost Center, and the configuration of the Journal Translation Table.
This step is described in more detail later in Journaling on page 5-18).

The Financial Engine 5-17

Journaling

Journaling

Journaling creates journal entries that correspond to posted and cancelled transactions and credit
application records. Every time a transaction is posted or cancelled, or credit application records
are created, corresponding journal entries are created in the Journal Transaction Table based on
rules defined in the Journal Translation and Cost Center Translation tables (see Chapter 3: The
Oracle Utilities Receivables Component Database for more information on these tables).

Journaling Processing

Whenever a transaction is posted or cancelled by the Financial Engine, corresponding journal
entries are inserted into the Journal Transaction Table. The journal entries associated with each
transaction are defined in the Journal Translation and Cost Center Translation tables. Each record
in the Journal Translation Table defines two journal entries (a debit and a credit) that correspond
to a Transaction or Credit Application record. The steps below outline the journaling process.

1. The Financial Engine locates the corresponding Journal Translation record for the
Transaction or Credit Application record (see below).

2. 'The Financial Engine next locates the corresponding Cost Center from the Cost Center
Translation record with matching Operating Company and Jurisdiction (this may be NULL if
there is no match). For Credit Application records, the Operating Company and Jurisdiction
values will come from the associated charge transaction record via the unique ID for the
charge transaction (UIDCHARGETRANS).

3. For the Journal Translation record located in Step 1, the Financial Engine inserts two records
into the Journal Transaction Table: one credit based on the Credit Account ID and one debit
based on the Debit Account ID. The Account ID, Transaction No., Transaction Time, and
Revenue Month values should come from the associated triggering transaction record (either
a Transaction or Credit Application record). The Credit Application No. should come from
the Credit Application record. The Cost Center ID value should be what was located in Step
2. The Amount value should be equal to the amount of the record being journaled. The Sub-
Ledger Account ID and the Debit or Credit values are indicated by the Journal Translation
record. The Rolled Up Date value should initially be NULL.

4. If the Transaction or Credit Application tecord is being cancelled, then the Credit Account
ID and Debit Account ID should be switched, effectively journaling the exact opposite
entries compared to when the record was initially posted.

5-18 Billing Component Installation and Configuration Guide, Volume 2

Journaling

Journal Translation Rules

The Financial Engine uses the following rules to locate the appropriate Journal Translation

record(s) for each record type. Only the Journal Translation record with the most specific match

(weighted descending from top to bottom) should be used for journaling.

Journaling Transaction Records

1.

2
3.
4

10.
11.
12.
13.
14.

The Translation Type should be “I” (Transaction).
The Transaction ID should match the transaction’s Transaction ID or be NULL.
The Charge or Credit field should match the transaction’s Charge or Credit field or be NULL.

The Currency field for the Credit Account and Debit Account must match the Currency field
for the transaction’s Account.

the journal translation records have credit/debit accounts with the same currency type as the
account against which the transaction is being posted. Otherwise it is an error.

The Receivable Type should match the transaction’s Receivable Type or be NULL.
The Charge Type should match the transaction’s Charge Type or be NULL.

The Operating Company should match the parent Account’s Operating Company or be
NULL.

The Jurisdiction should match the parent Account’s Jurisdiction or be NULL.

The Region should match the parent Account’s Region or be NULL.

The Revenue Code should match the parent Account’s Revenue Code or be NULL.
The Rate Form should match the Transaction Rate Form or be NULL.

The Rate Code should match the Transaction Rate Code or be NULL.

For Payment transaction types, the Payment Method should match the associated Payment’s
Payment Method or be NULL.

Journaling Credit Application Records

1.
2.

10.
11.
12.

The Translation Type should be ‘A’ (Credit Application).

The Transaction ID should match the associated credit transaction’s Transaction ID or be
NULL.

The Charge or Credit field is ignored.

The Receivable Type should match the associated charge transaction’s Receivable Type or be
NULL.

The Charge Type should match the associated charge transaction’s Charge Type or be NULL.

The Operating Company should match the parent Account’s Operating Company or be
NULL.

The Jurisdiction should match the parent Account’s Jurisdiction or be NULL.

The Region should match the parent Account’s Region or be NULL.

The Revenue Code should match the parent Account’s Revenue Code or be NULL.
The Rate Form should match the parent charge transaction’s Rate Form or be NULL.
The Rate Code should match the parent charge transaction’s Rate Code or be NULL.

For Payment transaction types, the Payment Method should match the associated payment’s
Payment Method of the parent credit transaction or be NULL.

The Financial Engine 5-19

Sub-Ledger Rollup

Sub-Ledger Rollup

The Sub-Ledger Roll-up function “rolls up” records in the Journal Transaction Table to their
corresponding sub-ledger account records. This process can be performed using a command line
program (see Using the Sub-Ledger Roll-Up Command Line Program on page 5-21) or by an
external system through an interface.

Sub-Ledger Roll-Up Processing

At scheduled intervals, the records in the Journal Transaction Table are “rolled up” to their
corresponding account records in the Sub-Ledger Account Table. The steps outlined below
describe the sub-ledger roll-up process.

1.

The Financial Engine locates all the records in the Journal Transaction Table with a Rolled
Up Date value of NULL, and groups them by Sub-Ledger Account ID, Cost Center, and
Revenue Month.

The Financial Engine then sums the Amount values for each group created in Step 1.

For each group created in Step 1, the Financial Engine locates the corresponding Sub-Ledger
Account record by Sub-Ledger Account ID, Cost Center, and Revenue Month. If the Closed
Date value is not NULL, the next Revenue Month record should be used. If the record does
not exist, then it is created with an initial Balance value of $0.00, Balance to GL value of
$0.00, and a Closed Date value of NULL

The Financial Engine then updates each corresponding Sub-Ledger Account record by
increasing the Balance value by the amount from Step 2, and by updating the Balance Time
value to the current time. Also, the Financial Engine sets the Running Balance value equal to
the previous revenue month's Running Balance plus the current month’s Balance.

The Financial Engine then updates each record in the Journal Transaction Table from Step 1
by setting the Rolled Up Date value to the current date.

The Financial Engine then posts a “SUBLEDGER_ROLLEDUP” control activity message.
The Message should contain the following data:

* Sub-Ledger Rollup element data, including:
Start Time, Stop Time, and Sub-Ledger Account ID, and
* Sub-Ledger Account element data, including:

ID, Cost Center, Revenue Month, Previous Balance, Previous Balance Time, New
Balance, New Balance Time, Running Balance, Closed Date, Activity Balance, Activity
Count, Rolled Forward Balance, and Rolled Forward Count.

There should be a Sub-Ledger Account element for each Account/Cost Center/Revenue
Month combination that was updated. ID, Cost Center, Revenue Month, Previous Balance,
Previous Balance Time, New Balance, New Balance Time, Running Balance, and Closed Date
are self-explanatory. Activity Balance should contain the total amount rolled up to this record.
Activity Count should contain the total number of journal transactions that were rolled up to
this record. Rolled Forward Count should contain the number of journal transactions that
were destined for a previous revenue month but were rolled forward to this record because
the previous revenue month was closed. Rolled Forward Balance should contain the total
amount corresponding to these rolled forward transactions.

5-20 Billing Component Installation and Configuration Guide, Volume 2

Sub-Ledger Rollup

Using the Sub-Ledger Roll-Up Command Line Program

As noted above, the Sub-Ledger Roll-Up function can be performed using a command line
program. The Sub-Ledger Roll-Up command line program (UPSBLDGR.EXE) uses the syntax
shown below. Parameter switches are case insensitive (i.e. you can enter them in either upper or
lower case (-c or -C)). If a parameter includes a space, you must enclose it in quotes (for example,
-s “11/01/1999 12:00:00”). The syntax is:

upsbldgr.exe -d <comnectstring> [-q <qualifier>) [-Icfg logging configuration filenanse|

The command must be entered on one line. Also, you must either change to the directory in which
the program is stored (typically, \LODESTAR\Dbin) before enteting the command, or specify the
path in the command. To view a list of all parameters on-screen, type upsbldgr -? at the
command prompt.

Parameter Description

-d connectstring is database connection information for the Oracle Utilities
Data Repository. This parameter is required and must be in one of the
following formats:

For Oracle databases:

"Data Source=<data_source>;User
ID=<user_id>;Password=<password>;L.SProvider=ODP;"

where:

* <data_source> is the Oracle TNS Name for the data source, from
the TNS_NAMES.ora file (typically located in the
\\<machine>\oracle\network\admin directory)

e <user_id> is the user ID for the database connection

* <password> is the password for the supplied user ID.

-q qualifier is the optional qualifier for the data source.
-lcfg logging confignration filename Name of an optional logging configuration

file that specifies where error and log messages are sent. If you omit this
parameter, the application creates a log file named UPSBLDGR.LOG
in the LOG directory.

The Financial Engine 5-21

General Ledger Update

General Ledger Update

The General Ledger Update function outputs records from the Sub-ledger Account table to
update an external general ledger system. This process can be performed using a command line
program (see General Ledger Update Processing on page 5-22) or by an external system
through an interface.

General Ledger Update Processing

At scheduled intervals the records in the Sub-Ledger Account table should be output to a General
Ledger File for updating the General Ledger. The steps outlined below describe the general ledger
update process.

1. For each sub-ledger account mapped to a general ledger account, the Financial Engine checks
the collection of mapped sub-ledger accounts to determine if the sub-ledger account has
already been added. If so, it is an error. If not, the Financial Engine adds the sub-ledger
account to the collection.

2. The Financial Engine selects all records in the Sub-Ledger Account table where the Revenue
Month equals the given revenue month provided (or the prior calendar month/year if not
provided), orders the records by sub-ledger account id, and creates a collection of sub-ledger
accounts.

3. For each Sub-Ledger account in the collection, the Financial Engine checks to determine if
the Sub-Ledger account has been mapped.

4. If a Sub-Ledger account has been mapped: The Financial Engine determines the general
ledger account that the sub-ledger account is being mapped to. For each sub-ledger account
in the mapped collection that is associated with this general ledger account, the Financial
Engine does the following:

* Finds the Sub-Ledger account in the Sub-Ledger account collection.

* If the Sub-Ledger account is NOT usage, the Financial Engine adds its Balance to the
Balance of the general ledger account, adds its Balance to GL to the Old Balance to GL.
of the general ledger account, and adds the difference between the Balance and Balance
to GL (Balance - Balance to GL) to the Current Balance to GL of the general ledger
account.

* If the Sub-Ledger account is usage, the Financial Engine adds its Balance to the Quantity
of the general ledger account, adds its Balance to GL to the Old Quantity to GL of the
general ledger account, and adds the difference between the Balance and Balance to GL
(Balance - Balance to GL) to the Current Quantity to GL of the general ledger account.

5. If sub-ledger account has not been mapped: The Financial Engine copies the Sub-Ledger
account directly to the general ledger account including copying its Balance to the Balance of
the general ledger account, copying its Balance to GL field to the Old Balance to GL field of
the general ledger account, and copying the difference between the Balance and Balance to
GL (Balance - Balance to GL) to the Current Balance to GL field of the general ledger

account.

6. The Financial Engine updates the Balance to GL of each Sub-Ledger account processed to be
the same as the Balance. Once each Sub-Ledger account has been processed, the Financial
Engine removes it from the mapped Sub-Ledger account collection and deletes it, and
removes it from the Sub-Ledger account collection and deletes it.

7. The Financial Engine posts a “GENLEDGER_UPDATED” control activity message. The
message should include the General Ledger Parameters, Sub-Ledger Count, and General
Ledger Count.

The Sub-Ledger Count and the General Ledger Count are the number of Sub-Ledger
accounts and General Ledger accounts processed, respectively.

5-22 Billing Component Installation and Configuration Guide, Volume 2

General Ledger Update

8. When processed in batch mode using the command line program, the Financial Engine adds
the processed General Ledger account to the GENLEDGERFILE xml. If a General Ledger
filename is passed to the command line program, the Financial Engine uses it. Otherwise, the
Financial Engine generates the filename as “gnldgt” + the Revenue Month (as “YYYYMO?”)
+ “.xml”.

Using the General Ledger Update Command Line Program

As noted above, the general ledger update function can be performed using a command line
program. The General Ledger Update command line program (UPGNLDGR.EXE) uses the
syntax shown below. Parameter switches are case insensitive (i.e. you can enter them in either
upper or lower case (-c or -C)). If a parameter includes a space, you must enclose it in quotes (for
example, -s “11/01/1999 12:00:00”). The syntax is:

upgnldgr.exe -d <comnectstring> |-q <qualifier>) -1 <genledgerparams> -o <genledgerfile>
[-lcfg Jogging confignration filenanme]

The command must be entered on one line. Also, you must either change to the directory in which
the program is stored (typically, \LODESTAR\Dbin) before enteting the command, or specify the
path in the command. To view a list of all parameters on-screen, type upgnldgr -? at the
command prompt.

Parameter Description

-d connectstring is database connection information for the Oracle Utilities
Data Repository. This parameter is required and must be in one of the
following formats:

For Oracle databases:

"Data Source=<data_source>;User
ID=<user_id>;Password=<password>;L.SProvider=ODP;"

where:

* <data_source> is the Oracle TNS Name for the data source, from
the TNS_NAMES.ora file (typically located in the
\\<machine>\oracle\network\admin directory)

e <user_id> is the user ID for the database connection

* <password> is the password for the supplied user ID.

-q gualifier is the optional qualifier for the data source.
-i genledgerparams is an XML file containing general ledger parameters.
-0 genledgerfile is an XML output file (GENLEDGERFILE. XML unless

otherwise specified).

-lcfg logging configuration filename Name of an optional logging configuration
file that specifies where error and log messages are sent. If you omit this
parameter, the application creates a log file named UPGNLDGR.LOG
in the LOG directory.

The Financial Engine 5-23

Balancing Controls

Balancing Controls

The Balancing Controls function operates on three levels: the transaction level, the journal level,
and the account level. Transaction-level balancing is triggered automatically every time a
transaction is posted or cancelled to verify that the corresponding account is still in balance.
Journal-level balancing is used at scheduled intervals to balance records in the Journal Transaction
Table against corresponding records in the Transaction and Credit Application tables. Account-
level balancing is used at scheduled intervals to balance the financial transaction records for a uset-
specified subset of accounts in the database.

Transaction Balancing

Every time that a transaction is posted or cancelled by the Financial Engine, the transaction
balancing function is triggered to verify that the account is still in balance. This process occurs just
after the transaction record is created, but before the record is inserted into the Transaction Table
(see Post Transaction on page 5-9). The steps outlined below describe the transaction balancing
process.

1. The Financial Engine finds the Balance Time and Activity values for the parent Account
record.

2. The Financial Engine then finds all previously posted Transaction records for the Account
whose Balance is not NULL and Transaction Time is greater than the Balance Time in Step 1.

3. The Financial Engine then finds all previously cancelled Transaction records for the Account
whose Balance is not NULL and Cancel Time is greater than the Balance Time in Step 1.

4. 'The Financial Engine then sums the Amount values of all posted “Charge” Transaction
records and subtracts from that the Amount values of all posted “Credit” Transaction records
in Step 2.

5. The Financial Engine then sums the Amount values of all cancelled “Credit” Transaction
records and subtracts from that the Amount values of all cancelled “Charge” Transaction
records in Step 3.

6. The Financial Engine then verifies that the sum of the amounts calculated in steps 4 and 5
equals the Activity amount in Step 1. If not, the process stops and the Financial Engine
returns an error message.

7. Last, the Financial Engine updates the Account Activity value to include any activity (Balance
is not NULL) from the current transaction (add “Charge” Transaction Amount value or
subtract “Credit” Transaction Amount value, or do the exact opposite for cancelled
Transaction records).

5-24 Billing Component Installation and Configuration Guide, Volume 2

Balancing Controls

Journal Balancing

At scheduled intervals the records in the Journal Transaction Table will be balanced against
records in the Transaction and Credit Application tables.

Journal balancing can be performed using a command line program or by an external system
through an interface. Using either method requires entering specific parameters, including:

. Start Time
e Stop Time
* Revenue Month

The Start Time, Stop Time and Revenue Month filter the balance activity over their respective
parameters. These parameters are included in an XML string that is passed to the Financial Engine
either through the command line program (see below) or an interface.

Journal Balancing Processing

1. The Financial Engine locates all Transaction and Credit Application records with a
Transaction Time or Cancel Time value within the provided Start and Stop times (inclusive)
and a Revenue Month value equal to the given revenue month (if provided).

2. The Financial Engine then groups the records located in Step 1 above by Subledger Account
ID (both Debit and Credit), Cost Center, and Revenue Month, summing the Amount values
for debits and subtracting the Amount values for credits within each group.

3. The Financial Engine then locates all the Journal Transaction records with a Transaction
Time value within the provided time range (inclusive) and a Revenue Month value equal to
the given revenue month (if provided).

4. The Financial Engine then groups the records from Step 3 by Sub-Ledger Account ID, Cost
Center, and Revenue Month, summing the Amount values for debits and subtracting the
Amount values for credits within each group.

5. The Financial Engine then compares the counts and the amounts for matching groups from
steps 2 and 4 (except those records where the Sub-Ledger Account ID is null). If any do not
match, a “JOURNAL_ BALANCE _ERROR” message is posted. This message should
include the following:

* Journal Account data, including:

ID, Cost Center, Revenue Month, Transaction Count, Transaction Amount, Credit
Application Count, Credit Application Amount, Journal Count, and Journaled Amount.

1D, Cost Center, and Revenue Month are self-explanatory. Transaction Count is the total
number of financial transaction records that were journaled for this Account, Cost Center,
and Revenue Month combination. Transaction Amount is the sum of the amounts for these
transactions. Credit Application Count is the total number of Credit Application records that
were journaled for this Account, Cost Center, and Revenue Month combination. Credit
Application Amount is the sum of the amounts for these transactions. Journal Count is the
number of journal transactions that resulted. Journaled Amount is the total amount that was
journaled.

6. The Financial Engine then posts a “JOURNAL_BALANCED?” control activity message. The
message should include the following:

* Journal Balanced data, including:
Journal Parameters, Start Time, Stop Time, and
* Journal Account data, including:

ID, Cost Center, Revenue Month, Transaction Count, Transaction Amount, Credit
Application Count, Credit Application Amount, Journal Count, Journaled Amount.

The Financial Engine 5-25

Balancing Controls

ID, Cost Center, and Revenue Month are self-explanatory. Transaction Count is the total

number of financial transaction records that were journaled for this Account, Cost Center,

and Revenue Month combination. Transaction Amount is the sum of the amounts for these

transactions. Credit Application Count is the total number of financial transaction records

that were applied as credits for this Account, Cost Center, and Revenue Month combination.
Credit Application Amount is the sum of the amounts for these transactions. Journal Count is
the number of joutrnal transactions that resulted. Journaled Amount is the total amount that
was journaled.

Using the Balance Journal Command Line Program

As noted eatlier, the Journal Balancing function can be performed using a command line program.

The Balance Journal command line program (BALJRNL.EXE) uses the syntax shown below.

Parameter switches are case insensitive (i.e. you can enter them in either upper or lower case (-c or
-C)). If a parameter includes a space, you must enclose it in quotes (for example, -s “11/01/1999

12:00:007).

baljrnl.exe -d <connectstring> [-q <qualifier>| |-Lcfg logging confignration filenanze)

-@ xmllnputFile

The command must be entered on one line. Also, you must either change to the directory in which
the program is stored (typically, \LODESTAR\bin) before entering the command, or specify the

path in the command. To view a list of all parameters on-screen, type BALJRNL -? at the

command prompt.

Parameter

Description

-d

connectstring is database connection information for the Oracle Ultilities
Data Repository. This parameter is required and must be in one of the
following formats:

For Oracle databases:

"Data Source=<data_source>;User
ID=<user_id>;Password=<password>;LSProvider=ODP;"

where:

* <data_source> is the Oracle TNS Name for the data source, from
the TNS_NAMES.ora file (typically located in the
\\<machine>\oracle\network\admin directory)

e <user_id> is the user ID for the database connection

* <password> is the password for the supplied user ID.

gualifier is the optional qualifier for the data source.

logging confignration filename Name of an optional logging configuration
file that specifies where error and log messages are sent. If you omit this
parameter, the application creates a log file named BALJRNL.LOG in
the LOG directory.

xmlInputFile is an XML file that contains specific arguments used to
perform the journal balancing.

Account Balancing

At scheduled intervals, the financial transaction records for a unique subset of all Accounts in the
database will be balanced. A batch process (command line program) will be configured to do this

so that over a period of one billing cycle (usually one month) all Accounts in the database are

5-26 Billing Component Installation and Configuration Guide, Volume 2

Balancing Controls

balanced. The process does not specify how the Accounts are to be partitioned into subsets, but

allows users to configure a query to be used as the basis for what Accounts are balanced. This

query must have a select list containing only the unique ID values for the Accounts to be balanced.

This query is included in an XML string that is passed to the Financial Engine either through the

command line program (see below) or an interface.

Account Balancing Processing

1.
2.

The Financial Engine locates all appropriate Account records based on the query provided.

For each account record, the Financial Engine locates all the posted and cancelled
Transaction records whose Balance is not NULL that occurred before the Account’s Balance
Time. The Financial Engine then adds all the posted “Charge” type record Amounts and
cancelled “Credit” type record Amounts and subtracts from that all posted “Credit” type
record Amounts and all cancelled “Charge” type record Amounts.

For each account record, the Financial Engine locates all the posted and cancelled
Transaction records whose Balance is not NULL that occurred after the Account’s Balance
Time. It then adds all the posted “Charge” type record Amounts and cancelled “Credit” type
record Amounts and subtracts from that all posted “Credit” type record Amounts and all
cancelled “Charge” type record Amounts.

For each account record, the Financial Engine locates all non-cancelled Transaction records
whose Balance is not NULL. It then adds all “Charge” type record Balances and subtracts
from that all “Credit” type record Balances.

If the amount from Step 2 matches the LASTBALANCE value of the account and the
amount from Step 3 matches the NEWACTIVITY value of the account and the amount
from Step 4 matches the sum of the LASTBALANCE and NEWACTIVITY values of the
account then update the BALANCE.

If the amount from Step 2 matches the Last Balance value of the account, the amount from
Step 3 matches the New Activity value of the account, and the amount from Step 4 matches
the sum of the Last Balance and New Activity values of the account, the Financial Engine
updates the Balance value to the sum of the current balance plus the current activity, updates
the Balance Time to the current time, and updates the Activity value to zero.

If the amounts in Step 5 do not match, the Financial Engine posts an
“ACCOUNT_BALANCE_ERROR” message. The message should include:

* The unique ID of the Account,
* The Account’s Balance and Activity, and
* The calculated Balance and Activity.

After the account balancing process is complete, the Financial Engine posts an
“ACCOUNTS_BALANCED?” control activity message. The message should include the
following:

e The query,
* Start Time and Stop Time,
¢ The number of Accounts balanced, and

¢ The number of Account balance errors.

Using the Balance Accounts Command Line Program
As noted earlier, the Account Balancing function can be performed using a command line
program. The Balance Accounts command line program (BALACCT.EXE) uses the syntax shown
below. Parameter switches are case insensitive (i.e. you can enter them in either upper or lower case

(-c ot -C)). If a parameter includes a space, you must enclose it in quotes (for example, -s “11/01/
1999 12:00:00”)

The Financial Engine 5-27

Balancing Controls

balacct.exe -d <connectstring> [-q <qualifier>] [-lcfg logging configuration filenanse)

-@ xmllnputFile

The command must be entered on one line. Also, you must either change to the directory in which
the program is stored (typically, \LODESTAR\Dbin) before enteting the command, or specify the
path in the command. To view a list of all parameters on-screen, type balacct -? at the command

prompt.

Parameter

Description

-d

connectstring is database connection information for the Oracle Utilities
Data Repository. This parameter is required and must be in one of the
following formats:

For Oracle databases:

"Data Source=<data_source>;User
ID=<user_id>;Password=<password>;LSProvider=ODP;"

where:

* <data_source> is the Oracle TNS Name for the data source, from
the TNS_NAMES.ora file (typically located in the
\\<machine>\oracle\network\admin directory)

e <user_id> is the user ID for the database connection

* <password> is the password for the supplied user ID.

gualifier is the optional qualifier for the data source.

logging configuration filename Name of an optional logging configuration
file that specifies where error and log messages are sent. If you omit this
parameter, the application creates a log file named BALACCT.LOG in
the LOG directory.

xmlInputFile is an XML file that contains the query to be used to
perform the account balancing.

5-28 Billing Component Installation and Configuration Guide, Volume 2

Chapter 6

Billing

This chapter describes the functionality of the Billing module of the Oracle Utilities Receivables
Component including an overview of some of the database tables used by the Billing module, and
explanations of each of the Billing functions performed, including:

* Post/Cancel Chatge or Credit,
e Post/Cancel Tax,

e Create/Cancel Installment Plan,
¢ Post/Cancel Installment,

* Post/Cancel Deposit

* Post/Cancel Deposit Interest
* Apply/Unapply Deposit

* Post Penalty

* Post Statement

* PostBill

* Cancelling Transactions

e Bill Statementing

Billing 6-1

Billing Database Tables

Billing Database Tables

Of the tables described in Chapter 3: The Oracle Utilities Receivables Component Database,
the Billing module uses the Budget tables (p. 3-3) when processing billing transactions. The
descriptions below expand on those for the Budget Type and Budget Plan tables found in Chapter
Two.

Service Type Table
The Service Type Table is used to define all service-oriented businesses or commodities provided
by the client operating company. Typical service types might include “Electric”, “Gas”, or
“Cable”.

Service Plan Table
The Service Plan Table associates an account with a service type. An account may have several
service plans active at any one time.

Budget Type Table
Records in the Budget Type Table represent specific types of budget plans recognized by the
application. The application uses budget types to determine how true-ups should be handled.

Budget Plan Table

Records in the Budget Plan Table indicate that a given account is on a particular budget plan for a
specific time period.

Installment Plan Table
Records in the Installment Plan table represent installment plans for an account.

Tax Record Table

Records in the Tax Record table associate a tax transaction with zero or motre taxed transactions.

Deposit Table

Records in the Deposit table represent deposits for an account.

6-2 Billing Component Installation and Configuration Guide, Volume 2

Billing Functions

Billing Functions

The core function of the Billing module is to handle billing-related transactions through the
Financial Engine. These transactions are sent to the Billing module from external systems such as
Oracle Utilities Billing Component or other billing applications.

Billing Function Processing

Note: Charge or Credit does not
apply to the Post Budget Bill
Charge, Post Installment, or Post
Bill functions.

Note Defer Balance only applies
to the Post Charge or Credit, Post
Tax, Post Service Charge, Post
Installment Charge and Post Bill
functions.

Note: Statement Date only applies
to the Post Statement function and
is optional for the Post Charge or

Credit function.

Each of the Billing module functions can be triggered from either an external system via an
interface or through use of the Financial Management Statements of the Oracle Utilities Rules
Language. In addition, some of the Billing module functions can be triggered through the Oracle
Utilities Receivables Component user interface (see the Oracle Utilities Billing Component User’s
Guide). Regardless of the manner in which they are triggered, the functions of the Billing module
operate in the same manner. When triggered, each function sends transaction data to the Financial
Engine, which posts the transaction.

When the functions are triggered through an interface, the transaction data is sent in an XML
string to the Financial Engine. When the functions are triggered by the Rules Language, the
transaction data is generated during the processing of the rate schedule. In this case, some of the
data is automatically provided based on the specific account and rate form being processed, while
other data must be provided in the rate schedule itself.

The data generated by bill calculation is listed below, along with where the data comes from (either

internal or via the rate schedule). Required data is marked with an asterisk (*). All other data is

optional.

Data Element
Account*
Transaction ID
Revenue Month

Note
Charge or Credit*

Defer Balance

Amount*
Currency*
Billed Date*
Due Date*
Receivable Type
Charge Type
Rate Code*

Operating Company

Jurisdiction
Statement Date
Invoice ID
Invoice Date

Bill Cycle Date*

Source

Rate/ACCOUNTID or Internal - Account UID
Rate/TRANSACTIONID (per Transaction Type)
Rate/REVENUEMONTH or Internal - Bill Month

Rate/NOTE
Rate/CHARGEORCREDIT (“CH” or “CR”)

Rate/DEFERBALANCE (“TRUE” or “FALSE”. The default is
“FALSE”.)

Rate/AMOUNT

Rate/CURRENCY

Rate/BILLEDDATE

Rate/DUEDATE
Rate/RECEIVABLETYPENAME

Rate /CHARGETYPEID

Internal - Current Rate Schedule and Code
Rate/OPCOCODE

Rate/JURISCODE
Rate/STATEMENTDATE or Internal - READDATE

Rate/INVOICEID
Rate/INVOICEDATE
Rate/BILLCYCLEDATE or Internal - READDATE

Billing 6-3

Billing Functions

Note: Service Plan does not apply
to the Post Statement or Post Bill
functions.

Note: Budget Plan does not apply
to the Post Service Charge, Post
Deferred Service Charge, Post
Statement or Post Bill functions.

Note: Application Method does
not apply to the Post Deferred
Service Chatge or Post Budget
Service Charge, Post Budget Bill
Charge, or Post Budget Bill
Trueup functions.

Note: Tax Rate only applies to the
Post Tax function.

Note: Related Transaction only
applies to the Post Tax function.

Note: Installment Plan only
applies to the Post Installment

function.

Note: Installment Plan No. only
applies to the Post Installment

function.

Note: Deposit only applies to the
Post Deposit Interest and Post
Deposit Application functions.

Note: Deposit Time only applies
to the Post Deposit Interest and
Post Deposit Application

functions.

Bill History

Service Plan*

Budget Plan*

Application Method

Tax Rate

Related Transaction

Installment Plan

Installment Plan No.

Deposit

Deposit Time

Internal - UIDBILLHISTORY if available
Rate/SERVICEPLAN (Start Date, Service Type, Address 1,

Address 2, Address 3, City, County, State, ZIP, LDC Account ID)

Rate/BUDGETPLAN (Start Date, Budget Type, Setvice Plan)

Rate/ APPLICATIONMETHOD (“DEFERRED”,
“IMMEDIATE”, or “INVOICEID”. The default is
“DEFERRED”.)

Rate/TAXRATE

Rate/TAXEDTRANSACTIONS (UIDTRANSACTION,
Amount, Tax Amount, Tax Rate, Tax Exempt)

Rate/UIDINSTALLMENTPLAN (either this ot
INSTALLMENTPLANNO is required).

Rate/INSTALLMENTPLANNO (either this ot
UIDINSTALLMENTPLAN is required).
Rate/UIDDEPOSIT (either this ot DEPOSITTIME is
required).

Rate/DEPOSITTIME (either this or UIDDEPOSIT is
required).

6-4 Billing Component Installation and Configuration Guide, Volume 2

Billing Functions

Billing Functions

The functions of the Billing module pass the data outlined above to the Financial Engine which in
turn processes the transactions.

Post Charge or Credit
This function posts cither charges or credit transactions against a specified account. The
transaction may be either deferred or not deferred. An optional service plan or budget plan may
be associated with the transaction. If a budget plan is provided, the plan’s variance will be updated
accordingly. This function performs the following steps:

1. The Billing module sets the transaction type to Charge or Credit (CHRGCRDT).

2. 'The Billing module triggers the Post Transaction function of the Financial Engine, and uses
the bill calculation data (outlined above) when processing the transaction.

The POST CHARGEORCREDIT Rules Language statement can be used to post a charge or
credit as a single transaction. Some elements of the transaction are internally generated by the rate
schedule when the POST CHARGEORCREDIT Statement executes.

See Appendix D: Financial Management Rules Language Statements for details on the use
of the POST CHARGEORCREDIT Statement.

Cancel Charge or Credit
This function cancels a previously posted charge or credit transaction. This function performs the
following steps:

1. The Billing module sets the transaction type to Charge or Credit (CHRGCRDT).

2. 'The Billing module triggers the Cancel Transaction function of the Financial Engine, and
uses the bill calculation data (outlined above) when processing the transaction.

Post Tax
The Billing module allows tax transactions to be posted against an account. The individual tax
transactions can be related to one or more previously posted transactions (taxed transactions). The
Tax Record table (see p. 4-2) maintains these relationships, along with the taxed transaction tax
amount, tax rate (if provided), and a flag indicating whether or not the taxed transaction is tax
exempt. This allows the system to automatically adjust taxes if a taxed transaction is later cancelled
or adjusted. It also allows for more robust tax reporting.

The Post Tax function posts tax charge or credit transactions for a specified account. The
transaction may be either deferred or not deferred. An optional service plan or budget plan may
be associated with the transaction. If a budget plan is provided, the plan’s variance will be updated
accordingly. Additionally, the tax transaction may be associated with one or more previously
posted transactions. This function performs the following steps:

1. The Billing module sets the transaction type to Tax (TAX).
2. For each related taxed transaction, the Billing module:

a.Determines the appropriate tax rate. This is either provided for taxed transaction or
provided for tax transaction or is NULL.

b.Determines the tax amount. This is either provided or calculated from tax rate and taxed
transaction amount and the charge or credit flag.

3. The Billing module determines the tax transaction amount. This is either provided or
calculated from sum of individual taxed transaction amounts, less any tax exempt amounts.

4. 'The Billing module triggers the Post Transaction function of the Financial Engine, and uses
the bill calculation data (outlined above) when processing the transaction.

Billing 6-5

Billing Functions

5. The Billing module inserts a record in the Tax Record table for each related taxed transaction
with appropriate values as determined above.

6. If there are no related taxed transactions, the Billing module inserts a single record in the Tax
Record with a NULL unique ID for an associated taxed transaction and an Amount equal to
the tax transaction amount (as well as the Tax Rate if provided).

The POST TAX Rules Language statement can be used to post a tax charge or credit as a single
transaction. Some elements of the transaction are internally generated by the rate schedule when
the POST TAX Statement executes.

See Appendix D: Financial Management Rules Language Statements for details on the use
of the POST TAX Statement.

Cancel Tax

This function cancels a previously posted tax charge or credit transaction. This function petforms
the following steps:

1. The Billing module sets the transaction type to Tax (TAX).

2. 'The Billing module triggers the Cancel Transaction function of the Financial Engine, and
uses the bill calculation data (outlined above) when processing the transaction.

3. The Billing module cancels any tax adjustment transactions related to this tax transaction. (A
tax adjustment transaction results when a non-exempt taxed transaction is cancelled.)

4. 'The Billing module updates the Cancelled column to “Y” in all related records in the Tax
Record table for this tax transaction.

Create Installment Plan
The Billing module provides methods to create installment plans for accounts as well as post
individual installment charges related to the installment plan.

This function creates an installment plan related to a previously posted deferred charge
transaction. This process can alternatively occur as a single transaction if the installment plan is
related to the deferred charge when the deferred charge is initially posted. This function performs
the following steps:

1. The Billing module verifies that the related transaction is a deferred charge. If not it is an
error.

2. The Billing module sets the installment plan's Account to that of the defetred charge
transaction.

3. The Billing modules sets the following installment plan values to the corresponding deferred
charge transaction values, if not explicitly provided:

* Receivable Type,

* Charge Type,

* Operating Company, and
* Jurisdiction.

4. 'The Billing module sets the unique ID of the deposit associated with the installment plan
equal to that of the deferred charge transaction.

5. The Billing module sets the Number of Installments NUMINSTALLMENTS) value to 1 if
not provided.

6. The Billing module sets the Total Amount (TOTALAMOUNT) and Remaining Amount
(REMAMOUNT) of the installment plan equal to the transaction AMOUNT of the deferred
charge.

6-6 Billing Component Installation and Configuration Guide, Volume 2

Billing Functions

The Billing module calculates the Installment Amount if not provided. This is equal to the
Total Amount divided by the Number of Installments, or the Total Amount minus the First
Amount divided by the Number of Installments minus 1 if the First Amount is provided.

The Billing module inserts the Installment Plan record into the database.

Cancel Instaliment Plan
This function cancels a previously created installment plan. This function performs the following
steps:

1.

2.

The Billing module triggers the Cancel Installment function (p. 4-7) for each installment
transaction related to the installment plan.

The Billing module updates the Stop Time on the Installment Plan record to the current time.

Post Installment
This function posts a non-deferred charge transaction related to a previously created installment
plan against a specified account. This function performs the following steps:

1.
2.

The Billing module sets the transaction type to Installment (INST).

The Billing module sets the Charge or Credit flag (CHARGEORCREDIT) to Charge (CH)
and the Deferred flag (DEFERRED) to false.

The Billing module determines the installment amount. This is either provided or the
Remaining Amount REMAMOUNT), the Installment Amount INSTAMOUNT), or the
First Amount (FIRSTAMOUNT), depending on the current state of the installment plan.

The Billing module sets the following transaction attributes equal to the corresponding
attributes of the installment plan if not explicitly provided:

e Transaction ID,

* Receivable Type,

* Charge Type,

* Operating Company, and
* Jurisdiction.

The Billing module sets the unique ID of the deposit associated with the transaction equal to
that of the installment plan's.

The Billing module triggers the Post Transaction function of the Financial Engine, and uses
the bill calculation data (outlined above) when processing the transaction.

The Billing module updates the Remaining Installments (REMINSTALLMENTS) and
Remaining Amount (REMAMOUNT) values of the installment plan accordingly.

The Billing module updates the Stop Time of the installment plan to the current time if the
Remaining Amount is now zero.

The POST INSTALLMENT Rules Language statement can be used to post an installment as a
single transaction. Some elements of the transaction are internally generated by the rate schedule
when the POST INSTALLMENT Statement executes.

See Appendix D: Financial Management Rules Language Statementsfor details on the use
of the POST INSTALLMENT Statement.

Cancel Installment
This function cancels a previously posted installment transaction. This function performs the
following steps:

1.

The Billing module sets the transaction type to Installment (INST).

Billing 6-7

Billing Functions

2. The Billing module triggers the Cancel Transaction function of the Financial Engine, and
uses the bill calculation data (outlined above) when processing the transaction.

3. The Billing module updates the Remaining Installments (REMINSTALLMENTS) and
Remaining Amount REMAMOUNT) values of the installment plan accordingly.

4. The Billing module updates the Stop Time of the installment plan to NULL if the Remaining
Amount is now greater than zero.

Post Deposit
This function posts either a non-deferred or deferred charge transaction against a specified
account. The default is non-deferred, since a deferred deposit would typically have an installment
plan created for it. This function performs the following steps:

1. The Billing module sets the transaction type to Deposit (DEP) and the Charge or Credit flag
(CHARGEORCREDIT) to Charge (CH).

2. 'The Billing module triggers the Post Transaction function of the Financial Engine, and uses
the bill calculation data (outlined above) when processing the transaction.

3. The Billing module inserts a record in the Deposit table with Account and Amount values
equal to that of the transaction as well as an Interest Rate INTERESTRATE) value if
provided. The Principal Balance (PRINCIPALBAL) and Interest Balance INTERESTBAL)
values are set to zero. The remaining values are set to NULL.

The POST DEPOSIT Rules Language statement can be used to post a deposit as a single
transaction. Some elements of the transaction are internally generated by the rate schedule when
the POST DEPOSIT Statement executes.

See Appendix D: Financial Management Rules Language Statements for details on the use
of the POST DEPOSIT Statement.

Cancel Deposit
This function cancels a previously posted deposit transaction. This function performs the
following steps:

1. The Billing module sets the transaction type to Deposit (DEP).

2. 'The Billing module triggers the Cancel Transaction function of the Financial Engine, and
uses the bill calculation data (outlined above) when processing the transaction.

3. If the deposit has a current interest balance, the Billing module triggers the Apply Deposit
function (p. 4-9) for the amount of the interest balance.

Post Deposit Interest
This Interest function posts deferred credit transactions for a specified account representing an
amount of interest accrual for an associated deposit. This function performs the following steps:

1. The Billing module sets the transaction type to Deposit Interest (DEPINT), the Charge or
Credit flag (CHARGEORCREDIT) to Credit (CR), and the Deferred flag (DEFERRED) to
True.

2. The Billing module triggers the Post Transaction function of the Financial Engine, and uses
the bill calculation data (outlined above) when processing the transaction.

3. The Billing module updates the Interest Balance INTERESTBAL) and Last Interest Date
(LASTINTERESTDATE) values for the deposit accordingly.

The POST DEPOSIT INTEREST Rules Language statement can be used to post deposit interest
as a single transaction. Some elements of the transaction are internally generated by the rate
schedule when the POST DEPOSIT INTEREST Statement executes.

6-8 Billing Component Installation and Configuration Guide, Volume 2

Billing Functions

See Appendix D: Financial Management Rules Language Statements for details on the use
of the POST DEPOSIT INTEREST Statement.

Cancel Deposit Interest

This function cancels a previously posted deposit interest transaction. This function performs the
following steps:

1. The Billing module sets the transaction type to Deposit Interest (DEPINT).
2. 'The Billing module triggers the Cancel Transaction function of the Financial Engine, and
uses the bill calculation data (outlined above) when processing the transaction.
3. The Billing module updates the Interest Balance INTERESTBAL) and Last Interest Date
(LASTINTERESTDATE) values for the deposit accordingly.
Apply Deposit

This function posts non-deferred credit transactions for a specified account representing an

amount of the associated deposit balance that is applied to the account. This function performs
the following steps:

1.

The Billing module sets the transaction type to Deposit Application (DEPAPP), the Charge
or Credit flag (CHARGEORCREDIT) to Credit (CR), and the Deferred flag (DEFERRED)
to False.

The Billing module verifies that the transaction amount is less than or equal to the sum of the
Principal Balance (PRINCIPALBAL) and Interest Balance INTERESTBAL) values of the
deposit.

The Billing module triggers the Post Transaction function of the Financial Engine, and uses
the bill calculation data (outlined above) when processing the transaction.

The Billing module updates the Interest Balance INTERESTBAL), Principal Balance
(PRINCIPALBAL), and Last Applied Date (LASTAPPLIEDDATE) values for the deposit
accordingly. Deposit application amounts are always taken from the interest balance first,
then the principal balance if more is specified

The POST DEPOSIT APPLICATION Rules Language statement can be used to apply a deposit
as a single transaction. Some elements of the transaction are internally generated by the rate
schedule when the POST DEPOSIT APPLICATION Statement executes.

See Appendix D: Financial Management Rules Language Statements for details on the use
of the POST DEPOSIT APPLICATION Statement.

Unapply Deposit
This function cancels a previously posted deposit application transaction. This function performs
the following steps:

1.
2.

The Billing module sets the transaction type to Deposit Application (DEPAPP).

The Billing module triggers the Cancel Transaction function of the Financial Engine, and
uses the bill calculation data (outlined above) when processing the transaction.

The Billing module updates the Principal Balance (PRINCIPALBAL), Interest Balance
(INTERESTBAL), and Last Applied Date (LASTAPPLIEDDATE) values for the deposit
accordingly.

Billing 6-9

Billing Functions

Post Penalty
This function posts penalties against an account. This function inserts a record in the Name
Override History table that is used to indicate that a penalty was posted against the account.
Penalty Code, Penalty Time, and Outstanding Amount values must be provided, and are used as
the Override Code, Start Time, and Value column values of the Name Override History record
respectively. This function performs the following steps:

1. The Billing module inserts a record in the Name Override History table for the given account
and provided values. The Name column value should be the same as the Override Code. The
Stop Time and String Value column values should be NULL.

Post Statement
This function posts a single deferred statement transaction for an individual account. This
transaction typically indicates the current balance amount for the account. This function petforms
the following steps:

1. The Billing module sets the transaction type to Statement (STMT).
2. The Billing module sets the Defer Balance flag (DEFERBALANCE) to True.

3. The Billing module triggers the Post Transaction function of the Financial Engine, and uses
the bill calculation data (outlined above) when processing the transaction.

The POST STATEMENT Rules Language statement can be used to post a statement as a single
transaction. Some elements of the transaction are internally generated by the rate schedule when
the POST STATEMENT Statement executes.

See Appendix D: Financial Management Rules Language Statements for details on the use
of the POST STATEMENT Statement.

Cancel Statement

This function cancels a previously posted statement transaction. This function performs the
following steps:

1. The Billing module sets the transaction type to Statement (STMT).

2. 'The Billing module triggers the Cancel Transaction function of the Financial Engine, and
uses the bill calculation data (outlined above) when processing the transaction.

Post Bill

This function posts a single bill (invoice) transaction for an individual account. This transaction
not only indicates the actual invoice amount for the account, but also optionally triggers any
necessary auto payment processing. This function performs the following steps:

1. The Billing module sets the transaction type to Bill (BILL) .

2. If not explicitly specified, the Billing module sets the application method to Immediate
(IMMEDIATE).

3. If not explicitly specified, the Billing module sets the Defer Balance flag
(DEFERBALANCE) to Ttue.

4. 'The Billing module triggers the Post Transaction function of the Financial Engine, and uses
the bill calculation data (outlined above) when processing the transaction.

5. The Billing module determines the Bill Start Time (BILLSTARTTIME). This is either
provided or is equal to the transaction time of the last transaction for this account with the
same transaction id.

6. The Billing module determine the Bill Stop Time (BILLSTOPTIME). This is either provided
or is equal to the transaction time of this transaction.

6-10 Billing Component Installation and Configuration Guide, Volume 2

Billing Functions

7. If the Invoice ID INVOICEID) is provided, the Billing module updates the Invoice ID and
Invoice Date INVOICEID and INVOICEDATE) or the Cancel Invoice ID and Cancel
Invoice Date (CANCELINVOICEID and CANCELINVOICEDATE) values for all
previously posted or cancelled transactions that occurred within the Bill Start Time and Bill
Stop Time (BILLSTARTTIME and BILLSTOPTIME) parameters whose Invoice ID or
Cancel Invoice ID (INVOICEID or CANCELINVOICEID) is NULL.

8. If the Due Date (DUEDATE) is provided, the Billing module updates the Bill or Paid Date
and Due Date (BILLEDORPAIDDATE and DUEDATE) values for all previously posted or
cancelled charge transactions that occurred within the Bill Start Time and Bill Stop Time
(BILLSTARTTIME and BILLSTOPTIME) parameters whose Due Date (DUEDATE) is
NULL.

9. If the transaction is a charge and the amount is greater than zero, the Billing module triggers
the Process AutoPayment function of the Remittance module (see Chapter 7: Remittance),
using the bill calculation data when processing the transaction in the Remittance module, and
processing is complete.

10. If the amount is less than zero, the Billing module checks whether the account is on an
automatic payment plan and if Auto Refund flag is set to Yes (°Y’). If not, processing is
complete.

11. The Billing module changes the Amount value to positive and triggers the Post Refund
function of the Maintenance module (see Chapter Six: Maintenance). The Billing module
uses the account data provided to the Post Bill function when triggering the PostRefund
function.

12. The Billing module then triggers the Process AutoPayment function of the Remittance
module (see Chapter Five: Remittance) and inserts a record in the AutoPayment table. The
Billing module uses the account data provided to the Post Bill function when triggering the
Process AutoPayment function.

The POST BILL Rules Language statement can be used to post a bill as a single transaction.
Some elements of the transaction are internally generated by the rate schedule when the POST
BILL Statement executes.

See Appendix D: Financial Management Rules Language Statementsfor details on the use
of the POST BILL Statement.

Cancel Bill

This function cancels a previously posted bill transaction. This function performs the following
steps:

1. The Billing module sets the transaction type to Bill (BILL).

2. 'The Billing module triggers the Cancel Transaction function of the Financial Engine, and
uses the bill calculation data (outlined above) when processing the transaction.

Billing 6-11

Billing Functions

Obtaining Information for Bill Printing
Each rate schedule for an account can forward charge details to the statementing interface as it
calculates them. However, other financial transaction information that is not calculated by the rate
schedule needs to be available so that it too can be forwarded to the statementing interface. This
includes any payments, adjustments, transfers, etc. that occurred since the last bill.

Obtaining financial transaction data is petformed using the List/Query functionality of Data
Manager (see Chapter 8: Working with Lists and Queries in the Data Manager User’s Guide). As
transactions are posted from the Rules Language, the Bill Cycle Date and (unique) Rate Form
columns are always set. Transactions from other sources may optionally provide a Bill Cycle Data
value; however, the Rate Form value will always be null.

When accessed from a billing rate schedule, the following query returns all current transactions for
this bill (that were not created by the Billing process):

"SELECT * FROM TRANSACTION

WHERE UIDACCOUNT = ?

AND

UIDRATEFORM IS NULL

AND

(BILLCYCLEDATE IS NULL OR BILLCYCLEDATE = ?2)"

The LISTUPDATE Rules Language function can then be used to update the Bill Cycle Date (as
well as the Billed Date or Due Date if necessary) of the resulting records to associate them with
this bill.

Obtaining Other Account Bill Information
The Get Bill Info function of the Billing module is used to return billing information about an
account, including the account’s current and past due balances. This function requires an XML
string containing all of the information necessary to identify the account and the date for which to
get the information. The only information that is required in this string is the (unique) Account
ID and the Bill or Paid Date (which will default to the current date if not provided). The steps
outlined below describe the process by which account bill information is obtained.

1. The Billing module sums the Balance of all charge Transaction records for the account with a
Due Date value less than or equal to the provided (or defaulted) bill date, a Cancel Time value
of NULL., and a Balance value greater than zero. This is the Past Due Balance.

2. The Billing module adds the Balance and Activity values of the account. This is the Current.

3. The Billing module creates and returns an XML string that contains the account’s
information. Both the Current Balance and Past Due Balance elements are added to this
structure to support the return information.

The FMGETBILLINFO Rules Language function can be used to trigger the Get Bill Info
function. The data necessary to identify the account is passed to the function as function
parameters when the FMGETBILLINFO function is executed. The function returns the same
data as outlined above.

See Appendix D: Financial Management Rules Language Statements for details on the use
of the FMGETBILLINFO function.

6-12 Billing Component Installation and Configuration Guide, Volume 2

Billing Functions

Canceling Transactions
Occasionally, cancellation of previously posted transactions created from a rate schedule is
necessary. The Cancel Transactions function is used to cancel all transactions that were created by
a rate schedule for an individual account. This function is triggered when the Bill Correction
module of Oracle Utdlities Billing Component is run in the CANCEL or CANCEL/REBILL
mode (see the Oracle Utilities Billing Component User’s Guide for more information). The steps
outlined below describe the canceling transaction process.

1. The Billing module locates all Transaction records with unique Account ID and
UIDBILLHISTORY (from an associated Bill History record) values that match those
provided, and that have a non-Null Rate Form value and a Cancel Time value of Null.

2. The Billing module invokes the appropriate “Cancel” function on each Transaction found in
Step 1 above, based on its Transaction Type value.

Billing 6-13

Deprecated Functions

Deprecated Functions

The following functions have been replaced by the Post Charge Or Credit and Cancel Charge Or
Credit functions (as appropriate). Although these functions are still supported, using the Post
Charge or Credit function with specified data as appropriate will produce the same results. Refer
to Deprecated Statements on page D-36 for more information on using these statements via the
Oracle Utilities Rules Language.

Post Service Charge and Cancel Service Charge.
Use the Post Charge Or Credit function with an associated service plan to produce the same
results as these functions.

Post Deferred Service Charge and Cancel Deferred Service Charge.
Use the Post Charge Or Credit function with an associated service plan and DEFERBALANCE
set to true to produce the same results as these functions.

Post Budget Service Charge and Cancel Budget Service Charge.
Use the Post Charge Or Credit function with an associated budget plan and DEFERBALANCE
set to true to produce the same results as these functions.

Post Budget Bill Charge and Cancel Budget Bill Charge.
Use the Post Charge Or Credit function with an associated budget plan to produce the same
results as these functions.

Post Budget Bill TrueUp and Cancel Budget Bill TrueUp.
Use the Post Charge Or Credit function with an associated budget plan to produce the same
results as these functions.

Post Installment Charge and Cancel Installment Charge.
Use the Post Charge Or Credit function to produce the same results as these functions.

6-14 Billing Component Installation and Configuration Guide, Volume 2

Chapter 7

Remittance

This chapter describes the Remittance functions of the Oracle Utilities Receivables Component,
including an overview of some of the database tables used by the Remittance module, and
explanations of each of the Remittance functions performed, including:

e Payment Processing: Processing of all incoming payments from all supported sources. Itis
equipped to handle many possible scenarios, including unpostable payments and transferred
and written-off accounts.

* Payment Exception Processing: Processing of all payment exceptions, including NSF,
closed accounts, and credit limits.

* Automatic Payment Processing: Processing of recurring direct debit and credit card
charges and refunds.

Remittance 7-1

Remittance Database Tables

Remittance Database Tables

In addition to the tables described in Chapter 3: The Oracle Utilities Receivables Component
Database, the Remittance module also uses a set of tables specifically designed to store data
related to payments, including payment sources, automatic payments, batch payments, and
payment assistance. Each of these tables is described below.

Payment Tables

Payment tables store data associated with specific payments, batch payments, payment files, and
automatic payments.

Note
Values in the Payment Table, the Batch Payment Table, and the Automatic Payment Table should
be created only by the Financial Engine.

Payment Table

The Payment Table contains information about a payment for a specific account.

Payment Source Table
Records in the Payment Source Table represent the source of payments coming into the system,
including automatic payments. This represents the vendor from whom the payment was sent such
Chase, Lockbox, etc.

Payment Method Table
Records in the Payment Method Table represent the different payment methods (Check, Visa,
Direct Debit) for payments coming into the system, including automatic payments.

Auto Payment Plan Table
Records in the Auto Payment Plan Table represent automatic payment plans for a given account
for a specified time period. The existence of a current automatic payment plan for an account
triggers an automatic draft of the specified automatic payment vendor account when the account

is billed.

Automatic Payment Table
Records in this table represent an instance of an automatic payment. Payments are collected into
batches, grouped by vendor, and are typically transmitted to the vendor electronically at scheduled
intervals.Batch Payment Table

Records in this table represent a batch payment from some payment source. Each record contains
one or more payments on multiple accounts, and identifies the payment source.

Payment Assistance Tables

Payment assistance tables store data associated with payment assistance agencies, assistance
programs, assistance plans, and assistance pledges.

Assistance Agency Table
Records in this table represent payment assistance agencies in the system. Assistance agencies are
agencies offering payment assistance to customers.

7-2 Billing Component Installation and Configuration Guide, Volume 2

Remittance Database Tables

Assistance Program Table
Records in this table represent payment assistance programs in the system. Assistance programs
are specific payment assistance programs offered by assistance agencies.

Assistance Program Receivable Type Table
Records in this table associate payment assistance programs with Receivable Types in the system.

Assistance Plan Table
Records in this table represent individual payment assistance plans in the system. Assistance plans
are specific instances of assistance programs applied to an account.

Assistance Pledge Table
Records in this table represent individual payment assistance pledges in the system. Assistance
pledges are pledges of specified amounts associated with specific assistance plans. These records
should be created for an account when the plan is established.

Remittance 7-3

Remittance Functions

Remittance Functions

The core function of the Remittance module is to send payment transactions to the Financial

Engine. These transactions are sent to the Remittance module from external systems through an

interface.

Payment Data

In addition to Data Source, Account, and Transaction data, the Remittance module also uses three

specific types of payment data. These are Payments, Batch Payments, and Payment files. Payment

files contain a number of batch payments, which in turn contain a number of payments.

Payments

A payment represents a single payment posted to an account. A payment in the Remittance

module includes the following:

A unique ID for the payment,
Application Method (indicates the credit application method for the payment),

Default Account ID (the default account ID for the payment. This is used if the actual
account ID cannot be determined, or if the payment cannot be posted to the intended

account. This might occur in the case of an invalid account ID, if the account is out of
balance, ot if the account’s Receivable Status is “UNCOLLECTIBLE”),

Transaction ID (the transaction ID for the payment. If not provided, the default Transaction
ID for the Payment Transaction Type will be used),

Revenue Month (optional revenue month for post payment. If not provided, the current
month will be used),

Note (an optional note associated with posted payment),

Account ID (the unique Account ID for the payment),

Payment Source Code (the payment source code for the payment),

Batch Payment (Unique ID of the batch payment from where this payment came),
Batch Cancel (Unique ID of the batch payment that cancelled this payment),
Payment ID (a unique ID for the payment within the batch or the payment source),
Date (the date of the payment. If this is not provided, the current date is used),
Amount (the amount of the payment, including the currency code for the payment),
Payment Method Code (the payment method code for the payment),

Institution (the institution from which the payment is drawn),

Account Name (name on the account),

Account No (a unique identifier of the account within the above institution),
Account ZIP (ZIP code of account),

Check No (the Check number for the above account),

Expiration Date (expiration date for credit card account),

RTN (routing transit number for direct debit account),

Autopayment Time Stamp (transaction time that associated autopayment record was created),
Autopayment Date (scheduled payment date of associated autopayment),

Bill Date (bill date of associated bill transaction when autopayments are used),

7-4 Billing Component Installation and Configuration Guide, Volume 2

Remittance Functions

Invoice ID (associated invoice ID for the payment),
Invoice Date (associated invoice date for the payment),
Misc 1: Optional miscellaneous payment attribute,
Misc 2: Optional miscellaneous payment attribute,
Misc 3: Optional miscellaneous payment attribute,

Cancel Revenue Month (the optional revenue month for a cancelled payment. If not
provided, the current month will be used),

Cancel Reason Code (an optional reason code for canceling payment),
Cancel Note (an optional note associated with cancelled payment), and
Post Penalty (indicates that a penalty should be posted for a cancelled payment).

Assistance Program ID (associated Assistance Program for the payment)

Batch Payments

A batch payment contains a number of payments. A batch payment in the Remittance module

includes the following:

A unique identifier for the batch payment,

Batch No (a unique number of the batch payment within the payment file or payment
source),

Cancel (indicates that the batch should be processed in Cancel mode),
Restart (indicates that the batch should be processed in Restart mode),

Default Account ID (the optional default account ID for the payments in the batch).
Forwarded to individual payments if not already provided,

Transaction ID (the optional Transaction ID for the payments in the batch). Forwarded to
individual payments if not already provided,

Revenue Month (the optional revenue month for the payments in the batch). Forwarded to
individual payments if not already provided,

Payment Source Code (the payment source code for the batch). Required for processing.
Forwarded to individual payments if not already provided,

Payment File (the payment file from where the batch came). Optional for processing. This
includes the unique file pathname of the payment file,

Date (the date of the batch payment). Optional for processing. Forwarded to individual
payments if not already provided,

Payment Method Code (the payment method code for the batch). Optional for processing.
Forwarded to individual payments if not already provided,

Number of Payments (the total number of payments in the batch). Optional for processing,

Amount (the total amount of all the payments in the batch, including the currency code for
the payments in the batch). Optional for processing,

Note: All payments within a batch must use the same currency.

Cancel Revenue Month (the optional revenue month for a cancelled batch. If not provided,
the current month will be used),

Cancel Reason Code (an optional reason code for canceling batch),

Cancel Note (an optional note associated with cancelled batch), and

Remittance 7-5

Remittance Functions

Post Penalty (indicates that a penalty should be posted for payments associated with a
cancelled batch).

Max Errors (the maximum number of payment errors allowed prior to stopping the process).
Optional for processing, and

Payments (the individual payments in the batch). Required for processing,

Payment Files
A payment file contains a number of batch payments. A payment file in the Remittance module

includes the following:

Name (the unique file path name of the payment file) Required for processing,
Cancel (indicates that the file should be processed in Cancel mode),
Restart (indicates that the file should be processed in Restart mode),

Default Account ID (an optional default account ID for the batch payments in the payment
file) Forwarded to individual batch payments if not already provided,

Transaction ID (an optional Transaction ID for the batch payments in the payment file)
Forwarded to individual batch payments if not already provided,

Revenue Month (the optional revenue month for the batch payments in the payment file)
Forwarded to individual batch payments if not already provided,

Payment Source Code (the requited payment source code for the payment file) Forwarded to
individual batch payments if not already provided,

Date (the optional date of the payment file) Forwarded to individual batch payments if not
already provided,

Payment Method Code (an optional payment method code for the payment file) Forwarded
to individual batch payments if not already provided,

Number of Batches (the total number of batches in the payment file) Optional for processing,

Number of Payments (the total number of payments in the payment file) Optional for
processing,

Amount (the total amount of all payments (or batch payments) in the payment file, including
the currency code for the payment file) Optional for processing,

Note: All batches within a payment file must use the same cutrency.

Cancel Revenue Month (the optional revenue month for a cancelled file. If not provided, the
current month will be used),

Cancel Reason Code (an optional reason code for canceling file),
Cancel Note (an optional note associated with cancelled file), and

Post Penalty (indicates that a penalty should be posted for payments associated with a
cancelled file).

Max Errors (the maximum number of batch payment errors allowed prior to stopping the
process) Optional for processing,

Max Errors Per Batch (the maximum number of payment errors allowed per batch payment
prior to stopping the batch payment process) Forwarded to individual batch payments if not
already provided. Optional for processing, and

Batch Payment (individual batch payments in the payment file) Required for processing,.

7-6 Billing Component Installation and Configuration Guide, Volume 2

Remittance Functions

Remittance Function Processing

Each of the Remittance module functions is triggered from an external system via an interface.

When triggered, each function sends transaction data in an XML string (referred to as Payments,

Batch Payments, and Payment Files) to the Financial Engine, which in turn posts the transaction.

When the Remittance functions are triggered, the Remittance module obtains all the information

needed to process the file, and error messages are posted to the database if discrepancies are

found. The Remittance module provides the following functions.

Post Payment
This function processes individual payments at the account level. This function performs the

following steps:

1.

The Remittance module inserts a Payment record into the database. Payment records can
have both positive and negative Amount values, for payments and refunds respectively. If
there is an error, the Remittance module posts an “UNPOSTABLE_PAYMENT” message
that includes the Payment XML string and an appropriate error message, and processing
ends.

The Remittance module finds the associated account record based on the Account ID. If the
payment data includes a currency code, the Remittance module verifies that the Currency
code for the account matches that provided in the payment data. If the account cannot be
found or the currency codes don’t match, the associated account is changed to the “default”
account (which is provided in the payment data).

The Remittance module checks the Transfer To Account value of the account. If the account
has been transferred to another, the Remittance module changes the associated account to
the account that it was transferred to and repeats this step. If the transferred to account
cannot be found, the associated account is changed to the “default” account (which is
provided in the payment data).

If the account’s Receivable Status value is “UNCOLLECTIBLE”, the associated account is
changed to the “default” account (which is provided in the payment data).

If an Assistance Program ID is provided, the Application Method must be Receivable Type
and no 'Related Transaction' should be attached.

If an Assistance Program ID is provided, the Remittance module determines the Receivable
Types that the Payment may be applied to, creates 'Related Transactions' with these
Receivable Types, and attaches them to the transaction.

The Remittance module triggers the Post Transaction function of the Financial Engine, and
sets the following attributes for the transaction:

¢ Account:

Transaction Type:
Transaction 1D:
RevenueMonth:
Note:

Amount:
BilledOtPaidDate:
Invoice ID
Invoice Date
Payment:

Application Method

Determined from steps 2, 3, and 4.

Payment (PYMNT).

Payment Transaction ID if provided or NULL.
Payment revenue month if provided or NULL.
Payment note if provided or NULL.

Payment amount.

Payment date if provided or NULL.

Payment invoice ID if provided.

Payment invoice date if provided.

Payment.

Payment application method.

Remittance 7-7

Remittance Functions

10.

11.

* Charge or Credit Credit

* Defer Balance False

* Related Transactions

The Remittance module uses the Payment data for the Post Transaction function.

If an Assistance Program ID is provided and the Post Transaction function succeeds, the
Remittance module determines which Assistance Pledge (or Pledges) this Payment is
associated with and updates the appropriate Pledge's Received Date and Received Amount
fields.

If the Post Transaction function fails for any reason and the associated account is not the
default account, the associated account is changed to the “default” account (which is
provided in the payment data) and the Remittance module attempts to trigger the Post
Transaction function again.

If the associated account is the default account, the Remittance module posts an
“UNPOSTABLE_PAYMENT” message that includes the Payment data and an appropriate
error message.

If the associated account is not the default account and the account’s Receivable Status value
is “COLLECTIONS” the Remittance module posts a “COLLECTIONS_PAYMENT”
message that includes the Payment data.

The POST PAYMENT Rules Language statement can be used to post a payment as a single
transaction. Some elements of the transaction are internally generated by the rate schedule when
the POST PAYMENT Statement executes.

See Appendix D: Financial Management Rules Language Statements for details on the use
of the POST PAYMENT Statement.

Process Batch Payment
This function processes batch payments containing one or more individual payments. This

function performs the following steps:

1.

If the Restart flag is set, the Remittance module checks if the Batch already exists in database.
If not, then it clears the Restart flag.

If the Received Date is not provided, the Remittance module defaults to current date.

If the default Account ID is provided, the Remittance module checks if the account exists. If
not the Remittance module posts a “BATCHPAYMENT_ERROR” message that includes
the Batch Payment data (with all individual payments) and an appropriate error message, and
processing ends.

The Remittance module iterates through all the individual payments in the batch and
determines the actual total number of payments and the total amount. It then compares
these values with the number of payments and amount values (if provided) of the batch
payment. If there is a discrepancy, the Remittance module posts a
“BATCHPAYMENT_ERROR” message that includes the Batch Payment data (with all
individual payments) and an appropriate error message, and processing ends.

The Remittance module inserts a Batch Payment record into database, if the Restart flag is
not set. If there is an error, it posts a “BATCHPAYMENT_ERROR” message that includes
the Batch Payment data (with all individual payments) and an appropriate error message, and
processing ends.

If the Cancel flag is set to No (‘N’), for each Payment in the Batch, if the Restart flag is set to
Yes, the Remittance module checks if the Payment already exists in the database. If so, then it
skips the payment. If not, the Remittance module triggers the Post Payment function
(described above) for the payment..

7-8 Billing Component Installation and Configuration Guide, Volume 2

Remittance Functions

If the Cancel flag is set to Yes (Y’), for each Payment in the Batch, if the Restart flag is set to
Yes, the Remittance module checks if the Payment has already been cancelled. If so, it skips
the Payment. If not, the Remittance module triggers the Cancel Payment function for the
Payment.

In cither case, the Remittance module forwards the appropriate attributes to each payment, if
not provided, prior to posting, and maintains a count of any payment errors. If the optionally
provided max errors limit is surpassed, the Remittance module posts a
"BATCHPAYMENT_ERROR" message that includes the Batch Payment data (with all
individual payments) and an appropriate error message, and processing ends.

The Remittance module posts a “BATCHPAYMENT_PROCESSED” message that includes
the Batch Payment data (without any individual payments) and the number of payment errors,
if any.

Processing Batch Payments in Cancel mode
The Remittance module can also cancel batch payments. Cancelled batch payments are either:

Existing batch payments: Previously processed batch payments. Processing an existing
batch payment in Cancel mode requires either:

* setting the Cancel and Restart flags of the existing batch payment both set to Yes (Y’)
and reprocessing the batch payment, or

* processing a batch payment that contains the unique ID of the batch payment to be
cancelled and has the Cancel and Restart flags both set to Yes (Y?).

Batches of individual existing payments: Batches of payments collected into batches for
cancellation. These payments may have been posted either as part of a previous batch
payment or as individual payments. Processing a batch of individual existing payments in
Cancel mode requites a batch payment that has the Cancel flag set to Yes (°Y’), and the
individual payments to be cancelled.

Process Payment File
This function processes payment files that contain one or more batch payments. This function

performs the following steps:

1.

If the default account ID is provided, the Remittance module checks if the account exists. If
not, it posts a “PAYMENTFILE_ERROR” message that includes the Payment File data
(without any individual batch payments) and an approptiate error message, and processing
ends.

The Remittance module iterates through all the individual batch payments and determines the
actual total number of batch payments and the total amount. It then compares these values
with the number of batches and amount values (if provided) of the payment file. If thereisa
discrepancy, the Remittance module posts a “PAYMENTFILE_ERROR” message that
includes the Payment File data (without any individual batch payments) and an appropriate
error message, and processing ends.

The Remittance module triggers the Process Batch Payment function (described above) for
each individual batch payment in the file. The Remittance module also forwards the
appropriate attributes to each batch payment, if not provided, prior to processing. If the
Cancel flag is set to Yes (Y’) for the Payment File, the Remittance module sets the Cancel flag
to Yes for each Batch prior to processing. If the Restart flag is set for the Payment File, the
Remittance module sets the Restart flag for each Batch prior to processing. The Remittance
module maintains a count of any batch payment errors during processing, and if the
optionally provided Max Errors limit is surpassed, the Remittance module posts a
“PAYMENTFILE_ERROR” message that includes the Payment File data (without any
individual batch payments) and an appropriate error message, and processing ends.

Remittance 7-9

Remittance Functions

4. The Remittance module posts a “PAYMENTFILE_PROCESSED” message that includes
the Payment File data (without any individual batch payments), the number of batch payment
errors, if any, and the number of payments in error, if any.

Processing Payment Files in Cancel mode
The Remittance module can also cancel payment files. Cancelled payment files are either:

* Existing payment files: Previously processed payment files. Processing an existing batch
payment in Cancel mode requitres processing a payment file that has the Cancel and Restart
flags both set to Yes (Y’), and contains the unique IDs of the batch payments to be cancelled.

* Files containing a group of batch payments: Payment files containing any number of
valid batch payments collected for cancellation. These batch payments may have been posted
either as part of a previously processed payment file, or may be comprised of individual
payments. Processing a payment file containing batch payments in Cancel mode requires a
payment file that has the Cancel flag set to Yes (Y’), and the individual batch payments to be
cancelled.

7-10 Billing Component Installation and Configuration Guide, Volume 2

Remittance Functions

Using the Process Payment File Command Line Program
The Process Payment file function can be performed using a command line program. The Process
Payment file command line program (PROCPMNT.EXE) uses the syntax shown below.
Parameter switches are case insensitive (i.e. you can enter them in either upper or lower case (-c or
-C)). If a parameter includes a space, you must enclose it in quotes (for example, -s “11/01/1999
12:00:00”). The syntax is:

procpmnt.exe -d <connectstring> [-q <qualifier>) [-@ <xmiPaymentFile>)
[-Lcfg logging confignration filenanme|

The command must be entered on one line. Also, you must either change to the directory in which
the program is stored (typically, \LODESTAR\Dbin) before enteting the command, or specify the
path in the command. To view a list of all parameters on-screen, type procpmnt -? at the
command prompt.

Parameter Description

-d connectstring is database connection information for the Oracle Utilities
Data Repository. This parameter is required and must be in one of the
following formats:

For Oracle databases:

"Data Source=<data_source>;User
ID=<user_id>;Password=<password>;LSProvider=ODP;"

where:

* <data_source> is the Oracle TNS Name for the data source, from
the TNS_NAMES.ora file (typically located in the
\\<machine>\oracle\network\admin directory)

e <user_id> is the user ID for the database connection

* <password> is the password for the supplied user ID.

-q gualifier is the optional qualifier for the data source.
-@ xmlInputFile is an XML file that contains the payment file.
-lefg logging confignration filename Name of an optional logging configuration

file that specifies where error and log messages are sent. If you omit this
parameter, the application creates a log file named PROCPMNT.LOG
in the LOG directory.

Remittance 7-11

Remittance Functions

Cancel Payment
This function cancels individual payments. Based on the supplied Cancel Reason Code, this
function also establishes a penalty installment against the account. This function performs the
following steps:

1. The Remittance module finds the specified Payment record based on either a given unique ID
or a combination of attributes. If the specified record cannot be found, then the Remittance
module posts a “PAYMENT_EXCEPTION_ERROR” message that includes the Payment
data, as well as an appropriate error message, and processing ends.

2. If an Assistance Program ID is provided, the Remittance module determines the Receivable
Types that the Payment may be applied to, creates 'Related Transactions' with these
Receivable Types, and attaches them to the transaction.

3. The Remittance module finds the associated Transaction record, triggers the Cancel
Transaction function of Financial Engine, and sets the following additional attributes for the

transaction:

* Cancel Revenue Month: As provided or NULL.
* Cancel Reason Code: As provided or NULL.
* Cancel Note: As provided or NULL.

The Remittance module uses the Payment data for the Cancel Transaction function.

4. If an Assistance Program ID is provided and the Post Transaction function succeeds, the
Remittance module determines which Assistance Pledge (or Pledges) this Payment is
associated with and updates the appropriate Pledge's Received Date and Received Amount
fields. If an error occurs, the Remittance module posts a
“PAYMENT_EXCEPTION_ERROR” message that includes the Payment data, as well as an
appropriate error message, and processing ends.

5. If the Post Penalty flag is set and a Cancel Reason Code is provided, the Remittance module
triggers the Post Penalty function of the Billing module using the Cancel Reason Code as the
Penalty Code and the Payment Amount as the Outstanding Amount.

Process AutoPayment
This function creates an automatic payment and refund for an account, if set up to do so. This
function performs the following steps:

1. The Remittance module locates the appropriate Account and determines if an automatic
payment plan is currently in effect for the Account via the Auto Payment Plan Table. If not,
processing is complete.

2. If the Payment Day value if not NULL, the Remittance module uses it to calculate the
Payment Date as follows. If the day of the bill date provided (BilledOrPaidDate of BILL
transaction or current time) is less than the Payment Day, advance the bill date's day to the
Payment Day. If the day of the bill date provided is greater than the Payment Day, advance
the month/year appropriately (if month is less than 12, add 1, if month is 12, add 1 to year
and set month to 1) and set the day to the Payment Day.

3. If the Payment Day value is NULL, the Remittance module gets the Auto Payment Delay
value from appropriate Payment Method record (zero if NULL), and adds this value (in days)
to the bill date provided (BilledOrPaidDate of BILL transaction or curtent date). The result
is the Payment Date value for the new Automatic Payment record (see Step 3 below).

4. The Remittance module creates and inserts a new Automatic Payment record as a child of the
Auto Payment Plan record found in Step 1. This record has the following attributes:

* The Payment Date value was calculated in Step 2.

* The Transaction Time, unique Transaction ID (optional), and Amount values are
provided via the Bill transaction. The Amount value is positive for payments and

7-12 Billing Component Installation and Configuration Guide, Volume 2

Remittance Functions

negative for refunds. If there is an amount to be refunded, the Remittance module
inserts a record into the LSRefund table with appropriate attributes and status set to
“SENT”.

¢ The Batch No. and Cancel Time values should be NULL.
¢ The Status value should be set to “PENDING”.

Cancel AutoPayment
If an automatic payment exists for an account, the Cancel AutoPayment function can be used to

cancel it. This function performs the following steps:

1.

The Remittance module looks for any Automatic Payment records that have either the same
transaction unique ID (UIDTRANSACTION) as the provided transaction, or has both an
Auto Payment Plan unique ID (UIDAUTOPAYPLAN) and a Transaction Time value based
on the Account and Transaction Time of the provided transaction, and whose Batch No. and
Cancel Time values are NULL (in other words, the payment has not yet been sent).

The Remittance module updates the Cancel Time field for each record found in Step 1 above
to the Cancel Time value provided to the Cancel AutoPayment function (or the current time
if not provided), and updates the Status field to “CANCELLED”.

Batch AutoPayments

This function is a scheduled process that groups all pending automatic payments by payment

source and forwards them to the appropriate outbound interface.

Batch AutoPayments Processing
This function performs the following steps:

1.

The Remittance module locates all the Automatic Payment records with a Batch No. and
Cancel Time value of NULL, and a Payment Date value equal to or before the current date.
It then gets each record, along with the attributes from its parent Auto Payment Plan and
Payment Method records, and groups these records by Payment Method.

For each group (payment method), the Remittance module creates a Payment File data
structure (defined above). This data structure consists of one or more Batch Payment data
structures (also defined above), whose size (number of payments) should be specified by the
Auto Batch Size parameter of the corresponding payment method. The batch number for the
first batch starts at 1 in each Payment File and increments for each additional batch in the
payment file. The Source Code, Method Code, Number of Batches, Number of Payments,
Number of Refunds, Amount, and Refund Amount elements should all be set appropriately.
The Financial Engine updates each Auto Payment record found in Step 1 so that its File
Name and Batch No. values indicate what batch it is in, and its STATUS value is set to
“SENT”. For each refund record found in the Auto Payment table, the Remittance module
updates the Status in the LSRefund table with the supplied Refund Status value. If the Refund
Status is not supplied, the Remittance module updates the status to “ISSUED”, and updates
the Issue Date to the current date.

For each Payment File data structure created in Step 2 above, the Remittance module posts
both a “PAYMENTFILEOUT” message. In addition, if the Post Delay column is greater
than or equal to zero (i.e. not NULL), the Remittance module also posts a
“PAYMENTTFILEIN” message that includes the Payment File data. The
“PAYMENTFILEIN” message should be scheduled to be handled #» number of days in the
future based on the Post Delay parameter of the corresponding payment method.

For each Payment File data structure created in Step 2 above, the Remittance module posts an
“AUTOPAYMENTS_PROCESSED” message that include the Payment File data (not
including the individual batch payments).

Remittance 7-13

Remittance Functions

Using the Batch AutoPayments Command Line Program

The Batch AutoPayments function can be performed using a command line program. The Batch
AutoPayments command line program (BAUTOPAY.EXE) uses the syntax shown below.
Parameter switches are case insensitive (i.e. you can enter them in either upper or lower case (-c or
-C)). If a parameter includes a space, you must enclose it in quotes (for example, -s “11/01/1999
12:00:007).

bautopay.exe -d <connectstring> |-q <qualifier>) [-s <refundStatus>|
[-Lcfg logging confignration filenanmse|

The command must be entered on one line. Also, you must either change to the directory in which
the program is stored (typically, \LODESTAR\Dbin) before enteting the command, or specify the
path in the command. To view a list of all parameters on-screen, type bautopay -? at the
command prompt.

Parameter Description

-d connectstring is database connection information for the Oracle Utilities
Data Repository. This parameter is required and must be in one of the
following formats:

For Oracle databases:

"Data Source=<data_source>;User
ID=<user_id>;Password=<password>;LSProvider=ODP;"

where:

* <data_source> is the Oracle TNS Name for the data source, from
the TNS_NAMES.ora file (typically located in the
\\<machine>\oracle\network\admin directory)

e <user_id> is the user ID for the database connection

* <password> is the password for the supplied user ID.

-q qualifier is the optional qualifier for the data source.

-s refundStatus is an optional Status for refunds processed in the batch
autopayment.

-lcfg logging confignration filename Name of an optional logging configuration

file that specifies where error and log messages are sent. If you omit this
parameter, the application creates a log file named BAUTOPAY.LOG
in the LOG directory.

7-14 Billing Component Installation and Configuration Guide, Volume 2

Chapter 8

Maintenance

This chapter describes the Maintenance functions of the Oracle Utilities Receivables Component,
including an overview of the data and processing performed by the Maintenance module, and

explanations of each of the Maintenance functions performed, including:

Post Payment Transfer,

Cancel Payment Transfer,
Post Adjustment,

Cancel Adjustment,

Post Refund,

Cancel Refund,

Post Pending Refunds,
Process Pending Refunds,
Process Time Voided Refunds,
Update Refund Status

Post Write-Off,

Cancel Write-Off,

Write Off Account,

Write On Account,

Cancel Transactions,

Post Balance Transfer,

Cancel Balance Transfer,
Transfer Account Balance, and

Return Account Balance.

Maintenance 8-1

Maintenance Functions

Maintenance Functions

The core function of the Maintenance module is to send maintenance transactions, such as
transfers, adjustments, refunds, and write-offs to the Financial Engine. These transactions atre sent
to the Maintenance module from either the Oracle Utilities Receivables Component user interface
or external systems through an interface.

Maintenance Data

The functions of the Maintenance module require data source and transaction data that contains
the information necessary to process the specific function being performed (i.e. post a payment
transfer, cancel an adjustment, etc.). When the functions are triggered through an interface, the
transaction data is sent in an XML string to the Maintenance module and then to the Financial
Engine. When the functions are triggered through the Oracle Utilities Receivables Component
user interface, the transaction data is generated by the user interface based on data entered by the
user, and then is sent to the Maintenance module.

Batch Refunds

Several of the refund functions use batch refund data. A batch refund in the Maintenance module
includes the following:

* Number of refunds (the total number of refunds processed in the file. This is an output
attribute),

* Total Amount (the total amount of all refunds processed in the file, including the currency
code for the total amount. This is an output attribute),

* Number of Errors (the total number of errors occurred while refunds processing. This is an
output attribute).

* Refund Wait Days (the number of days an unapplied outstanding credit has to remain on a
closed account. This is a required input attribute for the Post Pending Refunds function.),

* Refund Reason Code (the reason code for which the refunds are being posted to the
LSRefund table. This is an optional input attribute for the Post Pending Refunds function),

* File Name (a user-specified fully qualified file name in which the batch refund data is stored.
This is a required input attribute for Process Pending Refunds function.),

* Account Number (the financial institution's account no. This is a required input attribute for
Process Pending Refunds function.),

* Void Offset Days (the number of days after which an issued check would become void. This
is a required input attribute for Process Time Voided Refunds function.),

* Writeoff Reason Code (the reason code for writing off the account. This is a required input
attribute for Process Time Voided Refunds function),

* Country (the optional country name for the address. The default is USA.),
* Account ID (from the Account table),

* Unique ID of the refund (from the LSRefund table),

* Unique ID for the refund transaction (from the LSTransaction table),

* Unique ID of the account (from the Account table),

* Unique ID for checking account (from the Checking Account table)

* Amount (the amount being refunded, including the currency code for the amount. This is a
required input field when updating the status),

* Check Number (the check number in the checking account),

8-2 Billing Component Installation and Configuration Guide, Volume 2

Maintenance Functions

Issued Date (the date on which the check was issued),
Cashed Date (the date on which the check was cashed),
Reason (description of the refund reason),

Status (the status of the refund. The allowed states are ISSUED and CASHED. This is a
required input when updating the status),

Customer Name (the name of the customer to whom the amount is being refunded),

Address1, Address2, Address 3 (the house number, apartment number, and street name of
the customer),

City (the name of the town where the customer lives),
State (the state in which the city is located), and

County (the county in which the city is located).

Maintenance Function Processing

Each of the Maintenance module functions can be triggered either from the Oracle Utilities
Receivables Component user interface (see the Oracle Utilities Billing Component User’s Guide) or from
an external system via an interface. When triggered, each function sends transaction data in an
XML string to the Financial Engine, which posts the transaction. When the Maintenance
functions are triggered, the Maintenance module obtains all the information needed to process the

file, and error messages are posted to the database if discrepancies are found. The Maintenance
module provides the following functions.

Post Payment Transfer
This function transfers individual payments between accounts. This function performs the
following steps:

1.
2.

The Maintenance module sets the transaction’s Transaction Type to PYMNT (Payment).

If not explicitly specified, the Maintenance module sets the application method to Immediate
(IMMEDIATE).

The Maintenance module sets CHARGEORCREDIT (Charge or Credit) to Credit (CR).

The Maintenance module triggers the Transfer Transaction Amount function of the Financial
Engine and uses the data source and transaction data (outlined above) when processing the
transaction.

Cancel Payment Transfer
This function cancels a previous payment transfer. When triggered, this function performs the
following steps:

1. The Maintenance module sets the transaction’s Transaction Type to PYMNT (Payment).
2. The Maintenance module triggers the Cancel Transaction function of the Financial Engine,
and uses the data source and transaction data (outlined above) when processing the
transaction.
Post Adjustment

This function posts an adjustment transaction credit or charge against an account. This function

performs the following steps:

1.
2.

The Maintenance module sets the transaction’s Transaction Type to ADJ (Adjustment).

If a Related Transaction is provided (it is an error if more than one is provided), the
Maintenance module uses the Amount (if not specifically provided for the transaction),
Charge or Credit (the opposite), Receivable Type, Charge Type, Operating Company and

Maintenance 8-3

Maintenance Functions

Jurisdiction (if not specifically provided for the transaction), the unique ID of the associated
Service Plan, and the unique ID of the associated Budget Plan from the related transaction
for the adjustment transaction.

If both the Amount and a Related Transaction are specified, then the Maintenance module
verifies that the amount is not greater than the Related Transaction amount. If so, it is an
error.

If a Related Transaction is provided, the Maintenance module sets the application method to
Specified (SPECIFIED). Otherwise, if not explicitly specified and the adjustment is a credit,
the Maintenance module sets the application method to Immediate IMMEDIATE).

The Maintenance module then triggers the Post Transaction function of the Financial
Engine, using the data source and transaction data (with the additions as described above).

If a Related Transaction is provided and it is a taxed transaction, the Maintenance module
posts the appropriate tax adjustment by triggering the Post Tax function of the Billing
module for each associated tax, relating the tax to this transaction.

The POST ADJUSMENT Rules Language statement can be used to post a charge or credit
adjustment as a single transaction. Some elements of the transaction are internally generated by
the rate schedule when the POST ADJUSTMENT Statement executes.

See Appendix D: Financial Management Rules Language Statements for details on the use
of the POST ADJUSTMENT Statement.

Cancel Adjustment
This function cancels a previous adjustment. This function performs the following steps:

1.
2.

The Maintenance module sets the transaction’s Transaction Type to AD] (Adjustment).

The Maintenance module triggers the Cancel Transaction function of the Financial Engine,
and uses the data source and transaction data (outlined above) when processing the
transaction.

Post Refund

This function posts a refund transaction charge against an account. This function performs the

following steps:

1.
2.
3.

The Maintenance module sets the transaction’s Transaction Type to REND (Refund).
The Maintenance module sets the transaction’s Charge or Credit value to Charge (CH).

If any Related Transactions are provided, the Maintenance module verifies that they are all
credits. If not, it is an error.

If the Amount is not provided and Related Transactions are provided, then the Maintenance
module uses the sum of the Balance values of the Related Transactions as the amount of the
transaction.

If both the Amount and Related Transactions are specified, then the Maintenance module
verifies that the amount is not greater than the sum of the Balance values of the Related
Transactions. If so, it is an error.

If the Amount is specified, the Maintenance module verifies that the currency code for the
amount matches the Currency code for the account. If not, it is an error.

If the Amount is provided without any Related Transactions, then the Maintenance module
verifies that the Amount is not greater then the account’s current credit balance. If so, it is an
errof.

The Maintenance module sets the transaction’s Billed or Paid Date value to NULL.

8-4 Billing Component Installation and Configuration Guide, Volume 2

Maintenance Functions

10.

11.

12.

13.

If a Related Transaction is provided, the Maintenance module sets the application method to
Specified (SPECIFIED). Otherwise, if not explicitly specified, the Maintenance module sets
the application method to Immediate IMMEDIATE).

The Maintenance module triggers the Post Transaction function of the Financial Engine
using the data source and transaction data (with the additions as described above).

If the account is on an AutoPayPlan and the Use For Refund flag in the AutoPayment Plan
table is set to Yes ('Y"), the Maintenance module triggers the Process Auto Payment function
of the Remittance module, with a negative Amount value, and creates a Refund record with
the Status set to SENT.

Otherwise, the Maintenance module creates a Refund record with the Status set to
PENDING.

The Maintenance module inserts the above Refund record into the LSRefund table with the
following details:

* UIDTRANSACTION = Transaction UID

* UIDACCOUNT = Account UID

* AMOUNT = Transaction Amount

* UIDCHECKINGACCOUNT = Checking Account UID
* ISSUEDATE, CASHEDDATE, VOIDDATE = NULL

The POST REFUND Rules Language statement can be used to post a refund as a single
transaction. Some elements of the transaction are internally generated by the rate schedule when
the POST REFUND Statement executes.

See Appendix D: Financial Management Rules Language Statements for details on the use
of the POST REFUND Statement.

Cancel Refund

This function cancels a previous refund. This function performs the following steps:

1.

The Maintenance module checks if the Refund has been cashed already (ISSUED status for
auto refunds and CASHED status for refunds via check). If it has been cashed, it is an error.

The Maintenance module sets the transaction’s Transaction Type to REND (Refund).

If the account is on an AutoPayment Plan, the Maintenance module triggers the Cancel
AutoPayment function of the Remittance module.

The Maintenance module triggers the Cancel Transaction function of the Financial Engine
and uses the data source and transaction data (outlined above) when processing the
transaction.

If the Cancel Transaction succeeds, the Maintenance module updates the status in the
LSRefund table to VOIDED, and updates the Void Date with the current date.

Post Pending Refunds

This function scans the Oracle Utilities Data Repository for all closed accounts with an unapplied

credit, determines if the credit has been active on the account for the specified time period, and

creates a Refund record in the database. This function performs the following steps:

1.
2.

The Refund Wait Days attribute must be provided.

The Maintenance module determines if the account is closed, by looking for records in the
Account table with Stop Time less than the current date.

The Maintenance module check the Allow Refund flag for the account in the Account FME
table. If this flag is set to No (‘N’), the Maintenance module skip this account.

Maintenance 8-5

Maintenance Functions

4. The Maintenance module determines if the account has an unapplied credit by checking that
the total of the Last Balance and New Activity is less then zero.

5. 'The Maintenance module determines if the credit balance has remained on the account for
the specified period by checking that the current date minus the Stop Time is greater than the
Refund Wait Days attribute.

6. The Maintenance module determines if the account is not on an assistance plan by checking
the Assistance Plan table.

7. The Maintenance module verifies that all other accounts for the customer don’t have any
outstanding balances by checking that the total of the Last Balance and New Activity is less
than or equal to zero for the remaining accounts of a customer.

If this is not the case (if there is an outstanding balance on any of the account for the
customer), the Maintenance module sends a
REFUND_OUTSTANDING_BALANCE_ERROR message to the appropriate work

queue.

8. The Maintenance module triggers the Post Refund function (p. 8-4) with the following
attributes

¢ Transaction Account UIDACCOUNT = Account UID

* Transaction AMOUNT = positive value of Last Balance plus New Activity.

8-6 Billing Component Installation and Configuration Guide, Volume 2

Maintenance Functions

Using the Post Pending Refunds Command Line Program
The Post Pending Refunds function can be performed using a command line program using the
syntax shown below. Parameter switches are case insensitive (i.e. you can enter them in either

upper or lower case (-c or -C)). If a parameter includes a space, you must enclose it in quotes (for
example, -s “11/01/1999 12:00:00”). The syntax is:

pendrfnd.exe -d <comnectstring> [-q <qualifier>) -@ <xm/BatchRefundFilename>
[-Lcfg logging confignration filenanmse|

The command must be entered on one line. Also, you must either change to the directory in which
the program is stored (typically, \LODESTAR\Dbin) before enteting the command, or specify the
path in the command. To view a list of all parameters on-screen, type pendrfnd -? at the
command prompt.

Parameter Description

-d connectstring is database connection information for the Oracle Utilities
Data Repository. This parameter is required and must be in one of the
following formats:

For Oracle databases:

"Data Source=<data_source>;User
ID=<user_id>;Password=<password>;LSProvider=ODP;"

where:

* <data_source> is the Oracle TNS Name for the data source, from
the TNS_NAMES.ora file (typically located in the
\\<machine>\oracle\network\admin directory)

e <user_id> is the user ID for the database connection

* <password> is the password for the supplied user ID.

-q gualifier is the optional qualifier for the data source.
-@ xmiBatchRefundFilename is the name of the Batch Refund (see Batch

Refunds, p. 8-2) file to be used for processing.

-lefg logging configuration filename Name of an optional logging configuration
file that specifies whete error and log messages are sent. If you omit this
parameter, the application creates a log file named PENDRFND.LOG
in the LOG directory.

Maintenance 8-7

Maintenance Functions

Process Pending Refunds
This function scans the Oracle Utilities Data Repository for all Refund records with a Status of
PENDING, converts them into the Batch Refund data type (see Batch Refunds, p. 8-2), and
stores them in a user-defined file to be used for issuing the refunds via checks.

A Refund record’s Status should be one of the following at any time:

* PENDING - Refund details have not yet been sent to the Check Writing System. This is the
initial state of refunds issued via checks in the LSRefund table.

* SENT - Refund details have been sent to the Check Writing system for writing a check (for
refunds issued via checks). The Refund record was created both in the Automatic Payment
and Refund tables. This is the initial state of refunds issued via auto payments.

* ISSUED - Check has been issued (in case of refunds issued via checks), and refund details
have been sent to credit card and debit card companies.

* CASHED - Check has been cashed by the customer.
* VOIDED - Check has been either cancelled or not cashed before the void date (Expired).
This function performs the following steps:

1. The Maintenance module checks whether the required Account Number and Filename
elements (see Batch Refunds, p. 8-2) have been provided, If not, processing is done.

2. The Maintenance module gets all the pending refund accounts with a status of PENDING.

3. The Maintenance module fills in the following data elements with their corresponding
database fields:

* Account ID

e Unique ID of Associated Refund,

* Unique ID of Transaction,

* Amount,

e Check Number (incremented by 1),

* Unique ID of associated checking account,

* RTN,

* Institution (obtained from the database based on the Account No.)

4. The Maintenance module gets the customer information along with the address and fills in
the respective elements in the Batch Refund XML file.

5. The Maintenance module fill in the Number of Refunds and Amount with the total number
of refunds and total amount.

6. The Maintenance module saves the converted Refunds data into the provided file name.

7. The Maintenance module updates the Status in the LSRefund table to SENT and updates the
Send Date with current time.

8. The Maintenance module updates the unique ID of the associated checking account, and
Check Number in the LSRefund table, and updates the Last Check Number in the Checking
Account table.

8-8 Billing Component Installation and Configuration Guide, Volume 2

Maintenance Functions

Using the Process Pending Refunds Command Line Program
The Process Pending Refunds function can be performed using a command line program using
the syntax shown below. Parameter switches are case insensitive (i.e. you can enter them in either

upper or lower case (-c or -C)). If a parameter includes a space, you must enclose it in quotes (for
example, -s “11/01/1999 12:00:00”). The syntax is:

procefnd.exe -d <connectstring> [-q <qualifier>)-@ <xm/BatchRefundilenanme>
[-Lcfg logging confignration filenanme|

The command must be entered on one line. Also, you must either change to the directory in which
the program is stored (typically, \LODESTAR\Dbin) before enteting the command, or specify the
path in the command. To view a list of all parameters on-screen, type proctfnd -? at the command
prompt.

Parameter Description

-d connectstring is database connection information for the Oracle Utilities
Data Repository. This parameter is required and must be in one of the
following formats:

For Oracle databases:

"Data Source=<data_source>;User
ID=<user_id>;Password=<password>;LSProvider=ODP;"

where:

* <data_source> is the Oracle TNS Name for the data source, from
the TNS_NAMES.ora file (typically located in the
\\<machine>\oracle\network\admin directory)

e <user_id> is the user ID for the database connection

* <password> is the password for the supplied user ID.

-q gualifier is the optional qualifier for the data source.

-@ xmiBatchRefundFilename is the name of the Batch Refund (see Batch
Refunds, p. 8-2) file to be used for processing.

-lefg logging configuration filename Name of an optional logging configuration
file that specifies whete error and log messages are sent. If you omit this
parameter, the application creates a log file named PROCRFND.LOG
in the LOG directory.

Maintenance 8-9

Maintenance Functions

Process Time Voided Refunds
This function scans the Oracle Utilities Data Repository for all Refund records with a Status of
ISSUED and determines whether the checks have been cashed before the void date. This function
performs the following steps:

1. The Maintenance module determines whether the required Void Offset Days, Writeoff
Reason Code elements (see Batch Refunds, p. 8-2) have been provided. If not, processing is
done.

2. The Maintenance module get all the Refund records with a status of SENT or ISSUED and
whose Check Number is not null.

3. The Maintenance module checks that the current date minus the Issued Date or Send Date
Today's date is greater than the Void Offset Days.

4. The Maintenance module sets Write Off Reason Code for the account with the provided
Write Off Reason Code.

5. The Maintenance module triggers the Cancel Refund function (p. 8-5) of the Maintenance
module.

6. If the account is closed, the Maintenance module triggers the Write Off Account function (p.
8-14) of the Maintenance module

8-10 Billing Component Installation and Configuration Guide, Volume 2

Maintenance Functions

Using the Process Time Voided Refunds Command Line Program
The Process Time Voided Refunds function can be performed using a command line program
using the syntax shown below. Parameter switches are case insensitive (i.e. you can enter them in

either upper or lower case (-c or -C)). If a parameter includes a space, you must enclose it in quotes
(for example, -s “11/01/1999 12:00:00”). The syntax is:

voidrfnd.exe -d <connectstring> [-q <qualifier>)] -@ <>xmiBatchRefundFilenanme>
[-Lcfg logging confignration filenanme|

The command must be entered on one line. Also, you must either change to the directory in which
the program is stored (typically, \LODESTAR\Dbin) before enteting the command, or specify the
path in the command. To view a list of all parameters on-screen, type voidrfnd -? at the command
prompt.

Parameter Description

-d connectstring is database connection information for the Oracle Utilities
Data Repository. This parameter is required and must be in one of the
following formats:

For Oracle databases:

"Data Source=<data_source>;User
ID=<user_id>;Password=<password>;LSProvider=ODP;"

where:

* <data_source> is the Oracle TNS Name for the data source, from
the TNS_NAMES.ora file (typically located in the
\\<machine>\oracle\network\admin directory)

e <user_id> is the user ID for the database connection

* <password> is the password for the supplied user ID.

-q gualifier is the optional qualifier for the data source.

-@ xmiBatchRefundFilename is the name of the Batch Refund (see Batch
Refunds, p. 8-2) file to be used for processing.

-lefg logging configuration filename Name of an optional logging configuration
file that specifies whete error and log messages are sent. If you omit this
parameter, the application creates a log file named VOIDRFND.LOG
in the LOG directory.

Maintenance 8-11

Maintenance Functions

Update Refund Status

This function updates records in the Oracle Ultilities Data Repository with refund status
information. This function performs the following steps:

1. The Maintenance module gets the account status details from the provided Batch Refund
data. Either the unique ID of the refund, the unique ID of the transaction, or the unique ID
of the associated checking account, and the Account Number and Check Number must be
provided. The Maintenance module checks them against the values stored in the database.

2. 'The Maintenance module checks the amounts. If they don't match, the Maintenance module
writes a REFUND_UPDATE_ERROR error message to the work queue.

3. The Maintenance module checks the Status. A Refund’s Status can change from one state to
another as follows: SENT to ISSUED, ISSUED to CASHED, SENT to CASHED. The
system does not update a refund with the same state. If there is an error, the Maintenance
module sends an error message to the work queue.

A Refund’s Issue Date should not be less than its Send Date. A Refund’s Cashed Date should
not be less than either the Send Date or the Issued Date based on the status. If this doesn't
match, the Maintenance module sends a REFUND_UPDATE_ERROR error message to the
work queue. If the Issued Date or Cashed Date are not provided, the Maintenance module
updates the record with the current date.

4. The Maintenance module updates the LSRefund table with appropriate valid values.

5. If the Maximum No. Errors attribute is provided, the Maintenance module checks if the error
count exceeds the Maximum No. Errors. If so, the Maintenance modules sends a
BATCHREFUND_UPDATE_ERROR error message that includes the Batch Refund xml
string.

6. The Maintenance module posts a BATCHREFUND_UPDATE_PROCESSED message that
includes Batch Refund xml string and the number of errors, if any.

8-12 Billing Component Installation and Configuration Guide, Volume 2

Maintenance Functions

Using the Update Refund Status Command Line Program
The Update Refund Status function can be performed using a command line program using the
syntax shown below. Parameter switches are case insensitive (i.e. you can enter them in either

upper or lower case (-c or -C)). If a parameter includes a space, you must enclose it in quotes (for
example, -s “11/01/1999 12:00:00”). The syntax is:

updtrfnd.exe -d <comnectstring> [-q <qualifier>] -@ <xmiBatchRefundlilename>
[-lcfg logging confignration filenanme|

The command must be entered on one line. Also, you must either change to the directory in which
the program is stored (typically, \LODESTAR\Dbin) before enteting the command, or specify the
path in the command. To view a list of all parameters on-screen, type updtrfnd -? at the
command prompt.

Parameter Description

-d connectstring is database connection information for the Oracle Utilities
Data Repository. This parameter is required and must be in one of the
following formats:

For Oracle databases:

"Data Source=<data_source>;User
ID=<user_id>;Password=<password>;LSProvider=ODP;"

where:

* <data_source> is the Oracle TNS Name for the data source, from
the TNS_NAMES.ora file (typically located in the
\\<machine>\oracle\network\admin directory)

e <user_id> is the user ID for the database connection

* <password> is the password for the supplied user ID.

-q gualifier is the optional qualifier for the data source.
-@ xmiBatchRefundFilename is the name of the Batch Refund (see Batch

Refunds, p. 8-2) file to be used for processing.

-lefg logging configuration filename Name of an optional logging configuration
file that specifies whete error and log messages are sent. If you omit this
parameter, the application creates a log file named UPDTRFND.LOG
in the LOG directory.

Maintenance 8-13

Maintenance Functions

Post Write-Off

This function posts write-off transaction credits or charges against an account. This function
performs the following steps:

1.
2.

N uk

The Maintenance module sets the transaction’s Transaction Type to WRTOFF (Write-Off).

The Maintenance module verifies that the single related transaction is provided and that it's
balance is greater than zero. If not it is an error.

The Maintenance module sets the CHARGEORCREDIT value to opposite that of related
transaction.

The Maintenance module sets the AMOUNT equal to the BALANCE of related transaction.
The Maintenance module sets the application method to Specified (SPECIFIED).
The Maintenance module sets the DEFERBALANCE (Defer Balance) to false.

The Maintenance module triggers the Post Transaction function of the Financial Engine
using the data source and transaction data (with the additions as described above).

Cancel Write-Off

This function cancels a previous write-off transaction. This function performs the following steps:

1. The Maintenance module sets the transaction’s Transaction Type to WRTOFF (Write-Off).
2. 'The Maintenance module triggers the Cancel Transaction function of the Financial Engine
and uses the data source and transaction data (outlined above) when processing the
transaction.
Write Off Account

This function posts a write-off transaction for each outstanding (balance > 0) transaction that has

been previously posted for the account. This function performs the following steps:

1.

The Maintenance module verifies that the current account balance is not equal to zero. If so it
is an errof.

The Maintenance module triggers the Post Write Off function (p. 8-14) for each outstanding
transaction (balance > 0) for the account.

If the account's current balance is a net charge, the Maintenance module updates the
account's RECEIVABLESTATUS to “UNCOLLECTIBLE”. If a net credit the
Maintenance module updates the account's RECEIVABLESTATUS to
“UNREFUNDABLE”.

If a WRITEOFFREASONCODE was provided, the Maintenance module updates the
account accordingly.

The POST WRITEOFF Rules Language statement can be used to write off an account. Some
elements of the transaction are internally generated by the rate schedule when the POST
WRITEOFF Statement executes.

See Appendix D: Financial Management Rules Language Statements for details on the use
of the POST WRITEOFF Statement.

Write On Account

This function cancels all previous write-off transactions for the account. This function performs
the following steps:

1.

The Maintenance module triggers the Cancel Write Off function (p. 8-14) each previously
posted Write-Off transaction for the account.

If a RECEIVABLESTATUS is provided, the Maintenance module updates the account
accordingly.

8-14 Billing Component Installation and Configuration Guide, Volume 2

Maintenance Functions

3.

The Maintenance module updates the account's WRITEOFFREASONCODE to NULL.

Post Transaction
This function posts a transaction of any type. This function performs the following steps:

1.
2.

The Maintenance module determines the transaction type of the transaction.

The Maintenance module triggers the appropriate post method based on the transaction type
determined in step 1 above.

Cancel Transaction
This function cancels a transaction of any type. This function performs the following steps:

1.
2.

The Maintenance module determines the transaction type of the transaction.

The Maintenance module triggers the appropriate Cancel function based on the transaction
type determined in Step 1 above.

Process Batch Transaction
This function processes batch transactions containing one or more individual transactions. This

function performs the following steps:

1.

If the Restart flag is set, the Maintenance module checks if the Batch already exists in
database. If not, then it clears the Restart flag.

If the Received Date is not provided, the Maintenance module defaults to current date.

The Maintenance module iterates through all the individual transactions in the batch and
determines the actual total number of transactions and the total amount. It then compares
these values with the number of transactions and amount values (if provided) of the batch
transaction. If there is a discrepancy, the Maintenance module posts a
“BATCHTRANSACTION_ERROR” message that includes the Batch Transaction data
(with all individual transactions) and an appropriate error message, and processing ends.

The Maintenance module inserts a Batch Transaction record into database, if the Restart flag
is not set. If there is an error, it posts a “BATCHTRANSACTION_ERROR” message that
includes the Batch Transaction data (with all individual payments) and an appropriate error
message, and processing ends.

If the Cancel flag is set to No (‘N’), the Maintenance module triggers the Post Transaction
function (described above) for each transaction.

If the Cancel flag is set to Yes (°Y’), for each Transaction in the Batch, if the Restart flag is set
to Yes, the Maintenance module checks if the transaction has already been cancelled. If so, it
skips the transaction. If not, the Maintenance module triggers the Cancel Transaction
function for the transaction.

In either case, the Maintenance module forwards the appropriate attributes to each
transaction, if not provided, prior to posting, and maintains a count of any transaction errors.
If the optionally provided Max Errors Limit is surpassed, the Maintenance module posts a
“BATCHTRANSACTION_ERROR” message that includes the Batch Transaction data
(with all individual transactions) and an appropriate error message, and processing ends.

The Maintenance module posts a “BATCHTRANSACTION_PROCESSED” message that
includes the Batch Transaction data (without any individual transactions) and the number of
transaction errors, if any.

Maintenance 8-15

Maintenance Functions

Processing Batch Transactions in Cancel mode
The Maintenance module can also cancel batch transactions. Cancelled batch transactions are
either:

* Existing batch transactions: Previously processed batch transactions. Processing an
existing batch transaction in Cancel mode requires either:

* setting the Cancel and Restart flags of the existing batch transaction both set to Yes (Y’)
and reprocessing the batch transaction, or

* processing a batch transaction that contains the unique ID of the batch transaction to be
cancelled and has the Cancel and Restart flags both set to Yes (Y’).

* Batches of individual existing transactions: Batches of transactions collected into batches
for cancellation. These transactions may have been posted either as part of a previous batch
transaction or as individual transactions. Processing a batch of individual existing transactions
in Cancel mode requires a batch transaction that has the Cancel flag set to Yes (Y’), and the
individual transactions to be cancelled.

Process Transaction File
This function processes transaction files containing one or more batch transactions. This function
performs the following steps:

1. The Maintenance module iterates through all the individual batch transactions and
determines the actual total number of batch transactions and the total amount. It then
compares these values with the number of batches and amount values (if provided) of the
transaction file. If there is a discrepancy, the Maintenance module posts a
“TRANSACTIONFILE_ERROR” message that includes the Transaction File data (without
any individual batch transactions) and an appropriate error message, and processing ends.

2. The Maintenance module triggers the Process Batch Transaction function (described above)
for each individual batch transaction in the file. The Maintenance module also forwards the
appropriate attributes to each batch transaction, if not provided, prior to processing. If the
Cancel flag is set to Yes (Y’) for the Transaction File, the Maintenance module sets the
Cancel flag to Yes for each Batch prior to processing. If the Restart flag is set for the
Transaction File, the Maintenance module sets the Restart flag for each Batch prior to
processing. The Maintenance module maintains a count of any batch transaction errors
during processing, and if the optionally provided Max Errors limit is surpassed, the
Maintenance module posts a “TRANSACTIONFILE_ERROR” message that includes the
Transaction File data (without any individual batch transactions) and an appropriate error
message, and processing ends.

3. The Maintenance module posts a “TRANSACTIONFILE_PROCESSED” message that
includes the Transaction File data (without any individual batch transactions), the number of
batch transaction errors, if any, and the number of transactions in error, if any.

Processing Transaction Files in Cancel mode
The Maintenance module can also cancel transaction files. Cancelled transaction files are either:

* Existing transaction files: Previously processed transaction files. Processing an existing
batch transaction in Cancel mode requitres processing a transaction file that has the Cancel
and Restart flags both set to Yes (Y’), and contains the unique IDs of the batch transactions
to be cancelled.

* Files containing a group of batch transactions: Transaction files containing any number
of valid batch transactions collected for cancellation. These batch transactions may have been
posted either as part of a previously processed transaction file, or may be comprised of
individual transactions. Processing a transaction file containing batch transactions in Cancel
mode requires a transaction file that has the Cancel flag set to Yes (°Y’), and the individual
batch transactions to be cancelled.

8-16 Billing Component Installation and Configuration Guide, Volume 2

Maintenance Functions

Using the Process Transaction File Command Line Program
The Process Transaction File function can be performed using a command line program using the
syntax shown below. Parameter switches are case insensitive (i.e. you can enter them in either
upper or lower case (-c or -C)). If a parameter includes a space, you must enclose it in quotes (for
example, -s “11/01/1999 12:00:00). The syntax is:

proctens.exe -d <connectstring> [-q <qualifier>] -@ <smlIransactionFile>
[-lcfg logging configuration filename|

The command must be entered on one line. Also, you must either change to the directory in which
the program is stored (typically, \LODESTAR\Dbin) before enteting the command, or specify the
path in the command. To view a list of all parameters on-screen, type proctrns -? at the command

prompt.
Parameter Description
-d connectstring is database connection information for the Oracle Utilities

Data Repository. This parameter is required and must be in one of the

following formats:

For Oracle databases:

"Data Source=<data_source>;User

ID=<user_id>;Password=<password>;L.SProvider=ODP;"

where:

* <data_source> is the Oracle TNS Name for the data source, from
the TNS_NAMES.ora file (typically located in the
\\<machine>\oracle\network\admin directory)

e <user_id> is the user ID for the database connection

e <password> is the password for the supplied user ID.

-q qualifier is the optional qualifier for the data source.
-@ xmlTransactionFile is the name of the transaction file (see Transaction

Files, p. 5-7) file to be used for processing.

-lcfg logging configuration filename Name of an optional logging configuration

file that specifies where error and log messages are sent. If you omit this
parameter, the application creates a log file named PROCTRNS.LOG
in the LOG directory.

Maintenance 8-17

Maintenance Functions

Post Balance Transfer
This function transfers the balance of a single previously posted transaction from one account to
another. This function performs the following steps:

1. The Maintenance module verifies that the related transaction has an outstanding balance and
has not been cancelled. If not it is an error.

2. The Maintenance module initializes the “from” transaction as follows:
a.Set the TRANSACTIONTYPE to BALTXTR (Balance Transfer).
b.Set the Account equal to the related transaction account.
c.Set CHARGEORCREDIT to opposite of related transaction.
d.Set the Amount to the balance of the related transaction.
e.Set DEFERBALANCE to false.
f.Set related transaction to related transaction.
g.Set remaining attributes equal to corresponding attributes of input transaction.

3. The Maintenance module triggers the Post Transaction function of the Financial Engine
using the “from” transaction above.

4. Initialize the “to” transaction as follows:
a.Set TRANSACTIONTYPE to BALTXFR (Balance Transfer).
b.Set CHARGEORCREDIT equal to that of related transaction.
c.Set the Amount to the balance of the related transaction
d.Set DEFERBALANCE to false.

e.Set BILLEDORPAIDDATE and DUEDATE equal to that of related transaction if not
explicitly provided.

f.Set the UIDTXFRFROMTRANS to UID of “from” transaction posted above.

5. The Maintenance module triggers the Post Transaction function of the Financial Engine
using the “to” transaction above.

6. The Maintenance module updates the UIDTXFRTOTRANS value of the “from” transaction
to the UID of the “to” transaction posted above.

8-18 Billing Component Installation and Configuration Guide, Volume 2

Maintenance Functions

Cancel Balance Transfer

This function cancels a previous balance transfer transaction. This function performs the
following steps:

1. The Maintenance module sets the TRANSACTIONTYPE to BALTXFR (Balance Transfer).

2. The Maintenance module triggers the Cancel Transaction function of the Financial Engine
and uses the data source and transaction data (outlined above) when processing the
transaction.

3. The Maintenance module finds the other (“to” or “from”) transaction and repeat steps 1 and
2 for it.

Transfer Account Balance
This function posts a balance transfer transaction for each outstanding transaction (balance > 0)
that has been previously posted for the account. This function triggers the Post Balance Transfer

function (p.8-17) and uses the data source and transaction data (outlined above) when processing
the transaction.

Return Account Balance
This function cancels all previous balance transfer transactions for the account. This function

triggers the Cancel Balance Transfer function (p.8-19) and uses the data source and transaction
data (outlined above) when processing the transaction.

Maintenance 8-19

Maintenance Functions

8-20 Billing Component Installation and Configuration Guide, Volume 2

Chapter 9

Collections

This chapter describes the Collections functions of the Oracle Utilities Receivables Component,
including:

* Collections Database Tables
* Collections Arrangements
* Collection Exemptions

* Collections Processing and Activities

Collections 9-1

Collections Database Tables

Collections Database Tables

In addition to the tables described in Chapter 3: The Oracle Utilities Receivables Component
Database, the Collections module also uses a set of tables specifically designed to store data
related to collection agencies and arrangements. These tables are described below.

Collections Agency Tables

Collection agency tables store data associated with specific collection agencies. Collection agencies
are agencies employed to collect outstanding payments from customers.

Collection Agency Table

Records in this table represent individual collection agencies in the system.

Collection Agency Program Table
Records in this table represent individual collection programs (each provided by a collection
agency) in the system.

Collection Agency X Directory Table
Records in this table associate collection agencies with contact information (from the Directory
table) in the system.

Collection Program Type Table

Records in this table represent different types of collection programs in the system.

Collection Program X Account Table
Records in this table associate collection programs with individual accounts in the system.

Collection Arrangements Tables

Collection arrangement tables store data associated with specific collection arrangements.
Collection arrangements are arrangements made with a customer regarding collection of

outstanding payments.

Collection Arrangement Type Table
Records in this table represent specific types of collection arrangements.

Collection Arrangement Table
Records in this table represent specific collection arrangements with individual accounts.

Collection Arrangement Payment Table
Records in this table represent scheduled payments associated with collection arrangements. Note
that records in this table do not represent actual or received payments.

9-2 Billing Component Installation and Configuration Guide, Volume 2

Collections Database Tables

Collection Exemptions Tables

Collection exemptions tables store data associated with specific collection exemptions. Collection
exemptions are exemptions to collections processing made with a customer regarding.

Collection Exemption Type Table

Records in this table represent specific types of collection exemptions.

Collection Exemptions Table
Records in this table represent specific collection exemptions with individual accounts.

Collection Message Tables

Collection message tables store messages created by collections processes run by Oracle Ultilities
Receivables Component.

Agency Message Table
Records in this table represent notifications sent to collection agencies regarding an account’s
outstanding balance. These messages are created by the Collection Agency Notification - Enter
and Collection Agency Notification - Update collections functions.

Phone Message Table
Records in this table represent telephone contact made with a customer regarding their
outstanding balance. These messages are created by the Phone Contact collections function.

Shut Off Message Table
Recotds in this table represent requests for discontinuation of services, based on the customer’s
their outstanding balance. These messages are created by the Service Discontinuation Request
and Service Discontinuation Request Cancellation collections functions.

Letter Message Table
Records in this table represent letters and/or dunning notices sent to a customer regarding their
outstanding balance. These messages are created by the Letter Generation/Dunning Notice
collections function.

Dynamic Message Table
Records in this table define dynamic message payloads that can be included in collections
messages. Records in this table contain the following information:

* Dynamic Message Code: A code that designates the dynamic message payload.

* Variable Name: The name of the variable that will contain the message payload in XML
format.

The following example demonstrates how to define contact information for a collection agency
and a message type:

Dynamic Message Code Variable Name
AGENCYINFO AGENCYCONTACTINFO
AGENCYINFO OPCOCODE
AGENCYINFO METERHISTORY
AGENCYINFO MESSAGETYPE

Collections 9-3

Collections Database Tables

To include the message payload, pass a valid Dynamic Message Code within the activity context of

the letter activity. For example, in the input map of the activity context you would include the

following:

“AGENCYINFO” to /CONTEXT/DYNAMICMSGCODE

Dynamic Message Value Table
Records in this table define the values contained in dynamic message payloads defined in the

Dynamic Message table. Records in this table contain the following information:

Variable Name: The name of the variable that will contain the message payload in XML
format, from the Dynamic Message table.

Variable Source Code: A code that designates the type of variable. Can be “L” (literal), “Q”
(query), “OC” (optional context), or “RC” (required context).

Variable Value: The value of the variable.

* If the Variable Source Code is “L”, the Variable Value should be a string literal that is
directly output to the message payload.

* If the Variable Source Code is “Q)”, the Variable Value should be a query that is run with
all parameters (surrounded by %%) replaced by values that correspond to the name in
the context. More than one record can be returned from the query. In this case, each
record is the child of the Variable Name element.

e If the Variable Source Code is “OC”, the Variable Value should be a valid XPath
expression that specifies a value to be included in the payload.

e If the Variable Source Code is “RC”, the Variable Value should be a valid XPath
expression that specifies a value to be included in the payload

Parent Variable Name: Optional name of a previously defined variable that will serve as
parent to the variable. For example, when defining the “METER” variable, entering
“METERHISTORY” in this column would result in the “METERHISTORY” variable being
the parent of “METER” in the context.

Exclude Columns: A comma-separated list of columns names which are return values
needed from the parent to the child query, but that are not to be part of the output of the
payload.

The following example demonstrates how to define the values of the message payloads defined in

the above example:

. Variable . Parent Variable Exclude
Variable Name Source Variable Value
Name Columns
Code
AGENCYCONTACTINFO Q Select NAME, PHONE
From colagency where
uidaccount =
%% UIDACCOUNT%%
MESSAGETYPE L COLLECTION AGENCY
ENTER
METERHISTORY Q SELECT UIDMETER
SERVICETYPECODE,
UIDMETER FROM
METERHISTORY WHERE
UIDACCOUNT =
%% UIDACCOUNTY%%

9-4 Billing Component Installation and Configuration Guide, Volume 2

Collections Database Tables

. Variable . Parent Variable Exclude
Variable Name Source Variable Value
Name Columns
Code
METER Q SELECT METERID FROM METERHISTORY
METER WHERE
UIDMETER=
%% UIDMETER%%
OPCOCODE RC OPCOCODE
A possible output based on the above example could be:
<AGENCYINFO>
<AGENCYCONTACTINFO>
<NAME>Acme Collections</NAME>
<PHONE>365-555-1212</PHONE>
</AGENCYCONTACTINFO>
<AGENCYCONTACTINFO>
<NAME>AAA Collections Agency</NAME>
<PHONE>456-741-2583</PHONE>
</AGENCYCONTACTINFO>
<MESSAGETYPE>COLLECTION AGENCY ENTER</MESSAGETYPE>
<METERHISTORY>
<SERVICETYPECODE>EL</SERVICETYPECODE>
<METER>
<METERID>A456I2</METERID>
</METER>
</METERHISTORY>

<OPCOCODE>LODESTAR</OPCOCODE>

</AGENCYINFO>

Other Collections Tables

Other collections tables store data used by the collections functions of Oracle Ultilities Receivables
Component.

Collection History Table

Records in this table represent individual collections activities performed for an account.

Credit Score History Table
Records in this table store the Credit Score for a customer over time. Each record contains a start
and stop time that define the period during which a particular credit score applies.

Factor and Factor Value Tables
Though not used solely by the collections functions of Oracle Utilities Receivables Component,
the Factor and Factor Value tables are used to define the day ranges displayed in the Aging pane
on the Collections tab. Each day range is defined by a factor in the Factor and Factor Value tables
as follows:

Factor Table

Operating Company: The operating company associated with accounts that use this day
range.

Jurisdiction: The jurisdiction associated with accounts that use this day range.
Code: Must be “BUCKET_” followed by a number (ex BUCKET_01, BUCKET_02, etc.).
Name: Same as Code.

Unit of Measure: NULL

Collections 9-5

Collections Database Tables

Factor Value Table
¢ Factor: The factor from the Factor Table.

* Effective Date: The date on which the aging day range in effect.

* Value: The maximum number of days in the aging day range, starting from the value of the
previous day range.

* Prorate Flag: NULL

For example, to define aging day ranges of

0-15 16-30 31-45 46-60 61-75 75+

you would define the following factors in the Factor and Factor Value tables

ggf;:::)? Jurisdiction Code/Name Value
Per Account Per Account BUCKET_01 15
Per Account Per Account BUCKET_02 30
Per Account Per Account BUCKET 03 45
Per Account Per Account BUCKET_04 60
Per Account Per Account BUCKET _05 75

9-6 Billing Component Installation and Configuration Guide, Volume 2

Collections Arrangements

Collections Arrangements

The Collections arrangements functions are used to create, maintain, and review collection
arrangements.

Creating Collections Arrangements

Collections arrangements are created using the Collection Arrangements function of the Oracle
Utilities Receivables Component user interface. This function allows users to view, edit, add, and
delete collection arrangements and related payment arrangements for individual accounts.

When a collection arrangement is created, the function automatically creates a collection
exemption of type 'Arrangement Exemption' for the total amount of the arrangement. When the
arrangement is completed or defaulted, the status of the exemption is set to 'EXPIRED". Deleting
a collection arrangement also deletes the associated collection exemption for that arrangement.

In addition, when a collection arrangement is created, if the amount of the arrangement is greater
than the past due amount for the account, the status of any collections processes running for the
account are set to SUSPENDED.

Collection Arrangement Data

Collection arrangement data includes data about individual collection arrangements as well as
payments associated with collection arrangements. Collection arrangement data includes the
following:

* Unique ID for collection arrangement

* Unique ID of the Account related to the collection arrangement
* Start Date for collection arrangement

* Stop Date for collection arrangement

* Number of payments associated with this collection arrangement.

* Total Amount of all collection arrangement payments associated with this Collection
Arrangement.

* Status Code for the collection arrangement. Valid values include CURRENT, DEFAULT, and
COMPLETE

* Modification Date for the collection atrangement

* Documentation Date for the collection arrangement (optional)

* Compliance Date (used by the Review Collection Arrangement function.

* Collection Arrangement Payments associated with the arrangement. Each includes:
* Unique ID of the associated collection arrangement
* Due Date for the collection arrangement payment

* Amount Due for the collection arrangement payment

Collections Arrangements Processing

The Collections arrangements functions can be triggered from an external system via an interface
or using a command line program. When triggered, these function send the collection
arrangement data (including all collection arrangement payments associated with the collection
arrangement) in an XML string to the Financial Engine, which in turn evaluates the data to
determine the status of the arrangement. When the functions are triggered, all the information
needed to process the file is obtained, and error messages are posted to the database if
discrepancies are found.

Collections 9-7

Collections Arrangements

Review Collection Arrangement
This function periodically reviews the terms of a collection arrangement to ensure the
arrangement is not in Default. The Review Collection Arrangement function performs the
following steps:

1. The Collections module checks the Status code of the arrangement. If the Status Code is not
CURRENT, it returns the collection arrangement record as is.

2. The Collections module determines the outstanding payments balance by aggregating all
collection arrangement payments for all CURRENT collection arrangements related to the
Account whose due date is greater than the compliance date. The total is what remains due
after the compliance date.

3. If the outstanding payments balance is zero, the status codes of all CURRENT collection
arrangements related to the account are changed to COMPLETE.

4. The Collections module determines the outstanding balance by aggregating all posted
transactions with a balance whose 'date' is less than or equal to the compliance date.

5. If the outstanding balance is greater than the outstanding payments balance, the status codes
of all CURRENT collection arrangements related to the account are changed to DEFAULT.

6. The Collections module returns the updated collection arrangement records.

Using the Arrangement Review Command Line Program
The Review Collection Arrangement function can be performed using a command line program
called LSArtRev.exe. In addition to the steps performed by the Review Collection Arrangement
function (outlined above), the Arrangement Review command line program also determines if any
accounts need to be taken out of or put back into collections, and sets the status of collections
processes for any accounts to either Suspended, Terminated, or Resumed, as appropriate.

Configuring the Arrangement Review Command Line Program
The Arrangement Review command line program must be configured before it can be run, using
the syntax shown below. Once configured, the program does not require any parameters to be run
(parameters are stored in the Windows Registry). The configuration syntax is:

LSArrRev.exe -Configure

The command must be entered on one line. Also, you must either change to the directory in which
the program is stored (typically, C:A\ALODESTAR\CMEBatch) before entering the command, or
specify the path in the command.

When you run the command line with the above syntax, the Collection Arrangement Review
screen opens.

Enter batch process parameters for the program as follows:.

Parameter Description

Username The userid for the data source.

Password The password for userid above.

Qualifier The optional qualifier for the data source.

9-8 Billing Component Installation and Configuration Guide, Volume 2

Collections Arrangements

Parameter Description

DSN Database connection information for the Oracle Utilities Data
Repository that contains the rate form record. This parameter is
required and must be in one of the following formats:

For Oracle databases:

"Data Source=<data_source>;User
ID=<user_id>;Password=<password>;LSProvider=ODP;"

where:

* <data_source> is the Oracle TNS Name for the data source, from
the TNS_NAMES.ora file (typically located in the
\\<machine>\oracle\network\admin directory)

e <user_id> is the user ID for the database connection

e <password> is the password for the supplied user ID.

Days to Review ~ How many days in the past an arrangement should be reviewed. For
example, if the Days to Review parameter is set to 5, the process would
review all arrangements that had at least one payment with a payment
due date between today and 5 days in the past.

Running the Arrangement Review Command Line Program
When the Arrangement Review program runs, it calls the Review Collection Arrangement

function. However, depending on the status of the arrangement after review, several steps specific

to Collections can be taken, as outlined below:

1.

Get all accounts that have arrangements within the specified time range (Days to Review
parameter).

For each account with an arrangement that meets these parameters, the Review Collection
Arrangement function is called.

If the arrangement is in default (the total amount of the remaining payments is less than the
current amount past due), a message is logged in the Collection History Table indicating an
arrangement has been set to default. Additionally, the associated Collection Exemption that
was automatically created when the Arrangement was created will have its status set to
EXPIRED. Finally any existing Collections processes that were suspended when the
Arrangement was created will be Resumed.

If the Arrangement is reviewed and has been successfully completed, a message is logged in
the Collection History Table indicating an arrangement has been completed. The
associated Exemption will be set to EXPIRED, and the past due status will be checked on the
account. If the arrangement was successfully completed but the account is still past due (the
past due balance is greater than the remaining amount of the arrangement) any collections
process suspended when the arrangement was created will be restarted. If the account is no
longer past due and there are not any additional exemptions on the account that could have
suspended a collections process for the account (such as exemptions for the account that
have a status of Current, and the associate Exemption type has a terminate or suspend flag
value of "S"), any previously suspended processes will be Terminated and the accounts
receivable status and collections status will be reset (set to empty values to indicate account is
not currently in collections).

If an arrangement was created with a start date in the future, when the arrangement was
originally created none of the existing collections processes would have been Suspended or
Terminated automatically. Once the arrangement review process is run and it is determined
that this arrangement is no longer in the future (the arrangement’s Start Date = today's date),

Collections 9-9

Collections Arrangements

if the account is no longer past due, the process will determine if collections processes should
be Terminated or Suspended (terminate or suspend flag on the Exemption Type table for the
Collection Arrangement Exemption exemption type) and will do so. However, if the account
is still past due (the past due balance is greater than the remaining amount of the
arrangement), any suspended processes will be Resumed.

9-10 Billing Component Installation and Configuration Guide, Volume 2

Collection Exemptions

Collection Exemptions

The Collections exemptions functions are used to create, maintain, and review collection
exemptions.

Creating Collections Exemptions

Collections exemptions are created using the Collection Exemptions function of the Oracle
Utilities Receivables Component user interface. This function allows users to view, edit, add, and
delete collection exemptions for individual accounts.

When creating a collection exemption, leaving the amount blank exempts the entire account. In
this case, regardless of what the past due balance is on the account, the account will never go into
collections.

When creating a collection exemption, if the Stop Date is not entered, the collection exemption
remains in effect indefinitely. The only exception to this rule is in the case of collection
exemptions that are created automatically by creating a collection arrangement. These exemptions
do not have a Stop Date when they are initially created, but after the arrangement is completed or
expired, the Stop Date will be populated with the date that the arrangement was completed or
expired.

Collection Exemption Data

Collection exemption data includes data about individual collection exemptions including the
following:

* Unique ID for collection exemption

* Unique ID of the Account related to the collection arrangement

* The Amount of the collection exemption.

* Start Date for collection exemption

* Stop Date for collection exemption

* The type of collection exemption from the Collection Exemption Type Table

* An optional note about the collection exemption

* The current status of the exemption. Valid values include CURRENT, and EXPIRED.

* The collection arrangement associated with the exemption

Collections 9-11

Collection Exemptions

Reviewing Collections Exemptions

The exemption review process is intended to be executed as a daily batch process, that reviews all
collection exemptions to verify they are still current (an exemption with a Stop Date in the future).
Additionally the program will start or stop collections processes for the account depending on the
past due status for the account after the status of the account's exemptions have been reviewed.

Using the Exemption Review Command Line Program

The Exemption Review function is performed using a command line program called
LSExempRev.exe.

Configuring the Exemption Review Command Line Program

The Exemption Review command line program must be configured before it can be run, using the
syntax shown below. Once configured, the program does not require any parameters to be run
(parameters are stored in the Windows Registry). The configuration syntax is:

LSExempRev.exe -Configure

The command must be entered on one line. Also, you must either change to the directory in which
the program is stored (typically, CALODESTAR\CMEBatch) before entering the command, or
specify the path in the command.

When you run the command line with the above syntax, the Database Connection screen opens.

Enter batch process parameters for the program as follows:.

Parameter Description

Username The userid for the data source.

Password The password for userid above.

Qualifier The optional qualifier for the data source.

DSN Database connection information for the Oracle Utilities Data

Repository that contains the rate form record. This parameter is
required and must be in one of the following formats:

For Oracle databases:

"Data Source=<data_source>;User
ID=<user_id>;Password=<password>;L.SProvider=ODP;"

where:

e <data_source> is the Oracle TNS Name for the data source, from
the TNS_NAMES.ora file (typically located in the
\\<machine>\oracle\network\admin directory)

e <user_id> is the user ID for the database connection

* <password> is the password for the supplied user ID.

9-12 Billing Component Installation and Configuration Guide, Volume 2

Collection Exemptions

Running the Exemption Review Command Line Program
When the Exemption Review program runs, it performs the following steps:

1.

Review exemptions for those where the current date is greater than the Stop Date of the
exception. For each of these exemptions, set the status to EXPIRED.

If an account that is associated with an expired exemption is still past due, resume any
collections processes that had previously been Suspended.

If an account is no longer past due and if no additional CURRENT exemptions exist on the
account that may have suspended collections processes, Terminate any existing collections
processes.

Review any exemptions that may have been originally created to start at a future date
(indicated as any exemptions that have a status of CURRENT and whose Start Date is less
than or equal to the current date). For these processes, if once the exemption is applied the
account is no longer past due, Suspended or Terminate any collections processes (depending
on the Terminate or Suspend flag value for the exemption type).

Collections 9-13

Collections Processing and Activities

Collections Processing and Activities

When a customer’s outstanding balance is either past due by a specified period of time or exceeds
a specified amount, the customer is put into collections. When this occurs, a series of activities
related to collecting the outstanding balance is performed. This series of activities is known as a
collections process.

Collections processing requires that the workflow management functionality of Oracle Ultilities
Billing Component be installed and configured. See the Part Three: Workflow Management
Confignration for more information.

Selecting Accounts for Collections

The Account Selection process searches the accounts within the Oracle Ultilities Data Repository
and selects those that are eligible for Collections, including those that have past due balances and
are not currently in Collections. This process performs user-defined business logic to select the
accounts to enter Collections. This routine should normally be scheduled as part of nightly batch
processing and is most often executed after both Remittance and Billing have successfully
completed.

The Account Selection process should also interrogate the age of each past due account and
ensure it is placed in Collections at the appropriate point within the process. This ensures that
accounts that have been suspended from Collections processing are returned at the appropriate
step in the process.

The Manual Submission function of the Oracle Utilities Receivables Component user interface
also provides the ability to override the selection process and manually place an account at a
certain point within the Collections process.

Creating an Account Selection Trigger
Because the specific criteria used to select accounts for collections can vary greatly between
implementations, creating an Account Selection Trigger (AST) is considered an implementation
task. Oracle Ultilities Receivables Component doesn’t include an AST, but this section provides
examples and guidelines for creating an AST that meets your specific business needs.

The business logic used for selecting accounts can use parameters such as Amount Past Due,
Number of Days Past Due, or a grace period beyond the due date. These types of parameters can
be stored as Factors in the Oracle Ultilities Data Repository, allowing business analysts to modify
the criteria without requiring changes to the underlying application code. This also allows business
analysts to modify some aspects of each strategy without requiring I'T support.

The basic steps for any AST are as follows:
1. Review all accounts to ensure that they are still current.

2. Compare the past due amount and the age of any past due balances to Factors stored in the
Oracle Utilities Data Repository, and factor in any exemptions ot arrangements that have
been created for the account

3. Determine if the account should start at step one of a collections process or at an accelerated
step.

4. Start the appropriate Collections process based on this information. Oracle Ultilities
Receivables Component includes processes for both Active and Inactive accounts. In
addition, select accounts might use a collections process created during implementation.

After an account is selected to enter Collections, the account is placed within an appropriate
Collections process. The Collections process maps out the activities that are required to occur to
the account as part of the process, along with any events that may affect the account's path
through the process. The Oracle Utilities Billing Component - Workflow Management is the

9-14 Billing Component Installation and Configuration Guide, Volume 2

Collections Processing and Activities

backbone behind the processing, ensuring that the activities are processed at the appropriate time
and are completed successfully.

Recommended Detailed Steps
This section outline several recommended steps for creating an AST for use with Oracle Utilities
Receivables Component. This section references several factors described in Account Selection
Factors on page 9-17.

Step One: Gather list of working accounts

1. For active accounts, the working set of accounts will be those accounts that have a receivable
status not equal to “COLLECTIONS” and that have a balance (new activity + balance)
greater than the Factor Value for the ACT_COLLECTION_ENTRY_BALANCE factor for
the account's operating company and jurisdiction.

2. For inactive accounts, this initial account list is where receivable status is not equal to
“INACTIVE COLLECTIONS” and that have a balance (new activity + balance) greater than
the Factor Value for the INACT_COLLECTION_ENTRY_BALANCE factor for the
account's operating company and jurisdiction. Additionally the account status code must
equal “FINAL” and the account Stop Time cannot be null.

If you use different Account Status codes (stored in the Account Status table) than ACTIVE and
FINAL you can modify these steps accordingly.

Step Two: Determine Collectible Balance

After gathering a working set of accounts, the next step is to determine the collectable balance for
each account. This can be done manually if the formula is very involved and specific to your
business needs or you can use the functionality that Oracle Utilities provides in the Collection
Information function of the Collections interface.

This method calculates the collectable balance as follows:
Collectible Balance = Past Due Amount - Exempt Amount
where:

* Past Due Amount: is the sum of all Transactions in the Transaction table where the Cancel
Time is Null, the Charge Type is 'CH' and the Due Date is in the past. The Credits
(Transaction records where the Charge Type is 'CR') are then subtracted from this number to
get the final Past Due Amount.

* Exempt Amount: is the sum of all “CURRENT” exemptions for this account. If an
Exemption exists on this account that has a Null amount then the entire account is exempt
and the Past Due Balance is 0.

Step Three: Determine Age of Oldest Past Due Transaction

The next step is to determine the age of oldest past due transaction. This can be calculated against
the invoice date in the Transaction table or any other date as dictated by specific business needs.

Step Four: Compare Collectible Balance and Age of Oldest Past Due Transaction

The next step is to compare the Collectable Balance and the Age of the oldest past due transaction
to Factors stored in the Oracle Utilities Data Repository. Oracle Utilities provides pre-supplied
factors for this purpose, but other factors can be used as well. See Account Selection Factors on
page 9-17 for more information about these factors.

Step Five: Determine Starting Point for Collections Processes

The next (optional) step is to determine the account should be placed in collections at an
accelerated step in the process. Two specific factors are provided for this step. See Account
Selection Factors on page 9-17 for mote information about these factors.

Collections 9-15

Collections Processing and Activities

Step Six: Obtain Collections Process to Start

The next step is to get the name of the process you wish start. This information can be stored in a
*.ini file, the system registry, or an input file that is passed to your program upon execution. Items
that should be included are:

* Process to start for Active Collections

* Process to start for Inactive Collections

* Active Collections accelerated step (if applicable)

* Inactive Collections accelerated step (if applicable)

Step Seven: Compile Data Needed to Start Collections Processing

The last step is to compile the data needed to start a collections process for the account and put
that data in the proper format used by the Oracle Utilities Billing Component - Workflow
Management.

At this point in the process you have determined if the account is active or inactive (or another
specific status code that you have defined), you've determined if the account should be in
collections or not, and you've determined if the account should start at step one or an accelerated
step. Now you have to build the proper process context XML document required by the Start
Process function of the Oracle Utilities Billing Component - Workflow Management.

You can use the Create Process Context function of the Collections interface to create the Process
Context using the Context Value and Process Context Value tables.

See Chapter 12: Setting Up Workflow Management Database Tables in the Oracle Utilities
Billing Component - Workflow Management Installation and Configuration Guide for more information

about setting up and configuring the Variable Source, Context Value and Process Context
Value tables.

An example of how this function could be called from a Visual Basic application is below:

Set oColObject = CreateObject ("CollectionObjects.ProcessXML")
xml = oColObject.createProcessContext (xmlDataSource, uidProcess,
uidAccount, "UIDACCOUNT=" & uidAccount & ";")

Once the process context is propetly generated, the Start method for the appropriate collections
process can be called. Note that you will need to retrieve the process you wish to start from the
*ini file, the system registry, or the input file that was used when starting the program. (see Step
Six, above).

An example of how the Start function can be called follows:

Set wrkflw = CreateObject ("lswrkflw.ProcessInstance")
retXML = wrkflw.Start (xmlDataSource, xml)

If InStr (retXML, "<STATE>RUNNING</STATE>") > 0 Then
Call CommitTransaction

Else

Call RollBackTransaction

End If

9-16 Billing Component Installation and Configuration Guide, Volume 2

Collections Processing and Activities

Account Selection Factors
The recommended Account Selection process described above references the following factors,
which must be set up in the Factor and Factor Value tables:

ACT_COLLECTION_ENTRY_BALANCE: If an active account’s balance exceeds the value
of this factor, the account becomes eligible to be put into collections.

INACT_COLLECTION_ENTRY_BALANCE: If an inactive account’s balance exceeds the
value of this factor, the account becomes eligible to be put into collections.

ACT_COLLECTION_ENTRY_AGE: If the oldest past due transaction (based on Invoice
Date) for an active account is older than the value of this factor, the account becomes eligible to
be put into collections.

INACT_COLLECTION_ENTRY_AGE: If the oldest past due transaction (based on Invoice
Date) for an inactive account is older than the value of this factor, the account becomes eligible to
be put into collections.

ACT_COLLECTION_ACCELERATE_BALANCE: If an active account’s balance exceeds
the value of this factor, the account is eligible to be put into collections starting at an accelerated
step.

INACT_COLLECTION_ACCELERATE_BALANCE: If an inactive account’s balance
exceeds the value of this factor, the account is eligible to be put into collections starting at an
accelerated step.

ACT_COLLECTION_ACCELERATE_AGE: If the oldest past due transaction (based on
Invoice Date) for an active account is older than the value of this factor, the account is eligible to
be put into collections starting at an accelerated step.

INACT_COLLECTION_ACCELERATE_AGE: If the oldest past due transaction (based on
Invoice Date) for an inactive account is older than the value of this factor, the account is eligible to
be put into collections starting at an accelerated step.

Initiating User-Defined Collections Processes
The Account Selection Trigger program can be used to start collections processes based on two
pre-defined workflow processes defined using the Oracle Ultilities Billing Component - Workflow
Management application. These processes are the Active Collections process, and the Inactive
Collections process, and are supplied by Oracle Utilities as patt of the Collections functionality of
Oracle Utilities Receivables Component.

To configure the Account Selection Trigger program to start a uset-defined collections process,
use the following procedure:

1. Configure the context variables for the user-defined process in the Variable Source and
Context Value tables.

2. Associate the context variables to the user-defined process in the Process Context Value
table.

3. Specify the Process Name of the user-defined process as you would for the Active Collections
or Inactive Collections processes. in the *.ini file, the system registry, or the input file used by

the AST.

See Chapter 12: Setting Up Workflow Management Database Tables in the Oracle Utilities
Billing Component - Workflow Management Installation and Configuration Guide for more information
about setting up and configuring the Variable Source, Context Value and Process Context
Value tables.

Collections 9-17

Collections Processing and Activities

Collections Process Activities

Collections processes are made up of a series of activities, linked together in a specific sequence
that can be used to perform the Collections activities of an organization. These processes and
activities are controlled via the workflow management functionality of Oracle Utilities Billing
Component. Workflow Management can be used to configure these activities into specific
collections processes. The available collections activities include:

* Compute Internal Performance Score

* Update Status

* Late Payment Fee Calculation

* Letter Generation/Dunning Notice

* Phone Contact

* Service Discontinuation Request

* Service Discontinuation Request Cancellation
* Collection Agency Notification - Enter

* Collection Agency Notification - Update
* Write Off

* Collection Information

* Insert Collection History Record

* Update Account Statuses

* Post Activity Event

Compute Internal Performance Score

Each customer has a performance score that provides an indication of the payment performance
history for the customer. The performance score is calculated based on two factors assigned to
Transaction IDs, collection arrangement types, and collections process activities. These factors are
weight (measuring how heavily a transaction, collection arrangement, or activity should be
weighed in the calculation) and duration (measuring how long a transaction, collection
arrangement, or activity should be used in the calculation). For example, a Late Payment Change
(LPC) might have a Weight of 10 and a Duration of three months, while a service discontinuation
might have a Weight of 50 and a Duration of 12 months. For transactions, the invoice date is used
to determine duration. Collections process activities use the activity’s execution time, and
arrangements use the arrangement start date.

Default arrangements are also included a customer’s performance score. Any time a collection
arrangement is defaulted and a record entered in the Collection History Table for the defaulted
arrangement, the weight for the defaulted arrangement (based on the Collection Arrangement
Type) will be included in the customer’s performance score. As with the other entities, this only
occurs if the date the arrangement was defaulted falls within the duration value for the default
arrangement. By default, the Weight and Duration values of defaulted collection arrangements are
set to 50, but can be modified.

The internal performance score is a numeric value and can be interpreted so that each customer
then falls into one of X number of categories (such as A, B, or C or Good, Fait, or Poor) in which
customers can be evaluated. Weight and Durations for Transaction IDs, Collection Arrangement
Types, and Collections Process Activities are user-defined.

Performance scores are stored in the Credit Score History Table. This table stores all instances
when the performance score was calculated. Calculation of performance scores is automatically
performed on a periodic basis or upon request.

9-18 Billing Component Installation and Configuration Guide, Volume 2

Collections Processing and Activities

The Compute Performance Score function is performed using a command line program called
LSPerfScore.exe.

Configuring the Calculate Performance Score Command Line Program
The Calculate Performance Score command line program must be configured before it can be
run, using the syntax shown below. Once configured, the program does not require any
parameters to be run (parameters are stored in the Windows Registry). The configuration syntax
is:

LSPerfScore.exe -Configure

The command must be entered on one line. Also, you must either change to the directory in which
the program is stored (typically, C:\LODESTAR\CMEBatch) before entering the command, or
specify the path in the command.

When you run the command line with the above syntax, the Database Connection Information
screen opens.

Enter batch process parameters for the program as follows:.

Parameter Description

Username The userid for the data source.

Password The password for userid above.

Qualifier The optional qualifier for the data source.

DSN Database connection information for the Oracle Utilities Data

Repository that contains the rate form record. This parameter is
required and must be in one of the following formats:

For Oracle databases:

"Data Source=<data_source>;User
ID=<user_id>;Password=<password>;LSProvider=ODP;"

where:

* <data_source> is the Oracle TNS Name for the data source, from
the TNS_NAMES.ora file (typically located in the
\\<machine>\oracle\network\admin directory)

e <user_id> is the user ID for the database connection

* <password> is the password for the supplied user ID.

SQL for SQL statements that define the customer list to be reviewed. For
Customers to example, to calculate the performance scores for all customers, the SQL
be Reviewed “SELECT DISTINCT(UIDCUSTOMER) FROM ACCOUNT

WHERE STATUS <> FINAL”” This would review all customers that
have active accounts in the Oracle Ultilities Data Repository.

Collections 9-19

Collections Processing and Activities

Running the Calculate Performance Score Command Line Program
When the Calculate Performance Score program runs, it performs the following steps:

1. For each customer, track each transaction, collection arrangement, and collections process
activity executed for each of the customer’s accounts.

2. Determine which of these is to be included in the performance score based on the Duration
of the transactions (based on Transaction ID, collection arrangements (based on Collection
Arrangement Type), and collections process activities executed for the customet’s accounts.

3. Total the Weight of all transactions, collections arrangements, and collections process
activities to be included in the performance score for each account, and then combine the
account totals into a customer total.

4. The new total for each customer is stored in the Credit Score History Table table. If a
previous record exists in the table, set the Stop Date for the previous record as today's date
and add the new record. Each customer can only have one valid record in the Credit Score
History Table for any given time period.

Update Status

The Update Status activity determines if an account should remain in a collections process or be
dropped. This activity is triggered by events occurring within the system that could change an
account’s status. This activity can be configured to occur 'real time' when these events occur on an
account, and include a change in the account’s balance, Collection Exemptions, and Collection
Arrangements.

* This activity updates several fields in the database to account for the customet's collection's
status, including the Collection Status and Receivable Status fields in the Account FME table.

* The activity scans account information and determines if the account is in collections or not.
The Update Status activity determines if there are transactions that have a positive balance
past the due date.

If not, then the following updates occur:
* The Receivable Status is updated to “Current”
* The Collections Status is updated to “Not-in-Collections”

* The account is removed from the collections process

Input Parameters
The Update Status activity uses the following input parameters:

* UIDACCOUNT (required): The UID of the account.

* UIDCOLEXEMPTION (optional): The UID of the exemption that will be used to update
the account’s collection status. If provided, this variable is written to the xml payload of the
Collection Object History record that corresponds to the executed Updated Status activity.

* COLLECTIONSTATUS (optional): The value to update the Collection Status field in
Account FME table.

* TERMINATEORSUSPEND (optional): A flag that indicates whether to Terminate (“I”)
or Suspend (“S”) collections processes for the account, based on the Exemption type. If no
value is passed in and an account is determined to no longer be in Collections, then the
collections processes will be suspended. Generally the value for this variable is provided by
the application that posts the event to indicate that an exemption was created to the workflow
engine.

9-20 Billing Component Installation and Configuration Guide, Volume 2

Collections Processing and Activities

Output Values

The Update Status activity returns the following output values:

TERMINATE: A flag that indicates if collections processes were terminated. This flag will
either be set to “I”, “S”, or “N”. “I”” indicates that processes were terminated. “S” indicates
that processes were suspended. “N” indicates that when the Update Status active was
executed, the account was still considered past due so no action was taken.

ACCOUNTPASTDUE: “Y” or “N”, indicating if the account was past due or not.

This activity can be only be triggered from a collections process.

Late Payment Fee Calculation
When an account is considered in arrears, a late payment charge can be calculated and applied to

the account.

Late Payments can be calculated in two ways, either as a one-time charge (based on a percentage
applied to the total Past Due Amount for each invoice), or a flat fee charge. Both types of
calculations are based on factors stored in the Factor and Factor Value tables. These factors is

associated to the account through the Factory History table or by Operating Company and
Jurisdiction.

Input Parameters
The Late Payment Fee Calculation activity uses the following input parameters:

UIDACCOUNT: The UID of the account. Used only when triggered using the
CALCULATE_LATEPAYMENT Rules Language function.

DATETYPE (required): Indicates which date field in the LSTransaction table is used to sum
up all charge transactions as part of the past due calculation. Valid values are
TRANSACTIONTIME, STATEMENTDATE, INVOICEDATE, and DUEDATE.

COLLECTIONSTATTUS: The value to update Collection Status field in the AccountFME
table.

Output Values

The Late Payment Fee Calculation activity returns the following output values:

Factors

LATEPAYMENTFEE: The late payment fee that has been calculated.
LIMITAMOUNT: The maximum amount the late payment should be for the account.

This activity uses the following factors, which must be set up in the Factor and Factor Value tables:

Grace Period: This represents the number of days after the due date that should be allowed
for an Oracle Ultilities Receivables Component transaction (LSTRANSACTION table)
before a transaction should be included in the total amount past due function. The value
stored in the Factor Value table should be the number of days for the grace period.

* Name: GRACEPERIOD
* Code: GRACEPERIOD

Late Fee Charge Type: Indicates if the late payment fee calculation function should
calculate a flat charge (LFC), as a percentage of the overdue amount (LFP), or both a flat
charge and a percentage of the overdue amount. (BOTH)

* Name: LATEFEECHARGETYPE
* Code: LFC, LFP, or BOTH, as appropriate

Late Fee Charge: The amount of late payment charge returned from the function if the Late
Fee Charge Type code is set to LFC.

Collections 9-21

Collections Processing and Activities

¢ Name: LFCHARGE
¢ Code: LFCHARGE

* Late Fee Percentage: The amount of late payment charge returned from the function if the
Late Fee Charge Type code is set to LFP.

¢ Name: LFCHARGE
¢ Code: LFCHARGE

* Late Fee Limit Amount: Represents a ceiling for the amount a customer can be charged if
an account is overdue. If the amount calculated by the function exceeds the value for this
factor, an error is returned as well as the late fee charge amount.

* Name: LFLIMITAMOUNT
* Code: LFLIMITAMOUNT

The late payment fee can be one of the following:

* A one-time charge based on a percentage applied to the total Past Due Amount for each
invoice

* A flat fee charge

* A flat fee and a one-time percentage charge

* A flat fee or a one time percentage

This activity can be triggered from either a collections process or from the Oracle Utilities Rules
Language. See the CALCULATE_LATEPAYMENT Function on page D-33 for more
information about triggering this activity from the Rules Language.

Letter Generation/Dunning Notice
At specified times in a collections process, letters/dunning notices are generated and sent to the
customer. These are created by the Letter Generation activity, which generates a message to a
target letter queue or output file.

Input Parameters
The Letter Generation/Dunning Notice activity uses the following input parameters:

* DELIVERYTYPE (required): Indicates the manner in which the letter is delivered. Valid
values are FILE or QUEUE. If set to FILE, the letter is output to the location detailed in the
File Path parameter, with name given in the File Name parameter. This file will continue to be
appended to with each letter output. If set to QUEUE, the letter is posted to the Letter
Message table.

* OPCOCODE (required): Valid operating company code.
* JURISCODE (required): Valid jurisdiction code.

* FILEPATH: The path to the file to which the letter is output. Only used if the
DELIVERYTYPE parameter is set to FILE. Example: "C:\LetterGeneration\".

* FILENAME: The name of the file to which the letter is output. Only used if the
DELIVERYTYPE parameter is set to FILE. Example: "Letter.xml".

* MESSAGESUBTYPE: The value to be output in the letter. This value is not used for any
processing.

* COLLECTIONSTATUS: The value to update Collection Status field in Account FME
table.

* CALCSHUTOFF: Set to 'Y' if needed. This outputs the calculated shut off date on the
Account node of the letter.

9-22 Billing Component Installation and Configuration Guide, Volume 2

Collections Processing and Activities

USEBUSINESSDAY: Set only if CALCSHUTOFF is set to 'Y". Finds the next business day
that the shutoff should occur on.

SHUTOFFDATE: The non-calculated shut off date value to be output in the letter.

Output Values

The Letter Generation/Dunning Notice activity returns the following output values:

TOTALAMOUNTDUE: The total amount due for the account, calculated based on the
Last Balance and New Activity fields in the Account FME table.

PASTDUE: The total past amount from LSTransaction table

SHUTOFFDATE: The date calculated for shut off, or the date passed in on the
SHUTOFFDATE input parametet.

Defining the Letter Generation Activity

Defining the letter generation activity requires three steps:

1.
2.

Select a letter queue or output file

Specify the header data for the message. The header contains information about the type of
dunning notice to send, and other instructions for the letter generation application to
generate the letter. This information must be set-up during configuration.

The Letter Generation activity sends a message to the selected target queue or file that
consists of the Collection Activities Payload Information in XML format. See Collection
Activities Payload Information on page 9-33 for more information.

After sending the letter message to the letter generation queue, the activity waits for a response

from the messaging system that the letter has been sent. When the letter generation activity

receives this reply message, it creates a record in the Letter Message Table with the date sent,
ACCOUNT ID, type of letter sent and the payload of the letter.

This activity can be only be triggered from a collections process.

Phone Contact
At specified times in the process, a request for customer phone contact can be generated. The

request can be placed into a collections work queue, sent via a transaction to the Customer

Relationship Management (CRM) system for a call by a Customer Service Representative (CSR) or

Account Executive, or output to a file.

Input Parameters
The Phone Contact activity uses the following input parameters:

DELIVERYTYPE (requited): Indicates the manner in which the message is delivered. Valid
values are FILE or QUEUE. If set to FILE, the message is output to the location detailed in
the File Path parameter, with name given in the File Name parameter. This file will continue
to be appended to with each message output. If set to QUEUE, the notice is posted to the
Phone Message table.

OPCOCODE (required): Valid operating company code.
JURISCODE (required): Valid jurisdiction code.

FILEPATH: The path to the file to which the message is output. Only used if the
DELIVERYTYPE parameter is set to FILE. Example: "C:\PhoneContact\".

FILENAME: The name of the file to which the message is output. Only used if the
DELIVERYTYPE parameter is set to FILE. Example: "Phone.xml".

MESSAGESUBTYPE: The value to be output in the message. This value is not used for
any processing.

Collections 9-23

Collections Processing and Activities

COLLECTIONSTATUS: The value to update Collection Status field in Account FME
table.

CALCSHUTOFF: Set to 'Y' if needed. This outputs the calculated shut off date on the
Account node of the message.

USEBUSINESSDAY: Set only if CALCSHUTOFF is set to 'Y'". Finds the next business day
that the shutoff should occur on.

SHUTOFFDATE: The non-calculated shut off date value to be output in the message.

Output Values

The Phone Contact activity returns the following output values:

TOTALAMOUNTDUE: The total amount due for the account, calculated based on the
Last Balance and New Activity fields in the Account FME table.

PASTDUE: The total past amount from LSTransaction table

SHUTOFFDATE: The date calculated for shut off, or the date passed in on the
SHUTOFFDATE input parametet.

Defining the Phone Contact Activity

Defining the phone contact activity requires three steps:

1.
2.

Select a phone call work queue, CRM message queue or output file for a CRM system.

Specify the header data for the message. The header contains information about the type of
phone call, priority, # of repeat attempts and other required instructions (if any). This
information must be set-up during configuration.

The activity sends a message to the selected target queue or file that consists of the Collection
Activities Payload Information in XML format. See Collection Activities Payload
Information on page 9-33 for more information.

Optionally, after the phone call activity sends the phone call request it can be configured to wait do

the following activities:

1.

Receive a message from the phone call message queue that the phone call has been
attempted.

Receive information about the disposition of that attempt and a note. Dispositions can be
“Attempted”, “Completed” or “Invalid”. Notes contain information about the disposition.

Post that information to the Phone Message Table including date attempted, account, type
of call, disposition and any notes.

The phone call activity repeats these three steps for the specified # of attempts or until it receives
a completed disposition.

This activity can be only be triggered from a collections process.

9-24 Billing Component Installation and Configuration Guide, Volume 2

Collections Processing and Activities

Service Discontinuation Request
If the customer does not respond to gentle reminders to pay their overdue balance, a service
discontinuation request is generated and sent. This activity sends a message to a specified service
discontinuation queue.

Input Parameters
The Service Discontinuation Request activity uses the following input parameters:

* DELIVERYTYPE (required): Indicates the manner in which the message is delivered. Valid
values are FILE or QUEUE. If set to FILE, the message is output to the location detailed in
the File Path parameter, with name given in the File Name parameter. This file will continue
to be appended to with each message output. If set to QUEUE, the message is posted to the
Shut Off Message table.

* OPCOCODE (required): Valid operating company code.
* JURISCODE (required): Valid jurisdiction code.

* FILEPATH: The path to the file to which the message is output. Only used if the
DELIVERYTYPE parameter is set to FILE. Example: "C:\ShutOff\".

* FILENAME: The name of the file to which the message is output. Only used if the
DELIVERYTYPE parameter is set to FILE. Example: "ShutOff.xml".

* MESSAGESUBTYPE: The value to be output in the message. This value is not used for
any processing.

* COLLECTIONSTATUS: The value to update Collection Status field in Account FME
table.

* CALCSHUTOFF: Set to 'Y' if needed. This outputs the calculated shut off date on the
Account node of the message.

* USEBUSINESSDAY: Set only if CALCSHUTOFF is set to 'Y". Finds the next business day
that the shutoff should occur on.

* SHUTOFFDATE: The non-calculated shut off date value to be output in the message.
Output Values
The Service Discontinuation Request activity returns the following output values:

¢ TOTALAMOUNTDUE: The total amount due for the account, calculated based on the
Last Balance and New Activity fields in the Account FME table.

* PASTDUE: The total past amount from LSTransaction table
* SHUTOFFDATE: The date calculated for shut off, or the date passed in on the
SHUTOFFDATE input parameter.

Processing
The service discontinuation request activity sends a message to the selected target queue or file
that consists of the Collection Activities Payload Information in XML format. See Collection
Activities Payload Information on page 9-33 for more information.

After the message has been sent, the activity should do the following:
e Wait for a response that from the message queue that the shut-off request has been delivered.

* Create a record in the Shut Off Message Table indicating that the shut-off was sent, time
delivered, and a note about to whom.

* Wait for a response from the message queue that the shut-off has been completed or not.

If the shut-off was complete, the activity creates a record in the Collection History Table
indicating the date that the customer was shut-off.

Collections 9-25

Collections Processing and Activities

If the customer was not shut-off, a work queue item is created with the reason that it was not shut-
off.

If the activity waits more than specified period of time for a confirmation that the customer has
been shut off and no response has been received, then it posts work queue item with a note that
shut-off was not complete.

This activity can be only be triggered from a collections process.

Service Discontinuation Request Cancellation
This activity cancels a previous request for a service discontinuation. This activity should be
invoked when a payment or credit adjustment comes in that brings an account current ot out of
collections and there is a pending service discontinuation that has yet to be completed. This
activity also applies for reconnections. The number of days after a service disconnection is
completed that a reconnect can be issue is stored in the Factor and Factor Value tables. If a
payment, exemption or arrangement comes in during that window, a cancellation of the Service
Discontinuation request is issued.

The Service Discontinuation Request Cancellation activity sends out a Service Disconnect Cancel
message if the original Service Disconnection Request (shut off) was issued within a configurable
grace period AND if the account is no longer past due. This activity can be configured to be run
whenever a collection Exemption or Arrangement is created for an account, or when a payment or
credit is applied to the account. The number of days for this grace period is stored in the Factor
Value table for the DISCONNECTCANCELDAYS factor. This factor value is used to calculate
the last date of the grace period for a shut off to be cancelled. This calculation is done by either
adding the factor value to the stop time of the most recent shut off activity, or adding this factor to
a shut off date that is stored in a context variable within the most recent shut off activity. If the
date of execution for the Service Discontinuation Request Cancellation (SDC) activity is within
this calculated grace period date, then an SDC message will be generated. An SDC message can
also be generated by not calculating a grace period at all, but by simply sending out an SDC if a
previous shut off activity has been executed and the account is no longer past due. An SDC
message will contain the same message payload as the original shut off message, however the
MESSAGETYPECODE in the SHUTOFFMSG table will be
SERVICEDISCONNECTCANCEL as opposed to SERVICEDISCONNECT.

Input Parameters
The Service Discontinuation Request Cancellation activity uses the following input parameters:

* DELIVERYTYPE (required): Indicates the manner in which the message is delivered. Valid
values are FILE or QUEUE. If set to FILE, the message is output to the location detailed in
the File Path parameter, with name given in the File Name parameter. This file will continue
to be appended to with each message output. If set to QUEUE, the message is posted to the
Shut Off Message table.

* OPCOCODE (required): Valid operating company code.
* JURISCODE (required): Valid jurisdiction code.

* GRACEPERIODTYPE (required): Indicates way in which a disconnect cancel grace period
can be calculated. Valid values are OVERRIDE, SHUTOFFCONTEXTVARIABLE, and
ACTIVITYSTOPDATE. OVERRIDE generates a disconnect cancel message if a previous
shut off activity that was either completed or is currently running is present.
ACTIVITYSTOPDATE causes a disconnect cancel message to be generated if the system
date is less than or equal to (<=) the most recent shut off activity’s stop date, plus the value of
the DISCONNECTCANCELDAYS factor. SHUTOFFCONTEXTVARIABLE performs
the same calculation as the ACTIVITYSTOPDATE but instead of the activity stop date, the
date specified in the SHUTOFFVARIABLE that was passed into the SHUTOFF activity will
be used.

9-26 Billing Component Installation and Configuration Guide, Volume 2

Collections Processing and Activities

* SHUTOFFVARIABLE (required if GRACEPERIODTYPE =
SHUTOFFCONTEXTVARIABLE): The name of context variable where the shut off date
will be stored in the Shut Off activity

* FILEPATH: The path to the file to which the message is output. Only used if the
DELIVERYTYPE parameter is set to FILE. Example: "C:\ShutOff\".

* FILENAME: The name of the file to which the message is output. Only used if the
DELIVERYTYPE parameter is set to FILE. Example: "ShutOff.xml".

* MESSAGESUBTYPE: The value to be output in the message. This value is not used for
any processing.

* COLLECTIONSTATUS: The value to update Collection Status field in Account FME
table.

* CALCSHUTOFF: Set to 'Y' if needed. This outputs the calculated shut off date on the
Account node of the message.

* USEBUSINESSDAY: Set only if CALCSHUTOFF is set to 'Y". Finds the next business day
that the shutoff should occur on.

* SHUTOFFDATE: The non-calculated shut off date value to be output in the message.

* DYNAMICMSGCODE: The value matching the Dynamicmsgcode field in the Dynamic
Message table.

Output Values

The Service Discontinuation Request Cancellation activity returns the following output values:

¢ TOTALAMOUNTDUE: The total amount due for the account, calculated based on the
Last Balance and New Activity fields in the Account FME table.

* PASTDUE: The total past amount from LSTransaction table

* SHUTOFFDATE: The date calculated for shut off, or the date passed in on the
SHUTOFFDATE input parametet.

* CANCELSENT: Y’ is cancellation was sent, ‘N’ if cancellation was not sent, and “No
Previous Shutoff Found” if a Service Discontinuation Request was not found.

Processing
The activity creates a record in the Collection History Table that contains the same payload
information as the service discontinuation request, but with a cancellation message type.

This activity can be only be triggered from a collections process.

Collection Agency Notification - Enter
Sometimes attempts to collect the receivable balance need stronger actions. In this case, an
account can be sent to a collection agency (either first party or third party agency) for further
action.

Determining the appropriate Collection Agency to send the account to is based on a number of
factors, including Jurisdiction, Revenue Code, Operating Company, Collection Agency Type, and
Dollar threshold. Based on these criteria, an account will be directed to the appropriate agency.

Collection Agency Selection Process
First, the system searches for an exact match on Jurisdiction (JURISCODE), Revenue Code
(REVENUECODE), and Operating Company (OPCOCODE).

If no exact matches are found, then the system searches for a partial match on Jurisdiction
(JURISCODE), Revenue Code (REVENUECODE), and Operating Company (OPCOCODE)
For a partial match, one of the following is true:

Collections 9-27

Collections Processing and Activities

The JURISCODE is the same as the account and the OPCOCODE and REVENUECODE
are Null, or

The OPCOCODE is the same as the account and the JURISCODE and REVENUECODE
are Null, or

The REVENUECODE is the same as the account and the OPCOCODE and JURISCODE
are Null, or

The JURISCODE and OPCOCODE are the same as the account and the
REVENUECODE is Null, or

The JURISCODE and REVENUCODE are the same as the account and the OPCOCODE
is Null, or

The OPCOCODE and REVENUECODE are the same as the account and the
JURISCODE is Null.

If none of the above partial matches are found, and the JURISCODE, REVENUCODE and
OPCOCODE are all Null, the system uses other fields to find a match.

In addition to Jurisdiction, Revenue Code, and Operating Company fields above, the required
fields Upper Amount (UPPERAMT), Lower Amount (LOWERAMT), Collection Agency Type
(COLAGENCYTYPE), Start Date (STARTDATE), and Stop Date (STOPDATE) are also
included in the checks. For example, in the first case above where Jurisdiction, Revenue Code, and

Operating Company are an exact match, the system also assumes an exact match on Collection

Agency Type, the system date is between the agency's Start Date and Stop Date, and the past due

amount for the account is between the Upper Amount and the Lower Amount.

If more than one agency or no agency is found to match for any three checks, an error is raised.

Input Parameters
The Collection Agency Notification - Enter activity uses the following input parameters:

DELIVERYTYPE (required): Indicates the manner in which the message is delivered. Valid
values are FILE or QUEUE. If set to FILE, the message is output to the location detailed in
the File Path parameter, with name given in the File Name parameter. This file will continue
to be appended to with each message output. If set to QUEUE, the message is posted to the
Shut Off Message table.

OPCOCODE (required): Valid operating company code.
JURISCODE (requited): Valid jurisdiction code.

FILEPATH: The path to the file to which the message is output. Only used if the
DELIVERYTYPE parameter is set to FILE. Example: "C:\ AgencyNotify\".

FILENAME: The name of the file to which the message is output. Only used if the
DELIVERYTYPE parameter is set to FILE. Example: "AgencyNotify.xml".

MESSAGESUBTYPE: The collection agency to be output in the message. This value is
used to determine which collection agency should be notified.

COLLECTIONSTATUS: The value to update Collection Status field in Account FME
table.

CALCSHUTOFF: Set to 'Y' if needed. This outputs the calculated shut off date on the
Account node of the message.

USEBUSINESSDAY: Set only if CALCSHUTOFF is set to 'Y'. Finds the next business day
that the shutoff should occur on.

SHUTOFFDATE: The non-calculated shut off date value to be output in the message.

9-28 Billing Component Installation and Configuration Guide, Volume 2

Collections Processing and Activities

Output Values

The Collection Agency Notification - Enter activity returns the following output values:

* TOTALAMOUNTDUE: The total amount due for the account, calculated based on the
Last Balance and New Activity fields in the Account FME table.

* PASTDUE: The total past amount from LSTransaction table

* SHUTOFFDATE: The date calculated for shut off, or the date passed in on the
SHUTOFFDATE input parametet.

Processing
The Collection Agency Notification - Enter, activity generates a message to the Collection Agency
Notification queue with a payload of the account details required to enter a 3rd party collections
process.

The activity waits for a response from the agency noting the customer has been successfully
entered into third party collections.

The Collection Agency Notification Activity performs the following steps.

1. Gets the header fields for the collection agency from the Collection Agency Table. The
header contains information to route the request to the appropriate place and other required
instructions for the delivery of the notification.

2. Sends a message to the selected target queue or file that consists of the Collection Activities
Payload Information in XML format. See Collection Activities Payload Information on
page 9-33 for more information.

When this activity receives a message from the message queue that the third party has begun
collections, the activity enters a Start Date in the Collection Program X Account Table
associating the account to a specific collection agency with a specific start time, and creates a
record in the Agency Message Table indicating that the message has been sent to the collection
agency.

This activity can be only be triggered from a collections process.

Collection Agency Notification - Update
The Collection Notification - Update activity generates a message to the Collection Agency
Notification queue with a payload of the account details required to tell the agency that a balance
change has occurred within the account. This balance change provides the agency with updated
financial information on the account. Each time the financial balance changes on an account, a
transaction is generated giving the Collection Agency updated financial information. The agency
can use the Last Payment and Last Payment Date to determine if this transaction was generated by
a payment event. Since Collection agencies only get compensated for payment collected on
accounts, this field allows the agency to identify if a payment was made.

Input Parameters
The Collection Agency Notification - Update activity uses the following input parameters:

* DELIVERYTYPE (required): Indicates the manner in which the message is delivered. Valid
values are FILE or QUEUE. If set to FILE, the message is output to the location detailed in
the File Path parameter, with name given in the File Name parameter. This file will continue

to be appended to with each message output. If set to QUEUE, the message is posted to the
Shut Off Message table.

* OPCOCODE (required): Valid operating company code.
* JURISCODE (required): Valid jurisdiction code.

* FILEPATH: The path to the file to which the message is output. Only used if the
DELIVERYTYPE parameter is set to FILE. Example: "C:\ AgencyNotify\".

Collections 9-29

Collections Processing and Activities

* FILENAME: The name of the file to which the message is output. Only used if the
DELIVERYTYPE parameter is set to FILE. Example: "AgencyNotify.xml".

* MESSAGESUBTYPE: The value to be output in the message. This value is not used for
any processing.

* COLLECTIONSTATUS: The value to update Collection Status field in Account FME
table.

* CALCSHUTOFF: Set to "Y' if needed. This outputs the calculated shut off date on the
Account node of the message.

* USEBUSINESSDAY: Set only if CALCSHUTOFF is set to 'Y". Finds the next business day
that the shutoff should occur on.

* SHUTOFFDATE: The non-calculated shut off date value to be output in the message.

Output Values
The Collection Agency Notification - Update activity returns the following output values:

¢ TOTALAMOUNTDUE: The total amount due for the account, calculated based on the
Last Balance and New Activity fields in the Account FME table.

* PASTDUE: The total past amount from LSTransaction table

* SHUTOFFDATE: The date calculated for shut off, or the date passed in on the
SHUTOFFDATE input parametet.

Processing
The Collection Agency Notification Activity - Update performs the following steps.

1. Looks up the Agency that the account is currently assigned to

2. Gets the header fields for the collection agency from the Collection Agency Table. The
header contains information to route the request to the appropriate place and other required
instructions for the delivery of the notification.

3. Sends a message to the selected target queue or file that consists of the Collection Activities
Payload Information in XML format. See Collection Activities Payload Information on
page 9-33 for more information.

The activity waits for a response from the agency noting the customer has been successfully
entered into third party collections, and creates a record in the Agency Message Table indicating
that the update has been sent to the collection agency.

This activity can be only be triggered from a collections process.

Write Off

If all avenues of collections have failed, then the outstanding amount is written off. The Write Off
activity creates a transaction to write-off the amount of un-collectable revenue. This amount of
un-collectable revenue is all the revenue for that customer is past due. The receivable status is
updated to “UNCOLLECTIBLE”.

Input Parameters
The Write Off activity uses the following input parameters:

* WRITEOFFREASON: The value inserted into the Account FME table by the Write Off
Account function. See Write Off Account on page 8-14 for more information.

* COLLECTIONSTATUS: The value to update Collection Status field in the Account FME
table.

9-30 Billing Component Installation and Configuration Guide, Volume 2

Collections Processing and Activities

Output Values
The Write Off activity returns the following output values:

Processing

WRITEOFFAMOUNT: The amount written off of the account by the Write Off Account
function. See Write Off Account on page 8-14 for more information.

WRITEOFFDATE:The date the amount was written off.

This activity also makes a note in the Collection History Table with the amount of write-off,
date and reason. This data is stored in the database and viewed by clicking the Details link on the
Collection History pane of the Viewing Collections Data on the Oracle Utilities Receivables
Component user interface.

This activity can be triggered from either a collections process or from the Oracle Utilities Rules
Language. See the Post Writeoff Statement on page D-23 for more information about triggering
this activity from the Rules Language.

Collection Information
The Collection Information activity gathers collections-related information for a specified

account.

Input Parameters
The Collection Information activity uses the following input parameters:

UIDACCOUNT: The UID for the account for which you wish to gather information.

Output Values

The Collection Information activity returns the following output values:

Processing

COLLECTIONSTATUS: The account’s current Collection Status, from the Account FME
table.

RECEIVABLESTATUS: The account’s current Receivable Status, from the Account FME
table.

TOTALAMOUNTDUE: The account’s current Total Amount Due, from the Account
FME table.

PASTDUEAMOUNT: The account’s current Past Due Amount, from the Transaction table
(charges - credits).

TOTALEXEMPTAMOUNT: The sum of all collections exemptions, from the Collections
Exemption table, or “FULLYEXEMPT” if the account is fully exempt.

LASTPAYMENTDATE: The date of the last payment posted to the Payment table.
LASTPAYMENTAMOUNT: The amount of the last payment posted to the Payment table.

COLLECTABLEBALANCE: The Past Due balance minus the
TOTALEXEMPTAMOUNT.

This activity can be only be triggered from a collections process.

Insert Collection History Record
The Insert Collection History Record activity inserts a record in the Collection History Table.

Input Parameters
The Insert Collection History activity uses the following input parameters:

Collections 9-31

Collections Processing and Activities

* UIDACCOUNT: The UID for the account used to gather account information. Required if
ACCOUNTID is not provided.

* ACCOUNTID: The ID for the account used to gather account information. Required if
UIDACCOUNT not provided.

* TYPE: The type of activity being recorded.

* NAME: The name of the activity being recorded.

* SOURCE: The source of the activity’s execution.

* MESSAGE: Data provided by the activity's execution.

Output Values

The Insert Collection History activity returns the following output values:

* STATUS: The status of the activity (PASS or ERROR with error details).

Processing
This activity can be only be triggered from a collections process.

Update Account Statuses
The Update Account Statuses activity updates the Collections Status and/or Receivable Status
fields on the Account FME Table.

Input Parameters
The Update Account Statuses activity uses the following input parameters:

* UIDACCOUNT: The UID for the account used to gather account information.

* UPDATETYPE: The type of update. Valid values are COLLECTIONS, RECEIVABLE, or
BOTH.

¢ RECEIVABLESTATUS: The new Receivable Status for the account.
¢ COLLECTIONSTATUS: The new Collections Status for the account.

Output Values

The Update Account Statuses activity returns the following output values:

* STATUS: The status of the update activity (PASS or ERROR with error details).

Processing
Note: If the UPDATETYPE is BOTH but only one element is provided, the second element will
be set to Null. Also, if the UPDATETYPE is COLLECTIONSTATUS but no
COLLECTIONSTATUS element is present, the Collection Status column in the Account FME
table will be set to Null. Likewise, if the UPDATETYPE is RECEIVABLESTATUS but no
RECEIVABLESTATUS element is present, the Receivable Status column in the Account FME
table will be set to Null.

This activity can be only be triggered from a collections process.

Post Activity Event
The Post Activity Event activity posts an event to the Workflow engine. The event posted must be
defined in the EVENTTYPE table. This activity can be used to force an event to be posted to the
Workflow engine after another item (such as a workflow start, suspend or resume item) has been
posted. This guarantees order of processing,.

9-32 Billing Component Installation and Configuration Guide, Volume 2

Collections Processing and Activities

Input Parameters
The Post Activity Event activity uses the following input parameters:

* UIDACCOUNT: The UID for the account used to gather account information. (Required).
* EVENT: The EVENTTYPECODE to be posted to the Workflow engine (Required).
Output Values
The Post Activity Event activity returns the following output values:
* STATUS: The status of the activity (PASS or ERROR with error details).
Processing
This activity can be triggered from either a collections process or from the Oracle Utilities Rules
Language. See the Process Event Statement on page E-11 in the Oracle Utilities Billing Component -

Workflow Management Installation and Configuration Guide for more information about triggering this
activity from the Rules Language.

Collection Activities Payload Information

Several of the collections activities that involve contacting customers, such as Letter Generation,
Phone Contact, Collection Agency Notifications, and Service Discontinuation Requests create a
message payload (in XML format) that contains customer, account, and contact information
required for the message. Unless otherwise noted, all data is provided for all activities, and includes
the following:

* COLLECTIONTRANSACTION (the root element that contains the transaction)
* UIDPROCESSINSTANCE (the UID of the process instance that generated the message)
* UIDACTIVITYINSTANCE (the UID of the activity instance that generated the message)
* MESSAGESUBTYPE (the type of message created)
* CUSTOMER (customer information, including the following):
* CUSTOMERID
* NAME
* CUSTOMERCONTACT (customer contact information, including the following):
* TYPE
* NAME
*+ ADDRESSI
*+ ADDRESS2
* ADDRESS3

« CITY

* STATE

« ZIP

* COUNTY

* COUNTRY

* FAX

* PHONE
» EMAIL
* PAGER

Collections 9-33

Collections Processing and Activities

* ACCOUNT (account information, including the following):
* ACCOUNTID
* NAME
* OPCOCODE (operating company)
* JURIS (jurisdiction)
* ACCOUNTCONTACT (account contact information, including the following):
« TYPE
* NAME
*+ ADDRESS1
* ADDRESS2
*+ ADDRESS3

« CITY

« STATE

e ZIP

* COUNTY

* COUNTRY

* FAX

* PHONE
* EMAIL
* PAGER

* ACCOUNTMANAGER (account manager information, including the following):

* NAME

« EMAIL
* PHONE
* FAX

* SHUTOFFDATE
* COLLECTIONAGENCY (collection agency)

* PROGRAMNAME (collection arrangement information (Letter Generation only),
including the following:

* STATUS
* STARTDATE
* STOPDATE
* NUMPAYMENTS (including dates and amounts for each payment)
* TOTALAMOUNT
* INVOICEDETAILS (invoice information (Letter Generation only), including the following):
* INVOICE (individual account invoices, including the following):
* INVOICEID
* INVOICEDATE

9-34 Billing Component Installation and Configuration Guide, Volume 2

Collections Processing and Activities

INVOICEDUEDATE
STATEMENTDATE
TRANSACTIONID
CHARGEORCREDIT
AMOUNT

BALANCE
DUEDATE

SERVICEPLANINFO (service plan information (Letter Generation and Service
Discontinuation Request only), including the following):

* SERVICETYPECODE

* LDCACCOUNTNO
« STARTDATE

» STOPDATE

* ADDRESS1

* ADDRESS2

*» ADDRESS3

« CITY

« STATE

« ZIP

* COUNTY

* COUNTRY

* METERINFO (meter information, including the following):

METERID
NUMBEROFDIALS
OFFSET
MULTIPLIER
SERIALNUMBER
UNINUMBER
MANUFACTURER

PAYMENT (payment information (Letter Generation only), including the following):

* RECEIVEDATE (last payment date)

* AMOUNT (last payment amount)

DEPOSITINFO (deposit information (Letter Generation only), including the following):

* DEPOSITAMOUNT

BALANCEINFO (balance information, including the following):

* TOTALAMOUNTDUE

* PASTDUEBALANCE

* COLLECTIBLEBALANCE (Past Due - Exemptions, etc.)

Collections 9-35

Collections Processing and Activities

In addition to the above information, activity payloads can also contain dynamic payload

information. See descriptions of the Dynamic Message Table and the Dynamic Message

Value Table on page 9-4 for more information.

Example Activity Payload

<COLLECTIONTRANSACTION UIDPROCESSINSTANCE="822"

MESSAGESUBTYPE="">

<CUSTOMER>
<CUSTOMERID>SCENARIO 2</CUSTOMERID>
<NAME>Scenario 2</NAME>

</CUSTOMER>

<ACCOUNT>
<ACCOUNTID>SCENARIO 2</ACCOUNTID>
<NAME>Scenario 2</NAME>
<OPCOCODE>SESCO</OPCOCODE>
<JURISCODE>AGL</JURISCODE>
<SHUTOFFDATE>1/20/2004</SHUTOFFDATE>

UIDACTIVITYINSTANCE="4186"

<COLLECTIONSAGENCY>CARLOS' AGENCY</COLLECTIONSAGENCY>

<PROGRAMNAME >AGL</PROGRAMNAME >
</ACCOUNT>
<INVOICEDETAILS>
<INVOICE>
<INVOICEID>SCENARIO 2</INVOICEID>
<INVOICEDATE>3/1/2003</INVOICEDATE>

<INVOICEDUEDATE>6/1/2003</INVOICEDUEDATE>

<STATEMENTDATE>3/1/2003</STATEMENTDATE
><TRANSACTIONID>BILL</TRANSACTIONID>
<CHARGEORCREDIT>CH</CHARGEORCREDIT>
<AMOUNT>100</AMOUNT>
<BALANCE>100</BALANCE>
<DUEDATE>6/1/2003</DUEDATE>

</INVOICE>

<INVOICE>
<INVOICEID>SCENARIO 2</INVOICEID>
<INVOICEDATE>3/1/2003</INVOICEDATE>

<INVOICEDUEDATE>6/1/2003</INVOICEDUEDATE>

<STATEMENTDATE>3/1/2003</STATEMENTDATE>
<TRANSACTIONID>BILL</TRANSACTIONID>
<CHARGEORCREDIT>CH</CHARGEORCREDIT>
<AMOUNT>125</AMOUNT>
<BALANCE>125</BALANCE>
<DUEDATE>6/1/2003</DUEDATE>
</INVOICE>
</INVOICEDETAILS>
<SERVICEPLANINFO>
<SERVICETYPECODE>GAS</SERVICETYPECODE>
<LDCACCOUNTNO></LDCACCOUNTNO>
<STARTDATE>1/1/2008</STARTDATE>
<STOPDATE>1/1/2009</STOPDATE>
<ADDRESS1>123 Main Street</ADDRESS1>
<ADDRESS2></ADDRESS2>
<ADDRESS3></ADDRESS3>
<CITY>Houston</CITY>
<STATE>TX</STATE>
<ZIP>77003</ZIP>
<COUNTY></COUNTY>
<COUNTRY></COUNTRY>
<METERINFO>
<METERID>2</METERID>
<NUMBEROFDIALS>1</NUMBEROFDIALS>
<OFFSET>1</OFFSET>
<MULTIPLIER>1</MULTIPLIER>
<SERIALNUMBER></SERIALNUMBER>
<UNINUMBER></UNINUMBER>
<MANUFACTURER></MANUFACTURER>
</METERINFO>
</SERVICEPLANINFO>

9-36 Billing Component Installation and Configuration Guide, Volume 2

Collections Processing and Activities

<PAYMENT>
<RECEIVEDDATE>1/3/2003</RECEIVEDDATE>
<AMOUNT>100</AMOUNT></PAYMENT>
<DEPOSITINFO>
<DEPOSITAMOUNT>100</DEPOSITAMOUNT>
</DEPOSITINFO>
<BALANCEINFO>
<TOTALAMOUNTDUE>225</TOTALAMOUNTDUE>
<PASTDUEBALANCE>225</PASTDUEBALANCE>
<COLLECTIBLEBALANCE>225</COLLECTIBLEBALANCE>
</BALANCEINFO>
</COLLECTIONTRANSACTION>

Collections 9-37

Collections Processing and Activities

9-38 Billing Component Installation and Configuration Guide, Volume 2

Chapter 10

Reports

Reporting is an integral part of the overall functionality of an accounting system, and the Oracle
Utilities Receivables Component is no exception. Reporting provides for the confirmation of
successful processing and allows the business community the ability to have visibility into the
overall performance of operations. This visibility allows the organization to monitor processing,
track revenue and receivables, and apply work effort or resources to areas that require additional
attention.

This chapter provides an overview of the reporting functionality of Oracle Ultilities Receivables
Component, including a description of a number of specific reports available through Oracle
Utilities Receivables Component, and how those reports are generated. Information on viewing
reports is provided in Chapter 20: Viewing Oracle Utilities Receivables Component Reports
in the Oracle Utilities Billing Component User’s Guide.

Reports 10-1

Report Database Tables

Report Database Tables

The Reporting functionality of Oracle Ultilities Receivables Component use two specific tables,
each described below.

Report List Table

Records in the Report List Table represent the different types of reports available in the system.
For each report type, the Report List Table stores the following information:

Report ID: Used to identify the report type,
Report Name: The name of the report type (Payment Posting, Account Balance, etc.),
Description: A description of the report, and

Category: The category of reports to which the report is associated.

Report Table
Records in the Report Table represent individual reports run within the system. For each report
processed by Oracle Utilities Receivables Component, the Report Table stores the following
information:

UID Report: A unique ID for the report,

Report ID: The appropriate report ID, from the Report Lists Table,
User ID: ID of user running the report,

Start/Stop Time: Start and stop time of repott,

Rpt Start Date: Start date of the report,

Rpt Stop Date: Stop date of the report,

Status: Status of the teport (successful/unsuccessful), and

Filename: The file name of the report.

10-2 Billing Component Installation and Configuration Guide, Volume 2

Oracle Utilities Receivables Component Reports

Oracle Utilities Receivables Component Reports

The Oracle Utilities Receivables Component includes the ability to process and view a number of
reports, including:

* Payment Posting,
e Issue Refund,
* Account Balance,
* AR Aging,
* G/L Activity, and
* System Balance.
Report Format
Each of the reports described below are outlined in the following manner:
* Description: A brief description of the purpose of the report.

* Database: A listing of the specific database tables and columns used when generating the
report, the selection criteria used by each report, and the XML document types (if applicable)
and data elements returned by the report.

* Sample Report: A sample of the report.

Reports 10-3

Oracle Utilities Receivables Component Reports

Payment Posting Report

Description
The Payment Posting report tracks the number of payments processed each night. This report is
broken down by payment file processed, and it is assumed that each source of payment will be
processed in separate files.

Database
Tables and Columns: The Payment Posting report is based on data in the following tables and
columns and selection criteria.

Table Columns

Batch Payment Table Payment File
Payment Source
Payment Method
Batch No.
Number of Payments
Amount

Selection Criteria: Where the Received Date on the Batch Payment record equals a given date.

10-4 Billing Component Installation and Configuration Guide, Volume 2

Oracle Utilities Receivables Component Reports

Sample Report - Payment Posting Report

IS LODESTAR

CORPORATION

Lodestar Corp
Financial Management Extension

Report ID: FME-001
Report Name: Payment Posting

Run Date: 6/12/2002 12:17:01 PM
Report Period: 5/29/2002

File K:yShell\Shell@aDatatAnd_Cons'\Before_Data\RemittanceRM-ASST-PYMNT-FILE-EUR
Number of
Source Method Batch # Payments Total Amount
CHASE FAYMENTMETHODCODE RM-ASST-PYMHT-BAT 7 €930.00
CH-EUR
7 €930.00
File K:\Shell\ShellpaDatatAnd_Cons'\Before_Data\RemittanceRM-ASST-PYMNT-FILE-GRP
Number of
Source Method Batch # Payments Total Amount
CHASE PAYMEMTMETHODCODE RM-ASST-PYMHT-BAT 5 £635.50
CH-GBP
5 £635.50

Reports 10-5

Oracle Utilities Receivables Component Reports

Issue Refund Report

Description
The Issue Refund report details the refunds issued by the system by refund type. This report lists
the number of refunds and the total amount of refunds processed by the Issue Refund function of
the Oracle Ultilities Receivables Component user interface.

Database
Tables and Columns: The Issue Refund report is based on data in the following tables and
columns and selection criteria.

Table Columns
Account Table Account ID
Address Table Name
Address1
Address2
Address3
City
State
ZIP Code
Transaction Table Amount

Selection Criteria: Where the Transaction Type Code on the Transaction record equals ‘RFND?,
the Transaction Time on the Transaction record is a given date, and the Cancel Time is Null.

XML Data Elements: Account ID, Name, Address1, Address2, Address3, City, State, ZIP Code,
and Amount

10-6 Billing Component Installation and Configuration Guide, Volume 2

Oracle Utilities Receivables Component Reports

Sample Report - Issue Refund Report

I.ODESTAR] Lodestar Corp

CORPORATION Financial Management Extension
Report ID: FME-002 Run Date: 6/12/2002 12:21:08 PM
Report Name: Issue Refund Report Peried: 5/30/2002
Account ID Account Name Address UserID Amount

Currency Code: EUR
MN-RFND-3103-82631 Pat Hutchins 101 Cak Ave dvitale €28.12

Pittsburgh, PA 15215

MN-RFND-3103-82634 Mark Savoy dhitala €110.00
MN-RFND-3103-62638 Lionel Vaughn dvitale €250.00
MN-RFND-3103-82640 Isabel Almeida 28 Oak Ave ditale €306.05

Stoughton, M& 02048

MN-RFND-3103-82642 Barbara Lowry ditala €50.99

MN-RFND-3103-82645 Irving Matassa dhitala €156.00

MN-RFND-3103-82655 Kenneth Langley ditala €30.00

MN-RFND-3103-82657 Ed Selzer ditale €37.50
€968.66

Currency Code: GBP

MN-RFND-3103-82632 Loretta Molan 103 Qak Ave ditale £28.00

Clintan, IN 47842

MN-RFND-3103-82633 Maureen Archibald dhitala £107.50

MN-RFND-3103-82639 ditala £110.75

MN-RFND-3103-82641 WILLIAM KEADY 3872 Morganza Road dvitale £98.00

Bridgeville, PA 15017
MN-RFND-3103-82646 Martha English dhitala £124.80
MN-RFND-3103-B2658 Ronald Fitzaerald chitals £107.50

Reports 10-7

Oracle Utilities Receivables Component Reports

Account Balance Report

Description
Each night, a particular segment of the bill accounts are checked to ensure they are “in balance”
(the term “balance” refers to the charges, credits, and payments being captured on the database).
The Account Balance report details the number of accounts balanced and the number of
accounts, along with necessary details, that were “out-of-balance”.

Database
Tables and Columns: The Account Balance report is based on data in the following tables and
columns and selection criteria.

Table Columns

Control Message Table N/A

Control Message Data Table XML Data Chunk
Wotk Queue Message Table N/A

Work Queue Message Data Table XML Data Chunk

Selection Criteria: Where the Posted Time on the Control Message record equals a given date
(not including the time) and the Message Type Code equals ‘ACCOUNTS_BALANCED”.

Sub-Selection Criteria: Where the Posted Time on the Work Queue Message record equals the
Posted Time from the Control Message record and the Message Type Code from the Work Queue
Message record equals ‘ACCOUNT_BALANCE_ERROR’.

XML Document Types: ACCOUNTS_BALANCED and BALANCE_ACCOUNTS_ERROR

XML Data Elements: Number of Accounts Balanced, Number of Account Balance Errors, and
Account ID

10-8 Billing Component Installation and Configuration Guide, Volume 2

Oracle Utilities Receivables Component Reports

Sample Report - Account Balance Report

I.OD ESTAR] Lodestar Corp

CORPORATION Financial Management Extension
Report ID: FME-003 Run Date: 6/12/2002 12:23:06 PM

Report Name: Bill Account Control Balancing Report Period: 5/29/2002

Accounts Balanced 765 In Balance 741

Out of Balance 28

m
Currency Code: GBP
Account # Message
MM-RFND-3102-82630 LSACCTED4S: Account is out of balance:

LSACCTRD43: Calculatad last balance of 0 GBP is not equal to saved last balance of
22 GBP.

Currency Code:
Account # Message

9999929909 LSACCTED4S: Account is out of balance:
LSACCTE042: Account activity is out of balanca:
LSACCTE04D: Calculatad activity of 0 USD is not equal to saved activity of 4202615
S0,

GUI-ADJ-3037-81488 LSACCTE045; Account is out of balance:
LSACCTE044: Calculated current balance of 1.25 USD is not equal to saved curmrent
balance of -1.25 USD
GUI-ADJ-3037-81736 LSACCTE045: Account is out of balance:
LSACCTE042: Account activity is out of balanca:
LSACCTE04D: Calculatad activity of -390 LSD is not equal to saved aclivity of 476.25

GUI-ADJ-3037-81749 LSACCTE045: Account is out of balance:
LSACCTB042: Account activity is cut of balance:
LSACCTEO04D: Calculated activity of -300 USD is not equal to saved activity of 406.25
SD.

GUI-DEP-3072-81881 LSACCTED4S: Account is out of balance:
LSACCTE042: Account activity is out of balance:
LEACCTE040: Calculatad activity of 466.25 USD is not equal to saved activity of
47625 USD,

Reports 10-9

Oracle Utilities Receivables Component Reports

AR Aging Report

Description
The AR Aging report details aging for accounts receivables in the database. Accounts receivables
represents those sales that have not yet been collected, and aging refers to the classification of
receivable items into different groups by the amount of time that the item is outstanding. The AR
Aging report format breaks down AR items by Market, then by Rate.

Database
Tables and Columns: The AR Aging report is based on data in the following tables and columns
and selection criteria.

Table Columns

Account Table Balance

Revenue Code Table Revenue Name

Transaction Table Operating Company
Rate Code

Selection Criteria: Where the Balance on the Account is not zero and the Charge or Credit value
on the related Transaction record equals ‘CH’

10-10 Billing Component Installation and Configuration Guide, Volume 2

Oracle Utilities Receivables Component Reports

Sample Report - AR Aging Report

‘lOD ESTAR Lodestar Corp
CORPORATION Financial Management Extension
Report ID: FME-004 Run Date: 6/12/2002 12:25:30 PM
Report Name: A/R Aging Report Period: 6/12/2002
Currency Code: EUR
Juristiction Code: Camden
Industrial
Rate <=30 30-45 45-60 60-50 80-120 120-180 180+
€0.00 €0.00 €0.00 €0.00 €0.00 €0.00 €320.00
Revenue Total €0.00 €0.00 €0.00 €0.00 £0.00 €0.00 €320.00
Market Total £0.00 €0.00 €0.00 €0.00 €0.00 €0.00 €320.00
Juristiction Code: FL
Industrial
Rate <=30 30-45 45-60 60-90 90-120 120-180 180+
€0.00 €0.00 €0.00 €0.00 €0.00 €0.00 €705.00
Revenue Total €0.00 €0.00 €0.00 €0.00 €£0.00 €0.00 €1,025.00
Market Total €0.00 €0.00 €0.00 €0.00 €£0.00 €0.00 €1,345.00
Juristiction Code: GA
Industrial
Rate <=30 30-45 45-60 60-50 90-120 120-180 180+
€0.00 €0.00 €0.00 €0.00 €0.00 €0.00 €1,780.00
Revenue Total €0.00 €0.00 €0.00 €0.00 €0.00 €0.00 €2,805.00
Market Total £0.00 €0.00 €0.00 €0.00 €0.00 €0.00 €4,150.00

Reports 10-11

Oracle Utilities Receivables Component Reports

G/L Activity Report

Description
At scheduled intervals, the records in the Journal Transaction Table (p. 2-10) are balanced against
recotds in the Transaction Table (p. 2-5) and the Credit Application Table (p. 2-8). The G/L
Activity report details this process. This report displays the total number of financial records
balanced, and sum of the amounts for these transactions. It also displays the total number of
journal transactions that resulted, and the sum of the amounts for these transactions.

Database
Tables and Columns: The G/L Activity repott is based on data in the following tables and
columns and selection criteria.

Table Columns
Control Message Table N/A
Control Message Data Table XML Data Chunk

Selection Criteria: Where the Posted Time in the Control Message record equals a given date
(not including the time) and the Message Type Code in the Control Message record equals
JOURNAL_BALANCED’.

XML Document Types: JOURNAL_BALANCED

XML Data Elements: Journal Account ID, Cost Center, Revenue Month, Transaction Count,
Transaction Amount, Journal Count, Journaled Amount

10-12 Billing Component Installation and Configuration Guide, Volume 2

Oracle Utilities Receivables Component Reports

Sample Report - G/L Activity Report

Cost
Center
13000

13000
13000
13000
13000
13000

1000

10000
10000
13000
15000
15000
15000
15000

LODESTAR
Report ID: FME-005
Report Name: G/L Activity
Balancelournal Processed @ 5/30/2002 12:04:37 PM
Joumal Joumal
Account D Account Name
100.01E Treasury Cash
100.01E Treasury Cash
100.01E Traasury Cash
100.01P Traasury Cash
100.01P Traasury Cash
100.01P Traasury Cash
100.02 Unapplied Credits
100,02 Unapplied Credits
100.02E Unapplied Credits
100.02P Unapplied Credits
200.11 Budget Bill Usad
200.11 Budget Bill Used
500.01 Accounts Receivable
500.01 Accounts Receivable
500.01 Accounts Receivable
500.01 Accounts Receivable
500.01 Accounts Receivable
500.01 Accounts Receivable
500.01 Accounts Recaivable
500.01 Accounts Recsivable
500,01 Accounts Receivabla
50001 Accounts Recaivabla
500.01 Accounts Recaivabla
50001 Accounts Recaivable

Revenue
Month
2000-04-01

2000-05-01
2002-05-01
2000-04-01
2000-05-01
2000-06-01
2001-01-01
2001-02-0
2001-01-01
2001-01-01
2001-01-01
2001-02-01
2002-05-01
2001-01-01
2002-05-01
2002-05-01
2000-12-01
2001-04-01
2001-05-01
2001-06-01
2000-12-01
2001-01-01
2001-02-01
2001-03-01

Company Name
Financial Management Extension
Run Date: 6,/12/2002 5:00:27 PM
Report Period: 1/1/2002 - 6/12/2002
Transaction Credit App.

Amount Amount Journal Amount Difference
200.00 0.00 200.00 0.00
520.00 0.00 530.00 0.00

12500 0.00 -125.00 0.00
245.50 0.00 24550 0.00
120 00 0.00 12000 0.00
270.00 0.00 270.00 0.00

75.00 958.10 1,033.10 0.00

0.00 1150 1150 0.00
80.00 0.00 80.00 0.00
6500 0.00 -65.00 0.00

8.75 0.00 875 0.00

175 0.00 175 0.00
2613 10314 75.01 0.00
80.00 0.00 80.00 0.00
0371 -318.24 41105 0.00
161.74 -221.50 5076 0.00
105.00 0.00 195.00 0.00

1,545.00 0.00 1,545.00 0.00

787.50 0.00 787.50 0.00

0.00 0.00 0.00 0.00
500.96 0.00 500.96 0.00
79,777.42 858,10 78,819.32 0.00
527.00 -11.50 51550 0.00
0.00 0.00 0.00 0.00

Reports 10-13

Oracle Utilities Receivables Component Reports

System Balance Report

Description
The System Balance report compares the Subledger Balances for those Journal Accounts that have
a Type of cither A/R ot DEFERRED A/R with the net of the sum of the debit and credit
balances posted to the LSTransaction table. Thete is a sepatate line on the report for each Type/
Joutnal Account ID/Cost Centet combination. The Subledger Balance, Transaction Balance and
any difference between the two is reported.

Database
Tables and Columns: The System Balance report is based on data in the following tables and
columns and selection criteria.

Table Columns
Journal Account Table Journal Account ID

Journal Account Name

Cost Center Table Cost Center Name
Subledger Account Table Running Balance
Transaction Table Amount

Budget Plan Table Amount

Selection Criteria for A/R: Where the Journal Account Type in the Journal Account record
equals ‘A/R’ or ‘DEFERRED A/R’.

Database Summary for A/R: From the Transaction Table, where the Cancel Time is null and
the Balance is greater than zero, subtract the sum of all credit transactions from the sum of all
debit transactions.

Selection Criteria for Deferred A/R: Whete the Journal Account Type in the Journal Account
record equals ‘DEFERRED A/R’.

Database Summary for DEFERRED A/R: Sum the Variance from the Budget Plan Table.

10-14 Billing Component Installation and Configuration Guide, Volume 2

Oracle Utilities Receivables Component Reports

Sample Report - System Balance Report

lOD ESTAR Lodestar Corp
CORPORATION Financial Management Extension
Report ID: FME-00& Run Date: //12/2002 12:29:37 PM
Report Name: System Balance Report Period: 6/12/2002
Currency Code: EUR
AfR
bled T i
Journal Acct ID Description Cost Center Di
500.01E Accounts Receivable Cost Cenler 1 €28.12 €0.00 €28.12
500.01E Accounts Receivable Cost Center 10 £556.05 €0.00 E556.05
500.01E Accounts Recaivable Cost Center 13 €50.00 £0.00 €5000
500.01E Accounts Receivable Cost Center 15 £262.50 E262.50 €0.00
€807 66 E262.50
Currency Code: GBP
AR
bled T i
Journal Acct ID Description Cost Center | I Di
500.01P Accounts Receivable Cost Centar 1 [E28.13) £0.00 £28.13
500.01P Accounts Recaivable Cost Center 10 £98.00 £0.00 £08.00
500.01P Accounts Receivable Cost Center 13 £110.75 £0.00 E110.75
500.01P Accounts Receivable Cost Cenler 15 £525.00 £525.00 £0.00
F705.63 FEZ5.00
Currency Code: USD
AR
T
Journal Acet ID Description Cost Center I; ! Diff
500.01 Accounts Recaivable Cost Center 1 $8,522.13 $0.00 $8,523.13
500.01 Accounts Receivable Cost Center 10 $1400,173.69 $0.00 31,408,173 .68

Reports 10-15

Oracle Utilities Receivables Component Reports

Market Participant Aging Report

Description
The Market Participant Aging report details aging for accounts receivables in the database based
on individual accounts. Accounts receivables represents those sales that have not yet been
collected, and aging refers to the classification of receivable items into different groups by the
amount of time that the item is outstanding.

Database
Tables and Columns: The Market Participant Aging report is based on data in the following
tables and columns and selection criteria.

Table Columns

Account Table Account ID
Account Name

Transaction Table Balance

Selection Criteria: Where the balance on the transaction record is greater than zero (BALANCE
> () and the Cancel Time is NULL

Selection Criteria for Current Charges: Where the Charge or Credit value on the transaction
record equals 'CH' and the Transaction Time is less than or equal to (TRANSACTIONTIME <=)
30 days.

Selection Criteria for Current Credits: Where the Charge or Credit value on the transaction
record equals 'CR' and the Transaction Time is less than or equal to (TRANSACTIONTIME <=)
30 days.

Selection Criteria for Aged Charges: Where the Charge or Credit value on the transaction
record equals 'CH' and the Transaction Time is greater than (TRANSACTIONTIME >) 30 days.

Selection Criteria for Aged Credits: Where the Charge or Credit value on the transaction
record equals 'CR' and the Transaction Time is greater than (TRANSACTIONTIME >) 30 days.

10-16 Billing Component Installation and Configuration Guide, Volume 2

Oracle Utilities Receivables Component Reports

Sample Report - Market Participant Aging Report

EqL0DESTAR

Financial Management Extension

Lodestar Corp

Report ID: FME-007

Report Name: Market Participant Aging

Run Date:

6/12/2002 12:30:38 PM

Report Peried: 6/12/2002

Currency Code: EUR
Account ID
BL-AUTOPAY-3103-82691
BL-AUTOPAY-3103-82692
BL-BILL-3103-82607
BL-BILL-3103-82608
ISBL-CHRGCRDT-3103-8261

gL-CH RGCRDT-3103-8261
EL{H RGCRDT-3103-8262
I;L-CH RGCROT-3103-8262
SL-CH RGCRDT-3103-8262

BL-STMT-3103-82602
CL-3103-82675
MM-RFND-3103-82635
MN-RFND-3103-82644
MN-RFND-3103-82647
MN-RFND-3103-82649
MN-RFND-3103-82651
MN-RFND-3103-82653
RM-ASST-3103-82659
RM-ASST-3103-82661

Account Name
Lisa Jones

Michael Campo
Eric Fleming

Angela Tanner
Byron Wheeler

Irvin Seltzer
Lisa Fabrizio
Warren Tate
Maria Candido

Mildred Gilmore
Martin Kowalski
Frank Brown
David Gilmore
Phil Urbano
Marshall Wexler
Duncan Mantera
Allan Hannigan
Raobin Trembly

Rosalind Jennings

Current
Charges Due
€0.00

€262.50
€51.25
€51.25
€80.00

€100.00
€50.00
€75.00
€65.00

€76.30
€0.00
€0.00
€0.00
€0.00
€0.00
€0.00
€0.00
€0.00
€0.00

Current
Credits

€0.00
€0.00
€0.00
€0.00
€0.00

€0.00

€0.00

€0.00

€0.00

€0.00
€0.00
€0.00
€0.00
€0.00
€0.00
€0.00
€0.00
€110.00
€0.00

Aged { >30)
Charges Due
€506.25

€243.75
€0.00
€0.00
€0.00

€0.00
€0.00
€0.00
€7.00

€0.00
€40.00
€0.00
€0.00
€0.00
€0.00
€0.00
€0.00
€310.00
€215.00

Aged (>30)
Credits
€0.00

€0.00

€0.00

€0.00

€0.00

€0.00
€0.00
€80.00
€0.00

€25.50
€0.00
€56.25
€23.75
€2.50
€0.13
€3.09
€110.00
€0.00
€0.00

Net Due
€506.25

€506.25
€51.25
€51.25
€80.00

€100.00
€50.00
(€5.00)
€72.00

£50.80
€40.00
(€56.25)
(€23.75)
(€2.50)
(€0.13)
(€3.09)
(€110.00)
€200.00
€215.00

Reports 10-17

Running Oracle Utilities Receivables Component Reports

Running Oracle Utilities Receivables Component Reports

Oracle Utilities Receivables Component reports are run using the Report Generator batch file
(LSREPORTS.EXE). Some of the parameters used by this program are contained in a
Configuration File, and others are passed to the program when the batch file executes.

Configuration File
The Report Generator requires the LSReports.ini configuration file. This configuration file must
be in the same directory as the executable, and contains the following information:

* DSN - ODBC Data source Name for connecting to database

* USER - User Name string for connecting to database

* PWD - Password string for connecting to database

* Qualifier - the database qualifier used to connect to the database

* LSRFConnectString - The connect string for the Oracle Ultilities Data Repository, in one of
the following formats:

For Oracle databases:

Data Source=<data_source>;User
ID=<user_id>;Password=<password>;LSProvider=0DP;

where:

<data_source> is the Oracle TNS Name for the data source, from the
TNS_NAMES.ora file (typically located in the \\<machine>\otacle\network\admin
directory)

<user_id> is the user ID for the database connection

<password> is the password for the supplied user ID.
* LOGFILE - filename (including path) for storing logging messages
* ENHANCEDLOGGING - turns on informational messages; O for False; 1 for True
* RPTDIR - directory for temporary storage of reports

* WaitingTime - The waiting time in seconds used by LSReports.exe to wait for the
LSReportMonitor setvice to pick up the requested report. If the report is not picked up by
the service within the specified waiting time, the LSReports.exe will terminate its process.
(Default: 10 seconds).

Example
An example of the LSReports.ini file is shown below:

[General]

DSN=pwrline

USER=userid

PWD=userpassword

Qualifier=pwrline

LSRFConnectString=Data Source=EIPDB;User
ID=pwrline;Password=userpassword; LSProvider=0DP;
LogFile=\\server\reports\error.log
EnhancedLogging=0
RptDir=\\server\reports\reports\
WaitingTime=10

10-18 Billing Component Installation and Configuration Guide, Volume 2

Running Oracle Utilities Receivables Component Reports

Logging
All informational and error messages generated during report generation are sent to the Windows
NT Event log and a text file. The NT Event log can be viewed by using Windows Event Viewer.
The text file is the file specified in the LogFile parameter in the Configuration File. Informational
messages ate only posted if the EnhancedLogging parameter is set to 1 in the configuration file.

Report Storage
All reports generated by the Energy Information Platform Reporting Framework are stored in the
Oracle Ultilities Data Repository. As the reports are being run, temporary copies of the reports are
stored in a directory on a file server. This directory is defined by the RptDir parameter in the
configuration file. Each filename will be saved in the Report Table, and the unique ID for the
report is part of the filename.

Report Generator Syntax
LSREPORTS uses the syntax shown below.

Isreports report start stop

In actual use, the command must be entered on one line. Also, you must either change to the
directory in which the program is stored (typically, \LODESTAR\bin) before entering the
command, or specify the path in the command. To view a list of all parameters on-screen, type
Isreports -? at the command prompt.

Parameter Description

report A number indicating the report to run. Must be one of the following:

* FME-001 - Payment Posting

* FME-002 - Issue Refund

* FME-003 - Account Balance

* FME-004 - AR Aging

* FME-005 - G/L Activity

e FME-006 - System Balance

e FME-007 - Market Participant Aging.

Only the number of the report is needed. For example, to run the Issue
Refund report, enter 2.

start The start date for the report. Can be either an offset or an explicit date.
To specify an offset, enter the number of days prior to the current
(system) date that you wish to use as the start date of the report. To run

the report with a start date equal to the current date, enter 0.

To specify an explicit date, enter the start date for the report in the
following format:

yyyy-mm-dd

Reports 10-19

Running Oracle Utilities Receivables Component Reports

Parameter Description

stop The stop date for the report. Can be either an offset or an explicit date.
To specify an offset, enter the number of days prior to the current
(system) date that you wish to use as the stop date of the report. To run

the report with a stop date equal to the current date, enter 0.

To specify an explicit date, enter the stop date for the report in the
following format:

yyyy-mm-dd

Examples
The following command will run the Account Balance report for the current date:

LSREPORTS 3 0 0

The following command will run the G/L Activity teportt for a start date of January 1, 2009 and
stop date of January 31, 2009

LSREPORTS 5 2009-01-01 2009-01-31

Viewing Oracle Utilities Receivables Component Reports

Viewing Oracle Ultilities Receivables Component reportts is performed through the Oracle Utilities
Billing Component user interface. See Chapter 20: Viewing Oracle Utilities Receivables
Component Reports in the Oracle Utilities Billing Component User’s Guide for more information
about viewing Oracle Ultilities Receivables Component repotts.

10-20 Billing Component Installation and Configuration Guide, Volume 2

Creating Custom Reports

Creating Custom Reports

The reports described on previous pages of this chapter represent pre-configured reports available
through the Oracle Utilities Receivables Component. In addition to these reports, you can also
create and integrate custom reports into Oracle Utilities Receivables Component. The steps
involved in creating new reports include designing the report, and adding the report to the system.
Each of these is described in more detail below.

Design Reports
The first step is to design the report to be added. Custom reports are created using Oracle BI
Publisher. See Designing Oracle BI Publisher Reports for use with the Reporting
Framework on page 13-21 in the Oracle Utilities Energy Information Platform Configuration
Guide for more information about designing BI Publisher reports.

Add Report to System

The new report is not available to the user until the report has been added to the system. Adding
Oracle BI Publisher Reports to the Energy Information Platform on page 13-19 for more
information about adding BI Publisher reports to the Reporting Framework.

Reports 10-21

Creating Custom Reports

10-22 Billing Component Installation and Configuration Guide, Volume 2

Chapter 11

Configuring Oracle Utilities Receivables
Component Security

This chapter describes how to configure security to work with the Oracle Ultilities Receivables
Component application, including:

* Oracle Utilities Receivables Component Security

Configuring Oracle Utilities Receivables Component Security 11-1

Oracle Utilities Receivables Component Security

Oracle Utilities Receivables Component Security

This section describes the securable features of Oracle Utilities Receivables Component,

including:

* Financials Features (includes Workflow Management)

* Important Notes about Assigning Oracle Utilities Receivables Component

Permissions

Financials Features

Financials features include the following:

* Transactions: Enables the Transactions menu option.

Installment Plans: Enables the Installment Plans functions and menu option.
Deposits: Enables the Deposits functions and menu option.

Payments: Enables the Payments functions and menu option.

Adjustments: Enables the Adjustments functions and menu option.

* Validate Invoice Allow: Enables validation of invoices on the Post Adjustment
screen.

Refunds: Enables the Refunds functions and menu option.

¢ Allow Transaction Selection: Enables selection of transactions on the Post
Refund screen.

Write Offs: Enables the Write Offs functions and menu option.

Balance Transfers: Enables the Balance Transfers functions and menu option.

* Work Queue: Enables the Work Queue function and menu option.

* Controls: Enables the Controls function and menu option.

* Run Reports: Enables the Run Reports menu option on the Financials menu.

* View Reports List: Enables the View Reports menu option on the Financials menu.

* Collections: Enables the Collections menu option.

Collection Exemptions: Enables the Collections Exemptions function and menu
option.

Collection Arrangements: Enables the Collections Arrangements function and menu
option.

WQ: Enables the Work Queue function and menu option.

Manual Submission: Enables the Manual Submission function and menu option.

* Workflow: Enables the Workflow menu option.

Activity Types: Enables the Activity Types menu item and function.
Process Versions: Enables the Process Versions menu item and function.
Process Controls: Enables the Process Controls menu item and function.

Work Queue: Enables the Work Queue menu item and function.

11-2 Billing Component Installation and Configuration Guide, Volume 2

Oracle Utilities Receivables Component Security

Important Notes about Assigning Oracle Utilities Receivables Component

Permissions

By default, the Oracle Utilities Receivables Component featutes restrict access to all Oracle
Utilities Receivables Component functions and screens. To allow users access to Oracle Utilities
Receivables Component functionality, create users and groups and enable appropriate permissions
for each.

Configuring Oracle Utilities Receivables Component Security 11-3

Oracle Utilities Receivables Component Security

11-4 Billing Component Installation and Configuration Guide, Volume 2

Part Two

Workflow Management Configuration

Part Two describes configuration of the workflow management functionality of Oracle Utilities
Billing Component, and contains the following chapters:

Chapter 12: Setting Up Workflow Management Database Tables
Chapter 13: The Workflow Engine
Chapter 14: The Workflow Scheduler

Chapter 15: The Rules Language Engine

Chapter 12

Setting Up Workflow Management Database
Tables

This chapter describes a number of specific tables in the Oracle Utilities Data Repository used by
the workflow management functionality of Oracle Utilities Billing Component, including:

* COM Object Tables

¢ Process Context Tables

Setting Up Workflow Management Database Tables 12-1

COM Object Tables

COM Object Tables

COM object tables define COM objects used by the COMOBJECT activity implementation type,
and include:

COM Object Type Table
COM Object Table

COM Object Type Table

Records in this table define types of COM object used by Workflow Management, and contain the
following data:

COM Object Table

COM Object Type: The type of COM object.

Records in this table define specific COM objects used by Workflow Management, and contain
the following data:

DLL Name: The name of the Dynamic Link Library (DLL) that contains the COM object.
Interface Name: The name of the method (function)
Object Name: The name of COM object.

Weight: Used with Oracle Utilities Receivables Component and Collections only. The weight given to
activities that use this COM object when calculating a customer’s performance score.

Duration: Used with Oracle Utilities Receivables Component and Collections only. The duration given
to activities that use this COM object when calculating a customer’s performance score.

Display Name: The name of the COM object that appears on the Activity Implementation
screen of the Workflow Management user interface.

COM Object Type: The COM object type (from the COM Object Type Table).

12-2 Billing Component Installation and Configuration Guide, Volume 2

Process Context Tables

Process Context Tables

Process context tables define process context values required for processes run by Workflow
Management. These are used when a process is initiated from an external system via the Process
Context Population function of the Collections interface, and include:

e Variable Source Table
¢ Context Value Table

¢ Process Context Value Table

Variable Source Table

Records in this table define variable sources used by context values, and contain the following
data:

* Variable Source Code: The type of variable source.

* Variable Source Code Description: A description of the variable source.

Context Value Table

Records in this table define individual context variables required by a process context, and contain
the following data:

* Name: The name of the context variable.
* Source: The type of context variable (from the Variable Source Table).

¢ Value: The value of the context variable.

Process Context Value Table

Records in this table define a process context and its related context variables, and contain the
following data:

* Process: The name of the process context.

* Variable Name: The name of a context variable contained in the process context (from the
Context Value Table).

Setting Up Workflow Management Database Tables 12-3

Process Context Tables

12-4 Billing Component Installation and Configuration Guide, Volume 2

Chapter 13

The Workflow Engine

This chapter describes the Workflow Engine used by the workflow management functionality of
Oracle Ultilities Billing Component, including:

* Workflow Engine Functions
* Workflow Engine Components
* Workflow Engine Processing

¢ Workflow Function Activities

The Workflow Engine 13-1

Workflow Engine Functions

Workflow Engine Functions

The workflow management functionality of Oracle Utilities Billing Component provides a
number of functions for working with process and activity instances. These functions are initiated
from an interface of some sort, and performed by the Workflow Engine. They require the
following data:

* An XML file that contains data source connection data (user id, password, datasource, and
qualifier), and

* An XML file that specifies the process/activity instance data itself.

Start Process Instance
This function is used to start a new process instance. See Start Process on page 13-6 for more
information.

Suspend Process Instance
This function is used to suspend an existing running process. See Suspend Process on page 13-8
for more information.

Resume Process Instance
This function is used to resume an existing suspended process. See Resume Process on page 13-
8 for more information.

Terminate Process Instance
This function is used to terminate an existing running, suspended or in error process. See
Terminate Process on page 13-8 for more information.

Activity Instance Finished
This function is used to notify Workflow Management that a running activity is finished. See
Activity Finished on page 13-8 for more information.

Activity Instance Expired
This function is used to notify Workflow Management that a running activity is expired. See
Activity Expired on page 13-8 for more information.

Activity Instance In Error
This function is used to notify Workflow Management that a running activity is in error. See
Activity In Error on page 13-9 for more information.

Post Activity Event

This function posts an event related to zero or more existing activity instances.

13-2 Billing Component Installation and Configuration Guide, Volume 2

Workflow Engine Components

Workflow Engine Components

The Workflow Engine is made up of a number of components, including:
* Workflow Engine API

* Workflow Engine Message Queue

* Workflow Engine Executable

Each of these components is described below.

Workflow Engine API

The Workflow Engine API provides access to the Workflow Engine functions (see Workflow
Engine Functions on page 13-2) from external systems such as a Customer Relationship
Management (CRM) application or other system. See Chapter 24: Workflow Management
Process Instance Interface for more information about using the Workflow Engine API.

Workflow Engine Message Queue

The Workflow Engine Message Queue is a message queue used by the Workflow Engine. As
messages are posted to this queue, the Workflow Engine Executable (sce Workflow Engine
Executable on page 13-5) monitors the Workflow Engine Message Queue for incoming
messages and handles each one at a time.

Note: The Workflow Engine Executable must be installed on the same
machine as the Workflow Engine Message Queue.

In order for the Workflow Engine Message Queue to function properly, a number of records must
be created in the Message Queue, Message Type, and Message Type Queue tables in the Oracle
Utilities Data Repository. The specifics of these records are provided below.

Message Queue Table
The single record in the Message Queue table specifies the code, type, and name of the Workflow
Engine Message Queue. These should be as follows:

* Code: LSWFENG
* Type: MSMQ (for Microsoft Message Queue)
* Name: One of the following:
* <SERVERNAME>\LSWFENG (when using Public Queues)
where:

<SERVERNAME?> is the name of the server on which the actual message queue
resides. For instance, if the server name is FME3, the message queue name would be
FME3\LSWFENG.

e \private$\LSWFENG (when using Private Queues)

* Server Name: the name of the server on which the public message queue resides. Note that
this refers to the actual message queue, which is not necessarily the same machine where the
Data Repository resides. This field is not required when using Private queues.

The Workflow Engine 13-3

Workflow Engine Components

Message Type Table
The records in the Message Type table specify message types used by the Workflow Engine. There
are four specific message types, which should be as follows:

Activity Finished

A message of this type is posted whenever the Activity Finished function is triggered.
* Code: LSWFENG_ACTV_FINISHED

* Description: Optional

* File Path: Optional

Activity In Error

A message of this type is posted whenever the Activity InError function is triggered.

* Code: LSWFENG_ACTV_INERROR

* Description: Optional

* File Path: Optional

Activity Expired

A message of this type is posted whenever the Activity Expired function is triggered.

* Code: LSWFENG_ACTV_EXPIRED

* Description: Optional

* File Path: Optional

Navigate Process

A message of this type is posted whenever the Navigate Process function is triggered.
* Code: LSWFENG_NAVIGATE_PROC

* Description: Optional

* File Path: Optional

Message Type Queue Table
The records in the Message Type Queue table associates specific message types used by the
Workflow Engine with the Work Flow Engine Message Queue. These records should be as
follows:

Activity Finished

* Message Type: LSWFENG_ACTV_FINISHED
* Message Queue: LSWFENG

Activity In Error

* Message Type: LSWFENG_ACTV_INERROR
* Message Queue: LSWFENG

Activity Expired

* Message Type: LSWFENG_ACTV_EXPIRED
* Message Queue: LSWFENG

Navigate Process

* Message Type: LSWFENG_NAVIGATE_PROC
* Message Queue: LSWFENG

13-4 Billing Component Installation and Configuration Guide, Volume 2

Workflow Engine Components

Workflow Engine Executable

The Workflow Engine Executable (LSWFENG.EXE)monitors the Workflow Engine message
Queue(s) for incoming messages and handles each one at a time.

The Workflow Engine Executable is implemented as a Windows Service. The Workflow Engine
Executable must be installed on the same machine as the Workflow Engine Message Queue.
When installed, the executable can be configured to run automatically whenever the server is

started.

The Workflow Engine Executable uses the following parameters, which must be set during
installation or via Windows Service properties in order for the service to run automatically.

Parameter

Description

-d

datasonrcename is the Oracle TNS Name for the data source, from the
TNS_NAMES.ora file (typically located in the
\\<machine>\oracle\network\admin directory)

userid The userid of the user running the Workflow Engine Executable (most
often a System Administrator, but can be any user with access to the
datasource).

password The datasource password of the user running the Workflow Engine
Executable (most often a System Administrator, but can be any user with
access to the datasource).

gualifier is an optional database qualifier.

data provider The database provider, based on the database type.
* Oracle: ODP

multiple Specifies if the service can support multiple providers (ODP for
Oracle databases). Valid values are “True” and “False”.

The Workflow Engine 13-5

Workflow Engine Processing

Workflow Engine Processing

This section describes different processes performed by the Workflow Engine. These processes

are triggered by corresponding functions (see Workflow Engine Functions on page 13-2).

Start Process

The Start Process function performs the following steps:

1.

Navigate Process

The Workflow Engine creates a Process Instance record based on the specified Process
Version, sets the Process State to RUNNING, and initializes the Process Context as specified.
The Workflow Engine also creates a Process Archive record at this time.

For each Process Activity in the specified Process Version, the Workflow Engine creates an
Activity Instance record, and initializes the Activity State to INACTIVE. The Workflow
Engine also creates Activity Archive records at this time.

If the Activity Type is EVENT, the Workflow Engine triggers the Register Activity Event
function.

If the Process is specified to be started at a later time, the Workflow Engine sets the Process
State to SUSPENDED and triggers the Schedule Message function of the Scheduler.

If the process is not specified to be started at a later time, the Workflow Engine triggers the
Navigate Process function.

The Navigate Process function performs the following steps.

1.

The Workflow Engine locates the process’ Start Activities. Start Activities are those activities
that have no input path.

The Workflow Engine evaluates the Input Path of each activity whose state is INACTIVE.

If the Source Activity is COMPLETED, the Workflow Engine evaluates the Input Path
Transition Condition against the Process Context.

If the Source Activity is SKIPPED, the Input Path evaluates to FALSE.
If neither of the above are true, the Input Path cannot be evaluated.

If all the Input Paths could be evaluated and an activity’s Start Condition is TRUE, the
Workflow Engine triggers the Start Activity function.

If all the Input Paths could be evaluated and an activity’s Start Condition is FALSE, the
Workflow Engine sets the Activity state to SKIPPED.

If all the Input Paths cannot be evaluated, the Workflow Engine moves on to the next
INACTIVE activity in the process.

The Workflow Engine locates all End Activities. End Activities are those activities that are
not the Source Activity for any input paths in the Process. If all the End Activities’ states are
either COMPLETED or SKIPPED, the Workflow Engine sets the Process State to
COMPLETED and updates the State and Stop Time of the Process Instance and Process
Archive records.

13-6 Billing Component Installation and Configuration Guide, Volume 2

Workflow Engine Processing

Start Activity

Terminate Activity

The Start Activity function performs the following steps:

1.

The Workflow Engine sets the Activity State to RUNNING, and maps the Process Context
to the Activity Context.

If the Activity Type is MESSAGE, the Workflow Engine triggers the Post Message function
of the Message interface.

If the Activity Type is EVENT, the Workflow Engine triggers the Wait Activity Event
function.

If the Activity Type is PROCESS, the Workflow Engine triggers the Start Process Instance
function.

If the Activity Type is RATEFORM, the Workflow Engine posts a message to the Rules
Language Execution Engine Message Queue.

The Workflow Engine updates the State and Start Time of the Activity Instance and Activity
Archive records.

The Terminate Activity function performs the following steps:

1.
2.

10.

11.

12.

The Workflow Engine sets the Activity State to TERMINATED.

If the Activity Type is COMOBJECT, the Workflow Engine cancels the function called by the
COM object.

If the Activity Type is EVENT, the Workflow Engine triggers the Clear Activity Event
function.

If the Activity Type is MESSAGE, the Workflow Engine triggers the Remove Message
function of the Message interface.

If the Activity Type is PROCESS, the Workflow Engine triggers the Terminate Process
Instance function.

RATE FORM activities can only be terminated by stopping the Rules Language Execution
Engine service.

If the Activity Type is RESUME, the Workflow Engine triggers the Resume Process
Instance function.

If the Activity Type is SUSPEND, the Workflow Engine triggers the Suspend Process
Instance function.

If the Activity Type is TERMINATE, the Workflow Engine triggers the Terminate Process
Instance function.

If the Activity Type is WAIT, the Workflow Engine triggers the Wait Activity Event
function.

If the Activity Type is END, the Workflow Engine triggers the Activity Instance Finished
function.

The Workflow Engine updates the State and Stop Time of the Activity Instance and Activity
Archive records.

The Workflow Engine 13-7

Workflow Engine Processing

Suspend Process

The Suspend Activity function performs the following steps:

1. If the Process State is RUNNING, the Workflow Engine set the Process State to
SUSPENDED.

2. The Workflow Engine updates the State and Stop Time of the Process Instance and Process
Archive records.

Resume Process
The Resume Activity function performs the following steps:

1. If the Process State is SUSPENDED, the Workflow Engine set the Process State to
RUNNING and triggers the Navigate Process function.

2. The Workflow Engine updates the State and Start Time of the Process Instance and Process
Archive records.

Terminate Process
The Terminate Process function performs the following steps:

1. For each Activity Instance with an Activity State of RUNNING, the Workflow Engine
triggers the Terminate Activity function, and sets the Process State to TERMINATED and
updates the State and Stop Time of the Process Instance and Process Archive records.

Activity Finished
The Activity Finished function performs the following steps:

1. If the Process State and Activity State are both RUNNING, the Workflow Engine sets the
Activity State to FINISHED and updates the Activity Context as specified.

2. If an Expiration Time exists for the Activity Instance, the Workflow Engine triggers the
Cancel Message function of the Scheduler.

3. The Workflow Engine evaluates the Activity Exit Condition against the Activity Context.

* If Activity Exit Condition evaluates to TRUE, the Workflow Engine sets the Activity
State to COMPLETED, maps the Activity Context to the Process Context, updates the
State and Stop time of the Activity Instance and Activity Archive records, and triggers
the Navigate Process function

* If the Activity Exit Condition evaluates to FALSE, the Workflow Engine triggers the
Start Activity function.

Activity Expired
The Activity Expired function performs the following steps:

1. If the Process State and Activity State are both RUNNING, the Workflow Engine sets the
Activity State to EXPIRED.

2. If the Activity Type is MESSAGE, the Workflow Engine triggers the Remove Message
function of the Message interface.

3. If the Activity Type is EVENT, the Workflow Engine triggers the Clear Activity Event
function.

4. If the Activity Type is PROCESS, the Workflow Engine triggers the Terminate Process
Instance function.

13-8 Billing Component Installation and Configuration Guide, Volume 2

Workflow Engine Processing

5. RATE FORM activities can only be terminated by stopping the Rules Language Execution
Engine service.

6. The Workflow Engine evaluates the Exit/Error condition against the Activity Context.

» If the Exit/Error condition is EXIT, the Workflow Engine sets the Activity State to
COMPLETED, sets the Stop Time on the Activity Instance and Activity Archive
records, and triggers the Navigate Process function.

» If Exit/Error conditon is ERROR, the Workflow Engine sets the Activity State to
INERROR sets the Process State to INERROR, and sets the Stop Time on the Activity
Instance and Activity Archive records.

Activity In Error

The Activity In Error function performs the following steps:

1. If the Process State and Activity State are both RUNNING, the Workflow Engine sets the
Activity State to INERROR and sets the Stop Time on the Process Instance and Activity
Instance records.

2. If an Expiration Time exists, the Workflow Engine triggers the Cancel Message function of
the Scheduler, and sets the Process State to INERROR.

Activity Event

There four specific functions related to activity events. The processing involved with each is
described below.

Register Activity Event

The Register Activity Event function performs the following steps:
1. The Workflow Engine inserts an Activity Event record in the Activity Event table.

2. The Workflow Engine initializes the Activity Event Waiting Flag to false

Post Activity Event

The Post Activity Event function performs the following steps:
1. The Workflow Engine updates the Activity Event Time and Data as specified.

2. If the Activity Event Waiting Flag is true, the Workflow Engine triggers the Activity
Instance Finished function, and deletes the Activity Event record

Wait Activity Event

The Wait Activity Event function performs the following steps:

1. If the Activity Event has already been posted, the Workflow Engine triggers the Activity
Instance Finished function and deletes the Activity Event record.

2. If the Activity Event has not been posted, the Workflow Engine sets the Activity Event
Waiting Flag to TRUE.

Clear Activity Event

The Clear Activity Event function performs the following steps:

1. The Workflow Engine deletes the Activity Event record

The Workflow Engine 13-9

Workflow Function Activities

Workflow Function Activities

Several of the Workflow Engine functions ate also available activities in workflow management
processes. This section describes these functions, and provides details regarding input parameters
for each. The input parameters listed below are the context values used for each activity.

Suspend
The Suspend activity suspends an existing running process. See Suspend Process on page 13-8
for mote information.

Input Parameters
The Suspend activity uses the following input parameters:

* UIDPROCSUSPEND: The UID of the Process Instance to be suspended. Optionally, you
can provide “THIS” to suspend the current process (Required).

Resume

The Resume activity resumes an existing suspended process. See Resume Process on page 13-8
for more information.

Input Parameters
The Resume activity uses the following input parameters:

* UIDPROCRESUME: The UID of the Process Instance to be resumed (Required).

Terminate

The Terminate activity terminates an existing running, suspended or in error process. See
Terminate Process on page 13-8 for mote information.

Input Parameters
The Terminate activity uses the following input parameters:

* UIDPROCSTOP: The UID of the Process to be terminated. Optionally, you can provide
“THIS” to terminate the current process (Required).

* NOTE: A note that describes the reason for terminating the process (Required).

Wait

The Wait activity causes a process to wait for a specified time before continuing,

Input Parameters
The Wait activity uses the following input parameters:

* WAITTYPE: Indicates a Factor in the Oracle Utilities Data Repository that stores the
number of days the activity is to wait before proceeding to the next activity.

* USEBUSINESSDAY: Indicates if the business calendar is to be used when calculating the
date on which the Wait activity is to complete. For example, if the activity is to wait four days
but the fourth day falls on a Saturday, the activity uses the next valid business day. Valid values
are “TRUE” and “FALSE”. Defaults to “TRUE”.

* RELATIVE: Indicates if the activity uses a relative date or absolute date when calculating the
date on which the Wait activity is to complete. Valid values are “TRUE”, “FALSE”, or
“PREVSTART”. TRUE means use a relative date. FALSE means use an absolute date.
PREVSTART means the Wait time is calculated as a relative date based on the previous
activity's start date. If this value is not supplied it will be based on the current activity's (the
Wait activity) start date. If RELATIVE is “TRUE” or “PREVSTART”, either WAITTYPE or
EXPTIME must be present.

13-10 Billing Component Installation and Configuration Guide, Volume 2

Workflow Function Activities

* EXPTIME: An integer representing the number of days the activity is to wait. This is used
instead of the WAITTYPE value.

Note: Only cither EXPTIME and WAITTYPE is required. If both are provided, the EXPTIME
value takes precedence.

End

The End activity ends a process.

Input Parameters
The End activity uses the following input parameters:

* UIDPROCSTOP: The UID of the Process to be ended (Required).

* NOTE: An optional Reason for ending the process.

The Workflow Engine 13-11

Workflow Function Activities

13-12 Billing Component Installation and Configuration Guide, Volume 2

Chapter 14

The Workflow Scheduler

This chapter describes the Scheduler used by the workflow management functionality of Oracle
Utilities Billing Component, including:

Workflow Scheduler Functions and Processing

* Workflow Scheduler Components

The Workflow Scheduler 14-1

Workflow Scheduler Functions and Processing

Workflow Scheduler Functions and Processing

The workflow management functionality of Oracle Ultilities Billing Component provides a pair of

functions for working with scheduled messages. Each requires the following data:

An XML file that contains data source connection data (user id, password, datasource, and
qualifier), and

An XML file that specifies the message data itself.

Schedule Message
This function is used to schedule a single message.

A scheduled message contains the following data:

A valid message type code from the Message Type table.

A scheduled time. This contains an absolute or relative time for the message. Relative times
are indicated by the RELATIVE attribute while absolute time use a regular time format. The
default value of the RELATIVE attribute is FALSE. The relative time value must follow the
following format: YYYY-MM-DD HH:MM:SS where YYYY is the number of years, MM is
the number of months, and DD is the number of days in YYYY-MM-DD; HH is the
number of hours, MM is the number of minutes, and SS is the number of seconds in
HH:MM:SS. The relative time will be converted to absolute time from now (the current time)
by the scheduler. The USEBUSINESSDAYS attribute specifies whether to use business day
dates configured in the database or not. The default value of the USEBUSINESSDAYS
attribute is FALSE. When this attribute is true, the Scheduler gets the nth business day that is
specified in YYYY-MM-DD HH:MM:SS from the BUSINESSDAY and
BUSINESSCALENDAR tables.

An XML string containing the message data.

Optional data including the Source, Operating Company, Jurisdiction, Account ID, Amount,
and Note.

Cancel Message
This function is used to cancel a single scheduled message from the database.

14-2 Billing Component Installation and Configuration Guide, Volume 2

Workflow Scheduler Components

Workflow Scheduler Components

The Workflow Scheduler is made up of a number of components, including:

¢ Workflow Scheduler API

¢ Workflow Scheduler Executable

Workflow Scheduler API

The Workflow Engine API provides access to the Scheduler functions (see Workflow Scheduler
Functions and Processing on page 14-2) from external systems such as a Customer
Relationship Management (CRM) application or other system.

Workflow Scheduler Executable

The Workflow Scheduler Executable (LSSCHDLR.EXE) monitors the Scheduled Message table
in the Oracle Utilities Data Repository. The frequency of monitoring the database can be
configured as needed (the default frequency is 15 minutes). As it monitors the Scheduled Message
table, for each scheduled message with a scheduled time less than or equal to (<=) the current
time, the Scheduler executable posts the message to the appropriate message queue and then
deletes it from the database.

The Workflow Scheduler Executable is implemented as a Windows Service. When installed, the
executable can be configured to run automatically whenever the server is started.

The Workflow Scheduler Executable uses the following parameters, which must be set during
installation or via Windows Service properties in order for the service to run automatically.

Parameter

Description

d

datasonrcename is the Oracle TNS Name for the data source, from the
TNS_NAMES.ora file (typically located in the
\\<machine>\oracle\network\admin directory)

userid The userid of the user running the Workflow Engine Executable (most
often a System Administrator, but can be any user with access to the
datasource).

password The datasource password of the user running the Workflow Engine
Executable (most often a System Administrator, but can be any user with
access to the datasource).

gualifier is an optional database qualifier.

data provider The database provider, based on the database type.
* Oracle: ODP

monitortime is monitoring frequency, in number of milliseconds. The default
value is 15 minutes (900,000).

The Workflow Scheduler 14-3

Workflow Scheduler Components

14-4 Billing Component Installation and Configuration Guide, Volume 2

Chapter 15

The Rules Language Engine

This chapter describes the Rules Language Engine used by the workflow management
functionality of Oracle Utilities Billing Component, including:

* Rate Form Activities and the Rules Language Engine
* Rules Language Engine Components

* Creating Rate Forms for use with the Rules Language Engine

The Rules Language Engine 15-1

Rate Form Activities and the Rules Language Engine

Rate Form Activities and the Rules Language Engine

This section provides a high-level overview of how the Rules Language Engine processes rate
forms.

1. When a Rate Form activity is started (via Start Activity on page 13-7), the Workflow Engine
posts a message in the Rules Language Engine message queue (LSRLENG).

This message contains the following data:

* The Rate Form code of the Rate Form to be processed, from the Rate Form table. If the
rate form is associated to a specific Operating Company and Jurisdiction, the appropriate
Operating Company and Jurisdiction codes precede the Rate Form code, separated by
colons.

* Optional message data in XML format. This is the context of the rate form activity that
posted the message.

* An optional account ID and/or note.

2. 'The Rules Language Engine picks up the message in the LSRLENG message queue, and
processes the rate form.

If the message contains an Account ID, the Rules Language can use that AccountID in
processing.

If the message contains XML data, that data is passed as input to the Rules Language Engine
as a string. This input can be loaded in the Rules Language by using the following statement:

CONTEXT_DOC = DOMDOCLOADXML (RATE_SCHEDULE_INPUT_XML);

Once the XML data is loaded, the Rules L.anguage can be used to get Element Text Node
Values and Attributes from the XML data elements, which can in turn be used in Rules
Language processing. The Rules Language can also create output XML data from the results
of processing. See Creating Rate Forms for use with the Rules Language Engine on
page 15-5 for more information about how to design rate forms suitable for processing by
the Rules Language Execution Engine. Refer to Appendix F: XML Rules Language
Statements and Functions for more information about the DOMDOCLOADXML function
and about manipulating XML data using the Rules Language.

3. After running the rate form, the results (along with output XML if applicable) will be posted
back to the Workflow Engine message queue.

15-2 Billing Component Installation and Configuration Guide, Volume 2

Rules Language Engine Components

Rules Language Engine Components

The Rules Language Engine is made up of a pair of components, including:
* Rules Language Engine Message Queue

. Rules Language Execution Engine Executable

Rules Language Engine Message Queue

The Rules Language Engine Message Queue is an MSMQ (Microsoft Message Queue) message
queue used by the Rules Language Engine. The Rules Language Engine Executable monitors the
Rules Language Engine Message Queue for incoming messages and as messages are posted to this
queue, it handles each one at a time.

Note: The Rules Language Engine Executable must be installed on the same
machine as the Rules Language Engine Message Queue.

In order for the Rules Language Engine Message Queue to function propetly, a number of records
must be created in the Message Queue, Message Type, and Message Type Queue tables in the
Oracle Utilities Data Repository. The specifics of these records are provided below.

Message Queue Table
A record in the Message Queue table specifies the code, type, and name of the Rules Language
Engine Message Queue. These should be as follows:

* Code: LSRLENG

* Type: MSMQ (for Microsoft Message Queue)

* Name: <SERVERNAME>\LSRLENG
Where:

<SERVERNAME> is the name of the server on which the actual message queue resides. For
instance, if the server name is FME3, the message queue name would be FME3\LSWFENG.
Note that “the server on which the message queue resides” refers to the actual message queue
which is not necessarily the same machine where the Data Repository resides.

Message Type Table
A record in the Message Type table defines a specific message type used by the Rules Language
Execution Engine. This record should be as follows:

* Code: LSRLENG_RUN
* Description: Optional

* File Path: Optional

Message Type Queue Table
A record in the Message Type Queue table associates the specific message type used by the Rules
Language Engine with the Rules Language Engine Message Queue. This record should be as
follows:

* Message Type: LSRLENG_RUN
* Message Queue: LSRLENG

The Rules Language Engine 15-3

Rules Language Engine Components

Rules Language Execution Engine Executable

The Rules Language Engine Executable (LSRLENG.EXE) monitors the Rules Language Engine
message Queue for incoming messages and handles each one at a time.

The Rules Language Engine Executable is implemented as a Windows Service. The Rules
Language Engine Executable must be installed on the same machine as the Rules Language
Engine Message Queue. When installed, the executable can be configured to run automatically
whenever the server is started.

The Rules Language Engine Executable uses the following parameters, which must be set during
installation or via Windows Service properties in order for the service to run automatically.

Parameter Description

-d datasonrcename is the Oracle TNS Name for the data source, from the
TNS_NAMES.ora file (typically located in the
\\<machine>\oracle\network\admin directory)

-u userid The userid of the user running the Rules Language Engine Executable
(most often a System Administrator, but can be any user with access to the
datasource).

- password The datasource password of the user running the Rules Language

Engine Executable (most often a System Administrator, but can be any user
with access to the datasource).

-q gualifier is an optional database qualifier.

-0 data provider The database provider, based on the database type.
* Oracle: ODP

-f configfilename is the name of the configuration file that defines the working
environment of the Rule Language Engine and other Oracle Utilities
software (e.g., directs the software where to find and place the application
data files and so on). If you do not supply a value for configfilename, the
system uses the default LODESTAR.CFG). If the configuration file is
located in a different directory than LSRLENG.EXE, you must specify a
path to the file. If specifying a path in the Services Control Panel, use double
back-slashes in the path. For example,
“d:\\LODESTAR\\CFG\\LODESTAR.CFG".

For information about the contents of this configuration file, please refer to
the Oracle Utilities Energy Information Platform Installation and Configuration Guide.

-m multiple Specifies if the service can support multiple providers (ODP for
Oracle databases). Valid values are “True” and “False”.

15-4 Billing Component Installation and Configuration Guide, Volume 2

Creating Rate Forms for use with the Rules Language Engine

Creating Rate Forms for use with the Rules Language Engine

This section describes how to create rate forms that can be processed by the Rules Language
Engine.

Because the Rules Language Engine can only obtain input data from messages posted by the
Workflow Engine, rate forms that require input data not defined in the activity context of the rate
form activity that initiated the message cannot be processed. For instance, the Rules Language
Engine could not process a rate form that requires a specific customer ID unless that customer ID
is defined in the activity context.

There are two types of rate forms suitable for use with the Rules Language Engine:
* No Required Input Data

* Input Data from Context

No Required Input Data

Rate forms that don’t require input data are those that obtain the data they require for processing
from the Oracle Utilities Data Repository, usually through use of table.column list or other
database identifiers (sce Chapter Four: Identifiers, Constants, and Expressions in the Ru/es
Language User’s Guide).

Rate forms of this type include those that use the Workflow Management statements (see
Appendix E: Workflow Management Rules Language Statements), but might also include
settlement schedules used by the Oracle Ultilities Load Profiling and Settlement and transaction
processing schedules used by the Oracle Utilities Transaction Management.

Input Data from Context

The more common type of rate forms processed by the Rules Language Engine are those that can
obtain required input data from the activity context. Rate forms of this type must be designed to
propetly extract the required input data from the context data.

Context data is passed as input to the Rules Language Engine as a string. Before it can be used by
the rate form, this input must be loaded into an XML structure that the Rules Language can then
extract the required data from. When the context string to passed to the Rules Language
Execution Engine, it is assigned as the value of RATE_SCHEDULE_INPUT_XML, a pre-
defined identifier. The context string can be loaded in the Rules Language by using the following
statement:

CONTEXT DOC = DOMDOCLOADXML (RATE SCHEDULE INPUT XML);
This statement uses the DOMDOCLOADXML Function on page F-15 to set the value of the
CONTEXT_DOC identifier to an XML structure derived from the context string.

Once the XML data is loaded, Rules L.anguage statements and functions are used to extract
Element Text Node Values and Attributes from the XML structure and assign them to identifiers.
These identifiers can in turn be used in Rules Language processing, the results of which can be
saved back to the XML structure for use as output data, loaded into
RATE_SCHEDULE_INPUT_XML, a pre-defined identifier.

The Rules Language Engine 15-5

Creating Rate Forms for use with the Rules Language Engine

Example
The following simple example demonstrates how data can be extracted from saved back to an
XML structure. Assuming the activity context was as follows:

<CONTEXT>
<ACCOUNTID>123</ACCOUNTID>
<PASTDUEAMT>90.00</PASTDUEAMT>
<OTHER />

</CONTEXT>

The following statements could be used to load the XML structure and extract the Account ID.

* Define the Context Structure *\

IDENTIFIER = CONTEXT

XML ELEMENT ACCOUNTID NODENAME “ACCOUNTID” PARENT CONTEXT
XML _ELEMENT PAST DUE NODENAME “PASTDUEAMT” PARENT CONTEXT
XML _ELEMENT OTHER NODENAME “OTHER” PARENT CONTEXT

* Load the XML document *\

CONTEXT_DOC = DOMDOCLOADXML (RATE_SCHEDULE_INPUT_XML);

* Obtain the Root Element *\

DOC_ROOT = DOMDOCGETROOT (CONTEXT DOC)

* Get the Account ID *\

ACCT_ID = ACCOUNTID.NODEVALUE;

The following statement could be used to set the value of the Arrangement attribute of the
OTHER element.

* Set the Arrangement Attribute of the OTHER element *\
OTHER.ARRANGEMENT = “TRUE”;

Once all the data processing has been performed and any required data saved back to the XML
structure, the following statement can be used to load the XML structure into the
RATE_SCHEDULE_INPUT_XML identifiet.

CONTEXT_DOC = RATE_SCHEDULE_OUTPUT_XML;

When the Rules Language Engine finishes processing the rate form and posts a message in the
Workflow Engine Message Queue, the context would look like this:

<CONTEXT>
<ACCOUNTID>123</ACCOUNTID>
<PASTDUEAMT>90.00</PASTDUEAMT>
<OTHER Arrangement=‘TRUE’ />
</CONTEXT>

Refer to Appendix E: Workflow Management Rules Language Statements for more
information about the DOMDOCLOADXML function and about manipulating XML data using the
Rules Language.

15-6 Billing Component Installation and Configuration Guide, Volume 2

Part Three

Receivables Management Interfaces

Part Three describes the COM interfaces available with the receivables management functionality

of Oracle Ultilities Billing Component, and contains the following chapters:

Chapter 16: Oracle Utilities Receivables Component Financial Engine Interface
Chapter 17: Oracle Utilities Receivables Component Billing Interface

Chapter 18: Oracle Utilities Receivables Component Remittance Interface
Chapter 19: Oracle Utilities Receivables Component Maintenance Interface
Chapter 20: Oracle Utilities Receivables Component Collections Interface

Chapter 21: Messaging Interface

Chapter 16

Oracle Utilities Receivables Component
Financial Engine Interface

This chapter desctibes the methods/functions available to external systems through the Financial
Management Interface {1AREngine). These methods allow users to perform a number of financial
management functions available in the Oracle Utilities Receivables Component from external
systems. These functions include the following:

* Sub-Ledger Roll-up

* General Ledger Update
* Balance Journal

* Balance Accounts.

See Chapter 5: The Financial Engine for more information about these functions.

Oracle Utilities Receivables Component Financial Engine Interface 16-1

Methods, Interfaces, and Syntax

Methods, Interfaces, and Syntax

The method names, interface objects, and syntax for the available methods of the Financial
Management interface are as follows:

Sub-Ledger Roll-Up

Description: Used to roll up records in the Journal Transaction Table to their corresponding sub-
ledger account records in the Sub-Ledger Account Table.

Method Name: UpdateSubledger
Interface: IAREngine

DLL Name: LSACCT.DLL
Program ID: LSACCT.AREngine
Syntax:

HRESULT UpdateSubledger ([in] BSTR xmlDataSource) ;

General Ledger Update
Description: Used to outputs records from the Sub-ledger Account table to update an external
general ledger system.

Method Name: UpdateGenLedger
Interface: IAREngine

DLL Name: LSACCT.DLL
Program ID: LSACCT.AREngine
Syntax:

HRESULT UpdateGenLedger ([in] BSTR xmlDataSource;
([in] BSTR xmlGenLedgerParams;
([out] BSTR xmlGenLedgerFile);

Balance Journal
Description: Used to balance records in the Journal Transaction Table against records in the
Transaction and Credit Application tables.

Method Name: BalanceJournal
Interface: IAREngine

DLL Name: LSACCT.DLL
Program ID: LSACCT.AREngine
Syntax:

HRESULT BalanceJournal ([in] BSTR xmlDataSource,
[in] BSTR xmlJournalParams,
[in, optional] BSTR xmlJournalDataSource) ;

Balance Accounts
Description: Used to balance records in the Transaction Table for a specified subset of accounts.

Method Name: BalanceAccounts
Interface: IAREngine

DLL Name: LSACCT.DLL
Program ID: LSACCT.AREngine

16-2 Billing Component Installation and Configuration Guide, Volume 2

Methods, Interfaces, and Syntax

Syntax:

HRESULT UpdateSubledger ([in] BSTR xmlDataSource,
[in] BSTR xmlQuery,

Interface Arguments

The methods available in the Financial Management interface use the following arguments:

xmlDataSource Argument
The xmlDataSource argument is an xml string that contains database connection and other related
information. A DTD, xml example, and data element descriptions for this argument can be found
on page 15-7 in the Oracle Utilities Energy Information Platform Configuration Guide.

xmlAccount Argument
The xmlAccount argument is an xml string that contains the information necessaty to identify an
account and the date for which to get the information. A DTD, xml example, and data element
descriptions for this argument can be found on page 16-4.

xmlTransaction Argument
The xmlTransaction argument is an xml string that contains transaction data. A DTD, xml
example, and data element descriptions for this argument can be found on page 16-6.

xmlGenLedgerParams Argument
The xmlGenledgerParams argument is an xml string that specifies the parameters needed to
create the General Ledger File. It is used with the Update General Ledger method. A DTD, xml
example, and data element descriptions for this argument can be found on page 16-12.

xmlGenLedgerFile Argument
The xmlGenLedgerFile argument is an output xml string containing the general ledger
information accumulated from the sub-ledger accounts. It is created by the Update General
Ledger method. A DTD, xml example, and data element descriptions for this argument can be
found on page 16-14.

xmlJournalParams Argument
The xmlJournalParams argument is an xml string that specifies the parameters over which to
balance journal transactions. It is used with the Balance Journal method. A DTD, xml example,
and data element descriptions for this argument can be found on page 16-13.

xmlJournalDataSource Argument
The xmlJournalDataSource argument is an xml string that contains database connection and other
related information. This optional argument is identical to the xmlDataSource argument
(described on 15-7 in the Oracle Utilities Energy Information Platform Configuration Guide), but is used
when the Journal Transaction Table is located in a different database than the financial transaction
and other Oracle Utilities Data Repository tables.

xmlQuery Argument
The xmlQuery argument is an xml string that specifies a SQL query used by the account balancing
functionality of the Oracle Utilities Receivables Component. It is used with the Balance Accounts
method. A DTD, xml example, and data element descriptions for this argument can be found on
page 16-13.

Oracle Utilities Receivables Component Financial Engine Interface 16-3

Input Values

Input Values

The Data Type Definition (DTD), an xml example, and data element descriptions used as input
values for the Financial Management interface (IAREngine) are provided below.

xmlAccount

DTD - xmlAccount
<!DOCTYPE ACCOUNT
[
<!ELEMENT ACCOUNT (CUSTOMER?, STARTTIME?, STOPTIME?, OPCOCODE?,
JURISCODE?, REGIONCODE?, SIC?, STATUSCODE?, REVENUECODE?,
LASTBALANCETIME?, LASTBALANCE?, NEWACTIVITY?, UIDTXFRTOACCT?,
RECEIVABLESTATUS?, WRITEOFFREASONCODE?, BALANCEDATE?, CURRENTBALANCE?,
PASTDUEBALANCE?, LASTTXACTIONNO?)>
<!ATTLIST ACCOUNT
UIDCDATA #IMPLIED
ACCOUNTIDCDATA #IMPLIED
UIDSUBACCOUNTCDATA#IMPLIED
SUBACCOUNTIDCDATA#IMPLIED
NAMECDATA #IMPLIED>
<!ELEMENT CUSTOMER EMPTY>
<!ATTLIST CUSTOMER
UIDCDATA #IMPLIED>
<!ELEMENT STARTTIME (#PCDATA)>
<!ELEMENT STOPTIME (#PCDATA)>
<!ELEMENT OPCOCODE (#PCDATA)>
<!ELEMENT JURISCODE (#PCDATA)>
<!ELEMENT REGIONCODE (#PCDATA) >
<!ELEMENT SIC (#PCDATA)>
<!ELEMENT STATUSCODE (#PCDATA) >
<!ELEMENT REVENUECODE (#PCDATA) >
<!ELEMENT LASTBALANCETIME (#PCDATA)>
<!ELEMENT LASTBALANCE (#PCDATA)>
<!ELEMENT NEWACTIVITY (#PCDATA)>
<!ELEMENT UIDTXFRTOACCT (#PCDATA)>
<!ELEMENT RECEIVABLESTATUS (#PCDATA)>
<!ELEMENT WRITEOFFREASONCODE (#PCDATA) >
<!ELEMENT BALANCEDATE (#PCDATA) >
<!ELEMENT CURRENTBALANCE (#PCDATA)>
<!ELEMENT PASTDUEBALANCE (#PCDATA)>
<!ELEMENT LASTTXACTIONNO (#PCDATA)>
1>

XML Example - xmlAccount

<ACCOUNT UID="221" ACCOUNTID="FE-81486-CANCEL-81462">
<CUSTOMER UID="428"/>
<STARTTIME>1999-01-01-T00:00:00</STARTTIME>
<OPCOCODE>SESCO</0OPCOCODE>
<JURISCODE>TX</JURISCODE>
<REGIONCODE>CENTRAL</REGIONCODE>
<REVENUECODE>30</REVENUECODE>

</ACCOUNT>

16-4 Billing Component Installation and Configuration Guide, Volume 2

Input Values

Element Descriptions - xmlAccount
The use of each individual attribute and element in the xmlAccount argument is described below.

Account Attributes:
UID: Unique identifier for account.
ACCOUNTID: Alternate unique identifier for account.

UIDSUBACCOUNT: Optional Unique ID for the sub-account for which this account is the
master.

SUBACCOUNTID: Optional ID for the sub-account for which this account is the master.
NAME: Optional name of account.
Elements:
CUSTOMER: Parent customer of account.
Attributes:
UID: Unique identifier for customer.
STARTTIME: Effective start time for account.
STOPTIME: Optional stop time for closed account.
OPCOCODE: Optional operating company code for account.
JURISCODE: Optional jurisdiction code for account.
REGIONCODE: Optional region code for account.
SIC: Optional SIC code for account.
STATUSCODE: Optional status code for account.
REVENUECODE: Optional revenue code for account.
LASTBALANCETIME: Time that account was last balanced.
LASTBALANCE: Balance of account at the last balance time.
Attributes:
CURRENCY: Currency code for the balance.
NEWACTIVITY: Activity for account since the last balance time.
Attributes:
CURRENCY: Currency code for the new activity.
UIDTXFRTOACCT: Optional UID of account to which this account has been transferred.

RECEIVABLESTATUS: Receivable status for account. May be one of “CURRENT”,
“PASTDUE”, “COLLECTIONS”, “UNCOLLECTIBLE”, or “UNREFUNDABLE”.

WRITEOFFREASONCODE: Optional write-off reason for account if Receivable Status is
“UNCOLLECTIBLE”.

BALANCEDATE: Date for current and past due balance calculations.
CURRENTBALANCE: Current balance as of balance date for account.
Attributes:
CURRENCY: Currency code for the current balance.
PASTDUEBALANCE: Past due balance as of balance date for account.

Attributes:

Oracle Utilities Receivables Component Financial Engine Interface 16-5

Input Values

CURRENCY: Currency code for the past due balance.
LASTTXACTIONNO: Last transaction number for account.

xmlTransaction

DTD - xmlITransaction
<!DOCTYPE TRANSACTION
[

<!ELEMENT TRANSACTION (ACCOUNT, TRANSACTIONTYPE?,
TRANSACTIONTIME?, REVENUEMONTH?, USERID?, NOTE?,
CREDITACCTID?, COSTCENTERID?, CANCELTIME?, CANCELREVENUEMONTH?,

CANCELUSERID?, CANCELREASONCODE?, CANCELNOTE?,

TRANSACTIONID?,
DEBITACCTID?,

CANCELDEBITACCTID?,

CANCELCREDITACCTID?, CANCELCOSTCENTERID?, CHARGEORCREDIT?,
BALANCE?, BILLEDORPAIDDATE?, DUEDATE?, RECEIVABLETYPE?,
RATECODE?, OPCOCODE?, JURISCODE?, STATEMENTDATE?,
INVOICEDATE?, BILLCYCLEDATE?, CANCELSTATEMENTDATE?,
CANCELINVOICEDATE?, BILLCYCLEDATE?, BILLHISTORY?,
TRANSFERREDTOTRANSACTION?, TRANSFERREDFROMTRANSACTION?,
SERVICEPLAN?, BUDGETPLAN?, INSTALLMENTPLAN?, DEPOSIT?,

TAXAMOUNT?, TAXRATE?, TAXEXEMPT?, BILLSTARTTIME?,
SUSPENDAUTOPAYMENT?, BATCHTRANSACTION?, BATCHCANCEL?,

RELATEDTRANSACTIONS?, USERATTRS?>>
<!ATTLIST TRANSACTION
UIDCDATA #IMPLIED
TRANSACTIONNOCDATA#IMPLIED>
APPLICATIONMETHOD (DEFERRED|
IMMEDIATE |
SPECIFIED]|
INVOICEID|
RECEIVABLETYPE) "DEFERRED">
DEFERBALANCE (TRUE | FALSE) "FALSE" >
<!ELEMENT ACCOUNT (see above)>
<!ELEMENT TRANSACTIONTYPE (#PCDATA)>
<!ELEMENT TRANSACTIONID (#PCDATA)>
<!ELEMENT TRANSACTIONTIME (#PCDATA)>
<!ELEMENT REVENUEMONTH (#PCDATA)>
<!ELEMENT USERID (#PCDATA) >
<!ELEMENT NOTE (#PCDATA)>
<!ELEMENT DEBITACCTID (#PCDATA)>
<!ELEMENT CREDITACCTID (#PCDATA)>
<!ELEMENT COSTCENTERID (#PCDATA)>
<!ELEMENT CANCELTIME (#PCDATA)>
<!ELEMENT CANCELREVENUEMONTH (#PCDATA) >
<!ELEMENT CANCELUSERID (#PCDATA)>
<!ELEMENT CANCELREASONCODE (#PCDATA)>
<!ELEMENT CANCELNOTE (#PCDATA) >
<!ELEMENT CANCELDEBITACCTID (#PCDATA)>
<!ELEMENT CANCELCREDITACCTID (#PCDATA)>
<!ELEMENT CANCELCOSTCENTERID (#PCDATA) >
<!ELEMENT CHARGEORCREDIT (#PCDATA)>
<!ELEMENT AMOUNT (#PCDATA)>
<!ELEMENT BALANCE (#PCDATA) >
<!ELEMENT BILLEDORPAIDDATE (#PCDATA)>
<!ELEMENT DUEDATE (#PCDATA) >
<!ELEMENT RECEIVABLETYPE (DESCRIPTION) >
<!ATTLIST RECEIVABLETYPE
UIDCDATA #IMPLIED
NAMECDATA #IMPLIED>
<!ELEMENT DESCRIPTION (#PCDATA)>
<!ELEMENT CHARGETYPE EMPTY>

16-6 Billing Component Installation and Configuration Guide, Volume 2

CHARGETYPE?,
INVOICEID?,
CANCELINVOICEID?,
UIDSUBACCOUNT?,

DEPINTRATE?,
BILLSTOPTIME?,

Input Values

<!ATTLIST CHARGETYPE

UIDCDATA #IMPLIED
IDENTIFIERCDATA #IMPLIED
NAMECDATA #IMPLIED>

<!ELEMENT RATECODE (RATEFORM) >
<!ATTLIST RATECODE
CODECDATA #IMPLIED>
<!ELEMENT RATEFORM EMPTY>
<!ATTLIST RATEFORM
UIDCDATA #IMPLIED
<!ELEMENT OPCOCODE (#PCDATA) >
<!ELEMENT JURISCODE (#PCDATA)>
<!ELEMENT STATEMENTDATE (#PCDATA)>
<!ELEMENT INVOICEID (#PCDATA)>
<!ELEMENT INVOICEDATE (#PCDATA)>
<!ELEMENT CANCELSTATEMENTDATE (#PCDATA)>
<!ELEMENT CANCELINVOICEID (#PCDATA)>
<!ELEMENT CANCELINVOICEDATE (#PCDATA) >
<!ELEMENT BILLCYCLEDATE (#PCDATA)>
<!ELEMENT BILLHISTORY EMPTY>
<!ATTLIST BILLHISTORY
UIDCDATA #IMPLIED
<!ELEMENT UIDSUBACCOUNT (#PCDATA)>
<!ELEMENT TRANSFERREDTOTRANSACTION EMPTY>
<!ATTLIST TRANSFERREDTOTRANSACTION
UIDCDATA #IMPLIED
<!ELEMENT TRANSFERREDFROMTRANSACTION EMPTY>
<!ATTLIST TRANSFERREDFROMTRANSACTION
UIDCDATA #IMPLIED
<!ELEMENT PAYMENT EMPTY>
<!ATTLIST PAYMENT
UIDCDATA #IMPLIED
<!ELEMENT SERVICEPLAN EMPTY>
<!ATTLIST SERVICEPLAN
UIDCDATA #IMPLIED
<!ELEMENT BUDGETPLAN EMPTY>
<!ATTLIST BUDGETPLAN
UIDCDATA #IMPLIED
<!ELEMENT INSTALLMENTPLAN (see Chapter Ten: Oracle Utilities
Receivables Component Billing Interface)>
<!ELEMENT DEPOSIT EMPTY>
<!ATTLIST DEPOSIT
UIDCDATA #IMPLIED>
<!ELEMENT DEPINTRATE (#PCDATA)>
<!ELEMENT TAXAMOUNT (#PCDATA)>
<!ELEMENT TAXRATE (#PCDATA)>
<!ELEMENT TAXEXEMPT (#PCDATA)>
<!ELEMENT BILLSTARTTIME (#PCDATA)>
<!ELEMENT BILLSTOPTIME (#PCDATA)>
<!ELEMENT SUSPENDAUTOPAYMENT (#PCDATA) >
<!ELEMENT BATCHTRANSACTION EMPTY>
<!ATTLIST BATCHTRANSACTION
UIDCDATA #IMPLIED
<!ELEMENT BATCHCANCEL EMPTY>
<!ATTLIST BATCHCANCEL
UIDCDATA #IMPLIED
<!ELEMENT RELATEDTRANSACTIONS (TRANSACTION+)>
<!ELEMENT USERATTRS (USERATTR+)>
<!ELEMENT USERATTR EMPTY>
<!ATTLIST USERATTR
NAMECDATA #REQUIRED
TYPE (CHAR |

Oracle Utilities Receivables Component Financial Engine Interface 16-7

Input Values

VARCHAR |
TINYINT |
SMALLINT |
INT |
BIGINT |
REAL |
FLOAT |
DECIMAL |
DATE |
TIMESTAMP) #REQUIRED
SIZECDATA #IMPLIED
PRECISIONCDATA #IMPLIED
SCALECDATA #IMPLIED
VALUECDATA #REQUIRED>
1>

XML Example - xmITransaction
<TRANSACTION>

<ACCOUNT UID="221"/>
<TRANSACTIONID>300</TRANSACTIONID>
<TRANSACTIONTIME>1999-01-05-T00:00:00</TRANSACTIONTIME>
<REVENUEMONTH>01/01/1999</REVENUEMONTH>
<CHARGEORCREDIT>CH</CHARGEORCREDIT>
<AMOUNT CURRENCY="USD">30.00</AMOUNT>
<BALANCE CURRENCY="USD">30.00</BALANCE>
<BILLEDORPAIDDATE>1999-01-10</BILLEDORPAIDDATE>
<DUEDATE>1999-01-30</DUEDATE>
<RECEIVABLETYPE UID="2">

<EMPTY/>
</RECEIVABLETYPE>
<CHARGETYPE UID="177">

<EMPTY/>
</CHARGETYPE>
<OPCOCODE>UCG</0OPCOCODE>
<JURISCODE>GA</JURISCODE>
<SRVICEPLAN UID="167">

<EMPTY/>
</SRVICEPLAN>

</TRANSACTION>

Element Descriptions - xmiTransaction
The use of each individual attribute and element in the xmlTransaction argument is described
below.

Transaction Attributes:

UID: Unique identifier for transaction.

TRANSACTIONNO: Unique number for transaction within account.
APPLICATIONMETHOD: Indicates credit application method

DEFERBALANCE: Indicates whether or not to defer the balance associated with the
transaction.

Elements:
ACCOUNT: Parent account of transaction.

TRANSACTIONTYPE: Transaction Type for transaction. May be inferred from Transaction
ID.

TRANSACTIONID: Transaction ID for transaction.
TRANSACTIONTIME: Time of transaction.

16-8 Billing Component Installation and Configuration Guide, Volume 2

Input Values

REVENUEMONTH: Month for which any journal transactions will apply.

USERID: User ID of authenticated user posting transaction.

NOTE: Optional note associated with posting transaction.

DEBITACCTID: Optional debit journal account ID associated with posting transaction.
CREDITACCTID: Optional credit journal account ID associated with posting transaction.
COSTCENTERID: Optional cost center ID associated with posting transaction.
CANCELTIME: Time that transaction was cancelled.
CANCELREVENUEMONTH: Month for which any journal transactions will apply.
CANCELUSERID: User ID of authenticated user canceling transaction.
CANCELREASONCODE: Optional reason for canceling the transaction.
CANCELNOTE: Optional note associated with canceling transaction.

CANCELDEBITACCTID: Optional debit journal account ID associated with canceling
transaction.

CANCELCREDITACCTID: Optional credit journal account 1D associated with canceling
transaction.

CANCELCOSTCENTERID: Optional cost center ID associated with canceling transaction.
CHARGEORCREDIT: Indicates whether transaction amount is a charge or a credit.
AMOUNT: Amount of transaction.

Attributes:

CURRENCY: Currency code for the amount.

BALANCE: Remaining (unapplied) balance of transaction.

Attributes:

CURRENCY: Currency code for the balance.
BILLEDORPAIDDATE: Billed date for charges, paid date for credits.
DUEDATE: Due date for charges.

RECEIVABLETYPE: Receivable type for transaction.

Attributes:

UID: Unique identifier for receivable type.

NAME: Unique name of receivable type.

Elements:

DESCRIPTION: Optional description for receivable type.
CHARGETYPE: Charge type for transaction.

Attributes:

UID: Unique identifier for charge type.

IDENTIFIER: Alternate unique identifier for charge type.

NAME: Unique name of charge type.

RATECODE: Associated rate code for charge.

Attributes:

CODE: Unique identifier for rate code within parent rate form.

Oracle Utilities Receivables Component Financial Engine Interface 16-9

Input Values

Elements:
RATEFORM: Parent rate form of rate code.
Attributes:
UID: Unique identifier for rate form.
OPCOCODE: Associated operating company code for transaction.
JURISCODE: Associated jurisdiction code for transaction.
STATEMENTDATE: Associated statement date for transaction.
INVOICEID: Associated invoice ID for transaction.
INVOICEDATE: Associated invoice date for transaction.
CANCELSTATEMENTDATE: Associated statement date for cancelled transaction.
CANCELINVOICEID: Associated invoice ID for cancelled transaction.
CANCELINVOICEDATE: Associated invoice date for cancelled transaction.

BILLCYCLEDATE: Associated cycle date for transaction. Optional for posting, canceling, or
transferring.

BILLHISTORY: Associated bill history record for transaction.
Attributes:
UID: Unique identifier for bill history.
UIDSUBACCOUNT: Optional unique identifier of originating subaccount for summary billing.

TRANSFERREDTOTRANSACTION: Associated transferred “to” transaction for a
transferred “from” transaction.

Attributes:
UID: Unique identifier for transferred “to” transaction.

TRANSFERREDFROMTRANSACTION: Associated transferred “from” transaction for a
transferred “to” transaction.

Attributes:
UID: Unique identifier for transferred “from” transaction.
PAYMENT: Associated payment record for PYMNT transaction.
Attributes:
UID: Unique identifier for payment.
SERVICEPLAN: Associated service plan for transaction.
Attributes:
UID: Unique identifier for service plan.
BUDGETPLAN: Associated budget plan for transaction.
Attributes:
UID: Unique identifier for budget plan.

INSTALLMENTPLAN: Associated installment plan for deferred charge or INST transaction
(see definition in Chapter Ten: Oracle Utilities Receivables Component Billing Interface).

DEPOSIT: Associated deposit for DEP, DEPINT, DEPAPP, or INST transaction.

Attributes:

16-10 Billing Component Installation and Configuration Guide, Volume 2

Input Values

UID: Unique identifier for deposit.
DEPINTRATE: Interest rate on deposit for DEP transaction.
TAXAMOUNT: Tax amount for related taxed transaction.

Attributes:

CURRENCY: Curtency code for the tax amount.
TAXRATE: Tax rate for either TAX transaction or related taxed transaction.

TAXEXEMPT: Tax exempt flag for related taxed transaction. Should be either "TRUE" or
"FALSE". Defaults to false.

BILLSTARTTIME: Bill start time for BILL transaction.
BILLSTOPTIME: Bill stop time for BILL transaction.

SUSPENDAUTOPAYMENT: If "TRUE", indicates that automatic payments for the bill
transaction should be suspended. Should be either "TRUE" or "FALSE". Defaults to false.

BATCHTRANSACTION: Batch transaction from where this transaction came.
Attributes:
UID: Unique identifier for batch transaction. Required for posting and cancelling.
BATCHCANCEL: Batch transaction that cancelled this transaction.
Attributes:
UID: Unique identifier for batch transaction. Required for posting and cancelling.

RELATEDTRANSACTIONS: Related transactions for this transaction. For transfer
transactions, this is the list of transferred transactions. For adjustments or refunds, this is the
optional list of transactions that are being adjusted or refunded so that directed credit applications
can be propetly applied.

Elements:
TRANSACTION: Individual related transaction.

USERATTRS: Collection of user-defined attributes for the transaction.
Elements:
USERATTR: Individual user-defined attribute.
Attributes:
NAME: Name for the attribute. Should be the actual column name in the database.
TYPE: Type of the attribute.
SIZE: Optional size of the attribute. Required for CHAR and VARCHAR types.
PRECISION: Optional precision of the attribute. Required for DECIMAL types.
SCALE: Optional scale of the attribute. Required for DECIMAL types.
VALUE: Value of the attribute.

Oracle Utilities Receivables Component Financial Engine Interface 16-11

Input Values

xmlGenLedgerParams

DTD - xmlGenLedgerParams
<!DOCTYPE GENLEDGERPARAMS
[
<!ELEMENT GENLEDGERPARAMS
<!ATTLIST GENLEDGERPARAMS

REVENUEMONTHCDATA#IMPLIED
CLOSE{TRUE | FALSE}"TRUE">
<!ELEMENT GENLEDGERMAP
<!ELEMENT GENLEDGERACCOUNT>
<!ATTLIST GENLEDGERACCOUNT
ACCOUNTIDCDATA #REQUIRED
COSTCENTERIDCDATA#IMPLIED>
<!ELEMENT SUBLEDGERACCOUNT>
<!ATTLIST SUBLEDGERACCOUNT
ACCOUNTIDCDATA #REQUIRED
COSTCENTERIDCDATA#IMPLIED
USAGE{TRUE | FALSE}"FALSE">
1>

XML Example - xmlGenLedgerParams
<GENLEDGERPARAMS CLOSE="FALSE"

(GENLEDGERACCOUNT,

<GENLEDGERMAP>
<GENLEDGERACCOUNT ACCOUNTID="acctGl"
<SUBLEDGERACCOUNT ACCOUNTID="acctS1l"
<SUBLEDGERACCOUNT ACCOUNTID="acctS2"
</GENLEDGERMAP>
<GENLEDGERMAP>
<GENLEDGERACCOUNT ACCOUNTID="acctG2"
<SUBLEDGERACCOUNT ACCOUNTID="acctS3"
</GENLEDGERMAP>
<GENLEDGERMAP>
<GENLEDGERACCOUNT ACCOUNTID="acctG3"
<SUBLEDGERACCOUNT ACCOUNTID="acctS4"
</GENLEDGERMAP>
</GENLEDGERPARAMS>

(GENLEDGERMAP) >

SUBLEDGERACCOUNT*) >

REVENUEMONTH="08/2001">

COSTCENTERID="centerl"/>
COSTCENTERID="centerl"/>
COSTCENTERID="centerl"/>

COSTCENTERID="center2"/>
COSTCENTERID="centerl" USAGE="FALSE"/>

COSTCENTERID="center3"/>
COSTCENTERID="center3" USAGE="TRUE"/>

Element Descriptions - xmiGenLedgerParams
The use of each individual attribute and element in the xmlGenLedgerParams argument is

described below.

Attributes

CLOSE: Flag that specifies whether to close the sub-ledger accounts after processing.

REVENUEMONTH: Revenue month used to select the sub-ledger account records processed.
If not supplied, the prior calendar month/yeat is used.

Elements:

GENLEDGERMAP: If specified, maps one or more sub-ledger accounts to a general ledger
account, or maps a sub-ledger account that contains usage information to a general ledger

account. If not specified, all sub-ledger accounts are mapped directly to general ledger accounts
with the same Account ID and Cost Center ID.

Elements:

GENLEDGERACCOUNT: General ledger account

Attributes:

ACCOUNTID: Account ID of the general ledger account.

16-12 Billing Component Installation and Configuration Guide, Volume 2

Input Values

COSTCENTERID: Cost center ID associated with the general ledger account.
SUBLEDGERACCOUNT:

Attributes:

ACCOUNTID: Account ID of the sub-ledger accout.

COSTCENTERID: Cost center ID associated with the sub-ledger account.

USAGE: Specifies whether the sub-ledger account represents quantity information.

xmlJournalParams

xmlQuery

DTD - xmlJournalParams

<!DOCTYPE JOURNALPARAMS

[

<!ELEMENT JOURNALPARAMS>

<!ATTLIST JOURNALPARAMS
STARTTIMECDATA #REQUIRED
STOPTIMECDATA #REQUIRED
REVENUEMONTHCDATA#IMPLIED>

1>

XML Example - xmlJournalParams
<JOURNALPARAMS>
<STARTTIME>BILL_START</STARTTIME>
<STOPTIME>BILL7STOP</STOPTIME>
<REVENUEMONTH>11/2000</REVENUEMONTH>
</JOURNALPARAMS>

Element Descriptions - xmlJournalParams
Each of the data elements used by the xmlJournalParams argument is described below.

JournalParams Attributes:

STARTTIME: The start time of the period for which the journal is to be balanced.
STOPTIME: The stop time of the period for which the journal is to be balanced.
REVENUEMONTH: The revenue month for which the journal is to be balanced.

DTD - xmiQuery
<!DOCTYPE QUERY

[
<!ELEMENT QUERY (#PCDATA) >
1>

XML - xmlQuery

<QUERY>

SELECT UIDACCOUNT from $%QUAL%%.ACCOUNT where JURISCODE="MA"
<QUERY>

Element Descriptions - xmiQuery
Each of the data elements used by the xmlQuery argument is described below.

QUERY: The SQL query used to identify the account to be balanced. The query must have a
select list containing only the "UIDACCOUNT" column name.

Oracle Utilities Receivables Component Financial Engine Interface 16-13

Return Values

Return Values

xmlGenLedgerFile

DTD - xmlGenLedgerFile
<!DOCTYPE GENLEDGERFILE
[
<!ELEMENT GENLEDGERFILE (GENLEDGERACCOUNTY*) >
<!ATTLIST GENLEDGERFILE

REVENUEMONTHCDATA#REQUIRED

CLOSE{TRUE | FALSE}"TRUE">
<!ELEMENT GENLEDGERACCOUNT (

BALANCE, OLDBALANCETOGL, CURBALANCETOGL, RUNNINGBALANCE, QUANTITY,
OLDQUANTITYTOGL, CURQUANTITYTOGL, RUNNINGQUANTITY>
<!ATTLIST GENLEDGERACCOUNT

ACCOUNTIDCDATA #REQUIRED

COSTCENTERIDCDATA#IMPLIED>
<!ELEMENT BALANCE (#PCDATA)>
<!ELEMENT OLDBALANCETOGL (#PCDATA)>
<!ELEMENT CURBALANCETOGL (#PCDATA)>
<!ELEMENT RUNNINGBALANCE (#PCDATA)>
<!ELEMENT QUANTITY (#PCDATA)>
<!ELEMENT OLDQUANTITYTOGL (#PCDATA)>
<!ELEMENT CURQUANTITYTOGL (#PCDATA)>
<!ELEMENT RUNNINGQUANTITY (#PCDATA)>
1>

XML Example - xmiGenLedgerFile
<GENLEDGERFILE REVENUEMONTH="08/2001">
<GENLEDGERACCOUNT ACCOUNTID="acctGl" COSTCENTERID="cencterl">
<BALANCE CURRENCY="USD"></BALANCE>
<OLDBALANCETOGL CURRENCY="USD"></OLDBALANCETOGL>
<CURBALANCETOGL CURRENCY="USD"></CURBALANCETOGL>
<RUNNINGBALANCE CURRENCY="USD"></RUNNINGBALANCE>
<QUANTITY>5</QUANTITY>
<OLDQUANTITYTOGL></OLDQUANTITYTOGL>
<CURQUANTITYTOGL></CURQUANTITYTOGL>
<RUNNINGQUANTITY></RUNNINGQUANTITY>
</GENLEDGERACCOUNT>
</GENLEDGERFILE>

Element Descriptions - xmlGenLedgerFile
The use of each individual attribute and element in the xmlGenLedgerFile argument is described
below.

Attributes

CLOSE: Flag that indicates

REVENUEMONTH: Revenue month for the general ledger update.

Elements:

GENLEDGERACCOUNT: General ledger account
Attributes:
ACCOUNTID: Account ID of the general ledger account.
COSTCENTERID: Cost center ID associated with the general ledger account.

Elements:

16-14 Billing Component Installation and Configuration Guide, Volume 2

Return Values

BALANCE: Total of BALANCES of sub-ledger accounts associated with the general ledger

account.
Attributes:
CURRENCY: Currency code for the balance.

OLDBALANCETOGL: Total BALANCETOGLS of sub-ledger accounts associated with
general ledger account.

Attributes:
CURRENCY: Currency code for the balance.

CURBALANCETOGL: Difference between BALANCE and OLDBALANCETOGL.
Represents the amount to be moved to the general ledger account.

Attributes:
CURRENCY: Currency code for the balance.

RUNNINGBALANCE: Total of RUNNING BALANCE:S of sub-ledger accounts
associated with the general ledger account.

Attributes:
CURRENCY: Currency code for the balance.

QUANTITY: Total of QUANTITYS of sub-ledger accounts associated with the general
ledger account. Used with sub-ledger accounts that represent quantities rather than amounts.

OLDQUANTITYTOGL: Total QUANTITYTOGLs of sub-ledger accounts associated
with general ledger account. Used with sub-ledger accounts that represent quantities rather
than amounts.

CURQUANTITYTOGL: Difference between QUANTITY and OLDQUANTITYTOGL.
Represents the amount to be moved to the general ledger account. Used with sub-ledger
accounts that represent quantities rather than amounts.

RUNNINGQUANTITY: Total of RUNNING QUANTITYSs of sub-ledger accounts
associated with the general ledger account. Used with sub-ledger accounts that represent
quantities rather than amounts.

Oracle Utilities Receivables Component Financial Engine Interface 16-15

Return Values

16-16 Billing Component Installation and Configuration Guide, Volume 2

Chapter 17

Oracle Utilities Receivables Component Billing

Interface

This chapter describes the methods/functions available to extetnal systems through the Oracle
Utilities Receivables Component Billing interface (IBilling). These methods allow users to perform
a number of billing functions available in the Billing module of the Oracle Utilities Receivables
Component to Oracle Ultilities Billing Component from external systems. These functions include

the following:

Post/Cancel Charge or Credit
Post/Cancel Tax
Create/Cancel Installment Plan
Post/Cancel Installment
Post/Cancel Deposit
Post/Cancel Deposit Interest
Apply/Unapply Deposit

Post Statement

Post Bill

Cancel Transactions

Get Bill Info.

See Chapter 6: Billing for more information about these functions.

Oracle Utilities Receivables Component Billing Interface 17-1

Methods, Interfaces, and Syntax

Methods, Interfaces, and Syntax

The methods, interface objects, and syntax for the functions performed through the Oracle
Utilities Receivables Component Billing interface are as follows:

Post Charge or Credit
Description: Used to post either a charge or credit transaction against the specified account (the
default is charge). The transaction may be either deferred or not deferred (default is not deferred).
An optional service plan or budget plan may be associated with the transaction. If a budget plan is
provided then the plan's variance will be updated accordingly.

Method Name: PostChargeOrCredit
Interface: IBilling

DLL Name: LSACCT.DLL
Program ID: LSACCT Billing
Syntax:

HRESULT PostChargeOrCredit ([in] BSTR xmlDataSource,
[in] BSTR xmlAcctTrans) ;

Cancel Charge or Credit

Description: Used to cancel a previously posted charge or credit transaction.
Method Name: CancelChargeOrCredit

Interface: IBilling

DLL Name: LSACCT.DLL

Program ID: LSACCT Billing

Syntax:

HRESULT CancelChargeOrCredit ([in] BSTR xmlDataSource,
[in] BSTR xmlAcctTrans);

Post Tax
Description: Used to post a tax charge or credit transaction against the specified account (the
default is charge). The transaction may be either deferred or not deferred (default is not deferred).
An optional service plan or budget plan may be associated with the transaction. If a budget plan is
provided then the plan's variance will be updated accordingly.

Method Name: PostTax

Interface: IBilling

DLL Name: LSACCT.DLL

Program ID: LSACCT.Billing

Syntax:

HRESULT PostTax ([in] BSTR xmlDataSource,

[in] BSTR xmlAcctTrans);

Cancel Tax

Description: Used to cancel a previously posted tax charge or credit transaction.
Method Name: CancelTax

Interface: IBilling

DLL Name: LSACCT.DLL

17-2 Billing Component Installation and Configuration Guide, Volume 2

Methods, Interfaces, and Syntax

Program ID: LSACCT Billing
Syntax:
HRESULT CancelTax ([in] BSTR xmlDataSource,

[in] BSTR xmlAcctTrans);

Create Installment Plan
Description: Used to create an installment plan related to a previously posted deferred charge
transaction. This process can alternatively occur as a single transaction if the installment plan is
related to the deferred charge when the deferred charge is initially posted.

Method Name: CreatelnstallmentPlan

Interface: IBilling

DLL Name: LSACCT.DLL

Program ID: LSACCT.Billing

Syntax:

HRESULT CreatelInstallmentPlan ([in] BSTR xmlDataSource,

[in] BSTR xmlInstallmentPlan);

Cancel Instaliment Plan
Description: Used to cancel a previously created installment plan

Method Name: CancellnstallmentPlan

Interface: IBilling

DLL Name: LSACCT.DLL

Program ID: LSACCT Billing

Syntax:

HRESULT CancelInstallmentPlan ([in] BSTR xmlDataSource,

[in] BSTR xmlInstallmentPlan);

Post Installment
Description: Used to post a non-deferred charge transaction related to a previously created
installment plan against the specified account.

Method Name: Postlnstallment

Interface: IBilling

DLL Name: LSACCT.DLL

Program ID: LSACCT Billing

Syntax:

HRESULT PostInstallment ([in] BSTR xmlDataSource,

[in] BSTR xmlAcctTrans) ;

Cancel Installment
Description: Used to cancel a previously posted installment transaction.

Method Name: Cancellnstallment
Interface: IBilling

DLL Name: LSACCT.DLL
Program ID: LSACCT Billing

Oracle Utilities Receivables Component Billing Interface 17-3

Methods, Interfaces, and Syntax

Syntax:

HRESULT CancelInstallment ([in] BSTR xmlDataSource,
[in] BSTR xmlAcctTrans);

Post Deposit
Description: Used to post cither a non-deferred or deferred charge transaction against the
specified account (the default is non-deferred). A deferred deposit would typically have an
installment plan created for it.

Method Name: PostDeposit

Interface: IBilling

DLL Name: LSACCT.DLL

Program ID: LSACCT Billing

Syntax:

HRESULT PostDeposit ([in] BSTR xmlDataSource,

[in] BSTR xmlAcctTrans);

Cancel Deposit
Description: Used to cancel a previously posted deposit transaction.

Method Name: CancelDeposit

Interface: IBilling

DLL Name: LSACCT.DLL

Program ID: LSACCT Billing

Syntax:

HRESULT CancelDeposit ([in] BSTR xmlDataSource,

[in] BSTR xmlAcctTrans) ;

Post Deposit Interest
Description: Used to post a deferred credit transaction against the specified account representing
an amount of interest accrual for the associated deposit.

Method Name: PostDepositInterest

Interface: IBilling

DLL Name: LSACCT.DLL

Program ID: LSACCT Billing

Syntax:

HRESULT PostDepositInterest ([in] BSTR xmlDataSource,

[in] BSTR xmlAcctTrans) ;

Cancel Deposit Interest
Description: Used to cancel a previously posted deposit interest transaction.

Method Name: CancelDepositInterest
Interface: IBilling

DLL Name: LSACCT.DLL
Program ID: LSACCT Billing

Syntax:

17-4 Billing Component Installation and Configuration Guide, Volume 2

Methods, Interfaces, and Syntax

HRESULT CancelDepositInterest ([in] BSTR xmlDataSource,
[in] BSTR xmlAcctTrans);

Apply Deposit
Description: Used to post a non-deferred credit transaction against the specified account
representing an amount of the associated deposit balance that is applied to the account.

Method Name: ApplyDeposit

Interface: IBilling

DLL Name: LSACCT.DLL

Program ID: LSACCT Billing

Syntax:

HRESULT ApplyDeposit ([in] BSTR xmlDataSource,

[in] BSTR xmlAcctTrans);

Unapply Deposit

Description: Used to cancel a previously posted deposit application transaction.
Method Name: UnapplyDeposit

Interface: IBilling

DLL Name: LSACCT.DLL

Program ID: LSACCT Billing

Syntax:

HRESULT UnapplyDeposit ([in] BSTR xmlDataSource,

[in] BSTR xmlAcctTrans) ;

Post Statement
Description: Used to post a single deferred statement transaction for an individual account. This
transaction typically indicates the current balance amount for the account.

Method Name: PostStatement

Interface: IBilling

DLL Name: LSACCT.DLL

Program ID: LSACCT Billing

Syntax:

HRESULT PostStatement ([in] BSTR xmlDataSource,

[in] BSTR xmlAcctTrans) ;

Post Bill

Description: Used to post a single bill (invoice) transaction for an individual account.
Method Name: PostBill

Interface: IBilling

DLL Name: LSACCT.DLL

Program ID: LSACCT Billing

Syntax:

HRESULT PostRBill ([in] BSTR xmlDataSource,
[in] BSTR xmlAcctTrans) ;
[out, retval] BSTR* xmlTransOut) ;

Oracle Utilities Receivables Component Billing Interface 17-5

Methods, Interfaces, and Syntax

Get Bill Info

Description: Used to obtain billing information about an account, including the account’s current
and past due balances.

Method Name: GetBilllnfo
Interface: IBilling

DLL Name: LSACCT.DLL
Program ID: LSACCT Billing
Syntax:

HRESULT GetBillInfo ([in] BSTR xmlDataSource,
[in] BSTR xmlAccountlIn,
[in] BSTR xmlAccountOut) ;

Cancel Transactions

Description: Used to cancel transactions created by rate schedules for an individual account.
Method Name: CancelTransactions

Interface: IBilling

DLL Name: LSACCT.DLL

Program ID: LSACCT Billing

Syntax:

HRESULT CancelTransactions ([in] BSTR xmlDataSource,
[in] BSTR xmlAcctTrans) ;

17-6 Billing Component Installation and Configuration Guide, Volume 2

Methods, Interfaces, and Syntax

Interface Arguments

The methods available in the Oracle Utilities Receivables Component Billing interface use the
following arguments:

xmiDataSource Argument
The xmlDataSource argument is an xml string that contains database connection and other related
information. A D'TD, xml example, and data element descriptions for this argument can be found
on page 15-7 in the Oracle Utilities Energy Information Platform Configuration Guide.

xmlAcctTrans Argument
The xmlAcctTrans argument is an xmlTransaction xml string containing the appropriate
information to perform the specific function. A DTD and data element descriptions for this

argument can be found on page 16-6. XML examples for this argument can be found on page 17-
8.

xmiTransOut Argument
The xmlTransOut argument is an xmlTransaction xml string that contains attributes passed to the
Post Bill method.

xmlinstallmentPlan Argument
The xmlInstallmentPlan argument is an xml string containing the appropriate information to
perform the specific function. A DTD, XML examples and data element descriptions for this
argument can be found on page 17-10.

xmlAccountin Argument
The xmlAccountIn argument is an xml string that contains the information necessary to identify
an account and the date for which to get the information. The only information that is required in
this structure is the unique ID of the account (ACCOUNT UID or ACCOUNT ID, but not both)
and the Balance Date (the Balance Date will default to the current date if not provided). A DTD,
xml example, and data element descriptions for this argument can be found on page 17-12.

xmlAccountOut Argument
The xmlAccountOut argument is an xml string that contains an account’s billing information. A
DTD, xml example, and data element descriptions for this argument can be found on page 17-14.

Oracle Utilities Receivables Component Billing Interface 17-7

Input Values

Input Values

XML examples and data element descriptions used as input values for the Oracle Utilities
Receivables Component Billing interface (IBilling) are provided below.

xmlAcctTrans

XML Examples - xmlAcctTrans

Post Charge or Credit

<TRANSACTION>
<ACCOUNT UID="338">
</ACCOUNT>
<TRANSACTIONID>300</TRANSACTIONID>
<CHARGEORCREDIT>CH</CHARGEORCREDIT>
<AMOUNT CURRENCY="USD">81</AMOUNT>
<BILLEDORPAIDDATE>2000-10-25</BILLEDORPAIDDATE>
<DUEDATE>2000-11-16</DUEDATE>
<RECEIVABLETYPE UID="2" NAME="ESCO ELECTRIC" />
<CHARGETYPE UID="177" NAME="ESCO ELECTRIC ENERGY CHARGE" />
<OPCOCODE>AGL</OPCOCODE>
<JURISCODE>GA</JURISCODE>
<SERVICEPLAN UID = "286">
</SERVICEPLAN>

</TRANSACTION>

Cancel Charge or Credit
<TRANSACTION UID="1987" />

Note: The xmlAcctTrans arguments used for Cancel methods contains the
minimal information required to identify the transaction. They can also include
additional information as desired, such as Cancel Reason, Cancel Note, or other
information.

Post Tax
<TRANSACTION>
<ACCOUNT UID="406" />
<RELATEDTRANSACTIONS>
<TRANSACTION UID="2629">
<AMOUNT CURRENCY="USD">435.00</AMOUNT>
<TAXRATE>0.03</TAXRATE>
</TRANSACTION>
</RELATEDTRANSACTIONS>
</TRANSACTION>

Cancel Tax
<TRANSACTION UID="1987" />

Post Installment
<TRANSACTION>
<ACCOUNT UID="387"/>
<INSTALLMENTPLAN UID="315"/>
</TRANSACTION>

Cancel Installment
<TRANSACTION UID="1987" />

Post Deposit
<TRANSACTION>
<ACCOUNT UID="387"/>
<AMOUNT CURRENCY="USD">100.00</AMOUNT>
</TRANSACTION>

17-8 Billing Component Installation and Configuration Guide, Volume 2

Input Values

Cancel Deposit
<TRANSACTION UID="1987" />

Post Deposit Interest
<TRANSACTION>
<ACCOUNT UID="387"/>
<AMOUNT CURRENCY="USD">200.00</AMOUNT>
<DEPOSIT UID="315"/>
</TRANSACTION>

Cancel Deposit Interest
<TRANSACTION UID="1987" />

Apply Deposit
<TRANSACTION>
<ACCOUNT UID="387"/>
<AMOUNT CURRENCY="USD">200.00</AMOUNT>
<DEPOSIT UID="315"/>
</TRANSACTION>

Unapply Deposit
<TRANSACTION UID="1987" />

Post Statement
<TRANSACTION>
<ACCOUNT UID="387"/>
<AMOUNT CURRENCY="USD">100.00</AMOUNT>
</TRANSACTION>

Post Bill
<TRANSACTION>
<ACCOUNT UID="387"/>
<AMOUNT CURRENCY="USD">100.00</AMOUNT>
</TRANSACTION>

Cancel Transactions

<TRANSACTION>
<ACCOUNT UID="292">
</ACCOUNT>
<BILLCYCLEDATE>2000-08-31</BILLCYCLEDATE>
</TRANSACTION>

Oracle Utilities Receivables Component Billing Interface 17-9

Input Values

xmllnstallmentPlan

DTD - xmlinstallmentPlan
<!DOCTYPE INSTALLMENTPLAN
[

<!ELEMENT INSTALLMENTPLAN (STOPTIME?, TRANSACTIONID?,
JURISCODE?,
INSTAMOUNT?,

UIDRECEIVABLETYPE?, UIDCHARGETYPE?, OPCOCODE?,
NUMINSTALLMENTS?, TOTALAMOUNT?, FIRSTAMOUNT?,
REMINSTALLMENTS?, REMAMOUNT?, LASTINSTMONTH?) >
<!ATTLIST INSTALLMENTPLAN
UIDCDATA #IMPLIED
UIDTRANSACTIONCDATA#IMPLIED
TRANSACTIONNOCDATA#IMPLIED
UIDACCOUNTCDATA #IMPLIED>
<!ELEMENT STOPTIME (#PCDATA)>
<!ELEMENT TRANSACTIONID (#PCDATA)>
<!ELEMENT UIDRECEIVABLETYPE (#PCDATA)>
<!ELEMENT UIDCHARGETYPE (#PCDATA)>
<!ELEMENT OPCOCODE (#PCDATA) >
<!ELEMENT JURISCODE (#PCDATA) >
<!ELEMENT DEPOSIT EMPTY>
<!ATTLIST DEPOSIT
UIDCDATA #IMPLIED>
<!ELEMENT NUMINSTALLMENTS (#PCDATA)>
<!ELEMENT TOTALAMOUNT (#PCDATA) >
<!ELEMENT FIRSTAMOUNT (#PCDATA)>
<!ELEMENT INSTAMOUNT (#PCDATA) >
<!ELEMENT REMINSTALLMENTS (#PCDATA)>
<!ELEMENT REMAMOUNT (#PCDATA) >
<!ELEMENT LASTINSTMONTH (#PCDATA)>]>

XML Examples - xmlinstallmentPlan

Create Installment Plan
<INSTALLMENTPLAN UID="1987" />

Cancel Installment Plan
<INSTALLMENTPLAN UID="1987" />

Element Descriptions - xmlinstalimentPlan

The use of each individual attribute and element in the xmlInstallmentPlan argument is described

below.
Installment Plan Attributes:

UID: Unique identifier for installment plan.

DEPOSIT?,

UIDTRANSACTION: Unique identifier for associated deferred charge transaction.

TRANSACTIONNO: Transaction number for associated deferred charge transaction.

UIDACCOUNT: Unique identifier for associated account.

Elements:

STOPTIME: Stop time for installment plan. If not null then installment plan is no longer in

effect.

TRANSACTIONID: Default Transaction ID for installments associated with this installment

plan.

17-10 Billing Component Installation and Configuration Guide, Volume 2

Input Values

UIDRECEIVABLETYPE: Default Receivable Type Uid for installments associated with this
installment plan.

UIDCHARGETYPE: Default Charge Type Uid for installments associated with this installment
plan.

OPCOCODE: Default Operating Company Code for installments associated with this
installment plan.

JURISCODE: Default Jurisdiction Code for installments associated with this installment plan.
DEPOSIT: Optional deposit associated with installment plan.

Attributes:

UID: Unique identifier for deposit.

NUMINSTALLMENTS: Number of installments for installment plan.
TOTALAMOUNT: Total amount of all installments for installment plan.

Attributes:

CURRENCY: Currency code for the total amount.
FIRSTAMOUNT: Amount of first installment, if different.

Attributes:

CURRENCY: Currency code for the first amount.
INSTAMOUNT: Installment amount.

Attributes:

CURRENCY: Currency code for the installment amount.
REMINSTALLMENTS: Number of remaining unbilled installments.
REMAMOUNT: Remaining unbilled amount.

Attributes:

CURRENCY: Currency code for the remaining amount.
LASTINSTMONTH: Revenue month of last installment.

Oracle Utilities Receivables Component Billing Interface 17-11

Input Values

xmlAccountin

DTD - xmlAccountin
<!DOCTYPE ACCOUNT
[
<!ELEMENT ACCOUNT (CUSTOMER?, STARTTIME?, STOPTIME?, OPCOCODE?
JURISCODE?, REGIONCODE?, SIC?, STATUSCODE?, REVENUECODE?,
LASTBALANCETIME?, LASTBALANCE?, NEWACTIVITY?, UIDTXFRTOACCT?,
RECEIVABLESTATUS?, WRITEOFFREASONCODE?, BALANCEDATE?, CURRENTBALANCE?,
PASTDUEBALANCE?, LASTTXACTIONNO?)>
<!ATTLIST ACCOUNT

UIDCDATA #IMPLIED
ACCOUNTIDCDATA #IMPLIED
UIDSUBACCOUNTCDATA #IMPLIED
SUBACCOUNTIDCDATA #IMPLIED
NAMECDATA #IMPLIED>

<!ELEMENT CUSTOMER EMPTY>
<!ATTLIST CUSTOMER

UIDCDATA #IMPLIED>
<!ELEMENT STARTTIME (#PCDATA)>
<!ELEMENT STOPTIME (#PCDATA)>
<!ELEMENT OPCOCODE (#PCDATA) >
<!ELEMENT JURISCODE (#PCDATA) >
<!ELEMENT REGIONCODE (#PCDATA) >
<!ELEMENT SIC (#PCDATA)>
<!ELEMENT STATUSCODE (#PCDATA) >
<!ELEMENT REVENUECODE (#PCDATA) >
<!ELEMENT LASTBALANCETIME (#PCDATA)>
<!ELEMENT LASTBALANCE (#PCDATA)>
<!ELEMENT NEWACTIVITY (#PCDATA)>
<!ELEMENT UIDTXFRTOACCT (#PCDATA)>
<!ELEMENT RECEIVABLESTATUS (#PCDATA)>
<!ELEMENT WRITEOFFREASONCODE (#PCDATA) >
<!ELEMENT BALANCEDATE (#PCDATA)>
<!ELEMENT CURRENTBALANCE (#PCDATA)>
<!ELEMENT PASTDUEBALANCE (#PCDATA)>
<!ELEMENT LASTTXACTIONNO (#PCDATA)>
1>

XML Example - xmlAccountin

<ACCOUNT UID="139">
<BALANCEDATE>2000-11-16</BALANCEDATE>
</ACCOUNT>

Element Descriptions - XmlAccountin

The use of each individual attribute and element in the xmlAccountln argument is described
below.

Account Attributes:
UID: Unique identifier for account.
ACCOUNTID: Alternate unique identifier for account.

UIDSUBACCOUNT: Optional unique identifier for sub-account for which this account is the
master.

SUBACCOUNTID: Optional ID for sub-account for which this account is the master.

NAME: Optional name of account.

17-12 Billing Component Installation and Configuration Guide, Volume 2

Input Values

Elements:
CUSTOMER: Parent customer of account.
Attributes:
UID: Unique identifier for customer.
STARTTIME: Effective start time for account.
STOPTIME: Optional stop time for closed account.
OPCOCODE: Optional operating company code for account.
JURISCODE: Optional jurisdiction code for account.
REGIONCODE: Optional region code for account.
SIC: Optional SIC code for account.
STATUSCODE: Optional status code for account.
REVENUECODE: Optional revenue code for account.
LASTBALANCETIME: Time that account was last balanced.
LASTBALANCE: Balance of account at the last balance time.
Attributes:
CURRENCY: Currency code for the balance.
NEWACTIVITY: Activity for account since the last balance time.
Attributes:
CURRENCY: Currency code for the new activity.
UIDTXFRTOACCT: Optional UID of account to which this account has been transferred.

RECEIVABLESTATUS: Receivable status for account. May be one of “CURRENT”,
“PASTDUE”, “COLLECTIONS”, or “UNCOLLECTIBLE”.

WRITEOFFREASONCODE: Optional write-off reason for account if Receivable Status is
“UNCOLLECTIBLE”.

BALANCEDATE: Date for current and past due balance calculations.
CURRENTBALANCE: Current balance as of balance date for account.
Attributes:
CURRENCY: Currency code for the current balance.
PASTDUEBALANCE: Past due balance as of balance date for account.
Attributes:
CURRENCY: Currency code for the past due balance.
LASTTXACTIONNO: Last transaction number for account.

Oracle Utilities Receivables Component Billing Interface 17-13

Return Values

Return Values

The data returned from the Oracle Utilities Receivables Component Billing interface is described
in the following DTD, xml example, and data element descriptions.

xmlAccountOut

DTD - xmlAccountOut
<!DOCTYPE ACCOUNT
[

<!ELEMENT ACCOUNT (CUSTOMER?, STARTTIME?, STOPTIME?,
JURISCODE?, REGIONCODE?, SIC?, STATUSCODE?, REVENUECODE?,

LASTBALANCETIME?, LASTBALANCE?, NEWACTIVITY?,

UIDTXFRTOACCT?,

RECEIVABLESTATUS?, WRITEOFFREASONCODE?, BALANCEDATE?,

PASTDUEBALANCE?, LASTTXACTIONNO?)>
<!ATTLIST ACCOUNT

UIDCDATA #IMPLIED
ACCOUNTIDCDATA #IMPLIED
UIDSUBACCOUNTCDATA #IMPLIED
SUBACCOUNTIDCDATA #IMPLIED
NAMECDATA #IMPLIED>

<!ELEMENT CUSTOMER EMPTY>
<!ATTLIST CUSTOMER

UIDCDATA #IMPLIED>
<!ELEMENT STARTTIME (#PCDATA)>
<!ELEMENT STOPTIME (#PCDATA)>
<!ELEMENT OPCOCODE (#PCDATA) >
<!ELEMENT JURISCODE (#PCDATA)>
<!ELEMENT REGIONCODE (#PCDATA) >
<!ELEMENT SIC (#PCDATA)>
<!ELEMENT STATUSCODE (#PCDATA) >
<!ELEMENT REVENUECODE (#PCDATA) >
<!ELEMENT LASTBALANCETIME (#PCDATA)>
<!ELEMENT LASTBALANCE (#PCDATA)>
<!ELEMENT NEWACTIVITY (#PCDATA)>
<!ELEMENT UIDTXFRTOACCT (#PCDATA)>
<!ELEMENT RECEIVABLESTATUS (#PCDATA)>
<!ELEMENT WRITEOFFREASONCODE (#PCDATA)>
<!ELEMENT BALANCEDATE (#PCDATA)>
<!ELEMENT CURRENTBALANCE (#PCDATA)>
<!ELEMENT PASTDUEBALANCE (#PCDATA)>
<!ELEMENT LASTTXACTIONNO (#PCDATA)>
1>

17-14 Billing Component Installation and Configuration Guide, Volume 2

CURRENTBALANCE?,

Return Values

XML Example - xmlAccountOut

<ACCOUNT UID=%“127">
<ACCOUNTID>BE-DNT</ACCOUNTID>
<CUSTOMERID>BE-DNT</CUSTOMERID>
<STARTTIME>2000-01-01</STARTTIME>
<LASTBALANCETIME/>
<LASTBALANCE/>
<NEWACTIVITY/>
<RECIEVABLESTATUS>CURRENT</RECIEVABLESTATUS>
<BALANCEDATE>2000-07-07</BALANCEDATE>
<CURRENTBALANCE CURRENCY=“USD”>$1000</CURRENTBALANCE>
<PASTDUEBALANCE/>
<LASTTXACTIONNO>9</LASTTXACTIONNO>

</ACCOUNT>

Element Descriptions - xmlAccountOut
The use of each individual attribute and element in the xmlAccountOut argument is described
below.

Account Attributes:
UID: Unique identifier for account.
ACCOUNTID: Alternate unique identifier for account.

UIDSUBACCOUNT: Optional unique identifier for sub-account for which this account is the
master.

SUBACCOUNTID: Optional ID for sub-account for which this account is the master.
NAME: Optional name of account.
Elements:
CUSTOMER: Parent customer of account.
Attributes:
UID: Unique identifier for customer.
STARTTIME: Effective start time for account.
STOPTIME: Optional stop time for closed account.
OPCOCODE: Optional operating company code for account.
JURISCODE: Optional jurisdiction code for account.
REGIONCODE: Optional region code for account.
SIC: Optional SIC code for account.
STATUSCODE: Optional status code for account.
REVENUECODE: Optional revenue code for account.
LASTBALANCETIME: Time that account was last balanced.
LASTBALANCE: Balance of account at the last balance time.
Attributes:
CURRENCY: Currency code for the balance.
NEWACTIVITY: Activity for account since the last balance time.
Attributes:

CURRENCY: Currency code for the new acitivity.

Oracle Utilities Receivables Component Billing Interface 17-15

Return Values

UIDTXFRTOACCT: Optional UID of account to which this account has been transferred.

RECEIVABLESTATUS: Receivable status for account. May be one of “CURRENT”,
“PASTDUE”, “COLLECTIONS”, or “UNCOLLECTIBLE”.

WRITEOFFREASONCODE: Optional write-off reason for account if Receivable Status is
“UNCOLLECTIBLE”.

BALANCEDATE: Date for current and past due balance calculations.
CURRENTBALANCE: Current balance as of balance date for account.
Attributes:
CURRENCY: Currency code for the current balance.
PASTDUEBALANCE: Past due balance as of balance date for account.
Attributes:
CURRENCY: Currency code for the past due balance.
LASTTXACTIONNO: Last transaction number for account.

17-16 Billing Component Installation and Configuration Guide, Volume 2

Deprecated Methods

Deprecated Methods

The following methods have been replaced by the Post Charge Or Credit and Cancel Charge Or
Credit methods (as appropriate). Although these methods are still supported, using the Post
Charge or Credit method with specified data as appropriate will produce the same results.

Post Service Charge
Description: Used to post charges (or credits) associated with a service plan for an individual
account.

Method Name: PostServiceCharge

Interface: IBilling

DLL Name: LSACCT.DLL

Program ID: LSACCT.Billing

Syntax:

HRESULT PostServiceCharge ([in] BSTR xmlDataSource,

[in] BSTR xmlAcctTrans) ;

Post Deferred Service Charge

Description: Used to post deferred charges (or credits) associated with a service plan for an
individual account.

Method Name: PostDeferredServiceCharge

Interface: IBilling

DLL Name: LSACCT.DLL

Program ID: LSACCT.Billing

Syntax:

HRESULT PostDeferredServiceCharge ([in] BSTR xmlDataSource,

[in] BSTR xmlAcctTrans) ;

Post Budget Service Charge
Description: Used to post actual service charges (or credits) against an account that is on budget
billing.

Method Name: PostBudgetServiceCharge
Interface: IBilling

DLL Name: LSACCT.DLL

Program ID: LSACCT.Billing

Syntax:

HRESULT PostBudgetServiceCharge ([in] BSTR xmlDataSource,
[in] BSTR xmlAcctTrans);

Post Budget Bill Charge

Description: Used to post the billed budget amount associated with a budget plan for an
individual account.

Method Name: PostBudgetBillCharge
Interface: IBilling
DLL Name: LSACCT.DLL

Oracle Utilities Receivables Component Billing Interface 17-17

Deprecated Methods

Program ID: LSACCT Billing
Syntax:
HRESULT PostBudgetBillCharge ([in] BSTR xmlDataSource,

[in] BSTR xmlAcctTrans);

Post Budget Bill Trueup
Description: Used to post a single true-up transaction charge or credit associated with a Budget
Plan for an individual account.

Method Name: PostBudgetBillTrueup

Interface: IBilling

DLL Name: LSACCT.DLL

Program ID: LSACCT Billing

Syntax:

HRESULT PostBudgetBillTrueup ([in] BSTR xmlDataSource,

[in] BSTR xmlAcctTrans);

Post Installment Charge
Description: Used to post a single installment charge transaction for an individual account.

Method Name: PostlnstallmentCharge

Interface: IBilling

DLL Name: LSACCT.DLL

Program ID: LSACCT Billing

Syntax:

HRESULT PostInstallmentCharge ([in] BSTR xmlDataSource,

[in] BSTR xmlAcctTrans) ;

Cancel Service Charge
Description: Used to cancel charges (or credits) associated with a service plan for an individual
account.

Method Name: CancelServiceCharge

Interface: IBilling

DLL Name: LSACCT.DLL

Program ID: LSACCT Billing

Syntax:

HRESULT CancelServiceCharge ([in] BSTR xmlDataSource,

[in] BSTR xmlAcctTrans) ;

Cancel Deferred Service Charge
Description: Used to cancel deferred charges (or credits) associated with a service plan for an
individual account.

Method Name: CancelDeferredServiceCharge
Interface: IBilling

DLL Name: LSACCT.DLL

Program ID: LSACCT Billing

17-18 Billing Component Installation and Configuration Guide, Volume 2

Deprecated Methods

Syntax:

HRESULT CancelDeferredServiceCharge ([in] BSTR xmlDataSource,
[in] BSTR xmlAcctTrans);

Cancel Budget Service Charge

Description: Used to cancel actual setvice charges (or credits) against an account that is on

budget billing.

Method Name: CancelBudgetServiceCharge
Interface: IBilling

DLL Name: LSACCT.DLL

Program ID: LSACCT.Billing

Syntax:

HRESULT CancelBudgetServiceCharge ([in] BSTR xmlDataSource,
[in] BSTR xmlAcctTrans) ;

Cancel Budget Bill Charge
Description: Used to cancel the billed budget amount associated with a budget plan for an
individual account.

Method Name: CancelBudgetBillCharge
Interface: IBilling

DLL Name: LSACCT.DLL

Program ID: LSACCT Billing

Syntax:

HRESULT CancelBudgetBillCharge ([in] BSTR xmlDataSource,
[in] BSTR xmlAcctTrans);

Cancel Budget Bill Trueup
Description: Used to cancel a single true-up transaction charge or credit associated with a Budget
Plan for an individual account.

Method Name: CancelBudgetBillTrueup
Interface: IBilling
Syntax:

HRESULT CancelBudgetBillTrueup ([in] BSTR xmlDataSource,
[in] BSTR xmlAcctTrans) ;

XML Examples

Post Service Charge
<TRANSACTION>

<ACCOUNT UID="338">
</ACCOUNT>
<TRANSACTIONID>300</TRANSACTIONID>
<CHARGEORCREDIT>CH</CHARGEORCREDIT>
<AMOUNT CURRENCY="USD">81</AMOUNT>
<BILLEDORPAIDDATE>2000-10-25</BILLEDORPAIDDATE>
<DUEDATE>2000-11-16</DUEDATE>
<RECEIVABLETYPE UID="2" NAME="ESCO ELECTRIC" />
<CHARGETYPE UID="177" NAME="ESCO ELECTRIC ENERGY CHARGE" />
<OPCOCODE>AGL</OPCOCODE>
<JURISCODE>GA</JURISCODE>

Oracle Utilities Receivables Component Billing Interface 17-19

Deprecated Methods

<SERVICEPLAN UID = "286">
</SERVICEPLAN>
</TRANSACTION>

Post Deferred Service Charge

<TRANSACTION>
<ACCOUNT UID="387"/>
<TRANSACTIONID>520</TRANSACTIONID>
<CHARGEORCREDIT>CH</CHARGEORCREDIT>
<AMOUNT CURRENCY="USD">50.00</AMOUNT>
<BILLEDORPAIDDATE>2000-10-02</BILLEDORPAIDDATE>
<DUEDATE>2000-10-02</DUEDATE>
<OPCOCODE>PPL</0OPCOCODE>
<JURISCODE>PA</JURISCODE>
<SERVICEPLAN UID="315">
</SERVICEPLAN>

</TRANSACTION>

Post Budget Service Charge

<TRANSACTION>
<ACCOUNT UID="387"></ACCOUNT>
<TRANSACTIONID>1105</TRANSACTIONID>
<REVENUEMONTH>2000-10-01</REVENUEMONTH>
<CHARGEORCREDIT>CH</CHARGEORCREDIT>
<AMOUNT CURRENCY="USD">100.00</AMOUNT>
<BILLEDORPAIDDATE>10/03/2000</BILLEDORPAIDDATE>
<DUEDATE>2000-10-13</DUEDATE>
<RECEIVABLETYPE UID="10" NAME="BUDGET BILLING"/>
<OPCOCODE>PPL</OPCOCODE>
<JURISCODE>PA</JURISCODE>
<SERVICEPLAN UID="315"/>
<BUDGETPLAN UID="27"/>

</TRANSACTION>

Post Budget Bill Charge

<TRANSACTION>
<ACCOUNT UID="387">
</ACCOUNT>
<TRANSACTIONID>1100</TRANSACTIONID>
<TRANSACTIONTIME>2000-10-03T00:00:01</TRANSACTIONTIME>
<REVENUEMONTH>2000-10-01</REVENUEMONTH>
<CHARGEORCREDIT>CH</CHARGEORCREDIT>
<AMOUNT CURRENCY="USD">100.00</AMOUNT>
<BILLEDORPAIDDATE>2000-10-03</BILLEDORPAIDDATE>
<DUEDATE>2000-10-13</DUEDATE>
<RECEIVABLETYPE UID="10" NAME="BUDGET BILLING"/>
<OPCOCODE>PPL</0OPCOCODE>
<JURISCODE>PA</JURISCODE>
<SERVICEPLAN UID="315"/>
<BUDGETPLAN UID="27"/>

</TRANSACTION>

Post Budget Bill Trueup
<TRANSACTION>

<ACCOUNT UID="387">
</ACCOUNT>
<TRANSACTIONID>1120</TRANSACTIONID>
<TRANSACTIONTIME>2000-10-03T00:00:01</TRANSACTIONTIME>
<REVENUEMONTH>2000-10-01</REVENUEMONTH>
<CHARGEORCREDIT>CR</CHARGEORCREDIT>
<AMOUNT CURRENCY="USD">200.00</AMOUNT>
<BILLEDORPAIDDATE>2000-10-03</BILLEDORPAIDDATE>
<DUEDATE>2000-10-13</DUEDATE>
<RECEIVABLETYPE UID="10" NAME="BUDGET BILLING"/>
<OPCOCODE>PPL</0OPCOCODE>
<JURISCODE>PA</JURISCODE>
<SERVICEPLAN UID="315"/>

17-20 Billing Component Installation and Configuration Guide, Volume 2

Deprecated Methods

<BUDGETPLAN UID="27"/>
</TRANSACTION>

Post Installment Charge

<TRANSACTION>
<ACCOUNT UID="338">
</ACCOUNT>
<TRANSACTIONID>1510</TRANSACTIONID>
<AMOUNT CURRENCY="USD">100.00</AMOUNT>
<BILLEDORPAIDDATE>10/03/2000</BILLEDORPAIDDATE>
<DUEDATE>10/13/2000</DUEDATE>

</TRANSACTION>

Cancel Service Charge
<TRANSACTION UID="1987" />

Note: The xmlAcctTrans arguments used for Cancel methods contains the
minimal information required to identify the transaction. They can also include
additional information as desired, such as Cancel Reason, Cancel Note, or other
information.

Cancel Deferred Service Charge
<TRANSACTION UID="631" />

Cancel Budget Service Charge
<TRANSACTION UID="1282" />

Cancel Budget Bill Charge
<TRANSACTION UID="637" />

Cancel Budget Bill Trueup
<TRANSACTION UID="644" />

Cancel Instaliment Charge
<TRANSACTION UID="1322" />

Oracle Utilities Receivables Component Billing Interface 17-21

Deprecated Methods

17-22 Billing Component Installation and Configuration Guide, Volume 2

Chapter 18

Oracle Utilities Receivables Component

Remittance Interface

This chapter describes the methods/functions available to extetnal systems through the Oracle
Utilities Receivables Component Remittance interface (IRemittance). These methods allow users
to perform a number of remittance functions available in the Remittance module of the Oracle

Utilities Receivables Component to Oracle Ultilities Billing Component from external systems.
These functions include the following:

Post/Cancel Payment

Process Batch Payment
Process Payment File
Process/Cancel AutoPayment

Batch AutoPayments.

See Chapter 7: Remittance for more information about these functions.

Oracle Utilities Receivables Component Remittance Interface 18-1

Methods, Interfaces, and Syntax

Methods, Interfaces, and Syntax

The methods, interface objects, and syntax for the Oracle Utilities Receivables Component

Remittance interface are as follows:

Post Payment
Description: Used to post payments at the account level.

Method Name: PostPayment

Interface: IRemittance

DLL Name: LSACCT.DLL

Program ID: LSACCT Remittance

Syntax:

HRESULT PostPayment ([in] BSTR xmlDataSource,

[in] BSTR xmlPayment) ;

Process Batch Payment

Description: Used to process batch payments containing one or more individual payments.

Method Name: ProcessBatchPayment
Interface: IRemittance

DLL Name: LSACCT.DLL
Program ID: LSACCT Remittance

Syntax:

HRESULT ProcessBatchPayment ([in] BSTR xmlDataSource,
[in] BSTR xmlBatchPayment) ;

Process Payment File

Description: Used to process payment files that contain one or more batch payments.

Method Name: ProcessPaymentFile
Interface: IRemittance

DLL Name: LSACCT.DLL
Program ID: LSACCT Remittance

Syntax:

HRESULT ProcessPaymentFile ([in] BSTR xmlDataSource,
[in] BSTR xmlPaymentFile);

Cancel Payment
Description: Used to cancel payments at the account level.

Method Name: CancelPayment
Interface: IRemittance

DLL Name: LSACCT.DLL
Program ID: LSACCT Remittance
Syntax:

HRESULT CancelPayment ([in] BSTR xmlDataSource,
[in] BSTR xmlPayment) ;

18-2 Billing Component Installation and Configuration Guide, Volume 2

Methods, Interfaces, and Syntax

Process AutoPayment

Description: Used to process an automatic payment for an account.

Method Name: ProcessAutoPayment

Interface: IRemittance

DLL Name: LSACCT.DLL

Program ID: LSACCT Remittance

Syntax:

HRESULT ProcessAutoPayment ([in] BSTR xmlDataSource,

Cancel AutoPayment

[in] BSTR xmlAcctBill);

Description: Used to cancel an automatic payment for an account.

Method Name: CancelAutoPayment

Interface: IRemittance

DLL Name: LSACCT.DLL

Program ID: LSACCT Remittance

Syntax:
HRESULT CancelAutoPayment ([in] BSTR xmlDataSource,
[in] BSTR xmlAcctBill);
Batch AutoPayments

Description: Used to group all pending automatic payments by payment source and forward

them to the appropriate outbound interface.

Method Name: BatchAutoPayments

Interface: IRemittance

DLL Name: LSACCT.DLL

Program ID: LSACCT Remittance

Syntax:

HRESULT BatchAutoPayments ([in] BSTR xmlDataSource) ;

Oracle Utilities Receivables Component Remittance Interface 18-3

Methods, Interfaces, and Syntax

Interface Arguments

The methods available in the Oracle Ultilities Receivables Component Remittance interface use the
following arguments:

xmiDataSource Argument
The xmlDataSource argument is an xml string that contains database connection and other related
information. A DTD, xml example, and data element descriptions for the xmlDataSource

argument can be found on page 15-7 in the Oracle Utilities Energy Information Platform Confignration
Guide.

xmlPayment Argument
The xmlPayment argument is an xml string that contains data necessaty to post a payment. A
DTD, xml example, and data element descriptions for the xmIPayment argument can be found on
page 18-5.

xmiBatchPayment Argument
The xmBatchlPayment argument is an xml string that contains data necessary to process a batch
payment. A DTD, xml example, and data element descriptions for the xmlBatchPayment
argument can be found on page 18-9.

xmlPaymentFile Argument
The xmlPaymentFile argument is an xml string that contains data necessary to process a payment
file. A DTD, xml example, and data element descriptions for the xmlIPaymentFile argument can be
found on page 18-11.

xmlAcctBill Argument
The xmlAcctBill argument is an xmlTransaction xml string containing the appropriate information
to process or cancel an automatic payment. A DTD and data element descriptions for this
argument can be found on page 16-6. An xml example for this argument can be found on page 18-

13.

18-4 Billing Component Installation and Configuration Guide, Volume 2

Input Values

Input Values

The Data Type Definition (DTD), an xml example, and data element descriptions used as input
values for the Oracle Utilities Receivables Component Remittance interface (IRemittance) are
provided below.

xmlIPayment

DTD - xmIPayment
<!DOCTYPE PAYMENT
[
<!ELEMENT PAYMENT (DEFAULTACCOUNTID, TRANSACTIONID?, REVENUEMONTH?,
NOTE?, ACCOUNTID?, SOURCECODE?, BATCHPAYMENT?, BATCHCANCEL?,
PAYMENTID?, DATE?, AMOUNT, METHODCODE?, INSTITUTION?, ACCOUNTNAME?,
ACCOUNTNO?, ACCOUNTZIP?, CHECKNO?, EXPDATE?, RTN?,
AUTOPAYMENTTIMESTAMP?, AUTOPAYMENTDATE?, BILLDATE?, INVOICEID?,
INVOICEDATE?, MISC1l?, MISC2?, MISC3?, CANCELREVENUEMONTH?,
CANCELREASONCODE?, CANCELNOTE?, POSTPENALTY?, UIDASSISTPROGRAM?,
ASSISTPROGRAMID? RELATEDTRANSACTIONS?)>
<!ATTLIST PAYMENT
UIDCDATA #IMPLIED>
APPLICATIONMETHOD (IMMEDIATE |
(INVOICEID]

(RECEIVABLETYPE |

<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ATTLIST

UIDCDATA

<!ELEMENT
<!ATTLIST

UIDCDATA

<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT

“IMMEDIATE” >
DEFAULTACCOUNTID (#PCDATA)>
TRANSACTIONID (#PCDATA)>
REVENUEMONTH (#PCDATA) >
NOTE (#PCDATA) >

ACCOUNTID (#PCDATA)>
SOURCECODE (#PCDATA) >
BATCHPAYMENT EMPTY>
BATCHPAYMENT

#IMPLIED>
BATCHCANCEL EMPTY>
BATCHCANCEL

#IMPLIED>
PAYMENTID (#PCDATA) >

DATE (#PCDATA) >

AMOUNT (#PCDATA) >
METHODCODE (#PCDATA) >
INSTITUTION (#PCDATA)>
ACCOUNTNAME (#PCDATA) >
ACCOUNTNO (#PCDATA) >
ACCOUNTZIP (#PCDATA)>
CHECKNO (#PCDATA) >
EXPDATE (#PCDATA) >
RIN (#PCDATA)>
AUTOPAYMENTTIMESTAMP
AUTOPAYMENTDATE
BILLDATE
INVOICEID
INVOICEDATE
MISC1

(#PCDATA) >
(#PCDATA) >
(#PCDATA) >

(#PCDATA) >

(#PCDATA) >
(#PCDATA) >
MISC2 (#PCDATA)>
MISC3 (#PCDATA)>
CANCELREVENUEMONTH
CANCELREASONCODE (#PCDATA) >
CANCELNOTE (#PCDATA) >
POSTPENALTY EMPTY>
UIDASSISTPROGRAM (CDATA)>

(#PCDATA) >

Oracle Utilities Receivables Component Remittance Interface 18-5

Input Values

<!ELEMENT ASSISTPROGRAMID (CDATA)>

<!ELEMENT RELATEDTRANSACTIONS
<!ELEMENT TRANSACTION EMPTY>
<IATTLIST TRANSACTION

UID CDATA #IMPLIED>
1>

XML Examples - xmIPayment
Single Payment

<PAYMENT>

(TRANSACTION) >

<DEFAULTACCOUNTID>9999999999</DEFAULTACCOUNTID>
<ACCOUNTID>RM-81568-IGNORE-AGE-2-REC-TYPES-CY01</ACCOUNTID>
<SOURCECODE>CHASE</SOURCECODE>
<PAYMENTID>PAYIDRM81568</PAYMENTID>

<DATE>2000-05-21</DATE>

<AMOUNT CURRENCY="USD">400.00</AMOUNT>
<METHODCODE>LOCKBOX</METHODCODE>
<CHECKNO>CHECKNORM81468</CHECKNO>

</PAYMENT>

Single Payment posted against a single charge transaction

<PAYMENT>

<DEFAULTACCOUNTID>9999999999</DEFAULTACCOUNTID>
<ACCOUNTID>RM-81568-IGNORE-AGE-2-REC-TYPES-CY01</ACCOUNTID>
<SOURCECODE>CHASE</SOURCECODE>
<PAYMENTID>PAYIDRM81568</PAYMENTID>
<DATE>2000-05-21</DATE>
<AMOUNT CURRENCY="USD">400.00</AMOUNT>
<METHODCODE>LOCKBOX</METHODCODE>
<CHECKNO>CHECKNORM81468</CHECKNO>
<RELATEDTRANSACTIONS>

<TRANSACTION UID="28668"/>
</RELATEDTRANSACTIONS>

</PAYMENT>

Single Payment posted against multiple charge transactions

<PAYMENT>

<DEFAULTACCOUNTID>9999999999</DEFAULTACCOUNTID>
<ACCOUNTID>RM-81568-IGNORE-AGE-2-REC-TYPES-CY01</ACCOUNTID>
<SOURCECODE>CHASE</SOURCECODE>
<PAYMENTID>PAYIDRM81568</PAYMENTID>
<DATE>2000-05-21</DATE>
<AMOUNT CURRENCY="USD">400.00</AMOUNT>
<METHODCODE>LOCKBOX</METHODCODE>
<CHECKNO>CHECKNORM81468</CHECKNO>
<RELATEDTRANSACTIONS>

<TRANSACTION UID="28655"/>

<TRANSACTION UID="28656"/>

<TRANSACTION UID="28657"/>
</RELATEDTRANSACTIONS>

</PAYMENT>

18-6 Billing Component Installation and Configuration Guide, Volume 2

Input Values

Element Descriptions - xmIPayment
The use of each individual attribute and element in the xmlPayment argument is described below.

Payment Attributes:

UID: Unique identifier for payment.
APPLICATIONMETHOD: Indicates credit application method.
Elements:

DEFAULTACCOUNTID: Default account identifier for payment. Used if actual account
identifier cannot be determined.

TRANSACTIONID: Transaction ID for payment. If not provided, the default Transaction ID
for the PYMNT Transaction Type will be used.

REVENUEMONTH: Optional revenue month for post payment. If not provided, the current
month will be used.

NOTE: Optional note associated with posted payment.
ACCOUNTID: Unique Account ID for payment.

SOURCECODE: Payment source code for payment.
BATCHPAYMENT: Batch payment from where this payment came.

Attributes:

UID: Unique identifier for batch payment. Required for posting and canceling.
BATCHCANCEL: Batch payment that cancelled this payment.

Attributes:

UID: Unique identifier for batch payment. Required for posting and canceling.
PAYMENTID: Unique ID for payment within batch or source.
DATE: Date of payment.

AMOUNT: Amount of payment. Required for posting and canceling.

Attributes:

CURRENCY: Currency code for the amount.
METHODCODE: Payment method code for payment.
INSTITUTION: Institution from which payment is drawn.
ACCOUNTNAME: Name on account.

ACCOUNTNO: Unique identifier of account within above institution.
ACCOUNTZIP: ZIP code of account.

CHECKNO: Check number for above account.

EXPDATE: Expiration date for credit card account.

RTN: Routing transit number for direct debit.

AUTOPAYMENTTIMESTAMP: Transaction time that associated auto payment record was
created.

AUTOPAYMENTDATE: Scheduled payment date of associated auto payment.
BILLDATE: Bill date of associated bill transaction when autopayments are used.
INVOICEID: Associated invoice Id for payment.

INVOICEDATE: Associated invoice date for payment.

Oracle Utilities Receivables Component Remittance Interface 18-7

Input Values

MISC1: Optional miscellaneous payment attribute.
MISC2: Optional miscellaneous payment attribute.
MISC3: Optional miscellaneous payment attribute.

CANCELREVENUEMONTH: Optional revenue month for cancelled payment. If not
provided, the current month will be used.

CANCELREASONCODE: Optional reason code for canceling payment.
CANCELNOTE: Optional note associated with cancelled payment.

POSTPENALTY: The existence of this element for a cancelled payment indicates that a penalty
should be posted.

UIDASSISTPROGRAM: The existence of this element indicates that the payment is an
Assistance Payment. Identifies which Assistance Program this Payment is associated with. If
provided, ASSISTPROGRAMID will be ignored.

ASSISTPROGRAMID: The existence of this element indicates that the payment is an Assistance
Payment. Identifies which Assistance Program this Payment is associated with.

RELATEDTRANSACTIONS: Element that contains one or more related charge transactions
against which the payment will be posted.

Elements:

TRANSACTION: Element containing a single related charge transaction against which the
payment will be posted.

Attributes:

UID: Unique ID for related charge transaction against which the payment will be
posted.

18-8 Billing Component Installation and Configuration Guide, Volume 2

Input Values

xmliBatchPayment

DTD - xmIBatchPayment

<!DOCTYPE BATCHPAYMENT
[
<!ELEMENT BATCHPAYMENT (DEFAULTACCOUNTID?, TRANSACTIONID?,
REVENUEMONTH?, SOURCECODE?, PAYMENTFILE?, DATE?, METHODCODE?,
NUMPAYMENTS?, AMOUNT?, CANCELREVENUEMONTH?, CANCELREASONCODE?,
CANCELNOTE?, POSTPENALTY?, MAXERRORS?, PAYMENT*)>
<!ATTLIST BATCHPAYMENT
UIDCDATA #IMPLIED
BATCHNO CDATA #IMPLIED
CANCEL{TRUE | FALSE } "FALSE"
RESTART (TRUE | FALSE) "FALSE">
<!ELEMENT DEFAULTACCOUNTID (#PCDATA)>
<!ELEMENT TRANSACTIONID (#PCDATA)>
<!ELEMENT REVENUEMONTH (#PCDATA)>
<!ELEMENT SOURCECODE (#PCDATA) >
<!ELEMENT PAYMENTFILE EMPTY>
<!ATTLIST PAYMENTFILE
NAMECDATA #IMPLIED>
<!ELEMENT DATE (#PCDATA)>
<!ELEMENT METHODCODE (#PCDATA) >
<!ELEMENT NUMPAYMENTS (#PCDATA) >
<!ELEMENT AMOUNT (#PCDATA)>
<!ELEMENT MAXERRORS (#PCDATA) >
<!ELEMENT CANCELREVENUEMONTH (#PCDATA) >
<!ELEMENT CANCELREASONCODE (#PCDATA) >
<!ELEMENT CANCELNOTE (#PCDATA) >
<!ELEMENT POSTPENALTY (#PCDATA)>
1>

XML Example - xmIBatchPayment
<BATCHPAYMENT BATCHNO="DVBATCHNO100" ISAUTOPAY="N">

<SOURCECODE>CHASE</SOURCECODE>

<DATE>2000-10-02</DATE>

<NUMPAYMENTS>2</NUMPAYMENTS>

<AMOUNT CURRENCY="USD">1168.50</AMOUNT>

<PAYMENT>
<DEFAULTACCOUNTID>9999999999</DEFAULTACCOUNTID>
<ACCOUNTID>PETER-TEST-ACCOUNT</ACCOUNTID>
<SOURCECODE>CHASE</SOURCECODE>
<PAYMENTID>PAYIDPTA100</PAYMENTID>
<DATE>2000-10-02</DATE>
<AMOUNT CURRENCY="USD">1100.00</AMOUNT>
<METHODCODE>LOCKBOX</METHODCODE>
<CHECKNO>CHECKNOPTA100</CHECKNO>

</PAYMENT>

<PAYMENT>
<DEFAULTACCOUNTID>9999999999</DEFAULTACCOUNTID>
<ACCOUNTID>BE-DARIA</ACCOUNTID>
<SOURCECODE>CHASE</SOURCECODE>
<PAYMENTID>PAYIDDV100</PAYMENTID>
<DATE>2000-10-02</DATE>
<AMOUNT CURRENCY="USD">68.50</AMOUNT>
<METHODCODE>LOCKBOX</METHODCODE>
<CHECKNO>CHECKNODV100</CHECKNO>

</PAYMENT>

</BATCHPAYMENT>

Oracle Utilities Receivables Component Remittance Interface 18-9

Input Values

Element Descriptions - xmiBatchPayment

The use of each individual attribute and element in the xmlBatchPayment argument is described
below.

Batch Payment Attributes:

UID: Unique identifier for batch payment.

BATCHNO: Unique number of batch payment within payment file or source.
CANCEL: Indicates that the batch should be processed in cancel mode.
RESTART: Indicates that the batch should be processed in restart mode.
Elements:

DEFAULTACCOUNTID: Optional default account ID for payments. Forwarded to individual
payments if not already provided.

TRANSACTIONID: Optional Transaction ID for payments. Forwarded to individual payments
if not already provided.

REVENUEMONTH: Optional revenue month for payments. Forwarded to individual
payments if not already provided.

SOURCECODE: Payment source code for batch. Required for processing. Forwarded to
individual payments if not already provided.

PAYMENTFILE: Payment file that the batch came from. Optional for processing.
Attributes:
NAME: Unique file path name of payment file.

DATE: Date of batch payment. Optional for processing. Forwarded to individual payments if
not already provided.

METHODCODE: Payment method code for batch. Optional for processing. Forwarded to
individual payments if not already provided.

NUMPAYMENTS: Total number of payments in the batch. Optional for processing.
AMOUNT: Total amount of all payments in the batch. Optional for processing,.
Attributes:
CURRENCY: Currency code for the amount.

CANCELREVENUEMONTH: Optional revenue month for cancelled payment. If not
provided then the current month will be used.

CANCELREASONCODE: Optional reason code for canceling payment.
CANCELNOTE: Optional note associated with cancelled payment.

POSTPENALTY: The existence of this element for a cancelled payment indicates that a penalty
should be posted.

MAXERRORS: Maximum number of payment errors allowed prior to stopping the process.
Optional for processing.

PAYMENT#*: Individual payments in the batch. Required for processing.

18-10 Billing Component Installation and Configuration Guide, Volume 2

Input Values

xmlIPaymentFile

DTD - xmIPaymentFile

<!DOCTYPE PAYMENTFILE
[
<!ELEMENT PAYMENTFILE (DEFAULTACCOUNTID?, TRANSACTIONID?,
REVENUEMONTH?, SOURCECODE?, DATE?, METHODCODE?, NUMBATCHES?,
NUMPAYMENTS?, AMOUNT?, CANCELREVENUEMONTH?, CANCELREASONCODE?,
CANCELNOTE?, POSTPENALTY?, MAXERRORS?, MAXERRORSPERBATCH?,
BATCHPAYMENT*) >
<!ATTLIST PAYMENTFILE
NAMECDATA #IMPLIED>
CANCEL (TRUE | FALSE) "FALSE">
RESTART (TRUE | FALSE) "FALSE">
<!ELEMENT DEFAULTACCOUNTID (#PCDATA)>
<!ELEMENT TRANSACTIONID (#PCDATA)>
<!ELEMENT REVENUEMONTH (#PCDATA)>
<!ELEMENT SOURCECODE (#PCDATA) >
<!ELEMENT DATE (#PCDATA)>
<!ELEMENT METHODCODE (#PCDATA) >
<!ELEMENT NUMBATCHES (#PCDATA) >
<!ELEMENT NUMPAYMENTS (#PCDATA) >
<!ELEMENT AMOUNT (#PCDATA) >
<!ELEMENT CANCELREVENUEMONTH (#PCDATA) >
<!ELEMENT CANCELREASONCODE (#PCDATA)>
<!ELEMENT CANCELNOTE (#PCDATA) >
<!ELEMENT POSTPENALTY (#PCDATA)>
<!ELEMENT MAXERRORS (#PCDATA) >
<!ELEMENT MAXERRORSPERBATCH (#PCDATA) >
1>

XML Example - xmIPaymentFile

<PAYMENTFILE NAME="F:\XMLSCRIPTS\REMITTANCE\DVPAYMENTFILE">
<SOURCECODE>CHASE</SOURCECODE>
<DATE>2000-10-02</DATE>
<METHODCODE>LOCKBOX</METHODCODE>
<NUMBATCHES>2</NUMBATCHES>
<NUMPAYMENTS>3</NUMPAYMENTS>
<AMOUNT CURRENCY="USD">300.00</AMOUNT>
<BATCHPAYMENT BATCHNO="RMBATCHNODV101"
<SOURCECODE>CHASE</SOURCECODE>
<PAYMENTFILE NAME="F:\XMLSCRIPTS\REMITTANCE\DVPAYMENTFILE">
<EMPTY/>
</PAYMENTFILE>
<DATE>2000-10-02</DATE>
<NUMPAYMENTS>1</NUMPAYMENTS>
<AMOUNT CURRENCY="USD">100.00</AMOUNT>
<PAYMENT>
<DEFAULTACCOUNTID>9999999999</DEFAULTACCOUNTID>
<ACCOUNTID>BE-DARIA</ACCOUNTID>
<SOURCECODE>CHASE</SOURCECODE>
<PAYMENTID>PAYIDDV101</PAYMENTID>
<DATE>2000-10-02</DATE>
<AMOUNT CURRENCY="USD">100.00</AMOUNT>
<METHODCODE>LOCKBOX</METHODCODE>
<CHECKNO>CHECKNODV101</CHECKNO>
</PAYMENT>
</BATCHPAYMENT>
<BATCHPAYMENT BATCHNO="RMBATCHNODV102"
<SOURCECODE>CHASE</SOURCECODE>
<PAYMENTFILE NAME="F:\XMLSCRIPTS\REMITTANCE\DVPAYMENTFILE">
<EMPTY/>
</PAYMENTFILE>

ISAUTOPAY="N">

ISAUTOPAY="N">

Oracle Utilities Receivables Component Remittance Interface 18-11

Input Values

<DATE>2000-10-02</DATE>

<NUMPAYMENTS>2</NUMPAYMENTS>

<AMOUNT CURRENCY="USD">200.00</AMOUNT>

<PAYMENT>
<DEFAULTACCOUNTID>9999999999</DEFAULTACCOUNTID>
<ACCOUNTID>PETER-TEST-ACCOUNT</ACCOUNTID>
<SOURCECODE>CHASE</SOURCECODE>
<PAYMENTID>PAYIDPTA101</PAYMENTID>
<DATE>2000-10-02</DATE>
<AMOUNT CURRENCY="USD">100.00</AMOUNT>
<METHODCODE>LOCKBOX</METHODCODE>
<CHECKNO>CHECKNOPTA101</CHECKNO>

</PAYMENT>

<PAYMENT>
<DEFAULTACCOUNTID>9999999999</DEFAULTACCOUNTID>
<ACCOUNTID>TRNSFR-TST-81760</ACCOUNTID>
<SOURCECODE>CHASE</SOURCECODE>
<PAYMENTID>PAYIDTT101</PAYMENTID>
<DATE>2000-10-02</DATE>
<AMOUNT CURRENCY="USD">100.00</AMOUNT>
<METHODCODE>LOCKBOX</METHODCODE>
<CHECKNO>CHECKNOTT101</CHECKNO>

</PAYMENT>

</BATCHPAYMENT>
</PAYMENTFILE>

Element Descriptions - xmIPaymentFile

Each of the data elements and attributes used by the xmlPaymentFile argument is described below.
Payment File Attributes:

NAME: Unique file path name of payment file. Required for processing.

CANCEL: Indicates that the file should be processed in cancel mode.

RESTART: Indicates that the batch should be processed in restart mode.

Elements:

DEFAULTACCOUNTID: Optional default account ID for batch payments. Forwarded to
individual batch payments if not already provided.

TRANSACTIONID: Optional Transaction ID for batch payments. Forwarded to individual
batch payments if not already provided.

REVENUEMONTH: Optional revenue month for batch payments. Forwarded to individual
batch payments if not already provided.

SOURCECODE: Required payment source code for the payment file. Forwarded to individual
batch payments if not already provided.

DATE: Optional date of payment file. Forwarded to individual batch payments if not already
provided.

METHODCODE: Optional payment method code for payment file. Forwarded to individual
batch payments if not already provided.

NUMBATCHES: Total number of batches in the file. Optional for processing.
NUMPAYMENTS: Total number of payments in the file. Optional for processing.

AMOUNT: Total amount of all payments (or batch payments) in the file. Optional for
processing.

Attributes:

CURRENCY: Currency code for the amount.

18-12 Billing Component Installation and Configuration Guide, Volume 2

Input Values

xmlAcctBill

CANCELREVENUEMONTH: Optional revenue month for cancelled payment. If not
provided then the current month will be used.

CANCELREASONCODE: Optional reason code for canceling payment.
CANCELNOTE: Optional note associated with cancelled payment.

POSTPENALTY: The existence of this element for a cancelled payment indicates that a penalty
should be posted.

MAXERRORS: Maximum number of batch payment errors allowed prior to stopping the
process. Optional for processing.

MAXERRORSPERBATCH: Maximum number of payment errors allowed per batch payment
prior to stopping the batch payment process. Forwarded to individual batch payments if not
already provided. Optional for processing.

BATCHPAYMENT#*: Individual batch payments in the file. Required for processing,.

XML Examples - xmlAcctBill

Process AutoPayment
<TRANSACTION UID="127">
<AMOUNT CURRENCY="USD">15.0000</AMOUNT>
<BILLEDORPAIDDATE>2000-06-14</BILLEDORPAIDDATE>
<TRANSACTIONTIME>2000-09-19T14:47:22</TRANSACTIONTIME>
</TRANSACTION>

Cancel AutoPayment
<TRANSACTION>
<UIDAUTOPAYPLAN>28</UIDAUTOPAYPLAN>
<CANCELTIME>2000-08-17T11:46:05</CANCELTIME>
<UIDTRANSACTION>967</UIDTRANSACTION>
</TRANSACTION>

Oracle Utilities Receivables Component Remittance Interface 18-13

Input Values

18-14 Billing Component Installation and Configuration Guide, Volume 2

Chapter 19

Oracle Utilities Receivables Component
Maintenance Interface

This chapter describes the methods/functions available to extetnal systems through the Oracle
Utilities Receivables Component Maintenance interface (IMaintenance). These methods allow
users to perform a number of maintenance functions available in the Maintenance module of the
Oracle Utilities Receivables Component to Oracle Utilities Billing Component from external
systems. These functions include the following:

* Post/Cancel Payment Transfer

* Post/Cancel Adjustment

e Post/Cancel Refund

* Post/Process Pending Refunds

* Process Time Voided Refunds

* Update Refund Status

e Post/Cancel Writeoff

e Write Off/Write On Account

* Post/Cancel Transaction

e Process Batch Transaction/Transaction File
e Post/Cancel Balance Transfer

e Transfer/Return Account Balance

See Chapter 8: Maintenance for more information about these functions.

Oracle Utilities Receivables Component Maintenance Interface 19-1

Methods, Interfaces, and Syntax

Methods, Interfaces, and Syntax

The methods, interface objects, and syntax for the Oracle Utilities Receivables Component
Maintenance interface are as follows:

Post Payment Transfer
Description: Used to post payment transfers between accounts.

Method Name: PostPaymentTransfer

Interface: IMaintenance

DLL Name: LSACCT.DLL

Program ID: LSACCT Maintenance

Syntax:

HRESULT PostPaymentTransfer ([in] BSTR xmlDataSource,

[in] BSTR xmlTransaction);

Cancel Payment Transfer
Description: Used to cancel payment transfers between accounts.

Method Name: CancelPaymentTransfer

Interface: IMaintenance

DLL Name: LSACCT.DLL

Program ID: LSACCT.Maintenance

Syntax:

HRESULT CancelPaymentTransfer ([in] BSTR xmlDataSource,

[in] BSTR xmlTransaction) ;

Post Adjustment

Description: Used to post an adjustment transaction credit or charge against an account.
Method Name: PostAdjustment

Interface: IMaintenance

DLL Name: LSACCT.DLL

Program ID: LSACCT.Maintenance

Syntax:

HRESULT PostAdjustment ([in] BSTR xmlDataSource,

[in] BSTR xmlTransaction) ;

Cancel Adjustment

Description: Used to cancel an adjustment transaction credit or charge against an account.
Method Name: CancelAdjustment

Interface: IMaintenance

DLL Name: LSACCT.DLL

Program ID: LSACCT Maintenance

Syntax:

HRESULT CancelAdjustment ([in] BSTR xmlDataSource,
[in] BSTR xmlTransaction) ;

19-2 Billing Component Installation and Configuration Guide, Volume 2

Methods, Interfaces, and Syntax

Post Refund

Description: Used to post a refund transaction charge against an account.
Method Name: PostRefund

Interface: IMaintenance

DLL Name: LSACCT.DLL

Program ID: LSACCT.Maintenance

Syntax:

HRESULT PostRefund ([in] BSTR xmlDataSource,
[in] BSTR xmlTransaction);

Cancel Refund
Description: Used to cancel a refund transaction charge against an account.

Method Name: CancelRefund
Interface: IMaintenance

DLL Name: LSACCT.DLL
Program ID: LSACCT.Maintenance
Syntax:

HRESULT CancelRefund ([in] BSTR xmlDataSource,
[in] BSTR xmlTransaction);

Post Pending Refunds
Description: Scans the Oracle Ultilities Data Repository for all closed accounts with an unapplied
credit, determines if the credit has been active on the account for the specified time period, and
creates a Refund record in the database.

Method Name: PostPendingRefunds

Interface: IMaintenance

DLL Name: LSACCT.DLL

Program ID: LSACCT Maintenance

Syntax:

HRESULT PostPendingRefunds ([in] BSTR xmlDataSource,

[in] BSTR xmlBatchRefund) ;

Process Pending Refunds
Description: Scans the Oracle Utilities Data Repository for all Refund records with a Status of
PENDING, converts them into the Batch Refund, and stores them in a user-defined file to be
used for issuing the refunds via checks.

Method Name: ProcessPendingRefunds
Interface: IMaintenance

DLL Name: LSACCT.DLL

Program ID: LSACCT Maintenance
Syntax:

HRESULT ProcessPendingRefunds ([in] BSTR xmlDataSource,
[in] BSTR xmlBatchRefund) ;

Oracle Utilities Receivables Component Maintenance Interface 19-3

Methods, Interfaces, and Syntax

Process Time Voided Refunds
Description: Scans the Oracle Utilities Data Repository for all Refund records with a Status of
ISSUED and determines whether the checks have been cashed before the void date.

Method Name: ProcessTimeVoidedRefunds

Interface: IMaintenance

DLL Name: LSACCT.DLL

Program ID: LSACCT.Maintenance

Syntax:

HRESULT ProcessTimeVoidedRefunds ([in] BSTR xmlDataSource,

[in] BSTR xmlBatchRefund) ;

Update Refund Status

Description: Updates records in the Oracle Utilities Data Repository with refund status
information.

Method Name: UpdateRefundStatus
Interface: IMaintenance

DLL Name: LSACCT.DLL
Program ID: LSACCT.Maintenance
Syntax:

HRESULT UpdateRefundStatus ([in] BSTR xmlDataSource,
[in] BSTR xmlBatchRefund) ;

Post Writeoff

Description: Used to post a writeoff transaction credit or charge against an account.
Method Name: PostWriteOff

Interface: IMaintenance

DLL Name: LSACCT.DLL

Program ID: LSACCT Maintenance

Syntax:

HRESULT PostWriteOff ([in] BSTR xmlDataSource,

[in] BSTR xmlTransaction);

Cancel Writeoff

Description: Used to cancel a writeoff transaction credit or charge against an account.
Method Name: CancelWriteOff

Interface: IMaintenance

DLL Name: LSACCT.DLL

Program ID: LSACCT Maintenance

Syntax:

HRESULT CancelWriteOff ([in] BSTR xmlDataSource,
[in] BSTR xmlTransaction) ;

19-4 Billing Component Installation and Configuration Guide, Volume 2

Methods, Interfaces, and Syntax

Writeoff Account
Description: Used to post a write-off transaction for each outstanding (balance > 0) previously
posted transaction for the account.

Method Name: WriteOffAccount

Interface: IMaintenance

DLL Name: LSACCT.DLL

Program ID: LSACCT.Maintenance

Syntax:

HRESULT WriteOffAccount ([in] BSTR xmlDataSource,

[in] BSTR xmlTransaction);

Writeon Account
Description: Used to to cancel all previous write-off transactions for the account.

Method Name: WriteOnAccount

Interface: IMaintenance

DLL Name: LSACCT.DLL

Program ID: LSACCT.Maintenance

Syntax:

HRESULT WriteOnAccount ([in] BSTR xmlDataSource,

[in] BSTR xmlTransaction);

Post Transaction
Description: Used to post a transaction of any type.

Method Name: PostTransaction

Interface: IMaintenance

DLL Name: LSACCT.DLL

Program ID: LSACCT Maintenance

Syntax:

HRESULT PostTransaction ([in] BSTR xmlDataSource,

[in] BSTR xmlTransaction);

Cancel Transaction
Description: Used to cancel a transaction of any type.

Method Name: CancelTransaction
Interface: IMaintenance

DLL Name: LSACCT.DLL
Program ID: LSACCT Maintenance
Syntax:

HRESULT CancelTransaction ([in] BSTR xmlDataSource,
[in] BSTR xmlTransaction) ;

Oracle Utilities Receivables Component Maintenance Interface 19-5

Methods, Interfaces, and Syntax

Process Batch Transaction
Description: Used to process batch transactions containing one or more individual transactions.

Method Name: ProcessBatchTransaction

Interface: IMaintenance

DLL Name: LSACCT.DLL

Program ID: LSACCT.Maintenance

Syntax:

HRESULT ProcessBatchTransaction ([in] BSTR xmlDataSource,

[in] BSTR xmlBatchTransaction);

Process Transaction File
Description: Used to process transaction files containing one or more batch transactions.

Method Name: ProcessTransactionFile

Interface: IMaintenance

DLL Name: LSACCT.DLL

Program ID: LSACCT.Maintenance

Syntax:

HRESULT ProcessTransactionFile ([in] BSTR xmlDataSource,

[in] BSTR xmlTransactionFile);

Post Balance Transfer
Description: Used to used transfer the balance of a single previously posted transaction from
one account to another.

Method Name: PostBalanceTransfer

Interface: IMaintenance

DLL Name: LSACCT.DLL

Program ID: LSACCT Maintenance

Syntax:

HRESULT PostBalanceTransfer ([in] BSTR xmlDataSource,

[in] BSTR xmlTransaction);

Cancel Balance Transfer
Description: Used to to cancel a previous balance transfer transaction.

Method Name: CancelBalanceTransfer
Interface: IMaintenance

DLL Name: LSACCT.DLL

Program ID: LSACCT Maintenance
Syntax:

HRESULT CancelBalanceTransfer ([in] BSTR xmlDataSource,
[in] BSTR xmlTransaction) ;

19-6 Billing Component Installation and Configuration Guide, Volume 2

Methods, Interfaces, and Syntax

Transfer Account Balance
Description: Used to post a balance transfer transaction for each outstanding (balance > 0)
previously posted transaction for the account.

Method Name: TransferAccountBalance

Interface: IMaintenance

DLL Name: LSACCT.DLL

Program ID: LSACCT.Maintenance

Syntax:

HRESULT TransferAccountBalance ([in] BSTR xmlDataSource,

[in] BSTR xmlTransaction);

Return Account Balance
Description: Used to cancel all previous balance transfer transactions for the account.

Method Name: ReturnAccountBalance
Interface: IMaintenance

DLL Name: LSACCT.DLL

Program ID: LSACCT.Maintenance
Syntax:

HRESULT ReturnAccountBalance ([in] BSTR xmlDataSource,
[in] BSTR xmlTransaction);

Oracle Utilities Receivables Component Maintenance Interface 19-7

Methods, Interfaces, and Syntax

Interface Arguments

The methods available in the Oracle Utilities Receivables Component Maintenance interface use
the following arguments:

xmiDataSource Argument
The xmlDataSource argument is an xml string that contains database connection and other related
information. A D'TD, xml example, and data element descriptions for this argument can be found
on page 15-7 in the Oracle Utilities Energy Information Platform Configuration Guide.

xmliTransaction Argument
The xmlTransaction argument is an xml string that contains data necessary to perform the
appropriate function. A DTD and data element descriptions for this argument can be found on
page 16-6. XML examples for this argument can be found on page 19-9.

xmiBatchRefund Argument
The xmlBatchRefund argument is an xml string that contains batch refund data. An xml schema
and data element descriptions for the xmIBatchRefund argument can be found on page 19-10.

xmlBatchTransaction Argument
The xmBatchlTransaction argument is an xml string that contains data necessary to process a
batch transaction. A DTD and data element descriptions for the xmlBatchTransaction argument
can be found on page 19-13.

xmlTransactionFile Argument
The xmlTransactionFile argument is an xml string that contains data necessaty to process a
transaction file. A D'TD and data element descriptions for the xmlTransactionFile argument can
be found on page 19-14.

19-8 Billing Component Installation and Configuration Guide, Volume 2

Input Values

Input Values

xmlTransaction

XML examples used as input values for the Oracle Utilities Receivables Component Maintenance
interface (IMaintenance) are provided below.

XML Examples - xmlTransaction

Post Payment Transfer

<TRANSACTION>
<ACCOUNT UID="357"/>
<RELATEDTRANSACTIONS>
<TRANSACTION UID="1772"/>
</RELATEDTRANSACTIONS>
</TRANSACTION>

Cancel Payment Transfer

<TRANSACTION UID="1742"/>

Note: The xmlITransaction arguments used for Cancel methods contains the
minimal information required to identify the transaction. They can also include
additional information as desired, such as Cancel Reason, Cancel Note, or other
information.

Post Adjustment

<TRANSACTION>
<ACCOUNT UID="361"/>
<CHARGEORCREDIT>CR</CHARGEORCREDIT>
<AMOUNT CURRENCY="USD">550.00</AMOUNT>
</TRANSACTION>

Cancel Adjustment

<TRANSACTION UID="1746"/>

Post Refund

<TRANSACTION>

<ACCOUNT UID="334"/>

<AMOUNT CURRENCY="USD">100.00</AMOUNT>
</TRANSACTION>

Cancel Refund

<TRANSACTION UID="1764"/>

Post WriteOff

<TRANSACTION>
<ACCOUNT UID="364"/>
<RELATEDTRANSACTION>"1743"</RELATEDTRANSACTION>
</TRANSACTION>

Cancel WriteOff

<TRANSACTION UID="1605"/>

WriteOff Account

<TRANSACTION>
<ACCOUNT UID="364"/>
</TRANSACTION>

Oracle Utilities Receivables Component Maintenance Interface 19-9

Input Values

WriteOn Account
<TRANSACTION>
<ACCOUNT UID="364"/>
</TRANSACTION>

Cancel Transaction
<TRANSACTION UID="1743"/>

Post Balance Transfer
<TRANSACTION>
<TRANSACTIONTYPE>BALTXFR</TRANSACTIONTYPE>
<ACCOUNT ACCOUNTID="12345"/>
<RELATEDTRANSACTIONS>
<TRANSACTION>
<ACCOUNT ACCOUNTID="98765"/>
</TRANSACTION>
</RELATEDTRANSACTIONS>
</TRANSACTION>

Cancel Balance Transfer
<TRANSACTION UID="1764"/>

Transfer Account Balance
<TRANSACTION>
<ACCOUNT UID="334"/>
</TRANSACTION>

Return Account Balance
<TRANSACTION>
<ACCOUNT UID="364"/>
</TRANSACTION>

xmiBatchRefund

XML Schema - xmiBatchRefund

<xsd:schema xmlns:xsd="http://www.w3.0rg/2000/08/XMLSchema">
<xsd:element name="BATCHREFUND" type="BATCHREFUNDTYPE" />
<xsd:complexType name="BATCHREFUNDTYPE">
<xsd:sequence>
<xsd:element name="REFUND" type="REFUNDTYPE" minOccurs="0"
maxOccurs="unbounded" />
<xsd:element name="RTN" type="xsd:string" minOccurs="0" maxOccurs="1"/>
<xsd:element name="INSTITUTION type="xsd:string" minOccurs="0"
maxOccurs="1"/>
<xsd:element name="LASTCHECKNO" type="xsd:integer" minOccurs="0"
maxOccurs="1"/>
</xsd:sequence>
<xsd:attribute name=" NUMREFUNDS " type="xsd:integer" use ="optional">
<xsd:attribute name=" TOTALAMOUNT " type="xsd:double" use ="optional"/>
<xsd:attribute name=" NUMERRORS " type="xsd:integer" use ="optional">
<xsd:attribute name=" MAXERRORS " type="xsd:integer" use ="optional">
<xsd:attribute name="REFUNDWAITDAYS" type="xsd:integer" use ="optional"/>
<xsd:attribute name="VOIDOFFSETDAYS" type="xsd:integer" use ="optional"/>
<xsd:attribute name="WRITEOFFREASONCODE" type="xsd:string" use
="optional"/>
<xsd:attribute name="FILENAME" type="xsd:string" use ="optional"/>
<xsd:attribute name="REFUNDREASONCODE" type="xsd:string" use ="optional"/>
<xsd:attribute name="ACCOUNTNO" type="xsd:string" use ="optional"/>
</xsd:complexType>
<xsd:complexType name=" REFUNDTYPE ">
<xsd:sequence>
<xsd:element name="ACCOUNTID" type="xsd:string"/>
<xsd:element name="UIDREFUND" type="xsd:integer"/>

19-10 Billing Component Installation and Configuration Guide, Volume 2

Input Values

<xsd:element name="UIDTRANSACTION" type="xsd:integer" minOccurs="0"
maxOccurs="1"/>

<xsd:element name="UIDACCOUNT" type="xsd:integer" minOccurs="0"
maxOccurs="1"/>

<xsd:element name="UIDCHECKINGACCOUNT" type="xsd:integer" minOccurs="0"
maxOccurs="1"/>

<xsd:element name="AMOUNT" type="xsd:double" minOccurs="0"
maxOccurs="1"/>

<xsd:element name="CHECKNO" type="xsd:integer" minOccurs="0"
maxOccurs="1"/>

<xsd:element name="ISSUEDATE" type="xsd:date" minOccurs="0"
maxOccurs="1"/>

<xsd:element name="CASHEDDATE" type="xsd:date" minOccurs="0"
maxOccurs="1"/>

<xsd:element name="REASON" type=" xsd:string" minOccurs="0"
maxOccurs="1"/>

<xsd:element name="STATUS" type="STATUSTYPE" minOccurs="0"

maxOccurs="1"/>
<xsd:element name="SENDTO" type="ADDRESS" minOccurs="0" maxOccurs="1"/>
</xsd:sequence>
</xsd:complexType>
<xsd:simpleType name=" STATUSTYPE ">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="ISSUED"/>
<xsd:enumeration value="CASHED"/>
<xsd:enumeration value="VOIDED"/>
</xsd:restriction>
</xsd:simpleType>
<xsd:complexType name="ADDRESS">
<xsd:sequence>

<xsd:element name="CUSTOMERNAME" type="xsd:string"/>

<xsd:element name="ADDRESS1" type="xsd:string"/>

<xsd:element name="ADDRESS2" type="xsd:string" minOccurs="0"
maxOccurs="1"/>

<xsd:element name="ADDRESS3" type="xsd:string" minOccurs="0"

maxOccurs="1"/>
<xsd:element name="CITY" type="xsd:string"/>
<xsd:element name="STATE" type="xsd:string"/>
<xsd:element name="COUNTY" type="xsd:string" minOccurs="0"
maxOccurs="1"/>
<xsd:element name="POSTALCODE" type="xsd:decimal"/>
</xsd:sequence>
<xsd:attribute name="COUNTRY" type="xsd:NMTOKEN" use="default" value="USA"/

</xsd:complexType>
</xsd: schema >

Element Descriptions - xmIBatchRefund
Batch Refund Attributes:

NUMREFUNDS: Total number of refunds processed in the file. This is an output attribute
TOTALAMOUNT: Total amount of all refunds processed in the file. This is an output attribute.
Attributes:
CURRENCY: Currency code for the amount.

NUMERRORS: Total number of errors occurred while refunds processing. This is an output
attribute

MAXERRORS: The maximum no of errors that are allowed. This is an optional input attribute
for UpdateRefundStatus process.

REFUNDWAITDAYS: The no of days the unapplied outstanding credit has to remain on a
closed account.This is a required input attribute for PostPendingRefunds process.

Oracle Utilities Receivables Component Maintenance Interface 19-11

Input Values

REFUNDREASONCODE: This is the reason code for which the refunds are being posted to
the REFUND table. This is an optional input attribute for PostPendingRefunds process.

FILENAME: The user specified fully qualified file name in which xmlBatchRefund will be
stored. This is an required input attribute for ProcessPendingRefunds process.

ACCOUNTNO: The financial institution's account no. This is a required input attribute for
ProcessPendingRefunds process.

VOIDOFFSETDAYS: The no of days after which the issued check would become void. This is a
required input attribute for ProcessTimeVoidedRefunds process.

WRITEOFFREASONCODE: The reason code for writing off the account. This is a required
input attribute for ProcessTimeVoidedRefunds process.

COUNTRY: The optional country name for the address. The default is USA.
Elements:
ACCOUNTID: Alternate identifier for account.
UIDREFUND: Alternate unique identifier for refund.
UIDTRANSACTION: Alternate unique identifier for refund transaction.
UIDACCOUNT: Alternate unique identifier for account.
UIDCHECKINGACCOUNT: Alternate unique identifier for checking account.
AMOUNT: The amount being refunded. This is a required input field when updating the status.
Attributes:
CURRENCY: Currency code for the amount.
CHECKNO: The Check number in the checking account.
ISSUEDATE: The date on which the check was issued.
CASHEDDATE: The date on which the check was cashed.
REASON: The description of the refund reason.

STATUS: The status of the refund. The allowed states are ISSUED, CASHED. This is a required
input field when updating the status.

CUSTOMERNAME: The name of the customer to whom the amount is being refunded.

ADDRESS1, ADDRESS2, and ADDRESS3: The house number, apartment number, and street
name of the customer.

CITY: The name of the town where the customer lives.
STATE: The state in which the city is located.
COUNTY: The county in which the city is located.

19-12 Billing Component Installation and Configuration Guide, Volume 2

Input Values

xmiBatchTransaction

DTD - xmlIBatchTransaction
<!DOCTYPE BATCHTRANSACTION
[
<!ELEMENT BATCHTRANSACTION (TRANSACTIONID?, REVENUEMONTH?,
TRANSACTIONFILE?, DATE?, NUMTRANSACTIONS?, AMOUNT?,
CANCELREVENUEMONTH?, CANCELREASONCODE?, CANCELNOTE?, MAXERRORS?,
TRANSACTIONY*) >
<!ATTLIST BATCHTRANSACTION
UIDCDATA #IMPLIED
BATCHNO CDATA #IMPLIED
CANCEL {TRUE | FALSE } "FALSE"
RESTART (TRUE | FALSE) "FALSE">
<!ELEMENT TRANSACTIONID (#PCDATA) >
<!ELEMENT REVENUEMONTH (#PCDATA) >
<!ELEMENT TRANSACTIONFILE EMPTY>
<!ATTLIST TRANSACTIONFILE
NAMECDATA #IMPLIED>
<!ELEMENT DATE (#PCDATA)>
<!ELEMENT NUMTRANSACTIONS (#PCDATA)>
<!ELEMENT AMOUNT (#PCDATA) >
<!ELEMENT CANCELREVENUEMONTH (#PCDATA) >
<!ELEMENT CANCELREASONCODE (#PCDATA)>
<!ELEMENT CANCELNOTE (#PCDATA) >
<!ELEMENT MAXERRORS (#PCDATA) >
1>

Element Descriptions - xmiBatchTransaction
Batch Transaction Attributes:

UID: Unique identifier for the transaction.

BATCHNO: Unique number of batch transaction within transaction file or source.
CANCEL: Indicates that the batch should be processed in cancel mode.
RESTART: Indicates that the batch should be processed in restart mode.
Elements:

TRANSACTIONID: Optional Transaction ID for transactions. Forwatrded to individual
transactions if not already provided.

REVENUEMONTH: Optional revenue month for transactions. Forwatded to individual
transactions if not already provided.

TRANSACTIONFILE: Transaction file from where batch came. Optional for processing.
Attributes:
NAME: Unique file path name of transaction file.
DATE: Date of batch transaction. Optional for processing.
NUMTRANSACTIONS: Total number of transactions in the batch. Optional for processing,.
AMOUNT: Total amount of all transactions in the batch. Optional for processing.
Attributes:
CURRENCY: Currency code for the amount.

CANCELREVENUEMONTH: Optional revenue month for cancelled transaction. If not
provided then the current month will be used.

Oracle Utilities Receivables Component Maintenance Interface 19-13

Input Values

xmlITransactionFile

CANCELREASONCODE: Optional reason code for canceling transaction.
CANCELNOTE: Optional note associated with cancelled transaction.

MAXERRORS: Maximum number of transaction errors allowed prior to stopping the process.
Optional for processing.

TRANSACTION*: Individual transactions in the batch. Required for processing,.

DTD - xmlITransactionFile

<!DOCTYPE TRANSACTIONFILE
[
<!ELEMENT TRANASCTIONFILE (TRANSACTIONID?, REVENUEMONTH?, DATE?,
NUMBATCHES?, NUMTRANSACTIONS?, AMOUNT?, CANCELREVENUEMONTH?,
CANCELREASONCODE?, CANCELNOTE?, MAXERRORS?, MAXERRORSPERBATCH?,
BATCHTRANSACTIONY*) >
<!ATTLIST TRANSACTIONFILE
NAMECDATA #IMPLIED
CANCEL{TRUE | FALSE} "FALSE"
RESTART (TRUE | FALSE) "FALSE">
<!ELEMENT TRANSACTIONID (#PCDATA)>
<!ELEMENT REVENUEMONTH (#PCDATA)>
<!ELEMENT DATE (#PCDATA)>
<!ELEMENT NUMBATCHES (#PCDATA) >
<!ELEMENT NUMTRANSACTIONS (#PCDATA)>
<!ELEMENT AMOUNT (#PCDATA) >
<!ELEMENT CANCELREVENUEMONTH (#PCDATA) >
<!ELEMENT CANCELREASONCODE (#PCDATA)>
<!ELEMENT CANCELNOTE (#PCDATA) >
<!ELEMENT MAXERRORS (#PCDATA)>
<!ELEMENT MAXERRORSPERBATCH (#PCDATA) >
1>

Element Descriptions - xmiITransactionFile

Transaction File Attributes:

NAME: Unique file path name of transaction file. Required for processing.
CANCEL: Indicates that the file should be processed in cancel mode.
RESTART: Indicates that the file should be processed in restart mode.
Elements:

TRANSACTIONID: Optional Transaction ID for batch transactions. Forwarded to individual
batch transactions if not already provided.

REVENUEMONTH: Optional revenue month for batch transactions. Forwarded to individual
batch transactions if not already provided.

DATE: Optional date of transaction file. Forwarded to individual batch transactions if not already
provided.

NUMBATCHES: Total number of batches in the file. Optional for processing.
NUMTRANSACTIONS: Total number of transactions in the file. Optional for processing.

AMOUNT: Total amount of all transactions (or batch transactions) in the file. Optional for
processing.

Attributes:

19-14 Billing Component Installation and Configuration Guide, Volume 2

Input Values

CURRENCY: Currency code for the amount.

CANCELREVENUEMONTH: Optional revenue month for cancelled transaction. If not
provided then the current month will be used.

CANCELREASONCODE: Optional reason code for canceling transaction.
CANCELNOTE: Optional note associated with cancelled transaction.

MAXERRORS: Maximum number of batch transaction errors allowed prior to stopping the
process. Optional for processing.

MAXERRORSPERBATCH: Maximum number of transaction errors allowed per batch
transaction prior to stopping the batch transactions process. Forwarded to individual batch
transactions if not already provided. Optional for processing.

BATCHTRANSACTION*: Individual batch transactions in the file. Required for processing.

Oracle Utilities Receivables Component Maintenance Interface 19-15

Input Values

19-16 Billing Component Installation and Configuration Guide, Volume 2

Chapter 20

Oracle Utilities Receivables Component
Collections Interface

This chapter describes the methods/functions available to extetnal systems through the Oracle
Utilities Receivables Component Collections Interface (ICollections) and the CollectionsObjects
interface. These methods allow users to review the status of collection arrangements from external
systems, and to create a process context for collections processes.

See Chapter 9: Collections for more information about these functions.

Oracle Utilities Receivables Component Collections Interface 20-1

Method, Interface, and Syntax

Method, Interface, and Syntax

The methods, interface objects, and syntax for the Oracle Utilities Receivables Component

Collections interface are as follows:

Review Collection Arrangement

Description: Used to periodically review the terms of a Collection Arrangement to make sure the

arrangement is not in DEFAULT.
Method Name: reviewColArrangement
Interface: IRemittance

DLL Name: LSACCT.DLL

Program ID: LSACCT Remittance
Syntax:

HRESULT reviewColArrangement ([in] BSTR xmlDataSource,

[in] BSTR xmlColArrangementIn) ;
[out, retval] BSTR xmlColArrangementOut) ;

Create Process Context

Description: Used to create process context values for collections processes initiated from

external systems.

Method Name: createProcessContext
Interface: CollectionObjects

DLL Name: CollectionObjects.DLL
Program ID: CollectionObjects.ProcessXML
Syntax:

HRESULT createProcessContext ([in] BSTR xmlDataSource,
[in] STR UIDProcess);
[in] STR UIDAccount) ;
[in] STR ContextVar) ;

[out, retval] BSTR xmlContext) ;

Collection Information

Description: Used to gather collections-related information for a specified account.

Method Name: CollectionInfo

Interface: CollectionObjects

DLL Name: CollectionObjects.DLL
Program ID: CollectionObjects.CollectionInfo
Syntax:

HRESULT CollectionInfo ([in] BSTR xmlDataSource,
[in] STR UIDAccount) ;
[out, retval] BSTR xmlCollInfo;

20-2 Billing Component Installation and Configuration Guide, Volume 2

Method, Interface, and Syntax

Collection History Insert
Description: Inserts a record in the Collection History Table.

Method Name: ColHistorylnsert

Interface: CollectionObjects

DLL Name: CollectionObjects.DLL

Program ID: CollectionObjects.ColHistorylnsert
Syntax:

HRESULT ColHistoryInsert ([in] BSTR xmlDataSource,
[in] BSTR xmlTransaction) ;
[out, retval] BSTR xmlTransactionOut) ;

Update Account Statuses
Description: Updates the Collections Status, Receiveable Status, or both values for a given
Account

Method Name: UpdateAccount

Interface: CollectionObjects

DLL Name: CollectionObjects.DLL

Program ID: CollectionObjects.UpdateAccount
Syntax:

HRESULT ColHistoryInsert ([in] BSTR xmlDataSource,
[in] BSTR xmlAccount) ;
[out, retval] BSTR xmlAccountOut) ;

Add Exemption
Description: Inserts an exemption into the Oracle Utlities Data Repository and triggers any
Collections processing that should occur based on this exemption being created. This includes
logging the activity to the Collection Object History table, suspending existing Workflow
processess if the exemption causes the account to no longer be past due, and posting the
necessary Workflow events to indicate an exemption has been created for the account. This
function mimics what occurs when a user adds an exemption using the Collection Exemptions
screens of the Oracle Utilities Receivables Component User Interface.

Method Name: Add

Interface: CollectionObjects

DLL Name: CollectionObjects.DLL
Program ID: CollectionObjects.Exemptions
Syntax:

HRESULT Add ([in] BSTR xmlDataSource,
[in] BSTR xmlExemptionIn) ;
[out, retval] BSTR xmlExemptionOut) ;

Oracle Utilities Receivables Component Collections Interface 20-3

Method, Interface, and Syntax

Edit Exemption
Description: Modifies the data elements of an existing exemption. Either the UID or the logical
key (Account (UID or ID), STARTDATE, and type) of the record that you wish to edit. In
addition to modifying the appropriate database record, all other required Collections activity will
be done as well. This includes checking to see if the account needs to be put in or taken out of
collections based on the modifications made, and finally notify the Workflow engine that a
modification has been made by posting the appropriate Workflow event type code. This function
mimics what occurs when a user edits an exemption using Collection Exemptions screens of the
Oracle Utilities Receivables Component User Interface.

Method Name: Edit

Interface: CollectionObjects

DLL Name: CollectionObjects.DLL
Program ID: CollectionObjects.Exemptions
Syntax:

HRESULT Edit ([in] BSTR xmlDataSource,
[in] BSTR xmlExemptionIn) ;
[out, retval] BSTR xmlExemptionOut) ;

Delete Exemption
Description: Deletes an exemption record. This method accepts either a UIDor the logical key of
the exemption to be deleted. Once the exemption is deleted, the appropriate Collections
processing occurs, including logging the action to the Collection Object History table for this
account, checking to see if deleting this exemption will cause the account to go back into
collections, and finally, notifying the workflow engine that this account has an exemption that has
been deleted. Unlike when an exemption is added or edited, this is done by starting a workflow
called Activity Event. This system workflow actually handles posting the workflow Activity Event
to ensure that this happens after all the Collections workflows have been resumed and can
propetly process this event. This function mimics what occurs when a user deletes an exemption
using the Collection Exemptions screens of the Oracle Ultilities Receivables Component User
Interface.

Method Name: Delete

Interface: CollectionObjects

DLL Name: CollectionObjects.DLL
Program ID: CollectionObjects.Exemptions

Syntax:

HRESULT Delete ([in] BSTR xmlDataSource,
[in] BSTR xmlExemptionIn) ;
[out, retval] BSTR xmlExemptionOut) ;

Add Arrangement
Description: Inserts an arrangement into the Oracle Utilities Data Repository and triggers any
Collections processing that should occur based on this arrangement being created. This includes
logging the activity to the Collection Object History table, suspending existing workflow
processess if the exemption created with the arrangement causes the account to no longer be past
due, creating arrangement payments, and posting the necessary workflow events to indicate an
exemption has been created for this account.This function mimics what occurs when a user adds
an exemption using the Collection Arrangements screens of the Oracle Utilities Receivables
Component User Interface.

Method Name: Add

Interface: CollectionObjects

20-4 Billing Component Installation and Configuration Guide, Volume 2

Method, Interface, and Syntax

DLL Name: CollectionObjects.DLL
Program ID: CollectionObjects.Arrangements
Syntax:

HRESULT Add ([in] BSTR xmlDataSource,
[in] BSTR xmlArrangementIn) ;
[out, retval] BSTR xmlArrangementOut) ;

Edit Arrangement
Description: Modifies the data elements of an already existing arrangement. Either the UID or
the logical key (Account (UID or ID), and STARTDATE) of of the arrangement that you wish to
edit. In addition to modifying the appropriate arrangement record, any other required Collections
activity will be done as well. This includes checking to see if the account needs to be put in or
taken out of collections based on the modifications made, or to resume the workflow if the
account is past due. This function mimics what occurs when a user edits an arrangement using
Collection Arrangements screens of the Oracle Utilities Receivables Component User Interface.

Method Name: Edit

Interface: CollectionObjects

DLL Name: CollectionObjects.DLL
Program ID: CollectionObjects. Arrangements
Syntax:

HRESULT Edit ([in] BSTR xmlDataSource,
[in] BSTR xmlArrangementIn) ;
[out, retval] BSTR xmlArrangementOut) ;

Delete Arrangement
Description: Deletes an arrangement. This method accepts either a UID or the logical key of an
arrangement to be deleted. Once the arrangement is deleted, the appropriate Collections
processing occurs, including logging the action to the Collection Object History table for this
account, checking to see if deleting the arrangement's exemption will cause the account to go back
into collections, and finally, notifying the workflow engine that this account has an exemption that
has been deleted. Unlike when an arrangement is added or edited, this is done by starting a
workflow called Activity Event. This system workflow actually handles posting the workflow
Activity Event to ensure that this happens after all the Collections workflows have been resumed
and can propetly process this event. This function mimics what occurs when a user deletes an
arrangement using the Collection Arrangements screens of the Oracle Utilities Receivables
Component User Interface.

Method Name: Delete

Interface: CollectionObjects

DLL Name: CollectionObjects.DLL
Program ID: CollectionObjects. Arrangements
Syntax:

HRESULT Delete ([in] BSTR xmlDataSource,
[in] BSTR xmlArrangementlIn);
[out, retval] BSTR xmlArrangementOut) ;

Oracle Utilities Receivables Component Collections Interface 20-5

Method, Interface, and Syntax

Update Arrangement Status
Description: Updates the status of an arrangement, and if desired, the status of the
arrangement's related exemption. This method accepts either a UID or the logical key of an
arrangement to be updated.

Method Name: UpdateStatus

Interface: CollectionObjects

DLL Name: CollectionObjects.DLL
Program ID: CollectionObjects. Arrangements
Syntax:

HRESULT UpdateStatus ([in] BSTR xmlDataSource,
[in] BSTR xmlArrangementIn) ;
[out, retval] BSTR xmlArrangementOut) ;

Add Payment
Description: Inserts an arrangement payment into the Oracle Utilities Data Repository and
triggers any Collections processing that should occur based on the modification to the
arrangement. This includes suspending existing workflow processess if the exemption created
with the arrangement causes the account to no longer be past due, resuming suspended processes,
and posting the necessary workflow events to indicate an exemption has been created for this
account. This function mimics what occurs when a user adds an arrangement payment using the
Collection Arrangements screens of the Oracle Ultilities Receivables Component User Interface.

Method Name: Add

Interface: CollectionObjects

DLL Name: CollectionObjects.DLL
Program ID: CollectionObjects.Payments
Syntax:

HRESULT Add ([in] BSTR xmlDataSource,
[in] BSTR xmlPaymentsIn);
[out, retval] BSTR xmlPaymentsOut) ;

Edit Payment
Description: Modifies the data elements of an already existing arrangement payment. Either the
UID or the logical key (Account (UID or ID), and STARTDATE) of the arrangement for whcih
you wish to edit the payment must be provided. In addition to modifying the appropriate database
record, all other required Collections activity will be done as well. This includes checking to see if
the account needs to be put in or taken out of collections based on the modifications made, or to
resume the workflow if the account is past due. This function mimics what occurs when a user
edits an arrangement payment using Collection Arrangements screens of the Oracle Utilities
Receivables Component User Interface.

Method Name: Edit

Interface: CollectionObjects

DLL Name: CollectionObjects.DLL
Program ID: CollectionObjects.Payments
Syntax:

HRESULT Edit ([in] BSTR xmlDataSource,
[in] BSTR xmlPaymentsIn);
[out, retval] BSTR xmlPaymentsOut) ;

20-6 Billing Component Installation and Configuration Guide, Volume 2

Method, Interface, and Syntax

Delete Payment
Description: Deletes an existing arrangement payment. This method accepts either a UID or the
logical key of the arrangement related to the payment to be deleted. Once the payment is deleted,
the appropriate Collections processing occurs. This includes checking to see if deleting the
payment will cause the account to go back into collections. This function mimics what occurs
when a user deletes an arrangement payment using the Collection Arrangements screens of the
Oracle Utilities Receivables Component User Interface.

Method Name: Delete

Interface: CollectionObjects

DLL Name: CollectionObjects.DLL
Program ID: CollectionObjects.Payments
Syntax:

HRESULT Delete ([in] BSTR xmlDataSource,
[in] BSTR xmlPaymentsIn) ;
[out, retval] BSTR xmlPaymentsOut) ;

Oracle Utilities Receivables Component Collections Interface 20-7

Method, Interface, and Syntax

Interface Arguments

The methods available in the Oracle Ultilities Receivables Component Collections interface use the
following arguments:

xmiDataSource Argument
The xmlDataSource argument is an xml string that contains database connection and other related
information. A D'TD, xml example, and data element descriptions for this argument can be found
on page 15-7 in the Oracle Utilities Energy Information Platform Configuration Guide.

xmiColArrangementin Argument
The xmlColArrangementln argument is an xml string that contains the information necessary to
identify a collections arrangement and associated payments. A DTD, xml example, and data
element descriptions for this argument can be found on page 20-10.

xmlColArrangementOut Argument
The xmlColArrangementOut argument is an xml string that contains return values from the
Review Collection Arrangement method. A DTD, xml example, and data element descriptions
for this argument can be found on page 20-17.

UIDProcess
The UIDProcess argument is the UID of the process that you are creating the context for. This
defines the context values to be created by the createProcessContext method.

UIDAccount

The UIDAccount argument is the UID of the account for which the collections process is being
initiated.

ContextVar
The ContextVar argument is a semi-colon delimited string value that contains the values needed
for any queries used to populate the context values created by the createProcessContext method.
If values are to be populated with literals, this argument defines how these literals are passed to the
function.

For example, to populate the process context for the Active/Inactive Collections processes, the
ContextVar value might be "UIDACCOUNT= 23;". For processes where the process begins at
the third activity in the process, the ContextVar might be "UIDACCOUNT=
23;ACTIVITYSTART=3=LITERAL".

In both examples, the UIDAccount is passed in as a value that is used to retrieve other values from
the Context Value and Process Context Value tables. In the second example, the
ACTIVITYSTART value is used as is in the ContextVar string because the string 'LITERAL' is
included after the actual ACTIVITYSTART value. This flexibility provides additional means for
dynamically creating process context xml strings with literal values, values from the database based
on parameters passed into the function, or a mixture of the two.

xmlContext
The xmlContext output is an xml string that contains context values based on the process
initiated. The specific elements in the xmlContext string are based on the records in the Context
Value and Process Context Value tables. See Chapter 12: Setting Up Workflow Management
Database Tables for more information about setting up and configuring these tables.

xmiCollinfo Argument
The xmlColllnfo argument is an xml string that contains return values from the Collection
Information method. An xml example of this argument can be found on page 20-17.

20-8 Billing Component Installation and Configuration Guide, Volume 2

Method, Interface, and Syntax

xmlTransaction Argument
The xmlTransaction argument is an xml string that contains data necessary to perform the
appropriate function. A DTD and data element descriptions for this argument can be found on
page 16-6.

xmliTransactionOut Argument
The xmlTransactionOut argument is an xml string that contains return values from the Collection
History Insert method. An xml example of this argument can be found on page 20-18.

xmlAccount Argument
The xmlAccount argument is an xml string that contains information about how the account is to
be updated. An xml example for this argument can be found on page 20-11.

xmlAccountOut Argument
The xmlAccountOut argument is an xml string that contains return values from the Update
Account Statuses method. An xml example of this argument can be found on page 20-18.

xmlExemptionin Argument
The xmlExemptionIn argument is an xml string that contains information about an exemption.
Xml examples and data element descriptions for this argument can be found on page 20-11.

xmlExemptionOut Argument
The xmlExemptionOut argument is an xml string that contains return values from the Add
Exemption, Edit Exemption, and Delete Exemption methods. Xml examples and data element
descriptions of this argument can be found on page 20-18.

xmlArrangementin Argument
The xmlArrangementln argument is an xml string that contains information about an
arrangement. Xml examples for this argument can be found on page 20-11.

xmlArrangementOut Argument
The xmlArrangementOut argument is an xml string that contains return values from the Add
Arrangement, Edit Arrangement, and Delete Arrangement methods. Xml examples of this
argument can be found on page 20-18.

xmlPaymentin Argument
The xmlPaymentln argument is an xml string that contains information about an arrangement
payment. Xml examples for this argument can be found on page 20-11.

xmlIPaymentOut Argument
The xmlPaymentOut argument is an xml string that contains return values from the Add Payment,
Edit Payment, and Delete Payment methods. Xml examples of this argument can be found on
page 20-18.

Oracle Utilities Receivables Component Collections Interface 20-9

Input Values

Input Values

The Data Type Definition (DTD), xml example, and data element descriptions for the input
values of the Oracle Utilities Receivables Component Collections interface are provided below.

xmlColArrangementin

DTD - xmlIColArrangementin
<!DOCTYPE COLARRANGEMENT
[
<!ELEMENT COLARRANGEMENT
(UIDCOLARRANGEMENT?, UIDACCOUNT?, STARTDATE?, STOPDATE?,
NUMPAYMENTS?, TOTALAMOUNT?, STATUSCODE?, MODTIME?, DOCTIME?,
COLARRANGEMENTPAYMENT+) >
<!ELEMENT UIDCOLARRANGEMEN (CDATA)>
<!ELEMENT UIDACCOUNT (CDATA)>
<!ELEMENT STARTDATE (CDATA)>
<!ELEMENT STOPDATE (CDATA)>
<!ELEMENT NUMPAYMENTS (CDATA)>
<!ELEMENT TOTALAMOUNT (CDATA) >
<!ELEMENT STATUSCODE (CDATA)>
<!ELEMENT MODTIME (CDATA)>
<!ELEMENT DOCTIME (CDATA)>
<!ELEMENT COMPLIANCETIME (CDATA)>
<!COLARRANGEMENTPAYMENT
(UIDCOLARRANGEMENT?, DUEDATE, DUEAMOUNT) >
<!ELEMENT UIDCOLARRANGEMENT (CDATA)>
<!ELEMENT DUEDATE (CDATA)>
<!ELEMENT DUEAMOUNT (CDATA) >
1>

XML Example - xmlColArrangementin
<COLARRANGEMENT>
<UIDACCOUNT>25571</UIDACCOUNT>
<STARTDATE>2001-05-05</STARTDATE>
<STOPDATE>2001-08-05</STOPDATE>
<NUMPAYMENTS>3</NUMPAYMENTS>
<TOTALAMOUNT CURRENCY="USD">300.00</TOTALAMOUNT>
<STATUSCODE>CURRENT</STATUSCODE>
<COMPLIANCEDATE>2001-08-05</COMPLIANCEDATE>
<COLARRANGEMENTPAYMENT>
<DUEDATE>2001-06-05</DUEDATE>
<DUEAMOUNT CURRENCY="USD">100.00</DUEAMOUNT>
</COLARRANGEMENTPAYMENT>
<COLARRANGEMENTPAYMENT>
<DUEDATE>2001-07-05</DUEDATE>
<DUEAMOUNT CURRENCY="USD">100.00</DUEAMOUNT>
</COLARRANGEMENTPAYMENT>
<COLARRANGEMENTPAYMENT>
<DUEDATE>2001-08-05</DUEDATE>
<DUEAMOUNT CURRENCY="USD">100.00</DUEAMOUNT>
</COLARRANGEMENTPAYMENT>
</COLARRANGEMENT>

Element Descriptions - xmiColArrangementin
The use of each individual attribute and element in the xmlColArrangement argument is described
below.

Elements:

UIDCOLARRANGEMENT: Optional Unique ID for the Collection Arrangement

20-10 Billing Component Installation and Configuration Guide, Volume 2

Input Values

UIDACCOUNT: Unique ID for the Account

STARTDATE: Start Date for the Collection Arrangement

STOPDATE: Stop Date for the Collection Arrangement

NUMPAYMENTS: Number of Payments associated with this Collection Arrangement.

TOTALAMOUNT: Total Amount of all Collection Arrangement Payments associated with this
Collection Arrangement.

Attributes:
CURRENCY: Currency code for the amount.

STATUSCODE: Status Code for the Collection Arrangement. Valid values for STATUSCODE
include CURRENT, DEFAULT, COMPLETE

MODTIME: Modification Date for the Collection Arrangement
DOCTIME: Optional Documentation Date for the Collection Arrangement
COMPLIANCEDATE: Optional Compliance Date to be used by reviewColArrangement().

COLARRANGEMENTPAYMENT: Payment Schedule Information for the Collection
Arrangement

Elements:

UIDCOLARRANGEMENT: Unique ID for the Collection Arrangement associated to the
payments.

DUEDATE: Due Date for the Collection Arrangement Payment
DUEAMOUNT: Due Amount for the Collection Arrangement Payment
Attributes:

CURRENCY: Currency code for the amount.

xmlAccount

XML Example - xmlAccount
<ACCOUNT>
<UIDACCOUNT>25571</UIDACCOUNT>
<UPDATETYPE>RECEIVABLE</UPDATETYPE>
<RECEIVABLESTATUS>COLLECTIONS</RECEIVABLESTATUS>
</ACCOUNT>

Oracle Utilities Receivables Component Collections Interface 20-11

Input Values

xmlExemptionin

XML Example - xmlIExemptionin - Add

<EXEMPTION SOURCE="LODESTAR CCS API">
<UIDACCOUNT>81</UIDACCOUNT>
<ACCOUNTID/>
<STARTDATE>01/05/2004</STARTDATE>
<STOPDATE/>
<COLEXEMPTYPECODE/>
<UIDCOLEXEMPTYPE/>
<NOTE/>
<EXEMPTIONSTATUS/>
<EXEMPTAMT/>

</EXEMPTION>

XML Example - xmlIExemptionin - Edit

<EXEMPTION SOURCE="LODESTAR CCS API">
<UIDACCOUNT>81</UIDACCOUNT>
<ACCOUNTID/>
<STARTDATE>01/05/2004</STARTDATE>
<NEWSTARTDATE />
<STOPDATE/>
<NEWCOLEXEMPTYPECODE />
<COLEXEMPTYPECODE/>
<NEWUIDCOLEXEMPTYPE/>
<UIDCOLEXEMPTYPE>1</UIDCOLEXEMPTYPE>
<NOTE/>
<EXEMPTIONSTATUS/>
<EXEMPTAMT/>

</EXEMPTION>

XML Example - xmIExemptionin - Delete

<EXEMPTION SOURCE="LODESTAR CCS API">
<UIDCOLEXEMPTION/>
<UIDACCOUNT>81</UIDACCOUNT>
<ACCOUNTID/>
<STARTDATE/>
<COLEXEMPTYPECODE />
<UIDCOLEXEMPTYPE/>

</EXEMPTION>

Element Descriptions - xmIExemptionin
The use of each individual attribute and element in the xmlExemptionIn argument is described
below.

Elements:
EXEMPTION: Root element that contains information about an exemption.
Attributes:

SOURCE: The value that will be logged to the Source column in the Collection Object
History table when this method is executed. If not provided it will default to “LODESTAR
CCS API”.

UIDACCOUNT: Unique ID of the account related to the exemption. Required if ACCOUNTID
not provided.

ACCOUNTID: Account ID of the account related to the exemption. Required if
UIDACCOUNT not provided.

STARTDATE: Date exemption is to start. Required

STOPDATE: Optional. If not provided this exemption will never expire

20-12 Billing Component Installation and Configuration Guide, Volume 2

Input Values

xmlArrangementin

COLEXEMPTYPECODE: Code for the exemption type, from the Exemption Type table in
the Oracle Utilities Data Repository. Required if no UUDCOLEXEMPTYPE is provided.

UIDCOLEXEMPTYPE: Unique ID of the exemption type, from the Exemption Type table in
the Oracle Utilities Data Repository. Required if no COLEXEMPTYPECODE is provided.

NOTE: Optional note, can be up to 254 characters in length.

EXEMPTIONSTATUS: Optional. The cutrent status of the exemption. Defaults to
“CURRENT” if not is provided. Valid statuses are “CURRENT” and “EXPIRED”.

EXEMPTAMT: Optional. The maximum amount that account will be exempt for. If left blank,
the account will be fully exempt and will never enter collections.

UIDCOLEXEMPTION: Unique ID of an existing exemption. Can be used with the Edit
Exemption and Delete Exemption methods. Required if the UIDACCOUNT or logical key
(comptised of ACCOUNTID, COLEXEMPTYPECODE or UIDCOLEXEMPTYPE, and
STARTDATE) are not provided.

NEWSTARTDATE: New start date for the exemption. Required to change the start time using
the Edit Exemption method.

NEWCOLEXEMPTYPECODE: Optional. New code for the exemption type, from the
Exemption Type table in the Oracle Utilities Data Repository. Required to change the exemption
type using the Edit Exemption method if no NEWUIDCOLEXEMPTYPE is provided.

NEWUIDCOLEXEMPTYPE: Optional. New unique ID the exemption type, from the
Exemption Type table in the Oracle Utilities Data Repository. Required to change the exemption
type using the Edit Exemption if no NEWCOLEXEMPTYPECODE is provided.

XML Example - xmlArrangementin - Add

<COLARRANGEMENTS SOURCE="LODESTAR CCS API">
<COLARRANGEMENT>
<UIDACCOUNT>200</UIDACCOUNT>
<STARTDATE>1/1/04</STARTDATE>
<NUMBEROFPAYMENTS>2</NUMBEROFPAYMENTS>
<FIRSTPAYMENTDATE>July 5, 2004</FIRSTPAYMENTDATE>
<TOTALAMOUNT>-500</TOTALAMOUNT>
<ARRANGEMENTTYPE>Collections Payment Plan</ARRANGEMENTTYPE>
<PAYMENTS>
<PAYMENT>
<DUEDATE>01/04/2004</DUEDATE>
<DUEAMOUNT>60</DUEAMOUNT>
</PAYMENT>
<PAYMENT>
<DUEDATE>1-5-04</DUEDATE>
<DUEAMOUNT>62</DUEAMOUNT>
</PAYMENT>
</PAYMENTS>
</COLARRANGEMENT>
</COLARRANGEMENTS>

XML Example - xmlArrangementin - Edit

<COLARRANGEMENTS SOURCE="LODESTAR CCS API">
<COLARRANGEMENT>

<ACCOUNTID>1234567</ACCOUNTID>
<STARTDATE>1/01/04</STARTDATE>
<NEWSTARTDATE>1/5/2004</NEWSTARTDATE>
<NUMBEROFPAYMENTS>3</NUMBEROFPAYMENTS>
<TOTALAMOUNT>500</TOTALAMOUNT>
<FIRSTPAYMENTDATE/>
<ARRANGEMENTTYPE>Collections Payment Plan</ARRANGEMENTTYPE>

Oracle Utilities Receivables Component Collections Interface 20-13

Input Values

</COLARRANGEMENT>
</COLARRANGEMENTS>

XML Example - xmlArrangementin - Delete
<COLARRANGEMENTS SOURCE="LODESTAR CCS API">
<COLARRANGEMENT>
<ACCOUNTID>1234567</ACCOUNTID>
<STARTDATE>1/5/04</STARTDATE>
</COLARRANGEMENT>
</COLARRANGEMENTS>

XML Example - xmlArrangementin - UpdateStatus
<COLARRANGEMENTS>
<COLARRANGEMENT>
<UIDCOLARRANGEMENT>23</UIDCOLARRANGEMENT>
<ARRANGEMENTSTATUS>CURRENT</ARRANGEMENTSTATUS>
</COLARRANGEMENT>
</COLARRANGEMENTS>

Element Descriptions - xmlArrangementin
The use of each individual attribute and element in the xmlArrangementln argument is described
below.

Elements:
COLARRANGEMENTS: Root element containing a COLARRANGEMENT element.
Attributes:

SOURCE: The value that will be logged to the Source column in the Collection Object
History table when this method is executed. If not provided it will default to “LODESTAR
CCS API”.

COLARRANGEMENT: Element containing a single arrangement. Note: Only one
COLARRANGEMENT element can be present.

UIDACCOUNT: Unique ID of the account related to the arrangement. Required if
ACCOUNTID not provided (unless UUDCOLARRANGEMENT is provided).

ACCOUNTID: Account ID of the account related to the arrangement. Required if
UIDACCOUNT not provided (unless UUDCOLARRANGEMENT is provided).

STARTDATE: Date arrangement is to start. Required for the Add Arrangement method.
Required for Edit Arrangement and Delete Arrangement methods, unless
UIDCOLARRANGEMENT is provided.

NUMBEROFPAYMENTS: The number of payments in the arrangement.

FIRSTPAYMENTDATE: Optional. The date on which the first payment in the arrangement is
due. If not provided, the default is the STARTDATE of the arrangement.

TOTALAMOUNT: Optional. The total amount of the arrangement. If not provided, the default
is the total collectible balance for the account.

ARRANGEMENTTYPE: The arrangement type, from the Arrangement Type table in the
Oracle Utilities Data Repository.

PAYMENTS: Optional. Element containing one or more arrangement payments. If specified,
specified payments atre created. If not provided, payments are automatically created based on the
FIRSTPAYMENTDATE, TOTALAMOUNT, and NUMBEROFPAYMENTS elements.

Elements:
PAYMENT: Element containing Due Date and Amount Due for a single payment.
DUEDATE: Due date for the payment.

20-14 Billing Component Installation and Configuration Guide, Volume 2

Input Values

DUEAMOUNT: Amount due for the payment.

UIDCOLARRANGEMENT: Unique ID of an existing arrangement. Can be used with the Edit
Arrangement and Delete Arrangement methods. Required if the UIDACCOUNT or logical key
(comprised of (ACCOUNTID or UIDACCOUNT) and STARTDATE) is not provided.

NEWSTARTDATE: New start date for the arrangement. Required to change the start time
using the Edit Arrangement method.

xmlIPaymentin

XML Example - xmIPaymentin - Add
<COLARRANGEMENTS LANGUAGE="ENU" SOURCE="LODESTAR CCS API">
<COLARRANGEMENT>
<UIDACCOUNT>200</UIDACCOUNT>
<STARTDATE>1/05/04</STARTDATE>
<PAYMENTS>
<PAYMENT>
<DUEDATE>6/25/2004</DUEDATE>
<DUEAMOUNT>2</DUEAMOUNT>
</PAYMENT>
<PAYMENT>
<DUEDATE>7/30/04</DUEDATE>
<DUEAMOUNT>35</DUEAMOUNT>
</PAYMENT>
</PAYMENTS>
</COLARRANGEMENT>
</COLARRANGEMENTS>

XML Example - xmIPaymentin - Edit
<COLARRANGEMENTS LANGUAGE="ENU" SOURCE="LODESTAR CCS API">
<COLARRANGEMENT>
<UIDCOLARRANGEMENT>1143</UIDCOLARRANGEMENT>
<PAYMENTS>
<PAYMENT>
<DUEDATE>6/25/2004</DUEDATE>
<NEWDUEDATE>6/27/04</NEWDUEDATE>
<DUEAMOUNT>90</DUEAMOUNT>
</PAYMENT>
<PAYMENT>
<DUEDATE>7/30/04</DUEDATE>
<DUEAMOUNT>95</DUEAMOUNT>
</PAYMENT>
</PAYMENTS>
</COLARRANGEMENT>
</COLARRANGEMENTS>

XML Example - xmIPaymentin - Delete
<COLARRANGEMENTS LANGUAGE="ENU" SOURCE="LODESTAR CCS API">
<COLARRANGEMENT>
<UIDACCOUNT>200</UIDACCOUNT>
<STARTDATE>1/05/04</STARTDATE>
<PAYMENTS>
<PAYMENT>
<DUEDATE>6/27/2004</DUEDATE>
</PAYMENT>
</PAYMENTS>
</COLARRANGEMENT>
</COLARRANGEMENTS>

Element Descriptions - xmIPaymentin
The use of each individual attribute and element in the xmlPaymentIn argument is described
below.

Oracle Utilities Receivables Component Collections Interface 20-15

Input Values

Elements:
COLARRANGEMENTS: Root element containing a COLARRANGEMENT element.
Attributes:

SOURCE: The value that will be logged to the Source column in the Collection Object
History table when this method is executed. If not provided it will default to “LODESTAR
CCS APT”.

COLARRANGEMENT: Element containing a single arrangement. Note: Only one
COLARRANGEMENT element can be present.

UIDACCOUNT: Unique ID of the account related to the arrangement. Required if
ACCOUNTID and STARTDATE or UIDCOLARRANGEMENT not provided.

ACCOUNTID: Account ID of the account related to the arrangement. Required if
UIDACCOUNT or UIDCOLARRANGEMENT not provided.

STARTDATE: Date arrangement is to start. Required if UIDACCOUNT or
UIDCOLARRANGEMENT not provided.

UIDCOLARRANGEMENT: Unique ID of an existing arrangement. Required if the
UIDACCOUNT or logical key (comprised of (ACCOUNTID or UIDACCOUNT) and
STARTDATE) is not provided.

PAYMENTS: Element containing one or more atrangement payments.
Elements:

PAYMENT: Element containing Due Date, Amount Due, and optional New Due Date for a
single payment.

Elements:
DUEDATE: Due date for the payment. Required.

DUEAMOUNT: Amount due for the payment. Required for the Add Payment
method, optional for the Edit Payment method.

NEWDUEDATE: New due date for the payment. Used with the Edit Payment
method.

20-16 Billing Component Installation and Configuration Guide, Volume 2

Return Values

Return Values

This section describes the data returned from the Oracle Ultilities Receivables Component
Collections interface.

xmlColArrangementOut

The DTD, and data elements for the xmlColArrangementOut argument are the same as the
xmlColArrangementln argument.

xmlContext

XML Example - xmIContext - Pass
<PROCESSINSTANCE>
<UID>1</UID>
<PROCESSVERSION>41</PROCESSVERSION>
<ACCOUNT>81</ACCOUNT>
<CONTEXT>
<JURISCODE>TX</JURISCODE>
<OPCOCODE>LODESTAR</OPCOCODE>
<REVENUECODE>R</REVENUECODE>
<SPCLHANDLECODE/>
</CONTEXT>
<STATUS>PASS</STATUS>
</PROCESSINSTANCE>

XML Example - xmiContext - Error
<PROCESSINSTANCE>
<UID>1</UID>
<PROCESSVERSION>41</PROCESSVERSION>
<ACCOUNT>81</ACCOUNT>
<CONTEXT>
<JURISCODE>TX</JURISCODE>
<OPCOCODE>LODESTAR</OPCOCODE>
<REVENUECODE>R</REVENUECODE>
<SPCLHANDLECODE/>
</CONTEXT>
<STATUS>
<ERRORS>
<ERROR NUMBER="91" DESC="Object variable or With block variable not set"
SOURCE="BuildXMLFrom">
<PARAMETERS>
<PARAMETER><! [CDATA[]]></PARAMETER>
<PARAMETER><! [CDATA[]]></PARAMETER>
</PARAMETERS>
</ERROR>
</ERRORS>
</STATUS>
</PROCESSINSTANCE>

xmlCollinfo

XML Example - xmiCollinfo
<COLLECTIONINFO>

<COLLECTIONSTATUS />
<RECEIVABLESTATUS>COLLECTIONS</RECEIVABLESTATUS>
<TOTALAMOUNTDUE>142</TOTALAMOUNTDUE>
<PASTDUEAMOUNT>142</PASTDUEAMOUNT>
<TOTALEXEMPTAMOUNT>42</TOTALEXEMPTAMOUNT>
<COLLECTABLEBALANCE>100</COLLECTABLEBALANCE>
<LASTPAYMENTDATE>10/01/2002</LASTPAYMENTDATE>

Oracle Utilities Receivables Component Collections Interface 20-17

Return Values

<LASTPAYMENTAMOUNT>50</LASTPAYMENTAMOUNT>
</COLLECTIONINFO>

xmliTransactionOut

XML Example - xmITransactionOut

<TRANSACTION>
<UIDACCOUNT>81</UIDACCOUNT>
<TYPE>TYPE</TYPE>
<NAME>NAME< /NAME>
<SOURCE>Test</SOURCE>
<MESSAGE>MESSAGE</MESSAGE>
<STATUS>PASS</STATUS>

</TRANSACTION>

xmlAccountOut

XML Example - xmlAccountOut

<ACCOUNT>
<UIDACCOUNT>81</UIDACCOUNT>
<COLLECTIONSTATUS>200</COLLECTIONSTATUS>
<RECEIVABLESTATUS />
<UPDATETYPE>BOTH</UPDATETYPE>
<STATUS>PASS</STATUS>

</ACCOUNT>

xmlIExemptionOut

XML Example - xmIExemptionOut - Pass

<EXEMPTION SOURCE="LODESTAR CCS API">
<UIDACCOUNT>81</UIDACCOUNT>
<ACCOUNTID/>
<STARTDATE>01/06/2004</STARTDATE>
<STOPDATE/>
<COLEXEMPTYPECODE/>
<UIDCOLEXEMPTYPE>1</UIDCOLEXEMPTYPE>
<NOTE>1</NOTE>
<EXEMPTIONSTATUS/>
<EXEMPTAMT/>
<STATUS>PASS</STATUS>

</EXEMPTION>

XML Example - xmIExemptionOut - Fail
<EXEMPTION SOURCE="LODESTAR CCS API">
<UIDACCOUNT>81</UIDACCOUNT>
<ACCOUNTID/>
<STARTDATE>01/05/2004</STARTDATE>
<STOPDATE/>
<COLEXEMPTYPECODE />
<UIDCOLEXEMPTYPE>1</UIDCOLEXEMPTYPE>
<NOTE>1</NOTE>
<EXEMPTIONSTATUS/>
<EXEMPTAMT />
<STATUS>ERROR</STATUS>
<ERRORS>
<ERROR NUMBER="429" DESC="ActiveX component can't create object"
SOURCE="CreateConnection">
<PARAMETERS>
<PARAMETER>
<DATASOURCE>
<NAME/>

20-18 Billing Component Installation and Configuration Guide, Volume 2

Return Values

<CONNECTSTRING>UID=otsedom; PWD=otsedom; DSN=vega</CONNECTSTRING>
<USERID>otsedom</USERID>
<PASSWORD>otsedom</PASSWORD>
<QUALIFIER>otsedom</QUALIFIER>
</DATASOURCE>
</PARAMETER>
</PARAMETERS>
</ERROR>
</ERRORS>
</EXEMPTION>

Element Descriptions - xmIExemptionOut
Data elements for the xmlExemptionOut argument are the same as the xmlExemptionln
argument, with the following additions.

Elements:
STATUS: The status of the operation. Can be either “PASS” or “ERROR”.
ERRORS: Element containing one or more individual errors, each within an ERROR element.
Elements:
ERROR: An individual error.
Attributes:
NUMBER: The error numbert.
SOURCE: The soutrce of the error.
Elements:

PARAMETERS: Element containing one or more parameters (each within a
PARAMETER element) defining specific parameters related to the error.

xmlArrangementOut

XML Example - xmlArrangementOut - Pass
<COLARRANGEMENTS LANGUAGE="ENU" SOURCE="LODESTAR CCS API">
<COLARRANGEMENT>
<UIDACCOUNT>200</UIDACCOUNT>
<STARTDATE>1/1/04</STARTDATE>
<NUMBEROFPAYMENTS>2</NUMBEROFPAYMENTS>
<FIRSTPAYMENTDATE>July 5, 2004</FIRSTPAYMENTDATE>
<TOTALAMOUNT>-500</TOTALAMOUNT>
<ARRANGEMENTTYPE>Collections Payment Plan</ARRANGEMENTTYPE>
<PAYMENTS>
<PAYMENT>
<DUEDATE>01/04/2004</DUEDATE>
<DUEAMOUNT>60</DUEAMOUNT>
</PAYMENT>
<PAYMENT>
<DUEDATE>1-5-04</DUEDATE>
<DUEAMOUNT>62</DUEAMOUNT>
</PAYMENT>
</PAYMENTS>
</COLARRANGEMENT>
<STATUS>PASS</STATUS>
</COLARRANGEMENTS>

XML Example - xmlArrangementOut - Fail
<COLARRANGEMENTS LANGUAGE="ENU" SOURCE="LODESTAR CCS API">
<COLARRANGEMENT>
<UIDACCOUNT>200</UIDACCOUNT>
<STARTDATE>1/1/04</STARTDATE>

Oracle Utilities Receivables Component Collections Interface 20-19

Return Values

<NUMBEROFPAYMENTS>2</NUMBEROFPAYMENTS>
<FIRSTPAYMENTDATE>July 5, 2004</FIRSTPAYMENTDATE>
<TOTALAMOUNT>-500</TOTALAMOUNT>
<ARRANGEMENTTYPE>Collections Payment Plan</ARRANGEMENTTYPE>
<PAYMENTS>
<PAYMENT>
<DUEDATE>01/04/2004</DUEDATE>
<DUEAMOUNT>60</DUEAMOUNT>
</PAYMENT>
<PAYMENT>
<DUEDATE>1-5-04</DUEDATE>
<DUEAMOUNT>62</DUEAMOUNT>
</PAYMENT>
</PAYMENTS>
</COLARRANGEMENT>
<STATUS>ERROR</STATUS>
<ERRORS>
<ERROR NUMBER="429" DESC="ActiveX component can't create object"
SOURCE="CreateConnection">
<PARAMETERS>
<PARAMETER>
<DATASOURCE>
<NAME />
<CONNECTSTRING>UID=otsedom; PWD=otsedom; DSN=vega</CONNECTSTRING>
<USERID>otsedom</USERID>
<PASSWORD>otsedom</PASSWORD>
<QUALIFIER>otsedom</QUALIFIER>
</DATASOURCE>
</PARAMETER>
</PARAMETERS>
</ERROR>
</ERRORS>
</COLARRANGEMENTS>

XML Example - xmlArrangementOut - UpdateStatus
<COLARRANGEMENTS>
<COLARRANGEMENT>
<UIDCOLARRANGEMENT>23</UIDCOLARRANGEMENT>
<ARRANGEMENTSTATUS>CURRENT</ARRANGEMENTSTATUS>
</COLARRANGEMENT>
<STATUS>PASS</STATUS>
</COLARRANGEMENTS>

Element Descriptions - xmlArrangementOut
Data elements for the xmlArrangementOut argument are the same as the xmlArrangementIn
argument, with the following additions.

Elements:
STATUS: The status of the operation. Can be either “PASS” or “ERROR”.
ERRORS: Element containing one or more individual errors, each within an ERROR element.
Elements:
ERROR: An individual error.
Attributes:
NUMBER: The error number.
SOURCE: The source of the error.
Elements:

PARAMETERS: Element containing one or more parameters (each within a
PARAMETER element) defining specific parameters related to the error.

20-20 Billing Component Installation and Configuration Guide, Volume 2

Return Values

xmlIPaymentOut

XML Example - xmIPaymentOut - Pass
<COLARRANGEMENTS LANGUAGE="ENU" SOURCE="LODESTAR CCS API">
<COLARRANGEMENT>
<UIDACCOUNT>200</UIDACCOUNT>
<STARTDATE>1/05/04</STARTDATE>
<PAYMENTS>
<PAYMENT>
<DUEDATE>6/25/2004</DUEDATE>
<DUEAMOUNT>2</DUEAMOUNT>
</PAYMENT>
<PAYMENT>
<DUEDATE>7/30/04</DUEDATE>
<DUEAMOUNT>35</DUEAMOUNT>
</PAYMENT>
</PAYMENTS>
</COLARRANGEMENT>
<STATUS>PASS</STATUS>
</COLARRANGEMENTS>

XML Example - xmIPaymentOut - Fail
<COLARRANGEMENTS LANGUAGE="ENU" SOURCE="LODESTAR CCS API">
<COLARRANGEMENT>
<UIDACCOUNT>200</UIDACCOUNT>
<STARTDATE>1/05/04</STARTDATE>
<PAYMENTS>
<PAYMENT>
<DUEDATE>6/25/2004</DUEDATE>
<DUEAMOUNT>2</DUEAMOUNT>
</PAYMENT>
<PAYMENT>
<DUEDATE>7/30/04</DUEDATE>
<DUEAMOUNT>35</DUEAMOUNT>
</PAYMENT>
</PAYMENTS>
</COLARRANGEMENT>
<STATUS>ERROR</STATUS>
<ERRORS>
<ERROR NUMBER="429" DESC="ActiveX component can't create object"
SOURCE="CreateConnection">
<PARAMETERS>
<PARAMETER>
<DATASOURCE>
<NAME/>
<CONNECTSTRING>UID=otsedom; PWD=otsedom; DSN=vega</CONNECTSTRING>
<USERID>otsedom</USERID>
<PASSWORD>otsedom</PASSWORD>
<QUALIFIER>otsedom</QUALIFIER>
</DATASOURCE>
</PARAMETER>
</PARAMETERS>
</ERROR>
</ERRORS>
</COLARRANGEMENTS>

Element Descriptions - xmIPaymentOut
Data elements for the xmIPaymentOut argument are the same as the xmlPaymentln argument,
with the following additions.

Elements:
STATUS: The status of the operation. Can be either “PASS” or “ERROR”.

ERRORS: Element containing one or more individual errors, each within an ERROR element.

Oracle Utilities Receivables Component Collections Interface 20-21

Return Values

Elements:

ERROR: An individual errot.
Attributes:
NUMBER: The error numbert.
SOURCE: The source of the error.
Elements:

PARAMETERS: Element containing one or more parameters (each within a
PARAMETER element) defining specific parameters related to the error.

20-22 Billing Component Installation and Configuration Guide, Volume 2

Chapter 21

Messaging Interface

This chapter describes the methods/functions available to external systems through the
Messaging interface (IMessage). These methods allow users to perform a number of messaging

functions available in the Messaging module from external systems. These functions include the
following:

Post Message
Peek Message
Remove Message
List Messages
Hold Message
Release Message
Close Message
Reopen Message
Reopen Message
Update Message

See Appendix C: Messaging for more information about these functions.

Messaging Interface 21-1

Methods, Interfaces, and Syntax

Methods, Interfaces, and Syntax

The methods, interface objects, and syntax for the Messaging interface are as follows:

Post Message
Description: Used to post a single message to zero or more message queues, based on the
message’s message type.

Method Name: Post
Interface: IMessage

DLL Name: LSDB.DLL
Program ID: LSDB.Message
Syntax:

HRESULT Post ([in] BSTR xmlDataSource,
[in] BSTR xmlMessageln,
[out, retval] BSTR* xmlMessageOut) ;

Peek Message
Description: Used to retrieve a single message from a single message queue.

Method Name: Peck
Interface: IMessage

DLL Name: LSDB.DLL
Program ID: LSDB.Message
Syntax:

HRESULT Peek([in] BSTR xmlDataSource,
[in] BSTR xmlMessageln,
[out, retval] BSTR* xmlMessageOut) ;

Remove Message
Description: Used to retrieve and remove a single message from a single message queue.

Method Name: Remove
Interface: IMessage

DLL Name: LSDB.DLL
Program ID: LSDB.Message
Syntax:

HRESULT Remove ([in] BSTR xmlDataSource,
[in] BSTR xmlMessageln,
[out, retval] BSTR* xmlMessageOut) ;

21-2 Billing Component Installation and Configuration Guide, Volume 2

Methods, Interfaces, and Syntax

List Message
Description: Used to retrieve a list of messages from a single message queue.

Method Name: List
Interface: IMessage

DLL Name: LSDB.DLL
Program ID: LSDB.Message
Syntax:

HRESULT List([in] BSTR xmlDataSource,
[in] BSTR xmlMessageListIn,
[out, retval] BSTR* xmlMessageListOut) ;

Hold Message
Description: Used to hold a message in a work queue in order to prevent two or more people
from working on the same work queue item at the same time.

Method Name: Hold
Interface: IMessage

DLL Name: LSDB.DLL
Program ID: LSDB.Message

Syntax:

HRESULT Hold([in] BSTR xmlDataSource,
[in] BSTR xmlMessageln,
[out, retval] BSTR* xmlMessageOut) ;

Release Message
Description: Used to release a previously held message.

Method Name: Rel
Interface: IMessage

DLL Name: LSDB.DLL
Program ID: LSDB.Message
Syntax:

HRESULT Rel ([in] BSTR xmlDataSource,
[in] BSTR xmlMessageln,
[out, retval] BSTR* xmlMessageOut) ;

Close Message
Description: Used to close a previously held message.

Method Name: Close
Interface: IMessage

DLL Name: LSDB.DLL
Program ID: LSDB.Message
Syntax:

HRESULT Close([in] BSTR xmlDataSource,
[in] BSTR xmlMessageln,
[out, retval] BSTR* xmlMessageOut) ;

Messaging Interface 21-3

Methods, Interfaces, and Syntax

Reopen Message
Description: Used to reopen a previously closed message.

Method Name: Reopen
Interface: IMessage

DLL Name: LSDB.DLL
Program ID: LSDB.Message
Syntax:

HRESULT Reopen ([in] BSTR xmlDataSource,
[in] BSTR xmlMessageln,
[out, retval] BSTR* xmlMessageOut) ;

Update Message

Description: Used to update the note or data fields of a message.
Method Name: Update

Interface: IMessage

DLL Name: LSDB.DLL

Program ID: LSDB.Message

Syntax:

HRESULT Update ([in] BSTR xmlDataSource,
[in] BSTR xmlMessageln,
[out, retval] BSTR* xmlMessageOut) ;

21-4 Billing Component Installation and Configuration Guide, Volume 2

Methods, Interfaces, and Syntax

Interface Arguments

The methods available in the Messaging interface use the following arguments:

xmiDataSource Argument
The xmlDataSource argument is an xml string that contains database connection and other related
information. A D'TD, xml example, and data element descriptions for this argument can be found
on page 15-7 in the Oracle Utilities Energy Information Platform Configuration Guide.

xmlMessageln Argument
The xmlMessageln argument is an xml string that contains the parameters for a specific message.
A DTD, xml example, and data element descriptions for this argument can be found on page 21-6.

xmiMessageOut Argument
The xmlMessageOut argument is an xml string that contains return values from the appropriate
Message function. A DTD, xml example, and data element descriptions for this argument can be
found on page 21-10.

xmlMessageListin Argument
The xmlMessageListIn argument is an xml string that contains the parameters for a list of
messages. A DTD, xml example, and data element descriptions for this argument can be found on
page 21-8. This argument is used by the List Messages function only.

xmlMessageListOut Argument
The xmIMessageListOut argument is an xml string that contains return values from the List
Messages function. A DTD, xml example, and data element descriptions for this argument can be
found on page 21-10. This argument is used by the List Messages function only.

Messaging Interface 21-5

Input Values

Input Values

The Data Type Definition (DTD), an xml example, and data element descriptions used as input
values for the Messaging interface (IMessage) are provided below.

xmlIMessagein

DTD - xmIMessageln
<!DOCTYPE MESSAGE
[
<!ELEMENT MESSAGE (TYPECODE, POSTEDTIME?, SCHEDULEDTIME?, SOURCE?,
POSTEDBYUSERID?, PROCESSEDBYUSERID?, CLOSEDTIME?, OPCOCODE?,
JURISCODE?, UIDACCOUNT?, ACCOUNTID?, AMOUNT?, NOTE?, FILENAME?,
DATA?) >
<!ATTLIST MESSAGE
QUEUECODECDATA #IMPLIED
UIDCDATA #IMPLIED>
STATE (OPEN | HELD | CLOSED) “OPEN">
<!ELEMENT TYPECODE (#PCDATA)>
<!ELEMENT POSTEDTIME (#PCDATA)>
<!ELEMENT SCHEDULEDTIME (#PCDATA)>
<!ELEMENT SOURCE (#PCDATA) >
<!ELEMENT POSTEDBYUSERID (#PCDATA)>
<!ELEMENT PROCESSEDBYUSERID (#PCDATA)>
<!ELEMENT CLOSEDTIME (#PCDATA)>
<!ELEMENT OPCOCODE (#PCDATA) >
<!ELEMENT JURISCODE (#PCDATA)>
<!ELEMENT UIDACCOUNT (#PCDATA)>
<!ELEMENT ACCOUNTID (#PCDATA)>
<!ELEMENT AMOUNT (#PCDATA)>
<!ELEMENT NOTE (#PCDATA)>
<!ELEMENT FILENAME (#PCDATA)>
<!ELEMENT DATA (DATAROOTNODE) >
1>

XML Examples - xmIMessageln

Post Message
<MESSAGE>
<TYPECODE>WORKQUEUE</TYPECODE>
<DATA/>
</MESSAGE>

Peek Message
<MESSAGE QUEUECODE="WORKQUEUE" UID="48" />

Note: The xmIMessageln arguments used for the Peek, Remove, Hold,
Release, Close, and Reopen methods contain the minimal information required
to identify the message. They can also include additional information as
desired.

Remove Message
<MESSAGE QUEUECODE="WORKQUEUE" UID="48" />

Hold Message
<MESSAGE QUEUECODE="WORKQUEUE" UID="48" >
<PROCESSEDBYUSERID>userl</PROCESSEDBYUSERID>
<CLOSEDTIME>2000-01-01T10:53:54</CLOSEDTIME>
</MESSAGE>

21-6 Billing Component Installation and Configuration Guide, Volume 2

Input Values

Release Message

<MESSAGE QUEUECODE="WORKQUEUE" UID="48" >
<PROCESSEDBYUSERID>user1</PROCESSEDBYUSERID>
<CLOSEDTIME>2000-01-01T10:53:54</CLOSEDTIME>
</MESSAGE>

Close Message

<MESSAGE QUEUECODE="WORKQUEUE" UID="48" >
<PROCESSEDBYUSERID>userl</PROCESSEDBYUSERID>
<CLOSEDTIME>2000-01-01T10:53:54</CLOSEDTIME>
</MESSAGE>

Reopen Message

<MESSAGE QUEUECODE="WORKQUEUE" UID="48" >
<PROCESSEDBYUSERID>user1</PROCESSEDBYUSERID>
<CLOSEDTIME>2000-01-01T10:53:54</CLOSEDTIME>
</MESSAGE>

Element Descriptions - xmiMessageln

Each of the data elements used by the xmIMessageln argument is described below.
Elements:
TYPECODE: Associated message type.
POSTEDTIME: Time the message was posted.
SCHEDULEDTIME: Time the message was scheduled to be handled (for appropriate message
types)
SOURCE: Soutce of the message.
POSTEDBYUSERID: User ID of user who posted the message.
PROCESSEDBYUSERID: User ID of user who processed the message.
CLOSEDTIME: Time the message was closed.
OPCOCODE: Associated operating company.
JURISCODE: Associated jurisdiction.
UIDACCOUNT: Unique ID of account associated with the message.
ACCOUNTID: Account ID of account associated with the message.
AMOUNT: Amount of transaction associated with the message.
Attributes:
CURRENCY: Currency code for the amount.
NOTE: Optional note associated with the message.
FILENAME: Indicates the name of an associated file with additional XML data for the message.
DATA: Message data.

Messaging Interface 21-7

Input Values

xmlMessageListin

DTD - xmIMessageL.istin

<!DOCTYPE MESSAGELIST

[

<!ELEMENT MESSAGELIST (TYPECODE?, STARTTIME?, STOPTIME?, OPCOCODE?,

JURISCODE?, UIDACCOUNT?, ACCOUNTID?, SORTBY?, LIST?)>

<!ATTLIST MESSAGELIST
QUEUECODECDATA #REQUIRED
PAGESIZECDATA #IMPLIED
PAGENOCDATA #IMPLIED >

<!ELEMENT TYPECODE (#PCDATA) >

<!ELEMENT STARTTIME (#PCDATA)>

<!ELEMENT STOPTIME (#PCDATA)>

<!ELEMENT OPCOCODE (#PCDATA) >

<!ELEMENT JURISCODE (#PCDATA)>

<!ELEMENT UIDACCOUNT (#PCDATA)>

<!ELEMENT ACCOUNTID (#PCDATA)>

<!ELEMENT SORTBY EMPTY>

<!ATTLIST SORTBY
MESSAGETYPECODE (ASC | DESC) #IMPLIED
SOURCE (ASC | DESC) #IMPLIED
POSTEDBYUSERID (ASC | DESC) #IMPLIED
PROCESSEDBYUSERID (ASC | DESC)#IMPLIED
OPCOCODE (ASC | DESC) #IMPLIED
JURISCODE (ASC | DESC) #IMPLIED
ACCOUNTID (ASC | DESC) #IMPLIED
AMOUNT (ASC | DESC) #IMPLIED>

<!ELEMENT LIST (MESSAGE¥*)>

1>

XML Example - xmiMessageListin
<MESSAGELIST QUEUECODE="CONTROL">
<TYPECODE/>
<OPCOCODE/ >
<JURISCODE/>
<UIDACCOUNT/>
</MESSAGELIST>

Element Descriptions - xmIMessageListin
Each of the data elements used by the xmlIMessageListIn argument is described below.

MessageList Attributes:
QUEUECODE: Associated message queue code for the message list.

PAGESIZE /PAGENO: Specify a limited number of messages to be returned starting at the
specified page number given the specified page size.

Elements:

TYPECODE: Associated message type.

STARTTIME: Start time of messages to be included in list.
STOPTIME: Stop time of messages to be included in list.
OPCOCODE: Associated operating company.

JURISCODE: Associated jurisdiction.

UIDACCOUNT: Unique ID of account associated with the message.
ACCOUNTID: Account ID of account associated with the message.

21-8 Billing Component Installation and Configuration Guide, Volume 2

Input Values

SORTBY: Attributes indiciating how messages in the list are to be sorted.
Attributes:
TYPECODE: Associated message type
SOURCE: Source of message
POSTEDBYUSERID: User ID of user who posted the message.
PROCESSEDBYUSERID: User ID of user who processed the message.
OPCOCODE: Associated operating company.
JURISCODE: Associated jurisdiction.
UIDACCOUNT: Unique ID of account associated with the message.
ACCOUNTID: Account ID of account associated with the message.
AMOUNT: Amount of transaction associated with the message.

Attributes:

CURRENCY: Currency code for the amount.

Messaging Interface 21-9

Return Values

Return Values

The data returned from the Messaging interfaces is desctibed in the following DTD, xml example,
and data element descriptions.

xmlMessageOut/xmIMessageListOut

DTD - xmIMessageOut/xmIMessageListOut

The DTDs for the MessageOut and MessageListOut arguments are the same as the Messageln
and MessageListln arguments.

Element Descriptions - xmiMessageOut/xmIMessageListOut
The data elements for the MessageOut argument are the same as the Messageln argument with
the following additional attributes:

Message Attributes:
QUEUECODE: Associated message queue code for the message.
UID: Unique ID of the message.

The data elements for the MessageListOut arguments are the same as the MessageListIn
argument.

21-10 Billing Component Installation and Configuration Guide, Volume 2

Part Four

Workflow Management Interfaces

Part Four describes the COM interfaces available with the workflow management functionality of
Oracle Ultilities Billing Component, and contains the following chapters:

e Chapter 22: Workflow Management Activity Implementations Interface
* Chapter 23: Workflow Management Process Versions Interface

* Chapter 24: Workflow Management Process Instance Interface

Chapter 22

Workflow Management Activity Implementations
Interface

This chapter describes the methods/functions available to extetnal systems through the Activity
Implementation interface (IActivityImplementation). These methods allow users to create and
maintain Activity Implementations used by Workflow Management from external systems. These
functions include the following:

* Insert

* Update
* Delete
* Select

e List

See Chapter 23: Workflow Activity Implementations in the Oracle Utilities Billing Component
User’s Guide for more information about these functions.

Workflow Management Activity Implementations Interface 22-1

Methods, Interfaces, and Syntax

Methods, Interfaces, and Syntax

The methods, interface objects, and syntax for the Activity Implementation interface are as
follows:

Insert
Description: Used to insert a new activity implementation record into the database.

Method Name: Insert

Interface: IActivityImplementation

DLL Name: LSWRKFLW.DLL

Program ID: LSWRKFLW.ActivityImplementation
Syntax:

HRESULT Insert([in] BSTR xmlDataSource,
[in] BSTR xmlActivityImplIn,
[out, retval] BSTR* xmlActivityImplOut) ;

Update

Description: Used to update an existing activity implementation record in the database.
Method Name: Update

Interface: IActivityImplementation

DLL Name: LSWRKFLW.DLL

Program ID: LSWRKFLW.ActivityImplementation

Syntax:

HRESULT Update ([in] BSTR xmlDataSource,

[in] BSTR xmlActivityImpl,

Delete

Description: Used to delete an existing activity implementation record in the database.
Method Name: Delete

Interface: IActivityImplementation

DLL Name: LSWRKFLW.DLL

Program ID: LSWRKFLW.ActivityImplementation

Syntax:

HRESULT Delete([in] BSTR xmlDataSource,
[in] BSTR xmlActivityImpl,

22-2 Billing Component Installation and Configuration Guide, Volume 2

Methods, Interfaces, and Syntax

Select

List

Description: Used to select an existing activity implementation record in the database.
Method Name: Select

Interface: IActivityImplementation

DLL Name: LSWRKFLW.DLL

Program ID: LSWRKFLW.ActivityImplementation

Syntax:

HRESULT List([in] BSTR xmlDataSource,
[in] BSTR xmlActivityImplIn,
[out, retval] BSTR* xmlActivityImplOut) ;

Description: Used to list existing activity implementation records in the database.
Method Name: List

Interface: IActivitylmplementation

DLL Name: LSWRKFLW.DLL

Program ID: LSWRKFLW.Activitylmplementation

Syntax:

HRESULT Select([in] BSTR xmlDataSource,
[in] BSTR xmlActivityImplListIn,
[out, retval] BSTR* xmlActivityImplListOut) ;

Workflow Management Activity Implementations Interface 22-3

Methods, Interfaces, and Syntax

Interface Arguments

The methods available in the Activity Implmentation interface use the following arguments:

xmiDataSource Argument
The xmlDataSource argument is an xml string that contains database connection and other related
information. A D'TD, xml example, and data element descriptions for this argument can be found
on page 15-7 in the Oracle Utilities Energy Information Platform Configuration Guide.

xmlActivitylmplin Argument
The xmlActivityImplln argument is an xml string that contains the parameters for a specific
activity implementation. When used with the Update and Delete functions, this argument is called
xmlActivityImpl. An xml example and data element descriptions for this argument can be found
on page 22-5.

xmlActivitylmplOut Argument
The xmlActivityImplOut argument is an xml string that contains return values from the
appropriate Activity Implementation function. An xml example and data element descriptions for
this argument can be found on page 22-7.

xmlActivitylmplListin Argument
The xmlActivityImplListIn argument is an xml string that contains the parameters for a list of
activity implementations. An xml example and data element descriptions for this argument can be
found on page 12-5. This argument is used by the List function only.

xmlActivitylmplListOut Argument
The xmlActivityImplListOut argument is an xml string that contains return values from the List
function. An xml example and data element desctiptions for this argument can be found on page
12-7. This argument is used by the List function only.

22-4 Billing Component Installation and Configuration Guide, Volume 2

Input Values

Input Values

Xml examples and data element descriptions used as input values for the Activity Implementation
interface (IActivityImplementation) are provided below.

xmlActivitylmplementationin

XML Example - xmlActivitylmplin

<ACTIVITYIMPL>
<UID>1</UID>
<NAME>Activity Implementation Name</NAME>
<DESCRIPTION>Activity Implementation Description</DESCRIPTION>
<TYPE>MESSAGE</TYPE>
<MESSAGETYPE>ACTVIMPL_MSG_CODE</MESSAGETYPE>
<CONTEXTSCHEMA>
<Schema name=’Schema Name’
xmlns=’urn:schemas-microsoft-com:xml-data’
</Schema>
</CONTEXTSCHEMA>
</ACTIVITYIMPL>

Element Descriptions - xmlActivitylmplin

xmlMessageListin

Each of the data elements used by the xmlActivityImplIn argument is described below.

ACTIVITYIMPL: The root document element of the activity implementation XML structure.
Represents a single activity implementation record.

Elements:

UID: UID of the activity implementation record.

NAME: Name of the activity implementation.

DESCRIPTION: Optional description for the activity implementation.

TYPE: Type of activity implementation. Valid values are "MESSAGE", "EVENT", "PROCESS",
and "RATEFORM".

MESSAGETYPE: Associated message type code if the activity implementation type is
"MESSAGE".

EVENTTYPE: Associated event type code if the activity implementation type is "EVENT".
PROCESS: Associated process UID if the activity implementation type is "PROCESS".
RATEFORM: Associated rate form UID if the activity implementation type is "RATEFORM".
CONTEXTSCHEMA: Optional context schema for the activity implementation.

XML Example - xmlActivitylmplListin

<ACTIVITYIMPLLIST>
<ACTIVITYIMPL>
<UID>1</UID>
<NAME>Activity Implementation Name</NAME>
<DESCRIPTION>Activity Implementation Description</DESCRIPTION>
<TYPE>MESSAGE</TYPE>
<MESSAGETYPE>ACTVIMPL_MSG_CODE</MESSAGETYPE>
<CONTEXTSCHEMA>
<Schema name=’Schema Name’
xmlns=’urn:schemas-microsoft-com:xml-data’
</Schema>
</CONTEXTSCHEMA>

Workflow Management Activity Implementations Interface 22-5

Input Values

</ACTIVITYIMPL>
<ACTIVITYIMPL></ACTIVITYIMPL>
</ACTIVITYIMPLLIST>

Element Descriptions - xmlActivitylmplListin
Each of the data elements used by the xmlActivitylmplListIn argument is described below.

ACTIVITYIMPLLIST: Root document element of activity implementation list XML structure.
Represents a list of zero or more activity implementation records.

ACTIVITYIMPL: Root element of activity implementation record (see above). Zero or more of
these elements may exist.

22-6 Billing Component Installation and Configuration Guide, Volume 2

Return Values

Return Values

This section describes the data returned from the Activity Implementation interface.
xmlActivitylmplOut/xmlActivitylmplListOut

XML Schema and Element Descriptions
- xmlActivitylmplOut/xmlActivitylmplListOut
The data elements for the ActivityImplOut and ActivityImplListOut arguments are the same as
the Activitylmplln and ActivitylmplListIn arguments.

Workflow Management Activity Implementations Interface 22-7

Return Values

22-8 Billing Component Installation and Configuration Guide, Volume 2

Chapter 23

Workflow Management Process Versions
Interface

This chapter describes the methods/functions available to external systems through the Process
Version interface (IProcessVersion). These methods allow users to create and maintain Processes,
Process Versions, and Process Activities used by Workflow Management from external systems.
These functions include the following:

* Insert Process Version

* Update Process Version
e Delete Process Version
e Select Process Version

* Copy Process Version

e Validate Process Version
e List Process Versions

e Insert Process

* Update Process

e Delete Process

e Select Process

e List Processes

* Insert Activity

* Update Activity

* Delete Activity

* Select Activity

e List Activities

See Chapter 24: Workflow Processes and Process Versions in the Oracle Utilities Billing
Component User’s Guide for more information about these functions.

Workflow Management Process Versions Interface 23-1

Methods, Interfaces, and Syntax

Methods, Interfaces, and Syntax

The methods, interface objects, and syntax for the Process Version interface are as follows:

Insert
Description: Used to insert a new process version record into the database.

Method Name: Insert

Interface: IProcessVersion

DLL Name: LSWRKFLW.DLL

Program ID: LSWRKFLW.ProcessVersion
Syntax:

HRESULT Insert([in] BSTR xmlDataSource,
[in] BSTR xmlProcessVersionlIn,
[out, retval] BSTR* xmlProcessVersionOut) ;

Update

Description: Used to update an existing process version record in the database.
Method Name: Update

Interface: IProcessVersion

DLL Name: LSWRKFLW.DLL

Program ID: LSWRKFLW.ProcessVersion

Syntax:

HRESULT Update ([in] BSTR xmlDataSource,

[in] BSTR xmlProcessVersion,

Delete
Description: Used to delete an existing process version record in the database.

Method Name: Delete

Interface: IProcessVersion

DLL Name: LSWRKFLW.DLL

Program ID: LSWRKFLW.ProcessVersion
Syntax:

HRESULT Delete([in] BSTR xmlDataSource,

[in] BSTR xmlProcessVersion,

Select
Description: Used to select an existing process version record in the database.

Method Name: Select

Interface: IProcessVersion

DLL Name: LSWRKFLW.DLL

Program ID: LSWRKFLW.ProcessVersion
Syntax:

HRESULT Select([in] BSTR xmlDataSource,
[in] BSTR xmlProcessVersionlIn,
[out, retval] BSTR* xmlProcessVersionOut) ;

23-2 Billing Component Installation and Configuration Guide, Volume 2

Methods, Interfaces, and Syntax

Copy

Validate

List

Description: Used to copy an existing process version record from the database, along with all its
child process activity records, and inserts the copies into the database.

Method Name: Copy

Interface: IProcessVersion

DLL Name: LSWRKFLW.DLL

Program ID: LSWRKFLW.ProcessVersion
Syntax:

HRESULT Copy([in] BSTR xmlDataSource,
[in] BSTR xmlProcessVersionlIn,
[out, retval] BSTR* xmlProcessVersionOut) ;

Description: Used to validate an existing process version record in the database.
Method Name: Select

Interface: IProcessVersion

DLL Name: LSWRKFLW.DLL

Program ID: LSWRKFLW.ProcessVersion

Syntax:

HRESULT Validate([in] BSTR xmlDataSource,
[in] BSTR xmlProcessVersion,

Description: Used to list existing process version records in the database.
Method Name: List

Interface: IProcessVersion

DLL Name: LSWRKFLW.DLL

Program ID: LSWRKFLW.ProcessVersion

Syntax:

HRESULT List([in] BSTR xmlDataSource,
[in] BSTR xmlProcessVersionListIn,
[out, retval] BSTR* xmlProcessVersionListOut) ;

Insert Process

Description: Used to insert a new process record into the database.
Method Name: InsertProcess

Interface: IProcessVersion

DLL Name: LSWRKFLW.DLL

Program ID: LSWRKFLW.ProcessVersion

Syntax:

HRESULT InsertProcess([in] BSTR xmlDataSource,
[in] BSTR xmlProcessIn,
[out, retval] BSTR* xmlProcessOut) ;

Workflow Management Process Versions Interface 23-3

Methods, Interfaces, and Syntax

Update Process
Description: Used to update an existing process record in the database.

Method Name: UpdateProcess

Interface: IProcessVersion

DLL Name: LSWRKFLW.DLL

Program ID: LSWRKFLW.ProcessVersion

Syntax:

HRESULT UpdateProcess ([in] BSTR xmlDataSource,

[in] BSTR xmlProcess,

Delete Process
Description: Used to delete an existing process record in the database.

Method Name: DeleteProcess

Interface: IProcessVersion

DLL Name: LSWRKFLW.DLL

Program ID: LSWRKFLW.ProcessVersion

Syntax:

HRESULT DeleteProcess([in] BSTR xmlDataSource,

[in] BSTR xmlProcess,

Select Process
Description: Used to select an existing process record in the database.

Method Name: SelectProcess

Interface: IProcessVersion

DLL Name: LSWRKFLW.DLL

Program ID: LSWRKFLW.ProcessVersion
Syntax:

HRESULT SelectProcess([in] BSTR xmlDataSource,
[in] BSTR xmlProcessIn,
[out, retval] BSTR* xmlProcessOut) ;

List Processes
Description: Used to list existing process records in the database.

Method Name: ListProcesses

Interface: IProcessVersion

DLL Name: LSWRKFLW.DLL

Program ID: LSWRKFLW.ProcessVersion
Syntax:

HRESULT ListProcesses ([in] BSTR xmlDataSource,
[in] BSTR xmlProcessListIn,
[out, retval] BSTR* xmlProcessListOut) ;

23-4 Billing Component Installation and Configuration Guide, Volume 2

Methods, Interfaces, and Syntax

Insert Activity

Description: Used to insert a new process activity record into the database.
Method Name: InsertActivity

Interface: IProcessVersion

DLL Name: LSWRKFLW.DLL

Program ID: LSWRKFLW.ProcessVersion

Syntax:

HRESULT InsertActivity([in] BSTR xmlDataSource,
[in] BSTR xmlProcessActivityIn,
[out, retval] BSTR* xmlProcessActivityOut);

Update Activity

Description: Used to update an existing process activity record in the database.
Method Name: UpdateActivity

Interface: IProcessVersion

DLL Name: LSWRKFLW.DLL

Program ID: LSWRKFLW.ProcessVersion

Syntax:

HRESULT UpdateActivity([in] BSTR xmlDataSource,

[in] BSTR xmlProcessActivity,

Delete Activity

Description: Used to delete an existing process activity record in the database.
Method Name: DeleteActivity

Interface: IProcessVersion

DLL Name: LSWRKFLW.DLL

Program ID: LSWRKFLW.ProcessVersion

Syntax:

HRESULT DeleteActivity([in] BSTR xmlDataSource,

[in] BSTR xmlProcessActivity,

Select Activity

Description: Used to select an existing process activity record in the database.
Method Name: SelectActivity

Interface: IProcessVersion

DLL Name: LSWRKFLW.DLL

Program ID: LSWRKFLW.ProcessVersion

Syntax:

HRESULT SelectActivity([in] BSTR xmlDataSource,
[in] BSTR xmlProcessActivityIn,
[out, retval] BSTR* xmlProcessActivityOut);

Workflow Management Process Versions Interface 23-5

Methods, Interfaces, and Syntax

List Activities
Description: Used to list existing process activity records in the database.

Method Name: ListActivities

Interface: IProcessVersion

DLL Name: LSWRKFLW.DLL

Program ID: LSWRKFLW.ProcessVersion
Syntax:

HRESULT ListActivities ([in] BSTR xmlDataSource,
[in] BSTR xmlProcessActivityListIn,
[out, retval] BSTR* xmlProcessActivityListOut) ;

23-6 Billing Component Installation and Configuration Guide, Volume 2

Methods, Interfaces, and Syntax

Interface Arguments

The methods available in the Process Version interface use the following arguments:

xmiDataSource Argument
The xmlDataSource argument is an xml string that contains database connection and other related
information. A D'TD, xml example, and data element descriptions for this argument can be found
on page 15-7 in the Oracle Utilities Energy Information Platform Configuration Guide.

xmlProcessVersionin Argument
The xmlProcessVersionln argument is an xml string that contains the parameters for a specific
process version. When used with the Update and Delete functions, this argument is called
xmlProcessVersion. An xml example and data element descriptions for this argument can be
found on page 23-9.

xmlProcessVersionOut Argument
The xmlProcessVersionOut argument is an xml string that contains return values from the
appropriate Process Version function. An xml example and data element descriptions for this
argument can be found on page 23-14.

xmlProcessVersionListin Argument
The xmlProcessVersionListIn argument is an xml string that contains the parameters for a list of
process versions. An xml example and data element descriptions for this argument can be found
on page 23-10. This argument is used by the List function only.

xmlProcessVersionListOut Argument
The xmlProcessVersionListOut argument is an xml string that contains return values from the List
function. An xml example and data element desctiptions for this argument can be found on page
23-14. This argument is used by the List function only.

xmlProcessin Argument
The xmlProcessIn argument is an xml string that contains the parameters for a specific process.
When used with the Update Process and Delete Process functions, this argument is called

xmlProcess. An xml example and data element descriptions for this argument can be found on
page 23-10.

xmlProcessOut Argument
The xmlProcessnOut argument is an xml string that contains return values from the appropriate
Process function. An xml example and data element descriptions for this argument can be found
on page 23-14.

xmlProcessListin Argument
The xmlProcessVersionListIn argument is an xml string that contains the parameters for a list of
processes. An xml example and data element descriptions for this argument can be found on page
23-11. This argument is used by the List function only.

xmlProcessListOut Argument
The xmlProcessVersionListOut argument is an xml string that contains return values from the List
function. An xml example and data element desctiptions for this argument can be found on page
23-14. This argument is used by the List function only.

Workflow Management Process Versions Interface 23-7

Methods, Interfaces, and Syntax

xmlProcessActivityln Argument
The xmlProcessActivityln argument is an xml string that contains the parameters for a specific
process activity. When used with the Update Activity and Delete Activity functions, this argument
is called xmlProcessActivity. An xml example and data element descriptions for this argument can
be found on page 23-11.

xmlProcessActivityOut Argument
The xmlProcessActivityOut argument is an xml string that contains return values from the

appropriate Process Activity function. An xml example and data element descriptions for this
argument can be found on page 23-14.

xmlProcessActivityListin Argument

The xmlProcessActivityListIn argument is an xml string that contains the parameters for a list of
process activities. An xml example and data element descriptions for this argument can be found
on page 23-13. This argument is used by the List function only.

xmlProcessActivityListOut Argument
The xmlProcessActivityListOut argument is an xml string that contains return values from the
List function. An xml example and data element descriptions for this argument can be found on
page 23-14. This argument is used by the List function only.

23-8 Billing Component Installation and Configuration Guide, Volume 2

Input Values

Input Values

Xml examples and data element descriptions used as input values for the Process Version interface
(IProcessVersion) are provided below.

xmlIProcessVersionin

XML Example - xmlIProcessVersionln
<PROCESSVERSION>
<UID>1</UID>
<PROCESS>1</PROCESS>
<MAJORVERSION>2</MAJORVERSION>
<MINORVERSION>11</MINORVERSION>
<NOTE>Process Version Note</NOTE>
<VALIDATED>FALSE</VALIDATED>
<CONTEXTSCHEMA>
<Schema name='Schema Name'
xmlns='urn:schemas-microsoft-com:xml-data'>
</Schema>
</CONTEXTSCHEMA>
</PROCESSVERSION>

Element Descriptions - xmIProcessVersionin
Each of the data elements used by the xmlProcessVersionIn argument is described below.

PROCESSVERSION: The root document element of the process version XML structure.
Represents a single process version record.

Elements:

UID: UID of the process version record.

PROCESS: UID of the parent process record.
MAJORVERSION: Major version number of process version.
MINORVERSION: Minor version number of process version.
NOTE: Optional note for process version.

VALIDATED: Validated flag for process version. Automatically set to FALSE when process or
any child process activities are edited. Only set to TRUE by the Validate function, if successful.

CONTEXTSCHEMA: Optional context schema for the activity implementation.

Workflow Management Process Versions Interface 23-9

Input Values

xmlProcessVersionListin

XML Example - xmIProcessVersionListin
<PROCESSVERSIONLIST>
<PROCESSVERSION>
<UID>1</UID>
<PROCESS>1</PROCESS>
<MAJORVERSION>2</MAJORVERSION>
<MINORVERSION>11</MINORVERSION>
<NOTE>Process Version Note</NOTE>
<VALIDATED>FALSE</VALIDATED>
<CONTEXTSCHEMA>
<Schema name='Schema Name'
xmlns='urn:schemas-microsoft-com:xml-data'>
</Schema>
</CONTEXTSCHEMA>
</PROCESSVERSION>
<PROCESSVERSION></PROCESSVERSION>
</PROCESSVERSIONLIST>

Element Descriptions - xmIProcessVersionListin
Each of the data elements used by the xmIProcessVersionListln argument is described below.

PROCESSVERSIONLIST: Root document element of process version list XML structure.
Represents a list of zero or more process version records.

PROCESSVERSION: Root element of process version record (see above). Zero or mote of
these elements may exist.

xmlIProcessin

XML Example - xmIProcessin
<PROCESS>
<UID>1</UID>
<NAME>Process Name</NAME>
<OPCO>OPCO_CODE</OPCO>
<JURIS>JURIS CODE</JURIS>
<DESCRIPTION>Process Description</DESCRIPTION>
</PROCESS>

Element Descriptions - xmIProcessin
Each of the data elements used by the xmlProcessIn argument is described below.

PROCESS: The root document element of the process XML structure. Represents a
singleprocess record.

Elements:

UID: UID of the process record.

NAME: Name of the process.

OPCO: Optional operating company code for the process.
JURIS: Optional jurisdiction code for the process.
DESCRIPTION: Optional description for the process.

23-10 Billing Component Installation and Configuration Guide, Volume 2

Input Values

xmlProcessListin

XML Example - xmIProcessListin
<PROCESSLIST>
<PROCESS>
<UID>1</UID>
<NAME>Process Name</NAME>
<OPCO>0OPCO_CODE</OPCO>
<JURIS>JURIS CODE</JURIS>
<DESCRIPTION>Process Description</DESCRIPTION>
</PROCESS>
<PROCESS></PROCESS>
</PROCESSLIST>

Element Descriptions - xmlIProcessListin
Each of the data elements used by the xmIProcessListln argument is described below.

PROCESSLIST: Root document element of process list XML structure. Reptesents a list of
zero or more process records.

PROCESS: Root element of process record (see above). Zero or more of these elements may
exist.

xmlProcessActivityln

XML Example - xmIProcessActivityln
<PROCESSACTIVITY>
<UID>1</UID>
<PROCESSVERSION>1</PROCESSVERSION>
<ID>B</ID>
<ACTIVITYIMPL>1</ACTIVITYIMPL>
<PROPERTIES STARTCOND='ALL'
EXITCOND="'TRUE'
WAITFOR='TRUE'>
<EXPTIME RELATIVE='TRUE'
USEBUSINESSDAYS='TRUE'
ONEXPIRE='EXIT'>0000-00-05 00:00:00</EXPTIME>
<INPUTMAP>
<ITEM FROM='/ACCOUNTID' TO='/ACCOUNTID'/>
<ITEM FROM='10' TO='/COUNT'/>
</INPUTMAP>
<OUTPUTMAP>
<ITEM FROM='"Literal"' TO='/ACTIVITY B/RESULT'/>
</OUTPUTMAP>
<PATH SOURCEID='A' TRANSCOND='"TRUE"'/>
</PROPERTIES>
</PROCESSACTIVITY>

Element Descriptions - xmIProcessActivityln
Each of the data elements used by the xmIProcessActivityln argument is described below.

PROCESSACTIVITY: Root document element of process activity XML structure. Represents a
single process activity record.

Elements:

UID: UID of the process activity record.

PROCESSVERSION: UID of the parent process version record.
ID: Unique id of the process activity within process version.

ACTIVITYIMPL: UID of the associated activity implementation.

Workflow Management Process Versions Interface 23-11

Input Values

PROPERTIES: Root element for additional process activity properties.
@STARTCOND: Start condition for the process activity. Valid values are:
"ALL": all input path transition conditions must evaluate to true (default)
"ANY": one or more input path transition conditions must evaluate to true

@EXITCOND: Exit condition for the process activity. Should be a valid Boolean XPath
expression against the activity implementation context. May also be the literal value "TRUE"
(default).

@WAITFOR: Wait For flag for the process activity. Valid values are:
"TRUE": wait for the activity to finish before moving on (default)
"FALSE": do not wait for activity to finish

EXPTIME: Optional expiration time for the activity. Only valid if Wait For Flag is set to
TRUE. Time is expressed as YYYY-MM-DD HH:MM:SS, and may be absolute or relative.

@RELATIVE: Indicates whether expiration time is relative ("TRUE") or absolute
("FALSE") (default). Relative times are relative to the time that the activity is started.

@USEBUSINESSDAYS: Indicates whether the days value of a relative expiration time
should include only business days ("TRUE") or all days ("FALSE") (default).

@ONEXPIRE: Indicates behavior of process when activity expites. Valid values are:
"ERROR": place activity in ERROR state (default)
"EXIT": place activity in COMPLETED state
INPUTMAP: Root element for optional input context map for the activity.
ITEM: Root element for an individual context map item.

@FROM: From expression. Should be valid XPath expression against the process
version context or a literal value enclosed in quotes.

@TO: To expression. Should be valid XPath expression against the activity
implementation context.

OUTPUTMAP: Root element for optional output context map for the activity.
ITEM: Root element for an individual context map item.

@FROM: From expression. Should be valid XPath expression against the activity
implementation context or a literal value enclosed in quotes.

@TO: To expression. Should be valid XPath expression against the process version
context.

PATH: Root element of optional input path for the activity. Zero or more may exist.
@SOURCEID: Id of the soutce process activity within the parent process version.

@TRANSCOND: Transition condition for the path. Should be a valid Boolean XPath
expression against the process version context. May also be the literal value "TRUE"

(default).

23-12 Billing Component Installation and Configuration Guide, Volume 2

Input Values

xmlProcessActivityListin

XML Example - xmIProcessActivityListin
<PROCESSACTIVITYLIST>
<PROCESSACTIVITY>
<UID>1</UID>
<PROCESSVERSION>1</PROCESSVERSION>
<ID>B</ID>
<ACTIVITYIMPL>1</ACTIVITYIMPL>
<PROPERTIES STARTCOND='ALL'
EXITCOND="'TRUE'
WAITFOR='TRUE'>
<EXPTIME RELATIVE='TRUE'
USEBUSINESSDAYS='TRUE'
ONEXPIRE='EXIT'>0000-00-05 00:00:00</EXPTIME>
<INPUTMAP>
<ITEM FROM='/ACCOUNTID' TO='/ACCOUNTID'/>
<ITEM FROM='10' TO='/COUNT'/>
</INPUTMAP>
<OUTPUTMAP>
<ITEM FROM='"Literal"' TO='/ACTIVITY B/RESULT'/>
</OUTPUTMAP>
<PATH SOURCEID='A' TRANSCOND='"TRUE"'/>
</PROPERTIES>
</PROCESSACTIVITY>
<PROCESSACTIVITY></PROCESSACTIVITY>
</PROCESSACTIVITYLIST>

Element Descriptions - xmIProcessActivityListin

Each of the data elements used by the xmlProcessActivityListIn argument is described below.

PROCESSACTIVITYLIST: Root document element of process activity list XML structure.

Represents a list of zero or more process activity records.

PROCESSACTIVITY: Root element of process activity record (see above). Zero or more of

these elements may exist.

Workflow Management Process Versions Interface 23-13

Return Values

Return Values

This section describes the data returned from the Process Version interface.

xmlProcessVersionOut/xmlIProcessVersionListOut

XML Schema and Element Descriptions
- xmlIProcessVersionOut/xmlIProcessVersionListOut
The data elements for the ProcessVersionOut and ProcessVersionListOut arguments are the same
as the ProcessVersionln and ProcessVersionListln arguments.

xmlIProcessOut/xmIProcessListOut

XML Schema and Element Descriptions
- xmIProcessOut/xmiProcessListOut
The Xdata elements for the ProcessOut and ProcessListOut arguments are the same as the
ProcessIn and ProcessListIn arguments.

xmlProcessActivityOut/xmIProcessActivityListOut

XML Schema and Element Descriptions
- xmlIProcessActivityOut/xmIProcessActivityListOut
The data elements for the ProcessActivityOut and ProcessActivityListOut arguments are the same
as the ProcessActivityln and ProcessActivityListIn arguments.

23-14 Billing Component Installation and Configuration Guide, Volume 2

Chapter 24

Workflow Management Process Instance

Interface

This chapter describes the methods/functions available to external systems through the Process

Instance interface (IProcessInstance). These methods allow users to work with process and

activity instances used by Workflow Management from external systems. These functions include

the following:

List Process Instances
Select Process Instance
Start Process Instance
Suspend Process Instance
Resume Process Instance
Repair Process Instance
Terminate Process Instance
List Activity Instances
Select Activity Instance
Repair Activity Instance
Post Activity Event
Activity Finished

Activity Expired

Activity InError

See Chapter 25: Workflow Process Activities in the Oracle Utilities Billing Component User’s Guide
for more information about these functions.

Workflow Management Process Instance Interface 24-1

Methods, Interfaces, and Syntax

Methods, Interfaces, and Syntax

The methods, interface objects, and syntax for the Process Instance interface are as follows:

List

Description: Used to return a list of zero or more process instances from the Workflow System.
Method Name: List

Interface: IProcesslnstance

DLL Name: LSWRKFLW.DLL

Program ID: LSWRKFLW.ProcessInstance

Syntax:

HRESULT List ([in] BSTR xmlDataSource,
[in] BSTR xmlProcessInstancelListIn,
[out, retval] BSTR* xmlProcessInstanceListOut);

Select
Description: Used to select a specified process instance from the Workflow System.

Method Name: Select

Interface: IProcesslnstance

DLL Name: LSWRKFLW.DLL

Program ID: LSWRKFLW.ProcessInstance
Syntax:

HRESULT Select([in] BSTR xmlDataSource,
[in] BSTR xmlProcessInstanceln,
[out, retval] BSTR* xmlProcessInstanceOut) ;

Start

Description: Used to create a new process instance record in the Workflow System.
Method Name: Start

Interface: IProcessInstance

DLL Name: LSWRKFLW.DLL

Program ID: LSWRKFLW.ProcessInstance

Syntax:

HRESULT Start([in] BSTR xmlDataSource,
[in] BSTR xmlProcessInstanceln,
[out, retval] BSTR* xmlProcessInstanceOut) ;

Suspend

Description: Used to suspend an existing running process instance in the Workflow System.
Method Name: Suspend

Interface: IProcessInstance

DLL Name: LSWRKFLW.DLL

Program ID: LSWRKFLW.ProcessInstance

Syntax:

HRESULT Suspend([in] BSTR xmlDataSource,

24-2 Billing Component Installation and Configuration Guide, Volume 2

Methods, Interfaces, and Syntax

[in] BSTR xmlProcessInstance,

Resume
Description: Used to resume an existing suspended or in error process instance in the Workflow
System.

Method Name: Resume

Interface: IProcessInstance

DLL Name: LSWRKFLW.DLL

Program ID: LSWRKFLW.ProcessInstance
Syntax:

HRESULT Resume ([in] BSTR xmlDataSource,

[in] BSTR xmlProcessInstance,

Repair
Description: Used to update the context of an existing suspended or in error process instance in
the Workflow System.

Method Name: Repair

Interface: IProcessInstance

DLL Name: LSWRKFLW.DLL

Program ID: LSWRKFLW.ProcessInstance
Syntax:

HRESULT Repair ([in] BSTR xmlDataSource,

[in] BSTR xmlProcessInstance,

Terminate
Description: Used to terminate an existing running, suspended, or in error process instance in
the Workflow System.

Method Name: Terminate

Interface: IProcesslnstance

DLL Name: LSWRKFLW.DLL

Program ID: LSWRKFLW.ProcessInstance
Syntax:

HRESULT Terminate ([in] BSTR xmlDataSource,

[in] BSTR xmlProcessInstance,

List Activities
Description: Used to return a list of zero or more activity instances in the Workflow System.

Method Name: ListActivities

Interface: IProcesslnstance

DLL Name: LSWRKFLW.DLL

Program ID: LSWRKFLW.ProcessInstance
Syntax:

HRESULT ListActivities([in] BSTR xmlDataSource,
[in] BSTR xmlActivityInstancelListIn,
[out, retval] BSTR* xmlActivityInstanceListOut) ;

Workflow Management Process Instance Interface 24-3

Methods, Interfaces, and Syntax

Select Activity

Description: Used to select an existing activity instance from the Workflow System.
Method Name: SelectActivity

Interface: IProcessInstance

DLL Name: LSWRKFLW.DLL

Program ID: LSWRKFLW.ProcessInstance

Syntax:

HRESULT SelectActivity([in] BSTR xmlDataSource,
[in] BSTR xmlActivityInstanceln,
[out, retval] BSTR* xmlActivityInstanceOut);

Repair Activity
Description: Used to update the state (to INACTIVE) and the context of an existing in error
activity instance in the Workflow System.

Method Name: RepairActivity

Interface: IProcessInstance

DLL Name: LSWRKFLW.DLL

Program ID: LSWRKFLW.ProcessInstance

Syntax:

HRESULT RepairActivity([in] BSTR xmlDataSource,

[in] BSTR xmlActivityInstance,

Post Activity Event
Description: Used to post an event related to zero or more existing activity instances in the
Workflow System. Only the EVENTTYPE, ACCOUNT, and EVENTDATA elements of the
Activity Event xml argument (p. 14-9) are used.

Method Name: PostActivityEvent

Interface: IProcesslnstance

DLL Name: LSWRKFLW.DLL

Program ID: LSWRKFLW.ProcessInstance

Syntax:

HRESULT PostActivityEvent ([in] BSTR xmlDataSource,

[in] BSTR xmlActivityEvent,

Activity Finished

Description: Used to notify the Workflow System that a running activity has finished.
Method Name: ActivityFinished

Interface: IProcessInstance

DLL Name: LSWRKFLW.DLL

Program ID: LSWRKFLW.ProcessInstance

Syntax:

HRESULT ActivityFinished([in] BSTR xmlDataSource,
[in] BSTR xmlActivityInstance,

24-4 Billing Component Installation and Configuration Guide, Volume 2

Methods, Interfaces, and Syntax

Activity Expired

Description: Used to notify the Workflow System that a running activity has expired.
Method Name: ActivityExpired

Interface: IProcessInstance

DLL Name: LSWRKFLW.DLL

Program ID: LSWRKFLW.ProcessInstance

Syntax:

HRESULT ActivityExpired([in] BSTR xmlDataSource,
[in] BSTR xmlActivityInstance,

Activity InError

Description: Used to notify the Workflow System that a running activity is in error.
Method Name: ActivityInError

Interface: IProcessInstance

DLL Name: LSWRKFLW.DLL

Program ID: LSWRKFLW.ProcessInstance

Syntax:

HRESULT ActivityInError ([in] BSTR xmlDataSource,
[in] BSTR xmlActivityInstance,

Interface Arguments

The methods available in the Process Instance interface use the following arguments:

xmiDataSource Argument
The xmlDataSource argument is an xml string that contains database connection and other related
information. A DTD, xml example, and data element descriptions for this argument can be found
on page 15-7 in the Oracle Utilities Energy Information Platform Configuration Guide.

xmlProcessinstanceln Argument
The xmlProcessInstanceln argument is an xml string that contains the parameters for a specific
process instance. When used with the Suspend, Resume, Repair and Terminate functions, this
argument is called xmlProcessInstance. An xml example and data element descriptions for this
argument can be found on page 24-7.

xmlProcesslinstanceOut Argument
The xmlProcessInstanceOut argument is an xml string that contains return values from the
appropriate Process Instance function. An xml example and data element descriptions for this
argument can be found on page 24-10.

xmlProcesslinstanceListin Argument
The xmlProcessInstanceListln argument is an xml string that contains the parameters for a list of
process instances. An xml example and data element descriptions for this argument can be found
on page 24-8. This argument is used by the List function only.

xmlProcesslinstanceListOut Argument
The xmlProcessInstanceListOut argument is an xml string that contains return values from the
List function. An xml example and data element descriptions for this argument can be found on
page 24-10. This argument is used by the List function only.

Workflow Management Process Instance Interface 24-5

Methods, Interfaces, and Syntax

xmlActivitylnstanceln Argument
The xmlActivityInstanceln argument is an xml string that contains the parameters for a specific
activity instance. When used with the Activity Finished, Activity Expired, and Activity InError
functions, this argument is called xmlActivityInstance. An xml example and data element
descriptions for this argument can be found on page 24-8.

xmlActivitylnstanceOut Argument
The xmlActivityInstanceOut argument is an xml string that contains return values from the
appropriate Activity Instance function. An xml example and data element descriptions for this

argument can be found on page 24-10.

xmlActivitylnstanceListln Argument
The xmlActivityInstanceListIn argument is an xml string that contains the parameters for a list of

process instances. An xml example and data element descriptions for this argument can be found
on page 24-9. This argument is used by the List function only.

xmlActivitylnstanceListOut Argument
The xmlActivityInstanceListOut argument is an xml string that contains return values from the
List function. An xml example and data element descriptions for this argument can be found on

page 24-10. This argument is used by the List function only.

xmlActivityEvent Argument
The xmlActivityEventIn argument is an xml string that contains the parameters for a specific
activity event. An xml example and data element descriptions for this argument can be found on

page 24-9.

24-6 Billing Component Installation and Configuration Guide, Volume 2

Input Values

Input Values

XML examples and data element descriptions used as input values for the Process Instance
interface (IProcesslnstance) are provided below.

xmlIProcessinstanceln

XML Example - xmlProcessinstanceln
<PROCESSINSTANCE>
<UID>1</UID>
<PROCESSVERSION>
</PROCESSVERSION>
<STATE>RUNNING</STATE>
<STARTTIME>2001-06-15T12:30:00</STARTTIME>
<STOPTIME></STOPTIME>
<ACCOUNT>1234</ACCOUNT>
<ACTIVITYINSTANCE></ACTIVITYINSTANCE>
<NOTE></NOTE>
<CONTEXT></CONTEXT>
</PROCESSINSTANCE>

Element Descriptions - xmIProcessinstanceln
Each of the data elements used by the xmIProcessInstanceln argument is described below.

PROCESSINSTANCE: Root document element of process instance XML structure.
Represents a single process instance record.

Elements
UID: UID of process instance.
PROCESSVERSION: Associated process version element (see description above).

STATE: State of the process. Valid values include "RUNNING", "SUSPENDED",
"INERROR", "TERMINATED", and "COMPLETED".

STARTTIME: Time that process was started.
STOPTIME: Time that process was suspended, in error, terminated, or completed.
ACCOUNT: Optional uid of related account or

Elements

ID: Optional id of related account.

UID: Optional uid of related account.

ACTIVITYINSTANCE: Optional uid of activity instance for which the process instance is an
implementation (sub-process).

NOTE: Optional note for the process.

CONTEXT: Optional context for the process. This element's schema is defined by the context
schema of the associated process version.

Workflow Management Process Instance Interface 24-7

Input Values

xmlProcesslinstancelListin

XML Example - xmIProcessVersionListin
<PROCESSINSTANCELIST>
<PROCESSINSTANCE>
<UID>1</UID>
<PROCESSVERSION>
</PROCESSVERSION>
<STATE>RUNNING</STATE>
<STARTTIME>2001-06-15T12:30:00</STARTTIME>
<STOPTIME></STOPTIME>
<ACCOUNT>1234</ACCOUNT>
<ACTIVITYINSTANCE></ACTIVITYINSTANCE>
<NOTE></NOTE>
<CONTEXT></CONTEXT>
</PROCESSINSTANCE>
</PROCESSINSTANCELIST>

Element Descriptions - xmIProcessinstanceListin
Each of the data elements used by the xmlProcessInstanceListln argument is described below.

PROCESSINSTANCELIST: Root document element of process instance list XML structure.
Represents a list of zero or more process instance records.

PROCESSINSTANCE: Root element of process instance record (see above). Zero or more of
these elements may exist.

xmlActivitylnstanceln

XML Examples - xmlActivitylnstanceln
<ACTIVITYINSTANCE>
<UID>1</UID>
<PROCESSINSTANCE>1</PROCESSINSTANCE>
<PROCESSACTIVITY>
</PROCESSACTIVITY>
<STATE>RUNNING</STATE>
<STARTTIME>2001-06-15T12:30:00</STARTTIME>
<STOPTIME></STOPTIME>
<CONTEXT></CONTEXT>
</ACTIVITYINSTANCE>

Element Descriptions - xmlActivitylnstanceln
Each of the data elements used by the xmlActivityInstanceln argument is described below.

ACTIVITYINSTANCE: Root document element of activity instance XML structure.
Represents a single activity instance record.

Elements:

UID: UID of activity instance.

PROCESSINSTANCE: Uid of parent process instance record.
PROCESSACTIVITY: Associated process activity element (see description above).

STATE: State of the activity. Valid values include "INACTIVE", "RUNNING", "SKIPPED",
"FINISHED", "EXPIRED", "INERROR", "TERMINATED", and "COMPLETED".

STARTTIME: Time that activity was started.
STOPTIME: Time that activity was finished, in error, or terminated.

CONTEXT: Optional context for the activity. This element's schema is defined by the context
schema of the associated activity implementation.

24-8 Billing Component Installation and Configuration Guide, Volume 2

Input Values

xmlActivitylnstanceListin

XML Example - xmlActivitylnstanceListin

<ACTIVITYINSTANCELIST>
<ACTIVITYINSTANCE>
<UID>1</UID>
<PROCESSINSTANCE>1</PROCESSINSTANCE>
<PROCESSACTIVITY>
</PROCESSACTIVITY>
<STATE>RUNNING</STATE>
<STARTTIME>2001-06-15T12:30:00</STARTTIME>
<STOPTIME></STOPTIME>
<CONTEXT></CONTEXT>
</ACTIVITYINSTANCE>
</ACTIVITYINSTANCELIST>

Element Descriptions - xmlActivitylnstanceListin

xmlActivityEvent

Each of the data elements used by the xmlActivityInstanceListIn argument is described below.

ACTIVITYINSTANCELIST: Root document element of activity instance list XML structure.
Represents a list of zero or more activity instance records.

ACTIVITYINSTANCE: Root clement of activity instance record (see above). Zero or more of
these elements may exist.

XML Examples - xmlActivityEvent

<ACTIVITYEVENT>
<ACTIVITYINSTANCE>1</ACTIVITYINSTANCE>
<EVENTTYPE>SPEEDPAY</EVENTTYPE>
<ACCOUNT>1234</ACCOUNT>
<WAITING>FALSE</WAITING>
<EVENTTIME></EVENTTIME>
<EVENTDATA></EVENTDATA>

</ACTIVITYEVENT>

Element Descriptions - xmlActivityEvent

Each of the data elements used by the xmlActivityEvent argument is described below.

ACTIVITYEVENT: Root document element of activity event XML structure. Represents a
single activity event record.

Elements:

ACTIVITYINSTANCE: UID of associated activity instance.
EVENTTYPE: Code of associated event type.

ACCOUNT: Optional uid of associated account.

WAITING: Waiting flag of event. If true then associated activity has started.
EVENTTIME: Time that event was posted.

EVENTDATA: Optional data associated with the event. This element's schema is defined by the
context schema of the associated activity implementation.

Workflow Management Process Instance Interface 24-9

Return Values

Return Values

This section describes the data returned from the Process Instance interface.

xmlProcessinstanceOut/xmlProcessinstanceListOut

XML Schema and Element Descriptions
- xmlIProcesslInstanceOut/xmIProcessinstanceListOut
The data elements for the ProcessInstanceOut and ProcessInstanceListOut arguments are the
same as the ProcessInstanceln and ProcessInstanceListIn arguments.

xmlActivitylnstanceOut/xmlActivitylnstanceListOut

XML Schema and Element Descriptions
- xmlActivitylnstanceOut/xmlActivitylnstanceListOut
The data elements for the ActivitylnstanceOut and ActivitylnstanceListOut arguments are the
same as the Activitylnstanceln and ActivityInstanceListIn arguments.

24-10 Billing Component Installation and Configuration Guide, Volume 2

Part Five

Appendices

Part Five contains the following appendices:

Appendix A

Oracle Utilities Data Repository Receivables
Component Database Schema

This appendix includes a diagram of the Oracle Utilities Data Repository Receivables Component
database schema (v1.6.1.0.0) that provides details regarding the table and columns in the
receivables management schema, as well as the relationships between these tables in the Oracle
Utilities Data Repository. This information is very useful when writing Rules Language statements
or constructing database queries. This includes:

* Oracle Utilities Receivables Component Database Schema

* Oracle Utilities Receivables Component-Collections Database Schema

Oracle Utilities Data Repository Receivables Component Database Schema A-1

Oracle Utilities Receivables Component Database Schema

Receivables Component Database Schema

ities

Oracle Ut

(3INILST puB YISNST SUWN|OD aAeYy abed siy uo

S3|qE) ||e UBY) P3|GBUS LoISUR)X® BWayds , 1IANYST. 4}
(umoys jou a1 NOILOIASIHNF Pue

ANVAINOOONILYHIAO 0} $A8yf ubiaiod droor)

818ymas|3 pajiea - () SWeN 8jqel
n_zmco_um_wm - ol

(pawnsse NN 10N) Xapuj anbiun - ?sz ue)sy
(pawnsse |INN J1ON) Aoy Aewid - duiispun
aweN o|qeL - plog

puabe

(TINN LONYF'51ZBNN
TN L

INDIE
(9VHOMYA
(FOIRVHONYA
1NoE
1No1E
(s9RavHONYA
ALva

(710N LON)LNISIE
NoIE

NVIdLNIWTIVASNI

(TIN LON) (S2hivHONYA

™

TTINN LON) (SSZIRVHONYA

MNNHOYLYGTNX

(s9PuvHONYA
(552VHONYA
(v2vHOMYA
(s 3BNN

(OIVHONYA

anuaiva
(TIN LON3NIL3LVD
(110N LONNbolvHOMYA
Nem
9SWLNALNG

‘o

(710N 10N) 1918

3dALFIEVAOZHAIN
30000
NOLLANSNODS
FNYNIALTOWHO
T
SIXIouVHRAN
3dALIONVHD

LOMVHONYA QLLNNOODYLIOZHO
PRYHONA QLINAOOOYLIE3A
HOMYA 3000Q0HLINININAYA
HOWYA 30003Lv
).LNo18
HOBYA 30003NNIATY
HOMVA 300NOI9TY
HONYA 3d00skNr
HOWYA 30000040
3ALIOUYHOTIN
NOIE 34ALTIEVAZOIHAIN
MYHO LIGFMOMOIOMYHO [
oI QINOLLOVSNVaLL
MVHO SdALNOLLVISNVALL
NOILYISNVHLIVN¥NOr

3
(HRIVHONYA
300DAONTRIND

(FSIMVHONYA. 3ALINIOOOVIVNANOT
(OIYHOMYA SWYNINDIODOVTVNMNOT
TORNFOUVA GIINMOO0V VRO

ANNODOVIVNNNOr

<>

(rahavHOMYA
TPOTRVFORVA

QINOILOVSNY 4L

(TIN LONN$9IVHONYA
TROTHONVA ‘JOODIARISNVEL

(FSDMHONVA

NOLLd0S30

ANN0DOVY39a3 18NS

ALINOIMANOLLYOI1ddY

(TION LON) (SSZRVHONYA

INHOYLYTHX

(TN LN (s52vHOMYA

<>

SINAHOYLYOTIX
OO

V1VA9SWIONINOD

(POIHOMYA
(POVHOMA
(POIVHOENA
3naLvg
(TN JON3WLLALYG
(TN Lof

9SWININDHUOM

(9PvHONYA
(1STRIVHOUVA

aunnoooy
FINT T

3loN

1NRORIY
1Nnooovain
3000sRINT
30000040
IS0
Q3SNABO3SSIO0NA
QRi3SNABC3LSOd
30MN0S
FMILOTINGIHIS
SISO

OSWIONINOD

(vovHOMYA
TRV HONVA
SNVHLLIAZHOIN

ey QLTINS
SVAITHEODRLAT
NOLLYDITddVLIa3¥0

e 1l

INo1E SNvLHOLvEaIn
(90VHONYA GOHLINNOLLYDIddY. ‘
I

1NoiE SNwLoLIaIN
o 1NNOOOVENSaIN

inoe AHOLSIHTIRAIN [—)
[3uva SINGTIIOTIE
Iva avazooMITEIOND

w (sORNVHONA _ GIHIOMNITEOND é s
.ﬂ AVAINNISTIONYD

+(p90

(2) WYHOOMdISIS!

\;I,_I

TORVHONVA J00ONOSVANTIONVS

IVNNILNGOLSOD
TREINTOL
¥IINIOUSOD

NOLLYIXL¥3INIDLSOD

(9RavHONYA

IHYHOMYA

N LONIPSIVHONVA - 300000HIININIAVA

aNnszHoLY

SIYNINNODOY
NOWLALLISNI

NYIdAVdOLNY

(€) AMOLSIHTIE

<>

VHONVA NOLLAOS3a
RVHOHYA WVNNOSYIITIONVD

5
NOSVINTIONVD

sV (|é|y

3dALI9UVHOIN
34ALTIBVAIZOSHAIN N
31vana

1Ni9ie T30NvoHOLYEaIN
INIDIE WVASONALSISSYaIN
VHORYA 0SI
VHORYA 28I
(VORVHOUYA [
ONOIHO

23

3LYQANVGHOTITIE é
onvve
oy

ONINNOOOY

LIGZHONOTDNVHD

NOLLNLLSNI

EIIEN:]

{TINN LONI3Lva

. ANBIE N
| Anuawa 3w

N8 N

ava VOIS L
awa aivauas ‘
NnCOOVaIN 1 i :

i X
[i
(TN Lo

QREINIOLSODTHONYD
QDY LIAOTHONYD
QUL00VLEIATIONYD

ANNOWY
2LvaaINEOR
QUNIWAVS

(¥STIVHOVA TN

(11N LON)YOIVHONYA - SNYNIOHNOSININAYY
TROTEVFORVA J00030HNOS INSAVA
3OMNOSINIWAVA

3ALOOHLINL

(TN LONsS A 5000%
.|®|§| VORNVFORVA 300000
aohL

LaLva

(50BN INOHY
N SINIWAVANIN

(J9)MYHOMYA - 300DCOHLINININAYS
(TN 10N3LYa

INLIEHONYO

3000IOUNOSININAYS

ANIWAVd

Q100VLIEIa
E
AN ———

]

(5RIVHONYA

TRTVHONTA

(}OMVHONVA SNLVLSNOILDITIOD
VO ANNIFNOTY

SWLZONYIVELSYY
“INoaovan
IWAINNODDOY

INLINOLLOVSNVAL
QINOLLOYSNVAL
ONNOLLOVSNYAL
1NN0DOVaIN

3

NOTLOVSNVAILaN
NOLLOVSNV¥1ST

' L 00

SNVALIOVXYLaIN
Q3TIHONYD
1dN3x3
ALKV

(TIN LON(¥ 518NN INnoY
N NoIE SNvLGIXVIaN

o SNYALXYLIN

QH003MXVL

awva 3uvadnazTIoN
(TINN LON) (¥'61 Rs3EIN ANNOWY
HINOWANNAZY

[@wieomss]
.,|?e

RALNIDLS00

LIaRONOLIETID
(TN ONddvLITRO —
hvHD OVITIONVD

NI
PORIVHONVA QUINNODOY
NOLLOVSNV¥LTYNNNOr

anuava FNITIOND

S NOLSVaNYIL (veiRESN INROWY

INI SNOLLOVSNYALANN
3iva 3IvagINTORS
IVHONYA ONHOLYE
PHVHOMVA FNOUIVSNYHL
fir:) SHVELHOLVEan
NOILOVSNVALHOLYE

Nvid13oang

(1

0009 INY

L 7 .
)

eljuspyuo) @ Arejalidold sal
(¥ 40

juauodwo? s9(q!
usuodwoy Bul|iig samr

A-2 Billing Component Installation and Configuration Guide, Volume 2

Oracle Utilities Receivables Component-Collections Database Schema

Database

ions

Receivables Component-Collect

ities

Oracle Ut
Schema

puB ¥ISNST SUWN|OD aAey [Im a6ed siy) uo
BU) PIQEUS UDISUBIXS BWBLIS , 1IANYS T, JI)

(umous jou a1e NOILDIASIYNF pue 8010 vivazoussan S0
i 1on 800 S Juzva AUvadNOd Inuzwva
JNODONILYHIJO 0} shey ublaio dnyooT) J— (111N 20N ohbtoar. JA003ALT O (rszhavHouvA 0N (rSERVHONVA
Nod IRHRA FNA P 0103 ddY
61BN INNOMY
aleymas|3 palieled - () sweN a|qel 3NTVALX3LNOD (vavHONYA QUNNODOY
N0 1NnooovaIn
diysuonejey - aujl payseq {rohavizonn 3000sRIN°
- FORVHONYA 530030040 [— —
Auz seap - aull ajgnog CORVIDEA (sVHONYA Qw3SNa001
Anuz - suy sibuIS TIRIORA Jni131va 3NLa001
g R i} (SORVHONYA 30MNOSIOVSSIN
1IN 10N) Xapuj anbiup - (,,)(s)isuaisy (vahavHOUYA ISNIOVSSAN
oy {SPSUSISY (TION LON) (5SZVHOMYA DSIQTAALIOMNOSHVA (TN 10N U 3Lva SnovSSIN (110N 10N 3WL31va
unsse [INN 10N) Aoy} Atewd - SUFSPUN TN TAVIDEV, 0003ALIVEEI 1 TIRVHOHTA
. TRRVFORA oSS ' TRV
SWeN diqeL - plog 9SWAINIOV10D
puaba
(TN 10N (Va0 VA
! (@) Avassanisna vivazovssan b
IRVDEVA SAVREVA 3vaSDOd b
INTVAOSWOINYNAT ool
1N L0N) 111 u00s110380 o
FwLava 1v0d01S ooy
’ JENTEn S1vaLLS
(2) wawousno [+ é +inioK H3015N0aIN oeant
e 30000040 [— —|
auEsNaH0071
N300
30un0SIOVSSIN
w LnEmot ARESNIOVSSIN
w LinEddn e) SWLFOVSSIN (10N 10N F131va
(TINN LON) (POIVHONVA NOLLINOS3Q PORVHONVA J0003IALIOVSSIN TRTEVHORVA
TORIVHOMVA TA0OINIHISD TRTRVHIEVA qovesTn TRRHONA
10385 9SW34010HS
(2) NOILOVSNVYLST
(5) AONZHNOST
L
(anHoNvA 3000N0S VA
(rezhnuouv ava S1vaaion
ava AwvaazHsY
aiva Auvaanss|
ava 3uvaanEs
(oMYA oMo
I rerevvervr e (TION LONIY 638N INNONY
[OIS INDIE INNOOOVONDOIHOAIN
HOUYA NOLINLILSNI ~NoIg NOILOVSNYLLAIN e +-
N prie] E— (IO LONBHOUYA LS (@) 300030N3A3Y
RVHONVA oNINNODOY (TN LoN) 1018 1Nnooovan
INOE INTOI0VONDIIHIAN ™| NN
LNNOOOVONINOIHD ! [ETS——
(710N 10N Livi3ddn (ST
(TN 10N wsanot]
30008mN FOTRVHONA
30000040
Ly TIo0TE
FOVINIOUIATIS
31vadols
ETERT) Srvoaois (T 10N 31va Erivnev
(PSZVHONVA SINZHNOD
(110N LON) (F9PAVHOMYA 34ALSONAT00
(rahvHOMA SAVNNYAE0N
+INioia AoN39VI000I0
TI10N 108 181 weE TIVESOHARONIOV 00T VDR
ANNOIOVXOOHI0) WYND0NAINIDYI00 N

3vO TvaINGWAVALSHE
1918 3ALIONVERIVIOOAN

(bOhVHOMYA 3000FIANVHTOS
(71NN LONINI SINFHAVANNN (2) INNODOY
(70N LONFWLLZLYD 31v0doLS
“3WELYD AWVaLNVIS

(azivHomA
TPOTEVHORVA

NOLLINOS30
SACOTTNVH T0dS

300231ANVH1dS

(veuEanN
ava

(TIN LONK¥ GLMIENON
V0

wied
z53%
EEElE

39031dLSISSY

p INnooDVaIN
INOE NOTWEXI00an W
NOILJW3X310D

(TNION)BOTD QVOTAVA3OVSSIN

3A00IIALINITI00 ONVISNIALALLOVAIN

INnooovain
ONIASNSUOMRSAL
NOLLJMOS3a 103rEONGOTIN
FIKIRIFKII00AN TSrraoooan
3dALINIXIT10D A¥OLSIHLO3r80100

(TN LON) (0RavHOMVA IWNAYIdSIO
(TIN LON) INI91R 3JALIEON0OAIN
SAYaNOLLYANG

1HOBM

JWNLOIMED

(TN Lor FNVNOHLIN
(71N 1ON) (olavHOMYA QI90Nd

™oE ToFEOHOSAN
193rg0WOD

(TINN LONINLILYG
ENTETYe}

ORI

INSE VHO0NdISISsYan
3dALAOUXWOdLSISSY

[
pORIVHOYA

vivazovssaw

3 IOvSSAN
FACTIIALTOVSSIN
TEveSIN
OSW¥ILITT

vivazovssan
3WvadnId

310N

13103dSdd
INNOWY
QUNNoDY
1NnoDOVaIN
3000
30000040
anESNADOOT
SNILABIOOT
30MN0S3OVESIN
QRESNIDVSSIN
INUIOVSSIN
FACOFIALIOVSS T

AOVSST
OSWINOHd

NOLLINOSIq
FIRIS0IT00
3dALOONAT0D

TIIIVINGS
OO

o FONFOYIOoaM
AMOLOFMIAXAINIOVI0D

3nuatva
(TINN LONINLALYD
(vSzRIvHONYA

VOVHOUYA

fur)

AONIOVISISSY

é @ 3aaiaiavaizosy

(fenuapyuo) % Arejeudold semin 8joBIO)

(v Jo € abed)
(suono9jj09) Jusuodwon ss|geAlsdsy

0°0°0'9" L A Jusuodwo Buljiig senlin ojoelo

Oracle Utilities Data Repository Receivables Component Database Schema A-3

Oracle Utilities Receivables Component-Collections Database Schema

A-4 Billing Component Installation and Configuration Guide, Volume 2

Appendix B

Oracle Utilities Data Repository Workflow
Management Database Schema

This appendix includes a diagram of the Oracle Utilities Data Repository Workflow Management
database schema (v1.6.0.0.0) that provides details regarding the table and columns in the database
schema, as well as the relationships between these tables in the Oracle Utilities Data Repository.

This appendix includes:

* Oracle Utilities Billing Component - Workflow Management / Reports Database

Schema

Oracle Utilities Data Repository Workflow Management Database Schema B-1

Billing Component - Workflow Management /

lities

Oracle Utilities Billing Component - Workflow Management / Reports Database Schema

Oracle Ut

I 5]] PSS PASOSS FYYSIRAM6S bHEY 3RS YRy u

FIEbtfe} L RRIABER OIS UBRAS PR UBEIN SN 41
(UMQURIRIS I8 %_nﬁw@ RRYE

ANV BARIS D% ¥

ISR PBLIIE) -HPOLRAPS e |

diSeRIRIBNESYY BRYFTseq

Anugpgghesrit 819M8@noq

) % 5____Mym i BlHEBuIS
HoUBSERHEN JANSSRY by ()1 4RIS e

smémmzmw;mﬁs_%&n@i

SWEBLRP3iqRI2pjog

PUgRBo-

@
S~
5

©

p)

1aoo
INLINGAD
oo ONILVI
1Nnooovain
(TION LONNPSIVHORVA 30003dALINIA
NS SONVISNALALOVON
ANIAFALIALLOY
v
8010 vivazovssaw
310N
9U103dSddY
INNOWY
QNSO ¢
INnooovain Lawoo
3a00sMin = 3108
30000040 S Froresd W FONVISNALIALOVAIN
03810007 e doLs INnooovain
3N1LGDI0T (IO LoNKze v 3niLd0LS
30uN0s3OVSSIN LIS
Gszpvhowvn I ongsnIovsSIN | s
Jreitvvisvs Snivis InIL3OVSSIN ETut T e i T — NosuINSS IO |
TORVHORA SA00IILIOVSIN TRVISNSS 050N
TPOTEVROSVA TEVESIN 3ONVLSNISSIV0Nd
9SWOMIM
t w 801 Lawoo
o (rszhavHOVA 2108
sanen] o> O sovisug
S Inioa INnooovain
EEn JILIOLS
(TN Loneeiae Thas (110N 10N) WLV LIS
- ALNLOYSSI00aIN
o eeaaaan (TION LON) (ZE)RNHONVA E
et i~ (TN iovINels Nossmssaoondan
DWISNES IO
INHOYVALIALOY IAouvesaOOHd

W

(110N 10N (rS2iavHouvA - DS303dAL30MNOSY
= THORVHONVA J0003IALIIHOST
30uNOSAY

VWIHOSLXILNOD

aavarval |
310N
(vs2)avHOMYA NOWLdNOS3Q
NOISHIANONIN
THOTVHORVA TAOOIIALINGS NORRBAIONY (TN 10N 8070 Ay
3dALINIA - SeI00MaN (11N 1ON) (FOMVHOUVA ~ 300D3HALIONNOSHY.
TORVHORVA TNV

NOIS¥3ASSIO08d INTVALXIINO:

‘SnIVISTEVAEO

W SENS VNV | "
NOILANOS3a
W

008"
) weodaLvY ,\6 30030940
INNSS300Nd

e — e Nom SEI08daN

3NVALX3INODOON

y $5300d
(2) Lonao¥ds1 L

(lenuapyuog 1 Aiejodold sani|
(¥ 40 ¥ abed) m
0°0°0°9' LA Jusuodwo) Buiig seninn

Reports Database Schema

B-2 Billing Component Installation and Configuration Guide, Volume 2

Oracle Utilities Billing Component - Workflow Management / Reports Database Schema

Oracle Utilities Data Repository Workflow Management Database Schema B-3

Oracle Utilities Billing Component - Workflow Management / Reports Database Schema

B-4 Billing Component Installation and Configuration Guide, Volume 2

Appendix C

Messaging

This chapter provides an overview of the Messaging System, including:
* The Purpose of the Messaging System

* Messaging Tables

* Message Types

* Messaging Functions

Messaging C-1

The Purpose of the Messaging System

The Purpose of the Messaging System

During the processing of various business functions, it will be necessaty to create messages for a
number of reasons, such as notifying external systems that a given function has been performed,
logging activity for control purposes, or maintaining work queues. The Messaging System is
designed to support external interfacing, control activities, work queues, and internal messages
(such as Collections processing).

An example of the Messaging System might be as follows. Whenever a financial transaction is
posted against an account, a corresponding message is posted so that the activity is logged and any
external systems can be notified of the update. This is an example of a message being used as
both an external interface and a control activity.

C-2 Billing Component Installation and Configuration Guide, Volume 2

Messaging Tables

Messaging Tables

The Messaging System makes use of a number of tables in the Oracle Ultilities Data Respository
to track various message types, message queues, and messages. The following tables are used to
manage information about message types and message queues in the system and the relationships
between them.

Message Type Table (MESSAGETYPE)

The Message Type Table contains records for each unique message type in the system.

Message Queue Table (MESSAGEQUEUE)
The Message Queue Table contains records representing each available message queue or
container in the system. The MESSAGEQUEUECODE attribute uniquely identifies the queue,
and the MESSAGEQUEUETYPE attribute defines the type of the queue. The system can be
extended to support many different types of message queues, including database tables, IBM
MQSeties, and Microsoft MSMQ. The MESSAGEQUEUENAME and SERVERNAME
attributes are used by the various message queue type implementations to identify the queue
internally. The default message queue type supported is “LSDB”, which is a relational database
table implementation in the Oracle Utilities database.

Message Type Queue Table (MESSAGETYPEQUEUE)

The Message Type Queue Table is used to specify which message queues are used for each
message type. A message type can have zero or more message queues. Each time a message is
posted, the system will post the message to every message queue related to the message’s message
type. This allows the system to be configured to post different message types to different queues
depending on the requirements of the system. If a message type is not required, then it will not be
related to any message queues, and the system will effectively “drop” the message.

Messaging C-3

Message Types

Message Types

C-4 Billing Component Installation and Configuration Guide, Volume 2

The specific message types used by the Messaging System are dependent on the specific needs of
the implementation. The system can handle any number of message types. The following lists the

default message types used by the Oracle Utilities Receivables Component.

Message Type

Message Type Code

Account Balance Error

ACCOUNT_BALANCE_ERROR

Account Balanced

ACCOUNTS_BALANCED

Adjustment Transaction Posted

ADJ_TXACTION_POSTED

Autopayments Processed

AUTOPAYMENTS_PROCESSED

Balance Accounts Error

BALANCE_ACCOUNTS_ERROR

Batch Payment Error

BATCHPAYMENT_ERROR

Batch Payment Processed

BATCHPAYMENT_PROCESSED

Budget Charge Transaction Posted

BDGTCHG_TXACTION_POSTED

Budget Service Charge Transaction
Posted

BDGTSRVCHG_TXACTION_POSTED

Budget Trueup Transaction Posted

BDGTTRP_TXACTION_POSTED

Bill Transaction Posted

BILL_TXACTION_POSTED

Cancel Transaction Error

CANCEL_TXACTION_ERROR

Collections Payment Posted

COLLECTIONS_PAYMENT

Deferred Service Charge

Transaction Posted

DEFSRVCHG_TXACTION_POSTED

Installment Charge Transaction
Posted

INSTCHG_TXACTION_POSTED

Journal Balance Error

JOURNAL_BALANCE_ERROR

Journal Balanced

JOURNAL_BALANCED

Payment Exception Error

PAYMENT_EXCEPTION_ERROR

Payment File Error

PAYMENTFILE_ERROR

Payment File Processed

PAYMENTFILE_PROCESSED

Payment File In

PAYMENTFILEIN

Payment File Out

PAYMENTFILEOUT

Post Transaction Error

POST_TXACTION_ERROR

Payment Transaction Posted

PYMNT_TXACTION_POSTED

Refund Transaction Posted

REND_TXACTION_POSTED

Service Charge Transaction Posted

SRVCHG_TXACTION_POSTED

Statement Transaction Posted

STMT_TXACTION_POSTED

Message Types

Message Type Message Type Code

Sub-Ledger Rolled Up SUBLEDGER_ROLLEDUP
Transaction Cancelled TXACTION_CANCELLED
Unpostable Payment UNPOSTABLE_PAYMENT
Unpostable Transaction UNPOSTABLE_TRANSACTION
Write-Off Transaction Posted WRTOFF_TXACTION_POSTED

Message Queues

Message Queues can be thought of as containers for types of messages telated to specific uses,
such as input messages, output messages, control messages, etc. The system can support any
number of message queues, but includes a number of default queues as part of the system’s basic
functionality.

Default Message Queues

The default Message queues used by the Messaging System are described below.

Input Messages (INPUTMSG)

The Input Messages queue is used for potential messages coming into the Oracle Utilities system
from external sources. This incudes AutoPayment files that are required to be posted at a later
date.

Output Messages (OUTPUTMSG)
The Output Messages queue is used for all messages heading out of the Oracle Utilities system to
external systems.

Control Messages (CONTROLMSG)

The Control Messages queue is used for all control activities.

Messaging C-5

Message Types

Work Queue Messages (WORKQUEUEMSG)

The Work Queue Messages queue is used for all messages that need to be handled by a back-office
user via a work queue.

Collection Messages (COLLECTIONMSG)

Used for all messages related to automated collections processing.

Collection Events Messages (COLLEVENTMSG)

Used to store all collection events triggered by automated collections processing. Messages in this
queue will not be handled, they will simply be stored here for the purpose of maintaining a history
of collection events for each account.

Message Queue Table Templates

Each message queue has corresponding tables (for the “LLSDB” queue type) that store the
individual records associated with each message. These consist of a Message Table and a Message
Data Table for each queue. For instance, there is a Message Table and Message Data Table for
each of the default message queues described above.

Message Table
Records in the Message Table represent actual messages. Records in the Message Table contain
the following information:

* A unique ID for the message,

* Message Type (from the Message Type Table),

¢ Posted and Scheduled Time,

* Source of the message,

* Posted by/Processed by UserID,

¢ Closed Time,

* Associated Operating Company and Jurisdiction,
e Account,

* Amount (optional),

¢ Note, and

* Filename (optional name of a file containing the message).

Message Data
One or more records in the Message Data Table store the XML data for a given message.

C-6 Billing Component Installation and Configuration Guide, Volume 2

Messaging Functions

Messaging Functions

The Messaging System provides a number of Messaging functions to support the ability to
administer messages flowing through the system. These include the ability to post, retrieve,
remove, and list messages, as well as other functions designed to support work queues. These
functions are triggered through COM interfaces. The Messaging functions include:

Post Message

The Post Message function is used to post a single message to zero or more message queues,
based on the message's message type.

Peek Message
The Peck Message function is used to retrieve a single message from a single message queue.

Remove Message
The Remove Message function is identical to the Peek method described above, except that it will
also remove the returned message from the message queue.

List Message

The List Message function is used to retrieve a list of messages from a single message queue.

Hold, Release, Close, Reopen Message
The Hold, Release, Close, and Reopen Message functions are used to support special message
functionality required for work queues. A user “holds” a message in a work queue to indicate that
the work queue item is currently being investigated. This prevents two or more people from
accidentally working on the same work queue item at the same time. A held message can be
subsequently “released”, or if the work queue item has been resolved then the message can be
“closed”. A closed message can later be “reopened” if necessary.

Update Message
The Update function is used to update an existing message in a single message queue. This
function can only be used on message that have been locked via the Hold Message function.

Messaging C-7

Messaging Functions

How the Messaging Functions Work

The Messaging “Post” function operates ‘behind the scenes’, meaning that the function is
triggered automatically when certain operations are performed by one of the Oracle Utilities
Receivables Component modules (such as the AR Engine) or WorkFlow Manager. For instance,
when a charge or credit transaction is posted, the AR Engine triggers the Post Message function
and sends a message of the appropriate message type to the appropriate message queues.

The other Messaging functions are used by the Oracle Ultilities Receivables Component and
WorkFlow Manager user interfaces. These include the Peek, Remove, List, Hold, Release, Close,
and Reopen functions (essentially every function except Post).

In addition, the Messaging functions can be accessed by external systems through an interface.

C-8 Billing Component Installation and Configuration Guide, Volume 2

Appendix D

Financial Management Rules Language
Statements

This appendix provides detailed explanations of the Financial Management statements available in
the Oracle Ultilities Rules Language. Financial Management statements are used to post
transactions to the Oracle Utilities Receivables Component, including:

* Using the Financial Management Statements

* Deprecated Statements

Financial Management Rules Language Statements D-1

Using the Financial Management Statements

Using the Financial Management Statements

The Financial Management statements are used to post charges or credits to the Oracle Ultilities

Receivables Component’s Financial Engine. Fach statement takes a transaction identifier as a

single argument. The transaction identifier is a stem that should contain several tail attributes, as

described below. Attributes marked with an asterisk (¥) are required.

Attribute

Description

ACCOUNTID

An account ID that identifies the account for
posting or cancelling a transaction. If not provided,
the rate schedule account context is used. It is an
error if no account ID is provided and the rate
schedule is not run within the context of an account.

UID

Unique ID of a posted transaction. Used with the
CANCEL_TRAN statement.

TRANSACTIONID

A transaction ID for the transaction. If not provided,
the default transaction ID for the transaction type is
used.

REVENUEMONTH

The revenue month for the transaction. If not
provided, the rate schedule bill month is used.

NOTE

A note for the transaction.

CANCELREVENUEMONTH

The revenue month for a cancelled transaction.
Optional attribute used with the CANCEL_TRAN
statement.

CANCELREASONCODE

The reason for cancelling a transaction. Optional
attribute used with the CANCEL_TRAN statement.

CANCELNOTE

A note for a cancelled transaction. Optional attribute
used with the CANCEL_TRAN statement.

CHARGEORCREDIT

Indicates whether transaction is a charge (CH) or a
credit (CR). The default is charge ("CH") unless
otherwise indicated.

DEFERBALANCE

Indicates whether transaction balance is deferred
("TRUE") or not ("FALSE"). The default is
"FALSE" unless otherwise indicated

AMOUNT*

The amount of the transaction.

CURRENCY

The currency code for the currency associated with
the account for the transaction. This is required if
the LS Currency column is populated in the Account
table.

BILLEDDATE*

The billed date for the charge transaction. This is
only required for charge transactions.

DUEDATE*

The due date for the charge transaction. This is only
required for charge transactions.

RECEIVABLETYPENAME

The receivable type name for transactions (required
for all charge type transactions, except for POST
BILL, if CHARGETYPEID is not provided).

D-2 Billing Component Installation and Configuration Guide, Volume 2

Using the Financial Management Statements

Attribute

Description

CHARGETYPEID

The charge type identifier for transactions (required
for all charge type transactions, except for POST
BILL, if RECEIVABLETYPENAME is not
provided).

OPCOCODE

The operating company code associated with the
transaction.

JURISCODE

The jurisdiction code associated with the transaction.

STATEMENTDATE

This attribute is used only with the POST
STATEMENT statement. The statement date
associated with the transaction.

INVOICEID

The invoice ID associated with the transaction.

INVOICEDATE

The invoice date associated with the transaction.

BILLCYCLEDATE

The bill cycle date for the transaction. If not
provided, the rate schedule read date is used. It is an
error if no bill cycle date is provided and the rate
schedule does not have an associated read date.

BILLSTARTTIME

This attribute is used only with the POST BILL
statement. The bill start time for the transaction. If
not provided, the transaction time of the previous
BILL transaction with the same transaction 1D is
used.

BILLSTOPTIME

This attribute is used only with the POST BILL
statement. The bill stop time for the transaction. If
not provided, the transaction time is used.

SUSPENDAUTOPAYMENT

This attribute is used only with the POST BILL
statement. Indicates that automatic payments for the
bill transaction should be suspended.

SERVICEPLAN*

This attribute is required for the POST SERVICE
CHARGE and POST BUDGET SERVICE
CHARGE statements. The service plan attribute is a
stem itself that requires both STARTDATE and
SERVICETYPECODE attributes; optional
attributes are ADDRESS1, ADDRESS2,
ADDRESS3, CITY, COUNTY, STATE, ZIP (to
identify the associated premise), and
LDCACCOUNTNO.

BUDGETPLAN*

This attribute is used only with the POST BUDGET
SERVICE CHARGE, POST BUDGET BILL
CHARGE, and POST BUDGET BILL TRUEUP
statements. The budget plan attribute is a stem itself
that requires STARTDATE and
BUDGETTYPECODE attributes; the
SERVICEPLAN attribute (to identify any associated
service plan) is optional.

Financial Management Rules Language Statements D-3

Using the Financial Management Statements

Attribute

Description

TAXRATE

The tax rate associated with either a TAX transaction
or one or more individual

TAXEDTRANSACTIONS.

TAXEDTRANSACTION<ID>

One of the taxed transactions associated with a
POST TAX statement. The taxed transaction
attribute is a stem itself that may contain the
following attributes: UIDTRANSACTION or
TRANSACTIONNO (at least one of which is
required), AMOUNT, TAXAMOUNT, TAXRATE,
TAXEXEMPT ("TRUE" or "FALSE").

UIDINSTALLMENTPLAN

Unique ID of associated installment plan. Fither this
or INSTALLMENTPLANNO below is required for
the POST INSTALLMENT statement.

INSTALLMENTPLANNO

The transaction number of deferred charge
transaction associated with installment plan. Either
this or UIDINSTALLMENTPLAN above is
required for the POST INSTALLMENT statement.

UIDDEPOSIT

Unique ID of associated deposit. Either this or
DEPOSITTIME below is required for the POST
DEPOSIT INTEREST and POST DEPOSIT
APPLICATION statements.

DEPOSITTIME

Time of associated deposit. Either this or
UIDDEPOSIT above is required for the POST
DEPOSIT INTEREST and POST DEPOSIT
APPLICATION statements.

DEPINTRATE

Optional interest rate for deposit. This is used by the
POST DEPOSIT statement.

APPLICATIONMETHOD

Indicates how to apply the transaction against
outstanding charges or credits. Valid values are
"DEFERRED", "IMMEDIATE", and
"INVOICEID". Default is "DEFERRED" unless
otherwise indicated.

DEFACCOUNTID

Required default account id used by the POST
PAYMENT statement.

SOURCECODE

Required payment source code used by the POST
PAYMENT statement.

PAYMENTID

Optional payment id used by the POST PAYMENT
statement.

METHODCODE

Optional payment method code used by the POST
PAYMENT statement.

INSTITUTION

Optional institution name from which payment is
drawn; used by the POST PAYMENT statement.

ACCOUNTNO

Optional account number from which payment is
drawn; used by the POST PAYMENT statement.

D-4 Billing Component Installation and Configuration Guide, Volume 2

Using the Financial Management Statements

Attribute Description
CHECKNO Optional payment check number used by the POST
PAYMENT statement.
RELATEDTRANSACTIONn Optional related transaction(s) to which credits are
applied when using the POST
CHARGEORCREDIT statement. If multiple
related transactions are specified, credits are applied
in the order specified in the Rules Language. For
example, RELATEDTRANSACTIONT first,
RELATEDTRANSACTION?2 second, etc.
MISC1 Optional user-defined miscellaneous attribute used
by the POST PAYMENT statement.
MISC2 Optional user-defined miscellaneous attribute used
by the POST PAYMENT statement.
MISC3 Optional user-defined miscellaneous attribute used
by the POST PAYMENT statement.
Example:
SERV_PLAN.STARTDATE = "01/01/2000";
SERV_PLAN.SERVICETYPECODE = "ELECTRIC";
BUDGET PLAN.STARTDATE = "01/01/2000";
BUDGET PLAN.BUDGETTYPECODE = "SIMPLE";
BUDGET PLAN.SERVICEPLAN = "SERV PLAN";
SERV_CHG 1.TRANSACTIONID = "350";
SERV_CHG 1.AMOUNT = 59.95;
SERV_CHG_1.CURRENCY = “USD”;
SERV_CHG 1.BILLEDDATE = "07/15/2000";
SERV_CHG_1.DUEDATE = "07/30/2000";
SERV_CHG 1.CHARGETYPEID = "ELECTRIC USAGE CHARGE";
SERV_CHG 1.SERVICEPLAN = "SERV PLAN";

SERV_CHG 1.BUDGETPLAN =

"BUDGET PLAN";

POST CHARGEORCREDIT SERV_CHG 1;

Financial Management Rules Language Statements D-5

Using the Financial Management Statements

Using User-Defined Attributes

If the Transaction Table in your database contains columns that are not included in the base
schema (and therefore not among the data elements listed), you can post values to those columns
by assigning values to corresponding STEM.COLUMN_NAME identifiers in the rate schedule.
In this case, the column name specified in the rate schedule must be the exact name of the column
in the database. For example, if your Transaction Table contains a column called ZONE, you
could post data to that column by including the following line in your rate schedule:

USAGE_SERV_CHG.ZONE = “ZONE_1”"

/* Post Service Charge Statement */
POST STATEMENT USAGE SERV_CHG;

This would post the value assigned to the USAGE_SERV_CHG.ZONE identifier (“ZONE_17)
to the ZONE column in the Transaction Table.

D-6 Billing Component Installation and Configuration Guide, Volume 2

Using the Financial Management Statements

Post Charge Or Credit Statement

Purpose
The POST CHARGEORCREDIT Statement posts a charge or credit as a single transaction. The
transaction may be either deferred or not deferred. An optional service plan or budget plan may
be associated with the transaction. If a budget plan is provided, the plan’s variance will be updated
accordingly.

Format
POST CHARGEORCREDIT statements have this format:

POST CHARGEORCREDIT <stem identifier>;
Where:

* <stem_identifier> is a stem that contains the appropriate attributes, as described under
Using the Financial Management Statements.

To Create
1. Select Statements->Financials-»Post Charge or Credit from the Rules Language Editor
menu bar.

The POST CHARGEORCREDIT Statement template appears.

2. Enter the appropriate stem identifier, or click the 7jgh# mouse button and choose the stem
identifier from the Other Identifiers list in the Rules Language Elements Editor.

3. Click OK. The statement appears in the rate form.

Financial Management Rules Language Statements D-7

Using the Financial Management Statements

Example
Post a service charge transaction based on energy usage.

/* Set Service Charge Attributes */
USAGE SERV_CHG.ACCOUNTID = ACCOUNT.ACCOUNTID;

USAGE _SERV_CHG.TRANSACTIONID = "310";
USAGE_SERV_CHG.REVENUEMONTH = BILLMONTH;

USAGE_SERV_CHG.NOTE = "Electric Energy Charge - Energy Service
Provider";

USAGE_SERV_CHG.AMOUNT = $SENERGY_CHARGE;
USAGE_SERV_CHG.CURRENCY = “USD”;
USAGE_SERV_CHG.BILLEDDATE = "07/15/2000";
USAGE_SERV_CHG.DUEDATE = "08/15/2000";

USAGE SERV CHG.RECEIVABLETYPENAME = "ESCO ELECTRIC";
USAGE SERV_CHG.CHARGETYPEID = "ESCO ENERGY";
USAGE_SERV_CHG.OPCOCODE = OPCOCODE;

USAGE SERV_CHG.JURISCODE = JURISCODE;
USAGE_SERV_CHG.BILLCYCLEDATE = BILLCYCLEDATE.READDATE;

/* Post Usage Service Charge */
POST CHARGEORCREDIT USAGE_SERV_CHG;

Notes
In the above example, several of the USAGE_SERV_CHG attributes are ‘hard-coded’ into the
rate schedule. In actual practice, this data would probably come directly from records in the Oracle
Utilities Data Repository, or through list queries. Also, the above example includes values for all
the optional USAGE_SERV_CHG attributes. These are included to illustrate how those attributes
might be supplied in a rate schedule.

D-8 Billing Component Installation and Configuration Guide, Volume 2

Using the Financial Management Statements

Post Tax Statement

Purpose
The POST TAX Statement posts a tax charge or credit transaction for a specified account. The
transaction may be either deferred or not deferred. An optional service plan or budget plan may
be associated with the transaction. If a budget plan is provided, the plan’s variance will be updated
accordingly. Additionally, the tax transaction may be associated with one or more previously
posted transactions.

Format
POST TAX statements have this format:
POST TAX <stem identifier>;
Where:
* <stem_identifier> is a stem that contains the appropriate attributes, as described under
Using the Financial Management Statements.
To Create

1. Select Statements->Financials->Post Tax from the Rules Language Editor menu bar.
The POST TAX Statement template appears.

2. Enter the appropriate stem identifier, or click the 7jgh# mouse button and choose the stem
identifier from the Other Identifiers list in the Rules Language Elements Editor.

3. Click OK. The statement appears in the rate form.

Financial Management Rules Language Statements D-9

Using the Financial Management Statements

Example
Post a tax: transaction based on energy unsage.

/* Set Energy Tax Charge Attributes */

USAGE TAX.ACCOUNTID = ACCOUNT.ACCOUNTID;

USAGE TAX.REVENUEMONTH = BILLMONTH;

USAGE TAX.NOTE = "Electric Energy Tax Charge - Energy Service
Provider";

USAGE_TAX.AMOUNT = S$TAX CHARGE;
USAGE TAX.CURRENCY = “USD”;

USAGE TAX.BILLEDDATE = "07/15/2000";
USAGE_TAX.DUEDATE = "08/15/2000";

USAGE TAX.RECEIVABLETYPENAME = "ESCO ELECTRIC";
USAGE TAX.CHARGETYPEID = "ESCO ENERGY";

USAGE TAX.OPCOCODE = OPCOCODE;

USAGE TAX.JURISCODE = JURISCODE;

USAGE TAX.BILLCYCLEDATE = BILLCYCLEDATE.READDATE;

/* Post Tax Transaction */
POST TAX USAGE_TAX;

Notes
In the above example, several of the USAGE_TAXG attributes are ‘hard-coded’ into the rate
schedule. In actual practice, this data would probably come directly from records in the Oracle
Utilities Data Repository, or through list queries. Also, the above example includes values for all
the optional USAGE_TAX attributes. These are included to illustrate how those attributes might
be supplied in a rate schedule.

D-10 Billing Component Installation and Configuration Guide, Volume 2

Using the Financial Management Statements

Post Installment Statement

Purpose
The POST INSTALLMENT Statement posts a non-deferred charge transaction related to a
previously created installment plan against a specified account.

Format
POST INSTALLMENT statements have this format:
POST INSTALLMENT <stem_identifier> ;
Where:
* <stem_identifier> is a stem that contains the appropriate attributes, as described under
Using the Financial Management Statements.
To Create
1. Select Statements->Financials->Post Installment from the Rules Language Editor menu
bar.

The POST INSTALLMENT Statement template appears.

2. Enter the appropriate stem identifier, or click the 7jgh# mouse button and choose the stem
identifier from the Other Identifiers list in the Rules Language Elements Editor.

3. Click OK. The statement appears in the rate form.

Financial Management Rules Language Statements D-11

Using the Financial Management Statements

Example

Notes

Post an installment transaction based on energy usage.

/* Set installment Attributes */

USAGE_INST

USAGE_INST

USAGE_INST

USAGE_INST.
USAGE_INST.
USAGE INST.
USAGE INST.
USAGE_INST.

.ACCOUNTID
USAGE INST.
USAGE INST.
.NOTE = "Electric Energy Charge - Energy Service

.AMOUNT
USAGE_INST.
USAGE_INST.
USAGE_INST.

ACCOUNT .ACCOUNTID;
"310";
BILLMONTH;

TRANSACTIONID =
REVENUEMONTH

Provider";

SENERGY CHARGE;
CURRENCY = “USD”;
BILLEDDATE = "07/15/2000";
DUEDATE = "08/15/2000";

RECEIVABLETYPENAME = "ESCO ELECTRIC";
CHARGETYPEID = "ESCO ENERGY";

OPCOCODE OPCOCODE;

JURISCODE JURISCODE;

BILLCYCLEDATE BILLCYCLEDATE.READDATE;

/* Post Installment */
POST INSTALLMENT USAGE_INST;

In the above example, several of the USAGE_INST attributes are ‘hard-coded’ into the rate
schedule. In actual practice, this data would probably come directly from records in the Oracle
Utilities Data Repository or through list queries. Also, the above example includes values for all
the optional USAGE_INST attributes. These are included to illustrate how those attributes might
be supplied in a rate schedule.

D-12 Billing Component Installation and Configuration Guide, Volume 2

Using the Financial Management Statements

Post Statement Statement

Purpose
The POST STATEMENT Statement posts a single statement transaction against an account. The
transaction indicates the current balance for the account. The account's current balance will not
change.

Format
POST STATEMENT statements have this format:
POST STATEMENT <stem identifier>;
Where:
* <stem_identifier> is a stem that contains the appropriate attributes, as described under
Using the Financial Management Statements.
To Create

1. Select Statements->Financials->Post Statement from the Rules Language Editor menu bar.
The POST STATEMENT Statement template appears.

2. Enter the appropriate stem identifier, or click the 7jgh# mouse button and choose the stem
identifier from the Other Identifiers list in the Rules Language Elements Editor.

3. Click OK. The statement appears in the rate form.

Financial Management Rules Language Statements D-13

Using the Financial Management Statements

Example
Post a statement transaction based on energy usage.

/* Set Service Charge Attributes */
USAGE SERV_CHG.ACCOUNTID = ACCOUNT.ACCOUNTID;

USAGE _SERV_CHG.TRANSACTIONID = "310";
USAGE_SERV_CHG.REVENUEMONTH = BILLMONTH;

USAGE_SERV_CHG.NOTE = "Electric Energy Charge - Energy Service
Provider";

USAGE_SERV_CHG.AMOUNT = $SENERGY_CHARGE;
USAGE_SERV.CURRENCY = “USD”;
USAGE_SERV_CHG.BILLEDDATE = "07/15/2000";
USAGE_SERV_CHG.DUEDATE = "08/15/2000";

USAGE SERV CHG.RECEIVABLETYPENAME = "ESCO ELECTRIC";
USAGE SERV_CHG.CHARGETYPEID = "ESCO ENERGY";
USAGE_SERV_CHG.OPCOCODE = OPCOCODE;

USAGE SERV_CHG.JURISCODE = JURISCODE;
USAGE_SERV_CHG.STATEMENTDATE "08/01/2000;
USAGE_SERV_CHG.BILLCYCLEDATE BILLCYCLEDATE.READDATE;

/* Post Usage Statement */
POST STATEMENT USAGE_ SERV_CHG;

Notes
In the above example, several of the USAGE_SERV_CHG attributes are ‘hard-coded’ into the
rate schedule. In actual practice, this data would probably come directly from records in the Oracle
Utilities Data Repository, or through list queries. Also, the above example includes values for all
the optional USAGE_SERV_CHG attributes. These ate included to illustrate how those attributes
might be supplied in a rate schedule.

D-14 Billing Component Installation and Configuration Guide, Volume 2

Using the Financial Management Statements

Post Bill Statement

Purpose
The POST BILL Statement posts a bill transaction against an account. This will trigger the
IMMEDIATE credit application process, unless the APPLICATIONMETHOD is set to
“DEFERRED?”. It may also initiate an autopayment for the account, if set up to do so. The
account’s current balance will not change, unless DEFERBALANCE is set to “FALSE”.

Format
POST BILL statements have this format:

POST BILL <stem identifier>;
Where:

* <stem_identifier> is a stem that contains the appropriate attributes, as described under
Using the Financial Management Statements.

To Create
1. Select Statements-Financials->Post Bill from the Rules Language Editor menu bar.

The POST BILL Statement template appears.

2. Enter the appropriate stem identifier, or click the 7jgh# mouse button and choose the stem
identifier from the Other Identifiers list in the Rules Language Elements Editor.

3. Click OK. The statement appears in the rate form.

Financial Management Rules Language Statements D-15

Using the Financial Management Statements

Example

Notes

Post a bill for the total charge to the customer.

/* Set Bill Attributes */

TOTAL BILL

TOTAL BILL.
TOTAL BILL.
.NOTE = "Total Bill,

TOTAL BILL

TOTAL BILL

TOTAL BILL.
TOTAL BILL.
TOTAL BILL.

TOTAL BILL.
TOTAL BILL.
TOTAL BILL.
TOTAL BILL.
TOTAL BILL.

.ACCOUNTID

.AMOUNT

ACCOUNT .ACCOUNTID;

TRANSACTIONID = "3000";

REVENUEMONTH BILLMONTH;

including customer and energy charges";

SEFFECTIVE REVENUE;
CURRENCY = “USD”;
BILLEDDATE = "07/15/2000";
DUEDATE = "08/15/2000";

RECEIVABLETYPENAME = "ESCO ELECTRIC";
CHARGETYPEID = "ESCO ENERGY";

OPCOCODE OPCOCODE;

JURISCODE JURISCODE;

BILLCYCLEDATE BILLCYCLEDATE.READDATE;

/* Post Bill */
POST BILL TOTAL BILL;

In the above example, several of the TOTAL_BILL attributes are ‘hard-coded’ into the rate
schedule. In actual practice, this data would probably come directly from records in the Oracle

Utilities Data Repository, or through list queries. Also, the above example includes values for all
the optional TOTAL_BILL attributes. These are included to illustrate how those attributes might
be supplied in a rate schedule.

The POST BILL statements returns the following tail identifiers to allow utilizing a created
transaction in subsequent processing:

¢ UIDTRANSACTION: The UID of the transation

¢ TRANSACTIONTIME: The time of the transaction

¢ TRANSACTIONO: The transaction number

D-16 Billing Component Installation and Configuration Guide, Volume 2

Using the Financial Management Statements

Post Payment Statement

Purpose
The POST PAYMENT Statement posts a payment transaction against an account. This will
trigger the IMMEDIATE credit application process, unless the APPLICATIONMETHOD is set
to “DEFERRED” or “INVOICEID”. The account’s current balance will change.

Format
POST PAYMENT statements have this format:

POST PAYMENT <stem identifier>;
Where:

* <stem_identifier> is a stem that contains the appropriate attributes, as described under
Using the Financial Management Statements.

To Create
1. Select Statements->Financials->Post Payment from the Rules Language Editor menu bar.

The POST PAYMENT Statement template appears.

2. Enter the appropriate stem identifier, or click the 7jgh# mouse button and choose the stem
identifier from the Other Identifiers list in the Rules Language Elements Editor.

3. Click OK. The statement appears in the rate form.

Financial Management Rules Language Statements D-17

Using the Financial Management Statements

Example
Post a payment.

/* Set Payment Attributes */
PAYMENT.ACCOUNTID = ACCOUNT.ACCOUNTID;
PAYMENT.DEFACCOUNTID = “99999”;
PAYMENT .SOURCECODE = “LOCKBOX”;

PAYMENT .AMOUNT = “$90.00";
PAYMENT .CURRENCY = “USD”;

/* Post Payment */
POST PAYMENT PAYMENT;

Notes
In the preceding example, several of the PAYMENT attributes are ‘hard-coded’ into the rate
schedule. In actual practice, this data could also come directly from records in the Oracle Ultilities
Data Repository or through list queries.

D-18 Billing Component Installation and Configuration Guide, Volume 2

Using the Financial Management Statements

Post Adjustment Statement

Purpose

The POST ADJUSTMENT Statement posts an adjustment transaction against an account. This
will, by default, trigger the credit application process if the adjustment is a credit, unless the
APPLICATIONMETHOD is overridden. The account’s current balance will change by default
unless the DEFERBALANCE is set to TRUE.

Format

POST ADJUSTMENT statements have this format:

POST ADJUSTMENT <stem identifier>;

Where:

To Create

1.

<stem_identifier> is a stem that contains the appropriate attributes, as described under
Using the Financial Management Statements.

Select Statements->Financials-»Post Adjustment from the Rules Language Editor menu
bar.

The POST ADJUSTMENT Statement template appears.

Enter the appropriate stem identifier, or click the 7gh# mouse button and choose the stem
identifier from the Other Identifiers list in the Rules Language Elements Editor.

Click OK. The statement appears in the rate form.

Financial Management Rules Language Statements D-19

Using the Financial Management Statements

Example
Post a credit adjustment.

/* Set Payment Attributes */
CHG_ADJUST.ACCOUNTID = ACCOUNT.ACCOUNTID;
CHG ADJUST.CHARGEORCREDIT = “CR”

CHG_ADJUST.AMOUNT = “$90.00";
CHG ADJUST.CURRENCY = “USD”;

/* Post Adjustment */
POST ADJUSTMENT CHG;ADJUST;

Notes
In the preceding example, several of the ADJUSTMENT attributes are ‘hard-coded’ into the rate
schedule. In actual practice, this data could also come directly from records in the Oracle Utilities
Data Repository or through list queries.

D-20 Billing Component Installation and Configuration Guide, Volume 2

Using the Financial Management Statements

Post Refund Statement

Purpose
The POST Refund Statement posts a refund transaction against an account. This will trigger the
IMMEDIATE credit application process, unless the APPLICATIONMETHOD is set to
“DEFERRED” or “INVOICEID”. The account’s current balance will change.

Format
POST REFUND statements have this format:

POST REFUND <stem identifier>;
Where:

* <stem_identifier> is a stem that contains the appropriate attributes, as described under
Using the Financial Management Statements.

To Create
1. Select Statements->Financials->Post Refund from the Rules Language Editor menu bar.

The POST REFUND Statement template appears.

2. Enter the appropriate stem identifier, or click the 7jgh# mouse button and choose the stem
identifier from the Other Identifiers list in the Rules Language Elements Editor.

3. Click OK. The statement appears in the rate form.

Financial Management Rules Language Statements D-21

Using the Financial Management Statements

Example
Post a refund for the total charge to the customer.

/* Set Bill Attributes */
BILLiREFUND.ACCOUNTID = ACCOUNT.ACCOUNTID;

BILL REFUND.TRANSACTIONID = "3000";
BILL REFUND.REVENUEMONTH = BILLMONTH;
BILL REFUND.NOTE = "Refund for Total Bill, including customer and

energy charges";

BILL REFUND.AMOUNT = SEFFECTIVE REVENUE;

BILL REFUND.CURRENCY = “USD”;
BILL REFUND.RECEIVABLETYPENAME = "ESCO ELECTRIC";
BILL REFUND.CHARGETYPEID = "ESCO ENERGY";

BILL REFUND.OPCOCODE = OPCOCODE;
BILL REFUND.JURISCODE = JURISCODE;
BILL REFUND.BILLCYCLEDATE = BILLCYCLEDATE.READDATE;

BILL REFUND.APPLICATIONMETHOD = “IMMEDIATE”;
BILL REFUND.DEFERBALANCE = “FALSE”;

/* Post Refund */
POST REFUND BILL_REFUND;

Notes
In the above example, several of the BILL._REFUND attributes are ‘hard-coded’ into the rate
schedule. In actual practice, this data would probably come directly from records in the Oracle
Utilities Data Repository, or through list queries. Also, the above example includes values for all
the optional BILL, REFUND attributes. These are included to illustrate how those attributes
might be supplied in a rate schedule.

D-22 Billing Component Installation and Configuration Guide, Volume 2

Using the Financial Management Statements

Post Writeoff Statement

Purpose
The POST WRITEOFF Statement is used to write off an account. All transactions for the
account with an outstanding balance will be written off. This will trigger the IMMEDIATE credit
application process. The account’s current balance will change.

Format
POST WRITEOFF statements have this format:

POST WRITEOFF <stem identifier>;
Where:

* <stem_identifier> is a stem that contains the appropriate attributes, as described under
Using the Financial Management Statements.

To Create
1. Select Statements->Financials-»Post Writeoff from the Rules Language Editor menu bar.

The POST WRITEOFF Statement template appears.

2. Enter the appropriate stem identifier, or click the 7jgh# mouse button and choose the stem
identifier from the Other Identifiers list in the Rules Language Elements Editor.

3. Click OK. The statement appears in the rate form.

Financial Management Rules Language Statements D-23

Using the Financial Management Statements

Example
Write off an account.

/* Set Write Off Attributes */
ACCTﬁWRITEOFF.ACCOUNTID = ACCOUNT.ACCOUNTID;

/* Post Write Off */
POST WRITEOFF ACCT_WRITEOFF;

D-24 Billing Component Installation and Configuration Guide, Volume 2

Using the Financial Management Statements

Post Deposit Statement

Purpose
The POST DEPOSIT Statement posts a deposit charge transaction against an account. The
account’s current balance will change by default unless DEFERBALANCE is set to TRUE.

Format
POST DEPOSIT statements have this format:

POST DEPOSIT <stem identifier>;
Where:

* <stem_identifier> is a stem that contains the appropriate attributes, as described under
Using the Financial Management Statements.

To Create
1. Select Statements->Financials->Post Deposit from the Rules Language Editor menu bar.

The POST DEPOSIT Statement template appears.

2. Enter the appropriate stem identifier, or click the 7jgh# mouse button and choose the stem
identifier from the Other Identifiers list in the Rules Language Elements Editor.

3. Click OK. The statement appears in the rate form.

Financial Management Rules Language Statements D-25

Using the Financial Management Statements

Example
Post a deposit.

/* Set Deposit Attributes */
ACCT DEP.ACCOUNTID = ACCOUNT.ACCOUNTID;
ACCT DEP.DEPINTRATE = FACTOR[DEPOSIT INT RATE].VALUE

ACCT_DEP.AMOUNT = “$90.00";
ACCT DEP.CURRENCY = “USD”;

/* Post Deposit */
POST DEPOSIT ACCT_DEP;

D-26 Billing Component Installation and Configuration Guide, Volume 2

Using the Financial Management Statements

Post Deposit Interest Statement

Purpose
The POST DEPOSIT INTEREST Statement posts deposit interest as a single transaction.

Format
POST DEPOSIT INTEREST statements have this format:

POST DEPOSIT INTEREST <stem_identifier>;
Where:

* <stem_identifier> is a stem that contains the appropriate attributes, as described under
Using the Financial Management Statements.

To Create
1. Select Statements->Financials->Post Deposit Interest from the Rules Language Editor
menu bar.

The POST DEPOSIT INTEREST Statement template appears.

2. Enter the appropriate stem identifier, or click the 7jgh# mouse button and choose the stem
identifier from the Other Identifiers list in the Rules Language Elements Editor.

3. Click OK. The statement appears in the rate form.

Financial Management Rules Language Statements D-27

Using the Financial Management Statements

Example

Notes

Post deposit interest.

/* Set Deposit Interest Attributes */
DEP INT.ACCOUNTID = ACCOUNT.ACCOUNTID;
DEP_INT.AMOUNT = $DEPOSIT_INTEREST,‘
DEP INT.CURRENCY = “usD”;

DEP INT.OPCOCODE = OPCOCODE;

DEP INT.JURISCODE = JURISCODE;

/* Post Deposit Interest */

POST DEPOSIT INTEREST USAGE_SERV_CHG;

In the preceding example, several of the DEP_INT attributes are ‘hard-coded’ into the rate
schedule. In actual practice, this data would probably come directly from records in the Oracle

Utilities Data Repository, or through list queries. Also, the above example includes values for all
the optional DEP_INT attributes. These ate included to illustrate how those attributes might be
supplied in a rate schedule.

D-28 Billing Component Installation and Configuration Guide, Volume 2

Using the Financial Management Statements

Post Deposit Application Statement

Purpose
The POST DEPOSIT APPLICATION Statement is used to apply a deposit as a single
transaction.

Format
POST DEPOSIT APPLICATION statements have this format:

POST DEPOSIT APPLICATION <stem_identifier>;
Where:

* <stem_identifier> is a stem that contains the appropriate attributes, as described under
Using the Financial Management Statements.

To Create
1. Select Statements->Financials->Post Deposit Application from the Rules Language Editor
menu bar.

The POST DEPOSIT APPLICATION Statement template appears.

2. Enter the appropriate stem identifier, or click the 7jgh# mouse button and choose the stem
identifier from the Other Identifiers list in the Rules Language Elements Editor.

3. Click OK. The statement appears in the rate form.

Financial Management Rules Language Statements D-29

Using the Financial Management Statements

Example

Notes

Post a deposit application.

/* Set deposit application attributes */

DEP_APP.

DEP APP.
DEP_APP.

DEP APP.
DEP_APP.

/* Post

ACCOUNTID = ACCOUNT.ACCOUNTID;
AMOUNT = $ENERGY_CHARGE;
CURRENCY = “USD”;

OPCOCODE = OPCOCODE;

JURISCODE = JURISCODE;

Deposit Application */

POST DEPOSIT APPLICATION DEP_APP;

In the above example, several of the DEP_APP attributes are ‘hard-coded’ into the rate schedule.
In actual practice, this data would probably come directly from records in the Oracle Utilities Data
Repository, or through list queries. Also, the above example includes values for all the optional
DEP_APP attributes. These are included to illustrate how those attributes might be supplied in a
rate schedule.

D-30 Billing Component Installation and Configuration Guide, Volume 2

Using the Financial Management Statements

Cancel Transaction Statement

Purpose

The CANCEL_TRAN statement cancels a single transaction.

Format

CANCEL_TRAN statements have this format:

CANCEL TRANS <stem identifier>;

Where:

To Create

1.

<stem_identifier> is a stem that contains the following:
- UID

« ACCOUNTID

*+ TRANSACTIONID

* CANCELREVENUEMONTH (optional)

*+ CANCELREASONCODE (optional)

* CANCELNOTE (optional)

Note: Either the UIDTRANSACTION or the ACCOUNTID and TRANSACTIONID are
required to identify the specific transaction to be cancelled. See Using the Financial
Management Statements on page 7-2 for more information about attributes used with
Oracle Ultilities Receivables Component Rules Language statements.

Select Statements->Financials-»Cancel Transaction from the Rules Language Editor menu
bar.

The CANCEL_TRAN statement template appears.

Enter the appropriate stem identifier, or click the 7gh# mouse button and choose the stem
identifier from the Other Identifiers list in the Rules Language Elements Editor.

Click OK. The statement appears in the rate form.

Financial Management Rules Language Statements D-31

Using the Financial Management Statements

Example
Cancel a service charge transaction based on energy usage.

/* Set Cancel Attributes */
CANCEL_SERV_CHG.UID = 24579;
CANCEL_SERV_CHG.CANCELNOTE = "Cancelled";
CANCEL_SERV_CHG.CANCELREASONCODE = "ERROR" ;
CANCEL_SERV_CHG.CANCELREVENUEMONTH = BILLMONTH;

/* Cancel Service Charge */
CANCEL_TRAN CANCEL_SERV_CHG;

or

Cancel a service charge transaction based on energy nsage.

/* Set Cancel Attributes */
CANCEL_SERV_CHG.ACCOUNTID = ACCOUNT.ACCOUNTUID;
CANCEL_SERV_CHG.TRANSACTIONID = 110;

CANCEL SERV CHG.CANCELNOTE = "Cancelled";
CANCELisERV7CHG.CANCELREASONCODE = "ERROR";
CANCELisERV7CHG.CANCELREVENUEMONTH = BILLMONTH;

/* Cancel Service Charge */
CANCEL_TRAN CANCEL_SERV_CHG;

Notes
In the above example, several of the CANCEL_SERV_CHG attributes are ‘hard-coded’ into the
rate schedule. In actual practice, this data would probably come directly from records in the Oracle
Utilities Data Repository, or through list queries. Also, the above example includes values for all
the optional CANCEL_SERV_CHG attributes. These are included to illustrate how those
attributes might be supplied in a rate schedule.

D-32 Billing Component Installation and Configuration Guide, Volume 2

Using the Financial Management Statements

CALCULATE_LATEPAYMENT Function

Purpose
The CALCULATE_LATEPAYMENT function is used to calculate a late payment fee based on
an account’s outstanding balance and current collections status.

Format
Statements using the CALCULATE_LATEPAYMENT function have this format:
<identifier> = CALCULATE LATEPAYMENT (<ACCOUNTID> , <DATETYPE> ,
<COLLECTIONSTATUS) ;
Where:
* <ACCOUNTID> The Account ID of the account.
* <DATETYPE> The date type used for the calculation. Valid values include:
* TRANSACTIONTIME
« STATEMENTDATE
+ INVOICEDATE
« DUEDATE
e <COLLECTIONSTATUS> The account’s current collection status, from the Account
Oracle Utilities Receivables Component table.
The function will return a structure that includes:
* The calculated late payment fee
* The maximum amount the late payment should be for the account.
Example

Calculate latepayment fees for each account in the BACK_OFFICE list based on INVOICEDATE.

FOR EACH ACCT IN LIST BACKioFFICE

ACCT ID = ACCOUNTS.ACCOUNTID

STATUS = ACCOUNTFME.COLLECTIONSTATUS

ACCOUNT_LATE FEE = CALCULATE LATEPAYMENT (ACCT ID, “INVOICEDATE”,
STATUS)

END FOR;

Financial Management Rules Language Statements D-33

Using the Financial Management Statements

FMGETBILLINFO Function

Purpose
The FMGETBILLINFO function is used to gather bill information for an account.

Format

Statements using the FMGETBILLINFO function have this format:

<identifier> = FMGETBILLINFO [(<ID> , <DATE>)];

Where:

* <ID> <DATE> Optional. Account ID and date. If the account ID is not provided, the
account processed in the rate form will be used. If the date is not provided, the current date
will be used.

The function will return a structure (stem) that includes:

¢ The Account’s Receivable Status

* The Account’s Current Balance

* The Account’s Past Due Balance.

Example

Get the acconnt bill info for account 1D BACK-OFFICE-1 for August 15, 2000.

ACCOUNT_BILL INFO = FMGETBILLINFO (BACK-OFFICE-1, ‘08/15/2000")

D-34 Billing Component Installation and Configuration Guide, Volume 2

Using the Financial Management Statements

PROCESSAUTOPAYMENT Function

Purpose

Format

Example

The PROCESSAUTOPAYMENT function is used to process an automatic payment for an
account. This function is typically used if normal automatic payments for an account have been

suspended.

Statements using the PROCESSAUTOPAYMENT function have this format:

<identifier> =

Where:

PROCESSAUTOPAYMENT (<STEM>) ;

* <stem_identifier> is a stem that contains the appropriate attributes, as described under

Using the Financial Management Statements.

The function return zero (0) if successful.

Process an antomatic payment after posting a bill.

/* Set Bill Attributes */

TOTAL BILL

TOTAL BILL

TOTAL BILL.
TOTAL BILL.
TOTAL BILL.
TOTAL BILL.
TOTAL BILL.
TOTAL BILL.

.ACCOUNTID =
TOTAL BILL.
TOTAL BILL.
TOTAL BILL.

.AMOUNT =
TOTAL BILL.
TOTAL BILL.
TOTAL BILL.

ACCOUNT .ACCOUNTID;

TRANSACTIONID = "3000";

REVENUEMONTH = BILLMONTH;

NOTE = "Total Bill, including customer and energy charges";

SEFFECTIVE REVENUE;
CURRENCY = “USD”;
BILLEDDATE = "07/15/2000";
DUEDATE = "08/15/2000";

RECEIVABLETYPENAME = "ESCO ELECTRIC";
CHARGETYPEID = "ESCO ENERGY";

OPCOCODE = OPCOCODE;

JURISCODE = JURISCODE;
SUSPENDAUTOPAYMENT = "TRUE";
BILLCYCLEDATE = BILLCYCLEDATE.READDATE;

/* Post Bill */
POST BILL TOTAL BILL;

/* Process
PAP =

PROCESSAUTOPAYMENT

autopayment */
(TOTAL BILL);

Financial Management Rules Language Statements D-35

Deprecated Statements

Deprecated Statements

The following statements have been replaced or fallen into disuse. Use the POST
CHARGEORCREDIT statement instead of the following statements where possible.

Post Service Charge Statement

Purpose
The POST SERVICE CHARGE Statement posts a service charge against an account associated
with a service plan. The account’s current balance should increase by the amount of the charge,
unless the DEFERBALANCE is set to “TRUE”.

Format
POST SERVICE CHARGE statements have this format:

POST SERVICE CHARGE <stemfidentifier>;
Where:

* <stem_identifier> is a stem that contains the appropriate attributes, as desctibed under
Using the Financial Management Statements.

To Create
1. Select Statements->Financials-»Post Service Charge from the Rules Language Editor
menu bar.

The POST SERVICE CHARGE Statement template appears.

2. Enter the appropriate stem identifier, or click the 7ght mouse button and choose the stem
identifier from the Other Identifiers list in the Rules Language Elements Editor.

3. Click OK. The statement appears in the rate form.

D-36 Billing Component Installation and Configuration Guide, Volume 2

Deprecated Statements

Example

Notes

Post a service charge for energy usage.

/* Set Service Charge Attributes */
USAGE SERV_CHG.ACCOUNTID = ACCOUNT.ACCOUNTID;

USAGE SERV_CHG.TRANSACTIONID = "310";
USAGE_SERV_CHG.REVENUEMONTH = BILLMONTH;

USAGE SERV_CHG.NOTE = "Electric Energy Charge - Energy Service
Provider";

USAGE _SERV_CHG.AMOUNT = $ENERGY CHARGE;
USAGE SERV_CHG.BILLEDDATE = "07/15/2000";
USAGE_SERV_CHG.DUEDATE = "08/15/2000";

USAGE SERV CHG.RECEIVABLETYPENAME = "ESCO ELECTRIC";
USAGE SERV CHG.CHARGETYPEID = "ESCO ENERGY";
USAGE_SERV_CHG.OPCOCODE = OPCOCODE;

USAGE SERV_CHG.JURISCODE = JURISCODE;

USAGE _SERV_CHG.BILLCYCLEDATE = BILLCYCLEDATE.READDATE;

/* Post Usage Service Charge */
POST SERVICE CHARGE USAGE_SERV_CHG;

In the above example, several of the USAGE_SERV_CHG attributes are ‘hard-coded’ into the
rate schedule. In actual practice, this data would probably come directly from records in the Oracle
Utilities Data Repository, or through list queries. Also, the above example includes values for all
the optional USAGE_SERV_CHG attributes. These are included to illustrate how those attributes
might be supplied in a rate schedule.

If the Transaction Table in your database contains columns that are not included in the base
schema (and therefore not among the data elements listed under Using the Financial
Management Statements), you can post values to those columns by assigning values to
corresponding STEM.COLUMN_NAME identifiers in the rate schedule. In this case, the column
name specified in the rate schedule must be the exact name of the column in the database. For
example, if your Transaction Table contains a column called ZONE, you could post data to that
column by including the following line in your rate schedule:

USAGE_SERV_CHG.ZONE = “ZONE_1”"

/* Post Usage Service Charge */
POST SERVICE CHARGE USAGE SERV CHG;

This would post the value assigned to the USAGE_SERV_CHG.ZONE identifier (“ZONE_17)
to the ZONE column in the Transaction Table.

Financial Management Rules Language Statements D-37

Deprecated Statements

Post Deferred Service Charge Statement

Purpose
The POST DEFERRED SERVICE CHARGE Statement posts a deferred service charge against
an account associated with a service plan. The account’s current balance will not change.

Format
POST DEFERRED SERVICE CHARGE statements have this format:

POST DEFERRED SERVICE CHARGE <stem_identifier>;
Where:

* <stem_identifier> is a stem that contains the appropriate attributes, as described under
Using the Financial Management Statements.

To Create
1. Select Statements-Financials->Post Deferred Service Charge from the Rules Language
Editor menu bar.

The POST DEFERRED SERVICE CHARGE Statement template appears.

2. Enter the appropriate stem identifier, or click the 7jgh# mouse button and choose the stem
identifier from the Other Identifiers list in the Rules Language Elements Editor.

3. Click OK. The statement appears in the rate form.

D-38 Billing Component Installation and Configuration Guide, Volume 2

Deprecated Statements

Example

Notes

Post a deferred service charge for energy usage.

/* Set Deferred Service Charge Attributes */
USAGE SERV_CHG.ACCOUNTID = ACCOUNT.ACCOUNTID;

USAGE SERV_CHG.TRANSACTIONID = "310";
USAGE_SERV_CHG.REVENUEMONTH = BILLMONTH;

USAGE SERV_CHG.NOTE = "Electric Energy Charge - Energy Service
Provider";

USAGE _SERV_CHG.AMOUNT = $ENERGY CHARGE;
USAGE SERV_CHG.BILLEDDATE = "07/15/2000";
USAGE_SERV_CHG.DUEDATE = "08/15/2000";

USAGE SERV CHG.RECEIVABLETYPENAME = "ESCO ELECTRIC";
USAGE SERV CHG.CHARGETYPEID = "ESCO ENERGY";
USAGE_SERV_CHG.OPCOCODE = OPCOCODE;

USAGE SERV_CHG.JURISCODE = JURISCODE;

USAGE _SERV_CHG.BILLCYCLEDATE = BILLCYCLEDATE.READDATE;

/* Post Usage Service Charge */
POST DEFERRED SERVICE CHARGE USAGE_SERV_CHG;

In the above example, several of the USAGE_SERV_CHG attributes are ‘hard-coded’ into the
rate schedule. In actual practice, this data would probably come directly from records in the Oracle
Utilities Data Repository, or through list queries. Also, the above example includes values for all
the optional USAGE_SERV_CHG attributes. These are included to illustrate how those attributes
might be supplied in a rate schedule.

If the Transaction Table in your database contains columns that are not included in the base
schema (and therefore not among the data elements listed under Using the Financial
Management Statements), you can post values to those columns by assigning values to
corresponding STEM.COLUMN_NAME identifiers in the rate schedule. In this case, the column
name specified in the rate schedule must be the exact name of the column in the database. For
example, if your Transaction Table contains a column called ZONE, you could post data to that
column by including the following line in your rate schedule:

USAGE_SERV_CHG.ZONE = “ZONE_1”"

/* Post Usage Service Charge */
POST DEFERRED SERVICE CHARGE USAGE SERV_ CHG;

This would post the value assigned to the USAGE_SERV_CHG.ZONE identifier (“ZONE_17)
to the ZONE column in the Transaction Table.

Financial Management Rules Language Statements D-39

Deprecated Statements

Post Budget Service Charge Statement

Purpose
The POST BUDGET SERVICE CHARGE Statement posts a service charge against an account
associated with a service plan and a budget plan. The account's cutrent balance will not change;
however, the budget plan variance will increase by the amount of the charge.

Format
POST BUDGET SERVICE CHARGE statements have this format:

POST BUDGET SERVICE CHARGE <stem_identifier>;
Where:

* <stem_identifier> is a stem that contains the appropriate attributes, as described under
Using the Financial Management Statements.

To Create
1. Select Statements-»Financials->Post Budget Service Charge from the Rules Language
Editor menu bar.

The POST BUDGET SERVICE CHARGE Statement template appears.

2. Enter the appropriate stem identifier, or click the 7igh# mouse button and choose the stem
identifier from the Other Identifiers list in the Rules Language Elements Editor.

3. Click OK. The statement appears in the rate form.

D-40 Billing Component Installation and Configuration Guide, Volume 2

Deprecated Statements

Example

Notes

Post a budget service charge for energy usage.

/* Set Service Plan Attributes */
SERV_PLAN.STARTDATE = "01/01/1998";
SERV_PLAN.SERVICETYPECODE = "ELECTRIC";

/* Set Budget Plan Attributes */

BUDGET PLAN.STARTDATE = "01/01/1998";
BUDGET PLAN.BUDGETTYPECODE = "BUDGETELECTRIC";
BUDGET PLAN.SERVICEPLAN = "SERV_PLAN";

/* Set Budget Service Charge Attributes */

USAGE SERV_CHG.ACCOUNTID ACCOUNT.ACCOUNTID;

USAGE SERV_CHG.TRANSACTIONID = "1105";

USAGE SERV CHG.REVENUEMONTH BILLMONTH;

USAGE SERV_CHG.NOTE "Electric Energy Charge - Energy Service
Provider";

USAGE_SERV_CHG.AMOUNT $ENERGY_CHARGE;
USAGE_SERV_CHG.BILLEDDATE = "07/15/2000";

USAGE SERV_CHG.DUEDATE = "08/15/2000";

RECEIVABLETYPENAME =

USAGE_SERV_CHG.
USAGE_SERV_CHG.
USAGE_SERV_CHG.
USAGE_SERV_CHG.
USAGE_SERV_CHG.

USAGE_SERV_CHG.
USAGE_SERV_CHG.

"ESCO ELECTRIC";
CHARGETYPEID = "ESCO ENERGY";

OPCOCODE OPCOCODE;

JURISCODE JURISCODE;

BILLCYCLEDATE BILLCYCLEDATE.READDATE;

SERVICEPLAN = "SERV PLAN";
BUDGETPLAN = "BUDGET PLAN";

/* Post Usage Budget Service Charge */
POST BUDGET SERVICE CHARGE USAGE_SERV_CHG;

In the above example, several of the USAGE_SERV_CHG attributes are ‘hard-coded’ into the
rate schedule. In actual practice, this data would probably come directly from records in the Oracle
Utilities Data Repository, or through list queries. Also, the above example includes values for all
the optional USAGE_SERV_CHG attributes. These are included to illustrate how those attributes
might be supplied in a rate schedule.

If the Transaction Table in your database contains columns that are not included in the base
schema (and therefore not among the data elements listed under Using the Financial
Management Statements), you can post values to those columns by assigning values to
corresponding STEM.COLUMN_NAME identifiers in the rate schedule. In this case, the column
name specified in the rate schedule must be the exact name of the column in the database. For
example, if your Transaction Table contains a column called ZONE, you could post data to that
column by including the following line in your rate schedule:

USAGE_SERV_CHG.ZONE = “ZONE_1”"

/* Post Usage Service Charge */
POST BUDGET SERVICE CHARGE USAGE_SERV_CHG;

This would post the value assigned to the USAGE_SERV_CHG.ZONE identifier (“ZONE_17)
to the ZONE column in the Transaction Table.

Financial Management Rules Language Statements D-41

Deprecated Statements

Post Budget Bill Charge Statement

Purpose
The POST BUDGET BILL CHARGE Statement posts a budget bill charge against an account
associated with a budget plan. The account's current balance should increase by the amount of the
charge, and the budget plan variance should decrease by the amount of the charge.

Format
POST BUDGET BILL CHARGE statements have this format:

POST BUDGET BILL CHARGE <stem_identifier>;
Where:

* <stem_identifier> is a stem that contains the appropriate attributes, as described under
Using the Financial Management Statements.

To Create
1. Select Statements->Financials-»Post Budget Bill Charge from the Rules Language Editor
menu bar.

The POST BUDGET BILL CHARGE Statement template appears.

2. Enter the appropriate stem identifier, or click the 7igh# mouse button and choose the stem
identifier from the Other Identifiers list in the Rules Language Elements Editor.

3. Click OK. The statement appears in the rate form.

D-42 Billing Component Installation and Configuration Guide, Volume 2

Deprecated Statements

Example

Notes

Post a budget bill charge for energy usage.

/* Set Service Plan Attributes */
SERV_PLAN.STARTDATE = "01/01/1998";
SERV_PLAN.SERVICETYPECODE = "ELECTRIC";

/* Set Budget Plan Attributes */

BUDGET PLAN.STARTDATE = "01/01/1998";
BUDGET PLAN.BUDGETTYPECODE = "BUDGETELECTRIC";
BUDGET PLAN.SERVICEPLAN = "SERV_PLAN";

/* Set Budget Bill Attributes */

USAGE BUDGET CHG.ACCOUNTID = ACCOUNT.ACCOUNTID;

USAGE BUDGET CHG.TRANSACTIONID = "1100";

USAGE BUDGET CHG.REVENUEMONTH = BILLMONTH;

USAGE BUDGET CHG.NOTE = "Electric Energy Charge - Energy Service
Provider";

USAGE BUDGET CHG.AMOUNT = $ENERGY_CHARGE;

USAGE BUDGET CHG.BILLEDDATE = "07/15/2000";

USAGE BUDGET CHG.DUEDATE = "08/15/2000";

USAGE_BUDGET CHG.RECEIVABLETYPENAME =
USAGE_BUDGET CHG.
USAGE_BUDGET CHG.
USAGE BUDGET CHG.
USAGE_BUDGET CHG.

USAGE _BUDGET CHG.
USAGE _BUDGET CHG.

"ESCO ELECTRIC";
CHARGETYPEID = "ESCO ENERGY";

OPCOCODE = OPCOCODE;

JURISCODE = JURISCODE;

BILLCYCLEDATE = BILLCYCLEDATE.READDATE;

SERVICEPLAN = "SERV PLAN";
BUDGETPLAN = "BUDGET PLAN";

/* Post Budget Bill Usage Charge */
POST BUDGET BILL CHARGE USAGE_BUDGET_ CHG;

In the above example, several of the USAGE_BUDGET_CHG attributes are ‘hard-coded’ into
the rate schedule. In actual practice, this data would probably come directly from records in the
Oracle Utilities Data Repository, or through list queries. Also, the above example includes values
for all the optional USAGE_BUDGET_CHG attributes. These are included to illustrate how
those attributes might be supplied in a rate schedule.

If the Transaction Table in your database contains columns that are not included in the base
schema (and therefore not among the data elements listed under Using the Financial
Management Statements), you can post values to those columns by assigning values to
corresponding STEM.COLUMN_NAME identifiers in the rate schedule. In this case, the column
name specified in the rate schedule must be the exact name of the column in the database. For
example, if your Transaction Table contains a column called ZONE, you could post data to that
column by including the following line in your rate schedule:

USAGE_BUDGET CHG.ZONE = “ZONE_ 1"

/* Post Budget Bill Usage Charge */
POST BUDGET BILL CHARGE USAGE_BUDGET_CHG;

This would post the value assigned to the USAGE_BUDGET_CHG.ZONE identifier
(“ZONE_1”) to the ZONE column in the Transaction Table.

Financial Management Rules Language Statements D-43

Deprecated Statements

Post Budget Bill Trueup Statement

Purpose

The POST BUDGET BILL TRUEUP Statement posts a budget bill true-up charge or credit
against an account associated with a budget plan. The account's current balance should increase (if

a charge) or decrease (if a credit) by the amount of the transaction. The budget plan variance

should decrease (if a charge) or increase (if a credit) by the amount of the transaction.

Format

POST BUDGET BILL TRUEUP statements have this format:

POST BUDGET SERVICE CHARGE <stem identifier>;

Where:

To Create

1.

<stem_identifier> is a stem that contains the appropriate attributes, as described under
Using the Financial Management Statements.

Select Statements->Financials->Post Budget Bill Trueup from the Rules Language Editor
menu bar.

The POST BUDGET BILL TRUEUP Statement template appears.

Enter the appropriate stem identifier, or click the 7gh# mouse button and choose the stem
identifier from the Other Identifiers list in the Rules Language Elements Editor.

Click OK. The statement appears in the rate form.

D-44 Billing Component Installation and Configuration Guide, Volume 2

Deprecated Statements

Example

Notes

Post a budget bill true-up charge based on energy usage.

/* Set Service Plan Attributes */
SERV_PLAN.STARTDATE = "01/01/1998";
SERV_PLAN.SERVICETYPECODE = "ELECTRIC";

/* Set Budget Plan Attributes */

BUDGET PLAN.STARTDATE = "01/01/1998";
BUDGET PLAN.BUDGETTYPECODE = "BUDGETELECTRIC";
BUDGET PLAN.SERVICEPLAN = "SERV_PLAN";

/* Set Budget Bill Trueup Attributes */
BUDGET TRUEUP_ USAGE CHG.ACCOUNTID ACCOUNT.ACCOUNTID;

BUDGET TRUEUP USAGE CHG.TRANSACTIONID = "1130";

BUDGET TRUEUP USAGE CHG.REVENUEMONTH BILLMONTH;

BUDGET TRUEUP USAGE CHG.NOTE "Budget Bill Trueup - Electric Energy
Charge";

BUDGET TRUEUP USAGE CHG.CHARGEORCREDIT = "“CH”

BUDGET TRUEUP_ USAGE CHG.AMOUNT SENERGY CHARGE;

BUDGET TRUEUP_ USAGE CHG.BILLEDDATE = "07/15/2000";

BUDGET TRUEUP USAGE CHG.DUEDATE = "08/15/2000";

RECEIVABLETYPENAME =

BUDGET TRUEUP USAGE CHG.
BUDGET TRUEUP USAGE CHG.
BUDGET TRUEUP USAGE_CHG.
BUDGET TRUEUP USAGE_CHG.
BUDGET TRUEUP USAGE_CHG.
BUDGET TRUEUP USAGE CHG.
BUDGET TRUEUP USAGE CHG.

"ESCO ELECTRIC";
CHARGETYPEID = "ESCO ENERGY";

OPCOCODE OPCOCODE ;

JURISCODE JURISCODE;

BILLCYCLEDATE BILLCYCLEDATE.READDATE;
SERVICEPLAN = "SERV PLAN";

BUDGETPLAN = "BUDGET PLAN";

/* Post Budget Bill Trueup Usage Charge */
POST BUDGET BILL TRUEUP BUDGET_ TRUEUP_USAGE_CHG;

In the above example, several of the BUDGET_TRUEUP_USAGE_CHG attributes ate ‘hard-
coded’ into the rate schedule. In actual practice, this data would probably come directly from
records in the Oracle Ultilities Data Repository, or through list queries. Also, the above example
includes values for all the optional BUDGET_TRUEUP_USAGE_CHG attributes. These are
included to illustrate how those attributes might be supplied in a rate schedule.

If the Transaction Table in your database contains columns that are not included in the base
schema (and therefore not among the data elements listed under Using the Financial
Management Statements), you can post values to those columns by assigning values to
corresponding STEM.COLUMN_NAME identifiers in the rate schedule. In this case, the column
name specified in the rate schedule must be the exact name of the column in the database. For
example, if your Transaction Table contains a column called ZONE, you could post data to that
column by including the following line in your rate schedule:

BUDGET TRUEUP_USAGE_CHG.ZONE = “ZONE_1”
/* Post Budget Bill Trueup Usage Charge */
POST BUDGET BILL TRUEUP BUDGET TRUEUP USAGE CHG;

This would post the value assigned to the BUDGET_TRUEUP_USAGE_CHG.ZONE identifier
(“ZONE_1”) to the ZONE column in the Transaction Table.

Financial Management Rules Language Statements D-45

Deprecated Statements

Post Instalilment Charge Statement

Purpose
The POST INSTALLMENT CHARGE Statement posts an installment charge against an
account. The account's cutrent balance should increase by the amount of the chatge, unless the
DEFERBALANCE is set to “TRUE”.

Format
POST INSTALLMENT CHARGE statements have this format:

POST INSTALLMENT CHARGE <stem_identifier>;
Where:

* <stem_identifier> is a stem that contains the appropriate attributes, as described under
Using the Financial Management Statements.

To Create
1. Select Statements->Financials->Post Installment Charge from the Rules Language Editor
menu bar.

The POST INSTALLMENT CHARGE Statement template appears.

2. Enter the appropriate stem identifier, or click the 7jgh# mouse button and choose the stem
identifier from the Other Identifiers list in the Rules Language Elements Editor.

3. Click OK. The statement appears in the rate form.

D-46 Billing Component Installation and Configuration Guide, Volume 2

Deprecated Statements

Example

Post an installment charge.

/* Set Installment Charge Attributes */

BILL_ INST CHG.
BILL INST CHG.
BILL INST CHG.
BILL INST CHG.

BILL INST CHG

BILL INST CHG.
BILL INST CHG.
BILL_INST CHG.
BILL INST CHG.
BILL INST CHG.

.AMOUNT =
BILL INST CHG.
BILL INST CHG.

ACCOUNTID = ACCOUNT.ACCOUNTID;
TRANSACTIONID = "1510";
REVENUEMONTH = BILLMONTH;

NOTE = "Bill Installment";

$INSTALL CHG;
BILLEDDATE = "07/15/2000";
DUEDATE = "08/15/2000";

RECEIVABLETYPENAME = "ESCO ELECTRIC";
CHARGETYPEID = "ESCO ENERGY";

OPCOCODE = OPCOCODE;

JURISCODE = JURISCODE;

BILLCYCLEDATE = BILLCYCLEDATE.READDATE;

/* Post Installment Charge */
POST INSTALLMENT CHARGE BILL_INST_CHG;

Notes

In the above example, several of the BILL_INST_CHG attributes are ‘hard-coded’ into the rate
schedule. In actual practice, this data would probably come directly from records in the Oracle

Utilities Data Repository, or through list queries. Also, the above example includes values for all
the optional BILL_INST_CHG attributes. These are included to illustrate how those attributes
might be supplied in a rate schedule.

If the Transaction Table in your database contains columns that are not included in the base

schema (and therefore not among the data elements listed under Using the Financial

Management Statements), you can post values to those columns by assigning values to
corresponding STEM.COLUMN_NAME identifiers in the rate schedule. In this case, the column
name specified in the rate schedule must be the exact name of the column in the database. For

example, if your Transaction Table contains a column called ZONE, you could post data to that

column by including the following line in your rate schedule:

BILL_INST_ CHG.

ZONE = “ZONE 1"

/* Post Installment Charge */
POST INSTALLMENT CHARGE BILL INST CHG;

This would post the value assigned to the BILL_INST_CHG.ZONE identifier (“ZONE_1") to
the ZONE column in the Transaction Table.

Financial Management Rules Language Statements D-47

Deprecated Statements

D-48 Billing Component Installation and Configuration Guide, Volume 2

Appendix E

Workflow Management Rules Language
Statements

This chapter provides detailed explanations of the workflow management statements available in
the Oracle Utilities Rules Language. These statements are used to work with processes and events

using Workflow Management including:

* Using the Workflow Management Statements

Workflow Management Rules Language Statements E-1

Using the Workflow Management Statements

Using the Workflow Management Statements

The Workflow Management statements are used with processes in run via the workflow

management functionality of Oracle Utilities Billing Component. Each statement takes as a single

argument an identifier. The identifier is a stem that should contain several tail attributes, as

described below.

Attribute Description

UID The process instance UID. Required input for the Process
Suspend, Process Resume, and Process Terminate statements, and
is the output of the Process Start Statement.

NOTE A process instance note. Required input for the Process Terminate
Statement; optional for all others.

UIDACCOUNT Optional account UID, used as input for the Process Start or
Process Event statements. If an account is to be associated with
the process, cither this or the ACCOUNTID (below) must be
provided.

ACCOUNTID Optional account ID, used as for input for the Process Start or
Process Event statements. If an account is to be associated with
the process, either this or the UIDACCOUNT (above) must be
provided.

PROCESSNAME Name of the process model to be started by the Process Start
Statement. Required input for the Process Start Statement.

OPCOCODE Optional operating company code of the process model to be
started by the Process Start Statement.

JURISCODE Optional jurisdiction code of the process model to be started by
the Process Start Statement.

EVENTCODE Required event type code for the Process Event Statement.

CONTEXT Optional context for the Process Start or Process Event
statements. Should be set to an identifier that is either an XML
DOM node or XML DOM document.

Example:
COLLECT_PROC.PROCESSNAME = "Collections";
COLLECT PROC.OPCOCODE = "AGL";

COLLECT PROC.ACCOUNTID = ACCOUNT.ID;

PROCESS START COLLECT_PROC;

E-2 WorkFlow Manager Installation and Configuration Guide

Using the Workflow Management Statements

Process Start Statement

Purpose
The PROCESS START Statement is used to start a new process instance.

Format
PROCESS START statements have this format:

PROCESS START <stem identifier>;
Where:

* <stem_identifier> is a stem that contains the appropriate attributes, as described under
Using the Workflow Management Statements.

To Create
1. Select Statements-»Workflow->Process Start from the Rules Language Editor menu bar.

The PROCESS START Statement template appears.

I PROCESS Statement [x]

PROCESS START

Identifier: | | :

0K I Cancel | Help |

2. Enter the appropriate stem identifier, or click the 77gh# mouse button and choose the stem
identifier from the Other Identifiers list in the Rules Language Elements Editor.

3. Click OK. The statement appears in the rate form.

Workflow Management Rules Language Statements E-3

Using the Workflow Management Statements

Example

Notes

Start a process instance of the COLLECT_PROC process.

/* Set the process context */
PROC CONTEXT DOMDOCLOADFILE

(W"COLLECT CONTEXT.XM1")

/* Set Process Instance Attributes */
COLLECT PROC.ACCOUNTID ACCOUNT.ID;
COLLECT PROC.PROCESSNAME = "Collections";
COLLECT PROC.OPCOCODE = "AGL";

COLLECT PROC.JURISCODE = "GA";
COLLECTiPROC.CONTEXT PROC7CONTEXT;

/* Start the process */
PROCESS START COLLECT_PROC;

In the preceding example, several of the COLLECT_PROC attributes are ‘hard-coded’ into the
rate schedule. In actual practice, this data could also come directly from records in the Oracle
Utilities Data Repository, or through list queries. Also, the above example includes values for
several of the optional COLLECT_PROC attributes. These are included to illustrate how those
attributes might be supplied in a rate schedule.

E-4 WorkFlow Manager Installation and Configuration Guide

Using the Workflow Management Statements

Process Suspend Statement

Purpose
The PROCESS SUSPEND Statement is used to suspend an existing running process instance.

Format
PROCESS SUSPEND statements have this format:
PROCESS SUSPEND <stem identifier>;
Where:
* <stem_identifier> is a stem that contains the appropriate attributes, as described under
Using the Workflow Management Statements.
To Create
1. Select Statements->Workflow->Process Suspend from the Rules Language Editor menu
bar.

The PROCESS SUSPEND Statement template appears.
i PROCESS Statement

PROCESS SUSPEND

Identifier: | | :

OK I Cancel | Help |

2. Enter the appropriate stem identifier, or click the 7gh# mouse button and choose the stem
identifier from the Other Identifiers list in the Rules Language Elements Editor.

3. Click OK. The statement appears in the rate form.

Workflow Management Rules Language Statements E-5

Using the Workflow Management Statements

Example

Notes

Suspend a process instance of the COLLECT_PROC process.

/* Set Process Instance Attributes */
COLLECTiPROC.UID = “123”7;
COLLECT PROC.NOTE = "Verify customer status";

/* Suspend the process */
PROCESS SUSPEND COLLECT PROC;

In the above example, several of the COLLECT_PROC attributes are ‘hard-coded’ into the rate
schedule. In actual practice, this data could also come directly from records in the Oracle Ultilities
Data Repository, or through list queries.

E-6 WorkFlow Manager Installation and Configuration Guide

Using the Workflow Management Statements

Process Resume Statement

Purpose
The PROCESS RESUME Statement is used to resume an existing suspended process instance.

Format
PROCESS RESUME statements have this format:
PROCESS RESUME <stem identifier>;
Where:
* <stem_identifier> is a stem that contains the appropriate attributes, as described under
Using the Workflow Management Statements.
To Create
1. Select Statements->Workflow->Process Resume from the Rules Language Editor menu
bar.

The PROCESS RESUME Statement template appears.
i PROCESS Statement

PROCESS RESUME

Identifier: | | :

0K I Cancel | Help |

2. Enter the appropriate stem identifier, or click the 7gh# mouse button and choose the stem
identifier from the Other Identifiers list in the Rules Language Elements Editor.

3. Click OK. The statement appears in the rate form.

Workflow Management Rules Language Statements E-7

Using the Workflow Management Statements

Example

Notes

Resume a suspended process instance of the COLLECT_PROC process.

/* Set Process Instance Attributes */
COLLECTiPROC.UID = “123”7;
COLLECT PROC.NOTE = "Verify customer status";

/* Resume the process */
PROCESS RESUME COLLECT_PROC,'

In the above example, several of the COLLECT_PROC attributes are ‘hard-coded’ into the rate
schedule. In actual practice, this data could also come directly from records in the Oracle Ultilities
Data Repository, or through list queries.

E-8 WorkFlow Manager Installation and Configuration Guide

Using the Workflow Management Statements

Process Terminate Statement

Purpose
The PROCESS TERMINATE Statement is used to terminate an existing process instance.

Format
PROCESS TERMINATE statements have this format:
PROCESS TERMINATE <stem identifier>;
Where:
* <stem_identifier> is a stem that contains the appropriate attributes, as described under
Using the Workflow Management Statements.
To Create
1. Select Statements->Workflow->Process Terminate from the Rules Language Editor menu
bar.

The PROCESS TERMINATE Statement template appears.

i PROCESS Statement

PROCESS TERMINATE

Identifier: | |

0K I Cancel | Help |

2. Enter the appropriate stem identifier, or click the 77gh# mouse button and choose the stem
identifier from the Other Identifiers list in the Rules Language Elements Editor.

3. Click OK. The statement appears in the rate form.

Workflow Management Rules Language Statements E-9

Using the Workflow Management Statements

Example

Notes

E-10 WorkFlow Manager Instal

Terminate a process instance of the COLLECT_PROC process.

/* Set Process Instance Attributes */
COLLECTiPROC.UID = “123”7;
COLLECT PROC.NOTE = "Verify customer status";

/* Terminate the process */
PROCESS TERMINATE COLLECT_PROC;

In the above example, several of the COLLECT_PROC attributes are ‘hard-coded’ into the rate
schedule. In actual practice, this data could also come directly from records in the Oracle Ultilities
Data Repository, or through list queries.

lation and Configuration Guide

Using the Workflow Management Statements

Process Event Statement

Purpose
The PROCESS EVENT Statement posts an activity event.

Format
PROCESS EVENT statements have this format:

PROCESS EVENT <stem identifier>;
Where:

* <stem_identifier> is a stem that contains the appropriate attributes, as described under
Using the Workflow Management Statements.

To Create
1. Select Statements-»Workflow->Process Event from the Rules Language Editor menu bar.

The PROCESS EVENT Statement template appears.

I PROCESS Statement [x]

PROCESS EVENT

Identifier: | | :

0K I Cancel | Help |

2. Enter the appropriate stem identifier, or click the 7ght mouse button and choose the stem
identifier from the Other Identifiers list in the Rules Language Elements Editor.

3. Click OK. The statement appears in the rate form.

Workflow Management Rules Language Statements E-11

Using the Workflow Management Statements

Example
Post an activity event in the COLLECT_PROC process.

/* Set Event Attributes */
COLLECT PROC.UID = “1237;
COLLECT PROC.NOTE = "Verify customer status";

/* Post the Event */
PROCESS EVENT COLLECT_PROC,‘

Notes
In the above example, several of the COLLECT_PROC attributes are ‘hard-coded’ into the rate
schedule. In actual practice, this data could also come directly from records in the Oracle Ultilities
Data Repository, or through list queries.

E-12 WorkFlow Manager Installation and Configuration Guide

Appendix F

XML Rules Language Statements and Functions

This chapter describes XML statements and functions provided by the Oracle Utilities Rules
Language, including:

XML Overview
XML Statements
XML/Document Object Management Functions

Using the XML Statements and Functions

XML Rules Language Statements and Functions F-1

XML Overview

XML Overview

The Oracle Utilities Rules Language provides two mechanisms for processing XML: a declarative
approach using the XML._ELEMENT and XML_OP statements, and a functional approach using
the XML/Document Object Management functions.

The declarative approach allows the user to specify a known XML format and have the underlying
Rules Language processor assign values appropriately. This approach essentially "flattens" the
nested XML structure so that every element or sub-element is uniquely represented by one Rules
Language identifier.

The functional approach gives the user more flexibility in handling an unknown format, but
requires detailed knowledge of Document Object Management (DOM).

XML Data Types

The two new data types introduced with these functions are XML Document and XML Node.
The same XML document or node may be assigned to several identifiers; care should be exercised
when using these functions, particularly the delete functionality.

The main uses of the XML document format are to load and save data, and to retrieve the root
element in the document. The root element is an XML node. You can retrieve the type and value
of a node and its siblings and, for nodes that are elements, its attributes and children. If a child
node is not actually in the XML document, the node and all its attributes will be cleared.

There are no operations allowed on an XML document. XML documents can only be used as a
parameter to one of the XML functions desctibed in this appendix (see XML/Document
Object Management Functions on page F-12). The only operations allowed on a XML node
are comparison (= or <>) to zero. Otherwise, nodes must be used in one of the statements or
functions described in this appendix.

F-2 WorkFlow Manager Installation and Configuration Guide

XML Overview

Using Stem.Tail XML Identifiers

If an XML node is assigned to an identifier that is a stem, its Stem.Tail identifiers with tails
NODENAME, NODETYPE and NODEVALUE are also assigned their corresponding values.
The Stem.Tail identifier with tail NODEPRESENT is assigned the integer 1. All other Stem.T4ail
identifiers are assigned the value of the node's child whose name is the tail.

If a Stem.Tail identifier whose tail is NODEVALUE is assigned a value, and the stem is an XML
element with a node, the string representation of the value will be assigned as the node's value.

If an identifier that is an XML element with a node is assigned a value, the string representation of
the value will be assigned as the node's value. However, if you want to use the node's value in an
expression, you must use Stem. NODEVALUE.

If a Stem.Tail identifier whose tail is not NODEVALUE is assigned a value, and the stem is an
XML element with a node, the tail is assumed to be the name of an attribute of the node, and the
string representation of the value will be assigned as the value of this attribute.

To remove an attribute from a node, assign it an empty value:

// Remove the attribute Tail from the node STEM.
CLEAR X;
STEM.Tail = X;

XML Rules Language Statements and Functions F-3

XML Statements

XML Statements

This section provides detailed explanations of the XML statements available in the Oracle Utilities
Rules Language. It also describes the formats and conventions used with statements in this
manual, and the format in which the statement descriptions are presented.

Identifier Statement

Purpose
The IDENTIFIER Statement is used to define identifiers before they are used.

The order in which identifiers appear in a rate from determines several things, such as the order in
which they appear in reports. In general, the earlier an identifer appears in a rate schedule, the
eatlier it appears in the report. This statement lets you determine ordering without executing any
statements (the IDENTIFIER Statement has no run-time component; it only defines identifiers).

This statement can also be used to define a parent identifier before the identifier is used in the
XML_ELEMENT Statement on page F-6.

Format
IDENTIFIER statements have this format:

IDENTIFIER <identifier>, <identifier> ...;
Where:

* <identifier> is the identifier you wish to define.

To Create
The IDENTIFIER statement can only be created from the Rules Language Text Editor. See The
Rules Language Text Editor on page 2-11 in the Oracle Utilities Rules Langnage User’s Guide for
more information.

Example
Define the LS_INPUT identifier.

/* Predefine identifier */
IDENTIFIER LS_INPUT;

Notes
When using the IDENTIFIER statement to define XML element identifiers, the IDENTIFIER
statement should only be used to define the root element.

F-4 WorkFlow Manager Installation and Configuration Guide

XML Statements

OPTIONS Statement

Purpose

Format

The OPTIONS Statement is used to specify that the case (UPPER or lower) of identifiers should
remain as defined. If not present, all identifiers are converted to uppercase. If it is present the
name of an identifier remains exactly as typed. With this option, if two identifiers differ only in the
case of some of their letters, they are different identifiers.

This statement is useful when defining XML attributes and elements that may need to be either
lower-cased or mixed-case.

OPTIONS statements have this format:
IDENTIFIER MIXE D_CASE_I DENTI FIERS_UNIQUE H
Where:

* MIXED_CASE_IDENTIFIERS_UNIQUE indicates that the case of identifiers remain
unaltered.

To Create

Example

Notes

The OPTIONS statement can only be created from the Rules Language Text Editor. See The
Rules Language Text Editor on page 2-11 in the Oracle Utilities Rules Langnage User’s Guide for
more information.

Allow mixed case XML attributes

/* Allow mixed-case XML attributes */
OPTIONS MIXED CASE_IDENTIFIERS_ UNIQUE;

Use of the OPTTONS statement affects identifiers that appear after this statement in the rate
form. Identifiers that appear before it are uppercased.

All Oracle Utilities defined identifiers such as BILL,_ PERIOD, $SEFFECTIVE_REVENUE,
determinant identifiers, and interval data attributes must all be entered in upper case if the
OPTIONS statement is used.

XML Rules Language Statements and Functions F-5

XML Statements

XML_ELEMENT Statement

Purpose

The XML_ELEMENT Statement lets you map an XML format into Rules Language identifiers.
The XML format consists of elements and sub-elements, and this statement describes the

relationship between a sub-element and its parent. If the parent element is assigned, all its

attributes and children are automatically assigned their respective values, recursively. The defined
identifier can also be used in the FOR EACH x IN XML_ELEMENT_OF 0 Statement on
page F-8 to iterate over multiple sub-elements with the same name.

Format

XMI,_ELEMENT statements have this format:

XML ELEMENT <identifier> NODENAME <symbol|literal> PARENT
<parent identifier>;

Where:

To Create

<identifier> is an identifier used to represent this child element of the parent. An identifier
may appear at most once here. Attributes of the element can be represented using the
identifier.attribute syntax.

NODENAME is an optional keyword that allows you to define the node name of the
element.

<symbol | literal> is a symbol or literal that exactly matches an element name (case sensitive).
There may be several identifiers with the same node name, but different parents.

PARENT is an optional keyword that allows you to define the parent of the element.

<parent_identifier> Optional; a previously defined identifier. When it is assigned, this
identifier is also set if its element is a child of the parent element. If there is no parent
assigned, the identifier is assumed to be the root element of the document.

The XML_ELEMENT Statement can only be created from the Rules Language Text Editor. See
The Rules Language Text Editor on page 2-11 of the Oracle Utilities Rules Language User’s Guide
for more information.

F-6 WorkFlow Manager Installation and Configuration Guide

XML Statements

Example

Notes

Set the structure of the Oracle Utilities Import format.

/* Set the XML structure of the Oracle Utilities Import XML Format */
/* Set the root element */

IDENTIFIER LS IMPORT;

/* Declare the child tree */

XML ELEMENT LS IMPORT NODENAME "LS IMPORT";

XML_ELEMENT CUST_DATA NODENAME "CUSTOMER_DATA" PARENT LS_IMPORT;
XML_ELEMENT REC_GROUP NODENAME "RECORD_GROUP_TRANSACTION" PARENT
CUST DATA;

/* Declare a record */

XML ELEMENT LS RECORD NODENAME "LODESTAR RECORD" PARENT REC GROUP;
XML ELEMENT TABLE ID NODENAME "TABLE" PARENT LS RECORD;

XML ELEMENT TABLE NAME NODENAME "NAME" PARENT TABLE ID;

/* Declare a column */

XML ELEMENT L57COLUMN NODENAME "COLUMN" PARENT TABLE ID;

XML ELEMENT COLUMNiNAME NODENAME "COLUMNiNAME" PARENT L57COLUMN;
XML ELEMENT COLUMN VALUE NODENAME "COLUMN VALUE" PARENT LS COLUMN;

If a parent identifier is cleared using the Clear Statement, all its children and attribute identifiers
are also cleared, recursively. If an XMIL_ELEMENT identifier is assigned an XML node, all of its
unassigned parent elements will be created as needed, so that its entire parent structure is assigned.
The attributes of an element can be assigned any time after the element has been created.

XML Rules Language Statements and Functions F-7

XML Statements

FOR EACH x IN XML_ELEMENT_OF 0 Statement

Purpose
The FOR EACH x IN XML_ELEMENT_OF 0 Statement repeats a set of nested statements for
each element defined in an XML structure. This statement iterates the nested statements over all

matching elements, one by one. Matching elements have the same element name and the same
parent element, as defined in the XML_ELEMENT Statement.

Format
FOR EACH x IN XMIL_ELEMENT_OF 0 statements have this format:

FOR EACH <xml element identifier> IN XML ELEMENT OF 0
<nested statements>
END FOR;

Where:

* <xml_element_identifier> is an identifier that appears in the IDENTIFIER clause of an
XMI,_ELEMENT Statement.

To Create
The FOR EACH x IN XML_ELEMENT_OF 0 Statement can only be created from the Rules
Language Text Editor. See The Rules Language Text Editor on page 2-11 of the Oracle Utilities
Rules Langnage User’s Guide for more information.

Example
Perform a set of operations on each LODESTAR_RECORD element.

/* Set the XML structure of the Oracle Utilities Import XML Format */
FOR EACH LS RECORD IN XML ELEMENT OF O;

<operations>
END FOR

Notes
The 0 is required after XML._ELEMENT_OF.

F-8 WorkFlow Manager Installation and Configuration Guide

XML Statements

XML_OP Statement

Purpose

Format

The XMI._OP Statement performs an operation on one or more XML elements (as defined using
the XML_ELEMENT Statement). Supported operations include CREATE, INSERT, COPY, and
DELETE.

XMI,_OP statements have this format:

XML OP <operation> <identifier> [,<identifier>...];

Where:
* <operation> is a literal or symbol that is one of the following:

* “CREATE” or CREATE: Creates this node as a child of its parent. Each identifiet's
node is created, from left to right. If no parent node was specified in the
XMIL_ELEMENT statement, this node is assumed to be the root element of an XML
document. The document is created, with this identifier as its root. If the parent node
exists, the sub-element is created and attached to the parent. If a node with this name
already exists or the identifier is already assigned a node, a new node is still created. The
new node will be a sibling of the previous node if the parent is unchanged; otherwise, it
will be a new child of the parent node.

* “CREATE_ALL” or CREATE_ALL: Creates this node as a child of its parent, and
then creates all its children, recutsively. Each identifiet's node is created, from left to
right. If no parent node was specified in the XML_ELEMENT statement, this node is
assumed to be the root element of an XML document. The document is created, with
this identifier as its root. If the parent node exists, the sub-element is created and
attached to the parent. If a node with this name already exists or the identifier is already
assigned a node, a new node is still created. The new node will be a sibling of the
previous node if the parent is unchanged; otherwise, it will be a new child of the parent
node.

* “INSERT” or INSERT: Creates this node as a child of its parent, immediately after its
previous instance. The node must have a parent. If it has not been created, it is created
and appended to the end of the parent's nodes. Each identifier's node is created, from
left to right.

* “INSERT_ALL” or INSERT_ALL: Creates this node as a child of its parent,
immediately after its previous instance, and then creates its children, recursively. The
node must have a parent. If it has not been created, it is created and appended to the end
of the patent's nodes. Each identifier's node is created, from left to right.

* “INSERT_UNUSED?” or INSERT_UNUSED: Creates this node as a child of its
patent, immediately after its previous instance, if the identifiet's node does not have a
value or any attributes. The node must have a parent. If it has not been created, it is
created and appended to the end of the parent's nodes. If it was created and has a value
or attribute, a new node is created immediately after it. If it does not have a value or
attribute, the identifier is unchanged. Each identifiet's node is created, from left to right.

. “INSERT_UNUSED_ALL” or INSERT_UNUSED_ALL: Same as
INSERT_UNUSED, except that if a new node is created, all its children are also created,
recursively.

* “DELETE” or DELETE: Removes this node as a child of its parent, then deletes it
and all its child nodes. Each identifier and all its children are cleared. Identifiers are
deleted from left to right. If the node does not have a parent, it is assumed to be the root
node. Its document and all related nodes are deleted. This operation should not be

XML Rules Language Statements and Functions F-9

XML Statements

used if the node or one of its children has been assigned to more than one
identifier.

* <identifier> one or more identifiers that are XML elements (as defined by the
XML_ELEMENT Statement on page F-6).

To Create
The XML _OP Statement can only be created from the Rules Language Text Editor. See The
Rules Language Text Editor on page 2-11 of the Oracle Utilities Rules Langnage User’s Guide for
more information.

F-10 WorkFlow Manager Installation and Configuration Guide

XML Statements

Example
Create an XML node called 1.S_IMPORT and insert a child node called 1.S_RECORD as a child of
LS_IMPORT.

/* Set the root element */

IDENTIFIER LSilMPORT;

/* Declare the child tree */

XML ELEMENT LS IMPORT NODENAME "LS_IMPORT";

XML ELEMENT CUST DATA NODENAME "CUSTOMER_DATA" PARENT LS IMPORT;
XML ELEMENT REC GROUP NODENAME "RECORD_GROUP_TRANSACTION" PARENT
CUST_ DATA;

/* Declare a record */

XML ELEMENT LSiRECORD NODENAME "LODESTARiRECORD" PARENT RECiGROUP,‘

/* Create the LS _IMPORT XML node */
XML OP CREATE LS_IMPORT;

/* Insert the child LS RECORD node */
XML _OP INSERT LS_RECORD;

XML Rules Language Statements and Functions F-11

XML/Document Object Management Functions

XML/Document Object Management Functions

The functions in this section manipulate an XML string, using Document Object Management

(DOM) functions.

Like all functions, you must assign the results of these functions to an identifier using an
Assignment Statement. The format is:

<identifier> = FUNCTION (<parameters>);

Where:

* <identifier> is a temporary, determinant, or interval data identifier. The function description
below indicates what each returns: a scalar numeric (should be assigned to a temporary
identifier), historical values (should be assigned to a determinant identifier), or an interval
data reference (should be assigned to an interval data identifier).

¢ FUNCTION is one of the functions described below.

* <parameters> are one or more expressions, identifiers, or constants, as described in each
function listed below.

F-12 WorkFlow Manager Installation and Configuration Guide

XML/Document Object Management Functions

DOMDOCCREATE Function

Format:

Where:

Example:

Creates an XML document with a root element node.

This function creates an XML document with a specified root element node. Currently, any errors
are fatal. Returns an XML document.

<identifier> = DOMDOCCREATE (<identifier|string expression>);

* <identifier | string expression> is either an identifier or a string expression that evaluates to a
string that will be the root element name of the document.

Create an XML document with a root element name of .S_IMPORT.

LS_IMP_DOC = DOMDOCCREATE (LS_IMPORT) ;

XML Rules Language Statements and Functions F-13

XML/Document Object Management Functions

DOMDOCLOADFILE Function
Loads and parses an XML file.

This function loads and parses an XML file, and returns the XML document contained in the file.
Currently, any errors are fatal. Returns an XML document.

Format:
<identifier> = DOMDOCLOADFILE (<identifier|string expression>);
Where:

* <identifier|string expression> is either an identifier or a string expression that evaluates to a
string that is name of a file containing XML. The default location of the file is the
C:\LODESTAR\User directory, but a full path can be specified.

Example:

Load an XML file naned 1.S_IMPORT.XMI..

LS_IMP FILE = DOMDOCLOADFILE (“LS_IMPORT.XML") ;

F-14 WorkFlow Manager Installation and Configuration Guide

XML/Document Object Management Functions

DOMDOCLOADXML Function

Format:

Where:

Example:

Loads and parses an XML document.

This function loads and parses an XML document. Currently, any errors are fatal. Returns an
XML document.

<identifier> = DOMDOCLOADXML (<identifier|string expression>);

* <identifier | string expression> is either an identifier or a string expression that evaluates to a
string that is name of an XML document.

Load an XML. document named 1.S_IMPORT.

LS_IMP_DOC = DOMDOCLOADXML (“LS_IMPORT”) ;

XML Rules Language Statements and Functions F-15

XML/Document Object Management Functions

DOMDOCSAVEFILE Function
Saves an XML file based on a specified XMI. document.

This function creates an XML file based on a specified XML document. The document is written
out as XML to the specified file, replacing its contents. Returns the integer 0.

Format:
<identifier> = DOMDOCSAVEFILE (<xml document identifier>,
<identifier|string expression>);

Where:

e <xml document_identifier> is an XML document identifier.

* <identifier | string expression> is either an identifier or a string expression that evaluates to a
string that is the name of a file that will contain XML. The default location of the file is the
C:\LODESTAR\User directory, but a full path can be specified.

Example:

Save an XML document called 1.S_IMPORT to a file called I.S_IMPORT.XMI..

LS_IMP_SAVE = DOMDOCSAVEFILE (LS_IMPORT, “LS_IMPORT.XML") ;

F-16 WorkFlow Manager Installation and Configuration Guide

XML/Document Object Management Functions

DOMDOCGETROOT Function
Retrieves the root node of an XML document.

This function retrieves the root node of a specified XML document. Returns an XML node.

Format:

<identifier> = DOMDOCGETROOT (<xml document identifier>);
Where:

¢ <xml document_identifier> is an identifier that is an XML document.
Example:

Get the root node of the LS_DATA XML document.

LS_IMP_ROOT = DOMDOCGETROOT (LS_DATA) ;

XML Rules Language Statements and Functions F-17

XML/Document Object Management Functions

DOMDOCADDPI Function

Adds a processing instruction to an XML document.
This function adds a processing instruction to an XML document. Returns an XML node.

Note: If using this function inside a FOR EACH in LIST statement, include
the USE_DOMDOCADDAPI_IN_LOOP = 1 keyword and value in the
LODESTAR.CFG file.

Format:
<identifier> = DOMDOCADDPI (<identifier|string expression>);
Where:
¢ <xml node_identifier> is the root element of the XML document. The ‘PI’ is inserted
before it.
¢ <node_name> is a valid XML node name.
* <node_value> is a literal or string value in the form "attribute=""value"" attribute=""value""
..."" (the double double-quotes will become single double-quotes).
Example:

Add a reference to an XS1. style sheet

SS_OUT = DOMDOCADDPI (CUST BILL, "xml-stylesheet", "type='text/xsl'
href='"PSNH BillReport.xsl'");

F-18 WorkFlow Manager Installation and Configuration Guide

XML/Document Object Management Functions

DOMNODEGETNAME Function
Retrieves the name of an XML node.

This function retrieves the name of an XML node. Returns a string.

Format:

<identifier> = DOMNODEGETNAME (<xml node identifier>);
Where:

¢ <xml node_identifier> is an identifier that is an XML node.
Example:

Get the name of the LS_RECORD node.

LS_RECORD_NAME = DOMNODEGETNAME (LS_RECORD) ;

XML Rules Language Statements and Functions F-19

XML/Document Object Management Functions

DOMNODEGETTYPE Function

Retrieves the type of an XML node.

nn

This function retrieves the type of an XML node. Types may be "attribute", "element"
yp yp y > s

"comment", "text", Returns a string,.
Format:

<identifier> = DOMNODEGETTYPE (<xml node identifier>);
Where:

¢ <xml node_identifier> is an identifier that is an XML node.
Example:

Get the node type for the I.S_RECORD node.

LS_RECORD_NODE_TYPE = DOMNODEGETTYPE (LS_RECORD) ;

F-20 WorkFlow Manager Installation and Configuration Guide

XML/Document Object Management Functions

DOMNODEGETVALUE Function

Format:

Where:

Example:

Retrieves the value of an XML node.

This function retrieves the value of an XML node. Returns a string.

<identifier> = DOMNODEGETVALUE (<xml node identifier>);

¢ <xml node_identifier> is an identifier that is an XML node.

Get the value of the 1.S_RECORD node.

LS_RECORD_VAL = DOMNODEGETVALUE (LS_RECORD) ;

XML Rules Language Statements and Functions F-21

XML/Document Object Management Functions

DOMNODEGETCHILDCT Function

Format:

Where:

Example:

Retrieves the number of child nodes of an XML node.

This function retrieves the number of child nodes of an XML node (may be 0). Returns an integer.

<identifier> = DOMNODEGETCHILDCT (<xml node identifier>);

¢ <xml node_identifier> is an identifier that is an XML node.

Get the number of child nodes in the 1.S_RECORD node.

LS_RECORD_NUM CHILDREN = DOMNODEGETCHILDCT (LS_RECORD) ;

F-22 WorkFlow Manager Installation and Configuration Guide

XML/Document Object Management Functions

DOMNODEGETFIRSTCHILD Function

Format:

Where:

Example:

Retrieves the first child of an XML node, if any.

This function retrieves the first child of an XML node, if any. If there are no child nodes, returns
0. Returns an XML node.

<identifier> = DOMNODEGETFIRSTCHILD (<xml node identifier>);

¢ <xml node_identifier> is an identifier that is an XML node.

Get the first child node of the 1.S_RECORD node.

LS_RECORD_FIRSTCHILD = DOMNODEGETFIRSTCHILD (LS_RECORD) ;

XML Rules Language Statements and Functions F-23

XML/Document Object Management Functions

DOMNODEGETSIBLING Function

Format:

Where:

Example:

Retrieves the next (right side) child of an XML node, if any.

This function retrieves the next child of an XML node, if any. If there is not another child, returns
0. Returns an XML node.

<identifier> = DOMNODEGETSIBLING (<xml node identifier>);

¢ <xml node_identifier> is an identifier that is an XML node.

Get the next child of the 1.S_RECORD node.

LS_RECORD_NEXTCHILD = DOMNODEGETSIBLING (LS_RECORD) ;

F-24 WorkFlow Manager Installation and Configuration Guide

XML/Document Object Management Functions

DOMNODECREATECHILDELEMENT Function

Format:

Where:

Example:

Creates a child node in an XML node.

This function creates a child node in a specified XML node. The new element is appended as the
last child node of the specified node. Currently, any errors are fatal. Returns an XML node that is

the new element.

<identifier> = DOMNODECREATECHILDELEMENT (<Xml_node_identifier>,
<identifier|string expression>);

¢ <xml node_identifier> is an identifier that is an XML node.

* <identifier | string expression> is either an identifier or a string expression that evaluates to a
string that is the name of the new element.

Add a new child node called ARRANGEMENT to the .S _ACCOUNT node.

LS_RECORD_NEW_NODE = DOMNODECREATECHILDELEMENT (LS_ACCOUNT,
“ARRANGMENT") ;

XML Rules Language Statements and Functions F-25

XML/Document Object Management Functions

DOMNODESETATTRIBUTE Function
Sets the value of an attribute of an XMI. node.

This function sets the value of an attribute of a specified XML node. The attribute value is added
to the element if the attribute does not exist; otherwise, it replaces the attribute's value. Currently,
any errors are fatal. Returns the integer 0.

Format:
<identifier> = DOMNODESETATTRIBUTE (<xml node identifier>,
<identifier|string expression>, <identifier|string expression>);
Where:
¢ <xml node_identifier> is an an XML node that is an element.
* <identifier | string expression> is either an identifier or a string expression that evaluates to a
string that is the name of the attribute.
* <identifier|string expression> is either an identifier or a string expression that evaluates to a
string that is the value of the attribute.
Example:

Set the value of the “Arrangement” attribute of the LS_ACCOUNT node to TRUE.

LS_RECORD_NEW_NODE = DOMNODESETATTRIBUTE (LS_ACCOUNT, “ARRANGEMENT”,
“TRUE"”) ;

F-26 WorkFlow Manager Installation and Configuration Guide

XML/Document Object Management Functions

DOMNODEGETCHILDELEMENTCT Function

Format:

Where:

Example:

Retrieves the number of child nodes of an XML node that are elements.

This function retrieves the number of child nodes of an XML node that are elements; this may be
0. Returns an integer.

<identifier> = DOMNODEGETCHILDELEMENTCT (<xml node identifier>);

¢ <xml node_identifier> is an identifier that is an XML node.

Get the number of child element nodes in the I.S_RECORD node.

LS_RECORD_NUM ELEM CHILDREN = DOMNODEGETCHILDELEMENTCT (LS_RECORD) ;

XML Rules Language Statements and Functions F-27

XML/Document Object Management Functions

DOMNODEGETFIRSTCHILDELEMENT Function

Format:

Where:

Example:

Retrieves the first child of an XM node that is an element, if any.

This function retrieves the first child of an XML node that is an element, if any. If there are no
child nodes, returns 0. Returns an XML node.

<identifier> = DOMNODEGETFIRSTCHILDELEMENT (<xml node identifier>);

¢ <xml node_identifier> is an identifier that is an XML node.

Get the first child element node of the 1.S_RECORD node.

LS_RECORD_FIRSTCHILD ELEM = DOMNODEGETFIRSTCHILDELEMENT (LS_RECORD) ;

F-28 WorkFlow Manager Installation and Configuration Guide

XML/Document Object Management Functions

DOMNODEGETSIBLINGELEMENT Function

Format:

Where:

Example:

Retrieves the next (right side) child of an XMI. node that is an element, if any.

This function retrieves the next child of an XML node that is an element, if any. If there is not
another child, returns 0. Returns an XML node.

<identifier> = DOMNODEGETSIBLINGELEMENT (<xml node identifier>);

¢ <xml node_identifier> is an identifier that is an XML node.

Get the next child element node of the L.S_RECORD node.

LS_RECORD_NEXTCHILD = DOMNODEGETSIBLINGELEMENT (LS_RECORD) ;

XML Rules Language Statements and Functions F-29

XML/Document Object Management Functions

DOMNODEGETATTRIBUTECT Function
Retrieves the number of attribute nodes of an XML node, if any.

This function retrieves the number of attribute nodes of an XML node; this may be 0. If the node
is not an attribute, returns 0. Returns an integer.

Format:

<identifier> = DOMNODEGETATTRIBUTECT (<xml node identifier>);
Where:

¢ <xml node_identifier> is an identifier that is an XML node.
Example:

Get the number of attribute nodes in the I.S_RECORD node.

LS_RECORD_ATT NODES = DOMNODEGETATTRIBUTECT (LS_RECORD) ;

F-30 WorkFlow Manager Installation and Configuration Guide

XML/Document Object Management Functions

DOMNODEGETATTRIBUTEI Function

Format:

Where:

Example:

Retrieves the index’th attribute an XML node, if any.

This function retrieves the index'th attribute of a specified XML node, if any. If there is no such
attribute, returns a NULL node. Returns an XML node.

<identifier> = DOMNODEGETATTRIBUTECT (<xml node identifier>, <index>);

¢ <xml node_identifier> is an identifier that is an XML node.

* <index> an integer between 1 and the number of attributes in the node, inclusive.

Get the 4th attribute node in the I.S_RECORD nodk.

LS_RECORD_ATTI_NODE 4 = DOMNODEGETATTRIBUTEI (LS_RECORD, 4);

XML Rules Language Statements and Functions F-31

XML/Document Object Management Functions

DOMNODEGETATTRIBUTEBYNAME Function

Format:

Where:

Example:

Retrieves the attribute of an XML node with a specified name, if any.

This function retrieves the attribute of a specified XML node with this name, if any. If there is no
such attribute, returns a NULL node. Returns an XML node.

<identifier> = DOMNODEGETATTRIBUTEBYNAME (<xml node identifier>,
<name>) ;

e <xml node_identifier> is an identifier that is an XML node.

* <name> is a string that is the name of an attribute in the XML node.

Get the attribute in the L.S_ACCOUNT node with the name ARRANGEMENT.

LS_RECORD_ATT ARRANGE = DOMNODEGETATTRIBUTEBYNAME (LS RECORD,
“ARRANGEMENT") ;

F-32 WorkFlow Manager Installation and Configuration Guide

XML/Document Object Management Functions

DOMNODEGETBYNAME Function
Retrieves the first node under a specified XMI. node with a specified name, if any.

This function retrieves the first node under the specified node with the specified name. If there is
no such node, returns 0. Returns an XML node.

Format:

<identifier> = DOMNODEGETBYNAME (<xml node identifier>, <name>);
Where:

¢ <xml node_identifier> is an identifier that is an XML node.

* <name> a string that is the name of an XML node.
Example:

Get the first node in the LS_ACCOUNT node with the name ARRANGEMENT.

LS_RECORD_FIRST ARRANGE = DOMNODEGETBYNAME (LS _RECORD, “ARRANGEMENT”) ;

XML Rules Language Statements and Functions F-33

Using the XML Statements and Functions

Using the XML Statements and Functions

The XML statements and functions described in this appendix allow you to obtain data values

from XML documents and files and assign those values to identifiers. These identifiers can be

used in Rules Language processing, and the results can be saved back to the XML structure for use

as output data.

You can also create XML documents and files and populate the nodes within documents and files

with appropriate data and values.

This section provides step-by-step descriptions for these operations.

Reading from XML Documents and Files

The steps for reading data from existing XML documents and files are:

1.

Define the XML structure.

Defining the XML structure of the XML document or file defines the relationship between
the elements and nodes in the XML document or file. To do this, use the Identifier
Statement on page F-4 and the XML_ELEMENT Statement on page F-6 respectively.

Load the XML file or document.

Loading the XML document or file creates an XML document, and allows the Rules
Language to access the root element.

Get the root element of the XML document.

Getting the root element of the XML document enables the Rules Language to access the
XML elements and nodes. To do this, use the DOMDOCGETROOT Function on page F-
17. The identifier assigned to the result of the DOMDOCGETROOT function must be the
root element of the XML document.

Derive values from the XML, as specified in the XML structure.

Deriving the data values from the XML document is done using either Stem.Tail identifiers or
the DOM functions.

F-34 WorkFlow Manager Installation and Configuration Guide

Using the XML Statements and Functions

Example
The following example shows how data can be extracted from an XML structure. In this example,
the XML structure is the context of an activity performed using the Oracle Utilities Billing
Component - Workflow Management product. With the following activity context:

<CONTEXT>
<ACCOUNTID>123</ACCOUNTID>
<PASTDUEAMT>90.00</PASTDUEAMT>
<OTHER />

</CONTEXT>

the following Rules Language statements could be used to extract data from the context.

/* Define the Context Structure */

IDENTIFIER CONTEXT;

XML ELEMENT CONTEXT ID NODENAME “CONTEXT”

XML ELEMENT ACCOUNT ID NODENAME “ACCOUNTID” PARENT CONTEXT
XML _ELEMENT PASTDUE_AMT NODENAME “PASTDUEAMT” PARENT CONTEXT
XML ELEMENT OTHER ID NODENAME “OTHER” PARENT CONTEXT

/* Load the XML document */

CONTEXT_DOC = DOMDOCLOADXML (RATE_SCHEDULE_ INPUT XML) ;

/* Obtain the Root Element */

CONTEXT = DOMDOCGETROOT (CONTEXTiDOC)

/* Get the Account ID */

ACCT ID = ACCOUNT ID.NODEVALUE;

/* Get the Past Due Amount */

PAST DUE = PASTDUE_ AMT.NODEVALUE;

Creating XML Documents and Files
The steps to create an XML document or file are:
1. Define the XML structure.

Defining the XML structure of the XML document or file defines the relationship between
the elements and nodes in the XML document or file. To do this, use the Identifier
Statement on page F-4 and the XML_ELEMENT Statement on page F-6 respectively.

2. Create the XML document.

Creating an XML document is performed using the CREATE operation of the XML_OP
Statement on page F-9. The XML element identifier created via the XML_OP statement
must be the root element of the XML document.

3. Create the nodes in the XML document, as specified in the XML structure.

Creating the nodes within the XML document is performed using either the CREATE or
INSERT operations of the XML_OP Statement on page F-9. The XML element identifier
created via the XMIL._OP Statement must be the node names of the XML document.

4. Set node values using Stem.Tail identifiers.

Setting the node values in the XML document can be done using either Stem.Tail identifiers
or the DOM functions.

5. Optional. Save the XML document to a file.

Use the DOMDOCSAVEFILE Function on page F-16 to save the XML document to a
file.

Example
The following example shows how an XML structure can be created using the Rules Language.
For this example, the XML structure is the context of an activity performed using the Oracle
Utilities Billing Component - Workflow Management product.

/* Define the Context Structure */

XML Rules Language Statements and Functions F-35

Using the XML Statements and Functions

IDENTIFIER CONTEXT;

XML ELEMENT CONTEXT ID NODENAME “CONTEXT”

XML_ELEMENT ACCOUNT_ID NODENAME “ACCOUNTID” PARENT CONTEXT;
XML ELEMENT PASTDUE AMT NODENAME “PASTDUEAMT” PARENT CONTEXT;
XML ELEMENT OTHER_ID NODENAME “OTHER” PARENT CONTEXT;

/* Create the document */

XML OP CREATE CONTEXT ID;

/* Create the document nodes and assign values */

XML _OP INSERT ACCOUNT_ID;

ACCOUNT ID.NODEVALUE = “123”;
XML_OP INSERT PASTDUE AMT;
PASTDUE_AMT.NODEVALUE = “90.007;
XML OP INSERT OTHER ID;

OTHER ID.ARRANGEMENT = “TRUE”;

The resulting XML structure would be:

<CONTEXT>
<ACCOUNTID>123</ACCOUNTID>
<PASTDUEAMT>90.00</PASTDUEAMT>
<OTHER ARRANGEMENT=‘TRUE’ />
</CONTEXT>

The following statement could be used to save the XML to a file.

CONTEXT FILE = DOMDOCSAVEFILE (CONTEXT, "CONTEXT.XML");

F-36 WorkFlow Manager Installation and Configuration Guide

A

account
service types 4-6, 6-2
account adjustments 2-3
Account Balance report 10-8
Account Balance report example 10-9
Account Balancing 5-26
command line program 5-26
Account Balancing function
using 5-27
account bill information
obtaining 6-12
Account FME Table
information stored 3-2, 4-6
Account Table 3-2, 4-6, 5-4, 5-5, 10-6, 10-10
information stored 3-2, 4-6
ACCOUNT_BALANCE_ERROR 10-8
account-level balancing 5-3, 5-24
Address Table 10-6
information stored 3-3, 4-2
Adjustments functions 2-3
Application Method
credit application 5-10
Application Method (credit) 5-4
application priority of associated receivable type 3-8, 4-8
application priority of the receivable type 3-7, 4-4
Application Priority Table 5-2, 5-9, 5-13, 5-15
configuration 5-17
information stored 3-8, 4-8
AR Aging report 10-10
AR Aging report example 10-11
attributes
budget plan D-3
service plan D-3
tail D-2
transaction identifier D-2, E-2
user-defined D-6
Auto Payment Plan Table 7-2, 7-12
information stored 3-2, 4-6
auto payment processing
triggering 6-10
automatic payments 3-2, 4-6
AUTOPAYMENTS_PROCESSED message 7-13

Index

B
BALACCT.EXE
command line program 5-27
Balance Accounts
command line program 5-27
Balance Accounts command line program
BALACCT.EXE 5-27
syntax 5-27
Balance Journal
command line program 5-26
Balance Journal command line program
syntax 5-26
balancing
account-level 5-3, 5-24
Journal Transaction Table tecords 5-25
journal-level 5-3, 5-24
transaction-level 5-3, 5-24
balancing controls functionality 5-24
levels 5-3
Batch AutoPayments command line program 7-14
syntax 7-14
batch files
Report Generator 10-18
Batch Payment data structure 7-13
Batch Payment Table 10-4
information stored 3-7
batch payments 5-6, 7-5
BATCHPAYMENT_ERROR message 7-8
BATCHPAYMENT_PROCESSED message 7-9
BAUTOPAY.EXE 7-14
BAUTOPAY.EXE parameters 7-14
bill calculation
data generated 6-3
Bill Correction module
CANCEL mode 6-13
CANCEL/REBILL mode 6-13
Bill Cycle Table 5-5
Bill History Table 5-5
Billing function processing 6-3
Billing functions 6-1, 6-5
Billing module 6-12, 6-13
description 2-3
functions 6-3
Billing module functionality
overview 6-1
Billing module functions

Index-1

Get Bill Info 6-12
triggering 6-3
Budget Plan 6-4
budget plan attribute D-3
Budget Plan Table 6-2, 10-14
information stored 3-3, 4-6, 6-2
Budget tables 6-2
Budget Plan 3-3
Budget Type Table 6-2
information stored 3-3, 4-2, 6-2
budget types 4-2, 6-2

C
CALCULATE_LATEPAYMENT Function D-33
Cancel AutoPayment function 7-13
cancel charge transaction 5-16

defined 5-16

processing 5-16
cancel credit transaction

defined 5-17

processing 5-17
Cancel functions 6-13

triggering 8-15
Cancel Reason Table

information stored 3-7, 4-2
Cancel Transaction function 5-11

triggering 5-12, 6-5, 6-6, 6-7, 6-8, 6-9, 6-10, 6-11, 7-12, 8-3,

8-4, 8-5, 8-14

Cancel Transaction Statement D-31
Cancel Transfer Amount function 5-12

triggering 5-12
canceling transaction process 6-13
canceling transactions 6-13
cancelled credit transaction 5-17
charge transaction

cancelling 5-16

paid 5-17
Charge Type Table 5-5

information stored 3-7, 4-2
charge types 3-7, 4-2
COLLECTIONS_PAYMENT message 7-8
command line program

Account Balancing 5-26

Balance Accounts 5-27

Balance Journal 5-26

for journal balancing 5-25

Sub-Ledger Roll-Up 5-21
command line programs

Batch AutoPayments 7-14
Configuration File

EnhancedLogging parameter 10-19

LogFile parameter 10-19

RptDir parameter 10-19
Configuration File (LSReports.ini) 10-18
control activity message 5-10, 5-20

JOURNAL_BALANCED 5-25
Control Message Data Table 10-8, 10-12
Control Message record 10-8, 10-12
Control Message Table 10-8, 10-12
Control Messages queue C-5
CONTROLMSG C-5

Index-2

controls
balancing 5-24
transaction-level 5-11
transaction-level balancing 5-10
cost center ID 5-4
Cost Center Table 5-4, 10-14
information stored 3-9, 4-3
Cost Center Translation Table 5-2, 5-18
information stored 3-9, 4-8
creating journal entries 5-4
Credit Application function
triggering 5-13
credit application functionality 5-2, 5-13
credit application method 5-4, 5-13
credit application methods
deferred 5-13
immediate 5-13
invoice ID 5-13
specified 5-13
Credit Application No 5-14, 5-16, 5-17
credit application processing
for BILL transaction 5-13, 5-15
for cancel charge transaction 5-16
for credit transaction 5-13, 5-15
Credit Application record
corresponding to a journal entry 5-18
Directed flag 5-15
credit application record 5-9
Credit Application records
journaling 5-19
credit application records 5-13
Credit Application Table 5-3, 5-9, 5-13, 5-14, 5-15, 5-16, 5-17, 5-
25, 10-12
Directed flag 5-15
information stored 3-8
journal records 5-17
Credit Application tables 3-5
Application Priority Table 3-8, 4-8
Credit Application Table 3-8
credit journal account ID 5-4
credit transaction
cancelled 5-17
custom reports
creating 10-21
integrating into FME 10-21

D

data

reading from XML F-34
data generated by bill calculation 6-3
Data Manager List/Query functionality 6-12
data stored in the Transaction Table 3-6
data structures

Batch Payment 7-13

Payment File 7-13
data that comprises a batch payment 5-6
data that comprises a payment file 5-7
data that comprises a transaction in the Financial Engine 5-4
Database schema diagram A-1, B-1
database tables

Billing 6-2

database tables used by the Remittance module 7-1
debit journal account ID 5-4
default message queue type C-3
default message queues C-5, C-6
default message types C-4
DEFERRED A/R 10-14
Deferred credit application 5-13
deprecated statements D-36
designing reports 10-21
Directed flag 5-15
Document Object Management (DOM) F-2

functions F-12
DOM (Document Object Management) F-2

functions F-12
DOMDOCADDPI function F-18
DOMDOCCREATE function F-13
DOMDOCGETROOT function F-17
DOMDOCLOADFILE function F-14
DOMDOCLOADXML function F-15
DOMDOCSAVEFILE function F-16
DOMNODECREATECHILDELEMENT function F-25
DOMNODEGETATTRIBUTEBYNAME function F-32
DOMNODEGETATTRIBUTECT function F-30
DOMNODEGETATTRIBUTEI function F-31
DOMNODEGETCHILDCT function F-22
DOMNODEGETCHILDELEMENTCT function F-27
DOMNODEGETFIRSTCHILD function F-23
DOMNODEGETFIRSTCHILDELEMENT function F-28
DOMNODEGETSIBLING function F-24
DOMNODEGETSIBLINGELEMENT function F-29
DOMNODEGETVALUE function F-21
DOMNODESETATTRIBUTE function F-26

E

EnhancedlLogging parameter 10-19

F

Financial Engine 2-2, 3-1
credit application functionality 5-17
definition 2-3
functions 5-1, 5-2
transactions functionality 5-9
Financial Management Extension
Back Office Application 2-4
interfaces 2-2
modules 2-3
Financial Management Extension to BillingExpert
Overview 2-1
financial transaction data
obtaining 6-12
FME Back Office C-8
FME reporting functionality 10-1
FME Reports 10-3
FME reports 10-3
running 10-18
viewing 10-20
FME statements
in Oracle Utilities Rules Language D-1
FMGETBILLINFO function 6-12, D-34
FOR EACH x IN XML_ELEMENT_OF 0 statement F-8
Forecast Management Overview 1-1

functions
Billing 6-3, 6-5
CALCULATE_LATEPAYMENT D-33
Cancel AutoPayment 7-13

Cancel Transaction 5-11, 5-12, 7-12, 8-3, 8-4, 8-5, 8-14

Cancel Transfer Amount 5-12

Credit Application 5-13

DOMDOCADDPI F-18

DOMDOCCREATE F-13
DOMDOCGETROOT F-17
DOMDOCLOADFILE F-14
DOMDOCLOADXML F-15
DOMDOCSAVEFILE F-16
DOMNODECREATECHILDELEMENT F-25
DOMNODEGETATTRIBUTEBYNAME F-32
DOMNODEGETATTRIBUTECT F-30
DOMNODEGETATTRIBUTEI F-31
DOMNODEGETCHILDCT F-22
DOMNODEGETCHILDELEMENTCT F-27
DOMNODEGETFIRSTCHILD F-23
DOMNODEGETFIRSTCHILDELEMENT F-28
DOMNODEGETSIBLING F-24
DOMNODEGETSIBLINGELEMENT F-29
DOMNODEGETVALUE F-21
DOMNODESETATTRIBUTE F-26
FMGETBILLINFO 6-12, D-34
FPROCESSAUTOPAYMENT D-35

Get Bill Info 6-12

Hold, Release, Close, and Reopen Message C-7
Issue Refund 10-6

Journal Balancing 5-26

List Message C-7

Maintenance module 8-2

Messaging C-7, C-8

Peek Message C-7

Post C-8

Post Bill 6-10

Post Budget Bill Trueup 6-3

Post Message C-7, C-8

Post Payment 7-8

Post Penalty 7-12

Post Statement 6-3

Post Transaction 5-9, 5-10, 6-5, 6-6, 6-7, 6-8, 6-9, 6-10, 6-11,

7-7, 7-8, 8-4, 8-5
Process Auto Payment 6-11
Process Batch Payment 7-9
Remittance 7-1, 7-7
Remittance module 7-4
Remove Message C-7
Sub-Ledger Roll-Up 5-21
transaction balancing 5-24
Transfer Transaction Amount 5-11, 8-3
triggered by the Rate Language 6-3
triggered through an interface 6-3
triggering 2-2
XML DOM F-12
functions designed to support work queues C-7

G
G/L Activity tepott 10-12
G/L Activity tepott example 10-13

Index-3

Get Bill Info Billing module function 6-12
Get Bill Info function
triggering 6-12

H

held messages C-7
Hold, Release, Close, and Reopen Message functions C-7

identifier statement F-4
identifiers
stem.column_name D-6
stem.tail F-3
immediate credit application 5-13
Input Messages queue C-5
INPUTMSG C-5
interfaces
Financial Management Extension 2-2
invoice ID credit application 5-13
Issue Refund function 10-6
Issue Refund report 10-6
Issue Refund report example 10-7

J

Journal Account record 10-14
Journal Account Table 10-14
information stored 3-9, 4-3
journal balancing 5-25
arguments 5-26
parameters 5-25
journal balancing command line program 5-25
Journal Balancing function 5-26
journal records 5-9, 5-14, 5-16, 5-17
Journal Transaction records 5-25
Journal Transaction Table 5-2, 5-3, 5-9, 10-12
information stored 3-10
journal entries 5-18
Journal Transaction Table records 5-20
balancing 5-25
Journal Transaction tables 3-9
Cost Center Table 3-9
Journal Account 3-9, 4-3
Journal Transaction 3-10
Journal Translation 3-9, 4-8
Journal Translation record 5-18, 5-19
Journal Translation rules 5-19
Journal Translation Table 5-2, 5-9, 5-18
configuration 5-14, 5-15, 5-16, 5-17
information stored 3-9, 4-8
Journal Translation tables
Cost Center Translation 3-9, 4-8
JOURNAL_ BALANCE _ERROR message 5-25
JOURNAL_BALANCED 10-12
JOURNAL_BALANCED control activity message 5-25
journaling Credit Application records 5-19
journaling functionality 5-2, 5-18
journaling process
steps 5-18
Journaling Transaction records 5-19
journal-level balancing 5-3, 5-24

Index-4

Jurisdiction Table 5-5

L

List Message function C-7
LISTUPDATE Rate Language function 6-12
Location tables

Address 3-3

Premise 3-3

Region 3-3
LogkFile parameter 10-19
lookup tables

Write-Off Reason 3-3, 4-5
LSDB message queue type C-3
LSDB queue type C-6
LSREPORTS.EXE 10-18
LSReports.ini file

example 10-18
LSTransaction Table

information stored 3-6

Maintenance functions 8-1
triggered through the FME Back Office 8-2
Maintenance module
description 2-3
Maintenance module functionality 8-1
Maintenance module functions 8-2
triggering 8-3
message
control activity 5-10
Message Data Table C-6
information stored C-6
Message Queue Table
information stored C-3
message queues
corresponding tables C-6
default C-5
supported C-5
Message Table C-6
information stored C-6
Message Type Queue Table
information stored C-3
Message Type Table
information stored C-3
message types
default C-4
used by the Messaging System C-4
message, control activity 5-25
MESSAGEQUEUE Table C-3
messages
AUTOPAYMENTS_PROCESSED 7-13
BATCHPAYMENT_ERROR 7-8
BATCHPAYMENT_PROCESSED 7-9
COLLECTIONS_PAYMENT 7-8
control activity 5-20
JOURNAL_BALANCE_ERROR 5-25
PAYMENT_EXCEPTION_ERROR 7-12
PAYMENTFILE_ERROR 7-9
PAYMENTFILE_PROCESSED 7-10
PAYMENTFILEIN 7-13
PAYMENTFILEOUT 7-13

UNPOSTABLE_PAYMENT 7-8 Peek Message function C-7

MESSAGETYPE Table C-3 Post Adjustment statement D-19
MESSAGETYPEQUEUE Table C-3 Post Bill 6-10
Messaging functions C-2, C-7, C-8 Post Bill function 6-10
access by external systems C-8 POST BILL Statement 6-11, 8-5
Messaging Post function C-8 Post Bill Statement D-15
Messaging System Post Budget Bill Charge statement D-42
example C-2 BUDGETPLAN attribute D-3
message types C-4 Post Budget Bill Trueup function
tables C-3 Charge or Credit 6-3
Messaging system Post Budget Bill Trueup statement D-44
FME C-1 BUDGETPLAN attribute D-3
Messaging System functions C-7 Post Budget Service Charge statement D-40
Meter History Table BUDGETPLAN attribute D-3
information stored 3-4, 4-7 SERVICEPLAN attribute D-3
Meter Read Table Post Charge Or Credit statement D-7
information stored 3-4, 4-7 Post Deferred Service Charge statement D-38
Meter Table Post Deposit Application Statement D-29
information stored 3-4, 4-3 Post Deposit statement D-25
Meter tables Post function
Meter History Table 3-4, 4-7 triggering C-8
Meter Read Table 3-4 Post Installment Charge statement D-46
Meter Table 3-4 Post Message function C-7
modules triggering C-8
Financial Management Extension 2-3 Post Payment function 7-8
Post Payment statement D-17
(o) Post Penalty function

triggering 7-12
Post Refund statement D-21
Post Service Charge statement 1D-36
SERVICEPLAN attribute D-3
Post Statement function 6-10
Statement Date 6-3
POST STATEMENT Statement 6-10
Post Statement statement D-13
STATEMENTDATE attribute D-3
Post Tax statement D-9
Post Transaction function 5-9, 7-8
triggering 5-10, 6-5, 6-7, 6-8, 6-9, 6-10, 7-7, 7-8, 8-4, 8-5, 8-14
Post Transaction process
high-level illustration 5-9
Post Writeoff Statement D-23
Premise Table

Operating Company Table 5-5
OPTIONS statement F-5
Oracle Utilities Data Repository 3-1
other account Bill Information
obtaining 6-12
Output Messages queue C-5
OUTPUTMSG C-5
outstanding charge transaction 5-13, 5-16
outstanding charge transactions 5-13, 5-15
Overview 2-1
overview
Billing module functionality 6-1
database tables 3-1
Messaging system C-1

P information stored 3-3, 4-4
paid charge transaction 5-17 Process AutoPayment function
parameters triggering 6-11
journal balancing 5-25 Process Batch Payment function
payment file 7-6 triggering 7-9
Payment File data structure 7-13 Process Event statement E-11
Payment Method Table Process Resume statement E-7
information stored 4-4, 7-2 Process Start statement E-3
Payment Posting report 10-4 Process Suspend statement E-5
Payment Posting report example 10-5 Process Terminate statement E-9
Payment Source Table PROCESSAUTOPAYMENT function D-35
information stored 4-4, 7-2
Payment Table Q

information stored 7-2
PAYMENT_EXCEPTION_ERROR message 7-12
PAYMENTFILE_ERROR message 7-9
PAYMENTFILE_PROCESSED message 7-10
PAYMENTFILEIN message 7-13
PAYMENTFILEOUT message 7-13

quety
accessed from a billing rate schedule 6-12
Account Balancing 5-27
configuration 5-27

Index-5

R XML statements F-4

Rate Code Table 5-5
Rate Language 6-3, 6-5, 6-6, 6-7, 6-8, 6-9, 6-10, 6-11, 6-12, 7-8, 8- S

4, 8-5, 8-14 . sample reports
Rate Language functions System Balance 10-15, 10-17
FMGETBILLINFO 6-12 Service Plan 6-4
LISTUPDATE 6-12 service plan attribute D-3
Receivable Type Table 3-7, 4-4, 5-5 Service Plan Table

information stored 3-7, 4-4

information stored 3-3, 4-6, 6-2
receivable types 3-7, 4-4

Service tables
Receivables Component Service Plan 3-3

Rules Language statements D-2 Service Type 3-3

Service Type Table
information stored 3-3, 4-4, 6-2
special message functionality required for work queues C-7

records
Control Message 10-8, 10-12
Journal Account 10-14
Work Queue Message 10-8

Refunds functions 2-3

Remittance database tables 7-2

specified credit application 5-13
Statement Date 6-3

: statementing interface 6-12
Remittance functions 7-1, 7-4

statements
Remittance module 6-11 Cancel Transaction D-31
database tables 7-1 FOR EACH x IN XMI_ELEMENT_OF 0 F-8
Remittance module functions identifier F-4
triggering 7-7 OPTIONS F-5
Remittance modules Post Adjustment D-19
description 2-3 Post Bill D-15
Remove Message function C-7 Post Budget Bill Chatge D-3, D-42
report format Post Budget Bill Trueup D-3, D-44
FME reports 10-3 Post Budget Service Charge D-3, D-40
Report Generatc'>r . Post Charge Or Credit D-7
Configuration File 10-18 Post Deferred Service Charge D-38
Report Generator batch file 10-18 Post Deposit D-25
Repo-rt List Tgble Post Deposit Application D-29
information stored 10-2 Post Installment Charge D-46
report samples Post Payment D-17
Account Balance report 10-9 Post Refund D-21
AR Aging report 10-11 Post Service Charge D-36
G/L Activity 10-13 Post Statement D-13
Issue Refund report 10-7 Post Tax D-9
Payment Posting report 10-5 Post Writeoff D-23
Report Table 10-19 Process Event E-11
information stored 10-2 Process Resume E-7
Reporting functionality of FME 10-1 Process Start E-3
reports 2-4 Process Suspend E-5

Account Balance 10-8

AR Aging 10-10 Receivables Component D-2
designing 10-21 XML_ELEMENT F-6

FME 10-3 XMIL_OP F-9

G/L Activity 10-12 stem.column_name identifiers D-6
Issue Refund 10-6 stem.tail identifiers F-3

Payment Posting 10-4 Subledger Account Table 10-14
System Balance 10-14

Process Terminate E-9

information stored 3-10

viewing 10-20 Subledger Account tables 3-9
Revenue Code Table 10-10 sub-ledger roll-up
RptDir parameter 10-19 steps 5-20
rules

Sub-Ledger Roll-Up command line program
Journal Translation 5-19 syntax 5-21
Rules Langugge Sub-Ledger Roll-Up function 5-21
Financial Management statements D-2 sub-ledger roll-up functionality 5-2, 5-20

FME statements available in D-1 supported message queue types C-3
Workflow Management statements E-2

workflow management statements available in E-1
XML processing F-2

syntax
Balance Accounts command line program 5-27

Index-6

Balance Journal command line program 5-26
Batch AutoPayments command line program 7-14
System Balance report 10-14
System Balance report example 10-15, 10-17

T

tables

Account 3-2, 5-4, 5-5, 10-6, 10-10

Account FME 3-2

Address 3-3, 10-6

Application Priority 3-8, 4-8, 5-2, 5-9, 5-13, 5-15, 5-17

Auto Payment Plan 3-2, 4-6, 7-2, 7-12

Batch Payment 3-7, 7-2, 10-4

Bill Cycle 5-5

Bill History 5-5

Budget 6-2

Budget Plan 3-3, 4-2, 4-6, 6-2, 10-14

Budget Type 3-3, 4-2, 6-2

Cancel Reason 3-7, 4-2

Charge Type 3-7, 4-2, 5-5

Collections 9-2

Control Message 10-8, 10-12

Control Message Data 10-8, 10-12

Cost Center 3-9, 4-3, 5-4, 10-14

Cost Center Translation 3-9, 4-8, 5-2

Cost Center Translation Table 5-18

Credit Application 3-5, 3-8, 5-3, 5-9, 5-13, 5-14, 5-15, 5-16, 5-
17, 5-25, 10-12

for FME Reporting functionality 10-2

Journal Account 3-9, 4-3, 10-14

Journal Transaction 3-10, 5-2, 5-3, 5-9, 5-18, 5-20, 5-25, 10-12

Journal Translation 3-9, 4-8, 5-2, 5-9, 5-14, 5-15, 5-16, 5-17,
5-18

Jurisdiction 5-5

Message C-6

Message Data C-6

Message Queue C-3

Message Type C-3

Message Type Queue C-3

Messaging C-3

Meter History Table 3-4, 4-7

Meter Read Table 3-4, 4-7

Meter Table 3-4, 4-3

Operating Company 5-5

Payment 7-2

Payment Source 4-4, 7-2

Premise 3-3, 4-4

Rate Code 5-5

Receivable Type 3-7, 4-4, 5-5

Remittance 7-2

Report 10-19

Report List 10-2

Report Table 10-2

Revenue Code 10-10

Service Plan 3-3, 4-6, 6-2

Service Type 3-3, 4-4, 6-2

Subledger Account 3-10, 10-14

Subledger Account tables 3-9

Transaction 3-5, 3-6, 5-3, 5-9, 5-10, 5-24, 5-25, 10-6, 10-10,
10-12, 10-14, 10-16

Transaction ID 3-5, 4-4, 5-4

Transaction Table 5-4
Transaction Type 3-5, 4-4, 5-4
Work Queue Message 10-8
Work Queue Message Data 10-8
tail attributes D-2
transaction balancing function 5-24
transaction canceling process 5-11
Transaction data tables 3-5
Transaction ID Table 5-4
uses 3-5, 4-4
transaction identifier
attributes D-2
transaction identifier attribute E-2
transaction posting process 5-10
Transaction record
corresponding to a journal entry 5-18

Transaction Table 5-3, 5-9, 5-10, 5-24, 5-25, 10-6, 10-10, 10-12, 10-

14, 10-16, D-6
transaction processing 5-4
ZONE column D-43
Transaction tables 3-5
Cancel Reason Table 3-7, 4-2
Charge Type Table 3-7, 4-2
LSTransaction Table 3-6
Transaction ID Table 3-5, 4-4
Transaction Type Table 3-5, 4-4
Transaction Type Table 5-4
financial transactions recognized 3-5, 4-4
transaction types
Payment 5-19
transaction-level balancing 5-3, 5-10, 5-24
transaction-level controls 5-11
transactions
canceling 6-13
transactions functionality
Financial Engine 5-2
Transactions menu
enabling 11-2
transfer process 5-11
Transfer Transaction Amount function 5-11
triggering 5-11, 8-3
Transfers functions 2-3
Transfers module 2-3
Translation tables 5-18
Cost Center Translation 5-2
Journal Translation 5-2
triggering
Remittance functions 7-7
triggering a credit application 5-4
triggering credit transaction 5-14, 5-16
triggering functions 2-2
triggering Maintenance module functions 8-3
triggering transaction
credit 5-13, 5-15
non-deferred charge 5-14, 5-16
non-deferred credit 5-14, 5-16
types of message queues supported C-3
types of payment data 7-4

U

unapplied credit transaction 5-13, 5-16

Index-7

unapplied credit transactions 5-13, 5-15
UNPOSTABLE_PAYMENT message 7-8
user-defined attributes, accessing in Rules Language D-6

\"

viewing FME reports 10-20

w

Work Queue Message Data Table 10-8
Work Queue Message record 10-8
Work Queue Message Table 10-8
Work Queue Messages queue C-6
Workflow Management

Rules Language statements E-2
WORKQUEUEMSG C-6
Write-Off Reason Table 3-3, 4-5
Write-Offs module 2-3

X
XML
documents and files
creating F-35
reading from F-34
DOM functions F-12
Rules Language processing of F-2
using statements and functions F-34
XMI_ELEMENT statement F-2, F-6
XML_OP statement F-2, F-9

Index-8

	Contents
	Chapter 1
	Overview
	Configuration Overview
	Receivables Management Configuration
	Workflow Management Configuration

	What is this book?
	Oracle Utilities Billing Component Glossary

	Part One
	Receivables Management Configuration
	Chapter 2
	Introduction to the Oracle Utilities Receivables Component
	What the Oracle Utilities Receivables Component Does
	The Oracle Utilities Receivables Component Database
	The Oracle Utilities Receivables Component Messaging System
	How the Oracle Utilities Receivables Component Is Used

	The Financial Engine and the Financial Management Modules
	The Financial Engine
	Billing
	Remittance
	Maintenance
	Reports
	Collections
	The Oracle Utilities Receivables Component User Interface

	Chapter 3
	The Oracle Utilities Receivables Component Database
	Account Data
	Location Tables
	Service Tables
	Budget Tables
	Meter Tables

	Transaction Data
	Journaling Data

	Chapter 4
	Setting Up and Configuring the Oracle Utilities Receivables Component Database
	Setting up the Oracle Utilities Receivables Component Database
	Lookup Tables
	Customer/Account Tables
	Usage Data Tables
	Translation Tables

	Chapter 5
	The Financial Engine
	Financial Engine Functions - Summary
	Transactions
	Credit Application
	Journaling
	Sub-Ledger Rollup
	General Ledger Update
	Balancing Controls

	Transactions
	Transaction Data
	Transaction Types
	Transaction Processing

	Credit Application
	Credit Application Processing for Charge or Credit Transaction - Immediate
	Credit Application Processing for Charge or Credit Transaction - Specified
	Credit Application Processing for Charge or Credit Transaction - Invoice ID
	Credit Application Processing for Charge or Credit Transaction - Receivable Type
	Credit Application Processing for Cancel Charge Transaction
	Credit Application Processing for Cancel Credit Transaction

	Journaling
	Journaling Processing
	Journal Translation Rules

	Sub-Ledger Rollup
	Sub-Ledger Roll-Up Processing
	Using the Sub-Ledger Roll-Up Command Line Program

	General Ledger Update
	General Ledger Update Processing
	Using the General Ledger Update Command Line Program

	Balancing Controls
	Transaction Balancing
	Journal Balancing
	Account Balancing

	Chapter 6
	Billing
	Billing Database Tables
	Billing Functions
	Billing Function Processing
	Billing Functions

	Deprecated Functions

	Chapter 7
	Remittance
	Remittance Database Tables
	Payment Tables
	Payment Assistance Tables

	Remittance Functions
	Payment Data
	Remittance Function Processing

	Chapter 8
	Maintenance
	Maintenance Functions
	Maintenance Data
	Maintenance Function Processing

	Chapter 9
	Collections
	Collections Database Tables
	Collections Agency Tables
	Collection Arrangements Tables
	Collection Exemptions Tables
	Collection Message Tables
	Other Collections Tables

	Collections Arrangements
	Creating Collections Arrangements
	Collection Arrangement Data
	Collections Arrangements Processing

	Collection Exemptions
	Creating Collections Exemptions
	Collection Exemption Data
	Reviewing Collections Exemptions

	Collections Processing and Activities
	Selecting Accounts for Collections
	Collections Process Activities
	Collection Activities Payload Information

	Chapter 10
	Reports
	Report Database Tables
	Oracle Utilities Receivables Component Reports
	Payment Posting Report
	Issue Refund Report
	Account Balance Report
	AR Aging Report
	G/L Activity Report
	System Balance Report
	Market Participant Aging Report

	Running Oracle Utilities Receivables Component Reports
	Viewing Oracle Utilities Receivables Component Reports

	Creating Custom Reports

	Chapter 11
	Configuring Oracle Utilities Receivables Component Security
	Oracle Utilities Receivables Component Security
	Financials Features
	Important Notes about Assigning Oracle Utilities Receivables Component Permissions

	Part Two
	Workflow Management Configuration
	Chapter 12
	Setting Up Workflow Management Database Tables
	COM Object Tables
	COM Object Type Table
	COM Object Table

	Process Context Tables
	Variable Source Table
	Context Value Table
	Process Context Value Table

	Chapter 13
	The Workflow Engine
	Workflow Engine Functions
	Workflow Engine Components
	Workflow Engine API
	Workflow Engine Message Queue
	Workflow Engine Executable

	Workflow Engine Processing
	Start Process
	Navigate Process
	Start Activity
	Terminate Activity
	Suspend Process
	Resume Process
	Terminate Process
	Activity Finished
	Activity Expired
	Activity In Error
	Activity Event

	Workflow Function Activities

	Chapter 14
	The Workflow Scheduler
	Workflow Scheduler Functions and Processing
	Workflow Scheduler Components
	Workflow Scheduler API
	Workflow Scheduler Executable

	Chapter 15
	The Rules Language Engine
	Rate Form Activities and the Rules Language Engine
	Rules Language Engine Components
	Rules Language Engine Message Queue
	Rules Language Execution Engine Executable

	Creating Rate Forms for use with the Rules Language Engine
	No Required Input Data
	Input Data from Context

	Part Three
	Receivables Management Interfaces
	Chapter 16
	Oracle Utilities Receivables Component Financial Engine Interface
	Methods, Interfaces, and Syntax
	Interface Arguments

	Input Values
	xmlAccount
	xmlTransaction
	xmlGenLedgerParams
	xmlJournalParams
	xmlQuery

	Return Values
	xmlGenLedgerFile

	Chapter 17
	Oracle Utilities Receivables Component Billing Interface
	Methods, Interfaces, and Syntax
	Interface Arguments

	Input Values
	xmlAcctTrans
	xmlInstallmentPlan
	xmlAccountIn

	Return Values
	xmlAccountOut

	Deprecated Methods
	XML Examples

	Chapter 18
	Oracle Utilities Receivables Component Remittance Interface
	Methods, Interfaces, and Syntax
	Interface Arguments

	Input Values
	xmlPayment
	xmlBatchPayment
	xmlPaymentFile
	xmlAcctBill

	Chapter 19
	Oracle Utilities Receivables Component Maintenance Interface
	Methods, Interfaces, and Syntax
	Interface Arguments

	Input Values
	xmlTransaction
	xmlBatchRefund
	xmlBatchTransaction
	xmlTransactionFile

	Chapter 20
	Oracle Utilities Receivables Component Collections Interface
	Method, Interface, and Syntax
	Interface Arguments

	Input Values
	xmlColArrangementIn
	xmlAccount
	xmlExemptionIn
	xmlArrangementIn
	xmlPaymentIn

	Return Values
	xmlColArrangementOut
	xmlContext
	xmlCollInfo
	xmlTransactionOut
	xmlAccountOut
	xmlExemptionOut
	xmlArrangementOut
	xmlPaymentOut

	Chapter 21
	Messaging Interface
	Methods, Interfaces, and Syntax
	Interface Arguments

	Input Values
	xmlMessageIn
	xmlMessageListIn

	Return Values
	xmlMessageOut/xmlMessageListOut

	Part Four
	Workflow Management Interfaces
	Chapter 22
	Workflow Management Activity Implementations Interface
	Methods, Interfaces, and Syntax
	Interface Arguments

	Input Values
	xmlActivityImplementationIn
	xmlMessageListIn

	Return Values
	xmlActivityImplOut/xmlActivityImplListOut

	Chapter 23
	Workflow Management Process Versions Interface
	Methods, Interfaces, and Syntax
	Interface Arguments

	Input Values
	xmlProcessVersionIn
	xmlProcessVersionListIn
	xmlProcessIn
	xmlProcessListIn
	xmlProcessActivityIn
	xmlProcessActivityListIn

	Return Values
	xmlProcessVersionOut/xmlProcessVersionListOut
	xmlProcessOut/xmlProcessListOut
	xmlProcessActivityOut/xmlProcessActivityListOut

	Chapter 24
	Workflow Management Process Instance Interface
	Methods, Interfaces, and Syntax
	Interface Arguments

	Input Values
	xmlProcessInstanceIn
	xmlProcessInstanceListIn
	xmlActivityInstanceIn
	xmlActivityInstanceListIn
	xmlActivityEvent

	Return Values
	xmlProcessInstanceOut/xmlProcessInstanceListOut
	xmlActivityInstanceOut/xmlActivityInstanceListOut

	Part Five
	Appendices
	Appendix A
	Oracle Utilities Data Repository Receivables Component Database Schema
	Oracle Utilities Receivables Component Database Schema
	Oracle Utilities Receivables Component-Collections Database Schema

	Appendix B
	Oracle Utilities Data Repository Workflow Management Database Schema
	Oracle Utilities Billing Component - Workflow Management / Reports Database Schema

	Appendix C
	Messaging
	The Purpose of the Messaging System
	Messaging Tables
	Message Types
	Message Queues
	Default Message Queues
	Message Queue Table Templates

	Messaging Functions
	How the Messaging Functions Work

	Appendix D
	Financial Management Rules Language Statements
	Using the Financial Management Statements
	Using User-Defined Attributes
	Post Charge Or Credit Statement
	Post Tax Statement
	Post Installment Statement
	Post Statement Statement
	Post Bill Statement
	Post Payment Statement
	Post Adjustment Statement
	Post Refund Statement
	Post Writeoff Statement
	Post Deposit Statement
	Post Deposit Interest Statement
	Post Deposit Application Statement
	Cancel Transaction Statement
	CALCULATE_LATEPAYMENT Function
	FMGETBILLINFO Function
	PROCESSAUTOPAYMENT Function

	Deprecated Statements
	Post Service Charge Statement
	Post Deferred Service Charge Statement
	Post Budget Service Charge Statement
	Post Budget Bill Charge Statement
	Post Budget Bill Trueup Statement
	Post Installment Charge Statement

	Appendix E
	Workflow Management Rules Language Statements
	Using the Workflow Management Statements
	Process Start Statement
	Process Suspend Statement
	Process Resume Statement
	Process Terminate Statement
	Process Event Statement

	Appendix F
	XML Rules Language Statements and Functions
	XML Overview
	XML Data Types
	Using Stem.Tail XML Identifiers

	XML Statements
	Identifier Statement
	OPTIONS Statement
	XML_ELEMENT Statement
	FOR EACH x IN XML_ELEMENT_OF 0 Statement
	XML_OP Statement

	XML/Document Object Management Functions
	DOMDOCCREATE Function
	DOMDOCLOADFILE Function
	DOMDOCLOADXML Function
	DOMDOCSAVEFILE Function
	DOMDOCGETROOT Function
	DOMDOCADDPI Function
	DOMNODEGETNAME Function
	DOMNODEGETTYPE Function
	DOMNODEGETVALUE Function
	DOMNODEGETCHILDCT Function
	DOMNODEGETFIRSTCHILD Function
	DOMNODEGETSIBLING Function
	DOMNODECREATECHILDELEMENT Function
	DOMNODESETATTRIBUTE Function
	DOMNODEGETCHILDELEMENTCT Function
	DOMNODEGETFIRSTCHILDELEMENT Function
	DOMNODEGETSIBLINGELEMENT Function
	DOMNODEGETATTRIBUTECT Function
	DOMNODEGETATTRIBUTEI Function
	DOMNODEGETATTRIBUTEBYNAME Function
	DOMNODEGETBYNAME Function

	Using the XML Statements and Functions
	Reading from XML Documents and Files
	Creating XML Documents and Files
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	Index

