Oracle® Fusion Middleware
Administering Oracle GoldenGate

12¢ (12.3.0.1)
F12841-02
January 2019

ORACLE"

Oracle Fusion Middleware Administering Oracle GoldenGate, 12¢ (12.3.0.1)
F12841-02
Copyright © 2013, 2019, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface

Audience XVii

Documentation Accessibility XVil

Related Information XVil

Conventions Xviii
1 Oracle GoldenGate Administration Overview

2 Oracle GoldenGate Globalization Support

Preserving the Character Set 2-1
Character Set of Database Structural Metadata 2-1
Character Set of Character-type Data 2-1
Character Set of Database Connection 2-1
Character Set of Text Input and Output 2-2

Using Unicode and Native Characters 2-2

Part | Administering Oracle GoldenGate Classic Architecture

3 Configuring Manager and Network Communications

Overview of the Manager Process 3-1
Assigning Manager a Port for Local Communication 3-1
Maintaining Ports for Remote Connections through Firewalls 3-2
Choosing an Internet Protocol 3-3
Using the Recommended Manager Parameters 3-3
Creating the Manager Parameter File 3-3
Starting Manager 3-4

Starting Manager from the Command Shell of the Operating System 3-5

Starting Manager from GGSCI 3-5
Stopping Manager 3-5

ORACLE" iii

Stopping Manager on UNIX and Linux 3-5
Stopping Manager on Windows 3-6
4 Getting Started with the Oracle GoldenGate Process Interfaces

Using the GGSCI Command-line Interface 4-1
Using Wildcards in Command Arguments 4-1
Globalization Support for the Command Interface 4-1
Using Command History 4-2
Storing and Calling Frequently Used Command Sequences 4-2
Controlling Oracle GoldenGate Processes 4-3
Controlling Manager 4-3
Controlling Extract and Replicat 4-4
Deleting Extract and Replicat 4-4
Automating Commands 4-5
Issuing Commands Through the IBM i CLI 4-6
Using Oracle GoldenGate Parameter Files 4-7
Globalization Support for Parameter Files 4-7
Working with the GLOBALS File 4-7
Working with Runtime Parameters 4-8
Creating a Parameter File 4-10
Creating a Parameter File in GGSCI 4-10
Creating a Parameter File with a Text Editor 4-12
Validating a Parameter File 4-12
Viewing a Parameter File 4-15
Changing a Parameter File 4-16
Simplifying the Creation of Parameter Files 4-16
Using Wildcards 4-17

Using OBEY 4-17

Using Macros 4-17

Using Parameter Substitution 4-17

Getting Information about Oracle GoldenGate Parameters 4-18
Specifying Object Names in Oracle GoldenGate Input 4-19
Specifying Filesystem Path Names in Parameter Files on Windows Systems 4-19
Supported Database Object Names 4-19
Supported Special Characters 4-20
Non-supported Special Characters 4-20
Specifying Names that Contain Slashes 4-21
Qualifying Database Object Names 4-21
Two-part Names 4-21
Three-part Names 4-22

ORACLE

Applying Data from Multiple Containers or Catalogs 4-22
Specifying a Default Container or Catalog 4-22
Specifying Case-Sensitive Database Object Names 4-23
Using Wildcards in Database Object Names 4-24
Rules for Using Wildcards for Source Objects 4-25

Rules for Using Wildcards for Target Objects 4-26
Fallback Name Mapping 4-26
Wildcard Mapping from Pre-11.2.1 Trail Version 4-26
Asterisks or Question Marks as Literals in Object Names 4-27

How Wildcards are Resolved 4-27
Excluding Objects from a Wildcard Specification 4-27
Differentiating Case-Sensitive Column Names from Literals 4-27

5 Using Oracle GoldenGate for Live Reporting
Overview of the Reporting Configuration 5-1
Filtering and Conversion 5-1
Read-only vs. High Availability 5-2
Additional Information 5-2
Creating a Standard Reporting Configuration 5-2
Source System 5-3
Target System 5-4
Creating a Reporting Configuration with a Data Pump on the Source System 5-5
Source System 5-5
Target System 5-7
Creating a Reporting Configuration with a Data Pump on an Intermediary System 5-8
Source System 5-10
Intermediary System 5-11
Target System 5-12
Creating a Cascading Reporting Configuration 5-13
Source System 5-16
Second System in the Cascade 5-18
Third System in the Cascade 5-20
6 Using Oracle GoldenGate for Real-time Data Distribution

Overview of the Data-distribution Configuration 6-1
Considerations for a Data-distribution Configuration 6-1
Fault Tolerance 6-2
Filtering and Conversion 6-2
Read-only vs. High Availability 6-2

ORACLE

Additional Information 6-2
Creating a Data Distribution Configuration 6-2
Source System 6-3
Target Systems 6-5
7 Configuring Oracle GoldenGate for Real-time Data Warehousing
Overview of the Data Warehousing Configuration 7-1
Considerations for a Data Warehousing Configuration 7-1
Isolation of Data Records 7-2
Data Storage 7-2
Filtering and Conversion 7-2
Additional Information 7-2
Creating a Data Warehousing Configuration 7-2
Source Systems 7-3
Target System 7-6
8 Configuring Oracle GoldenGate to Maintain a Live Standby
Database
Overview of a Live Standby Configuration 8-1
Considerations for a Live Standby Configuration 8-2
Trusted Source 8-3
Duplicate Standby 8-3
DML on the Standby System 8-3
Oracle GoldenGate Processes 8-3
Backup Files 8-3
Failover Preparedness 8-3
Sequential Values that are Generated by the Database 8-4
Additional Information 8-4
Creating a Live Standby Configuration 8-4
Prerequisites on Both Systems 8-5
Configuration from Active Source to Standby 8-5
Configuration from Standby to Active Source 8-7
Moving User Activity in a Planned Switchover 8-10
Moving User Activity to the Live Standby 8-10
Moving User Activity Back to the Primary System 8-11
Moving User Activity in an Unplanned Failover 8-13
Moving User Activity to the Live Standby 8-13
Moving User Activity Back to the Primary System 8-13

ORACLE

Vi

O Configuring Oracle GoldenGate for Active-Active High Availability

Overview of an Active-Active Configuration 9-1
Considerations for an Active-Active Configuration 9-2
TRUNCATES 9-2
Application Design 9-2
Keys 9-3
Triggers and Cascaded Deletes 9-3
Database-Generated Values 9-4
Database Configuration 9-4
Preventing Data Looping 9-4
Preventing the Capture of Replicat Operations 9-4
Preventing the Capture of Replicat Transactions (Oracle) 9-5
Preventing Capture of Replicat Transactions (Other Databases) 9-5
Identifying Replicat Transactions 9-5
DB2 z/OS, DB2 LUW, and DB2 for i 9-5
MySQL 9-6
Oracle 9-6
SQL Server 9-6
Replicating DDL in a Bi-directional Configuration 9-7
Managing Conflicts 9-7
Additional Information 9-8
Creating an Active-Active Configuration 9-8
Prerequisites on Both Systems 9-9
Configuration from Primary System to Secondary System 9-9
Configuration from Secondary System to Primary System 9-12
10 Configuring Conflict Detection and Resolution
Overview of the Oracle GoldenGate CDR Feature 10-1
Configuring Oracle GoldenGate CDR 10-2
Making the Required Column Values Available to Extract 10-2
Configuring the Oracle GoldenGate Parameter Files for Conflict Resolution 10-2
Configuring the Oracle GoldenGate Parameter Files for Error Handling 10-3
Tools for Mapping Extra Data to the Exceptions Table 10-4
Sample Exceptions Mapping with Source and Target Columns Only 10-5
Sample Exceptions Mapping with Additional Columns in the Exceptions
Table 10-6
Viewing CDR Statistics 10-8
Report File 10-8
GGSCI 10-8
Column-conversion Functions 10-8

ORACLE

Vii

CDR Example 1: All Conflict Types with USEMAX, OVERWRITE, DISCARD 10-9
Table Used in this Example 10-9
MAP Statement with Conflict Resolution Specifications 10-9
Description of MAP Statement 10-10
Error Handling 10-10
INSERTROWEXISTS with the USEMAX Resolution 10-10
UPDATEROWEXISTS with the USEMAX Resolution 10-11
UPDATEROWMISSING with OVERWRITE Resolution 10-12
DELETEROWMISSING with DISCARD Resolution 10-13
DELETEROWEXISTS with OVERWRITE Resolution 10-14

CDR Example 2: UPDATEROWEXISTS with USEDELTA and USEMAX 10-15
Table Used in this Example 10-15
MAP Statement 10-16
Description of MAP Statement 10-16
Error Handling 10-16

CDR Example 3: UPDATEROWEXISTS with USEDELTA, USEMAX, and IGNORE 10-18
Table Used in this Example 10-18
MAP Statement 10-18
Description of MAP Statement 10-18
Error Handling 10-19

11 Mapping and Manipulating Data

Limitations of Support 11-1

Parameters that Control Mapping and Data Integration 11-1

Mapping between Dissimilar Databases 11-2

Deciding Where Data Mapping and Conversion Will Take Place 11-2
Mapping and Conversion on Windows and UNIX Systems 11-2
Mapping and Conversion on NonStop Systems 11-2

Globalization Considerations when Mapping Data 11-2
Conversion between Character Sets 11-3

Database Object Names 11-3
Column Data 11-3
Preservation of Locale 11-4
Support for Escape Sequences 11-4

Mapping Columns 11-6
Supporting Case and Special Characters in Column Names 11-6
Configuring Table-level Column Mapping with COLMAP 11-6

Specifying the Columns to be Mapped in the COLMAP Clause 11-6
Using USEDEFAULTS to Enable Default Column Mapping 11-8
Determining Whether COLMAP Requires a Data-definitions File 11-9

ORACLE

viii

Configuring Global Column Mapping with COLMATCH 11-10
Understanding Default Column Mapping 11-13
Mapping Data Types from Column to Column 11-13
Numeric Columns 11-13
Character-type Columns 11-14
Datetime Columns 11-14
Selecting and Filtering Rows 11-14
Selecting Rows with a FILTER Clause 11-14
Selecting Rows with a WHERE Clause 11-17
Considerations for Selecting Rows with FILTER and WHERE 11-18
Ensuring Data Availability for Filters 11-18
Comparing Column Values 11-19

Testing for NULL Values 11-19
Retrieving Before and After Values 11-19
Selecting Columns 11-20
Selecting and Converting SQL Operations 11-20
Using Transaction History 11-21
Testing and Transforming Data 11-22
Handling Column Names and Literals in Functions 11-24
Using the Appropriate Function 11-24
Transforming Dates 11-24
Performing Arithmetic Operations 11-24
Omitting @COMPUTE 11-25
Manipulating Numbers and Character Strings 11-25
Handling Null, Invalid, and Missing Data 11-26
Using @COLSTAT 11-26

Using @COLTEST 11-27

Using @IF 11-27
Performing Tests 11-27
Using @CASE 11-27

Using @VALONEOF 11-28

Using @EVAL 11-28

Using Tokens 11-28
Defining Tokens 11-28
Using Token Data in Target Tables 11-29

12 Associating Replicated Data with Metadata

Overview 12-1
Understanding Data Definition Files 12-1
Contents of the Definitions File 12-2

ORACLE

Which Definitions File Type to Use, and Where 12-2
Understanding the Effect of Character Sets on Definitions Files 12-3
Confining Data Mapping and Conversion to the Replicat Process 12-3
Avoiding File Corruptions Due to Operating System Character Sets 12-3
Changing the Character Set of Existing Definitions Files 12-3
Downloading from a z/OS system to another platform 12-4
Using a Definitions Template 12-4
Configuring Oracle GoldenGate to Capture Data-definitions 12-4
Configure DEFGEN 12-4
Run DEFGEN 12-6
Transfer the Definitions File to the Remote System 12-7
Specify the Definitions File 12-7
Adding Tables that Satisfy a Definitions Template 12-7
Examples of Using a Definitions File 12-7
Creating a Source-definitions file for Use on a Target System 12-8
Creating Target-definitions Files for Use on a Source System 12-8
Creating Multiple Source Definition Files for Use on a Target System 12-9
Using Automatic Trail File Recovery 12-10
Configuring Oracle GoldenGate to Use Self-Describing Trail Files 12-10
Support Considerations 12-12
Using Self-Describing Trail Files 12-12
Examples of Parameter Files 12-13
Configuring Oracle GoldenGate to Assume ldentical Metadata 12-14
Rules for Tables to be Considered Identical 12-14
Configuring Oracle GoldenGate to Assume Dissimilar Metadata 12-15
Configuring Oracle GoldenGate to Use a Combination of Similar and Dissimilar
Definitions 12-15
13 Configuring Online Change Synchronization
Overview of Online Change Synchronization 13-1
Initial Synchronization 13-2
Choosing Names for Processes and Files 13-2
Naming Conventions for Processes 13-2
Choosing File Names 13-3
Creating a Checkpoint Table 13-4
Options for Creating the Checkpoint Table 13-4
Adjusting for Coordinated Replicat in Oracle RAC 13-5
Creating an Online Extract Group 13-6
Creating a Trail 13-8
Assigning Storage for Oracle GoldenGate Trails 13-9
Estimating Space for the Trails 13-9

ORACLE

Adding a Trail 13-10
Creating a Parameter File for Online Extraction 13-10
Creating an Online Replicat Group 13-12

About Classic Replicat Mode 13-13

About Coordinated Replicat Mode 13-14

About Barrier Transactions 13-15
How Barrier Transactions are Processed 13-16
About the Global Watermark 13-16

About Integrated Replicat Mode 13-17

Understanding Replicat Processing in Relation to Parameter Changes 13-17

Creating the Replicat Group 13-17
Creating a Parameter File for Online Replication 13-19

14 Handling Processing Errors

Overview of Oracle GoldenGate Error Handling 14-1
Handling Extract Errors 14-1
Handling Replicat Errors during DML Operations 14-2
Handling Errors as Exceptions 14-2
Using EXCEPTIONSONLY 14-3

Using MAPEXCEPTION 14-4

About the Exceptions Table 14-5
Handling Replicat errors during DDL Operations 14-5
Handling TCP/IP Errors 14-5
Maintaining Updated Error Messages 14-6
Resolving Oracle GoldenGate Errors 14-6

15 Instantiating Oracle GoldenGate with an Initial Load

Overview of the Initial-Load Procedure 15-1
Improving the Performance of an Initial Load 15-1
Prerequisites for Initial Load 15-1
Disable DDL Processing 15-2
Prepare the Target Tables 15-2
Configure the Manager Process 15-2

Create a Data-definitions File 15-3

Create Change-synchronization Groups 15-3
Sharing Parameters between Process Groups 15-3

Initial Load in Classic Architecture 15-3
Loading Data with a Database Utility 15-4
Loading Data with Oracle Data Pump 15-6

ORACLE

Xi

Using Automatic Per Table Instantiation 15-6

Using Oracle Data Pump Table Instantiation 15-7
Loading Data from File to Replicat 15-7
Loading Data with an Oracle GoldenGate Direct Load 15-13
Loading Data with a Direct Bulk Load to SQL*Loader 15-18
Loading Data with Teradata Load Utilities 15-23

16 Customizing Oracle GoldenGate Processing

Executing Commands, Stored Procedures, and Queries with SQLEXEC 16-1
Performing Processing with SQLEXEC 16-2
Using SQLEXEC 16-2
Executing SQLEXEC within a TABLE or MAP Statement 16-2
Executing SQLEXEC as a Standalone Statement 16-3
Using Input and Output Parameters 16-4
Passing Values to Input Parameters 16-4
Passing Values to Output Parameters 16-5
SQLEXEC Examples Using Parameters 16-5
Handling SQLEXEC Errors 16-6
Handling Missing Column Values 16-7
Handling Database Errors 16-7
Additional SQLEXEC Guidelines 16-7
Using Oracle GoldenGate Macros to Simplify and Automate Work 16-8
Defining a Macro 16-9
Calling a Macro 16-10
Calling a Macro that Contains Parameters 16-12

Calling a Macro without Input Parameters 16-13

Calling Other Macros from a Macro 16-14
Creating Macro Libraries 16-14
Tracing Macro Expansion 16-16
Using User Exits to Extend Oracle GoldenGate Capabilities 16-16
When to Implement User Exits 16-17
Making Oracle GoldenGate Record Information Available to the Routine 16-17
Creating User Exits 16-17
Supporting Character-set Conversion in User Exits 16-19
Using Macros to Check Name Metadata 16-19
Describing the Character Format 16-20
Upgrading User EXxits 16-22
Viewing Examples of How to Use the User Exit Functions 16-22
Using the Oracle GoldenGate Event Marker System to Raise Database Events 16-23
Case Studies in the Usage of the Event Marker System 16-24

ORACLE

Xii

Trigger End-of-day Processing 16-24
Simplify Transition from Initial Load to Change Synchronization 16-24

Stop Processing When Data Anomalies are Encountered 16-25

Trace a Specific Order Number 16-25
Execute a Batch Process 16-25
Propagate Only a SQL Statement without the Resultant Operations 16-26
Committing Other Transactions Before Starting a Long-running Transaction 16-26
Execute a Shell Script to Validate Data 16-26

17 Monitoring Oracle GoldenGate Processing
Using the Information Commands in GGSCI 17-1
Monitoring an Extract Recovery 17-2
Monitoring Lag 17-3
About Lag 17-3
Controlling How Lag is Reported 17-3
Using Automatic Heartbeat Tables to Monitor 17-4
Understanding Heartbeat Table End-To-End Replication Flow 17-5
Updating Heartbeat Tables 17-12
Purging the Heartbeat History Tables 17-12
Best Practice 17-12
Using the Automatic Heartbeat Commands 17-13
Monitoring Processing Volume 17-13
Using the Error Log 17-13
Using the Process Report 17-14
Scheduling Runtime Statistics in the Process Report 17-15
Viewing Record Counts in the Process Report 17-15
Preventing SQL Errors from Filling the Replicat Report File 17-15
Using the Discard File 17-15
Maintaining the Discard and Report Files 17-16
Reconciling Time Differences 17-17
Getting Help with Performance Tuning 17-17
18 Tuning the Performance of Oracle GoldenGate

Using Multiple Process Groups 18-1
Considerations for Using Multiple Process Groups 18-2
Maintaining Data Integrity 18-3
Number of Groups 18-3
Memory 18-3
Isolating Processing-Intensive Tables 18-4

ORACLE

Xiii

Using Parallel Replicat Groups on a Target System 18-4

To Create the Extract Group 18-4

To Create the Replicat Groups 18-5

Using Multiple Extract Groups with Multiple Replicat Groups 18-5

To Create the Extract Groups 18-6

To Create the Replicat Groups 18-6
Splitting Large Tables Into Row Ranges Across Process Groups 18-6
Configuring Oracle GoldenGate to Use the Network Efficiently 18-7
Detecting a Network Bottleneck that is Affecting Oracle GoldenGate 18-8
Working Around Bandwidth Limitations by Using Data Pumps 18-9
Reducing the Bandwidth Requirements of Oracle GoldenGate 18-9
Increasing the TCP/IP Packet Size 18-9
Eliminating Disk I/O Bottlenecks 18-10
Improving I/0O performance Within the System Configuration 18-10
Improving I/0O Performance Within the Oracle GoldenGate Configuration 18-11
Managing Virtual Memory and Paging 18-11
Optimizing Data Filtering and Conversion 18-12
Tuning Replicat Transactions 18-13
Tuning Coordination Performance Against Barrier Transactions 18-13
Applying Similar SQL Statements in Arrays 18-13
Preventing Full Table Scans in the Absence of Keys 18-14
Splitting Large Transactions 18-14
Adjusting Open Cursors 18-14
Improving Update Speed 18-15

Set a Replicat Transaction Timeout 18-15

19 Performing Administrative Operations

Performing Application Patches 19-1
Initializing the Transaction Logs 19-2
Shutting Down the System 19-4
Changing Database Attributes 19-4
Changing Database Metadata 19-4
Adding Tables to the Oracle GoldenGate Configuration 19-6
Coordinating Table Attributes between Source and Target 19-7
Performing an ALTER TABLE to Add a Column on DB2 z/OS Tables 19-9
Dropping and Recreating a Source Table 19-9
Changing the Number of Oracle RAC Threads when Using Classic Capture 19-10
Changing the ORACLE_SID 19-11
Purging Archive Logs 19-11
Reorganizing a DB2 Table (z/OS Platform) 19-12

ORACLE Xiv

Adding Process Groups to an Active Configuration 19-12

Before You Start 19-12
Adding Another Extract Group to an Active Configuration 19-12
Adding Another Data Pump to an Active Configuration 19-15
Adding Another Replicat Group to an Active Configuration 19-17
Changing the Size of Trail Files 19-19
Switching Extract from Classic Mode to Integrated Mode 19-19
Switching Extract from Integrated Mode to Classic Mode 19-20
Switching Replicat from Nonintegrated Mode to Integrated Mode 19-22
Switching Replicat from Integrated Mode to Nonintegrated Mode 19-23
Switching Replicat to Coordinated Mode 19-24
Procedure Overview 19-24
Performing the Switch to Coordinated Replicat 19-25
Administering a Coordinated Replicat Configuration 19-27
Performing a Planned Re-partitioning of the Workload 19-27
Recovering Replicat After an Unplanned Re-partitioning 19-28
Reprocessing From the Low Watermark with HANDLECOLLISIONS 19-28

Using the Auto-Saved Parameter File 19-29
Synchronizing Threads After an Unclean Stop 19-30
Restarting a Primary Extract after System Failure or Corruption 19-30
Details of This Procedure 19-31
Performing the Recovery 19-31

Part Il Administering Oracle GoldenGate Microservices Architecture

20 Loading Data from File to Replicat in Microservices Architecture

A Supported Character Sets

Supported Character Sets - Oracle A-1
Supported Character Sets - Non-Oracle A-8

B Supported Locales

C About the Oracle GoldenGate Trall

Trail Recovery Mode C-1
Trail File Header Record C-1

ORACLE" XV

Trail Record Format C-2

Example of an Oracle GoldenGate Record C-2
Record Header Area C-3
Description of Header Fields C-3
Using Header Data C-5
Record Data Area C-5
Full Record Image Format (NonStop Sources) C-6
Compressed Record Image Format (Windows, UNIX, Linux Sources) C-6
Tokens Area C-7
Oracle GoldenGate Operation Types C-7
Oracle GoldenGate Trail Header Record C-10

D Using the Commit Sequence Number

E About Checkpoints

Extract Checkpoints E-1
About Extract read checkpoints E-3
Startup Checkpoint E-3
Recovery Checkpoint E-3
Current Checkpoint E-3

About Extract Write Checkpoints E-4
Replicat Checkpoints E-4
About Replicat Checkpoints E-5
Startup Checkpoint E-5
Current Checkpoint E-5

Internal Checkpoint Information E-5
Oracle GoldenGate Checkpoint Tables E-6

ORACLE XVi

Preface

Audience

This guide contains instructions for:

» Working with the interface components that control Oracle GoldenGate.
e Monitoring and troubleshooting Oracle GoldenGate performance.

e Perform other administrative operations.

e Audience

e Documentation Accessibility

* Related Information

e Conventions

This guide is intended for the person or persons who are responsible for operating
Oracle GoldenGate and maintaining its performance. This audience typically includes,
but is not limited to, systems administrators and database administrators.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at htt p: / / www. or acl e. com pl s/t opi ¢/ | ookup?
ct x=acc& d=docacc.

Accessible Access to Oracle Support

Oracle customers who have purchased support have access to electronic support
through My Oracle Support. For information, visit ht t p: / / www. or acl e. cont pl s/ t opi c/
| ookup?ct x=accé& d=i nf o or visit ht t p: / / www. or acl e. cont pl s/ t opi ¢/ | ookup?

ct x=accé&i d=trs if you are hearing impaired.

Related Information

ORACLE

The Oracle GoldenGate Product Documentation Libraries are found at
https://docs.oracle.com/en/middleware/goldengate/index.html

Additional Oracle GoldenGate information, including best practices, articles, and
solutions, is found at:

Oracle GoldenGate A-Team Chronicles

XVii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
https://docs.oracle.com/en/middleware/goldengate/index.html
http://www.ateam-oracle.com/category/data-integration/di-ogg/

Conventions

The following text conventions are used in this document:

ORACLE

Preface

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, such as "From the File menu, select Save." Boldface
also is used for terms defined in text or in the glossary.

italic Italic type indicates placeholder variables for which you supply

italic particular values, such as in the parameter statement: TABLE
t abl e_nane. Italic type also is used for book titles and emphasis.

nonospace Monospace type indicates code components such as user exits and

NONOSPACE scripts; the names of files and database objects; URL paths; and input
and output text that appears on the screen. Uppercase monospace
type is generally used to represent the names of Oracle GoldenGate
parameters, commands, and user-configurable functions, as well as
SQL commands and keywords.

UPPERCASE Uppercase in the regular text font indicates the name of a utility unless
the name is intended to be a specific case.

{} Braces within syntax enclose a set of options that are separated by

(]

pipe symbols, one of which must be selected, for example: { optionl |
option2| option3}.

Brackets within syntax indicate an optional element. For example in this
syntax, the SAVE clause is optional: CLEANUP REPLI CAT gr oup_nane
[, SAVE count]. Multiple options within an optional element are
separated by a pipe symbol, for example: [optionl | option2].

XViii

Oracle GoldenGate Administration
Overview

ORACLE

Administrative decisions for Oracle GoldenGate processes depend on the type of
architecture you are using.

As an administrator for Oracle GoldenGate, you need to ensure that the configuration
and processes are relevant to the type of architecture that's implemented in your
production environment. This book is divided into two parts to describe the
configurations, processes, and tasks that are specific to the Classic Architecture and
the Microservices Architecture.

See Getting Started with the Oracle GoldenGate Architectures for conceptual details
about the Oracle GoldenGate architectures.

This book is divided into two parts to describe processes that are specific to each
architecture:

e Part 1: Administering Oracle GoldenGate Classic Architecture

« Part 2: Administering Oracle GoldenGate Microservices Architecture

Note:

Oracle GoldenGate 18c (18.1.0) is not released for SQL Server and DB2 for
i. However, the documentation may include information associated with
these databases.

1-1

Oracle GoldenGate Globalization Support

This chapter describes Oracle GoldenGate globalization support, which enables the
processing of data in its native language encoding.
Topics:

e Preserving the Character Set

e Using Unicode and Native Characters

Preserving the Character Set

In order to process the data in its native language encoding, Oracle GoldenGate takes
into consideration the character set of the database and the operating system locale, if
applicable.

e Character Set of Database Structural Metadata
* Character Set of Character-type Data
e Character Set of Database Connection

e Character Set of Text Input and Output

Character Set of Database Structural Metadata

Oracle GoldenGate processes catalog, schema, table and column names in their
native language as determined by the character set encoding of the source and target
databases. This processing is extended to the parameter files and command
interpreter, where they are processed according to the operating system locale. These
objects appear in their localized format throughout the client interface, on the console,
and in files.

Character Set of Character-type Data

The Oracle GoldenGate apply process (Replicat) supports the conversion of data from
one character set to another when the data is contained in character column types.
Character-set conversion support is limited to column-to-column mapping as
performed with the COLMAP or USEDEFAULTS clauses of a TABLE or MAP statement. It is
not supported by the column-conversion functions, by SQLEXEC, or by the TOKENS
feature.

See Mapping and Manipulating Data for more information about character sets,
conversion between them, and data mapping.

Character Set of Database Connection

The Extract and Replicat processes use a session character set when connecting to
the database. For Oracle Databases, the session character set is set to the same as
the database character set by both Extract and Replicat. For MySQL, the session

ORACLE 2-1

Chapter 2
Using Unicode and Native Characters

character set is taken from the SESSI ONCHARSET option of SOURCEDB and TARGETDB, or
from the SESSI ONCHARSET parameter set globally in the GLOBALS file. For other
database types, it is obtained programmatically. In addition, Oracle GoldenGate
processes use a session character set for communication and data transfer between
Oracle GoldenGate and the database, such as for SQL queries, fetches, and applying
data.

Character Set of Text Input and Output

Oracle GoldenGate supports text input and output in the default character set of the
host operating system for the following:

* Console
e Command-line input and output

e FORMATASCI |, FORVATSQL, FORVATXM. parameters, text files such as parameter files,
data-definitions files, error log, process reports, discard files, and other human-
readable files that are used by Oracle GoldenGate users to configure, run, and
monitor the Oracle GoldenGate environment.

In the event that the platform does not support a required character set as the default
in the operating system, you can use the following parameters to specify a character
set:

e CHARSET parameter to specify a character set to be used by processes to read their
parameter files.

e CHARSET option of the DEFSFI LE parameter to generate a data-definitions file in a
specific character set.

The GGSCI command console always operates in the character set of the local
operating system for both keyboard and OBEY file input and console output.

Using Unicode and Native Characters

ORACLE

Oracle GoldenGate supports the use of an escape sequence to represent characters
in Unicode or in the native character encoding of the Windows, UNIX, and Linux
operating systems. You can use an escape sequence if the operating system does not
support the required character, or for any other purpose when needed. For more
information about this support, see Support for Escape Sequences.

2-2

Administering Oracle GoldenGate Classic
Architecture

Oracle GoldenGate Classic Architecture provides the processes and files required to
effectively move data across a variety of topologies. These processes and files form
the main components of the classic architecture and was the product design until this
release.

* Configuring Manager and Network Communications

» Getting Started with the Oracle GoldenGate Process Interfaces

* Using Oracle GoldenGate for Live Reporting

* Using Oracle GoldenGate for Real-time Data Distribution

* Configuring Oracle GoldenGate for Real-time Data Warehousing
* Configuring Oracle GoldenGate to Maintain a Live Standby Database
* Configuring Oracle GoldenGate for Active-Active High Availability
* Configuring Conflict Detection and Resolution

* Mapping and Manipulating Data

* Associating Replicated Data with Metadata

e Configuring Online Change Synchronization

e Handling Processing Errors

* Instantiating Oracle GoldenGate with an Initial Load

e Customizing Oracle GoldenGate Processing

e Monitoring Oracle GoldenGate Processing

e Tuning the Performance of Oracle GoldenGate

» Performing Administrative Operations

ORACLE

Configuring Manager and Network
Communications

This chapter describes how to configure the Manager process and specify ports for
local and remote network communications.
Topics:

e Overview of the Manager Process

e Assigning Manager a Port for Local Communication

e Maintaining Ports for Remote Connections through Firewalls
e Choosing an Internet Protocol

e Using the Recommended Manager Parameters

e Creating the Manager Parameter File

e Starting Manager

e Stopping Manager

Overview of the Manager Process

To configure and run Oracle GoldenGate, a Manager process must be running on all
Oracle GoldenGate source and target systems, and any intermediary systems if used
in your configuration. Manager is the controller process that instantiates the Oracle
GoldenGate processes, allocates port numbers, and performs file maintenance.
Together, the Manager process and its child processes, and their related programs
and files comprise an Oracle GoldenGate instance. The Manager process performs
the following functions:

e Start Oracle GoldenGate processes
e Start dynamic processes
e Start the Collector process

* Manage the port numbers for processes. (All Oracle GoldenGate ports are
configurable.)

* Perform trail management
» Create event, error, and threshold reports

There is one Manager per Oracle GoldenGate installation. One Manager can support
multiple Oracle GoldenGate extraction and replication processes.

Assigning Manager a Port for Local Communication

ORACLE

The Manager process in each Oracle GoldenGate installation requires a dedicated
port for communication between itself and other local Oracle GoldenGate processes.

3-1

Chapter 3
Maintaining Ports for Remote Connections through Firewalls

To specify this port, use the PORT parameter in the Manager parameter file. Follow
these guidelines:

e The default port number for Manager is 7809. You must specify either the default
port number (recommended, if available) or a different one of your choice.

* The port must be unreserved and unrestricted.
» Each Manager instance on a system must use a different port number.

See PORT in Reference for Oracle GoldenGatefor more information.

Maintaining Ports for Remote Connections through Firewalls

ORACLE

If a firewall is being used at an Oracle GoldenGate target location, additional ports are
required on the target system to receive dynamic TCP/IP communications from remote
Oracle GoldenGate processes. These ports are:

* One port for each Collector process that is started by the local Manager to receive
propagated transaction data from remote online Extract processes. When an
Extract process sends data to a target, the Manager on the target starts a
dedicated Collector process.

* One port for each Replicat process that is started by the local Manager as part of a
remote task. A remote task is used for initial loads and is specified with the
RMITASK parameter. This port is used to receive incoming requests from the
remote Extract process. See RMITASK in Reference for Oracle GoldenGatefor more
information.

* Some extra ports in case they are needed for expansion of the local Oracle
GoldenGate configuration.

» Ports for the other Oracle GoldenGate products if they interact with the local
Oracle GoldenGate instance, as stated in the documentation of those products.

To specify these ports, use the DYNAM CPCRTLI ST parameter in the Manager parameter
file. Follow these guidelines:

* You can specify up to 5000 ports in any combination of the following formats:

7830, 7833, 7835
7830- 7835
7830- 7835, 7839

* The ports must be unreserved and unrestricted.
» Each Manager instance on a system must use a different port list.

Although not a required parameter, DYNAM CPORTLI ST is strongly recommended for
best performance. The Collector process is responsible for finding and binding to an
available port, and having a known list of qualified ports speeds this process. In the
absence of DYNAM CPORTLI ST (or if not enough ports are specified with it), Collector
tries to use port 7840 for remote requests. If 7840 is not available, Collector
increments by one until it finds an available port. This can delay the acceptance of the
remote request. If Collector runs out of ports in the DYNAM CPORTLI ST list, the following
occurs:

* Manager reports an error in its process report and in the Oracle GoldenGate
ggserr log.

3-2

Chapter 3
Choosing an Internet Protocol

» Collector retries based on the rules in the Oracle GoldenGate t cperrs file. For
more information about the t cperrs file, see Handling TCP/IP Errors.

See DYNAM CPORTLI ST in Reference for Oracle GoldenGate for more information.

Choosing an Internet Protocol

By default, Oracle GoldenGate selects a socket in the following order of priority to
ensure the best chance of connection success:

e |Pv6 dual-stack
* |IPv4 if IPv6 dual-stack is not available
« |Pv6

If your network has IPv6 network devices that do not support dual-stack mode, you
can use the USEl PV6 parameter to force Oracle GoldenGate to use IPv6 for all
connections. This is a GLOBALS parameter that applies to all processes of an Oracle
GoldenGate instance. When USEI PV6 is used, the entire network must be IPv6
compatible to avoid connection failures. See USEl PV6 in Reference for Oracle
GoldenGatefor more information.

Using the Recommended Manager Parameters

The following parameters are optional, but recommended, for the Manager process.

e AUTOSTART: Starts Extract and Replicat processes when Manager starts. This
parameter is required in a cluster configuration, and is useful when Oracle
GoldenGate activities must begin immediately at system startup. (Requires
Manager to be part of the startup routine.) You can use multiple AUTOSTART
statements in the same parameter file. See AUTCSTARTIn Reference for Oracle
GoldenGatefor more information.

e AUTORESTART: Starts Extract and Replicat processes again after abnormal
termination. This parameter is required in a cluster configuration, but is also useful
in any configuration to ensure continued processing. See AUTORESTARTIn
Reference for Oracle GoldenGatefor more information.

e PURGEOLDEXTRACTS: Purges trail files when Oracle GoldenGate is finished
processing them. Without PURGEOLDEXTRACTS, no purging is performed and trail
files can consume significant disk space. For best results, use PURGEOLDEXTRACTS
as a Manager parameter, not as an Extract or Replicat parameter. See
PURGEOLDEXTRACTSin Reference for Oracle GoldenGatefor more information.

e STARTUPVALI DATI ONDELAY | STARTUPVALI DATI ONDELAYCSECS: Sets a delay time
after which Manager validates the run status of a process. Startup validation
makes Oracle GoldenGate users aware of processes that fail before they can
generate an error message or process report. See
STARTUPVALI DATI ONDELAYCSECSIn Reference for Oracle GoldenGatefor more
information.

Creating the Manager Parameter File

To configure Manager with required port information and optional parameters, create a
parameter file by following these steps. See "Getting Started with the Oracle

ORACLE 3-3

Chapter 3
Starting Manager

GoldenGate Process Interfaces" for more information about Oracle GoldenGate
parameter files.

Note:

If Oracle GoldenGate resides in a cluster, configure the Manager process
within the cluster application as directed by the vendor's documentation, so
that Oracle GoldenGate fails over properly with other applications.For more
information about installing Oracle GoldenGate in a cluster, see the Oracle
GoldenGate documentation for your database.

1. From the Oracle GoldenGate directory, run the GGSCI program to open the
Oracle GoldenGate Software Command Interface (GGSCI).

2. In GGSCI, issue the following command to edit the Manager parameter file.
EDI T PARAMS MGR

3. Add the parameters that you want to use for the Manager process, each on one
line.

4. Save, then close the file.
Example 3-1 Sample manager file on a UNIX system

PORT 7809

DYNAM CPORTLI ST 7810- 7820, 7830

AUTCSTART ER t*

AUTORESTART ER t*, RETRIES 4, WAI TM NUTES 4

STARTUPVALI DATI ONDELAY 5

USERI DALI AS ngr1

PURGEQLDEXTRACTS /ogg/ dirdat/tt*, USECHECKPO NTS, M NKEEPHOURS 2

The following is a sample Manager parameter file on a UNIX system using required
and recommended parameters.

Starting Manager

ORACLE

Manager must be running before you start other Oracle GoldenGate processes. You
can start Manager from:

e The command line of the operating system. See "Starting Manager from the
Command Shell of the Operating System" for instructions.

e The GGSCI command interface. See "Starting Manager from GGSCI" for
instructions.

e The Services applet on a Windows system if Manager is installed as a service.
See the Windows documentation or your system administrator.

e The Cluster Administrator tool if the system is part of a Windows cluster. This is
the recommended way to bring the Manager resource online. See the cluster
documentation or your system administrator.

* The cluster software of a UNIX or Linux cluster. Refer to the documentation
provided by the cluster vendor to determine whether to start Manager from the
cluster or by using GGSCI or the command line of the operating system.

3-4

Chapter 3
Stopping Manager

e Starting Manager from the Command Shell of the Operating System
e Starting Manager from GGSCI

Starting Manager from the Command Shell of the Operating System

To start Manager from the command shell of the operating system, issue the following
command.

ngr paranfile parameter_file [reportfile report _file]

The reportfil e argument is optional and can be used to store the Manager process
report in a location other than the default of the di rr pt directory in the Oracle
GoldenGate installation location.

Starting Manager from GGSCI

To start Manager from GGSCI, run GGSCI from the Oracle GoldenGate directory, and
then issue the following command.

START MANAGER

Note:

When starting Manager from the command line or GGSCI with User Account
Control enabled, you will receive a UAC prompt requesting you to allow or
deny the program to run.

Stopping Manager

Manager runs indefinitely or until stopped by a user. In general, Manager should
remain running when there are synchronization activities being performed. Manager
performs important monitoring and maintenance functions, and processes cannot be
started unless Manager is running.

e Stopping Manager on UNIX and Linux

e Stopping Manager on Windows

Stopping Manager on UNIX and Linux

ORACLE

On UNIX and Linux (including USS on z/OS), Manager must be stopped by using the
STOP MANAGER command in GGSCI.

STOP MANAGER [!]
Where:
I stops Manager without user confirmation.

In a UNIX or Linux cluster, refer to the documentation provided by the cluster vendor
to determine whether Manager should be stopped from the cluster or by using GGSCI.

3-5

Chapter 3
Stopping Manager

Stopping Manager on Windows

ORACLE

On Windows, you can stop Manager from the Services applet (if Manager is installed
as a service). See the Windows documentation or your system administrator.

If Manager is not installed as a service, you can stop it with the STOP MANAGER
command in GGSCI.

STOP MANAGER [!]

In a Windows cluster, you must take the Manager resource offline from the Cluster
Administrator. If you attempt to stop Manager from the GGSCI interface, the cluster
monitor interprets it as a resource failure and attempts to bring the resource online
again. Multiple start requests through GGSCI eventually will exceed the start threshold
of the Manager cluster resource, and the cluster monitor will mark the Manager
resource as failed.

3-6

Getting Started with the Oracle
GoldenGate Process Interfaces

This chapter describes how Oracle GoldenGate users provide instructions to the
processes through the GGSCI (Oracle GoldenGate Software Command Interface),
batch and shell scripts, and parameter files.

Topics:

e Using the GGSCI Command-line Interface
e Controlling Oracle GoldenGate Processes
e Automating Commands

e Using Oracle GoldenGate Parameter Files

e Specifying Object Names in Oracle GoldenGate Input

Using the GGSCI Command-line Interface

You can use GGSCI to issue the complete range of commands that configure, control,
and monitor Oracle GoldenGate along with administering secure and non-secured
deployments.

GGSCl is the Oracle GoldenGate command-line interface. To start GGSCI, change
directories to the Oracle GoldenGate installation directory, and then run the ggsci
executable file.

Topics:

e Using Wildcards in Command Arguments

* Globalization Support for the Command Interface
* Using Command History

e Storing and Calling Frequently Used Command Sequences

Using Wildcards in Command Arguments

You can use wildcards with certain Oracle GoldenGate commands to control multiple
Extract and Replicat groups as a unit. The wildcard symbol that is supported by Oracle
GoldenGate is the asterisk (*). An asterisk represents any number of characters. For
example, to start all Extract groups whose names contain the letter X, issue the
following command.

START EXTRACT *X*

Globalization Support for the Command Interface

All command input and related console output are rendered in the default character set
of the local operating system. To specify characters that are not compatible with the

ORACLE 4-1

Chapter 4
Using the GGSCI Command-line Interface

character set of the local operating system, use Unicode notation. For example, the
following Unicode notation is equivalent to the name of a table that has the Euro
symbol as its name:

ADD TRANDATA \ u20ACL

For more information, see Support for Escape Sequences for more information about
using Unicode notation.

" Note:

Oracle GoldenGate group names are case-insensitive.

Using Command History

The execution of multiple commands is made easier with the following tools:
* Use the H STORY command to display a list of previously executed commands.
 Usethe! command to execute a previous command again without editing it.

* Use the FC command to edit a previous command and then execute it again.

Storing and Calling Frequently Used Command Sequences

ORACLE

You can automate a frequently-used series of commands by using an OBEY file and the
OBEY command. The OBEY file takes the character set of the local operating system. To
specify a character that is not compatible with that character set, use Unicode
notation. See Support for Escape Sequences for more information about using
Unicode notation.

To use OBEY

1. Create and save a text file that contains the commands, one command per line.
This is your OBEY file. The name can be anything supported by the operating
system. You can nest other OBEY files within an OBEY file.

2. Run GGSCI.

3. (Optional) If using an OBEY file that contains nested OBEY files, issue the following
command. This command enables the use of nested OBEY files for the current
session of GGSCI and is required whenever using nested OBEY files. See
Reference for Oracle GoldenGate for more information.

ALLOMNESTED
4. In GGSCI, call the OBEY file by using the OBEY command.

OBEY fil e _nane

Where:

file_name is the relative or fully qualified name of the OBEY file.

4-2

Chapter 4
Controlling Oracle GoldenGate Processes

Example 4-1 OBEY command file

ADD EXTRACT nyext, TRANLOG BEG N now
START EXTRACT nyext

ADD REPLI CAT nyrep, EXTTRAIL /ggs/dirdat/aa
START REPLI CAT nyrep

| NFO EXTRACT nyext, DETAIL
| NFO REPLI CAT nyrep, DETAIL

The following example illustrates an OBEY command file for use with the OBEY
command. It creates and starts Extract and Replicat groups and retrieves processing
information.

See Reference for Oracle GoldenGate for more information about the OBEY command.

Controlling Oracle GoldenGate Processes

The standard way to control Oracle GoldenGate processes is through the GGSCI
interface. Typically, the first time that Oracle GoldenGate processes are started in a
production setting is during the initial synchronization process (also called instantiation
process). However, you will need to stop and start the processes at various points as
needed to perform maintenance, upgrades, troubleshooting, or other tasks.

These instructions show basic syntax.
Topics:
e Controlling Manager

e Controlling Extract and Replicat

* Deleting Extract and Replicat

Controlling Manager

ORACLE

Manager should not be stopped unless you want to stop replication processing.

To Stop Manager
1. From the Oracle GoldenGate directory, run GGSCI.
2. In GGSCI, issue the following command.

{START | STOP [!]} MANAGER

Where:

The ! bypasses the prompt that confirms the intent to shut down Manager.

" Note:

When starting Manager from the command line or GGSCI with User Account
Control enabled, you will receive a UAC prompt requesting you to allow or
deny the program to run.

4-3

Chapter 4
Controlling Oracle GoldenGate Processes

Controlling Extract and Replicat

This section contains basic directions for controlling Extract and Replicat processes.
See Reference for Oracle GoldenGate for additional command options.

To Start Extract or Replicat
START {EXTRACT | REPLI CAT} group_nane
Where:

group_nane is the name of the Extract or Replicat group or a wildcard set of groups
(for example, * or fin*).

To Stop Extract or Replicat Gracefully
STOP { EXTRACT | REPLI CAT} group_name
Where:

group_nane is the name of the Extract or Replicat group or a wildcard set of groups
(for example, * or fin*).

To Stop Replicat Forcefully
STOP REPLI CAT group_nane !

The current transaction is aborted and the process stops immediately. You cannot
stop Extract forcefully.

To Kill a Process that STOP Cannot Stop
KI LL { EXTRACT | REPLI CAT} group_nane

Killing a process does not shut it down gracefully, and checkpoint information can be
lost.

To Control Multiple Processes at Once
command ER wi | dcard specification
Where:

e conmmand is: KI LL, START, or STOP

e wildcard specificationisawildcard specification for the names of the process
groups that you want to affect with the command. The command affects every
Extract and Replicat group that satisfies the wildcard. Oracle GoldenGate supports
up to 100,000 wildcard entries.

Deleting Extract and Replicat

ORACLE

This section contains basic directions for deleting Extract and Replicat processes. See
Reference for Oracle GoldenGate for additional command options.

To Delete an Extract Group

1. Run GGSCI.

4-4

Chapter 4
Automating Commands

2. Issue the DBLOG@ Ncommand as the Extract database user (or a user with the
same privileges). You can use either of the following commands, depending on
whether a local credential store exists.

DBLOG N [SOURCEDB dsn] {USERID user, PASSWORD password [encryption_options]
| USERIDALIAS al i as [DOVAIN donai n]}

3. Stop the Extract process.
STOP EXTRACT group_narme
4. Issue the following command.
DELETE EXTRACT group_namne
5. (Oracle) Unregister the Extract group from the database.

UNREG STER EXTRACT group_narne, dat abase_nane

To Delete a Replicat Group

1. Stop the Replicat process.
STOP REPLI CAT group_nane
2. Issue one of the following commands from GGSCI to log into the database.

DBLOG N [SOURCEDB dsn] {USERI D user, PASSWORD password [encryption_options]
| USERI DALIAS al i as [DOVAIN domai n]}

Where:

e SOURCEDB dsn supplies the data source name, if required as part of the
connection information.

e USERI D user, PASSWORD passwor d specifies an explicit database login
credential.

e USERIDALI ASalias [DOMAIN donai n] specifies an alias and optional domain
of a credential that is stored in a local credential store.

e encryption_options is one of the options that encrypt the password.
3. Issue the following command to delete the group.
DELETE REPLI CAT group_nane

Deleting a Replicat group preserves the checkpoints in the checkpoint table (if being
used). Deleting a process group also preserves the parameter file. You can create the
same group again, using the same parameter file, or you can delete the parameter file
to remove the group's configuration permanently.

Automating Commands

ORACLE

Oracle GoldenGate supports the issuing of commands through scripts or jobs. This
section describes these options for UNIX- or Linux-based platforms and the IBMi
platform.

On a UNIX or Linux system, or within a runtime environment that supports UNIX or
Linux applications, you can issue Oracle GoldenGate commands from a script such as
a startup script, shutdown script, or failover script by running GGSCI and calling an
input file. The script file must be encoded in the operating system character set.
Unicode notation can be used for characters that are not supported by the operating

4-5

Chapter 4
Automating Commands

system character set. Before creating a script, see Globalization Support for the
Command Interface.

To Input a Script
Use the following syntax from the command line of the operating system.

ggsci < input_file
Where:

e The angle bracket (<) character pipes the file into the GGSCI program.

e input_fileis atextfile, known as an OBEY file, containing the commands that you
want to issue, in the order they are to be issued.

" Note:

To stop the Manager process from a batch file, make certain to add the !
argument to the end of the STOP MANAGER command. Otherwise, GGSCI
issues a prompt that requires a response and causes the process to enter
into a loop. See Stopping Manager for more information about stopping
Manager.

e Issuing Commands Through the IBM i CLI

Issuing Commands Through the IBM i CLI

ORACLE

Oracle GoldenGate for IBM DB2 for i includes a set of native IBM i commands that
enables the operation of the most common Oracle GoldenGate programs from the IBM
i command-line interface (CLI). Because these commands are native, they do not
need to be run from a PASE environment. With this support, it is possible to issue
commands interactively or by using the typical job submission tools such as SBMJOB
to operate Oracle GoldenGate non-interactively.

The commands are as follows and correspond to the Oracle GoldenGate programs of
the same name. They reside in the Oracle GoldenGate installation library.

DEFGEN
EXTRACT
GGSCl
KEYCEN

L OGDUWP
MR

REPLI CAT

For more information about these commands, see Reference for Oracle GoldenGate
for Windows and UNIX.

4-6

Chapter 4
Using Oracle GoldenGate Parameter Files

Using Oracle GoldenGate Parameter Files

Most Oracle GoldenGate functionality is controlled by means of parameters specified
in parameter files. A parameter file is a plain text file that is read by an associated
Oracle GoldenGate process. Oracle GoldenGate uses two types of parameter files: a
GLOBALS file and runtime parameter files.

Topics:

* Globalization Support for Parameter Files
* Working with the GLOBALS File

* Working with Runtime Parameters

» Creating a Parameter File

* Validating a Parameter File

* Viewing a Parameter File

e Changing a Parameter File

* Simplifying the Creation of Parameter Files

» Getting Information about Oracle GoldenGate Parameters

Globalization Support for Parameter Files

Oracle GoldenGate creates parameter files in the default character set of the local
operating system. In the event that the local platform does not support a required
character set as the default in the operating system, you can use the CHARSET
parameter either globally or per-process to specify a character set for parameter files.

To avoid issues caused by character-set incompatibilities, create or edit a parameter
file on the server where the associated process will be running. Avoid creating it on
one system (such as your Windows laptop) and then transferring the file to the UNIX
server where Oracle GoldenGate is installed and where the operating system
character set is different. Oracle GoldenGate provides some tools to help with
character set incompatibilities if you must create the parameter file on a different
system:

* You can use the CHARSET parameter to specify a compatible character set for the
parameter file. This parameter must be placed on the first line of the parameter file
and allows you to write the file in the specified character set. After the file is
transferred to the other system, do not edit the file on that system.

* You can use Unicode notation to substitute for characters that are not compatible
with the character set of the operating system where the file will be used. See
Support for Escape Sequences for more information about Unicode notation.

See Reference for Oracle GoldenGate for more information about the CHARSET
parameter.

Working with the GLOBALS File

The GLOBALS file stores parameters that relate to the Oracle GoldenGate instance as a
whole. This is in contrast to runtime parameters, which are coupled with a specific
process such as Extract. The parameters in the GLOBALS file apply to all processes in

ORACLE 4.7

Chapter 4
Using Oracle GoldenGate Parameter Files

the Oracle GoldenGate instance, but can be overridden by specific process
parameters. A GLOBALS parameter file may or may not be required for your Oracle
GoldenGate environment.

When used, a GLOBALS file must exist before starting any Oracle GoldenGate
processes, including GGSCI. The GGSCI program reads the GLOBALS file and passes
the parameters to processes that need them.

To Create a GLOBALS File

1. From the Oracle GoldenGate installation location, run GGSCI and enter the
following command, or open a file in a text editor.

EDI T PARAMS ./ GLOBALS

" Note:

The ./ portion of this command must be used, because the GLOBALS file
must reside at the root of the Oracle GoldenGate installation file.

2. Inthe file, enter the GLOBALS parameters, one per line.

3. Save the file. If you used a text editor, save the file as GLOBALS (uppercase, without
a file extension) at the root of the Oracle GoldenGate installation directory. If you
created the file correctly in GGSCI, the file is saved that way automatically. Do not
move this file.

4. Exit GGSCI. You must start from a new GGSCI session before issuing commands
or starting processes that reference the GLOBALS file.

Working with Runtime Parameters

ORACLE

Runtime parameters give you control over the various aspects of Oracle GoldenGate
synchronization, such as:

« Data selection, mapping, transformation, and replication

» DDL and sequence selection, mapping, and replication (where supported)
e Error resolution

* Logging

e Status and error reporting

» System resource usage

e Startup and runtime behavior

There can be only one active parameter file for the Manager process or an Extract or
Replicat group; however, you can use parameters in other files by using the OBEY
parameter. See Simplifying the Creation of Parameter Files for more information about
simplifying the use of parameter files.

There are two types of parameters: global (not to be confused with GLOBALS
parameters) and object-specific:

* Global parameters apply to all database objects that are specified in a parameter
file. Some global parameters affect process behavior, while others affect such

4-8

ORACLE

Chapter 4
Using Oracle GoldenGate Parameter Files

things as memory utilization and so forth. USERI DALI AS in Example 4-2 and
Example 4-3 is an example of a global parameter. In most cases, a global
parameter can appear anywhere in the file before the parameters that specify
database objects, such as the TABLE and MAP statements in Example 4-2 and
Example 4-3. A global parameter should be listed only once in the file. When listed
more than once, only the /ast instance is active, and all other instances are
ignored.

» Object-specific parameters enable you to apply different processing rules for
different sets of database objects. GETI NSERTS and | GNOREI NSERTS in Example 4-3
are examples of object-specific parameters. Each precedes a MAP statement that
specifies the objects to be affected. Object-specific parameters take effect in the
order that each one is listed in the file.

Example 4-2 and Example 4-3 are examples of basic parameter files for Extract and
Replicat. Comments are preceded by double hyphens.

The preceding example reflects a case-insensitive Oracle database, where the object
names are specified in the TABLE statements in capitals. For a case-insensitive Oracle
database, it makes no difference how the names are entered in the parameter file
(upper, lower, mixed case). For other databases, the case of the object names may
matter. See Specifying Object Names in Oracle GoldenGate Input for more information
about specifying object names.

Note the use of single and double quote marks in the Replicat example in

Example 4-3. For databases that require quote marks to enforce case-sensitive object
names, such as Oracle, you must enclose case-sensitive object names within double
guotes in the parameter file as well. For other case-sensitive databases, specify the
names as they are stored in the database. For more information about specifying
names and literals, see Specifying Object Names in Oracle GoldenGate Input.

Example 4-2 Sample Extract Parameter File

- Extract group name

EXTRACT capt

- Extract database user login, with alias to credentials in the credential store.
USERI DALI AS ogg1l

- Renmote host to where captured data is sent in encrypted format:
RMTHOSTOPTI ONS sysh, MGRPORT 7809, ENCRYPT AES192 KEYNAME nykey

- Encryption specification for trail data

ENCRYPTTRAI L AES192

- Renote trail on the renote host

RMITRAIL /ggs/ dirdat/aa

- TABLE statenments that identify data to capture.

TABLE FIN. *;

TABLE SALES. *;

Example 4-3 Sample Replicat Parameter File

- Replicat group nane

REPLI CAT deliv

- Replicat database user login, with alias to credentials in the credential store
USERI DALI AS 0gg?2

- Error handling rules

REPERRCR DEFAULT, ABEND

- Ignore I NSERT operations

| GNOREI NSERTS

- MAP statement to map source objects to target objects and
- specify col um mappi ng

MAP "fin"."accTAB", TARGET "fin"."accTAB",

4-9

Chapter 4
Using Oracle GoldenGate Parameter Files

COLMAP ("Account" = "Acct",

"Bal ance" = "Bal ",

"Branch" = "Branch");

- CGet I NSERT operations

GETI NSERTS

- MAP statenent to map source objects to target objects and
- filter to apply only the 'NY' branch data.

MAP “fin"."teller", TARGET "fin"."tell TAB",

WHERE ("Branch" = "'NY');

Creating a Parameter File

Oracle recommends using GGSCI when writing the parameter file in the character set
of the operating system, but if using the CHARSET parameter and writing the file in a
different character set, use a text editor instead of GGSCI.

Topics:
e Creating a Parameter File in GGSCI

e Creating a Parameter File with a Text Editor

Creating a Parameter File in GGSCI

ORACLE

To create a parameter file, use the EDI T PARAMS command within the GGSCI user
interface or use a text editor directly. When you use GGSCI, you are using a standard
text editor, but your parameter file is saved automatically with the correct file name and
in the correct directory.

When you create a parameter file with EDI T PARAMS in GGSCI, it is saved to the

di r pr msub-directory of the Oracle GoldenGate directory. You can create a parameter
file in a directory other than di r pr m but you also must specify the full path name with
the PARAMS option of the ADD EXTRACT or ADD REPLI CAT command when you create
your process groups. Once paired with an Extract or Replicat group, a parameter file
must remain in its original location for Oracle GoldenGate to operate properly once
processing has started.

The EDI T PARAMS command launches the following text editors within the GGSCI
interface:

¢ Notepad on Microsoft Windows systems

e The vi editor on UNIX and Linux systems. DB2 for i only supports vi when
connected with SSH or xterm. For more information, see Creating a Parameter
File with a Text Editor.

¢ Note:

You can change the default editor through the GGSCI interface by using
the SET EDI TOR command. See Reference for Oracle GoldenGate.

1. From the directory where Oracle GoldenGate is installed, run GGSCI.
2. In GGSCI, issue the following command to open the default text editor.

EDI T PARAMS group_name

4-10

ORACLE

Chapter 4
Using Oracle GoldenGate Parameter Files

Where:

group_nane is either ngr (for the Manager process) or the name of the Extract or
Replicat group for which the file is being created. The name of an Extract or
Replicat parameter file must match that of the process group.

The following creates or edits the parameter file for an Extract group named
extora.

EDI T PARAMS extora

The following creates or edits the parameter file for the Manager process.
EDI T PARAMS MR

Using the editing functions of the text editor, enter as many comment lines as you
want to describe this file, making certain that each comment line is preceded with
two hyphens (--).

On non-commented lines, enter the Oracle GoldenGate parameters, starting a
new line for each parameter statement.

Oracle GoldenGate parameters have the following syntax:

PARAVETER _NANE ar gunent [, option] [&

Where:
e PARAMETER NAME is the name of the parameter.

e argunent is a required argument for the parameter. Some parameters take
arguments, but others do not. Commas between arguments are optional.

EXTRACT nyext

USERI DALI AS oggl

RMIHOSTOPTI ONS sysh, MGRPORT 8040, ENCRYPT AES192 KEYNAME nykey

ENCRYPTTRAI L AES 192

RMITRAIL /hone/ ggs/dirdat/cl, PURGE

CUSEREXI T userexit.dll MyUserExit, |NCLUDEUPDATEBEFORES, &
PARAMS "init.properties"

TABLE nyschema. nyt abl e;

e [, option] is an optional argument.

e [¢&] isrequired at the end of each line in a multi-line parameter statement, as
in the CUSEREXI T parameter statement in the previous example. The
exceptions are the following, which can accept, but do not require, the
ampersand because they terminate with a semicolon:

— MP
— TABLE

— SEQUENCE
— FILE

~ QUERY

4-11

Chapter 4
Using Oracle GoldenGate Parameter Files

Note:

The RMTHOST and RMITHOSTOPTI ONS parameters can be specified together;
the RMTHOST parameter is not required for RMTHOSTOPTI ONS if the dynamic
IP assignment is properly configured. When RMTHOSTOPTI ONS is used, the
MERPORT option is ignored.

5. Save and close the file.

Creating a Parameter File with a Text Editor

You can create a parameter file outside GGSCI by using a text editor, but make
certain to:

» Save the parameter file with the name of the Extract or Replicat group that owns it,
or save it with the name nyr if the Manager process owns it. Use the . pr mfile
extension. For example: ext fin. prmand mgr. prm

* Save the parameter file in the di r pr mdirectory of the Oracle GoldenGate
installation directory.

e For DB2 for i systems, you can edit parameter files from a 5250 terminal using
SEU or EDTF. If you use SEU, you must copy the file using the CPYTOSTM-
command, specify an encoding of CCSID 1208, and line endings of *LF. If editing
with EDTF from F15 (services) ensure that you change the CCSID of the file to
1208 and the EOL option to *LF.

Alternatively, you can use the Rf i | e command from the IBM Portable Application
Solutions Environment for i.

Validating a Parameter File

ORACLE

The checkpr mvalidation native command is run from the command line and gives an
assessment of the specified parameter file, with a configurable application and running
environment. It can provide either a simple PASS/FAI L or with optional details about
how the values of each parameter are stored and interpreted.

The input to checkpr mis case insensitive. If a value string contains spaces, it does not
need to be quoted because checkpr mcan recognize meaningful values. If no mode is
specified to checkpr m then all parameters applicable to any mode of the component
will be accepted.

The output of checkpr mis assembled with four possible sections:

* help messages

e pre-validation error
e validation result

e parameter details

A pre-validation error is typically an error that prevents a normal parameter validation
from executing, such as missing options or an inaccessible parameter file. If an option
value is specified incorrectly, a list of possible inputs for that option is provided. If the
result is FAI L, each error is in the final result message. If the result is PASS, a message
that some of the parameters are subject to further runtime validation. The parameter

4-12

ORACLE

Chapter 4
Using Oracle GoldenGate Parameter Files

detailed output contains the validation context, the values read from GLOBALS (if it is
present), and the specified parameters. The parameter and options are printed with
proper indentation to illustrate these relationships.

Table 4-1 describes all of the arguments that you can use with the checkprm
commands. When you use checkpr mand do not use any of these arguments, then
checkpr mattempts to automatically detect Extract or Replicat and the platform and
database of the Oracle GoldenGate installation.

Table 4-1 checkprm Arguments

Argument Purpose & Behavior

None Displays usage information

-V Displays banner. Cannot be combined with other options.

? | help Displays detailed usage information, include all possible values of each

option. Cannot be combine with other options.

parameter file

Specifies the name of the parameter file, has to be the first argument if
a validation is requested. You must specify the absolute path to the
parameter file. For example, CHECKPRM . / di r pr mf nyext . prm

- COVPONENT | -C

Specifies the running component (application) that this parameter file is
validated for. This option can be omitted for Extract or Replicat because
automatic detection is attempted. Valid values include:

CACHEFI LEDUMP COBGEN CONVCHK CONVPRM DDLCOB DEFGEN
EMSCLNT EXTRACT GGCMD GGSCI KEYGEN LOGDUMP

MGR OGGERR REPLI CAT RETRACE
REVERSE SERVER GLOBALS
There is no default for this option.

-MODE | -M

Specifies the mode of the running application if applicable. This option
is optional, only applicable to Extract or Replicat. If no mode is
specified, the validation is performed for all Extract or Replicat modes.
Valid input of this option includes:

e Classic Extract

e Integrated Extract

e Initial Load Extract

* Remote Task Extract

e Data Pump Extract

e Passive Extract

e Classic Replicat

e Coordinated Replicat

e Integrated Replicat

« Parallel Integrated Replicat

e Parallel Nonintegrated Replicat

e Special Run Replicat

¢ Remote Task

When key in the value for this option, the application name is optional,
as long as it matches the value of component. For example, " Dat a
Punp Extract" is equivalentto " Data Punp" if the component is
Extract. However, it is invalid if the component is Replicat.

4-13

ORACLE

Table 4-1 (Cont.) checkprm Arguments

Chapter 4
Using Oracle GoldenGate Parameter Files

Argument

Purpose & Behavior

- PLATFORM | -P

Specifies the platform the application is supposed to run on. The default
value is the platform that this checkpr mexecutable is running on.

The possible values are:

Al X HP- 0SS HPUX- | T HPUX- PA
Li nux 08400 ZOS Sol aris SPARC
Sol aris x86 Wndows x64 All

-DATABASE | -D

Specifies the database the application is built against. The default value
is the database for your Oracle GoldenGate installation.

The database options are (case insensitive):

Ceneric
Oacle 8
Oracle 9i
Oracle 10g
Oacle 11g
Oracle 12¢
Sybase
DB2LUW 9. 5
DB2LUW 9. 7
DB2LUW 10.5
DB2LUW 10. 1
DB2 Renote
Teradat a

Ti nesten
Tinesten 7

Timesten 11.2.1

WSQL
Ctree8
Ctree9
DB2 for i

DB2 for i Renote

M5 SQL

M5 SQL CDC

I nform x

I nform x1150
I nform x1170
I nform x1210

I ngres SQL/ WX

DB2 z/CS
Post greSQL

- VERBOSE | -V

Directs checkpr mto print out detailed parameter information, to
demonstrate how the values are read and interpreted.

It must be the last option specified in a validation.

4-14

Chapter 4
Using Oracle GoldenGate Parameter Files

Following are some use examples:

checkprm ?

checkprm ./dirprmextl.prm-C extract -mdata punp -p Linux -v
checkprm ./dirprmiextl. prm-mintegrated

checkprm ./dirprmrepl.prm-mintegrated

checkprm ./dirprmngr.prm-C ngr -v

checkprm GLOBALS -¢ GLOBALS

Verifying Using CHECKPARAMS Parameter

An alternative to using the recommended checkpr mutility, is to check the syntax of
parameters in an Extract or Replicat parameter file for accuracy using the CHECKPARAMS
parameter. This process can be used with Extract or Replicat.

To Verify Parameter Syntax

1. Include the CHECKPARANMS parameter in the parameter file.

2. Start the associated process by issuing the START EXTRACT or START REPLI CAT
command in GGSCI.

START {EXTRACT | REPLICAT} group_nane

The process audits the syntax, writes the results to the report file or the screen,
and then stops.

3. Do either of the following:

» If the syntax is correct, remove the CHECKPARAMS parameter before starting the
process to process data.

» If the syntax is wrong, correct it based on the findings in the report. You can
run another test to verify the changes, if desired. Remove CHECKPARAMS before
starting the process to process data.

For more information about the report file, see Monitoring Oracle GoldenGate
Processing.

For more information about CHECKPARAMS, see Reference for Oracle GoldenGate.

Viewing a Parameter File

You can view a parameter file directly from the command shell of the operating
system, or you can view it from the GGSCI user interface. To view the file from
GGSCI, use the VI EW PARAMS command.

VI EW PARAVG gr OUp_nane

Where:

group_nane is either ngr (for Manager) or the name of the Extract or Replicat group
that is associated with the parameter file.

ORACLE 4-15

Chapter 4
Using Oracle GoldenGate Parameter Files

Caution:

Do not use VI EW PARAMS to view an existing parameter file that is in a
character set other than that of the local operating system (such as one
where the CHARSET option was used to specify a different character set). The
contents may become corrupted. View the parameter file from outside
GGSCI.

If the parameter file was created in a location other than the di r pr msub-directory of
the Oracle GoldenGate directory, specify the full path name as shown in the following
example.

VI EW PARAMS c¢:\ | pparns\repl p. prm

Changing a Parameter File

An Oracle GoldenGate process must be stopped before changing its parameter file,
and then started again after saving the parameter file. Changing parameter settings
while a process is running can have unexpected results, especially if you are adding
tables or changing mapping or filtering rules.

Caution:

Do not use the EDI T PARAMS command to view or edit an existing parameter
file that is in a character set other than that of the local operating system
(such as one where the CHARSET option was used to specify a different
character set). The contents may become corrupted. View the parameter file
from outside GGSCI.

To Change Parameters:

1.

Stop the process by issuing the following command in GGSCI. To stop Manager in
a Windows cluster, use the Cluster Administrator.

STOP {EXTRACT | REPLICAT | MANAGER} group_name

Open the parameter file by using a text editor or the EDI T PARAMS command in
GGSCI.

EDI T PARAMS nor
Make the edits, and then save the file.

Start the process by issuing the following command in GGSCI. Use the Cluster
Administrator if starting Manager in a Windows cluster.

START {EXTRACT | REPLICAT | MANAGER} group_name

Simplifying the Creation of Parameter Files

You can reduce the number of times that a parameter must be specified by using the
following time-saving tools.

ORACLE

4-16

Chapter 4
Using Oracle GoldenGate Parameter Files

Topics:

e Using Wildcards
* Using OBEY

e Using Macros

» Using Parameter Substitution

Using Wildcards

Using OBEY

For parameters that accept object names, you can use asterisk (*) and question mark
(?) wildcards. The use of wildcards reduces the work of specifying numerous object
names or all objects within a given schema. For more information about using
wildcards, see Using Wildcards in Database Object Names.

You can create a library of text files that contain frequently used parameter settings,
and then you can call any of those files from the active parameter file by means of the
OBEY parameter. The syntax for OBEY is:

OBEY file_nane

Where:
file_name is the relative or full path name of the file.

Upon encountering an OBEY parameter in the active parameter file, Oracle GoldenGate
processes the parameters from the referenced file and then returns to the active file to
process any remaining parameters. OBEY is not supported for the GLOBALS parameter
file.

If using the CHARSET parameter in a parameter file that includes an OBEY parameter, the
referenced parameter file does not inherit the CHARSET character set. The CHARSET
character set is used to read wildcarded object names in the referenced file, but you
must use an escape sequence (\ uX) for all other multibyte specifications in the
referenced file.

See Reference for Oracle GoldenGate for more information about OBEY.

See Reference for Oracle GoldenGate for more information about CHARSET.

Using Macros

You can use macros to automate multiple uses of a parameter statement. See Using
Oracle GoldenGate Macros to Simplify and Automate Work.

Using Parameter Substitution

ORACLE

You can use parameter substitution to assign values to Oracle GoldenGate
parameters automatically at run time, instead of assigning static values when you
create the parameter file. That way, if values change from run to run, you can avoid
having to edit the parameter file or maintain multiple files with different settings. You
can simply export the required value at runtime. Parameter substitution can be used
for any Oracle GoldenGate process.

4-17

Chapter 4
Using Oracle GoldenGate Parameter Files

To Use Parameter Substitution

1. For each parameter for which substitution is to occur, declare a runtime parameter
instead of a value, and precede the runtime parameter name with a question mark
(?) as shown in the following example.

SOURCEI SFI LE
EXTFI LE ?EXTFI LE
MAP scott ?2TABNAME, TARGET tiger ACCOUNT_TARG

2. Before starting the Oracle GoldenGate process, use the shell of the operating
system to pass the runtime values by means of an environment variable, as shown
in Example 4-4 and Example 4-5.

Example 4-4 Parameter substitution on Windows

C.\GGS> set EXTFILE=C:\ggs\extfile
C.\ GGS> set TABNAME=PROD. ACCOUNTS
C\GGS> replicat paranfile c:\ggs\dirprmparnfl

Example 4-5 Parameter substitution on UNIX (Korn shell)

$ EXTFILE=/ ggs/extfile

$ export EXTFILE

$ TABNAME=PRCD. ACCOUNTS

$ export TABNANVE

$ replicat paranfile ggs/dirprn parnfl

UNIX is case-sensitive, so the parameter declaration in the parameter file must be the
same case as the shell variable assignments.

Getting Information about Oracle GoldenGate Parameters

You can use the | NFO PARAMcommand to view a parameter's definition information
from GGSCI. The name provided in the command line can be a parameter, or an
option, but it must be a full name that is part of the names concatenated together using
a period (.) as the delimiter. For example:

| NFO PARAM RMIHOST
RMIHOST. STREAM NG
I NFO PARAM RMIHCST. STREAM NG

Using the GETPARAM NFO, you can query the runtime parameter values of a running
instance, including Extract, Replicat, and Manager. This command is similar to using
checkprm - v, see Validating a Parameter File. The default behavior is to display all
that has ever been queried by the application, parameters and their current values. If a
particular parameter name is specified, then the output is filtered by that name.
Optionally, the output can be redirect to a file specified by the - FI LE option. For
example:

SEND ext 1pnp GETPARAM NFO

For more information about these and all Oracle GoldenGate parameters including
exact syntax, see the Reference for Oracle GoldenGate.

ORACLE 4-18

Chapter 4
Specifying Object Names in Oracle GoldenGate Input

Specifying Object Names in Oracle GoldenGate Input

The following rules apply when specifying object names in parameter files (such as in
TABLE and MAP statements), column-conversion functions, commands, and in other
input.

Topics:

» Specifying Filesystem Path Names in Parameter Files on Windows Systems
» Supported Database Object Names

» Specifying Names that Contain Slashes

* Qualifying Database Object Names

» Specifying Case-Sensitive Database Object Names

e Using Wildcards in Database Object Names

» Differentiating Case-Sensitive Column Names from Literals

Specifying Filesystem Path Names in Parameter Files on Windows

Systems

On Windows systems, if the name of any directory in a filesystem path name begins
with a number, the path must be specified with forward slashes, not backward slashes,
when listing that path in Oracle GoldenGate input, such as parameter files or
commands. This requirement prevents Oracle GoldenGate from interpreting the name
as an octal escape sequence. For example, the following paths contain a directory
named \ 2014 that will be interpreted as the octal sequence \ 201:

C:\ogg\ 2014\instal I\ dirdat\aa
C:\ogg\instal I1\2014\ dirdat\aa

The preceding path can be used with forward slashes as follows:

C:./ogg/ 2014/ instal |/ dirdat/aa
C:./ogg/install/2014/dirdat/aa

For more information, see Support for Escape Sequences.

Supported Database Object Names

ORACLE

Object names in parameter files, command, and other input can be any length and in
any supported character set. For supported character sets, see Supported Character
Sets.

Oracle GoldenGate supports most characters in object and column names. Specify
object names in double quote marks if they contain special characters such as white
spaces or symbols.

The following lists of supported and non-supported characters covers all databases
supported by Oracle GoldenGate; a given database platform may or may not support
all listed characters.

Topics:

4-19

Chapter 4
Specifying Object Names in Oracle GoldenGate Input

» Supported Special Characters

* Non-supported Special Characters

Supported Special Characters

Oracle GoldenGate supports all characters that are supported by the database,
including the following special characters. Object names that contain these special
characters must be enclosed within double quotes in parameter files.

Character Description

/ Forward slash (See Specifying Names that Contain Slashes)

* Asterisk (Must be escaped by a backward slash when used in parameter
file, as in: \ *)

? Question mark (Must be escaped by a backward slash when used in
parameter file, as in: \ ?)

@ At symbol (Supported, but is often used as a resource locator by
databases. May cause problems in object names)

Pound symbol

$ Dollar symbol

% Percent symbol (Must be %8 when used in parameter file)

N Caret symbol

@) Open and close parentheses

_ Underscore

- Dash

<space> Space

Non-supported Special Characters

The following characters are not supported in object names and non-key column

names.

Character

Description

\

{}
[]

ORACLE

Backward slash (Must be \\ when used in parameter file)
Begin and end curly brackets (braces)
Begin and end brackets

Equal symbol

Plus sign

Exclamation point

Tilde

Pipe

Ampersand

Colon

Semi-colon

Comma

4-20

Chapter 4
Specifying Object Names in Oracle GoldenGate Input

Character Description

Single quotes
Double quotes

Accent mark (Diacritical mark)

Period
< Less-than symbol (or beginning angle bracket)
> Greater-than symbol (or ending angle bracket)

Specifying Names that Contain Slashes

If a table name contains a forward-slash character (/) in any part of its name, that
name component must be enclosed within double quotes unless the object name is
from an IBM i platform . The following are some examples:

"cld"
“la". b
a."bl/"

If the name contains a forward slash that is not enclosed within double quotes, Oracle
GoldenGate treats it as a name that originated on the IBM i platform (from a DB2 for i
database). The forward slash in the name is interpreted as a separator character.

Qualifying Database Object Names

Object names must be fully qualified in the parameter file. This means that every name
specification must be qualified, not only those supplied as input to Oracle GoldenGate
parameter syntax, but also names in a SQL procedure or query that is supplied as
SQLEXEC input, names in user exit input, and all other input supplied in the parameter
file.

Oracle GoldenGate supports two-part and three-part object names, as appropriate for
the database.

Topics:

* Two-part Names

e Three-part Names

* Applying Data from Multiple Containers or Catalogs

* Specifying a Default Container or Catalog

Two-part Names

ORACLE

Most databases require only two-part names to be specified, in the following format:

owner . obj ect

For example: HR. EMP
Where:

4-21

Chapter 4
Specifying Object Names in Oracle GoldenGate Input

owner is a schema or database, depending on how the database defines a logical
namespace that contains database objects. obj ect is a table or other supported
database object.

The databases for which Oracle GoldenGate supports two-part names are as follows,
shown with their appropriate two-part naming convention:

e DB2fori:schenma. object andlibrary/file(menber)

e DB2 LUW: schena. obj ect

* DB2on z/OS: schena. obj ect

e MySQL: dat abase. obj ect

* Oracle Database (hon-CDB databases): schena. obj ect
e SQL Server: schena. obj ect

e Teradata: dat abase. obj ect

Three-part Names

Oracle GoldenGate supports three-part names for the following databases:

* Oracle container databases (CDB)

Three-part names are required to capture from a source Oracle container database
because one Extract group can capture from more than one container. Thus, the name
of the container, as well as the schema, must be specified for each object or objects in
an Extract TABLE statement.

Specify a three-part Oracle CDB name as follows:

cont ai ner. schema. obj ect

For example: PDB1. HR. EMP

Applying Data from Multiple Containers or Catalogs

To apply data captured from multiple source containers or catalogs to a target Oracle
container database, both three- and two-part names are required. In the MAP portion of
the MAP statement, each source object must be associated with a container or catalog,
just as it was in the TABLE statement. This enables you (and Replicat) to properly map
data from multiple source containers or catalogs to the appropriate target objects. In
the TARGET portion of the MAP statement, however, only two-part names are required.
This is because Replicat can connect to only one target container or catalog at a time,
and schena. owner is a sufficient qualifier. Multiple Replicat groups are required to
support multiple target containers or catalogs. Specify the target container or catalog
with the TARGETDB parameter.

Specifying a Default Container or Catalog

ORACLE

You can use the SOURCECATALQG parameter to specify a default catalog for any
subsequent TABLE, MAP, (or Oracle SEQUENCE) specifications in the parameter file. The
following example shows the use of SOURCECATALOG to specify the default Oracle PDB
named pdb2 for schema2 and schema3 objects, and the default PDB named pdb3 for
schema4 objects. The objects in pdbl are specified with a fully qualified three-part
name, which does not require a default catalog to be specified.

4-22

Chapter 4
Specifying Object Names in Oracle GoldenGate Input

TABLE pdbl. schenal.tabl e*;
SOURCECATALQG pdb2

TABLE schema2.t abl e*;
TABLE schema3. t abl e*;
SOURCECATALQG pdb3

TABLE schema4. t abl e*;

Specifying Case-Sensitive Database Object Names

ORACLE

Oracle GoldenGate supports case-sensitive names. Follow these rules when
specifying case-sensitive objects.

e Specify object names from a case-sensitive database in the same case that is
used to store them in the host database. Keep in mind that, in some database
types, different levels of the database can have different case-sensitivity, such as
case-sensitive schema but case-insensitive table. If the database requires quotes
to enforce case-sensitivity, put quotes around each object that is case-sensitive in
the qualified name.

Correct: TABLE " Sal es". " ACCOUNT"
Incorrect: TABLE " Sal es. ACCOUNT"

e Oracle GoldenGate converts case-insensitive names to the case in which they are
stored when required for mapping purposes.

Table 4-2 provides an overview of the support for case-sensitivity in object names, per
supported database. Refer to the database documentation for details on this type of
support.

Table 4-2 Case Sensitivity of Object Names Per Database
|

Database Requires quotes to Unquoted object Quoted object name
enforce case- name
sensitivity?

DB2 Yes. Differentiates Case-insensitive, Case-sensitive, stores
between case- stores in upper case in mixed case

sensitive and case-
insensitive by use of

guotes.
MySQL No No effect No effect
(Case-sensitive e Always case-
database) sensitive, stores
in mixed case

¢ The names of
columns, triggers,
and procedures

are case-
insensitive
Oracle Database Yes. Differentiates Case-insensitive, Case-sensitive, stores
between case- stores in upper case in mixed case

sensitive and case-
insensitive by use of

quotes.
SQL Server No No effect No effect
(Database created as Always case-sensitive,
case-sensitive) stores in mixed case

4-23

Chapter 4
Specifying Object Names in Oracle GoldenGate Input

Table 4-2 (Cont.) Case Sensitivity of Object Names Per Database

Database Requires quotes to Unquoted object Quoted object name
enforce case- name
sensitivity?

SQL Server No No effect No effect

(Database created as Always case-

case-insensitive) insensitive, stores in
mixed case

Teradata No No effect No effect
Always case-
insensitive, stores in
mixed case

Note:

For all supported databases, passwords are always treated as case-sensitive
regardless of whether the associated object name is quoted or unquoted.

Using Wildcards in Database Object Names

ORACLE

You can use wildcards for any part of a fully qualified object name, if supported for the
specific database. These name parts can be the following: the container, database, or
catalog name, the owner (schema or database name), and table or sequence name.
For specifics on how object names and wildcards are supported, see the Oracle
GoldenGate installation and configuration guide for that database.

Where appropriate, Oracle GoldenGate parameters permit the use of two wildcard
types to specify multiple objects in one statement:

* A question mark (?) replaces one character. For example in a schema that
contains tables named TABn, where n is from 0 to 9, a wildcard specification of
HQ TAB? returns HQ TABO, HQ TABL, HQ TAB2, and so on, up to HQ TAB9, but no
others. This wildcard is not supported for the DB2 LUW database nor for
DEFGEN. This wildcard can only be used to specify source objects in a TABLE or
MAP parameter. It cannot be used to specify target objects in the TARGET clause of
TABLE or MAP.

e An asterisk (*) represents any number of characters (including zero sequence).
For example, the specification of HQ T* could return such objects as HQ TOTAL,
HQ T123, and HQ T. This wildcard is valid for all database types throughout all
Oracle GoldenGate commands and parameters where a wildcard is allowed.

* In TABLE and MAP statements, you can combine the asterisk and question-mark
wildcard characters in source object names only.

Topics:

* Rules for Using Wildcards for Source Objects
* Rules for Using Wildcards for Target Objects
* Fallback Name Mapping

4-24

Chapter 4
Specifying Object Names in Oracle GoldenGate Input

e Wildcard Mapping from Pre-11.2.1 Trail Version
» Asterisks or Question Marks as Literals in Object Names
* How Wildcards are Resolved

» Excluding Objects from a Wildcard Specification

Rules for Using Wildcards for Source Objects

ORACLE

For source objects, you can use the asterisk alone or with a partial name. For
example, the following source specifications are valid:

« TABLE HQ *:
« TABLE PDB*.HQ *;
« MP HQT *:

- MAP HQT_*, TARGET HQ *;

The TABLE, MAP and SEQUENCE parameters take the case-sensitivity and locale of the
database into account for wildcard resolution. For databases that are created as case-
sensitive or case-insensitive, the wildcard matches the exact name and case. For
example, if the database is case-sensitive, SCHEMA.TABLE is matched to SCHEMA.TABLE,
Schena.Tabl e is matched to Schena.Tabl e, and so forth. If the database is case-
insensitive, the matching is not case-sensitive.

For databases that can have both case-sensitive and case-insensitive object names in
the same database instance, with the use of quote marks to enforce case-sensitivity,
the wildcarding works differently. When used alone for a source name in a TABLE
statement, an asterisk wildcard matches any character, whether or not the asterisk is
within quotes. The following statements produce the same results:

TABLE hr. *;
TABLE hr."*";

Similarly, a question mark wildcard used alone matches any single character, whether
or not it is within quotes. The following produce the same results:

TABLE hr. ?;
TABLE hr."?";

If a question mark or asterisk wildcard is used with other characters, case-sensitivity is
applied to the non-wildcard characters, but the wildcard matches both case-sensitive
and case-insensitive names.

» The following TABLE statements capture any table name that begins with lower-
case abc. The quoted name case is preserved and a case-sensitive match is
applied. It captures table names that include "abcA" and "abca" because the
wildcard matches both case-sensitive and case-insensitive characters.

TABLE hr."abc*";
TABLE hr."abc?";

* The following TABLE statements capture any table name that begins with upper-
case ABC, because the partial name is case-insensitive (no quotes) and is stored in
upper case by this database. However, because the wildcard matches both case-
sensitive and case-insensitive characters, this example captures table names that
include ABCA and " ABCa".

4-25

Chapter 4
Specifying Object Names in Oracle GoldenGate Input

TABLE hr. abc*;
TABLE hr. abc?;

Rules for Using Wildcards for Target Objects

When using wildcards in the TARGET clause of a MAP statement, the target objects must
exist in the target database. (The exception is when DDL replication is being used,
which allows new schemas and their objects to be replicated as they are created.)

For target objects, only an asterisk can be used. If an asterisk wildcard is used with a
partial name, Replicat replaces the wildcard with the entire name of the corresponding
source object. Therefore, specifications such as the following are incorrect:

TABLE HQ T_*, TARGET RPT.T_*;
MAP HQ T *, TARGET RPT.T *;

The preceding mappings produce incorrect results, because the wildcard in the target
specification is replaced with T_TEST (the name of a source object), making the whole
target name T_T_TESTn. The following illustrates the incorrect results:

e HQ T_TEST1 maps to RPT. T_T_TEST1

« HQ T_TEST2 maps to RPT. T_T_TEST2

e (The same pattern applies to all other HQ T_TESTh mappings.)
The following examples show the correct use of asterisk wildcards.

MAP HQ T_*, TARGET RPT.*:

The preceding example produces the following correct results:

e HQ T_TEST1 maps to RPT. T_TEST1
° HQ T_TEST2 maps to RPT. T_TEST2
* (The same pattern applies to all other HQ T_TESTn mappings.)

Fallback Name Mapping

Oracle GoldenGate has a fallback mapping mechanism in the event that a source
name cannot be mapped to a target name. If an exact match cannot be found on the
target for a case-sensitive source object, Replicat tries to map the source name to the
same name in upper or lower case (depending on the database type) on the target.
Fallback name mapping is controlled by the NAVEMATCH parameters. For more
information, see Reference for Oracle GoldenGate.

Wildcard Mapping from Pre-11.2.1 Trail Version

ORACLE

If Replicat is configured to read from a trail file that is a version prior to Oracle
GoldenGate 11.2.1, the target mapping is made in the following manner to provide
backward compatibility.

* Quoted object names are case-sensitive.
» Unquoted object names are case-insensitive.

The following maps a case-sensitive table name "abc" to target "abc". This only
happens with a trail that was written by pre-11.2.1 Extract for SQL Server databases
with a case-sensitive configuration. In this example, if the target database is Oracle

4-26

Chapter 4
Specifying Object Names in Oracle GoldenGate Input

Database or DB2 fallback name mapping is performed if the target database does not
contain case-sensitive "abc" but does have table ABC. (See Fallback Name Mapping.)

MAP hqg. "abc", TARGET hg.*;

The following example maps a case-insensitive table name abc to target table name
ABC. Previous releases of Oracle GoldenGate stored case-insensitive object names to
the trail in upper case; thus the target table name is always upper cased. For case-

insensitive name conversion, the comparison is in uppercase, A to Z characters only,
in US-ASCII without taking locale into consideration.

MAP hg. abc, TARGET hg.*;

Asterisks or Question Marks as Literals in Object Names

If the name of an object itself includes an asterisk or a question mark, the entire name
must be escaped and placed within double quotes, as in the following example:

TABLE HT. "\ ?ABC';

How Wildcards are Resolved

By default, when an object name is wildcarded, the resolution for that object occurs
when the first row from the source object is processed. (By contrast, when the name of
an object is stated explicitly, its resolution occurs at process startup.) To change the
rules for resolving wildcards, use the W LDCARDRESOLVE parameter. The default is
DYNAM C.

Excluding Objects from a Wildcard Specification

You can combine the use of wildcard object selection with explicit object exclusion by
using the EXCLUDEW LDCARDOBJECTSONLY, CATALOGEXCLUDE, SCHEMAEXCL UDE,
MAPEXCLUDE, and TABLEEXCLUDE parameters. See Reference for Oracle GoldenGate for
descriptions and syntax.

Differentiating Case-Sensitive Column Names from Literals

By default, Oracle GoldenGate follows SQL-92 rules for specifying column names and
literals. In Oracle GoldenGate parameter files, conversion functions, user exits, and
commands, case-sensitive column names must be enclosed within double quotes if
the database requires quotes around a name to support case-sensitivity. For example:

"col umA"

Case-sensitive column names in databases that do not require quotes to enforce
case-sensitivity must be specified as they are stored in the database. For example:

Col umA

Literals must be enclosed within single quotes. In the following example, Pr oduct _Code
is a case-sensitive column name in an Oracle database, and the other strings are
literals.

@ASE ("Product_Code", 'CAR, "Acar', "TRUCK , "A truck')

ORACLE 4-27

Using Oracle GoldenGate for Live
Reporting

This chapter describes the usage of Oracle GoldenGate for live reporting.
Topics:

e Overview of the Reporting Configuration

e Creating a Standard Reporting Configuration

e Creating a Reporting Configuration with a Data Pump on the Source System

e Creating a Reporting Configuration with a Data Pump on an Intermediary System

e Creating a Cascading Reporting Configuration

Overview of the Reporting Configuration

The most basic Oracle GoldenGate configuration is a one-to-one configuration that
replicates in one direction: from a source database to a target database that is used
only for data retrieval purposes such as reporting and analysis. Oracle GoldenGate
supports like-to-like or heterogeneous transfer of data, with capabilities for filtering and
conversion on either system in the configuration (support varies by database platform).

[
[| —————— I
I

Oracle GoldenGate supports different reporting topologies that enable you to custom-
configure the processes based on your requirements for scalability, availability, and
performance. This section contains things to take into consideration when choosing a
reporting configuration.

» Filtering and Conversion
* Read-only vs. High Availability

e Additional Information

Filtering and Conversion

ORACLE

Data filtering and data conversion both add overhead, and these activities are
sometimes prone to configuration errors. If Oracle GoldenGate must perform a large
amount of filtering and conversion, consider using one or more data pumps to handle
this work. You can use Replicat for this purpose, but you would be sending more data
across the network that way, as it will be unfiltered. You can split filtering and

5-1

Chapter 5
Creating a Standard Reporting Configuration

conversion between the two systems by dividing it between the data pump and
Replicat.

To filter data, you can use:

A FI LTER or WHERE clause in a TABLE statement (Extract) or in a MAP statement
(Replicat)

A SQL query or procedure

User exits

To transform data, you can use:

The Oracle GoldenGate conversion functions

A user exit from the Extract or Replicat process that applies rules from an external
transformation solution, then returns the manipulated data to Oracle GoldenGate

Replicat to deliver data directly to an ETL solution or other transformation engine

For more information about Oracle GoldenGate's filtering and conversion support, see:

Mapping and Manipulating Data

Customizing Oracle GoldenGate Processing

Read-only vs. High Availability

The Oracle GoldenGate live reporting configuration supports a read-only target. See
Configuring Oracle GoldenGate for Active-Active High Availability if the target in this
configuration will also be used for transactional activity in support of high availability.

Additional Information

The following documentation provides additional information of relevance to
configuring Oracle GoldenGate.

For additional system requirements, process configuration, and database setup
requirements, see the Oracle GoldenGate installation and configuration document
for your database type. These guides are listed in the Preface of this book.

For detailed instructions on configuring Oracle GoldenGate change capture and
delivery groups, see Configuring Online Change Synchronization.

For additional tuning options for Oracle GoldenGate, see Tuning the Performance
of Oracle GoldenGate.

For complete syntax and descriptions of the Oracle GoldenGate commands and
parameters, see Reference for Oracle GoldenGate for Windows and UNIX.

Creating a Standard Reporting Configuration

In the standard Oracle GoldenGate configuration, one Extract group sends captured
data over TCP/IP to a trail on the target system, where it is stored until processed by
one Replicat group.

ORACLE

Refer to Figure 5-1 for a visual representation of the objects you will be creating.

5-2

Chapter 5
Creating a Standard Reporting Configuration

Figure 5-1 Configuration Elements for Creating a Standard Reporting
Configuration

— L —
—— - § EEEmE— — T e—————— W
— @
N
Source Extract Host Trail Ri
SOURCEDB === =+EXTRACT RMTHOST RMTTRAIL REI
<dsn_1= <@xi> <target> <remote_ <

trail
MNetwork g

e Source System

e Target System

Source System

ORACLE

Configure the Manager process and Extract group on the source system.

To Configure the Manager Process

On the source, configure the Manager process according to the instructions in
Configuring Manager and Network Communications.

To Configure the Extract Group

1. Onthe source, use the ADD EXTRACT command to create an Extract group. For
documentation purposes, this group is called ext.

ADD EXTRACT ext, {TRANLOG | |NTEGRATED TRANLOG}, BEG N tine [option[, ...]]

2. On the source, use the ADD RMITRAI L command to specify a remote trail to be
created on the target system.

ADD RMITRAIL renpte_trail, EXTRACT ext

Use the EXTRACT argument to link this trail to the Extract group.

3. Onthe source, use the EDI T PARAMS command to create a parameter file for the
Extract group. Include the following parameters plus any others that apply to your
database environment. For possible additional required parameters, see the
Oracle GoldenGate installation and setup guide for your database.

- ldentify the Extract group:
EXTRACT ext
- Specify database login information as needed for the database:
[SOURCEDB dsn_1][, USERIDALIAS ali as]
- Log all of the supplenentally |ogged colums if using integrated Replicat
LOGALLSUPCOLS
- Valid for Oacle. Specify the name or IP address of the target system and
- optional encryption across TCP/IP:
RMTHOSTOPTI ONS t ar get, MGRPORT port _nunber, ENCRYPT encryption_options
- Specify the remote trail and encryption algorithmon the target system

5-3

Target System

Chapter 5
Creating a Standard Reporting Configuration

ENCRYPTTRAIL al gorithm

RMITRAIL renote_trail

- Specify tables and sequences to be captured:
SEQUENCE [cont ai ner. | cat al 0g.] owner. sequence;
TABLE [contai ner.|catal og.]owner.table;

Configure the Manager process and Replicat group on the target system.

To Configure the Manager Process

1.

2.

On the target, configure the Manager process according to the instructions in
Configuring Manager and Network Communications.

In the Manager parameter file, use the PURGEOLDEXTRACTS parameter to control the
purging of files from the local trail.

To Configure the Replicat Group

1.

ORACLE

On the target, create a Replicat checkpoint table (unless using Oracle integrated
Replicat). See Creating a Checkpoint Table for instructions. All Replicat groups
can use the same checkpoint table.

On the target, use the ADD REPLI CAT command to create a Replicat group. For
documentation purposes, this group is called rep.

ADD REPLI CAT rep

[, I NTEGRATED | COORDI NATED [MAXTHREADS number]]
, EXTTRAIL renote_trail

, BEGNtine

Use the EXTTRAI L argument to link the Replicat group to the remote trail.

On the target, use the EDI T PARAMS command to create a parameter file for the
Replicat group. Include the following parameters plus any others that apply to your
database environment. For possible additional required parameters, see the
Oracle GoldenGate installation and setup guide for your database.

- ldentify the Replicat group:

REPLI CAT rep

- Specify database login information as needed for the database:

[TARGETDB dsn_2][, USERIDALIAS ali as]

- Specify error handling rules:

REPERRCR (error, response)

- Specify tables for delivery and threads if using coordinated Replicat:

MAP [cont ai ner.|catal og.]owner.tabl e, TARGET owner.tabl e[, DEF tenpl ate]
[, THREAD (thread_ID)][, THREADRANGE (thread_range[, colum_list])]

5-4

Chapter 5
Creating a Reporting Configuration with a Data Pump on the Source System

¢ Note:

For DB2 for i, you may need to use the ADD TRANDATA command on the
target tables if they are not already journaled. Alternatively, you could
use the STRIRNPF command to assign the tables to the appropriate
journal. If the target tables are not required to be replicated by Oracle
GoldenGate, the | MAGES(* AFTER) option can be used with STRIRNPF.
Since Oracle GoldenGate operates using transactions, all tables must be
journaled to support transactions and this is not the default with DB2 for

Creating a Reporting Configuration with a Data Pump on the
Source System

You can add a data pump on the source system to isolate the primary Extract from
TCP/IP functions, to add storage flexibility, and to offload the overhead of filtering and

conversion processing from the primary Extract.

In this configuration, the primary Extract writes to a local trail on the source system. A
local data pump reads that trail and moves the data to a remote trail on the target
system, which is read by Replicat.

You can, but are not required to, use a data pump to improve the performance and
fault tolerance of Oracle GoldenGate.

Refer to Figure 5-2 for a visual representation of the objects you will be creating.

Figure 5-2 Configuration Elements for Replicating to One Target with a Data
Pump

Trail
RMTHOST RMTTRAIL

<target> <remote_
trail>

Source Extract Trail Data
SOURCEDB: =EXTRACT EXTRAIL Pump
<dsn_1> <ext> <local . EXTRACT
trail> <pump>

MNetwork

e Source System

e Target System

Source System

Configure the Manager process and Extract group on the source system.

ORACLE' 5.5

ORACLE

Chapter 5
Creating a Reporting Configuration with a Data Pump on the Source System

To Configure the Manager Process

1.

2.

On the source, configure the Manager process according to the instructions in
Configuring Manager and Network Communications.

In the Manager parameter file, use the PURGEOLDEXTRACTS parameter to control the
purging of files from the local trail.

To Configure the Primary Extract Group

1.

On the source, use the ADD EXTRACT command to create an Extract group. For
documentation purposes, this group is called ext.

ADD EXTRACT ext, {TRANLOG | |NTEGRATED TRANLOG}, BEG N tine [option[, ...]]

See Reference for Oracle GoldenGate for detailed information about these and
other ADD EXTRACT options that may be required for your installation.

On the source, use the ADD EXTTRAI L command to create a local trail. The primary
Extract writes to this trail, and the data-pump Extract reads it.

ADD EXTTRAIL | ocal _trail, EXTRACT ext

Use the EXTRACT argument to link this trail to the primary Extract group. The
primary Extract group writes to this trail, and the data pump group reads it.

On the source, use the EDI T PARAMS command to create a parameter file for the
primary Extract group. Include the following parameters plus any others that apply
to your database environment. For possible additional required parameters, see
the Oracle GoldenGate installation and setup guide for your database.

- ldentify the Extract group:

EXTRACT ext

- Specify database login information as needed for the database:
[SOURCEDB dsn_1][, USERI DALI AS al i as]

- Log all scheduling colums if using integrated Replicat
LOGALLSUPCOLS

- Specify the local trail that this Extract wites to and
- encryption algorithm

ENCRYPTTRAIL al gorithm

EXTTRAIL | ocal trail

- Specify tables and sequences to be captured:

SEQUENCE [cont ai ner. | cat al 0g.]owner . sequence;

TABLE [contai ner.|catal og.]owner.table;

To Configure the Data Pump Extract Group

1.

On the source, use the ADD EXTRACT command to create a data pump group. For
documentation purposes, this group is called pump.

ADD EXTRACT punp, EXTTRAILSOURCE | ocal _trail, BEGN tine

Use EXTTRAI LSOURCE as the data source option, and specify the name of the local
trail.

On the source, use the ADD RMITRAI L command to specify a remote trail that will
be created on the target system.

ADD RMITRAIL renpte_trail, EXTRACT punp

5-6

Target System

ORACLE

Chapter 5
Creating a Reporting Configuration with a Data Pump on the Source System

Use the EXTRACT argument to link the remote trail to the data pump group. The
linked data pump writes to this trail.

See Reference for Oracle GoldenGate for additional ADD RMITRAI L options.

On the source, use the EDI T PARAMS command to create a parameter file for the
data pump. Include the following parameters plus any others that apply to your
database environment.

- ldentify the data punp group:

EXTRACT punp

- Specify database login information as needed for the database:

[SOURCEDB dsn_1][, USERIDALIAS ali as]

- Decrypt the data only if the data punp nust process it.

- DECRYPTTRAI L

- Specify the name or IP address of the target system

- and optional encryption of data over TCP/IP:

RMTHOSTOPTI ONS t ar get, MGERPORT port_nunber, ENCRYPT encryption_options
- Specify the remote trail and encryption algorithmon the target system
ENCRYPTTRAIL al ogrithm

RMITRAIL renote_trail

- Specify tables and sequences to be captured:

SEQUENCE [cont ai ner. | cat al 0g.]owner . sequence;

TABLE [contai ner.|catal og.]owner.tabl e;

Configure the Manager process and Replicat group on the target system.

To Configure the Manager Process

1.

On the target, configure the Manager process according to the instructions in
Configuring Manager and Network Communications.

In the Manager parameter file, use the PURGECLDEXTRACTS parameter to control the
purging of files from the local trail.

To Configure the Replicat Group

1.

On the target, create a Replicat checkpoint table (unless using Oracle integrated
Replicat). See Creating a Checkpoint Table for instructions.

On the target, use the ADD REPLI CAT command to create a Replicat group. For
documentation purposes, this group is called rep.

ADD REPLI CAT rep

[, INTEGRATED | COORDI NATED [MAXTHREADS nunber]]
, EXTTRAIL renote_trail

, BEGN tine

Use the EXTTRAI L argument to link the Replicat group to the remote trail.

See Reference for Oracle GoldenGate for detailed information about these and
other options that may be required for your installation.

On the target, use the EDI T PARAMS command to create a parameter file for the
Replicat group. Include the following parameters plus any others that apply to your
database environment. For possible additional required parameters, see the
Oracle GoldenGate installation and setup guide for your database.

5-7

Chapter 5
Creating a Reporting Configuration with a Data Pump on an Intermediary System

- ldentify the Replicat group:

REPLI CAT rep

- Specify database login information as needed for the database:

[TARGETDB dsn_2][, USERIDALIAS ali as]

- Specify error handling rules:

REPERRCR (error, response)

- Specify tables for delivery and threads if using coordinated Replicat:

MAP [cont ai ner.|catal og.]owner.tabl e, TARGET owner.tabl e[, DEF tenpl ate]
[, THREAD (thread_ID)][, THREADRANGE (thread_range[, colum_list])]

¢ Note:

For DB2 for i, you may need to use the ADD TRANDATA command on the
target tables if they are not already journaled. Alternatively, you could
use the STRIRNPF command to assign the tables to the appropriate
journal. If the target tables are not required to be replicated by Oracle
GoldenGate, the | MAGES(* AFTER) option can be used with STRIRNPF.
Since Oracle GoldenGate operates using transactions, all tables must be
journaled to support transactions and this is not the default with DB2 for
i.

Creating a Reporting Configuration with a Data Pump on an
Intermediary System

ORACLE

You can use an intermediary system as a transfer point between the source and target
systems. In this configuration, a data pump on the source system sends captured data
to a remote trail on the intermediary system. A data pump on the intermediary system
reads the trail and sends the data to a remote trail on the target. A Replicat on the
target reads the remote trail and applies the data to the target database.

5-8

Chapter 5
Creating a Reporting Configuration with a Data Pump on an Intermediary System

Figure 5-3 Configuration Elements for Replication through an Intermediary

System
== It h
J—
Source Primary Extract Trail Data .F.’.ump Trail Re
SOURCEDB ==+ EXTRACT EXTRAIL EXTRACT RMTTRAIL REF
<dsn_1> <ext> <local_ <pump_1> <remote_ <
trail> _ trail_2>
Network —
v R -
J— Host
[P RMTHOST
| c— <target_2>
=1 =)
Host
RMTHOST
<target_1= T

g
=
| =
e —
.

Trail Data Pu

BRMTTRAIL EXTRA
<remote_ <pump.
tral_1=>

When considering this topology, take note of the following:

* This configuration is practical if the source and target systems are in different
networks and there is no direct connection between them. You can transfer the
data through an intermediary system that can connect to both systems.

ORACLE" 5-9

Chapter 5
Creating a Reporting Configuration with a Data Pump on an Intermediary System

This configuration can be used to add storage flexibility to compensate for
deficiences on the source or target.

This configuration can be used to perform data filtering and conversion if the
character sets on all systems are identical. If character sets differ, the data pump
cannot perform conversion between character sets, and you must configure
Replicat to perform the conversion and transformation on the target.

To use the data pump on the intermediary system to perform data conversion and
transformation, assuming character sets are identical, you must create a source
definitions file and a target definitions file with the DEFGEN utility and then transfer
both files to the intermediary system. See Associating Replicated Data with
Metadata for more information about definitions files and conversion.

This configuration is a form of cascaded replication. However, in this configuration,
data is not applied to a database on the intermediary system. See Creating a
Cascading Reporting Configuration to include a database on the intermediary
system in the Oracle GoldenGate configuration.

Source System
Intermediary System

Target System

Source System

Refer to Figure 10 for a visual representation of the objects you will be creating.

ORACLE

To Configure the Manager Process

1.

On the source, configure the Manager process according to the instructions in
Configuring Manager and Network Communications.

In the Manager parameter file, use the PURGEOLDEXTRACTS parameter to control the
purging of files from the trail.

To Configure the Primary Extract Group on the Source

1.

On the source, use the ADD EXTRACT command to create an Extract group. For
documentation purposes, this group is called ext.

ADD EXTRACT ext, {TRANLOG | |NTEGRATED TRANLOG}, BEG N time [option[, ...]]
See Reference for Oracle GoldenGate for detailed information about these and
other ADD EXTRACT options that may be required for your installation.

On the source, use the ADD EXTTRAI L command to create a local trail. The primary
Extract writes to this trail, and the data-pump Extract reads it.

ADD EXTTRAIL | ocal trail, EXTRACT ext
Use the EXTRACT argument to link this trail to the primary Extract group. The
primary Extract group writes to this trail, and the data pump group reads it.

On the source, use the EDI T PARAMS command to create a parameter file for the
primary Extract group. Include the following parameters plus any others that apply
to your database environment. For possible additional required parameters, see
the Oracle GoldenGate installation and setup guide for your database.

5-10

Chapter 5
Creating a Reporting Configuration with a Data Pump on an Intermediary System

- ldentify the Extract group:

EXTRACT ext

- Specify database login information as needed for the database:
[SOURCEDB dsn_1][, USERI DALIAS al i as]

- Log all scheduling colums if using integrated Replicat
LOGALLSUPCOLS

- Specify the local trail that this Extract wites to and
- encryption algorithm

ENCRYPTTRAIL al gorithm

EXTTRAIL | ocal trail

- Specify tables and sequences to be captured:

SEQUENCE [cont ai ner. | cat al 0g.]owner . sequence;

TABLE [cont ai ner.|catal og.]owner.tabl e;

To Configure the Data Pump on the Source

1. On the source, use the ADD EXTRACT command to create a data pump group. For
documentation purposes, this group is called pump_1.

ADD EXTRACT punp_1, EXTTRAILSOURCE | ocal _trail, BEGNtine

Use EXTTRAI LSOURCE as the data source option, and specify the name of the local
trail. For a local Extract, you must use EXTTRAI L not RMITRAI L.

2. On the source, use the ADD RMITRAI L command to specify a remote trail that will
be created on the intermediary system.

ADD RMITRAIL renmpte_trail _1, EXTRACT punp_1

Use the EXTRACT argument to link the remote trail to the pump_1 data pump group.
The linked data pump writes to this trail.

See Reference for Oracle GoldenGate for additional ADD RMITRAI L options.

3. Onthe source, use the EDI T PARAMS command to create a parameter file for the
pump_1 data pump. Include the following parameters plus any others that apply to
your database environment.

- ldentify the data punp group:

EXTRACT punp_1

- Specify database |ogin information:

[SOURCEDB dsn_1][, USERIDALIAS al i as]

- Decrypt the data only if the data pump nust process it.

- DECRYPTTRAI L

- Specify the name or IP address of the internediary system

- and optional encryption of data over TCP/IP:

RMTHOSTOPTI ONS target 1, MERPORT port_nunber, ENCRYPT encryption_options
- Specify remote trail and encryption algorithmon internmediary system
ENCRYPTTRAIL al gorithm

RMITRAIL remote_trail _1

- Specify tables and sequences to be captured:

SEQUENCE [cont ai ner. | cat al 0g.]owner. sequence;

TABLE [contai ner.|catal og.]owner.table;

Intermediary System

Configure the Manager process and data pump on the intermediary system.

ORACLE 5-11

Chapter 5
Creating a Reporting Configuration with a Data Pump on an Intermediary System

To Configure the Manager Process on the Intermediary System

1. On the intermediary system, configure the Manager process according to the
instructions in Configuring Manager and Network Communications.

2. In the Manager parameter file, use the PURGECLDEXTRACTS parameter to control the
purging of files from the trail.

To Configure the Data Pump on the Intermediary System

1. On the intermediary system, use the ADD EXTRACT command to create a data-
pump group. For documentation purposes, this group is called pump_2.

ADD EXTRACT punp_2, EXTTRAILSOURCE | ocal _trail 1, BEGNtine

Use EXTTRAI LSOURCE as the data source option, and specify the name of the trail
that you created on this system

2. On the intermediary system, use the ADD RMI'TRAI L command to specify a remote
trail on the target system.

ADD RMITRAIL renpte_trail 2, EXTRACT punp_2

Use the EXTRACT argument to link the remote trail to the pump_2 data pump. The
linked data pump writes to this trail.

See Reference for Oracle GoldenGate for additional ADD RMITRAI L options.

3. On the intermediary system, use the EDI T PARAMS command to create a parameter
file for the pump_2 data pump. Include the following parameters plus any others
that apply to your database environment.

- ldentify the data punp group:

EXTRACT punp_2

- Note that no database login paraneters are required in this case.

- Specify the target definitions file if SOURCEDEFS was used:

TARGETDEFS ful | _pat hnane

- Decrypt the data only if the data punp nust process it.

- DECRYPTTRAI L

- Specify the name or IP address of the target system

- and optional encryption of data over TCP/IP:

RMTHOSTOPTI ONS t arget _2, MGERPORT port_nunber, ENCRYPT encryption_options
- Specify the remote trail and encryption algorithmon the target system
ENCRYPTTRAIL al gorithm

RMITRAIL renote_trail 2

- Specify tables and sequences to be captured:

SEQUENCE [cont ai ner. | cat al 0g.]owner . sequence;

TABLE [contai ner.|catal og.]owner.tabl e;

Target System
Configure the Manager process and Replicat group on the target system.

To Configure the Manager Process on the Target

1. On the target system, configure the Manager process according to the instructions
in Configuring Manager and Network Communications.

ORACLE 5-12

2.

Chapter 5
Creating a Cascading Reporting Configuration

In the Manager parameter file, use the PURGEOLDEXTRACTS parameter to control the
purging of files from the trail.

To Configure the Replicat Group on the Target

1.

On the target, create a Replicat checkpoint table (unless using Oracle integrated
Replicat). See Creating a Checkpoint Table for instructions.

On the target, use the ADD REPLI CAT command to create a Replicat group. For
documentation purposes, this group is called rep.

ADD REPLI CAT rep

[, INTEGRATED | COORDI NATED [MAXTHREADS nunber]]
, EXTTRAIL renote_trail _2,

, BEGN time

Use the EXTTRAI L argument to link the Replicat group to the trail on this system.

See Reference for Oracle GoldenGate for detailed information about these and
other options that may be required for your installation.

On the target, use the EDI T PARAMS command to create a parameter file for the
Replicat group. Include the following parameters plus any others that apply to your
database environment. For possible additional required parameters, see the
Oracle GoldenGate installation and setup guide for your database.

- ldentify the Replicat group:

REPLI CAT rep

- Specify database login information as needed for the database:

[TARGETDB dsn_2][, USERIDALIAS ali as]

- Specify error handling rules:

REPERRCR (error, response)

- Specify tables for delivery and threads if using coordinated Replicat:

MAP [contai ner.|catal og.]owner.tabl e, TARGET owner.tabl e[, DEF tenpl ate]
[, THREAD (thread_ID)][, THREADRANGE (thread_range[, colum_|ist])]

Note:

For DB2 for i, you may need to use the ADD TRANDATA command on the
target tables if they are not already journaled. Alternatively, you could
use the STRIRNPF command to assign the tables to the appropriate
journal. If the target tables are not required to be replicated by Oracle
GoldenGate, the | MAGES(* AFTER) option can be used with STRIRNPF.
Since Oracle GoldenGate operates using transactions, all tables must be
journaled to support transactions and this is not the default with DB2 for
i.

Creating a Cascading Reporting Configuration

Oracle GoldenGate supports cascading synchronization, where Oracle GoldenGate
propagates data changes from the source database to a second database, and then
on to a third database. In this configuration:

ORACLE

A primary Extract on the source writes captured data to a local trail, and a data
pump sends the data to a remote trail on the second system in the cascade.

5-13

Chapter 5
Creating a Cascading Reporting Configuration

* Onthe second system, Replicat applies the data to the local database.

* Another primary Extract on that same system captures the data from the local
database and writes it to a local trail.

* A data pump sends the data to a remote trail on the third system in the cascade,
where it is applied to the local database by another Replicat.

Note:

See Creating a Reporting Configuration with a Data Pump on an
Intermediary System if you do not need to apply the replicated changes
to a database on the secondary system.

ORACLE 5-14

Chapter 5
Creating a Cascading Reporting Configuration

Figure 5-4 Cascading Configuration

—_— Lk — r. —B

Source Primary Trail Data
Extract Pump
SDURGEDB s=s=sss EXTRACT EXTRAIL EXTRACT
<dsn_ 1> <gxt_ 1= <local_trail_1> <pump_1>
= afdde-
Network
Hnst
RMTHOST
<target_1>
RMTTRAIL REPLIGAT s=ssen=: TARGETDB
<remote_ <rep_2> <dsn_3=>
trail_2=>
OIS B |i
Trail H epllcat Target/ Primary
Source Extract
RMTTRAIL REPLICAT SOURCEDB EXTRACT EXTTE
<remote_ <rep_1> <dsn_2> <ext 2> <local_tr
trail_1>
i MNetwork
Host
RMTHOST
<target_2>
RMTTRAIL REPLIGAT wmmemmme: TARGETDB
<remote_ <rep_2> <dsn_3>
trail_2>

ORACLE"

5-15

Chapter 5
Creating a Cascading Reporting Configuration

Use this configuration if:

One or more of the target systems does not have a direct connection to the
source, but the second system can connect in both directions.

You want to limit network activity from the source system.

You are sending data to two or more servers that are very far apart geographically,
such as from Chicago to Los Angeles and then from Los Angeles to servers
throughout China.

When considering this topology, take note of the following:

This configuration can be used to perform data filtering and conversion if the
character sets on all systems are identical. If character sets differ, a data pump
cannot perform conversion between character sets, and you must configure
Replicat to perform the conversion and transformation on the target.

To use the data pump on the second system to perform data conversion and
transformation, assuming character sets are identical, you must create a source
definitions file on the first system with the DEFGEN utility and then transfer it to the
second system. Additionally, you must create a source definitions file on the
second system and transfer it to the third system. See Associating Replicated
Data with Metadata for more information about definitions files and conversion.

On the second system, you must configure the Extract group to capture Replicat
activity and to ignore local business application activity. The Extract parameters
that control this behavior are | GNOREAPPLOPS and GETREPLI CATES.

Source System
Second System in the Cascade

Third System in the Cascade

Source System

Refer to Figure 5-4 for a visual representation of the objects you will be creating.

ORACLE

To Configure the Manager Process on the Source

1.

On the source, configure the Manager process according to the instructions in
Configuring Manager and Network Communications.

In the Manager parameter file, use the PURGEOLDEXTRACTS parameter to control the
purging of files from the trail.

To Configure the Primary Extract Group on the Source

1.

On the source, use the ADD EXTRACT command to create an Extract group. For
documentation purposes, this group is called ext_1.

ADD EXTRACT ext 1, {TRANLOG | |NTEGRATED TRANLOG}, BEGIN time [option[, ...]]

See Reference for Oracle GoldenGate for detailed information about these and
other ADD EXTRACT options that may be required for your installation.

On the source, use the ADD EXTTRAI L command to create a local trail.

ADD EXTTRAIL | ocal trail 1, EXTRACT ext 1

Use the EXTRACT argument to link this trail to the ext_1 Extract group.

5-16

ORACLE

Chapter 5
Creating a Cascading Reporting Configuration

On the source, use the EDI T PARAMS command to create a parameter file for the
ext_1 Extract group. Include the following parameters plus any others that apply to
your database environment. For possible additional required parameters, see the
Oracle GoldenGate installation and setup guide for your database.

- ldentify the Extract group:

EXTRACT ext _1

- Specify database login information as needed for the database:
[SOURCEDB dsn_1][, USERIDALIAS ali as]

- Log all scheduling colums if using integrated Replicat
LOGALLSUPCOLS

- Specify the local trail that this Extract wites to

- and encryption algorithm

ENCRYPTTRAI L al gorithm

EXTTRAIL | ocal _trail

- Specify tables and sequences to be captured:

SEQUENCE [cont ai ner. | cat al 0g.]owner. sequence;

TABLE [contai ner.|catal og.]owner.table;

To Configure the Data Pump on the Source

1.

On the source, use the ADD EXTRACT command to create a data pump group. For
documentation purposes, this group is called pump_1.

ADD EXTRACT punp_1, EXTTRAILSOURCE | ocal trail 1, BEGNtine

Use EXTTRAI LSOURCE as the data source option, and specify the name of the local
trail.

On the source, use the ADD RMI'TRAI L command to specify a remote trail that will
be created on the second system in the cascade.

ADD RMITRAIL renpte_trail _1, EXTRACT punp_1

Use the EXTRACT argument to link the remote trail to the pump_1 data pump group.
The linked data pump writes to this trail.

See Reference for Oracle GoldenGate for additional ADD RMITRAI L options.

On the source, use the EDI T PARAMS command to create a parameter file for the
pump_1 data pump. Include the following parameters plus any others that apply to
your database environment.

- ldentify the data punp group:

EXTRACT punp_1

- Specify database login information if using NOPASSTHROUGH:

[SOURCEDB dsn_1][, USERIDALIAS ali as]

- Decrypt the data only if the data punmp nust process it.

- DECRYPTTRAI L

- Specify the name or |P address of second systemin cascade

- and optional encryption of data over TCP/IP:

RMTHOSTOPTI ONS target 1, MERPORT port_nunber, ENCRYPT encryption_options
- Specify the remote trail and encryption algorithmon the second system
ENCRYPTTRAIL al gorithm

RMITRAIL remote_trail_1

- Specify tables and sequences to be captured:

SEQUENCE [cont ai ner. | cat al 0g.]owner. sequence;

TABLE [contai ner.|catal og.]owner.tabl e;

5-17

Chapter 5
Creating a Cascading Reporting Configuration

Second System in the Cascade

Configure the Manager process, Replicat group, and data pump on the second system
in the cascade.

ORACLE

To Configure the Manager Process on the Second System

1.

2.

On the second system, configure the Manager process according to the
instructions in Configuring Manager and Network Communications.

In the Manager parameter file, use the PURGEOLDEXTRACTS parameter to control the
purging of files from the trail.

To Configure the Replicat Group on the Second System

1.

Create a Replicat checkpoint table (unless using Oracle integrated Replicat). See
Creating a Checkpoint Table for instructions.

On the second system, use the ADD REPLI CAT command to create a Replicat
group. For documentation purposes, this group is called rep_1.

ADD REPLICAT rep_1

[, INTEGRATED | COORDI NATED [MAXTHREADS nunber]]
, EXTTRAIL renpte_trail 1,

, BEGANtine

Use the EXTTRAI L option to link the rep_1 group to the remote trail remote_trail_1
that is on the local system.

See Reference for Oracle GoldenGate for detailed information about these and
other options that may be required for your installation.

On the second system, use the EDI T PARAMS command to create a parameter file
for the Replicat group. Include the following parameters plus any others that apply
to your database environment. For possible additional required parameters, see
the Oracle GoldenGate installation and setup guide for your database.

- ldentify the Replicat group:

REPLI CAT rep_1

- Specify database login information as needed for the database:

[TARGETDB dsn_2][, USERIDALIAS ali as]

- Specify error handling rules:

REPERRCR (error, response)

- Specify tables for delivery and threads if using coordinated Replicat:

MAP [cont ai ner.|catal og.]owner.tabl e, TARGET owner.tabl e[, DEF tenpl ate]
[, THREAD (thread_ID)][, THREADRANGE (thread_range[, colum_|ist])]

5-18

Chapter 5
Creating a Cascading Reporting Configuration

Note:

For DB2 for i, you may need to use the ADD TRANDATA command on the
target tables if they are not already journaled. Alternatively, you could
use the STRIRNPF command to assign the tables to the appropriate
journal. If the target tables are not required to be replicated by Oracle
GoldenGate, the | MAGES(* AFTER) option can be used with STRIRNPF.
Since Oracle GoldenGate operates using transactions, all tables must be
journaled to support transactions and this is not the default with DB2 for
i.

To Configure an Extract Group on the Second System

1. On the source, use the ADD EXTRACT command to create an Extract group. For
documentation purposes, this group is called ext_2.

ADD EXTRACT ext 2, {TRANLOG | |NTEGRATED TRANLOG}, BEGIN time [option[, ...]]

See Reference for Oracle GoldenGate for detailed information about these and
other ADD EXTRACT options that may be required for your installation.

2. On the second system, use the ADD EXTTRAI L command to specify a local trail that
will be created on the third system.

ADD EXTTRAIL | ocal trail 2, EXTRACT ext 2

Use the EXTRACT argument to link this local trail to the ext_2 Extract group.

3. On the second system, use the EDI T PARAMS command to create a parameter file
for the ext_2 Extract group. Include the following parameters plus any others that
apply to your database environment. For possible additional required parameters,
see the Oracle GoldenGate installation and setup guide for your database.

- ldentify the Extract group:

EXTRACT ext 2

- Specify database login information as needed for the database:
[SOURCEDB dsn_2][, USERIDALIAS ali as]

- Log all scheduling colums if using integrated Replicat
LOGALLSUPCOLS

- Specify the local trail that this Extract wites to

- and encryption al gorithm

ENCRYPTTRAIL al gorithm

EXTTRAIL | ocal trail_2

- Ignore local DM, capture Replicat DMW.:

| GNOREAPPLOPS, GETREPLI CATES

- Specify tables and sequences to be captured:

SEQUENCE [cont ai ner. | cat al 0g.]owner . sequence;

TABLE [contai ner.|catal og.]owner.table;

" Note:

If replicating DDL operations, | GNOREAPPLOPS, GETREPLI CATES functionality
is controlled by the DDLOPTI ONS parameter.

ORACLE 5-19

Chapter 5
Creating a Cascading Reporting Configuration

To Configure the Data Pump on the Second System

1.

On the second system, use the ADD EXTRACT command to create a data pump
group. For documentation purposes, this group is called pump_2.

ADD EXTRACT punp_2, EXTTRAILSOURCE | ocal _trail _2, BEGNtime

Use EXTTRAI LSOURCE as the data source option, and specify the name of the local
trail.

On the second system, use the ADD RMITRAI L command to specify a remote trail
that will be created on the third system in the cascade.

ADD RMITRAIL renpte_trail 2, EXTRACT punp_2

Use the EXTRACT argument to link the remote trail to the pump_2 data pump group.
The linked data pump writes to this trail.

See Reference for Oracle GoldenGate for additional ADD RMITRAI L options.

On the second system, use the EDI T PARAMS command to create a parameter file
for the pump_2 data pump. Include the following parameters plus any others that
apply to your database environment.

- ldentify the data punp group:

EXTRACT punp_2

[SOURCEDB dsn_2][, USERIDALIAS ali as]

- Decrypt the data only if the data punp nust process it.

- DECRYPTTRAI L

- Specify the name or IP address of third systemin cascade

- and optional encryption of data over TCP/IP:

RMTHOSTOPTI ONS t arget _2, MGRPORT port _nunber, ENCRYPT encrypti on_options
- Specify the remote trail and encryption algorithmon the third system
ENCRYPTTRAIL al gorithm

RMITRAIL renote trail 2

- Specify tables and sequences to be captured:

SEQUENCE [cont ai ner. | cat al 0g.]owner. sequence;

TABLE [contai ner.|catal og.]owner.tabl e;

Third System in the Cascade

Configure the Manager process and Replicat group on the third system in the
cascade.

ORACLE

To Configure the Manager Process

1.

On the third system, configure the Manager process according to the instructions
in Configuring Manager and Network Communications.

In the Manager parameter file, use the PURGEOLDEXTRACTS parameter to control the
purging of files from the trail.

To Configure the Replicat Group

1.

On the third system, create a Replicat checkpoint table (unless using Oracle
integrated Replicat). See Creating a Checkpoint Table for instructions.

On the third system, use the ADD REPLI CAT command to create a Replicat group.
For documentation purposes, this group is called rep_2.

5-20

ORACLE

Chapter 5
Creating a Cascading Reporting Configuration

ADD REPLI CAT rep_2

[, INTEGRATED | COORDI NATED [MAXTHREADS nunber]]
, EXTTRAIL rempte_trail _2,

, BEGN tine

Use the EXTTRAI L option to link the rep_2 group to the remote_trail_2 trail.

See Reference for Oracle GoldenGate for detailed information about these and
other options that may be required for your installation.

On the third system, use the EDI T PARAMS command to create a parameter file for
the Replicat group. Include the following parameters plus any others that apply to
your database environment. For possible additional required parameters, see the
Oracle GoldenGate installation and setup guide for your database.

- ldentify the Replicat group:

REPLI CAT rep_2

- Specify database login information as needed for the database:

[TARGETDB dsn_3][, USERIDALIAS ali as]

- Specify error handling rules:

REPERRCR (error, response)

- Specify tables for delivery and threads if using coordinated Replicat:

MAP [contai ner.|catal og.]owner.tabl e, TARGET owner.tabl e[, DEF tenpl ate]
[, THREAD (thread_ID)][, THREADRANGE (thread_range[, colum_list])]

Note:

For DB2 for i, you may need to use the ADD TRANDATA command on the
target tables if they are not already journaled. Alternatively, you could
use the STRIRNPF command to assign the tables to the appropriate
journal. If the target tables are not required to be replicated by Oracle
GoldenGate, the | MAGES(* AFTER) option can be used with STRIRNPF.
Since Oracle GoldenGate operates using transactions, all tables must be
journaled to support transactions and this is not the default with DB2 for
i.

5-21

Using Oracle GoldenGate for Real-time
Data Distribution

This chapter describes the usage of Oracle GoldenGate for real-time data distribution.
Topics:

e Overview of the Data-distribution Configuration
« Considerations for a Data-distribution Configuration

e Creating a Data Distribution Configuration

Overview of the Data-distribution Configuration

A data distribution configuration is a one-to-many configuration. Oracle GoldenGate
supports synchronization of a source database to any number of target systems.
Oracle GoldenGate supports like-to-like or heterogeneous transfer of data, with
capabilities for filtering and conversion on any system in the configuration (support
varies by database platform).

[

- = |

|

I | [
] - EEEEE—
| |
E :

= EEEE——

e —

Considerations for a Data-distribution Configuration

ORACLE

These sections describe considerations for a data-distribution configuration.

e Fault Tolerance
» Filtering and Conversion

* Read-only vs. High Availability

6-1

Chapter 6
Creating a Data Distribution Configuration

e Additional Information

Fault Tolerance

For a data distribution configuration, the use of data pumps on the source system
ensures that if network connectivity to any of the targets fails, the captured data still
can be sent to the other targets. Use a primary Extract group and one data-pump
Extract group for each target.

Filtering and Conversion

You can use any process to perform filtering and conversion. However, using the data
pumps to perform filtering operations removes that processing overhead from the
primary Extract group, and it reduces the amount of data that is sent across the
network. See Mapping and Manipulating Data for filtering and conversion options.

Read-only vs. High Availability

The data distribution configuration supports read-only targets. See Configuring Oracle
GoldenGate for Active-Active High Availability if any target in this configuration will
also be used for transactional activity in support of high availability.

Additional Information

The following documentation provides additional information of relevance to
configuring Oracle GoldenGate.

e For additional system requirements, process configuration, and database setup
requirements, see the Oracle GoldenGate installation and configuration document
for your database type. These guides are listed in the Preface of this book.

e For detailed instructions on configuring Oracle GoldenGate change capture and
delivery groups, see Configuring Online Change Synchronization.

e For additional tuning options for Oracle GoldenGate, see Tuning the Performance
of Oracle GoldenGate.

e For complete syntax and descriptions of the Oracle GoldenGate commands and
parameters, see Reference for Oracle GoldenGate for Windows and UNIX.

Creating a Data Distribution Configuration

Refer to Figure 6-1 for a visual representation of the objects you will be creating.

ORACLE 6-2

Chapter 6
Creating a Data Distribution Configuration

Figure 6-1 Oracle GoldenGate Configuration Elements for Data Distribution

Source
SOURCEDB
<dsn_1>

v _
& I,_.EE_ o
{x i =)

Primary Trail Data Pump
Extract EXTRAIL EXTRACT
EXTRACT <local_trail>= | <pump_1=>
<ext>

Trail
RMTHOST HMTTRAIL F
<target 1> <remote_trail 1>

Data Pump Trail
EXTRACT BRMTHOST RMTTRAIL F

<pump_2> Network <target 2> <remote_trail_2>

* Source System

e Target Systems

Source System
Configure the Manager process and primary Extract on the source system.

To Configure the Manager Process

1. On the source, configure the Manager process. See Configuring Manager and
Network Communications for instructions.

2. In the Manager parameter file, use the PURGECLDEXTRACTS parameter to control the
purging of files from the local trail.

To Configure the Primary Extract

1. On the source, use the ADD EXTRACT command to create an Extract group. For
documentation purposes, this group is called ext.

ADD EXTRACT ext, {TRANLOG | |NTEGRATED TRANLOG}, BEGI N tine [option[, ...]]

ORACLE" 6-3

ORACLE

Chapter 6
Creating a Data Distribution Configuration

See Reference for Oracle GoldenGate for detailed information about these and
other ADD EXTRACT options that may be required for your installation.

On the source, use the ADD EXTTRAI L command to create a local trail.

ADD EXTTRAIL | ocal _trail, EXTRACT ext

Use the EXTRACT argument to link this trail to the primary Extract group. The
primary Extract group writes to this trail, and the data pump groups read it

On the source, use the EDI T PARAMS command to create a parameter file for the
primary Extract group. Include the following parameters plus any others that apply
to your database environment. For possible additional required parameters, see
the Oracle GoldenGate installation and setup guide for your database.

- ldentify the Extract group:

EXTRACT ext

- Specify database login information as needed for the database:
[SOURCEDB dsn_1][, USERI DALIAS al i as]

- Log all scheduling colums if using integrated Replicat
LOGALLSUPCOLS

- Specify the local trail that this Extract wites to

- and encryption algorithm

ENCRYPTTRAIL al gorithm

EXTTRAIL | ocal _trail

- Specify tables and sequences to be captured:

SEQUENCE [cont ai ner. | cat al 0g.]owner. sequence;

TABLE [contai ner.|catal og.]owner.table;

Use EXTTRAI L to specify the local trail.

To Configure the Data Pump Extract Groups

1.

On the source, use the ADD EXTRACT command to create a data pump for each
target system. For documentation purposes, these groups are called pump_1 and
pump_2.

ADD EXTRACT punp_1, EXTTRAILSOURCE | ocal _trail, BEGN tine

ADD EXTRACT punp_2, EXTTRAILSOURCE | ocal trail, BEGNtinme

Use EXTTRAI LSOURCE as the data source option, and supply the name of the local
trail.

On the source, use the ADD RMITRAI L command to specify a remote trail that will
be created on each of the target systems.

ADD RMITRAIL renmpte_trail _1, EXTRACT punp_1

ADD RMITRAIL renmote_trail _2, EXTRACT punp_2

Use the EXTRACT argument to link each remote trail to a different data pump group.
The linked data pump writes to this trail.

See Reference for Oracle GoldenGate for additional ADD RMITRAI L options.

On the source, use the EDI T PARAMS command to create a parameter file for each
of the data pumps. Include the following parameters plus any others that apply to
your database environment.

Parameter file for pump_1:

- ldentify the data punp group:
EXTRACT punp_1

6-4

Chapter 6
Creating a Data Distribution Configuration

- Specify database |ogin information:

[SOURCEDB dsn_1][, USERI DALIAS al i as]

- Decrypt the data only if the data punp nust process it.

- DECRYPTTRAI L

- Specify the name or IP address of the first target system

- and optional encryption of data over TCP/IP:

RMTHOSTOPTI ONS target _1, MGERPORT port_number, ENCRYPT encryption_options
- Specify remote trail and encryption algorithmon first target system
ENCRYPTTRAIL al gorithm

RMITRAIL renmote_trail 1

- Specify tables and sequences to be captured:

SEQUENCE [cont ai ner. | cat al 0g.]owner . sequence;

TABLE [cont ai ner.|catal og.]owner.tabl e;

Parameter file for pump_2:

- ldentify the data punp group:

EXTRACT punp_2

- Specify database login information as needed for the database:

[SOURCEDB dsn_1][, USERI DALIAS al i as]

- Decrypt the data only if the data pump nust process it.

- DECRYPTTRAI L

- Specify the name or |P address of the second target system

- and optional encryption of data over TCP/IP;

RMTHOSTOPTI ONS t arget _2, MGERPORT port_number, ENCRYPT encryption_options
- Specify remote trail and encryption algorithmon second target system
ENCRYPTTRAIL al gorithm

RMITRAIL renote_trail 2

- Specify tables and sequences to be captured:

SEQUENCE [cont ai ner.|cat al 0g.]owner . sequence;

TABLE [cont ai ner.|catal og.]owner.tabl e;

Target Systems

Configure the Manager process and Replicat groups on the target systems.

ORACLE

To Configure the Manager Process

1.

On each target, configure the Manager process. See Configuring Manager and
Network Communications for instructions.

In each Manager parameter file, use the PURGEOLDEXTRACTS parameter to control
the purging of files from the trail.

To Configure the Replicat Groups

1.

On each target, create a Replicat checkpoint table (unless using Oracle integrated
Replicat). See Creating a Checkpoint Table for instructions.

On each target, use the ADD REPLI CAT command to create a Replicat group for the
remote trail on that system. For documentation purposes, these groups are called
rep_1 and rep_2.

Command on target_1:

ADD REPLICAT rep_1
[, INTEGRATED | COORDI NATED [MAXTHREADS nunber]]
, EXTTRAIL renote_trail_1, BEGNtime

6-5

ORACLE

Chapter 6
Creating a Data Distribution Configuration

Command on target_2:

ADD REPLICAT rep_2
[, INTEGRATED | COORDI NATED [MAXTHREADS nunber]]
, EXTTRAIL renote_trail_2, BEGNtime

Use the EXTTRAI L argument to link the Replicat group to the correct trail.

See Reference for Oracle GoldenGate for detailed information about these and
other options that may be required for your installation.

On each target, use the EDI T PARAMS command to create a parameter file for the
Replicat group. Use the following parameters plus any others that apply to your
database environment. For possible additional required parameters, see the
Oracle GoldenGate installation and setup guide for your database.

Parameter file for rep_1:

- ldentify the Replicat group:

REPLICAT rep_1

- Specify database login information as needed for the database:

[TARGETDB dsn_2][, USERI DALIAS al i as]

- Specify error handling rules:

REPERRCR (error, response)

- Specify tables for delivery and threads if using coordinated Replicat:

MAP [contai ner.|catal og.]owner.tabl e, TARGET owner.tabl e[, DEF tenpl ate]
[, THREAD (thread_ID)][, THREADRANGE (thread_range[, colum_list])]

Parameter file for rep_2:

- ldentify the Replicat group:

REPLI CAT rep_2

- Specify database login information as needed for the database:

[TARGETDB dsn_3][, USERIDALIAS al i as]

- Specify error handling rules:

REPERRCR (error, response)

- Specify tables for delivery and threads if using coordinated Replicat:

MAP [contai ner.|catal og.]owner.tabl e, TARGET owner.tabl e[, DEF tenpl ate]
[, THREAD (thread_ID)][, THREADRANGE (thread_range[, colum_list])]

You can use any number of MAP statements for any given Replicat group. All MAP
statements for a given Replicat group must specify the same objects that are
contained in the trail that is linked to the group.

6-6

Configuring Oracle GoldenGate for Real-
time Data Warehousing

This chapter describes how to configure Oracle GoldenGate for real-time data
warehousing.

e Overview of the Data Warehousing Configuration
e Considerations for a Data Warehousing Configuration

e Creating a Data Warehousing Configuration

Overview of the Data Warehousing Configuration

A data warehousing configuration is a many-to-one configuration. Multiple source
databases send data to one target warehouse database. Oracle GoldenGate supports
like-to-like or heterogeneous transfer of data, with capabilities for filtering and
conversion on any system in the configuration (support varies by database platform).

YYy

Considerations for a Data Warehousing Configuration

ORACLE

This section describes considerations for a data warehousing configuration.

e |Isolation of Data Records
e Data Storage

» Filtering and Conversion

7-1

Chapter 7
Creating a Data Warehousing Configuration

e Additional Information

Isolation of Data Records

This configuration assumes that each source database contributes different records to
the target system. If the same record exists in the same table on two or more source
systems and can be changed on any of those systems, conflict resolution routines are
needed to resolve conflicts when changes to that record are made on both sources at
the same time and replicated to the target table. See Configuring Oracle GoldenGate
for Active-Active High Availability for more information about resolving conflicts.

Data Storage

You can divide the data storage between the source systems and the target system to
reduce the need for massive amounts of disk space on the target system. This is
accomplished by using a data pump on each source, rather than sending data directly
from each Extract across the network to the target.

* A primary Extract writes to a local trail on each source.

* A data-pump Extract on each source reads the local trail and sends it across
TCP/IP to a dedicated Replicat group.

Filtering and Conversion

If not all of the data from a source system will be sent to the data warehouse, you can
use the data pump to perform the filtering. This removes that processing overhead
from the primary Extract group, and it reduces the amount of data that is sent across
the network. See Mapping and Manipulating Data for filtering and conversion options.

Additional Information

The following documentation provides additional information of relevance to
configuring Oracle GoldenGate.

» For additional system requirements, process configuration, and database setup
requirements, see the Oracle GoldenGate installation and configuration document
for your database type. These guides are listed in the Preface of this book.

» For detailed instructions on configuring Oracle GoldenGate change capture and
delivery groups, see Configuring Online Change Synchronization.

* For additional tuning options for Oracle GoldenGate, see Tuning the Performance
of Oracle GoldenGate.

* For complete syntax and descriptions of the Oracle GoldenGate commands and
parameters, see Reference for Oracle GoldenGate for Windows and UNIX.

Creating a Data Warehousing Configuration

Refer to Figure 7-1 for a visual representation of the objects you will be creating.

ORACLE 7-2

Chapter 7
Creating a Data Warehousing Configuration

Figure 7-1 Configuration for Data Warehousing

SOURCEDB EXTRACT EXTTRAIL EXTRACT
<dsn_1> <ext_1= <local_trail_1> <pump_1>

Source Primary Trail Data Pump
Extract)

- B 020 rﬁ n é

RMTTRAIL
<remote_trail 2>

Metwork

RMTTRAIL
<remote_trail_2=

— o2

Source Primary Trail Data Pump

SOURCEDB Extract EXTTRAIL EXTRACT

=dsn_2= EXTRACT <local_ <pump_2=>
<axt 2= trail 2=

* Source Systems

e Target System

Source Systems

Configure the Manager process and primary Extract groups for the source systems.

ORACLE 7.3

ORACLE

Chapter 7
Creating a Data Warehousing Configuration

To Configure the Manager Process

1.

On each source, configure the Manager process according to the instructions in
Configuring Manager and Network Communications.

In each Manager parameter file, use the PURGEOLDEXTRACTS parameter to control
the purging of files from the trail on the local system.

To Configure the primary Extract Groups

1.

On each source, use the ADD EXTRACT command to create a primary Extract
group. For documentation purposes, these groups are called ext_1 and ext_2.

Command on source_1:

ADD EXTRACT ext 1, {TRANLOG | |NTEGRATED TRANLOG}, BEGIN time [option[, ...]]

Command on source_2:

ADD EXTRACT ext 2, {TRANLOG | |NTEGRATED TRANLOG}, BEGIN time [option[, ...]]

See Reference for Oracle GoldenGate for detailed information about these and
other ADD EXTRACT options that may be required for your installation.

On each source, use the ADD EXTTRAI L command to create a local trail.
Command on source_1:

ADD EXTTRAIL | ocal trail 1, EXTRACT ext 1

Command on source_2:

ADD EXTTRAIL | ocal _trail 2, EXTRACT ext 2

Use the EXTRACT argument to link each Extract group to the local trail on the same
system. The primary Extract writes to this trail, and the data-pump reads it.

On each source, use the EDI T PARAMS command to create a parameter file for the
primary Extract. Include the following parameters plus any others that apply to
your database environment. For possible additional required parameters, see the
Oracle GoldenGate installation and setup guide for your database.

Parameter file for ext_1:

- ldentify the Extract group:

EXTRACT ext _1

- Specify database login information as needed for the database:
[SOURCEDB dsn_1][, USERIDALIAS ali as]

- Log all scheduling colums if using integrated Replicat
LOGALLSUPCOLS

- Specify the local trail that this Extract wites to

- and the encryption algorithm

ENCRYPTTRAI L al gorithm

EXTTRAIL | ocal _trail _1

- Specify tables and sequences to be captured:

SEQUENCE [cont ai ner. | cat al 0g.]owner. sequence;

TABLE [cont ai ner.|catal og.]owner.tabl e;

Parameter file for ext 2:

7-4

ORACLE

Chapter 7
Creating a Data Warehousing Configuration

- ldentify the Extract group:

EXTRACT ext _2

- Specify database login information as needed for the database:
[SOURCEDB dsn_2][, USERI DALIAS al i as]

- Log all scheduling colums if using integrated Replicat or CDR
LOGALLSUPCOLS

- Specify the local trail that this Extract wites to

- and the encryption algorithm

ENCRYPTTRAIL al gorithm

EXTTRAIL | ocal trail 2

- Specify tables and sequences to be captured:

SEQUENCE [cont ai ner. | cat al 0g.]owner . sequence;

TABLE [cont ai ner.|catal og.]owner.tabl e;

To Configure the Data Pumps

1.

On each source, use the ADD EXTRACT command to create a data pump Extract
group. For documentation purposes, these pumps are called pump_1 and
pump_2.

Command on source_1:

ADD EXTRACT punp_1, EXTTRAILSOURCE | ocal _trail 1, BEGNtine

Command on source_2:

ADD EXTRACT punp_2, EXTTRAILSOURCE | ocal _trail _2, BEGNtime

Use EXTTRAI LSOURCE as the data source option, and specify the name of the trail
on the local system

On each source, use the ADD RMI'TRAI L command to create a remote trail on the
target.

Command on source_1:

ADD RMITRAIL renpte_trail 1, EXTRACT punp_1

Command on source_2:

ADD RMITRAIL rempte_trail _2, EXTRACT punp_2

Use the EXTRACT argument to link each remote trail to a different data pump. The
data pump writes to this trail over TCP/IP, and a Replicat reads from it.

See Reference for Oracle GoldenGate for additional ADD RMITRAI L options.

On each source, use the EDI T PARAMS command to create a parameter file for the
data pump group. Include the following parameters plus any others that apply to
your database environment.

Parameter file for pump_1:

- ldentify the data punp group:

EXTRACT punp_1

- Specify database login information as needed for the database:

[SOURCEDB dsn_1][, USERIDALIAS al i as]

- Decrypt the data only if the data punmp nust process it.

- DECRYPTTRAI L

- Specify the name or IP address of the target system

- and optional encryption of data over TCP/IP:

RMTHOSTOPTI ONS t ar get, MGRPORT port _number, ENCRYPT encryption_options

7-5

Target System

ORACLE

Chapter 7
Creating a Data Warehousing Configuration

- Specify the remote trail and encryption algorithmon the target system
ENCRYPTTRAIL al gorithm

RMITRAIL renote trail 1

- Specify tables and sequences to be captured:

SEQUENCE [cont ai ner .| cat al 0g.] owner. sequence;

TABLE [contai ner.|catal og.]owner.table;

Parameter file for pump_2:

- ldentify the data punp group:

EXTRACT punp_1

- Specify database |ogin information as needed for the database:

[SOURCEDB dsn_2][, USERIDALIAS ali as]

- Decrypt the data only if the data punp nust process it.

- DECRYPTTRAI L

- Specify the name or |P address of the target system

- and optional encryption of data over TCP/IP:

RMTHOSTOPTI ONS target, MGRPORT port _number, ENCRYPT encryption_options
- Specify the remote trail and encryption algorithmon the target system
ENCRYPTTRAIL al gorithm

RMITRAIL renote trail 2

- Specify tables and sequences to be captured:

SEQUENCE [cont ai ner. | cat al 0g.]owner. sequence;

TABLE [contai ner.|catal og.]owner.table;

Configure the Manager process and primary Replicat groups for the target system.

To Configure the Manager Process

1.

2.

Configure the Manager process. See Configuring Manager and Network
Communications for instructions.

In the Manager parameter file, use the PURGEOLDEXTRACTS parameter to control the
purging of files from the trail.

To Configure the Replicat Groups

1.

On the target, create a Replicat checkpoint table (unless using Oracle integrated
Replicat). See Creating a Checkpoint Table for instructions.

On the target, use the ADD REPLI CAT command to create a Replicat group for each
remote trail that you created. For documentation purposes, these groups are
called rep_1 and rep_2.

Command to add rep_1:

ADD REPLICAT rep_1
[, | NTEGRATED | COORDI NATED [MAXTHREADS number]]
, EXTTRAIL renpote_trail _1, BEGNtime

Command to add rep_2:

ADD REPLI CAT rep_2
[, INTEGRATED | COORDI NATED [MAXTHREADS nunber]]
, EXTTRAIL renpote_trail 2, BEGNtime

Use the EXTTRAI L argument to link the Replicat group to the trail.

7-6

ORACLE

Chapter 7
Creating a Data Warehousing Configuration

See Reference for Oracle GoldenGate for detailed information about these and
other options that may be required for your installation.

On the target, use the EDI T PARAMS command to create a parameter file for each
Replicat group. Include the following parameters plus any others that apply to your
database environment. For possible additional required parameters, see the
Oracle GoldenGate installation and setup guide for your database.

Parameter file for rep_1:

- ldentify the Replicat group:

REPLI CAT rep_1

- Specify database login information as needed for the database:

[TARGETDB dsn_3][, USERIDALIAS ali as]

- Specify error handling rules:

REPERRCR (error, response)

- Specify tables for delivery and threads if using coordinated Replicat:

MAP [contai ner.|catal og.]owner.tabl e, TARGET owner.tabl e[, DEF tenpl ate]
[, THREAD (thread_ID)][, THREADRANGE (thread_range[, colum_list])]

Parameter file for rep_1:

- ldentify the Replicat group:

REPLI CAT rep_2

- Specify database login information as needed for the database:

[TARGETDB dsn_3][, USERIDALIAS ali as]

- Specify error handling rules:

REPERROR (error, response)

- Specify tables for delivery and threads if using coordinated Replicat:

MAP [contai ner.|catal og.]owner.tabl e, TARGET owner.tabl e[, DEF tenpl ate]
[, THREAD (thread_ID)][, THREADRANGE (thread_range[, colum_list])]

You can use any number of MAP statements for any given Replicat group. All VAP
statements for a given Replicat group must specify the same objects that are
contained in the trail that is linked to the group.

7-7

Configuring Oracle GoldenGate to Maintain
a Live Standby Database

This chapter describes how to configure Oracle GoldenGate to maintain a live standby
database.
Topics:

Overview of a Live Standby Configuration
Considerations for a Live Standby Configuration
Creating a Live Standby Configuration
Configuration from Standby to Active Source
Moving User Activity in a Planned Switchover

Moving User Activity in an Unplanned Failover

Overview of a Live Standby Configuration

Oracle GoldenGate supports an active-passive bi-directional configuration, where
Oracle GoldenGate replicates data from an active primary database to a full replica
database on a live standby system that is ready for failover during planned and
unplanned outages.

ORACLE

8-1

Chapter 8
Considerations for a Live Standby Configuration

Application Switchover / Failover to Secondary

Primary Data Flow

Ca;f-iure Trail

-:—r

LAN/WAN/
Web/IP —

- Primary - Delivery Trail Trail

= Switchback / Failback Data Flow

In this configuration, there is an inactive Oracle GoldenGate Extract group and an
inactive data pump on the live standby system. Both of those groups remain stopped
until just before user applications are switched to the live standby system in a
switchover or failover. When user activity moves to the standby, those groups begin
capturing transactions to a local trail, where the data is stored on disk until the primary
database can be used again.

In the case of a failure of the primary system, the Oracle GoldenGate Manager and
Replicat processes work in conjunction with a database instantiation taken from the
standby to restore parity between the two systems after the primary system is
recovered. At the appropriate time, users are moved back to the primary system, and
Oracle GoldenGate is configured in ready mode again, in preparation for future
failovers.

Considerations for a Live Standby Configuration

ORACLE"

These sections describe considerations for a live standby configuration.
e Trusted Source

* Duplicate Standby

* DML on the Standby System

* Oracle GoldenGate Processes

» Backup Files

» Failover Preparedness

8-2

*&

Trail

Deliver

Captur

Chapter 8
Considerations for a Live Standby Configuration

* Sequential Values that are Generated by the Database

e Additional Information

Trusted Source

The primary database is the trusted source. This is the database that is the active
source during normal operating mode, and it is the one from which the other database
is derived in the initial synchronization phase and in any subsequent
resynchronizations. Maintain frequent backups of the trusted source data.

Duplicate Standby

In most implementations of a live standby, the source and target databases are
identical in content and structure. Data mapping, conversion, and filtering typically are
not appropriate practices in this kind of configuration, but Oracle GoldenGate does
support such functionality if required by your business model. To support these
functions, use the options of the TABLE and MAP parameters.

DML on the Standby System

If your applications permit, you can use the live standby system for reporting and
queries, but not DML. If there will be active transactional applications on the live
standby system that affect objects in the Oracle GoldenGate configuration, you should
configure this as an active-active configuration. See Configuring Oracle GoldenGate
for Active-Active High Availability for more information.

Oracle GoldenGate Processes

During normal operating mode, leave the primary Extract and the data pump on the
live standby system stopped, and leave the Replicat on the active source stopped.
This prevents any DML that occurs accidentally on the standby system from being
propagated to the active source. Only the Extract, data pump, and Replicat that move
data from the active source to the standby system can be active.

Backup Files

Make regular backups of the Oracle GoldenGate working directories on the primary
and standby systems. This backup must include all of the files that are installed at the
root level of the Oracle GoldenGate installation directory and all of the sub-directories
within that directory. Having a backup of the Oracle GoldenGate environment means
that you will not have to recreate your process groups and parameter files.

Failover Preparedness

Make certain that the primary and live standby systems are ready for immediate user
access in the event of a planned switchover or an unplanned source failure. The
following components of a high-availability plan should be made easily available for
use on each system:

e Scripts that grant insert, update, and delete privileges.

e Scripts that enable triggers and cascaded delete constraints on the live standby
system. (These may have been disabled during the setup procedures that were

ORACLE 8-3

Chapter 8
Creating a Live Standby Configuration

outlined in the Oracle GoldenGate installation and configuration document for your
database type.)

Scripts that switch over the application server, start applications, and copy
essential files that are not part of the replication environment.

A failover procedure for moving users to the live standby if the source system fails.

Sequential Values that are Generated by the Database

If database-generated values, such as Oracle sequences, are used as part of a key,
the range of values must be different on each system, with no chance of overlap. If the
application permits, you can add a location identifier to the value to enforce
unigueness.

For Oracle databases, Oracle GoldenGate can be configured to replicate sequences in
a manner that ensures uniqueness on each database. To replicate sequences, use the
SEQUENCE and MAP parameters. For more information, see Reference for Oracle
GoldenGate.

Additional Information

The following documentation provides additional information of relevance to
configuring Oracle GoldenGate.

For additional system requirements, process configuration, and database setup
requirements, see the Oracle GoldenGate installation and configuration document
for your database type. These guides are listed in the Preface of this book.

For detailed instructions on configuring Oracle GoldenGate change capture and
delivery groups, see Configuring Online Change Synchronization.

For additional tuning options for Oracle GoldenGate, see Tuning the Performance
of Oracle GoldenGate.

For complete syntax and descriptions of the Oracle GoldenGate commands and
parameters, see Reference for Oracle GoldenGate for Windows and UNIX.

Creating a Live Standby Configuration

Refer to Figure 8-1 for a visual representation of the objects you will be creating.

ORACLE

8-4

Chapter 8
Creating a Live Standby Configuration

Figure 8-1 Oracle GoldenGate configuration elements for live standby

Active Source

SOURCEDE EXTRACT
=axt 1=

<dsn_1=

Replicat

TARGETDB REPLICAT
<dsn_1=> <fgp_2>

Live Standby
EXTRAIL EXTRACT RMTHOST RMTTRAIL
<local_ <pump_1= <system_2> <remote_
trail_1> trail_1=
A i —_
- r—
p—— e
Trail Data Host Trail
FPump

Trail

RMTTRAIL
<remote_
trail_2=

:-— |
—.q—— -

Host Data Trail
Pump
EXTRAIL
RMTHOST EXTRACT <local_
<system_1» <pump_2=> trail_2>

» Prerequisites on Both Systems

e Configuration from Active Source to Standby

Prerequisites on Both Systems

Perform the following prerequisites on both systems.

1. Create a Replicat checkpoint table (unless using Oracle integrated Replicat). For
instructions, see Creating a Checkpoint Table.

2. Configure the Manager process according to the instructions in Configuring
Manager and Network Communications.

Configuration from Active Source to Standby

These steps configure Oracle GoldenGate to capture data from the primary database
and replicate it to the standby database.

To Configure the Primary Extract Group

Perform these steps on the active source.

ORACLE"

ORACLE

Chapter 8
Creating a Live Standby Configuration

On the source, use the ADD EXTRACT command to create an Extract group. For
documentation purposes, this group is called ext_1.

ADD EXTRACT ext 1, {TRANLOG | |NTEGRATED TRANLOG}, BEGIN time [option[, ...]]

See Reference for Oracle GoldenGate for detailed information about these and
other ADD EXTRACT options that may be required for your installation.

Use the ADD EXTTRAI L command to add a local trail. For documentation purposes,
this trail is called local_trail 1.

ADD EXTTRAIL | ocal trail 1, EXTRACT ext 1

For EXTRACT, specify the ext_1 group to write to this trail.

Use the EDI T PARAMS command to create a parameter file for the ext_1 group.
Include the following parameters plus any others that apply to your database
environment. For possible additional required parameters, see the Oracle
GoldenGate installation and setup guide for your database.

- ldentify the Extract group:

EXTRACT ext _1

- Specify database login information as needed for the database:
[SOURCEDB dsn_1][, USERIDALIAS al i as]

- Log all scheduling colums if using integrated Replicat
LOGALLSUPCOLS

- Specify the local trail that this Extract wites to

- and the encryption algorithm

ENCRYPTTRAIL al gorithm

EXTTRAIL | ocal trail 1

- Specify sequences to be captured:

SEQUENCE [cont ai ner.]owner. sequence;

- Specify tables to be captured:

TABLE [cont ai ner.]owner. *;

To Configure the Data Pump

Perform these steps on the active source.

1.

Use the ADD EXTRACT command to create a data pump group. For documentation
purposes, this group is called pump_1.

ADD EXTRACT punp_1, EXTTRAILSOURCE local trail 1, BEGNtine

For EXTTRAI LSOURCE, specify local_trail_1 as the data source.

Use the ADD RMITRAI L command to specify a remote trail that will be created on
the standby system.

ADD RMITRAIL renmote_trail _1, EXTRACT punp_1

For EXTRACT, specify the pump_1 data pump to write to this trail.
See Reference for Oracle GoldenGate for additional ADD RMITRAI L options.

Use the EDI T PARAMS command to create a parameter file for the pump_1 group.
Include the following parameters plus any others that apply to your database
environment.

- ldentify the data punp group:
EXTRACT punp_1
- Specify database login information as needed for the database:

8-6

Chapter 8
Configuration from Standby to Active Source

[SOURCEDB dsn_1][, USERIDALIAS ali as]

- Decrypt the data only if the data punp nust process it.

- DECRYPTTRAI L

- Specify the name or IP address of the standby system

- and optional encryption of data over TCP/IP:

RMTHOSTOPTI ONS syst em 2, MGERPORT port_number, ENCRYPT encryption_options
- Specify the remote trail and encryption algorithmon the standby system
ENCRYPTTRAIL al gorithm

RMITRAIL renmote_trail 1

- Specify sequences to be captured:

SEQUENCE [cont ai ner.]owner. sequence;

- Specify tables to be captured:

TABLE [cont ai ner.]owner. *;

To Configure the Replicat Group

Perform these steps on the live standby system.

1.

Create a Replicat checkpoint table (unless using Oracle integrated Replicat). See
Creating a Checkpoint Table for instructions.

Use the ADD REPLI CAT command to create a Replicat group. For documentation
purposes, this group is called rep_1.

ADD REPLICAT rep_1
[, |NTEGRATED | COCRDI NATED [MAXTHREADS number]]
, EXTTRAIL renmpte trail 1, BEGANtime

For EXTTRAI L, specify remote_trail_1 as the trail that this Replicat reads.

See Reference for Oracle GoldenGate for detailed information about these and
other options that may be required for your installation.

Use the EDI T PARAMS command to create a parameter file for the rep_1 group.
Include the following parameters plus any others that apply to your database
environment. For possible additional required parameters, see the Oracle
GoldenGate installation and setup guide for your database.

- ldentify the Replicat group:

REPLI CAT rep_1

- State that source and target definitions are identical:
ASSUMETARGETDEFS

- Specify database login information as needed for the database:

[TARGETDB dsn_2][, USERIDALIAS ali as]

- Specify error handling rules:

REPERRCR (error, response)

- Specify tables for delivery and threads if using coordinated Replicat:
MAP [contai ner.|catal og.]owner.tabl e, TARGET owner.tabl e[, DEF tenpl ate]
[, THREAD (thread_ID)][, THREADRANGE (thread_range[, colum_list])]

Configuration from Standby to Active Source

These steps configure Oracle GoldenGate in passive mode. In this mode, the Oracle
GoldenGate processes are ready, but not started, to capture data from the secondary
database and replicate it to the primary database after a switchover of transaction
activity to the secondary system.

ORACLE

8-7

ORACLE

Chapter 8
Configuration from Standby to Active Source

Note:

This is a reverse image of the configuration that you just created.

To Configure the Primary Extract Group

Perform these steps on the live standby system.

1.

On the source, use the ADD EXTRACT command to create an Extract group. For
documentation purposes, this group is called ext_2.

ADD EXTRACT ext 2, {TRANLOG | |NTEGRATED TRANLOG}, BEGIN time [option[, ...]]

See Reference for Oracle GoldenGate for detailed information about these and
other ADD EXTRACT options that may be required for your installation.

Start the TRANLOG Extract ext _2. Also see Preventing Data Looping.

Use the ADD EXTTRAI L command to add a local trail. For documentation purposes,
this trail is called local_trail 2.

ADD EXTTRAIL | ocal trail 2, EXTRACT ext 2

For EXTRACT, specify the ext_2 group to write to this trail.

Use the EDI T PARAMS command to create a parameter file for the ext_2 group.
Include the following parameters plus any others that apply to your database
environment. For possible additional required parameters, see the Oracle
GoldenGate installation and setup guide for your database.

- ldentify the Extract group:

EXTRACT ext 2

- Specify database login information as needed for the database:
[SOURCEDB dsn_2][, USERIDALIAS ali as]

- Log all scheduling colums if using integrated Replicat
LOGALLSUPCOLS

- Specify the local trail this Extract wites to and the encryption algorithm
ENCRYPTTRAIL al gorithm

EXTTRAIL | ocal trail_2

- Specify sequences to be captured:

SEQUENCE [cont ai ner.]owner. sequence;

- Specify tables to be captured:

TABLE [cont ai ner.]owner. *;

To Configure the Data Pump

Perform these steps on the live standby system.

1.

Use the ADD EXTRACT command to create a data pump group. For documentation
purposes, this group is called pump_2.

ADD EXTRACT punp_2, EXTTRAILSOURCE | ocal trail 2, BEGNtine

For EXTTRAI LSOURCE, specify local_trail_2 as the data source.

Use the ADD RMITRAI L command to add a remote trail remote_trail_2 that will be
created on the active source system.

ADD RMITRAIL renpte_trail _2, EXTRACT punp_2

8-8

ORACLE

Chapter 8
Configuration from Standby to Active Source

For EXTRACT, specify the pump_2 data pump to write to this trail.
See Reference for Oracle GoldenGate for additional ADD RMITRAI L options.

Use the EDI T PARAMS command to create a parameter file for the pump_2 group.
Include the following parameters plus any others that apply to your database
environment.

- ldentify the data punp group:

EXTRACT punp_2

- Specify database login information as needed for the database:

[SOURCEDB dsn_2][, USERIDALIAS ali as]

- Decrypt the data only if the data punp nust process it.

- DECRYPTTRAI L

- Specify the name or I|P address of the active source system

- and optional encryption of data over TCP/IP:

RMTHOSTOPTI ONS syst em 1, MGERPORT port_number, ENCRYPT encryption_options
- Specify remote trail and encryption algorithmon active source system
ENCRYPTTRAIL al gorithm

RMITRAIL renote_trail 2

- Specify sequences to be captured:

SEQUENCE [cont ai ner.]owner. sequence;

- Specify tables to be captured:

TABLE [cont ai ner.]owner . *;

To Configure the Replicat Group

Perform these steps on the active source.

1.

Use the ADD REPLI CAT command to create a Replicat group. For documentation
purposes, this group is called rep_2.

ADD REPLI CAT rep_2
[, |NTEGRATED | COCRDI NATED [MAXTHREADS number]]
, EXTTRAIL renmote trail 1, BEGANtime

For EXTTRAI L, specify remote_trail_2 as the trail that this Replicat reads.

See Reference for Oracle GoldenGate for detailed information about these and
other options that may be required for your installation.

Use the EDI T PARAMS command to create a parameter file for the rep_2 group.
Include the following parameters plus any others that apply to your database
environment. For possible additional required parameters, see the Oracle
GoldenGate installation and setup guide for your database.

- ldentify the Replicat group:

REPLI CAT rep_2

- State that source and target definitions are identical:
ASSUMETARGETDEFS

- Specify database login information as needed for the database:

[TARGETDB dsn_1][, USERIDALIAS ali as]

- Handl e collisions between failback data copy and replication:
HANDLECCLLI SI ONS

- Specify error handling rules:

REPERROR (error, response)

- Specify tables for delivery and threads if using coordinated Replicat:
MAP [contai ner.|catal og.]owner.tabl e, TARGET owner.tabl e[, DEF tenpl ate]
[, THREAD (thread_ID)][, THREADRANGE (thread_range[, colum_list])]

8-9

Chapter 8
Moving User Activity in a Planned Switchover

Moving User Activity in a Planned Switchover

This procedure moves user application activity from a primary database to a live
standby system in a planned, graceful manner so that system maintenance and other
procedures that do not affect the databases can be performed on the primary system.

Moving User Activity to the Live Standby
Moving User Activity Back to the Primary System

Moving User Activity to the Live Standby

To move user activity to the live standby:

ORACLE

1.

(Optional) If you need to perform system maintenance on the secondary system,
you can do so now or at the specified time later in these procedures, after moving
users from the secondary system back to the primary system. In either case, be
aware of the following risks if you must shut down the secondary system for any
length of time:

e The local trail on the primary system could run out of disk space as data
accumulates while the standby is offline. This will cause the primary Extract to
abend.

e If the primary system fails while the standby is offline, the data changes will
not be available to be applied to the live standby when it is functional again,
thereby breaking the synchronized state and requiring a full re-instantiation of
the live standby.

On the primary system, stop the user applications, but leave the primary Extract
and the data pump on that system running so that they capture any backlogged
transaction data.

On the primary system, issue the following command for the primary Extract until
it returns "At EOF, no nore records to process. " This indicates that all
transactions are now captured.

LAG EXTRACT ext _1

< Note:

Since capture continues to read REDO, the non-production workload
continues to work. In this case, there is possibility that At ECF is never
returned even though the production workload has already
stopped8.5.1..

On the primary system, stop the primary Extract process
STOP EXTRACT ext 1

On the primary system, issue the following command for the data pump until it
returns "At EOF, no nore records to process. " This indicates that the pump
sent all of the captured data to the live standby.

LAG EXTRACT punp_1

8-10

10.

11.

12.

13.

Chapter 8
Moving User Activity in a Planned Switchover

On the primary system, stop the data pump.
STOP EXTRACT punp_1

On the live standby system, issue the STATUS REPLI CAT command until it returns
"At EOF (end of file)." This confirms that Replicat applied all of the data from
the trail to the database.

STATUS REPLICAT rep_1

On the live standby system, stop Replicat.
STOP REPLICAT rep_1

On the live standby system, do the following:

* Run the script that grants insert, update, and delete permissions to the users
of the business applications.

* Run the script that enables triggers and cascade delete constraints.

* Run the scripts that switch over the application server, start applications, and
copy essential files that are not part of the replication environment.

On the live standby system, alter the primary Extract to begin capturing data
based on the current timestamp. Otherwise, Extract will spend unnecessary time
looking for operations that date back to the time that the group was created with
the ADD EXTRACT command.

ALTER EXTRACT ext_2, BEG N NOW

On the live standby system, start the primary Extract so that it is ready to capture
transactional changes.

START EXTRACT ext 2

" Note:

Do not start the data pump on the live standby system, and do not start
the Replicat on the primary system. Data must be stored in the local trail
on the live standby until the primary database is ready for user activity
again.

Switch user activity to the live standby system.

On the primary system, perform the system maintenance.

Moving User Activity Back to the Primary System

To move user activity back to the primary system:

ORACLE

1.

On the live standby system, stop the user applications, but leave the primary
Extract running so that it captures any backlogged transaction data.

On the primary system, start Replicat in preparation to receive changes from the
live standby system.

START REPLI CAT rep_2

On the live standby system, start the data pump to begin moving the data that is
stored in the local trail across TCP/IP to the primary system.

8-11

ORACLE

10.

11.

12.

13.
14.

15.

16.

Chapter 8
Moving User Activity in a Planned Switchover

START EXTRACT punp_2

On the live standby system, issue the following command for the primary Extract
until it returns "At EOF, no nore records to process." This indicates that all
transactions are now captured.

LAG EXTRACT ext _2
On the live standby system, stop the primary Extract.
STOP EXTRACT ext _2

On the live standby system, issue the following command for the data pump until
it returns "At EOF, no nore records to process. " This indicates that the pump
sent all of the captured data to the primary system.

LAG EXTRACT punp_2
On the live standby system, stop the data pump.
STOP EXTRACT punp_2

On the primary system, issue the STATUS REPLI CAT command until it returns " At
ECF (end of file)." This confirms that Replicat applied all of the data from the
trail to the database.

STATUS REPLI CAT rep_2

On the primary system, stop Replicat.
STOP REPLI CAT rep_2

On the primary system, do the following:

* Run the script that grants insert, update, and delete permissions to the users
of the business applications.

* Run the script that enables triggers and cascade delete constraints.

* Run the scripts that switch over the application server, start applications, and
copy essential files that are not part of the replication environment.

On the primary system, alter the primary Extract to begin capturing data based on
the current timestamp. Otherwise, Extract will spend unnecessary time looking for
operations that were already captured and replicated while users were working on
the standby system.

ALTER EXTRACT ext _1, BEG N NOW

On the primary system, start the primary Extract so that it is ready to capture
transactional changes.

START EXTRACT ext 1
Switch user activity to the primary system.

(Optional) If system maintenance must be done on the live standby system, you
can do it now, before starting the data pump on the primary system. Note that
captured data will be accumulating on the primary system while the standby is
offline.

On the primary system, start the data pump.
START EXTRACT punp_1

On the live standby system, start Replicat.

8-12

Chapter 8
Moving User Activity in an Unplanned Failover

START REPLICAT rep_1

Moving User Activity in an Unplanned Failover

These sections describe how to move user activity in an unplanned failover.

Moving User Activity to the Live Standby
Moving User Activity Back to the Primary System

Moving User Activity to the Live Standby

This procedure does the following:

Prepares the live standby for user activity.

Ensures that all transactions from the primary system are applied to the live
standby.

Activates Oracle GoldenGate to capture transactional changes on the live standby.

Moves users to the live standby system.

Perform these steps on the live standby system

To move users to the live standby

1.

Issue the STATUS REPLI CAT command until it returns "At ECF (end of file)"to
confirm that Replicat applied all of the data from the trail to the database.

STATUS REPLI CAT rep_1
Stop the Replicat process.
STOP REPLICAT rep_1

Run the script that grants insert, update, and delete permissions to the users of
the business applications.

Run the script that enables triggers and cascade delete constraints.

Run the scripts that fail over the application server, start applications, and copy
essential files that are not part of the replication environment.

Start the primary Extract process on the live standby.
START EXTRACT ext 2

Move the users to the standby system and let them start working.

Note:

Do not start the data pump group on the standby. The user transactions
must accumulate there until just before user activity is moved back to the
primary system.

Moving User Activity Back to the Primary System

This procedure does the following:

ORACLE

8-13

ORACLE

Chapter 8
Moving User Activity in an Unplanned Failover

Recovers the Oracle GoldenGate environment.

Makes a copy of the live standby data to the restored primary system.
Propagates user transactions that occurred while the copy was being made.
Reconciles the results of the copy with the propagated changes.

Moves users from the standby system to the restored primary system.

Prepares replication to maintain the live standby again.

Perform these steps after the recovery of the primary system is complete.

To Recover the Source Oracle GoldenGate Environment

1.

On the primary system, recover the Oracle GoldenGate directory from your
backups.

On the primary system, run GGSCI.

On the primary system, delete the primary Extract group.
DELETE EXTRACT ext _1

On the primary system, delete the local trail.

DELETE EXTTRAIL | ocal trail 1

On the primary system, add the primary Extract group again, using the same
name so that it matches the parameter file that you restored from backup. For
documentation purposes, this group is called ext_1. This step initializes the Extract
checkpoint from its state before the failure to a clean state.

ADD EXTRACT ext 1, {TRANLOG | |NTEGRATED TRANLOG}, BEGI N time
[, THREADS n]

» For TRANLOGand | NTEGRATED TRANLCG, see Reference for Oracle GoldenGate.
| NTEGRATED TRANLOG enables integrated capture for an Oracle database.

On the primary system, add the local trail again, using the same name as before.
For documentation purposes, this trail is called local_trail 1.

ADD EXTTRAIL | ocal trail 1, EXTRACT ext 1

e For EXTRACT, specify the ext_1 group to write to this trail.
On the primary system, start the Manager process.

START MANAGER

To Copy the Database from Standby to Primary System

1.

On the primary system, run scripts to disable triggers and cascade delete
constraints.

On the standby system, start making a hot copy of the database.
On the standby system, record the time at which the copy finishes.

On the standby system, stop user access to the applications. Allow all open
transactions to be completed.

To Propagate Data Changes Made During the Copy

1.

On the primary system, start Replicat.

8-14

ORACLE

Chapter 8
Moving User Activity in an Unplanned Failover

START REPLI CAT rep_2

On the live standby system, start the data pump. This begins transmission of the
accumulated user transactions from the standby to the trail on the primary system.

START EXTRACT punp_2

On the primary system, issue the | NFO REPLI CAT command until you see that it
posted all of the data changes that users generated on the standby system during
the initial load. Refer to the time that you recorded previously. For example, if the
copy stopped at 12:05, make sure that change replication has posted data up to
that point.

| NFO REPLI CAT rep_2

On the primary system, issue the following command to turn off the
HANDLECCLLI Sl ONS parameter and disable the initial-load error handling.

SEND REPLI CAT rep_2, NOHANDLECOLLI SI ONS

On the primary system, issue the STATUS REPLI CAT command until it returns " At
ECF (end of file)"to confirm that Replicat applied all of the data from the trail to
the database.

STATUS REPLI CAT rep_2

On the live standby system, stop the data pump. This stops transmission of any
user transactions from the standby to the trail on the primary system.

STOP EXTRACT punp_2
On the primary system, stop the Replicat process.

STOP REPLI CAT rep_2

At this point in time, the primary and standby databases should be in a state of
synchronization again.

(Optional) To Verify Synchronization

1.

Use a compare tool, such as Oracle GoldenGate Veridata, to compare the source
and standby databases for parity.

Use a repair tool, such as Oracle GoldenGate Veridata, to repair any out-of-sync
conditions.

To Switch Users to the Primary System

1.

On the primary system, run the script that grants insert, update, and delete
permissions to the users of the business applications.

On the primary system, run the script that enables triggers and cascade delete
constraints.

On the primary system, run the scripts that fail over the application server, start
applications, and copy essential files that are not part of the replication
environment.

On the primary system, start the primary Extract process.
START EXTRACT ext 1

On the primary system, allow users to access the applications.

8-15

Configuring Oracle GoldenGate for Active-
Active High Availability

This chapter describes how to configure Oracle GoldenGate for active-active high
availability.
Topics:

e Overview of an Active-Active Configuration

» Considerations for an Active-Active Configuration
* Preventing Data Looping

e Managing Conflicts

* Additional Information

e Creating an Active-Active Configuration

Overview of an Active-Active Configuration

ORACLE

Oracle GoldenGate supports an active-active bi-directional configuration, where there
are two systems with identical sets of data that can be changed by application users
on either system. Oracle GoldenGate replicates transactional data changes from each
database to the other to keep both sets of data current.

In a bi-directional configuration, there is a complete set of active Oracle GoldenGate
processes on each system. Data captured by an Extract process on one system is
propagated to the other system, where it is applied by a local Replicat process.

This configuration supports load sharing. It can be used for disaster tolerance if the
business applications are identical on any two peers. Bi-directional synchronization is
supported for all database types that are supported by Oracle GoldenGate.

Oracle GoldenGate supports active-active configurations for:
 DB2on z/OS, LUW, and IBM i

« MySQL

* Oracle

* SQL Server

9-1

Chapter 9
Considerations for an Active-Active Configuration

Oracle GoldenGate supports DDL replication in an Oracle active-active configuration.
DDL support is available for Oracle Database and MySQL (like-to-like configuration)
databases.

Considerations for an Active-Active Configuration

The following considerations apply in an active-active configuration. In addition, review
the Oracle GoldenGate installation and configuration document for your type of
database to see if there are any other limitations or requirements to support a bi-
directional configuration.

* TRUNCATES

* Application Design

¢ Keys

* Triggers and Cascaded Deletes
« Database-Generated Values

» Database Configuration

TRUNCATES

Bi-directional replication of TRUNCATES is not supported, but you can configure these
operations to be replicated in one direction, while data is replicated in both directions.
To replicate TRUNCATES (if supported by Oracle GoldenGate for the database) in an
active-active configuration, the TRUNCATES must originate only from one database, and
only from the same database each time.

Configure the environment as follows:

» Configure all database roles so that they cannot execute TRUNCATE from any
database other than the one that is designated for this purpose.

* On the system where TRUNCATE will be permitted, configure the Extract and
Replicat parameter files to contain the GETTRUNCATES parameter.

e On the other system, configure the Extract and Replicat parameter files to contain
the | GNORETRUNCATES parameter. No TRUNCATES should be performed on this
system by applications that are part of the Oracle GoldenGate configuration.

Application Design

ORACLE

When using Active-Active replication, the time zones must be the same on both
systems so that timestamp-based conflict resolution and detection can operate.

Active-active replication is not recommended for use with commercially available
packaged business applications, unless the application is designed to support it.
Among the obstacles that these applications present are:

» Packaged applications might contain objects and data types that are not supported
by Oracle GoldenGate.

* They might perform automatic DML operations that you cannot control, but which
will be replicated by Oracle GoldenGate and cause conflicts when applied by
Replicat.

9-2

Keys

Chapter 9
Considerations for an Active-Active Configuration

* You probably cannot control the data structures to make modifications that are
required for active-active replication.

For accurate detection of conflicts, all records must have a unique, not-null identifier. If
possible, create a primary key. If that is not possible, use a unique key or create a
substitute key with a KEYCOLS option of the MAP and TABLE parameters. In the absence
of a unique identifier, Oracle GoldenGate uses all of the columns that are valid in a
VWHERE clause, but this will degrade performance if the table contains numerous
columns.

To maintain data integrity and prevent errors, the following must be true of the key that
you use for any given table:

e contain the same columns in all of the databases where that table resides.

* contain the same values in each set of corresponding rows across the databases.

Triggers and Cascaded Deletes

ORACLE

Triggers and ON DELETE CASCADE constraints generate DML operations that can be
replicated by Oracle GoldenGate. To prevent the local DML from conflicting with the
replicated DML from these operations, do the following:

* Modify triggers to ignore DML operations that are applied by Replicat. If the target
is an Oracle database, Replicat handles triggers without any additional
configuration when in integrated mode. Parameter options are available for a
nonintegrated Replicat for Oracle. See Diabling Triggers and Referential Cascade
Constraints on Target Tables in Using Oracle GoldenGate for Oracle Database.

» Disable ON DELETE CASCADE constraints and use a trigger on the parent table to
perform the required delete(s) to the child tables. Create it as a BEFORE trigger so
that the child tables are deleted before the delete operation is performed on the
parent table. This reverses the logical order of a cascaded delete but is necessary
so that the operations are replicated in the correct order to prevent "table not
found" errors on the target.

Note:

For MySQL targets, cascade delete queries result in the deletion of the
child of the parent operation.

Note:

For Oracle Database targets, if Replicat is in integrated mode,
constraints are handled automatically without special configuration.

9-3

Chapter 9
Preventing Data Looping

Database-Generated Values

Do not replicate database-generated sequential values, such as Oracle sequences, in
a bi-directional configuration. The range of values must be different on each system,
with no chance of overlap. For example, in a two-database environment, you can have
one server generate even values, and the other odd. For an n-server environment,
start each key at a different value and increment the values by the number of servers
in the environment. This method may not be available to all types of applications or
databases. If the application permits, you can add a location identifier to the value to
enforce uniqueness.

Database Configuration

One of the databases must be designated as the trusted source. This is the primary
database and its host system from which the other database is derived in the initial
synchronization phase and in any subsequent resynchronizations that become
necessary. Maintain frequent backups of the trusted source data.

Preventing Data Looping

In a bidirectional configuration, SQL changes that are replicated from one system to
another must be prevented from being replicated back to the first system. Otherwise, it
moves back and forth in an endless loop, as in this example:

1. A user application updates a row on system A.

2. Extract extracts the row on system A and sends it to system B.

3. Replicat updates the row on system B.

4. Extract extracts the row on system B and sends it back to system A.
5. The row is applied on system A (for the second time).

6. This loop continues endlessly.

To prevent data loopback, you may need to provide instructions that:

e prevent the capture of SQL operations that are generated by Replicat, but enable
the capture of SQL operations that are generated by business applications if they
contain objects that are specified in the Extract parameter file.

e identify local Replicat transactions, in order for the Extract process to ignore them.

* Preventing the Capture of Replicat Operations
» lIdentifying Replicat Transactions

* Replicating DDL in a Bi-directional Configuration

Preventing the Capture of Replicat Operations

Depending on which database you are using, you may or may not need to provide
explicit instructions to prevent the capture of Replicat operations.

e Preventing the Capture of Replicat Transactions (Oracle)

e Preventing Capture of Replicat Transactions (Other Databases)

ORACLE 9-4

Chapter 9
Preventing Data Looping

Preventing the Capture of Replicat Transactions (Oracle)

To prevent the capture of SQL that is applied by Replicat to an Oracle database, there
are different options depending on the Extract capture mode:

When Extract is in classic or integrated capture mode, use the TRANLOGOPTI ONS
parameter with the EXCLUDETAGt ag option. This parameter directs the Extract
process to ignore transactions that are tagged with the specified redo tag. See
Identifying Replicat Transactions to set the tag value.

When Extract is in classic capture mode, use the Extract TRANLOGOPTI ONS
parameter with the EXCLUDEUSER or EXCLUDEUSER! D option to exclude the user
name or ID that is used by Replicat to apply the DDL and DML transactions.
Multiple EXCLUDEUSER statements can be used. The specified user is subject to the
rules of the GETREPLI CATES or | GNOREREPL| CATES parameter. See Preventing
Capture of Replicat Transactions (Other Databases) for more information.

Preventing Capture of Replicat Transactions (Other Databases)

To prevent the capture of SQL that is applied by Replicat to other database types
(including Oracle, if Extract operates in classic capture mode), use the following
parameters:

GETAPPLOPS | | GNOREAPPLOPS: Controls whether or not data operations (DML)
produced by business applications except Replicat are included in the content that
Extract writes to a specific trail or file.

CGETREPLI CATES | | GNOREREPLI CATES: Controls whether or not DML operations
produced by Replicat are included in the content that Extract writes to a specific
trail or file.

Identifying Replicat Transactions

To configure Extract to identify Replicat transactions, follow the instructions for the
database from which Extract will capture data.

DB2 z/0OS, DB2 LUW, and DB2 for i
MySQL

Oracle

SQL Server

DB2 z/OS, DB2 LUW, and DB2 for i

Identify the Replicat user name by using the following parameter statement in the

ORACLE

Extract parameter file.

TRANLOGOPTI ONS EXCLUDEUSER user

This parameter statement marks all DDL and DML transactions that are generated by
this user as Replicat transactions. The user name is included in the transaction record
that is read by Extract.

9-5

MySQL

Oracle

SQL Server

ORACLE

Chapter 9
Preventing Data Looping

Identify the name of the Replicat checkpoint table by using the following parameter
statement in the Extract parameter file.

TRANLOGOPTI ONS FI LTERTABLE t abl e_nane

Replicat writes a checkpoint to the checkpoint table at the end of each of its
transactions as part of its checkpoint procedure. (This is the table that is created with
the ADD CHECKPO NTTABLE command.) Because every Replicat transaction includes a
write to this table, it can be used to identify Replicat transactions in a bidirectional
configuration. FI LTERTABLE identifies the name of the checkpoint table, so that Extract
ignores transactions that contain any operations on it.

There are multiple ways to identify Replicat transaction in an Oracle environment.
When Replicat is in classic or integrated mode, you use the following parameters:

» Use DBOPTI ONS with the SETTAG option in the Replicat parameter file. Replicat tags
the transactions being applied with the specified value, which identifies those
transactions in the redo stream. The default SETTAGvalue is 00. Valid values are a
single TAG value consisting of hexadecimal digits.

» Use the TRANLOGOPTI ONS parameter with the EXCLUDETAG option in the Extract
parameter file. The logmining server associated with that Extract excludes redo
that is tagged with the SETTAG value.

The following shows how SETTAG can be set in the Replicat parameter file:

DBOPTI ONS SETTAG 0935

The following shows how EXCLUDETAG can be set in the Extract parameter file:
TRANLOGOPTI ONS EXCLUDETAG 0935

If you are excluding multiple tags, each must have a separate TRANLOGOPTI ONS
EXCLUDETAG statement specified.

You can also use the transaction name or userid of the Replicat user to identify
Replicat transactions. You can choose which of these to ignore when you configure
Extract. See Preventing the Capture of Replicat Transactions (Oracle).

For more information, see Reference for Oracle GoldenGate.

(CDC Extract) Identify the name of the Replicat checkpoint table by using the following
parameter statement in the Extract parameter file and ensure that the Replicat
checkpoint table has been enabled for supplemental logging with the ADD TRANDATA
command.

TRANLOGOPTI ONS FI LTERTABLE t abl e_nane
Replicat writes a checkpoint to the checkpoint table at the end of each of its

transactions as part of its checkpoint procedure. (This is the table that is created with
the ADD CHECKPO NTTABLE command). Because every Replicat transaction includes a

9-6

Replicating

Chapter 9
Managing Conflicts

write to this table, it can be used to identify Replicat transactions in a bi-directional
configuration. FI LTERTABLE identifies the name of the checkpoint table, so that Extract
ignores transactions that contain any operations on it.

(Classic Extract) By default, Extract ignores the Replicat's transactions, however, if
you modify the Replicat's transaction name with the DBOPTI ONS TRANSNAME parameter,
then you must exclude those transactions by using the following parameter statement
in the Extract parameter file.

TRANLOGOPTI ONS EXCLUDETRANS transacti on_name

This parameter statement is only required if the Replicat transaction name is set to
something other than the default of ggs_repl .

DDL in a Bi-directional Configuration

Additional consideration must be taken when replicating DDL bi-directionally, currently
only supported for Oracle database. For more information, see Managing the DDL
Replication Environment Using Oracle GoldenGate for Oracle Database.

Managing Conflicts

ORACLE

Uniform conflict-resolution procedures must be in place on all systems in an active-
active configuration. Conflicts should be identified immediately and handled with as
much automation as possible; however, different business applications will present
their own unique set of requirements in this area.

Because Oracle GoldenGate is an asynchronous solution, conflicts can occur when
modifications are made to identical sets of data on separate systems at (or almost at)
the same time. Conflicts occur when the timing of simultaneous changes results in one
of these out-of-sync conditions:

* Auniqueness conflict occurs when Replicat applies an insert or update
operation that violates a uniqueness integrity constraint, such as a PRI MARY KEY or
UNI QUE constraint. An example of this conflict type is when two transactions
originate from two different databases, and each one inserts a row into a table with
the same primary key value.

* An update conflict occurs when Replicat applies an update that conflicts with
another update to the same row. Update conflicts happen when two transactions
that originate from different databases update the same row at nearly the same
time. Replicat detects an update conflict when there is a difference between the
old values (the before values) that are stored in the trail record and the current
values of the same row in the target database.

» A delete conflict occurs when two transactions originate at different databases,
and one deletes a row while the other updates or deletes the same row. In this
case, the row does not exist to be either updated or deleted. Replicat cannot find
the row because the primary key does not exist.

For example, UserA on DatabaseA updates a row, and UserB on DatabaseB updates
the same row. If UserB's transaction occurs before UserA's transaction is
synchronized to DatabaseB, there will be a conflict on the replicated transaction.

A more complicated example involves three databases and illustrates a more complex
ordering conflict. Assume three databases A, B, and C. Suppose a user inserts a row

9-7

Chapter 9
Additional Information

at database A, which is then replicated to database B. Another user then modifies the
row at database B, and the row modification is replicated to database C. If the row
modification from B arrives at database C before the row insert from database A, C will
detect a conflict.

Where possible, try to minimize or eliminate any chance of conflict. Some ways to do
so are:

e Configure the applications to restrict which columns can be modified in each
database. For example, you could limit access based on geographical area, such
as by allowing different sales regions to modify only the records of their own
customers. As another example, you could allow a customer service application on
one database to modify only the NAVE and ADDRESS columns of a customer table,
while allowing a financial application on another database to modify only the
BALANCE column. In each of those cases, there cannot be a conflict caused by
concurrent updates to the same record.

» Keep synchronization latency low. If UserA on DatabaseA and UserB on
DatabaseB both update the same rows at about the same time, and UserA's
transaction gets replicated to the target row before UserB's transaction is
completed, conflict is avoided. See Tuning the Performance of Oracle GoldenGate
for suggestions on improving the performance of the Oracle GoldenGate
processes.

To avoid conflicts, replication latency must be kept as low as possible. When conflicts
are unavoidable, they must be identified immediately and resolved with as much
automation as possible, either through the Oracle GoldenGate Conflict Detection and
Resolution (CDR) feature, or through methods developed on your own. Custom
methods can be integrated into Oracle GoldenGate processing through the SQLEXEC
and user exit functionality. See Configuring Conflict Detection and Resolution for more
information about using Oracle GoldenGate to handle conflicts.

For Oracle database, the automatic Conflict Detection Resolution (CDR) feature
exists. To know more, see Oracle GoldenGate Automatic Conflict Detection and
Resolution in the Oracle Database XStream Guide.

Additional Information

The following documentation provides additional information of relevance to
configuring Oracle GoldenGate.

» For additional system requirements, process configuration, and database setup
requirements, see the Oracle GoldenGate installation and configuration document
for your database type.

» For detailed instructions on configuring Oracle GoldenGate change capture and
delivery groups, see Configuring Online Change Synchronization.

* For additional tuning options for Oracle GoldenGate, see Tuning the Performance
of Oracle GoldenGate.

* For complete syntax and descriptions of the Oracle GoldenGate commands and
parameters, see Reference for Oracle GoldenGate.

Creating an Active-Active Configuration

ORACLE

Refer to Figure 9-1 for a visual representation of the objects you will be creating.

9-8

Chapter 9
Creating an Active-Active Configuration

Figure 9-1 Oracle GoldenGate Configuration for Active-active Synchronization

Primary System ‘ Secondary System
SOURCEDE EXTRACT EXTRAIL EXTRACT RMTHOST HRMTTRAIL
<dsn_1=-ens-- =ext 1= <local_ <pump_1= <gystern_2= <remote_
S trail_1=
K. —
W ol [-
o IFd — L —_— —
Primary a Host Trail
Extract FPump

T —
T —
A —
Source/
Target
g -
s -5
+ —
Replicat Trail Host " s Data Trail
— Pump
RMTTRHAIL MNetwork EXTRAIL
TARGETDB REPLICAT =<remote_ | RMTHOST EXTRACT <local
<dsr_1oe=se=- <rep_2= trail_2= <systam_1> | <pump_z2=> trail_2=

» Prerequisites on Both Systems
e Configuration from Primary System to Secondary System

e Configuration from Secondary System to Primary System

Prerequisites on Both Systems

Perform these prerequisite tasks on both systems:

1. Create a Replicat checkpoint table (unless using Oracle integrated Replicat). See
Creating a Checkpoint Table for instructions.

2. Configure the Manager process. See Configuring Manager and Network
Communications for instructions.

Configuration from Primary System to Secondary System

These steps add the processes necessary to send data from the primary system to the
secondary database.

ORACLE" 9-9

Chapter 9
Creating an Active-Active Configuration

To Configure the Primary Extract Group
Perform these steps on the primary system.

1. Use the ADD EXTRACT command to create a primary Extract group. For
documentation purposes, this group is called ext 1.

ADD EXTRACT ext _1, {TRANLOG | | NTEGRATED TRANLOG, BEG N time

2. Use the ADD EXTTRAI L command to add a local trail. For documentation purposes,
this trail is called | ocal _trail _1.

ADD EXTTRAIL | ocal trail 1, EXTRACT ext 1

For EXTRACT, specify the ext _1 group to write to this trail

3. Usethe EDI T PARAMS command to create a parameter file for the ext _1 group.
Include the following parameters plus any others that apply to your database
environment. For possible additional required parameters, see the Oracle
GoldenGate installation and setup guide for your database.

- ldentify the Extract group:
EXTRACT ext _1
- Specify database login information as needed for the database:
[SOURCEDB dsn_1][, USERIDALIAS ali as]
- Specify the local trail that this Extract wites to
- and the encryption algorithm
ENCRYPTTRAIL al gorithm
EXTTRAIL | ocal _trail_1

Excl ude Replicat transactions. Uncomment ONE of the follow ng:
-- DB2 z/CS, DB2 LUW DB2 IBMi, and Oracle (classic capture):
-- TRANLOGOPTI ONS EXCLUDEUSER Repl i cat _user
-- Oracle (classic capture) alternative to EXCLUDEUSER
- EXCLUDEUSERID Oracle_uid
-- Oracle integrated capture:
-- EXCLUDETAG t ag
-- SQL Server:
- TRANLOGOPTI ONS EXCLUDETRANS t r ansact i on_name
-- -- Teradata:
-- SQLEXEC ' SET SESSI ON OVERRI DE REPLI CATI ON ON;'
- SQLEXEC 'COWM T;'

- Specify APl commands if Teradata:
VAMllbrary name, PARAMS ('param [, '‘param] [, ...])
- Capture before inmages for conflict resolution:
GETBEFCRECOLS (ON operation {ALL | KEY | KEYINCLUDING (col list) |
ALLEXCLUDING (col _list)})
- Log all scheduling colums for CDR and if using integrated Replicat
LOGALLSUPCOLS
- Specify tables to be captured and (optional) colums to fetch:
TABLE [contai ner.|catal og.]owner.* [, FETCHCOLS col s | FETCHCOLSEXCEPT col s];

< Note:

The VAM parameter in the examples is used only for heterogeneous
databases and does not apply to Oracle Database.

ORACLE 9-10

ORACLE

Chapter 9
Creating an Active-Active Configuration

To Configure the Data Pump

Perform these steps on the primary system.

1.

Use the ADD EXTRACT command to create a data pump group. For documentation
purposes, this group is called punp_1.

ADD EXTRACT punp_1, EXTTRAILSOURCE | ocal _trail _1, BEGN time

For EXTTRAI LSCURCE, specify | ocal _trail _1 as the data source.

Use the ADD RMITRAI L command to add a remote trail that will be created on the
secondary system. For documentation purposes, this trail is called
renote trail 1.

ADD RMITRAIL renmote_trail _1, EXTRACT punp_1

For EXTRACT, specify the punp_1 data pump to write to this trail.
See Reference for Oracle GoldenGate for additional ADD RMITRAI L options.

Use the EDI T PARAMS command to create a parameter file for the punp_1 group.
Include the following parameters plus any others that apply to your database
environment.

- ldentify the data punp group:

EXTRACT punp_1

- Specify database login information as needed for the database:

[SOURCEDB dsn_1][, USERIDALIAS ali as]

- Decrypt the data only if the data pump nust process it.

- DECRYPTTRAI L

- Specify the name or |P address of the secondary system

- and optional encryption of data over TCP/IP;

RMTHOSTOPTI ONS syst em 2, MGERPORT port_number, ENCRYPT encryption_options
- Specify remote trail and encryption algorithmon secondary system
ENCRYPTTRAIL al gorithm

RMITRAIL remote_trail _1

- Specify tables to be captured:

TABLE [contai ner.|catal og.]owner.*;

To Configure the Replicat Group

Perform these steps on the secondary system.

1.

Use the ADD REPLI CAT command to create a Replicat group. For documentation
purposes, this group is called rep_1.

ADD REPLICAT rep_1
[, | NTEGRATED | COORDI NATED [MAXTHREADS number]]
, EXTTRAIL renote trail 1, BEGANtime

For EXTTRAI L, specify remote_trai |l _1 as the trail that this Replicat reads.

Use the EDI T PARAMS command to create a parameter file for the rep_1 group.
Include the following parameters plus any others that apply to your database
environment. For possible additional required parameters, see the Oracle
GoldenGate installation and setup guide for your database.

- ldentify the Replicat group:
REPLICAT rep_1

9-11

Chapter 9
Creating an Active-Active Configuration

- State that source and target definitions are identical:
ASSUMETARGETDEFS
- Specify database login information as needed for the database:
[TARGETDB dsn_2][, USERIDALIAS ali as]
- Specify error handling rules:
REPERROR (error, response)
- Set redo tag for Oracle only replicat via settag
- Default is 00.
SETTAG t ag_val ue
- Specify tables for delivery, threads if coordinated Replicat
- and conflict-resol ution:
MAP [contai ner.|catal og.]owner.*, TARGET owner.*, COMPARECOLS (ON operation
{ALL | KEY | KEYINCLUDING (col _list) | ALLEXCLUDING (col _list)}),
RESOLVECONFLI CT (conflict type (resolution_nane, resol ution_type CO.S
(col[,...1))
[, THREAD (thread_ID)]
[, THREADRANGE (thread_range[, colum_list])]

- Specify mapping of exceptions to exceptions table:
MAP [contai ner.|catal og.]owner.*, TARGET owner.exceptions, EXCEPTI ONSONLY;

Configuration from Secondary System to Primary System

These steps add the processes necessary to send data from the secondary system to
the primary database.

ORACLE

To Configure the Primary Extract Group

Perform these steps on the secondary system.

1.

Note:

This is a reverse image of the configuration that you just created.

Use the ADD EXTRACT command to create a primary Extract group. For
documentation purposes, this group is called ext 2.

ADD EXTRACT ext_2, {TRANLOG | | NTEGRATED TRANLOG, BEG N time

Use the ADD EXTTRAI L command to add a local trail. For documentation purposes,
this trail is called | ocal trail 2.

ADD EXTTRAIL | ocal _trail _2, EXTRACT ext_2

For EXTRACT, specify the ext _2 group to write to this trail.

Use the EDI T PARAMS command to create a parameter file for the ext 2 group.
Include the following parameters plus any others that apply to your database
environment. For possible additional required parameters, see the Oracle
GoldenGate installation and setup guide for your database.

- ldentify the Extract group:
EXTRACT ext _2

- Specify database login information as needed for the database:
[SOURCEDB dsn_2][, USERIDALIAS ali as]

- Specify the local trail that this Extract wites to

9-12

ORACLE

Chapter 9
Creating an Active-Active Configuration

- and the encryption algorithm

ENCRYPTTRAIL al gorithm

EXTTRAIL | ocal trail 2

-- Exclude Replicat transactions. Uncomment ONE of the follow ng:

-- DB2 z/CS, DB2 LUW DB2 IBMi, and Oracle:

-- TRANLOGOPTI ONS EXCLUDEUSER Repl i cat _user

-- Oracle alternative to EXCLUDEUSER:

- EXCLUDEUSERID Oracle_uid

-- Oracle integrated capture:

-- EXCLUDETAG t ag

-- SQL Server:

- TRANLOGOPTI ONS EXCLUDETRANS transacti on_namne

---- Teradata:

-- SQLEXEC ' SET SESSI ON OVERRI DE REPLI CATI ON ON;'

- SQLEXEC 'COWM T,

-- Oracle:

- TRACETABLE trace_tabl e_nane

-- Log all scheduling colums for CDR and if using integrated Replicat
OGALLSUPCOLS

- Capture before inmages for conflict resolution:

GETBEFCRECOLS (ON operation {ALL | KEY | KEYINCLUDING (col list) |
ALLEXCLUDI NG (col _list)})

- Specify tables to be captured and (optional) colums to fetch:
TABLE [contai ner.|catal og.]owner.* [, FETCHCOLS col s | FETCHCOLSEXCEPT col s];

¢ Note:

To replicate Oracle DBFS data, specify the internally generated local
read-write DBFS tables in the TABLE statement on each node. For more
information on identifying these tables and configuring DBFS for
propagation by Oracle GoldenGate, see Applying the Required Patch in
Using Oracle GoldenGate for Oracle Database.

To Configure the Data Pump

Perform these steps on the secondary system.

1.

Use the ADD EXTRACT command to create a data pump group. For documentation
purposes, this group is called punp_2.

ADD EXTRACT punp_2, EXTTRAILSOURCE | ocal _trail 2, BEGNtine

For EXTTRAI LSOURCE, specify | ocal _trail 2 as the data source.

Use the ADD RMITRAI L command to add a remote trail that will be created on the
primary system. For documentation purposes, this trail is called renote_trail _2.

ADD RMITRAIL renpte_trail _2, EXTRACT punp_2

For EXTRACT, specify the punp_2 data pump to write to this trail.

Use the EDI T PARAMS command to create a parameter file for the punp_2 group.
Include the following parameters plus any others that apply to your database
environment.

- ldentify the data punp group:
EXTRACT punp_2

9-13

ORACLE

Chapter 9
Creating an Active-Active Configuration

- Specify database login information as needed for the database:

[SOURCEDB dsn_2][, USERIDALIAS ali as]

- Decrypt the data only if the data punp nust process it.

- DECRYPTTRAI L

- Specify the name or IP address of the primary system

- and optional encryption of data over TCP/IP:

RMTHOSTOPTI ONS syst em 1, MGERPORT port_number, ENCRYPT encryption_options
- Specify the remote trail and encryption algorithmon the primry system
ENCRYPTTRAIL al gorithm

RMITRAIL renmote_trail 2

- Specify tables to be captured:

TABLE [cont ai ner.|catal 0og.]owner. *;

Note:

To replicate Oracle DBFS data, specify the internally generated local
read-write DBFS tables in the TABLE statement on each node. For more
information on identifying these tables and configuring DBFS for
propagation by Oracle GoldenGate, see Configuring the DBFS File
System in Using Oracle GoldenGate for Oracle Database.

To Configure the Replicat Group

Perform these steps on the primary system.

1.

Use the ADD REPLI CAT command to create a Replicat group. For documentation
purposes, this group is called rep_2.

ADD REPLI CAT rep_2
[, | NTEGRATED | COORDI NATED [MAXTHREADS number]]
, EXTTRAIL renote_trail_2, BEGNtime

For EXTTRAI L, specify renote_trai | _2 as the trail that this Replicat reads.

See ADD RMITRAI L in Reference for Oracle GoldenGatefor detailed information
about these and other options that may be required for your installation.

Use the EDI T PARAMS command to create a parameter file for the rep_2 group.
Include the following parameters plus any others that apply to your database
environment.

- ldentify the Replicat group:
REPLI CAT rep_2
- State that source and target definitions are identical:
ASSUVETARGETDEFS
- Specify database login information as needed for the database:
[TARGETDB dsn_1][, USERIDALIAS ali as]
- Specify error handling rules:
REPERROR (error, response)
- Specify tables for delivery, threads if coordinated Replicat
- and conflict-resolution:
MAP [contai ner.|catal og.]owner.*, TARGET owner.*, COMPARECOLS (ON operation
{ALL | KEY | KEYINCLUDING (col _list) | ALLEXCLUDING (col _list)}),
RESOLVECONFLI CT (conflict type (resolution_nane, resol ution_type COLS
(col[,...1))
[, THREAD (thread_I D]
[, THREADRANGE (thread_range[, colum_list])]

9-14

Chapter 9
Creating an Active-Active Configuration

- Specify mapping of exceptions to exceptions table:
MAP [cont ai ner.|catal og.]owner.*, TARGET owner.exceptions, EXCEPTI ONSONLY;

" Note:

To replicate Oracle DBFS data, specify the internally generated local
read-write DBFS tables in the TABLE statement on each node.

ORACLE 9-15

Configuring Conflict Detection and
Resolution

This chapter contains instructions for using the Oracle GoldenGate Conflict Detection
and Resolution (CDR) feature. Conflict detection and resolution is required in active-
active configurations, where Oracle GoldenGate must maintain data synchronization
among multiple databases that contain the same data sets.

Topics:

» Overview of the Oracle GoldenGate CDR Feature

e Configuring Oracle GoldenGate CDR

 CDR Example 1: All Conflict Types with USEMAX, OVERWRITE, DISCARD
* CDR Example 2: UPDATEROWEXISTS with USEDELTA and USEMAX

* CDR Example 3: UPDATEROWEXISTS with USEDELTA, USEMAX, and
IGNORE

Overview of the Oracle GoldenGate CDR Feature

Oracle GoldenGate Conflict Detection and Resolution (CDR) provides basic conflict
resolution routines that:

* Resolve a uniqueness conflict for an | NSERT.

* Resolve a "no data found" conflict for an UPDATE when the row exists, but the
before image of one or more columns is different from the current value in the
database.

* Resolve a "no data found" conflict for an UPDATE when the row does not exist.

* Resolve a "no data found" conflict for a DELETE when the row exists, but the before
image of one or more columns is different from the current value in the database.

 Resolve a "no data found" conflict for a DELETE when the row does not exist.

To use conflict detection and resolution (CDR), the target database must reside on a
Windows, Linux, or UNIX system. It is not supported for databases on the NonStop
platform.

CDR supports scalar data types such as:

* NUMERIC
 DATE

e TI MESTAWP
* CHAR/ NCHAR

* VARCHAR/ NVARCHAR

This means that these column types can be used with the COWPARECOLS parameter, the
CGETBEFORECOLS parameter, and as the resolution column in the USEM N and USEMAX

ORACLE 10-1

Chapter 10
Configuring Oracle GoldenGate CDR

options of the RESOLVECONFLI CT parameter. Only NUMERI C columns can be used for the
USEDELTA option of RESOLVECONFLI CT. Do not use CDR for columns that contain LOBs,
abstract data types (ADT), or user-defined types (UDT).

Conflict resolution is not performed when Replicat operates in BATCHSQ. mode. If a
conflict occurs in BATCHSQL mode, Replicat reverts to GROUPTRANSOPS mode, and then
to single-transaction mode. Conflict detection occurs in all three modes. For more
information, see Reference for Oracle GoldenGate.

Configuring Oracle GoldenGate CDR

Here are the steps to configure the source database, target database, and Oracle
GoldenGate for conflict detection and resolution.

Topics:

* Making the Required Column Values Available to Extract

e Configuring the Oracle GoldenGate Parameter Files for Conflict Resolution
e Configuring the Oracle GoldenGate Parameter Files for Error Handling

* Viewing CDR Statistics

Making the Required Column Values Available to Extract

To use CDR, the following column values must be logged so that Extract can write
them to the trail.

e The full before image of each record. Some databases do not provide a before
image in the log record, and must be configured to do so with supplemental
logging. For most supported databases, you can use the ADD TRANDATA command
for this purpose.

» Use the LOGALLSUPCOLS parameter to ensure that the full before and after images
of the scheduling columns are written to the trail. Scheduling columns are primary
key, unique index, and foreign key columns. LOGALLSUPCOLS causes Extract to
include in the trail record the before image for UPDATE operations and the before
image of all supplementally logged columns for both UPDATE and DELETE
operations.

For detailed information about these parameters and commands, see the Reference
for Oracle GoldenGate. See the examples starting on CDR Example 1: All Conflict
Types with USEMAX, OVERWRITE, DISCARD for more information on how these
parameters work with CDR.

Configuring the Oracle GoldenGate Parameter Files for Conflict

Resolution

ORACLE

The following parameters are required to support conflict detection and resolution.

1. Use the GETBEFORECOLS option of the Extract TABLE parameter to specify columns
for which you want Extract to capture the before image of an update or delete
operation. For DB2 databases, use the GETUPDATEBEFORES parameter instead of
GETBEFORECOLS, which is not supported for DB2.

10-2

Chapter 10
Configuring Oracle GoldenGate CDR

Use the COVWPARECOLS option of the MAP parameter in the Replicat parameter file to
specify columns that are to be used with before values in the Replicat WHERE
clause. The before values are compared with the current values in the target
database to detect update and delete conflicts. (By default, Replicat only uses the
primary key in the WHERE clause; this may not be enough for conflict detection).

Use the RESCLVECONFLI CT option of the MAP parameter to specify conflict resolution
routines for different operations and conflict types. You can use RESOLVECONFLI CT
multiple times in a MAP statement to specify different resolutions for different
conflict types. However, you cannot use RESOLVECONFLI CT multiple times for the
same type of conflict. Use identical conflict-resolution procedures on all databases,
so that the same conflict produces the same end result. One conflict-resolution
method might not work for every conflict that could occur. You might need to
create several routines that can be called in a logical order of priority so that the
risk of failure is minimized.

" Note:

Additional consideration should be given when a table has a primary key and
additional unique indexes or unique keys. The automated routines provided
with the COMPARECOLS and RESOLVECONFLI CT parameters require a consistent
way to uniquely identify each row. Failure to consistently identify a row will
result in an error during conflict resolution. In these situations the additional
unique keys should be disabled or you can use the SQLEXEC feature to handle
the error thrown and resolve the conflict.

For detailed information about these parameters, see Reference for Oracle
GoldenGate. See the examples starting on CDR Example 1: All Conflict Types with
USEMAX, OVERWRITE, DISCARD, for more information on these parameters.

Configuring the Oracle GoldenGate Parameter Files for Error Handling

CDR should be used in conjunction with error handling to capture errors that were
resolved and errors that CDR could not resolve.

ORACLE

1.

Conflict resolution is performed before these other error-handling parameters:
HANDLECOLLSI ONS, | NSERTM SSI NGUPDATES, and REPERROR. Use the REPERROR
parameter to assign rules for handling errors that cannot be resolved by CDR, or
for errors that you do not want to handle through CDR. It might be appropriate to
have REPERROR handle some errors, and CDR handle others; however, if REPERROR
and CDR are configured to handle the same conflict, CDR takes precedence. The
| NSERTM SSI NGUPDATES and HANDLECOLLI SI ONS parameters also can be used to
handle some errors not handled by CDR. See the Reference for Oracle
GoldenGate for details about these parameters.

(Optional) Create an exceptions table. When an exceptions table is used with an
exceptions MAP statment (see Configuring the Oracle GoldenGate Parameter Files
for Error Handling), Replicat sends every operation that generates a conflict
(resolved or not) to the exceptions MAP statement to be mapped to the exceptions
table. Omit a primary key on this table if Replicat is to process UPDATE and DELETE
conflicts; otherwise there can be integrity constraint errors.

10-3

Chapter 10
Configuring Oracle GoldenGate CDR

At minimum, an exceptions table should contain the same columns as the target
table. These rows will contain each row image that Replicat applied to the target
(or tried to apply).

In addition, you can define additional columns to capture other information that
helps put the data in transactional context. Oracle GoldenGate provides tools to
capture this information through the exceptions MAP statement (see Configuring the
Oracle GoldenGate Parameter Files for Error Handling). Such columns can be, but
are not limited to, the following:

e The before image of the trail record. This is a duplicate set of the target
columns with names such as col 1_before, col 2_before, and so forth.

* The current values of the target columns. This also is a duplicate set of the
target columns with names such as col 1_current, col 2_current, and so forth.

e The name of the target table

e The timestamp of the conflict

e The operation type

* The database error number

e (Optional) The database error message
* Whether the conflict was resolved or not

Create an exceptions MAP statement to map the exceptions data to the exceptions
table. An exceptions MAP statement contains:

* (Required) The | NSERTALLRECORDS option. This parameter converts all mapped
operations to | NSERTs so that all column values are mapped to the exceptions
table.

* (Required) The EXCEPTI ONSONLY option. This parameter causes Replicat to
map operations that generate an error, but not those that were successful.

e (Optional) A COLMAP clause. If the names and definitions of the columns in the
exceptions table are identical to those of the source table, and the exceptions
table only contains those columns, no COLMAP is needed. However, if any
names or definitions differ, or if there are extra columns in the exceptions table
that you want to populate with additional data, use a COLMAP clause to map all
columns.

Tools for Mapping Extra Data to the Exceptions Table
Sample Exceptions Mapping with Source and Target Columns Only

Sample Exceptions Mapping with Additional Columns in the Exceptions Table

Tools for Mapping Extra Data to the Exceptions Table

ORACLE

The following are some tools that you can use in the COLMAP clause to populate extra
columns:

If the names and definitions of the source columns are identical to those of the
target columns in the exceptions table, you can use the USEDEFAULTS keyword
instead of explicitly mapping names. Otherwise, you must map those columns in
the COLMAP clause, for example:

COLMAP (exceptions_coll =coll, [...])

10-4

Chapter 10
Configuring Oracle GoldenGate CDR

* To map the before image of the source row to columns in the exceptions table,
use the @EFORE conversion function, which captures the before image of a column
from the trail record. This example shows the @EFORE usage.

COLMAP (USEDEFAULTS, exceptions_col 1 = @EFORE (source_col 1), &
exceptions_col 2 = @EFORE (source_col2), [...])

* To map the current image of the target row to columns in the exceptions table, use
a SQLEXEC query to capture the image, and then map the results of the query to the
columns in the exceptions table by using the ‘quer yl D. col utm' syntax in the
COLMAP clause, as in the following example:

COLMAP (USEDEFAULTS, name_current = queryl D.name, phone_current =
queryl D.phone, [...])

e To map timestamps, database errors, and other environmental information, use
the appropriate Oracle GoldenGate column-conversion functions. For example,
the following maps the current timestamp at time of execution.

res_date = @ATENOW ()

See Sample Exceptions Mapping with Additional Columns in the Exceptions Table , for
how to combine these features in a COLMAP clause in the exceptions MAP statement to
populate a detailed exceptions table.

See Reference for Oracle GoldenGate for Windows and UNIX for the usage and
syntax of the parameters and column-conversion functions shown in these examples.

Sample Exceptions Mapping with Source and Target Columns Only

The following is a sample parameter file that shows error handling and simple
exceptions mapping for the source and target tables that are used in the CDR
examples that begin. This example maps source and target columns, but no extra
columns. For the following reasons, a COLMAP clause is not needed in the exceptions
MAP statement in this example:

* The source and target exceptions columns are identical in name and definition.

* There are no other columns in the exceptions table.

Note:

This example intentionally leaves out other parameters that are required
in a Replicat parameter file, such as process name and login credentials,
as well as any optional parameters that may be required for a given
database type. When using line breaks to split a parameter statement
into multiple lines, use an ampersand (&) at the end of each line.

- REPERROR error handling: DEFAULT represents all error types. DI SCARD
- wites operations that could not be processed to a discard file.
REPERROR (DEFAULT, DI SCARD)
- Specifies a discard file.
DI SCARDFI LE / user s/ ogg/ di scards/ di scards. dsc, PURGE
- The regular MAP statenment with the CDR paraneters
MAP fin.src, TARGET fin.tgt, &
COVPARECOLS (ON UPDATE ALL, ON DELETE ALL), &
RESCLVECONFLI CT (UPDATEROVEXI STS, (DEFAULT, USEMAX (last_nod_tine)), &

ORACLE 10-5

Chapter 10
Configuring Oracle GoldenGate CDR

RESOLVECONFLI CT
RESOLVECONFLI CT
RESOLVECONFLI CT
RESOLVECONFLI CT

)s

| NSERTROVEXI STS, (DEFAULT, USEMAX (last_nod_tine)), &
DELETEROVEXI STS, (DEFAULT, OVERWRI TE)), &
UPDATEROWM SSI NG, (DEFAULT, OVERWRI TE)), &
DELETEROWM SSI NG, (DEFAULT, DI SCARD)), &

PR

- Starts the exceptions MAP statement by mapping the source table to the
- exceptions table.

MAP fin.src, TARCGET fin.exception, &
- directs Replicat only to map operations that caused the error specified
- in REPERRCR.

EXCEPTI ONSONLY, &
- directs Replicat to convert all the exceptions to inserts into the
- exceptions table. This is why there cannot be a primary key constraint
- on the exceptions table.

| NSERTALLRECORDS

Sample Exceptions Mapping with Additional Columns in the Exceptions Table

ORACLE

The following is a sample parameter file that shows error handling and complex
exceptions mapping for the source and target tables that are used in the CDR
examples that begin. In this example, the exceptions table has the same rows as the
source table, but it also has additional columns to capture context data.

Note:

This example intentionally leaves out other parameters that are required in a
Replicat parameter file, such as process name and login credentials, as well
as any optional parameters that may be required for a given database type.
When using line breaks to split a parameter statement into multiple lines, use
an ampersand (&) at the end of each line.

- REPERRCR error handling: DEFAULT represents all error types. DI SCARD

- wites operations that could not be processed to a discard file.
REPERROR (DEFAULT, DI SCARD)

- Specifies the discard file.
DI SCARDFI LE / users/ ogg/ di scards/ di scards. dsc, PURGE

- The regular MAP statenent with the CDR paraneters
MAP fin.src, TARCGET fin.tgt, &
COWPARECOLS (ON UPDATE ALL, ON DELETE ALL), &
RESOLVECONFLI CT (UPDATEROWEXI STS, (DEFAULT, USEMAX (last nod_tine)),
RESOLVECONFLI CT (| NSERTROWEXI STS, (DEFAULT, USEMAX (last nod_tine)),
RESCLVECONFLI CT (DELETEROVEXI STS, (DEFAULT, OVERWRITE)), &
RESCLVECONFLI CT (UPDATEROM SSI NG, (DEFAULT, OVERWRITE)), &
RESCLVECONFLI CT (DELETEROM SSI NG, (DEFAULT, DI SCARD))

)s

&
&

— e~ o~ —

- Starts the exceptions MAP statement by mapping the source table to the --
exceptions table.
MAP fin.src, TARCGET fin.exception, &
- directs Replicat only to map operations that caused the error specified
- in REPERROR
EXCEPTI ONSONLY, &
- directs Replicat to convert all the exceptions to inserts into the
- exceptions table. This is why there cannot be a primry key constraint
- on the exceptions table.
| NSERTALLRECORDS &

10-6

ORACLE

Chapter 10
Configuring Oracle GoldenGate CDR

-- SQLEXEC query to select the values fromthe target record before the
-- Replicat statement is applied. These are nmapped to the *_target
-- colums later.
SQLEXEC (id gry, query 'select nanme, phone, address, salary, balance, & comment,
last_mod_tinme fromfin.tgt where name = :pl', PARAMS(pl = name)), &
-- Start of the colum mapping, specifies use default colum definitions.
COLMAP (&
-- USEDEFAULTS naps the source colums to the target exceptions col ums
-- that receive the after image that Replicat applied or tried to apply.
-- In this case, USEDEFAULTS can be used because the nanes and definitions
-- of the source and target exceptions colums are identical; otherw se
-- the colums nust be mapped explicitly in the COLMAP cl ause.
USEDEFAULTS, &
-- captures the tinestanp when the resol ution was perforned.
res_date = @ATENOW (), &
-- captures and maps the DML operation type.
optype = @ETENV (' LASTERR , 'OPTYPE'), &
-- captures and maps the database error nunber that was returned.
dberrnum = @ETENV (' LASTERR , 'DBERRNUM), &
-- captures and maps the database error that was returned.
dberrnmsge = @ETENV (' LASTERR , 'DBERRMSG), &
-- captures and maps the nane of the target table
tabname = @ETENV (' GGHEADER , ' TABLENAME'), &
-- If the names and definitions of the source colums and the target
-- exceptions colums were not identical, the colums woul d need to
-- be mapped in the COLMAP cl ause instead of using USEDEFAULTS, as
-- follows:
-- nane_after = nane, &
-- phone_after = phone, &
-- address_after = address, &
-- salary_after = salary, &
-- balance_after = bal ance, &
-- comment _after = coment, &
-- last_mod_tine_after = last_nmod_tine &
-- maps the before imge of each colum fromthe trail to a colum in the
-- exceptions table.
nane_before = @EFORE (nanme), &
phone_before = @EFORE (phone), &
address_hefore = @EFORE (address), &
salary_before = @EFORE (salary), &
bal ance_bef ore = @EFORE (bal ance), &
comrent _before = @EFORE (comrent), &
| ast_mod_tinme_before = @EFORE (last_nod_time), &
-- maps the results of the SQLEXEC query to rows in the exceptions table
-- to show the current image of the rowin the target.
name_current = gry.name, &
phone_current = gry.phone, &
address_current = qry.address, &
salary_current = gry.salary, &
bal ance_current = gry. bal ance, &
comment _current = qry.coment, &
last_nod_time_current = gry.last_nod_tine)

For more information about creating an exceptions table and using exceptions
mapping, see Handling Replicat Errors during DML Operations.

Once you are confident that your routines work as expected in all situations, you can
reduce the amount of data that is logged to the exceptions table to reduce the
overhead of the resolution routines.

10-7

Chapter 10
Configuring Oracle GoldenGate CDR

Viewing CDR Statistics

The CDR feature provides the following methods for viewing the results of conflict
resolution.

* Report File
« GGSCI

e Column-conversion Functions

Report File
Replicat writes CDR statistics to the report file:
Total CDR conflicts 7
CDR resol utions succeeded 6
CDR resol utions failed 1
CDR | NSERTROVEXI STS conflicts 1
CDR UPDATEROVEXI STS conflicts 4
CDR UPDATEROWM SSI NG conflicts
CDR DELETEROWEXI STS conflicts 1
CDR DELETEROWM SSI NG conflicts 1
GGSCI

You can view CDR statistics from GGSCI by using the STATS REPLI CAT command with
the REPORTCDR option:

STATS REPLI CAT group, REPORTCDR

Column-conversion Functions

The following CDR statistics can be retrieved and mapped to an exceptions table or
used in other Oracle GoldenGate parameters that accept input from column-
conversion functions, as appropriate.

* Number of conflicts that Replicat detected
* Number of resolutions that Replicat resolved
* Number of resolutions that Replicat could not resolve

To retrieve these statistics, use the @EETENV column-conversion function with the
' STATS' or ' DELTASTATS' information type. The results are based on the current
Replicat session. If Replicat stops and restarts, it resets the statistics.

You can return these statistics for a specific table or set of wildcarded tables:

@ETENV (' STATS' , ' TABLE', ' SCHEMA. TABLNAME' , ' CDR_CONFLI CTS')
@ETENV (' STATS', ' TABLE', ' SCHEMA. TABLNAME' , ' CDR_RESOLUTI ONS_SUCCEEDED)
@ETENV (' STATS', ' TABLE', ' SCHEMA. TABLNAME' , ' CDR_RESOLUTI ONS_FAI LED)

You can return these statistics for all of the tables in all of the MAP statements in the
Replicat parameter file:

@ETENV (' STATS' , ' CDR_CONFLI CTS')
@ETENV (' STATS', ' CDR_RESOLUTI ONS_SUCCEEDED)
@ETENV (" STATS' , ' CDR_RESOLUTI ONS_FAI LED)

ORACLE 10-8

Chapter 10
CDR Example 1: All Conflict Types with USEMAX, OVERWRITE, DISCARD

The ' STATS' information type in the preceding examples can be replaced by
' DELTASTATS' to return the requested counts since the last execution of ' DELTASTATS' .

For more information about @ETENV, see Reference for Oracle GoldenGate.

CDR Example 1: All Conflict Types with USEMAX,
OVERWRITE, DISCARD

This example resolves all conflict types by using the USEMAX, OVERWRI TE, and DI SCARD
resolutions.

Table Used in this Example

MAP Statement with Conflict Resolution Specifications
Description of MAP Statement

Error Handling

INSERTROWEXISTS with the USEMAX Resolution
UPDATEROWEXISTS with the USEMAX Resolution
UPDATEROWMISSING with OVERWRITE Resolution
DELETEROWMISSING with DISCARD Resolution
DELETEROWEXISTS with OVERWRITE Resolution

Table Used in this Example

The examples assume identical Oracle databases.

CREATE TABLE t gt (

nane varchar2(30) primary key,
phone varchar 2(10),

address varchar2(100),

sal ary nunber,

bal ance nunber,

comrent varchar2(100),

| ast_nmod_tine tinestanp);

At the source database, all columns are supplementally logged:

ADD TRANDATA scott.src, COLS (name, phone, address, salary, bal ance, comment,
| ast _mod_tine);

MAP Statement with Conflict Resolution Specifications

MAP fin.src, TARGET fin.tgt,

ORACLE

COMPARECOLS (ON UPDATE ALL, ON DELETE ALL),

RESOLVECONFLI CT (UPDATEROWAEXI STS, (DEFAULT, USEMAX (Ilast_nod_tine)),
RESOLVECONFLI CT (| NSERTROAEX| STS, (DEFAULT, USEMAX (last_nod_tine)),
RESOLVECONFLI CT (DELETEROAEXI STS, (DEFAULT, OVERWRI TE)),
RESOLVECONFLI CT (UPDATEROM SSI NG, (DEFAULT, OVERWRITE)),
RESOLVECONFLI CT (DELETEROAM SSI NG, (DEFAULT, DI SCARD)),

K

— e~ —~ —

10-9

Chapter 10
CDR Example 1: All Conflict Types with USEMAX, OVERWRITE, DISCARD

Description of MAP Statement

The following describes the MAP statement:

Error Handling

ORACLE

Per COVWPARECCLS, use the before image of all columns in the trail record in the
Replicat WHERE clause for updates and deletes.

Per DEFAULT, use all columns as the column group for all conflict types; thus the
resolution applies to all columns.

For an | NSERTROAEX| STS conflict, use the USEMAX resolution: If the row exists
during an insert, use the | ast _nmod_t i me column as the resolution column for
deciding which is the greater value: the value in the trail or the one in the
database. If the value in the trail is greater, apply the record but change the insert
to an update. If the database value is higher, ignore the record.

For an UPDATEROVNEXI STS conflict, use the USEMAX resolution: If the row exists
during an update, use the | ast _nod_t i ne column as the resolution column: If the
value in the trail is greater, apply the update.

If you use USEM N or USEMAX, and the values are exactly the same, then
RESCLVECONFLI CT isn't triggered and the incoming row is ignored. If you use

USEM NEQ or USEMAXEQ, and the values are exactly the same, then the resolution is
triggered.

For a DELETEROVEXI STS conflict, use the OVERWRI TE resolution: If the row exists
during a delete operation, apply the delete.

For an UPDATEROM SSI NG conflict, use the OVERWRI TE resolution: If the row does
not exist during an update, change the update to an insert and apply it.

For a DELETROAM SSI NG conflict use the DI SCARD resolution: If the row does not
exist during a delete operation, discard the trail record.

Note:

As an alternative to USEMAX, you can use the USEMAXEQ resolution to
apply a >= condition. For more information, see Reference for Oracle
GoldenGate.

For an example of error handling to an exceptions table, see Configuring the Oracle
GoldenGate Parameter Files for Error Handling.

INSERTROWEXISTS with the USEMAX Resolution

For this example, the USEMAX resolution is illustrated with the applicable before and
after images for the record in the trail and in the database. It shows how to resolve an
insert where the row exists in the source and target, but some or all row values are
different.

10-10

Chapter 10
CDR Example 1: All Conflict Types with USEMAX, OVERWRITE, DISCARD

Table 10-1 INSERTROWEXISTS Conflict with USEMAX Resolution
]

Image

SQL Comments

Before image in trail

None (row was inserted on the NIA

source).

After image in trail

nane=' Mary' last _nod_tine='9/1/10 3:00 is the after
phone=' 1234567890" image of the resolution column. Since there
is an after image, this will be used to

address=" Oracl e Pkwy'
i determine the resolution.

sal ary=100

bal ance=100

comment =NULL

last _mod_tinme="9/1/10 3:00'

Target database image

name=" Mary’ last _nmod tine='9/1/10 1: 00 is the
phone=' 111111' current image of the resolution column in the
target against which the resolution column

addr ess=" Ral st on' . .
value in the trail is compared.

sal ary=200

bal ance=500

comrent = aaa

last _mod tinme="9/1/10 1:00

Initial | NSERT applied by SQL bind variables: This SQL returns a uniqueness conflict on
i ‘Mary'.

S:rﬂllli((::?t that detects the 1)" Mary’ y
2)' 1234567890
3)' Oracle Pkwy'
4)100
5) 100
6) NULL
7)'9/1/10 3:00'

UPDATE applied by Replicat SQL bind variables: Because USEMAX is specified for

to resolve the conflict 1)" 1234567890 | NSERTROVEXI STS, Replicat converts the
2)' Oracle Pky' insert to an update, and it compares the
3)100 value of | ast _mod_t i ne in the trail record
4) 100 with the value in the database. The value in
5) NULL the record is greater, so the after images for
6)' 9/1/10 3: 00" columns in the trail file are applied to the
7) " Mar y' target.
8)'9/1/10 3: 00

UPDATEROWEXISTS with the USEMAX Resolution

ORACLE

For this example, the USEMAX resolution is illustrated with the applicable before and
after images for the record in the trail and in the database. It shows how to resolve an
update where the row exists in the source and target, but some or all row values are
different.

10-11

Chapter 10

CDR Example 1: All Conflict Types with USEMAX, OVERWRITE, DISCARD

Table 10-2 UPDATEROWEXISTS Conflict with USEMAX Resolution
]

Image

SQL

Comments

Before image in trail

nanme=' Mary

phone="' 1234567890
address=" Oracl e Pkwy'
sal ary=100

bal ance=100

comment =NULL

last _mod_tine="9/1/10 3:00'

last _mod_time="9/1/10 3:00 is the
before image of the resolution column.

After image in trail

phone=' 222222’
address=" Hol | y'

| ast _mod_tine="9/1/10 5:00'

last _mod_time="9/1/10 5:00 is the
after image of the resolution column.
Since there is an after image, this will be
used to determine the resolution.

Target database image

nanme=' Mary'

phone=' 1234567890
address=" Oracl e Pkwy'
sal ary=100

bal ance=600

conmment =' com

| ast _mod_tinme="9/1/10 6:00'

last _mod time="9/1/10 6:00 is the
current image of the resolution column in
the target against which the resolution
column value in the trail is compared.

Initial UPDATE applied by
Replicat that detects the
conflict

SQL bind variables:

)' 222222

) Holl'y'

)' 9/1/10 5:00'
)" Mary’

)' 1234567890
)' Oracle Pkwy'
)
)
)
0

This SQL returns a no-data-found error
because the values for the bal ance,
coment, and | ast_nod_ti me are
different in the target.

All columns are used in the WHERE clause
because the COWPARECCLS statement is
setto ALL.

UPDATE applied by Replicat to
resolve the conflict

SQL bind variables:

1)" Mary'
2)" 222222'
3)' Hol | y'
4) 100

5) 100

6) NULL

7)' 9/1/10 5: 00"
8)"' Mary’

9)' 9/1/10 5: 00"

Because the after value of

| 'ast _nmod_t i me in the trail record is less
than the current value in the database,
the database value is retained. Replicat
applies the operation with a WHERE clause
that contains the primary key plus a

| ast_nod_ti me value set to less than

9/ 1/ 10 5:00. No rows match this
criteria, so the statement fails with a "data
not found" error, but Replicat ignores the
error because a USEMAX resolution is
expected to fail if the condition is not
satisfied.

UPDATEROWMISSING with OVERWRITE Resolution

For this example, the OVERWRI TE resolution is illustrated with the applicable before and
after images for the record in the trail and in the database. It shows how to resolve the

ORACLE

10-12

Chapter 10

CDR Example 1: All Conflict Types with USEMAX, OVERWRITE, DISCARD

case where the target row is missing. The logical resolution, and the one used, is to
overwrite the row into the target so that both databases are in sync again.

Table 10-3 UPDATEROWMISSING Conflict with OVERWRITE Resolution
]

Image

SQL

Comments

Before image in trail

nane=' Jane

phone=' 333

address=" Oracl e Pkwy'

sal ary=200

bal ance=200

comment =NULL

last _mod_tine="9/1/10 7: 00

N/A

After image in trail

phone=' 4444
address=" Hol | y'
| ast _mod_tine="9/1/10 8:00'

Target database image

None (row for Jane is missing)

Initial UPDATE applied by
Replicat that detects the
conflict

SQL bind variables:

) 4444’

) Holl'y'

)' 9/1/10 8:00'
)' Jane'

)' 333

)' Oracle Pkwy'
)

)

)

0

This SQL returns a no-data-found error.
All columns are used in the WHERE
clause because the COVPARECCOLS
statement is set to ALL.

| NSERT applied by Replicat
to resolve the conflict

The update is converted to an insert
because OVERWRI TE is the resolution.
The after image of a column is used if
available; otherwise the before image is
used.

DELETEROWMISSING with DISCARD Resolution

For this example, the DI SCARD resolution is illustrated with the applicable before and
after images for the record in the trail and in the database. It shows how to resolve the
case where the target row is missing. In the case of a delete on the source, it is
acceptable for the target row not to exist (it would need to be deleted anyway), so the
resolution is to discard the DELETE operation that is in the trail.

ORACLE

10-13

Chapter 10
CDR Example 1: All Conflict Types with USEMAX, OVERWRITE, DISCARD

Table 10-4 DELETEROWMSING Conflict with DISCARD Resolution

___|]
Image SQL Comments

Before image in trail nane=' Jane' N/A

phone=' 4444
address=" Hol | y'

sal ary=200

bal ance=200

comment =NULL

last _mod_tine="9/1/10 8:00

After image in trail None N/A
Target database image None (row ni ssi ng) N/A
Initial DELETE applied by SQL bind variables: This SQL returns a no-data-found error.
Replicat that detects the 1)" Jane All columns are used in the WHERE
conflict 2)" 4444 clause because the COWPARECOLS
3)" Hol | y' statement is set to ALL.
4) 200
5) 200
6) NULL
7)'9/1/10 8:00
SQL applied by Replicat 0 \one Because DI SCARD is specified as the
resolve the conflict resolution for DELETEROWM SSI NG, so
the delete from the trail goes to the
discard file.

DELETEROWEXISTS with OVERWRITE Resolution

For this example, the OVERWRI TE resolution is illustrated with the applicable before and
after images for the record in the trail and in the database. It shows how to resolve the
case where the source row was deleted but the target row exists. In this case, the
OVERWRI TE resolution applies the delete to the target.

Table 10-5 DELETEROWEXISTS Conflict with OVERWRITE Resolution

Image SQL Comments

Before image in trail nane=' Mary' N/A

phone='222222'

address=" Hol | y'

sal ary=100

bal ance=100

coment =NULL

last_nmod time="9/1/10 5:00'

After image in trall None N/A

ORACLE 10-14

Chapter 10

CDR Example 2: UPDATEROWEXISTS with USEDELTA and USEMAX

Table 10-5 (Cont.) DELETEROWEXISTS Conflict with OVERWRITE Resolution
]

Image SQL

Comments

Target database image name=' Mary'

phone="' 1234567890
address=" Oracl e Pkwy'

sal ary=100

bal ance=600

conmrent =com
last_mod_tine="9/1/10 7:00'

The row exists on the target, but the
phone, addr ess, bal ance, conment ,
and | ast_nod_ti ne columns are
different from the before image in the
trail.

Initial DELETE applied by SQL bind variables:
Replicat that detects the Mary’

. 1)

conflict 2)" 222222
3)' Hol Iy’
4) 100
5)
6)
7)

All columns are used in the WHERE
clause because the COWPARECOLS
statement is set to ALL.

A no-data-found error occurs because of

the difference between the before and
current values.

DELETE applied by Replicat SQL bind variables:
to resolve the conflict . .
1)" Mary

Because OVERWRI TE is the resolution.
the DELETE is applied using only the
primary key (to avoid an integrity error).

CDR Example 2: UPDATEROWEXISTS with USEDELTA

and USEMAX

This example resolves the condition where a target row exists on UPDATE but non-key
columns are different, and it uses two different resolution types to handle this condition

based on the affected column.

e Table Used in this Example

* MAP Statement

* Description of MAP Statement

» Error Handling

Table Used in this Example

The examples assume identical Oracle databases.

CREATE TABLE t gt (
name varchar2(30) primary key,
phone varchar2(10),
address varchar2(100),
sal ary nunber,
bal ance nunber,
comment var char 2(100),
| ast_nod_tinme tinestanp);

At the source database, all columns are supplementally logged:

ORACLE

10-15

Chapter 10
CDR Example 2: UPDATEROWEXISTS with USEDELTA and USEMAX

ADD TRANDATA scott.src, COLS (name, phone, address, salary, bal ance, comment,
| ast_mod_tine);

MAP Statement

MAP fin.src, TARCGET fin.tgt,

COVPARECOLS

(ON UPDATE KEYI NCLUDI NG (address, phone, salary, last_nod_time),
ON DELETE KEYI NCLUDI NG (address, phone, salary, last_nod_tine)),
RESOLVECONFLI CT (

UPDATEROVNEXI STS,

(delta_res_nethod, USEDELTA, COLS (salary)),

(DEFAULT, USEMAX (last_nod_tine)));

Description of MAP Statement

For an UPDATEROAEXI STS conflict, where a target row exists on UPDATE but non-key
columns are different, use two different resolutions depending on the column:

Per the del t a_r es_met hod resolution, use the USEDELTA resolution logic for the
sal ary column so that the change in value will be added to the current value of the
column.

Per DEFAULT, use the USEMAX resolution logic for all other columns in the table (the
default column group), using the | ast _nod_t i ne column as the resolution column.
This column is updated with the current time whenever the row is modified; the
value of this column in the trail is compared to the value in the target. If the value
of last _nod_ti ne in the trail record is greater than the current value of

| ast _nod_ti ne in the target database, the changes to name, phone, addr ess,

bal ance, comrent and | ast_nod_t i me are applied to the target.

Per COVWPARECCLS, use the primary key (name column) plus the addr ess, phone, sal ary,
and | ast_nod_ti nme columns as the comparison columns for conflict detection for
UPDATE and DELETE operations. (The bal ance and comrent columns are not
compared.)

Note:

As an alternative to USEMAX, you can use the USEMAXEQ resolution to apply a
>= condition. For more information, see Reference for Oracle GoldenGate.

Error Handling

For an example of error handling to an exceptions table, see Configuring the Oracle
GoldenGate Parameter Files for Error Handling.

ORACLE

10-16

Chapter 10

CDR Example 2: UPDATEROWEXISTS with USEDELTA and USEMAX

Table 10-6 UPDATEROWEXISTS with USEDELTA and USEMAX
|

Image

SQL

Comments

Before image in trail

name=' Mary'
phone="' 1234567890

address=" Oracl e Pkwy'

sal ary=100
bal ance=100
conmment =NULL

last _mod_tine="9/1/10 3:00'

last _nod tine='9/1/10 3: 00 isthe
before image of the resolution column
for the USEMAX resolution.

sal ary=100 is the before image for the
USEDELTA resolution.

After image in trail

phone=' 222222'
address=" Hol | y'
sal ary=200
conmment =' new

| ast _mod_tine="9/1/10 5:00'

last _nod tine='9/1/10 5:00 isthe
after image of the resolution column for
USEMAX. Since there is an after image,
this will be used to determine the
resolution.

Target database image

nane=" Mary'
phone=' 1234567890

address=" Oracl e Pkwy'

sal ary=600
bal ance=600
conment =' conl

last_mod_tine="9/1/10 4:00'

last _nod tine='9/1/10 4:00 isthe
current image of the resolution column in
the target against which the resolution
column value in the trail is compared.

sal ary=600 is the current image of the
target column for the USEDELTA
resolution.

Initial UPDATE applied by
Replicat that detects the
conflict

SQL bind variables:

1222222
"Hol Iy’
200
‘new
'9/1/10 5:00'
" Mary'

' 1234567890'
"Oracl e Pkwy'
100

1
2
3
4
5
6
7
8
9
10)' 9/1/10 3:00'

)
)
)
)
)
)
)
)
)
0

This SQL returns a no-data-found error
because the values for the sal ary and
| ast _nod_ti me are different. (The
values for corment and bal ance are
also different, but these columns are not
compared.)

UPDATE applied by Replicat
to resolve the conflict for
sal ary, using USEDELTA.

SQL bind variables:

1) 200
2) 100
3)' Mary

Per USEDELTA, the difference between
the after image of sal ary (200) in the
trail and the before image of sal ary
(200) in the trail is added to the current
value of sal ary in the target (600). The
result is 700.

600 + (200 - 100) = 700

UPDATE applied by Replicat
to resolve the conflict for the
default columns, using
USEMAX.

SQL bind variables:

1)' 222222

2)" Hol l'y'

3)' new
4)'9/1/10 5:00'
5)' Mary'
6)'9/1/10 5:00'

Per USEMAX, because the after value of
[ast _nod_ti ne in the trail record is
greater than the current value in the
database, the row is updated with the
after values from the trail record.

Note that the sal ary column is not set
here, because it is resolved with the
UPDATE from the USEDELTA resolution.

ORACLE

10-17

Chapter 10
CDR Example 3: UPDATEROWEXISTS with USEDELTA, USEMAX, and IGNORE

CDR Example 3: UPDATEROWEXISTS with USEDELTA,
USEMAX, and IGNORE

This example resolves the conflict where a target row exists on UPDATE but non-key
columns are different, and it uses three different resolution types to handle this
condition based on the affected column.

Table Used in this Example
MAP Statement

Description of MAP Statement
Error Handling

Table Used in this Example

The examples assume identical Oracle databases.

CREATE TABLE t gt (

name varchar2(30) primary key,
phone varchar2(10),

address varchar2(100),

sal ary nunber,

bal ance nunber,

comment var char 2(100),

| ast_nod_time tinestanp);

At the source database, all columns are supplementally logged:

ADD TRANDATA scott.src, COLS (name, phone, address, salary, bal ance, comment,
| ast_mod_tine);

MAP Statement

MAP fin.src, TARGET fin.tgt,

COMPARECOLS

(ON UPDATE ALLEXCLUDI NG (coment)),

RESOLVECONFLI CT (

UPDATERO/EXI STS,

(delta_res_nethod, USEDELTA, COLS (salary, balance)),

(max_res_met hod, USEMAX (last_nod_tinme), COLS (address, last_mod_tine)),
(DEFAULT, | GNORE));

Description of MAP Statement

ORACLE

For an UPDATEROVEXI STS conflict, where a target row exists on UPDATE but non-key
columns are different, use two different resolutions depending on the column:

— Perthe del ta res_met hod resolution, use the USEDELTA resolution logic for the
sal ary and bal ance columns so that the change in each value will be added
to the current value of each column.

— Per the max_r es_net hod resolution, use the USEMAX resolution logic for the
address and | ast_nod_time columns. The | ast_nod_time column is the
resolution column. This column is updated with the current time whenever the

10-18

Error Handling

Chapter 10

CDR Example 3: UPDATEROWEXISTS with USEDELTA, USEMAX, and IGNORE

< Note:

row is modified; the value of this column in the trail is compared to the value in
the target. If the value of | ast _nod_t i ne in the trail record is greater than the
current value of | ast_nod_t i me in the target database, the changes to
address and | ast _nod_t i me are applied to the target; otherwise, they are
ignored in favor of the target values.

Per DEFAULT, use the | GNORE resolution logic for the remaining columns (phone
and comment) in the table (the default column group). Changes to these
columns will always be ignored by Replicat.

Per COVWPARECCLS, use all columns except the comment column as the comparison
columns for conflict detection for UPDATE operations. Comment will not be used in
the WHERE clause for updates, but all other columns that have a before image in the
trail record will be used.

As an alternative to USEMAX, you can use the USEMAXEQ resolution to
apply a >= condition. For more information, see Reference for Oracle

GoldenGate.

For an example of error handling to an exceptions table, see Configuring the Oracle

GoldenGate Parameter Files for Error Handling.

Table 10-7 UPDATEROWEXISTS with USEDELTA, USEMAX, and IGNORE
]

Image

SQL

Comments

Before image in trail

name=' Mary

phone=" 1234567890
address="Oracl e Pkwy'

sal ary=100

bal ance=100

coment =NULL

last_mod time="9/1/10 3:00

last_nod time="9/1/10 3:00 is the
before image of the resolution column
for the USEMAX resolution.

sal ary=100 and bal ance=100 are the
before images for the USEDELTA
resolution.

After image in trail

phone='222222'
address=" Hol | y'
sal ary=200
conment =" new

last_nmod time="9/1/10 5:00'

last _nod time="9/1/10 5:00 is the
after image of the resolution column for
USEMAX. Since there is an after image,
this will be used to determine the
resolution.

sal ary=200 is the only after image
available for the USEDELTA resolution.

For bal ance, the before image will be
used in the calculation.

ORACLE

10-19

Chapter 10

CDR Example 3: UPDATEROWEXISTS with USEDELTA, USEMAX, and IGNORE

Table 10-7 (Cont.) UPDATEROWEXISTS with USEDELTA, USEMAX, and IGNORE
C___]

Image

SQL

Comments

Target database image

name=" Mary'
phone=' 1234567890
addr ess=" Ral ston'
sal ary=600

bal ance=600
conment =' conl

last _mod_tinme="9/1/10 4:00'

last _nod tine='9/1/10 4:00 isthe
current image of the resolution column in
the target against which the resolution
column value in the trail is compared for
USEMAX.

sal ary=600 and bal ance=600 are the
current images of the target columns for
USEDELTA.

Initial UPDATE applied by
Replicat that detects the
conflict

SQL bind variables:

This SQL returns a no-data-found error
because the values for the addr ess,
sal ary, bal ance and | ast _nod_time
columns are different.

UPDATE applied by Replicat
to resolve the conflict for
sal ary, using USEDELTA.

SQL bind variables:

1) 200
2) 100
3)' Mary'

For sal ary, there is a difference of 100,
but there was no change in value for

bal ance, so it is not needed in the
update SQL. Per USEDELTA, the
difference (delta) between the after
(200) image and the before image (100)
of sal ary in the trail is added to the
current value of sal ary in the target
(600). The result is 700.

UPDATE applied by Replicat
to resolve the conflict for
USEMAX.

SQL bind variables:

"Hol Iy’
'9/1/10 5:00
Mary'
'9/1/10 5: 00

= = —

1
2
3
4

Because the after value of

[ast_nod_ti me in the trail record is
greater than the current value in the
database, that column plus the addr ess
column are updated with the after values
from the trail record.

Note that the sal ary column is not set
here, because it is resolved with the
UPDATE from the USEDELTA resolution.

UPDATE applied by Replicat
for | GNORE.

SQL bind variables:

1)' 222222
2)"' new
3)' Mary'

| GNORE is specified for the DEFAULT
column group (phone and comment), so
no resolution SQL is applied.

ORACLE

10-20

Mapping and Manipulating Data

This chapter describe how you can integrate data between source and target tables.
Topics:

e Limitations of Support

e Parameters that Control Mapping and Data Integration
e Mapping between Dissimilar Databases

e Deciding Where Data Mapping and Conversion Will Take Place
e Globalization Considerations when Mapping Data

e Mapping Columns

e Selecting and Filtering Rows

» Retrieving Before and After Values

e Selecting Columns

e Selecting and Converting SQL Operations

e Using Transaction History

e Testing and Transforming Data

e Using Tokens

Limitations of Support

The following are limitations to the support of data mapping and manipulation.

* Oracle GoldenGate does not support the filtering, column mapping, or
manipulation of large objects.

* Some Oracle GoldenGate features and functionality do not support the use of data
filtering and manipulation. Where applicable, this limitation is documented.

Parameters that Control Mapping and Data Integration

ORACLE

All data selection, mapping, and manipulation that Oracle GoldenGate performs is
accomplished by using one or more options of the TABLE and MAP parameters.

e Use TABLE in the Extract parameter file.
* Use MAP in the Replicat parameter file.

TABLE and MAP specify the database objects that are affected by the other parameters
in the parameter file. See Specifying Object Names in Oracle GoldenGate Input for
instructions for specifying object names in these parameters.

11-1

Chapter 11
Mapping between Dissimilar Databases

Mapping between Dissimilar Databases

Mapping and conversion between tables that have different data structures requires
either a source-definitions file, a target-definitions file, or in some cases both. When
used, this file must be specified with the SOURCEDEFS or TARGETDEFS parameter.

This is not applicable if you are using self-describing trail files.

For more information about how to create a source-definitions or target-definitions file,
see Associating Replicated Data with Metadata.

Deciding Where Data Mapping and Conversion Will Take
Place

If the configuration you are planning involves a large amount of column mapping or
data conversion, observe the following guidelines to determine which process or
processes will perform these functions.

e Mapping and Conversion on Windows and UNIX Systems

e Mapping and Conversion on NonStop Systems

Mapping and Conversion on Windows and UNIX Systems

When Oracle GoldenGate is operating only on Windows-based and UNIX-based
systems, column mapping and conversion can be performed on the source system, on
the target system, or on an intermediary system. To prevent the added overhead of
this processing on the source system, you can configure the mapping and conversion
to be performed on the target system or on an intermediary system.

In the case where there are multiple sources and one target, it might be more efficient
to perform the mapping and conversion on the source. You can use one target-
definitions file generated from the target tables, rather than having to manage an
individual source-definitions file for each source database, which needs to be copied to
the target each time the applications make layout changes.

For more information on which types of definitions files to use, and where, see
Associating Replicated Data with Metadata.

Mapping and Conversion on NonStop Systems

If you are mapping or converting data from a Windows or UNIX system to a NonStop
Enscribe target, the mapping or conversion must be performed on the Windows or
UNIX source system. Replicat for NonStop cannot convert three-part or two-part SQL
table names and data types to the three-part file names that are used for the Enscribe
platform. Extract can format the trail data with Enscribe names and target data types.

Globalization Considerations when Mapping Data

When planning to map and convert data between databases and platforms, take into
consideration what is supported or not supported by Oracle GoldenGate in terms of
globalization.

ORACLE 11-2

Chapter 11
Globalization Considerations when Mapping Data

Topics:
e Conversion between Character Sets
* Preservation of Locale

e Support for Escape Sequences

Conversion between Character Sets

Oracle GoldenGate converts between source and target character sets if they are
different, so that object names and column data are compared, mapped, and
manipulated properly from one database to another. See Supported Character Sets,
for a list of supported character sets.

To ensure accurate character representation from one database to another, the
following must be true:

* The character set of the target database must be a superset or equivalent of the
character set of the source database. Equivalent means not equal, but having the
same set of characters. For example, Shift-JIS and EUC-JP technically are not
completely equal, but have the same characters in most cases.

» If your client applications use different character sets, the database character set
must also be a superset or equivalent of the character sets of the client
applications.

In this configuration, every character is represented when converting from a client or
source character set to the local database character set.

A Replicat process can support conversion from one source character set to one
target character set.

e Database Object Names

e Column Data

Database Object Names

Column Data

ORACLE

Oracle GoldenGate processes catalog, schema, table and column names in their
native language as determined by the character set encoding of the source and target
databases. This support preserves single-byte and multibyte names, symbols, accent
characters, and case-sensitivity with locale taken into account where available, at all
levels of the database hierarchy.

Oracle GoldenGate supports the conversion of column data between character sets
when the data is contained in the following column types:

* Character-type columns: CHAR/ VARCHAR/ CLOB to CHAR/ VARCHAR/ CLOB of another
character set; and CHAR/ VARCHAR/ CLOB to and from NCHAR/ NVARCHAR/ NCLOB.

» Columns that contain string-based numbers and date-time data. Conversions of
these columns is performed between z/OS EBCDIC and non-z/OS ASCII data.
Conversion is not performed between ASCII and ASCII versions of this data, nor
between EBCDIC and EBCDIC versions, because the data are compatible in
these cases.

11-3

Chapter 11
Globalization Considerations when Mapping Data

Note:

Oracle GoldenGate supports timestamp data from 0001- 01- 03 00: 00: 00
t0 9999- 12- 31 23:59: 59. If a timestamp is converted from GMT to local
time, these limits also apply to the resulting timestamp. Depending on
the timezone, conversion may add or subtract hours, which can cause
the timestamp to exceed the lower or upper supported limit.

Character-set conversion for column data is limited to a direct mapping of a source
column and a target column in the COLMAP or USEDEFAULTS clauses of the Replicat MAP
parameter. A direct mapping is a name-to-name mapping without the use of a stored
procedure or column-conversion function. Replicat performs the character-set
conversion. No conversion is performed by Extract or a data pump.

If the trail is written by a version of Extract that is prior to version 11.2.1, the character
set for character-type columns must be supplied to Replicat with the SOURCECHARSET
parameter. For more information, see Reference for Oracle GoldenGate.

Preservation of Locale

Oracle GoldenGate takes the locale of the database into account when comparing
case-insensitive object names. See Supported Locales for a list of supported locales.

Support for Escape Sequences

ORACLE

Oracle GoldenGate supports the use of an escape sequence to represent a string
column, literal text, or object name in the parameter file. You can use an escape
sequence if the operating system does not support the required character, such as a
control character, or for any other purpose that requires a character that cannot be
used in a parameter file.

An escape sequence can be used anywhere in the parameter file, but is particularly
useful in the following elements within a TABLE or MAP statement:

* An object name
* \WHERE clause

e COLMAP clause to assign a Unicode character to a Unicode column, or to assign a
native-encoded character to a column.

* Oracle GoldenGate column conversion functions within a COLMAP clause.

Oracle GoldenGate supports the following types of escape sequence:

* \uFFFF Unicode escape sequence. Any UNI CODE code point can be used except
surrogate pairs.

e\ 377 Octal escape sequence
» \xFF Hexadecimal escape sequence

The following rules apply:

» If used for mapping of an object name in TABLE or MAP, no restriction apply. For
example, the following TABLE specification is valid:

TABLE schema. "\ u3000ABC';

11-4

ORACLE

Chapter 11
Globalization Considerations when Mapping Data

If used with a column-mapping function, any code point can be used, but only for
an NCHAR/ NVARCHAR column. For an CHAR/ VARCHAR column, the code point is limited
to the equivalent of 7-bit ASCII.

The source and target data types must be identical (for example, NCHAR to NCHAR).

Begin each escape sequence with a reverse solidus (code point U+005C), followed
by the character code point. (A solidus is more commonly known as the backslash
symbol.) Use the escape sequence, instead of the actual character, within your
input string in the parameter statement or column-conversion function.

¢ Note:

To specify an actual backslash in the parameter file, specify a double
backslash. For example, the following finds a backslash in COL1: @TRFI ND
(CaL1l, "\\').

To Use the \uFFFF Unicode Escape Sequence

The \ uFFFF Unicode escape sequence must begin with a lowercase u, followed by
exactly four hexadecimal digits.

Supported ranges are as follows:
— 0to9 (U+0030 to U+0039)
— Ato F (U+0041 to U+0046)
— atof (U+t0061 to U+0066)

\ u20ac is the Unicode escape sequence for the Euro currency sign.

" Note:

For reliable cross-platform support, use the Unicode escape sequence. Octal
and hexadecimal escape sequences are not standardized on different
operating systems.

To Use the \377 Octal Escape Sequence

Must contain exactly three octal digits.

Supported ranges:

— Range for first digit is 0 to 3 (U+0030 to U+0033)

— Range for second and third digits is 0 to 7 (+0030 to U+0037)

\ 200 is the octal escape sequence for the Euro currency sign on Microsoft
Windows

To Use the \xFF Hexadecimal Escape Eequence

Must begin with a lowercase x followed by exactly two hexadecimal digits.

Supported ranges:

11-5

Chapter 11
Mapping Columns

— 0to 9 (U+0030 to U+0039)
— Ato F (U+0041 to U+0046)
— atof (U+0061 to U+0066)

\ x80 is the hexadecimal escape sequence for the Euro currency sign on Microsoft
Windows 1252 Latinl code page.

Mapping Columns

Oracle GoldenGate provides for column mapping at the table level and at the global
level. Default column mapping is also provided in the absence of explicit column
mapping rules.

This section contains the following guidelines for mapping columns:
Topics:

» Supporting Case and Special Characters in Column Names

* Configuring Table-level Column Mapping with COLMAP

* Configuring Global Column Mapping with COLMATCH

* Understanding Default Column Mapping

* Mapping Data Types from Column to Column

Supporting Case and Special Characters in Column Names

By default, Oracle GoldenGate follows SQL-92 rules for specifying column names and
literals. In Oracle GoldenGate parameter files, conversion functions, user exits, and
commands, case-sensitive column names must be enclosed within double quotes if
double quotes are required by the database to enforce case-sensitivity. For other
case-sensitive databases that do not require quotes, case-sensitive column names
must be specified as they are stored in the database. Literals must be enclosed within
single quotes. See Differentiating Case-Sensitive Column Names from Literals for
more information.

Configuring Table-level Column Mapping with COLMAP

Use the COLMAP option of the MAP and TABLE parameters to:

* map individual source columns to target columns that have different names.
» specify default column mapping when an explicit column mapping is not needed.

» Provide instructions for selecting, mapping, translating, and moving data from a
source column into a target column.

e Specifying the Columns to be Mapped in the COLMAP Clause
e Using USEDEFAULTS to Enable Default Column Mapping
e Determining Whether COLMAP Requires a Data-definitions File

Specifying the Columns to be Mapped in the COLMAP Clause

The COLMAP syntax is the following:

ORACLE 11-6

ORACLE

Chapter 11
Mapping Columns

COLMAP ([USEDEFAULTS,]| target colum = source_expression)

In this syntax, t ar get _col umm is the name of the target column, and

sour ce_expressi on can be any of the following, allowing you to map the source
column by name, so as to pass the source value exactly as recorded in the trail, or to
transform the data before passing it to the target column:

e The name of a source column, such as ORD_DATE.
* Numeric constant, such as 123.
» String constant enclosed within single quotes, such as ' ABCD .

e An expression using an Oracle GoldenGate column-conversion function. Within a
COLMAP statement, you can employ any of the Oracle GoldenGate column-
conversion functions to transform data for the mapped columns, for example:

@TREXT (COLL, 1, 3)

If the column mapping involves case-sensitive columns from different database types,
specify each column as it is stored in the database.

« If the database requires double quotes to enforce case-sensitivity, specify the
case-sensitive column name within double quotes.

» If the database is case-sensitive without requiring double quotes, specify the
column name as it is stored in the database.

The following shows a mapping between a target column in an Oracle database and a
source column in a case-sensitive SQL Server database.

COLMAP (" Col A" = Col A)

See Specifying Object Names in Oracle GoldenGate Input for more information about
specifying names to Oracle GoldenGate.

See Globalization Considerations when Mapping Data for globalization considerations
when mapping source and target columns in databases that have different character
sets and locales.

Avoid using COLMAP to map a value to a key column (which causes the operation to
become a primary key update), The WHERE clause that Oracle GoldenGate uses to
locate the target row will not use the correct before image of the key column. Instead,
it will use the after image. This will cause errors if you are using any functions based
on that key column, such as a SQLEXEC statement, as shown in the following example.

* Source table TCUSTMERL
* Target table TCUSTMER2
e Column layout, both tables:

Column 1 = Cust
Column 2 = Name
Column3=City
Column 4 =State

* Primary key consiste of the Cust, Name, and Ci ty columns.

e SQLEXEC query in the MAP statement:

11-7

Chapter 11
Mapping Columns

SQLEXEC (id nytest, query 'select city from TCUSTMERL WHERE state = 'CA'',
nopar ans, ERROR RAl SE)

COLMAP statement in the MAP statement:
COLMAP (usedefaults, city = mytest.city)

This is the sequence of events that causes the error:

1. | NSERT statement inserts the following:

INSERT into TCUSTMERL val ues (Cust = '1234', Name = 'Ace', Cty = "'SF, State =
A);
Commi t;

The SQLEXEC query returns the correct value, and the target table also has a value
of SF for Gty and CAfor St at e.

mytest.city = 'SF

2. UPDATE statement changes Ci ty from SF to LA on the source. This does not
succeed on the target. The SQLEXEC query looks up the Gty column in TCUSTMERL
and returns a value of LA. Based on the COLMAP clause, the before and after
versions of G ty both are now LA. This generates SQL error 1403 when executing
the target WHERE clause, because a value of LA does not exist for the Ci ty column
in the target table.

Using USEDEFAULTS to Enable Default Column Mapping

You can use the USEDEFAULTS option of COLMAP to specify automatic default column
mapping for any corresponding source and target columns that have identical names.
USEDEFAULTS can save you time by eliminating the need to map every target column
explicitly.

Default mapping causes Oracle GoldenGate to map those columns and, if required,
translate the data types based on the data-definitions file (see Determining Whether
COLMAP Requires a Data-definitions File). Do not specify default mapping for
columns that are mapped already with an explicit mapping statement.

The following example of a column mapping illustrates the use of both default and
explicit column mapping for a source table ACCTBL and a target table ACCTTAB. Most
columns are the same in both tables, except for the following differences:

* The source table has a CUST_NAME column, whereas the target table has a NAVE
column.

* Aten-digit PHONE_NO column in the source table corresponds to separate
AREA CODE, PHONE_PREFI X, and PHONE_NUMBER columns in the target table.

* Separate YY, MV and DD columns in the source table correspond to a single
TRANSACTI ON_DATE column in the target table.

To address those differences, USEDEFAULTS is used to map the similar columns
automatically, while explicit mapping and conversion functions are used for dissimilar
columns.

ORACLE 11-8

Chapter 11
Mapping Columns

Table 11-1 Sample Column Mapping

Parameter statement

Description

MAP SALES. ACCTBL,
TARGET SALES. ACCTTAB,

Maps the source table ACCTBL to the target table
ACCTTAB.

COLMAR(

Begins the COLMAP statement.

USEDEFAULTS,

Maps source columns as-is when the target column names
are identical.

NAVE = CUST NAME,

Maps the source column CUST_NANE to the target column
NAME.

TRANSACTI ON_DATE =
@ATE (' YYYY-MADD, 'YY',
YEAR, 'MM, MONTH, 'DD, DAY),

Converts the transaction date from the source date
columns to the target column TRANSACTI ON_DATE by
using the @ATE column conversion function.

AREA CODE =
@TREXT (PHONE_NO, 1, 3),
PHONE_PREFI X =
@TREXT (PHONE_NO, 4, 6),
PHONE_NUMBER =
@TREXT (PHONE_NO, 7, 10))

Converts the source column PHONE_NOinto the separate
target columns of AREA_CODE, PHONE_PREFI X, and
PHONE_NUMBER by using the @TREXT column conversion
function.

See Understanding Default Column Mapping for more information about the rules
followed by Oracle GoldenGate for default column mapping.

Determining Whether COLMAP Requires a Data-definitions File

When using COLMAP, you might need to create a data-definitions file. To make this
determination, you must consider whether the source and target column structures are
identical, as defined by Oracle GoldenGate.

ORACLE

For source and target structures to be identical, they must:

* be of the same database type, that is, all Oracle.

* have the same character set and locale.

e contain the same number of columns.

* have identical column names (including case, white spaces, and quotes if

applicable).

* have identical data types.

* have identical column lengths.

* have the same column length semantics for character columns (bytes versus

characters).

« define all of the columns in the same order.

When using COLMAP for source and target tables that are not identical in structure, you

must:

11-9

Chapter 11
Mapping Columns

* generate data definitions for the source tables, the target tables, or both,
depending on the Oracle GoldenGate configuration and the databases that are
being used.

» transfer the definitions file to the system where they will be used.

» use the SOURCEDEFS parameter to identify the definitions file for Replicat on a target
system or use the TARGETDEFS parameter to identify the definitions file for Extract
or a data pump on a source system or intermediary system.

When using COLMAP for source and target tables that are identical in structure, and you
are only using COLMAP for other functions such as conversion, a source definitions file
is not needed. When a definitions file is not being used, you must use the
ASSUMETARGETDEFS parameter instead, unless you are using self-describing trail files.
See Reference for Oracle GoldenGate for more information.

See Associating Replicated Data with Metadata for more information about using a
definitions file.

Configuring Global Column Mapping with COLMATCH

ORACLE

Use the COLMATCH parameter to create global rules for column mapping. With
COLMATCH, you can map between similarly structured tables that have different column
names for the same sets of data. COLMATCH provides a more convenient way to map
columns of this type than does using table-level mapping with a COLMAP clause in
individual TABLE or MAP statements.

Case-sensitivity is supported as follows:

* For MySQL, SQL Server, and Teradata, if the database is case-sensitive,
COLMATCH looks for an exact case and name match regardless of whether or not a
name is specified in quotes.

e For Oracle Database and DB2 databases, where names can be either case-
sensitive or case-insensitive in the same database and double quotes are required
to show case-sensitivity, COLMATCH requires an exact case and hame match when
a name is in quotes in the database.

See Specifying Object Names in Oracle GoldenGate Input for more information about
case-sensitivity support.

Syntax

COLMATCH

{NAMES target _col um = source_col um |
PREFI X prefix |

SUFFI X suffix |

RESET}

11-10

ORACLE

Table 11-2 COLMATCH Options

Chapter 11
Mapping Columns

Argument

Description

NAMES t arget col urm = source_col um

Maps based on column names.

Put double quotes around the column name if
it is case-sensitive and the database requires
quotes to enforce case-sensitivity. For these
database types, an unquoted column name is
treated as case-insensitive by Oracle
GoldenGate.

For databases that support case-sensitivity
without requiring quotes, specify the column
name as it is stored in the database.

If the COLMATCH is between columns in
different database types, make certain the
names reflect the appropriate case
representation for each one. For example, the
following specifies a case-sensitive target
column name "aBc" in an Oracle Database
and a case-sensitive source column name aBc
in a case-sensitive SQL Server database.

COLMATCH NAMES "aBc" = aBc

PREFI X prefix | SUFFIX suffix

Ignores the specified name prefix or suffix.
Put double quotes around the prefix or suffix if
the database requires quotes to enforce case-
sensitivity, for example "P_" . For those
database types, an unquoted prefix or suffix is
treated as case-insensitive.

For databases that support case-sensitivity
without requiring quotes, specify the prefix or
suffix as it is stored in the database. For
example, P_ specifies a capital P prefix.

The following example specifies a case-
insensitive prefix to ignore. The target column
name P_ABCis mapped to source column
name ABC, and target column name P_abc is
mapped to source column name abc.

COLMATCH PREFI X p_

The following example specifies a case-
sensitive suf fi X to ignore. The target column
name ABC k is mapped to the source column
name ABC, and the target column name
"abc_k" is mapped to the source column
name "abc".

SUFFI X " _K"

RESET

Turns off previously defined COLMATCH rules
for subsequent TABLE or MAP statements.

11-11

Chapter 11
Mapping Columns

The following example illustrates when to use COLMATCH. The source and target tables
are identical except for slightly different table and column names.The database is
case-insensitive.

Table 11-3 COLMATCH Example Table: Source Database

ACCT Table ORD Table
CUST_CODE CUST_CODE
CUST_NAVE CUST_NANE
CUST_ADDR ORDER | D
PHONE ORDER_AMT
S_REP S_REP
S_REPCODE S_REPCODE

Table 11-4 COLMATCH Example Table: Target Database

ACCOUNT Table ORDER Table
CUSTOMVER_CODE CUSTOVER_CODE
CUSTOVER_NAME CUSTOVER_NAME
CUSTOVER_ADDRESS CRDER I D
PHONE CORDER_AMT

REP REP

REPCODE REPCODE

To map the source columns to the target columns in this example, as well as to handle
subsequent maps for other tables, the syntax is:

COLMATCH NAMES CUSTOMER_CODE = CUST_CODE

COLMATCH NAMES CUSTOMER_NAME = CUST_NAME

COLMATCH NAMES CUSTOMER_ADDRESS = CUST_ADDR

COLMATCH PREFI X S_

MAP SALES. ACCT, TARGET SALES. ACCOUNT, COLMAP (USEDEFAULTS);
MAP SALE. ORD, TARCGET SALES. ORDER, COLMAP (USEDEFAULTS);
COLMATCH RESET

MAP SALES. REG TARGET SALE. REG

MAP SALES. PRI CE, TARGET SALES. PRI CE;

Based on the rules in the example, the following occurs:

» Data is mapped from the CUST_CODE columns in the source ACCT and ORD tables to
the CUSTOVER_CCDE columns in the target ACCOUNT and ORDER tables.

e The S_ prefix will be ignored.

e Columns with the same names, such as the PHONE and ORDER_AMT columns, are
automatically mapped by means of USEDEFAULTS without requiring explicit rules.
See Understanding Default Column Mapping for more information.

* The previous global column mapping is turned off for the tables REGand PRI CE.
Source and target columns in those tables are automatically mapped because all
of the names are identical.

ORACLE 11-12

Chapter 11
Mapping Columns

Understanding Default Column Mapping

If an explicit column mapping does not exist, either by using COLMATCH or COLMAP,
Oracle GoldenGate maps source and target columns by default according to the
following rules.

» If a source column is found whose name and case exactly match those of the
target column, the two are mapped.

* If no case match is found, fallback name mapping is used. Fallback mapping
performs a case-insensitive target table mapping to find a name match. Inexact
column name matching is applied using upper cased names.This behavior is
controlled by the GLOBALS parameter NAVEMATCH GNORECASE. You can disable
fallback name matching with the NAVMEMATCHEXACT parameter, or you can keep it
enabled but with a warning message by using the NAVEMATCHNOMARNI NG parameter.

e Target columns that do not correspond to any source column take default values
determined by the database.

If the default mapping cannot be performed, the target column defaults to one of the
values shown in Table 11-5.

Table 11-5 Defaults Values for Target Columns
|

Column Type Value

Numeric Zero (0)

Character or VARCHAR Spaces

Date or Datetime Current date and time
Columns that can take a NULL value Null

Mapping Data Types from Column to Column

The following explains how Oracle GoldenGate maps data types.
* Numeric Columns
e Character-type Columns

» Datetime Columns

Numeric Columns

ORACLE

Numeric columns are converted to match the type and scale of the target column. If
the scale of the target column is smaller than that of the source, the number is
truncated on the right. If the scale of the target column is larger than that of the source,
the number is padded with zeros on the right.

You can specify a substitution value for invalid numeric data encountered when
mapping number columns by using the REPLACEBADNUM parameter. See Reference for
Oracle GoldenGate for more information.

11-13

Chapter 11
Selecting and Filtering Rows

Character-type Columns

Character-type columns can accept character-based data types such as VARCHAR,
numeric in string form, date and time in string form, and string literals. If the scale of
the target column is smaller than that of the source, the column is truncated on the
right. If the scale of the target column is larger than that of the source, the column is
padded with spaces on the right.

Literals must be enclosed within single quotes.

You can control the response of the Oracle GoldenGate process when a valid code
point does not exist for either the source or target character set when mapping
character columns by using the REPLACEBADCHAR parameter. See Reference for Oracle
GoldenGate for more information.

Datetime Columns

Datetime (DATE, Tl ME, and TI MESTAMP) columns can accept datetime and character
columns, as well as string literals. Literals must be enclosed within single quotes. To
map a character column to a datetime column, make certain it conforms to the Oracle
GoldenGate external SQL format of YYYY- M\ DD HH: M : SS. FFFFFF.

Oracle GoldenGate supports timestamp data from 0001- 01- 03 00: 00: 00 to

9999-12- 31 23:59:59. If a timestamp is converted from GMT to local time, these limits
also apply to the resulting timestamp. Depending on the timezone, conversion may
add or subtract hours, which can cause the timestamp to exceed the lower or upper
supported limit.

Required precision varies according to the data type and target platform. If the scale of
the target column is smaller than that of the source, data is truncated on the right. If
the scale of the target column is larger than that of the source, the column is extended
on the right with the values for the current date and time.

Selecting and Filtering Rows

To filter out or select rows for extraction or replication, use the FI LTER and WHERE
clauses of the TABLE and MAP parameters.

The FI LTER clause offers you more functionality than the WHERE clause because you
can employ any of the Oracle GoldenGate column conversion functions, whereas the
VWHERE clause accepts basic WHERE operators.

* Selecting Rows with a FILTER Clause
* Selecting Rows with a WHERE Clause
* Considerations for Selecting Rows with FILTER and WHERE

Selecting Rows with a FILTER Clause

Use a FI LTER clause to select rows based on a numeric value by using basic
operators or one or more Oracle GoldenGate column-conversion functions.

ORACLE 11-14

ORACLE

Chapter 11
Selecting and Filtering Rows

Note:

To filter a column based on a string, use one of the Oracle GoldenGate string
functions or use a WHERE clause.

The syntax for FI LTER in a TABLE statement is as follows:

TABLE source_tabl e,

, FILTER (

[, ONINSERT | ON UPDATE| ON DELETE]

[, 1'GNORE INSERT | | GNORE UPDATE | | GNORE DELETE]
, filter_clause);

The sytax for FI LTER in a MAP statement is as follows and includes an error-handling
option.

MAP source_t abl e, TARGET target _table,

, FILTER (

[, ONINSERT | ON UPDATE| ON DELETE]

[, | GNORE I NSERT | | GNORE UPDATE | | GNORE DELETE]
[, RAISEERRCR error_number]

, filter_clause);

Valid FI LTER clause elements are the following:

* An Oracle GoldenGate column-conversion function. These functions are built into
Oracle GoldenGate so that you can perform tests, manipulate data, retrieve
values, and so forth. See Testing and Transforming Data for more information
about Oracle GoldenGate conversion functions.

* Numbers
e Columns that contain numbers
* Functions that return numbers
* Arithmetic operators:

— +(plus)

— - (minus)
* (multiply)
— | (divide)

\ (remainder)

e Comparison operators:

> (greater than)

— >=(greater than or equal)
— < (less than)

— <= (less than or equal)

— = (equal)

— <> (not equal)

11-15

Chapter 11
Selecting and Filtering Rows

— Results derived from comparisons can be zero (indicating FALSE) or non-zero
(indicating TRUE).

» Parentheses (for grouping results in the expression)
e Conjunction operators: AND, OR

Use the following FI LTER options to specify which SQL operations a filter clause
affects. Any of these options can be combined.

ON INSERT | ON UPDATE | ON DELETE | GNORE | NSERT | | GNORE UPDATE | | GNORE
DELETE

Use the RAI SEERROR option of FI LTER in the MAP parameter to generate a user-defined
error when the filter fails. This option is useful when you need to trigger an event in
response to the failure.

You can use the @RANGE function to divide the processing workload among multiple

FI LTER clauses, using separate TABLE or MAP statements. For example, the following
splits the replication workload into two ranges (between two Replicat processes or two
threads of a coordinated Replicat) based on the | D column of the source acct table.

Table 11-6 Using Multiple FILTER Statements

|
Parameter file Description

Raises an exception for the specified

REPERRCR (9999, EXCEPTION) error

MAP OMRNER. SRCTAB Starts the MAP statement.

TARGET OWNER. TARGTAB,

SQLEXEC (1D CHECK, ON UPDATE, Performs a query to retrieve the

QUERY ' SELECT COUNT FROM TARGTAB ' present value of the COUNT column
"WHERE PKCOL = ‘Pl whenever an update is encountered.

PARAVS (P1 = PKCOL)),

Uses a FI LTER clause to select rows

FILTER (BALANCE > 15000), .
() where the balance is greater than

15000.
FILTER (ON UPDATE, @BEFORE (COUNT) = Uses another FI LTER clause to ensure
CHECK. COUNT) that the value of the source COUNT

column before an update matches the
value in the target column before
applying the target update.

The semicolon concludes the MAP

statement.
MAP OMNER. SRCTAB Designates an exceptions MAP
TARGET OWKNER. TARéEXC, statement. The REPERROR clause for
EXCEPTI ONSONLY, error 9999 ensures that the exceptions
COLMAP (USEDEFAULTS, map to TARGEXC will be executed.

ERRTYPE = ' UPDATE FI LTER FAILED);

ORACLE 11-16

Chapter 11
Selecting and Filtering Rows

Example 11-1 Calling the @COMPUTE Function

The following example calls the @OWPUTE function to extract records in which the price
multiplied by the amount exceeds 10,000.

MAP SALES. TCUSTORD, TARGET SALES. TORD,
FI LTER (@OVPUTE (PRODUCT PRI CE * PRODUCT_AMOUNT) > 10000) ;

Example 11-2 Calling the @STREQ Function

The following uses the @TREQ function to extract records where the value of a
character columnis ' JCE' .

TABLE ACCT. TCUSTORD, FILTER (@TREQ ("Name", 'joe') > 0);

Example 11-3 Selecting Records

The following selects records in which the AMOUNT column is greater than 50 and
executes the filter on UPDATE and DELETE operations.

TABLE ACT. TCUSTORD, FILTER (ON UPDATE, ON DELETE, AMOUNT > 50);

Example 11-4 Using the @RANGE Function
(Replicat group 1 parameter file)

MAP sal es.acct, TARGET sal es.acct, FILTER (@RANGE (1, 2, 1D));

(Replicat group 2 parameter file)

MAP sal es. acct, TARGET sales.acct, FILTER (@RANGE (2, 2, 1D));

You can combine several FI LTER clauses in one MAP or TABLE statement, as shown in
Table 11-6, which shows part of a Replicat parameter file. Oracle GoldenGate
executes the filters in the order listed, until one fails or until all are passed. If one filter
fails, they all fail.

Selecting Rows with a WHERE Clause

ORACLE

Use any of the elements in Table 11-7 in a WHERE clause to select or exclude rows (or
both) based on a conditional statement. Each WHERE clause must be enclosed within
parentheses. Literals must be enclosed within single quotes.

Table 11-7 Permissible WHERE Operators

Element Examples

Column names PRODUCT _AMT

Numeric values -123, 5500.123

Literal strings "AUTO . ' Ca

Built-in column tests @NULL, @PRESENT, @GABSENT (column is null, present or absent in the
row). These tests are built into Oracle GoldenGate. See
Considerations for Selecting Rows with FILTER and WHERE.

11-17

Chapter 11
Selecting and Filtering Rows

Table 11-7 (Cont.) Permissible WHERE Operators

___|
Element Examples

Comparison operators =, <>, >, <, >=, <=

Conjunctive operators AND, R

Grouping parentheses Use open and close parentheses () for logical grouping of multiple
elements.

Oracle GoldenGate does not support FI LTER for columns that have a multi-byte
character set or a character set that is incompatible with the character set of the local
operating system.

Arithmetic operators and floating-point data types are not supported by WHERE. To use
more complex selection conditions, use a Fl LTER clause or a user exit routine. See
Using User Exits to Extend Oracle GoldenGate Capabilities for more information.

The syntax for WHERE is identical in the TABLE and MAP statements:

TABLE t abl e, WHERE (cl ause);

MAP source_tabl e, TARGET target table, WHERE (clause);

Considerations for Selecting Rows with FILTER and WHERE

The following suggestions can help you create a successful selection clause.

" Note:

The examples in this section assume a case-insensitive database.

e Ensuring Data Availability for Filters
e Comparing Column Values
e Testing for NULL Values

Ensuring Data Availability for Filters

ORACLE

If the database only logs values for changed columns to the transaction log, there can
be errors if any of the unchanged columns are referenced by selection criteria. Oracle
GoldenGate ignores such row operations, outputs them to the discard file, and issues
a warning.

To avoid missing-column errors, create your selection conditions as follows:

* Use only primary-key columns as selection criteria, if possible.

* Make required column values available by enabling supplemental logging for those
columns. Alternatively, you can use the FETCHCOLS or FETCHCOLSEXCEPT option of
the TABLE parameter. These options are valid for all supported databases. They
guery the database to fetch the values if they are not present in the log. To retrieve

11-18

Chapter 11
Retrieving Before and After Values

the values before the FI LTER or WHERE clause is executed, include the
FETCHBEFOREFI LTER option in the TABLE statement before the FI LTER or WHERE
clause. For example:

TABLE DEMD. PECPLE, FETCHBEFOREFI LTER, FETCHCOLS (age), FILTER (age > 50);

Test for a column's presence first, then for the column's value. To test for a
column's presence, use the following syntax.

col um_nane {=| <>} {@RESENT | @\BSENT}

The following example returns all records when the amount column is over 10,000
and does not cause a record to be discarded when anount is absent.

VHERE (anount = @RESENT AND anount > 10000)

Comparing Column Values

To ensure that elements used in a comparison match, compare appropriate column
types:

Character columns to literal strings.
Numeric columns to numeric values, which can include a sign and decimal point.

Date and time columns to literal strings, using the format in which the column is
retrieved by the application.

Testing for NULL Values

To evaluate columns for NULL values, use the following syntax.

colum {=] <>} @WLL

The following returns TRUE if the column is NULL, and FALSE for all other cases
(including a column missing from the record).

VWHERE (anpunt = @\NULL)

The following returns TRUE only if the column is present in the record and not NULL.

VWHERE (anount = @RESENT AND anount <> @JULL)

Retrieving Before and After Values

For update operations, it can be advantageous to retrieve the before values of source
columns: the values before the update occurred. These values are stored in the trail
and can be used in filters and column mappings. For example, you can:

ORACLE

Retrieve the before image of a row as part of a column-mapping specification in an
exceptions MAP statement, and map those values to an exceptions table for use in
testing or troubleshooting conflict resolution routines.

Perform delta calculations. For example, if a table has a Bal ance column, you can
calculate the net result of a particular transaction by subtracting the original
balance from the new balance, as in the following example:

MAP "owner"."src", TARGET "owner"."targ",
COLMAP (PK1 = PK1, delta = bal ance — @EFORE (bal ance));

11-19

Chapter 11
Selecting Columns

Note:

The previous example indicates a case-sensitive database such as
Oracle. The table names are in quote marks to reflect case-sensitivity.

To Reference the Before Value

1. Use the @BEFORE column conversion function with the name of the column for
which you want a before value, as follows:

@BEFORE (col um_namne)

2. Use the GETUPDATEBEFORES parameter in the Extract parameter file to capture
before images from the transaction record, or use it in the Replicat parameter file
to use the before image in a column mapping or filter. If using the Conflict
Resolution and Detection (CDR) feature, you can use the GETBEFORECOLS option of
TABLE. To use these parameters, all columns must be present in the transaction
log. If the database only logs the values of columns that changed, using the
@BEFORE function may result in a "column missing” condition and the column map
is executed as if the column were not in the record. See Ensuring Data Availability
for Filters to ensure that column values are available.

Oracle GoldenGate also provides the @FTER function to retrieve after values when
needed for filtering, for use in conversion functions, or other purposes. For more
information about @EFORE and @GAFTER, see Reference for Oracle GoldenGate.

Selecting Columns

To control which columns of a source table are extracted by Oracle GoldenGate, use
the COLS and COLSEXCEPT options of the TABLE parameter. Use COLS to select columns
for extraction, and use COLSEXCEPT to select all columns except those designated by
COLSEXCEPT.

Restricting the columns that are extracted can be useful when a target table does not
contain the same columns as the source table, or when the columns contain sensitive
information, such as a personal identification number or other proprietary business
information.

Selecting and Converting SQL Operations

ORACLE

By default, Oracle GoldenGate captures and applies | NSERT, UPDATE, and DELETE
operations. You can use the following parameters in the Extract or Replicat parameter
file to control which kind of operations are processed, such as only inserts or only
inserts and updates.

GETI NSERTS | | GNOREI NSERTS
GETUPDATES | | GNOREUPDATES
GETDELETES | | GNOREDELETES

You can convert one type of SQL operation to another by using the following
parameters in the Replicat parameter file:

11-20

Chapter 11
Using Transaction History

» Use | NSERTUPDATES to convert source update operations to inserts into the target
table. This is useful for maintaining a transaction history on that table. The
transaction log record must contain all of the column values of the table, not just
changed values. Some databases do not log full row values to their transaction
log, but only values that changed.

e Use | NSERTDELETES to convert all source delete operations to inserts into the
target table. This is useful for retaining a history of all records that were ever in the
source database.

* Use UPDATEDELETES to convert source deletes to updates on the target.

Using Transaction History

ORACLE

Oracle GoldenGate enables you to retain a history of changes made to a target record
and to map information about the operation that caused each change. This history can
be useful for creating a transaction-based reporting system that contains a separate
record for every operation performed on a table, as opposed to containing only the
most recent version of each record.

For example, the following series of operations made to a target table named
CUSTOMER would leave no trace of the ID of Dave. The last operation deletes the record,
so there is no way to find out Dave's account history or his ending balance.

Table 11-8 Operation History for Table CUSTOMER
|

Sequence Operation ID BALANCE
1 I nsert Dave 1000

2 Updat e Dave 900

3 Updat e Dave 1250

4 Del ete Dave 1250

Retaining this history as a series of records can be useful in many ways. For example,
you can generate the net effect of transactions.

To Implement Transaction Reporting

1. To prepare Extract to capture before values, use the GETUPDATEBEFORES parameter
in the Extract parameter file. A before value (or before image) is the existing value
of a column before an update is performed. Before images enable Oracle
GoldenGate to create the transaction record.

2. To prepare Replicat to post all operations as inserts, use the | NSERTALLRECORDS
parameter in the Replicat parameter file. Each operation on a table becomes a
new record in that table.

3. To map the transaction history, use the return values of the GGHEADER option of the
@ETENV column conversion function. Include the conversion function as the
source expression in a COLMAP statement in the TABLE or MAP parameter.

Using the sample series of transactions shown in Table 11-8 the following parameter
configurations can be created to generate a more transaction-oriented view of
customers, rather than the latest state of the database.

11-21

Chapter 11
Testing and Transforming Data

Process Parameter statements

Extract GETUPDATEBEFORES

TABLE ACCOUNT. CUSTOMVER;

Replicat | NSERTAL L RECORDS
MAP SALES. CUSTOVER TARGET SALES. CUSTHI ST,
COLMAP (TS = @EETENV (' GGHEADER , ' COWM TTI MESTAWP') ,
BEFORE_AFTER = @ETENV (' GGHEADER , ' BEFCREAFTER! NDI CATCR),
OP TYPE = @ETENV (' GGHEADER , ' OPTYPE),
ID = ID,
BALANCE = BALANCE):

Note:

This is not representative of a complete parameter file for an Oracle
GoldenGate process. Also note that these examples represent a case-
insensitive database.

This configuration makes possible queries such as the following, which returns the net
sum of each transaction along with the time of the transaction and the customer ID.

SELECT AFTER ID, AFTER TS, AFTER BALANCE - BEFORE. BALANCE
FROM CUSTH ST AFTER, CUSTHI ST BEFORE

VWHERE AFTER | D = BEFORE. I D AND AFTER TS = BEFORE. TS AND
AFTER BEFORE_AFTER = ' A" AND BEFORE. BEFORE_AFTER = 'B';

Testing and Transforming Data

ORACLE

Data testing and transformation can be performed by either Extract or Replicat and is
implemented by using the Oracle GoldenGate built-in column-conversion functions
within a COLMAP clause of a TABLE or MAP statement. With these conversion functions,
you can:

* Transform dates.

* Test for the presence of column values.

* Perform arithmetic operations.

* Manipulate numbers and character strings.
e Handle null, invalid, and missing data.

e Perform tests.

This chapter provides an overview of some of the Oracle GoldenGate functions related
to data manipulation. For the complete reference, see Reference for Oracle
GoldenGate for Windows and UNIX.

If you need to use logic beyond that which is supplied by the Oracle GoldenGate
functions, you can call your own functions by implementing Oracle GoldenGate user
exits. See Using User EXxits to Extend Oracle GoldenGate Capabilities for more
information about user exits.

11-22

ORACLE

Chapter 11
Testing and Transforming Data

Oracle GoldenGate conversion functions take the following general syntax:

Syntax

@unction (argunent)

Table 11-9 Conversion Function Syntax

Syntax element

Description

The Oracle GoldenGate function name.

@function Function names have the prefix @ as in
@OVPUTE or @ATE. A space between the
function name and the open-parenthesis
before the input argument is optional.

ar gunent A function argument.

Table 11-10 Function Arguments

Argument element Example
A numeric constant 123
A string literal enclosed within single quote " ABCD

marks

The name of a source column

PHONE_NO or phone_no, or "Phone_No"
or Phone_no

Depends on whether the database is case-
insensitive, is case-sensitive and requires
guote marks to enforce the case, or is case-
sensitive and does not require quotes.

An arithmetic expression

CcoL2 * 100

A comparison expression

((COL3 > 100) AND (COL4 > 0))

Other Oracle GoldenGate functions

AVOUNT = @F (@OLTEST (AM,
M SSING, |NVALID), 0, AM)

e Handling Column Names and Literals in Functions

e Using the Appropriate Function
e Transforming Dates

e Performing Arithmetic Operations

e Manipulating Numbers and Character Strings

e Handling Null, Invalid, and Missing Data

e Performing Tests

11-23

Chapter 11
Testing and Transforming Data

Handling Column Names and Literals in Functions

By default, literal strings must be enclosed in single quotes in a column-conversion
function. Case-sensitive column names must be enclosed within double quotes if
required by the database, or otherwise entered in the case in which they are stored in
the database.

Using the Appropriate Function

Use the appropriate function for the type of column that is being manipulated or
evaluated. For example, numeric functions can be used only to compare numeric
values. To compare character values, use one of the Oracle GoldenGate character-
comparison functions. LOB columns cannot be used in conversion functions.

This statement would fail because it uses @ F, which is a numerical function, to
compare string values.

@F (SR AREA = 'Hel p Desk', 'TRUE', 'FALSE)
The following statement would succeed because it compares a numeric value.
@F (SR_AREA = 20, 'TRUE', 'FALSE')

See Manipulating Numbers and Character Strings for more information.

Note:

Errors in argument parsing sometimes are not detected until records are
processed. Verify syntax before starting processes.

Transforming Dates

Use the @ATE, @ATEDI F, and @MATENOWfunctions to retrieve dates and times, perform
computations on them, and convert them.

This example computes the time that an order is filled
Example 11-5 Computing Time

ORDER FI LLED = @ATE (
" YYYY-MADD HH M : SS',
'JTS
@ATE (' JTS',
" YYMVDDHHM SS'
ORDER TAKEN TI ME) +
ORDER M NUTES * 60 * 1000000)

Performing Arithmetic Operations

To return the result of an arithmetic expression, use the @OVWPUTE function. The value
returned from the function is in the form of a string. Arithmetic expressions can be
combinations of the following elements.

ORACLE 11-24

Chapter 11
Testing and Transforming Data

* Numbers

* The names of columns that contain numbers
* Functions that return numbers

* Arithmetic operators:

+ (plus)

- (minus)

* (multiply)

| (divide)

\ (remainder)

« Comparison operators:

> (greater than)

— >=(greater than or equal)
— < (less than)

— <= (less than or equal)

— =(equal)

— <> (not equal)

Results that are derived from comparisons can be zero (indicating FALSE) or non-
zero (indicating TRUE).

e Parentheses (for grouping results in the expression)

e The conjunction operators AND, OR. Oracle GoldenGate only evaluates the
necessary part of a conjunction expression. Once a statement is FALSE, the rest of
the expression is ignored. This can be valuable when evaluating fields that may be
missing or null. For example, if the value of COL1 is 25 and the value of COL2 is 10,
then the following are possible:

@OWPUTE ((COL1 > 0) AND (COL2 < 3)) returns O.

@OWPUTE ((COL1 < 0) AND (COL2 < 3)) returns 0. COL2 < 3 is never
eval uat ed.

@OWPUTE ((COL1 + COL2)/5) returns 7.

e Omitting @COMPUTE

Omitting @COMPUTE

The @OWPUTE keyword is not required when an expression is passed as a function
argument.

@TRNUM ((AVOUNTL + AMDUNT2), LEFT)

The following expression returns the same result as the previous one:

@TRNUM ((@OVPUTE (AMOUNTL + AMOUNT2), LEFT)

Manipulating Numbers and Character Strings

ORACLE

To convert numbers and character strings, Oracle GoldenGate supplies the following
functions:

11-25

Chapter 11
Testing and Transforming Data

Table 11-11 Conversion Functions for Numbers and Characters

Purpose Conversion Function
Convert a binary or character string to a number. @WUMBI N
@NUVSTR
Convert a number to a string. @TRNUM
Compare strings. @TRCWP
@TRNCWP
Concatenate strings. @TRCAT
@TRNCAT
Extract from a string. @TREXT
@TRFI ND
Return the length of a string. @TRLEN
Substitute one string for another. @TRSUB
Convert a string to upper case. @TRUP
Trim leading or trailing spaces, or both. @TRLTRI M
@TRRTRI M
@TRTRI M

Handling Null, Invalid, and Missing Data

When column data is missing, invalid, or null, an Oracle GoldenGate conversion
function returns a corresponding value.

If BALANCE is 1000, but AMOUNT is NULL, the following expression returns NULL:

NEW BALANCE = @OMPUTE (BALANCE + AMOUNT)
These exception conditions render the entire calculation invalid. To ensure a

successful conversion, use the @OLSTAT, @OLTEST and @ F functions to test for, and
override, the exception condition.

* Using @COLSTAT
 Using @COLTEST
* Using @IF

Using @COLSTAT

ORACLE

Use the @OCLSTAT function to return an indicator to Extract or Replicat that a column is
missing, null, or invalid. The indicator can be used as part of a larger manipulation
formula that uses additional conversion functions.

The following example returns a NULL into target column | TEM

| TEM = @CLSTAT (NULL)

The following @ F calculation uses @OLSTAT to return NULL to the target column if
PRI CE and QUANTI TY are less than zero.

11-26

Chapter 11
Testing and Transforming Data

ORDER TOTAL = PRICE * QUANTITY, @F ((PRICE < 0) AND (QUANTITY < 0), @OLSTAT (NULL))

Using @COLTEST

Using @IF

Use the @OLTEST function to check for the following conditions:

* PRESENT tests whether a column is present and not null.

e NULL tests whether a column is present and null.

* M SSI NGtests whether a column is not present.

e | NVALI Dtests whether a column is present but contains invalid data.

The following example checks whether the AMOUNT column is present and NULL and
whether it is present but invalid.

@POLTEST (AMOUNT, NULL, | NVALI D)

Use the @ F function to return one of two values based on a condition. Use it with the
@OLSTAT and @OLTEST functions to begin a conditional argument that tests for one or
more exception conditions and then directs processing based on the results of the test.

NEW BALANCE = @F (@OLTEST (BALANCE, NULL, INVALID) OR
@OLTEST (AVOUNT, NULL, INVALID), @OLSTAT (NULL), BALANCE + AMOUNT)

This conversion returns one of the following:
e NULL when BALANCE or AMOUNT is NULL or | NVALI D
e M SSI NGwhen either column is missing

e The sum of the columns.

Performing Tests

The @ASE, @ALONECF, and @VAL functions provide additional methods for
performing tests on data before manipulating or mapping it.

* Using @CASE
* Using @VALONEOF
* Using @EVAL

Using @CASE

ORACLE

Use @ASE to select a value depending on a series of value tests.
@CASE (PRODUCT_CODE, 'CAR, 'Acar', 'TRUCK', "A truck')
This example returns the following:

e A car if PRODUCT_CODE is CAR

e A truck if PRODUCT_CODE is TRUCK
 AFIELD M SSI NGindication if PRODUCT _CODE fits neither of the other conditions

11-27

Chapter 11
Using Tokens

Using @VALONEOF

Use @/ALONECF to compare a column or string to a list of values.
@F (@/ALONEOF (STATE, 'CA', 'NY'), 'COAST', 'MDDLE)

In this example, if STATE is CA or NY, the expression returns COAST, which is the
response returned by @ F when the value is non-zero (meaning TRUE).

Using @EVAL

Use @VAL to select a value based on a series of independent conditional tests.

@VAL (AVOUNT > 10000, 'high amount', AMOUNT > 5000, 'somewhat high')

This example returns the following:
e high anount if AMOUNT is greater than 10000

e sonewhat hi gh if AMOUNT is greater than 5000, and less than or equal to 10000,
(unless the prior condition was satisfied)

 AFIELD M SSI NGindication if neither condition is satisfied.

Using Tokens

You can capture and store data within the user token area of a trail record header.
Token data can be retrieved and used in many ways to customize the way that Oracle
GoldenGate delivers information. For example, you can use token data in:

e Column maps

e Stored procedures called by a SQLEXEC statement
* User exits

* Macros

* Defining Tokens

* Using Token Data in Target Tables

Defining Tokens

ORACLE

To use tokens, you define the token name and associate it with data. The data can be
any valid character data or values retrieved from Oracle GoldenGate column-
conversion functions.

The token area in the record header permits up to 16,000 bytes of data. Token names,
the length of the data, and the data itself must fit into that space.

To define a token, use the TOKENS option of the TABLE parameter in the Extract
parameter file.

Syntax

TABLE t abl e_spec, TOKENS (token_name = token_data [, ...]);

11-28

Chapter 11
Using Tokens

Where:

e tabl e_spec is the name of the source table. A container or catalog name, if
applicable, and an owner name must precede the table name.

e token_nane is a name of your choice for the token. It can be any number of
alphanumeric characters and is not case-sensitive.

e token_data is a character string of up to 2000 bytes. The data can be either a
string that is enclosed within single quotes or the result of an Oracle GoldenGate
column-conversion function. The character set of token data is not converted. The
token must be in the character set of the source database for Extract and in the
character set of the target database for Replicat. In the trail file, user tokens are
stored in UTF-8.

TABLE ora.oratest, TOKENS (

TK- OSUSER = @BETENV (' GGENVI RONVENT' , ' OSUSERNAME'),
TK- GROUP = @GETENV (' GGENVI RONMENT' , ' GROUPNAME')
TK- HOST = @BETENV(' GGENVI RONVENT' , ' HOSTNAME'));

As shown in this example, the Oracle GoldenGate @ETENV function is an effective way
to populate token data. This function provides several options for capturing
environment information that can be mapped to tokens and then used on the target
system for column mapping.

Using Token Data in Target Tables

To map token data to a target table, use the @OKEN column-conversion function in the
source expression of a COLMAP clause in a Replicat MAP statement. The @ OKEN function
provides the name of the token to map. The COLMAP syntax with @OKEN is:

Syntax
COLMAP (target _colum = @OKEN ('token_name'))

The following MAP statement maps target columns host, gg_gr oup, and so forth to
tokens t k- host , t k- gr oup, and so forth. Note that the arguments must be enclosed
within single quotes.

User tokens Values

t k- host . SysA

t k- group ;extora

t k- osuser jad

t k- domai n cadmin

tk-ba_ind B

tk-commit_ts :2011- 01-24 17:08: 59. 000000

ORACLE 11-29

ORACLE

Chapter 11
Using Tokens

User tokens Values

t k- pos : 3604496
tk-rba : 4058
tk-table :orat est
t k- optype insert

Example 11-6 MAP Statement

MAP ora.oratest, TARGET ora.rpt,
COLMAP (USEDEFAULTS,

host = @oken ('tk-host'),
gg_group = @oken ('tk-group'),
osuser= @oken ('tk-osuser'),
domain = @oken ('tk-domain'),
ba_ind= @oken ('tk-ba_ind'),
commit_ts = @oken ('tk-commit_ts'),
pos = @oken ('tk-pos'),

rba = @oken ('tk-rba'),

tabl ename = @oken ('tk-table'),
optype = @oken ('tk-optype'));

The tokens in this example will look similar to the following within the record header in

the trail:

11-30

Associating Replicated Data with Metadata

This chapter describes the uses of metadata and how to associate replicated data with
metadata.
Topics:

* Overview

e Understanding Data Definition Files

e Using Automatic Trail File Recovery

e Configuring Oracle GoldenGate to Use Self-Describing Trail Files
e Configuring Oracle GoldenGate to Assume ldentical Metadata

e Configuring Oracle GoldenGate to Assume Dissimilar Metadata

e Configuring Oracle GoldenGate to Use a Combination of Similar and Dissimilar
Definitions

Overview

When replicating data from one table to another, an important consideration is whether
the column structures (metadata) of the source and target tables are identical. Oracle
GoldenGate looks up metadata for the following purposes:

* On the source, to supply complete information about captured operations to the
Replicat process.

* Onthe target, to determine the structures of the target tables, so that the
replicated data is correctly mapped and converted (if needed) by Replicat.

In each of the following scenarios, you must use a different parameter or set of
parameters to describe the metadata properly to the Oracle GoldenGate process that
is processing it:

* You are replicating a source table to a target table that has identical metadata
definitions (homogeneous replication).

* You are replicating a source table to a target table that has different metadata
definitions.

* You are replicating a source table to two target tables, one with identical
definitions and one that has different definitions.

Understanding Data Definition Files

Oracle GoldenGate can query the local database to get one set of definitions, but it
must rely on a data-definitions file to get definitions from the remote database. The
data-definitions file contains information about the metadata of the data that is being
replicated. There are two types of definitions files:

* A source-definitions file contains the definitions of source tables.

ORACLE 12-1

Chapter 12
Understanding Data Definition Files

A target-definitions file contains the definitions of the target tables.

You can use multiple data-definitions files in a parameter file. For example, each one
can contain the definitions for a distinct application.

Contents of the Definitions File

Which Definitions File Type to Use, and Where

Understanding the Effect of Character Sets on Definitions Files
Using a Definitions Template

Configuring Oracle GoldenGate to Capture Data-definitions
Adding Tables that Satisfy a Definitions Template

Examples of Using a Definitions File

Contents of the Definitions File

The format of a data-definitions file is for internal use and should not be edited by an
Oracle GoldenGate user unless instructed to do so in documented procedures or by a
support representative. The file begins with a file header that shows the version of
DEFGEN, information about character sets, the database type, the locale, and internal
metadata that indicates other data properties. Following the header are the table-
definition sections. Each table-definition section contains a table name, record length,
number of columns, and one or more column definitions.

Which Definitions File Type to Use, and Where

The type of definitions file to use depends on where column mapping and conversion
will be performed.

ORACLE

When replicating from any type of Windows or UNIX-based database system to
any other Windows or UNIX-based system, the mapping and conversion can be
performed by Extract, a data-pump Extract, or Replicat, but is usually performed
by Replicat on the target system. However, if Oracle GoldenGate must convert
between different character sets, the mapping and conversion must be performed
by Replicat on the target. See Understanding the Effect of Character Sets on
Definitions Files.

When replicating from any Windows, UNIX, or Linux-based database system to an
Enscribe target on a NonStop system, the mapping and conversion must be
performed on the Windows, UNIX, or Linux system: Only Extract can convert two-
and three-part SQL names and data types to the three-part file names that are
used on the NonStop platform. In this scenario, Oracle GoldenGate cannot convert
between source and target character sets. See Understanding the Effect of
Character Sets on Definitions Files.

Therefore:

To perform column mapping and conversion on the target, use a source-definitions
file that was generated on the source to supply the source definitions to Replicat.

To perform column mapping and conversion on the source, use a target-definitions
file that was generated on the target to supply target definitions to the primary
Extract or a data-pump Extract, depending on which process does the conversion.

To perform column mapping or transformation on an intermediary system, you
may need to use multiple definition file types. See Creating a Reporting

12-2

Chapter 12
Understanding Data Definition Files

Configuration with a Data Pump on an Intermediary System and Creating a
Cascading Reporting Configuration. Note that if there is not a Replicat on the
intermediary system, conversion between character sets cannot be performed.

Understanding the Effect of Character Sets on Definitions Files

Oracle GoldenGate takes into consideration the character set encoding of the
database when performing data conversion, and it takes into consideration the
character set of the local operating system when creating a definitions file. Take the
following guidelines into account when the source and target data have different
character sets.

* Confining Data Mapping and Conversion to the Replicat Process
* Avoiding File Corruptions Due to Operating System Character Sets
* Changing the Character Set of Existing Definitions Files

» Downloading from a z/OS system to another platform

Confining Data Mapping and Conversion to the Replicat Process

Replicat is the only process that converts replicated data between different character
sets. It converts data from the source database character set to the target database
character set (or to the character set of the database on an intermediary system in a
cascading configuration). As a result, data mapping and conversion must be
performed by Replicat if source and target character sets are different. It cannot be
performed on a source system, nor on an intermediary system that only contains a
data pump. A target-definitions file is invalid in these cases.

Avoiding File Corruptions Due to Operating System Character Sets

By default, DEFGEN writes the definitions file itself in the character set of the local
operating system. A definitions file can be created on the local system and transferred
to the remote system without any encoding-related problems if the following is true:

* The remote system to which you are transferring the definitions file has the same
or equivalent operating-system character set as the local system

* The operating-system character set of the remote system is a subset of the
operating-system character set of the local system, For example, if the source and
target character sets both are ASCIl-compatible or EBCDIC-compatible and all
table and column names use only 7-bit US-ASCII or equivalent characters, you
can move the definition file between those systems.

Many operating-system character sets have little or no compatibility between them. To
write the definitions file in a character set that is compatible with, or the same as, the
one used by the remote system, use the CHARSET option of the DEFSFI LE parameter
when you configure DEFGEN.

Changing the Character Set of Existing Definitions Files

ORACLE

In the case of an existing definitions file that is transferred to an operating system with
an incompatible character set, you can run the DEFGEN utility on that system to
convert the character set of the file to the required one. This procedure takes two input
arguments: the name of the definitions file and the UPDATECS char act er _set
parameter. For example:

12-3

Chapter 12
Understanding Data Definition Files

defgen ./dirdef/source.def UPDATECS UTF-8

UPDATECS helps in situations such as when a Japanese table name on Japanese
Windows is written in Windows CP932 to the data-definitions file, and then the
definitions file is transferred to Japanese UNIX. The file cannot be used unless the
UNIX is configured in PCK locale. Thus, you must use UPDATECS to convert the
encoding of the definitions file to the correct format.

Downloading from a z/OS system to another platform

Definitions files generated on an IBM z/OS platform must be downloaded in Bl NARY
mode when transferring them to a non-z/OS platform.

Using a Definitions Template

When you create a definitions file, you can specify a definitions template that reduces
the need to create new definitions files when tables are added to the Oracle
GoldenGate configuration after the initial startup. To use a template, all of the new
tables must have identical structures, such as in a customer database where there are
separate but identical tables for each customer (see Rules for Tables to be
Considered Identical).

If you do not use a template and new tables are added after startup, you must
generate a definitions file for each new table that is added to the Oracle GoldenGate
configuration, then copy their contents to the existing master definitions file, and then
restart the process.

Configuring Oracle GoldenGate to Capture Data-definitions

To configure Oracle GoldenGate to use a data-definitions file and template (if needed),
you will:

Topics:

* Configure DEFGEN

* Run DEFGEN

» Transfer the Definitions File to the Remote System

* Specify the Definitions File

Configure DEFGEN

ORACLE

Perform these steps on the system from which you want to obtain metadata
definitions.

Note:

Do not create a data-definitions file for Oracle sequences. It is not needed
and DEFGEN does not support it.

1. From the Oracle GoldenGate directory, run GGSCI.

12-4

Chapter 12
Understanding Data Definition Files

2. In GGSCI, issue the following command to create a DEFGEN parameter file.

EDI T PARAMS DEFGEN

3. Enter the parameters listed in Table 12-1 in the order shown, starting a new line

for each parameter statement.

Table 12-1 DEFGEN Parameters

Parameter

Description

CHARSET char act er _set

Use this parameter to specify a character set that
DEFGEN will use to read the parameter file. By default,
the character set of the parameter file is that of the local
operating system. If used, CHARSET must be the first line
of the parameter file.

DEFSFILE file_name [APPEND | PURGE] [CHARSET
character_set] [FORMAT RELEASE maj or.mi nor]

« APPEND directs DEFGEN to write new content (from
the current run) at the end of any existing content, if
the specified file already exists.

« PURGE directs DEFGEN to purge the specified file
before writing new content from the current run.
This is the default.

« CHARSET generates the definitions file in the
specified character set instead of the default
character set of the operating system.

« FORVAT RELEASE specifies the Oracle GoldenGate
release version of the definitions file. Use when the
definitions file will be read by a process that is in an
earlier version of Oracle GoldenGate than the
DEFGEN process.

Specifies the relative or fully qualified name of the data-
definitions file that is to be the output of DEFGEN.

See Reference for Oracle GoldenGate for important
information about these parameter options and their
effect on character sets.

See Understanding the Effect of Character Sets on
Definitions Files for more information.

[{SOURCEDB | TARGETDB} dat asource]
{USERI DALI AS al i as | USERID user, PASSWORD
password [encryption_options]}

e SOURCEDB | TARCETDB specifies a data source
name, if required as part of the connection
information. Not required for Oracle.

e USERID user, PASSWORD password
[encryption_options] specifies a user name
and password, with optional encryption options.

« USERI DALI AS supplies database authentication
through credentials stored in the Oracle
GoldenGate credential store.

Specifies database connection information.

The dat asour ce can be a DSN (Datasource Name), or
a container of an Oracle container database (CDB). If
connecting to an Oracle container database, connect to
the root container as the common user if you need to
generate definitions for objects in more than one
container. Otherwise, you can connect to a specific
container to generate definitions only for that container.

For more information about SOURCEDB, USERI D, and

USERI DALI AS, including the databases they support,
see Reference for Oracle GoldenGate.

NOCATALOG Removes the container name (Oracle) from table names
before their definitions are written to the definitions file.
Use this parameter if the definitions file is to be used for
mapping to a database that only supports two-part
names (owner . obj ect).

ORACLE 12-5

Chapter 12
Understanding Data Definition Files

Table 12-1 (Cont.) DEFGEN Parameters
|

Parameter Description
TABLE cont ai ner. owner.table Specifies the fully qualified name of a table or tables for
[, {DEF | TARGETDEF} tenplate]; which definitions will be defined and optionally uses the

Where:

. cont ai ner is a container in an Oracle container

database.

metadata of the table as a basis for a definitions
template. Case-sensitivity of both table name and
template name is preserved for case-sensitive
databases. See Specifying Object Names in Oracle
GoldenGate Input for instructions on wildcarding and

*owner is the name of the schema that contains the c5se-sensitivity.
table to be defined.

Specify a source table(s) if generating a source-

* tableisthe table that s to be defined. definitions file or a target table(s) if generating a target-
e [, {DEF | TARGETDEF} tenplate] additionally definitions file.
creates a definitions template based on the To exclude tables from a wildcard specification, use the

metadata of this table. This option is not supported TAR| EEXCLUDE parameter.
for initial loads. See Reference for Oracle

GoldenGate for information about this option.

Note that DEFGEN does not support UDTSs.

4. Save and close the file.
Exit GGSCI.

5.

Run DEFGEN

1.

2.
3.

ORACLE

From the directory where Oracle GoldenGate is installed, run DEFGEN using the
following arguments. This example shows a UNIX file system structure.

defgen paranfile dirprndefgen.prm[reportfile dirrpt/defgen.rpt]
[NCEXTATTR]

Where:

def gen is the name of the program.

paranfil e is a required keyword. di r pr i def gen. pr mis the relative or full
path name of the DEFGEN parameter file. (The typical location is shown in the
example.)

reportfil e is arequired keyword. di rrpt/def gen. rpt sends output to the
screen and to the designated report file. (The typical location is shown in the
example.) You can omit the reportfil e argument to print to the screen only.

NOEXTATTR can be used to support backward compatibility with Oracle
GoldenGate versions that are older than Release 11.2.1 and do not support
character sets other than ASCII, nor case-sensitivity or object names that are
guoted with spaces. NOEXTATTR prevents DEFGEN from including the
database locale and character set that support the globalization features that
were introduced in Oracle GoldenGate Release 11.2.1. If the table or column
name has multi-byte or special characters such as white spaces, DEFGEN
does not include the table definition when NOEXTATTR is specified. If APPEND
mode is used in the parameter file, NOEXTATTR is ignored, and the new table
definition is appended in the existing file format, whether with the extra
attributes or not.

Repeat these steps for any additional definitions files that you want to create.

Using ASCII mode, FTP the definitions file (or files) from the local Oracle
GoldenGate di r def sub-directory to the remote di r def sub-directory.

12-6

Chapter 12
Understanding Data Definition Files

Transfer the Definitions File to the Remote System

Use BI NARY mode to FTP the data definitions file to the remote system if the local and
remote operating systems are different and the definitions file is created for the remote
operating system character set. This avoids unexpected characters to be placed in the
file by the FTP program, such as new-line and line-feed characters. Always use

Bl NARY mode when transferring definitions files from z/OS to a non-z/OS platform.

Specify the Definitions File

Associate a data-definitions file with the correct Oracle GoldenGate process in the
following ways:

e Associate a target-definitions file with an Extract group or data pump by using the
TARGETDEFS parameter in the Extract parameter file.

» Associate a source-definitions file with the Replicat group by using the SOURCEDEFS
parameter in the Replicat parameter file.

e If Oracle GoldenGate is to perform mapping or conversion on an intermediary
system that contains neither the source nor target database, associate a source-
definitions file and a target-definitions file with the data pump Extract by using
SOURCEDEFS and TARGETDEFS in the parameter file. For Oracle databases, the
Oracle libraries also must be present on the intermediary system.

See Examples of Using a Definitions File for the correct way to specify multiple
definitions files.

Do not use SOURCEDEFS and ASSUMETARGETDEFS in the same parameter file. See
Configuring Oracle GoldenGate to Assume Identical Metadata for more information
about ASSUVETARGETDEFS.

Adding Tables that Satisfy a Definitions Template

To map a new table in the Oracle GoldenGate configuration to a definitions template,
use the following options of the TABLE and MAP parameters, as appropriate:

e DEF to specify the name of a source-definitions template.
* TARGETDEF to specify the name of a target-definitions template.

Because these options direct the Extract or Replicat process to use the same
definitions as the specified template, you need not create a new definitions file for the
new table, nor restart the process.

Examples of Using a Definitions File

This topic contains some basic use cases that include a definitions file.
Topics:
e Creating a Source-definitions file for Use on a Target System

e Creating Target-definitions Files for Use on a Source System

e Creating Multiple Source Definition Files for Use on a Target System

ORACLE 12-7

Chapter 12
Understanding Data Definition Files

Creating a Source-definitions file for Use on a Target System

The following configuration uses a DEFGEN parameter file that creates a source-
definitions file as output. This example is for tables from an Oracle database.

DEFSFI LE C:\ggs\dirdef\record. def
USERI DALI AS ogg

TABLE acct. cust 100, DEF custdef;
TABLE ord. *;

TABLE hr.*;

The results of this DEFGEN configuration are:

e Individual definitions by name are created for all tables in the ord and hr schemas.

A custdef template is created based on table acct . cust 100. In the database,
there are other acct . cust * tables, each with identical definitions to acct . cust 100.

The tables are mapped in the Replicat parameter file as follows:

- This is a sinplified parameter file. Your requirements may vary.
REPLI CAT acctrep

USERI DALI AS ogg

SOURCEDEFS c:\ ggs\dirdef\record. def

MAP acct.cust*, TARGET acct.cust*, DEF custdef;

MAP ord. prod, TARCET ord. prod,

MAP ord. parts, TARGET ord.parts;

MAP hr.enp, TARCET hr.enp;

MAP hr.sal ary, TARGET hr.sal ary;

Note that definitions for tables that satisfy the wildcard specification acct . cust * are
obtained from the cust def template, as directed by the DEF option of the first MAP
statement.

Creating Target-definitions Files for Use on a Source System

If target definitions are required for the same tables, those tables can be mapped for a
primary Extract or a data pump.

» Target definitions are required instead of source definitions if the target is an
Enscribe database.

* Target definitions are required in addition to source definitions if mapping and
conversion are to be done on an intermediary system.

The DEFGEN configuration to make the target-definitions file looks similar to the
following:

DEFSFI LE C:\ggs\dirdef\trecord. def
USERI DALI AS ogg

TABLE acct.cust100, DEF tcustdef;
TABLE ord. *;

TABLE hr.*;

ORACLE 12-8

Chapter 12
Understanding Data Definition Files

Note:

See the previous example for the DEFGEN configuration that makes the
source-definitions file.

The Extract configuration looks similar to the following:

- This is a sinplified parameter file. Your requirements may vary.
EXTRACT acct ex

USER! DALI AS ogg

RMIHOSTOPTI ONS sysh, MGRPORT 7890, ENCRYPT AES192 KEYNAME nykeyl
ENCRYPTTRAI L AES192

RMITRAI L $dat a. ggsdat . rt

SOURCEDEFS c:\ ggs\dirdef\record. def

TARGETDEFS c:\ggs\dirdef\trecord. def

TABLE acct. cust*, TARGET acct.cust*, DEF custdef, TARGETDEF tcustdef;
TABLE ord. prod, TARGET ord. prod;

TABLE ord. parts, TARCET ord. parts;

TABLE hr.enp, TARGET hr.enp;

TABLE hr.sal ary, TARGET hr.sal ary;

In this example, the source template named cust def (from the recor d. def file) and a
target template named t cust def (from the trecord. def file) are used for the

acc. cust * tables. Definitions for the tables from the or d and hr schemas are obtained
from explicit definitions based on the table names (but a wildcard specification could
have been used here, instead)

Creating Multiple Source Definition Files for Use on a Target System

ORACLE

This is a simple example of how to use multiple definitions files. Your parameter
requirements may vary, based on the Oracle GoldenGate topology and database type.

The following is the DEFGEN parameter file that creates the first data-definitions file.

DEFSFI LE C:\ggs\dirdef\sal es. def
USERI DALI AS ogg
TABLE ord. *;

The following is the DEFGEN parameter file that creates the second data-definitions
file. Note the file name and table specification are different from the first one.

DEFSFI LE C:\ ggs\dirdef\adm n. def
USERI DALI AS ogg
TABLE hr. *;

The tables for the first and second definitions file are mapped in the same Replicat
parameter file as follows:

REPLI CAT acctrep

USER! DALI AS ogg

SOURCEDEFS c:\ ggs\dirdef\sales. def
MAP ord.*, TARGET ord.*;
SOURCEDEFS c: \ ggs\ di rdef\adni n. def
MAP hr.*, TARCGET hr.*;

12-9

Chapter 12
Using Automatic Trail File Recovery

Using Automatic Trail File Recovery

The trail recovery process has the ability to, in some cases, automatically rebuild trail
files that are corrupt or missing by Oracle GoldenGate. When an Extract pump
restarts, if the last trail that the pump was writing to is missing, then the Extract pump
attempts to rebuild the missing trail file on the target system. This is done
automatically using the checkpoint information for the process and the last valid trail
file. The Replicat process automatically skips over any duplicate data in the trail files
that have been rebuilt by the new trail recovery feature. This recovery will occur as
long as there is at least 1 target trail from this sequence and that the trail files still exist
on the source where the Extract pump is reading them.

This process can also be used to rebuild corrupt or invalid trail files on the target.
Simply delete the corrupt trail file, and any trail files after that, and then restart the
Extract pump. With this new behavior, Oracle recommends that PURGECLDEXTRACTS

M NKEEP rules are properly configured to ensure that there are trail files from the
source that can be used to rebuild the target environment. This feature requires that
Oracle GoldenGate release 12.1.2.1.8 or greater is used on both the source and target
servers. Do not attempt to start the Replicat with NOFI LTERDUPTRANSACTI ONS because it
will override Replicat's default behavior and may cause transactions that have already
been applied to the target database to be applied again.

Configuring Oracle GoldenGate to Use Self-Describing Trall

Files

ORACLE

The default behavior in this release is to store and forward metadata from the source
to the target and encapsulates it in each of the trail files. In other words, a self-
describing Extract trail or file is created by adding the metadata records in each file.
There are two types of metadata records:

e Database Definition Record (DDR)

A DDR provides information about a specific database, such as character set and
time zone. A Database Definition Record is added to the trail to store the database
metadata for each pluggable database being captured. All the row change records
from a pluggable database will have character and timestamp with local time zone
data based on the corresponding DDR for that pluggable database. DDRs are
generated for both consolidated and non-consolidated databases.

e Table Definition Record (TDR)

A TDR provides details about the definition about a table and the columns that it
contains. The content of this record is similar to what is provided in a definitions
file, which is a subset of the information found in the fil e_def and col _def
classes. Each database can embed its own database specific information to each
TDR. A TDR contains a complete table definition and is used to describe many
row change records for the same table. A new TDR is written when the output trail
rolls over to a new file or the source table definition has changed.

It is important to note that a TDR describes the definition of a table object
represented by the row change records. It will be similar though may not be
identical to the table definition in the source. For example, if a column-conversion
function is applied to a source column, the metadata for that value in the database
will be different from the metadata that shows up in a trail file.

12-10

ORACLE

Chapter 12
Configuring Oracle GoldenGate to Use Self-Describing Trail Files

The metadata records in a self-describing trail file format operate as follows:

Trail Header

" 2

~| DDR (DB1)
—fi-
— TDR Tablel

FR

DML1 (Table1) |

TDR -> DDR < DML2 (Table1)
—— TDR Table2 -

&

DML3 (Table2) - | . DML ->TDR
-

—» DDR (DB2)

H

= 5 TDR Table3

Ref TDR < DML4 (Table 3) —
—— TDR Table4 -

DMLS5 (Table 4) — _J

Using self-described trail files eliminates the need for SOURCEDEFS and
ASSUMETARGETDEFS so parameter files are simpler and it is simpler to configure
heterogeneous replication and provides:

* Areduction in trail file size due to object name compression.

* The ability to extract data from multiple catalogs with different character sets and
time zones into one trail.

* The ability to configure DDL replication among more than two Oracle databases.
There is no need to use the GETREPLI CATS, UPDATEMETADATA, and NOTAG
parameters. You can replicate DDLs when source and target tables are not alike
and without having to synchronize Oracle GoldenGate processes .

* No necessity to create and maintain source definitions files.

Understanding the Self-Describing Trail Behavior

When you are modifying the Source Table Definition the following criteria must be met
to update the new TDR into the Extract's memory, as well as the trail file.

Oracle Database Sources

Integrated Extract (with Oracle Database 11.2.0.4 or higher and compatible = 11.2.0.4
or higher): No manual steps are needed because Integrated Extract seamlessly
generates updated metadata records after a DDL is performed on the source table.
This is true irrespective of whether DDL replication is enabled or not.

Classic Extract: The Extract parameter file should include DDL parameter for Extract
to seamlessly generate updated metadata records after a DDL. Alternatively, as in-

12-11

Chapter 12
Configuring Oracle GoldenGate to Use Self-Describing Trail Files

releases earlier than 12.2 , DDL should be performed only after Extract has
completely output all the relevant database changes to the trail and is stopped. After
DDL is executed, you must restart the Extract. Unlike previous releases, there is no
need to stop Replicat and regenerate SOURCEDEFS using DEFGEN.

Heterogeneous Database Sources

As in releases earlier than 12.2, DDL should be performed only after Extract has
completely output all the relevant database changes to the trail and is stopped. After
DDL is executed, you must restart the Extract should be restarted. Unlike previous
releases, there is no need to stop Replicat and regenerate SOURCEDEFS using DEFGEN.
Topics:

e Support Considerations

* Using Self-Describing Trail Files

* Examples of Parameter Files

Support Considerations

Review the following support information:

e Trail File Formats:

— Must be Oracle GoldenGate release 12c¢ (12.2.0.1) or greater to contain
metadata records.

— Cannot generate a 12c¢ (12.2.0.1) trail format with the older trail format in a
multi-trail configuration.

— FORMATASCI |, FORVATSQL and FORVATXM trails will not contain metadata
records.

» For existing trail file configurations, you can easily switch between the previous
and self-describing extract trail methods of resolving the table metadata by:

— Use the USE_TRAI LDEFS GLOBALS parameter to control all pumps and
Replicats.

— Use the OVERRI DE option of SOURCEDEFS and ASSUMETARGETDEFS to control an
individual pump or Replicat. Oracle does not recommend this.

* Logdump displays the metadata records similar to DEFGEN output.
* Reverse is not supported in the 12¢ (12.2.0.1) trail format.

» If atable is mapped, the generated TDR is based on the definition of the mapped
table not the source table.

* Metadata in the trail is supported for all databases except HP NonStop (Guardian).

Using Self-Describing Trail Files

Use the USE_TRAI LDEFS GLOBALS parameter to enable or disable all pumps and
Replicats. This command usage in relation to the SOURCDEFS and ASSUMETARGETDEF,
and its source table definitions are described as follows.

ORACLE 12-12

Figure 12-1

Chapter 12

Configuring Oracle GoldenGate to Use Self-Describing Trail Files

USE_TRAI LDEFS | NOUSE_TRAI LDEFS USAGE

GLOBALS Parameter

USE TRAILDEFS

NO USE TRAILDEFS

Use the definitions from
the SOURCEDEFS file.

SOURCEDEFS Use the definitions from
the trail.
Issue a warning that
SOURCEDEFS is ignored.
Extract/ SOURCEDEFES Use the definitions from
Pump OVERRIDE the SOURCEDEFS file,
Parameter aAssUMETARGETDEFS Use the definitions from
the trail.
Issue a warning that
ASSUMETARGETDEFS is
ignored,
ASSUMETARGETDEFS Use the definitions from
OVERRIDE the target database.

Use the definitions from
the SOURCEDEFS file.
Use the definitions from
the target database.

Use the definitions from
the target database,

You must use the OVERRI DE option with the ASSUMETARGETDEFS and SOURCEDEFS

parameters when using self-describing trall files.

Examples of Parameter Files

ORACLE"

The following is an example of an Extract parameter file:

EXTRACT ext 1

USERI D t kggadm n@nst 1, password tkggadm n

DDL include objname hr.*, include objnanme st_hr.*

RMITRAI L $dat a/ ggs12. 2/ al

TABLE hr.*;

TABLE st _hr.salary, TARGET hr.salary, COLMAP (USEDEFAULTS,
ts = @ETENV(' GGHEADER

RMITRAI L $dat a/ ggs12. 2/ a2, NO OBJECTDEFS

TABLE orders. *;

The following is an example of an Replicat parameter file:

REPLCAT repl

USERI D t kggadm n@nst 2, password tkggadnmin
DDLERROR defaul t discard

DDL include all

DI SCARDFI LE . /dirrpt/repl.dsc purge

MAP hr.*, TARGET hr.*;

, " COMM TTI MESTAWP)) ;

12-13

Chapter 12
Configuring Oracle GoldenGate to Assume Identical Metadata

Configuring Oracle GoldenGate to Assume Identical

Metadata

¢ Note:

This section does not apply to self-describing trail files.

When source and target tables have identical metadata definitions, use the
ASSUMETARGETDEFS parameter in the Replicat parameter file. This parameter directs
Replicat to assume that the target definitions are the same as those of the source, and
to apply those definitions to the replicated data when constructing SQL statements.
The source and target tables must be identical in every way, thus needing no
conversion processing, although their catalogs or containers, owners and/or names
can be different.

* Rules for Tables to be Considered Identical

Rules for Tables to be Considered Identical

ORACLE

For source and target structures to be identical, they must:

* be of the same database type, that is, all Oracle.
* have the same character set and locale, for example amer i can_AMERI CA.
» contain the same number of columns.

e have identical column names (including case, white spaces, and quotes if
applicable).

e have identical data types.
e have identical column lengths.

e have the same column length semantics for character columns (bytes versus
characters).

» define all of the columns in the same order.

The following is a simple Replicat parameter file that illustrates the use of
ASSUMETARGETDEFS. For more information, see ASSUMETARGETDEFS in Reference for
Oracle GoldenGate.

- Specifies the group name.

REPLI CAT acctrep

- Specifies database login with an alias to a credential in the credential store.
USERI DALI AS ogg

- Specifies a file for discard output.

DI SCARDFI LE . /dirrpt/backup/r_prod.dsc, APPEND

- States that source and target definitions are identical.
ASSUVETARCGETDEFS

- Maps source tables to target tables.

MAP hgq. product, TARGET regionl. product;

MAP hq. price, TARGET regionl.price;

12-14

Chapter 12
Configuring Oracle GoldenGate to Assume Dissimilar Metadata

When source and target structures are different, use the SOURCEDEFS parameter. See
Configuring Oracle GoldenGate to Assume Dissimilar Metadata. ASSUVETARGETDEFS
and SOURCEDEFS cannot be used in the same parameter file.

Configuring Oracle GoldenGate to Assume Dissimilar
Metadata

Source and target metadata definitions are not considered identical if they do not meet
the rules in Rules for Tables to be Considered Identical. When source and target table
definitions are dissimilar, Oracle GoldenGate must perform a conversion from one
format to the other. To perform conversions, both sets of definitions must be known to
Oracle GoldenGate.

Configuring Oracle GoldenGate to Use a Combination of
Similar and Dissimilar Definitions

Note:

This section does not apply to self-describing trail files.

ASSUMETARGETDEFS and SOURCEDEFS can be used in the same parameter file. This can
be done when column mapping or conversion must be performed between some of
the source-target table pairs, but not for other table pairs that are identical.

The following is an example of how to use SOURCEDEFS and ASSUMETARGETDEFS in the
same parameter file. This example builds on the previous examples where tables in
the acct, ord, and hr schemas require SOURCEDEFS, but it adds a r pt schema with
tables that are dynamically created with the name st ock appended with a random
numerical value. For Oracle GoldenGate to replicate the DDL as well as the DML, the
target tables must be identical. In that case, ASSUMETARGETDEFS is required.

REPLI CAT acctrep

USER!I DALI AS ogg

SOURCEDEFS c:\ ggs\dirdef\record. def

MAP acct.cust*, TARGET acct.cust*, DEF custdef;
MAP ord. prod, TARGET ord. prod;

MAP ord. parts, TARGET ord.parts;

MAP hr.enp, TARGET hr.enp;

MAP hr.sal ary, TARGET hr.salary;
ASSUVETARGETDEFS

MAP rpt.stock, TARGET rpt.stock;

ORACLE 12-15

Configuring Online Change
Synchronization

This chapter describes how to configure online change synchronization.
Topics:

e Overview of Online Change Synchronization

e Choosing Names for Processes and Files

e Creating a Checkpoint Table

e Creating an Online Extract Group

e Creating a Trall

e Creating a Parameter File for Online Extraction
e Creating an Online Replicat Group

e Creating a Parameter File for Online Replication

Overview of Online Change Synchronization

Online change synchronization extracts and replicates data changes continuously to
maintain a near real-time target database. The number of Extract and Replicat
processes and trails that you will need depends on the replication topology that you
want to deploy and the process mode that you will be using.

For detailed information about deploying specific replication topologies, see:

* Using Oracle GoldenGate for Live Reporting

» Using Oracle GoldenGate for Real-time Data Distribution

» Configuring Oracle GoldenGate to Maintain a Live Standby Database
* Configuring Oracle GoldenGate for Active-Active High Availability

You may need to configure multiple Replicat processes if you are replicating between
Oracle multitenant container databases.

You may need to configure multiple process groups to achieve a certain performance
level. For example, you may want to keep lag below a certain threshold. Lag is the
difference between when changes are made within your source applications and when
those changes are applied to the target database.

Oracle GoldenGate supports up to 5,000 concurrent Extract and Replicat groups per
instance of Oracle GoldenGate Manager. At the supported level, all groups can be
controlled and viewed in full with GGSCI commands such as the | NFOand STATUS
commands. Oracle GoldenGate recommends keeping the number of Extract and
Replicat groups (combined) at the default level of 300 or below in order to manage
your environment effectively.

ORACLE 13-1

Chapter 13
Choosing Names for Processes and Files

See Tuning the Performance of Oracle GoldenGate for more information about
configuring Oracle GoldenGate for best performance.

* Initial Synchronization

Initial Synchronization

Choosing

After you configure your change-synchronization groups and trails following the
directions in this chapter, see Instantiating Oracle GoldenGate with an Initial Load to
prepare the target tables for synchronization. An initial load takes a copy of entire
source tables, transforms the data if necessary, and applies it to the target tables so
that the movement of transaction data begins from a synchronized state. The first time
that you start change synchronization should be during the initial synchronization
process. Change synchronization keeps track of ongoing transactional changes while
the load is being applied.

Names for Processes and Files

It is helpful to develop consistent naming conventions for the Oracle GoldenGate
processes and files before you start configuration steps. Choosing meaningful names
helps you differentiate among multiple processes and files in displays, error logs, and
external monitoring programs. In addition, it accommodates the naming of additional
processes and files later, as your environment changes or expands.

This section contains instructions for:

* Naming Conventions for Processes

e Choosing File Names

Naming Conventions for Processes

ORACLE

When specifying a process or group name, follow these rules.

» For the following types of processes, you can use up to eight characters, including
non-alphanumeric characters such as the underscore ():

— Online Extract group

— Initial-load Extract

— Online Replicat group created in classic (hon-coordinated) mode
— Online Replicat group created in integrated mode (Oracle only)

» For coordinated and parallel Replicat process group, you can use up to five
characters, including non-alphanumeric characters such as the underscore ().
Internally, a three-character thread ID is appended to the base name for each
thread that is created based on the MAXTHREADS option of the ADD REPLI CAT
command. The resulting names cannot be duplicated for any other Replicat group.
For example, if a coordinated Replicat group named fi n is created with a
MAXTHREADS of 50 threads, the resulting thread names could span from f i n000
through fi n050, assuming those are the IDs specified in the MAP statements. Thus,
no other Replicat group can be named fi n000 through f i n0050. See the following
rule for more information.

* You can include a number in a group name, but it is not recommended that a
name end in any numerals. Understand that using a numeric value at the end of a

13-2

Chapter 13
Choosing Names for Processes and Files

group name (such as fi nl) can cause duplicate report file names and errors,
because the writing process appends a number to the end of the group name
when generating a report. In addition, ending a group name with numeric values is
not recommended when running Replicat in coordinated mode. Because numeric
thread IDs are appended to a group name internally, if the base group name also
ends in a number it can make the output of informational commands more
complicated to analyze. Thread names could be confused with the names of other
Replicat groups if the numeric appendages satisfy wildcards. Duplicate report file
names also can occur. It may be more practical to put a numeric value at the
beginning of a group name, such as 1_fin, 1fi n, and so forth.

* Any character can be used in the name of a process, so long as the character set
of the local operating system supports it, and the operating system allows that
character to be in a file name. This is because a group is identified by its
associated checkpoint file and parameter file.

* The following characters are not allowed in the name of a process:
(V22 <>}

* On HP UX, Linux, and Solaris, it is possible to create a file name with a colon (:) or
an asterisk (*), although it is not recommended.

* In general, process hames and parameter file names are not case-sensitive within
Oracle GoldenGate. For example, fi nance, Fi nance, and FI NANCE are all
considered to be the same. However, on Linux, the process name (and its
parameter file name if explicitly defined in the ADD command) must be all
uppercase or all lowercase. Mixed-case names specified for processes and
parameter files will result in errors when starting the process.

» Use only one word for a hame.

» Do not use the word "port" as the full name for a process or parameter file.
However, the string "port" can be part of a name.

Choosing File Names

ORACLE

Captured data must be processed into a series of files called a trail, where it is stored
for processing by the next Oracle GoldenGate process downstream. The basic
configuration is:

e Alocal trail on the source system
e Aremote trail on the target system

The actual trail name contains only two characters, such as ./ dirdat/tr. Oracle
GoldenGate appends this name with a nine-digit sequence number whenever a new
file is created, such as ./ di r dat / aa000000002. It is recommended that you establish
naming conventions for trails, because they are linked to Oracle GoldenGate
processes and may need to be identified for the purposes of troubleshooting.

On Windows systems, if the name of any directory in the trail path name begins with a
number, the path must be specified with forward slashes, not backward slashes, when
listing the trail in a parameter file. For more information, see Specifying Filesystem
Path Names in Parameter Files on Windows Systems.

See What is a Trail? for more information about Oracle GoldenGate trails.

13-3

Chapter 13
Creating a Checkpoint Table

Creating a Checkpoint Table

Replicat maintains checkpoints that provide a known position in the trail from which to
start after an expected or unexpected shutdown. To store a record of its checkpoints,
Replicat uses a checkpoint table in the target database. This enables the Replicat
checkpoint to be included within the Replicat transaction itself, to ensure that a
transaction will only be applied once, even if there is a failure of the Replicat process
or the database process. The checkpoint table remains small because rows are
deleted when no longer needed, and it does not affect database performance. About
Checkpoints for more information about the checkpoint table.

» Options for Creating the Checkpoint Table
» Adjusting for Coordinated Replicat in Oracle RAC

Options for Creating the Checkpoint Table

ORACLE

The checkpoint table can reside in a schema of your choice. Use one that is dedicated
to Oracle GoldenGate if possible.

More than one instance of Oracle GoldenGate (multiple installations) can use the
same checkpoint table. Oracle GoldenGate keeps track of the checkpoints, even if
Replicat group names are the same in different instances.

More than one checkpoint table can be used as needed. For example, you can use
different ones for different Replicat groups.

You can install your checkpoint tables in these ways:

e You can specify a default checkpoint table in the GLOBALS file. New Replicat
groups created with the ADD REPLI CAT command will use this table automatically,
without requiring any special instructions. See "To Specify a Default Checkpoint
Table in the GLOBALS File" for instructions.

* You can provide specific checkpoint table instructions when you create any given
Replicat group with the ADD REPLI CAT command:

— To use a specific checkpoint table for a group, use the CHECKPO NTTABLE
argument of ADD REPLI CAT. This checkpoint table overrides any default
specification in the GLOBALS file. If using only one Replicat group, you can use
this command and skip creating the GLOBALS file altogether.

— To omit using a checkpoint table for a group, use the NODBCHECKPOl NT
argument of ADD REPLI CAT. Without a checkpoint table, Replicat still maintains
checkpoints in a checkpoint file on disk, but you introduce the risk of data
inconsistency.

However you implement the checkpoint table, you must create it in the target database
prior to using the ADD REPLI CAT command.

To Add a Checkpoint Table to the Target Database

The following steps, which create the checkpoint table through GGSCI, can be
bypassed by running the chkpt _db_create. sql script instead, where db is an
abbreviation of the database type. By using the script, you can specify custom storage
or other attributes. Do not change the names or attributes of the columns in this table.

13-4

Chapter 13
Creating a Checkpoint Table

1. From the Oracle GoldenGate directory, run GGSCI and issue the DBLOG N
command to log into the database. The user issuing this command must have
CREATE TABLE permissions. See Reference for Oracle GoldenGate for the correct
syntax to use for your database.

2. In GGSCI, issue the following command to add the checkpoint table to the
database.

ADD CHECKPOI NTTABLE cont ai ner owner.tabl e

Where:

owner .t abl e is the owner and name of the table, cont ai ner is the name of a PDB
if installing into an Oracle multitenant container database. The owner and name
can be omitted if you are using this table as the default checkpoint table and this
table is specified with CHECKPO NTTABLE in the GLOBALS file. The name of this table
must not exceed the maximum length permitted by the database for object names.
The checkpoint table name cannot contain any special characters, such as quotes,
backslash, pound sign, and so forth.

To Specify a Default Checkpoint Table in the GLOBALS File

This procedure specifies a global name for all checkpoint tables in the Oracle
GoldenGate instance. You can override this name for any given Replicat group by
specifying a different checkpoint table when you create the Replicat group.

1. Create a GLOBALS file (or edit the existing one, if applicable). The file name must be
all capital letters on UNIX or Linux systems, without a file extension, and must
reside in the root Oracle GoldenGate directory. You can use an ASCII text editor
to create the file, making certain to observe the preceding naming conventions, or
you can use GGSCI to create and save it with the correct name and location
automatically. When using GGSCI, use the following command, typing GLOBALS in
upper case.

EDI T PARAMS ./ GLOBALS
2. Enter the following parameter:

CHECKPOI NTTABLE cont ai ner. owner .t abl e

Where:

cat al og. owner .t abl e is the fully qualified name of the default checkpoint table,
including the name of the container if the database is an Oracle multitenant
container database (CDB).

3. Note the name of the table, then save and close the GLOBALS file. Make certain the
file was created in the root Oracle GoldenGate directory. If there is a file extension,
remove it.

Adjusting for Coordinated Replicat in Oracle RAC

ORACLE

If the Replicat for which you are creating a checkpoint table will run in an Oracle RAC
configuration, it is recommended that you increase the PCTFREE attribute of the
Replicat checkpoint table to as high a value as possible, as high as 90 if possible. This
accommodates the more frequent checkpointing that is inherent in coordinated
processing. This change must be made before starting the Replicat group for the first
time. See Creating an Online Replicat Group for more information about coordinated
Replicat.

13-5

Chapter 13
Creating an Online Extract Group

Creating an Online Extract Group

To create an online Extract group, run GGSCI on the source system and issue the ADD
EXTRACT command. Separate all command arguments with a comma. There are two
syntax forms:

ORACLE

Syntax to Create a Regular, Passive, or Data Pump Extract Group

Syntax to Create an Alias Extract Group

Syntax to Create a Regular, Passive, or Data Pump Extract Group

ADD EXTRACT group

{,
{,
[
[
[
[
[

dat asour ce}

BEG N start_point} | {position_point}
PASSI VE]

THREADS n]

PARAMS pat hnane]

REPORT pat hnaneg]

DESC ' description']

Where:

group is the name of the Extract group. A group name is required.

dat asour ce is required to specify the source of the data to be extracted. Use one
of the following:

— TRANLOG specifies the transaction log as the data source. When using this
option for Oracle Enterprise Edition, you must issue the DBLOG N command as
the Extract database user (or a user with the same privileges) before using
ADD EXTRACT (and also before issuing DELETE EXTRACT to remove an Extract

group).

Use the bsds option for DB2 running on z/OS to specify the Bootstrap Data
Set file name of the transaction log.

— | NTEGRATED TRANLOG specifies that this Extract will operate in integrated
capture mode to receive logical change records (LCR) from an Oracle
Database logmining server. This parameter applies only to Oracle Databases..

— EXTTRAILSOURCE trail name to specify the relative or fully qualified name of a
local trail. Use to create a data pump. A data pump can be used with any
Oracle GoldenGate extraction method.

BEG N start_poi nt defines an online Extract group by establishing an initial
checkpoint and start point for processing. Transactions started before this point
are discarded. Use one of the following:

— NOW to begin extracting changes that are timestamped at the point when the
ADD EXTRACT command is executed to create the group or, for an Oracle
Extract in integrated mode, from the time the group is registered with the
REG STER EXTRACT command. Do not use NONfor a data pump Extract unless
you want to bypass any data that was captured to the Oracle GoldenGate trail
prior to the ADD EXTRACT statement.

13-6

ORACLE

Chapter 13
Creating an Online Extract Group

YYYY- MM DD HH: MM : SS[. CCCCCC] as the format for specifying an exact
timestamp as the begin point. Use a begin point that is later than the time at
which replication or logging was enabled.

e position_point specifies a specific position within a specific transaction log file at
which to start processing. For the specific syntax to use for your database, see ADD
EXTRACT in Reference for Oracle GoldenGate.

» PASSI VE indicates that the group is a passive Extract. When using PASSI VE, you
must also use an alias Extract. This option can appear in any order among other
ADD EXTRACT options.

e THREADS n is required only if Extract is operating in classic capture mode in an
Oracle Real Application Cluster (RAC). It specifies the number of redo log threads
being used by the cluster.

* PARAMS pat hnane is required if the parameter file for this group will be stored in a
location other than the di r pr msub-directory of the Oracle GoldenGate directory.
Specify the fully qualified name. The default location is recommended.

e REPORT pat hnane is required if the process report for this group will be stored in a
location other than the di rr pt sub-directory of the Oracle GoldenGate directory.
Specify the fully qualified name. The default location is recommended.

e DESC 'description'specifies a description of the group.

Syntax to Create an Alias Extract Group

ADD EXTRACT group

, RMTHOST {host | | P address}
, {MERPORT port} | {PORT port}
[, RMINAME nane]

[, DESC 'description']

Where:

* RMIHOST identifies this group as an alias Extract and specifies either the DNS
name of the remote host or its IP address.

e MGRPORT specifies the port on the remote system where Manager is running. Use
this option when using a dynamic Collector.

* PORT specifies a static Collector port. Use instead of MGRPCORT only if running a
static Collector.

e RMINAME specifies the passive Extract name, if different from that of the alias
Extract.

o DESC'descri pti on' specifies a description of the group.

Example 13-1 Adding an Extract Group for Log-based Capture

This example creates an Extract group named f i nance. Extraction starts with records
generated at the time when the group was created.

ADD EXTRACT finance, TRANLOG BEG N NOW
Example 13-2 Adding a Data-pump Extract Group

This example creates a data-pump Extract group named fi nance. It reads from the
Oracle GoldenGate trail c:\ ggs\dirdat\lt.

ADD EXTRACT finance, EXTTRAILSOURCE c:\ggs\dirdat\It

13-7

Chapter 13
Creating a Trail

Example 13-3 Adding a Passive Extract Group

This example creates a passive Extract group named f i nance. Extraction starts with
records generated at the time when the group was created. Because this group is
marked as passive, an alias Extract on the target will initiate connections to this
Extract.

ADD EXTRACT finance, TRANLOG BEG N NOW PASSIVE

Example 13-4 Adding a Passive Data-pump Extract Group

This example creates a data-pump Extract group named fi nance. This is a passive
data pump Extract that reads from the Oracle GoldenGate trail c:\ ggs\dirdat\It.
Because this data pump is marked as passive, an alias Extract on the target will
initiate connections to it.

ADD EXTRACT finance, EXTTRAI LSOURCE c:\ggs\dirdat\It, PASSIVE

Example 13-5 Adding an Alias Extract Group
This example creates an alias Extract group named al i as.

ADD EXTRACT alias, RMIHOST sysA, MGERPORT 7800, RMTNAME finance

Example 13-6 Adding a Primary Extract in Integrated Mode for Oracle

This example creates an Extract in integrated capture mode for an Oracle source
database and sets the start point to the time when the Extract group is registered with
the Oracle database by means of the REG STER EXTRACT command. Integrated capture
is available only for an Oracle database.

ADD EXTRACT finance | NTEGRATED TRANLOG BEG N NOW

Creating a Trall

ORACLE

After data has been extracted, it must be processed into one or more trails, where it is
stored for processing by another Oracle GoldenGate process. A trail is a sequence of
files that are created and aged as needed. Processes that read a trail are:

e Data-pump Extract: Extracts data from a local trail for further processing, if
needed, and transfers it to the target system.

e Replicat: Reads a trail to apply change data to the target database.

You can create more than one trail to separate the data of different tables or
applications, or to satisfy the requirements of a specific replication topology, such as a
cascading topology. You link tables specified with a TABLE statement to a trail specified
with an EXTTRAI L or RMTTRAI L parameter statement in the Extract parameter file. See
About the Oracle GoldenGate Trail for detailed information about Oracle GoldenGate
trails.

* Assigning Storage for Oracle GoldenGate Trails
* Estimating Space for the Trails
* Adding a Trall

13-8

Chapter 13
Creating a Trail

Assigning Storage for Oracle GoldenGate Trails

In a typical configuration, there is at least one trail on the source system and one on
the target system. Allocate enough disk space to allow for the following:

The primary Extract process captures transactional data from the source database
and writes it to the local trail. A data-pump Extract reads that trail and then
transfers the data over the network to a remote trail on the target. If the network
fails, the data pump fails but the primary Extract continues to process data to the
local trail. There must be enough disk space to contain the data accumulation, or
the primary Extract will abend.

For a trail at the target location, provide enough disk space to handle data
accumulation according to the purge rules set with the PURGEOLDEXTRACTS
parameter. Even with PURGEOLDEXTRACTS in use, data will always accumulate on
the target because it is transferred across the network faster than it can be applied
to the target database.

To prevent trail activity from interfering with business applications, assign a separate
disk or file system to contain the trail files. Trail files can reside on drives that are local
to the Oracle GoldenGate installation, or they can reside on NAS or SAN devices. In
an Oracle cluster, they can reside on ASM or DBFS storage.

Estimating Space for the Trails

The following are guidelines for estimating the amount of disk space that will be
required to store Oracle GoldenGate trail data.

1.

ORACLE

Estimate the longest time that the network could be unavailable. Plan to store
enough data to withstand the longest possible outage, because otherwise you will
need to resynchronize the source and target data if the outage outlasts disk
capacity.

Estimate how much transaction log volume your business applications generate in
one hour.

Use the following formula to calculate the required disk space.

[log volume in one hour] x [number of hours downtime] x .4 = trail disk
space

This equation uses a multiplier of 40 percent because only about 40 percent of the
data in a transaction log is needed by Oracle GoldenGate.

¢ Note:

This formula is a conservative estimate, and you should run tests once
you have configured Oracle GoldenGate to determine exactly how much
space you need.

13-9

Chapter 13
Creating a Parameter File for Online Extraction

Adding a Trall

When you create, or add, a trail, you do not physically create any files on disk. The
files are created automatically by an Extract process. Rather, you specify the name of
the trail and associate it with the Extract group that writes to it.

To add a trail, issue the following command in GGSCI on the source system.

ADD {RMITRAIL | EXTTRAIL} pathname, EXTRACT group
[, MEGABYTES n|

Where:

* RMITRAI L specifies a trail on a remote system.
* EXTTRAI L specifies a trail on the local system.
— EXTTRAI L cannot be used for an Extract in PASSI VE mode.
— EXTTRAI L must be used to specify a local trail that is read by a data pump.

* pat hnane is the relative or fully qualified hame of the trail, including a two-
character name that can be any two alphanumeric characters, for example c: \ ggs
\ di rdat\rt. Oracle GoldenGate appends a serial number to each trail file as it is
created during processing. Typically, trails are stored in the di r dat sub-directory
of the Oracle GoldenGate directory.

e EXTRACT group specifies the name of the Extract group that writes to this trail.
Only one Extract group can write to a trail.

* MEGABYTES n is an optional argument with which you can set the size, in
megabytes, of each trail file (default is 100).

Example 13-7 Creating a Local Trail
This example creates a local trail named / ggs/ dirdat /|t for Extract group ext.

ADD EXTTRAIL /ggs/dirdat/lt, EXTRACT ext

Example 13-8 Creating a Remote Trail

This example creates a trail named c: \ ggs\ di rdat\rt for Extract group f i nance, with
each file sized at approximately 50 megabytes.

ADD RMITRAIL c:\ggs\dirdat\rt, EXTRACT finance, MEGABYTES 200

Creating a Parameter File for Online Extraction

ORACLE

Follow these instructions to create a parameter file for an online Extract group. A
parameter file is not required for an alias Extract group.

1. In GGSCI on the source system, issue the following command.

EDI T PARAMS name

Where:

nane is either the name of the Extract group that you created with the ADD EXTRACT
command or the fully qualified name of the parameter file if you defined an
alternate location when you created the group.

13-10

Chapter 13
Creating a Parameter File for Online Extraction

2. Enter the parameters in Creating a Parameter File for Online Extraction in the
order shown, starting a new line for each parameter statement. Some parameters
apply only for certain configurations.

Table 13-1 Online Change-Extraction Parameters

Parameter

Description

EXTRACT gr oup

e group is the name of the Extract
group that you created with the ADD
EXTRACT command.

Configures Extract as an online process with checkpoints.

[SOURCEDB dsn | contai ner |
cat al og]

[, USERIDALIAS alias options |
, USERID user, options]

Specifies database connection information.

SOURCEDRB specifies the source data source name (DSN). See for more
information.

USERI D and USERI DALI AS specify database credentials if required.

The database connection can be omitted if the group is a data pump on
an intermediary system that does not have a database. In this case,
there can be no column mapping or conversion performed.

RMTHOSTOPTI ONS host

MGRPORT port,

[, ENCRYPT al gorithm KEYNAVE
key_nane]

Specifies the target system, the port where Manager is running, and
optional encryption of data across TCP/IP. Only required when sending
data over IP to a remote system (if ADD RMITRAI L was used to create
the trail). Not required if the trail is on the local system (if ADD

EXTTRAI L was used).

Not valid for a passive Extract group.

ENCRYPTTRAIL al gorithm

Encrypts all trails that are specified after this entry.

DECRYPTTRAI L

(For a data pump) Decrypts the data in the input trail. Use only if the
data pump must process the data before writing it to the output trail.

RMITRAI L pat hname |
EXTTRAI L pat hnane

e Use RMITRAI L to specify the relative
or fully qualified name of a remote
trail created with the ADD RMITRAI L
command.

e Use EXTTRAI L to specify the relative
or fully qualified name of a local trail
created with the ADD EXTTRAI L
command (to be read by a data
pump or VAM-sort Extract).

Specifies a trail. If specifying multiple trails, follow each designation
with the appropriate TABLE statements.

EXTTRAI L is not valid for a passive Extract group.

If trails or files will be of different versions, use the FORVMAT option of

RMITRAI L or EXTTRAI L. See EXTTRAI Lin Reference for Oracle
GoldenGate

LOGALLSUPCOLS Use when using integrated Replicat for an Oracle target, or when using
Conflict Detection and Resolution (CDR) support. Writes the before
images of scheduling columns to the trail. (Scheduling columns are
primary key, unique index, and foreign key columns.) See
LOGALLSUPCQOLS in Reference for Oracle GoldenGate.

ORACLE 13-11

Chapter 13
Creating an Online Replicat Group

Table 13-1 (Cont.) Online Change-Extraction Parameters
|

Parameter

Description

SOURCECATALOG

Specifies a default container in an Oracle multitenant container
database or SEQUENCE statements. Enables the use of two-part names
(schena. obj ect) where three-part names otherwise would be
required for those databases. You can use multiple instances of this
parameter to specify different default containers or catalogs for different
sets of TABLE or SEQUENCE parameters.

SEQUENCE
[cont ai ner.] owner . sequence;

Specifies the fully qualified name of an Oracle sequence to capture.
Include the container name if the database is a multitenant container
database (CDB).

TABLE [contai ner. |
cat al 0g.] owner. obj ect ;

Specifies the fully qualified name of an object or a fully qualified
wildcarded specification for multiple objects. If the database is an
Oracle multitenant container database, the object name must include
the name of the container or catalog unless SOURCECATALOG s used.
See Specifying Object Names in Oracle GoldenGate Input for
guidelines for specifying object names in parameter files.

CATALOGEXCLUDE
SCHEMAEXCLUDE

TABLEEXCLUDE

EXCLUDEW LDCARDOBJECTSONLY

Parameters that can be used in conjunction with one another to
exclude specific objects from a wildcard specification in the associated
TABLE statement.

3. Enter any appropriate optional Extract parameters listed in the Oracle GoldenGate
Parameters in Reference for Oracle GoldenGate.

4. Save and close the parameter file.

Parameter

Description

VAM | i brary,
PARAMS (' param
[, "param] [,

Valid only for an Extract group that interfaces with a
Teradata Access Module. Supplies the name of the

) library and parameters that must be passed to the

Oracle GoldenGate API, such as the name of the TAM
initialization file and the program that interacts with the
library as the callback library.

Example:

VAM vamdl |, PARAMS ('inifile', 'vanmergel.ini',
"cal I backlib', '"extract.exe')

NA

Creating an Online Replicat Group

Before creating a Replicat group, you should evaluate which of the Replicat modes is
appropriate for your environment: classic mode (also known as nonintegrated mode in
Oracle environments), coordinated mode, and integrated mode.

Topics:

e About Classic Replicat Mode

* About Coordinated Replicat Mode

ORACLE

13-12

Chapter 13
Creating an Online Replicat Group

* About Integrated Replicat Mode
* Understanding Replicat Processing in Relation to Parameter Changes

» Creating the Replicat Group

About Classic Replicat Mode

ORACLE"

In classic mode, Replicat is a single-threaded process that uses standard SQL to
apply data to the target tables. In this mode, Replicat operates as follows:

* Reads the Oracle GoldenGate trail.
» Performs data filtering, mapping, and conversion.

» Constructs SQL statements that represent source database DML or DDL
transactions (in committed order).

* Applies the SQL to the target through the SQL interface that is supported for the
given target database, such as ODBC or the native database interface.

Figure 13-1 Classic Replicat

Paramete:

. - ______ i r. 3 ®

Source Extract Repl

Database !
Network .
Fﬂe;ﬁlic
(Optic

L Trail Data FumpJ
&
(Optional)

As shown in Figure 13-1, you can apply transactions in parallel with a classic Replicat,
but only by partitioning the workload across multiple Replicat processes. A parameter
file must be created for each Replicat.

To determine whether to use classic mode for any objects, you must determine
whether the objects in one Replicat group will ever have dependencies on objects in
any other Replicat group, transactional or otherwise. Not all workloads can be
partitioned across multiple Replicat groups and still preserve the original transaction
atomicity. For example, tables for which the workload routinely updates the primary

13-13

Chapter 13
Creating an Online Replicat Group

key cannot easily be partitioned in this manner. DDL replication (if supported for the
database) is not viable in this mode, nor is the use of some SQLEXEC or EVENTACTI ONS
features that base their actions on a specific record.

If your tables do not have any foreign- key dependencies or updates to primary keys,
classic mode may be suitable. Classic mode requires less overhead than coordinated
mode.

For more information about using parallel Replicat groups, see Tuning the
Performance of Oracle GoldenGate.

About Coordinated Replicat Mode

In coordinated mode, Replicat operates as follows:

* Reads the Oracle GoldenGate trail.
« Performs data filtering, mapping, and conversion.
* Processes operations sent to each thread in a committed order.

e Applies the SQL to the target through the SQL interface that is supported for the
given target database, such as ODBC or the native database interface.

The difference between classic mode and coordinated mode is that Replicat is multi-
threaded in coordinated mode. Within a single Replicat instance, multiple threads read
the trail independently and apply transactions in parallel. Each thread handles the
filtering, mapping, conversion, SQL construction, and error handling for its assigned
workload. A coordinator thread coordinates the transactions across threads to account
for dependencies among the threads.

The source transactions could be split across CR processes such that the integrity of
the total source transaction is not maintained. The portion of the transaction processed
by a CR process is done in committed order but the whole transaction across all CR
processes is not.

Coordinated Replicat allows for user-defined partitioning of the workload so as to apply
high volume transactions concurrently. In addition, it automatically coordinates the
execution of transactions that require coordination, such as DDL, and primary key
updates with THREADRANGE partitioning. Such a transaction is executed as one
transaction in the target with full synchronization: it waits until all prior transactions are
applied first, and all transactions after this barrier transaction have to wait until this
barrier transaction is applied.

Only one parameter file is required for a coordinated Replicat, regardless of the
number of threads. You use the THREAD or THREADRANGE option in the MAP statement to
specify which threads process the transactions for those objects, and you specify the
maximum number of threads when you create the Replicat group.

ORACLE 13-14

Chapter 13
Creating an Online Replicat Group

Figure 13-2 Coordinated Replicat

Parameter

: Heplicat

|
—
— : ﬁ ______ ':
Source Extract

Database i

¥

[o= Network

s D —
L Trail Data Pump)
hd
(Optional)

e About Barrier Transactions
e How Barrier Transactions are Processed
e About the Global Watermark

About Barrier Transactions

Barrier transactions are managed automatically in a coordinated Replicat
configuration. Barrier transactions are transactions that require coordination across
threads. Examples include DDL statements, transactions that include updates to
primary keys, and certain EVENTACTI ONS actions.

Optionally, you can force other transactions to be treated like a barrier transaction
through the use of the COORDI NATED keyword in a MAP statement. One use case for this

ORACLE"

13-15

Chapter 13
Creating an Online Replicat Group

would be force a SQLEXEC to be executed in a manner similar to a serial execution.
This could be beneficial if the results can become ambiguous unless the state of the
target is consistent across all transactions.

Note:

Coordinated Replicat doesn't do dependency calculations for non-barrier
transactions when a mapped table is partitioned based on THNREADRANGE. It
relies on specified THREADRANGE columns to compute a hash value. It
partitions the incoming data based on the hash value and sends all the
records that match this hash value to same thread.

How Barrier Transactions are Processed

All threads converge and wait at the start of a barrier transaction. The barrier
transaction is suspended until the other threads reach its start position. If any threads
were already processing part of the barrier transaction, those threads perform a
rollback. Grouped transactions, such as those controlled by the BATCHSQL or
GROUPTRANSOPS parameters, are also rolled back and then reapplied until they reach
the start of the barrier transaction.

All of the threads converge and wait at the start of the next transaction after the barrier
transaction as well. The two synchronization points, before and after the barrier
transaction, ensure that metadata operations and EVENTACTI ONS actions all occur in
the proper order relevant to the data operations.

Once the threads are synchronized at the start of the barrier transaction, the barrier
transaction is processed serially by the thread that has the lowest thread ID among all
of the threads specified in the MAP statements, and then parallel processing across
threads is resumed. You can force barrier transactions to be processed through a
specific thread, which is always thread 0, by specifying the

USEDEDI CATEDCOORDI NATI ONTHREAD parameter in the Replicat parameter file.

About the Global Watermark

A clean shutdown of a coordinated Replicat ensures that all threads stop at the same
transaction boundary in the trail, known as the global watermark. This is defined as the
synchronized point where all records before this position were either committed or
ignored by all of their respective threads. If a clean shutdown is not possible, you can
use the SYNCHRONI ZE REPLI CAT command to return all of the threads to the position of
the thread that made the most recent checkpoint. See Synchronizing Threads After an
Unclean Stop for more information about recovering a coordinated Replicat group.

Note:

Coordinated Replicat is an online process only. Do not use it to perform initial
loads.

ORACLE 13-16

Chapter 13
Creating an Online Replicat Group

About Integrated Replicat Mode

In integrated mode, available for Oracle databases of version 11.2.0.4 or later,
Replicat leverages the apply processing functionality that is available within the target
Oracle database. In this mode, Replicat reads the trail, constructs logical change
records that represent source DML or DDL transactions, and transmits these records
to an inbound server in the Oracle target database. The inbound server applies the
data to the target database.

For more information about using integrated Replicat, see About Integrated Mode in
Using Oracle GoldenGate for Oracle Database.

Note:

Integrated Replicat is an online process only. Do not use it to perform initial
loads.

Understanding Replicat Processing in Relation to Parameter Changes

Changes to the object specifications in the Replicat configuration cannot be made to
affect transactions that are already applied, but only for those not yet applied. This is
an important consideration when using coordinated or integrated Replicat.

For a Replicat in classic mode, the boundary between applied and non-applied
transactions is a clean one, because transactions are applied serially. For a
coordinated or integrated Replicat, however, there is no single point in the trail that
marks applied and unapplied transactions, because transactions are being applied
asynchronously in parallel.

In coordinated or integrated modes, there are a low watermark, below which all
transactions were applied, and a high watermark above which no transactions were
applied. In between those boundaries there may be transactions that may or may not
have been applied, depending on the progress of individual threads. As a result, if
Replicat is forced changes to object specifications in the Replicat configuration may be
reflected unevenly in the target after Replicat is restarted. Examples of parameter
changes for which this applies are changes to MAP mappings, FI LTER clauses, and
EXCLUDE parameters.

Changes to the Replicat configuration should not be made after Replicat abends or is
forcibly terminated. Replicat should be allowed to recover to its last checkpoint after
startup. For coordinated Replicat, you can follow the administrative procedures in
Administering a Coordinated Replicat Configuration.. Once the recovery is complete,
Replicat can be shut down gracefully with the STOP REPLI CAT command, and then you
can make the changes to the object specifications.

Creating the Replicat Group

ORACLE

To create an online Replicat group, run GGSCI on the target system and issue the ADD
REPLI CAT command. Separate all command arguments with a comma.

ADD REPLI CAT group, EXTTRAIL path
[, {INTEGRATED | COORDI NATED [MAXTHREADS number]}]

13-17

ORACLE

[
[
[
[
[

Chapter 13
Creating an Online Replicat Group

BEG N start_point | , EXTSEQNO seqno, EXTRBA rba]
CHECKPQO NTTABLE owner .t abl €]

NODBCHECKPQO NT]

PARAMS pat h]

REPCRT pat h]

Where:

group is the name of the Replicat group. A group name is required. See Naming
Conventions for Processes for Oracle GoldenGate naming conventions.

EXTTRAI L pat h is the relative or fully qualified name of the trail that you defined
with the ADD RMITRAI L command.

| NTEGRATED specified that this Replicat group will operate in integrated mode. This
mode is available for Oracle databases..

COORDI NATED specifies that this Replicat group will operate in coordinated mode.
MAXTHREADS specifies the maximum number of threads allowed for this group. Valid
values are from 1 through 500. MAXTHREADS is optional. The default number of
threads without MAXTHREADS is 25.

Note:

Each Replicat thread is considered a Replicat group in the context of the
MAXGROUPS parameter. MAXGROUPS controls the maximum number of
process groups allowed in the Oracle GoldenGate instance. MAXTHREADS
plus the number of other process groups in the Oracle GoldenGate
instance must not exceed the value set with MAXGROUPS (default is 1000).

BEG N start _poi nt defines an online Replicat group by establishing an initial
checkpoint and start point for processing. Use one of the following:

— NOW to begin replicating changes timestamped at the point when the ADD
REPLI CAT command is executed to create the group.

- YYYY-MM DD HH: MM : SS[. CCCCCC]] as the format for specifying an exact
timestamp as the begin point.

EXTSEQNO seqno, EXTRBA'T ba specifies the sequence number of the file in a trail in
which to begin reading data and the relative byte address within that file. By
default, processing begins at the beginning of a trail unless this option is used. For
the sequence number, specify the number, but not any zeroes used for padding.
For example, if the trail file is c: \ ggs\ di r dat \ aa000000026, specify EXTSEQNO 26.
Contact Oracle Support before using this option.

CHECKPQO NTTABLE owner .t abl e specifies the owner and name of a checkpoint table
other than the default specified in the GLOBALS file. To use this argument, you must
add the checkpoint table to the database with the ADD CHECKPO NTTABLE command
(see Creating a Checkpoint Table).

NODBCHECKPQO NT specifies that this Replicat group will not use a checkpoint table.

PARAMS pat h is required if the parameter file for this group will be stored in a
location other than the di r pr msub-directory of the Oracle GoldenGate directory.
Specify the fully qualified name. The default location is recommended.

13-18

Chapter 13
Creating a Parameter File for Online Replication

e REPORT pat h is required if the process report for this group will be stored in a
location other than the di rrpt sub-directory of the Oracle GoldenGate directory.
Specify the fully qualified name. The default location is recommended.

Example 13-9 Creating an Online Replicat Group

This example creates an online Replicat group named f i nance and specifies a trail of
c:\ggs\dirdat\rt. The parameter file is stored in the alternate location of \ ggs
\ par ans, and the report file is stored in its default location.

ADD REPLI CAT finance, EXTTRAIL c:\ggs\dirdat\rt, PARAMS \ggs\parans

Creating a Parameter File for Online Replication

Follow these instructions to create a parameter file for an online Replicat group.
1. In GGSCI on the target system, issue the following command.

EDI T PARAMS nane

Where:

nane is either the name of the Replicat group that you created with the ADD
REPLI CAT command or the fully qualified name of the parameter file if you defined
an alternate location when you created the group.

2. Enter the parameters listed in Table 13-2 in the order shown, starting a new line
for each parameter statement.

Table 13-2 Online Change-Replication Parameters

L ___|]
Parameter Description

Configures Replicat as an online process with

REPLI CAT group checkpoints.

° group is the name of the Replicat group that you
created with the ADD REPLI CAT command.

{ SOURCEDEFS pat h} | Specifies how to interpret data definitions.

ASSUVETARGETDEFS For Oracle databases that use multi-byte character sets,
you must use SOURCEDEFS (with a DEFGEN-generated
+ Use SOURCEDEFS if the source and target tables definitions file) if the source semantics setting is in bytes

have different definitions. Specify the source data- and the target is in characters. This is required even
definitions file generated by DEFGEN. See when the source and target data definitions are

Associating Replicated Data with Metadata, for identical. See Associating Replicated Data with
more information. Metadata, for more information.

* Use ASSUMETARGETDEFS if the source and target
tables have the same definitions.

ORACLE 13-19

Chapter 13
Creating a Parameter File for Online Replication

Table 13-2 (Cont.) Online Change-Replication Parameters

Parameter

Description

[DEFERAPPLYI NTERVAL n uni t]

* nis anumeric value for the amount of time to delay
before applying transactions. Minimum is set by the
EOFDELAY parameter. Maximum is seven days.

° unit canbe:

S| SEC| SECS| SECOND | SECONDS | MN
| MNS | MNUTE | MNUTES | HOUR | HOURS
| DAY | DAYS

Optional. Specifies an amount of time for Replicat to
wait before applying its transactions to the target
system.

[TARGETDB dsn | container | catal og]
[, USERIDALIAS alias options |
, USERID user, options]

Specifies database connection information.

TARGETDB specifies the target datasource name (DSN).
See TARGETDB in Reference for Oracle GoldenGatefor
more information .

USERI D and USERI DALI AS specify database credentials
if required.

HANDLECOLLI SI ONS

Specifies collision handling. Use only if you are
performing an initial load concurrently with starting
online processing and the source database will remain
active during the load. HANDLECOLLI SI ONS resolves the
results of the copy with the ongoing replicated
transactional changes. It resolves insert operations for
which the row already exists and update and delete
operations for which the row does not exist. It can be
used globally for all MAP statements in a parameter file
or within a MAP statement, or both.

SOURCECATALGG

Specifies a default container in a source Oracle
multitenant container database. Enables the use of two-
part names (schema. obj ect) where three-part names
otherwise would be required for those databases. You
can use multiple instances of this parameter to specify
different default containers or catalogs for different sets
of MAP parameters.

ORACLE

13-20

Chapter 13
Creating a Parameter File for Online Replication

Table 13-2 (Cont.) Online Change-Replication Parameters

Parameter

Description

MAP [contai ner. | catal og.]owner.object,
TARGET owner.obj ect[, DEF tenpl ate]

[THREAD (thread_I D)]

[THREADRANGE (thread_range[, colum_list])]
[COORDI NATED]

Specifies a relationship between a source object or
objects and a target object or objects. MAP specifies the
source object, and TARCET specifies the target object.

For the source object, specify the fully qualified name of
the object or a fully qualified wildcarded specification for
multiple objects. For an Oracle multitenant container
database the source object name must include the
name of the container or catalog unless
SOURCECATALOG s used.

For the target object, specify only the owner . obj ect
components of the name, regardless of the type of
database. Replicat can only connect to one Oracle
container. Use a separate Replicat process for each
container or catalog to which you want to apply data.

SeeSpecifying Object Names in Oracle GoldenGate
Input for guidelines for specifying object names in
parameter files.

The THREAD, THREADRANGE, and COORDI NATED options
are valid for Replicat when in coordinated mode. They
enable you to partition the workload to one or more
specific Replicat threads. See in Reference for Oracle
GoldenGatefor syntax and usage.

The DEF option specifies a definitions template. See
Associating Replicated Data with Metadata for more
information about data definitions.

CATALOGEXCLUDE
SCHEMAEXCLUDE

MAPEXCLUDE

EXCLUDEW LDCARDOBJECTSONLY

Parameters that can be used in conjunction with one
another to exclude specific source objects from a
wildcard specification in the associated MAP statement.

1. Enter any appropriate optional Replicat parameters listed in Summary of Replicat
Parameters in Reference for Oracle GoldenGate.

2. Save and close the file.

Note:

ORACLE

If using integrated Replicat for Oracle, see Understanding Replicat
Processing in Relation to Parameter Changes for important information
about making configuration changes to Replicat once processing is started.

13-21

Handling Processing Errors

This chapter describes how to configure the Oracle GoldenGate processes to handle
errors.

Oracle GoldenGate reports processing errors in several ways by means of its
monitoring and reporting tools. For more information about these tools, see Monitoring
Oracle GoldenGate Processing.

Topics:

e Overview of Oracle GoldenGate Error Handling
* Handling Extract Errors

» Handling Replicat Errors during DML Operations
» Handling Replicat errors during DDL Operations
e Handling TCP/IP Errors

* Maintaining Updated Error Messages

* Resolving Oracle GoldenGate Errors

Overview of Oracle GoldenGate Error Handling

Oracle GoldenGate provides error-handling options for:

e Extract
* Replicat
e TCP/IP

Handling Extract Errors

There is no specific parameter to handle Extract errors when DML operations are
being extracted, but Extract does provide a number of parameters that can be used to
prevent anticipated problems. These parameters handle anomalies that can occur
during the processing of DML operations, such as what to do when a row to be fetched
cannot be located, or what to do when the transaction log is not available. The
following is a partial list of these parameters.

* FETCHOPTI ONS

* WARNLONGTRANS
« DBOPTI ONS

* TRANLOGOPTI ONS

To handle extraction errors that relate to DDL operations, use the DDLERRCR parameter.

For a complete parameter list, see Reference for Oracle GoldenGate.

ORACLE 14-1

Chapter 14
Handling Replicat Errors during DML Operations

Handling Replicat Errors during DML Operations

To control the way that Replicat responds to an error during one of its DML
statements, use the REPERROR parameter in the Replicat parameter file. You can use
REPERRCR as a global parameter or as part of a MAP statement. You can handle most
errors in a default fashion (for example, to cease processing) with DEFAULT and
DEFAULT2 options, and also handle other errors in a specific manner.

The following comprise the range of REPERROR responses:

e ABEND: roll back the transaction and stop processing.
» DI SCARD: log the error to the discard file and continue processing.

e EXCEPTI ON: send the error for exceptions processing. See Handling Errors as
Exceptions for more information.

e | GNORE: ignore the error and continue processing.

* RETRYOP [MAXRETRI ES n] : retry the operation, optionally up to a specific number of
times.

e TRANSABORT [, MAXRETRIES n] [, DELAY][C] SECS n]: abort the transaction and
reposition to the beginning, optionally up to a specific number of times at specific
intervals.

e RESET: remove all previous REPERRCR rules and restore the default of ABEND.

e TRANSDI SCARD: discard the entire replicated source transaction if any operation
within that transaction, including the commit, causes a Replicat error that is listed
in the error specification. This option is useful when integrity constraint checking is
disabled on the target.

e TRANSEXCEPTI ON: perform exceptions mapping for every record in the replicated
source transaction, according to its exceptions-mapping statement, if any
operation within that transaction (including the commit) causes a Replicat error
that is listed in the error specification.

Most options operate on the individual record that generated an error, and Replicat
processes the other, successful operations in the transaction. The exceptions are
TRANSDI SCARD and TRANSEXCEPTI ON: These options affect all records in a transaction if
any record in that transaction generates an error. (The ABEND option also applies to the
entire transaction, but does not apply error handling.)

See Reference for Oracle GoldenGate for REPERROR syntax and usage.

» Handling Errors as Exceptions

Handling Errors as Exceptions

ORACLE

When the action of REPERRCOR is EXCEPTI ON or TRANSEXCEPTI ON, you can map the
values of operations that generate errors to an exceptions table and, optionally, map
other information about the error that can be used to resolve the error. See About the
Exceptions Table.

To map the exceptions to the exceptions table, use either of the following options of
the MAP parameter:

* MAP with EXCEPTI ONSONLY

14-2

Chapter 14
Handling Replicat Errors during DML Operations

* MAP with MAPEXCEPTI ON

* Using EXCEPTIONSONLY
* Using MAPEXCEPTION
e About the Exceptions Table

Using excepti onsonLy

ORACLE

EXCEPTI ONSONLY is valid for one pair of source and target tables that are explicitly
named and mapped one-to-one in a MAP statement; that is, there cannot be wildcards.
To use EXCEPTI ONSONLY, create two MAP statements for each source table that you
want to use EXCEPTI ONSONLY for on the target:

e The first, a standard MAP statement, maps the source table to the actual target
table.

* The second, an exceptions MAP statement, maps the source table to the
exceptions table (instead of to the target table). An exceptions MAP statement
executes immediately after an error on the source table to send the row values to
the exceptions table.

To identify a MAP statement as an exceptions MAP statement, use the

| NSERTALLRECORDS and EXCEPTI ONSONLY options. The exceptions MAP statement
must immediately follow the regular MAP statement that contains the same source
table. Use a COLMAP clause in the exceptions MAP statement if the source and
exceptions-table columns are not identical, or if you want to map additional
information to extra columns in the exceptions table, such as information that is
captured by means of column-conversion functions or SQLEXEC.

For more information about these parameters, see Reference for Oracle GoldenGate.

* Aregular MAP statement that maps the source table ggs. equi p_account to its
target table equi p_account 2.

* An exceptions MAP statement that maps the same source table to the exceptions
table ggs. equi p_account _excepti on.

In this case, four extra columns were created, in addition to the same columns that the
table itself contains:

DM._DATE
OPTYPE

DBERRNUM
DBERRVBG

To populate the DM._DATE column, the @MATENOVNcolumn-conversion function is used to
get the date and time of the failed operation, and the result is mapped to the column.
To populate the other extra columns, the @ETENV function is used to return the
operation type, database error number, and database error message.

The EXCEPTI ONSONLY option of the exceptions MAP statement causes the statement to
execute only after a failed operation on the source table. It prevents every operation
from being logged to the exceptions table.

The | NSERTALLRECORDS parameter causes all failed operations for the specified source
table, no matter what the operation type, to be logged to the exceptions table as
inserts.

14-3

Chapter 14
Handling Replicat Errors during DML Operations

Note:

There can be no primary key or unique index restrictions on the exception
table. Uniqueness violations are possible in this scenario and would generate
errors.

Example 14-1 EXCEPTI ONSONLY

This example shows how to use REPERROR with EXCEPTI ONSONLY and an exceptions MAP
statement. This example only shows the parameters that relate to REPERRCOR; other
parameters not related to error handling are also required for Replicat.

REPERROR (DEFAULT, EXCEPTI ON)

MAP ggs. equi p_account, TARGET ggs.equi p_account 2,
COLMAP (USEDEFAULTS);

MAP ggs. equi p_account, TARGET ggs. equi p_account _excepti on,
EXCEPTI ONSONLY,

| NSERTALLRECORDS

COLMAP (USEDEFAULTS,

DM__DATE = @ATENOW (),

OPTYPE = @ETENV (' LASTERR , ' OPTYPE'),

DBERRNUM = @EETENV (' LASTERR , ' DBERRNUM),
DBERRMSG = @BETENV (' LASTERR , ' DBERRMSG));

In this example, the REPERROR parameter is set for DEFAULT error handling, and the
EXCEPTI ON option causes the Replicat process to treat failed operations as exceptions
and continue processing.

Using MAPEXCEPTION

ORACLE

MAPEXCEPTI ON is valid when the names of the source and target tables in the VAP
statement are wildcarded. Place the MAPEXCEPTI ON clause in the regular MAP
statement, the same one where you map the source tables to the target tables.
Replicat maps all operations that generate errors from all of the wildcarded tables to
the same exceptions table; therefore, the exceptions table should contain a superset
of all of the columns in all of the wildcarded tables.

Because you cannot individually map columns in a wildcard configuration, use the
COLMAP clause with the USEDEFAULTS option to handle the column mapping for the
wildcarded tables (or use the COLMATCH parameter if appropriate), and use explicit
column mappings to map any additional information, such as that captured with
column-conversion functions or SQLEXEC.

When using MAPEXCEPTI ON, include the | NSERTALLRECORDS parameter in the
MAPEXCEPTI ON clause. | NSERTALLRECORDS causes all operation types to be applied to
the exceptions table as | NSERT operations. This is required to keep an accurate record
of the exceptions and to prevent integrity errors on the exceptions table.

For more information about these parameters, see Reference for Oracle GoldenGate.
Example 14-2 MAPEXCEPTION

This is an example of how to use MAPEXCEPTI ON for exceptions mapping. The MAP and
TARGET clauses contain wildcarded source and target table names. Exceptions that

14-4

Chapter 14
Handling Replicat errors during DDL Operations

occur when processing any table with a name beginning with TRX are captured to the
fin.trxexceptions table using the designated mapping.

MAP src.trx*, TARGET trg.*,

MAPEXCEPTI ON (TARGET fin. trxexceptions,

| NSERTALLRECORDS,

COLMAP (USEDEFAULTS,

ACCT_NO = ACCT_NG,

OPTYPE = @ETENV (' LASTERR , ' OPTYPE'),
DBERR = @BETENV (' LASTERR , ' DBERRNUM),
DBERRMSG = @ETENV (' LASTERR , ' DBERRMSG)
)

):

About the Exceptions Table

Use an exceptions table to capture information about an error that can be used for
such purposes as troubleshooting your applications or configuring them to handle the
error. At minimum, an exceptions table should contain enough columns to receive the
entire row image from the failed operation. You can define extra columns to contain
other information that is captured by means of column-conversion functions, SQLEXEC,
or other external means.

To ensure that the trail record contains values for all of the columns that you map to
the exceptions table, you can use either the LOGALLSUPCOLS parameter or the following
parameters in the Extract parameter file:

» Use the NOCOWPRESSDELETES parameter so that all columns of a row are written to
the trail for DELETE operations.

» Use the GETUPDATEBEFORES parameter so that Extract captures the before image of
a row and writes them to the trail.

For more information about these parameters, see Reference for Oracle GoldenGate.

Handling Replicat errors during DDL Operations

To control the way that Replicat responds to an error that occurs for a DDL operation
on the target, use the DDLERROR parameter in the Replicat parameter file. For more
information, see Reference for Oracle GoldenGate.

Handling TCP/IP Errors

ORACLE

To provide instructions for responding to TCP/IP errors, use the TCPERRS file. This file
is in the Oracle GoldenGate directory

Table 14-1 TCPERRS Columns

Column Description

Error Specifies a TCP/IP error for which you are defining a response.

R Controls whether or not Oracle GoldenGate tries to connect again after the
ESPONSE yefined error. Valid values are either RETRY or ABEND.

14-5

Chapter 14
Maintaining Updated Error Messages

Table 14-1 (Cont.) TCPERRS Columns

___|
Column Description

Delay Controls how long Oracle GoldenGate waits before attempting to connect again.

Max Retri Controls the number of times that Oracle GoldenGate attempts to connect again
ax Retries before aborting.

If a response is not explicitly defined in the TCPERRS file, Oracle GoldenGate responds
to TCP/IP errors by abending.

Example 14-3 TCPERRS File

TCP/IP error handling paraneters
Default error response is abend

#

Error Response Del ay(csecs) Max Retries
ECONNABORTED RETRY 1000 10
ECONNREFUSED RETRY 1000 12
ECONNRESET RETRY 500 10
ENETDOAN RETRY 3000 50
ENETRESET RETRY 1000 10
ENOBUFS RETRY 100 60
ENOTCONN RETRY 100 10
EPI PE RETRY 500 10
ESHUTDOMN RETRY 1000 10
ETI MEDOUT RETRY 1000 10
NODYNPORTS RETRY 100 10

The TCPERRS file contains default responses to basic errors. To alter the instructions or
add instructions for new errors, open the file in a text editor and change any of the
values in the columns shown in Table 14-1:

Maintaining Updated Error Messages

The error, information, and warning messages that Oracle GoldenGate processes
generate are stored in a data file named ggnessage. dat in the Oracle GoldenGate
installation directory. The version of this file is checked upon process startup and must
be identical to that of the process in order for the process to operate.

Resolving Oracle GoldenGate Errors

To get help with specific troubleshooting issues, go to My Oracle Support at http://
support.oracl e. comand search the Knowledge Base.

ORACLE 14-6

http://support.oracle.com
http://support.oracle.com

Instantiating Oracle GoldenGate with an
Initial Load

This chapter describes running an initial data load to instantiate the replication
environment.

The initial load can be done in Classic Architecture and in Microservices Architecture.

e QOverview of the Initial-Load Procedure

* Initial Load in Classic Architecture
In Classic Architecture you can load data using various options. The processes
and steps do so, are described in this topic.

Overview of the Initial-Load Procedure

You can use Oracle GoldenGateto:

» Perform a standalone batch load to populate database tables for migration or other
purposes.

* Load data into database tables as part of an initial synchronization run in
preparation for change synchronization with Oracle GoldenGatee.

e Improving the Performance of an Initial Load

e Prerequisites for Initial Load

Improving the Performance of an Initial Load

For all initial load methods except those performed with a database utility, you can
load large databases more quickly by using parallel Oracle GoldenGate processes. To
use parallel processing, take the following steps.

1. Follow the directions in this chapter for creating an initial-load Extract and an
initial-load Replicat for each set of parallel processes that you want to use.

2. With the TABLE and MAP parameters, specify a different set of tables for each pair
of Extract-Replicat processes, or you can use the SQLPREDI CATE option of TABLE to
partition the rows of large tables among the different Extract processes.

For all initial load methods, testing has shown that using the TCPBUFSI ZE option in the
RMIHOST parameter produced three times faster throughput than loads performed
without it. Do not use this parameter if the target system is NonStop.

Prerequisites for Initial Load

Verify that you meet the prerequisites for executing an initial load that are described in
the following sections.

e Disable DDL Processing

ORACLE 15-1

Chapter 15
Overview of the Initial-Load Procedure

Prepare the Target Tables

Configure the Manager Process

Create a Data-definitions File

Create Change-synchronization Groups

Sharing Parameters between Process Groups

Disable DDL Processing

Before executing an initial load, disable DDL extraction and replication. DDL
processing is controlled by the DDL parameter in the Extract and Replicat parameter
files.

Prepare the Target Tables

The following are suggestions that can make the load go faster and help you to avoid
errors.

Data: Make certain that the target tables are empty. Otherwise, there may be
duplicate-row errors or conflicts between existing rows and rows that are being
loaded.

Constraints: Disable foreign-key constraints and check constraints. Foreign-key
constraints can cause errors, and check constraints can slow down the loading
process. Constraints can be reactivated after the load concludes successfully.

Indexes: Remove indexes from the target tables. Indexes are not necessary for
inserts. They will slow down the loading process significantly. For each row that is
inserted into a table, the database will update every index on that table. You can
add back the indexes after the load is finished.

Note:

A primary index is required for all applications that access DB2 for z/OS
target tables. You can delete all other indexes from the target tables,
except for the primary index.

Keys: For Oracle GoldenGate to reconcile the replicated incremental data
changes with the results of the load, each target table must have a primary or
unique key. If you cannot create a key through your application, use the KEYCOLS
option of the TABLE and MAP parameters to specify columns as a substitute key for
Oracle GoldenGate's purposes. A key helps identify which row to process. If you
cannot create keys, the source database must be quiesced for the load.

Configure the Manager Process

ORACLE

On the source and target systems, configure and start a Manager process. One
Manager can be used for the initial-load processes and the change-synchronization
processes. See Configuring Manager and Network Communications for more
information. For enhanced security, the target manager parameter file should have the
following parameter for RMTTASK to access Replicat on target:

ACCESSRULE, PROG *, | PADDR *, ALLOW

15-2

Chapter 15
Initial Load in Classic Architecture

Create a Data-definitions File

A data-definitions file is required if the source and target databases have dissimilar
definitions. Oracle GoldenGate uses this file to convert the data to the format required
by the target database. See Associating Replicated Data with Metadata for more
information.

Create Change-synchronization Groups

To prepare for the capture and replication of transactional changes during the initial
load, create online Extract and Replicat groups. You will start these groups during the
load procedure. See Configuring Online Change Synchronization for more information.

" Note:

If the load is performed from a quiet source database and will not be followed
by continuous change synchronization, you can omit these groups.

Do not start the Extract or Replicat groups until instructed to do so in the initial-load
instructions. Change synchronization keeps track of transactional changes while the
load is being applied, and then the target tables are reconciled with those changes.

" Note:

The first time that Extract starts in a new Oracle GoldenGate configuration,
any open transactions will be skipped. Only transactions that begin after
Extract starts are captured.

Sharing Parameters between Process Groups

Some of the parameters that you use in a change-synchronization parameter file also
are required in an initial-load Extract and initial-load Replicat parameter file. You can
copy those parameters from one parameter file to another, or you can store them in a
central file and use the OBEY parameter in each parameter file to retrieve them.
Alternatively, you can create an Oracle GoldenGate macro for the shared parameters
and then call the macro from each parameter file with the MACRO parameter.

See Getting Started with the Oracle GoldenGate Process Interfaces for more
information about using OBEY and using macros.

Initial Load in Classic Architecture

In Classic Architecture you can load data using various options. The processes and
steps do so, are described in this topic.

* Loading Data with a Database Utility

e Loading Data with Oracle Data Pump

ORACLE 15-3

Chapter 15
Initial Load in Classic Architecture

* Loading Data from File to Replicat

* Loading Data with an Oracle GoldenGate Direct Load
* Loading Data with a Direct Bulk Load to SQL*Loader
* Loading Data with Teradata Load Utilities

Loading Data with a Database Utility

ORACLE

To use a database copy utility to establish the target data, you start a change-
synchronization Extract group to extract ongoing data changes while the database
utility makes and applies a static copy of the data. When the copy is finished, you start
the change-synchronization Replicat group to re-synchronize rows that were changed
while the copy was being applied. From that point forward, both Extract and Replicat
continue running to maintain data synchronization. This method does not involve any
special initial-load Extract or Replicat processes.

I a
— - -
_—— ®

Source Copy
SOURCEDB Utility

|- . .

= W ;
Transaction Change : Collector Trail Cha
Log, VAM, Extract Netwark Repl
or Log Table

" Note:

The objects and data types being loaded in this method must be supported
by Oracle GoldenGate for your database and also by the database utility that
is being used. For items that are supported for your database, see the Oracle
GoldenGate installation and configuration documentation for that database.
For items that are supported by the database utility, see the database
vendor's documentation.

1. Make certain that you have addressed the requirements in Prerequisites for Initial
Load.

15-4

ORACLE

2.

10.

Chapter 15
Initial Load in Classic Architecture

On the source and target systems, run GGSCI and start the Manager process.

START MANAGER

Note:

In a Windows cluster, start the Manager resource from the Cluster
Administrator.

On the source system, start change extraction.

START EXTRACT group

Where:
group is the name of the Extract group.

(Oracle, if replicating sequences) Issue the DBLOG N command as the user who
has EXECUTE privilege on updat e. Sequence.

GGSCl > DBLOG N USERI D DBLOG Nuser, PASSWORD password [encryption_options]

(Oracle, if replicating sequences) Issue the following command to update each
source sequence and generate redo. From the redo, Replicat performs initial
synchronization of the sequences on the target. You can use an asterisk wildcard
for any or all characters in the name of a sequence (but not the owner).

FLUSH SEQUENCE owner . sequence
On the source system, start making the copy.
Wait until the copy is finished and record the time of completion.

View the Replicat parameter file to make certain that the HANDLECOLLI SI ONS
parameter is listed. If not, add the parameter to the file.

Caution:

Do not use the VI EW PARAMS or EDI T PARAMS command to view or edit an
existing parameter file that is in a character set other than that of the
local operating system (such as one where the CHARSET option was used
to specify a different character set). View the parameter file from outside
GGSCI if this is the case; otherwise, the contents may become
corrupted..

On the target system, start change replication.

START REPLI CAT group

Where:
group is the name of the Replicat group.

On the target system, issue the following command to verify the status of change
replication.

| NFO REPLI CAT group

15-5

Chapter 15
Initial Load in Classic Architecture

11. Continue to issue the | NFO REPLI CAT command until you have verified that change
replication has posted all of the change data that was generated during the initial
load. Reference the time of completion that you recorded. For example, if the copy
stopped at 12:05, make sure change replication has posted data up to that point.

12. On the target system, issue the following command to turn off the
HANDLECCLLI SI ONS parameter and disable the initial-load error handling.

SEND REPLI CAT gr oup, NOHANDLECOLLI SI ONS

13. On the target system, edit the Replicat parameter file to remove the
HANDLECCLLI SI ONS parameter. This prevents HANDLECOLLI SI ONS from being
enabled again the next time Replicat starts.

Caution:

Do not use the VI EW PARAMS or EDI T PARAMS command to view or edit
an existing parameter file that is in a character set other than that of the
local operating system (such as one where the CHARSET option was used
to specify a different character set). View the parameter file from outside
GGSCI if this is the case; otherwise, the contents may become
corrupted.

14. Save and close the parameter file.

From this point forward, Oracle GoldenGate continues to synchronize data
changes.

Loading Data with Oracle Data Pump

This method uses the Oracle Data Pump utility to establish the target data. After you
apply the copy to the target, you record the SCN at which the copy stopped.
Transactions that were included in the copy are skipped to avoid collisions from
integrity violations. From the process start point, Oracle GoldenGate maintains data
synchronization. No initial-load Oracle GoldenGate processes are required for these
methods.

* Using Automatic Per Table Instantiation

* Using Oracle Data Pump Table Instantiation

Using Automatic Per Table Instantiation

You can automatically instantiate per table CSN filtering for Oracle Database with
Oracle Data Pump, which avoids having all of your the tables at same SCN.

On the Source Database

1. Use ADD TRANDATA and ADD SCHEMATRANDATA to automatically prepare your tables.

2. Use | NFO TRANDATA to make sure that your table is prepared for instantiation and
at what point it was done.

3. Stop Replicat on the target database.

4. Start Extract with the correct TABLE statement.

ORACLE 15-6

5.

Chapter 15
Initial Load in Classic Architecture

EXPORT your tables using Oracle data pump, which automatically generates import
actions to set instantiation SCN at the target upon import.

On the Target Database

1.

2.

Import your exported tables using Oracle data pump, which populates system
tables and views with instantiation SCNs, as well as the specified table data.

Start Replicat using one of the following:

For Metadata Trail Replicats, set the DBOPTI ONS
ENABLE_| NSTANTI ATl ON_FI LTERI NG parameter in the Replicat parameter file to
enable table-level instantiation filtering.

For all other Replicats, set the DBOPTI ONS sour ce_dbase_name gl obal _nane
parameter in the Replicat parameter file where gl obal _nane is the global name of
the Oracle source database that the trail is coming from.

Note:

When the source has no DOVAI N, do not specify a DOVAI N for the
downstream database.

Replicat queries the instantiation SCN on any new mapping and filter records
accordingly

For more information, see the Reference for Oracle GoldenGate for Windows and
UNIX.

Using Oracle Data Pump Table Instantiation

To perform instantiation with Oracle Data Pump, see My Oracle Support document
1276058.1. To obtain this document, do the following:

1.
2.

Go to http://support.oracle.com.

Under Sign In, select your language and then log in with your Oracle Single Sign-
On (SSO).

On the Dashboard, expand the Knowledge Base heading.

Under Enter Search Terms, paste or type the document ID of 1276058. 1 and then
click Search.

In the search results, select Oracle GoldenGate Best Practices: Instantiation
from an Oracle Source Database [Article ID 1276058.1].

Click the link under Attachments to open the article.

Loading Data from File to Replicat

ORACLE

To use Replicat to establish the target data, you use an initial-load Extract to extract
source records from the source tables and write them to an extract file in canonical
format. From the file, an initial-load Replicat loads the data using the database
interface. During the load, the change-synchronization groups extract and replicate
incremental changes, which are then reconciled with the results of the load.

15-7

Chapter 15
Initial Load in Classic Architecture

During the load, the records are applied to the target database one record at a time, so
this method is considerably slower than any of the other initial load methods. This
method permits data transformation to be done on either the source or target system.

_ 3 W pe

Source Initial-Load Collector EXTRACT Initial-
SOURCEDE Extract FILE Repl

0203

Transaction Change
Log or Extract Network Repl
Log Table

Collector Trail Char

To Load Data From File to Replicat

1. Make certain that you have addressed the requirements in Prerequisites for Initial
Load.

2. On the source and target systems, run GGSCI and start Manager.

START MANAGER

¢ Note:

In a Windows cluster, start the Manager resource from the Cluster
Administrator.

3. On the source system, issue the following command to create an initial-load
Extract parameter file.

EDIT PARAMS i nitial-1oad_Extract

4. Enter the parameters listed in Table 15-1 in the order shown, starting a new line
for each parameter statement. The following is a sample initial-load Extract
parameter file for loading data from file to Replicat.

SOURCEI STABLE

SCOURCEDB nydb, USERI DALI AS ogg

RMTHOSTOPTI ONS ny4387, MGRPORT 7888, ENCRYPT AES 192 KEYNAME nykey
ENCRYPTTRAI L AES192

RMTFILE /ggs/dirdat/initld, MEGABYTES 2, PURGE

ORACLE"

15-8

TABLE hr. *;
TABLE sal es. *;

Chapter 15
Initial Load in Classic Architecture

Table 15-1 Initial-Load Extract Parameters
]
Parameter Description

SCOURCEI STABLE Designates Extract as an initial load process

extracting records directly from the source tables.

SOURCEDB dsn [, USERIDALIAS alias, options |
, USERID user, options]

Specifies database connection information.

SQURCEDRB specifies the source data source name
(DSN).

USERI D and USERI DALI AS specify database
credentials if required.

RMTHOSTOPTI ONS host nane,
MGRPORT por t nunber
[, ENCRYPT al gorithm KEYNAME keynang]

Specifies the target system, the port where Manager
is running, and optional encryption of data across
TCP/IP.

ENCRYPTTRAIL al gorithm

Encrypts the data in the remote file.

RMTFI LE pat h,
[NEGABYTES n]

« path is the relative or fully qualified name of the file.

« MEGABYTES designates the size of each file.

Specifies the extract file to which the load data will be
written. Oracle GoldenGate creates this file during the
load. Checkpoints are not maintained with RMTFI LE.

Note that the size of an extract file cannot exceed
2GB.

TABLE cont ai ner . owner . obj ect ;

Specifies the fully qualified name of an object or a
fully qualified wildcarded specification for multiple
objects. If the database is an Oracle multitenant
container database, the object name must include the
name of the container or catalog unless
SOURCECATALGG s used.

See Specifying Object Names in Oracle GoldenGate
Input for guidelines for specifying object names in
parameter files.

CATALOCGEXCLUDE
SCHEMAEXCLUDE

TABLEEXCLUDE

EXCLUDEW LDCARDOBJECTSONLY

Parameters that can be used in conjunction with one
another to exclude specific objects from a wildcard
specification in the associated TABLE statement. See
Reference for Oracle GoldenGate for details.

5. Enter any appropriate optional Extract parameters listed in the Reference for

Oracle GoldenGate.

6. Save and close the parameter file.

7. On the target system, issue the following command to create an initial-load

Replicat parameter file.

EDIT PARAMS i nitial-1oad_Replicat

8. Enter the parameters listed in Table 15-2 in the order shown, starting a new line
for each parameter statement. The following is a sample initial-load Replicat
parameter file for loading data from file to Replicat.

ORACLE

15-9

SPECI ALRUN
END RUNTI ME

TARGETDB nydb, USERI DALI AS ogg

EXTFILE /ggs/dirdat/initld

Chapter 15
Initial Load in Classic Architecture

SOURCEDEFS / ggs/ di rdef/ source_defs

MAP hr.*, TARGET hr.*;
MAP sal es. *, TARGET hr.*;

Table 15-2 Initial-load Replicat parameters

__|]

Parameter Description

SPECI ALRUN Implements the initial-load Replicat as a one-time run
that does not use checkpoints.

END RUNTI ME Directs the initial-load Replicat to terminate when the
load is finished.

TARGETDB dsn Specifies database connection information.

[, USERIDALIAS alias, options |
, USERID user, options]

TARCETDB specifies the target data source name
(DSN).

USERI D and USERI DALI AS specify database
credentials if required.

EXTFI LE pat h

« pat his the relative or fully qualified name of the file.

Specifies the input extract file specified with the Extract
parameter RMTFI LE.

{ SOURCEDEFS fil e} |
ASSUVETARGETDEFS

» Use SOURCEDEFS if the source and target tables
have different definitions. Specify the relative or fully
qualified name of the source-definitions file
generated by DEFGEN.

e Use ASSUMETARGETDEFS if the source and target
tables have the same definitions.

Specifies how to interpret data definitions.

For more information about data definitions files, see
Associating Replicated Data with Metadata.

SOURCECATALOG

Specifies a default source Oracle container. Enables
the use of two-part names (schema. obj ect) where
three-part names otherwise would be required for those
databases. You can use multiple instances of this
parameter to specify different default containers or
catalogs for different sets of MAP parameters.

ORACLE

15-10

Chapter 15
Initial Load in Classic Architecture

Table 15-2 (Cont.) Initial-load Replicat parameters

Parameter Description

MAP cont ai ner. owner . obj ect, Specifies a relationship between a source object or

TARGET owner . obj ect[, DEF tenplate] objects and a target object or objects. MAP specifies the

; source object, and TARGET specifies the target object.
For the source object, specify the fully qualified name of
the object or a fully qualified wildcarded specification for
multiple objects. For an Oracle multitenant container
database, the source object name must include the
name of the container or catalog unless
SOURCECATALQG s used.
For the target object, specify only the owner . obj ect
components of the name, regardless of the database.
Replicat can only connect to one Oracle container. Use
a separate Replicat process for each container or
catalog to which you want to load data.
See Specifying Object Names in Oracle GoldenGate
Input for guidelines for specifying object names in
parameter files.
The DEF option specifies a definitions template. For
more information about data definitions, see
Associating Replicated Data with Metadata. See
Reference for Oracle GoldenGate for more information
and options for the MAP parameter.

CATALOGEXCLUDE Parameters that can be used in conjunction with one

SCHEMAEXCL UDE another to exclude specific source objects from a
wildcard specification in the associated MAP statement.

MAPEXCLUDE See Reference for Oracle GoldenGate for Windows

EXCLUDEW LDCARDOBJECTSONLY and UNIX for details.

9. Enter any appropriate optional Replicat parameters listed in the Reference for
Oracle GoldenGate.

10. Save and close the file.

11. View the Replicat parameter file to make certain that the HANDLECOLLI SI ONS
parameter is listed. If not, add the parameter to the file.

12. On the source system, start change extraction.

START EXTRACT group

13. (Oracle, if replicating sequences) Issue the DBLOG N command as the user who
has EXECUTE privilege on updat e. Sequence.

GGSCl > DBLOG N USERI D DBLOG Nuser, PASSWORD password [encryption_options]

14. (Oracle, if replicating sequences) Issue the following command to update each
source sequence and generate redo. From the redo, Replicat performs initial
synchronization of the sequences on the target. You can use an asterisk wildcard
for any or all characters in the name of a sequence (but not the owner).

FLUSH SEQUENCE owner . sequence

15. From the directory where Oracle GoldenGate is installed on the source system,

start the initial-load Extract.
UNIX and Linux:
ORACLE 15-11

ORACLE

16.

17.
18.

19.

20.

21.

22.

23.

24.

Chapter 15
Initial Load in Classic Architecture

$ /GGS directory/extract paranfile dirprminitial-load Extract.prm
reportfile path

Windows:

C\> GGS directory\extract paranfile dirprminitial-load Extract.prm
reportfile path
Where:

initial-load Extract isthe name of the initial-load Extract that you used when
creating the parameter file, and pat h is the relative or fully qualified name of the
Extract report file.

Verify the progress and results of the initial extraction by viewing the Extract report
file using the operating system's standard method for viewing files.

Wait until the initial extraction is finished.
On the target system, start the initial-load Replicat.
UNIX and Linux:

$ /GCS directory/replicat paranfile dirprndinitial-load_Replicat.prm
reportfile path

Windows:

C\> GGS directory\replicat paranfile dirprmiinitial-load _Replicat.prm
reportfile path

Where:

initial-1oad_Replicat isthe name of the initial-load Replicat that you used
when creating the parameter file, and pat h is the relative or fully qualified name of
the Replicat report file.

When the initial-load Replicat is finished running, verify the results by viewing the
Replicat report file using the operating system's standard method for viewing files.

On the target system, start change replication.
START REPLI CAT group

On the target system, issue the following command to verify the status of change
replication.

I NFO REPLI CAT group

Continue to issue the | NFO REPLI CAT command until you have verified that
Replicat posted all of the change data that was generated during the initial load.
For example, if the initial-load Extract stopped at 12:05, make sure Replicat posted
data up to that point.

On the target system, issue the following command to turn off the
HANDLECCLLI SI ONS parameter and disable the initial-load error handling.

SEND REPLI CAT gr oup, NOHANDLECOLLI SI ONS

On the target system, edit the Replicat parameter file to remove the
HANDLECCLLI SI ONS parameter. This prevents HANDLECCOLLI SI ONS from being
enabled again the next time Replicat starts.

15-12

Chapter 15
Initial Load in Classic Architecture

Caution:

Do not use the VI EW PARAMS or EDI T PARAMS command to view or edit an
existing parameter file that is in a character set other than that of the
local operating system (such as one where the CHARSET option was used
to specify a different character set). View the parameter file from outside
GGSCI if this is the case; otherwise, the contents may become
corrupted.

25. Save and close the parameter file.

From this point forward, Oracle GoldenGate continues to synchronize data
changes.

Loading Data with an Oracle GoldenGate Direct Load

ORACLE

To use an Oracle GoldenGate direct load, you run an Oracle GoldenGate initial-load
Extract to extract the source records and send them directly to an initial-load Replicat
task. A task is started dynamically by the Manager process and does not require the
use of a Collector process or file. The initial-load Replicat task delivers the load in
large blocks to the target database. Transformation and mapping can be done by
Extract, Replicat, or both. During the load, the change-synchronization groups extract
and replicate incremental changes, which are then reconciled with the results of the
load.

o
>
[]

¥
Source Initial-Load Initial-Load -—_—
SOUHCEDB Extract Replicat —
: —
I fity
, it Target
' ° L . TARGETDB
— =i A
» > e 1 | - - d -
_% . B)
Transaction Change Collector Trail Change
Log or Extract Network Replicat
Log Table

To control which port is used by Replicat, and to speed up the search and bind
process, use the DYNAM CPORTLI ST parameter in the Manager parameter file. Manager
passes the list of port numbers that are specified with this parameter to the Replicat
task process. Replicat first searches for a port from this list, and only if no ports are
available from the list does Replicat begin scanning in ascending order from the
default Manager port number until it finds an available port.

This method supports standard character, numeric, and datetime data types, as well
as CLOB, NCLOB, BLOB, LONG, XM_, and user-defined datatypes (UDT) embedded with the
following attributes: CHAR, NCHAR, VARCHAR, NVARCHAR, RAW NUVBER, DATE, FLQAT,

TI MESTAMP, CLOB, BLOB, XM., and UDT. Character sets are converted between source
and target where applicable.

15-13

Chapter 15
Initial Load in Classic Architecture

This method supports Oracle internal tables, but does not convert between the source
and target character sets during the load.

To Load Data with an Oracle GoldenGate Direct Load

1. Make certain to satisfy "Prerequisites for Initial Load".
2. On the source and target systems, run GGSCI and start Manager.
START MANAGER

" Note:

In a Windows cluster, start the Manager resource from the Cluster
Administrator.

3. On the source, issue the following command to create the initial-load Extract.

ADD EXTRACT initial-load Extract, SOURCEI STABLE

Where:

e initial-load Extract is the name of the initial-load Extract, up to eight
characters.

e SOURCEI STABLE designates Extract as an initial-load process that reads
complete records directly from the source tables. Do not use any of the other
ADD EXTRACT service options or datasource arguments.

4. On the source system, issue the following command to create an initial-load

Extract parameter file.

EDIT PARAMS i nitial-load Extract

5. Enter the parameters listed in Table 15-3 in the order shown, starting a new line

for each parameter statement. The following is a sample initial-load Extract
parameter file for an Oracle GoldenGate direct load.

EXTRACT i ni t ext

SOURCEDB nydb, USERI DALI AS ogg

RMTHOSTOPTI ONS ny4387, MGRPORT 7888, ENCRYPT AES 192 KEYNAME nykey
RMITASK REPLI CAT, GROUP initrep

TABLE hr. *;

TABLE sal es. *;

Table 15-3 Initial-load Extract Parameters for Oracle GoldenGate Direct Load

Parameter Description

EXTRACT i nitial-1oad_Extract Specifies the initial-load Extract.

SOURCEDB dsn Specifies database connection information.

[, USERIDALIAS al i as, options | SOURCEDB specifies the source datasource name (DSN).

, USERID user, options] See Reference for Oracle GoldenGate for more
information.
USERI D and USERI DALI AS specify database credentials if
required.

ORACLE 15-14

Chapter 15
Initial Load in Classic Architecture

Table 15-3 (Cont.) Initial-load Extract Parameters for Oracle GoldenGate Direct Load

Parameter

Description

RMTHOSTOPTI ONS host nane,
MGRPORT por t nunber
[, ENCRYPT al gorithm KEYNAME keynang]

Specifies the target system, the port where Manager is
running, and optional encryption of data across TCP/IP.

RMITASK replicat,
GROWP initial-1oad_Replicat

e initial-load_Replicat isthe name of the
initial-load Replicat group

Directs Manager on the target system to dynamically start
the initial-load Replicat as a one-time task.

TABLE cont ai ner. owner . obj ect ;

Specifies the fully qualified name of an object or a fully
qualified wildcarded specification for multiple objects. If the
database is an Oracle multitenant database, the object
name must include the name of the container or catalog
unless SOURCECATALOG s used.

CATALOGEXCLUDE
SCHEMAEXCLUDE

TABLEEXCLUDE

EXCLUDEW LDCARDOBJECTSONLY

Parameters that can be used in conjunction with one
another to exclude specific objects from a wildcard
specification in the associated TABLE statement. See
Reference for Oracle GoldenGate for details.

6. Enter any appropriate optional Extract parameters listed in Reference for Oracle

GoldenGate.

7. Save and close the file.

8. On the target system, issue the following command to create the initial-load

Replicat task.

ADD REPLICAT initial-load_Replicat, SPECI ALRUN

Where:

e initial-load Replicat isthe name of the initial-load Replicat task.

e SPECI ALRUN identifies the initial-load Replicat as a one-time run, not a

continuous process.

9. On the target system, issue the following command to create an initial-load

Replicat parameter file.

EDIT PARAMS i nitial-1oad Replicat

10. Enter the parameters listed in Table 15-4 in the order shown, starting a new line
for each parameter statement. The following is a sample initial-load Replicat
parameter file for an Oracle GoldenGate direct load.

REPLI CAT initrep

TARGETDB nydb, USERI DALI AS ogg
SOURCEDEFS / ggs/ di rdef/source_defs

MAP hr.*, TARGET hr.*;

MAP sal es.*, TARGET hr.*;

ORACLE

15-15

Table 15-4

Chapter 15
Initial Load in Classic Architecture

Initial-load Replicat parameters for Oracle GoldenGate Direct Load

Parameter

Description

REPLICAT initial -1 oad_Replicat

Specifies the initial-load Replicat task to be started by
Manager. Use the name that you specified when you
created the initial-load Replicat.

[TARGETDB dsn | contai ner]
[, USERIDALIAS alias, options |
, USERID user, options]

Specifies database connection information.

TARGETDB specifies the target datasource name (DSN)
or Oracle container. See Reference for Oracle
GoldenGate for more information.

USERI D and USERI DALI AS specify database credentials
if required.

{ SOURCEDEFS ful | _pat hnane} |
ASSUVETARGETDEFS

» Use SOURCEDEFS if the source and target tables
have different definitions. Specify the source-
definitions file generated by DEFGEN.

e Use ASSUMETARGETDEFS if the source and target
tables have the same definitions.

Specifies how to interpret data definitions. For more
information about data definitions files, see Associating
Replicated Data with Metadata.

SOURCECATALOG

Specifies a default source Oracle container . Enables
the use of two-part names (schema. obj ect) where
three-part names otherwise would be required for those
databases. You can use multiple instances of this
parameter to specify different default containers or
catalogs for different sets of MAP parameters.

MAP cont ai ner. owner . obj ect,
TARGET owner.obj ect[, DEF tenpl ate]

Specifies a relationship between a source object or
objects and a target object or objects. MAP specifies the
source object, and TARCET specifies the target object.

For the source object, specify the fully qualified name of
the object or a fully qualified wildcarded specification for
multiple objects. For an Oracle multitenant container
database, the source object name must include the
name of the container or catalog unless
SOURCECATALQOGis used.

For the target object, specify only the owner . obj ect
components of the name, regardless of the database.
Replicat can only connect to one Oracle container. Use
a separate Replicat process for each container or
catalog to which you want to load data.

See Specifying Object Names in Oracle GoldenGate
Input for guidelines for specifying object names in
parameter files.

The DEF option specifies a definitions template. For
more information about data definitions, see Associating
Replicated Data with Metadata.See Reference for
Oracle GoldenGate for more information and options for
the MAP parameter.

ORACLE

15-16

Chapter 15
Initial Load in Classic Architecture

Table 15-4 (Cont.) Initial-load Replicat parameters for Oracle GoldenGate Direct Load

Parameter

Description

CATALOGEXCLUDE
SCHEMAEXCLUDE
MAPEXCL UDE

Parameters that can be used in conjunction with one
another to exclude specific source objects from a
wildcard specification in the associated MAP statement.
See Reference for Oracle GoldenGate for details.

EXCLUDEW LDCARDOBJECTSONLY

ORACLE

11.

12.
13.

14.

15.

16.

17.

18.

19.

20.

21.

Enter any appropriate optional Replicat parameters listed in Reference for Oracle
GoldenGate.

Save and close the parameter file.
On the source system, start change extraction.
START EXTRACT group

View the Replicat parameter file to make certain that the HANDLECOLLI SI ONS
parameter is listed. If not, add the parameter to the file.

(Oracle, if replicating sequences) Issue the DBLOG N command as the user who
has EXECUTE privilege on updat e. Sequence.

GGSCl > DBLOGA N USERI D DBLOG Nuser, PASSWORD password [encryption_options]

(Oracle, if replicating sequences) Issue the following command to update each
source sequence and generate redo. From the redo, Replicat performs initial
synchronization of the sequences on the target. You can use an asterisk wildcard
for any or all characters in the name of a sequence (but not the owner).

FLUSH SEQUENCE owner . sequence
On the source system, start the initial-load Extract.

START EXTRACT initial-load Extract

" Note:

Do not start the initial-load Replicat. The Manager process starts it
automatically and terminates it when the load is finished.

On the target system, issue the following command to find out if the load is
finished. Wait until the load is finished before going to the next step.

VIEWREPCRT initial -1 oad_Repli cat
On the target system, start change replication.
START REPLI CAT group

On the target system, issue the following command to verify the status of change
replication.

I NFO REPLI CAT group

Continue to issue the | NFO REPLI CAT command until you have verified that
Replicat posted all of the change data that was generated during the initial load.
For example, if the initial-load Extract stopped at 12:05, make sure Replicat posted
data up to that point.

15-17

Chapter 15
Initial Load in Classic Architecture

22. On the target system, issue the following command to turn off the
HANDLECCLLI SI ONS parameter and disable the initial-load error handling.

SEND REPLI CAT group, NOHANDLECOLLI SI ONS

23. On the target system, edit the Replicat parameter file to remove the
HANDLECCLLI SI ONS parameter. This prevents HANDLECCOLLI SI ONS from being
enabled again the next time Replicat starts.

Caution:

Do not use the VI EW PARAMS or EDI T PARAMS command to view or edit an
existing parameter file that is in a character set other than that of the
local operating system (such as one where the CHARSET option was used
to specify a different character set). View the parameter file from outside
GGSCI if this is the case; otherwise, the contents may become
corrupted.

24. Save and close the parameter file. From this point forward, Oracle GoldenGate
continues to synchronize data changes.

Loading Data with a Direct Bulk Load to SQL*Loader

To use Oracle's SQL*Loader utility to establish the target data, you run an Oracle
GoldenGate initial-load Extract to extract the source records and send them directly to
an initial-load Replicat task. A task is a process that is started dynamically by the
Manager process and does not require the use of a Collector process or file. The
initial-load Replicat task interfaces with the APl of SQL*Loader to load data as a direct-
path bulk load. Data mapping and transformation can be done by either the initial-load
Extract or initial-load Replicat, or both. During the load, the change-synchronization
groups extract and replicate incremental changes, which are then reconciled with the
results of the load.

To control which port is used by Replicat, and to speed up the search and bind
process, use the DYNAM CPORTLI ST parameter in the Manager parameter file. Manager
passes the list of port numbers that are specified with this parameter to the Replicat
task process. Replicat first searches for a port from this list, and only if no ports are
available from the list does Replicat begin scanning in ascending order from the
default Manager port number until it finds an available port.

This method supports standard character, numeric, and datetime data types, as well
as CLOB, NCLOB, BLOB, LONG, XM., and user-defined datatypes (UDT) embedded with the
following attributes: CHAR, NCHAR, VARCHAR, NVARCHAR, RAW NUVBER, DATE, FLQAT,

TI MESTAMWP, CLOB, BLOB, XM., and UDT. VARRAYS are not supported. Character sets are
converted between source and target where applicable.

This method supports Oracle internal tables, but does not convert between the source
and target character sets during the load.

ORACLE 15-18

ORACLE

Chapter 15
Initial Load in Classic Architecture

I - \\\ I
— > - _% - .
Source Initial-Load SQOL *Loader [SeeS———
SOUF{ICEDB Extract —
; < —
| l%ﬂlnlk
| siictiho Target
2 . - Ye TARGAETDB
— . & i > -- - 5 > |
] - -
Transaction Change ; Collector Trail Change
Log or Extract Network Replicat
Log Table

To Load Data With a Direct Bulk Load to SQL*Loader

1.

Make certain that you have addressed the requirements in "Prerequisites for Initial
Load".

Grant LOCK ANY TABLE to the Replicat database user on the target Oracle
database.

On the source and target systems, run GGSCI and start Manager.
START MANAGER

On the source system, issue the following command to create the initial-load
Extract.

ADD EXTRACT initial-load_Extract, SOURCEI STABLE

Where:

 initial-load_Extract isthe name of the initial-load Extract, up to eight
characters.

e SOURCEI STABLE designates Extract as an initial-load process that reads
complete records directly from the source tables. Do not use any of the other
ADD EXTRACT service options or datasource arguments.

On the source system, issue the following command to create an initial-load
Extract parameter file.

EDIT PARAMS i nitial-1oad_Extract

Enter the parameters listed in Table 15-5 in the order shown, starting a new line
for each parameter statement. The following is a sample initial-load Extract
parameter file for a direct bulk load to SQL*Loader.

EXTRACT i ni t ext

SOURCEDB mydb, USERI DALI AS ogg

RMTHOSTOPTI ONS ny4387, MGRPORT 7888, ENCRYPT AES 192 KEYNAME nykey
RMITASK REPLI CAT, GROUP initrep

TABLE hr. *;

TABLE sal es. *;

15-19

Table 15-5

Chapter 15
Initial Load in Classic Architecture

Initial-load Extract Parameters for a Direct Bulk Load to SQL*Loader

Parameter

Description

EXTRACT i nitial-1oad_Extract

Specifies the initial-load Extract.

[, USERIDALIAS alias, options |
, USERID user, options]

Specifies database connection information.

USERI D and USERI DALI AS specify database credentials
if required.

RMITHOSTOPTI ONS host nane,
MGRPORT por t nunber
[, ENCRYPT al gorithm KEYNAME keynane]

Specifies the target system, the port where Manager is
running, and optional encryption of data across TCP/IP.

RMITASK repl i cat,
GROUP initial-1oad_Replicat

- initial-load_Replicat isthe name of the
initial-load Replicat group.

Directs Manager on the target system to dynamically
start the initial-load Replicat as a one-time task.

TABLE [cont ai ner.]owner. obj ect;

Specifies the fully qualified name of an object or a fully
qualified wildcarded specification for multiple objects. If
the database is an Oracle multitenant container
database, the object name must include the name of the
container unless SOURCECATALOG s used. See
Specifying Object Names in Oracle GoldenGate Input for
guidelines for specifying object names in parameter files.

CATALOCGEXCLUDE
SCHEMAEXCLUDE

TABLEEXCLUDE

EXCLUDEW LDCARDOBJECTSONLY

Parameters that can be used in conjunction with one
another to exclude specific objects from a wildcard
specification in the associated TABLE statement. See
Reference for Oracle GoldenGate for details.

7. Enter any appropriate optional parameters.

8. Save and close the file.

9. On the target system, issue the following command to create the initial-load

Replicat.

ADD REPLI CAT initial-load_Replicat, SPECI ALRUN

Where:

 initial-load_Replicat isthe name of the initial-load Replicat task.

e SPECI ALRUN identifies the initial-load Replicat as a one-time task, not a

continuous process.

10. On the target system, issue the following command to create an initial-load

Replicat parameter file.

EDIT PARAMS i nitial-1oad Replicat

11. Enter the parameters listed in Table 15-6 in the order shown, starting a new line
for each parameter statement. The following is a sample initial-load Replicat
parameter file for a direct load to SQL*Loader.

ORACLE

15-20

REPLI CAT initrep
USERI DALI AS ogg
BULKLQAD

Chapter 15
Initial Load in Classic Architecture

SOURCEDEFS / ggs/ di rdef/ source_defs

MAP hr.*, TARGET hr.*;

MAP sal es.*, TARGET hr.*;

Table 15-6 Initial-load Replicat Parameters for Direct Load to SQL*Loader

Parameter

Description

REPLICAT initial-load_Replicat

Specifies the initial-load Replicat task to be started by Manager.
Use the name that you specified when you created the initial-
load Replicat.

[TARGETDB cont ai ner|]
[, USERIDALIAS alias, options |
, USERID user, options]

Specifies database connection information.

TARGETDB specifies the target Oracle container. See Reference
for Oracle GoldenGate for more information.

USERI D and USERI DALI AS specify database credentials if
required.

BULKLOAD

Directs Replicat to interface directly with the Oracle SQL*Loader
interface. See Reference for Oracle GoldenGate for more
information.

{ SOURCEDEFS ful | _pat hnane} |
ASSUVETARGETDEFS

» Use SOURCEDEFS if the source and target
tables have different definitions. Specify the
source-definitions file generated by
DEFGEN.

e Use ASSUMETARGETDEFS if the source and
target tables have the same definitions.

Specifies how to interpret data definitions. For more information
about data definitions files, see Associating Replicated Data with
Metadata.

SOURCECATALOG

Specifies a default source Oracle container for subsequent MAP
statements. Enables the use of two-part names

(schena. obj ect) where three-part names otherwise would be
required. You can use multiple instances of this parameter to
specify different default containers for different sets of MAP
parameters.

ORACLE

15-21

Chapter 15
Initial Load in Classic Architecture

Table 15-6 (Cont.) Initial-load Replicat Parameters for Direct Load to SQL*Loader
|

Parameter

Description

MAP [cont ai ner.]owner. obj ect, Specifies a relationship between a source object or objects and
TARGET owner . obj ect[, DEF tenplate] a target object or objects. MAP specifies the source object, and

TARGET specifies the target object.

For the source object, specify the fully qualified name of the
object or a fully qualified wildcarded specification for multiple
objects. For an Oracle multitenant container database, the
source object name must include the name of the container
unless SOURCECATALOG s used.

For the target object, specify only the owner . obj ect
components of the name, regardless of the database. Replicat
can only connect to one Oracle container. Use a separate
Replicat process for each container to which you want to load
data.

See Specifying Object Names in Oracle GoldenGate Input for
guidelines for specifying object names in parameter files.

The DEF option specifies a definitions template. For more
information about data definitions, see Associating Replicated
Data with Metadata. See Reference for Oracle GoldenGate for
more information and options for the MAP parameter.

CATALOGEXCLUDE
SCHEMAEXCLUDE
MAPEXCLUDE

Parameters that can be used in conjunction with one another to
exclude specific source objects from a wildcard specification in
the associated MAP statement. See Reference for Oracle
GoldenGate for details.

EXCLUDEW LDCARDOBJECTSONLY

12.

13.
14.

15.

16.

17.

18.

ORACLE

Enter any appropriate optional Replicat parameters listed in Reference for Oracle
GoldenGate.

Save and close the parameter file.
On the source system, start change extraction.
START EXTRACT group

View the Replicat parameter file to make certain that the HANDLECOLLI S| ONS
parameter is listed. If not, add the parameter to the file.

(Oracle, if replicating sequences) Issue the DBLOG N command as the user who
has EXECUTE privilege on updat e. Sequence.

GGSCl > DBLOG N USERI D DBLOG Nuser, PASSWORD password [encryption_options]

(Oracle, if replicating sequences) Issue the following command to update each
source sequence and generate redo. From the redo, Replicat performs initial
synchronization of the sequences on the target. You can use an asterisk wildcard
for any or all characters in the name of a sequence (but not the owner).

FLUSH SEQUENCE owner . sequence
On the source system, start the initial-load Extract.

START EXTRACT initial-Ioad Extract

15-22

19.

20.

21.

22.

23.

24,

25.

Chapter 15
Initial Load in Classic Architecture

Caution:

Do not start the initial-load Replicat. The Manager process starts it
automatically and terminates it when the load is finished.

On the target system, issue the following command to determine when the load is
finished. Wait until the load is finished before proceeding to the next step.

VIEWREPCRT initial -1 oad Extract
On the target system, start change replication.
START REPLI CAT group

On the target system, issue the following command to verify the status of change
replication.

I NFO REPLI CAT gr oup

Continue to issue the | NFO REPLI CAT command until you have verified that
Replicat posted all of the change data that was generated during the initial load.
For example, if the initial-load Extract stopped at 12:05, make sure Replicat posted
data up to that point.

On the target system, issue the following command to turn off the
HANDLECCLLI SI ONS parameter and disable the initial-load error handling.

SEND REPLI CAT gr oup, NOHANDLECOLLI SI ONS

On the target system, edit the Replicat parameter file to remove the
HANDLECCLLI Sl ONS parameter. This prevents HANDLECOLLI SI ONS from being
enabled again the next time Replicat starts.

Caution:

Do not use the VI EW PARAMS or EDI T PARAMS command to view or edit an
existing parameter file that is in a character set other than that of the
local operating system (such as one where the CHARSET option was used
to specify a different character set). View the parameter file from outside
GGSCI if this is the case; otherwise, the contents may become
corrupted..

Save and close the parameter file.

From this point forward, Oracle GoldenGate continues to synchronize data
changes.

Loading Data with Teradata Load Utilities

The preferred methods for synchronizing two Teradata databases is to use any of the
Teradata data load utilities. The recommended utility is MultiLoad.

ORACLE

This procedure requires Extract and Replicat change-synchronization groups to be
available and properly configured for Teradata replication. For more information, see
Configuring Online Change Synchronization.

15-23

Chapter 15
Initial Load in Classic Architecture

If you are using multiple Extract and Replicat groups, perform each step for all of them
as appropriate.

To Load Data With a Teradata Load Utility

1.
2.

© © N 9

ORACLE

Create the scripts that are required by the utility.
Start the primary Extract group(s).

START EXTRACT group

Start the data pump(s), if used.

START EXTRACT dat a_punp

Open the Replicat parameter file(s) for editing.

Caution:

Do not use the VI EW PARAMS or EDI T PARAMS command to view or edit an
existing parameter file that is in a character set other than that of the
local operating system (such as one where the CHARSET option was used
to specify a different character set). View the parameter file from outside
GGSCI if this is the case; otherwise, the contents may become
corrupted..

Add the following parameters to the Replicat parameter file(s):
END RUNTI ME
HANDLECCLLI SI ONS

* END RUNTI ME directs Replicat to terminate normally when it reads an Oracle
GoldenGate trail record that has a timestamp that is the same as, or after, the
time that Replicat was started.

* HANDLECOLLI SI ONS directs Replicat to overwrite duplicate records and ignore
missing ones, as a means of resolving errors that occur from collisions
between transactional changes and the results of the copy.

Save and close the Replicat parameter file(s).
Start the load utility.
When the load completes on the target, start the Replicat process(es).

When each Replicat process stops, remove the HANDLECOLLI SI ONS and END
RUNTI ME parameters from the parameter file.

. Restart the Replicat process(es). The two databases are now synchronized, and

Oracle GoldenGate will keep them current through replication.

15-24

Customizing Oracle GoldenGate
Processing

This chapter describes how to customize Oracle GoldenGate processing.
Topics:

e Executing Commands, Stored Procedures, and Queries with SQLEXEC
* Using Oracle GoldenGate Macros to Simplify and Automate Work
e Using User Exits to Extend Oracle GoldenGate Capabilities

e Using the Oracle GoldenGate Event Marker System to Raise Database Events

Executing Commands, Stored Procedures, and Queries with
SQLEXEC

The SQLEXEC parameter of Oracle GoldenGate enables Extract and Replicat to
communicate with the database to do the following:

» Execute a database command, stored procedure, or SQL query to perform a
database function, return results (SELECT statements) or perform DML (I NSERT,
UPDATE, DELETE) operations.

e Retrieve output parameters from a procedure for input to a FI LTER or COLMAP
clause.

" Note:

SQLEXEC provides minimal globalization support. To use SQLEXEC in the
capture parameter file of the source capture, make sure that the client
character set in the source . pr mfile is either the same or a superset of the
source database character set.

» Performing Processing with SQLEXEC

e Using SQLEXEC

* Executing SQLEXEC within a TABLE or MAP Statement
* Executing SQLEXEC as a Standalone Statement

* Using Input and Output Parameters

» Handling SQLEXEC Errors

* Additional SQLEXEC Guidelines

ORACLE 16-1

Chapter 16
Executing Commands, Stored Procedures, and Queries with SQLEXEC

Performing Processing with SQLEXEC

SQLEXEC extends the functionality of both Oracle GoldenGate and the database by
allowing Oracle GoldenGate to use the native SQL of the database to execute custom
processing instructions.

» Stored procedures and queries can be used to select or insert data into the
database, to aggregate data, to denormalize or normalize data, or to perform any
other function that requires database operations as input. Oracle GoldenGate
supports stored procedures that accept input and those that produce output.

» Database commands can be issued to perform database functions required to
facilitate Oracle GoldenGate processing, such as disabling triggers on target
tables and then enabling them again.

Using SQLEXEC

The SQLEXEC parameter can be used as follows:

e as a clause of a TABLE or MAP statement

e as a standalone parameter at the root level of the Extract or Replicat parameter
file.

Executing SQLEXEC within a TABLE or MAP Statement

When used within a TABLE or MAP statement, SQLEXEC can pass and accept
parameters. It can be used for procedures and queries, but not for database
commands.

Syntax
This syntax executes a procedure within a TABLE or MAP statement.

SQLEXEC (SPNAME sp_nane,
[ID | ogical _nane,]
{ PARAMS par am spec | NOPARAMS})

Argument Description

Required keyword that begins a clause to execute a stored

SPNAME
procedure.

Specifies the name of the stored procedure to execute.
Sp_name

Defines a logical name for the procedure. Use this option to
execute the procedure multiple times within a TABLE or MAP
statement. Not required when executing a procedure only once.

I D | ogical _nane

Specifies whether or not the procedure accepts parameters. One
of these options must be used (see Using Input and Output
Parameters).

PARAMG par am spec |
NOPARAMS

Syntax

This syntax executes a query within a TABLE or MAP statement.

ORACLE 16-2

Chapter 16
Executing Commands, Stored Procedures, and Queries with SQLEXEC

SQLEXEC (1D | ogi cal _nane, QUERY ' query ',
{ PARAVS par am spec | NOPARAMS})

Argument Description

Defines a logical name for the query. A logical name is required
in order to extract values from the query results. | D

| ogi cal _namne references the column values returned by the
query.

Specifies the SQL query syntax to execute against the database.
It can either return results with a SELECT statement or change
the database with an | NSERT, UPDATE, or DELETE statement.
The query must be within single quotes and must be contained
all on one line. Specify case-sensitive object names the way they
are stored in the database, such as within quotes for Oracle
case-sensitive names.

I D | ogi cal _nane

QUERY ' sql _query '

SQLEXEC ' SELECT "col 1" from "schema"."tabl "'

Defines whether or not the query accepts parameters. One of
these options must be used (see Using Input and Output
Parameters).

PARAVS par am spec |
NOPARAMS

If you want to execute a query on a table residing on a different database than the
current database, then the different database name has to be specified with the table.
The delimiter between the database name and the tablename should be a colon (:).
The following are some example use cases:

select coll fromdbl:tabl

sel ect col 2 from db2: schema2. t ab2
select col3 fromtab3

sel ect col 3 from schema4.tabh4

Executing SQLEXEC as a Standalone Statement

ORACLE

When used as a standalone parameter statement in the Extract or Replicat parameter
file, SQLEXEC can execute a stored procedure, query, or database command. As such,
it need not be tied to any specific table and can be used to perform general SQL
operations. For example, if the Oracle GoldenGate database user account is
configured to time-out when idle, you could use SQLEXEC to execute a query at a
defined interval, so that Oracle GoldenGate does not appear idle. As another example,
you could use SQLEXEC to issue an essential database command, such as to disable
target triggers. A standalone SQLEXEC statement cannot accept input parameters or
return output parameters.

Parameter syntax Purpose

SQLEXEC ' cal | procedure_nane()’ Execute a stored procedure

SQLEXEC " sql _query’ Execute a query

SQLEXEC ' dat abase_command! Execute a database command

16-3

Chapter 16
Executing Commands, Stored Procedures, and Queries with SQLEXEC

Argument Description

Specifies the name of a stored procedure to execute. The statement
must be enclosed within single quotes.

Example:

SQLEXEC 'call prc_job count ()

"call
procedure_name ()

'sql query’ Specifies the name of a query to execute. The query must be
q' _query contained all on one line and enclosed within single quotes.

Specify case-sensitive object names the way they are stored in the
database, such as within double quotes for Oracle object names that
are case-sensitive.

SQLEXEC ' SELECT "col 1" from "schema"."tabl "'

Specifies a database command to execute. Must be a valid

' dat abase_command' command for the database.

SQLEXEC provides options to control processing behavior, memory usage, and error
handling. For more information, see Reference for Oracle GoldenGate.

Using Input and Output Parameters

Oracle GoldenGate provides options for passing input and output values to and from a
procedure or query that is executed with SQLEXEC within a TABLE or MAP statement.

e Passing Values to Input Parameters
e Passing Values to Output Parameters

¢ SQLEXEC Examples Using Parameters

Passing Values to Input Parameters

ORACLE

To pass data values to input parameters within a stored procedure or query, use the
PARAMS option of SQLEXEC.
Syntax

PARAVS ([OPTIONAL | REQUIRED] param= {source_colum | function}
1)

Where:

e OPTI ONAL indicates that a parameter value is not required for the SQL to execute.
If a required source column is missing from the database operation, or if a column-
conversion function cannot complete successfully because a source column is
missing, the SQL executes anyway.

* REQUI RED indicates that a parameter value must be present. If the parameter value
is not present, the SQL will not be executed.

e paramis one of the following:

— For a stored procedure, it is the name of any parameter in the procedure that
can accept input, such as a column in a lookup table.

16-4

Chapter 16
Executing Commands, Stored Procedures, and Queries with SQLEXEC

— For an Oracle query, it is the name of any input parameter in the query
excluding the leading colon. For example, : par anl would be specified as
par aml in the PARAMNS clause.

— For anon-Oracle query, it is pn, where n is the number of the parameter within
the statement, starting from 1. For example, in a query with two parameters,
the par amentries are pl and p2.

e {source_col um | functi on}is the column or Oracle GoldenGate conversion
function that provides input to the procedure.

Passing Values to Output Parameters

To pass values from a stored procedure or query as input to a FI LTER or COLMAP
clause, use the following syntax:
Syntax

{procedure_nane | |ogical nane}.pararneter

Where:

e procedure_nane is the actual name of the stored procedure. Use this argument
only if executing a procedure one time during the life of the current Oracle
GoldenGate process.

* | ogical _nane is the logical name specified with the | D option of SQLEXEC. Use this
argument if executing a query or a stored procedure that will be executed multiple
times.

e paraneter is either the name of the parameter or RETURN_VALUE, if extracting
returned values.

SQLEXEC Examples Using Parameters

ORACLE

These examples use stored procedures and queries with input and output parameters.

" Note:

Additional SQLEXEC options are available for use when a procedure or query
includes parametes. See the full SQLEXEC documentation in Reference for
Oracle GoldenGate.

Example 16-1 SQLEXEC with a Stored Procedure

This example uses SQLEXEC to run a stored procedure named LOOKUP that performs a
guery to return a description based on a code. It then maps the results to a target
column named NEWACCT _VAL.

CREATE OR REPLACE PROCEDURE LOOKUP
(CODE_PARAM | N VARCHAR2, DESC_PARAM OUT VARCHAR?)
BEGI N

SELECT DESC COL

| NTO DESC_PARAM

FROM LOOKUP_TABLE

16-5

Chapter 16
Executing Commands, Stored Procedures, and Queries with SQLEXEC

WHERE CODE_COL = CODE_PARAM
END;

Contents of MAP statement:

MAP sal es. account, TARGET sal es. newacct, &
SQLEXEC (SPNAME | ookup, PARAMS (code_param = account _code)), &
COLMAP (newacct _id = account _id, newacct_val = |ookup.desc_paran;

SQLEXEC executes the LOOKUP stored procedure. Within the SQLEXEC clause, the PARAVS
(code_param = account _code) statement identifies code_par amas the procedure
parameter to accept input from the account _code column in the account table.

Replicat executes the LOOKUP stored procedure prior to executing the column map, so
that the COLMAP clause can extract and map the results to the newacct _val column.

Example 16-2 SQLEXEC with a Query

This example implements the same logic as used in the previous example, but it
executes a SQL query instead of a stored procedure and uses the @ETVAL function in
the column map.

A query must be on one line. To split an Oracle GoldenGate parameter statement into
multiple lines, an ampersand (&) line terminator is required.

Query for an Oracle database:

MAP sal es. account, TARGET sal es. newacct, &

SQLEXEC (1D | ookup, &

QUERY ' sel ect desc_col desc_param from | ookup_table where code_col = :code_param, &
PARAMS (code_param = account _code)), &

COLMAP (newacct _id = account _id, newacct_val = &

@etval (1 ookup.desc_param);

Query for a non-Oracle database:

MAP sal es. account, TARGET sal es. newacct, &

SQLEXEC (1D I ookup, &

QUERY 'sel ect desc_col desc_param from | ookup_table where code_col ", &
PARAMS (pl = account_code)), &

COLMAP (newacct _id = account _id, newacct_val = &

@etval (1 ookup.desc_paranm);

1
D

Handling SQLEXEC Errors

ORACLE

There are two types of error conditions to consider when implementing SQLEXEC:

e The column map requires a column that is missing from the source database
operation. This can occur for an update operation if the database only logs the
values of columns that changed, rather than all of the column values. By default,
when a required column is missing, or when an Oracle GoldenGate column-
conversion function results in a "column missing" condition, the stored procedure
does not execute. Subsequent attempts to extract an output parameter from the
stored procedure results in a "column missing condition™ in the COLMAP or FI LTER
clause.

e The database generates an error.

* Handling Missing Column Values

16-6

Chapter 16
Executing Commands, Stored Procedures, and Queries with SQLEXEC

Handling Database Errors

Handling Missing Column Values

Use the @OLTEST function to test the results of the parameter that was passed, and
then map an alternative value for the column to compensate for missing values, if
desired. Otherwise, to ensure that column values are available, you can use the
FETCHCOLS or FETCHCOLSEXCEPT option of the TABLE parameter to fetch the values from
the database if they are not present in the log. As an alternative to fetching columns,
you can enable supplemental logging for those columns.

Handling Database Errors

Use the ERROR option in the SQLEXEC clause to direct Oracle GoldenGate to respond in
one of the following ways:

Table 16-1 ERROR Options
|

Action

Description

| GNORE

Causes Oracle GoldenGate to ignore all errors associated with the stored
procedure or query and continue processing. Any resulting parameter
extraction results in a "column missing" condition. This is the default.

REPCRT

Ensures that all errors associated with the stored procedure or query are
reported to the discard file. The report is useful for tracing the cause of the
error. It includes both an error description and the value of the parameters
passed to and from the procedure or query. Oracle GoldenGate continues
processing after reporting the error.

RAI SE

Handles errors according to rules set by a REPERROR parameter specified in the
Replicat parameter file. Oracle GoldenGate continues processing other stored
procedures or queries associated with the current TABLE or MAP statement
before processing the error.

FI NAL

Performs in a similar way to RAI SE except that when an error associated with a
procedure or query is encountered, any remaining stored procedures and
queries are bypassed. Error processing is called immediately after the error.

FATAL

Causes Oracle GoldenGate to abend immediately upon encountering an error
associated with a procedure or query.

Additional SQLEXEC Guidelines

Observe the following SQLEXEC guidelines:

ORACLE

Up to 20 stored procedures or queries can be executed per TABLE or MAP entry.
They execute in the order listed in the parameter statement.

A database login by the Oracle GoldenGate user must precede the SQLEXEC
clause. Use the SOURCEDB and/or USERI D or USERI DALI AS parameter in the Extract
parameter file or the TARGETDB and/or USERI D or USERI DALI AS parameter in the
Replicat parameter file, as needed for the database type and configured
authentication method.

The SQL is executed by the Oracle GoldenGate user. This user must have the
privilege to execute stored procedures and call RDBM-supplied procedures.

16-7

Chapter 16
Using Oracle GoldenGate Macros to Simplify and Automate Work

» Database operations within a stored procedure or query are committed in same
context as the original transaction.

* Do not use SQLEXEC to update the value of a primary key column. If SQLEXEC is
used to update the value of a key column, then the Replicat process will not be
able to perform a subsequent update or delete operation, because the original key
value will be unavailable. If a key value must be changed, you can map the
original key value to another column and then specify that column with the
KEYCOLS option of the TABLE or MAP parameter.

* For DB2, Oracle GoldenGate uses the ODBC SQLExecDi rect function to execute
a SQL statement dynamically. This means that the connected database server
must be able to prepare the statement dynamically. ODBC prepares the SQL
statement every time it is executed (at the requested interval). Typically, this does
not present a problem to Oracle GoldenGate users. See the IBM DB2
documentation for more information.

* Do not use SQLEXEC for objects being processing by a data-pump Extract in pass-
through mode.

» All object names in a SQLEXEC statement must be fully qualified with their two-part
or three-part names, as appropriate for the database.

» All objects that are affected by a SQLEXEC stored procedure or query must exist
with the correct structures prior to the execution of the SQL. Consequently, DDL
on these objects that affects structure (such as CREATE or ALTER) must happen
before the SQLEXEC executes.

e All objects affected by a standalone SQLEXEC statement must exist before the
Oracle GoldenGate processes start. Because of this, DDL support must be
disabled for those objects; otherwise, DDL operations could change the structure
or delete the object before the SQLEXEC procedure or query executes on it.

Using Oracle GoldenGate Macros to Simplify and Automate

Work

ORACLE

You can use Oracle GoldenGate macros in parameter files to configure and reuse
parameters, commands, and conversion functions. reducing the amount of text you
must enter to do common tasks. A macro is a built-in automation tool that enables you
to call a stored set of processing steps from within the Oracle GoldenGate parameter
file. A macro can consist of a simple set of frequently used parameter statements to a
complex series of parameter substitutions, calculations, or conversions. You can call
other macros from a macro. You can store commonly used macros in a library, and
then call the library rather than call the macros individually.

Oracle GoldenGate macros work with the following parameter files:

e DEFGEN
 Extract
* Replicat

Do not use macros to manipulate data for tables that are being processed by a data-
pump Extract in pass-through mode.

There are two steps to using macros:

Defining a Macro

16-8

Chapter 16
Using Oracle GoldenGate Macros to Simplify and Automate Work

Calling a Macro

Topics:

e Defining a Macro

e Calling a Macro

e Calling Other Macros from a Macro
e Creating Macro Libraries

e Tracing Macro Expansion

Defining a Macro

ORACLE

To define an Oracle GoldenGate macro, use the MACRO parameter in the parameter
file. MACRO defines any input parameters that are needed and it defines the work that
the macro performs.

Syntax

MACRO #Mmacr 0_nanme
PARAVS (#pl, #p2 [, ...])
BEG N

macr o_body

END;

Table 16-2 Macro Definition Arguments

__|
Argument Description

Required. Indicates the start of an Oracle GoldenGate macro

MAGRO definition.

The name of the macro. Macro and parameter names must
begin with a macro character. The default macro character is the
pound (#) character, as in #nmacr ol and #par ant.

#macr o_nane

A macro or parameter name can be one word consisting of
letters and numbers, or both. Special characters, such as the
underscore character (_) or hyphen (-), can be used. Some
examples of macro names are: #nynacr o, #macr ol, #macro_1,
#macr o- 1, #macr 0$. Some examples of parameter names are
#sourcecol , #s, #col 1, and #col _1.

To avoid parsing errors, the macro character cannot be used as
the first character of a macro name. For example, ##macr o is
invalid. If needed, you can change the macro character by using
the MACROCHAR parameter. See Reference for Oracle
GoldenGate for Windows and UNIX.

Macro and parameter names are not case-sensitive. Macro or
parameter names within quotation marks are ignored.

16-9

Chapter 16
Using Oracle GoldenGate Macros to Simplify and Automate Work

Table 16-2 (Cont.) Macro Definition Arguments

__|
Argument Description

Optional definition of input parameters. Specify a comma-
separated list of parameter names and enclose it within
parentheses. Each parameter must be referenced in the macro
body where you want input values to be substituted. You can list
each parameter on a separate line to improve readability
(making certain to use the open and close parentheses to
enclose the parameter list). See Calling a Macro that Contains
Parameters for more information.

PARAMS (#pl, #p2)

Begins the macro body. Must be specified before the macro

BEG N body
macro bod The macro body. The body is a syntax statement that defines the
_hody function that is to be performed by the macro. A macro body can
include any of the following types of statements.
e Simple parameter statements, as in:
COLl = COL2
e Complex parameter statements with parameter substitution
asin:
MAP #o. #t, TARGET #o.#t, KEYCOLS (#k), COLMAP
(USEDEFAULTS) ;
. Invocations of other macros, as in:
#col map (COL1, #sourcecol)
END: Ends the macro definition. The semicolon is required to complete

the definition.

The following is an example of a macro definition that includes parameters. In this
case, the macro simplifies the task of object and column mapping by supplying the
base syntax of the MAP statement with input parameters that resolve to the names of
the owners, the tables, and the KEYCOLS columns.

MACRO #macrol

PARAMS (#o, #t, #k)

BEG N

MAP #o. #t, TARGET #o.#t, KEYCOLS (#k), COLMAP (USEDEFAULTS);
END;

The following is an example of a macro that does not define parameters. It executes a
frequently used set of parameters.

MACRO #option_defaul ts
BEG N

GETI NSERTS

GETUPDATES

GETDELETES

| NSERTDELETES

END;

Calling a Macro

This section shows you how to call a macro. (To define a macro, see Defining a
Macro).

ORACLE 16-10

ORACLE

Chapter 16
Using Oracle GoldenGate Macros to Simplify and Automate Work

To call a macro, use the following syntax where you want the macro to run within the
parameter file.

Syntax
[target =] macro_name (val[, ...])
[target =] macro_name (val | {val, val, ...}[, ...])

Table 16-3 Syntax Elements for Calling a Macro

__|
Argument Description

target = Optional. Specifies the target to which the results of the macro
are assigned or mapped. For example, t ar get can be used to
specify a target column in a COLMAP statement. In the following
call to the #make_dat e macro, the column DATECOL1 is the
target and will be mapped to the macro results.

DATECOL1 = #make_date (YRL, MOL, DAY1)

Without a target, the syntax to call #make_dat e is:

#make_date (YRL, MOL, DAY1)

mecr o_nane The name of the macro that is being called, for example:
#make date.
(vall, ...]) The parameter input values. This component is required whether

or not the macro defines parameters. If the macro defines
parameters, specify a comma-separated list of input values, in
the order that corresponds to the parameter definitions in the
MACRO parameter, and enclose the list within parentheses. If the
macro does not define parameters, specify the open and close
parentheses with nothing between them (). For more information
about this syntax, see the following:

Calling a Macro that Contains Parameters.
Calling a Macro without Input Parameters.

(val | {val, The parameter input values. This component is required whether

val, ...}), ...] or not the macro defines parameters. If the macro defines
parameters, specify a comma-separated list of input values, in
the order that corresponds to the parameter definitions in the
MACRO parameter, and enclose the list within parentheses. To
pass multiple values to one parameter, separate them with
commas and enclose the list within curly brackets. If the macro
does not define parameters, specify the open and close
parentheses with nothing between them (). For more information
about this syntax, see the following:

Calling a Macro that Contains Parameters.
Calling a Macro without Input Parameters.

e Calling a Macro that Contains Parameters

e Calling a Macro without Input Parameters

16-11

Chapter 16
Using Oracle GoldenGate Macros to Simplify and Automate Work

Calling a Macro that Contains Parameters

ORACLE

To call a macro that contains parameters, the call statement must supply the input
values that are to be substituted for those parameters when the macro runs. See the
syntax in Table 16-3.

Valid input for a macro parameter is any of the following, preceded by the macro
character (default is #):

e Asingle value in plain or quoted text, such as: #macro (#nane, #address,
#phone) or #macro (#"nane", #"address", #"phone").

* A comma-separated list of values enclosed within curly brackets, such as: #macr ol
(SCOTT, DEPT, {DEPTNOL, DEPTNC2, DEPTNGB}). The ability to substitute a block
of values for any given parameter add flexibility to the macro definition and its
usability in the Oracle GoldenGate configuration.

e Calls to other macros, such as: #macro (#mycalc (col 2, 100), #total). Inthis
example, the #nycal ¢ macro is called with the input values of col 2 and 100.

Oracle GoldenGate substitutes parameter values within the macro body according to
the following rules.

1. The macro processor reads through the macro body looking for instances of
parameter names specified in the PARAMS statement.

2. For each occurrence of the parameter name, the corresponding parameter value
specified during the call is substituted.

3. If a parameter name does not appear in the PARANS statement, the macro
processor evaluates whether or not the item is, instead, a call to another macro.
(See Calling Other Macros from a Macro.) If the call succeeds, the nested macro
is executed. If it fails, the whole macro fails.

Example 16-3 Using Parameters to Populate a MAP Statement

The following macro definition specifies three parameter that must be resolved. The
parameters substitute for the names of the table owner (parameter #0), the table
(parameter #t), and the KEYCOLS columns (parameter #k) in a MAP statement.

MACRO #macrol PARAMS (#o, #t, #k) BEG N MAP #o.#t, TARCET #0.#t, KEYCOLS (#Kk),
COLMAP (USEDEFAULTS); END;

Assuming a table in the MAP statement requires only one KEYCOLS column, the following
syntax can be used to call #macr 0l. In this syntax, the #k parameter can be resolved
with only one value.

#macrol (SCOTT, DEPT, DEPTNOL)

To call the macro for a table that requires two KEYCOLS columns, the curly brackets are
used as follows to enclose both of the required values for the column names:

#macrol (SCOTT, DEPT, {DEPTNOL, DEPTNO2})
The DEPTNOL and DEPTNO2 values are passed as one argument to resolve the #t

parameter. Tables with three or more KEYCOLS can also be handled in this manner,
using additional values inside the curly brackets.

16-12

Chapter 16
Using Oracle GoldenGate Macros to Simplify and Automate Work

Example 16-4 Using a Macro to Perform Conversion

In this example, a macro defines the parameters #year , #nmont h, and #day to convert a
proprietary date format.

MACRO #nake_dat e

PARAMS (#year, #nonth, #day)

BEG N

@ATE (' YYYY-MMDD, 'CC, @F (#year < 50, 20, 19), 'YY', #year, 'MM, #nonth,
'DD, #day)

END,

The macro is called in the COLMAP clause:

MAP sal es. acct _tab, TARGET sal es. account,

COLMAP

(

targcol 1 = sourcecol 1,

datecol 1 = #make_date(YRL, MOL, DAY1),
datecol 2 = #make_date(YR2, MR, DAY2)

);
The macro expands as follows:

MAP sal es. acct _tab, TARGET sal es. account,

COLMAP

(

targcol 1 = sourcecol 1,

datecol 1 = @ATE (' YYYY-MM DD, 'CC, @F (YRL < 50, 20, 19),'YY', YRL, 'MM, MOL,

'DD, DAYI),
datecol 2 = @ATE (' YYYY-MDD, 'CC, @F (YR < 50, 20, 19),'YY, YR, 'MM, MR,
'DD, DAY?2)

)i

Calling a Macro without Input Parameters

ORACLE

To call a macro without input parameters, the call statement must supply the open and
close parentheses, but without any input values: #macro ().

The following macro is defined without input parameters. The body contains frequently
used parameters.

MACRO #option_defaul ts
BEG N

GETI NSERTS

GETUPDATES

GETDELETES

| NSERTDELETES

END;

This macro is called as follows:

#option_defaults ()
| GNOREUPDATES
MAP owner. srctab, TARGET owner.targtab;

#option_defaults ()
MAP owner. srctab2, TARGET owner.targtab2;

The macro expands as follows:

16-13

Chapter 16
Using Oracle GoldenGate Macros to Simplify and Automate Work

GETI NSERTS

CGETUPDATES

CETDELETES

| NSERTDELETES

| GNOREUPDATES

MAP owner. srctab, TARGET owner.targtab;

GETI NSERTS

GETUPDATES

GETDELETES

| NSERTDELETES

MAP owner. srctab2, TARGET owner.targtab2;

Calling Other Macros from a Macro

To call other macros from a macro, create a macro definition similar to the following. In
this example, the #make_dat e macro is nested within the #assi gn_dat e macro, and it is
called when #assi gn_dat e runs.

The nested macro must define all, or a subset of, the same parameters that are
defined in the base macro. In other words, the input values when the base macro is
called must resolve to the parameters in both macros.

The following defines #assi gn_dat e:

MACRO #assi gn_dat e

PARAMS (#target_col, #year, #month, #day)

BEG N

#target _col = #make_date (#year, #nonth, #day)
END;

The following defines #nmake_dat e. This macro creates a date format that includes a
four-digit year, after first determining whether the two-digit input date should be
prefixed with a century value of 19 or 20. Notice that the PARAMS statement of
#make_dat e contains a subset of the parameters in the #assi gn_dat e macro.

MACRO #nake_dat e

PARAMS (#year, #nonth, #day)

BEG N

@ATE (' YYYY-MM DD, 'CC, @F (#year < 50, 20, 19), 'YY', #year, 'MM, #nonth,
'DD, #day)

END;

The following syntax calls #assi gn_dat e:

#assign_date (COL1, YEAR MONTH, DAY)

The macro expands to the following given the preceding input values and the
embedded #make_dat e macro:

OOL1 = @ATE (' YYYY-MADD, 'CC, @F (YEAR < 50, 20, 19),'YY', YEAR 'MM, MONTH,
'DD, DAY)

Creating Macro Libraries

You can create a macro library that contains one or more macros. By using a macro
library, you can define a macro once and then use it within many parameter files.

ORACLE 16-14

Chapter 16
Using Oracle GoldenGate Macros to Simplify and Automate Work

To Create a Macro Library

1. Open a new file in a text editor.

2. Use commented lines to describe the library, if needed.

3. Using the syntax described in Defining a Macro, enter the syntax for each macro.
4. Save the file in the di r pr msub-directory of the Oracle GoldenGate directory as:

filename. mac

Where:

fil enane is the name of the file. The . mac extension defines the file as a macro
library.

The following sample library named dat el i b contains two macros, #nmake_dat e and
#assign_date.

- datelib macro library

MACRO #nake_dat e

PARAMS (#year, #nonth, #day)

BEG N

@ATE (' YYYY-MM DD, 'CC, @F (#year < 50, 20, 19), 'YY', #year, 'MM, #nonth,
' , #day)

END;

MACRO #assi gn_dat e

PARAMS (#target_col, #year, #month, #day)

BEG N

#target_col = #make_date (#year, #nonth, #day)
END;

To use a macro library, use the | NCLUDE parameter at the beginning of a parameter
file, as shown in the following sample Replicat parameter file.

I NCLUDE / ggs/ di rprm datelib. mc

REPLI CAT rep

ASSUVETARGETDEFS

USERI DALI AS ogg

MAP fin.acct _tab, TARGET fin.account;

When including a long macro library in a parameter file, you can use the NOLI ST
parameter to suppress the listing of each macro in the Extract or Replicat report file.
Listing can be turned on and off by placing the LI ST and NOLI ST parameters anywhere
within the parameter file or within the macro library file. In the following example,

NOLI ST suppresses the listing of each macro in the hugel i b macro library. Specifying
LI ST after the | NCLUDE statement restores normal listing to the report file.

NCLI ST

I NCLUDE / ggs/ di rprm hugel i b. mac
LI ST

I NCLUDE / ggs/ di rprm ndatel i b. mac
REPLI CAT REP

ORACLE 16-15

Chapter 16
Using User Exits to Extend Oracle GoldenGate Capabilities

Tracing Macro Expansion

You can trace macro expansion with the CVDTRACE parameter. With CMDTRACE enabled,
macro expansion steps are shown in the Extract or Replicat report file.

Syntax

CMDTRACE [ON | OFF | DETAIL]

Where:

* ONenables tracing.
e COFF disables tracing.
e DETAI L produces a verbose display of macro expansion.

In the following example, tracing is enabled before #t est nac is called, then disabled
after the macro's execution.

REPLI CAT REP
MACRO #t est mac
BEG N

CaLl = Cca.2,
COL3 = COL4,
END;

CMVDTRACE ON

MAP test.tabl el, TARGET test.table2,
COLMAP (#t estmac);
CMDTRACE OFF

Using User Exits to Extend Oracle GoldenGate Capabilities

ORACLE

User exits are custom routines that you write in C programming code and call during
Extract or Replicat processing. User exits extend and customize the functionality of the
Extract and Replicat processes with minimal complexity and risk. With user exits, you
can respond to database events when they occur, without altering production
programs.

Topics:

* When to Implement User Exits

* Making Oracle GoldenGate Record Information Available to the Routine
* Creating User Exits

* Supporting Character-set Conversion in User Exits

* Using Macros to Check Name Metadata

» Describing the Character Format

» Upgrading User Exits

* Viewing Examples of How to Use the User Exit Functions

16-16

Chapter 16
Using User Exits to Extend Oracle GoldenGate Capabilities

When to Implement User Exits

You can employ user exits as an alternative to, or in conjunction with, the column-
conversion functions that are available within Oracle GoldenGate. User exits can be a
better alternative to the built-in functions because a user exit processes data only once
(when the data is extracted) rather than twice (once when the data is extracted and
once to perform the transformation).

The following are some ways in which you can implement user exits:

« Perform arithmetic operations, date conversions, or table lookups while mapping
from one table to another.

e Implement record archival functions offline.

e Respond to unusual database events in custom ways, for example by sending an
e-mail message or a page based on an output value.

e Accumulate totals and gather statistics.

e Manipulate a record.

e Repair invalid data.

e Calculate the net difference in a record before and after an update.

e Accept or reject records for extraction or replication based on complex criteria.

* Normalize a database during conversion.

Making Oracle GoldenGate Record Information Available to the

Routine

The basis for most user exit processing is the EXI T_CALL_PROCESS RECORD function.
For Extract, this function is called just before a record buffer is output to the trail. For
Replicat, it is called just before a record is applied to the target. If source-target
mapping is specified in the parameter file, the EXI T_CALL_PROCESS_RECORD event takes
place after the mapping is performed.

When EXI T_CALL_PROCESS_RECORD is called, the record buffer and other record
information are available to it through callback routines. The user exit can map,
transform, clean, or perform any other operation with the data record. When it is
finished, the user exit can return a status indicating whether the record should be
processed or ignored by Extract or Replicat.

Creating User EXxits

ORACLE

The following instructions help you to create user exits on Windows and UNIX
systems. For more information about the parameters and functions that are described
in these instructions, see Reference for Oracle GoldenGate for Windows and UNIX.

16-17

ORACLE

Chapter 16
Using User Exits to Extend Oracle GoldenGate Capabilities

Note:

User exits are case-sensitive for database object names. Names are
returned exactly as they are defined in the hosting database. Object names
must be fully qualified.

To Create User Exits

1.

In C code, create either a shared object (UNIX systems) or a DLL (Windows) and
create or export a routine to be called from Extract or Replicat. This routine is the
communication point between Oracle GoldenGate and your routines. Name the
routine whatever you want. The routine must accept the following Oracle
GoldenGate user exit parameters:

 EXIT_CALL_TYPE: Indicates when, during processing, the routine is called.
e EXIT_CALL_RESULT: Provides a response to the routine.

* EXI T_PARAMS: Supplies information to the routine. This function enables you to
use the EXI TPARAMoption of the TABLE or MAP statement to pass a parameter
that is a literal string to the user exit. This is only valid during the exit call to
process a specific record. This function also enables you to pass parameters
specified with the PARAMS option of the CUSEREXI T parameter at the exit call
startup.

In the source code, include the usrdecs. h file. The usrdecs. h file is the include file
for the user exit API. It contains type definitions, return status values, callback
function codes, and a nhumber of other definitions. The usr decs. h file is installed
within the Oracle GoldenGate directory. Do not modify this file.

Include Oracle GoldenGate callback routines in the user exit when applicable.
Callback routines retrieve record and application context information, and they
modify the contents of data records. To implement a callback routine, use the
ERCALLBACK function in the shared object. The user callback routine behaves
differently based on the function code that is passed to the callback routine.

ERCALLBACK (function_code, buffer, result _code);

Where:
« function_code is the function to be executed by the callback routine.

e buffer is avoid pointer to a buffer containing a predefined structure
associated with the specified function code.

* result_code is the status of the function that is executed by the callback
routine. The result code that is returned by the callback routine indicates
whether or not the callback function was successful.

* On Windows systems, Extract and Replicat export the ERCALLBACK function
that is to be called from the user exit routine. The user exit must explicitly load
the callback function at run-time using the appropriate Windows API calls.

Include the CUSEREXI T parameter in your Extract or Replicat parameter file. This
parameter accepts the name of the shared object or DLL and the name of the
exported routine that is to be called from Extract or Replicat. You can specify the
full path of the shared object or DLL or let the operating system's standard search
strategy locate the shared object.

16-18

Chapter 16
Using User Exits to Extend Oracle GoldenGate Capabilities

CUSEREXIT {DLL | shared_object} routine
[, 1 NCLUDEUPDATEBEFORES]
[, PARAMS 'startup_string']

Where:

e DLL is a Windows DLL and shar ed_obj ect is a UNIX shared object that
contains the user exit function.

* | NCLUDEUPDATEBEFORES gets before images for UPDATE operations.

e PARAMS 'startup_string' supplies a startup string, such as a startup
parameter.

Example 16-5 Example of Base Syntax, UNIX

CUSEREXI T eruserexit.so MyUserExit

Example 16-6 Example Base Syntax, Windows

CUSEREXI T eruserexit.dl | MyUserExit

Supporting Character-set Conversion in User EXits

To maintain data integrity, a user exit needs to understand the character set of the
character-type data that it exchanges with an Oracle GoldenGate process. Oracle
GoldenGate user exit logic provides globalization support for:

» character-based database metadata, such as the names of catalogs, schemas,
tables, and columns

» the values of character-type columns, such as CHAR, VARCHAR2, CLOB, NCHAR,
NVARCHAR?2, and NCLOB, as well as string-based numbers, date-time, and intervals.

Properly converting between character sets allows column data to be compared,
manipulated, converted, and mapped properly from one type of database and
character set to another. Most of this processing is performed when the

EXI T_CALL_PROCESS RECORD call type is called and the record buffer and other record
information is made available through callback routines.

The user exit has its own session character set. This is defined by the

CGET_SESSI ON_CHARSET and SET_SESSI ON_CHARSET callback functions. The caller
process provides conversion between character sets if the character set of the user
exit is different from the hosting context of the process.

To enable this support in user exits, there is the GET_DATABASE_METADATA callback
function code. This function enables the user exit to get database metadata, such as
the locale and the character set of the character-type data that it exchanges with the
process that calls it (Extract, data pump, Replicat). It also returns how the database
treats the case-sensitivity of object names, how it treats quoted and unquoted names,
and how it stores object names.

For more information about these components, see Reference for Oracle GoldenGate
for Windows and UNIX.

Using Macros to Check Name Metadata

The object name that is passed by the user exit API is the exact name that is encoded
in the user-exit session character set, and exactly the same name that is retrieved

ORACLE 16-19

ORACLE

Chapter 16

Using User Exits to Extend Oracle GoldenGate Capabilities

from the database. If the user exit compares the object name with a literal string, the
user exit must retrieve the database locale and then normalize the string so that it is
compared with the object name in the same encoding.

Oracle GoldenGate provides the following macros that can be called by the user exit to
check the metadata of database object names. For example, a macro can be used to
check whether a quoted table name is case-sensitive and whether it is stored as
mixed-case in the database server. These macros are defined in the usr decs. h file.

Table 16-4 Macros for metadata checking

Macro

What it verifies

support sM xedCasel dentifiers(nameMe
ta, DbQhj Type)

Whether the database treats a mixed-case
unquoted name of a specified data type as
case-sensitive and stores the name in mixed
case.

support sM xedCaseQuot edl denti fi ers(
nameMet a, DBObj Type)

Whether the database treats the mixed-case
quoted name of a specified data type as case-
sensitive and stores the name in mixed case.

storesLower Casel dentifiers(nameMeta
, DbQoj Type)

Whether the database treats the mixed-case
unquoted name of a specified data type as
case-insensitive and stores the name in lower
case.

st oresLower CaseQuot edl dentifiers(na
meMeta, DbQbj Type)

Whether the database treats the mixed-case
quoted name of a specified data type as case-
insensitive and stores the name in lower case.

storesM xedCasel denti fiers(nameMeta
, DbQoj Type)

Whether the database treats the mixed-case
unquoted name of a specified data type as
case-insensitive and stores the name in mixed
case.

storesM xedCaseQuot edl dentifiers(na
meMeta, DbQbj Type)

Whether the database treats the mixed-case
gquoted name of a specified data type as case-
insensitive and stores the name in mixed case.

st oresUpper Casel denti fiers(nameMeta
, DbGoj Type)

Whether the database treats the mixed-case
unquoted name of a specified data type as
case-insensitive and stores the name in upper
case.

st oresUpper CaseQuot edl dentifiers(na
meMeta, DbQbj Type)

Whether the database treats the mixed-case
quoted name of a specified data type as case-
insensitive and stores the name in upper case.

Describing the Character Format

The input parameter col um_val ue_node describes the character format of the data
that is being processed and is used in several of the function codes. The following
table describes the meaning of the EXI T_FN_RAW FORVAT, EXI T_FN_CHAR_FORMAT, and
EXIT_FN _CNVTED SESS FORMAT format codes, per data type.

16-20

Chapter 16

Using User Exits to Extend Oracle GoldenGate Capabilities

Table 16-5 column_value_mode_matrix Meanings

Data Type EXIT_FN_RAW_FORMAT EXIT_FN_CHAR_FORMAT EXIT_FN_CNVTED_SESS
FORMAT
CHAR 2-byte null indicator + "abc" encoded in ASCl | or "abc" encoded in user exit
"abe" 2-byte length info EBCDI C. session character set.
+ column value NULL terminated. NOT NULL terminated.
0000 0004 61 62 63 20 Tailing spaces are trimmed. ~ Tailing spaces are trimmed
by default unless the
GLOBALS parameter
NOTRI MSPACES is specified.
NCHAR 2-byte null indicator + "abc" (encoded in UTF8) or "abc" encoded in user exit

0061 0062 0063
0020

2-byte length info +
column value.

0000 0008 00 61 0062 0063
0020

truncated at the first byte,
depending on whether
NCHAR is treated as UTF-8.

NULL terminated.

Trailing spaces are trimmed.

session character set.
NOT NULL terminated.

Tailing spaces are trimmed
by default unless the
GLOBALS parameter
NOTRI MSPACES is specified.

VARCHAR2 2-byte null indicator + "abc" encoded in ASCl | or “"abc" encoded in user exit
"abc" 2-byte length info + EBCDI C. session character set.
column value NULL terminated. NOT NULL terminated.
No trimming. No trimming.
NVARCHARZ 2-byte null indicator + "abc" (encoded in UTF8) or "abc"encoded in user exit

0061 0062 0063
0020

2-byte length info +
column value

truncated at the first byte,
depending on whether
NVARCHAR? is treated as
UTF- 8.

NULL terminated.

No trimming.

session character set.
NOT NULL terminated.
No trimming.

CLOB 2-byte null indicator + Similar to VARCHAR2, but Similar to VARCHAR2, but
2-byte length info + only output up to 4K bytes. only output data requested in
column value NULL Terminated. uster exit session character

set.

No trimming. .
NOT NULL terminated.
No trimming.

NCLCB 2-byte null indicator + Similar to N\VARCHAR2, but Similar to N\VARCHAR2, but
2-byte length info + only output up to 4K bytes. only output data requested in
column value NULL terminated. uster exit session character

set.

No trimming.)
NOT NULL terminated.
No trimming.

NUMBER 2-byte null indicator + "123.89" encoded in ASCI | "123.89" encoded in user exit

123. 89 2-byte length info + or EBCDI C. session character set.
column value NULL terminated. NOT NULL terminated.

DATE 2-byte null indicator + "2011-05-31" encoded in "2011-05-31" encoded in

31- May- 11 2-byte length info + ASCl | or EBCDI C. user exit session character
column value NULL terminated. set.

NOT NULL terminated.
ORACLE 16-21

Chapter 16
Using User Exits to Extend Oracle GoldenGate Capabilities

Table 16-5 (Cont.) column_value_mode_matrix Meanings

Data Type EXIT_FN_RAW_FORMAT EXIT_FN_CHAR_FORMAT EXIT_FN_CNVTED_SESS
FORMAT
TI MESTAVP 2-byte null indicator + "2011-05-31 12.00.00 AM*" "2011-05-31 12.00.00 AM"
31- May- 11 2-byte length info + encoded in ASCl | or encoded in user exit session
12.00. 00 AM column value EBCDI C. character set, _
NULL terminated. NOT NULL terminated.

Interval Year to 2-byte nullindicator + NA NA
Month or Interval 2-byte length info +
Day to Second column value
RAW 2-byte null indicator + 2-byte null indicator + 2-byte null indicator +

2-byte length info + 2-byte length info + 2-byte length info +

column value column value column value

Upgrading User Exits

The usr decs. h file is versioned to allow backward compatibility with existing user exits
when enhancements or upgrades, such as new functions or structural changes, are
added to a new Oracle GoldenGate release. The version of the usr decs. h file is
printed in the report file at the startup of Replicat or Extract.

To use new user exit functionality, you must recompile your routines to include the
new usr decs file. Routines that do not use new features do not need to be recompiled.

Viewing Examples of How to Use the User Exit Functions

Oracle GoldenGate installs the following sample user exit files into the
User Exi t Exanpl es directory of the Oracle GoldenGate installation directory:

ORACLE

exi t deno. ¢ shows how to initialize the user exit, issue callbacks at given exit
points, and modify data. It also demonstrates how to retrieve the fully qualified
table name or a specific metadata part, such as the name of the catalog or
container, or the schema, or just the unqualified table name. In addition, this demo
shows how to process DDL data. The demo is not specific to any database type.

exi tdenmo_utf16. ¢ shows how to use UTF16-encoded data (both metadata and
column data) in the callback structures for information exchanged between the
user exit and the caller process.

exi tdeno_nore_recs. ¢ shows an example of how to use the same input record
multiple times to generate several target records.

exi t deno_| ob. ¢ shows an example of how to get read access to LOB data.

exi tdeno_pk_bef ores. ¢ shows how to access the before and after image portions
of a primary key update record, as well as the before images of regular updates
(non-key updates). It also shows how to get target row values with SQLEXEC in the
Replicat parameter file as a means for conflict detection. The resulting fetched
values from the target are mapped as the target record when it enters the user
exit.

Each directory contains the *. ¢ files as well as makefiles and a r eadne. t xt file.

16-22

Chapter 16
Using the Oracle GoldenGate Event Marker System to Raise Database Events

Using the Oracle GoldenGate Event Marker System to
Raise Database Events

ORACLE

Oracle GoldenGate provides an event marker system, also known as the event marker
infrastructure (EMI), which enables the Oracle GoldenGate processes to take a
defined action based on an event record in the transaction log or in the trail
(depending on the data source of the process). The event record is a record that
satisfies a specific filter criterion for which you want an action to occur. You can use
this system to customize Oracle GoldenGate processing based on database events.

For example, you can use the event marker system to start, suspend, or stop a
process, to perform a transformation, or to report statistics. The event marker system
can be put to use for purposes such as:

e To establish a synchronization point at which SQLEXEC or user exit functions can be
performed

* To execute a shell command that executes a data validation script or sends an
emalil

» To activate tracing when a specific account number is detected
e To capture lag history

* To stop or suspend a process to run reports or batch processes at the end of the
day

The event marker feature is supported for the replication of data changes, but not for
initial loads.

The system requires the following input components:

1. The event record that triggers the action can be specified with FI LTER, WHERE, or
SQLEXEC in a TABLE or MAP statement. Alternatively, a special TABLE statement in a
Replicat parameter file enables you to perform EVENTACTI ONS actions without
mapping a source table to a target table.

2. Inthe TABLE or MAP statement where you specify the event record, include the
EVENTACTI ONS parameter with the appropriate option to specify the action that is to
be taken by the process.

You can combine EVENTACTI ONS options, as shown in the following examples.

The following causes the process to issue a checkpoint, log an informational message,
and ignore the entire transaction (without processing any of it), plus generate a report.

EVENTACTI ONS (CP BEFORE, REPORT, LOG, | GNORE TRANSACTI ON)

The following writes the event record to the discard file and ignores the entire
transaction.

EVENTACTI ONS (DI SCARD, | GNORE TRANS)

The following logs an informational message and gracefully stop the process.

EVENTACTI ONS (LOG I NFO, STOP)

The following rolls over the trail file and does not write the event record to the new file.

16-23

Chapter 16
Using the Oracle GoldenGate Event Marker System to Raise Database Events

EVENTACTI ONS (ROLLOVER, | GNORE)

For syntax details and additional usage instructions, see Reference for Oracle
GoldenGate.

* Case Studies in the Usage of the Event Marker System

Case Studies in the Usage of the Event Marker System

These examples highlight some use cases for the event marker system.
Topics:

e Trigger End-of-day Processing

» Simplify Transition from Initial Load to Change Synchronization

» Stop Processing When Data Anomalies are Encountered

» Trace a Specific Order Number

* Execute a Batch Process

* Propagate Only a SQL Statement without the Resultant Operations

» Committing Other Transactions Before Starting a Long-running Transaction

* Execute a Shell Script to Validate Data

Trigger End-of-day Processing

This example specifies the capture of operations that are performed on a special table
named event _tabl e in the source database. This table exists solely for the purpose of
receiving inserts at a predetermined time, for example at 5:00 P.M. every day. When
Replicat receives the transaction record for this operation, it stops gracefully to allow
operators to start end-of-day processing jobs. By using the insert on the event _tabl e
table every day, the operators know that Replicat has applied all committed
transactions up to 5:00. | GNORE causes Replicat to ignore the event record itself,
because it has no purpose in the target database. LOG | NFO causes Replicat to log an
informational message about the operation.

TABLE source. event table, EVENTACTIONS (1 GNORE, LOG I NFO, STOP);

Simplify Transition from Initial Load to Change Synchronization

ORACLE

Event actions and event tables can be used to help with the transition from an initial
load to ongoing change replication. For example, suppose an existing, populated
source table must be added to the Oracle GoldenGate configuration. This table must
be created on the target, and then the two must be synchronized by using an export/
import. This example assumes that an event table named sour ce. event _t abl e exists
in the source database and is specified in a Replicat TABLE statement.

TABLE source. event _table, EVENTACTIONS (1 GNORE, LOG I NFO, STOP);

To allow users to continue working with the new source table, it is added to the Extract
parameter file, but not to the Replicat parameter file. Extract begins capturing data
from this table to the trail, where it is stored.

At the point where the source and target are read-consistent after the export, an event
record is inserted into the event table on the source, which propagates to the target.

16-24

Chapter 16
Using the Oracle GoldenGate Event Marker System to Raise Database Events

When Replicat receives the event record (marking the read-consistent point), the
process stops as directed by EVENTACTI ONS STOP. This allows the new table to be
added to the Replicat MAP statement. Replicat can be positioned to start replication
from the timestamp of the event record, eliminating the need to use the

HANDLECCLLI Sl ONS parameter. Operations in the trail from before the event record can
be ignored because it is known that they were applied in the export.

The event record itself is ignored by Replicat, but an informational message is logged.

Stop Processing When Data Anomalies are Encountered

This example uses ABORT to stop Replicat immediately with a fatal error if an anomaly
is detected in a bank record, where the customer withdraws more money than the
account contains. In this case, the source table is mapped to a target table in a
Replicat MAP statement for actual replication to the target. A TABLE statement is also
used for the source table, so that the ABORT action stops Replicat before it applies the
anomaly to the target database. ABORT takes precedence over processing the record.

MAP source. account, TARGET target.account;
TABLE source.account, FILTER (withdrawal > bal ance), EVENTACTIONS (ABORT);

Trace a Specific Order Number

The following example enables Replicat tracing only for an order transaction that
contains an insert operation for a specific order number (order _no = 1). The trace
information is written to the order _1. t r ¢ trace file. The MAP parameter specifies the
mapping of the source table to the target table.

MAP sal es. order, TARGET rpt.order;

TABLE sour ce. or der,

FILTER (@ETENV (' GGHEADER , 'OPTYPE') = 'INSERT' AND order_no = 1), &
EVENTACTI ONS (TRACE order _1.trc TRANSACTI ON);

Execute a Batch Process

ORACLE

In this example, a batch process executes once a month to clear the source database
of accumulated data. At the beginning of the transaction, typically a batch transaction,
a record is written to a special j ob table to indicate that the batch job is starting.
TRANSACTI ON is used with | GNORE to specify that the entire transaction must be ignored
by Extract, because the target system does not need to reflect the deleted records. By
ignoring the work on the Extract side, unnecessary trail and network overhead is
eliminated.

TABLE source.job, FILTER (@treq (job_type = 'HOUSEKEEPING)=1), &
EVENTACTI ONS (| GNORE TRANSACTI ON) ;

Note:

If a logical batch delete were to be composed of multiple smaller batches,
each smaller batch would require an insert into the job table as the first
record in the transaction.

16-25

Chapter 16
Using the Oracle GoldenGate Event Marker System to Raise Database Events

Propagate Only a SQL Statement without the Resultant Operations

This example shows how different EVENTACTI ONS clauses can be used in combination
on the source and target to replicate just a SQL statement rather than the operations
that result from that statement. In this case, it is an | NSERT | NTO. . . SELECT transaction.
Such a transaction could generate millions of rows that would need to be propagated,
but with this method, all that is propagated is the initial SQL statement to reduce trail
and network overhead. The SELECTs are all performed on the target. This configuration
requires perfectly synchronized source and target tables in order to maintain data
integrity.

Extract:

TABLE source. stat ement, EVENTACTI ONS (1 GNORE TRANS | NCLUDEEVENT) ;

Replicat:

TABLE source. statenment, SQLEXEC (execute SQ. statement), &
EVENTACTI ONS (I NFO, | GNORE);

To use this configuration, a st at enent table is populated with the first operation in the
transaction, that being the | NSERT | NTQO. . . SELECT, which becomes the event record.

Note:

For large SQL statements, the statement can be written to multiple columns
in the table. For example, eight VARCHAR (4000) columns could be used to
store SQL statements up to 32 KB in length.

Because of the | GNORE TRANS | NCLUDEEVENT, Extract ignores all of the subsequent
inserts that are associated with the SELECT portion of the statement, but writes the
event record that contains the SQL text to the trail. Using a TABLE statement, Replicat
passes the event record to a SQLEXEC statement that concatenates the SQL text
columns, if necessary, and executes the | NSERT | NTQ. . . SELECT statement using the
target tables as the input for the SELECT sub-query.

Committing Other Transactions Before Starting a Long-running Transaction

This use of EVENTACTI ONS ensures that all open transactions that are being processed
by Replicat get committed to the target before the start of a long running transaction. It
forces Replicat to write a checkpoint before beginning work on the large transaction.
Forcing a checkpoint constrains any potential recovery to just the long running
transaction. Because a Replicat checkpoint implies a commit to the database, it frees
any outstanding locks and makes the pending changes visible to other sessions.

TABLE source. batch_tabl e, EVENTACTI ONS (CHECKPO NT BEFORE) ;

Execute a Shell Script to Validate Data

This example executes a shell script that runs another script that validates data after
Replicat applies the last transaction in a test run. On the source, an event record is
written to an event table named sour ce. event . The record inserts the value COVPARE

ORACLE 16-26

ORACLE

Chapter 16
Using the Oracle GoldenGate Event Marker System to Raise Database Events

into the event _t ype column of the event table, and this record gets replicated at the
end of the other test data. In the TABLE statement in the Replicat parameter file, the
FI LTER clause qualifies the record and then triggers the shell script conpar e_db. sh to
run as specified by SHELL in the EVENTACTI ONS clause. After that, Replicat stops
immediately as specified by FORCESTCP.

Extract:

TABLE src. *;
TABLE test.event;

Replicat:

MAP src.*, TARGET targ.*;
MAP test.event, TARGET test.event, FILTER (@treq (event_type, 'COWARE)=1), &
EVENTACTI ONS (SHELL ' conpare_db. sh', FORCESTOP);

16-27

Monitoring Oracle GoldenGate Processing

Using the

ORACLE

This chapter describes the monitoring of Oracle GoldenGate processing.
Topics:

e Using the Information Commands in GGSCI
e Monitoring an Extract Recovery

e Monitoring Lag

e Using Automatic Heartbeat Tables to Monitor
e Monitoring Processing Volume

e Using the Error Log

e Using the Process Report

e Using the Discard File

e Maintaining the Discard and Report Files

e Reconciling Time Differences

e Getting Help with Performance Tuning

Information Commands in GGSCI

The primary way to view processing information is through GGSCI. For more
information about these commands, see Reference for Oracle GoldenGate.

Table 17-1 Commands to View Process Information

Command What it shows

I NFO { EXTRACT | REPLI CAT} group Run status, checkpoints, approximate lag, and

[DETAI L] environmental information.

I NFO MANAGER Run status and port number

I NFO ALL I NFO output for all Oracle GoldenGate
processes on the system

STATS {EXTRACT | REPLI CAT} group Statistics on processing volume, such as

number of operations performed.
STATUS {EXTRACT | REPLI CAT} group Run status (starting, running, stopped,

abended)

STATUS MANAGER Run status

LAG { EXTRACT | REPLI CAT} group Latency between last record processed and
timestamp in the data source

INFO {EXTTRAIL | RMITRAIL} trail Name of associated process, position of last

data processed, maximum file size

17-1

Monitoring an Extract Recovery

ORACLE

Chapter 17
Monitoring an Extract Recovery

Table 17-1 (Cont.) Commands to View Process Information

Command

What it shows

SEND MANAGER

Run status, information about child processes,
port information, trail purge settings

SEND {EXTRACT | REPLI CAT} group

Depending on the process and selected
options, returns information about memory
pool, lag, TCP statistics, long-running
transactions, process status, recovery
progress, and more.

VI EW REPCRT gr oup

Contents of the discard file or process report

VI EW GGSEVT

Contents of the Oracle GoldenGate error log

COMMAND ER wi | dcard

Information dependent on the COWAND type:
[NFO

LAG

SEND

STATS

STATUS

wi | dcar d is a wildcard specification for the
process groups to be affected, for example:

I NFO ER ext *

STATS ER *
I NFO PARAM Queries for and displays static information.
GETPARAM NFO Displays currently-running parameter values.

If Extract abends when a long-running transaction is open, it can seem to take a long
time to recover when it is started again. To recover its processing state, Extract must
search back through the online and archived logs (if necessary) to find the first log
record for that long-running transaction. The farther back in time that the transaction
started, the longer the recovery takes, in general, and Extract can appear to be stalled.

To confirm that Extract is recovering properly, use the SEND EXTRACT command with
the STATUS option. One of the following status notations appears, and you can follow
the progress as Extract changes its log read position over the course of the recovery.

* In recovery[1] — Extract is recovering to its checkpoint in the transaction log.

Meaning that it is reading from either:

a) reading from BR checkpoint files and then archived/online logs,

or

b) reading from Recovery Checkpoint in archived/online log.

* In recovery[2] — Extract is recovering from its checkpoint to the end of the trail.
Meaning that a recovery marker is appended to the output trail when the last
transaction was not completely written then rewriting the transaction.

17-2

Chapter 17
Monitoring Lag

* Recovery conpl ete — The recovery is finished, and normal processing will
resume.

Monitoring Lag

About Lag

Lag statistics show you how well the Oracle GoldenGate processes are keeping pace
with the amount of data that is being generated by the business applications. With this
information, you can diagnose suspected problems and tune the performance of the
Oracle GoldenGate processes to minimize the latency between the source and target
databases. See Tuning the Performance of Oracle GoldenGate for help with tuning
Oracle GoldenGate to minimize lag.

Topics:
e About Lag
e Controlling How Lag is Reported

For Extract, lag is the difference, in seconds, between the time that a record was
processed by Extract (based on the system clock) and the timestamp of that record in
the data source.

For Replicat, lag is the difference, in seconds, between the time that the last record
was processed by Replicat (based on the system clock) and the timestamp of the
record in the trail.

To view lag statistics, use either the LAG or SEND command in GGSCI. For more
information, see Reference for Oracle GoldenGate.

Note:

The | NFOcommand also returns a lag statistic, but this statistic is taken from
the last record that was checkpointed, not the current record that is being
processed. It is less accurate than LAG or | NFO.

Controlling How Lag is Reported

ORACLE

Use the LAGREPORTM NUTES or LAGREPORTHOURS parameter to specify the interval at
which Manager checks for Extract and Replicat lag. See Reference for Oracle
GoldenGate.

Use the LAGCRI TI CALSECONDS, LAGCRI TI CALM NUTES, or LAGCRI Tl CALHOURS parameter
to specify a lag threshold that is considered critical, and to force a warning message to
the error log when the threshold is reached. This parameter affects Extract and
Replicat processes on the local system. See Reference for Oracle GoldenGate.

Use the LAG NFOSECONDS, LAG NFOM NUTES, or LAG NFOHOURS parameter to specify a
lag threshold; if lag exceeds the specified value, Oracle GoldenGate reports lag
information to the error log. If the lag exceeds the value specified with the LAGCRI TI CAL
parameter, Manager reports the lag as critical; otherwise, it reports the lag as an
informational message. A value of zero (0) forces a message at the frequency

17-3

Chapter 17
Using Automatic Heartbeat Tables to Monitor

specified with the LAGREPORTM NUTES or LAGREPORTHOURS parameter. See Reference for
Oracle GoldenGate.

Using Automatic Heartbeat Tables to Monitor

You can use the default automatic heartbeat table functionality to monitor end-to-end
replication lag. Automatic heartbeats are sent from each source database into the
replication streams, by updating the records in a heartbeat seed table and a heartbeat
table, and constructing a heart beat history tabl e. Each of the replication processes
in the replication path process these heartbeat records and update the information in
them. These heartbeat records are inserted or updated into the heartbeat table at the
target databases.

The heartbeat tables contain the following information:

e Source database
* Destination database
* Information about the outgoing replication streams:

— Names of the extract, pump/distribution server, and or replicat processes in
the path

— Timestamps when heartbeat records were processed by the replication
processes.

* Information about the incoming replication streams:

— Names of the extract, pump/distribution server, and or replicat processes in
the path

— Timestamps when heartbeat records were processed by the replication
processes.

Using the information in the heartbeat table and the heartbeat history table, the current
and historical lags in each of the replication can be computed.

In a bidirectional GoldenGate configuration, the heartbeat table has as many entries
as the number of replication paths to neighbors that the database has and in a
unidirectional setup, the table at the source is empty. The outgoing columns have the
timestamps and the outgoing path, the local Extract and the downstream GoldenGate
processes. The incoming columns have the timestamps and path of the upstream
GoldenGate processes and local replicat.

In a unidirectional configuration, the target database will populate only the incoming
columns in the heartbeat table.

Note:

The Automatic Heartbeat functionality is not supported on MySQL version
5.5.

Topics:
* Understanding Heartbeat Table End-To-End Replication Flow
e Updating Heartbeat Tables

ORACLE 17-4

Chapter 17
Using Automatic Heartbeat Tables to Monitor

» Purging the Heartbeat History Tables
* Best Practice

* Using the Automatic Heartbeat Commands

Understanding Heartbeat Table End-To-End Replication Flow

ORACLE

The flow for end-to-end replication as it relates to heartbeat tables relies on the use of
Oracle GoldenGate 12.2.0.1 trail format is as follows:

Ensure that Self-Describing Trail Files functionality is enabled, see Using Self-
Describing Trail Files.

Enable the heartbeat functionality with the ENABLE_HEARTBEAT_TABLE parameter. This
is the default.

Add a heartbeat table to each of your databases with the ADD HEARTBEATTABLE
command. Add the heartbeat table to all source and target instances and then restart
existing Oracle GoldenGate processes (nhot necessary for processes running against
HP-OSS for MX) to enable heartbeat functionality. Depending on your specific
database system, you may or may not be required to create or enable a job to
populate heartbeat table data.

(Optional) For Oracle Databases, you must ensure that the Oracle DBM5_SCHEDULER is
operating correctly as the heartbeat update relies on it. You can query the
DBMS_SCHEDULER by issuing:

sel ect START_DATE, LAST_START DATE, NEXT_RUN _DATE
from dba_schedul er_j obs

Where job_nane =' GG_UPDATE_HEARTBEATS' ;

Then look for valid entries for NEXT_RUN_DATE, which is the next time the scheduler will
run. If this is a timestamp in the past, then no job will run and you must correct it.

A common reason for the scheduler not working is when the parameter

j ob_queue_processes is set too low (typically zero). Increase the number of

j ob_queue_processes configured in the database with the ALTER SYSTEM SET
JOB_QUEUE_PRCCESSES = ##; command where ## is the number of job queue
processes.

Run an Extract, which on receiving the logical change records (LCR) checks the value
in the QUTGO NG_EXTRACT column.

« If the Extract name matches this value, the QUTGO NG_EXTRACT_TS column is
updated and the record is entered in the trail.

» If the Extract name does not match then the LCR is discarded.
e If the QUTGO NG_EXTRACT value is NULL, it is populated along with
QUTGO NG_EXTRACT _TS and the record is entered in the trail.

The Pump or Distribution server on reading the record, checks the value in the
OUTGO NG_ROUTI NG_PATH column. This column has a list of distribution paths.

17-5

ORACLE

Chapter 17
Using Automatic Heartbeat Tables to Monitor

If the value is NULL, the column is updated with the current group name (and path if
this is a Distribution server),"*", update the QUTGO NG_ROUTI NG_TS column, and the
record is written into its target trail file.

If the value has a"*" in the list, then replace it with gr oup nane[: pat hnang], "*"",
update the QUTGO NG_ROUTI NG_TS column, and the record is written into its target trail
file. When the value does not have a asterisk (*) in the list and the pump name is in
the list, then the record is sent to the path specified in the relevant gr oup

name| : pat hname], "*"' pair in the list. If the pump name is not in the list, the record is
discarded.

Run a Replicat, which on receiving the record checks the value in the

OUTGO NG_REPLI CAT column.

* If the Replicat name matches the value, the row in the heartbeat table is updated
and the record is inserted into the history table.

* If the Replicat name does not match, the record is discarded.

« If the value is NULL, the row in the heartbeat and heartbeat history tables are
updated with an implicit invocation of the Replicat column mapping.

Automatic Replicat Column Mapping:

REMOTE_DATABASE = LOCAL_DATABASE
| NCOM NG_EXTRACT QUTGO NG_EXTRACT

| NCOM NG_ROUTI NG_PATH = OUTGO NG ROUTING PATH wi th "*" removed
| NCOM NG_REPLI CAT @XETENV (" GGENVI RONVENT", " GROUPNAME")

| NCOM NG_HEARTBEAT TS HEARTBEAT _TI MESTAMVP

| NCOM NG_EXTRACT TS OUTGO NG_EXTRACT TS

| NCOM NG_ROUTI NG_TS QUTGO NG_ROUTI NG TS

| NCOM NG_REPLI CAT_TS = @ATE (' UYYYY- MVt DD
HH: M : SS. FFFFFF' , " JTSLCT' , @SETENV (' JULI ANTI MESTAMP'))
LOCAL_DATABASE = REMOTE_DATABASE

OUTGO NG EXTRACT = | NCOM NG_EXTRACT

OUTGO NG ROUTI NG PATH = | NOOM NG_ROUTI NG_PATH
OUTGO NG HEARTBEAT TS = | NCOM NG_HEARTBEAT TS
OUTGO NG REPLI CAT = | NCOM NG_REPLI CAT

OUTGO NG HEARTBEAT TS = | NOOMl NG_HEARTBEAT TS

There is just one column for QUTGO NG_ROUTI NG_TS. If a record passes through
multiple pump before being applied by a Replicat, each pump will overwrite the
QUTGO NG_ROUTI NG_TS column so that the pumps lag that is calculated is not specific
to a single pump and refers to the lag across all the pumps specified in PUMP_PATH.

Additional Considerations:

Computing lags as the heartbeat flows through the system relies on the clocks of the
source and target systems to be set up correctly. It is possible that the lag can be
negative if the target system is ahead of the source system. The lag is shown as a
negative number so that you are aware of their clock discrepancy and can take actions
to fix it.

The timestamp that flows through the system is in UTC. There is no time zone
associated with the timestamp so when viewing the heartbeat tables, the lag can be
viewed quickly even if different components are in different time zones. You can write
any view you want on top of the underlying tables; UTC is recommended.

All the heartbeat entries are written to the trail in UTF-8.

17-6

ORACLE

Chapter 17
Using Automatic Heartbeat Tables to Monitor

The outgoing and incoming paths together uniquely determine a row. Meaning that if
you have two rows with same outgoing path and a different incoming path, then it is
considered two unique entries.

Heartbeat Table Details

The GG_HEARTBEAT table displays timestamp information of the end-to-end replication
time and the timing information at the different components primary and secondary
Extract and Replicat.

In a unidirectional environment, only the target database contains information about
the replication lag. That is the time when a record is generated at the source database
and becomes visible to clients at the target database.

Note:

The automatic heartbeat tables don’t populate the OUTGOING_% columns
with data, when both the source and remote databases have the same
name. To change the database name, use the utility DBNEW D. For details,
see the DBNEW D Utility.

Table 17-2 GG HEARTBEAT Table

L __|
Column Data Type Description

LOCAL_DATABASE VARCHAR2 Local database where the
replication time from the
remote database is measured.

HEARTBEAT Tl MESTAVP TI MESTAMP(6) The point in time when a
timestamp is generated at the
remote database.

REMOTE_DATABASE VARCHAR2 Remote database where the
timestamp is generated

I NCOM NG_EXTRACT VARCHAR2 Name of the primary Extract
(capture) at the remote
database

I NCOM NG_RQUTI NG_PATH VARCHAR2 Name of the secondary
Extract (pump) at the remote
database

| NCOM NG_REPLI CAT VARCHAR2 Name of the Replicat on the
local database.

[NCOM NG_HEARTBEAT_TS TI MESTAMP(6) Final timestamp when the

information is inserted into the
GG_HEARTBEAT table at the
local database.

| NCOM NG_EXTRACT_TS TI MESTAVP(6) Timestamp of the generated
timestamp is processed by the
primary Extract at the remote
database.

I NCOM NG_RQUTI NG TS TI MESTAMP(6) Timestamp of the generated
timestamp is processed by the
secondary Extract at the
remote database.

17-7

https://docs.oracle.com/en/database/oracle/oracle-database/12.2/sutil/oracle-dbnewid-utility.html#GUID-D138A757-6A2A-41A2-B722-A98708C5F5AD

Chapter 17
Using Automatic Heartbeat Tables to Monitor

Table 17-2 (Cont.) GG HEARTBEAT Table

|
Column Data Type Description

| NCOM NG_REPLI CAT_TS TI MESTAMP(6) Timestamp of the generated
timestamp is processed by
Replicat at the local database.

OUTGO NG_EXTRACT VARCHAR2 Bidirectional/N-way
replication: Name of the
primary Extract on the local
database.

OUTGO NG_ROUTI NG_PATH VARCHAR2 Bidirectional/N-way
replication: Name of the
secondary Extract on the local
database.

OUTGO NG_REPLI CAT VARCHAR2 Bidirectional/N-way
replication: Name of the
Replicat on the remote
database.

OUTGO NG_HEARTBEAT_TS TI MESTAMP(6) Bidirectional/N-way
replication: Final timestamp
when the information is
inserted into the table at the
remote database.

QUTGO NG_EXTRACT_TS TI MESTAMP(6) Bidirectional/N-way
replication: Timestamp of the
generated timestamp is
processed by the primary
Extract on the local database.

OUTGO NG_RQUTING_TS TI MESTAMP(6) Bidirectional/N-way
replication: Timestamp of the
generated timestamp is
processed by the secondary
Extract on the local database.

QUTGO NG_REPLI CAT_TS TI MESTAMP(6) Bidirectional/N-way
replication: Timestamp of the
generated timestamp is
processed by Replicat on the
remote database.

The GG_HEARTBEAT HI STORY table displays historical timestamp information of the end-
to-end replication time and the timing information at the different components primary
and secondary Extract and Replicat.

In a unidirectional environment, only the destination database contains information
about the replication lag.

Timestamps are managed in UTC time zone. That is the time when a record is
generated at the source database and becomes visible to clients at the target
database.

ORACLE 17-8

Chapter 17
Using Automatic Heartbeat Tables to Monitor

Table 17-3 GG_HEARTBEAT_HI STCRY Table
L

Column Data Type Description

LOCAL_DATABASE VARCHAR2 Local database where the
end-to-end lag is measured.

HEARTBEAT _RECEI VED TS TI MESTAMP(6) Point in time when a

timestamp from the remote
database receives at the local

database.

REMOTE_DATABASE VARCHAR2 Remote database where the
timestamp is generated.

I NCOM NG_EXTRACT VARCHAR2 Name of the primary Extract
on the remote database.

I NCOM NG_RQUTI NG_PATH VARCHAR2 Name of the secondary
Extract of the remote
database.

| NCOM NG_REPLI CAT VARCHAR2 Name of the Replicat on the
local database.

[NCOM NG_HEARTBEAT_TS TI MESTAMP(6) Final timestamp when the

information is inserted into the
GG_HEARTBEAT _HI STORY
table on the local database.

I NCOM NG_EXTRACT_TS TI MESTAVP(6) Timestamp when the
generated timestamp is
processed by the primary
Extract on the remote
database.

I NCOM NG_ROUTI NG TS TI MESTAMP(6) Timestamp when the
generated timestamp is
processed by the secondary
Extract on the remote
database.

| NCOM NG_REPLI CAT_TS TI MESTAMP(6) Timestamp when the
generated timestamp is
processed by Replicat on the
local database.

QUTGO NG_EXTRACT VARCHAR2 Bidirectional/N-way
replication: Name of the
primary Extract from the local
database.

QUTGO NG_RQUTI NG_PATH VARCHAR2 Bidirectional/N-way
replication: Name of the
secondary Extract from the
local database.

QUTGO NG_REPLI CAT VARCHAR2 Bidirectional/N-way
replication;: Name of the
Replicat on the remote
database.

ORACLE 17-9

ORACLE

Table 17-3 (Cont.) GG HEARTBEAT H STORY Table

Chapter 17

Using Automatic Heartbeat Tables to Monitor

Column

Data Type

Description

OUTGOI NG HEARTBEAT TS

TI MESTAMP(6)

Bidirectional/N-way
replication: Final timestamp
when the information is
persistently inserted into the
table of the remote database.

OUTGOI NG_EXTRACT_TS

T| MESTAMP(6)

Bidirectional/N-way
replication: Timestamp when
the generated timestamp is
processed by the primary
Extract on the local database.

OUTGOI NG_ROUTI NG TS

TI MESTAVP(6)

Bidirectional/N-way
replication: Timestamp when
the generated timestamp is
processed by the secondary
Extract on the local database.

OUTGOI NG REPLI CAT_TS

TI MESTAMP(6)

Bidirectional/N-way
replication: Timestamp when
the generated timestamp is
processed by Replicat on the
remote database.

The GG_LAGVview displays information about the replication lag between the local and

remote databases.

In a unidirectional environment, only the destination database contains information

about the replication lag. The lag is measured in seconds.

Table 17-4 GG _LAG View

Column Data Type Description

LOCAL_DATABASE VARCHAR2 Local database where the
end-to-end replication lag from
the remote database is
measured.

CURRENT_LOCAL_TS TI MESTAMP(6) Current timestamp of the locall
database.

REMOTE_DATABASE VARCHAR2 Remote database where the
timestamp is generated.

[NCOM NG_HEARTBEAT_AGE NUMBER The age of the most recent
heartbeat received from the
remote database.

| NCOM NG_PATH VARCHAR2 Replication path from the

remote database to the local
database with Extract and
Replicat components.

17-10

ORACLE

Table 17-4 (Cont.) GG LAG View
|

Column

Data Type

Chapter 17

Using Automatic Heartbeat Tables to Monitor

Description

| NCOM NG _LAG

NUMBER

Replication lag from the
remote database to the local
database. This is the time
where the heartbeat where
generated at the remote
database minus the time
where the information was
persistently inserted into the
table at the local database.

OUTGOl NG_HEARTBEAT AGE

NUMBER

The age of the most recent
heartbeat from the local
database to the remote
database.

QUTGO NG_PATH

VARCHAR2

Replication Path from Local
database to the remote
database with Extract and
Replicat components

QUTGO NG_LAG

NUMBER

Replication Lag from the local
database to the remote
database. This is the time
where the heartbeat where
generated at the local
database minus the time
where the information was
persistently inserted into the
table at the remote database.

The GG_LAG H STORY view displays the history information about the replication lag

history between the local and remote databases.

In a unidirectional environment, only the destination database contains information

about the replication lag.

The unit of the lag units is in seconds.

Table 17-5 GG LAG H STORY View
|

Column Data Type Description

LOCAL_DATABASE VARCHAR2 Local database where the
end-to-end replication lag from
the remote database is
measured.

HEARTBEAT RECEI VED TS TI MESTAMP(6) Point in time when a
timestamp from the remote
database receives on the local
database.

REMOTE _DATABASE VARCHAR2 Remote database where the
timestamp is generated.

| NCOM NG_HEARTBEAT_AGE NUMBER

17-11

Chapter 17
Using Automatic Heartbeat Tables to Monitor

Table 17-5 (Cont.) GG LAG H STORY View

|
Column Data Type Description

| NCOM NG_PATH VARCHAR2 Replication path from the
remote database to local
database with Extract and
Replicat components.

| NCOM NG_LAG NUMBER Replication lag from the
remote database to the local
database. This is the time
where the heartbeat was
generated at the remote
database minus the time
where the information was
persistently inserted into the
table on the local database.

QUTGO NG_HEARTBEAT_AGE ~ NUMBER

QUTGO NG_PATH VARCHAR2 Replication path from local
database to the remote
database with Extract and
Replicat components.

QUTGO NG _LAG NUMBER Replication lag from the local
database to the remote
database. This is the time
where the heartbeat was
generated at the local
database minus the time
where the information was
persistently inserted into the
table on the remote database.

Updating Heartbeat Tables

The HEARTBEAT _TI MESTAMP column in the heartbeat seed table must be updated
periodically by a database job. The default heartbeat interval is 1 minute and this
interval can be specified or overridden using a GGSCI or administration server
command. For Oracle Database, the database job is created automatically; for all
other supported databases, you must create background jobs to update the heartbeat
timestamp using the database specific scheduler functionality.

Purging the Heartbeat History Tables

The heartbeat history table is purged periodically using a job. The default interval is 30
days and this interval can be specified or overridden using a GGSCI or administration
server command. For Oracle Database, the database job is created automatically; for
all other supported databases, you must create background jobs to purge the
heartbeat history table using the database specific scheduler functionality.

Best Practice

ORACLE

Oracle recommends that you:

17-12

Chapter 17
Monitoring Processing Volume

» Use the same heartbeat frequency on all the databases to makes diagnosis
easier.

* Adjust the retention period if space is an issue.

* Retain the default heartbeat table frequency; the frequency set to be 30 to 60
seconds gives the best results for most workloads.

» Use lag history statistics to collect lag and age information.

Using the Automatic Heartbeat Commands

You can use the heartbeat table commands to control the Oracle GoldenGate
automatic heartbeat functionality as follows.

Table 17-6 Heartbeat Table Commands

__|
Command Description

ADD HEARTBEATTABLE Creates the objects required for automatic heartbeat
functionality.

ALTER HEARTBEATTABLE Alters existing heartbeat objects.
DELETE HEARTBEATTABLE Deletes existing heartbeat objects.
DELETE HEARTBEATENTRY Deletes entries in the heartbeat table.
| NFO HEARTBEATTABLE Displays heartbeat table information.

For more information, see the Reference for Oracle GoldenGate for Windows and
UNIX.

Monitoring Processing Volume

Using the

ORACLE

The STATS commands in GGSCI show you the amount of data that is being processed
by an Oracle GoldenGate process, and how fast it is being moved through the Oracle

GoldenGate system. With this information, you can diagnose suspected problems and
tune the performance of the Oracle GoldenGate processes. These commands provide
a variety of options to select and filter the output.

The STATS commands are: STATS EXTRACT, STATS REPL| CAT, or STATS ER command.

You can send interim statistics to the report file at any time with the SEND EXTRACT or
SEND REPLI CAT command with the REPORT option.

Error Log

Use the Oracle GoldenGate error log to view:

e a history of GGSCI commands

e Oracle GoldenGate processes that started and stopped
e processing that was performed

» errors that occurred

e informational and warning messages

17-13

Using the

ORACLE

Chapter 17
Using the Process Report

Because the error log shows events as they occurred in sequence, it is a good tool for
detecting the cause (or causes) of an error. For example, you might discover that:

e someone stopped a process
e aprocess failed to make a TCP/IP or database connection
e aprocess could not open a file

To view the error log, use any of the following:

e Standard shell command to view the ggserr. | og file within the root Oracle
GoldenGate directory

* Oracle GoldenGate Director or Oracle GoldenGate Monitor
e VI EW GGSEVT command in GGSCI.

Process Report

Use the process report to view (depending on the process):

e parameters in use

e table and column mapping

» database information

* runtime messages and errors

* runtime statistics for the number of operations processed

Every Extract, Replicat, and Manager process generates a report file. The report can
help you diagnose problems that occurred during the run, such as invalid mapping
syntax, SQL errors, and connection errors.

To view a process report, use any of the following:
e standard shell command for viewing a text file
* Oracle GoldenGate Monitor

e VI EW REPORT command in GGSCI.

* To view information if a process abends without generating a report, use the
following command to run the process from the command shell of the operating
system (not GGSCI) to send the information to the terminal.

process paranfile path. prm

Where:
— The value for process is either extract orreplicat.

— The value for pat h.pr mis the fully qualified name of the parameter file, for
example:

replicat paranfile /ogg/dirdat/repora.prm

By default, reports have a file extension of . r pt, for example EXTORA. r pt . The default
location is the di rr pt sub-directory of the Oracle GoldenGate directory. However,
these properties can be changed when the group is created. Once created, a report
file must remain in its original location for Oracle GoldenGate to operate properly after
processing has started.

17-14

Chapter 17
Using the Discard File

To determine the name and location of a process report, use the | NFO EXTRACT, | NFO
REPLI CAT, or | NFO MANAGER command in GGSCI.

e Scheduling Runtime Statistics in the Process Report
e Viewing Record Counts in the Process Report

e Preventing SQL Errors from Filling the Replicat Report File

Scheduling Runtime Statistics in the Process Report

By default, runtime statistics are written to the report once, at the end of each run. For
long or continuous runs, you can use optional parameters to view these statistics on a
regular basis, without waiting for the end of the run.

To set a schedule for reporting runtime statistics, use the REPORT parameter in the
Extract or Replicat parameter file to specify a day and time to generate runtime
statistics in the report. See REPORT.

To send runtime statistics to the report on demand, use the SEND EXTRACT or SEND
REPLI CAT command with the REPORT option to view current runtime statistics when
needed.

Viewing Record Counts in the Process Report

Use the REPORTCOUNT parameter to report a count of transaction records that Extract or
Replicat processed since startup. Each transaction record represents a logical
database operation that was performed within a transaction that was captured by
Oracle GoldenGate. The record count is printed to the report file and to the screen. For
more information, see Reference for Oracle GoldenGate.

Preventing SQL Errors from Filling the Replicat Report File

Use the WARNRATE parameter to set a threshold for the number of SQL errors that can
be tolerated on any target table before being reported to the process report and to the
error log. The errors are reported as a warning. If your environment can tolerate a
large number of these errors, increasing WARNRATE helps to minimize the size of those
files. For more information, see Reference for Oracle GoldenGate.

Using the Discard File

By default, a discard file is generated whenever a process is started with the START
command through GGSCI. The discard file captures information about Oracle
GoldenGate operations that failed. This information can help you resolve data errors,
such as those that involve invalid column mapping.

The discard file reports such information as:

e The database error message

e The sequence number of the data source or trail file

e The relative byte address of the record in the data source or trail file

e The details of the discarded operation, such as column values of a DML statement
or the text of a DDL statement.

ORACLE 17-15

Chapter 17
Maintaining the Discard and Report Files

To view the discard file, use a text editor or use the VI EW REPORT command in GGSCI.
See Reference for Oracle GoldenGate.

The default discard file has the following properties:

* The file is named after the process that creates it, with a default extension of . dsc.
Example: fi nance. dsc.

e The file is created in the di rr pt sub-directory of the Oracle GoldenGate
installation directory.

e The maximum file size is 50 megabytes.
» At startup, if a discard file exists, it is purged before new data is written.

You can change these properties by using the DI SCARDFI LE parameter. You can
disable the use of a discard file by using the NODI SCARDFI LE parameter. See
Reference for Oracle GoldenGate.

If a proces is started from the command line of the operating system, it does not
generate a discard file by default. You can use the DI SCARDFI LE parameter to specify
the use of a discard file and its properties.

Once created, a discard file must remain in its original location for Oracle GoldenGate
to operate properly after processing has started.

Maintaining the Discard and Report Files

By default, discard files and report files are aged the same way. A new discard or
report file is created at the start of a new process run. Old files are aged by appending
a sequence number from 0 (the most recent) to 9 (the oldest) to their names.

If the active report or discard file reaches its maximum file size before the end of a run
(or over a continuous run), the process abends unless there is an aging schedule in
effect. Use the DI SCARDROLLOVER and REPORTROLLOVER parameters to set aging
schedules for the discard and report files respectively. These parameters set
instructions for rolling over the files at regular intervals, in addition to when the process
starts. Not only does this control the size of the files and prevent process outages, but
it also provides a predictable set of archives that can be included in your archiving
routine. For more information, see the following documentation:

* DI SCARDROLLOVER
* REPORTROLLOVER

No process ever has more than ten aged reports or discard files and one active report
or discard file. After the tenth aged file, the oldest is deleted when a new report is
created. It is recommended that you establish an archiving schedule for aged reports
and discard files in case they are needed to resolve a service request.

Table 17-7 Current Extract and Manager Reports Plus Aged Reports
|

Permissions X Date Report
“TWSTW=TW- 1 ggs ggs 1193 Oct 11 14:59 MR rpt
“TW-w-rw- 1 ggs ggs 3996 Oct 5 14:02 MGRO. rpt

ORACLE 17-16

Reconciling Time Differences

To account for time differences between source and target systems, use the

Chapter 17

Reconciling Time Differences

Table 17-7 (Cont.) Current Extract and Manager Reports Plus Aged Reports

Permissions X Date Report

STWAT WA W 1 ggs ggs 4384 Oct 5 14:02 TCUST. r pt
STV WA W 1 ggs ggs 1011 Sep 27 14:.10 TCUSTO. r pt
STWAT WA W 1 ggs ggs 3184 Sep 27 14:10 TCUSTL. r pt
STWAT WA W 1 ggs ggs 2655 Sep 27 14:06 TCUST2. r pt
STWAT WA W 1 ggs ggs 2655 Sep 27 14:04 TCUST3. r pt
STV WA W 1 ggs ggs 2744 Sep 27 13:56 TCUST4. r pt
STWAT WA W 1 ggs ggs 3571 Aug 29 14:27 TCUSTS. 1 pt

TCPSOURCETI MER parameter in the Extract parameter file. This parameter adjusts the
timestamps of replicated records for reporting purposes, making it easier to interpret
synchronization lag. For more information, see Reference for Oracle GoldenGate.

Getting Help with Performance Tuning

See Tuning the Performance of Oracle GoldenGate for help with tuning the

ORACLE

performance of Oracle GoldenGate.

17-17

Tuning the Performance of Oracle
GoldenGate

This chapter contains suggestions for improving the performance of Oracle
GoldenGate components.
Topics:

e Using Multiple Process Groups

e Splitting Large Tables Into Row Ranges Across Process Groups
e Configuring Oracle GoldenGate to Use the Network Efficiently

e Eliminating Disk 1/O Bottlenecks

e Managing Virtual Memory and Paging

e Optimizing Data Filtering and Conversion

e Tuning Replicat Transactions

Using Multiple Process Groups

Typically, only one Extract group is required to efficiently capture from a database.
However, depending on the redo (transactional) values, or the data and operation

types, you may find that you are required to add one or more Extract group to the

configuration.

Similarly, only one Replicat group is typically needed to apply data to a target
database if using Replicat in coordinated mode. (See About Coordinated Replicat
Mode for more information.) However, even in some cases when using Replicat in
coordinated mode, you may be required to use multiple Replicat groups. If you are
using Replicat in classic mode and your applications generate a high transaction
volume, you probably will need to use parallel Replicat groups.

Because each Oracle GoldenGate component — Extract, data pump, trail, Replicat —
is an independent module, you can combine them in ways that suit your needs. You
can use multiple trails and parallel Extract and Replicat processes (with or without data
pumps) to handle large transaction volume, improve performance, eliminate
bottlenecks, reduce latency, or isolate the processing of specific data.

Figure 18-1 shows some of the ways that you can configure Oracle GoldenGate to
improve throughput speed and overcome network bandwidth issues.

ORACLE 18-1

Chapter 18
Using Multiple Process Groups

Figure 18-1 Load-balancing configurations that improve performance

Source Target
- _ b O Pl o
[-. = [-. Hep”ca.t
0.9 <o
Ex!raci Data Pump or Extract
LOCAL REMOTE Replicat
TRAILS TRAILS
= e .
'O 3 | : J .
- = Replicat
W © () Jeu——— —) &
< 0
Extract Data Pump or Extract =P 5
A Replicat
ok =
i B
ol —s s
Data Pump or Extract Replicat
C (D

The image labels imply the following:

Network

* A: Parallel Extracts divide the load. For example, by schema or to isolate tables

that generate fetches.

* B: A data pump with local trail can be used for filtering, conversion, and network

false tolerance.

e C: Multiple data pumps work around network per-process bandwidth limitations to
enable TCP/IP throughput. Divide the TABLE parameter statements among them.

» D: Parallel Replicats increase throughput to the database. Any trail can be read by
one or more Replicats. Divide MAP statements among them.

e Considerations for Using Multiple Process Groups

* Using Parallel Replicat Groups on a Target System

* Using Multiple Extract Groups with Multiple Replicat Groups

Considerations for Using Multiple Process Groups

Before configuring multiple processing groups, review the following considerations to
ensure that your configuration produces the desired results and maintains data

ORACLE

integrity.
e Maintaining Data Integrity
e Number of Groups

e Memory

18-2

Chapter 18
Using Multiple Process Groups

» Isolating Processing-Intensive Tables

Maintaining Data Integrity

Not all workloads can be partitioned across multiple groups and still preserve the
original transaction atomicity. You must determine whether the objects in one group
will ever have dependencies on objects in any other group, transactional or otherwise.
For example, tables for which the workload routinely updates the primary key cannot
easily be partitioned in this manner. DDL replication (if supported for the database) is
not viable in this mode, nor is the use of some SQLEXEC or EVENTACTI ONS features that
base their actions on a specific record.

If your tables do not have any foreign- key dependencies or updates to primary keys,
you may be able to use multiple processes. Keep related DML together in the same
process stream to ensure data integrity.

Number of Groups

Memory

ORACLE

The number of concurrent Extract and Replicat process groups that can run on a
system depends on how much system memory is available. Each Classic Extract and
Replicat process needs approximately 25-55 MB of memory or more, depending on
the size of the transactions and the number of concurrent transactions. The Oracle
GoldenGate GGSCI command interface fully supports up to 5,000 concurrent Extract
and Replicat groups (combined) per instance of Oracle GoldenGate Manager. At the
supported level, all groups can be controlled and viewed in full with GGSCI commands
such as the | NFOand STATUS commands. Beyond the supported level, group
information is not displayed and errors may occur. Oracle GoldenGate recommends
keeping the number of Extract and Replicat groups (combined) at a more manageable
level, such as 100 or below, in order to manage your environment effectively. The
maximum number of groups is controlled by the MAXGROUPS parameter, whose default
is 1000.

For Windows Server environments, the number of process groups that can be run are
tightly coupled to the ‘non-interactive’ Windows desktop heap memory settings. The
default settings for Windows desktop heap may be enough to run very small numbers
of process groups, but as you approach larger amounts of process groups, more than
60 or so, you will either need to adjust the ‘non-interactive’ value of the SharedSection
field in the registry, based on this information from Microsoft (Windows desktop heap
memory), or increase the number of Oracle GoldenGate homes and spread the total
number of desired process groups across these homes.

Note:

For more information on modifying the Windows Desktop Heap memory,
review the following Oracle Knowledge Base document (Doc ID 2056225.1).

The system must have sufficient swap space for each Oracle GoldenGate Extract and
Replicat process that will be running. To determine the required swap space:

1. Start up one Extract or Replicat.
2. Run GGSCI.

18-3

Chapter 18
Using Multiple Process Groups

3. View the report file and find the line PROCESS VM AVAI L FROM OS (nin).

4. Round up the value to the next full gigabyte if needed. For example, round up
1.76GB to 2 GB.

5. Multiply that value by the number of Extract and Replicat processes that will be
running. The result is the maximum amount of swap space that could be required

See the CACHEMGR parameter in Reference for Oracle GoldenGate for more information
about how memory is managed.

Isolating Processing-Intensive Tables

You can use multiple process groups to support certain kinds of tables that tend to
interfere with normal processing and cause latency to build on the target. For example:

e Extract may need to perform a fetch from the database because of the data type of
the column, because of parameter specifications, or to perform SQL procedures.
When data must be fetched from the database, it affects the performance of
Extract. You can get fetch statistics from the STATS EXTRACT command if you
include the STATOPTI ONS REPORTFETCH parameter in the Extract parameter file.
You can then isolate those tables into their own Extract groups, assuming that
transactional integrity can be maintained.

e Inits classic mode, Replicat process can be a source of performance bottlenecks
because it is a single-threaded process that applies operations one at a time by
using regular SQL. Even with BATCHSQL enabled (see Reference for Oracle
GoldenGate) Replicat may take longer to process tables that have large or long-
running transactions, heavy volume, a very large number of columns that change,
and LOB data. You can then isolate those tables into their own Replicat groups,
assuming that transactional integrity can be maintained.

Using Parallel Replicat Groups on a Target System

This section contains instructions for creating a configuration that pairs one Extract
group with multiple Replicat groups. Although it is possible for multiple Replicat
processes to read a single trail (no more than three of them to avoid disk contention) it
is recommended that you pair each Replicat with its own trail and corresponding
Extract process.

» Refer to Reference for Oracle GoldenGate for Windows and UNIX for command
and parameter syntax.

e For detailed instructions on configuring change synchronization, see Configuring
Online Change Synchronization.

* To Create the Extract Group
* To Create the Replicat Groups

To Create the Extract Group

¢ Note:

This configuration includes Extract data-pumps.

ORACLE 18-4

Chapter 18
Using Multiple Process Groups

On the source, use the ADD EXTRACT command to create a primary Extract group.

On the source, use the ADD EXTTRAI L command to specify as many local trails as
the number of Replicat groups that you will be creating. All trails must be
associated with the primary Extract group.

On the source create a data-pump Extract group.

On the source, use the ADD RMITRAI L command to specify as many remote trails
as the number of Replicat groups that you will be creating. All trails must be
associated with the data-pump Extract group.

On the source, use the EDI T PARAMS command to create Extract parameter files,
one for the primary Extract and one for the data pump, that contain the parameters
required for your database environment. When configuring Extract, do the
following:

» Divide the source tables among different TABLE parameters.

* Link each TABLE statement to a different trail. This is done by placing the TABLE
statements after the EXTTRAI L or RMITRAI L parameter that specifies the trail
you want those statements to be associated with.

To Create the Replicat Groups

1.

On the target, create a Replicat checkpoint table. For instructions, see Creating a
Checkpoint Table. All Replicat groups can use the same checkpoint table.

On the target, use the ADD REPLI CAT command to create a Replicat group for each
trail that you created. Use the EXTTRAI L argument of ADD REPLICAT to link the
Replicat group to the appropriate trail.

On the target, use the EDI T PARAMS command to create a Replicat parameter file
for each Replicat group that contains the parameters required for your database
environment. All MAP statements for a given Replicat group must specify the same
objects that are contained in the trail that is linked to that group.

In the Manager parameter file on the target system, use the PURGEOLDEXTRACTS
parameter to control the purging of files from the trails.

Using Multiple Extract Groups with Multiple Replicat Groups

Multiple Extract groups write to their own trails. Each trail is read by a dedicated
Replicat group.

ORACLE

Refer to Reference for Oracle GoldenGate for Windows and UNIX for command
and parameter syntax.

For detailed instructions on configuring change synchronization, see Configuring
Online Change Synchronization.

To Create the Extract Groups

To Create the Replicat Groups

18-5

Chapter 18
Splitting Large Tables Into Row Ranges Across Process Groups

To Create the Extract Groups

¢ Note:

This configuration includes data pumps.

1. On the source, use the ADD EXTRACT command to create the primary Extract
groups.

2. Onthe source, use the ADD EXTTRAI L command to specify a local trail for each of
the Extract groups that you created.

3. On the source create a data-pump Extract group to read each local trail that you
created.

4. On the source, use the ADD RMITRAI L command to specify a remote trail for each
of the data-pumps that you created.

5. On the source, use the EDI T PARAMS command to create an Extract parameter file
for each primary Extract group and each data-pump Extract group.

To Create the Replicat Groups

1. On the target, create a Replicat checkpoint table. For instructions, see Creating a
Checkpoint Table. All Replicat groups can use the same checkpoint table.

2. On the target, use the ADD REPLI CAT command to create a Replicat group for each
trail. Use the EXTTRAI L argument of ADD REPLI CAT to link the group to the trail.

3. Onthe target, use the EDI T PARAMS command to create a Replicat parameter file
for each Replicat group. All MAP statements for a given Replicat group must specify
the same objects that are contained in the trail that is linked to the group.

4. In the Manager parameter files on the source system and the target system, use
the PURGEOLDEXTRACTS parameter to control the purging of files from the trails.

Splitting Large Tables Into Row Ranges Across Process

Groups

ORACLE

You can use the @ANCE function to divide the rows of any table across two or more
Oracle GoldenGate processes. It can be used to increase the throughput of large and
heavily accessed tables and also can be used to divide data into sets for distribution to
different destinations. Specify each range in a FI LTER clause in a TABLE or VAP
statement.

@RANGE is safe and scalable. It preserves data integrity by guaranteeing that the same
row will always be processed by the same process group.

It might be more efficient to use the primary Extract or a data pump to calculate the
ranges than to use Replicat. To calculate ranges, Replicat must filter through the entire
trail to find data that meets the range specification. However, your business case
should determine where this filtering is performed.

18-6

Chapter 18
Configuring Oracle GoldenGate to Use the Network Efficiently

Figure 18-2 Dividing rows of a table between two Extract groups

TABLE [
fin.acect EXTRACT oraext

_ USERID ggs, PASSWORD ggs . A =
E RMTHOST sysb, MGRPORT 7809 A -
- | RMTTRAIL/ggs/dirdat/aa
. TABLE fin.acct,FILTER(@RANGE(1,2,act_no)); — o —
Extract Data Pump
or Heplicat
TABLE (
fin.acct EXTRACT oraext

USERID ggs, PASSWORD ggs

RMTHOST sysb, MGRPORT 7809 ' A YeS
| RMTTRAIL/ggs/dirdat/aa
, TABLE fin.acct,FILTER(@RANGE(2,2,act_no)); | e

LOCALor Data Pump
REMOTE or Replicat
TRAILS

Figure 18-3 Dividing rows of a table between two Replicat groups

REPLICAT orarep1
USERID ggs, PASSWORD ggs
TABLE ASSUMETARGETDEFS -
finacct —— MAP fin.acct, TARGET fin.acct2, G
? FILTER (2RANGE(1,2,act_no)); — &, ® L s
T3 o ==
PR T Replicat
REPLICAT orarep2
USERID ggs, PASSWORD ggs
REMOTE ASSUMETARGETDEFS
TRAIL — MAP fin.acct, TARGET fin.acct2,

FILTER (@RANGE(2,2.act_no)); —» .

Heplicat

Configuring Oracle GoldenGate to Use the Network
Efficiently

Inefficiencies in the transfer of data across the network can cause lag in the Extract
process and latency on the target. If not corrected, it can eventually cause process
failures.

When you first start a new Oracle GoldenGate configuration:

1. Establish benchmarks for what you consider to be acceptable lag and throughput
volume for Extract and for Replicat. Keep in mind that Extract will normally be
faster than Replicat because of the kind of tasks that each one performs. Over
time you will know whether the difference is normal or one that requires tuning or
troubleshooting.

ORACLE 18-7

Chapter 18
Configuring Oracle GoldenGate to Use the Network Efficiently

Set a regular schedule to monitor those processes for lag and volume, as
compared to the benchmarks. Look for lag that remains constant or is growing, as
opposed to occasional spikes. Continuous, excess lag indicates a bottleneck
somewhere in the Oracle GoldenGate configuration. It is a critical first indicator
that Oracle GoldenGate needs tuning or that there is an error condition.

To view volume statistics, use the STATS EXTRACT or STATS REPLI CAT command. To
view lag statistics, use the LAG EXTRACT or LAG REPLI CAT command. See Reference
for Oracle GoldenGate for Windows and UNIX for more information.

Detecting a Network Bottleneck that is Affecting Oracle GoldenGate
Working Around Bandwidth Limitations by Using Data Pumps
Reducing the Bandwidth Requirements of Oracle GoldenGate

Increasing the TCP/IP Packet Size

Detecting a Network Bottleneck that is Affecting Oracle GoldenGate

To detect a network bottleneck that is affecting the throughput of Oracle GoldenGate,
follow these steps.

ORACLE

1.

Issue the following command to view the ten most recent Extract checkpoints. If
you are using a data-pump Extract on the source system, issue the command for
the primary Extract and also for the data pump.

I NFO EXTRACT group, SHOWCH 10

Look for the Wite Checkpoint statistic. This is the place where Extract is writing
to the trail.

Wite Checkpoint #1

GCS Log Trail

Current Checkpoint (current wite position):
Sequence #: 2
RBA: 2142224
Ti mestanp: 2011-01-09 14: 16:50. 567638
Extract Trail: ./dirdat/eh

For both the primary Extract and data pump:

e Determine whether there are more than one or two checkpoints. There can be
up to ten.

e Find the Wite Checkpoi nt n heading that has the highest increment number
(for example, Wite Checkpoint #8) and make a note of the Sequence, RBA,
and Ti mest anp values. This is the most recent checkpoint.

Refer to the information that you noted, and make the following validation:

» Is the primary Extract generating a series of checkpoints, or just the initial
checkpoint?

e If adata pump is in use, is it generating a series of checkpoints, or just one?
Issue | NFO EXTRACT for the primary and data pump Extract processes again.

* Has the most recent write checkpoint increased? Look at the most recent
Sequence, RBA, and Ti mest anp values to see if their values were incremented
forward since the previous | NFO EXTRACT command.

Issue the following command to view the status of the Replicat process.

18-8

Chapter 18
Configuring Oracle GoldenGate to Use the Network Efficiently

SEND REPLI CAT group, STATUS

* The status indicates whether Replicat is delaying (waiting for data to process),
processing data, or at the end of the trail (EOF).

There is a network bottleneck if the status of Replicat is either in delay mode or at the
end of the trail file and either of the following is true:

e You are only using a primary Extract and its write checkpoint is not increasing or is
increasing too slowly. Because this Extract process is responsible for sending data
across the network, it will eventually run out of memory to contain the backlog of
extracted data and abend.

e You are using a data pump, and its write checkpoint is not increasing, but the write
checkpoint of the primary Extract is increasing. In this case, the primary Extract
can write to its local trail, but the data pump cannot write to the remote trail. The
data pump will abend when it runs out of memory to contain the backlog of
extracted data. The primary Extract will run until it reaches the last file in the trail
sequence and will abend because it cannot make a checkpoint.

Note:

Even when there is a network outage, Replicat will process in a normal
manner until it applies all of the remaining data from the trail to the target.
Eventually, it will report that it reached the end of the trail file.

Working Around Bandwidth Limitations by Using Data Pumps

Using parallel data pumps may enable you to work around bandwidth limitations that
are imposed on a per-process basis in the network configuration. You can use parallel
data pumps to send data to the same target system or to different target systems.
Data pumps also remove TCP/IP responsibilities from the primary Extract, and their
local trails provide fault tolerance.

Reducing the Bandwidth Requirements of Oracle GoldenGate

Use the compression options of the RMTHOST parameter to compress data before it is
sent across the network. Weigh the benefits of compression against the CPU
resources that are required to perform the compression. See Reference for Oracle
GoldenGate for more information.

Increasing the TCP/IP Packet Size

ORACLE

Use the TCPBUFSI ZE option of the RMTHOST parameter to control the size of the TCP
socket buffer that Extract maintains. By increasing the size of the buffer, you can send
larger packets to the target system. See Reference for Oracle GoldenGate for more
information.

Use the following steps as a guideline to determine the optimum buffer size for your
network.

1. Use the pi ng command from the command shell obtain the average round trip
time (RTT), shown in the following example:

18-9

Chapter 18
Eliminating Disk 1/0 Bottlenecks

C:\ horre\ ggs>pi ng ggsof tware. com
Pingi ng ggsoftware.com[192.168.116.171] with 32 bytes of data
Reply from 192.168. 116.171: bytes=32 time=31ns TTL=56
Reply from 192.168. 116.171: bytes=32 time=61ns TTL=56
Reply from 192.168. 116.171: bytes=32 time=32ns TTL=56
Reply from 192.168. 116.171: bytes=32 time=34ns TTL=56
Ping statistics for 192.168.116.171:
Packets: Sent = 4, Received = 4, Lost = 0 (0% o0ss),
Approxi mate round trip times in mlli-seconds:
M ni mum = 31ns, Maxi num = 61ns, Average = 39nms

2. Multiply that value by the network bandwidth. For example, if average RTT is .08
seconds, and the bandwidth is 100 megabits per second, then the optimum buffer
size is:

0.08 second * 100 negabits per second = 8 megabits

3. Divide the result by 8 to determine the number of bytes (8 bits to a byte). For
example:

8 negabits / 8 = 1 negabyte per second

The required unit for TCPBUFSI ZE is bytes, so you would set it to a value of
1000000.

The maximum socket buffer size for non-Windows systems is usually limited by
default. Ask your system administrator to increase the default value on the source and
target systems so that Oracle GoldenGate can increase the buffer size configured with
TCPBUFSI ZE.

Eliminating Disk I/O Bottlenecks

I/O activity can cause bottlenecks for both Extract and Replicat.

e Aregular Extract generates disk writes to a trail and disk reads from a data
source.

e Adata pump and Replicat generate disk reads from a local trail.

e Each process writes a recovery checkpoint to its checkpoint file on a regular
schedule.

* Improving I/O performance Within the System Configuration

* Improving I/O Performance Within the Oracle GoldenGate Configuration

Improving /O performance Within the System Configuration

If there are 1/0 waits on the disk subsystems that contain the trail files, put the trails on
the fastest disk controller possible.

Check the RAID configuration. Because Oracle GoldenGate writes data sequentially,
RAID 0+1 (striping and mirroring) is a better choice than RAID 5, which uses
checksums that slow down 1/O and are not necessary for these types of files.

ORACLE 18-10

Chapter 18
Managing Virtual Memory and Paging

Improving 1/O Performance Within the Oracle GoldenGate
Configuration

You can improve I/O performance by making configurations changes within Oracle
GoldenGate. Try increasing the values of the following parameters.

» Use the CHECKPO NTSECS parameter to control how often Extract and Replicat
make their routine checkpoints.

Note:

CHECKPQO NTSECS is not valid for an integrated Replicat on an Oracle
database system.

* Use the GROUPTRANSOPS parameter to control the number of SQL operations that
are contained in a Replicat transaction when operating in its normal mode.
Increasing the number of operations in a Replicat transaction improves the
performance of Oracle GoldenGate by reducing the number of transactions
executed by Replicat, and by reducing I/O activity to the checkpoint file and the
checkpoint table, if used. Replicat issues a checkpoint whenever it applies a
transaction to the target, in addition to its scheduled checkpoints.

Note:

GROUPTRANSCPS is not valid for an integrated Replicat on an Oracle
database system, unless the inbound server parameter par al | el i smis
set to 1.

* Use the EOFDELAY or EOFDELAYCSECS parameter to control how often Extract, a data
pump, or Replicat checks for new data after it has reached the end of the current
data in its data source. You can reduce the system I/O overhead of these reads by
increasing the value of this parameter.

¢ Note:

Increasing the values of these parameters improves performance, but it also
increases the amount of data that must be reprocessed if the process fails.
This has an effect on overall latency between source and target. Some
testing will help you determine the optimal balance between recovery and
performance.

Managing Virtual Memory and Paging

Because Oracle GoldenGate replicates only committed transactions, it stores the
operations of each transaction in a managed virtual-memory pool known as a cache
until it receives either a commit or a rollback for that transaction. One global cache

ORACLE 18-11

Chapter 18
Optimizing Data Filtering and Conversion

operates as a shared resource of an Extract or Replicat process. The Oracle
GoldenGate cache manager takes advantage of the memory management functions of
the operating system to ensure that Oracle GoldenGate processes work in a sustained
and efficient manner. The CACHEMGR parameter controls the amount of virtual memory
and temporary disk space that is available for caching uncommitted transaction data
that is being processed by Oracle GoldenGate.

When a process starts, the cache manager checks the availability of resources for
virtual memory, as shown in the following example:

CACHEMZR virtual menory val ues (may have been adj ust ed) CACHESI ZE:
32GCACHEPAGEQUTSI ZE (nor mal): 8M PROCESS VM AVAI L FROM OS (min): 63.97GCACHESI ZEMAX
(strict force to disk): 48G

If the current resources are not sufficient, a message like the following may be
returned:

2013-11-11 14:16: 22 WARNI NG OGG 01842 CACHESI ZE PER DYNAM C DETERM NATI ON (32G) LESS
THAN RECOWENDED: 64G (64bit systemjvm found: 63.97GCheck swap space. Recommended
swap/ extract: 128G (64bit systen).

If the system exhibits excessive paging and the performance of critical processes is
affected, you can reduce the CACHESI ZE option of the CACHEMGR. parameter. You can
also control the maximum amount of disk space that can be allocated to the swap
directory with the CACHEDI RECTORY option. For more information about CACHEMGR, see
Reference for Oracle GoldenGate.

Optimizing Data Filtering and Conversion

ORACLE

Heavy amounts of data filtering or data conversion add processing overhead. The
following are suggestions for minimizing the impact of this overhead on the other
processes on the system.

* Avoid using the primary Extract to filter and convert data. Keep it dedicated to data
capture. It will perform better and is less vulnerable to any process failures that
result from those activities. The objective is to make certain the primary Extract
process is running and keeping pace with the transaction volume.

* Use Replicat or a data-pump to perform filtering and conversion. Consider any of
the following configurations:

— Use a data pump on the source if the system can tolerate the overhead. This
configuration works well when there is a high volume of data to be filtered,
because it uses less network bandwidth. Only filtered data gets sent to the
target, which also can help with security considerations.

— Use a data pump on an intermediate system. This configuration keeps the
source and target systems free of the overhead, but uses more network
bandwidth because unfiltered data is sent from the source to the intermediate
system.

— Use a data pump or Replicat on the target if the system can tolerate the
overhead, and if there is adequate network bandwidth for sending large
amounts of unfiltered data.

» If you have limited system resources, a least-best option is to divide the filtering
and conversion work between Extract and Replicat.

18-12

Chapter 18
Tuning Replicat Transactions

Tuning Replicat Transactions

Replicat uses regular SQL, so its performance depends on the performance of the
target database and the type of SQL that is being applied (inserts, versus updates or
deletes). However, you can take certain steps to maximize Replicat efficiency.

Topics:

e Tuning Coordination Performance Against Barrier Transactions
e Applying Similar SQL Statements in Arrays

e Preventing Full Table Scans in the Absence of Keys

e Splitting Large Transactions

e Adjusting Open Cursors

e Improving Update Speed

e Set a Replicat Transaction Timeout

Tuning Coordination Performance Against Barrier Transactions

In a coordinated Replicat configuration, barrier transactions such as updates to the
primary key cause an increased number of commits to the database, and they
interrupt the benefit of the GROUPTRANSCPS feature of Replicat. When there is a high
number of barrier transactions in the overall workload of the coordinated Replicat,
using a high number of threads can actually degrade Replicat performance.

To maintain high performance when large numbers of barrier transactions are
expected, you can do the following:

* Reduce the number of active threads in the group. This reduces the overall
number of commits that Replicat performs.

* Move the tables that account for the majority of the barrier transactions, and any
tables with which they have dependencies, to a separate coordinated Replicat
group that has a small number of threads. Keep the tables that have minimal
barrier transactions in the original Replicat group with the higher number of
threads, so that parallel performance is maintained without interruption by barrier
transactions.

* (Oracle RAC) In a new Replicat configuration, you can increase the PCTFREE
attribute of the Replicat checkpoint table. However, this must be done before
Replicat is started for the first time. The recommended value of PCTFREE is 90.

Applying Similar SQL Statements in Arrays

ORACLE

Use the BATCHSQL parameter to increase the performance of Replicat. BATCHSQL
causes Replicat to organize similar SQL statements into arrays and apply them at an
accelerated rate. In its normal mode, Replicat applies one SQL statement at a time.

When Replicat is in BATCHSQL mode, smaller row changes will show a higher gain in
performance than larger row changes. At 100 bytes of data per row change, BATCHSQL
has been known to improve the performance of Replicat by up to 300 percent, but
actual performance benefits will vary, depending on the mix of operations. At around
5,000 bytes of data per row change, the benefits of using BATCHSQL diminish.

18-13

Chapter 18
Tuning Replicat Transactions

The gathering of SQL statements into batches improves efficiency but also consumes
memory. To maintain optimum performance, use the following BATCHSQL options:

BATCHESPERQUEUE
BYTESPERQUEUE
OPSPERBATCH
OPSPERQUEUE

As a benchmark for setting values, assume that a batch of 1,000 SQL statements at
500 bytes each would require less than 10 megabytes of memory.

You can use BATCHSQL with the BATCHTRANSOPS option to tune array sizing.
BATCHTRANSOPS controls the maximum number of batch operations that can be grouped
into a transaction before requiring a commit. The default for non-integrated Replicat is
1000. The default for integrated Replicat is 50. If there are many wait dependencies
when using integrated Replicat, try reducing the value of BATCHTRANSOPS. To determine
the number of wait dependencies, view the TOTAL_WAI T_DEPS column of the
V$GG_APPLY_COORDI NATOR database view in the Oracle database.

See Reference for Oracle GoldenGate for additional usage considerations and syntax.

Preventing Full Table Scans in the Absence of Keys

If a target table does not have a primary key, a unique key, or a unique index, Replicat
uses all of the columns to build its WHERE clause. This is, essentially, a full table scan.

To make row selection more efficient, use a KEYCOLS clause in the TABLE and MAP
statements to identify one or more columns as unique. Replicat will use the specified
columns as a key. The following example shows a KEYCOLS clause in a TABLE
statement:

TABLE hr.enp, KEYCOLS (FIRST_NAME, LAST NAVE, DOB, 1D NO);

For usage guidelines and syntax, see the TABLE and MAP parameters in Reference for
Oracle GoldenGate.

Splitting Large Transactions

If the target database cannot handle large transactions from the source database, you
can split them into a series of smaller ones by using the Replicat parameter
MAXTRANSOPS. See Reference for Oracle GoldenGate for more information.

" Note:

MAXTRANSOPS is not valid for an integrated Replicat on an Oracle database
system.

Adjusting Open Cursors

ORACLE

The Replicat process maintains cursors for cached SQL statements and for SQLEXEC
operations. Without enough cursors, Replicat must age more statements. By default,
Replicat maintains as many cursors as allowed by the MAXSQLSTATEMENTS parameter.
You might find that the value of this parameter needs to be increased. If so, you might

18-14

Chapter 18
Tuning Replicat Transactions

also need to adjust the maximum number of open cursors that are permitted by the
database. See Reference for Oracle GoldenGate for more information.

Improving Update Speed

Excessive block fragmentation causes Replicat to apply SQL statements at a slower
than normal speed. Reorganize heavily fragmented tables, and then stop and start
Replicat to register the new object ID.

Set a Replicat Transaction Timeout

ORACLE

Use the TRANSACTI ONTI MEQUT parameter to prevent an uncommitted Replicat target
transaction from holding locks on the target database and consuming its resources
unnecessarily. You can change the value of this parameter so that Replicat can work
within existing application timeouts and other database requirements on the target.

TRANSACTI ONTI MEQUT limits the amount of time that Replicat can hold a target
transaction open if it has not received the end-of-transaction record for the last source
transaction in that transaction. By default, Replicat groups multiple source transactions
into one target transaction to improve performance, but it will not commit a partial
source transaction and will wait indefinitely for that last record. The Replicat parameter
GROUPTRANSOPS controls the minimum size of a grouped target transaction.

The following events could last long enough to trigger TRANSACTI ONTI MEQUT:

* Network problems prevent trail data from being delivered to the target system.

* Running out of disk space on any system, preventing trail data from being written.
* Collector abends (a rare event).

» Extract abends or is terminated in the middle of writing records for a transaction.

* An Extract data pump abends or is terminated.

* There is a source system failure, such as a power outage or system crash.

See Reference for Oracle GoldenGate for more information.

18-15

Performing Administrative Operations

This chapter contains instructions for making changes to applications, systems, and
Oracle GoldenGate while the replication environment is active and processing data
changes.

Topics:

Performing Application Patches

Initializing the Transaction Logs

Shutting Down the System

Changing Database Attributes

Adding Process Groups to an Active Configuration

Changing the Size of Trail Files

Switching Extract from Classic Mode to Integrated Mode
Switching Extract from Integrated Mode to Classic Mode
Switching Replicat from Nonintegrated Mode to Integrated Mode
Switching Replicat from Integrated Mode to Nonintegrated Mode
Switching Replicat to Coordinated Mode

Administering a Coordinated Replicat Configuration

Restarting a Primary Extract after System Failure or Corruption

Performing Application Patches

Application patches and application upgrades typically perform DDL such as adding
new objects or changing existing objects. To apply applications patches or upgrades in
an Oracle GoldenGate environment, you can do one of the following:

ORACLE

If Oracle GoldenGate supports DDL replication for your database type, you can
use it to replicate the DDL without stopping replication processes. To use this
method, the source and target table structures must be identical.

You can apply the patch or upgrade manually on both source and target after
taking the appropriate steps to ensure replication continuity.

To Use Oracle GoldenGate to Replicate Patch DDL

1.

If you have not already done so, dedicate some time to learn, install, and configure
the Oracle GoldenGate DDL support. See the instructions for your database in this
documentation. Once the DDL environment is in place, future patches and
upgrades will be easier to apply.

If the application patch or upgrade adds new objects that you want to include in
data replication, make certain that you include them in the DDL parameter
statement. To add new objects to your TABLE and MAP statements, see the
procedure on Adding Tables to the Oracle GoldenGate Configuration.

19-1

Chapter 19
Initializing the Transaction Logs

If the application patch or upgrade installs triggers or cascade constraints, disable
those objects on the target to prevent collisions between DML that they execute on
the target and the same DDL that is replicated from the source trigger or cascaded
operation.

To Apply a Patch Manually on the Source and Target

1.
2.

Stop access to the source database.

Allow Extract to finish capturing the transaction data that remains in the
transaction log. To determine when Extract is finished, issue the following
command in GGSCI until it returns At EOF.

SEND EXTRACT group GETLAG

Stop Extract.

STOP EXTRACT group

Start applying the patch on the source.

Wait until the data pump (if used) and Replicat are finished processing the data in
their respective trails. To determine when they are finished, use the following
commands until they return At ECF.

SEND EXTRACT group GETLAG
SEND REPLI CAT group GETLAG

Stop the data pump and Replicat.
STOP EXTRACT gr oup
STOP REPLI CAT group

At this point, the data in the source and target should be identical, because all of
the replicated transactional changes from the source have been applied to the
target.

Apply the patch on the target.

If the patches changed table definitions, run DEFGEN for the source tables to
generate updated source definitions, and then replace the old definitions with the
new ones in the existing source definitions file on the target system.

Start the Oracle GoldenGate processes whenever you are ready to begin
capturing user activity again.

Initializing the Transaction Logs

When you initialize a transaction log, you must ensure that all of the data is processed
by Oracle GoldenGate first, and then you must delete and re-add the Extract group
and its associated trail.

ORACLE

1.

Stop the application from accessing the database. This stops more transaction
data from being logged.

Run GGSCI and issue the SEND EXTRACT command with the LOGEND option for the
primary Extract group. This command queries Extract to determine whether or not
Extract is finished processing the records that remain in the transaction log.

SEND EXTRACT group LOGEND

19-2

10.
11.

12.

13.

14.

15.

16.

ORACLE

Chapter 19
Initializing the Transaction Logs

Continue issuing the command until it returns a YES status, indicating that there
are no more records to process.

On the target system, run GGSCI and issue the SEND REPL|I CAT command with the
STATUS option. This command queries Replicat to determine whether or not it is
finished processing the data that remains in the trail.

SEND REPLI CAT group STATUS

Continue issuing the command until it shows O records in the current transaction,
for example:

Sendi ng STATUS request to REPLI CAT REPSTAB...
Current status:

Seqno 0, Rba 9035

0 records in current transaction.

Stop the primary Extract group, the data pump (if used), and the Replicat group.

STOP EXTRACT gr oup
STOP EXTRACT punp_gr oup
STOP REPLI CAT group

Delete the Extract, data pump, and Replicat groups.

DELETE EXTRACT gr oup
DELETE EXTRACT punp_gr oup
DELETE REPLI CAT gr oup

Using standard operating system commands, delete the trail files.
Stop the database.

Initialize and restart the database.

Recreate the primary Extract group.

ADD EXTRACT group TRANLOG, BEG N NOW

Recreate the local trail (if used).

ADD EXTTRAIL trail, EXTRACT group

Recreate the data pump (if used).

ADD EXTRACT punp_group, EXTTRAILSOURCE trai |
Recreate the remote trail.

ADD RMITRAIL trail, EXTRACT punp_group

Recreate the Replicat group.

ADD REPLI CAT group, EXTTRAIL trail

Start Extract, the data pump (if used), and Replicat.

START EXTRACT group
START EXTRACT punp_gr oup
START REPLI CAT group

19-3

Chapter 19
Shutting Down the System

Shutting Down the System

When shutting down a system for maintenance and other procedures that affect
Oracle GoldenGate, follow these steps to make certain that Extract has processed all
of the transaction log records. Otherwise, you might lose synchronization data.

1. Stop all application and database activity that generates transactions that are
processed by Oracle GoldenGate.

2. Run GGSCI.

3. In GGSCI, issue the SEND EXTRACT command with the LOGEND option. This
command queries the Extract process to determine whether or not it is finished
processing the records in the data source.

SEND EXTRACT group LOGEND

4. Continue issuing the command until it returns a YES status. At that point, all
transaction log data has been processed, and you can safely shut down Oracle
GoldenGate and the system.

Changing Database Attributes

This section addresses administrative operations that are performed on database
tables and structures.

Topics:

e Changing Database Metadata

e Adding Tables to the Oracle GoldenGate Configuration

e Coordinating Table Attributes between Source and Target

e Performing an ALTER TABLE to Add a Column on DB2 z/OS Tables

» Dropping and Recreating a Source Table

e Changing the Number of Oracle RAC Threads when Using Classic Capture
e Changing the ORACLE_SID

e Purging Archive Logs

e Reorganizing a DB2 Table (z/OS Platform)

Changing Database Metadata

ORACLE

This procedure is required to prevent Replicat errors when changing the following
metadata of the source database:

* Database character set
* National character set
* Locale

e Timezone

* Object name case-sensitivity

19-4

ORACLE

Chapter 19
Changing Database Attributes

If these changes are made without performing this procedure, the following error
occurs:

2013-05-26 20:10:09 ERROR OGG 05500 Detected database netadata mismatch between
current trail file ./dirdat/_p/v1000000003 and the previous sequence. *DBTI MEZONE:

[avr]/[urq.

This procedure stops Extract, and then creates a new trail file. The new database
metadata is included in this new file with the transactions that started after the change.

1. Stop transaction activity on the source database. Do not make the metadata
change to the database yet.

2. In GGSCI on the source system, issue the SEND EXTRACT command with the
LOGEND option until it shows there is no more redo data to capture.

SEND EXTRACT group LOGEND
3. Stop Extract.
STCP EXTRACT group

4. On each target system, issue the SEND REPLI CAT command with the STATUS option
until it shows a status of "At ECF" to indicate that it finished processing all of the
data in the trail. This must be done on all target systems until all Replicat
processes return "At ECF."

SEND REPLI CAT group STATUS
5. Stop the data pumps and Replicat.

STOP EXTRACT group
STOP REPLI CAT group

6. Change the database metadata.

7. Inin GGSCI on the source system, issue the ALTER EXTRACT command with the
ETROLLOVER option for the primary Extract to roll over the local trail to the start of a
new file.

ALTER EXTRACT group, ETROLLOVER

8. Issue the ALTER EXTRACT command with the ETROLLOVER option for the data pumps
to roll over the remote trail to the start of a new file.

ALTER EXTRACT punp, ETROLLOVER
9. Start Extract.
START EXTRACT group

10. In GGSCI, reposition the data pumps and Replicat processes to start at the new
trail sequence number.

ALTER EXTRACT punp, EXTSEQNO seqno, EXTRBA RBA
ALTER REPLI CAT group, EXTSEQNO seqno, EXTRBA RBA

11. Start the data pumps.
START EXTRACT group
12. Start the Replicat processes.

START REPLI CAT group

19-5

Chapter 19
Changing Database Attributes

Adding Tables to the Oracle GoldenGate Configuration

This procedure assumes that the Oracle GoldenGate DDL support feature is not in
use, or is not supported for, your database.

ORACLE

" Note:

For Oracle and MySQL databases, you can enable the DDL support feature
of Oracle GoldenGate to automatically capture and apply the DDL that adds
new tables, instead of using this procedure. See the appropriate instructions
for your database in this documentation.

Review these steps before starting. The process varies slightly, depending on whether
or not the new tables satisfy wildcards in the TABLE parameter, and whether or not
names or data definitions must be mapped on the target.

Prerequisites for Adding Tables to the Oracle GoldenGate Configuration

This procedure assumes that the source and target tables are either empty or
contain identical (already synchronized) data.

You may be using the DBLOG N and ADD TRANDATA commands. Before starting this
procedure, see Reference for Oracle GoldenGate for the proper usage of these
commands for your database.

To Add a Table to the Oracle GoldenGate Configuration

Stop user access to the new tables.

(If new tables do not satisfy a wildcard) If you are adding numerous tables that do
not satisfy a wildcard, make a copy of the Extract and Replicat parameter files,
and then add the new tables with TABLE and MAP statements. If you do not want to
work with a copy, then edit the original parameter files after you are prompted to
stop each process.

(If new tables satisfy wildcards) In the Extract and Replicat parameter files, make
certain the W LDCARDRESCLVE parameter is not being used, unless it is set to the
default of DYNAM C.

(If new tables do not satisfy a wildcard) If the new tables do not satisfy a wildcard
definition, stop Extract.

STOP EXTRACT group
Add the new tables to the source and target databases.

If required for the source database, issue the ADD TRANDATA command in GGSCI
for the new tables. Before using ADD TRANDATA, issue the DBLOG N command.

Depending on whether the source and target definitins are identical or different,
use either ASSUMETARGETDEFS or SOURCEDEFS in the Replicat parameter file. If
SOURCEDEFS is needed, you can do either of the following:

* Run DEFGEN, then copy the new definitions to the source definitions file on
the target.

19-6

Chapter 19
Changing Database Attributes

» If the new tables match a definitions template, specify the template with the
DEF option of the MAP parameter. (DEFGEN not needed.)

8. To register the new source definitions or new MAP statements, stop and then start
Replicat.

STOP REPLI CAT group
START REPLI CAT group

9. Start Extract, if applicable.
START EXTRACT gr oup

10. Permit user access to the new tables.

Coordinating Table Attributes between Source and Target

ORACLE

Follow this procedure if you are changing an attribute of a source table that is in the
Oracle GoldenGate configuration, such as adding or changing columns or partitions, or
changing supplemental logging details (Oracle). It directs you how to make the same
change to the target table without incurring replication latency.

" Note:

See also Performing an ALTER TABLE to Add a Column on DB2 z/OS
Tables.

¢ Note:

This procedure assumes that the Oracle GoldenGate DDL support feature is
not in use, or is not supported for your database. For Oracle and MySQL
databases, you can enable the DDL support feature of Oracle GoldenGate to
propagate the DDL changes to the target, instead of using this procedure.

1. On the source and target systems, create a table, to be known as the marker
table, that can be used for the purpose of generating a marker that denotes a
stopping point in the transaction log. Just create two simple columns: one as a
primary key and the other as a regular column. For example:

CREATE TABLE narker

(
idint NOT NULL,

col umm var char (25) NOT NULL,
PRI MARY KEY (i d)

):
2. Insert a row into the marker table on both the source and target systems.

I NSERT | NTO mar ker VALUES (1, 1);
COWM T,

3. On the source system, run GGSCI.

4. Open the Extract parameter file for editing.

19-7

ORACLE

10.

11.

12.
13.

14.

15.

Chapter 19
Changing Database Attributes

Caution:

Do not use the VI EW PARAMS or EDI T PARAMS command to view or edit an
existing parameter file that is in a character set other than that of the
local operating system (such as one where the CHARSET option was used
to specify a different character set). View the parameter file from outside
GGSCI if this is the case; otherwise, the contents may become
corrupted..

Add the marker table to the Extract parameter file in a TABLE statement.
TABLE narker;
Save and close the parameter file.

Add the marker table to the TABLE statement of the data pump, if one is being
used.

Stop the Extract and data pump processes, and then restart them immediately to
prevent capture lag.

STOP EXTRACT group
START EXTRACT group
STOP EXTRACT punp_gr oup
START EXTRACT punp_gr oup

On the target system, run GGSCI.

Open the Replicat parameter file for editing.

Caution:

Do not use the VI EW PARAMS or EDI T PARAMS command to view or edit an
existing parameter file that is in a character set other than that of the
local operating system (such as one where the CHARSET option was used
to specify a different character set). View the parameter file from outside
GGSCI if this is the case; otherwise, the contents may become
corrupted.

Add the marker table to the Replicat parameter file in a MAP statement, and use the
EVENTACTI ONS parameter as shown to stop Replicat and ignore operations on the
marker table.

MAP marker, TARGET narker, EVENTACTIONS (STOP, | GNORE);
Save and close the parameter file.
Stop, and then immediately restart, the Replicat process.

STOP REPLI CAT group
START REPLI CAT group

When you are ready to change the table attributes for both source and target
tables, stop all user activity on them.

On the source system, perform an UPDATE operation to the marker table as the
only operation in the transaction.

19-8

Chapter 19
Changing Database Attributes

UPDATE mar ker
SET col um=2,
WHERE i d=1;
COWM T,

16. On the target system, issue the following command until it shows that Replicat is
stopped as a result of the EVENTACTI ONS rule.

STATUS REPLI CAT group
17. Perform the DDL on the source and target tables, but do not yet allow user activity.
18. Start Replicat.

START REPLI CAT group

19. Allow user activity on the source and target tables.

Performing an ALTER TABLE to Add a Column on DB2 z/OS Tables

To add a fixed length column to a table that is in reordered row format and contains
one or more variable length columns, one of the following will be required, depending
on whether the table can be quiesced or not.

If the Table can be Quiesced

Allow Extract to finish capturing transactions that happened prior to the quiesce.
Alter the table to add the column.
Reorganize the tablespace.

Restart Extract.

@ H W b P

Allow table activity to resume.

If the Table cannot be Quiesced

Stop Extract.

Remove the table from the TABLE statement in the parameter file.
Restart Extract.

Alter the table to add the column.

Reorganize the tablespace.

Stop Extract.

Add the table back to the TABLE statement.

Resynchronize the source and target tables.

Start Extract.

© ® N o o0 ;@ NP

10. Allow table activity to resume.

Dropping and Recreating a Source Table

Dropping and recreating a source table requires caution when performed while Oracle
GoldenGate is running.

1. Stop access to the table.

ORACLE 19-9

Chapter 19
Changing Database Attributes

Allow Extract to process any remaining changes to that table from the transaction
logs. To determine when Extract is finished, use the | NFO EXTRACT command in
GGSCI.

I NFO EXTRACT gr oup

Stop Extract.

STOP EXTRACT group

Drop and recreate the table.

If supported for this database, run the ADD TRANDATA command in GGSCI for the
table.

If the recreate action changed the source table's definitions so that they are
different from those of the target, run the DEFGEN utility for the source table to
generate source definitions, and then replace the old definitions with the new
definitions in the existing source definitions file on the target system.

Permit user access to the table.

Changing the Number of Oracle RAC Threads when Using Classic

Capture

ORACLE

Valid for Extract in classic capture mode for Oracle. When Extract operates in classic
capture mode, the Extract group must be dropped and re-added any time the number
of redo threads in an Oracle RAC cluster changes. To drop and add an Extract group,
perform the following steps:

1.
2.

On the source and target systems, run GGSCI.
Stop Extract and Replicat.

STOP EXTRACT group
STOP REPLI CAT group

On the source system, issue the following command to delete the primary Extract
group and the data pump.

DELETE EXTRACT gr oup
DELETE EXTRACT punp_group

On the target system, issue the following command to delete the Replicat groups.
DELETE REPLI CAT group

Using standard operating system commands, remove the local and remote trail
files.

Add the primary Extract group again with the same name as before, specifying the
new number of RAC threads.

ADD EXTRACT group TRANLOG, THREADS n, BEG N NOW

Add the local trail again with the same name as before.

ADD EXTTRAIL trail, EXTRACT group

Add the data pump Extract again, with the same name as before.
ADD EXTRACT group EXTTRAILSOURCE trail, BEG N NOW

Add the remote trail again with the same name as before.

19-10

Chapter 19
Changing Database Attributes

ADD RMITRAIL trail, EXTRACT group

10. Add the Replicat group with the same name as before. Leave off any BEG N
options so that processing begins at the start of the trail.

ADD REPLI CAT group EXTTRAIL trail

11. Start all processes, using wildcards as appropriate. If the re-created processes are
the only ones in the source and target Oracle GoldenGate instances, you can use
START ER * instead of the following commands.

START EXTRACT group
START REPLI CAT group

Changing the ORACLE_SID

You can change the ORACLE_SI D and ORACLE_HOVE without having to change
environment variables at the operating-system level. Depending on whether the
change is for the source or target database, set the following parameters in the Extract
or Replicat parameter files. Then, stop and restart Extract or Replicat for the
parameters to take effect.

SETENV (ORACLE_HOME=l ocat i on)
SETENV (CORACLE SID="SID)

Purging Archive Logs

ORACLE

An Oracle archive log can be purged safely once Extract's read and write checkpoints
are past the end of that log. Extract does not write a transaction to a trail until it has
been committed, so Extract must keep track of all open transactions. To do so, Extract
requires access to the archive log where each open transaction started and all archive
logs thereatfter.

Extract reads the current archive log (the read checkpoint) for new transactions and
also has a checkpoint (the recovery checkpoint) in the oldest archive log for which
there is an uncommitted transaction.

Use the following command in GGSCI to determine Extract's checkpoint positions.

| NFO EXTRACT group, SHOACH

 The I nput Checkpoint field shows where Extract began processing when it was
started.

e The Recovery Checkpoi nt field shows the location of the oldest uncommitted
transaction.

 The Next Checkpoi nt field shows the position in the redo log that Extract is
reading.

* The Qutput Checkpoi nt field shows the position where Extract is writing.

You can write a shell script that purges all archive logs no longer needed by Extract by
capturing the sequence number listed under the Recovery Checkpoi nt field. All
archive logs prior to that one can be safely deleted.

19-11

Chapter 19
Adding Process Groups to an Active Configuration

Reorganizing a DB2 Table (z/OS Platform)

When using IBM's REORG ultility to reorganize a DB2 table that has compressed
tablespaces, specify the KEEPDI CTI ONARY option if the table is being processed by
Oracle GoldenGate. This prevents the REORG utility from recreating the compression
dictionary, which would cause log data that was written prior to the change not to be
decompressed and cause Extract to terminate abnormally. As an alternative, ensure
that all of the changes for the table have been extracted by Oracle GoldenGate before
doing the reorganization, or else truncate the table.

Adding Process Groups to an Active Configuration

This section describes how to add process groups.

Topics:

* Before You Start

* Adding Another Extract Group to an Active Configuration
* Adding Another Data Pump to an Active Configuration

* Adding Another Replicat Group to an Active Configuration

Before You Start

These instructions are for adding process groups to a configuration that is already
active. The procedures should be performed by someone who has experience with
Oracle GoldenGate. They involve stopping processes for a short period of time and
reconfiguring parameter files. The person performing them must:

e Know the basic components of an Oracle GoldenGate configuration
e Understand Oracle GoldenGate parameters and commands

e Have access to GGSCI to create groups and parameter files

« Know which parameters to use in specific situations

Instructions are provided for:
* Adding Another Extract Group to an Active Configuration
* Adding Another Data Pump to an Active Configuration

* Adding Another Replicat Group to an Active Configuration

Adding Another Extract Group to an Active Configuration

ORACLE

This procedure splits the workload of an existing Extract group into multiple Extract
groups. It also provides instructions for including a data pump group (if applicable) and
a Replicat group to propagate data that is captured by the new Extract group.

Steps are performed on the source and target systems.

1. Make certain the archived transaction logs are available in case the online logs
recycle before you complete this procedure.

2. Choose a name for the new Extract group.

19-12

ORACLE

10.

11.
12.

13.

Chapter 19
Adding Process Groups to an Active Configuration

Decide whether or not to use a data pump.
On the source system, run GGSCI.
Create a parameter file for the new Extract group.

EDI T PARAVS gr oup

" Note:

You can copy the original parameter file to use for this group, but make
certain to change the Extract group name and any other relevant
parameters that apply to this new group.

In the parameter file, include:

e EXTRACT parameter that specifies the new group.

* Appropriate database login parameters.

» Other appropriate Extract parameters for your configuration.

e EXTTRAI L parameter that points to a local trail (if you will be adding a data
pump) or a RMITRAI L parameter (if you are not adding a data pump).

e RMTIHOST parameter if this Extract will write directly to a remote trail.

* TABLE statement(s) (and TABLEEXCLUDE, if appropriate) for the tables that are to
be processed by the new group.

Save and close the file.

Edit the original Extract parameter file(s) to remove the TABLE statements for the
tables that are being moved to the new group or, if using wildcards, add the
TABLEEXCLUDE parameter to exclude them from the wildcard specification.

(Oracle) If you are using Extract in integrated mode, register the new Extract group
with the source database.

REGI STER EXTRACT group DATABASE [CONTAI NER (cont ai ner[, ...])]

Lock the tables that were moved to the new group, and record the timestamp for
the point when the locks were applied. For Oracle tables, you can run the following
script, which also releases the lock after it is finished.

- temp_l ock. sql
- use this script to tenporary lock a table in order to
- get a tinestanp

lock table &chema . &t able_name in EXCLUSI VE node;
SELECT TO CHAR(sysdate,' MM DD YYYY HH24: M :SS') "Date" FROM dual ;
comit;

Unlock the table(s) if you did not use the script in the previous step.
Stop the old Extract group(s) and any existing data pumps.
STCP EXTRACT gr oup

Add the new Extract group and configure it to start at the timestamp that you
recorded.

ADD EXTRACT group, TRANLOG BEGA N YYYY/ MM DD HH: M : SS: CCCCCC

19-13

ORACLE

Chapter 19
Adding Process Groups to an Active Configuration

14. Add a trail for the new Extract group.

ADD {EXTTRAIL | RMITRAIL} trail, EXTRACT group

Where:

e EXTTRAI L creates a local trail. Use this option if you will be creating a data
pump for use with the new Extract group. Specify the trail that is specified with
EXTTRAI L in the parameter file. After creating the trail, go To Link a Local Data
Pump to the New Extract Group .

° RMITRAI L creates a remote trail. Use this option if a data pump will not be
used. Specify the trail that is specified with RMTTRAI L in the parameter file.
After creating the trail, go To Link a Remote Replicat to the New Data Pump

You can specify a relative or full path name. Examples:

ADD RMITRAIL dirdat/rt, EXTRACT primary
ADD EXTTRAIL c:\ogg\dirdat\It, EXTRACT primary

To Link a Local Data Pump to the New Extract Group

1.

5.

On the source system, add the data-pump Extract group using the EXTTRAI L trail
as the data source.

ADD EXTRACT punp, EXTTRAILSOURCE trai l

For example:

ADD EXTRACT punp2, EXTTRAI LSOURCE dirdat\!t
Create a parameter file for the data pump.
EDI T PARAMS punp

In the parameter file, include the appropriate Extract parameters for your
configuration, plus:

* RMIHOST parameter to point to the target system.
RMITRAI L parameter to point to a new remote trail (to be specified later).
* TABLE parameter(s) for the tables that are to be processed by this data pump.

In GGSCI on the source system, add a remote trail for the data-pump. Use the trail
name that you specified with RMTTRAI L in the parameter file.

ADD RMITRAIL trail, EXTRACT punp

For example:
ADD RMITRAIL dirdat/rt, EXTRACT punp2

Follow the steps in To Link a Remote Replicat to the New Data Pump.

To Link a Remote Replicat to the New Data Pump

1.

In GGSCI on the target system, add a Replicat group to read the remote trail. For
EXTTRAI L, specify the same trail as in the RMITRAI L Extract parameter and the ADD
RMITRAI L command.

ADD REPL| CAT group, EXTTRAIL trail

For example:

19-14

Chapter 19
Adding Process Groups to an Active Configuration

ADD REPLI CAT rep2, EXTTRAIL /hone/ggs/dirdat/rt

Create a parameter file for this Replicat group. Use MAP statement(s) to specify the
same tables that you specified for the new primary Extract and the data pump (if
used).

On the source system, start the Extract groups and data pumps.

START EXTRACT group
START EXTRACT punp

On the target system, start the new Replicat group.

START REPLI CAT group

Adding Another Data Pump to an Active Configuration

This procedure adds a data-pump Extract group to an active primary Extract group on
the source system. It makes these changes:

ORACLE

The primary Extract will write to a local trail.

The data pump will write to a new remote trail after the data in the old trail is
applied to the target.

The old Replicat group will be replaced by a new one.

Steps are performed on the source and target systems.

1.
2.

On the source system, run GGSCI.
Add a local trail, using the name of the primary Extract group for gr oup.

ADD EXTTRAIL trail, EXTRACT group

For example:
ADD EXTTRAIL dirdat\It, EXTRACT primary

Open the parameter file of the primary Extract group, and replace the RMITRAI L
parameter with an EXTTRAI L parameter that points to the local trail that you
created.

Caution:

Do not use the VI EW PARAMS or EDI T PARAMS command to view or edit an
existing parameter file that is in a character set other than that of the
local operating system (such as one where the CHARSET option was used
to specify a different character set). View the parameter file from outside
GGSCI if this is the case; otherwise, the contents may become
corrupted..

Example EXTTRAI L parameter:
EXTTRAIL dirdat\It
Remove the RMTHCOST parameter.

Save and close the file.

19-15

ORACLE

10.
11.

12.

13.

14.

15.

Chapter 19
Adding Process Groups to an Active Configuration

Add a new data-pump Extract group, using the trail that you specified in step 2 as
the data source.

ADD EXTRACT group, EXTTRAILSOURCE trai |

For example:

ADD EXTRACT punp, EXTTRAILSCURCE dirdat\lt
Create a parameter file for the new data pump.
EDI T PARAMS group

In the parameter file, include the appropriate Extract parameters for your
configuration, plus:

e TABLE parameter(s) for the tables that are to be processed by this data pump.
* RMIHOST parameter to point to the target system.
e RMITRAI L parameter to point to a new remote trail (to be created later).

In GGSCI on the source system, add a remote trail for the data-pump. Use the trail
name that is specified with RMITRAI L in the data pump's parameter file, and specify
the group name of the data pump for EXTRACT.

ADD RMITRAIL trail, EXTRACT group

For example:

ADD RMITRAIL dirdat/rt, EXTRACT punp

< Note:

This command binds a trail name to an Extract group but does not
actually create the trail. A trail file is created when processing starts.

On the target system, run GGSCI.
Add a new Replicat group and link it with the remote trail.

ADD REPLI CAT group, EXTTRAIL trail

For example:
ADD REPLI CAT rep, EXTTRAIL dirdat/rt

Create a parameter file for this Replicat group. You can copy the parameter file
from the original Replicat group, but make certain to change the REPLI CAT
parameter to the new group name.

On the source system, stop the primary Extract group, then start it again so that
the parameter changes you made take effect.

STOP EXTRACT group
START EXTRACT group

On the source system, start the data pump.
START EXTRACT group

On the target system, issue the LAG REPLI CAT command for the old Replicat, and
continue issuing it until it reports At EOF, no nore records to process.

19-16

Chapter 19
Adding Process Groups to an Active Configuration

LAG REPLI CAT group
16. Stop the old Replicat group.
STOP REPLI CAT group

17. If using a checkpoint table for the old Replicat group, log into the database from
GGSCI.

DBLOG N [SOURCEDB dat asource] [{, USERIDALIAS alias | USER D user [,options]]
18. Delete the old Replicat group.

DELETE REPLI CAT group
19. Start the new Replicat group.

START REPLI CAT group

Note:

Do not delete the old remote trail, just in case it is needed later on for a
support case or some other reason. You can move it to another location,
if desired.

Adding Another Replicat Group to an Active Configuration

This procedure adds a new Replicat group to an existing Replicat group. The new
Replicat reads from the same trail as the original Replicat.

Multiple Replicat groups may be required when Replicat is configured in classic mode,
for the purpose of isolating transactions on certain tables or improving performance.
Multiple Replicat groups usually are not required if using coordinated Replicat,
because you can divide the workload among multiple processing threads within the
same Replicat group. See Creating an Online Replicat Group for more information
about Replicat modes.

Steps are performed on the source and target systems.
1. Choose a name for the new group.
2. On the target system, run GGSCI.
3. Create a parameter file for the new Replicat group.

EDI T PARAMVS gr oup

Note:

You can copy the original parameter file to use for this group, but make
certain to change the Replicat group name and any other relevant
parameters that apply to this new group.

4. Add MAP statements (or edit copied ones) to specify the tables that you are adding
or moving to this group. If this group will be a coordinated Replicat group, include
the appropriate thread specifications.

ORACLE 19-17

ORACLE

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

Chapter 19
Adding Process Groups to an Active Configuration

Save and close the parameter file.
On the source system, run GGSCI.
Stop the Extract group.

STCP EXTRACT group

Issue the | NFO REPLI CAT command for the old Replicat group, and continue
issuing it until it reports At EOF, no nore records to process.

I NFO REPLI CAT gr oup

On the target system, edit the old Replicat parameter file to remove MAP
statements that specified the tables that you moved to the new Replicat group.
Keep only the MAP statements that this Replicat will continue to process.

Save and close the file.

Issue the | NFO REPLI CAT command for the old Replicat group, and continue
issuing it until it reports At EOF, no nore records to process.

| NFO REPLI CAT group
Obtain the current Replicat checkpoint.
I NFO REPLI CAT group

Stop the old Replicat group. If you are stopping a coordinated Replicat, make
certain the stop is clean so that all threads stop at the same trail record.

STOP REPLI CAT group

Alter the new Replicat to position at the same trail sequence number and RBA as
the old replicat group

ALTER REPLI CAT group, EXTSEQNO seqno, EXTRBATba

The seqgno is the trail sequence number from the old group checkpoint obtained in
step 11 and the r ba is the trail record RBA number from the old group checkpoint.

Add the new Replicat group. For EXTTRAI L, specify the trail that this Replicat group
is to read.

ADD REPL| CAT group, EXTTRAIL trail

For example:
ADD REPLI CAT rep, EXTTRAIL dirdat/rt

Issue the | NFORM COMVAND to alter the Replicat to the trail file sequence number
and RBA displayed.

| NFORM COMMAND

On the source system, start the Extract group.
START EXTRACT group

On the target system, start the old Replicat group.
START REPLI CAT group

Start the new Replicat group.

START REPLI CAT group

19-18

Chapter 19
Changing the Size of Trail Files

Changing the Size of Trail Files

You can change the size of trail files with the MEGABYTES option of either the ALTER
EXTTRAI L or ALTER RMITRAI L command, depending on whether the trail is local or
remote. To change the file size, follow this procedure.

1. Issue one of the following commands, depending on the location of the trail, to
view the path name of the trail you want to alter and the name of the associated
Extract group. Use a wildcard to view all trails.

(Remote trail)

INFO RMITRAIL *

(Local trail)
I NFO EXTTRAIL *

2. Issue one of the following commands, depending on the location of the trail, to
change the file size.

(Remote trail)

ALTER RMITRAIL trail, EXTRACT group, MEGABYTES n

(Local trail)
ALTER EXTTRAIL trail, EXTRACT group, MEGABYTES n
3. Issue the following command to cause Extract to switch to the next file in the trail.

SEND EXTRACT group, ROLLOVER

Switching Extract from Classic Mode to Integrated Mode

ORACLE

Valid for Oracle only.

This procedure switches an existing Extract group from classic mode to integrated
mode. For more information about Extract modes for an Oracle database, see
Choosing Capture and Apply Modes in Using Oracle GoldenGate for Oracle Database.

To support the transition to integrated mode, the transaction log that contains the start
of the oldest open transaction must be available on the source or downstream mining
system, depending on where Extract will be running.

To determine the oldest open transaction, issue the SEND EXTRACT command with the
SHOMRANS option. You can use the FORCETRANS or SKI PTRANS options of this command
to manage specific open transactions, with the understanding that skipping a
transaction may cause data loss and forcing a transaction to commit to the trail may
add unwanted data if the transaction is rolled back by the user applications. Review
these options in SEND EXTRACT Reference for Oracle GoldenGatebefore using them.

GGSCl > SEND EXTRACT group, SHOWRANS
GGSCl > SEND EXTRACT group, { SKIPTRANS | D [THREAD n] [FORCEH |
FORCETRANS | D [THREAD n] [FORCE] }

To Switch Extract Modes

1. Back up the current Oracle GoldenGate working directories.

19-19

10.

Chapter 19
Switching Extract from Integrated Mode to Classic Mode

While the Oracle GoldenGate processes continue to run in their current
configuration, so that they keep up with current change activity, copy the Extract
parameter file to a new name.

Grant the appropriate privileges to the Extract user and perform the required
configuration steps to support your business applications in integrated capture
mode. See Assigning Credentials to Oracle GoldenGate in Using Oracle
GoldenGate for Oracle Databasefor information about configuring and running
Extract in integrated mode.

Log into the mining database with one of the following commands, depending on
where the mining database is located.

DBLOG N USERI DALI AS al i as
M NI NGDBLOG N USERI DALI AS al i as

Where: al i as specifies the alias of a user in the credential store who has the
privileges granted through the Oracle
dbns_gol dengat e_aut h. grant _admi n_pri vi | ege procedure.

Register the Extract group with the mining database. Among other things, this
creates the logmining server.

REG STER EXTRACT group DATABASE

Issue the following command to determine whether the upgrade command can be
issued. Transactions that started before the registration command must be written
to the trail before you can proceed with the upgrade. You may have to issue this
command more than once until it returns a message stating that Extract can be
upgraded.

| NFO EXTRACT group UPGRADE
Stop the Extract group.
STOP EXTRACT gr oup

Switch the Extract group to integrated mode. See Oracle RAC options for this
command in STOP EXTRACTIn Reference for Oracle GoldenGate, if applicable.

ALTER EXTRACT group UPGRADE | NTEGRATED TRANLOG

Replace the old parameter file with the new one, keeping the same name.
Start the Extract group.

START EXTRACT group

Switching Extract from Integrated Mode to Classic Mode

Valid for Oracle only.

ORACLE

This procedure switches an existing Extract group from integrated mode to classic
mode. For more information about Extract modes for an Oracle database, see
Choosing Capture and Apply Modesin Using Oracle GoldenGate for Oracle Database.

To support the transition to classic mode, the transaction log that contains the start of
the oldest open transaction must be available on the source or downstream mining
system. To determine the oldest open transaction, issue the SEND EXTRACT command
with the SHOAMTRANS option. You can use the FORCETRANS or SKI PTRANS options of this

19-20

ORACLE

Chapter 19
Switching Extract from Integrated Mode to Classic Mode

command to manage specific open transactions, with the understanding that skipping
a transaction may cause data loss and forcing a transaction to commit to the trail may
add unwanted data if the transaction is rolled back by the user applications. Review
these options in Oracle GoldenGate Parametersin Reference for Oracle
GoldenGatebefore using them.

GGSCl > SEND EXTRACT group, SHOWRANS
GGSCl > SEND EXTRACT group, { SKIPTRANS | D [THREAD n] [FORCEH |
FORCETRANS | D [THREAD n] [FORCE }

To Switch Extract Modes

1. Back up the current Oracle GoldenGate working directories.

2. While the Oracle GoldenGate processes continue to run in their current
configuration, so that they keep up with current change activity, copy the Extract
parameter file to a new name.

3. Grant the appropriate privileges to the Extract user and perform the required
configuration steps to support your business applications in classic capture mode.
See Assigning Credentials to Oracle GoldenGatein Using Oracle GoldenGate for
Oracle Databasefor information about configuring and running Extract in classic
mode.

4. Issue the following command to determine whether the downgrade command can
be issued. Transactions that started before the downgrade command is issued
must be written to the trail before you can proceed. You may have to issue this
command more than once until it returns a message stating that Extract can be
downgraded.

I NFO EXTRACT group DOWNGRADE
5. Stop the Extract group.
STOP EXTRACT group

6. Log into the mining database with one of the following commands, depending on
where the mining database is located.

DBLOG N USERI DALI AS al i as
M NI NGDBLOG N USERI DALI AS al i as

Where: al i as is the alias of a user in the credential store who has the privileges
granted through the Oracle dbns_gol dengat e_aut h. grant _admi n_privil ege
procedure.

7. Switch the Extract group to classic mode.
ALTER EXTRACT group DOANGRADE | NTEGRATED TRANLOG
If on a RAC system, then the THREADS option has to be used with the downgrade
command to specify the number of RAC threads.

8. Unregister the Extract group from the mining database. Among other things, this
removes the logmining server.

UNREG STER EXTRACT gr oup DATABASE
9. Replace the old parameter file with the new one, keeping the same name.

10. Start the Extract group.

19-21

Chapter 19
Switching Replicat from Nonintegrated Mode to Integrated Mode

START EXTRACT group

Switching Replicat from Nonintegrated Mode to Integrated

Mode

ORACLE

Valid for Oracle only. For more information about Replicat modes for an Oracle
database, see Choosing Capture and Apply Modes in Using Oracle GoldenGate for
Oracle Database.

This procedure switches an existing Replicat group from nonintegrated to integrated
mode.

10.

< Note:

Do not configure the switch between Replicat modes to occur immediately
after Extract recovers from a failure or is repositioned to a different location in
the transaction log.

Back up the Oracle GoldenGate working directories.

While the Oracle GoldenGate processes continue to run in their current
configuration, so that they keep up with current change activity, copy the Replicat
parameter file to a new name.

Grant the appropriate privileges to the Replicat user and perform the required
configuration steps to support your business applications in integrated Replicat
mode. See Assigning Credentials to Oracle GoldenGate in Using Oracle
GoldenGate for Oracle Databasefor information about configuring and running
Replicat in integrated mode.

Run GGSCI.

Stop Replicat.

STOP REPLI CAT group

Log into the target database from GGSCI.
DBLOG N USERI DALI AS al i as

Where: al i as is the alias of a user in the credential store who has the privileges
granted through the Oracle dbns_gol dengat e_aut h. grant _admi n_privil ege
procedure.

Alter Replicat to integrated mode.

ALTER REPLI CAT group, | NTEGRATED

Replace the old parameter file with the new one, keeping the same name.
Start Replicat.

START REPLI CAT group

Verify that Replicat is in integrated mode.

I NFO REPLI CAT group

19-22

Chapter 19
Switching Replicat from Integrated Mode to Nonintegrated Mode

When you start Replicat in integrated mode for the first time, the START command
registers the Replicat group with the database and starts an inbound server to which
Replicat attaches. When you convert a Replicat group to integrated mode, the use of
the Oracle GoldenGate checkpoint table is discontinued and recovery information is
maintained internally by the inbound server and by the checkpoint file going forward.
You can retain the checkpoint table in the event that you decide to switch back to
nonintegrated mode.

Switching Replicat from Integrated Mode to Nonintegrated

Mode

ORACLE

Valid for Oracle only. For more information about Replicat modes for an Oracle
database, see About Integrated Replicat in Using Oracle GoldenGate for Oracle
Database.

You can, at any time, switch Replicat from integrated mode to nonintegrated mode.
This switch automatically unregisters the Replicat group from the target database,
which removes the inbound server.

Note:

Do not configure the switch between Replicat modes to occur immediately
after Extract recovers from a failure or is repositioned to a different location in
the transaction log.

Bug 17079228

1. Back up the Oracle GoldenGate working directories.

2. While the Oracle GoldenGate processes continue to run in their current
configuration, so that they keep up with current change activity, copy the Replicat
parameter file to a new name.

3. Grant the appropriate privileges to the Replicat user and perform the required
configuration steps to support your business applications in nonintegrated Replicat
mode. See Assigning Credentials to Oracle GoldenGatein Using Oracle
GoldenGate for Oracle Databasefor information about configuring and running
Replicat in integrated mode.

4. Run GGSCI.
5. Log into the target database from GGSCI.

DBLOG N USERI DALI AS al i as

Where: al i as is the alias of a user in the credential store who has the privileges
granted through the Oracle dbns_gol dengat e_aut h. grant _admin_privil ege
procedure.

6. Create a checkpoint table in the target database for the nonintegrated Replicat to
use to store its recovery checkpoints. If a checkpoint table was previously
associated with this Replicat group and still exists, you can omit this step. See
Creating a Checkpoint Table for more information about options for using a
checkpoint table.

19-23

Chapter 19
Switching Replicat to Coordinated Mode

ADD CHECKPOI NTTABLE [contai ner.]table
7. Stop Replicat.
STOP REPLI CAT group

8. Alter Replicat to nonintegrated mode. For the CHECKPO NTTABLE argument, specify
the checkpoint table that you created for this Replicat group.

ALTER REPLI CAT group, NONINTEGRATED, CHECKPO NTTABLE [container.]table
9. Replace the old parameter file with the new one, keeping the same name.
10. Start Replicat.

START REPLI CAT group
After issuing this command, wait until there is some activity on the source
database so that the switchover can be completed. (Replicat waits until its internal

high-water mark is exceeded before removing the status of "switching from
integrated mode.")

11. Verify that Replicat switched to nonintegrated mode.

| NFO REPLI CAT group

Switching Replicat to Coordinated Mode

Valid for all database types supported by Oracle GoldenGate.

This procedure upgrades a regular Replicat configuration (non-coordinated) to a
coordinated configuration. This procedure assumes you are replacing a configuration
that partitions data across multiple Extract and Replicat processes with a configuration
that uses one Extract and one coordinated Replicat. The coordinated Replicat
replaces the need for using multiple Replicat processes. A coordinated Replicat
requires only one trail, so there is no need for multiple Extract processes or data
pumps.

See Configuring Online Change Synchronization for more information about
coordinated Replicat.

* Procedure Overview

» Performing the Switch to Coordinated Replicat

Procedure Overview

ORACLE

This procedure makes use of the EVENTACTI ONS parameter with a STOP action, which
enables all of the Replicat processes to stop at the same point in the trail. The
EVENTACTI ONS action is triggered by a transaction that contains an | NSERT to a dummy
table. The | NSERT causes each process to finish processing everything up to, and
including, the event transaction and then stop cleanly. An additional event action of

| GNORE is specified for Replicat to prevent the multiple Replicat processes from
attempting to insert the same record to the target. The result of this procedure is that
all processes stop at the same point in the data stream: after completing the | NSERT
transaction to the dummy table.

After the processes stop, you move all of the TABLE statements to one primary Extract
group. You move the same TABLE statements to the data pump that reads the trail of
the Extract group that you retained. You move all of the MAP statements to a new

19-24

Chapter 19
Switching Replicat to Coordinated Mode

coordinated Replicat group that reads the remote trail that is associated with the
retained data pump. Once all of the MAP statements are in one parameter file, you edit
them to add the thread specifications to support a coordinated Replicat. (This can be
done ahead of time.) Then you drop the Replicat group and add it back in coordinated
mode with the same name.

Performing the Switch to Coordinated Replicat

ORACLE

10.

11.

12.

Note:

Do not create the Replicat group until prompted by these instructions.

Back up the current parameter files of all of the Extract groups, data pumps, and
Replicat groups. You will be editing them.

Create a working directory outside the Oracle GoldenGate directory. You will use
this directory to create and stage new versions of the parameter files. If needed,
you can create a working directory on the source and target systems.

In the working directory, create a parameter file for a coordinated Replicat. Copy
the MAP parameters from the active parameter files of all of the Replicat groups to
this parameter file, and then add the thread specifications and any other
parameters that support your required coordinated Replicat configuration

If using multiple primary Extract groups, select one to keep, and then save a copy
of its current parameter file to the working directory.

Copy all of the TABLE statements from the other Extract groups to the new
parameter file of the primary Extract that you are keeping.

In the working directory, save a copy of the parameter file of the data pump that is
linked to the primary Extract that you are keeping.

Copy all of the TABLE statements from the other data pumps to the copied
parameter file of the kept data pump.

In the source database, create a simple dummy table on which a simple | NSERT
statement can be performed. For this procedure, the name schena. event is used.

Create the same table on the target system, to avoid the need for additional
configuration parameters.

Edit the active parameter files (not the copies) of all primary and data-pump
Extract groups to add the following EVENTACTI ONS parameter to each one.

TABLE schema. event, EVENTACTI ONS(STOP);

Edit the active parameter files (not the copies) of all of the Replicat groups to add
the following EVENTACTI ONS parameter to each one.

MAP schema. event, TARGET schena. event, EVENTACTI ONS(|GNORE, STOP);
Stop the Oracle GoldenGate processes gracefully in the following order:
e Stop all Replicat processes.

e Stop all data pumps.

e Stop all Extract processes.

19-25

ORACLE

13.

14.

15.

16.

17.
18.
19.
20.

21.

22,

23.
24,
25.

Chapter 19
Switching Replicat to Coordinated Mode

Restart the Oracle GoldenGate processes in the following order so that the
EVENTACTI ONS parameters take effect:

e Start all Extract processes.
e Start all data pumps.
e Start all Replicat processes.

On the source system, issue a transaction on the schema. event table that contains
one | NSERT statement. Make certain to commit the transaction.

In GGSCI, issue the STATUS command for all of the primary Extract and data pump
processes on the source system, and issue the same command for all of the
Replicat processes on the target system, until the commands show that all of the
processes are STOPPED.

STATUS EXTRACT *
STATUS REPLI CAT *

Replace the active parameter files of the primary Extract and data pump that you
kept with the new parameter files from the working directory.

Delete the unneeded Extract and data pump groups and their parameter files.
Log into the target database by using the DBLOG N command.
Delete all of the Replicat groups and their active parameter files.

Copy or move the new coordinated Replicat parameter file from the working
directory to the Oracle GoldenGate directory.

In GGSCI, issue the | NFO EXTRACT command for the data pump and make note of
its write checkpoint position in the output (remote) trail.

I NFO EXTRACT punp, DETAIL
Add a new coordinated Replicat group with the following parameters.

ADD REPLI CAT group, EXTTRAIL trail, EXTSEQNO sequence_nunber, EXTRBA rba,
COORDI NATED MAXTHREADS nunber

Where:

* group is the name of the coordinated Replicat group. The nhame must match
that of the new parameter file created for this group.

e EXTTRAIL trail isthe name of the trail that the data pump writes to.

e EXTSEQNO sequence_number is the sequence number of the trail as shown in
the write checkpoint returned by the | NFO EXTRACT that you issued for the data

pump.

* EXTRBA rba is the relative byte address in the trail as shown in the write
checkpoint returned by | NFO EXTRACT. Together, these position Replicat to
resume processing at the correct point in the trial.

e MAXTHREADS number specifies the maximum number of threads allowed for this
group. This value should be appropriate for the number of threads that are
specified in the parameter file.

Start the primary Extract group.
Start the data pump group.

Start the coordinated Replicat group.

19-26

Chapter 19
Administering a Coordinated Replicat Configuration

Administering a Coordinated Replicat Configuration

This section contains instructions for coordinating threads and re-partitioning the
workload among new or different threads. A coordinated Replicat should be stopped
cleanly with the STOP REPLI CAT command before making modifications to the partition
specifications in THREAD or THREADRANGE clauses of the MAP statements. A clean stop
ensures that all of the threads, which may be at different locations in the trail at any
given point, all finish their work and arrive at a common trail location.

At startup, Replicat issues an error and abends if it detects that the last shutdown was
not clean and the partitioning in the MAP statements was changed to contain a different
number of threads (threads were added or removed). However, if the same threads
are kept in the parameter file but simply rearranged among different MAP statements,
Replicat issues a warning but does not abend. This can result in missing or duplicate
records, because there is no way to ensure continuity of the thread-to-workload
allocations from the previous run.

The following is an example of this condition.
Following is the original partitioning scheme:

MAP source, target, THREADRANGE(1-5);
MAP sourcel, targetl, THREADRANGE(6-10);

The following re-partitioning of the original scheme produces only a warning:

MAP source, target, THREADRANGE(1-4);
MAP sourcel, targetl, THREADRANGE(5-10);

This section provides instructions for cleanly shutting down Replicat before performing
a re-partitioning, as well as instructions for attempting to recover Replicat continuity
when a re-partitioning is performed after an unclean shutdown.

The following tasks can be performed for a Replicat group in coordinated mode.

e Performing a Planned Re-partitioning of the Workload
* Recovering Replicat After an Unplanned Re-partitioning

e Synchronizing Threads After an Unclean Stop

Performing a Planned Re-partitioning of the Workload

ORACLE

A planned re-partitioning is when Replicat is allowed to shut down cleanly before it is
started again with a new parameter file that contains updated thread partitioning. A
clean shutdown enables all of the threads to arrive at a common checkpoint position in
the trail. At that point, the new partitioning scheme can be applied in the next run. If
Replicat does not shut down cleanly in this procedure, for example if there is an apply
error, use the procedure in Synchronizing Threads After an Unclean Stop to re-
synchronize the threads before you re-partition them.

1. Run GGSCI.
2. Stop Replicat.
STCP REPLI CAT group

3. Open the parameter file for editing.

19-27

Chapter 19
Administering a Coordinated Replicat Configuration

EDI T PARAVS gr oup

4. Make the required changes to the THREAD or THREADRANGE specifications in the MAP
statements.

5. Save and close the parameter file.
6. Start Replicat.
START REPLI CAT group

Recovering Replicat After an Unplanned Re-partitioning

An unplanned re-partitioning is when Replicat is not allowed to shut down cleanly
before it is started again with a new parameter file that contains updated thread
partitioning. In this scenario, some or all of the old threads were not able to finish their
work and arrive at a common checkpoint. Upon restart, the coordinator thread
attempts to apply the old partitioning scheme, and Replicat abends with an error. You
can recover the coordinated Replicat group from this condition in one of the following
ways:

» Use the auto-saved copy of the parameter file
e Reprocess from the low watermark with HANDLECOLLI SI ONS

* Reprocessing From the Low Watermark with HANDLECOLLISIONS

» Using the Auto-Saved Parameter File

Reprocessing From the Low Watermark with HANDLECOLLISIONS

ORACLE

In this procedure, you reposition all of the threads to the low watermark position. This
is the earliest checkpoint position performed among all of the threads. To state it
another way, the low watermark position is the last record processed by the slowest
thread before the unclean stop. When you start Replicat, the threads reprocess the
operations that they were processing before Replicat stopped, and the

HANDLECCLLI SI ONS parameter handles any duplicate-record and missing-record errors
that occur as the faster threads reprocess operations that they applied before the
unclean stop.

1. Add the HANDLECOLLI SI ONS parameter to the Replicat parameter file. It is not
necessary to use any THREADS options.

2. Issue the | NFO REPLI CAT command for the Replicat group as a whole (the
coordinator thread). Make a record of the RBA of the checkpoint. This is the low
watermark value. This output also shows you the active thread IDs under the
G oup Name column. Make a record of these, as well.

| NFO REPLI CAT group

GGSCl (sl c03jgo) 3> info ra detail REPLICAT RA Last Started 2013-05-01
14:15 Status ABENDEDCOORDI NATED Coor di nat or

MAXTHREADS 15Checkpoi nt Lag 00: 00: 00 (updated 00:00:07 ago) Process

ID 11445Log Read Checkpoint File ./dirdat/w thMaxTransQp/
bg000000001 2013-05-02 07:49: 45.975662 RBA 44704Lowest Log
BSN val ue: (requires database |ogin)Active Threads: ID Goup Nane PID

Status Lag at Chkpt Time Since Chkptl RA001 11454 ABENDED

00: 00: 00 00: 00: 01 2 RADO2 11455 ABENDED 00: 00: 00 00: 00: 04
3 RA003 11456 ABENDED 00: 00: 00 00: 00: 01 5 RA005 11457

19-28

Chapter 19
Administering a Coordinated Replicat Configuration

ABENDED 00: 00: 00 00: 00: 02 6 RA006 11458 ABENDED 00: 00: 00
00: 00: 04 7 RA0OO7 11459 ABENDED 00: 00: 00 00: 00: 04

Issue the | NFO REPLI CAT command for each processing thread ID and record the
RBA position of each thread. Make a note of the highest RBA. This is the high
watermark of the Replicat group.

| NFO REPLI CAT t hreadl D

info ra002

REPLI CAT RA002 Last Started 2013-05-01 14:15 Status

ABENDEDCOORDI NATED Replicat Thread Thread 2Checkpoi nt
Lag 00: 00: 00 (updated 00:00: 06 ago) Process ID 11455

Log Read Checkpoint File ./dirdat/withMxTransQp/

bg000000001 2013-05-02 07:49: 15. 837271 RBA 45603

Issue the ALTER REPLI CAT command for the coordinator thread (Replicat as a
whole, without any thread ID) and position to the low watermark RBA that you
recorded.

ALTER REPLI CAT group EXTRBA | ow _wat er mark_r ba
Start Replicat.
START REPLI CAT group

Issue the basic | NFO REPLI CAT command until it shows an RBA that is higher than
the high watermark that you recorded. HANDLECOLLI SI ONS handles any collisions
that occur due to previously applied transactions.

I NFO REPLI CAT group

Stop Replicat.

STOP REPLI CAT group

Remove or comment out the HANDLECOLLI SI ONS parameter.
Start Replicat.

START REPLI CAT group

Using the Auto-Saved Parameter File

ORACLE

A copy of the original parameter file is saved whenever the parameter file is edited
before shutting down Replicat cleanly. You can revert to this parameter file and then
resynchronize the threads so that they all catch up to the thread that had the most
recent checkpoint position. Once the threads are synchronized, you can switch to the
new parameter file and then start Replicat.

1.

Save the new parameter file to a different name, and then rename the saved
original parameter file to the correct name (same as the group name). The saved
parameter file has a . backup suffix and is stored in the di r pr msubdirectory of the
Oracle GoldenGate installation directory.

Issue the following command to synchronize the Replicat threads to the maximum
checkpoint position. This command automatically starts Replicat and executes the
threads until they reach the maximum checkpoint position.

SYNCHRONI ZE REPLI CAT gr oup
Issue the STATUS REPLI CAT command until it shows that Replicat stopped cleanly.
STATUS REPLI CAT group

19-29

Chapter 19
Restarting a Primary Extract after System Failure or Corruption

4. Save the original parameter file to a different name, and then rename the new
parameter file to the group name.

5. Start Replicat.
START REPLI CAT group

Synchronizing Threads After an Unclean Stop

When a Replicat group stops in an unclean manner, not all of the threads will reach a
common checkpoint position in the trail. Unclean stops can be caused by issuing STOP
REPLI CAT with the ! option, issuing the KI LL REPLI CAT command, or by transient
errors related to Replicat, the database, or other local processes. You can restore the
threads to the same position in the trail after an unclean stop and then start Replicat
again from the correct checkpoint position.

In this procedure, the restore position is the high watermark. This is the most recent
checkpoint position performed among all of the threads (the last record processed by
the fastest thread before the unclean stop). Before starting Replicat, you can make
changes to the parameter file, such as to repartition the workload among different or
new threads. The repartitioning takes effect in a seamless manner after you start
Replicat, because the threads can start from a synchronized state.

1. Run GGSCI.

2. Synchronize the Replicat threads to the maximum checkpoint position. Replicat
performs the synchronization and then stops.

SYNCHRONI ZE REPLI CAT group

3. (Optional) To re-partition the workload among different or new threads, open the
parameter file for editing and then make the required changes to the THREAD or
THREADRANGE specifications in the MAP statements.

EDI T PARAVB group
4. Save and close the parameter file.
5. Start Replicat.

START REPLI CAT group

Restarting a Primary Extract after System Failure or
Corruption

ORACLE

This procedure enables Oracle GoldenGate to recover from certain conditions, such
as a file system corruption or a system failure, that corrupt the Extract checkpoint file,
trail, or both, and which prevent Extract from being able to start. It enables you to
establish a safe starting point in the transaction log for the primary Extract after the
system has been restored. It also shows you how to reposition downstream data
pumps and Replicat to read from the correct Extract write position in the trails, and to
filter out any transactions that Replicat already applied to the target.

e Details of This Procedure

e Performing the Recovery

19-30

Chapter 19
Restarting a Primary Extract after System Failure or Corruption

Detalls of This Procedure

Extract passes a log begin sequence number, or LOGBSN, to the trail files. The BSN
is the native database sequence number that identifies the oldest uncommitted
transaction that is held in Extract memory. For example, the BSN in an Oracle
installation would be the Oracle system change number (SCN). Each trail file contains
the lowest LOGBSN value for all of the transactions in that trail file. Once you know the
LOGBSN value, you can reposition Extract at the correct read position to ensure that the
appropriate transactions are re-generated to the trail and propagated to Replicat.

" Note:

In an Oracle RAC environment, the lowest SCN of all of the threads is
transmitted to Replicat. Transactions that may already have been committed
by Replicat are handled as duplicates at startup. However, any thread that
has been idle past a certain threshold will not be considered for the BSN
value, to avoid Extract having to read too far back in the log stream when
restarted.

The bounded recovery checkpoint is not taken into account when calculating the
LOGBSN. The failure that affected the Extract checkpoint file may also involve a loss of
the persisted bounded recovery data files and bounded recovery checkpoint
information.

Performing the Recovery

ORACLE

Follow these steps in the order shown to recover the Oracle GoldenGate processes.
1. In GGSCI on the target system, issue the DBLOG N command.
DBLOG N {USERI D Replicat_user | USERI DALIAS alias_of Replicat_user}

2. On the target, obtain the LOGBSN value by issuing the | NFO REPLI CAT command
with the DETAI L option.

| NFO REPLI CAT group, DETAIL

The BSN is included in the output as a line similar to the following:
Current Log BSN val ue: 1151679

3. (Classic capture mode only. Skip if using integrated capture mode.) Query the
source database to find the sequence number of the transaction log file that
contains the value of the LOGBSN that you identified in the previous step. This
example assumes 1855798 is the LOGBSN value and shows that the sequence
number of the transaction log that contains that LOGBSN value is 163.

SQ> sel ect nane, thread#, sequence# from v$archived_| og
where 1855798 between first_change# and next _change#;

NAME THREAD# SEQUENCE#

--- [oracl e/ dbs/
archl_163_800262442. dbf 1 163

19-31

ORACLE

10.

Chapter 19
Restarting a Primary Extract after System Failure or Corruption

Issue the following commands in GGSCI to reposition the primary Extract to the
LOGBSN start position.

e (Classic capture mode)

ALTER EXTRACT group EXTSEQNO 163
ALTER EXTRACT group EXTRBA 0
ALTER EXTRACT group ETROLLOVER

* (Integrated capture mode)

ALTER EXTRACT group SCN 1151679
ALTER EXTRACT group ETROLLOVER

Note:

There is a limit on how far back Extract can go in the transaction stream,
when in integrated mode. If the required SCN is no longer available, the
ALTER EXTRACT command fails.

Issue the following command in GGSCI to the primary Extract to view the new
sequence number of the Extract Wi te Checkpoi nt. This command shows the trail
and RBA where Extract will begin to write new data. Because a rollover was
issued, the start point is at the beginning (RBA 0) of the new trail file, in this
example file number 7.

| NFO EXTRACT group SHOACH

Sequence #: 7

RBA: 0

Issue the following command in GGSCI to reposition the downstream data pump
and start a new output trail file.

ALTER EXTRACT punp EXTSEQNO 7
ALTER EXTRACT punp EXTRBA 0
ALTER EXTRACT punp ETROLLOVER

Issue the following command in GGSCI to the data pump Extract to view the new
sequence number of the data pump Write Checkpoint, in this example trail number
9.

| NFO EXTRACT punp SHOWCH

Sequence #: 9

RBA: 0

Reposition Replicat to start reading the trail at the new Write Checkpoint of the
data pump.

ALTER REPLI CAT group EXTSEQNO 9
ALTER REPLI CAT group EXTRBA 0

Start the primary Extract and the data pump.

START EXTRACT group
START REPLI CAT group

Issue the following command in GGSCI to start Replicat. If Replicat is operating in
integrated mode (Oracle targets only), you do not need the

FI LTERDUPTRANSACTI ONS option. Integrated Replicat handles duplicate transactions
transparently.

19-32

Chapter 19
Restarting a Primary Extract after System Failure or Corruption

START REPLI CAT group[, FILTERDUPTRANSACTI ONS]

" Note:

The LOGBSN gives you the information needed to set Extract back in time to
reprocess transactions. Some filtering by Replicat is necessary because
Extract will likely re-generate a small amount of data that was already
applied by Replicat. FI LTERDUPTRANSACTI ONS directs Replicat to find and filter
duplicates at the beginning of the run.

ORACLE 19-33

Administering Oracle GoldenGate
Microservices Architecture

ORACLE

The Oracle GoldenGate MA provides all the tools you need to configure, monitor, and
administer deployments and security. It is designed with the industry-standard
HTTP(s) communication protocol and the JavaScript Object Notation (JSON) data
interchange format. In addition, the architecture provides you with the ability to verify
the identity of clients with basic authentication or Secure Sockets Layer client
certificates.

* Loading Data from File to Replicat in Microservices Architecture
By following the steps provided in this topic, data can be precisely replicated from
a source to a target database with zero data loss using a combination of file-based
initial load and change data capture (CDC) processes.

Loading Data from File to Replicat in
Microservices Architecture

ORACLE

By following the steps provided in this topic, data can be precisely replicated from a
source to a target database with zero data loss using a combination of file-based initial
load and change data capture (CDC) processes.

In Loading Data from File to Replicat, the initial load process is implemented using
files. However, Microservices Architecture uses a different approach. The process of
creating and running a replication solution constitutes:

« Initial Load: Used to copy the existing contents of one or more tables from the
source to the target database.

e Change Data Capture: Used to copy transactional changes from the source to the
target database.

Note:

MA doesn’t support loading data with an Oracle GoldenGate direct load.

Phoenix Dallas
» > >
EXTPRIM AABB REPPRIM
Primary Dlslnhuhon Replicat
Extract AA Trail ¢ BB Trail
Source Distribution Receiver Targcl
Server Server
| \—»
L —> — l.
EXTINIT CCDD REPINIT
Initial Load Distribution Replicat
Extract CC Trail Path DDTrail

File-based initial load process is the preferred method for performing data replication
in MA. It's key components are:

e Initial Load Extract and Replicat: Replicates the existing content of the database
tables.

e Primary Extract and Replicat: Replicates change data from the database tables.
e Distribution Paths: Transfers trail files to the target system.

Before you begin, make sure that the database credential alias is created.

20-1

ORACLE

Chapter 20

© Important:

This topic demonstrates the steps for initial load processing using the
AdminClient. However, you can also use curl to perform these steps.

Step 1: Creating a Primary Extract

Precise instantiation is used to replicate database resources correctly from the source
to the target database. The primary Extract is started first to initiate change data
capture early. Precise instantiation is based on the following assumptions:

¢ Note:

For precise instantiation to work, the instantiation SCN must come after the
registration SCN.

e The primary Extract is started. It is responsible for change data capture and noting
it's registration SCN.

e The database is monitored. The database waits for the oldest open transaction’s
SCN to come after the registration SCN. This is the instantiation SCN.

e The instantiation SCN is used when creating the initial load Extract and Replicat
processes.

e The instantiation SCN is used to create the primary Replicat, once the initial load
replication is complete.

To begin, create and start the primary Extract EXTPRI Mfrom the AdminClient, as shown
in the following example:

OGG (not connected) 1> connect https://phoeni x. oggdevops. us: 9100 as
oggadmi n password oggadmin !
Using default depl oynent ' Phoeni x'

OGG (https://phoenix. oggdevops. us: 9100 Phoeni x) 2> dbl ogi n useridalias
oggadmi n
Successful ly 1 ogged into database.

OGG (https://phoenix. oggdevops. us: 9100 Phoeni x as oggadmi n) 3> add extract
EXTPRIM i ntegrated tranl og begi n now
2018-03-16T13:37:07Z INFO OGG 08100 EXTRACT (Integrated) added.

OGG (https://phoenix. oggdevops. us: 9100 Phoeni x as oggadmin) 4> regi ster
extract EXTPR M dat abase

2018- 03-16T13: 37:30Z |NFO 0GG 02003 Extract EXTPRI M successfully
regi stered with database at SCN 1608891.

OGG (https://phoenix. oggdevops. us: 9100 Phoeni x as oggadnin) 5> edit paranms
EXTPRI M

OGG (https://phoenix. oggdevops. us: 9100 Phoeni x as oggadnin) 6> vi ew paranms
EXTPRI M

20-2

ORACLE

Chapter 20

-- EXTPRI M. prm
-- Primary Extract Paranmeter File

Extract EXTPRI M

Useri dAlias oggadnin
Ext Trai | AA

Tabl e user01. *;

OGG (https://phoenix. oggdevops. us: 9100 Phoeni x as oggadmin) 7> add
exttrail AA extract EXTPRIM
2018- 03-16T13: 37: 55Z I NFO OGG- 08100 EXTTRAIL added.

OGG (https://phoenix. oggdevops. us: 9100 Phoeni x as oggadmi n) 8> start
extract EXTPRIM

2018-03-16T13:38: 02Z |NFO OGG 00975 EXTRACT EXTPRI M starting
2018-03-16T13:38: 02Z |NFO OGG 15426 EXTRACT EXTPRI M started

In this example, oggadni n is the database credential alias.

After creating the primary Extract, retrieve the SCN registration number. Run the
REG STER EXTRACT command in the AdminClient. The following example retrieves an
SCN value of 1608891.

OGG (https://phoenix. oggdevops. us: 9100 Phoeni x as oggadmin) 4> register
extract EXTPRI M dat abase

2018-03-16T13: 37: 30Z | NFO OGG 02003 Extract EXTPRI M successfully
registered with database at SCN 1608891.

Step 2: Determining the Instantiation SCN

The Administration Server exposes an endpoint that returns details of all active
transactions and the current database SCN. The PL/SQL query to retrieve this data is:

-- Query for active transactions
Sel ect T.START_SCN, T.STATUS TSTATUS, T.START DATE,
S.SID, S.SERIAL#, S.INST_ID, S.USERNAME, S.OSUSER, S. STATUS

SSTATUS, S. LOGON TI ME

From gv$transaction T

I nner

Join gv$session S

on S.SADDR = T.SES ADDR

Union All

-- Query for current status

Sel ect current_scn, ' CURRENT', CURRENT DATE,
NULL, NULL, NULL, 'SYS', NULL, NULL, NULL
from v$dat abase

Order by 1,

20-3

ORACLE

Chapter 20

The results of this query can be used to determine the instantiation SCN. The results
for this specific query are:

1538916 ACTI VE 2018-03-16 18:10:31.0 3865

9176 1 GGADM N oracle | NACTIVE 2018-03-16
18:10: 26. 0 1540555 CURRENT 2018-03- 16

18:21:50.0 SYS

The SCN used to instantiate the initial load Extract is obtained using SQL*Plus. In the
following example, the SQL query uses the instantiation SCN value as 1624963, which
is the oldest SCN of all open transactions that are also past the registration SCN of
1608891.

OGG (https://phoenix. oggdevops. us: 9100 Phoeni x as oggadnin) 14> shell echo
"Sel ect M N(START_SCN) From gv$transaction;' | ${ORACLE_HOME}/bin/sql plus -
S/ as sysdba

M N(START_SCN)

1624963

If there are no open transactions, then this SQL query returns an empty result. A
detailed query that takes into account the situation where there are no open
transactions is:

Select M N(SCN) as | NSTANTI ATI ON_SCN
From (Sel ect M N(START_SCN) as SCN
From gv$transaction
Union Al
Sel ect current_scn
From gv$dat abase) ;

Step 3: Creating and Starting the Initial Load Replicat

Before you begin this step, make sure that the checkpoint table

oggadmi n. checkpoi nt s, already exists on the target system. The initial load Replicat is
responsible for populating the target database. Run the following command on the
AdminClient to create and start the initial load Replicat (REPI NI T):

OGG (not connected) 1> connect https://dallas.oggdevops. us: 9100 as
oggadmi n password oggadmin !
Using default depl oynment 'Dallas’

OGG (https://dallas. oggdevops. us: 9100 Dal I as) 2> dbl ogi n useridalias
oggadmi n
Successful |y | ogged into database.

OGG (https://dallas.oggdevops. us: 9100 Dal | as as oggadmin) 3> add
checkpoi ntt abl e oggadm n. checkpoi nt s
ADD "oggadm n. checkpoi nts" succeeded.

OGG (https://dallas. oggdevops. us: 9100 Dal | as as oggadmi n) 4> add replicat
REPINIT exttrail DD checkpointtabl e oggadm n. checkpoints

20-4

Chapter 20

2018-03-16T13:56: 41Z | NFO OGG 08100 REPLI CAT added.

OGG (https://dallas.oggdevops. us: 9100 Dal l as as oggadmin) 5> edit parans
REPINI T

OGG (https://dallas.oggdevops. us: 9100 Dal | as as oggadmin) 6> view parans
REPINIT
-- REPINI'T. prm
-- File-Based Initial Load Replicat Paraneter File
Repl i cat REPINI T
Useri dAlias oggadnin
Map user01.*
Tar get user01. *;

OGG (https://dallas.oggdevops. us: 9100 Dal | as as oggadmin) 7> start
replicat REPINIT

2018-03-16T13:58:21Z INFO 0OGG 00975 REPLICAT REPINIT starting
2018-03-16T13:58:21Z INFO OGG 15426 REPLICAT REPINIT started

Step 4: Creating and starting the Initial Load Extract

Using the instantiation SCN that you retrieved (1624963), the initial load Extract is
created to write contents of the database tables to the trail.

Create and start the initial load extract, EXTI NI T.

OGG (https://phoenix. oggdevops. us: 9100 Phoeni x as oggadmin) 15> add
extract EXTINIT sourceistable
2018-03-16T14:08:38Z INFO OGG 08100 EXTRACT added.

OGG (https://phoenix. oggdevops. us: 9100 Phoeni x as oggadmin) 16> edit
params EXTINIT

OGG (https://phoenix. oggdevops. us: 9100 Phoeni x as oggadnin) 17> view
params EXTINIT

-- EXTINIT. prm

-- File-Based Initial Load Extract Parameter File

Extract EXTINIT

Useri dAlias oggadnin

ExtFile CC Megabytes 2000 Purge

Tabl e user01.*, SQ.Predicate "As O SCN 1609723";

OGG (https://phoenix. oggdevops. us: 9100 Phoeni x as oggadmin) 18> start
extract EXTINIT

2018-03-16T14: 13: 42Z |NFO OGG 00975 EXTRACT EXTINIT starting
2018-03-16T14: 13: 42Z |NFO OGG 15426 EXTRACT EXTINIT started

ORACLE 20-5

ORACLE

Chapter 20

Step 5: Creating the Distribution Paths

Create two distribution paths (AABB and CCDD) for copying the local trails to the remote
host from the AdminClient:

OGG (https://phoenix. oggdevops. us: 9100 Phoeni x) 15> add di stpath AABB
source trail://phoenix. oggdevops. us: 9102/ servi ces/ v2/ sour ces?trai | =AA
target wss://dallas.oggdevops. us: 9103/ services/v2/targets?trail =BB
2018-03-16T17:28:27Z INFO 0OGG 08511 The path ' AABB' has been added.

OGG (https://phoenix. oggdevops. us: 9100 Phoeni x) 16> add di st path CCDD
source trail://phoenix. oggdevops. us: 9102/ servi ces/ v2/ sour ces?trai | =CC
target wss://dallas.oggdevops. us: 9103/ servi ces/v2/targets?trail=DD
2018-03-16T17:28:35Z INFO 0OGG 08511 The path 'CCDD has been added.

OGG (https://phoenix. oggdevops. us: 9100 Phoeni x) 17> start distpath AABB
2018-03-16T17:28:42Z INFO 0OGG 08513 The path ' AABB' has been started.

OGG (https://phoenix. oggdevops. us: 9100 Phoeni x) 18> start distpath CCDD
2018-03-16T17:28:47Z INFO 0OGG 08513 The path 'CCDD has been started.

Step 6: Creating the Primary Replicat REPPRIM

Once the initial load Extract and Replicat complete, they can be deleted. Then, the
primary Replicat process is created on the remote host for applying change data to the
target database.

Use the AdminClient to create the primary Replicat process.

Note:

The primary Replicat is started at the instantiation SCN.

OGG (https://dallas.oggdevops. us: 9100 Dallas as oggadmin) 12> add replicat
REPPRI M exttrail BB checkpointtabl e oggadmi n. checkpoi nts
2018-03-16T17:37:46Z INFO 0OGG 08100 REPLI CAT added.

OGG (https://dallas.oggdevops. us: 9100 Dallas as oggadmin) 13> edit parans
REPPRI M

OGG (https://dallas.oggdevops. us: 9100 Dallas as oggadmin) 14> view parans
REPPRI M

-- REPPRI M. prm
-- Replicat Parameter File

Repl i cat REPPRI M

Useri dAlias oggadnin

Map user01.*
Tar get user01. *;

OGG (https://dallas.oggdevops. us: 9100 Dal |l as as oggadmin) 15> start

20-6

Chapter 20

replicat REPPRIM atcsn 1624963
2018-03-16T17:38:10Z INFO OGG 00975 REPLICAT REPPRIM starting
2018-03-16T17:38:10Z INFO OGG 15426 REPLI CAT REPPRI M start ed

ORACLE 20-7

Supported Character Sets

This appendix lists the character sets that Oracle GoldenGate supports when
converting data from source to target.

The identifiers that are shown should be used for Oracle GoldenGate parameters or
commands when a character set must be specified, instead of the actual character set
name. Currently Oracle GoldenGate does not provide a facility to specify the
database-specific character set.

Topics:

* Supported Character Sets - Oracle

* Supported Character Sets - Non-Oracle

Supported Character Sets - Oracle

ORACLE

Table A-1 Supported Oracle Character Sets

Identifier to use in
parameter files and

Character Set

commands

ar 8ados710t Arabic MS-DOS 710 8-bit Latin/Arabic
ar8ados710 Arabic MS-DOS 710 Server 8-bit Latin/Arabic
ar 8ados720t Arabic MS-DOS 720 8-bit Latin/Arabic

ar 8ados720 Arabic MS-DOS 720 Server 8-bit Latin/Arabic
ar 8apt ec715t APTEC 715 8-bit Latin/Arabic

ar 8aptec715 APTEC 715 Server 8-bit Latin/Arabic

ar 8ar abi cmacs

Mac Server 8-bit Latin/Arabic

ar 8ar abi cmact

Mac 8-bit Latin/Arabic

ar 8ar abi cnac

Mac Client 8-bit Latin/Arabic

ar 8asm708pl us

ASMO 708 Plus 8-bit Latin/Arabic

ar 8asno8x

ASMO Extended 708 8-bit Latin/Arabic

ar 8ebcdi c420s

EBCDIC Code Page 420 Server 8-bit Latin/Arabic

ar 8ebcdi cx

EBCDIC XBASIC Server 8-bit Latin/Arabic

ar 8hpar abi c8t

HP 8-bit Latin/Arabic

ar 8i s08859p6

ISO 8859-6 Latin/Arabic

ar 8nmswi n1256

MS Windows Code Page 1256 8-Bit Latin/Arabic

ar 8nussad768t

Mussa'd Alarabi/2 768 8-bit Latin/Arabic

ar 8nussad768

Mussa'd Alarabi/2 768 Server 8-bit Latin/Arabic

A-1

ORACLE

Appendix A
Supported Character Sets - Oracle

Table A-1 (Cont.) Supported Oracle Character Sets

Identifier to use in Character Set
parameter files and

commands

ar 8nafitha711t

Nafitha International 711 Server 8-bit Latin/Arabic

ar8nafitha71ll

Nafitha Enhanced 711 Server 8-bit Latin/Arabic

ar 8naf i t ha721t

Nafitha International 721 8-bit Latin/Arabic

ar8nafitha721

Nafitha International 721 Server 8-bit Latin/Arabic

ar 8sakhr 706 SAKHR 706 Server 8-bit Latin/Arabic

ar 8sakhr 707t SAKHR 707 8-bit Latin/Arabic

ar 8sakhr 707 SAKHR 707 Server 8-bit Latin/Arabic

ar 8xbasic XBASIC 8-bit Latin/Arabic

az8i s08859p9e ISO 8859-9 Azerbaijani

bg8mswi n MS Windows 8-bit Bulgarian Cyrillic

bg8pc437s IBM-PC Code Page 437 8-bit (Bulgarian Modification)
bl t 8cp921 Latvian Standard LVS8-92(1) Windows/Unix 8-bit Baltic

bl t 8ebcdi c1112s

EBCDIC Code Page 1112 8-hit Server Baltic Multilingual

bl t 8ebcdi c1112

EBCDIC Code Page 1112 8-bit Baltic Multilingual

bl t 8i s08859p13

ISO 8859-13 Baltic

bl t 8mswi n1257

MS Windows Code Page 1257 8-bit Baltic

bl t 8pc775 IBM-PC Code Page 775 8-bit Baltic

bn8bsci i Bangladesh National Code 8-bit BSCII
cdn8pc863 IBM-PC Code Page 863 8-bit Canadian French
ce8bs2000 Siemens EBCDIC.DF.04-2 8-bit Central European

cel 8i s08859p14

ISO 8859-13 Celtic

ch7dec

DEC VT100 7-bit Swiss (German/French)

cl 8bs2000

Siemens EBCDIC.EHC.LC 8-bit Latin/Cyrillic-1

cl 8ebcdi c1025¢

EBCDIC Code Page 1025 Client 8-bit Cyrillic

cl 8ebcdi c1025r

EBCDIC Code Page 1025 Server 8-bit Cyrillic

cl 8ebcdi c1025s

EBCDIC Code Page 1025 Server 8-bit Cyrillic

cl 8ebcdi c1025

EBCDIC Code Page 1025 8-bit Cyrillic

cl 8ebcdi c1025x

EBCDIC Code Page 1025 (Modified) 8-bit Cyrillic

cl 8ebcdi c1158r

EBCDIC Code Page 1158 Server 8-bit Cyrillic

cl 8ebcdi c1158

EBCDIC Code Page 1158 8-hit Cyrillic

cl 8i s08859p5

ISO 8859-5 Latin/Cyrillic

cl 8isoirlll

SOIR111 Cyrillic

cl 8koi 8r

RELCOM Internet Standard 8-bit Latin/Cyrillic

A-2

ORACLE

Appendix A
Supported Character Sets - Oracle

Table A-1 (Cont.) Supported Oracle Character Sets

Identifier to use in Character Set
parameter files and

commands

cl 8koi 8u KOI8 Ukrainian Cyrillic

cl 8maccyrillics Mac Server 8-bit Latin/Cyrillic

cl 8maccyrillic Mac Client 8-bit Latin/Cyrillic

cl 8mswi n1251 MS Windows Code Page 1251 8-bit Latin/Cyrillic
d7dec DEC VT100 7-bit German

d7si emens9780x Siemens 97801/97808 7-bit German

d8bs2000 Siemens 9750-62 EBCDIC 8-bit German

d8ebcdi c1141

EBCDIC Code Page 1141 8-bit Austrian German

d8ebcdi c273

EBCDIC Code Page 273/1 8-bit Austrian German

dk7si emens9780x

Siemens 97801/97808 7-bit Danish

dk8bs2000

Siemens 9750-62 EBCDIC 8-bit Danish

dk8ebcdi c1142

EBCDIC Code Page 1142 8-bit Danish

dk8ebcdi c277

EBCDIC Code Page 277/1 8-bit Danish

e7dec

DEC VT100 7-bit Spanish

e7si emrens9780x

Siemens 97801/97808 7-bit Spanish

e8bs2000

Siemens 9750-62 EBCDIC 8-bit Spanish

ee8bs2000

Siemens EBCDIC.EHC.L2 8-bit East European

ee8ebcdi c870c

EBCDIC Code Page 870 Client 8-bit East European

ee8ebcdi c870s

EBCDIC Code Page 870 Server 8-bit East European

ee8ebcdi c870

EBCDIC Code Page 870 8-bit East European

ee8i s08859p2

ISO 8859-2 East European

ee8nacces

Mac Server 8-bit Central European

ee8nacce

Mac Client 8-bit Central European

ee8nmaccroati ans

Mac Server 8-bit Croatian

ee8nmaccroati an

Mac Client 8-bit Croatian

ee8msw n1250

MS Windows Code Page 1250 8-bit East European

ee8pc852 IBM-PC Code Page 852 8-bit East European
eec8eur oasci EEC Targon 35 ASCI West European/Greek
eec8eur opa3 EEC EUROPAS3 8-bit West European/Greek
el 8dec DEC 8-bit Latin/Greek

el 8ebcdi c423r

IBM EBCDIC Code Page 423 for RDBMS server-side

el 8ebcdi c875r

EBCDIC Code Page 875 Server 8-bit Greek

el 8ebcdi c875s

EBCDIC Code Page 875 Server 8-bit Greek

A-3

ORACLE

Appendix A
Supported Character Sets - Oracle

Table A-1 (Cont.) Supported Oracle Character Sets

Identifier to use in
parameter files and

Character Set

commands
el 8ebcdi c875 EBCDIC Code Page 875 8-bit Greek
el 8gcos7 Bull EBCDIC GCOS7 8-bit Greek

el 8i s08859p7

ISO 8859-7 Latin/Greek

el 8macgreeks

Mac Server 8-bit Greek

el 8macgr eek Mac Client 8-bit Greek

el 8nmswi n1253 MS Windows Code Page 1253 8-bit Latin/Greek
el 8pc437s IBM-PC Code Page 437 8-bit (Greek modification)
el 8pc737 IBM-PC Code Page 737 8-bit Greek/Latin

el 8pc851 IBM-PC Code Page 851 8-bit Greek/Latin

el 8pc869 IBM-PC Code Page 869 8-bit Greek/Latin

et 8nmswi n923 MS Windows Code Page 923 8-bit Estonian

f 7dec DEC VT100 7-bit French

f7si emens9780x Siemens 97801/97808 7-bit French

f 8052000 Siemens 9750-62 EBCDIC 8-bit French

f 8ebcdi c1147

EBCDIC Code Page 1147 8-bit French

f 8ebcdi c297

EBCDIC Code Page 297 8-bit French

hu8abnod Hungarian 8-bit Special AB Mod
hu8cwi 2 Hungarian 8-bit CWI-2
i 7dec DEC VT100 7-bit Italian

i 7si emens9780x

Siemens 97801/97808 7-bit Italian

i 8ebcdi c1144

EBCDIC Code Page 1144 8-bit Italian

i 8ebcdi 280

EBCDIC Code Page 280/1 8-hit Italian

in8iscii

Multiple-Script Indian Standard 8-bit Latin/Indian

i s8maci cel andi cs

Mac Server 8-bit Icelandic

i s8maci cel andi ¢

Mac Client 8-bit Icelandic

i s8pc861

IBM-PC Code Page 861 8-bit Icelandic

i W7i s960

Israeli Standard 960 7-bit Latin/Hebrew

i wBebcdi ¢1086

EBCDIC Code Page 1086 8-bit Hebrew

i wBebcdi c424s

EBCDIC Code Page 424 Server 8-bit Latin/Hebrew

i wBebcdi c424

EBCDIC Code Page 424 8-bit Latin/Hebrew

i wBi s08859p8

ISO 8859-8 Latin/Hebrew

i w8nmachebr ews

Mac Server 8-bit Hebrew

i wBmachebr ew

Mac Client 8-bit Hebrew

A-4

ORACLE

Appendix A
Supported Character Sets - Oracle

Table A-1 (Cont.) Supported Oracle Character Sets

Identifier to use in
parameter files and

Character Set

commands

i wnswi n1255 MS Windows Code Page 1255 8-bit Latin/Hebrew

i wBpc1507 IBM-PC Code Page 1507/862 8-bit Latin/Hebrew

j aledbcs IBM EBCDIC 16-bit Japanese

j al6ebcdi c930 IBM DBCS Code Page 290 16-bit Japanese

jal6euctil de Same as | al6euc except for the way that the wave dash and the tilde
are mapped to and from Unicode

j al6euc EUC 24-bit Japanese

j al6eucyen EUC 24-bit Japanese with '\ mapped to the Japanese yen character

jalémacsjis Mac client Shift-JIS 16-bit Japanese

jalésjistilde Same as j al6sj i s except for the way that the wave dash and the tilde
are mapped to and from Unicode.

jal6sjis Shift-JIS 16-bit Japanese

j alésjisyen Shift-JIS 16-bit Japanese with '\' mapped to the Japanese yen character

j alévns JVMS 16-bit Japanese

kol6dbcs IBM EBCDIC 16-bit Korean

kol6ksc5601 KSC5601 16-bit Korean

kol6ksccs KSCCS 16-bit Korean

kol6mswi n949 MS Windows Code Page 949 Korean

| a8i s06937 ISO 6937 8-bit Coded Character Set for Text Communication

| a8passport German Government Printer 8-bit All-European Latin

[t8nswi n921 MS Windows Code Page 921 8-bit Lithuanian

[t8pc772 IBM-PC Code Page 772 8-bit Lithuanian (Latin/Cyrillic)

[t8pc774 IBM-PC Code Page 774 8-bit Lithuanian (Latin)

| v8pcl117 IBM-PC Code Page 1117 8-bit Latvian

| v8pc8lr Latvian Version IBM-PC Code Page 866 8-bit Latin/Cyrillic

[v8rst 104090 IBM-PC Alternative Code Page 8-bit Latvian (Latin/Cyrillic)

n7si emens9780x

Siemens 97801/97808 7-bit Norwegian

n8pc865

IBM-PC Code Page 865 8-hit Norwegian

ndk7dec

DEC VT100 7-bit Norwegian/Danish

ne8i s08859p10

ISO 8859-10 North European

nee8i s08859p4

ISO 8859-4 North and North-East European

nl 7dec

DEC VT100 7-bit Dutch

ru8bhest a

BESTA 8-bit Latin/Cyrillic

ru8pc855

IBM-PC Code Page 855 8-bit Latin/Cyrillic

A-5

ORACLE

Appendix A
Supported Character Sets - Oracle

Table A-1 (Cont.) Supported Oracle Character Sets
-

Identifier to use in
parameter files and

Character Set

commands
ru8pc866 IBM-PC Code Page 866 8-bit Latin/Cyrillic
s7dec DEC VT100 7-bit Swedish

s7si emens9780x

Siemens 97801/97808 7-bit Swedish

s8bs2000

Siemens 9750-62 EBCDIC 8-bit Swedish

s8ebcdi c1143

EBCDIC Code Page 1143 8-hit Swedish

s8ebcdi c278

EBCDIC Code Page 278/1 8-bit Swedish

se8i s08859p3

ISO 8859-3 South European

sf 7asci i

ASCII 7-bit Finnish

sf 7dec DEC VT100 7-bit Finnish

t h8mact hai s Mac Server 8-bit Latin/Thai

t h8nact hai Mac Client 8-bit Latin/Thai

th8tisascii Thai Industrial Standard 620-2533 - ASCII 8-bit

t h8ti sebcdics

Thai Industrial Standard 620-2533 - EBCDIC Server 8-bit

t h8ti sebcdic

Thai Industrial Standard 620-2533 - EBCDIC 8-bit

tr7dec

DEC VT100 7-bit Turkish

tr8dec

DEC 8-bit Turkish

tr8ebcdi c1026s

EBCDIC Code Page 1026 Server 8-bit Turkish

tr8ebcdi 1026

EBCDIC Code Page 1026 8-hit Turkish

tr8mact ur ki shs

Mac Server 8-bit Turkish

tr8mact ur ki sh

Mac Client 8-bit Turkish

tr8nswi n1254

MS Windows Code Page 1254 8-bit Turkish

tr8pc857 IBM-PC Code Page 857 8-bit Turkish
us7ascii ASCII 7-bit American

us8bs2000 Siemens 9750-62 EBCDIC 8-bit American
us8i cl ICL EBCDIC 8-bit American

us8pc437 IBM-PC Code Page 437 8-bit American

vn8mswi n1258

MS Windows Code Page 1258 8-bit Vietnamese

vn8vn3 VN3 8-bit Vietnamese

we8bs2000e Siemens EBCDIC.DF.04-F 8-bit West European with Euro symbol
we8hs2000I 5 Siemens EBCDIC.DF.04-9 8-bit WE & Turkish

we8bs2000 Siemens EBCDIC.DF.04-1 8-bit West European

we8dec DEC 8-bit West European

we8dg DG 8-hit West European

A-6

ORACLE

commands

Appendix A
Supported Character Sets - Oracle

Table A-1 (Cont.) Supported Oracle Character Sets

Identifier to use in
parameter files and

Character Set

we8ebcdi c1047e

Latin 1/Open Systems 1047

we8ebcdi 1047

EBCDIC Code Page 1047 8-bit West European

we8ebcdi c1140c

EBCDIC Code Page 1140 Client 8-bit West European

we8ebcdi ¢1140

EBCDIC Code Page 1140 8-bit West European

we8ebcdi c1145

EBCDIC Code Page 1145 8-hit West European

we8ebcdi c1146

EBCDIC Code Page 1146 8-bit West European

we8ebcdi c1148c

EBCDIC Code Page 1148 Client 8-bit West European

we8ebcdi c1148

EBCDIC Code Page 1148 8-bit West European

we8ebcdi c284

EBCDIC Code Page 284 8-bit Latin American/Spanish

we8ebcdi c285

EBCDIC Code Page 285 8-bit West European

we8ebcdi c37¢

EBCDIC Code Page 37 8-bit Oracle/c

we8ebcdi ¢37

EBCDIC Code Page 37 8-bit West European

we8ebcdi ¢500c

EBCDIC Code Page 500 8-bit Oracle/c

we8ebcdi ¢500

EBCDIC Code Page 500 8-bit West European

we8ebcdi c871

EBCDIC Code Page 871 8-bit Icelandic

we8ebcdi c924

Latin 9 EBCDIC 924

we8gcos7 Bull EBCDIC GCOS7 8-bit West European
we8hp HP LaserJet 8-bit West European
wesi cl ICL EBCDIC 8-bit West European

we8i s08859p15

ISO 8859-15 West European

we8i s08859p1

ISO 8859-1 West European

we8i s08859p9

ISO 8859-9 West European & Turkish

we8i soi cl uk ICL special version 1SO8859-1
we8nacr onangs Mac Server 8-bit Extended Roman8 West European
we8macr oman8 Mac Client 8-bit Extended Roman8 West European

we8nswi n1252

MS Windows Code Page 1252 8-bit West European

we8ncr 4970

NCR 4970 8-bit West European

we8next st ep

NeXTSTEP PostScript 8-bit West European

we8pc850 IBM-PC Code Page 850 8-bit West European
we8pc858 IBM-PC Code Page 858 8-bit West European
we8pc860 IBM-PC Code Page 860 8-bit West European
we8r omang HP Roman8 8-bit West European

yug7asci i ASCII 7-bit Yugoslavian

A-7

Appendix A
Supported Character Sets - Non-Oracle

Table A-1 (Cont.) Supported Oracle Character Sets
|

Identifier to use in
parameter files and

Character Set

commands

zhs16cgh231280 CGB2312-80 16-bit Simplified Chinese
zhs16dbcs IBM EBCDIC 16-bit Simplified Chinese
zhs16gbk GBK 16-bit Simplified Chinese
zhs16maccgh23128 Mac client CGB2312-80 16-bit Simplified Chinese
0

zht 16bi g5 BIG5 16-bit Traditional Chinese

zht 16ccdc HP CCDC 16-bit Traditional Chinese

zht 16dbcs IBM EBCDIC 16-bit Traditional Chinese

zht 16dbt Taiwan Taxation 16-bit Traditional Chinese

zht 16hkscs31

MS Windows Code Page 950 with Hong Kong Supplementary Character
Set HKSCS-2001 (character set conversion to and from Unicode is
based on Unicode 3.1)

zht 16hkscs

MS Windows Code Page 950 with Hong Kong Supplementary Character
Set HKSCS-2001 (character set conversion to and from Unicode is
based on Unicode 3.0)

zht 16mswi n950

MS Windows Code Page 950 Traditional Chinese

zht 32euc EUC 32-bit Traditional Chinese
zht 32sops SOPS 32-bit Traditional Chinese
zht32tris TRIS 32-bit Traditional Chinese

Supported Character Sets - Non-Oracle

Identifier to use in Character set

parameter files
and commands

UTF-8

UTF- 16

UTF- 16BE

UTF- 16LE

UTF- 32

UTF- 32BE

ORACLE

1ISO-10646 UTF-8, surrogate pairs are 4 bytes per character

ISO-10646 UTF-16

UTF-16 Big Endian

UTF-16 Little Endian

ISO-10646 UTF-32

UTF-32 Big Endian

A-8

ORACLE

Appendix A
Supported Character Sets - Non-Oracle

Identifier to use in Character set

parameter files
and commands

UTF- 32LE

CESU-8

US- ASCI |

wi ndows- 1250

Wi ndows- 1251

Wi ndows- 1252

wi ndows- 1253

Wi ndows- 1254

wi ndows- 1255

wi ndows- 1256

Wi ndows- 1257

wi ndows- 1258

Wi ndows- 874

cp437

i bm 720

cp737

cp775

cp850

cp8s1

cp852

cp855

UTF-32 Little Endian

Similar to UTF-8, correspond to UCS-2 and surrogate pairs are 6 bytes

per character

US-ASCII, ANSI X34-1986

Windows Central Europe

Windows Cyrillic

Windows Latin-1

Windows Greek

Windows Turkish

Windows Hebrew

Windows Arabic

Windows Baltic

Windows Vietnam

Windows Thai

DOS Latin-1

DOS Arabic

DOS Greek

DOS Baltic

DOS multilingual

DOS Greek-1

DOS Latin-2

DOS Cyrillic

A-9

ORACLE

Supported Character Sets

Appendix A
- Non-Oracle

Identifier to use in Character set
parameter files
and commands

DQOS Cyrillic / IBM

cp856

cp857 DOS Turkish

cp858 DOS Multilingual with Euro

cp860 DOS Portuguese

cps61l DOS Icelandic

cp862 DOS Hebrew

cp863 DOS French

cp864 DOS Arabic

cp865 DOS Nordic

cp866 DOS Cyrillic / GOST 19768-87

i bm 867 DOS Hebrew / IBM

cp868 DOS Urdu

cp869 DOS Greek-2

| SO 8859- 1 ISO-8859-1 Latin-1/Western Europe
| SO 8859- 2 1ISO-8859-2 Latin-2/Eastern Europe
| SO 8859- 3 1ISO-8859-3 Latin-3/South Europe
| SO 8859- 4 ISO-8859-4 Latin-4/North Europe
| SO 8859- 5 1ISO-8859-5 Latin/Cyrillic

| SO 8859- 6 1SO-8859-6 Latin/Arabic

| SO 8859- 7 ISO-8859-7 Latin/Greek

| SO 8859- 8 1SO-8859-8 Latin/Hebrew

A-10

ORACLE

Appendix A
Supported Character Sets - Non-Oracle

Identifier to use in Character set

parameter files
and commands

| SO-8859-

| SO-8859-

| SO-8859-

| SO-8859-

| SO-8859-

| SO-8859-

| BMD37

| BMD1140

| BMR73

| BM1141

| BMRT77

| BM)1142

| BMR78

| BMD1143

| BMR80

| BM)1144

| BMR84

| BMD1145

| BMR85

| BMD1146

| BMR90

9

10

11

13

14

15

1SO-8859-9 Latin-5/Turkish

1SO-8859-10 Latin-6/Nordic

1SO-8859-11 Latin/Thai

1SO-8859-13 Latin-7/Baltic Rim

1SO-8859-14 Latin-8/Celtic

1ISO-8859-15 Latin-9/Western Europe

IBM 037-1/697-1 EBCDIC, Brazil, Canada, Netherlands, Portugal, US,

and 037/1175 Traditional Chinese
IBM 1140-1/695-1 EBCDIC, Brazil, Canada, Netherlands, Portugal, US,

and 1140/1175 Traditional Chinese

IBM 273-1/697-1 EBCDIC, Austria, Germany

IBM 1141-1/695-1 EBCDIC, Austria, Germany

IBM 277-1/697-1 EBCDIC, Denmark, Norway

IBM 1142-1/695-1 EBCIDC, Denmark, Norway

IBM 278-1/697-1 EBCDIC, Finland, Sweden

IBM 1143-1/695-1 EBCDIC, Finland, Sweden

IBM 280-1/697-1 EBCDIC, Italy

IBM 1144-1/695-1 EBCDIC, ltaly

IBM 284-1/697-1 EBCDIC, Latin America, Spain

IBM 1145-1/695-1 EBCDIC, Latin America, Spain

IBM 285-1/697-1 EBCDIC, United Kingdom

IBM 1146-1/695-1 EBCDIC, United Kingdom

IBM 290 EBCDIC, Japan (Katakana) Extended

A-11

ORACLE

Appendix A
Supported Character Sets - Non-Oracle

Identifier to use in Character set

parameter files
and commands

| BMR97

| BM)1147

| BMA20

| BM424

| BMB0O

| BMD1148

| BMB70

| BMB71

| BVMD18

| BML149

| BMLO47

i bm 803

| BMB75

i bm 924

i bm 1153

i bm 1122

i bm 1157

i bm 1112

i bm 1156

i bm 4899

i bm 12712

IBM 297-1/697-1 EBCDIC, France

IBM 1147-1/695-1 EBCDIC, France

IBM 420 EBCDIC, Arabic Bilingual

IBM 424/941 EBCDIC, Israel (Hebrew - Bulletin Code)

IBM 500-1/697-1 EBCDIC, International

IBM 1148-1/695-1 EBCDIC International

IBM 870/959 EBCDIC, Latin-2 Multilingual

IBM 871-1/697-1 EBCDIC Iceland

IBM EBCDIC code page 918, Arabic 2

IBM 1149-1/695-1, EBCDIC Iceland

IBM 1047/103 EBCDIC, Latin-1 (Open Systems)

IBM 803 EBCDIC, Israel (Hebrew - Old Code)

IBM 875 EBCDIC, Greece

IBM 924-1/1353-1 EBCDIC International

IBM 1153/1375 EBCDIC, Latin-2 Multilingual

IBM 1122/1037 EBCDIC, Estonia

IBM 1157/1391 EBCDIC, Estonia

IBM 1112/1035 EBCDIC, Latvia, Lithuania

IBM 1156/1393 EBCDIC, Latvia, Lithuania

IBM EBCDIC code page 4899, Hebrew with Euro

IBM 12712 EBCDIC, Hebrew (max set including Euro)

A-12

ORACLE

Appendix A
Supported Character Sets - Non-Oracle

Identifier to use in Character set

parameter files
and commands

i bm 1097

i bm 1018

i bm 1132

i bm 1137

i bm 1025

i bm 1154

| BMLO26

i bm 1155

i bm 1123

i bm 1158

| BMB38

i bm 1160

i bm 1130

i bm 1164

i bm 4517

i bm 4971

i bm 9067

i bm 16804

KO 8-R

KO 8-U

eucTH

IBM 1097 EBCDIC, Farsi

IBM 1018 EBCDIC, Finland Sweden (ISO-7)

IBM 1132 EBCDIC, Laos

IBM EBCDIC code page 1137, Devanagari

IBM 1025/1150 EBCDIC, Cyrillic

IBM EBCDIC code page 1154, Cyrillic with Euro

IBM 1026/1152 EBCDIC, Latin-5 Turkey

IBM EBCDIC code page 1155, Turkish with Euro

IBM 1123 EBCDIC, Ukraine

IBM EBCDIC code page 1158, Ukranian with Euro

IBM 838/1173 EBCDIC, Thai

IBM EBCDIC code page 1160, Thai with Euro

IBM 1130 EBCDIC, Vietnam

IBM EBCDIC code page 1164, Vietnamese with Euro

IBM EBCDIC code page 4517, Arabic French

IBM EBCDIC code page 4971, Greek

IBM EBCDIC code page 9067, Greek 2005

IBM EBCDIC code page 16804, Arabic

Russian and Cyrillic (KOI8-R)

Ukranian (KOI8-U)

EUC Thai

A-13

ORACLE

Appendix A

Supported Character Sets - Non-Oracle

Identifier to use in Character set

parameter files
and commands

i bm 1162

DEC- MCS

hp-roman8

i bm 901

i bm 902

i bm 916

i bm 922

i bm 1006

i bm 1098

i bm 1124

i bm 1125

i bm 1129

i bm 1131

i bm 1133

i bm 4909

J1'S_X201

wi ndows- 932

wi ndows- 936

i bm 942

wi ndows- 949

wi ndows- 950

Windows Thai with Euro

DEC Multilingual

HP Latin-1 Roman8

IBM Baltic ISO-8 CCSID 901

IBM Estonia ISO-8 with Euro CCSID 902

IBM 1SO8859-8 CCSID

IBM Estonia ISO-8 CCSID 922

IBM Urdu ISO-8 CCSID 1006

IBM Farsi PC CCSID 1098

Ukranian ISO-8 CCSID 1124

Ukranian without Euro CCSID 1125

IBM Vietnamese without Euro CCSID 1129

IBM Belarusi CCSID 1131

IBM Lao CCSID 1133

IBM Greek Latin ASCIlI CCSID 4909

JIS X201 Japanese

Windows Japanese

Windows Simplified Chinese

IBM Windows Japanese

Windows Korean

Windows Traditional Chinese

A-14

ORACLE

Supported Character Sets

Appendix A
- Non-Oracle

Identifier to use in Character set

parameter files
and commands

eucjis

EUC- JP

EUC-CN

EUC- KR

EUC- TW

i bm 930

i bm 933

i bm 935

i bm 937

i bm 939

i bm 1364

i bm 1371

i bm 1388

i bm 1390

i bm 1399

i bm 5123

i bm 8482

i bm 13218

i bm 16684

shiftjis

gb18030

EUC Japanese

IBM/MS EUC Japanese

EUC Simplified Chinese, GBK

EUC Korean

EUC Traditional Chinese

IBM 930/5026 Japanese

IBM 933 Korean

IBM 935 Simplified Chinese

IBM 937 Traditional Chinese

IBM 939/5035 Japanese

IBM 1364 Korean

IBM 1371 Traditional Chinese

IBM 1388 Simplified Chinese

IBM 1390 Japanese

IBM 1399 Japanese

IBM CCSID 5123 Japanese

IBM CCSID 8482 Japanese

IBM CCSID 13218 Japanese

IBM CCSID 16684 Japanese

Japanese Shift JIS, Tilde 0x8160 mapped to U+301C

GB-18030

A-15

ORACLE

Appendix A

Supported Character Sets - Non-Oracle

Identifier to use in Character set

parameter files
and commands

(B2312

GBK

HZ

I bm 1381

Bi g5

Bi g5- HKSCS

Bi g5- HKSCS2001

i bm 950

i bm 949

i bm 949C

i bm 971

X- | BML363

GB-2312-1980

GBK

HZ GB2312

IBM CCSID 1381 Simplified Chinese

Big5, Traditional Chinese

Big5, HongKong ext.

Big5, HongKong ext. HKSCS-2001

IBM Big5, CCSID 950

CCSID 949 Korean

IBM CCSID 949 Korean, has backslash

IBM CCSID 971 Korean EUC, KSC5601 1989

IBM CCSID 1363, Korean

A-16

Supported Locales

ORACLE

This appendix lists the locales that are supported by Oracle GoldenGate. The locale is

used when comparing case-insensitive object names.

af

af _NA
af _ZA
am

am ET
ar
ar_AE
ar_BH
ar_Dz
ar_EG
ar_1Q
ar_JO
ar_Kw
ar LB
ar_LY
ar_MA
ar_Qom
ar_QA
ar_SA
ar_SD
ar_SY
ar_TN
ar_YE
as
as_IN
az
az_Cyrl
az_Qyrl _AZ
az_Latn
az_Latn_AZ
be

be BY
bg
bg_BG
bn
bn_BD
bn_IN
ca
ca_ES

B-1

ORACLE

cs
cs_CZ
cy
cy_GB
da
da_DK
de

de AT
de_BE
de CH
de DE
de_LI
de LU
e

el Cy
el @GR
en
en_AU
en_BE
en_BW
en_BzZ
en_CA
en_GB
en_HK
en_|E
en_IN
en_JM
en_M
en_Mr
en_NA
en_NzZ
en_PH
en_PK
en_SG
en_TT
en_US
en_US _POSI X
en_Vl
en_ZA
en_ZW
eo

es
es_AR
es_BO
es_CL
es_CO
es_CR
es_DO

Appendix B

B-2

Appendix B

es_EC
es_ES
es_GrI
es_HN
es_MX
es_N
es_PA
es_PE
es_PR
es_PY
es_SV
es_US
es_UY
es_VE
et

et _EE
eu
eu_ES
fa
fa_AF
fa IR
f
fi_Fl
fo
fo_FO
fr
fr_BE
fr_CA
fr CH
fr_FR
fr_LU
fr MC
ga
ga_lE
g

gl _ES
gu
gu_IN
gv
gv_GB
haw
haw_US
he

he IL
h

hi _IN
hr
hr_HR

ORACLE B-3

ORACLE

hu

hu_HU

hy

hy AM
hy_AM REVI SED

id

idID

is

is IS

it

it
it

ja

ja_

ka

ka_

kk

Kk_

k
k
km

km

kn

kn_

ko

ko_

kok

kok _IN

kw

kw_

I't

It

lv_

mk_

nm

rTB_
ms_

nt
nb
nb_
n

CH
IT

JP

GE

Kz

_a

KH

IN

KR

GB

LT

LV

MK

IN

IN

BN
MY

_Mr

NO

Appendix B

B-4

Appendix B

nl _BE

nl _NL

nn

nn_NO

om

om ET

om KE

or

or _IN

pa

pa_Quru
pa_Guru_I N
p

pl _PL

ps

ps_AF

pt

pt _BR

pt _PT

ro

ro_RO

ru

ru_RU
ru_UA

sk

sk_SK

S

sl _Sl

S0

so_DJ
so_ET
so_KE
so_SO

sq

Sq_AL

Sr

sr_Cyrl
sr_Cyrl _BA
sr_Cyrl _ME
sr_Cyrl _RS
sr_Latn
sr_Latn_BA
sr_Latn_Me
sr_Latn_RS
SV

sv_Fl
sv_SE

SwW

ORACLE B-5

Appendix B

sw_KE
sw_TZ

ta

ta_IN

te

te IN

th

th_TH

ti

ti _ER

ti ET

tr

tr TR

uk

uk_UA

ur

ur_I'N
ur_PK

uz

uz_Arab
uz_Arab AF
uz_Cyrl
uz_Cyrl _Uz
uz_Latn
uz_Latn_UZ
v

vi _UN

zh

zh_Hans
zh_Hans_CN
zh_Hans_SG
zh_Hant
zh_Hant _HK
zh_Hant MO
zh_Hant TW

ORACLE B-6

About the Oracle GoldenGate Trall

This appendix contains information about the Oracle GoldenGate trail that you may
need to know for troubleshooting, for a support case, or for other purposes. To view
the Oracle GoldenGate trail records, use the Logdump utility.

Topics:

e Trail Recovery Mode

e Trail File Header Record

e Trail Record Format

* Example of an Oracle GoldenGate Record
* Record Header Area

* Record Data Area

e Tokens Area

e Oracle GoldenGate Operation Types

e Oracle GoldenGate Trail Header Record

Trail Recovery Mode

By default, Extract operates in append mode, where if there is a process failure, a
recovery marker is written to the trail and Extract appends recovery data to the file so
that a history of all prior data is retained for recovery purposes.

In append mode, the Extract initialization determines the identity of the last complete
transaction that was written to the trail at startup time. With that information, Extract
ends recovery when the commit record for that transaction is encountered in the data
source; then it begins new data capture with the next committed transaction that
gualifies for extraction and begins appending the new data to the trail. A data pump or
Replicat starts reading again from that recovery point.

Overwrite mode is another version of Extract recovery that was used in versions of
Oracle GoldenGate prior to version 10.0. In these versions, Extract overwrites the
existing transaction data in the trail after the last write-checkpoint position, instead of
appending the new data. The first transaction that is written is the first one that
gualifies for extraction after the last read checkpoint position in the data source.

If the version of Oracle GoldenGate on the target is older than version 10, Extract will
automatically revert to overwrite mode to support backward compatibility. This
behavior can be controlled manually with the RECOVERYOPTI ONS parameter.

Trail File Header Record

ORACLE

As of Oracle GoldenGate version 10.0, each file of a trail contains a file header record
that is stored at the beginning of the file. The file header contains information about the
trail file itself. Previous versions of Oracle GoldenGate do not contain this header.

C-1

Appendix C
Trail Record Format

Because all of the Oracle GoldenGate processes are decoupled and thus can be of
different Oracle GoldenGate versions, the file header of each trail file contains a
version indicator. By default, the version of a trail file is the current version of the
process that created the file. If you need to set the version of a trail, use the FORMAT
option of the EXTTRAI L, EXTFI LE, RMITRAI L, or RMTFI LE parameter.

To ensure forward and backward compatibility of files among different Oracle
GoldenGate process versions, the file header fields are written in a standardized token
format. New tokens that are created by new versions of a process can be ignored by
older versions, so that backward compatibility is maintained. Likewise, hewer Oracle
GoldenGate versions support older tokens. Additionally, if a token is deprecated by a
new process version, a default value is assigned to the token so that older versions
can still function properly. The token that specifies the file version is COWATI BI LI TY
and can be viewed in the Logdump utility and also by retrieving it with the

GGFI LEHEADER option of the @ETENV function.

A trail or extract file must have a version that is equal to, or lower than, that of the
process that reads it. Otherwise the process will abend. Additionally, Oracle
GoldenGate forces the output trail or file of a data pump to be the same version as that
of its input trail or file. Upon restart, Extract rolls a trail to a new file to ensure that each
file is of only one version (unless the file is empty).

Trail Record Format

Each change record written by Oracle GoldenGate to a trail or extract file includes a
header area, a data area, and possibly a user token area. The record header contains
information about the transaction environment, and the data area contains the actual
data values that were extracted. The token area contains information that is specified
by Oracle GoldenGate users for use in column mapping and conversion.

Oracle GoldenGate trail files are unstructured. You can view Oracle GoldenGate
records with the Logdump utility provided with the Oracle GoldenGate software. For
more information, see Logdump Reference for Oracle GoldenGate.

" Note:

As enhancements are made to the Oracle GoldenGate software, the trail
record format is subject to changes that may not be reflected in this
documentation. To view the current structure, use the Logdump utility.

Example of an Oracle GoldenGate Record

The following illustrates an Oracle GoldenGate record as viewed with Logdump. The
first portion (the list of fields) is the header and the second portion is the data area.
The record looks similar to this on all platforms supported by Oracle GoldenGate.

ORACLE C-2

Record Header Area

Appendix C
Record Header Area

‘Commands to show headers, column detail,
and user tokens, and to go to next record

ogdunp 59 Jopen ci\goldengate802\dirdat\ccOBANND
urrent LogTrail is c:\goldengate862\dirdat\cc800008

ogdunp 68" >ghdr on

ogdump 61 >detail on

ogdump 62 >detail data Header area: contains transaction information
ogdunp 63 >usertoken on

ogdunp 64 >n

|Hdr-Tnd = E (x45) artition : an 1

|UndoFlag : . <x@@> Beforenfter: H

RecLength : 64 <xB848> 10 Time : zau/m/zq 14 45:26.600.000,
110Type : 5 (x85) righode : 255 (x

|IransInd @ L <x83) ormatType : FRR e |

: |SyskeyLen <x88> ncomplete : <x88> |
Operationtype |quditRBA : 41 AuditPos : szuazssq

andtimerecord |Continued : N <x88> RecCount * <xB1> |

WASWHtEER, N (o = e iy i (i et s e et e et B e e i
811/01,24 14:45:26.080.080 Insert Len 64 RBA @
SOurCEObJEC‘—>Namz DDIEC nEPﬁRTHENTS

artition 4

age

Image type V4 uuuu 000A 0008 GADD 0BG 000M GIIE 0OGL BE12 FAGD |[. o ierirs Yl
could bé @0DE 4164 6D69 GEGY 7374 7261 7469 GFGE 0802 M0BA | ..Aninistration..
batores after goss gggu 8608 G0D0 GOCS 00E3 0OBA BBGD 0O | (et s e mmes

co1 00007, Len 10 (xB08a>)
Coimn . =] 3055 0000 Gagh. 800 033k
with data, or Co lumn 1 <(x8081 (xB8812>

d agb voaE 4164 eDe 6]569 7374 7261 7469 /6F6E {Administration

could be e oo B
sequence 3260 veao Hoss. boad 08CH [[FN——
information Go lunn 3 (x@803), Len 10 (OB

8000 6000 0060 0004 P6A4 [p——
Usertoken —#-Uiser._token tes

5465 7374 BB31 Gl

Record data, Lengthof RBApositionofrecord Record dat;
in hex format record in the trail file in ASCll forma(

The Oracle GoldenGate record header provides metadata of the data that is contained
in the record and includes the following information.

e The operation type, such as an insert, update, or delete

e The before or after indicator for updates

e Transaction information, such as the transaction group and commit timestamp

» Description of Header Fields

* Using Header Data

Description of Header Fields

The following describes the fields of the Oracle GoldenGate record header. Some
fields apply only to certain platforms.

Table C-1 Oracle GoldenGate record header fields
]

Field

Description

Hdr - 1 nd

Should always be a value of E, indicating that the record was created
by the Extract process. Any other value indicates invalid data.

UndoFl ag

(NonStop) Conditionally set if Oracle GoldenGate is extracting
aborted transactions from the TMF audit trail. Normally, UndoFl ag is
set to zero, but if the record is the backout of a previously successful
operation, then UndoFI ag will be set to 1. An undo that is performed
by the disc process because of a constraint violation is not marked as
an undo.

RecLengt h

The length, in bytes, of the record buffer.

| OType

The type of operation represented by the record. See Table C-2 for a
list of operation types.

ORACLE

C-3

ORACLE

Appendix C
Record Header Area

Table C-1 (Cont.) Oracle GoldenGate record header fields
|

Field

Description

Transl nD

The place of the record within the current transaction. Values are:
0 — first record in transaction

1 — neither first nor last record in transaction

2 — last record in the transaction

3 — only record in the transaction

SyskeylLen

(NonStop) The length of the system key (4 or 8 bytes) if the source is
a NonStop file and has a system key. If a system key exists, the first
Syskeyl en bytes of the record are the system key. Otherwise,
SyskeyLen is 0.

Audi t RBA

Identifies the transaction log identifier, such as the Oracle redo log
sequence number.

Cont i nued

(Windows and UNIX) Identifies whether or not the record is a segment
of a larger piece of data that is too large to fit within one record. LOBs,
CLOBS, and some VARCHARSs are stored in segments. Unified records
that contain both before and after images in a single record (due to
the UPDATERECORDFORVAT parameter) may exceed the maximum
length of a record and may also generate segments.

Y — the record is a segment; indicates to Oracle GoldenGate that this
data continues to another record.

N — there is no continuation of data to another segment; could be the
last in a series or a record that is not a segment of larger data.

Partition

For Windows and UNIX records, this field will always be a value of 4
(Fi el dConp compressed record in internal format). For these
platforms, the term Parti ti on does not indicate that the data
represents any particular logical or physical partition within the
database structure.

For NonStop records, the value of this field depends on the record

type:

* Inthe case of Bul k|l Ooperations, Partiti on indicates the
number of the source partition on which the bulk operation was
performed. It tells Oracle GoldenGate which source partition the
data was originally written to. Replicat uses the Partiti on field
to determine the name of the target partition. The file name in the
record header will always be the name of the primary partition.
Valid values for Bul kI Orecords are 0 through 15.

» For other non-bulk NonStop operations, the value can be either 0
or 4. A value of 4 indicates that the data is in Fi el dConp record
format.

Bef or eAf t er

Identifies whether the record is a before (B) or after (A) image of an
update operation. Records that combine both before and after images
as the result of the UPDATERECORDFCRVAT parameter are marked as
after images. Inserts are always after images, deletes are always
before images.

O Tine

The time when the operation occurred, in local time of the source
system, in GMT format. This time may be the same or different for
every operation in a transaction depending on when the operation
occurred.

C-4

Appendix C
Record Data Area

Table C-1 (Cont.) Oracle GoldenGate record header fields

Field Description

Ori gNode (NonStop) The node number of the system where the data was
extracted. Each system in a NonStop cluster has a unique node
number. Node numbers can range from 0 through 255.

For records other than NonStop in origin, O i gNode is 0.

For mat Type Identifies whether the data was read from the transaction log or
fetched from the database.

F — fetched from database
R — readable in transaction log

I nconpl ete This field is obsolete.
Audi t Pos Identifies the position in the transaction log of the data.
RecCount (Windows and UNIX) Used for LOB data when it must be split into

chunks to be written to the Oracle GoldenGate file. RecCount is used
to reassemble the chunks.

Using Header Data

Some of the data available in the Oracle GoldenGate record header can be used for
mapping by using the GGHEADER option of the @ETENV function or by using any of the
following transaction elements as the source expression in a COLMAP statement in the
TABLE or MAP parameter.

GGS_TRANS Tl MESTAWP
GGS_TRANS RBA
GGS_OP_TYPE
GGS_BEFORE_AFTER | ND

Record Data Area

The data area of the Oracle GoldenGate trail record contains the following:

ORACLE

The time that the change was written to the Oracle GoldenGate file
The type of database operation

The length of the record

The relative byte address within the trail file

The table name

The data changes in hex format

The following explains the differences in record image formats used by Oracle
GoldenGate on Windows, UNIX, Linux, and NonStop systems.

Full Record Image Format (NonStop Sources)

Compressed Record Image Format (Windows, UNIX, Linux Sources)

C-5

Appendix C
Record Data Area

Full Record Image Format (NonStop Sources)

A full record image contains the values of all of the columns of a processed row. Full
record image format is generated in the trail when the source system is HP NonStop,
and only when the | OType specified in the record header is one of the following:

3 —Delete
5 —Insert
10 —Update

Each full record image has the same format as if retrieved from a program reading the
original file or table directly. For SQL tables, datetime fields, nulls, and other data is
written exactly as a program would select it into an application buffer. Although
datetime fields are represented internally as an eight-byte timestamp, their external
form can be up to 26 bytes expressed as a string. Enscribe records are retrieved as
they exist in the original file.

When the operation type is | nsert or Updat e, the image contains the contents of the
record after the operation (the after image). When the operation type is Del et e, the
image contains the contents of the record before the operation (the before image).

For records generated from an Enscribe database, full record images are output
unless the original file has the AUDI TCOVPRESS attribute set to ON. When AUDI TCOVPRESS
is ON, compressed update records are generated whenever the original file receives an
update operation. (A full image can be retrieved by the Extract process by using the
FETCHCOWPS parameter.)

Compressed Record Image Format (Windows, UNIX, Linux Sources)

ORACLE

A compressed record image contains only the key (primary, unique, KEYCOLS) and the
columns that changed in the processed row. By default, trail records written by
processes on Windows and UNIX systems are always compressed. The format of a
compressed record is as follows:

col um_i ndex colum_l ength colum_data[...]

Where:

e col umn_i ndex is the ordinal index of the column within the source table (2 bytes).
e columlength is the length of the data (2 bytes).

e colum_dat a is the data, including NULL or VARCHAR length indicators.

Enscribe records written from the NonStop platform may be compressed. The format
of a compressed Enscribe record is as follows:

field offset field Iength field value[...]

Where:

- field offset is the offset within the original record of the changed value (2
bytes).

- field_length isthe length of the data (2 bytes).
» field_val ue is the data, including NULL or VARCHAR length indicators.

The first field in a compressed Enscribe record is the primary or system key.

C-6

Appendix C
Tokens Area

Tokens Area

The trail record also can contain two areas for tokens. One is for internal use and is
not documented here, and the other is the user tokens area. User tokens are
environment values that are captured and stored in the trail record for replication to
target columns or other purposes. If used, these tokens follow the data portion of the
record and appear similar to the following when viewed with Logdump:

Parameter Value

TKN- HOST . syshq

TKN- GROUP . EXTORA

TKN-BA_I ND . AFTER

TKN- COWM T_TS . 2011-01-24 17:08:59. 000000
TKN- PCS . 3604496

TKN- RBA . 4058

TKN- TABLE : SOURCE. CUSTOVER
TKN- OPTYPE . | NSERT

TKN- LENGTH . b7

TKN- TRAN_| ND . BEGAN

Oracle GoldenGate Operation Types

The following are some of the Oracle GoldenGate operation types. Types may be
added as new functionality is added to Oracle GoldenGate. For a more updated list,
use the SHOW RECTYPE command in the Logdump utility.

Table C-2 Oracle GoldenGate Operation Types

Type Description Platform
1-Abort A transaction aborted. NSK TMF
2-Commit A transaction committed. NSK TMF
3-Delete A record/row was deleted. A Del et e record usually Al

contains a full record image. However, if the
COVPRESSDELETES parameter was used, then only
key columns will be present.

4-EndRollback A database rollback ended NSK TMF
5-Insert A record/row was inserted. An | nsert record contains All
a full record image.
6-Prepared A networked transaction has been prepared to NSK TMF
commit.
7-TMF-Shutdown A TMF shutdown occurred. NSK TMF
8-TransBegin No longer used. NSK TMF
9-TransRelease No longer used. NSK TMF

ORACLE C.7

ORACLE

Table C-2 (Cont.) Oracle GoldenGate Operation Types

Appendix C

Oracle GoldenGate Operation Types

Type Description Platform
10-Update A record/row was updated. An Updat e record All

contains a full record image. Note: If the partition

indicator in the record header is 4, then the record is in

Fi el dConp format (see below) and the update is

compressed.
11-UpdateComp A record/row in TMF Audi t Conp format was updated. NSK TMF

In this format, only the changed bytes are present. A

4-byte descriptor in the format of 2- byt e_of f set 2-

byt e_| engt h precedes each data fragment. The byte

offset is the ordinal index of the column within the

source table. The length is the length of the data.
12-FileAlter An attribute of a database file was altered. NSK
13-FileCreate A database file was created. NSK
14-FilePurge A database file was deleted. NSK
15-FieldComp A row in a SQL table was updated. In this format, only All

the changed bytes are present. Before images of

unchanged columns are not logged by the database.

A 4-byte descriptor in the format of 2-

byt e_of f set 2- byt e_| engt h precedes each data

fragment. The byte offset is the ordinal index of the

column within the source table. The length is the

length of the data. A partition indicator of 4 in the

record header indicates Fi el dConp format.
16-FileRename A file was renamed. NSK
17-AuxPointer Contains information about which AUX trails have new NSK TMF

data and the location at which to read.
18-NetworkCommit A networked transaction committed. NSK TMF
19-NetworkAbort A networked transaction was aborted. NSK TMF
90-(GGS)SQLCol A column or columns in a SQL table were added, or NSK

an attribute changed.
100- All data was removed from the file (PURGEDATA). NSK
(GGS)Purgedata
101- A file was purged. NSK non-TMF
(GGS)Purge(File)
102- A file was created. The Oracle GoldenGate record NSK non-TMF
(GGS)Create(File) contains the file attributes.
103-(GGS)Alter(File) A file was altered. The Oracle GoldenGate record NSK non-TMF

contains the altered file attributes.
104- A file was renamed. The Oracle GoldenGate record NSK non-TMF
(GGS)Rename(File) contains the original and new names.
105-(GGS)Setmode A SETMODE operation was performed. The Oracle NSK non-TMF

GoldenGate record contains the SETMCDE information.
106- A CHANCGELABEL operation was performed. The Oracle NSK non-TMF
GGSChangelLabel GoldenGate record contains the CHANGELABEL

information.

C-8

Appendix C

Oracle GoldenGate Operation Types

Table C-2 (Cont.) Oracle GoldenGate Operation Types

Type

Description

Platform

107-(GGS)Control

A CONTROL operation was performed. The Oracle
GoldenGate record contains the CONTROL information.

NSK non-TMF

115 and 117

(GGS)KeyFieldCom
p(32)

A primary key was updated. The Oracle GoldenGate
record contains the before image of the key and the
after image of the key and the row. The data is in

Fi el dConp format (compressed), meaning that before
images of unchanged columns are not logged by the
database.

Windows and
UNIX

116-LargeObject

Identifies a RAW BLOB, CLOB, or LOB column. Data of

Windows and
UNIX

116-LOB this type is stored across multiple records.
132-(GGS) Identifies an operation on a sequence. Windows and
SequenceOp UNIX
134-UNIFIED Identifies a unified trail record that contains both Windows and
UPDATE before and after values in the same record. The before UNIX
135-UNIFIED image in a UNI FI ED UPDATE contains all of the
PKUPDATE columns that are available in the transaction record for
both the before and after images. The before image in
a UNI FI ED PKUPDATE contains all of the columns that
are available in the transaction record, but the after
image is limited to the primary key columns and the
columns that were modified in the UPDATE.
160 - DDL_Op Identifies a DDL operation Windows and
UNIX
161- Identifies part of a large row that must be stored Windows and
RecordFragment across multiple records (more than just the base UNIX
record).
200- A BULKI Ooperation was performed. The Oracle NSK non-TMF
GGSUnstructured GoldenGate record contains the RAW DP2 block.
Block
200-BulklO
201 through 204 These are different types of NonStop trace records. NSK non-TMF
Trace records are used by Oracle GoldenGate support
analysts. The following are descriptions.
* ARTYPE_FI LECLOSE_GGS 201 — the source
application closed a file that was open for
unstructured 1/0. Used by Replicat
* ARTYPE_LOGGERTS_GGS 202 — Logger
heartbeat record
* ARTYPE _EXTRACTERTS_GGS 203 — unused
* ARTYPE COLLECTORTS_GGS 204 — unused
205-GGSComment Indicates a comment record created by the Logdump All

utility. Comment records are created by Logdump at
the beginning and end of data that is saved to a file
with Logdump's SAVE command.

ORACLE

C-9

Appendix C
Oracle GoldenGate Trail Header Record

Table C-2 (Cont.) Oracle GoldenGate Operation Types

___|
Type Description Platform

249 through 254 These are different types of NonStop trace records. NSK non-TMF
Trace records are used by Oracle GoldenGate support
analysts. The following are descriptions.

* ARTYPE LOGGER ADDED STATS 249 — a stats
record created by Logger when the source
application closes its open on Logger (if
SENDERSTATS is enabled and stats are written to
the logtrail)

* ARTYPE_LI BRARY_OPEN 250 — written by
BASELI B to show that the application opened a
file

* ARTYPE LI BRARY_CLOSE 251 — written by
BASELI B to show that the application closed a
file.

* ARTYPE_LOGGER ADDED_OPEN 252 — unused
* ARTYPE_LOGCER_ADDED_CLCSE 253 — unused

* ARTYPE_LOGGER_ADDED | NFO 254 — written by
Logger and contains information about the source
application that performed the I/O in the
subsequent record (if SENDERSTATS is enabled
and stats are written to the logtrail). The file name
in the trace record is the object file of the
application. The trace data has the application
process name and the name of the library (if any)
that it was running with.

Oracle GoldenGate Trail Header Record

In addition to the transaction-related records that are in the Oracle GoldenGate trail,
each trail file contains a file header.

The file header is stored as a record at the beginning of a trail file preceding the data
records. The information that is stored in the trail header provides enough information
about the records to enable an Oracle GoldenGate process to determine whether the
records are in a format that the current version of Oracle GoldenGate supports.

The trail header fields are stored as tokens, where the token format remains the same
across all versions of Oracle GoldenGate. If a version of Oracle GoldenGate does not
support any given token, that token is ignored. Depracated tokens are assigned a
default value to preserve compatibility with previous versions of Oracle GoldenGate.

You can view the trail header with the FI LEHEADER command in the Logdump utility.
For more information about the tokens in the file header, see Logdump Reference for
Oracle GoldenGate.

ORACLE C-10

Using the Commit Sequence Number

ORACLE

This appendix contains information about using the Oracle GoldenGate Commit
Sequence Number (CSN) with Oracle and non-Oracle databases.

All database platforms except Oracle, DB2 LUW, and DB2 z/OS have fixed-length
CSNs, which are padded with leading zeroes as required to fill the fixed length. CSNs
that contain multiple fields can be padded within each field. For more information on
CSN, see Overview of CSN in Understanding Oracle GoldenGate

MySQL does not create a transaction ID as part of its event data, so Oracle
GoldenGate considers a unique transaction identifier to be a combination of the
following:

» the log file number of the log file that contains the START TRANSACTI ONrecord for
the transaction that is being identified

» the record offset of that record

Table D-1 Oracle GoldenGate CSN Values Per Database
]

Database CSN Value
DB2 for i sequence_nunber
Where:

* sequence_number is the fixed-length, 20 digit, decimal-based DB2
for i system sequence number.

Example:

12345678901234567890

DB2 LUW LRI
Where:

For version 10.1 and later, LRI is a period-separated pair of numbers for
the DB2 log record identifier.

Example:

123455. 34645

DB2 z/OS RBA

where:

* RBAis the 6-byte relative byte address of the commit record within
the transaction log.
Example:

1274565892

D-1

Appendix D

Table D-1 (Cont.) Oracle GoldenGate CSN Values Per Database

]
Database CSN Value

MySQL

LogNum LogPosi tion

Where:

* LogNumis the the name of the log file that contains the START
TRANSACTI ON record for the transaction that is being identified.

* LogPosi ti on is the event offset value of that record. Event offset
values are stored in the record header section of a log record.

For example, if the log number is 12 and the log position is 121, the CSN
is:

000012: 000000000000121

Oracle syst em change_nunber

Where:
* system change nunber is the Oracle SCN value.
Example:

6488359

SQL Server Can be any of these, depending on how the database returns it:

* Colon separated hex string (8: 8: 4) padded with leading zeroes and
0X prefix

* Colon separated decimal string (10: 10: 5) padded with leading
zeroes

* Colon separated hex string with 0X prefix and without leading zeroes

» Colon separated decimal string without leading zeroes

* Decimal string

Where:

* The first value is the virtual log file number, the second is the

segment number within the virtual log, and the third is the entry
number.

Examples:

0X00000d7e: 0000036b: 01bd
0000003454: 0000000875: 00445
0Xd7e: 36b: 1bd

3454 875: 445
3454000000087500445

Teradata
sequence_ID

Where:

* sequence_| Dis a generic fixed-length printable sequence ID.
Example:

0x0800000000000000D700000021

ORACLE D-2

About Checkpoints

This appendix provides information about checkpoints. When working with Oracle
GoldenGate, you might need to refer to the checkpoints that are made by a

process. Checkpoints save the state of the process for recovery purposes. Extract and
Replicat use checkpoints.

Topics:

* Extract Checkpoints

* Replicat Checkpoints

e Internal Checkpoint Information

* Oracle GoldenGate Checkpoint Tables

Extract Checkpoints

Extract checkpoint positions are composed of read checkpoints in the data source and
write checkpoints in the trail. The following is a sampling of checkpoint information
displayed with the | NFO EXTRACT command with the SHOACH option. In this case, the
data source is an Oracle RAC database cluster, so there is thread information included
in the output. You can view past checkpoints by specifying the number of them that
you want to view after the SHOACH argument.

Example E-1 INFO EXTRACT with SHOWCH

EXTRACT JCL08XT Last Started 2011-01-01 14:15 Status ABENDED

Checkpoi nt Lag 00: 00: 00 (updated 00:00:01 ago)

Log Read Checkpoint File /orarac/oradatalracq/redo0l.1og
2011-01-01 14:16:45 Thread 1, Seqno 47, RBA 68748800

Log Read Checkpoint File /orarac/oradatalracq/redo04.1og
2011-01-01 14:16:19 Thread 2, Seqno 24, RBA 65657408

Current Checkpoint Detail
Read Checkpoint #1

Oracl e RAC Redo Log
Startup Checkpoint (starting position in data source)
Thread #: 1
Sequence #: 47
RBA: 68548112
Ti mestanp: 2011-01-01 13:37:51. 000000
SCN: 0. 8439720
Redo File: /orarac/oradatalracqg/redo0l.Iog

Recovery Checkpoint (position of ol dest unprocessed transaction in data source)
Thread #: 1
Sequence #: 47
RBA: 68748304
Ti mestanp: 2011-01-01 14: 16: 45. 000000
SCN: 0. 8440969

ORACLE E-1

ORACLE

Appendix E
Extract Checkpoints

Redo File: /orarac/oradatalracq/redo0l.1og

Current Checkpoint (position of last record read in the data source)

Thread # 1

Sequence #: 47

RBA: 68748800

Ti mestanp: 2011-01-01 14: 16: 45. 000000

SCN: 0. 8440969

Redo File: /orarac/oradatalracq/redo0l.1og

Read Checkpoint #2
Oracl e RAC Redo Log

Startup Checkpoint(starting position in data source)

Sequence #: 24

RBA: 60607504

Ti mestanp: 2011-01-01 13:37:50. 000000

SCN: 0. 8439719

Redo File: /orarac/oradatalracq/redo04.1og

Recovery Checkpoint (position of ol dest unprocessed transaction in data source)

Thread #: 2

Sequence #: 24

RBA: 65657408

Ti mestanp: 2011-01-01 14:16:19. 000000

SCN: 0. 8440613

Redo File: /orarac/oradatalracq/redo04.1og

Current Checkpoint (position of last record read in the data source)

Thread #: 2

Sequence #: 24

RBA: 65657408

Ti mestanp: 2011-01-01 14:16:19. 000000

SCN: 0. 8440613

Redo File: /orarac/oradatalracq/redo04.1og

Wite Checkpoint #1
GCS Log Trail

Current Checkpoint (current wite position)

Sequence #: 2

RBA: 2142224

Ti mestanp: 2011-01-01 14: 16:50. 567638
Extract Trail: ./dirdat/eh

Header

Version = 2

Record Source = A

Type = 6

Input Checkpoints = 2
Qutput Checkpoints =1

File Information:

Bl ock Size = 2048
Max Bl ocks = 100
Record Length = 2048
Current Offset =0

E-2

Appendix E
Extract Checkpoints

Configuration:
Data Source = 3
Transaction Integrity = 1
Task Type = 0

St at us:
Start Time = 2011-01-01 14:15: 14
Last Update Time = 2011-01-01 14:16:50
Stop Status = A
Last Result = 400

See Internal Checkpoint Informationfor information about the internal information that
starts with the Header entry in the SHOACH output.

About Extract read checkpoints

About Extract Write Checkpoints

About Extract read checkpoints

Extract places read checkpoints in the data source.

Startup Checkpoint
Recovery Checkpoint

Current Checkpoint

Startup Checkpoint

The startup checkpoint is the first checkpoint that is made in the data source when the
process starts. This statistic is composed of the following:

Thread #: The number of the Extract thread that made the checkpoint, if Oracle
GoldenGate is running in an Oracle RAC environment. Otherwise, this statistic is
not displayed.

Sequence #: The sequence number of the transaction log where the checkpoint
was made.

RBA: The relative byte address of the record at which the checkpoint was made.
Ti mest anp: The timestamp of the record at which the checkpoint was made.
SCN: The system change number of the record at which the checkpoint was made.

Redo Fil e: The path name of the transaction log containing the record where the
checkpoint was made.

Recovery Checkpoint

The recovery checkpoint is the position in the data source of the record containing the
oldest transaction not yet processed by Extract. The fields for this statistic are the
same as those of the other read checkpoint types.

Current Checkpoint

The current checkpoint is the position of the last record read by Extract in the data
source. This should match the Log Read Checkpoi nt statistic shown in the summary

ORACLE

E-3

Appendix E
Replicat Checkpoints

and in the basic | NFO EXTRACT command without options. The fields for this statistic
are the same as those of the other read checkpoint types.

About Extract Write Checkpoints

Extract places a write checkpoint, known as the current checkpoint, in the trail. The
current checkpoint is the position in the trail where Extract is currently writing. This
statistic is composed of the following:

* Sequence #: The sequence number of the trail file where the checkpoint was
written.

e RBA: The relative byte address of the record in the trail file at which the checkpoint
was made.

e Tinmestanp: The timestamp of the record at which the checkpoint was made.
e Extract trail: The relative path name of the trail.

e Trail Type: Identifies the trail type. EXTTRAI L identifies the trail as a local trail,
which means that it is directly accessible by Oracle GoldenGate processes
through the host filesystem. RMITRAI L identifies the trail as a remote trail, which
means it is not directly accessible by Oracle GoldenGate processes through the
host filesystem. A trail stored on a shared network device and accessible through
NFS-like services are considered local because they are accessible transparently
through the host filesystem.

Replicat Checkpoints

ORACLE

Replicat makes checkpoints in the trail file to mark its last read position. To view
process checkpoints, use the | NFO REPLI CAT command with the SHOACH option. The
basic command shows current checkpoints. To view a specific number of previous
checkpoints, type the value after the SHOACH argument.

Example E-2 INFO REPLICAT, SHOWCH

REPLI CAT JCLO8RP Last Started 2011-01-12 13:10 Status RUNNING
Checkpoi nt Lag 00: 00: 00 (updated 111:46:54 ago)
Log Read Checkpoint File ./dirdat/eh000000000
First Record RBA 3702915

Current Checkpoint Detail:

Read Checkpoint #1

GGS Log Trail

Startup Checkpoint(starting position in data source):

Sequence #: 0

RBA: 3702915

Ti mestanp: Not Avail able

Extract Trail: ./dirdat/eh

Current Checkpoint (position of last record read in the data source):

Sequence #: 0

RBA: 3702915

Ti mestanp: Not Avail able

Extract Trail: ./dirdat/eh

Header :

Version = 2

Record Source = A

Type = 1

Input Checkpoints =1

Qutput Checkpoints = 0

E-4

Appendix E
Internal Checkpoint Information

File Information:

Bl ock Size = 2048

Max Bl ocks = 100

Record Length = 2048

Current Offset = 0
Configuration:

Data Source = 0

Transaction Integrity = -1

Task Type = 0

St at us:

Start Time = 2011-01-12 13:10:13
Last Update Time = 2011-01-12 21:23:31
Stop Status = A

Last Result = 400

See Internal Checkpoint Information for information about the internal information that
starts with the Header entry in the SHOACH output.

* About Replicat Checkpoints

About Replicat Checkpoints

The following describes the detail of the Replicat checkpoints in the trail.

e Startup Checkpoint
e Current Checkpoint

Startup Checkpoint

The startup checkpoi nt is the first checkpoint made in the trail when the process
starts. Comprising this statistic are:

e Sequence #: The sequence number of the trail file where the checkpoint was
written.

* RBA: The relative byte address of the record at which the checkpoint was made.
e Tinmestanp: The timestamp of the record at which the checkpoint was made.

e Extract Trail: The relative path name of the trail.

Current Checkpoint

The current checkpoi nt is the position of the last record read by Replicat in the trail.
This should match the Log Read Checkpoi nt statistic shown in the summary and in
the basic | NFO REPLI CAT command without options. The fields for this statistic are the
same as those of the Startup Checkpoint.

Internal Checkpoint Information

The | NFO command with the SHOACH option not only displays current checkpoint
entries, but it also displays metadata information about the record itself. This
information is not documented and is for use by the Oracle GoldenGate processes and
by support personnel when resolving a support case. The metadata is contained in the
following entries in the SHOACH output.

ORACLE E-5

Appendix E
Oracle GoldenGate Checkpoint Tables

Header :

Version = 2

Record Source = A

Type = 1

Input Checkpoints =1

Qutput Checkpoints = 0

File Information:

Bl ock Size = 2048

Max Bl ocks = 100

Record Length = 2048

Current Offset = 0
Configuration:

Data Source = 0

Transaction Integrity = -1

Task Type = 0

St at us:

Start Time = 2011-01-12 13:10:13
Last Update Time = 2011-01-12 21:23:31
Stop Status = A

Last Result = 400

Oracle GoldenGate Checkpoint Tables

ORACLE

When database checkpoints are being used, Oracle GoldenGate creates a checkpoint
table with a user-defined name in the database upon execution of the ADD

CHECKPQO NTTABLE command, or a user can create the table by using the

chkpt _db_create. sql script (where db is an abbreviation of the type of database that
the script supports).

There are two tables: the main checkpoint table and an auxiliary checkpoint table that
is created automatically. The auxiliary table, known as the transaction table, bears the
name of the primary checkpoint table appended with _| ox. Each Replicat, or each
thread of a coordinated Replicat, uses one row in the checkpoint table to store its
progress information.

At checkpoint time, there typically are some number of transactions (among the total n
transactions) that were applied, and the rest are still in process. For example, if
Replicat is processing a group of n transactions ranging from CSN1 to CSN3. CSN1 is
the high watermark and CSN3 is the low watermark. Any transaction with a CSN
higher than the high watermark has not been processed, and any transaction with a
CSN lower than the low watermark has already been processed. Completed
transactions are stored in the LOG_CMPLT_XI D column of the checkpoint table. Any
overflow of these transactions is stored in the transaction table (auxiliary checkpoint
table) in the LOG CMPLT_XI D column of that table.

Currently, Replicat (or each Replicat thread of a coordinated Replicat) applies
transactions serially (not in parallel); therefore, the high watermark (the LOG_CSN value
in the table) is always the same as the low watermark (the LOG_CMPLT_CSN value in the
table), and there typically is only one transaction ID in the LOG CMPLT_XI D column. The
only exception is when there are multiple transactions sharing the same CSN.

Do not change the names or attributes of the columns in these tables. You can change
table storage attributes as needed.

E-6

ORACLE

Appendix E
Oracle GoldenGate Checkpoint Tables

Table E-1 Checkpoint table definition

Column

Description

GROUP_NAME (pri mary
key)

GROUP_KEY (primary
key)
SEQNO

RBA

AUDI T_TS
CREATE_TS
LAST_UPDATE TS
CURRENT DI R
LOG_CSN

LOG XI D
LOG_CMPLT_CSN

LOG_CVPLT_XI DS

VERSI ON

The name of a Replicat group using this table for checkpoints.
There can be multiple Replicat groups using the same table.
This column is part of the primary key.

A unique identifier that, together with GROUPNAME, uniquely
identifies a checkpoint regardless of how many Replicat groups
are writing to the same table. This column is part of the primary
key.

The sequence number of the input trail that Replicat was reading
at the time of the checkpoint.

The relative byte address that Replicat reached in the trail
identified by SEQNO. RBA + SEQNO provide an absolute position in
the trail that identifies the progress of Replicat at the time of
checkpoint.

The timestamp of the commit of the source transaction.

The date and time when the checkpoint table was created.

The date and time when the checkpoint table was last updated.
The current Oracle GoldenGate home directory or folder.

Stores the high watermark, or the upper boundary, of the CSNs.
Any transaction with a CSN higher than this value has not been
processed.

Not used. Retained for backward compatibility.

Stores the low watermark, or the lower boundary, of the CSNs.
Any transaction with a lower CSN than this value has already
been processed.

Stores the transactions between the high and low watermarks
that are already applied.

The version of the checkpoint table format. Enables future
enhancements to be identified as version numbers of the table.

Table E-2 Transaction table definition

Column

Description

GROUP_NAME

GROUP_KEY

LOG_CMPLT_CSN

LOG_CVPLT_XI DS_SEQ

The name of a Replicat group using this table for checkpoints.
There can be multiple Replicat groups using the same table.
This column is part of the primary key of the transaction table.

A unique identifier that, together with GROUPNANME, uniquely
identifies a checkpoint regardless of how many Replicat groups
are writing to the same table. This column is part of the primary
key of the transaction table.

The foreign key that references the checkpoint table. This
column is part of the primary key of the transaction table.

Creates unique rows in the event there are so many overflow
transactions that multiple rows are required to store them all.
This column is part of the primary key of the transaction table.

E-7

ORACLE

Appendix E
Oracle GoldenGate Checkpoint Tables

Table E-2 (Cont.) Transaction table definition

__|
Column Description

LOG _CVPLT_XI DS Stores the overflow of transactions between the high and low
watermarks that are already applied.

E-8

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Information
	Conventions

	1 Oracle GoldenGate Administration Overview
	2 Oracle GoldenGate Globalization Support
	Preserving the Character Set
	Character Set of Database Structural Metadata
	Character Set of Character-type Data
	Character Set of Database Connection
	Character Set of Text Input and Output

	Using Unicode and Native Characters

	Part I Administering Oracle GoldenGate Classic Architecture
	3 Configuring Manager and Network Communications
	Overview of the Manager Process
	Assigning Manager a Port for Local Communication
	Maintaining Ports for Remote Connections through Firewalls
	Choosing an Internet Protocol
	Using the Recommended Manager Parameters
	Creating the Manager Parameter File
	Starting Manager
	Starting Manager from the Command Shell of the Operating System
	Starting Manager from GGSCI

	Stopping Manager
	Stopping Manager on UNIX and Linux
	Stopping Manager on Windows

	4 Getting Started with the Oracle GoldenGate Process Interfaces
	Using the GGSCI Command-line Interface
	Using Wildcards in Command Arguments
	Globalization Support for the Command Interface
	Using Command History
	Storing and Calling Frequently Used Command Sequences

	Controlling Oracle GoldenGate Processes
	Controlling Manager
	Controlling Extract and Replicat
	Deleting Extract and Replicat

	Automating Commands
	Issuing Commands Through the IBM i CLI

	Using Oracle GoldenGate Parameter Files
	Globalization Support for Parameter Files
	Working with the GLOBALS File
	Working with Runtime Parameters
	Creating a Parameter File
	Creating a Parameter File in GGSCI
	Creating a Parameter File with a Text Editor

	Validating a Parameter File
	Viewing a Parameter File
	Changing a Parameter File
	Simplifying the Creation of Parameter Files
	Using Wildcards
	Using OBEY
	Using Macros
	Using Parameter Substitution

	Getting Information about Oracle GoldenGate Parameters

	Specifying Object Names in Oracle GoldenGate Input
	Specifying Filesystem Path Names in Parameter Files on Windows Systems
	Supported Database Object Names
	Supported Special Characters
	Non-supported Special Characters

	Specifying Names that Contain Slashes
	Qualifying Database Object Names
	Two-part Names
	Three-part Names
	Applying Data from Multiple Containers or Catalogs
	Specifying a Default Container or Catalog

	Specifying Case-Sensitive Database Object Names
	Using Wildcards in Database Object Names
	Rules for Using Wildcards for Source Objects
	Rules for Using Wildcards for Target Objects
	Fallback Name Mapping
	Wildcard Mapping from Pre-11.2.1 Trail Version
	Asterisks or Question Marks as Literals in Object Names
	How Wildcards are Resolved
	Excluding Objects from a Wildcard Specification

	Differentiating Case-Sensitive Column Names from Literals

	5 Using Oracle GoldenGate for Live Reporting
	Overview of the Reporting Configuration
	Filtering and Conversion
	Read-only vs. High Availability
	Additional Information

	Creating a Standard Reporting Configuration
	Source System
	Target System

	Creating a Reporting Configuration with a Data Pump on the Source System
	Source System
	Target System

	Creating a Reporting Configuration with a Data Pump on an Intermediary System
	Source System
	Intermediary System
	Target System

	Creating a Cascading Reporting Configuration
	Source System
	Second System in the Cascade
	Third System in the Cascade

	6 Using Oracle GoldenGate for Real-time Data Distribution
	Overview of the Data-distribution Configuration
	Considerations for a Data-distribution Configuration
	Fault Tolerance
	Filtering and Conversion
	Read-only vs. High Availability
	Additional Information

	Creating a Data Distribution Configuration
	Source System
	Target Systems

	7 Configuring Oracle GoldenGate for Real-time Data Warehousing
	Overview of the Data Warehousing Configuration
	Considerations for a Data Warehousing Configuration
	Isolation of Data Records
	Data Storage
	Filtering and Conversion
	Additional Information

	Creating a Data Warehousing Configuration
	Source Systems
	Target System

	8 Configuring Oracle GoldenGate to Maintain a Live Standby Database
	Overview of a Live Standby Configuration
	Considerations for a Live Standby Configuration
	Trusted Source
	Duplicate Standby
	DML on the Standby System
	Oracle GoldenGate Processes
	Backup Files
	Failover Preparedness
	Sequential Values that are Generated by the Database
	Additional Information

	Creating a Live Standby Configuration
	Prerequisites on Both Systems
	Configuration from Active Source to Standby

	Configuration from Standby to Active Source
	Moving User Activity in a Planned Switchover
	Moving User Activity to the Live Standby
	Moving User Activity Back to the Primary System

	Moving User Activity in an Unplanned Failover
	Moving User Activity to the Live Standby
	Moving User Activity Back to the Primary System

	9 Configuring Oracle GoldenGate for Active-Active High Availability
	Overview of an Active-Active Configuration
	Considerations for an Active-Active Configuration
	TRUNCATES
	Application Design
	Keys
	Triggers and Cascaded Deletes
	Database-Generated Values
	Database Configuration

	Preventing Data Looping
	Preventing the Capture of Replicat Operations
	Preventing the Capture of Replicat Transactions (Oracle)
	Preventing Capture of Replicat Transactions (Other Databases)

	Identifying Replicat Transactions
	DB2 z/OS, DB2 LUW, and DB2 for i
	MySQL
	Oracle
	SQL Server

	Replicating DDL in a Bi-directional Configuration

	Managing Conflicts
	Additional Information
	Creating an Active-Active Configuration
	Prerequisites on Both Systems
	Configuration from Primary System to Secondary System
	Configuration from Secondary System to Primary System

	10 Configuring Conflict Detection and Resolution
	Overview of the Oracle GoldenGate CDR Feature
	Configuring Oracle GoldenGate CDR
	Making the Required Column Values Available to Extract
	Configuring the Oracle GoldenGate Parameter Files for Conflict Resolution
	Configuring the Oracle GoldenGate Parameter Files for Error Handling
	Tools for Mapping Extra Data to the Exceptions Table
	Sample Exceptions Mapping with Source and Target Columns Only
	Sample Exceptions Mapping with Additional Columns in the Exceptions Table

	Viewing CDR Statistics
	Report File
	GGSCI
	Column-conversion Functions

	CDR Example 1: All Conflict Types with USEMAX, OVERWRITE, DISCARD
	Table Used in this Example
	MAP Statement with Conflict Resolution Specifications
	Description of MAP Statement
	Error Handling
	INSERTROWEXISTS with the USEMAX Resolution
	UPDATEROWEXISTS with the USEMAX Resolution
	UPDATEROWMISSING with OVERWRITE Resolution
	DELETEROWMISSING with DISCARD Resolution
	DELETEROWEXISTS with OVERWRITE Resolution

	CDR Example 2: UPDATEROWEXISTS with USEDELTA and USEMAX
	Table Used in this Example
	MAP Statement
	Description of MAP Statement
	Error Handling

	CDR Example 3: UPDATEROWEXISTS with USEDELTA, USEMAX, and IGNORE
	Table Used in this Example
	MAP Statement
	Description of MAP Statement
	Error Handling

	11 Mapping and Manipulating Data
	Limitations of Support
	Parameters that Control Mapping and Data Integration
	Mapping between Dissimilar Databases
	Deciding Where Data Mapping and Conversion Will Take Place
	Mapping and Conversion on Windows and UNIX Systems
	Mapping and Conversion on NonStop Systems

	Globalization Considerations when Mapping Data
	Conversion between Character Sets
	Database Object Names
	Column Data

	Preservation of Locale
	Support for Escape Sequences

	Mapping Columns
	Supporting Case and Special Characters in Column Names
	Configuring Table-level Column Mapping with COLMAP
	Specifying the Columns to be Mapped in the COLMAP Clause
	Using USEDEFAULTS to Enable Default Column Mapping
	Determining Whether COLMAP Requires a Data-definitions File

	Configuring Global Column Mapping with COLMATCH
	Understanding Default Column Mapping
	Mapping Data Types from Column to Column
	Numeric Columns
	Character-type Columns
	Datetime Columns

	Selecting and Filtering Rows
	Selecting Rows with a FILTER Clause
	Selecting Rows with a WHERE Clause
	Considerations for Selecting Rows with FILTER and WHERE
	Ensuring Data Availability for Filters
	Comparing Column Values
	Testing for NULL Values

	Retrieving Before and After Values
	Selecting Columns
	Selecting and Converting SQL Operations
	Using Transaction History
	Testing and Transforming Data
	Handling Column Names and Literals in Functions
	Using the Appropriate Function
	Transforming Dates
	Performing Arithmetic Operations
	Omitting @COMPUTE

	Manipulating Numbers and Character Strings
	Handling Null, Invalid, and Missing Data
	Using @COLSTAT
	Using @COLTEST
	Using @IF

	Performing Tests
	Using @CASE
	Using @VALONEOF
	Using @EVAL

	Using Tokens
	Defining Tokens
	Using Token Data in Target Tables

	12 Associating Replicated Data with Metadata
	Overview
	Understanding Data Definition Files
	Contents of the Definitions File
	Which Definitions File Type to Use, and Where
	Understanding the Effect of Character Sets on Definitions Files
	Confining Data Mapping and Conversion to the Replicat Process
	Avoiding File Corruptions Due to Operating System Character Sets
	Changing the Character Set of Existing Definitions Files
	Downloading from a z/OS system to another platform

	Using a Definitions Template
	Configuring Oracle GoldenGate to Capture Data-definitions
	Configure DEFGEN
	Run DEFGEN
	Transfer the Definitions File to the Remote System
	Specify the Definitions File

	Adding Tables that Satisfy a Definitions Template
	Examples of Using a Definitions File
	Creating a Source-definitions file for Use on a Target System
	Creating Target-definitions Files for Use on a Source System
	Creating Multiple Source Definition Files for Use on a Target System

	Using Automatic Trail File Recovery
	Configuring Oracle GoldenGate to Use Self-Describing Trail Files
	Support Considerations
	Using Self-Describing Trail Files
	Examples of Parameter Files

	Configuring Oracle GoldenGate to Assume Identical Metadata
	Rules for Tables to be Considered Identical

	Configuring Oracle GoldenGate to Assume Dissimilar Metadata
	Configuring Oracle GoldenGate to Use a Combination of Similar and Dissimilar Definitions

	13 Configuring Online Change Synchronization
	Overview of Online Change Synchronization
	Initial Synchronization

	Choosing Names for Processes and Files
	Naming Conventions for Processes
	Choosing File Names

	Creating a Checkpoint Table
	Options for Creating the Checkpoint Table
	Adjusting for Coordinated Replicat in Oracle RAC

	Creating an Online Extract Group
	Creating a Trail
	Assigning Storage for Oracle GoldenGate Trails
	Estimating Space for the Trails
	Adding a Trail

	Creating a Parameter File for Online Extraction
	Creating an Online Replicat Group
	About Classic Replicat Mode
	About Coordinated Replicat Mode
	About Barrier Transactions
	How Barrier Transactions are Processed
	About the Global Watermark

	About Integrated Replicat Mode
	Understanding Replicat Processing in Relation to Parameter Changes
	Creating the Replicat Group

	Creating a Parameter File for Online Replication

	14 Handling Processing Errors
	Overview of Oracle GoldenGate Error Handling
	Handling Extract Errors
	Handling Replicat Errors during DML Operations
	Handling Errors as Exceptions
	Using EXCEPTIONSONLY
	Using MAPEXCEPTION
	About the Exceptions Table

	Handling Replicat errors during DDL Operations
	Handling TCP/IP Errors
	Maintaining Updated Error Messages
	Resolving Oracle GoldenGate Errors

	15 Instantiating Oracle GoldenGate with an Initial Load
	Overview of the Initial-Load Procedure
	Improving the Performance of an Initial Load
	Prerequisites for Initial Load
	Disable DDL Processing
	Prepare the Target Tables
	Configure the Manager Process
	Create a Data-definitions File
	Create Change-synchronization Groups
	Sharing Parameters between Process Groups

	Initial Load in Classic Architecture
	Loading Data with a Database Utility
	Loading Data with Oracle Data Pump
	Using Automatic Per Table Instantiation
	Using Oracle Data Pump Table Instantiation

	Loading Data from File to Replicat
	Loading Data with an Oracle GoldenGate Direct Load
	Loading Data with a Direct Bulk Load to SQL*Loader
	Loading Data with Teradata Load Utilities

	16 Customizing Oracle GoldenGate Processing
	Executing Commands, Stored Procedures, and Queries with SQLEXEC
	Performing Processing with SQLEXEC
	Using SQLEXEC
	Executing SQLEXEC within a TABLE or MAP Statement
	Executing SQLEXEC as a Standalone Statement
	Using Input and Output Parameters
	Passing Values to Input Parameters
	Passing Values to Output Parameters
	SQLEXEC Examples Using Parameters

	Handling SQLEXEC Errors
	Handling Missing Column Values
	Handling Database Errors

	Additional SQLEXEC Guidelines

	Using Oracle GoldenGate Macros to Simplify and Automate Work
	Defining a Macro
	Calling a Macro
	Calling a Macro that Contains Parameters
	Calling a Macro without Input Parameters

	Calling Other Macros from a Macro
	Creating Macro Libraries
	Tracing Macro Expansion

	Using User Exits to Extend Oracle GoldenGate Capabilities
	When to Implement User Exits
	Making Oracle GoldenGate Record Information Available to the Routine
	Creating User Exits
	Supporting Character-set Conversion in User Exits
	Using Macros to Check Name Metadata
	Describing the Character Format
	Upgrading User Exits
	Viewing Examples of How to Use the User Exit Functions

	Using the Oracle GoldenGate Event Marker System to Raise Database Events
	Case Studies in the Usage of the Event Marker System
	Trigger End-of-day Processing
	Simplify Transition from Initial Load to Change Synchronization
	Stop Processing When Data Anomalies are Encountered
	Trace a Specific Order Number
	Execute a Batch Process
	Propagate Only a SQL Statement without the Resultant Operations
	Committing Other Transactions Before Starting a Long-running Transaction
	Execute a Shell Script to Validate Data

	17 Monitoring Oracle GoldenGate Processing
	Using the Information Commands in GGSCI
	Monitoring an Extract Recovery
	Monitoring Lag
	About Lag
	Controlling How Lag is Reported

	Using Automatic Heartbeat Tables to Monitor
	Understanding Heartbeat Table End-To-End Replication Flow
	Updating Heartbeat Tables
	Purging the Heartbeat History Tables
	Best Practice
	Using the Automatic Heartbeat Commands

	Monitoring Processing Volume
	Using the Error Log
	Using the Process Report
	Scheduling Runtime Statistics in the Process Report
	Viewing Record Counts in the Process Report
	Preventing SQL Errors from Filling the Replicat Report File

	Using the Discard File
	Maintaining the Discard and Report Files
	Reconciling Time Differences
	Getting Help with Performance Tuning

	18 Tuning the Performance of Oracle GoldenGate
	Using Multiple Process Groups
	Considerations for Using Multiple Process Groups
	Maintaining Data Integrity
	Number of Groups
	Memory
	Isolating Processing-Intensive Tables

	Using Parallel Replicat Groups on a Target System
	To Create the Extract Group
	To Create the Replicat Groups

	Using Multiple Extract Groups with Multiple Replicat Groups
	To Create the Extract Groups
	To Create the Replicat Groups

	Splitting Large Tables Into Row Ranges Across Process Groups
	Configuring Oracle GoldenGate to Use the Network Efficiently
	Detecting a Network Bottleneck that is Affecting Oracle GoldenGate
	Working Around Bandwidth Limitations by Using Data Pumps
	Reducing the Bandwidth Requirements of Oracle GoldenGate
	Increasing the TCP/IP Packet Size

	Eliminating Disk I/O Bottlenecks
	Improving I/O performance Within the System Configuration
	Improving I/O Performance Within the Oracle GoldenGate Configuration

	Managing Virtual Memory and Paging
	Optimizing Data Filtering and Conversion
	Tuning Replicat Transactions
	Tuning Coordination Performance Against Barrier Transactions
	Applying Similar SQL Statements in Arrays
	Preventing Full Table Scans in the Absence of Keys
	Splitting Large Transactions
	Adjusting Open Cursors
	Improving Update Speed
	Set a Replicat Transaction Timeout

	19 Performing Administrative Operations
	Performing Application Patches
	Initializing the Transaction Logs
	Shutting Down the System
	Changing Database Attributes
	Changing Database Metadata
	Adding Tables to the Oracle GoldenGate Configuration
	Coordinating Table Attributes between Source and Target
	Performing an ALTER TABLE to Add a Column on DB2 z/OS Tables
	Dropping and Recreating a Source Table
	Changing the Number of Oracle RAC Threads when Using Classic Capture
	Changing the ORACLE_SID
	Purging Archive Logs
	Reorganizing a DB2 Table (z/OS Platform)

	Adding Process Groups to an Active Configuration
	Before You Start
	Adding Another Extract Group to an Active Configuration
	Adding Another Data Pump to an Active Configuration
	Adding Another Replicat Group to an Active Configuration

	Changing the Size of Trail Files
	Switching Extract from Classic Mode to Integrated Mode
	Switching Extract from Integrated Mode to Classic Mode
	Switching Replicat from Nonintegrated Mode to Integrated Mode
	Switching Replicat from Integrated Mode to Nonintegrated Mode
	Switching Replicat to Coordinated Mode
	Procedure Overview
	Performing the Switch to Coordinated Replicat

	Administering a Coordinated Replicat Configuration
	Performing a Planned Re-partitioning of the Workload
	Recovering Replicat After an Unplanned Re-partitioning
	Reprocessing From the Low Watermark with HANDLECOLLISIONS
	Using the Auto-Saved Parameter File

	Synchronizing Threads After an Unclean Stop

	Restarting a Primary Extract after System Failure or Corruption
	Details of This Procedure
	Performing the Recovery

	Part II Administering Oracle GoldenGate Microservices Architecture
	20 Loading Data from File to Replicat in Microservices Architecture

	A Supported Character Sets
	Supported Character Sets - Oracle
	Supported Character Sets - Non-Oracle

	B Supported Locales
	C About the Oracle GoldenGate Trail
	Trail Recovery Mode
	Trail File Header Record
	Trail Record Format
	Example of an Oracle GoldenGate Record
	Record Header Area
	Description of Header Fields
	Using Header Data

	Record Data Area
	Full Record Image Format (NonStop Sources)
	Compressed Record Image Format (Windows, UNIX, Linux Sources)

	Tokens Area
	Oracle GoldenGate Operation Types
	Oracle GoldenGate Trail Header Record

	D Using the Commit Sequence Number
	E About Checkpoints
	Extract Checkpoints
	About Extract read checkpoints
	Startup Checkpoint
	Recovery Checkpoint
	Current Checkpoint

	About Extract Write Checkpoints

	Replicat Checkpoints
	About Replicat Checkpoints
	Startup Checkpoint
	Current Checkpoint

	Internal Checkpoint Information
	Oracle GoldenGate Checkpoint Tables

