
Oracle® Fusion Middleware
Securing the Oracle GoldenGate Environment

12c (12.3.0.1)
F12833-02
January 2019

Oracle Fusion Middleware Securing the Oracle GoldenGate Environment, 12c (12.3.0.1)

F12833-02

Copyright © 2017, 2019, Oracle and/or its affiliates. All rights reserved.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

1 Introducing Oracle GoldenGate Security

Part I Securing the Microservices Architecture

2 Network

Network Access Control 2-1

Network Connection Adapter 2-2

Proxy Support 2-4

Reverse Proxy Support 2-6

3 Authentication and Authorization

Authentication 3-1

Authorization 3-3

Authorization for WebSockets 3-4

Error Codes 3-5

Cross Site Request Forgery 3-5

4 Communication Security

Certificate Access Control List 4-1

Transport Layer Security Protocols and Ciphers 4-2

TLS Certificate Revocation List Handling 4-4

HTTP Security and Cache Headers 4-7

5 Server and Deployment Identities

Using a Universally Unique IDs Scheme 5-1

Using a Deterministically Calculated Unique ID Scheme 5-1

Using an Explicit Naming Scheme 5-2

iii

Creating Server and Deployment IDs 5-2

6 Securing Deployments

Part II Securing Oracle GoldenGate

7 Overview of Security Options

8 Encrypting Data with the Master Key and Wallet Method

Creating the Wallet and Adding a Master Key 8-1

Specifying Encryption Parameters in the Parameter File 8-2

Renewing the Master Key 8-3

Deleting Stale Master Keys 8-4

9 Encrypting Data with the ENCKEYS Method

Encrypting the Data with the ENCKEYS Method 9-1

Decrypting the Data with the ENCKEYS Method 9-2

Examples of Data Encryption using the ENCKEYS Method 9-3

10

Managing Identities in a Credential Store

Creating and Populating the Credential Store 10-1

Specifying the Alias in a Parameter File or Command 10-2

11

Encrypting a Password in a Command or Parameter File

Encrypting the Password 11-1

Specifying the Encrypted Password in a Parameter File or Command 11-2

12

Populating an ENCKEYS File with Encryption Keys

Defining Your Own Key 12-1

Using KEYGEN to Generate a Key 12-1

Creating and Populating the ENCKEYS Lookup File 12-2

iv

13

Configuring GGSCI Command Security

Setting Up Command Security 13-1

Securing the CMDSEC File 13-3

14

Using Target System Connection Initiation

Configuring the Passive Extract Group 14-2

Configuring the Alias Extract Group 14-3

Starting and Stopping the Passive and Alias Processes 14-3

Managing Extraction Activities 14-4

Other Considerations when using Passive-Alias Extract 14-4

15

Securing Manager

v

Audience

This guide is intended for the person or persons who are responsible for operating
Oracle GoldenGate and maintaining its performance. This audience typically includes,
but is not limited to, systems administrators and database administrators.

6

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Accessible Access to Oracle Support

Oracle customers who have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=trs if you are hearing impaired.

7

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

8

Related Information

The Oracle GoldenGate Product Documentation Libraries are found at

https://docs.oracle.com/en/middleware/goldengate/index.html

Additional Oracle GoldenGate information, including best practices, articles, and
solutions, is found at:

Oracle GoldenGate A-Team Chronicles

9

https://docs.oracle.com/en/middleware/goldengate/index.html
http://www.ateam-oracle.com/category/data-integration/di-ogg/

1
Introducing Oracle GoldenGate Security

Oracle GoldenGate includes many security features that provide varying levels of
security. Understanding the security features and the uses cases they cover are
important first steps when learning how to secure your environment.

There are two different architectures offered with Oracle GoldenGate:

Microservices Architecture (MA)
This is a REST API Microservices-based architecture that allows you to configure,
monitor, and manage Oracle GoldenGate services using a web-based UI.
You can use MA to deploy, monitor, manage, and perform Extract and Replicat
operations on trail data within your MA implementation. To know more about MA see
Components of Oracle GoldenGate Microservices Architecture.

Classic Architecture (CA)
This is the original Oracle GoldenGate architecture to effectively move data across
numerous topologies. To know more about Classic Architecture, see Components of
Classic Architecture and the Oracle GoldenGate user guide for your database.

Securing both architectures is detailed in these parts:

• Securing the Microservices Architecture

• Securing Oracle GoldenGate

1-1

Part I
Securing the Microservices Architecture

Use this part to secure your Microservices Architecture (MA) environment.

The MA service interfaces use the REST architectural style, within an HTTP
environment. As REST is a style that uses HTTP and not a distinct transfer
implementation, all the security related concerns and solutions applied to HTTP apply
equally to REST interfaces. This includes ensuring general security related to HTTP-
based requests, responses, sessions, cookies, headers and content as well as
addressing issues such as Cross Site Request Forgery, UI Redressing and delegated
authentication. TLS/SSL when enabled, ensures confidentiality and optionally integrity,
although typical configurations do not ensure bi-lateral integrity. Negotiating security
configurations can further specify identity validation, renegotiation, and revocation
requirements as allowed by Oracle security standards.

Communications Transport

All REST Service Interfaces and Data Conveyances may be conducted over the
following network transport:

• TCP is used for network communication.

• UDT is an additional protocol used for data conveyance. It is a high-performance,
UDP-based data transfer protocol, which transfers large datasets over high-speed
WAN.

• WebSockets 2.0 is a not a transport protocol but a pseudo-transport that enables a
server to send content to client without client solicitation, thereby enabling bi-
directional messaging over a persistent connection. It operates over HTTPS ports
simplifying network security management.

Communications Security

An MA server is the originator of all the response messages sent to the client when a
request is sent to the server. An MA server neither serves as a proxy nor supports
tunneling of response messages generated by other applications. Secured network
communications use Oracle approved TLS (Transport Layer Security) or DTLS
(Datagram Transport Layer Security) libraries. MA Oracle platforms uses the Oracle
SSL toolkit (NZ), which includes Oracle Wallet integration.

For non-Oracle platforms, the Oracle SSL toolkit is used where available. Where the
Oracle SSL Toolkit is not available, an alternate SSL toolkit is used.

All MA servers implement client and server authentication. However, client and server
authentication is only available when network security is configured and enabled. MA
servers can be configured with network security enabled but without using server or
client authentication.

Inbound and Outbound Security Configuration

Security configuration can be inbound or outbound. Inbound configuration implies
configuring specific behavior associated with a server. A server receives requests and

responds with information or messages. Outbound security configuration assumes that
the specific behavior is associated with a client.

A client issues requests and receives the response information from the server. Only
the Distribution Server acts as a client with outbound security requirements. All other
servers are server-only. For example, in MA, the Distribution Server accepts service
requests from clients through inbound configured secured connections, while it
connects and sends trail data to Receiver Server through secure connections with
Outbound configuration.

Topics:

• MA Security Features
Learn about these MA security features:

• Network
Learn how to secure your network for Oracle GoldenGate.

• Authentication and Authorization
The MA security and authorization model declares and defines how
communication security (confidentiality and Integrity) and Authorization
(authentication and permissions) are configured and implemented.

• Communication Security
Communication security is the confidentiality and integrity of the information sent
over communications channels, such as TCP/IP-based networks.

• Server and Deployment Identities
You must uniquely identify MA servers and deployments using schemes.

• Securing Deployments
You can choose to set up a secure or non-secure deployment. A secure
deployment involves making RESTful API calls and conveying trail data between
the Distribution Server and Receiver Server, over SSL/TLS. You can use your
existing wallets and certificates, or you can create new ones.

MA Security Features

Learn about these MA security features:

• Connection Filtering: This is responsible for qualifying and filtering a candidate
connection based on connection policy specifications.

• Certificate Filtering: Similar to connection filtering, this feature enables qualifying
certificates as part of accepting or denying a connection request.

• Fall-back Constraints: Network security configuration within MA servers enables
you to configure and constrain the protocol version negotiation fall-back behavior
allowing them to control if and how the protocol versions are negotiated.

• IPv6 Support: Oracle GoldenGate network implementations support native IPv6
addressing standards.

• Session Management: MA Service Interfaces requests are REST and stateless,
which implies that no client application context it stored on the server between
requests. The application session state is entirely held by the client.

• User Credential Storage: MA implementations address this by using Oracle
Wallets and related identity management services to store security information.

Approved encryption technologies are configured to secure both stored and in-
flight user data. Stored data typically refers to file system files like capture data
trail files while in-flight data typically refers to data transmitted between peers over
a non-persistent communications channel.

• Single Page Applications (SPAs) and WebApp Security: If the initial connection
to the Service Manager uses the HTTPS protocol, then the browser connects using
SSL/TLS. If the server is configured to require the client to present a certificate,
the browser needs to be configured to present the appropriate client certificate.

• Cipher-suites: The cipher-suites for MA are configured during deployment. You
can change the value of the cipher-suite using the Server Manager REST
interfaces for each server. Alternatively, you can update then using either the MA
boostrap configuration override option or the command-line configuration override
options. The list of cipher-suites available to a user differs based on the
environment. This ensures that there is sufficient overlap to allow secure
communication at the required security level.

Both client and server platforms generally support more than one cipher-suite.
This increases the probability that the client and server can negotiate and agree
on a cipher-suite to use. The set of available cipher-suites on the server is dictated
by the NZ Toolkit (or alternate TLS/SSL toolkit). There are several cipher-suites
set as the default set and is dependent on the Java Runtime Environment
distributed with Oracle GoldenGate. The default set attempts to specify the most
common cipher-suites with the highest security protection and highest
performance. However, in practice you need to choose between high security and
high performance as these are competing attributes and there is a trade-off
between security and performance.

2
Network

Learn how to secure your network for Oracle GoldenGate.

Topics:

• Network Access Control
The MA configuration of the network connection takes the form of an array or
network access control list (ACL).

• Network Connection Adapter
Learn about how to specify your network connection configuration.

• Proxy Support
Learn how to configure your proxy servers.

• Reverse Proxy Support
Learn how to configure your reverse proxy servers.

Network Access Control
The MA configuration of the network connection takes the form of an array or network
access control list (ACL).

Each ACL specification minimally consists of a permission statement indicating
whether the APC specification allows or denies client connections from the specified
address. ACL specifications are processed in order and terminate when the specified
address is qualified. If the specified address does not qualify, processes continue with
the next ACL specification. Once the address of the client requesting connection is
qualified, the ACLs permissions dictate whether the connection is 'allowed' or 'denied'.
If the no ACL specifications qualify address of the client requesting connection, a
default resolution of 'allow is assumed and the client is allowed to connect. The ACL in
the configuration take the following syntactic form:

ipACL := '[' aclSpec [, aclSpec] ']'
aclSpec := "permission" : ["deny" | "allow"] [, "address": [ipv4Address
| ipv4MappedAddress | ipv6Address]]
ipv4Address := '"' decimal '.' decimal '.' decimal '.' decimal '"'
ipv4MappedAddress := '"' 'ff::' decimal '.' decimal '.' decimal '.'
decimal '"'
ipv6Address := '"' hexadecimal ':' hexadecimal ':' hexadecimal ':'
hexadecimal ':' hexadecimal ':' hexadecimal ':' hexadecimal ':'
hexadecimal '"'

Inbound connection request are processed uniformly after they are received over a
network interface. The network interface configuration dictates the form of addressing.
For example, addresses appearing on an IPv6 interface appears as IPv6 addresses. If
the IPv6 configuration specifies IPv4 mapping, then the IPv4 client's address is
mapped into the IPv6 addressing space. An address appearing on an IPv4 interface
appears as an unmapped IPv4 address. Since the ACL qualification focuses on

2-1

qualifying addresses and all adapters within the host environment have unique
addresses, no additional interface information is required.

For hosts that support hot-fail over network interfaces, the fail-over and reassignment
of network IP address to adapter MAC addresses is transparent to the application.

Example 2-1 Examples

Deny client connections originating from 192.0.2.254.

"ipACL" : [{ "permission" : "deny", "address" : "192.0.2.254" }]

Explicitly allow all client connections. The first ACP by default qualifies all addresses.
The second ACL is never processed.

"ipACL" : [{ "permission" : "allow" },
 { "permission" : "deny", "address" : "192.0.2.254" }]

Allow client connections originating from 127.0.0.1, but deny connection originating
from 192.0.2.254 appearing on an interface configured for IPv6 addressing.

"ipACL" : [{ "permission" : "allow", "address" : "127.0.0.1" },
 { "permission" : "deny", "address" : "ff::192.0.2.254" }]

Allow client connections originating from and IPv6 loopback address (127.0.0.1
represented as ::1 in IPV6 addressing), allow client connections originating from the
unmapped IPv4 address 192.0.2.253, allow client connections originating from IPv6
address 2001:db8:85a3:0:0:8a2e:370:7334 and deny client connections originating
from mapped IPv4 address ff::192.0.2.254.

"ipACL" : [{ "permission" : "allow", "address" : "::1" },
 { "permission" : "allow", "address" : "192.0.2.254" },
 { "permission" : "allow", "address" : "2001:db8:85a3:0:0:8a2e:
370:7334" },
 { "permission" : "deny", "address" : "ff::192.0.2.254" }]

Network Connection Adapter
Learn about how to specify your network connection configuration.

The actual network connection information is captured in Network Connection
Specification of the Software Communications Architecture (SCA). In the description of
the ScaNetworkSpec class, instances of the ScsNetworkSpec represent the network
configuration information acquired from the ScaSharedContext. The ScaNetworkSpec
handles the discrete network specification. However, a complete SCA network
specification takes any of three forms and can define more than one network
configuration. Multiple networks is when more than one network interface is configured
in an environment where the host be multi-homed, For example, handling connections
requests on different addresses through different network interface adapters.

The NetworkConnectionSpecs themselves are members of an array associated with
the serviceListeningPort configuration element. For example, using the

Chapter 2
Network Connection Adapter

2-2

serviceListeningPort configuration entry, an SCA network specification may take
any of the following syntactic forms:

1. portValue | portValueString
2. networkSpec
3. '[' networkSpec [, networkSpec ...] ']'

You can use the following syntax in your network specification:

 portValue := [1234567890]+
 portValueString := '"' portValue '"'
 networkSpec := '{' portSpec [, ipaddressSpec | nameSpec] [,
interfaceSpec] [, networkOptionSpec] '}'
 portSpec := "port" : portValue | portValueString
 ipaddressSpec := "address" : ipv4Address | ipv6Address | "ANY"
 nameSpec := '"' :alphanum: '"'
 interfaceSpec := "interface" : '"' :alphanum: '"'
 networkOptionSpec := "options" : IPV4_ONLY | IPV6_ONLY

Regardless of the form your specification takes, the internal representation is
normalize into the 3rd form:

1. portValue | portValueString == networkSpec
2. portValue == '{' "port" : portValue '}'
3. portValueString == '[' '{' "port" : portValueString '}' ']'

The first form retains compatibility with existing network port specifications where only
the portValue or portValueString is provided.

The second form assigns the networkSpec as a single value. This form still only
defines a single network specification and allows greater control and flexibility in
identifying network values and options.

The third form defines an array of networkSpec instances. It allows you to specify
different network configurations based upon either address or network interface.

Example 2-2 Example

With the following simplified host network interface configuration:

$/sbin/ip addr show
lo: LOOPBACK,UP,LOWER_UP mtu 16436 qdisc noqueue state UNKNOWN
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
eth0: BROADCAST,MULTICAST,UP,LOWER_UP mtu 1500 qdisc pfifo_fast state UP
qlen 1000
 link/ether 00:16:3e:52:6e:27 brd ff:ff:ff:ff:ff:ff
 inet 192.0.2.39/21 brd 10.240.111.255 scope global eth0
 inet6 2001:db8:85a3:0:0:8a2e:370:6666 brd ff02::1 scope link eth0
eth1: BROADCAST,MULTICAST mtu 1500 qdisc pfifo_fast state UP qlen 1000
 link/ether 00:16:3e:1f:99:bc brd ff:ff:ff:ff:ff:ff
 inet 192.0.2.98/21 brd 10.100.99.98 scope link eth1
 inet6 2001:db8:85a3:0:0:8a2e:370:7334 brd ff02::1 scope link eth1

Chapter 2
Network Connection Adapter

2-3

The following specification is derived:

1. "serviceListeningPort: "9000"
2. "serviceListeningPort: 9000
3. "serviceListeningPort: { "port" : 9000 }
4. "serviceListeningPort: { "port" : "9000" }
5. "serviceListeningPort: { "port" : "9000", "address" : "192.0.2.254" }
6. "serviceListeningPort: { "port" : "9000", "name" : "server1" }
7. "serviceListeningPort: { "port" : "9000", "interface" :
"eth1" }
8. "serviceListeningPort: [
 { "port" : "9000", "interface" :
"lo" }
 { "port" : "9000", "address" : "192.0.2.39", "option" :
"IPV4_ONLY" }
 { "port" : "9000", "interface" : "eth1", "option" :
"IPV6_ONLY" }

These forms are describes as:

Form 1 - 4
Listens on port 9000 on all ANY address over ALL interfaces.

Form 5
Listens on port 9000 on address 192.0.2.254 only.

Form 6
Listens on port 9000 on the address associates with server1.

Form 7
Listens on port 9000 on the address associates with interface eth1 and accepts IPV4
address connections using the mapped IPV4.

Form 8
Listens on port 9000 on the address associates with interface lo, on port 9000
address 192.0.2.39 accepting only IPV4 addresses, and on port 9000 with addresses
associated with interface eth1 accepting onlyIPV6 addresses.

Most of this logic handles selecting network interface adapter based on the network
interface adapter’s identifying name or the address. The interface can be searched for
based on the requested address.

Specifying multiple adapters means that each ScaNetworkSpec resolves to only a
subset of adapters. Precedence processing allows the specification of ANY address
and ALL interfaces for the last ScaNetworkSpec as a pool specification when the
platform networking interfaces support mapping sub-set interface matches

Proxy Support
Learn how to configure your proxy servers.

Proxy configuration mediates access with different MA servers within a network for a
deployment.

Chapter 2
Proxy Support

2-4

MA requires you to exhibit proper and compliant behavior in a network environment
where one or more proxy servers may mediate access to MA servers.

Configuration

The initial configuration is simply declaring whether proxy detection should be enabled
or disabled. Typically, it is enabled by default though you can disable it in /config/
network/proxyDetails. The enable clause is similar to:

{
 "network" : {
 "proxyEnabled": true,
 "proxyDetails": {
 "proxyACLEnabled": true,
 "proxyACL": [
 { "permission": "deny", "address":
"192.0.2.254" },
 { "permission": "allow", "address": "192.0.2.254",
"trusted": false },
 { "permission": "allow", "address": "ANY",
"trusted": true }
],
 "urlMappingEnabled": true,
 "urlMapping": [
]
 }
 }
 }

Proxy ACL Specifications

The configuration of Proxy ACL specifications is similar to Network IP ACL
specifications. The differences are that each entry defines the access control for a
proxy server in your environment and includes a trust designator. Each ACL
specification minimally consists of a permission statement indicating whether the ACL
specification allows or denies client connections proxied through the proxy server's
specified address. ACL specifications are processed in order and terminate when the
specified address is qualified. If the specified address does not qualify, processes
continue with the next ACL specification. Once the address of the client requesting
connection is qualified, the ACLs permissions dictate whether the connection is
allowed or denied. If the no ACL specifications qualify address of the client requesting
connection, a default resolution of allow is used and the client is allowed to connect.
The ACL in the configuration may take the following form:

ipACL := '[' aclSpec> [, aclSpec] ']'
aclSpec := "permission" : ["deny" | "allow"] [, "address": [ipv4Address
| ipv4MappedAddress | ipv6Address]]
ipv4Address := '"' decimal '.' decimal '.' decimal '.' decimal '"'
ipv4MappedAddress := '"' 'ff::' decimal '.' decimal '.' decimal '.'
decimal '"'
ipv6Address := '"' hexadecimal ':' hexadecimal ':' hexadecimal ':'
hexadecimal ':' hexadecimal ':' hexadecimal ':' hexadecimal ':'
hexadecimal '"'

Chapter 2
Proxy Support

2-5

Example 2-3 Proxy Examples

Deny client connections originating from 192.0.2.254.

"ipACL" : [{ "permission" : "deny", "address" : "192.0.2.254" }]

Explicitly allow all client connections. The first ACP by default qualifies all addresses.
The second ACL is never processed.

"ipACL" : [{ "permission" : "allow" },
 { "permission" : "deny", "address" : "192.0.2.254" }]

Allow client connections originating from 127.0.0.1, but deny connection originating
from 192.0.2.254 appearing on an interface configured for IPv6 addressing.

"ipACL" : [{ "permission" : "allow", "address" : "127.0.0.1" },
 { "permission" : "deny", "address" : "ff::192.0.2.254" }]

Allow client connections originating from and IPv6 loopback address (127.0.0.1
represented as ::1 in IPV6 addressing), allow client connections originating from the
unmapped IPv4 address 192.0.2.253, allow client connections originating from IPv6
address 2001:db8:85a3:0:0:8a2e:370:7334 and deny client connections originating
from mapped IPv4 address ff::192.0.2.254.

"ipACL" : [{ "permission" : "allow", "address" : "::1" },
 { "permission" : "allow", "address" : "192.0.2.254" },
 { "permission" : "allow", "address" : "2001:db8:85a3:0:0:8a2e:
370:7334" },
 { "permission" : "deny", "address" : "ff::192.0.2.254" }]

Reverse Proxy Support
Learn how to configure your reverse proxy servers.

Reverse Proxy allows a single point of contact for various microservices associated
with an Oracle GoldenGate MA deployment.

You can configure a proxy server depending on your environment setup and network
requirements. Reverse proxy is optional, however, it is recommended to ensure easy
access to microservices and provide enhanced security.

Reverse Proxy Support

Oracle GoldenGateMA can be configured to use a reverse proxy. Oracle GoldenGate
MA includes an application called ReverseProxySettings that generates configuration
file for a reverse proxy server. For example, the Administration Server is available on
https://goldengate.example.com:9001 and the Distribution Server is on
https://goldengate.example.com:9002. With reverse proxy, all the
microservices can be accessed from a single address, for example, https://
goldengate.example.com.

The ReverseProxySettings application has two additional parameters in Oracle
GoldenGate12c (12.3.0.1) and later:

Chapter 2
Reverse Proxy Support

2-6

• -P: Password for a Service Manager account.

• -u: Name of the Service Manager account to use.

These values are used when connecting to the Service Manager and are required
when authentication is enabled.

Prerequisites

If you need to use a reverse proxy service with MA, use Nginx. Its a free, open-source,
high-performance HTTP server and reverse proxy, as well as an IMAP/POP3 proxy
server.Oracle GoldenGate MA is shipped with a utility to configure Nginx reverse
proxy.

Here are the prerequisites for configuring Nginx-based reverse proxy:

• Install Nginx: For Oracle Linux, the command to install Nginx is:

yum —y install nginx

For more information about installing Nginx, see Installing Nginx Reverse Proxy

• Check the JRE version to be JRE 8.

• Install Oracle GoldenGate MA.

• Create one or more active MA deployments.

Configuring Nginx-based Reverse Proxy Example

An Oracle GoldenGate MA installation includes the ReverseProxySettings application
in the $OGG_HOME/lib/utl/reverseproxy/directory. You can see the list of options
available with the application, using the –help command.

$OGG_HOME/lib/utl/reverseproxy/ReverseProxySettings --help

 Usage: proxysettings [options] service-manager-url

 Options:

 -o, --output Output file name (default is ogg.conf)
 -l, --log Log file name (default is no logging)
 -t, --type Proxy server type (default is nginx)
 -s, --no-ssl Configure without SSL
 -h, --host Virtual host name for reverse proxy
 -p, --port Reverse proxy port number (defaults to 80 or 443)
 -?, --help Display usage information
 -v, --version Display version

Follow these steps to configure a reverse proxy:

1. To create the settings file for Nginx:

$OGG_HOME/lib/utl/reverseproxy/ReverseProxySettings -u adminuser -P
adminpwd -o ogg.conf http://localhost:9100

If using a secure configuration (no -s is used), you have to use https instead of
http.

Chapter 2
Reverse Proxy Support

2-7

https://www.nginx.com/resources/admin-guide/

2. Replace the existing Nginx configuration with the configuration required for MA
deployment:

sudo mv ogg.conf /etc/nginx/conf.d/

Note:

There shouldn't be any configuration file in the directory. If there is a
default.conf file, you must rename it to default.conf.bak.

3. Create your self-signed certificate for Nginx, using the following command:

sudo sh /etc/ssl/certs/make-dummy-cert /etc/nginx/ogg.pem

4. Test the new Nginx configuration using the following command:

sudo nginx -t

nginx: the configuration file /etc/nginx/nginx.conf syntax is ok
nginx: configuration file /etc/nginx/nginx.conf test is successful

5. As root, reload Nginx and the new configuration:

sudo nginx -s reload

6. Use Curl to verify that reverse proxy is working:

curl -sv http://localhost/services/v2
{"$schema":"api:version","catalog":{"links":[
{"href":"http://localhost/service s/v2/metadata-
catalog","rel":"canonical"}]},"isLatest":true,"lifecycle":"active","link
s":[
{"href":"http://localhost/services/v2","mediaType":"application/js
on","rel":"canonical"},
{"href":"http://localhost/services/v2","mediaType":"app lication/
json","rel":"self"}],"version":"v2"}

Note:

If the deployments associated with the target Service Manager change,
the Nginx configuration file must be re-generated and reloaded.

Chapter 2
Reverse Proxy Support

2-8

3
Authentication and Authorization

The MA security and authorization model declares and defines how communication
security (confidentiality and Integrity) and Authorization (authentication and
permissions) are configured and implemented.

All the security and authorization configurations and services are common to MA-
based servers. These servers authenticate, authorize, and secure access to command
and control, monitoring, data conveyance, and information service interfaces for the
MA.

The MA defines a model and infrastructure for building service-aware applications.
This model is not a generalized model, but one targeted at the current and future
Oracle GoldenGate products that need to operate and integrate into global, cloud-
based deployment environments. Oracle GoldenGate server programs are
implemented using the MA infrastructure. All security and configuration
implementations provided by the MA are common services.

• Authentication
Learn how you can use identity authentication.

• Authorization
Learn how you can use authorization modes.

• Authorization for WebSockets
Learn how you can use WebSocket authorization.

• Error Codes
Review the MA HTTP error codes.

• Cross Site Request Forgery
Learn how to avoid client-side attacks.

Authentication
Learn how you can use identity authentication.

The goal of the authenticated identity design is to establish identity authentication
between users, an MA server or application, and an MA server. The authentication
design relies on either the validity of a certificate or of a user credential (username and
passphrase pair).

The MA servers publish REST service interfaces that enable users and applications to
request services including operational control over one or more MA deployments,
service administration, status and performance monitoring. The following illustration
depicts the relationship between the user, application, server, and database.

3-1

The following types of certificates are used for authentication:

• Application Certificate: An Application Certificate is a certificate issued to a
specific application. The Application Certificate is stored by the application. Oracle
GoldenGate client applications store the Application Certificate in an application
Oracle Wallet designated by the Application configuration. The default location of
the application Oracle Wallet is in the $OGG_SSL_HOME directory.

• User Certificate: A User Certificate is a certificate issued to a specific user.
Oracle GoldenGate client applications store the User Certificate in a user Oracle
Wallet. The default location of the user Oracle Wallet is under the user's home
directory. Service requests issued with User Certificates include the user name
and group information acquired from the host environment. This information
identifies the real user executing the application.

• Server Certificate: A Server Certificate is a certificate issued to a specific MA
server. The Server Certificate is stored by the MA server in the server's Oracle
Wallet. The default location of the server Oracle Wallet is under the server's
installation directory. An MA server is authenticated to applications as the identity
described in the Server Certificate.

• User’s or Application’s Database Authentication: MA servers support Service
Interface request whose fulfillment requires logging into a source or target
database. MA Server database actions are limited to specific operations required
to fulfill service request requirements. The following table describes the type of
authentication that are supported by MA servers:

Type of
Authentication

Description

MA server database
authentication

This configuration sets the MA server to establish
connections to the database using its own credentials as

Chapter 3
Authentication

3-2

the only authenticated user. All service requests
requiring database access use the MA server database
session. Database operations are logged as originating
from the MA

MA server database
authentication with
database proxy support

This type sets the MA server to establish connections to
the database using its own credentials but support proxy
user sessions, through an MA server authenticated
connection. Proxy support is configured using: User
Name or Distinguished Name.

Pass-thru database
authentication

This configuration sets the MA server to establish a
session or connection to the database using the client
provided user name and password.

User-alias database
authentication

This configuration sets the MA server to establish a
session or connection to the database using a client
provided Alias ID that is mapped to a credential, held by
the MA server, to establish a session or connection to
the database.

Oracle UTL_HTTP Authentication

The user and application authentication model also applies to database packages that
support issuing REST Server Interface requests to MA servers. Depending on the
security configuration of the MA server, packages or procedures that use the UTL_HTTP
Oracle Database package may need to configure the client database security
environment to enable the use of Client-side certificates for authentication in
UTL_HTTP.

To enable UTL_HTTP to use client-side certificates:

1. Configure the database client Oracle Wallet, see Creating the Wallet and Adding a
Master Key.

2. Configure UTL_HTTP with TLS (SSL) for client-side authentication, see Using
UTL_HTTP.

Certificate Revocation List Authentication Support

MA servers supports Certificate Revocation List (CRL) checks as part of the
authentication process. Although MA servers do not automatically query for updated
CRLs, the MA infrastructure supports updating server CRL information at runtime
without requiring the MA servers to restart. See TLS Certificate Revocation List
Handling.

Authorization
Learn how you can use authorization modes.

Security Authentication Modes

The following is the list of supported security authentication modes that establish the
authenticity of the entity presenting the authorization information. These are the
available values that may be used when setting the /config/securityDetails/
network/common/authMode security setting. This mode is set when configuring an
Oracle GoldenGate MA deployment.

Chapter 3
Authorization

3-3

Authorization Mode ID Notes

server_only Only validate Server certificates. The Server certificates are
required. The Client certificates are ignored.

client_server Validate both Client and Server certificates. Both certificates
are required.

clientOptional_server This is the default. Validate the client certificate if it is
present, as it is optional. Validate the server certificate (it’s
mandatory).

User Privileges

You can configure these security roles for users from the Administration Server, see
Setting Up Secure or Non-Secure Deployments.

Role ID Privilege Level

User Allows information-only service
requests, which do not alter or effect the
operation of either the MA. Examples of
Query/Read-Only information include
performance metric information and
resource status and monitoring
information.

Operator Allows users to perform only operational
actions, like starting and stopping
resources. Operators cannot alter the
operational parameters or profiles of the
MA server.

Administrator Grants full access to the user, including
the ability to alter general, non-security
related operational parameters and
profiles of the server.

Security Grants administration of security related
objects and invoke security related
service requests. This role has full
privileges.

Note:

These are authorization privileges and are not directly related to
authentication.

Authorization for WebSockets
Learn how you can use WebSocket authorization.

REST API calls are made using standard HTTP request and take advantage of the
authorization mechanism described in RFC2616. The WebSocket protocol (RFC6455)

Chapter 3
Authorization for WebSockets

3-4

https://tools.ietf.org/html/rfc2616
https://tools.ietf.org/html/rfc6455

is different because it is a streaming-like interface so does not need authorization or
require special handling. WebSockets can be governed with the standard HTTP
authorization mechanism.

Native HTTP Authorization

The native HTTP authorization includes a header in the initial WebSocket
establishment request. The MA server checks the authorization header to approve or
deny the request based on whether the role associated with the requesting user is
equal to or greater than the role assigned for WebSockets establishment requests.

Example 3-1 Example

GET /chat HTTP/1.1
Host: myserver.com
Upgrade: websocket
Connection: Upgrade
Sec-WebSocket-Key: dGhlIHNhbXBsZSBub25jZQ==
Origin: http://myserver.com
Sec-WebSocket-Protocol: ogg
Sec-WebSocket-Version: 13
Authentication: Basic xgfDE24sDwrasdbliop875ty=

Error Codes
Review the MA HTTP error codes.

A few of the MA HTTP authentication and authorization error codes are:

401 Unauthorized
Returned in all cases when the presented credential is poorly formed or missing when
required. This includes incorrectly spelled or unregistered user names when
presented as part of an authorization credential. It does not apply to authorization
resources (404 errors).

403 Forbidden
Returned in all cases when the presented credential is well-formed, but is invalid or
does not have sufficient privileges to grant access to the underlying resource.

404 Not Found
Returned in cases where the presented credential is well-formed, but the server-side
resource cannot be located.
For example, when attempting to retrieve user information using /services/v2/
authorizations/all/james and the user james is not a registered user. Without
a proper registration, no james resource exists so this error code is returned.

The full list is found in the Internet Engineering Task Force RFC 7231 standard at:

https://tools.ietf.org/html/rfc7231

Cross Site Request Forgery
Learn how to avoid client-side attacks.

Cross Site Request Forgery (CSRF) is a client-side attack where a malicious or
unauthorized website attempts to cause the client browser to perform or issue a
compromising action or request against a protected server-side resource using a valid

Chapter 3
Error Codes

3-5

https://tools.ietf.org/html/rfc7231

user or client authorization object. The attack is limited to the actions and resources
published by the attacked website.

Mode of Attack

A general mode of attack is for a malicious agent to cause a user’s browser to be
redirected to a malicious website. The malicious resource at this malicious site causes
the user’s browser to download a client-side script (JavaScript). This downloas causes
the user’s browser to issue a compromised request against a protected website that
the user has obtained prior authorization. The browser issues the compromised
request delivering both the malicious script’s request payload along with any
authorization cookies that are automatically conveyed with the request.
For example, the malicious website’s script instructs the user’s browser to request the
addition of a new user with a high security clearance. The request is issued to the
protected website along with current browser user’s current authorization cookie. This
cookie is delivered automatically and transparently with the malicious request. The
request with the valid user authorization is forged by a script that is retrieved from
different redirected malicious site and issues a malicious request under the
authorization context of the current browser user.

Taking Defensive Measures

In response to the CSRF threats, the compliant browsers implement a mechanism so
that cross-site information is limited and additional information regarding the
requesting browsers environment is included.

When scripts are executed that have been retrieved from a site other than the script’s
request is targeting, then the browser only allows the following allowed methods to be
explicitly defined:

GET
HEAD
POST

Other than the HTTP headers that are automatically set by the browser, the only HTTP
headers allowed to be explicitly set are the CORS-safelisted request-header (simple
header):

Accept
Accept-Language
Content-Language
Content-Type
Last-Event-ID
DPR
Save-Data
Viewport-Width
Width

The Content-Type header is only allowed to declare the following:

application/x-www-form-urlencoded
multipart/form-data
text/plain

No event listeners can be registered with a XMLHttpRequestUpload object nor are any
ReadableStream instances allowed or used in the request.

Chapter 3
Cross Site Request Forgery

3-6

CSRF Mitigation Strategy

Requests issued from scripts are not retried from the same site as the current target
request includes one or more of the following:

Origin HTTP header – Always included in cross-site script requests.

Referer HTTP header – Included if the request is from a referred parent page. (Note
that Referer is misspelled in the Remote Function Call).

If a proxy or reverse proxy is between the requesting client and the target website,
then the proxy or reverse proxy must be configured to include the following extended
HTTP headers:

X-Forwarded-Host – The original hostname the request to which the request was
targeted (the proxy or reverse proxy host). The X-Forwarded-Host should replace the
Origin header on propagated requests, but contain the same information.

X-Forwarded-Server – The hostname of the proxy or reverse proxy server.

This is the strategy in order of evaluation:

1. If the Origin HTTP header exists, then verify that the Origin hostname matches
the origin server’s hostname.

2. If the Referer HTTP header exists, then verify that the Origin HTTP header also
exists and that the hostname value for both the Origin and Referer HTTP
headers match.

3. If the X-Forwarded-Host HTTP header exists, then verify that the X-Forwarded-
Server HTTP header also exists and that the hostname value for both the X-
Forwarded-Host and X-Forwarded-Server HTTP headers match.

4. If neither the Origin header nor the X-Forwarded-Host HTTP headers exist, the
request is presumed not to be originating as a Cross Site Request. This places a
reliance on the compliance of the browser to support Cross Site Scripting (XSS)
policies.

Note:

Because of the reliance on the XSS policy support in the client, malicious
CSRF requests from general purpose non-browser clients (like cURL,
Wget, Python, Perl, and eNetcat) can not be protected against.

Chapter 3
Cross Site Request Forgery

3-7

4
Communication Security

Communication security is the confidentiality and integrity of the information sent over
communications channels, such as TCP/IP-based networks.

Topics:

• Certificate Access Control List
Learn how you can refine communication security.

• Transport Layer Security Protocols and Ciphers
Review the supported security protocols.

• TLS Certificate Revocation List Handling
Learn how to configure a revocation list.

• HTTP Security and Cache Headers
Review the supported security and cache headers.

Certificate Access Control List
Learn how you can refine communication security.

The communication security accepts any valid certificate during the connection
handshake process. However, you may need to filter and reject otherwise valid
certificates based on internal policies. For example, Finance may want to reject
certificates issued to Human Resources even though the Human Resources
certificates are cryptographically valid. To support this additional validation, the MA
extends the standard certificate validation by adding a post-verification certificate
Access Control List (ACL) management. This certificate ACL follows the general
model used for network ACLs where the ACL is a map with the key identifying the
governed element and a value indicating whether the element is allowed or denied.
The certACL entry has a scopespecification that allows the ACL entry to be applied to
specific identification elements within a certificate.

The configuration of a certificate ACL takes the form of an array of certACL entry
configuration specification. Each specification minimally contains a permission
statement indicating whether it allows or denies client connections from the specified
address. The certACL entry specifications are processed in order and terminate as
soon as the specified address is qualified. If the specified address does not qualify,
processing continues with the next specification. Once a certificate is qualified, the
certACL permissions dictate whether the certificate is allowed or denied. If a no
certACL entry specification qualify the certificate of the client requesting connection, a
default resolution of 'allow is assumed and the certificate is accepted.

CertACL Entry Syntax

certACL := '[' aclSpec [, aclSpec] ']'
 aclSpec := '{' perm [',' name [',' scope '}'
 perm := "permission" ':' ["deny" | "allow"]
 name := "name" ':' regex

4-1

 scope := "scope" ':' ["subject-name" | "issuer-name"]
 regex := ** Uses the dynamic regular expression syntax.

The regex syntax follows the ECMAScript definition. Defining a regular expression as
a JSON node value requires that the any meta symbols used (like \s) have the
\character escaped. You should take care when specifying name regular expression
patterns to ensure that only the full match with the intended target pattern is matched.
In the syntax, the patterns only full match with the intended target pattern
CN=AdminClnt not CN=AdminClnt1, CN=AdminClntOther, CN=OtherAdminClnt, or
CCN=OtherAdminClnt because the match pattern includes delimiter specifications that
bound the pattern. These patterns assume a standard distinguished name format that
allows no whitespace between the keyname and the value. The CN = AdminClnt non-
standard pattern would not match.

Example 4-1 Allow All Certificates Example

 "CertACL" : [{ "name" : "^(?:(?:\\s*,?)|.*[\\s,]+)(CN=AdminClnt)(?:(?:\\s*(,+\
\s*.*))$|\\s$)", "permission" : "deny" }]

Or

"CertACL" : [{ "name" : "^(?:(?:\\s*,?)|.*[\\s,]+)(CN=AdminClnt)(?:(?:\\s*(,+\
\s*.*))$|\\s$)", "scope" : "subject-name", "permission" : "deny" }]

Example 4-2 Deny certificates issued from Deploy2

 "CertACL" : [{ "name" : "^(?:(?:\\s*,?)|.*[\\s,]+)(CN=Deploy2)(?:(?:\\s*(,+\
\s*.*))$|\\s$)", "scope" : "issuer-name", "permission" : "deny" }]

Example 4-3 Certificates Issued to Suspect or Any Certificate Issued ByDeploy2

 "CertACL" : [{ "name" : "^(?:(?:\\s*,?)|.*[\\s,]+)(CN=Suspect)(?:(?:\\s*(,+\
\s*.*))$|\\s$)", "scope" : "subject-name", "permission" : "deny" }, { "name" : "^(?:
(?:\\s*,?)|.*[\\s,]+)(CN=Deploy2)(?:(?:\\s*(,+\\s*.*))$|\\s$)", "scope" : "issuer-
name", "permission" : "deny" }]

Transport Layer Security Protocols and Ciphers
Review the supported security protocols.

Transport Layer Security (TLS) Protocols

The following are the supported security protocol versions and these are the available
values that you can use when setting the /config/securityDetails/network/
common/protocolVersion security setting.

Protocol Version ID Notes

3_0_With_2_0_Hello

3_0_Only

2_0 Considered deprecated.

3_0

1_0

1_0_Or_3_0

Chapter 4
Transport Layer Security Protocols and Ciphers

4-2

http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf

Protocol Version ID Notes

1_0_Or_3_0_Or_2_0

3_0_Or_2_0

1_1

1_2

1_1_Or_3_0

1_2_Or_3_0

1_1_Or_1_0

1_2_Or_1_0

1_2_Or_1_1

1_1_Or_1_0_Or_3_0

1_2_Or_1_0_Or_3_0

1_2_Or_1_1_Or_1_0 Oracle Recommends

1_2_Or_1_1_Or_3_0

1_2_Or_1_1_Or_1_0_Or_3_0

Your testing must ensure that all clients used for a particular TLS protocol version
support the TLS version being tested because verification of client support for TLS
version support is required. Diagnostically, the server log should be reviewed for the
handshake protocol processing. The log should contain the protocol version being
negotiated. If the client does not support the protocol version that the server is
configured for, the server terminates the connection. You may not see an error
message or indication overtly sent to the client that a protocol version failed. The
failure may appear to the client as a network connection rejection or a certificate failure
depending on how the client is set to handle the exception.

Note:

TLS protocols below the 1.0 version should not be used because of
documented security defects.

TLS Security Cipher Suites

The following are the supported security cipher suites and these are the available
values that you can use when setting the /config/securityDetails/network/
common/cipherSuites security setting.

Cipher Suite ID Notes

TLS_NO_SUCH_CIPHERSUITE

TLS_RSA_WITH_RC4_128_MD5

TLS_RSA_WITH_RC4_128_SHA

Chapter 4
Transport Layer Security Protocols and Ciphers

4-3

Cipher Suite ID Notes

TLS_RSA_WITH_3DES_EDE_CBC_SHA Federal Information Processing Standards
(FIPS) Compliant

TLS_RSA_WITH_DES_CBC_SHA

TLS_DH_anon_EXPORT_WITH_DES40_CBC_SH
A

TLS_DH_anon_EXPORT_WITH_RC4_40_MD5

TLS_DH_anon_WITH_RC4_128_MD5

TLS_DH_anon_WITH_DES_CBC_SHA

TLS_DH_anon_WITH_3DES_EDE_CBC_SHA FIPS Compliant

TLS_RSA_WITH_AES_128_CBC_SHA FIPS Compliant

TLS_RSA_WITH_AES_256_CBC_SHA FIPS Compliant

TLS_RSA_WITH_AES_128_CBC_SHA256 FIPS Compliant

TLS_RSA_WITH_AES_128_GCM_SHA256 FIPS Compliant

TLS_RSA_WITH_AES_256_GCM_SHA384 FIPS Compliant

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA FIPS Compliant Elliptic Curve Cryptography
(ECC) ciphers

TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA FIPS Compliant ECC ciphers

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
256

FIPS Compliant ECC ciphers

TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
384

FIPS Compliant ECC ciphers

TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA
256

FIPS Compliant ECC ciphers

TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA
384

FIPS Compliant(?) ECC ciphers

ECC ciphers are based on the algebraic structure of elliptic curves over finite fields.
The elliptic curve discrete logarithm problem (ECDLP) assumes that finding the
discrete logarithm of a random elliptic curve element with respect to a publicly known
base point is infeasible. The benefit of ECC ciphers is that generally the key sizes are
smaller compared to non-ECC cipher equivalents.

TLS Certificate Revocation List Handling
Learn how to configure a revocation list.

A Certificate Revocation List (CRLs) is a Privacy Enhance Mail (PEM) formatted file
that contains information identifying the issuer of the revocation list followed by zero or
more entries identifying certificate that have been revoked. A secured server is part of
establishing a secure channel with a peer and will initiate a handshake with the peer.
During this handshake security information and capabilities are negotiated and
exchanged, which includes the one or both certificates of the participants. Depending
on security configurations, one, both, or neither of the participants may present or
require the presentation of the peer's certificate.

Chapter 4
TLS Certificate Revocation List Handling

4-4

After receiving and verifying the validity of a peer's X.509 certificate, the receiving
participant consults the currently configured CRL. The presence of an entry identifying
the just-validated peer certificate causes the receiving participant to consider the
remote participant's certificate as having been revoked. A revoked certificate is
considered invalid for the purposes of authenticating the identity of the remote
participant. A revoked certificate fails the integrity-check portion of the secure channel
handshake and terminates the channel. Depending on the implementation that remote
peer detects that an error occurred during certificate validation, but may not be
informed of the specific cause.

The actual CRL consists of prolog and identifies the issuer of the CRL followed by zero
or more entries. Each entry identifies a specific certificate by serial number along with
security information relating to the date of revocation, the signature algorithm, and
finger-print information.

For example:

Certificate Revocation List (CRL):
 Version 2 (0x1)
 Signature Algorithm: sha256WithRSAEncryption
 Issuer: /C=US/ST=CA/L=Redwood Shores/O=Oracle Corp/OU=Corporate Security/
OU=Deployment Security/CN=Deploy1
 Last Update: Feb 22 19:20:34 2017 GMT
 Next Update: Mar 24 19:20:34 2017 GMT
 CRL extensions:
 X509v3 Authority Key Identifier:
 keyid:7C:A0:BB:FB:6F:75:70:4B:B4:95:18:54:9C:1F:88:2E:A1:1B:EF:E4

 X509v3 CRL Number:
 4097
Revoked Certificates:
 Serial Number: 1000
 Revocation Date: Feb 22 19:20:34 2017 GMT
 Signature Algorithm: sha256WithRSAEncryption
 a6:e5:75:62:93:49:26:6e:79:f1:dd:90:94:bb:99:1c:3a:24:
 99:63:82:d6:f1:56:72:98:cc:8f:6f:61:b8:a4:dd:21:0f:ae:
 fa:38:78:c0:c9:bc:bc:87:61:15:35:e7:20:b8:5e:8f:6a:0a:
 e1:58:e0:30:6d:df:03:8f:6f:de:0a:54:1c:f0:44:e5:28:48:
 56:23:00:60:19:dd:e2:68:2d:35:2b:cc:62:85:b6:34:32:ce:
 c3:f6:8a:b0:bb:b4:66:0e:85:8c:79:b2:32:5c:65:ac:47:99:
 69:c5:bf:bb:ec:1e:7f:40:e2:1f:11:fa:2a:7c:d3:94:de:62:
 e2:8b:de:15:04:2c:67:14:2e:b7:71:29:d5:e2:e1:ee:ac:c3:
 a3:d0:20:41:a9:e0:6a:5b:90:28:35:5a:90:86:51:69:df:27:
 af:3e:0f:c0:d2:32:ab:d2:7a:c5:16:29:f6:ec:04:dd:e7:6d:
 8b:10:06:40:c0:08:32:39:50:33:c0:b9:86:b9:77:19:6f:a6:
 49:65:54:f5:35:c8:27:08:f6:fa:91:3c:ae:2c:b5:c1:52:de:
 42:2c:65:6c:ce:97:52:50:00:53:df:6d:1d:e6:38:9f:61:97:
 d9:aa:60:1c:06:24:aa:f3:ac:8c:d6:85:ed:83:20:2f:50:5c:
 f6:af:78:91:49:a5:b7:cb:96:6c:03:3a:e3:3d:dd:a9:d5:0f:
 5f:3c:47:8c:78:33:65:09:65:8a:08:92:19:58:a1:93:7f:99:
 ee:9d:f1:4a:30:21:63:24:5a:d4:6b:bd:e0:ec:0c:79:09:1f:
 48:a6:39:87:92:0b:f7:25:8e:31:65:ee:10:28:45:bb:55:9c:
 c8:64:49:fe:1d:78:6d:9a:09:67:6b:76:f4:3f:6a:b8:eb:c0:
 0b:0c:ab:92:6d:f5:60:06:34:0f:ef:65:be:c8:af:1d:67:bc:
 36:b7:d1:c0:ea:30:71:3b:2b:ba:16:dc:72:86:90:32:e3:59:
 99:2c:33:7a:2f:63:77:ec:0d:70:89:52:0f:8f:29:13:fd:17:
 18:49:56:65:8d:23:64:ba:e9:b6:74:56:40:9b:1c:65:17:ef:
 bd:2c:77:d4:69:f6:f4:eb:df:a9:31:14:89:fc:1d:24:81:7d:
 85:ba:1d:8f:8b:1b:0d:c2:a3:c2:ea:a5:6e:a2:a7:be:34:16:
 a1:b8:16:a4:f2:32:5a:65:2d:85:14:be:73:6b:de:40:13:bd:

Chapter 4
TLS Certificate Revocation List Handling

4-5

 f1:3d:7e:65:14:3c:a8:ad:b7:4e:cb:41:53:f4:24:5a:4f:a1:
 56:b6:33:65:f9:ef:b9:40:2d:26:ee:ba:57:d5:f5:75:1b:60:
 8d:f2:24:36:e5:2a:c8:b3
-----BEGIN X509 CRL-----
MIIDKjCCARICAQEwDQYJKoZIhvcNAQELBQAwgZYxCzAJBgNVBAYTAlVTMQswCQYD
VQQIDAJDQTEXMBUGA1UEBwwOUmVkd29vZCBTaG9yZXMxFDASBgNVBAoMC09yYWNs
ZSBDb3JwMRswGQYDVQQLDBJDb3Jwb3JhdGUgU2VjdXJpdHkxHDAaBgNVBAsME0Rl
cGxveW1lbnQgU2VjdXJpdHkxEDAOBgNVBAMMB0RlcGxveTEXDTE3MDIyMjE5MjAz
NFoXDTE3MDMyNDE5MjAzNFowFTATAgIQABcNMTcwMjIyMTkyMDM0WqAwMC4wHwYD
VR0jBBgwFoAUfKC7+291cEu0lRhUnB+ILqEb7+QwCwYDVR0UBAQCAhABMA0GCSqG
SIb3DQEBCwUAA4ICAQCm5XVik0kmbnnx3ZCUu5kcOiSZY4LW8VZymMyPb2G4pN0h
D676OHjAyby8h2EVNecguF6PagrhWOAwbd8Dj2/eClQc8ETlKEhWIwBgGd3iaC01
K8xihbY0Ms7D9oqwu7RmDoWMebIyXGWsR5lpxb+77B5/QOIfEfoqfNOU3mLii94V
BCxnFC63cSnV4uHurMOj0CBBqeBqW5AoNVqQhlFp3yevPg/A0jKr0nrFFin27ATd
522LEAZAwAgyOVAzwLmGuXcZb6ZJZVT1NcgnCPb6kTyuLLXBUt5CLGVszpdSUABT
320d5jifYZfZqmAcBiSq86yM1oXtgyAvUFz2r3iRSaW3y5ZsAzrjPd2p1Q9fPEeM
eDNlCWWKCJIZWKGTf5nunfFKMCFjJFrUa73g7Ax5CR9IpjmHkgv3JY4xZe4QKEW7
VZzIZEn+HXhtmglna3b0P2q468ALDKuSbfVgBjQP72W+yK8dZ7w2t9HA6jBxOyu6
FtxyhpAy41mZLDN6L2N37A1wiVIPjykT/RcYSVZljSNkuum2dFZAmxxlF++9LHfU
afb069+pMRSJ/B0kgX2Fuh2PixsNwqPC6qVuoqe+NBahuBak8jJaZS2FFL5za95A
E73xPX5lFDyorbdOy0FT9CRaT6FWtjNl+e+5QC0m7rpX1fV1G2CN8iQ25SrIsw==
-----END X509 CRL-----

Typically, the CRL in compact form only includes the contents between the -----
BEGIN X509 CRL----- and -----END X509 CRL----- delimiters. All other data outside
these delimiters is ignored. You can embed a textual representation of the CRL in the
CRL file without affecting the function of the CRL.

The use of CRLs is configured for each MA server individually The CRL configuration
is composed of two properties:

/config/security/common/crlEnabled
Enables or disables CRL processing.
If, however, /config/security/common/crlEnabled is enabled (true), then the /config/
security/common/crlStore property must refer to a valid and well formed CRL.

/config/security/common/crlStore
When CRL processing is disabled (false), the remote participant's certificate is not
checked against a CRL. When this is the case, you don’t need to set the /config/
security/common/crlStore property.

A valid and well formed CRL file is either a PEM encoded CRL file that conforms to the
RFC2380 - Internet X.509 Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile or an empty file.

The following is a sample excerpt declaring and defining CRL processing for a secured
server.

{
 "config" : {
 "security: {
 "common" : {
 "crlEnabled" : true,
 "crlStore" : "file:/scratch/Tests.SCA/unittests/etc/ssl/RootCA/CAs/
Deploy1/CRLs/empty_CRL.pem"
 }
 }
 }
}

Chapter 4
TLS Certificate Revocation List Handling

4-6

The CRL file may be updated or replace by other, presumably more current, versions
while the server is running. Replacing the CRL file causes the next request CRL
lookup to use the newly updated file.

Regardless of how the /config/security/common/crlEnabled property is set, CRL
processing is disabled if the general security configuration of the server is disabled.
For example, the value of the /config/security property is false).

One other configure setting that indirectly effects CRL processing is the /config/
securityDetails/network/common/authMode property. This property controls whether
the server requires the client to authenticate using a certificate or whether the server
accepts optionally presented certificate or whether the server will ignore any presented
client certificates. If a certificate is not required, not presented, or ignored by the
server, then CRL processing is not used.

HTTP Security and Cache Headers
Review the supported security and cache headers.

The MA server accepts and returns HTTP envelopes that contain a set of headers that
govern how the server, the client, and proxies handle the HTTP contents. For HTTP
information, see:

RFC 7034 - HTTP Header Field X-Frame-Options https://tools.ietf.org/html/rfc7034
RFC 7762 - Initial Assignment for the Content Security Policy https://tools.ietf.org/
html/rfc7762
RFC 2616 - Hypertext Transfer Protocol -- HTTP/1.1 https://tools.ietf.org/html/
rfc2616

Security Headers

The security headers that can be issue are:

Content-Security-Policy (CSP)
The CSP is included as a header in server responses and defines how the client
should handle the content sent by the server.
The default CSP header statement is:

Content-Security-Policy: script-src 'self' 'unsafe-eval' 'unsafe-inline'

The options are:

• script-src:

• unsafe-eval:

• unsafe-inline:

X-Frame-Options
The X-Frame-Options is included as headers in server responses and signals the
client whether or not a user-agent should be allowed to render the content in an
<frame>, <iframe>, or <object>. Websites use<frame> and <iframe> to create mash-
ups or to embed part of one site. However, exposes the embedded site to Clickjack
attacks. This directive disallows the client from rendering the content as embedded
unless the content is from the same site (origin).
The default X-Frame-Options statement is:

Chapter 4
HTTP Security and Cache Headers

4-7

https://tools.ietf.org/html/rfc7034
https://tools.ietf.org/html/rfc7762
https://tools.ietf.org/html/rfc7762
https://tools.ietf.org/html/rfc2616
https://tools.ietf.org/html/rfc2616

X-Frame-Options: SAMEORIGIN

The option is SAMEORIGIN.

X-XSS-Protection
The X-XSS-Protection is included as a header in server responses and configure the
user-agent's built in XSS (Cross-Site-Security)protection. The options are to enable,
disable and can be combined with block and report.
The default X-XSS-Protection statement is:

X-XSS-Protection: 1; mode=block

The options are:

• 1: Enable the user-agent's protection mode.

• 2: Disable the user-agent's protection mode.

• mode=block: Block the server's response if the content script was injected as user
input.

• mode-report=url: Report the potential XSS attack to the designated URL. Only
supported by Chrome and WebKit.

X-Content-Type-Options
The default X-Content-Type-Options statement is:

 X-Content-Type-Options: nosniff

The option is nosniff.

Cache Headers

The supported cache headers are:

Cache-Control
The default Cache-Control statement is:

Cache-Control: no-cache, no-store, must-revalidate

Pragma
The default Pragma statement is:

Pragma: no-cache

Expires
The default Expires statement is:

Expires: 0

Chapter 4
HTTP Security and Cache Headers

4-8

5
Server and Deployment Identities

You must uniquely identify MA servers and deployments using schemes.

In a Common-Named Multiple Server and Deployment configuration that has more
than one MA deployment within an environment access by a common name, each
server and deployment must be uniquely identifiable. This identity allows coordination
services, peers servers, and orchestration ecosystems to differentiate one deployment
and server from another when necessary.

Topics:

• Using a Universally Unique IDs Scheme
Universally Unique IDs are synonymous with Globally Unique IDs (UUID/GUID).

• Using a Deterministically Calculated Unique ID Scheme
A deployment’s identity can be deterministically calculated and be unique within a
local scope.

• Using an Explicit Naming Scheme
You can use explicit naming to avoid the problem of guaranteed uniqueness to
administrators.

• Creating Server and Deployment IDs
A serverID and deploymentID is required for each of your servers and
deployments. Deployment and server UUIDs are generated by default if you don’t
define them.

Using a Universally Unique IDs Scheme
Universally Unique IDs are synonymous with Globally Unique IDs (UUID/GUID).

These IDs provide a standardized format for creating and interpreting identifiers that is
a 128–bits long, RFC4122. It can guarantee uniqueness across space and time.
Several operating systems provide mechanisms to generate UUIDs including:

$ cat /proc/sys/kernel/random/uuid
$ uuidgen

UUID can be used to identify distinct deployments and even specific servers within a
deployment. The primary issue with UUIDs is that once generated, they can not be
regenerated. If the UUID value is lost, there is no way of deterministically recreating it.
This is an issue if the UUID is used in a distributed fashion and it is held as reference
to a specific deployment. If that deployment loses the value of it originally generated
UUID, there is no way of regenerating the UUID. You must take care when
safeguarding the UUID.

Using a Deterministically Calculated Unique ID Scheme
A deployment’s identity can be deterministically calculated and be unique within a local
scope.

5-1

https://tools.ietf.org/html/rfc4122

This would create a unique ID based on a combination of hardware and file system
signatures. For example, the calculated ID could be generated based on the MAC
Address of the network interface and the real absolute file system paths that make-up
the deployment. Any relocation of the deployment within the file system invalidates the
deterministic regeneration of the ID, as would any change in the network interface.

Using an Explicit Naming Scheme
You can use explicit naming to avoid the problem of guaranteed uniqueness to
administrators.

While this addresses any potential shortcoming of other schemes with recreation of an
ID, this scheme is not recommended in large organizations with a large deployment
count.

Creating Server and Deployment IDs
A serverID and deploymentID is required for each of your servers and deployments.
Deployment and server UUIDs are generated by default if you don’t define them.

In general, these values are not changed once assigned. These values are also of
limited use directly because their application is dependent on the context and
requirements of the request or operation.

serverID

Each servers generates a unique ID during first start if it finds an absent or null server
ID. The server ID is then used to generate a short unique label that can be used as
name or tag in cases where the 3- character UUID is to long. Both the serverID and
short name are expected to be globally unique. It can be used to identify a server
without prefixing it with a deployment. The serverID is held in each server’s local
configuration context and only accessible by the owning server.

You can use the serverID to limit certain request or action targets to only the server.
For example, by including the serverID in server generated payloads, the server can
validated that it was the originator of the payload by comparing the presented
serverID with the held serverID.

"config" : {
 "serverID": "96bc6cab-abb8-4a05-aeff-6d0d385262af"
 "serverIDShortLabel": "lrxsq6u4SgWu/20NOFJirw"
}

deploymentID

The first server starting within a deployment generates a unique ID if it finds an absent
or null deployment ID. The deploymentID is a a containment ID and serves to identify
a group of related servers. The deploymentID is held in the deployment global
configuration context and is accessible by all servers within that deployment.

The deploymentID can be used to limit server requests or actions to only the servers
within the deployment. For example, by including the short label version of the
serverID in UDP/UDT data, a server can filter and qualify only the information that
originated from a server within its own deployment.

Chapter 5
Using an Explicit Naming Scheme

5-2

"global": {
 "deploymentID": "f1df4a18-d0a8-4ba1-9ad0-18da9458baef"
}

affiliateDeploymentIDs

Affiliated deployments are deployments that coordinate or cooperate share specific
information or contexts. The affiliateDeploymentIDs value is a JSON Array type that
is initially null (empty). As deployments define actions or operations that should apply
to or be valid in other deployments, the deploymentIDs of the affiliated deployments
are added to the JSON Array of the affiliateDeploymentIDs. Specific behaviors or
actions can qualify a presented deploymentIDs against the list of
affiliateDeploymentIDs and grant access or operation to the foreign deployment.

For example, an authorization cookie includes a deploymentIDs as part of its
specification. If the authorization cookie is presented to an foreign deployment that has
the originating deployment's deploymentIDs listed in its affiliateDeploymentIDs list,
then the authorization cookie is qualified rather then being filtered out as not
originating from the receiving servers.

"global": {
 "affiliateDeploymentIDs": ["deafa2f6-6ee7-48b1-862a-97a9b6d5b9df"]
}

You can update the global configuration using either a bootstrap configuration file or
the command-line overrides, for example:

$ bin/adminsrvr '{"global": { "affiliateDeploymentIDs":
["deafa2f6-6ee7-48b1-862a-97a9b6d5b9df"]}}'

Chapter 5
Creating Server and Deployment IDs

5-3

6
Securing Deployments

You can choose to set up a secure or non-secure deployment. A secure deployment
involves making RESTful API calls and conveying trail data between the Distribution
Server and Receiver Server, over SSL/TLS. You can use your existing wallets and
certificates, or you can create new ones.

The instructions for securing deployments is in Setting Up Secure and Non-Secure
Deployments in Using the Oracle GoldenGate Microservices Architecture.

6-1

Part II
Securing Oracle GoldenGate

Use this part to secure your CA and MA environments.

Topics:

• Overview of Security Options
You can use these security features to protect your Oracle GoldenGate
environment and the data that is being processed.

• Encrypting Data with the Master Key and Wallet Method
To use this method of data encryption, you create a master key wallet and add a
master key to the wallet. This method works as follows, depending on whether the
data is encrypted in the trails or across TCP/IP:

• Encrypting Data with the ENCKEYS Method
To use this method of data encryption, you configure Oracle GoldenGate to
generate an encryption key and store the key in a local ENCKEYS file.

• Managing Identities in a Credential Store
Learn how to use an Oracle GoldenGate credential store to maintain encrypted
database passwords and user IDs and associate them with an alias.

• Encrypting a Password in a Command or Parameter File
Learn how to encrypt a database password that is to be specified in a command or
parameter file.

• Populating an ENCKEYS File with Encryption Keys
Learn how to use an ENCKEYS file.

• Configuring GGSCI Command Security
You can establish command security for Oracle GoldenGate to control which users
have access to which Oracle GoldenGate functions.

• Using Target System Connection Initiation
Learn how to initiate passive and alias connections between your source and
target systems.

• Securing Manager
You can use the Manager parameter, ACCESSRULE, to set security access rules for
Manager. It allows GGSCI access from a remote host if you are using passive
Extract or Director.

7
Overview of Security Options

You can use these security features to protect your Oracle GoldenGate environment
and the data that is being processed.

Security Feature What it Secures Supported Databases Description

Data Encryption

Two methods are available:

• Encrypting Data with
the Master Key and
Wallet Method

• Encrypting Data with
the ENCKEYS Method

• Data in the trails or an
extract file

• Data sent across
TCP/IP networks

Master key and wallet
method is the preferred
method on platforms that
support it. Not valid for the
DB2 for i, DB2 z/OS, and
NonStop platforms.

ENCKEYS method is valid for
all Oracle GoldenGate-
supported databases and
platforms. Blowfish must be
used on the DB2 for i, DB2
z/OS, and NonStop
platforms.

Encrypts the data in files,
across data links, and
across TCP/IP. Use any of
the following:

• Any Advanced
Encryption Security
(AES)1 cipher:

AES-128

AES-192

AES-256
• Blowfish2

Credential Store Identity
Management

Managing Identities in a
Credential Store

User IDs and passwords
(credentials) assigned to
Oracle GoldenGate
processes to log into a
database.

Credential store is the
preferred password
management method on
platforms that support it.
Not valid on the DB2 for i,
DB2 z/OS, , and NonStop
platforms.

User credentials are
maintained in secure wallet
storage. Aliases for the
credentials are specified in
commands and
parameters.

Password Encryption

See Encrypting a
Password in a Command
or Parameter File.

Passwords specified in
commands and parameter
files that are used by
Oracle GoldenGate
processes to log into a
database.

Valid for all Oracle
GoldenGate-supported
databases and platforms.
Blowfish must be used on
the DB2 for i, DB2 z/OS, ,
and NonStop platforms. On
other platforms, the
credential store is the
preferred password-
management method.

Encrypts a password and
then provides for specifying
the encrypted password in
the command or parameter
input. Use any of the
following:

• AES-128
• AES-192
• AES-256
• Blowfish

Command Authentication

See Configuring GGSCI
Command Security.

Oracle GoldenGate
commands issued through
GGSCI.

Valid for all Oracle
GoldenGate-supported
databases and platforms.

Stores authentication
permissions in an
operating-system-secured
file. Configure a CMDSEC
(Command Security) file.

Trusted Connection

See Using Target System
Connection Initiation.

TCP/IP connection to
untrusted Oracle
GoldenGate host machines
that are outside a firewall.

Valid for all Oracle
GoldenGate-supported
databases and platforms.

Use any of the following:

• AES-128
• AES-192
• AES-256
• Blowfish

7-1

Security Feature What it Secures Supported Databases Description

Manager Security

Securing Manager

Access rules for Manager. Valid for all Oracle
GoldenGate-supported
databases and platforms.

You can secure the
following:

• GGSCI: Secures access
to the GGSCI
command-line
interface.

• MGR | MANAGER:
Secures access to all
inter-process
commands controlled
by Manager, such as
START, STOP, and KILL

• REPLICAT: Secures
connection to the
Replicat process.

• COLLECTOR | SERVER:
Secures the ability to
dynamically create a
Collector process.

CryptoEngine Allows you to select the
cryptographic library that
better suits your needs:
Portability (Classic),
Portability and compliance
with FIPS-140 standard
(FIPS140), or enhanced
throughput (Native).

Valid for all Oracle
GoldenGate-supported
databases and platforms
(Classic and FIPS140).

Valid for all Oracle
GoldenGate-supported
databases on Linux.x64
and Windows.x64 (Native).

Selects which
cryptographic library the
Oracle GoldenGate
processes will use.

1 Advanced Encryption Standard (AES) is a symmetric-key encryption standard that is used by governments and other
organizations that require a high degree of data security. It offers three 128-bit block-ciphers: a 128-bit key cipher, a 192-bit key
cipher, and a 256-bit key cipher. To use AES for any database other than Oracle on a 32-bit platform, the path to the lib sub-
directory of the Oracle GoldenGate installation directory must be set with the library path variable. For different platforms the
library path variable is different. For Linux it is LD_LIBRARY_PATH. For IBM i and AIX it is LIBPATH, SHLIB_PATH variable for
Solaris and the PATH variable on Windows. Not required for 64-bit platforms.

2 Blowfish encryption: A keyed symmetric-block cipher. The Oracle GoldenGate implementation of Blowfish has a 64-bit block
size with a variable-length key size from 32 bits to 256 bits.

Chapter 7

7-2

8
Encrypting Data with the Master Key and
Wallet Method

To use this method of data encryption, you create a master key wallet and add a
master key to the wallet. This method works as follows, depending on whether the
data is encrypted in the trails or across TCP/IP:

• Each time Oracle GoldenGate creates a trail file, it generates a new encryption
key automatically. This encryption key encrypts the trail contents. The master key
encrypts the encryption key. This process of encrypting encryption keys is known
as key wrap and is described in standard ANS X9.102 from American Standards
Committee.

• To encrypt data across the network, Oracle GoldenGate generates a session key
using a cryptographic function based on the master key.

Oracle GoldenGate uses an auto-login wallet (file extension .sso), meaning that it is
an obfuscated container that does not require human intervention to supply the
necessary passwords.

Encrypting data with a master key and wallet is not supported on the DB2 for i, DB2
z/OS, or NonStop platforms.

Topics:

• Creating the Wallet and Adding a Master Key

• Specifying Encryption Parameters in the Parameter File

• Renewing the Master Key

• Deleting Stale Master Keys

Creating the Wallet and Adding a Master Key
The wallet is created in a platform-independent format. The wallet can be stored on a
shared file system that is accessible by all systems in the Oracle GoldenGate
environment. Alternatively, you can use an identical wallet on each system in the
Oracle GoldenGate environment. If you use a wallet on each system, you must create
the wallet on one system, typically the source system, and then copy it to all of the
other systems in the Oracle GoldenGate environment. This must also be done every
time you add, change, or delete a master key.

This procedure creates the wallet on the source system and then guides you through
copying it to the other systems in the Oracle GoldenGate environment.

1. (Optional) To store the wallet in a location other than the dirwlt subdirectory of
the Oracle GoldenGate installation directory, specify the desired location with the
WALLETLOCATION parameter in the GLOBALS file.

WALLETLOCATION directory_path

2. Create a master-key wallet with the CREATE WALLET command in GGSCI.

8-1

3. Open the wallet after it has been created with the OPEN WALLET command i.

4. Add a master key to the wallet with the ADD MASTERKEY command.

5. Issue the INFO MASTERKEY command to confirm that the key you added is the
current version. In a new installation, the version should be 1.

6. Issue the INFO MASTERKEY command with the VERSION option, where the version is
the current version number. Record the version number and the AES hash value
of that version.

INFO MASTERKEY VERSION version

7. Copy the wallet to all of the other Oracle GoldenGate systems.

8. Issue the INFO MASTERKEY command with the VERSION option on each system to
which you copied the wallet, where the version is the version number that you
recorded. For each wallet, make certain the Status is Current and compare the
AES hash value with the one that you originally recorded. All wallets must show
identical key versions and hash values.

INFO MASTERKEY VERSION version

Specifying Encryption Parameters in the Parameter File
This procedure adds the parameters that are required to support data encryption in the
trails and across the network with the master key and wallet method.

1. In the following parameter files, add the following:

• To encrypt trail data: In the parameter file of the primary Extract group and the
data pump, add an ENCRYPTTRAIL parameter statement before any parameter
that specifies a trail or file that you want to be encrypted. Parameters that
specify trails or files are EXTTRAIL, RMTTRAIL, EXTFILE, and RMTFILE. The
syntax is:

ENCRYPTTRAIL {AES128 | AES192 | AES256 | BLOWFISH}

• To encrypt data across TCP/IP: In the parameter file of the data pump (or the
primary Extract, if no pump is being used), use the ENCRYPT option of the
RMTHOSTOPTIONS parameter. The syntax is:

RMTHOSTOPTIONS host, MGRPORT port, ENCRYPT {AES128 | AES192 | AES256 |
BLOWFISH}

RMTHOSTOPTIONS ENCRYPT {AES128 | AES192 | AES256 | BLOWFISH}

Where:

• RMTHOSTOPTIONS is used for Extract including passive extracts. See Using
Target System Connection Initiation for more information about passive
Extract.

• ENCRYPTTRAIL without options specifies 256-key byte substitution. This format
is not secure and should not be used in a production environment. Use only
for backward compatibility with earlier Oracle GoldenGate versions.

• AES128 encrypts with the AES-128 encryption algorithm.

• AES192 encrypts with AES-192 encryption algorithm.

• AES256 encrypts with AES-256 encryption algorithm.

Chapter 8
Specifying Encryption Parameters in the Parameter File

8-2

• BLOWFISH uses Blowfish encryption with a 64-bit block size and a variable-
length key size from 32 bits to 128 bits. Use AES if supported for the platform.
Use BLOWFISH for backward compatibility with earlier Oracle GoldenGate
versions, and for DB2 z/OS and DB2 for i. AES is not supported on those
platforms.

2. Use the DECRYPTTRAIL parameter for a data pump if you want trail data to be
decrypted before it is written to the output trail. Otherwise, the data pump
automatically decrypts it, if processing is required, and then reencrypts it before
writing to the output trail. (Replicat decrypts the data automatically without any
parameter input.)

DECRYPTTRAIL

Note:

You can explicitly decrypt incoming trail data and then re-encrypt it again for
any output trails or files. First, enter DECRYPTTRAIL to decrypt the data, and
then enter ENCRYPTTRAIL and its output trail specifications. DECRYPTTRAIL
must precede ENCRYPTTRAIL. Explicit decryption and re-encryption enables
you to vary the AES algorithm from trail to trail, if desired. For example, you
can use AES 128 to encrypt a local trail and AES 256 to encrypt a remote
trail. Alternatively, you can use the master key and wallet method to encrypt
from one process to a second process, and then use the ENCKEYS method to
encrypt from the second process to the third process.

Renewing the Master Key
This procedure renews the master encryption key in the encryption-key wallet.
Renewing the master key creates a new version of the key. Its name remains the
same, but the bit ordering changes. As part of your security policy, you should renew
the current master key regularly so that it does not get stale.

All renewed versions of a master key remain in the wallet until they are marked for
deletion with the DELETE MASTERKEY command and then the wallet is purged with the
PURGE WALLET command, see Deleting Stale Master Keys.

Unless the wallet is maintained centrally on shared storage (as a shared wallet), the
updated wallet must be copied to all of the other systems in the Oracle GoldenGate
configuration that use that wallet. To do so, the Oracle GoldenGate must be stopped.
This procedure includes steps for performing those tasks in the correct order.

1. Stop Extract.

STOP EXTRACT group

2. On the target systems, issue the following command for each Replicat until it
returns At EOF.

SEND REPLICAT group STATUS

3. On the source system, stop the data pumps.

STOP EXTRACT group

4. On the target systems, stop the Replicat groups.

Chapter 8
Renewing the Master Key

8-3

STOP REPLICAT group

5. On the source system, issue the following command to open the wallet.

OPEN WALLET

6. On the source system, issue the following command to confirm the version of the
current key. Make a record of the version.

INFO MASTERKEY

7. On the source system, issue the following command to renew the master key.

RENEW MASTERKEY

8. On the source system, issue the following command to confirm that a new version
is current.

INFO MASTERKEY

Note:

If you are using a shared wallet, go to step 12. If you are using a wallet
on each system, continue to the next step.

9. On the source system, issue the following command, where version is the new
version of the master key. Make a record of the hash value.

INFO MASTERKEY VERSION version

10. Copy the updated wallet from the source system to the same location as the old
wallet on all of the target systems.

11. On each target, issue the following command, where version is the new version
number of the master key. For each wallet, make certain the Status is Current
and compare the new hash value with the one that you originally recorded. All
wallets must show identical key versions and hash values.

INFO MASTERKEY VERSION version

12. Restart Extract.

START EXTRACT group

13. Restart the data pumps.

START EXTRACT group

14. Restart Replicat.

START REPLICAT group

Deleting Stale Master Keys
This procedure deletes stale versions of the master key. Deleting stale keys should be
part of the overall policy for maintaining a secure Oracle GoldenGate wallet. It is
recommended that you develop a policy for how many versions of a key you want to
keep in the wallet and how long you want to keep them.

Chapter 8
Deleting Stale Master Keys

8-4

Note:

For Oracle GoldenGate deployments using a shared wallet, the older
versions of the master key should be retained after the master key is
renewed until all processes are using the newest version. The time to wait
depends on the topology, latency, and data load of the deployment. A
minimum wait of 24 hours is a conservative estimate, but you may need to
perform testing to determine how long it takes for all processes to start using
a new key. To determine whether all of the processes are using the newest
version, view the report file of each Extract immediately after renewing the
master key to confirm the last SCN that was mined with the old key. Then,
monitor the Replicat report files to verify that this SCN was applied by all
Replicat groups. At this point, you can delete the older versions of the master
key.

If the wallet is on central storage that is accessible by all Oracle GoldenGate
installations that use that wallet, you need only perform these steps once to the shared
wallet. You do not need to stop the Oracle GoldenGate processes.

If the wallet is not on central storage (meaning there is a copy on each Oracle
GoldenGate system) you can do one of the following:

• If you can stop the Oracle GoldenGate processes, you only need to perform the
steps to change the wallet once and then copy the updated wallet to the other
systems before restarting the Oracle GoldenGate processes.

• If you cannot stop the Oracle GoldenGate processes, you must perform the steps
to change the wallet on each system, making certain to perform them exactly the
same way on each one.

These steps include prompts for both scenarios.

1. On the source system, issue the following command to determine the versions of
the master key that you want to delete. Typically, the oldest versions should be the
ones deleted. Make a record of these versions.

INFO MASTERKEY

2. On the source system, issue the following command to open the wallet.

OPEN WALLET

3. Issue the following command to delete the stale master keys. Options are
available to delete a specific version, a range of versions, or all versions including
the current one. To delete all of the versions, transaction activity and the Oracle
GoldenGate processes must be stopped.

DELETE MASTERKEY {VERSION version | RANGE FROM begin_value TO end_value}

Note:

DELETE MASTERKEY marks the key versions for deletion but does not
actually delete them.

Chapter 8
Deleting Stale Master Keys

8-5

4. Review the messages returned by the DELETE MASTERKEY command to ensure that
the correct versions were marked for deletion. To unmark any version that was
marked erroneously, use the UNDELETE MASTERKEY VERSION version command
before proceeding with these steps. If desired, you can confirm the marked
deletions with the INFO MASTERKEY command.

5. When you are satisfied that the correct versions are marked for deletion, issue the
following command to purge them from the wallet. This is a permanent deletion
and cannot be undone.

PURGE WALLET

Next steps:

• If the wallet resides on shared storage, you are done with these steps.

• If there is a wallet on each system and you cannot stop the Oracle
GoldenGate processes, repeat the preceding steps on each Oracle
GoldenGate system.

• If there is a wallet on each system and you can stop the Oracle GoldenGate
processes, continue with these steps to stop the processes and copy the
wallet to the other systems in the correct order.

6. Stop Extract.

STOP EXTRACT group

7. In GGSCI, issue the following command for each data pump Extract until each
returns At EOF, indicating that all of the data in the local trail has been processed.

SEND EXTRACT group STATUS

8. Stop the data pumps.

STOP EXTRACT group

9. On the target systems, issue the following command for each Replicat until it
returns At EOF.

SEND REPLICAT group STATUS

10. Stop the Replicat groups.

STOP REPLICAT group

11. Copy the updated wallet from the source system to the same location as the old
wallet on all of the target systems.

12. Restart Extract.

START EXTRACT group

13. Restart the data pumps.

START EXTRACT group

14. Restart Replicat.

START REPLICAT group

Chapter 8
Deleting Stale Master Keys

8-6

9
Encrypting Data with the ENCKEYS
Method

To use this method of data encryption, you configure Oracle GoldenGate to generate
an encryption key and store the key in a local ENCKEYS file.

This method makes use of a permanent key that can only be changed by regenerating
the algorithm, see Populating an ENCKEYS File with Encryption Keys.

The ENCKEYS file must be secured through the normal method of assigning file
permissions in the operating system.

This procedure generates an AES encryption key and provides instructions for storing
it in the ENCKEYS file.

Topics:

• Encrypting the Data with the ENCKEYS Method

• Decrypting the Data with the ENCKEYS Method

• Examples of Data Encryption using the ENCKEYS Method

Encrypting the Data with the ENCKEYS Method
1. Generate an encryption key and store it in the ENCKEYS file, see Populating an

ENCKEYS File with Encryption Keys. Make certain to copy the finished ENCKEYS
file to the Oracle GoldenGate installation directory on any intermediary systems
and all target systems.

2. In the following parameter files, add the following:

• To encrypt trail data: In the parameter file of the primary Extract group and the
data pump, add an ENCRYPTTRAIL parameter before any parameter that
specifies a trail or file that you want to be encrypted. Parameters that specify
trails or files are EXTTRAIL, RMTTRAIL, EXTFILE, and RMTFILE. The syntax is
one of the following:

ENCRYPTTRAIL {AES128 | AES192 | AES256 | BLOWFISH}

ENCRYPTTRAIL AES192, KEYNAME keyname

• To encrypt data across TCP/IP: In the RMTHOSTOPTIONS parameter in the
parameter file of the data pump (or the primary Extract, if no pump is being
used), add the ENCRYPT option with the KEYWORD clause. The syntax is one of
the following:

RMTHOSTOPTIONS host, MGRPORT port, ENCRYPT {AES128 | AES192 | AES256 |
BLOWFISH} KEYNAME keyname

RMTHOSTOPTIONS ENCRYPT {AES128 | AES192 | AES256 | BLOWFISH} KEYNAME keyname

Where:

9-1

• RMTHOSTOPTIONS is used for passive Extract, see Populating an ENCKEYS File
with Encryption Keys.

•

• ENCRYPTTRAIL without options uses AES128 as the default for all database
types except the iSeries, z/OS, and NonStop platforms, where BLOWFISH is the
default.

• AES128 encrypts with the AES-128 encryption algorithm. Not supported for
iSeries, z/OS, and NonStop platforms.

• AES192 encrypts with AES-192 encryption algorithm. Not supported for iSeries,
z/OS, and NonStop platforms.

• AES256 encrypts with AES-256 encryption algorithm. Not supported for iSeries,
z/OS, and NonStop platforms.

• BLOWFISH uses Blowfish encryption with a 64-bit block size and a variable-
length key size from 32 bits to 128 bits. Use AES if supported for the platform.
Use BLOWFISH for backward compatibility with earlier Oracle GoldenGate
versions, and for DB2 z/OS and DB2 for i. AES is not supported on those
platforms.

• KEYNAME keyname specifies the logical look-up name of an encryption key in
the ENCKEYS file. Not an option of ENCRYPTTRAIL.

Note:

RMTHOST is used unless the Extract is in a passive configuration.

3. If using a static Collector with data encrypted over TCP/IP, append the following
parameters in the Collector startup string:

-KEYNAME keyname
-ENCRYPT algorithm

The specified key name and algorithm must match those specified with the
KEYNAME and ENCRYPT options of RMTHOST.

Decrypting the Data with the ENCKEYS Method
Data that is encrypted over TCP/IP connections is decrypted automatically at the
destination before it is written to a trail, unless trail encryption also is specified.

Data that is encrypted in the trail remains encrypted unless the DECRYPTTRAIL
parameter is used. DECRYPTTRAIL is required by Replicat before it can apply encrypted
data to the target. A data pump passes encrypted data untouched to the output trail,
unless the DECRYPTTRAIL and ENCRYPTTRAIL parameters are used. If the data pump
must perform work on the data, decrypt and encrypt the data as follows.

To Decrypt Data for Processing by a Data Pump

Add the DECRYPTTRAIL parameter to the parameter file of the data pump. The
decryption algorithm and key must match the ones that were used to encrypt the trail,
see Encrypting the Data with the ENCKEYS Method.

Chapter 9
Decrypting the Data with the ENCKEYS Method

9-2

DECRYPTTRAIL {AES128 | AES192 | AES256 | BLOWFISH}

To Encrypt Data After Processing by a Data Pump

To encrypt data before the data pump writes it to an output trail or file, use the
ENCRYPTTRAIL parameter before the parameters that specify those trails or files.
Parameters that specify trails or files are EXTTRAIL, RMTTRAIL, EXTFILE, and RMTFILE.
The ENCRYPTTRAIL parameter and the trail or file specifications must occur after the
DECRYPTTRAIL parameter.

Note:

The algorithm specified with ENCRYPTTRAIL can vary from trail to trail. For
example, you can use AES 128 to encrypt a local trail and AES 256 to
encrypt a remote trail.

To Decrypt Data for Processing by Replicat

If a trail that Replicat reads is encrypted, add a DECRYPTTRAIL parameter statement to
the Replicat parameter file. The decryption algorithm and key must match the ones
that were used to encrypt the trail.

Examples of Data Encryption using the ENCKEYS Method
The following example shows how to turn encryption on and off for different trails or
files. In this example, Extract writes to two local trails, only one of which must be
encrypted.

In the Extract configuration, trail bb is the non-encrypted trail, so its EXTTRAIL
parameter is placed before the ENCRYPTTRAIL parameter that encrypts trail aa.
Alternatively, you can use the NOENCRYPTTRAIL parameter before the EXTTRAIL
parameter that specifies trail bb and then use the ENCRYPTTRAIL parameter before the
EXTTRAIL parameter that specifies trail aa.

Chapter 9
Examples of Data Encryption using the ENCKEYS Method

9-3

In this example, the encrypted data must be decrypted so that data pump 1pump can
perform work on it. Therefore, the DECRYPTTRAIL parameter is used in the parameter
file of the data pump. To re-encrypt the data for output, the ENCRYPTTRAIL parameter
must be used after DECRYPTTRAIL but before the output trail specification(s). If the data
pump did not have to perform work on the data, the DECRYPTTRAIL and ENCRYPTTRAIL
parameters could have been omitted to retain encryption all the way to Replicat.

Example 9-1 Extract Parameter File

EXTRACT capt
USERIDALIAS ogg
DISCARDFILE /ogg/capt.dsc, PURGE
-- Do not encrypt this trail.
EXTTRAIL /ogg/dirdat/bb
TABLE SALES.*;
-- Encrypt this trail with AES-192.
ENCRYPTTRAIL AES192
EXTTRAIL /ogg/dirdat/aa
TABLE FIN.*;

Example 9-2 Data Pump 1 Parameter File

EXTRACT 1pump
USERIDALIAS ogg
DISCARDFILE /ogg/1pmp.dsc, PURGE
-- Decrypt the trail this pump reads. Use encryption key mykey1.
DECRYPTTRAIL AES192
-- Encrypt the trail this pump writes to, using AES-192.
RMTHOSTOPTIONS myhost1, MGRPORT 7809
ENCRYPTTRAIL AES192
RMTTRAIL /ogg/dirdat/cc
TABLE FIN.*;

Example 9-3 Data pump 2 Parameter File

EXTRACT 2pump
USERIDALIAS ogg
DISCARDFILE /ogg/2pmp.dsc, PURGE
RMTHOST myhost2, MGRPORT 7809
RMTTRAIL /ogg/dirdat/dd
TABLE SALES.*;

Example 9-4 Replicat1 (on myhost1) Parameter File

REPLICAT 1deliv
USERIDALIAS ogg
ASSUMETARGETDEFS
DISCARDFILE /ogg/1deliv.dsc, PURGE
-- Decrypt the trail this Replicat reads. Use encryption key mykey2.
DECRYPTTRAIL AES192
MAP FIN.*, TARGET FIN.*;

Example 9-5 Replicat 2 (on myhost2) parameter file

REPLICAT 2deliv
USERIDALIAS ogg
ASSUMETARGETDEFS
DISCARDFILE /ogg/2deliv.dsc, PURGE
MAP SALES.*, TARGET SALES.*;

Chapter 9
Examples of Data Encryption using the ENCKEYS Method

9-4

10
Managing Identities in a Credential Store

Learn how to use an Oracle GoldenGate credential store to maintain encrypted
database passwords and user IDs and associate them with an alias.

It is the alias, not the actual user ID or password, that is specified in a command or
parameter file, and no user input of an encryption key is required. The credential store
is implemented as an autologin wallet within the Oracle Credential Store Framework
(CSF).

Another benefit of using a credential store is that multiple installations of Oracle
GoldenGate can use the same one, while retaining control over their local credentials.
You can partition the credential store into logical containers known as domains, for
example, one domain per installation of Oracle GoldenGate. Domains enable you to
develop one set of aliases (for example ext for Extract, rep for Replicat) and then
assign different local credentials to those aliases in each domain. For example,
credentials for user ogg1 can be stored as ALIAS ext under DOMAIN system1, while
credentials for user ogg2 can be stored as ALIAS ext under DOMAIN system2.

The credential store security feature is not supported on the DB2 for i, DB2 z/OS, and
NonStop platforms. For those platforms and any other supported platforms, see
Encrypting a Password in a Command or Parameter File.

Topics:

• Creating and Populating the Credential Store

• Specifying the Alias in a Parameter File or Command

Creating and Populating the Credential Store
1. (Optional) To store the credential store in a location other than the dircrd

subdirectory of the Oracle GoldenGate installation directory, specify the desired
location with the CREDENTIALSTORELOCATION parameter in the GLOBALS file. (See
Administering Oracle GoldenGate for more information about the GLOBALS file.)

2. From the Oracle GoldenGate installation directory, run GGSCI.

3. Issue the following command to create the credential store.

ADD CREDENTIALSTORE

4. Issue the following command to add each set of credentials to the credential store.

ALTER CREDENTIALSTORE ADD USER userid,
 [PASSWORD password]
 [ALIAS alias]
 [DOMAIN domain]

Where:

• userid is the user name. Only one instance of a user name can exist in the
credential store unless the ALIAS or DOMAIN option is used.

10-1

• password is the password. The password is echoed (not obfuscated) when this
option is used. For security reasons, it is recommended that you omit this
option and allow the command to prompt for the password, so that it is
obfuscated as it is entered.

• alias is an alias for the user name. The alias substitutes for the credential in
parameters and commands where a login credential is required. If the ALIAS
option is omitted, the alias defaults to the user name. If you do not want user
names in parameters or command input, use ALIAS and specify a different
name from that of the user.

• domain is the domain that is to contain the specified alias. The default domain
is Oracle GoldenGate.

For more information about the commands used in this procedure and additional
credential store commands, see Reference for Oracle GoldenGate.

Specifying the Alias in a Parameter File or Command
The following commands and parameters accept an alias as substitution for a login
credential.

Table 10-1 Specifying Credential Aliases in Parameters and Commands

Purpose of the Credential Parameter or Command to Use

Oracle GoldenGate database login1
USERIDALIAS alias

Oracle GoldenGate database login for Oracle
ASM instance TRANLOGOPTIONS ASMUSERALIAS alias

Oracle GoldenGate database login for a
downstream Oracle mining database TRANLOGOPTIONS MININGUSERALIAS alias

Password substitution for {CREATE | ALTER}
USER name IDENTIFIED BY password

DDLOPTIONS DEFAULTUSERPASSWORDALIAS
alias

Oracle GoldenGate database login from
GGSCI DBLOGIN USERIDALIAS alias

Oracle GoldenGate database login to a
downstream Oracle mining database from
GGSCI

MININGDBLOGIN USERIDALIAS alias

1 Syntax elements required for USERIDALIAS vary by database type. See Reference for Oracle
GoldenGate for more information.

Chapter 10
Specifying the Alias in a Parameter File or Command

10-2

11
Encrypting a Password in a Command or
Parameter File

Learn how to encrypt a database password that is to be specified in a command or
parameter file.

This method takes a clear-text password as input and produces an obfuscated
password string and a lookup key, both of which can then be used in the command or
parameter file. This encryption method supports all of the databases that require a
login for an Oracle GoldenGate process to access the database.

Depending on the database, you may be able to use a credential store as an
alternative to this method. See Managing Identities in a Credential Store.

Topics:

• Encrypting the Password

• Specifying the Encrypted Password in a Parameter File or Command

Encrypting the Password
1. Run GGSCI.

2. Issue the ENCRYPT PASSWORD command.

ENCRYPT PASSWORD password algorithm ENCRYPTKEY {key_name | DEFAULT}

Where:

• password is the clear-text login password. Do not enclose the password within
quotes. If the password is case-sensitive, type it that way.

• algorithm specifies the encryption algorithm to use:

– AES128 uses the AES-128 cipher, which has a key size of 128 bits.

– AES192 uses the AES-192 cipher, which has a key size of 192 bits.

– AES256 uses the AES-256 cipher, which has a key size of 256 bits.

– BLOWFISH uses Blowfish encryption with a 64-bit block size and a variable-
length key size from 32 bits to 128 bits. Use AES if supported for the
platform. Use BLOWFISH for backward compatibility with earlier Oracle
GoldenGate versions, and for DB2 z/OS and DB2 for i. AES is not
supported on those platforms.

• ENCRYPTKEY key_name specifies the logical name of a user-created encryption
key in the ENCKEYS lookup file. The key name is used to look up the actual key
in the ENCKEYS file. Using a user-defined key and an ENCKEYS file is required for
AES encryption. To create a key and ENCKEYS file, see Populating an
ENCKEYS File with Encryption Keys.

11-1

• ENCRYPTKEY DEFAULT directs Oracle GoldenGate to generate a predefined
Blowfish key. This type of key is insecure and should not be used in a
production environment if the platform supports AES. Use this option only for
DB2 on /OS and DB2 for I when BLOWFISH is specified. ENCRYPT PASSWORD
returns an error if AES is used with DEFAULT.

If no algorithm is specified, AES128 is the default for all database types except
DB2 z/OS, where BLOWFISH is the default.

The following are examples of ENCRYPT PASSWORD with its various options.

ENCRYPT PASSWORD mypassword AES256 ENCRYPTKEY mykey1
ENCRYPT PASSWORD mypassword BLOWFISH ENCRYPTKEY mykey1
ENCRYPT PASSWORD mypassword BLOWFISH ENCRYPTKEY DEFAULT

3. The encrypted password is output to the screen when you run the ENCRYPT
PASSWORD command. Copy the encrypted password and then see Specifying the
Encrypted Password in a Parameter File or Command for instructions on pasting it
to a command or parameter.

Specifying the Encrypted Password in a Parameter File or
Command

Copy the encrypted password that you generated with the ENCRYPT PASSWORD
command (see Encrypting a Password in a Command or Parameter File), and then
paste it into the appropriate Oracle GoldenGate parameter statement or command as
shown in Table 11-1. Option descriptions follow the table.

Table 11-1 Specifying Encrypted Passwords in Parameters and Commands

Purpose of the Password Parameter or Command to Use

Oracle GoldenGate database
login1 USERID user, PASSWORD password, &

algorithm ENCRYPTKEY {keyname | DEFAULT}

Oracle GoldenGate database login
for Oracle ASM instance TRANLOGOPTIONS ASMUSER SYS@ASM_instance_name, &

ASMPASSWORD password, &
algorithm ENCRYPTKEY {keyname | DEFAULT}

Oracle GoldenGate database login
for a downstream Oracle mining
database

[MININGUSER {/ | user}[, MININGPASSWORD password]&
[algorithm ENCRYPTKEY {key_name | DEFAULT}]&
[SYSDBA]]

Password substitution for
{CREATE | ALTER} USER name
IDENTIFIED BY password

DDLOPTIONS DEFAULTUSERPASSWORD password &
algorithm ENCRYPTKEY {keyname | DEFAULT}

Oracle TDE shared-secret
password DBOPTIONS DECRYPTPASSWORD password2 algorithm &

ENCRYPTKEY {keyname | DEFAULT}

Oracle GoldenGate database login
from GGSCI DBLOGIN USERID user, PASSWORD password, &

algorithm ENCRYPTKEY {keyname | DEFAULT}

Chapter 11
Specifying the Encrypted Password in a Parameter File or Command

11-2

Table 11-1 (Cont.) Specifying Encrypted Passwords in Parameters and
Commands

Purpose of the Password Parameter or Command to Use

Oracle GoldenGate database login
to a downstream Oracle mining
database from GGSCI

MININGDBLOGIN USERID user, PASSWORD password,&
algorithm ENCRYPTKEY {keyname | DEFAULT}

1 Syntax elements required for USERID vary by database type. See Reference for Oracle GoldenGate for
more information.

2 This is the shared secret.

Where:

• user is the database user name for the Oracle GoldenGate process or (Oracle
only) a host string. For Oracle ASM, the user must be SYS.

• password is the encrypted password that is copied from the ENCRYPT PASSWORD
command results.

• algorithm specifies the encryption algorithm that was used to encrypt the
password: AES128, AES192, AES256, or BLOWFISH. AES128 is the default if the
default key is used and no algorithm is specified.

• ENCRYPTKEY keyname specifies the logical name of a user-created encryption key in
the ENCKEYS lookup file. Use if ENCRYPT PASSWORD was used with the KEYNAME
keyname option.

• ENCRYPTKEY DEFAULT directs Oracle GoldenGate to use a random key. Use if
ENCRYPT PASSWORD was used with the KEYNAME DEFAULT option.

The following are examples of using an encrypted password in parameters and
command:

SOURCEDB db1 USERID ogg,&
PASSWORD AACAAAAAAAAAAAJAUEUGODSCVGJEEIUGKJDJTFNDKEJFFFTC, &
AES128, ENCRYPTKEY securekey1

USERID ogg, PASSWORD AACAAAAAAAAAAAJAUEUGODSCVGJEEIUGKJDJTFNDKEJFFFTC, &
BLOWFISH, ENCRYPTKEY securekey1

USERID ogg, PASSWORD AACAAAAAAAAAAAJAUEUGODSCVGJEEIUGKJDJTFNDKEJFFFTC, &
BLOWFISH, ENCRYPTKEY DEFAULT

TRANLOGOPTIONS ASMUSER SYS@asm1, &
ASMPASSWORD AACAAAAAAAAAAAJAUEUGODSCVGJEEIUGKJDJTFNDKEJFFFTC, &
AES128, ENCRYPTKEY securekey1

DBLOGIN USERID ogg, PASSWORD &
AACAAAAAAAAAAAJAUEUGODSCVGJEEIUGKJDJTFNDKEJFFFTC, &
AES128, ENCRYPTKEY securekey1

DDLOPTIONS DEFAULTUSERPASSWORD &
AACAAAAAAAAAAAJAUEUGODSCVGJEEIUGKJDJTFNDKEJFFFTC, &
AES 256 ENCRYPTKEY mykey

DBOPTIONS DECRYPTPASSWORD AACAAAAAAAAAAAJAUEUGODSCVGJEEIUGKJDJTFNDKEJFFFTC, &
AES 256 ENCRYPTKEY mykey

Chapter 11
Specifying the Encrypted Password in a Parameter File or Command

11-3

DDLOPTIONS PASSWORD AACAAAAAAAAAAAJAUEUGODSCVGJEEIUGKJDJTFNDKEJFFFTC, &
AES 256 ENCRYPTKEY mykey

Chapter 11
Specifying the Encrypted Password in a Parameter File or Command

11-4

12
Populating an ENCKEYS File with
Encryption Keys

Learn how to use an ENCKEYS file.

You must generate and store encryption keys when using the security features:

• ENCRYPTTRAIL (see Encrypting the Data with the ENCKEYS Method)

• ENCRYPT PASSWORD with ENCRYPTKEY keyname (see Encrypting a Password in a
Command or Parameter File)

• RMTHOST or RMTHOSTOPTIONS with ENCRYPT (see Encrypting the Data with the
ENCKEYS Method)

You can define your own key or run the Oracle GoldenGate KEYGEN utility to create a
random key.

Topics:

• Defining Your Own Key

• Using KEYGEN to Generate a Key

• Creating and Populating the ENCKEYS Lookup File

Defining Your Own Key
Use a tool of your choice. The key value can be up to 256 bits (32 bytes) as either of
the following:

• a quoted alphanumeric string (for example "Dailykey")

• a hex string with the prefix 0x (for example
0x420E61BE7002D63560929CCA17A4E1FB)

Using KEYGEN to Generate a Key
Change directories to the Oracle GoldenGate home directory on the source system,
and issue the following shell command. You can create multiple keys, if needed. The
key values are returned to your screen. You can copy and paste them into the ENCKEYS
file.

KEYGEN key_length n

Where:

• key_length is the encryption key length, up to 256 bits (32 bytes).

• n represents the number of keys to generate.

Example:

KEYGEN 128 4

12-1

Creating and Populating the ENCKEYS Lookup File
1. On the source system, open a new ASCII text file.

2. For each key value that you generated, enter a logical name of your choosing,
followed by the key value itself.

• The key name can be a string of 1 to 24 alphanumeric characters without
spaces or quotes.

• Place multiple key definitions on separate lines.

• Do not enclose a key name or value within quotes; otherwise it will be
interpreted as text.

Use the following sample ENCKEYS file as a guide.

Encryption key name Encryption key value

Key name
superkey
secretkey
superkey1
superkey2
superkey3

Key value
0x420E61BE7002D63560929CCA17A4E1FB
0x027742185BBF232D7C664A5E1A76B040
0x42DACD1B0E94539763C6699D3AE8E200
0x0343AD757A50A08E7F9A17313DBAB045
0x43AC8DCE660CED861B6DC4C6408C7E8A

3. Save the file as the name ENCKEYS in all upper case letters, without an extension,
in the Oracle GoldenGate installation directory.

4. Copy the ENCKEYS file to the Oracle GoldenGate installation directory on every
system. The key names and values in all of the ENCKEYS files must be identical, or
else the data exchange will fail and Extract and Collector will abort with the
following message:

GGS error 118 – TCP/IP Server with invalid data.

Chapter 12
Creating and Populating the ENCKEYS Lookup File

12-2

13
Configuring GGSCI Command Security

You can establish command security for Oracle GoldenGate to control which users
have access to which Oracle GoldenGate functions.

Note:

The GGSCI program is only available in the Oracle GoldenGate CA.

For example, you can allow certain users to issue INFO and STATUS commands, while
preventing their use of START and STOP commands. Security levels are defined by the
operating system's user groups.

To implement security for Oracle GoldenGate commands, you create a CMDSEC file in
the Oracle GoldenGate directory. Without this file, access to all Oracle GoldenGate
commands is granted to all users.

Note:

The security of the GGSCI program is controlled by the security controls of the
operating system.

Topics:

• Setting Up Command Security

• Securing the CMDSEC File

Setting Up Command Security
1. Open a new ASCII text file.

2. Referring to the following syntax and the example on , create one or more security
rules for each command that you want to restrict, one rule per line. List the rules in
order from the most specific (those with no wildcards) to the least specific. Security
rules are processed from the top of the CMDSEC file downward. The first rule
satisfied is the one that determines whether or not access is allowed.

Separate each of the following components with spaces or tabs.

command_name command_object OS_group OS_user {YES | NO}

Where:

• command_name is a GGSCI command name or a wildcard, for example START or
STOP or *.

13-1

• command_object is any GGSCI command object or a wildcard, for example
EXTRACT or REPLICAT or MANAGER.

• OS_group is the name of a Windows or UNIX user group. On a UNIX system,
you can specify a numeric group ID instead of the group name. You can use a
wildcard to specify all groups.

• OS_user is the name of a Windows or UNIX user. On a UNIX system, you can
specify a numeric user ID instead of the user name. You can use a wildcard to
specify all users.

• YES | NO specifies whether access to the command is granted or prohibited.

3. Save the file as CMDSEC (using upper case letters on a UNIX system) in the Oracle
GoldenGate home directory.

The following example illustrates the correct implementation of a CMDSEC file on a UNIX
system.

Table 13-1 Sample CMDSEC File with Explanations

File Contents Explanation

#GG command security
Comment line

STATUS REPLICAT * Smith NO STATUS REPLICAT is denied to user Smith.

STATUS * dpt1 * YES Except for the preceding rule, all users in dpt1 are granted
all STATUS commands.

START REPLICAT root * YES START REPLICAT is granted to all members of the root
group.

START REPLICAT * * NO Except for the preceding rule, START REPLICAT is denied
to all users.

* EXTRACT 200 * NO All EXTRACT commands are denied to all groups with ID of
200.

* * root root YES Grants the root user any command.

* * * * NO
Denies all commands to all users. This line covers security
for any other users that were not explicitly granted or
denied access by preceding rules. Without it, all
commands would be granted to all users except for
preceding explicit grants or denials.

The following incorrect example illustrates what to avoid when creating a CMDSEC file.

Table 13-2 Incorrect CMDSEC Entries

File Contents Description

STOP * dpt2 * NO All STOP commands are denied to everyone in group dpt2.

STOP * * Chen YES All STOP commands are granted to Chen.

Chapter 13
Setting Up Command Security

13-2

The order of the entries in Table 13-2 causes a logical error. The first rule (line 1)
denies all STOP commands to all members of group dpt2. The second rule (line 2)
grants all STOP commands to user Chen. However, because Chen is a member of the
dpt2 group, he has been denied access to all STOP commands by the second rule,
even though he is supposed to have permission to issue them.

The proper way to configure this security rule is to set the user-specific rule before the
more general rule(s). Thus, to correct the error, you would reverse the order of the two
STOP rules.

Securing the CMDSEC File
The security of the GGSCI program and that of the CMDSEC file is controlled by the
security controls of the operating system. Because the CMDSEC file is a source of
security, it must be secured. You can grant read access as needed, but Oracle
GoldenGate recommends denying write and delete access to everyone but Oracle
GoldenGate Administrators.

Chapter 13
Securing the CMDSEC File

13-3

14
Using Target System Connection Initiation

Learn how to initiate passive and alias connections between your source and target
systems.

When a target system resides inside a trusted intranet zone, initiating connections
from the source system (the standard Oracle GoldenGate method) may violate
security policies if the source system is in a less trusted zone. It also may violate
security policies if a system in a less trusted zone contains information about the ports
or IP address of a system in the trusted zone, such as that normally found in an Oracle
GoldenGate Extract parameter file.

In this kind of intranet configuration, you can use a passive-alias Extract
configuration. Connections are initiated from the target system inside the trusted zone
by an alias Extract group, which acts as an alias for a regular Extract group on the
source system, known in this case as the passive Extract. Once a connection
between the two systems is established, data is processed and transferred across the
network by the passive Extract group in the usual way.

1. An Oracle GoldenGate user starts the alias Extract on the trusted system, or an
AUTOSTART or AUTORESTART parameter causes it to start.

2. GGSCI on the trusted system sends a message to Manager on the less trusted
system to start the associated passive Extract. The host name or IP address and
port number of the Manager on the trusted system are sent to the less trusted
system.

3. On the less trusted system, Manager starts the passive Extract, and the passive
Extract finds an open port (according to rules in the DYNAMICPORTLIST Manager
parameter) and listens on that port.

14-1

4. The Manager on the less trusted system returns that port to GGSCI on the trusted
system.

5. GGSCI on the trusted system sends a request to the Manager on that system to
start a Collector process on that system.

6. The target Manager starts the Collector process and passes it the port number
where Extract is listening on the less trusted system.

7. Collector on the trusted system opens a connection to the passive Extract on the
less trusted system.

8. Data is sent across the network from the passive Extract to the Collector on the
target and is written to the trail in the usual manner for processing by Replicat.

Topics:

• Configuring the Passive Extract Group

• Configuring the Alias Extract Group

• Starting and Stopping the Passive and Alias Processes

• Managing Extraction Activities

• Other Considerations when using Passive-Alias Extract

Configuring the Passive Extract Group
The passive Extract group on the less trusted source system will be one of the
following, depending on which one is responsible for sending data across the network:

• A solo Extract group that reads the transaction logs and also sends the data to the
target, or:

• A data pump Extract group that reads a local trail supplied by a primary Extract
and then sends the data to the target. In this case, there are no special
configuration requirements for the primary Extract, just the data pump.

Note:

The passive Extract group is only available in the Oracle GoldenGate CA.

To create an Extract group in passive mode, use the standard ADD EXTRACT command
and options, but add the PASSIVE keyword in any location relative to other command
options. Examples:

ADD EXTRACT fin, TRANLOG, BEGIN NOW, PASSIVE, DESC 'passive Extract'
ADD EXTRACT fin, PASSIVE, TRANLOG, BEGIN NOW, DESC 'passive Extract'

To configure parameters for the passive Extract group, create a parameter file in the
normal manner, except:

• Exclude the RMTHOST parameter, which normally would specify the host and port
information for the target Manager.

Chapter 14
Configuring the Passive Extract Group

14-2

• Use the optional RMTHOSTOPTIONS parameter to specify any compression and
encryption rules. For information about the RMTHOSTOPTIONS options, see
Reference for Oracle GoldenGate.

For more information about configuring an Extract group, see Administering Oracle
GoldenGate.

Configuring the Alias Extract Group
The alias Extract group on the trusted target does not perform any data processing
activities. Its sole purpose is to initiate and terminate connections to the less trusted
source. In this capacity, the alias Extract group does not use a parameter file nor does
it write processing checkpoints. A checkpoint file is used only to determine whether the
passive Extract group is running or not and to record information required for the
remote connection.

Note:

The alias Extract group is only available in the Oracle GoldenGate CA.

To create an Extract group in alias mode, use the ADD EXTRACT command without any
other options except the following:

ADD EXTRACT group
, RMTHOST {host_name | IP_address}
, MGRPORT port
[, RMTNAME name]
[, DESC 'description']

The RMTHOST specification identifies this group as an alias Extract, and the information
is written to the checkpoint file. The host_name and IP_address options specify the
name or IP address of the source system. MGRPORT specifies the port on the source
system where Manager is running.

The alias Extract name can be the same as that of the passive Extract, or it can be
different. If the names are different, use the optional RMTNAME specification to specify
the name of the passive Extract. If RMTNAME is not used, Oracle GoldenGate expects
the names to be identical and writes the name to the checkpoint file of the alias Extract
for use when establishing the connection.

Error handling for TCP/IP connections is guided by the TCPERRS file on the target
system. It is recommended that you set the response values for the errors in this file to
RETRY. The default is ABEND. This file also provides options for setting the number of
retries and the delay between attempts. For more information about error handling for
TCP/IP and the TCPERRS file, see Administering Oracle GoldenGate.

Starting and Stopping the Passive and Alias Processes
To start or stop Oracle GoldenGate extraction in the passive-alias Extract
configuration, you must start or stop the alias Extract group from GGSCI on the target.

START EXTRACT alias_group_name

Chapter 14
Configuring the Alias Extract Group

14-3

or,

STOP EXTRACT alias_group_name

The command is sent to the source system to start or stop the passive Extract group.
Do not issue these commands directly against the passive Extract group. You can
issue a KILL EXTRACT command directly for the passive Extract group.

When using the Manager parameters AUTOSTART and AUTORESTART to automatically
start or restart processes, use them on the target system, not the source system. The
alias Extract is started first and then the start command is sent to the passive Extract.

Managing Extraction Activities
Once extraction processing has been started, you can manage and monitor it in the
usual manner by issuing commands against the passive Extract group from GGSCI on
the source system. The standard GGSCI monitoring commands, such as INFO and
VIEW REPORT, can be issued from either the source or target systems. If a monitoring
command is issued for the alias Extract group, it is forwarded to the passive Extract
group. The alias Extract group name is replaced in the command with the passive
Extract group name. For example, INFO EXTRACT alias becomes INFO EXTRACT
passive. The results of the command are displayed on the system where the
command was issued.

Other Considerations when using Passive-Alias Extract
When using a passive-alias Extract configuration, these rules apply:

• In this configuration, Extract can only write to one target system.

• This configuration can be used in an Oracle RAC installation by creating the
Extract group in the normal manner (using the THREADS option to specify the
number of redo threads).

• The ALTER EXTRACT command cannot be used for the alias Extract, because that
group does not do data processing.

• To use the DELETE EXTRACT command for a passive or alias Extract group, issue
the command from the local GGSCI.

• Remote tasks, specified with RMTTASK in the Extract parameter file and used for
some initial load methods, are not supported in this configuration. A remote task
requires the connection to be initiated from the source system and uses a direct
connection between Extract and Replicat.

Chapter 14
Managing Extraction Activities

14-4

15
Securing Manager

You can use the Manager parameter, ACCESSRULE, to set security access rules for
Manager. It allows GGSCI access from a remote host if you are using passive Extract
or Director.

The ACCESSRULE parameter controls connection access to the Manager process and
the processes under its control. You can establish multiple rules by specifying multiple
ACCESSRULE statements in the parameter file and control their priority. To establish
priority, you can either list the rules in order from most important to least important, or
you can explicitly set the priority of each rule with the PRI option.

You must specify one of the following options:

IPADDR, login_ID, or PROGRAM

For example, the following access rules have been assigned explicit priority levels
through the PRI option. These rules allow any user to access the Collector process
(the SERVER program), and in addition, allow the IP address 122.11.12.13 to access
GGSCI commands. Access to all other Oracle GoldenGate programs is denied.

ACCESSRULE, PROG *, DENY, PRI 99
ACCESSRULE, PROG SERVER, ALLOW, PRI 1
ACCESSRULE, PROG GGSCI, IPADDR 122.11.12.13, PRI 1

Another example, the following access rule grants access to all programs to the user
JOHN and designates an encryption key to decrypt the password. If the password
provided with PASSWORD matches the one in the ENCKEYS lookup file, connection is
granted.

ACCESSRULE, PROG *, USER JOHN, PASSWORD OCEAN1, ENCRYPTKEY lookup1

For information about the ACCESSRULE options, see Reference for Oracle GoldenGate

15-1

	Contents
	Audience
	Documentation Accessibility
	Conventions
	Related Information
	1 Introducing Oracle GoldenGate Security
	Part I Securing the Microservices Architecture
	MA Security Features
	2 Network
	Network Access Control
	Network Connection Adapter
	Proxy Support
	Reverse Proxy Support

	3 Authentication and Authorization
	Authentication
	Authorization
	Authorization for WebSockets
	Error Codes
	Cross Site Request Forgery

	4 Communication Security
	Certificate Access Control List
	Transport Layer Security Protocols and Ciphers
	TLS Certificate Revocation List Handling
	HTTP Security and Cache Headers

	5 Server and Deployment Identities
	Using a Universally Unique IDs Scheme
	Using a Deterministically Calculated Unique ID Scheme
	Using an Explicit Naming Scheme
	Creating Server and Deployment IDs

	6 Securing Deployments

	Part II Securing Oracle GoldenGate
	7 Overview of Security Options
	8 Encrypting Data with the Master Key and Wallet Method
	Creating the Wallet and Adding a Master Key
	Specifying Encryption Parameters in the Parameter File
	Renewing the Master Key
	Deleting Stale Master Keys

	9 Encrypting Data with the ENCKEYS Method
	Encrypting the Data with the ENCKEYS Method
	Decrypting the Data with the ENCKEYS Method
	Examples of Data Encryption using the ENCKEYS Method

	10 Managing Identities in a Credential Store
	Creating and Populating the Credential Store
	Specifying the Alias in a Parameter File or Command

	11 Encrypting a Password in a Command or Parameter File
	Encrypting the Password
	Specifying the Encrypted Password in a Parameter File or Command

	12 Populating an ENCKEYS File with Encryption Keys
	Defining Your Own Key
	Using KEYGEN to Generate a Key
	Creating and Populating the ENCKEYS Lookup File

	13 Configuring GGSCI Command Security
	Setting Up Command Security
	Securing the CMDSEC File

	14 Using Target System Connection Initiation
	Configuring the Passive Extract Group
	Configuring the Alias Extract Group
	Starting and Stopping the Passive and Alias Processes
	Managing Extraction Activities
	Other Considerations when using Passive-Alias Extract

	15 Securing Manager

