Oracle FLEXCUBE Universal Banking ® 12.87.04.0.0
Purge Entity Definition

January 2018

ORACLE
FINANCIAL SERVICES

Development Of Call Forms

Contents

DR s <] = Yo ISR PE PR 3
1.1 A o113 To SN 3
1.2 = F Lo B ToTo1 U 11T OSSP 3

AR 3L u y'o Yo R0 T u o) o WURURRRRUR TR 4
2.1 HOW T0 USE thiS GUITEecivviiiiiec ittt ettt ettt ettt e st e st e e s abe e s tbe e sabeesabeesabessrbeesnbessnbeesnreeins 4

G @ 17y o VA 1oy o) G- | B 2o s o WO PRSP RTRRPROPO 4

4. Screen DeveloPmEeNnt..... ... 4
4.1 Lo To =T [y (o] 10T LA o] o OSSP 5
4.2 (=] T =] TSRS 5
4.3 D1 £ BT 0ol TP PPP PR PPRUPR 6
4.4 [U B = oo <SSP 7
4.5 o (T 01T PP OPRPR 9
4.6 1] 0 IST=] £ 12
4.7 o1 1 o] 3 TR 12
4.8 I 10 g Tod o T T 1 T 13
49 (08 1 I o] 4 14O 13
A0 SUMIMAIY .ottt e e bt b Rt b s e st h e bR £ £ e e b e s e e e e Rt ARt e R e e Rt eh e e s e e b e b e nR e e b e e bt Rt e e e r e nenne 14
I T o -1 -SSR 14

5. Attaching Call Form to Main Function Id ... 14

(TR @ g T =1 <Y B B1'a 1 X 1= RO 15
6.1 001 = 1o T LT £ 15

B.1.1 LANQUAGE XIMI ..ottt bbbttt bbbt bt 15
6.1.2 SYS JAVASCIIPL FIIE .ottt bbb 15
6.1.3 Release Type SPecCific JAVASCIIPL FIlEc.cciiiiie et 15
6.2 (DU B ST I U T £SO SSRT 15
LT R - L o 1ol] o SRRSO 15
B.2.2 SYSIEM PACKAGEScveitiietiiteeet ettt bbbt bbb bbbt bbbttt 15
B.2.3 HOOK PACKAGES. ... e vtttk et bt bbb bbbt b bbbttt 16
6.3 (@10 T=] S U T £ PSSRSO 16
LT D 1o F TR PRRTRRPRPRRO 16

7. Extensible Developmentc.cciiiiiiiiiiiiii 17
7.1 Extensibility in JAVASCIIPL COUINGcveveiiiiiieiie bbb 17
7.2 Extensibility in BACKENT COUING...........ccoiiiiiiiiiiiiiie e 17

2

Development Of Call Forms

1. Preface

This document describes the features of a Call Form screen in FLEXCUBE and the process
of designing a Call form screen using Oracle FLEXCUBE Development Workbench for
Universal Banking.

1.1 Audience

This document is intended for FLEXCUBE Application developers/users that use
Development Workbench to develop various FLEXCUBE components.

To Use this manual, you need conceptual and working knowledge of the below:

Proficiency Resources

FLEXCUBE Functional Architecture Training programs from Oracle
Financial Software Services.

FLEXCUBE Technical Architecture Training programs from Oracle
Financial Software Services.

FLEXCUBE Screen Development 04-Development_WorkBench
_Screen_Development-I.docx

Working knowledge of Web based Self Acquired

applications

Working knowledge of Oracle Database | Oracle Documentations

Working knowledge of PLSQL & SQL | Self Acquired
Language

Working knowledge of XML files Self Acquired

1.2 Related Documents
04-Development WorkBench _Screen _Development-1.docx
05-Development_WorkBench _Screen _Development-11.docx
14-Development_of Online Forms.docx

Development Of Call Forms

04-Development_WorkBench%20_Screen_Development-I.docx
05-Development_WorkBench%20_Screen_Development-II.docx
14-Development_of_Online_Forms.docx

2. Introduction

2.1 How to use this Guide

The information in this document includes:

e Chapter 2, “Introduction”

e Chapter 3, “Overview of Call Form

e Chapter 4, “Screen Development”
e Chapter 5, "Generated Units”
e Chapter 5, "Extensible Development”

3. Overview of Call Form

Call Forms are function Id’s (screens) which can be used for processing of a feature which
is common across multiple function Ids.

Call Forms can be attached to the main function Id for processing the common
functionality. Call form screens cannot be launched independently.
Example: Tax Processing for a Contract

Tax Processing depends on common tax rules attached for the product/contract. Same processing
can be used for various contract screens like Funds Transfer Input Screen, Letters Of Credit etc.

Thus a common function id can be developed which can be attached to all the contract screens
requiring tax processing

On launching the call form screen from the main screen, the values will be picked up based
on the data input in main screen. User will have the option to change the data in call form
screen if desires so.

There are two types of Call forms
1) Maintenance Call Forms
2) Transaction Call Forms

Maintenance Call forms can be attached to only maintenance function id’s while
transaction call forms can be attached to transaction screens only

4. Screen Development

Design and development of a Call Form function id is similar to any other function Ids. This
section briefs the steps in designing a Call Form screen.

Development Of Call Forms

For detailed explanation, refer the document: 04-Development_WorkBench _Screen_Development-
L.docx

41 Header Information
Provide the header information as shown in the figure.

B x B ¥Fd <

Action Function Type Function Category’
Function Id Parent Function Header Template MNone -

Save XML Path ICFCTRCHGJ Parent Xml Footer Template -

Search

(4 Preferences
@ [DataSource
@ [ListOfvalues
@ 3 DataBlocks
3 Screens
@ [FieldSets

[Actions

[aCallForms

[3 LaunchForms

3 Summary

Fig4.1 Call Form header Information

Note the following while providing header information.
i) Name of the Call form :

Call Form name has to have the third character as ‘C’. This is how system
differentiates a call form from other screens. Ideally, the length of the name should be 8
characters.

Example: CFCTRCHG, ISCTRSTL etc are valid call form names

ii) Call Form Category:
It has to be either Maintenance or Transaction depending on the functionality and the
screens from which it will be invoked

iii) Footer Template:
Footer template can be provided as required. Note for Transaction screens, footer
template has to be selected as NONE unless it is a process screen

iv) Function Type :
Parent and child functionality is supported for call forms

4.2 Preferences
Provide the menu details in the Preferences screen

Development Of Call Forms

Function Generation - A

B x8 ¥4

@ [DataSource
= [JListofvalues

[DataBlocks [~ Auto Authorization

[~ Logging Required

Module Description The ICCF

Action Function Type Function Category
Function Id Parent Function Header Template None -
Save XML Path CFCTRCHG_ Parent Xml Footer Template -
Search Preferences 7]
[Preferences [~ Head Office Function Module |CF 2]

Branch Program Id

Process Code

SVN Repository URL

Transaction Block ~ Choose Block
Name

Transaction Field ~ Choose Field
Name

@ [Screens [~ TankModifications
4 [JFieldSets — Field Log Required
S:Z:T;;ms [~ Multi Branch Access
(3 LaunchForms [F] Excel Export Required
4 Summary
] Function Id

Module *

CFCTRCHG

kcF

|~2] TheiccF

Module Description

Control String [+]—|

Fig4.2 Call Form Preferences

Note the following while providing Preferences for Call Forms.

i) Module name :

Module name is a mandatory field and has to be provided. It is recommended that
the first two letters of the function id is kept as same as the module name. Naming of
the generated package will be derived from the module code maintained

ii) Of the menu details inc generated, only script for SMTB_MENU and
SMTB_FCC_FCJ_MAPPING is required for Call Forms

iif) Browser menu options :

Call Forms cannot be launched independently .Hence browser menu labels need not
be maintained. Script for smtb_function_description is not required for call forms

4.3 Data Sources

Identify the tables/views for the call form. Define data sources and add data source fields as

required

Development Of Call Forms

Function Generation

x B ¥ 4=
Action Function Type Function Category
Function Id: Parent Function Header Template None -
Save XML Path CFCTRCHG_f Parent Xml Footer Template -
Search Data Source Details g =

Sl Data Source CSTES_CONTRACT__CHG parant -
jﬁuéag::;;ieCONTRACT_CHG Master Yes ~ Relation | |@|

® [CFTBS_CHARGE _ASSOC Relation Type ~ OneToOne = Wihere Clause | =]

[CFTBS_CHARGE_APPLN MultiRecord Mo Default Order By | =]

@ [CFTBS_CHARGE_LIOD_NMASTER PK Cols * [CONTRACT_REF_NO~LATEST_EVENT_{2] Type MNormal -
© [DataBlocks PK Types * [VARCHAR2~NUMBER \@ [~ Mandatary
@ [[3Screens Upload Table | ‘D
 [JFieldSets

[Actions

[aCallForms

[3 LaunchForms

3 Summary

Fig 4.3 Adding data sources and maintaining properties
Note the following while creating data sources
i) Master Data Source has to be a single entry data source.
if) Logical Relationships has to be maintained for all data sources except the parent

iii) Provide PK Cols and PK types for all data sources.
If data source is a multi record block, then make sure it has at least one more pk than its
parent which helps to uniquely identify each record of multi record block

Function Generation

Action
Function 1d
Save XML Path CFCTRCHG_f

Function Type
Parent Function

Parent Xml

Function Category’
Header Template Mone

Footer Template

BxBE¥Fa

Search

[Preferences
= DataSource
= L1 CSTBS_CONTRACT__CHG
Ca CONTRACT REF NG
3 LATEST_EVENT_SEQ_NO
I i I = T s s v
[CFTBS_CHARGE_APPLN
[CFTBS_CHARGE_LIOD_MASTER
[ListOfvalues
® [DataBlocks
[Screens
@ [FieldSets
[Actions
[CallForms
[LaunchForms
£ Summary

Data Source Field Details

Refresh = & 7|

Column Name
Block Name

Field Name

Data Type

MaxLength [16

Upload Table Column \

~ MNotRequiredin
Upload Tables

Fig 4.4 Adding data sources fields and its properties

Max length of the data source field can be modified as per requirement

44 Data Blocks

Determine the block structure for the function id .Define Data Blocks as per the design

Development Of Call Forms

Function Generation - X

BxB¥F &

Action Function Type Function Category,
Function Id! Parent Function Header Template None -
Save XML Path CFCTRCHG_f Parent Xml Footer Template -
Search Block Properties =] &

[aPreferences BlockName BLK_CHARGES XSD Node [Charges |

3 DataSource =
LBL_CHARGE 2 =

o o Listovaluse Block Tite [-BL_ 2] XSD Node \ =]
=] Parent M Master Block ~ Yes ¥

= Ca Bl CHAREES Relation Type ~ OneToOne - MultiRecord No =

@ [BLK_CHARGE_ASSOCIATION Black PK Fields ‘ BlockType Mormal

3 [BLK_CHARGE_APPLICATION

= [BLK_CHARGE_LIQUIDATION Datasource Available Datasource Added
T errees CSTBS_CONTRACT__CHG
@ 3 FieldSets

[Actions

3 CallForms

3 LaunchForms m

£ Summary

4]

Fig 4.5 Defining Data Blocks and maintaining its properties

Note the following while creating data blocks
i) Master Data Source has to be a single entry data source.
if) Logical Relationships with the parent has to be maintained for all data sources.
iif) Provide PK Cols and PK types for all data sources.
If data source is a multi record block, then make sure it has at least one more pk than its
parent which helps to uniquely identify each record of multi record block
iv) Provide Xsd node name if the block is normal and is required in gateway request

Add block fields to the data block as required.

Development Of Call Forms

Function Generation

Action| Load

Function Id| CFCTRCHG
Save XML Path CFCTRCHG_| | EROWEE

Function Type Faren

Parent Function

Function Category Transaction

Header Template None

B xE¥da-<

Search Block Field Properties

[Preferences
(4 DataSource
3 ListOfvalues
= 1 DataBlocks

[BLK_CHARGE_ASSOCIATIOM
[J BLK_CHARGE_APPLICATION
i 3 BLK_CHARGE_LIQUIDATION

= (3 BLK_ Column Name * LATEST_EVENT_SEQ_NO
CALATEVNSEQNG
(-3 CONREFNO ol -

Database ltem =

Maximum Length
Minimum Value I:l
Maximum Value I:l

Maximum Decimals I:l
Texitrea Rows l:l

Parent Xml Footer Template -
)
Field Name * LATEVNSEQNO %SDTag |LATEVNSEQNO I~ Required
FieldLabel |[LBL_LATEVNSEQND |2] XsDamnotation | |7 I visible
CSTBS_CONTRACT__CHG FieldSge® | | [~ Read Only

[~ Calender Text
[~ Popup Edit Required
™ Uppercase Only

[+ LOV Validation
Required

[~ Input by LOV Only

j EEEIZ:EE - TedsreaCowmns [| [~ Mot Required In Xsd
[Actions Default Value I:"El [~ Report Parameter
[dCallForms Preview Value :l
3 LaunchFarms Off Line LOV Name Maskid [|
3 Summary Fieldset Name

; Evenis| | Related Field
=]
I Attribute Name Attribute Value Active Position i
Fig 4.6 Attaching Block Fields and maintaining its properties
Note the following while attaching block fields to data blocks
i) In case the field is not required in XSD, check not Required XSD
if) Ensure that Related Block and Field are given for Amount Fields
iii) Minimize the use of query data sources by using DESC fields wherever possible.

Note: Query data sources is rarely required for a Call Form screen; as launch form can be used for

query only screens

4.5 Screens

Design the screen layout based on the requirement

Development Of Call Forms

Function Generation - A

Action
Function 1d

Save XML Path CFCTRCHG_f

Function Type
Parent Function

Parent Xml

BxBE¥Fa<

Function Category
Header Template Mone -

Footer Template -

Search

[Preferences
4 DataSource
® [JListOfvalues
£ :DataEﬂucks
2 3 Screens
= CalVs_CFETRCHG

Screen Details

e)

Screen Name
Screen Title
Screen Size

Exit Button Type

CVS_CFCTRCHG

|LBL_CHARGE_DETAILS

Medium
Default Ok Cancel

v Main Screen
[+ Visible

@ (3 HEADER
@ 380D
@ [FOOTER

E=l

Source Block Source Field Active i

-
[Actions
[J CallForms
_dLaunchForms
4 Summary

Argument Name Argument Value Target Block Target Field

Yes -

sl
0
Yes »

Fig 4.7 Designing Screens and providing Screen Properties

Note the following while creating screens

i
ii)

iif)

One Screen should be identified as the main screen; if multiple screens present

In the function id ,where the call form is called :

For the button (which launches call form) events, the main screen of the call form has
to be mentioned

Screen Arguments :

Screen Arguments has to be provided for the main screen. Any field which has to be
populated based on the data from the calling Function id can be provided as the
target block and target field.

Normally values for the pk fields of the master data source can be retrieved from the screen
arguments .Relationship between the calling function id and the call form will also be based
on the pk columns of master data source.

Add Tabs, sections and partitions as per the screen design

10

Development Of Call Forms

Function Generation

B xE¥Fa

[_4 DataSource
@ [ListOfValues
4 DataBlocks
2 [Screens
= 3 CVS_CFCTRCHG

A SEC_ASSOC
3 SEC_APPL
3 SEC_LIGD
Frarooree

[[_JFieldSets

[Actions

3 CallForms

[LaunchForms

£ Summary

Note the following when creating tabs and sections for the screen

Action| Loa Function Type| Farent Function Category| Transzcion
Function Id CFCTRCHG Parent Function Header Template Mone -
Save XML Path CFCTRCHG_f | BROWSE Parent Xml Footer Template -
Search Tab Details Dependent Fields 4 = |a] [
[Preferences ScreenName CVS_CFCTRCHG v Visible

TabName [TAB_MAIN ‘
Tablabel |[LBL_ALL @
TabType Data -

Fig 4.8 Creating Tabs and maintaining Properties

i) If the screen does not have multiple tabs, then only the TAB_MAIN needs to be
used. TAB_HEADER should not contain any sections in this scenario

Function Generation - A

Action| Loz
Function Id| CFCTRCHG
Save XML Path CFCTRCHG_I

Function Type Faren
Parent Function

BROWSE Parent Xml

BxBE¥Fd-=

Function Category Tranzaction
Header Template None -

Footer Template -

Search

[_d Preferences
[DataSource
[ListOfvalues
3 DataBlocks
= [J Screens
= (A CVE_CFCTRCHG
[HEADER
= [3BoDY

o
3 SEC_APPL
3 SEC_LIaD
® A FOOTER
g FieldSets
(J Actions
JCallForms
[LaunchForms
d Summary

Section Details

=] 5

Section Name ~ SEC_MAIN [+ Visible
Section Label | \E‘ [~ Collapse

Partition Details

FIE]

(=] Partition SI No Partition Name

0
2 PARI_MAIN_2

Width Sub-partitions "
50 -

33 -

Fig 4.8 Section Properties

Multiple Screens can be designed if required.

Development Of Call Forms

11

4.6 Field Sets

Create Field sets and attach the fields to the field sets as required

Function Generation - A

B xB¥da-=

Action Function Type Function Category

Function Id Parent Function Header Template None -

Save XML Path CFCTRCHG_F Parent Xml Footer Template -

Search Fieldset Properties = [ai] G

(i Preferences
[DataSource
= [JListOfvalues
i+ 4 DataBlocks
Iz 4 Screens
= [ACVE_CFCTRCHG
3 HEADER

Fieldset Name
Fieldsetlael | |
Data Block
Multi Record
View Type

Fieldsetbengnt |]

Screen Name
Screen Portion
Tab Name
Section Name
Partition Name
Number Of Rows

CVS_CFCTRCHG
Body

TAB_MAIN
SEC_MAIN
PARt_MAIN_1

1

(R RERE]

[~ Horizontal Fieldset
[~ ReadOnly
— Mavigation Button

[+ Visible

= [3BODY
= CATAB_MAIN

[SEC_MAIN
L4 SEC_ASS0C
4 SEC_APPL
4 SEC_LIQD

[FOOTER

ERS R

Data Block Fields [
™ | LATEVNSEQNO -

FieldSet Fields Subpartition Name

CONREFNO -

<l

A FST_CHARGE_ASSOCIATION
[CAFST_CHARGE_APPLICATION
[CAFST_CHARGE_LIQD_MASTER|

[Lol

[acallForms

[LaunchForms

3 Summary

o)
5
{wi
)
o
{9}
19}
A
2
g
2 [z

Fig 4.9 Field Set Properties

Not the following when attaching field to a field set

i) If a field value is passed as screen argument ,but is not required to be shown in the
screen,
The field has to be made invisible and attached to a field set. If it is not attached to
any fields set, the screen html won’t contain the field and may result in script error
while loading

4.7 Actions

Mention the web service and amendable information in Actions Screen

12
Development Of Call Forms

Function Generation - A

BxE ¥4 =
Action Function Type Function Category
Function Id Parent Function Header Template None -
Save XML Path CFCTRCHG_F ParentXml Footer Template -
Search Form Actions =]
[aPreferences %SD Type Identifier [TxnChgDtis] Service Name |[CFCTRCHG |E|
i+ 3 DataSource | |
® [ListOfValues Operation 1d
® [DataBlocks
® [J Screens
® [JFieldSets E‘
[ddions " »
Web Service Action Code Operation Code Action Stage Type Amendables
J CallForms
3 LaunchForms r QUERY r Amendables
(23 Summary r NEW r Amendables
r MODIFY r Amendables
r AUTHORIZE r Amendables
r DELETE r Amendables
- CLOSE r Amendables
r REOPEN - Amendables
r REVERSE r Amendables
r ROLLOVER r Amendables
r CONFIRM r Amendables
r LIQUIDATE r Amendables
r SUMMARYQUERY =
Fig 4.10 Actions Screen

Note the following while maintaining web services and amendable information
i) Call forms will generate only Type XSD.
Operation specific message xsd’s will not be generated. Call form Type will be part
of the main function Id xsd; hence separate message xsd is not required for call form
‘Subsys’ will be added to the name of call form type xsd.
Example: for the example given in the figure, name of the xsd generated will be SubSys-
TxnChgDtls-Types.xsd

if) Operation Id and Operation Code need not be maintained for the above mentioned
reason
iii) Amendable information has to be maintained similar to any other function id’s.

48 Launch Forms
Launch Forms can be attached to a Call form screen. Though it is technically supported,
practical scenarios where launch form is part of a call form is very rare.
Process to attach launch forms is similar to any other function Id’s.

49 Call Forms

Call forms can themselves be attached to a call form. This scenario also is practically very
rarely used.
Processing logic (sub system pickup) for the attached cal forms has to be called from the main
call form

13
Development Of Call Forms

410 Summary

Summary screens are not required for Call Form screens. Since a Call Form screen cannot be
launched independently in FLEXCUBE, it doesn’t require a summary screen

411 Preview
The figure shows the preview of the cal form screen developed

4 Charge Details

Contract Reference *
Charge Association
1 of 1
[l Creation ESN Component * Rule Description Consider as Discour *
]
' 1 r
Charge Application
1 of 1
[Creation ESN Component * Tag Currency Tag Amount Charge Currency Charge Amoun
]
4 | 10 »
Charge Liquidation
1 of 1
[] Event Sequence Mumber Component Charge Currency Charge Amount Liguidated i
]

Fig 4.10 Call Form Screen Preview

Generate the units for call form and deploy them in the FLEXCUBE server for unit testing

5. Attaching Call Form to Main Function Id

Call Forms cannot be launched independently. It has to be called from a main function id.
Refer Call Forms section in 04-Development_WorkBench _Screen_Development-I.docx for

detailed explanation

14
Development Of Call Forms

Note that scripts for CSTB_CALL_FORM_NODES and SMTB_MENU tables generated
by Call Form screen has to be deployed in FLEXCUBE schema before attaching Call form to
the main function Id.

6. Generated Units

The following units will be generated for a Call Form screen.
Refer document on generated units on detailed explanation on the same

6.1 Front End Units

6.1.1 Language xml
This file is an XML markup of presentation details, for the designed Call Form specific to a
language.
6.1.2 SYS JavaScript File
This JavaScript file mainly contains a list of declared variables required for the functioning
of the screen

6.1.3 Release Type Specific JavaScript File
This file won’t be generated by the Tool. It has to be manually written by the developer
if he has to write any code specific in that release

6.2 Data Base Units
6.2.1 Static Scripts

The following static scripts generated are required for the proper functioning of a Call
Form screen. Refer document on generated units for detailed explanation

i) Menu Details
Scripts for SMTB_MENU and SMTB_FCC_FCJ]_MAPPING are required for the
functioning of Call Form screen

ii) Call Form details
Script for CSTB_CALL_FORM_NODES is required for attaching the call forms to
the main function id. This has to be compiled in the schema before attaching the
Call form to the main function Id

iii) Lov Details

iv) Amendable Details

V) Label details

vi) Screen Details

vii) Block details

viii) Data Source Details

6.2.2 System Packages
Main package would be generated by the Tool and should not be modified by the developer.

There is small change in the structure of the package depending on the type of the call form
(Maintenance or Transaction).

15
Development Of Call Forms

Unlike normal maintenance function ids, call form packages does not have any call to the
business logic within itself (similar to transaction function id). If developer wishes to uses any
functions within the main package , call has to be made from the release specific package.

Main package contains functions for :
e Converting Ts to PL/SQL Composite Type
e Calling fn_main.
¢ Mandatory checks (fn_check_mandatory).
e Default and validation(fn_default_and_validate)
¢ Querying(fn_query)
e Converting the Modified Composite Type again to TS

Except the functions for type conversions, others functions calls the respective hook functions
in hook packages of the call forms. Thus no processing logic within the main package is used

It is to be noted that each of these functions are called from the main package of the main
function id (where this call form is used) during respective stages.

But the package contains many other system generated functions for operations like
e Mandatory checks(fn_sys_check_mandatory)
e Default and validation(fn_sys_default_and_validate)

Uploading to DB(fn_sys_upload_db)

¢ Query operation (fn_sys_query) etc
These functions are not called anywhere in the package. These functions if required can be

called by the developer from the release specific package. Otherwise developer can write his
own logic for the same in the Hook Packages

6.2.3 Hook Packages
Release specific packages will be generated based on the release type
(KERNEL.CLUSTER or CUSTOM). The structure of the package depends on the type of call
form (Maintenance or Transaction). Developer can add his code in the release specific hook
package.

6.3 Other Units

6.3.1 Xsd

Only Type XSD will be generated for a Call Form function Id. Subscript Subys will be
added before XSD Type identifier in the name of the generated xsd .
This type xsd will be used in the type xsd of any function which uses the particular call form

16
Development Of Call Forms

7. Extensible Development

Developer can add his code in hook packages and release specific JavaScript file.

71 Extensibility in JavaScript Coding
For release specific JavaScript coding, code has to be written in release specific JavaScript
file.

It follows the naming convention as : (Function Id)_(Release Type).js
Example: Code in CFCTRCHG_CLUSTER js is exclusive to cluster release

This JavaScript file allows developer to add functional code and is specific to release.
The functions in this file are generally triggered by screen events. A developer working in
cluster release would add functions based on two categories:

¢ Functions triggered by screen loading events
Example: fnPreLoad_CLUSTER(), fnPostLoad_CLUSTER()

¢ Functions triggered by screen action events
Example: fnPreNew_ CLUSTER (), fnPostNew_ CLUSTER ()

7.2 Extensibility in Backend Coding

Release specific code has to be written in the Hook Packages generated.
Structure of a Maintenance and Transaction Call Form hook packages are almost the same
Note that though structure is almost the same ,arguments differ in transaction and
maintenance call forms .Hence Transaction Call Form can be attached only with Transaction
screen and similarly for Maintenance screens
Different functions available in the Hook Package of a Call Form are:
1) Skip Handler : Pr_Skip_Handler
This can be used to skip the logic written in another release.
Example: logic written in KERNEL release can be skipped in CLUSTER release
2) Fn Main
This is called form the fn_main in main package.
3) Fn_pre_query
4) Fn_post_query
Any specific logic while querying can be written in these functions. It is called
from fn_query of the main package

5) Fn_pre_upload_db
6) Fn_post_upload_db
Any logic while uploading data to tables can be written here .

7) Fn_pre_default _and _validate

8) Fn_post_default_and_validate
Any release specific logic for defaulting and validation can be written here . It is
called from the fn_default_and_validate in the main package

9) Fn_pre_check_mandatory

17
Development Of Call Forms

10) Fn_post_check_mandatory
Any mandatory checks can be validated here

11) Fn_pre_process

12) Fn_post_process
These hook functions are specific to transaction call form screens. These are called
from fn_process of the main package which in turn is called from fn_process of the
calling function id

Refer maintenance and Transaction Screen development document for further
explanation

18
Development Of Call Forms

ORACLE

Purge Entity Definition
January 2018

Oracle Corporation

World Headquarters

500 Oracle Parkwa
Redwood Shores, CA 94065
US.A.

Worldwide Inquiries:

Phone: +1.650.506.7000

Fax: +1.650.506.7200
www.oracle.com/ financial_services/

Copyright © 2017-2018 Oracle Financial Services Software Limited. All rights reserved.

No part of this work may be reproduced, stored in a retrieval system, adopted or transmitted in any form
or by any means, electronic, mechanical, photographic, graphic, optic recording or otherwise, translated
in any language or computer language, without the prior written permission of Oracle Financial Services
Software Limited.

Due care has been taken to make this document Purge Entity Definition and accompanying software
package as accurate as possible. However, Oracle Financial Services Software Limited makes no
representation or warranties with respect to the contents hereof and shall not be responsible for any loss
or damage caused to the user by the direct or indirect use of this Purge Entity Definition and the
accompanying Software System. Furthermore, Oracle Financial Services Software Limited reserves the
right to alter, modify or otherwise change in any manner the content hereof, without obligation of Oracle
Financial Services Software Limited to notify any person of such revision or changes.

All company and product names are trademarks of the respective companies with which they are
associated.

19
Development Of Call Forms

