
Oracle® Fusion Middleware
Understanding Oracle Application
Development Framework

12c (12.2.1.3.0)
E80020-01
August 2017



Oracle Fusion Middleware Understanding Oracle Application Development Framework, 12c (12.2.1.3.0)

E80020-01

Copyright © 2013, 2017, Oracle and/or its affiliates. All rights reserved.

Primary Author: Ralph Gordon

Contributors: Steve Muench

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.



Contents

 Preface

Audience ix

Documentation Accessibility ix

Related Documents ix

Conventions x

 What's New in This Guide

Part I   Introduction to Oracle ADF

1   Overview of Oracle ADF

1.1 About Oracle ADF 1-1

1.2 Oracle ADF Key Concepts 1-1

1.3 Oracle ADF Key Components 1-2

1.3.1 ADF Model 1-2

1.3.2 ADF Business Components 1-3

1.3.3 ADF Controller 1-3

1.3.4 ADF Faces 1-3

1.3.5 ADF Mobile Browser 1-4

1.3.6 ADF Desktop Integration 1-4

1.3.7 ADF Security 1-4

1.3.8 Oracle Metadata Services 1-4

1.4 Key Management Tools and Processes 1-4

2   Overview of the Oracle ADF Process Flow

2.1 Oracle ADF High-Level Process Flow 2-1

2.2 Using Oracle ADF to Create a Rich Enterprise Application 2-5

iii



Part II   Oracle ADF Back-end Components

3   ADF Model

3.1 About ADF Model 3-1

3.2 Core Benefits of ADF Model 3-2

3.3 Key Concepts of ADF Model 3-3

3.3.1 Abstraction of the Application's Model Layer 3-3

3.3.2 Declarative Data Binding 3-5

3.4 Key Components of ADF Model 3-6

3.4.1 Data Controls 3-6

3.4.1.1 Adapter Data Controls 3-6

3.4.1.2 ADF Business Components 3-7

3.4.2 Declarative Bindings 3-7

3.5 ADF Model at Runtime 3-8

3.6 Overview of the ADF Model Process Flow 3-9

3.6.1 Development Steps for Using ADF Model with ADF Business
Components 3-9

3.6.2 Development Steps for Using ADF Model with non-ADF Business
Services 3-10

3.7 Learning More About ADF Model 3-10

4   ADF Business Components

4.1 About ADF Business Components 4-1

4.2 Core Benefits of ADF Business Components 4-2

4.3 Key Concepts of ADF Business Components 4-3

4.3.1 Implementation of Business Services 4-3

4.3.2 Based on Standard Java and XML 4-3

4.3.3 Application Server and Database Independence 4-6

4.3.4 Support for Java EE Design Patterns 4-6

4.3.5 Declarative Metadata for Implementation Classes 4-6

4.3.6 Optional Custom Java Code 4-7

4.3.7 Ability to Expose Services to SOA Applications 4-7

4.3.8 Application State Management 4-7

4.4 Key Components of ADF Business Components 4-7

4.4.1 Entity Objects 4-8

4.4.1.1 Entity Object Definition Files 4-8

4.4.1.2 Ways to Configure Entity Objects 4-9

4.4.2 Entity Associations 4-9

4.4.3 View Objects 4-9

iv



4.4.3.1 Types of View Objects 4-10

4.4.3.2 View Object Definition Files 4-11

4.4.3.3 Ways to Configure View Objects 4-11

4.4.4 View Links 4-11

4.4.5 Application Modules 4-12

4.4.5.1 Types of Application Modules 4-13

4.4.5.2 Application Module Definition Files 4-13

4.4.5.3 Service-enabled Application Modules 4-13

4.4.5.4 Application Module Pooling 4-14

4.4.5.5 Application State Management 4-15

4.5 Overview of the ADF Business Components Process Flow 4-15

4.6 Learning More About ADF Business Components 4-16

5   ADF Controller Task Flows

5.1 About ADF Controller 5-1

5.2 Core Benefits of ADF Controller 5-2

5.3 Key Concepts of ADF Controller 5-3

5.4 Key Components of ADF Controller 5-3

5.4.1 Unbounded Task Flows 5-3

5.4.2 Bounded Task Flows 5-4

5.4.3 Task Flow Activities 5-5

5.4.4 Task Flow Templates 5-6

5.4.5 Save Points 5-6

5.4.6 Integration with pageFlowScope, backingBeanScope, and viewScope 5-7

5.4.7 Integration with the ADF Faces Train Component 5-7

5.4.8 Integration with the ADF Faces Region Component 5-7

5.5 Overview of the ADF Controller Process Flow 5-8

5.6 Learning More About ADF Controller 5-8

Part III   Oracle ADF View Technologies

6   ADF Faces

6.1 About ADF Faces 6-1

6.2 Core Benefits of ADF Faces 6-2

6.3 Key Concepts of ADF Faces 6-3

6.4 Key Components of ADF Faces 6-6

6.5 Overview of the ADF Faces Process Flow 6-7

6.6 Learning More About ADF Faces 6-8

v



7   ADF Desktop Integration

7.1 About ADF Desktop Integration 7-1

7.2 Core Benefits of ADF Desktop Integration 7-2

7.3 Key Concepts of ADF Desktop Integration 7-2

7.3.1 Integration with Microsoft Excel 7-3

7.3.2 Integration with ADF Page Definition Files 7-3

7.3.3 Runtime Synchronization with Fusion Web Applications 7-3

7.3.4 Security for Integrated Excel Workbooks 7-4

7.4 Key Components of ADF Desktop Integration 7-5

7.4.1 Table-Type Components 7-5

7.4.2 Form-Type Components 7-5

7.4.3 Action Sets 7-5

7.5 Overview of the ADF Desktop Integration Process Flow 7-6

7.6 Learning More About ADF Desktop Integration 7-7

Part IV   Oracle ADF Security, Customization, and Deployment

8   ADF Security Framework

8.1 About the ADF Security Framework 8-1

8.2 Core Benefits of ADF Security 8-3

8.3 Key Concepts of ADF Security 8-4

8.3.1 Authentication and Authorization 8-4

8.3.2 Application Roles 8-4

8.3.3 Security Policies 8-4

8.3.4 Security Awareness in ADF Resources 8-4

8.4 Key Components of ADF Security 8-5

8.4.1 Design-Time Integration With OPSS 8-5

8.4.2 ADF Security-Aware Resources 8-6

8.4.3 ADF Authentication Servlet 8-7

8.4.4 ADF Security Context 8-7

8.5 Overview of the ADF Security Process Flow 8-7

8.6 Learning More About ADF Security 8-8

9   Oracle Metadata Services

9.1 About Oracle Metadata Services (MDS) 9-1

9.2 Core Benefits of MDS 9-2

9.3 Key Concepts of MDS 9-3

9.4 Key Components of MDS 9-4

vi



9.5 Overview of the MDS Process Flow 9-5

9.6 Learning More About MDS 9-5

10  
 

Deployment of Applications Containing Oracle ADF Features

10.1 About Deployment of Applications that Contain Oracle ADF Features 10-1

10.2 Key Concepts of Deploying ADF Applications 10-1

10.2.1 Test Deployment with Integrated WebLogic Server 10-1

10.2.2 Deployment Tools 10-2

10.2.3 Test Deployment on a Standalone Server 10-2

10.3 Key Components of Deploying ADF Applications 10-2

10.3.1 Enterprise Archive (EAR) File 10-2

10.3.2 ADF Runtime Libraries 10-2

10.4 Overview of the ADF Application Deployment Process Flow 10-3

10.5 Learning More About Deploying ADF Applications 10-4

Part V   Appendix

A   ADF Business Components and Familiar 4GL Tools

A.1 Comparison to PeopleTools A-1

A.2 Comparison to Siebel Tools A-3

A.3 Comparison to ADO.NET A-4

vii



viii



Preface

Welcome to Understanding Oracle Application Development Framework.

Audience
This document is intended for enterprise developers who need an overview of the
technologies encompassed by the Oracle Application Development Framework
(Oracle ADF). This guide outlines the components and explains the concepts behind
ADF Model, ADF Business Components, ADF Controller, ADF Faces, ADF Security,
ADF Desktop Integration, and other parts of the ADF technology stack.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents
For more information, see the following documents:

• Developing Fusion Web Applications with Oracle Application Development
Framework

• Developing Web User Interfaces with Oracle ADF Faces

• Developing Applications with Oracle ADF Data Controls

• Developing Applications with Oracle JDeveloper

• Developing ADF Skins

• Administering Oracle ADF Applications

• Developing Applications with Oracle ADF Desktop Integration

• Tuning Performance

• High Availability Guide

• Installing Oracle JDeveloper

• Oracle JDeveloper Online Help
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• Oracle JDeveloper Release Notes, included with your JDeveloper installation, and
on Oracle Technology Network

• Java API Reference for Oracle ADF Model

• Java API Reference for Oracle ADF Controller

• Java API Reference for Oracle ADF Lifecycle

• Java API Reference for Oracle ADF Faces

• Java API Reference for Oracle ADF Data Visualization Components

• Java API Reference for Oracle ADF Share

• Java API Reference for Oracle ADF Model Tester

• Java API Reference for Oracle Generic Domains

• Java API Reference for Oracle Metadata Service (MDS)

• Tag Reference for Oracle ADF Faces

• Tag Reference for Oracle ADF Faces Skin Selectors

• Tag Reference for Oracle ADF Faces Data Visualization Tools

• Tag Reference for Oracle ADF Data Visualization Tools Skin Selectors

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.
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What's New in This Guide

For Release 12c (12.2.1.3.0), this guide has not been revised.

For other changes made to Oracle JDeveloper and Oracle Application Development
Framework (Oracle ADF) for this and previous releases, see the What's New page on
the Oracle Technology Network at http://www.oracle.com/technetwork/developer-
tools/jdev/documentation/index.html.
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Part I
Introduction to Oracle ADF

This part provides an overview of the architecture of Oracle Application Development
Framework (Oracle ADF) and the process that developers follow when Oracle ADF is
used to build an ADF application.
Part I contains the following chapters:

• Overview of Oracle ADF

• Overview of the Oracle ADF Process Flow





1
Overview of Oracle ADF

This chapter provides a high-level overview of the architecture and components of
Oracle Application Development Framework (Oracle ADF).
This chapter includes the following sections:

• About Oracle ADF

• Oracle ADF Key Concepts

• Oracle ADF Key Components

• Key Management Tools and Processes

For definitions of unfamiliar terms found in this and other books, see the Glossary.

1.1 About Oracle ADF
You can use Oracle Application Development Framework (Oracle ADF) to simplify the
development of interactive, databound web applications, known as Fusion web
applications (or simply ADF applications). Applications built with Oracle ADF follow
Java EE standards and integrate with the Oracle Fusion Middleware stack.
Oracle Application Development Framework (Oracle ADF) is an end-to-end application
framework that builds on Java EE standards and open-source technologies to simplify
and accelerate implementing enterprise applications. Oracle ADF is suitable for
enterprise developers who want to create applications that search, display, create,
modify, and validate data using web, mobile, and desktop interfaces.

You can use the whole Oracle ADF framework to create an application, or you can use
parts of the framework in combination with other technologies. Throughout this guide,
applications that contain any ADF technologies are generally referred to as ADF
applications. Web applications that incorporate ADF technologies throughout the
business service, model, controller, and view layers are referred to as Fusion web
applications.

1.2 Oracle ADF Key Concepts
Oracle ADF is a commercial Java framework for building enterprise applications. It
supports rapid application development based on ready-to-use design patterns,
metadata-driven and visual tools.
Oracle ADF is based on the following concepts:

• Rich component sets for web, mobile, and desktop clients

• Declarative and reusable business logic and validation

• Declarative data binding

• Separation of UI-related and data-related elements (MVC architecture)

• Enhanced page flow functionality, including modular and reusable task flows

• Declarative security on ADF resources

1-1



• Customer level and developer level customization through metadata

For information on the key concepts of the broader Fusion Middleware stack, see 
Introduction to Oracle Fusion Middleware in Understanding Oracle Fusion Middleware.

1.3 Oracle ADF Key Components
Oracle ADF architecture is based on Model-View-Controller (MVC) design pattern that
consists of four layers – Model, View, Controller, and Business Services. Separating
applications into these layers helps in the maintenance and reusability of components
across applications.
This section provides a synopsis of the central high-level components in the ADF
stack, including some of the underlying technologies such as JavaServer Faces (JSF)
as well as other business and data services that are commonly part of an application.
See Figure 1-1 for a visual depiction of the overall architecture, including the model,
view, and controller (MVC) components.

Figure 1-1    ADF Architecture

1.3.1 ADF Model
ADF Model is a central part of Oracle ADF, enabling you to create ADF applications
based on different types of business services. ADF Model implements data controls
and data bindings. Data controls abstract the implementation technology of a business
service by using standard metadata interfaces to describe the service's operations and

Chapter 1
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data collections, including information about the properties, methods, and types
involved. In Oracle JDeveloper, developers can view that information as icons that
they can easily drag and drop onto a page. When the developer drags the
representation of the service onto the page, Oracle JDeveloper automatically creates
the bindings from the page to the services. At runtime, the ADF Model layer reads the
information describing the application's data controls and data bindings from
appropriate XML files and implements the two-way connection between the user
interface and the application's business service.

Oracle ADF provides ready-to-use data control implementations for common business
service technologies, such as the following:

• ADF Business Components

• Enterprise JavaBeans (EJB) session beans and JPA Persistence API entities

• JavaBeans components

• Web services (SOAP and REST)

1.3.2 ADF Business Components
ADF Business Components are prebuilt application objects that are based on Java EE
design patterns and best practices and which simplify the development and
maintenance of complex, high-performance, and database-centric services.

When building service-oriented Java EE applications, developers implement the core
business logic as one or more business services. These back-end services provide
clients with a way to query, insert, update, and delete business data as required while
enforcing appropriate business rules such as input validators. Using ADF Business
Components, you can develop such services declaratively using wizards and visual
editors in JDeveloper to generate the required metadata.

When you create an ADF Business Components application module, the services that
it encapsulates are exposed through ADF Model as data controls, which you can then
use to create databound components on web pages and other user interfaces. For the
most common use cases, you can thus create a complete application without writing
any Java code.

1.3.3 ADF Controller
In the controller layer of MVC applications, ADF Controller provides an enhanced
navigation and state management model on top of JSF's controller layer. Using
JDeveloper, you can declaratively create task flows that can manage application
control between different types of activities, such as pages, methods on managed
beans, declarative case statements, or calls to other task flows. In addition, you can
create bounded task flows, which are reusable task flow segments that can be called
from an overall task flow.

1.3.4 ADF Faces
ADF Faces provides the view layer for ADF applications. ADF Faces is a complete
view framework that consists of over 150 Ajax-enabled JavaServer Faces (JSF)
components, all built on top of the JSF standard. ADF Faces also can be used as a
standalone component set that works with other non-ADF controller and model
technologies.

Chapter 1
Oracle ADF Key Components
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1.3.5 ADF Mobile Browser
ADF Faces components supports recent and popular smart phones and tablets, such
as Apple iPad, Samsung Galaxy S5 phones, and so on. To support older devices or
feature phones that run basic HTML browsers, use the ADF Mobile browser
technology. This technology uses Apache MyFaces Trinidad components to build the
user interface.

This guide does not cover the ADF Mobile browser technology. For more information,
see Overview of Oracle ADF Mobile Browser in Developing Oracle ADF Mobile
Browser Applications. For information about supported mobile browsers, see
"Certification Information" at http://www.oracle.com/technetwork/developer-tools/jdev/
documentation/index.html.

1.3.6 ADF Desktop Integration
ADF Desktop Integration enables developers to extend Fusion web applications so
that end users can work with them using Microsoft Excel workbooks as a client.

1.3.7 ADF Security
The ADF Security framework uses and extends the Oracle Platform Security Services
(OPSS) architecture to simplify the securing of ADF applications and enables fine-
grained access control for ADF resources such as bounded task flows.

1.3.8 Oracle Metadata Services
The Oracle Metadata Services (MDS) framework allows you to create applications that
your customers can further customize for their users or customers and which the end
users can also customize without touching the source code or affecting the ability of
the application to be patched or updated.

1.4 Key Management Tools and Processes
The Oracle JDeveloper IDE provides the design time and runtime support to fully
develop, run, and debug ADF applications. Although no other tools are required,
JDeveloper integrates with plug-ins designed to support additional ADF functionality.
You can use Oracle ADF to develop components for broader middleware applications.
For an overview of the tools and processes that you might use in such an application,
see Understanding the Installation and Configuration Tools in Understanding Oracle
Fusion Middleware.

To develop ADF applications, you use Oracle JDeveloper, which is an integrated
development environment (IDE) that includes design-time support for ADF features.
Among other things, JDeveloper contains wizards to generate working code for your
business services, generates data binding code as you visually design your user
interfaces, and provides a full testing and debugging environment. In addition, Oracle
JDeveloper installations include a built-in copy of WebLogic Server, which enables you
to test deploy your applications. For more information on using JDeveloper to develop
ADF applications, see Introduction to Building Fusion Web Applications with Oracle
ADF in Developing Fusion Web Applications with Oracle Application Development
Framework. For information on JDeveloper features that are not specific to Oracle

Chapter 1
Key Management Tools and Processes

1-4

http://www.oracle.com/technetwork/developer-tools/jdev/documentation/index.html
http://www.oracle.com/technetwork/developer-tools/jdev/documentation/index.html


ADF, see Introduction to Oracle JDeveloper in Developing Applications with Oracle
JDeveloper.

Note:

You can also develop ADF applications using Oracle Enterprise Pack for
Eclipse (OEPE). OEPE is a set of plug-ins designed for the Eclipse IDE to
support Java EE development. OEPE also includes support for ADF
application development, though that support is more limited than that
provided by JDeveloper. For more information, see http://www.oracle.com/
technetwork/developer-tools/eclipse/overview/index.html.

For developing integrated Microsoft Excel workbooks with ADF Desktop Integration
support, you need to install the ADF Desktop Integration add-in for JDeveloper. For
more information, see Installing ADF Desktop Integration in Developing Applications
with Oracle ADF Desktop Integration.

For designing and modifying ADF skins, you can use the editors provided in
JDeveloper. For more information, see Working with ADF Skins in JDeveloper in
Developing ADF Skins.

Note:

You can also develop and deploy applications with a subset of Oracle ADF
called Oracle ADF Essentials. Oracle ADF Essentials is a free packaging of
key technologies from Oracle ADF that can be used to develop and deploy
applications without licensing costs and to multiple application servers, such
as GlassFish. For a list of the supported Oracle ADF Essentials features for
GlassFish, go to the OTN site at http://www.oracle.com/technetwork/
developer-tools/adf/overview/adfessentials-1719844.html.

Chapter 1
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2
Overview of the Oracle ADF Process Flow

This chapter contains an overview of the process for developing an application with
Oracle ADF technologies and illustrates the process with a concrete use case.
This chapter includes the following sections:

• Oracle ADF High-Level Process Flow

• Using Oracle ADF to Create a Rich Enterprise Application

2.1 Oracle ADF High-Level Process Flow
You can build a Fusion web application with Oracle ADF using JDeveloper. Use the
step-by-step ADF application development process that minimizes the coding effort of
the developer to build an application’s infrastructure and to implement complex
business logic of the application.
At a high level, the development process for a Fusion web application usually involves
a combination of the following steps:

• Creating an application workspace: Using a wizard, JDeveloper automatically adds
the libraries and configuration needed for the technologies you select, and
structures your application into projects with packages and directories.

Figure 2-1    Applications Window in JDeveloper
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• Obtaining a database schema or modeling the database objects from scratch:
Within JDeveloper, you can create an offline replica of any database, and use
JDeveloper editors and diagrammers to edit definitions and update schemas.

• Creating use cases: Using JDeveloper's UML modeler, you can create use cases
for your application.

• Identifying shared resources: If you have components that can be used throughout
your application or be used by multiple applications, you can develop and package
those components as an ADF Library JAR and then have the JAR available in the
Resources window for adding to your application.

• When using ADF Business Components, creating your own custom classes that
extend the base framework classes and then configuring the model project to base
any business components that you create on these custom classes: Even if you
have no initial plans to put custom code into these custom classes, they provide a
mechanism to later change base framework behavior and have those changes
apply to all of the business components you have created in the application.

• Creating business services to access data and building a data model around those
services: Based on your data source, you create business services using wizards
or dialogs. Alternatively, you can create business services from scratch and then
associate them with database tables later. You can also create services directly
within a UML diagram.

These business services can be ADF Business Components services, which are
tightly integrated with ADF Model, which enables you to implement validation rules
and other types of business logic declaratively and which enables you to easily
bind data to UI components. Or they can be other types of services such as EJB
session beans or web services, on top of which you can create ADF Model data
controls to enable data binding and implement declarative business logic.

• Adding declarative logic to the business services, such as control hints and
validation rules.

• Implementing the base user interface with ADF Faces, including page templates
and layouts.

• Designing ADF task flows to define application control and navigation: You use
diagrammers to visually determine navigation and control flow cases. JDeveloper
creates the underlying XML for you. Figure 2-2 shows a task flow in the Summit
sample application for ADF Task Flows that handles customer login.

Chapter 2
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Figure 2-2    ADF Task Flow

• Creating databound UI components: You can create databound components by
dragging objects from the Data Controls panel onto a page and selecting the UI
component you want to generate to display the underlying data. Figure 2-3 shows
a pie chart that has been created by dropping a collection as a pie chart on a page
fragment in the Summit sample application for ADF Task Flows. You can bind
existing UI components to the data model (or change generated bindings) using
JDeveloper's binding editors. Figure 2-4 shows the binding editor for the same pie
chart. In both cases, JDeveloper generates the binding code.

Chapter 2
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Figure 2-3    Design-time View of Pie Chart

Figure 2-4    Binding Editor for Pie Chart

• Incorporating any page-specific validation and error handling: Once your
application is created, you use editors to add additional validation and to define
error handling.

• Securing the application: You use the Configure ADF Security wizard to enable
base security features. Then you can use visual editors to define security policies
for the application's resources, create roles, and populate the roles with test users.

• Enabling MDS customization of the application: If you want to enable your
customers to provide further customization of the application for their users or to
enable persistence of user changes to UI components within a session, you create
customization classes and make them available to the application at design time
and you enable seeded customization for any pages that you want to make
customizable.

Chapter 2
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• Testing and debugging: JDeveloper includes an integrated application server that
allows you to fully test your application without needing to package it up and
deploy it to a standalone server. JDeveloper also includes the ADF Declarative
Debugger, a tool that allows you to set breakpoints and examine the data.

• Refactoring: After testing your application (or even after having already deployed
your application), you may need to rename components and reorganize code.
JDeveloper has refactoring tools that simplify this work and protect against
changes that would introduce bugs.

• Integrating the application with other applications in a service-oriented architecture
(SOA): You can integrate your Fusion web application with an existing or new
applications using SOA principals.

• Developing additional views: You can extend the application to provide
functionality for other types of user interfaces, such as touch devices and desktop
clients. Figure 2-5 shows an input form on an Excel worksheet from the Summit
sample application for ADF Desktop Integration.

Figure 2-5    ADF Desktop Integration Form

• Deploying the application: You use JDeveloper wizards and editors to create and
edit deployment descriptors, JAR files, and application server connections. You
can then use JDeveloper to deploy applications directly to a standalone application
server or use other deployment tools.

2.2 Using Oracle ADF to Create a Rich Enterprise
Application

Summit sample applications are a collection of enterprise application samples
developed by Fusion Middleware Product Management to demonstrate various
capabilities of Oracle ADF. The Summit samples were created using the same step-
by-step ADF application development process you follow to build your own ADF
application.
This section walks you through the high-level steps of creating one of the Summit
sample applications for Oracle ADF, which are a set of rich enterprise applications that
are based on the ADF technology stack. The Summit sample applications support a
sporting goods supplier with features for maintaining data on customers, customer
orders, and products.
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Figure 2-6 shows a page of the application showing an overview of one of its
customers.

Figure 2-6    Summit Sample Application

The following are the high-level steps for creating the application:

1. Install an Oracle RDBMS on your local system or on a remote machine that you
have access to.

For information about the specific versions of Oracle Database that are supported,
see "Certification Information" at http://www.oracle.com/technetwork/developer-
tools/jdev/documentation/index.html.

2. Install the Summit schema in the database.

Note:

The Summit schema, along with an SQL script for installing the Summit
database, was created within an JDeveloper application workspace using
JDeveloper's offline database tools. You can install the database by running
SQL scripts from the project for the schema in JDeveloper.

3. In JDeveloper, create an application workspace for the Summit_Extensions project.
The output of this project is a library that contains some utility code related to
calling database procedures that is later used in the Summit sample application
and which might be useful for other applications as well.

4. In JDeveloper, create a new application workspace for the main application. In the
New Gallery, select the ADF Fusion Web Application template and complete the
steps in the ensuing wizard to create an application workspace that is configured
with a model project to hold your ADF Business Components business services
and a view-controller project to hold your ADF Faces pages and ADF Controller
task flows.

5. In the application's model project, create stub custom classes that extend the ADF
Business Components implementation classes (in the oracle.jbo package) to
which extended functionality may eventually be added. Then, in the Project
Properties dialog for the project, update the ADF Business Components Base
Classes so that new business components that you generate are based on these
custom classes. For more information, see Creating ADF Business Components
Extension Classes in Developing Fusion Web Applications with Oracle Application
Development Framework.
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This gives you the flexibility to later make changes to the base framework classes
that can be picked up by their subclasses in your application. For example, the
Summit sample application sub-classes oracle.jbo.server.EntityImpl with
SummitEntityImpl and provides the nextValSequence() method, which enables entity
objects to easily read the next value from a specified database sequence.

6. In the application's model project, create the ADF Business Components services
that will comprise the Summit sample application's data model. These include
entity objects, view objects, and application modules. You can do much of the
work in the Create Business Components from Tables wizard, which also enables
you generate entity associations based on foreign keys in your database tables,
view links that describe relationship between view objects, and a UML diagram for
the business components that you create.

You need entity objects for all of the database tables that you will use, view
objects for SQL queries that the application needs to make, and application
modules to aggregate the view objects required for a given user task. For
example, the Summit sample application contains the following:

• Entity objects for database tables that store information on customers, orders,
products, warehouses, regions, countries, and so on.

• Entity associations that correspond to each foreign key relationship between
database tables that are represented by entity objects in the application.

• View objects, from which you can create databound UI components. Most of
the view objects are based on columns in one or more entity objects, but a few
of them are based on direct SQL queries to the database and are read-only.

• View links to describe the relationships between various view objects.

• The following three application modules:

– BackOfficeAppModule, which encompasses the view objects that are
needed to develop the functionality needed for the Summit employees to
manage the customer and order database.

– CustomerSelfServiceAppModule, which encompasses the view objects that
are needed to develop the functionality needed for a customer application.

– SummitAppModule, which nests the two other application modules and thus
provides the services encompassed by those application modules should
you later develop an application that needs all of those services.

Figure 2-7 shows the overall structure of the Summit sample application's data
model project, including the extended implementation classes and the application
modules.
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Figure 2-7    Applications Window with Model Project

7. Add declarative logic to the business components so that the UI developer has to
code less of this logic in the view layer and so that there are defaults that help
make the appearance and behavior of the generated UI components consistent
among UI components generated from the same business components. For
example, the Summit sample application includes the following types of
declarative logic:

• UI hints for various view object attributes. For example, the ZipCode attribute of
the CustomerVO view object is configured so that its default label is Zip code, as
shown in Figure 2-8, and its default display width is 20 characters.

• Business rules that make sure that user input is valid. These rules come in the
form of built-in rule types such as ranges and comparisons and in the form of
expressions that you can insert yourself.

• List-of-value (LOV) objects that you can use to create selection lists and other
UI components based on the contents of a database table or a static list. You
can also use LOV objects to validate user input.

• Transient attributes, from which you can create components to display
dynamically calculated values, such as the total price in the displayed list of
order items.

• Default values for input components.

• Primary keys attributes that are set to use the oracle.jbo.domain.DBSequence
data type so that the values of those attributes in new rows are obtained from
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database sequences. For example, the Id attribute of the CustomerEO entity
object is set to oracle.jbo.domain.DBSequence, and its value is obtained from a
database trigger that calls for the next value in the sequence when a new row
is inserted into the database.

Figure 2-8    View Object Overview Editor

8. In the application's UI project, create the project's main page: The Summit sample
application has an index.jsf page, which in turn is based on a <af:pageTemplate>
component that defines the UI elements that establish the visual style for the web
interface.

9. Create the task flows that define the application's flow: The Summit sample
application contains an unbounded task flow that serves as the entry point to the
application and bounded task flows to manage viewing and updating of customer
data and managing orders.The Summit sample application includes the following
task flows:

• An unbounded task flow (represented by the adfc-config.xml file) that serves
as the user's entry point to the application and that contains bounded task
flows that demarcate the work flow for given tasks.

• The customer-task-flow-definition.xml bounded task flow, which handles user
navigation and management of customer information. This task flow also
specifies a managed bean that provides some view-side logic for the controls.

• The create-edit-orders-task-flow-definition.xml task flow, which enables a
user to log new orders.

10. Create regions on the index.jsf page and populate them with databound UI
components: This consists of the following sub-steps:
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a. Creating page fragments based on the task flow view activities.

b. Creating UI components by dragging and dropping objects from the Data
Controls panel on to the page. You can create databound forms, tables, and
trees, as well as DVT components such as gauges, charts, and carousels by
dropping view objection collections. You can create buttons for standard
navigation and CRUD commands by dragging and dropping standard
operations that are built-in to the data controls by ADF Model.

c. Dragging the task flows on to the index.jsf page and dropping them as ADF
regions.

Among others, the Summit sample application has the following fragments:

• Customers.jsff, which is embedded as a view activity within the customer-task-
flow-definition.xml bounded task flow.

• Orders.jsff, which is embedded as a view activity within the create-edit-
orders-task-flow-definition.xml bounded task flow.

11. Use the Configure ADF Security wizard to enable security for the application and
establish roles and test users. In addition to the default roles, the Summit sample
application contains roles for the application customer and the application
employee, each of which is given resource grants appropriate for their roles.
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Part II
Oracle ADF Back-end Components

This part provides an overview of the back-end layers of Oracle Application
Development Framework (Oracle ADF) and the components that comprise these
layers in the ADF application.
Part II contains the following chapters:

• ADF Model

• ADF Business Components

• ADF Controller Task Flows





3
ADF Model

This chapter provides a high-level overview of the ADF Model technology, including
data controls, declarative bindings, and the ADF binding context, and shows how
those components work with other parts of a rich enterprise application.
This chapter includes the following sections:

• About ADF Model

• Core Benefits of ADF Model

• Key Concepts of ADF Model

• Key Components of ADF Model

• ADF Model at Runtime

• Overview of the ADF Model Process Flow

• Learning More About ADF Model

3.1 About ADF Model
Oracle ADF architecture is based on Model-View-Controller (MVC) design pattern. The
model layer is supported by ADF Model, which is a declarative framework that binds
user interface components in the view layer with the business services in the model
layer and is integrated with JDeveloper tools.
ADF Model is a declarative framework that provides an abstraction layer between
business services and the view and controller layers of an enterprise application that
standardizes the way that components in those layers interact with each other. 
Figure 3-1 shows how ADF Model fits into an enterprise application.
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Figure 3-1    Overall Application Architecture with ADF Model

3.2 Core Benefits of ADF Model
Tight integration with JDeveloper tools simplifies building the model layer of the Fusion
web application and supports binding the user interface with data from the business
services.
ADF Model has features that benefit both UI developers and developers of application
logic.

For UI developers, the core benefits are:

• Using JDeveloper, drag-and-drop creation of databound components and
configuration of bindings with visual editors.

• Built-in record navigation and CRUD operations that you can add to your user
interface.

• Standard use of JSF Expression Language (EL) for binding, without needing to
understand the implementation of the underlying business services.

• The ability to bind business services to a variety of user interfaces, including ADF
Faces components, JSF and JSP pages, and Microsoft Excel spreadsheets
(through ADF Desktop Integration).

For developers who are focused on the application logic and data model, the core
benefits are:
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• Not needing to write Java code to handle standard interactions between the
business services and the view layer.

• The ability to declaratively add validation rules, UI hints, default attribute values,
and other business logic to your business services as metadata without changing
the code in the business services themselves. These declarative enhancements to
the data model are propagated to any components that are created from the data
control.

• The ability to work with multiple types of business services in the same way. There
are ADF Model data controls for ADF Business Components, EJB session beans,
plain Java objects, web services, and other types of services.

3.3 Key Concepts of ADF Model
The ADF Model framework supports exposing business services as data collections
and method operations to the view and controller layer of the Fusion web application.
The framework creates binding objects at application runtime to enable CRUD (create,
read, update, delete) operations and method execution.
ADF Model consists of the following central features:

• data controls, which abstract the implementation technology of a business service
by using standard metadata interfaces to describe the service's operations and
data collections, including information about the properties, methods, and types
involved.

• declarative bindings, which are used to bind services that are exposed by data
controls to UI components.

This section provides an overview of how data controls and declarative bindings work
within ADF applications.

3.3.1 Abstraction of the Application's Model Layer
ADF Model builds upon the MVC (model-view-controller) design pattern, in which the
code for the application's data model, visual interface, and application flow are all
separated. This separation enables multiple types of client displays to work with the
same business information. It also helps delineate the responsibilities of the
developers working on the different layers of the application.

In a basic MVC architecture, the model layer consists of business services, which in
turn interact with the data, as shown in Figure 3-2. With this architecture and without
the help of a framework, you would need to code the business services, the controller,
and the view components to properly interact with each other.
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Figure 3-2    Basic MVC Architecture

When you use ADF Model in your application, you save yourself from having to write
the Java code that would otherwise be necessary to coordinate the MVC layers.
Similarly, the implementation details of the business services are no longer a concern
to the UI developer. As shown in Figure 3-3, ADF Model serves as a conduit between
the business service and the view and controller parts of the application and presents
a standard way of creating bindings between the view and business services.
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Figure 3-3    MVC Architecture with ADF Model

3.3.2 Declarative Data Binding
In JDeveloper, you can create declarative bindings between data services and UI
components by dragging items from the Data Controls panel on to the visual editor for
the given UI technology, such as a JSF page. The declarative bindings coordinate
between the data controls and the controller and UI layers.

ADF data binding extends JSF data binding by enabling you to bind to ADF data
controls declaratively. In a typical JSF application, you would create managed beans
and then create EL expression references to them in the JSF page code. However, in
an application that uses ADF Model, you can use XML configuration files instead of
managed beans. Binding code in these XML files and the EL expressions in the JSF
pages are automatically generated when you drag objects from the Data Controls
panel on to a page. You can also manually add, delete, and modify bindings in these
files.
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3.4 Key Components of ADF Model
The model layer of the Fusion web application is comprised of ADF data controls that
expose the business services as data collections and method operations to the view
and controller layers. Such exposure results in declarative data bindings definitions,
from which binding objects are created at application runtime to enable CRUD (create,
read, update, and delete) operations and method execution.
ADF Model consists of the following components

• Data controls

• Declarative bindings

3.4.1 Data Controls
There are different types of data controls, depending on what type of business service
you are using. The main types of data controls are:

• Adapter data controls for common business services such as EJBs, plain Java
classes (POJO), SOAP-based web services, and RESTful web services

• Data controls based on ADF Business Components application modules

3.4.1.1 Adapter Data Controls
Adapter data controls, as the name implies, act as adapters for non-ADF business
services that expose their interfaces in a standard way to the binding layer.

Adapter data controls are available in JDeveloper for the following types of services:

• EJB session bean

• Bean (plain Java object)

• Web service (SOAP-based and REST-based)

• URL service

• JMX

There are also placeholder data controls, which enable a UI developer to mock up a
data control for purposes of creating databound UI components before the actual
business services are available.

Once they have created a data control, developers also have the option of creating
data control structure files for the individual services that are encompassed by the data
control in order to configure them with declarative metadata. The configuration
possibilities in these structure files mirror the type of declarative configuration that you
can do with ADF Business Components view objects.

The following are some of the types of metadata that can be added to adapter data
controls:

• Default values of attributes.

• Transient attributes.

• UI hints for attributes.
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• Validation rules (including templates for comparison operations, range, length, and
the opportunity to write rules based on regular or Groovy expressions).

• Named criteria, which can be used to create UI search components based on pre-
selected partial search criteria. Named criteria are only available for JPA-based
adapter data controls.

• List-of-values (LOV) components, which enable UI developers to create list
components that are populated by a given table in the data source.

When you create an adapter data control, a data control definition file with the name
DataControls.dcx is created. If you subsequently add declarative metadata for objects
represented by the data control, XML files are generated to hold that metadata.

3.4.1.2 ADF Business Components
ADF Business Components services are directly integrated with ADF Model. A data
control in an ADF Business Components application derives from the data model that
you set in one or more application modules. View objects encapsulated by the
application module represent the business services and can be configured both
declaratively and programmatically. The types of declarative metadata available for a
view object include all of the types of metadata available for adapter data controls as
well as other metadata specific to view objects.

For more information on application modules and view objects, see Key Components
of ADF Business Components.

3.4.2 Declarative Bindings
Declarative bindings provide a way to call from the view layer into the model layer
using EL expressions or Java code.

The following are the three categories of bindings:

• value bindings, which are used by UI components to display data. There are sub-
types of value binding objects for trees, lists, and other components.

• action bindings, which are used to bind buttons and links to service methods and
operations.

• executable bindings, which include iterator bindings and which generally concern
background tasks, such as managing queries and row currency.

These binding objects are defined in page definition files, which are created and
updated automatically when you use the Data Controls panel to create databound
components. By default, a generated page definition file name takes the name of its
corresponding web page, appends pageDef, and takes the xml extension. There is one
page definition file for each page.

The binding objects for each page reference data control objects to provide the UI
components with data. At runtime they are instantiated in a binding container. A page
can access its corresponding binding container using expressions based on the EL
namespace bindings. Such expressions always evaluate to the binding container for
the current page. A typical expression takes the form
#{bindings.BindingObject.propertyName} where BindingObject refers to an object or
attribute defined in the page definition file and propertyName refers to a standard ADF
binding property. For example, #{bindings.Phone.inputValue} would return the value of
the Phone attribute.
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Together, all of an application's binding containers and their references to data
controls form the application's binding context. This binding context is represented at
design time by the DataBindings.cpx file, which is located in an application's UI project.

3.5 ADF Model at Runtime
The ADF Model framework creates binding objects at application runtime to enable
CRUD (create, read, update, delete) operations and method execution on business
services in the Fusion web application.
At runtime, the ADF Model layer does the following:

• Reads the DataBindings.cpx file to set up the binding context based on the listed
page definition files and the data controls that they are mapped to as depicted in 
Figure 3-4.

• Instantiates the bindings in order to create the two-way connection between the
user interface and the business services.

Figure 3-4    Files Used in Data Binding

Figure 3-5 depicts the connection between the data controls, declarative bindings, and
view layer.
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Figure 3-5    Binding Data Sources to UI Components Using ADF Model

3.6 Overview of the ADF Model Process Flow
Creating declarative data bindings for the user interface components of the Fusion
web application that you develop with Oracle ADF follows a step-by-step process that
is supported by JDeveloper tools.
This section describes the process flow for working with ADF Model. The process
differs depending on whether you are using ADF Business Components or other types
of data controls.

3.6.1 Development Steps for Using ADF Model with ADF Business
Components

Using ADF Model with ADF Business Components simply consists of building the
business components. For more information, see Overview of the ADF Business
Components Process Flow.
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3.6.2 Development Steps for Using ADF Model with non-ADF
Business Services

Using ADF Model with non-ADF business services consists of the following basic
steps:

1. In JDeveloper, create an application workspace for the application.

2. In the application workspace, create or import the business services on which the
data control will be based.

These services might be EJB session facades, plain Java objects (POJOs), web
services, or other types of service for which you have a data control. To create the
services, you might also need to a connection to a database, URL, or a schema.

3. Using a wizard that is available in JDeveloper's New Gallery, create data controls
for the business services.

4. Optionally, use JDeveloper's visual editors to declaratively specify business rules
for the services that are encapsulated by the data controls.

5. Optionally, for JPA-based data controls, use the ADF Model Tester to test the
business services.

6. Using the Data Controls panel and various binding editors, create databound
components in the view layer.

3.7 Learning More About ADF Model
When you are ready to configure data bindings in the model layer of the Fusion web
application, you may consult documentation dedicated to these tasks in the Oracle
Fusion Middleware documentation library.
The following resources provide detailed information about using ADF Model in
applications:

• For information on creating and configuring adapter data controls, see Introduction
to ADF Model in Developing Applications with Oracle ADF Data Controls.

• For information on creating a data model using ADF Business Components, see 
Implementing Business Services with Application Modules in Developing Fusion
Web Applications with Oracle Application Development Framework.

• For information on creating user interfaces that use ADF Model data binding, see 
Creating a Databound Web User Interface in Developing Fusion Web Applications
with Oracle Application Development Framework.

• For Javadoc documentation related to data controls and data binding, see the 
Java API Reference for Oracle ADF Model.

Chapter 3
Learning More About ADF Model

3-10



4
ADF Business Components

This chapter provides a high-level overview of ADF Business Components, including a
description of the key features they provide for building your business services.
Features described include entity objects, view objects, and application modules.
This chapter includes the following sections:

• About ADF Business Components

• Core Benefits of ADF Business Components

• Key Concepts of ADF Business Components

• Key Components of ADF Business Components

• Overview of the ADF Business Components Process Flow

• Learning More About ADF Business Components

4.1 About ADF Business Components
Oracle ADF architecture is based on Model-View-Controller (MVC) design pattern that
consists of four layers – Model, View, Controller, and Business Service. The Business
Service layer is supported by the ADF Business Components, which is a framework
for managing transactions with data sources and is integrated with JDeveloper tools.
ADF Business Components is a technology to create reusable data-aware business
services with minimal developer coding. Developers can use wizards and visual
editors to create ADF Business Components services without writing any Java code. It
is also possible to extend the core ADF Business Components classes to create more
advanced functionality. ADF Business Components services are exposed through
ADF Model for use by the application's view layer.

Figure 4-1 shows how ADF Business Components fit into the ADF technology stack.
Note that ADF Business Components features directly integrate with ADF Model.
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Figure 4-1    ADF Architecture with Business Components

In addition, you can expose applications that you create with ADF Business
Components as services that can be consumed by other Fusion web applications,
composite applications that adhere to the Service Component Architecture (SCA), and
other applications via web service calls.

4.2 Core Benefits of ADF Business Components
Tight integration with JDeveloper tools simplifies building the business service layer of
the Fusion web application. The resulting business objects based on the ADF
Business Components framework support managing data transactions at application
runtime.
ADF Business Components provides the following benefits for developers of business
services:

• Management of database access, including connection, data retrieval, locking of
records, and insertion and update of records.

• Ability to create data models that are tailored for specific types of end users, with
only the necessary data exposed.

• Creating of data model relationships in addition to those defined by the database.

• Ability to use declarative rules to enforce required fields, primary key uniqueness,
data precision-scale, and foreign key references.

Chapter 4
Core Benefits of ADF Business Components

4-2



• Capturing and enforcing both simple and complex business rules,
programmatically or declaratively, with multilevel validation support.

• Implementing end-user Query-by-Example data filtering without code.

• Ability to expose components as services that can be integrated with other Fusion
web applications and consumed by SOA composite applications.

• Ability to raise business events to launch business processes and trigger
synchronization of external systems.

• A built-in facility for application state management that enables application failover
and the handling of user sessions over multiple nodes in clustered and high
availability server environments.

• Features geared toward performance optimization, such as shared application
modules to handle static data and application module pooling.

• Wizards and visual editors in JDeveloper that generate XML definitions for the
components that you can also edit manually.

4.3 Key Concepts of ADF Business Components
The ADF Business Components framework supports modeling data sources for use in
Fusion web applications based on declarative business objects that define object
hierarchies (master-detail relationships) and that shape the data for display to the end
user through application-specific views. The framework manages CRUD (create, read,
update, delete) transactions at application runtime with a minimum of coding required.
ADF Business Components is an implementation of Java-based business services
that directly incorporate ADF Model. This section provides an overview of the role of
business services and how ADF Business Components implements business services.

4.3.1 Implementation of Business Services
Business services are behind-the-scenes components that mediate between an MVC
application and a data source (usually a database). In general, business services are
responsible for the following tasks:

• Retrieving data requested by the rest of the application

• Representing this data as Java objects usable by the rest of the application
(object-relational ["O/R"] mapping)

• Persisting changes made by the rest of the application

• Implementing business rules, such as validation logic, calculated attributes, and
defaulting logic

• Providing services that can perform large-scale batch operations on data upon
request

Business services segregate the persistence and business logic of an application from
the logic that governs the application's UI and control flow. Keeping persistence and
business logic separate allows you to reuse them in multiple MVC applications.

4.3.2 Based on Standard Java and XML
ADF Business Components is a framework implemented in Java. Base framework
classes provide generic, metadata-driven functionality. XML files store metadata that
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you define to configure each component's runtime behavior. You can also extend the
base framework functionality to suit your needs.

Figure 4-2 shows the Applications window in JDeveloper and how it represents the
files that comprise ADF Business Components services. For example, the DeptVO
component is defined with a single XML file that relies entirely on underlying
framework classes. On the other hand, the CustomerVO definition consists of an XML
definition file that provides metadata and three Java classes that extend the underlying
framework classes.

Figure 4-2    XML and Java Objects for ADF Business Components

Figure 4-3 shows the source editor for an ADF Business Components view object
definition file.
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Figure 4-3    Source View for an ADF Business Components Definition File

JDeveloper also provides visual overview editors for ADF Business Components
definition files. Figure 4-4 shows the overview editor for the same view object definition
file shown in Figure 4-3.
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Figure 4-4    Overview Editor for an ADF Business Components Definition File

4.3.3 Application Server and Database Independence
Because ADF Business Components services are implemented using plain Java
classes and XML files, applications and services built using ADF Business
Components can run on any Java-capable application server, including any Java EE-
compliant application server. These applications and services can be run both within
and outside of a Java EE server container.

You can use ADF Business Components components with both Oracle and non-
Oracle databases. Numerous optimizations are built into ADF Business Components
for use with Oracle databases.

4.3.4 Support for Java EE Design Patterns
ADF Business Components implements the Java EE design patterns that you would
normally need to understand, implement, and debug yourself to create a real-world
enterprise Java EE application. These patterns solve problems such as clean
separation of application layers, efficient database access, and application scalability.

To cross-reference the names of these design patterns from the Java EE
specifications with their ADF Business Components counterparts, you can refer to 
ADF Business Components Java EE Design Pattern Catalog in Developing Fusion
Web Applications with Oracle Application Development Framework.

4.3.5 Declarative Metadata for Implementation Classes
ADF Business Components objects are based on a set of Java classes that provide
built-in runtime functionality that you control through declarative settings. You use an
XML component definition file to specify metadata for things like object/relation
mapping for database tables, data access methods, and validation rules. At runtime,
the metadata is injected into the implementation classes to create instances of the
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services. For typical use cases, developers do not have to write any Java code to
implement the services.

4.3.6 Optional Custom Java Code
It is possible to further configure the behavior of a component by adding custom Java
code to the component's definition. When you need to write custom code for a
component, for example to augment the component's behavior, you can enable an
optional custom Java class for the component in question.

4.3.7 Ability to Expose Services to SOA Applications
After you have developed ADF Business Components services, you can publish them
as external services that can be consumed by applications that are based on a
service-oriented architecture (SOA). For more information, see Service-enabled
Application Modules.

4.3.8 Application State Management
ADF Business Components has a state management facility for application modules
that enables you to save the state of a user session, which simplifies recovery and
failover scenarios.

For more information on application module state management, see Application State
Management. For more information on save points, see Save Points.

4.4 Key Components of ADF Business Components
The business service layer of the Fusion web application based on ADF Business
Components is comprised of entity objects to model the data source (including support
for object hierarchies, such as master-detail relationships) and view objects to shape
the data for display to the end user through application-specific views. Other
components include application modules which support CRUD (create, read, update,
delete) transactions on specified view objects at application runtime.
The ADF Business Components architecture consists of the following key
components:

• Entity objects, which encapsulate individual objects in a data source, such as
tables in a database, and which add business logic for working with that data.

• Entity associations, which define the relationships between individual entity
objects.

• View objects, which provide access to data in a form that can be used through
ADF Model bindings in a user interface. View objects that allow updating of data
are based on entity objects.

• View links, which define master-detail hierarchies between view objects.

• Application modules, which encapsulates the view objects needed for a logical unit
of work related to an end-user task.
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4.4.1 Entity Objects
ADF entity objects are business components that encapsulate data, persistence
behavior, and business rules for items that are used in your application. For example,
entity objects can represent:

• Elements of the logical structure of the business, such as product lines,
departments, sales, and regions

• Business documents, such as invoices, change orders, and service requests

• Physical items, such as warehouses, employees, and equipment

Entity objects map to single objects in the data source. In the vast majority of cases,
these are tables, views, synonyms, or snapshots in a database. For example, you
might create an entity object called Departments that represents a database table called
DEPARTMENTS. Advanced programmers can base entity objects on objects from other
data sources, such as spreadsheets, XML files, or flat text files.

Figure 4-5 shows how an entity object fits in with other objects in an ADF Business
Components application.

Figure 4-5    Entity Object Within the ADF Business Component Architecture

4.4.1.1 Entity Object Definition Files
When you use JDeveloper's wizards and visual editors to create and configure an
entity object, JDeveloper creates an XML file that contains the declarative metadata
that defines the runtime behavior of that entity object, including its O/R mapping,
validation rules, UI hints, and other metadata. At runtime, this metadata is injected into
an instance of the generic framework class oracle.jbo.server.EntityImpl.

It is also possible to add custom functionality to an entity object by writing custom
classes that extend ADF Business Components framework classes. For information,
see Generating Custom Java Classes for an Entity Object in Developing Fusion Web
Applications with Oracle Application Development Framework.
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4.4.1.2 Ways to Configure Entity Objects
Entity objects are part of ADF Business Components implementation of ADF Model.
As such, you can add declarative metadata to an entity object definition to configure its
behavior. The following are some of the things for which you can set metadata on an
entity object:

• UI hints, which are settings that the view layer can use to automatically display the
queried information to the user in a consistent, locale-sensitive way.

• Validation rules, which you can set at both the level of entity objects or individual
attributes.

• Business events, which you can use to launch business processes and trigger
external systems synchronization.

4.4.2 Entity Associations
Relationships between entity object definitions are handled by entity associations,
which define a relationship between two entity object definitions based on sets of entity
attributes from each. Associations map to relationships between single objects in the
data source. In the vast majority of cases, these are relationships among tables,
views, synonyms, and snapshots in a database. Advanced programmers can use
associations to represent relationships within other data sources, such as
spreadsheets, XML files, or flat text files.

When the data source is a database, associations often map to foreign key
relationships between tables in the database. Although there does not need to be a
foreign key constraint between tables for you to create a one-to-one or one-to-many
association between the corresponding entity objects, there should be an appropriate
logical relationship between the tables.

4.4.3 View Objects
ADF view objects are business components that collect data from the data source,
shape that data for use by clients, and allow clients to change that data in the ADF
Business Components cache. Among other things, a view object definition can gather
the information needed to:

• Populate a single table element in a form

• Create and process an insert or edit form

• Create a list of values for populating a dropdown list

• Create a search form with specific search criteria

Once you have created a view object definition and included it in the data model of an
application module, you use the Data Controls panel to create UI components based
on the collections, attributes, and operations of that view object.
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Figure 4-6    View Object Within the ADF Business Component Architecture

View object definitions must have a mechanism for retrieving data from the data
source. Usually, the data source is a database, and the mechanism is a SQL query.
ADF Business Components can automatically use JDBC to pass a query to the
database and receive the result. When view object definitions use a SQL query, query
columns map to view attributes in the view object definition. The definitions of these
attributes reflect the properties of these columns, such as the columns' data types and
precision and scale specifications. When view object definitions use other data
sources, view object attributes map to "columns" of data from those data sources, as
defined by the programmer.

Typically, when you work with a view object, you work with only a single row set of
results at a time. To simplify this use case, the view object contains a default RowSet,
which, in turn, contains a default RowSetIterator. The default RowSetIterator allows you
to call all of the data-retrieval methods directly on the ViewObject component itself,
knowing that they will apply automatically to its default row set.

In addition, you can declaratively define view criteria for a view object. With a view
criteria, you specify query conditions that augment the WHERE clause of the target view
object in order to filter the results. You can then use those view criteria to create
Query-by-Example search forms, filter row sets or lists-of-values (LOVs) at runtime, or
create varying view instances based on a single view object definition.

4.4.3.1 Types of View Objects
There are two main types of view objects:

• Entity-based view objects, which access data from one or more entity objects and
coordinate with those entity objects to update the data source based on user
actions.

• Read-only view objects, which have direct access to the data. Because read-only
view objects do not require intermediary objects, they access data more quickly
than entity-based view objects. Create read-only view objects if you have use
cases where you need to access data without modifying it. You might have a read-
only view object and an entity-based view object for the same table.

In addition, you can create view objects with other data sources such as:

• Direct SQL queries of the database

• Programmatic sources
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• Static data from CSV files

You can also create polymorphic view objects, in which multiple row set types with a
common inheritance hierarchy are represented in a single view object.

4.4.3.2 View Object Definition Files
Similar to working with entity objects, when you use JDeveloper's wizards and visual
editors to create and configure a view object definition, JDeveloper creates an XML file
that contains the declarative metadata that defines the runtime behavior of that view
object and features that are used in the UI, such as UI hints and validation rules. At
runtime, this metadata is injected into an instance of the generic framework class
oracle.jbo.server.ViewObjectImpl.

It is also possible to add custom functionality to a view object by writing custom
classes that extend ADF Business Components framework classes. For information,
see Working Programmatically with View Objects in Developing Fusion Web
Applications with Oracle Application Development Framework.

4.4.3.3 Ways to Configure View Objects
View objects are part of ADF Business Components implementation of ADF Model. As
such, you can add declarative metadata to a view object definition to configure its
behavior.

You can define the same declarative metadata for a view object as you can for an
entity object (with the exception that you cannot raise business events in view objects).
In addition, you can set other types of metadata for a view object, such as the
following:

• View criteria, which function as further refined queries and which are represented
in the Data Controls panel as named queries, from which you can declaratively
create search forms.

• List UI hints, which can be used to guide how lists of values are presented in the
user interface.

• UI categories, which can be used for presenting titled groups of attributes in
dynamic forms.

• View accessors, which can be used to provide a data source for view instance
attributes involved in either list-based attribute validation or lists of values.

• Row finders, which can be used to match view instance rows by non-key attribute
values and to initiate row updates either programmatically or through ADF web
services.

4.4.4 View Links
Relationships between view objects are handled by view links, which define a
relationship between two view objects based on sets of entity attributes from each.
Like entity associations, these can range from simple one-to-many relationships based
on foreign keys to complex many-to-many relationships.

Individual instances of view objects can also be related by individual instances of view
links, which create a master-detail relationship between the query result sets. For
example, suppose that you have view object definitions representing a query for
department information and a query for employee information, and a view link between
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the view objects representing the relationship between a department and its
employees. If an instance of the former view object definition, allDepartments, is
related to an instance of the latter, employeesInDepartment, by an instance of the view
link, those instances will be synchronized: whenever a particular row of allDepartments
is selected, employeesInDepartment will only display details of that row.

4.4.5 Application Modules
Oracle ADF application modules are the ADF Business Components implementation
of ADF Model data controls. Application modules represent particular application
tasks. The application module definition provides a data model for the task by
aggregating the view object and view link instances required for the task. It also
provides services that help the client accomplish the task. For example, an application
module can represent and assist with tasks such as:

• Updating customer information

• Creating a new order

• Processing salary increases

Figure 4-7 illustrates how an application module works with other business
components.

Figure 4-7    Application Module Within the ADF Business Component
Architecture

In addition, application modules have pooling and state management features that
simplify making applications scalable, well-performing, and able to handle failover.
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4.4.5.1 Types of Application Modules
You can use application module definitions in the following ways:

• As a service object, in which case each instance of the MVC application has
access to one instance of the application module. These root-level application
module instances control ADF Business Components transaction objects, which in
turn control the entity and view caches.

• As a reusable object for nesting, in which case you can create a data model and
service methods on it and then nest one of its instances in other application
module definitions. Those application module definitions can, in turn, access the
nested module's methods and data model. Nested application modules share the
root-level application module's transaction

• As a shared application module, in which data is cached for reuse across sessions
and requests. Shared application modules are particularly useful for optimizing
performance when you have data that does not change very frequently and needs
to be accessed across multiple sessions and requests.

4.4.5.2 Application Module Definition Files
An application module definition can have one or two parts:

• An XML file, which represents the portion of the application that can be developed
declaratively: the view object and view link instances that the application module
contains and the way in which they are related. For many application modules, the
XML file by itself is sufficient.

• An application module class, which lets you write custom code such as service
methods that an MVC application can invoke for batch data handling. Application
module classes extend the class oracle.jbo.server.ApplicationModuleImpl. If you
do not need to write custom service methods, you need not generate an
application module class—ADF can use oracle.jbo.server.ApplicationModuleImpl
directly.

4.4.5.3 Service-enabled Application Modules
Service-enabled application modules are ADF application modules that you advertise
through a service interface to service consumers. There are three scenarios for
service consumers to consume a published service-enabled application module:

• web service access

• Service Component Architecture (SCA) composite access

• access by another ADF application module

The Service Component Architecture (SCA) provides an open, technology-neutral
model for implementing remotable services that are defined in terms of business
functionality and that make middleware functions more accessible to application
developers. ADF Business Components supports an SCA-compliant solution through
application modules you can publish with a service interface. The service interface is
described for Fusion web application clients in a language-neutral way by the
combination of WSDL and XSD.

When you service-enable your application module, JDeveloper generates the artifacts,
which comprise the following files:
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• the Java interface defining the service

• an EJB session bean that implements this Java interface

• a WSDL file that describes the service's operations

• an XML Schema Document (XSD) that defines the service's data structures

SCA defines two kinds of service:

• Remotable services, typically coarse-grained and designed to be published
remotely in a loosely coupled SOA architecture

• Local services, typically fine-grained and designed to be used locally by other
implementations that are deployed concurrently in a tightly coupled architecture

ADF Business Components services fall into the first category, and should only be
used as remotable services.

ADF Business Components services, including data access and method calls, defined
by the remote application modules are interoperable with any other application
module. This means the same application module can support interactive web user
interfaces using ADF data controls and web service clients.

Any development team can publish a service-enabled application module to contribute
to the Fusion web application. The Fusion web application assembled from remote
services also does not require the participating services to run on a single application
server.

Although the web applications may run on separate application servers, the
appearance that SCA provides is one of a unified application. Consuming client
projects use the ADF service factory lookup mechanism to access the data and any
business methods encapsulated by the service-enabled application module. At
runtime, the calling client and the ADF web service may or may not participate in the
same transaction, depending on the protocol used to invoke the service (either SOAP
or RMI). Only the RMI protocol and a Java Transaction API (JTA) managed
transaction support the option to call the service in the same transaction as the calling
client. By default, to support the RMI protocol, the ADF web service is configured to
participate in the same transaction.

For information on enabling an application module as a service data object (SDO)
component, see Integrating Service-Enabled Application Modules in Developing
Fusion Web Applications with Oracle Application Development Framework.

4.4.5.4 Application Module Pooling
Applications you build that leverage an application module as their business service
take advantage of an automatic application module pooling feature. This facility
manages a configurable set of application module instances that grows and shrinks as
the end-user load on your application changes. Due to the natural "think time" inherent
in the end user's interaction with your application user interface, the number of
application module instances in the pool can be smaller than the overall number of
active users using the system. As a given end user visits multiple pages in your
application to accomplish a logical task, an application module instance in the pool is
acquired automatically from the pool for the lifetime of each request. At the end of the
request, the instance is automatically returned to the pool for use by another user
session.
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To optimize your application's performance, you can tune application module pooling
properties, such as initial and maximum pool size and the amount of time application
module instances must be inactive before they can be removed from the pool.

4.4.5.5 Application State Management
You can use application module components to implement completely stateless
applications or to support a unit of work that spans multiple browser pages. An
application module supports passivating (storing) its pending transaction state to an
XML document, which is stored in the database in a single, generic table, keyed by a
unique passivation snapshot ID. It also supports the reverse operation of activating
pending transaction state from one of these saved XML snapshots. This passivation
and activation is performed automatically by the application module pool when
needed. Activation can be triggered by server failover or simply because a user
session spans multiple instances in the application module pool before it is completed.

4.5 Overview of the ADF Business Components Process
Flow

Modelling a data source to create the business service layer of the Fusion web
application that you develop with Oracle ADF Business Components follows a step-by-
step process that is supported by JDeveloper tools.
Creating a business service layer based on ADF Business Components consists of the
following general steps:

1. In JDeveloper, create an application workspace for the application.

2. Create custom classes that extend the base framework classes and then configure
the model project to base any business components that you create on these
custom classes. These classes provide a mechanism to later change base
framework behavior and have those changes apply to all of the business
components you have created in the application.

3. Using wizards in JDeveloper's New Gallery, create a combination of the following
objects:

• Entity objects

• Entity associations

• View objects based on the entity objects

• Optionally, view objects based on queries directly to the database

• View links between view objects to establish master-detail relationships

• Create application modules and include the appropriate view objects and view
links within them to establish your data model

4. Optionally, use JDeveloper's visual editors to declaratively specify business rules
for the entity objects and view objects.

5. Use the ADF Model Tester to test the data model's business logic.

6. Tune the application modules for performance.

7. If participating in a SOA application, publish the services so that they can be
consumed by an external application.
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8. Using the Data Controls panel and various binding editors, create databound
components in the view layer.

4.6 Learning More About ADF Business Components
When you are ready to create business services for the Fusion web application using
ADF Business Components, you may consult documentation dedicated to these tasks
in the Oracle Fusion Middleware documentation library.
The following resources provide detailed information about using ADF Business
Components in applications:

• For information on creating business services with ADF Business Components,
see Building Your Business Services in Developing Fusion Web Applications with
Oracle Application Development Framework.

• For information on creating user interfaces that use ADF Model data binding, see 
Creating a Databound Web User Interface in Developing Fusion Web Applications
with Oracle Application Development Framework.

• For Javadoc documentation related to ADF Business Components, see the
oracle.jbo package in the Java API Reference for Oracle ADF Model.
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5
ADF Controller Task Flows

This chapter provides a high-level overview of the ADF Controller task flow
technology, including its relationship to JSF's built-in controller support. In addition, it
describes features and benefits of task flows, including modular and reusable task
flows, flows between regions of a single page, transaction management, save points,
declarative router decisions, and declarative exception handling.
This chapter includes the following sections:

• About ADF Controller

• Core Benefits of ADF Controller

• Key Concepts of ADF Controller

• Key Components of ADF Controller

• Overview of the ADF Controller Process Flow

• Learning More About ADF Controller

5.1 About ADF Controller
Oracle ADF architecture is based on Model-View-Controller (MVC) design pattern that
consists of four layers – Model, View, Controller, and Business Service. The Controller
layer is supported by the ADF task flows technology, which provides a modular
approach for defining control flow in a Fusion web application and is integrated with
JDeveloper tools.
ADF Controller is a declarative framework that, through the concept of task flows,
builds upon the JSF page navigation support represented by the
javax.faces.webapp.FacesServlet class and the faces-config.xml file. Figure 5-1 shows
how ADF Controller fits into an enterprise application.
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Figure 5-1    Overall Application Architecture with ADF Controller

5.2 Core Benefits of ADF Controller
Tight integration with JDeveloper tools simplifies building the controller layer of the
Fusion web application. The resulting control flow rules based on ADF task flows
define the flow of the user interface at application runtime.
ADF Controller provides the following benefits for developers:

• Applications can be broken up into a series of modular task flows that call one
another.

• Task flows can contain nodes representing views, method calls, routing conditions,
and calls to other task flows. (In a basic JSF application, page flow nodes can only
be JSF pages.)

• You can pass parameters between task activities and different task flows.

• You can generate a page hierarchy with navigation links for your end users based
on the task flow view activities in your application.

• Task flows are reusable.

• You can package a task flow into an ADF Library JAR and import it for use in
another application's project.

• Task flows can be called remotely from different ADF applications.
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• Task flows can also be used to secure your Fusion web application by reducing
the number of access points that you expose to end users and by enforcing
specific access privileges.

5.3 Key Concepts of ADF Controller
The ADF Controller framework supports defining control flow rules, called ADF task
flows, to determine the entry point to the ADF application and to define the navigation
order for application activities, such as displaying web pages (or page fragments) and
executing methods. The framework manages application navigation with a minimum of
coding required.
ADF Controller's central feature is the task flow. Task flows provide a modular
approach for defining control flow in a Fusion web application. Instead of representing
an application as a single large JSF page flow, you can break it up into multiple task
flows, each of which contains a portion of the application's navigational graph.

A task flow consists of activity nodes, which represent simple logical operations such
as displaying a page or page fragment, executing application logic, or calling another
task flow. The transitions between the activities are called control flow cases.

Task flows include such features as invocation of custom business logic as part of the
page flows, declarative router decisions, declarative exception handling, additional
memory scopes, flows within pages, and reusable flows. Task flows also include built-
in support for using flows to demarcate transaction boundaries and routing navigation
to non-viewable targets such as method calls.

Using JDeveloper, you can create task flows visually using a diagram editor.

5.4 Key Components of ADF Controller
The controller layer of the Fusion web application based on ADF Controller is
comprised of control flow rules, called ADF task flows, which determine the entry point
to the ADF application and define the navigation order for application activities, such
as displaying web pages (or page fragments) and executing methods.
ADF Controller consists of the key components that are described in the following
sections:

• Unbounded Task Flows

• Bounded Task Flows

• Task Flow Activities

• Task Flow Templates

• Save Points

• Integration with pageFlowScope, backingBeanScope, and viewScope

• Integration with the ADF Faces Train Component

• Integration with the ADF Faces Region Component

5.4.1 Unbounded Task Flows
A Fusion web application always contains a single ADF unbounded task flow, which
contains the application's entry point, meaning any view activities that can be directly
requested by a browser. An application's unbounded task flow can also contain other
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view activities (including pages with bookmarkable URLs), control flow rules, and calls
to bounded task flows.

However, unbounded task flows cannot accept or return parameters or serve as
transaction boundaries.

A typical application is a combination of the unbounded task flow and one or more
bounded task flows. For example, JDeveloper, by default, creates an empty
unbounded task flow (source file name is adfc-config.xml) when you create an
application using the Fusion Web Application template. At runtime, the Fusion web
application can call bounded task flows from activities that you added to the
unbounded task flow.

5.4.2 Bounded Task Flows
Bounded task flows are private task flows that can be called from an unbounded task
flow or from another bounded task flow. A bounded task flow has a single entry point
and zero or more exit points. It contains its own set of private control flow rules,
activities, and managed beans. It allows reuse, parameters, transaction management,
reentry, and can render within an ADF region in a JSF page or page fragment. 
Figure 5-2 shows an example of a bounded task flow as it appears in the diagram
editor.

Unlike unbounded task flows, bounded task flows cannot contain bookmarkable view
activities.
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Figure 5-2    ADF Bounded Task Flow

5.4.3 Task Flow Activities
Each task flow consists of some of the following actions and control cases:

• Views, which displays a JSF page or page fragment.

• URL views, which enable you to redirect the root view port (for example, a browser
page) to any URL-addressable resource, such as bounded task flows, view
activities in the unbounded task flow, and addresses external to the current web
application.

• Routers, which route control to activities based on the runtime evaluation of EL
expressions.

• Method calls, which allow you to call custom or built-in methods that invoke
application logic from anywhere within an application's control flow.

• Task flow calls, which enable you to call a bounded task flow from either the
unbounded task flow or a bounded task flow. A task flow call activity allows you to
call a bounded task flow located within the same or a different application.
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• Task flow returns, which enable you to identify the point in an application's control
flow where a bounded task flow completes and sends control flow back to the
caller.

• Save point restores, which enable you to restore a previous persistent save point
in an application supporting save for later functionality. A save point captures a
snapshot of the Fusion web application at a specific instance. Save point restore
enables the application to restore whatever was captured when the save point was
originally created. For more information, see Save Points.

• Parent action activities, which allow a bounded task flow running in an ADF region
to generate outcomes that it passes to the parent view activity. The outcomes are
used to navigate the task flow containing the parent view activity rather than
navigating the task flow of the ADF region.

• Control flow cases, which define how control passes from one activity to another in
a task flow. A control flow rule can contain one or more control flow cases to
identify the activity to which control flow passes.

Control flow rules are based on JSF navigation rules, but provide additional
features. Whereas JSF navigation is always between pages, task flow control flow
rules can also handle transitions between other activities, such as method calls
and entry and exit points of bounded task flows.

• Wildcard control flow rules, which enable you to use a wildcard expression to
specify which view activities are to be passed to a given control flow rule.

5.4.4 Task Flow Templates
Task flow templates are a construct that help simplify creation of bounded task flows,
help enforce consistent runtime behavior of task flows, and make it easier to refactor
an application's task flows.

As their name implies, task flow templates are a mechanism for creating standard task
flow types. A bounded task flow created from a task flow template will have definitions
for the same set of task flow activities, control flows, input parameters, and managed
beans as the task flow template. You can create task flow templates for yourself or
other application developers to use as a starting point when creating new bounded
task flows.

In addition, you can use task flow templates at runtime. When you create a task flow
(or another task flow template) based on a template, you can maintain an association
between the newly created flow or template and the base template by selecting the
Update the Task Flow When the Template Changes checkbox. If you do so,
subsequent changes that you make to the base template (such as adding new view
activities) get propagated to the child flows (or templates) at runtime. (If there are
conflicts between the child and parent, the child overrides the parent.) You can
change, update, or disassociate the parent task flow template of a child bounded task
flow or task flow template at any point during development of the child.

5.4.5 Save Points
You can add a save point to a task flow to capture the state of a Fusion web
application at a particular instance. This allows you to save application state if, for
example, a user leaves a page without finalizing it. The application state can be
restored at a later point. The saved information includes the following:
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• UI state of the current page, including selected tabs, selected checkboxes,
selected table rows, and table column sort order

• State information saved in memory scopes, including session and page flow
scope.

• The state of serializable managed beans

• The navigation state, which is derived from the task flow call stack, which tracks
where the end user is in the application and the navigation path for getting there

• The ADF Model state, which consists of any data model updates made from when
the current bounded task flow begins

5.4.6 Integration with pageFlowScope, backingBeanScope, and
viewScope

ADF Faces provides pageFlowScope, backingBeanScope, viewScope shared memory
scopes to augment standard JSF memory scopes.

Of particular relevance to task flows is pageFlowScope, which defines a unique storage
area for each instance of a task flow. The pageFlowScope scope begins when the task
flow begins and ends when the task flow ends.

For example, a managed bean with pageFlowScope can be accessed within the task
flow, even if its activities are spread across different pages. However, it is out of scope
for anything outside of that task flow, including other task flows that call its task flow
and UI components that are on the same page but in a region that is encompassed by
a different task flow.

For more information on these scopes, see Key Concepts of ADF Faces.

5.4.7 Integration with the ADF Faces Train Component
When you create task flows, you can specify that they use the ADF Faces train and
trainButtonBar components to guide users through the steps specified by the task
flow. Figure shows a page fragment from the Summit sample application for ADF Task
Flows that renders these components.

Figure 5-3    ADF Train Component

5.4.8 Integration with the ADF Faces Region Component
When you add a bounded task flow to JSF page or page fragment, it is wrapped within
a region tag.
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5.5 Overview of the ADF Controller Process Flow
Creating control flow rules for the Fusion web application based on ADF task flows
follows a step-by-step process that is supported by JDeveloper tools.
Using ADF Controller consists of the following basic steps:

1. In JDeveloper, create an application workspace for the application.

2. Using wizards in JDeveloper's New Gallery, create task flow files.

3. Using JDeveloper's diagram editor for task flows, design the task flow by adding
task flow activities (view activities, method call activities, and so on) and control
flow cases.

As part of this process, you can create the pages that are used in the task flow
from scratch, or you can drag and drop existing JSF pages or page fragments to
the diagram editor to create view activities in the task flow.

4. Test run the task flows using the Integrated WebLogic Server from within
JDeveloper.

5.6 Learning More About ADF Controller
When you are ready to configure task flows in the controller layer of the Fusion web
application, you may consult documentation dedicated to these tasks in the Oracle
Fusion Middleware documentation library.
The following resources provide detailed information about using ADF Controller in
applications:

• Creating ADF Task Flows in Developing Fusion Web Applications with Oracle
Application Development Framework

• JDeveloper Tutorials on ADF Controller

• Task Flow Design Fundamentals white paper
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Part III
Oracle ADF View Technologies

This part provides an overview of the view layer of Oracle Application Development
Framework (Oracle ADF) and the user interface components that comprise this layer
in the ADF application.
Part III contains the following chapters:

• ADF Faces

• ADF Desktop Integration





6
ADF Faces

This chapter provides a high-level overview of the ADF Faces framework and
component features. It includes information on the component set, including data
visualization (DVT) components, and on features such as Ajax support, client-side
events, user personalization, and additional memory scopes.
This chapter includes the following sections:

• About ADF Faces

• Core Benefits of ADF Faces

• Key Concepts of ADF Faces

• Key Components of ADF Faces

• Overview of the ADF Faces Process Flow

• Learning More About ADF Faces

6.1 About ADF Faces
Oracle ADF architecture is based on Model-View-Controller (MVC) design pattern that
consists of four layers – Model, View, Controller, and Business Service. The View
layer is supported by the ADF Faces, which comprises a set of over 16 Ajax-enabled
JavaServer Faces (JSF) visual components, as well as a complete view technology
framework that is integrated with JDeveloper tools.
ADF Faces is an implementation of JSF web components that provides enhanced
functionality for developers and users of sophisticated web applications. You can use
ADF Faces components in an application either with or without other Oracle ADF
features, such as ADF Model and ADF Controller. Figure 6-1 shows how ADF Faces
fits into an enterprise application.
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Figure 6-1    Overall Application Architecture with ADF Faces

6.2 Core Benefits of ADF Faces
Tight integration with JDeveloper tools simplifies building the view layer of the Fusion
web application. The resulting user interface components based on the ADF Faces
framework support complex end user interactions at application runtime.
ADF Faces provides the following benefits for web application developers:

• Large set of fully featured rich components

The library provides over 150 Rich Internet Application (RIA) components,
including geometry-managed layout components, text and selection components,
sortable and hierarchical data tables and trees, menus, in-page dialogs, data
visualization components such as charts and treemaps, and general controls.

• Built-in Ajax support

Many ADF Faces components have Ajax-style functionality implemented natively,
which simplifies development of responsive user interfaces. For example, the ADF
Faces table component lets you scroll through the table, sort the table by clicking a
column header, mark a row or several rows for selection, and even expand
specific rows in the table, all without requiring the page to be submitted to the
server, and with no coding needed.

• Limited need for developers to write JavaScript
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ADF Faces hides much of the complex JavaScript from you. Instead, you
declaratively control how components function. You can implement a rich,
functional, attractive user interface using ADF Faces in a declarative way that
does not require the use of any JavaScript at all.

• Enhanced lifecycle on both server and client

ADF Faces extends the standard JSF page request lifecycle. Examples include a
client-side value lifecycle, a subform component that allows you to create
independent submittable regions on a page without needing multiple forms, and an
optimized lifecycle that can limit the parts of the page submitted for processing.

• User-driven personalization

Many ADF Faces components allow users to change the display of the component
at runtime. By default, these changes live only as long as the page request.
However, you can configure your application so that the changes can be persisted
through the length of the user's session.

• End-user drag and drop

The ADF Faces framework allows the user to move data from one location to
another by dragging and dropping one component onto another.

• Integration with other Oracle ADF technologies

You can use ADF Faces in conjunction with the other Oracle ADF technologies,
including ADF Business Components, ADF Controller, and ADF data binding. For
more information about using ADF Faces with the ADF technology stack, see 
Introduction to Building Fusion Web Applications with Oracle ADF in Developing
Fusion Web Applications with Oracle Application Development Framework.

• Integrated declarative development with Oracle JDeveloper

JDeveloper contains built-in declarative support for ADF Faces components,
including a visual layout editor, a Components window that allows you to drag and
drop an ADF Faces component onto a page, and a Properties window where you
declaratively configure component functionality.

6.3 Key Concepts of ADF Faces
The ADF Faces framework allows users to input and edit data through Ajax-enabled
JavaServer Faces (JSF) components as the view layer of a Fusion web application,
where the model and business service layers provide CRUD (create, read, update,
and delete) transaction support. The framework supports designing complex,
interactive user interfaces with a minimum of coding required.
This section provides an overview of the key aspects of ADF Faces and how they work
within ADF applications.

The ADF Faces framework is based on the following principles and features:

• Built to the JavaServer Faces (JSF) specification

ADF Faces supports JSF features such as Facelets. Some JSF features that were
introduced in JSF 2.0 have parallel functionality in ADF Faces. To understand the
functional overlap that exists between ADF Faces and JSF, see the JavaServer
Faces 2.0 Overview and Adoption Roadmap in Oracle ADF Faces and Oracle
JDeveloper 11g whitepaper on OTN at http://www.oracle.com/technetwork/
developer-tools/adf/learnmore/adffaces-jsf20-190927.pdf.

• Partial page rendering (PPR)
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Many ADF Faces components have partial page rendering, which is an Ajax-style
functionality implemented natively. For example, you can update a chart based on
user input in another component on the page, all without requiring the page to be
submitted to the server, and with no coding needed.

• Partial page navigation

ADF Faces applications can use PPR for navigation, which eliminates the need to
repeatedly load JavaScript libraries and style sheets when navigating between
pages.

• Client-side validation, conversion, and messaging

ADF Faces validators can operate on both the client and server side. Client-side
validators are written in JavaScript and validation errors caught on the client-side
can be processed without a round-trip to the server.

• Additional memory scopes

The ADF Faces framework includes additional shared memory scopes that
complement other features, such as page fragments and ADF task flows.

– pageFlowScope: The object is available as long as the user continues navigating
from one page to another within a given task flow. If the user opens a new
browser window or tab and begins navigating, that window will have its own
pageFlowScope scope.

– backingBeanScope: Used for managed beans for page fragments and
declarative components only. The object is available for the duration between
the time an HTTP request is sent until a response is sent back to the client.
This scope is needed because there may be more than one page fragment or
declarative component on a page, and to avoid collisions between values, any
values must be kept in separate scope instances.

– viewScope: The object is available until the ID for the current view changes.
Unlike the JSF viewScope, objects stored in the ADF Faces viewScope will
survive page refreshes and redirects to the same view ID.

• Server-side push and streaming

The ADF Faces framework includes server-side push that allows you to provide
real-time data updates for ADF Faces components.

• Active geometry management

ADF Faces provides a client-side geometry management facility that allows
components to determine how best to make use of available screen real-estate.
The framework notifies layout components of browser resize activity, and they in
turn are able to resize their children. This allows certain components to stretch or
shrink, filling up any available browser space.

• Advanced templating and declarative components

You can create page templates, as well as page fragments and composite
components made up of multiple components, which can be used throughout your
application.

• Advanced visualization components

ADF Faces includes data visualization (DVT) components, which are capable of
rendering dynamic charts, gauges, and other graphics that provide a real-time
view of underlying data. Figure 6-2 shows a gauge component that graphically

Chapter 6
Key Concepts of ADF Faces

6-4



represents the current stock level of a given product in a label (0.650K) that
appears in the center of the gauge.

Figure 6-2    ADF DVT Gauge Component

• Event handling

ADF Faces adheres to standard JSF event handling techniques, as well as
offering a complete client-side event model.

• ADF Skins

You can declaratively create or modify an ADF skin, which is a type of CSS file
that determines the look and feel of ADF Faces components. Oracle provides
editors within JDeveloper that you can use to create and edit skins.

• Messaging and help

The framework provides the ability to display tooltips, messages, and help for input
components, as well as the ability to display global messages for the application.
The help framework allows you to create messages that can be reused throughout
the application. You create a help provider using a Java class, a managed bean,
an XLIFF file, or a standard properties file, or you can link to an external HTML-
based help system.

• Internationalization

To simplify the process of creating and maintaining localizable text resources,
JDeveloper uses resource bundles to store any component text that you add or
edit using visual editors or the Properties window. In addition, ADF skins support
pseudo-classes that you can use to change how an application renders in a
particular locale. You can also configure your JSF page or application to use
different locales so that it displays the correct language based on the language
setting of a user's browser.

• Accessibility

ADF Faces components have built-in accessibility that work with a range of
assistive technologies, including screen readers. ADF Faces accessibility audit
rules provide direction to create accessible images, tables, frames, forms, error
messages, and popup windows using accessible HTML markup.
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For a complete guide to using ADF Faces technology, see Introduction to ADF Faces
in Developing Web User Interfaces with Oracle ADF Faces.

6.4 Key Components of ADF Faces
The user interface of the Fusion web application is comprised of ADF Faces
components, which includes a set of over 150 Ajax-enabled JavaServer Faces (JSF)
components, as well as a framework for handing complex user interactions. ADF
Faces components are bound to backend business services and support displaying
complex data, providing navigation choices, as well as implementing web pages with a
common look and feel.
ADF Faces components can be broken down into the following categories:

• General controls

General controls include the following types of components:

– Navigation components: Allow users to go from one page to the next. ADF
Faces navigation components include buttons and links, as well as the
capability to create more complex hierarchical page flows accessed through
different levels of menus. In addition, ADF has a train component that enables
you to structure the order in which a user navigates multi-step processes.

– Images and icon components: Allow you to display images ranging in
complexity from icons to video.

• Text and selection components

These components allow you to display output text, accept input text, or enable
users to select from a pre-populated list. These components fall into the following
sub-categories:

– Output components: Display text and graphics, and can also play video and
music clips.

– Input components: Allow users to enter data or other types of information,
such as color selection or date selection. ADF Faces also provides simple lists
from which users can choose the data to be posted, as well as a file upload
component.

– List-of-Values (LOV) components: Allow users to make selections from lists
driven by a model that contains functionality like searching for a specific value
or showing values marked as favorites. These LOV components are useful
when a field used to populate an attribute for one object might actually be
contained in a list of other objects, as with a foreign key relationship in a
database.

• Data Views

ADF Faces provides a number of different ways to display complex data, including
the following:

– Table and tree components: Display structured data in tables or expandable
trees. ADF Faces tables provide functionality such as sorting column data,
filtering data, and showing and hiding detailed content for a row. Trees have
built-in expand/collapse behavior. Tree tables combine the functionality of
tables with the data hierarchy functionality of trees.

– Data visualization components: Allow users to view and analyze complex data
in real time. ADF data visualization components include graphs, gauges, pivot
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tables, geographic maps, Gantt charts, hierarchy viewers, treemaps,
sunbursts, and timelines.

– Query components: Allow users to query data. The query component can
support multiple search criteria, dynamically adding and deleting criteria,
selectable search operators, match all/any selections, seeded or saved
searches, a basic or advanced mode, and personalization of searches.

– Specialty display components: The calendar component displays activities in
day, week, month, or list view. You can implement popup components that
allow users to create, edit, or delete activities. The carousel component allows
you to display a collection of images in a scrollable manner.

• Menus and toolbars

ADF Faces provides navigation components that render items such as tabs and
breadcrumbs for navigating hierarchical pages. The framework provides an XML-
based menu model that, in conjunction with a metadata file, contains all the
information for generating the appropriate number of hierarchical levels on each
page, and the navigation items that belong to each level.

• Layout components

Layout components act as containers to determine the layout of the page, ADF
Faces layout components also include interactive container components that can
show or hide content, or that provide sections, lists, or empty spaces. JDeveloper
provides prebuilt quick-start layouts that declaratively add layout components to
your page based on how you want the page to look.

In addition to standard layout components, ADF Faces also provides the following
specialty layout components:

– Explorer-type menus and toolbar containers: Allow you to create menu bars
and toolbars. Menus and toolbars allow users to select from a specified list of
options (in the case of a menu) or buttons (in the case of a toolbar) to cause
some change to the application.

– Secondary windows: Display data in popup windows or dialogs. In addition,
ADF Faces provides a dialog framework to support creating popup browser
windows that are separate from the parent page and managing their
interaction without JavaScript.

– Core structure components and tags: Provide the tags needed to create pages
and layouts, such as documents, forms and subforms, and resources.

• Operation Tags

These tags work with components to provide additional functionality, such as drag
and drop, validation, and a variety of event listeners.

6.5 Overview of the ADF Faces Process Flow
Creating the databound user interface of the Fusion web application that you develop
with Oracle ADF follows a step-by-step process that is supported by JDeveloper tools.
Creating an ADF Faces view consists of the following basic steps:

• In JDeveloper, create an application workspace from one of the templates in the
New Gallery.
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Alternatively, open an existing application workspace that contains business
services or other code that you want to integrate with the application and add a
new project to that workspace for ADF Faces components.

• In the ADF Faces project, create page flows. These can be either basic JSF page
flows or ADF Controller task flows.

• Create the pages using either JavaServer Pages (JSP) or Facelets templates and
insert them into the page flows.

• Design the pages by dragging and dropping ADF Faces components from the
Components window to the JSF page and using the Properties window to adjust
their attributes.

Part of this process is likely to include the creation of Expression Language (EL)
expressions to define various aspects of component behavior, and possibly the
creation of managed beans that you then reference from EL expressions.

• Test run the application using the Integrated WebLogic Server from within
JDeveloper.

6.6 Learning More About ADF Faces
When you are ready to create the databound user interface in the view layer of the
Fusion web application, you may consult documentation dedicated to these tasks in
the Oracle Fusion Middleware documentation library.
The following resources provide detailed information about using ADF Faces in
applications:

• Introduction to ADF Faces in Developing Web User Interfaces with Oracle ADF
Faces

• Creating a Databound Web User Interface in Developing Fusion Web Applications
with Oracle Application Development Framework

• About Skinning a Web Application in Developing ADF Skins

• JDeveloper Tutorials on ADF Faces

• Tag Reference for Oracle ADF Faces

• Tag Reference for Oracle ADF Faces Data Visualization Tools

• The Oracle ADF Faces page on Oracle Technology Network: http://
www.oracle.com/technetwork/developer-tools/adf/overview/index-092391.html

• The JavaServer Faces 2.0 Overview and Adoption Roadmap in Oracle ADF Faces
and Oracle JDeveloper 11g whitepaper on OTN at http://www.oracle.com/
technetwork/developer-tools/adf/learnmore/adffaces-jsf20-190927.pdf
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7
ADF Desktop Integration

This chapter provides a high-level overview of the ADF Desktop Integration
technology, which enables you to integrate Fusion web applications with Microsoft
Excel workbooks.
This chapter includes the following sections:

• About ADF Desktop Integration

• Core Benefits of ADF Desktop Integration

• Key Concepts of ADF Desktop Integration

• Key Components of ADF Desktop Integration

• Overview of the ADF Desktop Integration Process Flow

• Learning More About ADF Desktop Integration

7.1 About ADF Desktop Integration
Oracle ADF supports building desktop applications in the form of Microsoft Excel
workbooks through the use of the ADF Desktop Integration framework and the
JDeveloper tools that integrate it with Oracle ADF.
ADF Desktop Integration provides a framework for Oracle ADF developers to extend
the functionality provided by a Fusion web application to desktop applications in the
form of Microsoft Excel workbooks.

As shown in Figure 7-1, ADF Desktop Integration can be used with other parts of the
ADF technology stack, such as ADF Model, and ADF Business Components.
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Figure 7-1    ADF Architecture with ADF Desktop Integration

7.2 Core Benefits of ADF Desktop Integration
Tight integration with JDeveloper tools simplifies building a desktop version of the
Fusion web application. The resulting application based on the ADF Desktop
Integration produces a familiar Microsoft Excel workbook user interface.
The following are the core benefits of ADF Desktop Integration:

• It allows end users to work with Oracle ADF-based applications offline.

• It allows end users to work within Microsoft Excel's user interface, with which many
users are already familiar and comfortable.

• Bulk entry and update of data may be easier to accomplish through a
spreadsheet-style interface.

• It allows end users to use native Excel features such as macros, calculation,
validation, and styles.

7.3 Key Concepts of ADF Desktop Integration
The ADF Desktop Integration framework allows users to input and edit data through
Microsoft Excel workbook tables when integrated with a backing Fusion web
application, where the model and business service layers provide CRUD (create, read,
update, and delete) transaction support.
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This section outlines the key concepts of ADF Desktop Integration.

7.3.1 Integration with Microsoft Excel
The ADF Desktop Integration components allow end users to manage data retrieved
from a Fusion web application in an integrated Excel workbook. You configure the
ADF components and the worksheet that hosts it them so that the end user can upload
changes they make to data in worksheet to a Fusion web application.

When using a workbook with ADF Desktop Integration components, you can take
advantage of standard Excel features such as the following:

• Validation. You can use Excel's data validation features to control the type of data
or the values that end users enter into a cell. These features allow you to restrict
data entry to a certain range of dates, limit choices by using a list, or make sure
that only positive whole numbers are entered in a cell.

• Styles. You can configure the appearance the application's data by using Excel's
style and formatting features, including some predefined styles provided by ADF
Desktop Integration. You can also use EL expressions to have styles applied
dynamically.

• Formulas and calculated cells. You can write Excel formulas that perform
calculations on values in an integrated Excel workbook. Formulas can be entered
both in cells that reference Oracle ADF bindings and cells that do not reference
Oracle ADF bindings.

Also, you can use an EL expression to generate an Excel formula as the value of
an ADF component.

• Macros. You can define and execute macros based on Excel events in an
integrated Excel workbook.

7.3.2 Integration with ADF Page Definition Files
ADF Desktop Integration components are linked to page definition files in the Fusion
web application. Page definition files define the bindings that populate the data in the
Oracle ADF components at runtime. Page definition files also reference the action
bindings and method action bindings that define the operations or actions to use on
this data. You must define a separate page definition file for each Excel worksheet that
you are going to integrate with a Fusion web application. The integrated Excel
workbook can include worksheets that do not reference page definition files.

The link with the page definition files enables the integrated worksheets to also benefit
from any validation that you have set up in the binding layer. Data that the end user
enters or edits in one of the ADF Desktop Integration components, such as the ADF
Table component, can be validated against these rules and conditions that are set the
server side in the Fusion web application.

7.3.3 Runtime Synchronization with Fusion Web Applications
An ADF Desktop Integration integrated workbook extends and runs within the context
of an ADF Fusion web application. Offline use of an ADF Desktop Integration
integrated workbook is possible, but data synchronization and some user interface
interactions require that a valid user session be established with the web application
on which it is based at some point. ADF Desktop Integration relies on HTTP cookie-
based session management for all of its interactions with the ADF Fusion web

Chapter 7
Key Concepts of ADF Desktop Integration

7-3



application, regardless of whether the web application is configured to enforce
authentication or not.

When you deploy an ADF Desktop Integration-enabled Fusion web application from
JDeveloper, references to the ADF Desktop Integration shared libraries are added to
the appropriate descriptor files. For any Fusion web application that contains one or
more projects referencing the ADF Desktop Integration Model API library or the ADF
Desktop Integration Runtime library, a platform-dependent reference to the ADF
Desktop Integration Model API shared library is added during deployment.

For any web application module (WAR) project that contains a reference to the ADF
Desktop Integration Runtime library, a platform-dependent reference to the ADF
Desktop Integration Runtime shared library is added during deployment.

The ADF Desktop Integration framework is composed of a client-side portion running
on top of Microsoft .NET and two server components: the ADF Desktop Integration
remote servlet and the ADF Desktop Integration download filter. The server
components run within the context of an ADF Fusion web application. The client
component acts as the view and controller and communicates with the servlet to
synchronize data and execute business logic in the web application's model project.
Communication between the client and server takes the form of HTTP requests and
responses.

7.3.4 Security for Integrated Excel Workbooks
Whenever an integrated Excel workbook connects to a Fusion web application, the
integrated workbook makes sure that a valid, authenticated user session is established
before downloading any data. If you are using a Fusion web application that does not
enforce authentication, the integrated Excel workbook verifies and creates a valid user
session when it connects to the Fusion web application.

When the corresponding Fusion web application has ADF Security enabled, the ADF
Desktop Integration enforces any security policies set for the page definitions that
correspond to the integrated workbook. At runtime, end users without proper
permissions for a page definition (binding container) are prevented from interacting
with the associated integrated Excel worksheet. Any attempt to interact with an
unauthorized binding container (for example, to download or submit data) is aborted,
the end user is informed of the authorization failure, and all ADF Desktop Integration
activity on the worksheet is disabled. No further interaction with the ADF Desktop
Integration-disabled worksheet is possible until a new user session is established. To
allow end users to interact with the integrated Excel worksheet, assign them the roles
that have been granted access to the page definition.

If you save an Excel workbook containing data downloaded from a Fusion web
application to a location, such as a network directory, where other users can access
the Excel workbook, the data stored in the Excel workbook is accessible to other
users.

You can enhance the security of an integrated Excel workbook using Excel's
functionality to set a password on a workbook. It prevents unauthorized users from
opening or modifying the workbook. For more information about Excel security
features, see Excel's documentation.
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7.4 Key Components of ADF Desktop Integration
The desktop application built with ADF Desktop Integration is comprised of UI
components, similar to ADF Faces components, which integrate with the Microsoft
Excel workbook environment. The ADF Desktop Integration framework allows users to
input and edit data in the backing Fusion web application, where it integrates with the
model and business service layers.
ADF Desktop Integration functionality consists of the add-in features to Microsoft Excel
that are outlined in this section.

7.4.1 Table-Type Components
ADF Desktop Integration contains table and read-only table components, which enable
you to display and edit large sets of structured information, such as entire database
tables. These components are analogous to ADF Faces components with the same
name but with properties that are specific to the Excel workbook environment. These
components also have associated actions, with which you can do things such as
download from and upload to the associated Fusion web application.

After you add an ADF Table component to a worksheet, you configure it and the
worksheet that hosts it, so that the ADF Table component downloads data from the
Fusion web application. To achieve this, you configure an Oracle ADF component,
such as ADF Button, a worksheet ribbon button, or a worksheet event to invoke an
action set. The action set that is invoked must include the ADF Table component
Download action among the actions that it invokes.

7.4.2 Form-Type Components
ADF Desktop Integration contains basic UI components for input text fields, output text
fields, labels, buttons, and lists of values (LOVs), which enable you to create forms for
displaying and entering data. These components are analogous to ADF Faces
components with the same name but with properties that are specific to the Excel
workbook environment.

To enable the user to commit those changes back to the Fusion web application, you
configure an ADF component to invoke an action set that handles the transferring of
the changes back to the web application and committing them to the data source.

7.4.3 Action Sets
To enable you to string together multiple actions that can be invoked with a single user
gesture in the workbook, ADF Desktop Integration provides action sets. An action set
is an ordered list of one or more actions that execute in a specified order. You can
associate an action set with a UI element in the worksheet or with a worksheet event,
such as Startup or Shutdown.

The following types of actions are available:

• ADFmAction - an action binding or method action binding in the underlying page
definition file.

• ComponentAction - an action that a component on the worksheet exposes. The ADF
Table and ADF Read-only Table components are the only components in ADF
Desktop Integration that expose actions.
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• WorksheetMethod - an action provided by ADF Desktop Integration that handles
coordination between the data in the worksheet and the Fusion web application.
The available actions are UpSync, DownSync, and DisplayWorksheetErrors.

• Confirmation - Invokes a confirmation dialog.

• Dialog - Invokes a web page in a popup dialog or Excel's task pane.

7.5 Overview of the ADF Desktop Integration Process Flow
Building a desktop application based on Microsoft Excel workbooks that you develop
with ADF Desktop Integration follows a step-by-step process that is supported by
JDeveloper tools.
Developing with ADF Desktop Integration consists of the following steps:

1. On a Microsoft Windows system, make sure Internet Explorer is installed, and
install Microsoft Excel and JDeveloper.

2. Configure the Microsoft Excel installation to trust access to the VBA project object
model in order to make it accessible from ADF Desktop Integration.

3. In JDeveloper, install the ADF Desktop Integration add-in.

The ADF Desktop Integration add-in is available in two editions, the Designer
edition and the Runtime edition. Use the Designer edition to create and test
integrated Excel workbooks, and the Runtime edition to enable end users to use
ADF Desktop Integration and integrated Excel workbooks. However, do not install
both editions of ADF Desktop Integration on the same system.

4. Create a Fusion web application.

5. In the application's model project, add data controls that expose the elements you
require in Microsoft Excel.

6. In the application's user interface project, create page definition files that expose
the Oracle ADF bindings to use in Excel.

7. Create the Excel workbooks that you intend to configure with Oracle ADF
functionality.

8. Configure the Excel workbook using the Oracle ADF bindings that you exposed in
the page definition files and the Oracle ADF components that ADF Desktop
Integration provides.

9. Add the integrated Excel workbook to the JDeveloper project for your Fusion web
application if it is not already packaged there. This makes sure that the Excel
workbooks you integrate with your Fusion web application get deployed when you
deploy your finalized Fusion web application.

10. Publish the completed workbook so that it is available to users when the
application is deployed.

11. Configure one or more web pages in your Fusion web application to allow end
users to access the integrated Excel workbooks.

12. Deploy the Fusion web application that contains the integrated workbook.

13. Make sure that end users who want to use the functionality that you configure in
an integrated Excel workbook install the Runtime edition of ADF Desktop
Integration.
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7.6 Learning More About ADF Desktop Integration
When you are ready to build a desktop application with ADF Desktop Integration, you
may consult documentation dedicated to these tasks in the Oracle Fusion Middleware
documentation library.
For more information on using ADF Desktop Integration, see the following resources:

• Introduction to ADF Desktop Integration in Developing Applications with Oracle
ADF Desktop Integration

• The ADF Desktop Integration page on OTN: http://www.oracle.com/technetwork/
developer-tools/adf/overview/index-085534.html
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Part IV
Oracle ADF Security, Customization, and
Deployment

This part provides an overview of the functionality that you can use in Oracle
Application Development Framework (Oracle ADF) to complete the ADF application.
Part IV contains the following chapters:

• ADF Security Framework

• Oracle Metadata Services

• Deployment of Applications Containing Oracle ADF Features
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ADF Security Framework

This chapter provides a high-level overview of the ADF Security framework, including
its integration with the Oracle Platform Security Services (OPSS) architecture and the
securing of ADF applications with declarative resource grants.
This chapter includes the following sections:

• About the ADF Security Framework

• Core Benefits of ADF Security

• Key Concepts of ADF Security

• Key Components of ADF Security

• Overview of the ADF Security Process Flow

• Learning More About ADF Security

8.1 About the ADF Security Framework
Security for Fusion web application is provided by ADF Security, which is a declarative
framework that supports JAAS standards and Java EE container-managed security,
built on Oracle Platform Security Services (OPSS) and is integrated with JDeveloper
tools.
In order to simplify the process of ensuring thorough application security, the Oracle
Application Development Framework (Oracle ADF) provides the ADF Security
framework. ADF Security is built on top of the Oracle Platform Security Services
(OPSS) architecture, which in turn incorporates the Java Authentication and
Authorization Service (JAAS) and Java EE container-managed security.

As shown in Figure 8-1, ADF Security encompasses the range of other components in
the ADF technology stack, such as ADF Faces, ADF Controller, ADF Model, and ADF
Business Components.
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Figure 8-1    ADF Architecture with ADF Security

OPSS is the underlying security platform that provides security to Oracle Fusion
Middleware, including WebLogic Server and Oracle ADF applications. OPSS is
designed to be portable to third-party application servers, so developers can use
OPSS as the single security framework for both Oracle and third-party environments,
thus decreasing application development, administration, and maintenance costs.

Figure 8-2 conceptually illustrates the architecture of the ADF Security framework. The
uppermost layer consists of the running ADF application. Below that is the ADF
security layer, which implements the OPSS APIs and enables programmatic
permission checks on resources from the application. The OPSS API layer serves as
an abstraction layer for accessing providers of authentication, authorization, credential
store framework services.
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Figure 8-2    ADF Security Architecture

8.2 Core Benefits of ADF Security
Tight integration with JDeveloper tools simplifies securing the Fusion web application
to ensure only authorized users may access the ADF features of the ADF application.
Additionally, ADF Security is built on top of Oracle Platform Security Services (OPSS)
and supports Oracle Single Sign-On (Oracle SSO) by end users in the Fusion web
application environment.
ADF Security provides the following core benefits:

• Declarative, permission-based protection for ADF security-aware resources, such
as ADF bounded task flows, top-level web pages that use ADF bindings, and
attributes defined by ADF entity objects and their attributes.

• Dynamic user authentication. When you use ADF Security, the application
dynamically prompts the user to log in if the user is not yet authenticated and tries
to access a page that is not granted to the anonymous-role role. In the application's
web.xml file, a security constraint is applied to the ADF authentication servlet so
that login is triggered through the Java EE web container before any secured
resources can be accessed. After the user successfully logs in, the ADF
authentication servlet runs to verify if the authenticated user has view access to
the requested page.

• Permission checking within the web page. At runtime, the security policy you
define for ADF resources is enforced using standard JAAS permission
authorization to determine the user's access rights. If your application requires it,
you can use Expression Language (EL) to perform runtime permission checks
within the web page to hide components that should not be visible to the user.
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• Simplifies securing of applications by providing an abstraction layer between the
application and various security providers. Calls from the application to the
security layer can be made through standards-based APIs, so developers do not
have to deal with implementation details of the security providers.

8.3 Key Concepts of ADF Security
JDeveloper tools generate declarative components that secure the Fusion web
application, including declarative security policies that you define to limit access to
ADF features of the application based on the enterprise application roles assigned to
end users.
The ADF Security framework consists of runtime integration with OPSS plus additional
design-time features through JDeveloper that simplify the creation of secure
applications. This section provides an overview of the main aspects of ADF Security,
including the OPSS features it incorporates and additional ADF-specific features.

8.3.1 Authentication and Authorization
Authentication is the process of validating a user's credentials, such as through a login
screen. ADF Security provides an authentication servlet which (through OPSS)
delegates authentication to the Java EE web container and also allows the application
to dynamically prompt the user to log in.

Authorization is the process of determining the authenticated user's access rights and
permissions. ADF Security (through OPSS) offers a fine-grained, permission-based
authorization model which protects a resource (such as an ADF task flow) by means of
JAAS-based checkPermission calls. OPSS also enables you to use Java EE container-
managed security, which provides a more coarse-grained authorization model.

8.3.2 Application Roles
Instead of granting access to individual users, you can group users into application
roles and grant permissions to the role.

8.3.3 Security Policies
You grant users (or roles) access rights to a given resource. A security policy is an
access right that you grant for a given resource. Ultimately, it is the security policy on
the ADF resource that controls the user's ability to enter a task flow or view a web
page.

For ease of administration, you can also create entitlement grants, under which you
aggregate multiple resources in a security group. This enables you to set the security
policy for multiple resources in one place.

8.3.4 Security Awareness in ADF Resources
The ADF Security framework contains permission classes that enable you to protect
ADF resources. Resources for which such permission classes exist are known as
security-aware resources. Any web page associated with an ADF security-aware
resource is protected by default unless you explicitly set a security policy granting
access to the resource.
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For a list of the types of ADF security-aware resources, see ADF Security-Aware
Resources.

8.4 Key Components of ADF Security
The secured Fusion web application is comprised of security policies (that follow the
JAAS model) and enterprise roles that limit access by end users to the secured ADF
features of the ADF application. At application runtime, a registered ADF Security
servlet delegates (through OPSS) authentication to the Java EE web container and
also allows the ADF application to dynamically prompt the user to log in when they
attempt to access the secured ADF features.
This section outlines the features and physical artifacts that are at the core of the ADF
Security framework.

8.4.1 Design-Time Integration With OPSS
The design-time integration with OPSS for an application is configured declaratively
through several metadata files, which are configured automatically when you use
JDeveloper's security wizards and visual editors. The following are the key files
affected:

• The user interface project's web.xml file, in which the following things are specified:

– The JpsFilter, in order to set up the OPSS policy provider.

– A web resource for the
oracle.adf.share.security.authentication.AuthenticationServlet servlet and
mappings to require the user to log in the first time the application is accessed
and to set the appropriate security constraint to trigger user authentication
dynamically.

– The authentication method for the login configuration.

– Required security roles, such as valid-users, which is used to trigger the
security constraint that enables dynamic authentication.

• The application workspace's adf-config.xml file, in which the JAAS security
context is set and the use of ADF Security security policies is enabled.

• The application workspace's jps-config.xml file, which holds the OPSS security
platform configuration at design time. (Though this file may be deployed as part of
the application EAR file, it is not used at runtime. Instead, a version of the file that
is stored in the server instance's domain is used.)

• The application's jazn-data.xml file, which serves as the application's identity and
policy store at design time. When you deploy the application to Oracle WebLogic
Server, by default the server copies users and groups in jazn-data.xml to the
server's identity store and merges policies to the server's policy store (system-
jazn-data.xml in Integrated WebLogic Server).

Before deploying to a production server, you should delete all users and groups
that you create in the jazn-data.xml file to prevent the risk that malicious users
could use those credentials to gain access to the application.

• The application's weblogic.xml file, in which the valid-users security role is
mapped to users, WebLogic Server's implicit role for all users.
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Figure 8-3 shows the security artifacts that are created and configured in
JDeveloper and how they map to the runtime security architecture of Oracle
WebLogic Server.

Figure 8-3    ADF Security Configuration and Deployment

8.4.2 ADF Security-Aware Resources
The following types of resources in ADF applications are security-aware and can be
configured with individual security policies:

• ADF bounded task flows. You can set a security policy to protect the entry point to
a bounded task flow, which in turn controls the user's access to the pages
contained by the flow. It is recommended that you set security policies for all
bounded task flows.

To make sure that pages contained by a bounded task flow cannot be accessed
directly, you must not grant access to the contained pages through their
associated page definition file. When pages require additional security within the
context of a bounded task flow, wrap those pages in a sub-task flow with additional
grants defined on the nested task flow.

• ADF page definition files, which contain bindings for web pages and which map to
individual pages. You might need to set a security policy for a page definition file if
its page is not encompassed by a bounded task flow. If you want to secure a page
that does not have a corresponding page definition file, you can create an empty
page definition file for the page.

• ADF Business Components entity objects and attributes of entity objects that
reference rows of data and help define collections for display in the user interface.
You can set permissions for the read, update, and delete operations that the entity
object initiates on its data source.

When you enable authorization for an entity object, all rows of data defined by the
entity object are protected by the grant. At this level of granularity, your table
component would render in the web page either with all data visible or with no data
visible—depending on the user's access rights. As an alternative to securing the
entire collection, you can provide security policies by individual attribute.
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8.4.3 ADF Authentication Servlet
When ADF Security authorization is enabled, all user interaction with the application is
mediated by the oracle.adf.share.security.authentication.AuthenticationServlet
servlet. This servlet requires that the user successfully log in before being able to
access any of the application's secured resources. It is specified as a resource in the
user interface project's web.xml file and referenced from filter mapping and security
constraint tags.

8.4.4 ADF Security Context
Information about authenticated users can be accessed with calls to the ADF security
context with Java code, Groovy expressions, or from the user interface components
via EL. You can determine things such as whether the user is authenticated and
whether or not a user is granted permissions for given resources. You can then use
this information to determine which content and controls to display to the user. The
security context is represented by the SecurityContext object in Java, the
securityContext namespace in EL, and the SecurityContext object in Groovy.

8.5 Overview of the ADF Security Process Flow
Securing the Fusion web application that you develop with Oracle ADF follows a step-
by-step process that is supported by JDeveloper tools.
Using the ADF Security framework consists of the following basic steps:

1. In JDeveloper, run the Configure ADF Security wizard to configure security for the
application. This step enables you to set the security model, configure an
authentication type for the web project, grant view access to a test-all role, and set
up a welcome page for successfully authenticated users.

It is recommended that you run this wizard early in the development cycle so that
you can iteratively test security and make design decisions that best take security
into account.

2. Create one or more application roles.

Application roles you create are specific to the application and let you confer the
same level of access to a set of users (also known as member users). In the test
phase you create some users and add them as members to the application roles
you created.

3. Set security policies to associate any ADF security-aware resources (such as
bounded task flows) with one or more application roles that you have created and
set the access rights for those roles.

4. Create test users for the various roles.

5. Run the application in JDeveloper and test access to the various resources using
the test users that you have created.

6. Before deploying the application, remove any policy grants and users that you had
added in order to test the application.

7. Migrate the finalized policy store and credentials store to the target server.
Application policies and credentials can be automatically migrated to the domain
stores when the application is deployed to Oracle WebLogic Server.
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8.6 Learning More About ADF Security
When you are ready to secure the Fusion web application using ADF Security and
OPSS (Oracle Platform Security Services), you may consult documentation dedicated
to these tasks in the Oracle Fusion Middleware documentation library.
For more information about using the ADF Security framework and OPSS, see the
following.

• Enabling ADF Security in a Fusion Web Application in Developing Fusion Web
Applications with Oracle Application Development Framework

The following resources provide more information about OPSS.

• Introduction and Roadmap in Understanding Security for Oracle WebLogic Server

• Introduction and Roadmap in Administering Security for Oracle WebLogic Server

• Introduction and Roadmap in Securing Resources Using Roles and Policies for
Oracle WebLogic Server

• The Oracle Platform Security Services page on OTN: http://www.oracle.com/
technetwork/middleware/id-mgmt/index-100381.html
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9
Oracle Metadata Services

This chapter provides a high-level overview of how the Oracle Metadata Services
(MDS) framework can be used for seeded customizations and change persistence in
an ADF application.
This chapter includes the following sections:

• About Oracle Metadata Services (MDS)

• Core Benefits of MDS

• Key Concepts of MDS

• Key Components of MDS

• Overview of the MDS Process Flow

• Learning More About MDS

9.1 About Oracle Metadata Services (MDS)
Customization of the Fusion web application developed with Oracle ADF is supported
by Oracle Metadata Services (MDS), which is a framework that integrates with
JDeveloper tools and also manages the customization of ADF features by end users at
runtime.
The Oracle Metadata Services (MDS) framework allows you to create applications that
your customers can further customize for their users or customers and which the end
users can also customize.

As shown in Figure 9-1, MDS can be applied to the range of other components in the
ADF technology stack, such as ADF Faces, ADF Controller, ADF Model, and ADF
Business Components.
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Figure 9-1    ADF Architecture with Metadata Services

You can use MDS to enable the following types of customizations in an application:

• Seeded customization

Seeded customization of an application is the process of taking a generalized
application and making modifications to suit the needs of a particular group, such
as a specific industry or site. Seeded customizations exist as part of the deployed
application, and endure for the life of a given deployment.

• User customization (change persistence).

User customization allows an end user to change the content of the application at
runtime to suit individual preferences (for example, which columns are visible in a
table), and have those changes persist across that user's sessions.

9.2 Core Benefits of MDS
Tight integration with JDeveloper tools and Oracle Metadata Services (MDS)
framework simplifies customization of the Fusion web application by end users at
application runtime.
The architecture and features of MDS provide the following benefits:

• You can offer your customers a working application that they can further
customize as they see fit.

• A single application can have different customizations for different users or user
segments.
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• The application can be patched or updated without changing or removing the
customizations.

9.3 Key Concepts of MDS
Customization of the Fusion web application is supported by Oracle Metadata
Services (MDS) repository to enable storing and retrieving customization content. The
repository associates an application layer and site with the base ADF application to
specify the customization content that end users of the application are allowed to view
and optionally customize.
The following concepts are central to the understanding of MDS:

• Customization layers and customization values.

A customized application contains a base application (the base documents) and
one or more layers containing customizations, as illustrated in Figure 9-2. Each
layer can have multiple customization layer values, typically only one of which is
applied at runtime. When a customized application is launched, the customization
content is applied over the base application.

Figure 9-2    Base Application and Customization Layers

Examples of customization layers are industry and site. Examples of values for
the industry layer might be financial and healthcare.

Since the customizations are saved separately from the base, the customizations
are upgrade safe; a new patch to the base can be applied without breaking
customizations.

• Static and dynamic customizations.

Customizations can be categorized as either static or dynamic. Static
customizations have only one layer value in effect for all executions of the
application, while dynamic customizations can have values that vary based on the
execution context (such as the user) of the application.

Customizations in ADF Business Components objects and data control objects for
other business services can only be static. This is because these objects are
loaded only once for an application and reused for the duration of the application.
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Customizations at the controller or view level can be either static or dynamic, since
they can allow the layer value to be determined at runtime, based on user roles
(responsibilities) or other application-specific criteria. For example, you can design
an application so that users from different organizations see different sets of fields
on a given screen.

• Customization Developer Role

JDeveloper provides a special development role for customization developers so
that work in customization layers of an application is isolated from the base
application code. When you switch JDeveloper to the Customization Developer
role, only customizable parts of the application are editable and new objects
cannot be created.

• Change Persistence

ADF Faces incorporates a change persistence feature, which enables users to
make changes to UI components, such as selecting which columns to display in a
table, and have those changes persist as long as the session is active. Using
MDS, you can extend the change persistence features to work across sessions, so
that a user can exit the application with the UI in a given state and then restart the
application and see the UI in the state that it was previously.

9.4 Key Components of MDS
Customization of the Fusion web application by end users is supported by Oracle
Metadata Services (MDS) metadata repository to enable storing and retrieving
customizations of ADF features.
The following are the key components of MDS:

• MDS metadata repository.

MDS stores the customizations in a metadata repository and retrieves them at
runtime to merge the customizations with the base metadata to reveal the
customized application.

An MDS repository can be file-based or database-based. For production
environments, a database-based MDS repository is preferable because of
advantages such as efficient set-based queries, atomic transaction semantics,
versioning, and the ability to isolate and test metadata changes on selected users
in a running environment. For more information on setting up a metadata
repository, see Managing the Metadata Repository in Administering Oracle Fusion
Middleware.

• Customization classes.

A customization class is the interface that MDS uses to define which customization
applies to the base definition metadata. Each customization class defines a
customization layer (for example, industry or site) and can contain multiple layer
values.

• Metadata Archive (MAR).

A MAR file is a compressed archive of selected metadata that is used to deploy an
application's customizations to the MDS Repository.
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9.5 Overview of the MDS Process Flow
Supporting customization by end users of the Fusion web application using the Oracle
Metadata Services (MDS) framework follows a step-by-step process that is supported
by JDeveloper tools.
Using MDS in an application consists of the following general steps:

1. Create the customization classes that will be used and make them available to
your application at design time in JDeveloper.

2. Enable seeded customization for any pages or other artifacts that you want to
make customizable.

3. Specify the customization classes in the adf-config.xml file

4. Optionally, set any restrictions on runtime customizations on the application.

5. Optionally, enable end-user customizations and specify which components and
which of their properties can be customized. In addition, you can set page-specific
customization configurations and implement programmatic customizations for
things such as reordering child components.

6. Specify the customization layers and their values in the
CustomizationLayerValues.xml file (to determine the layer values to make available
to the customization developer in the Customization Context window).

7. In JDeveloper, using the Studio Developer or the Customization Developer role,
implement any seeded customizations that you want to add.

8. If it has not already been done, configure an MDS repository on the server on
which the customizable applications will be deployed.

9. Package the customizations in a MAR file and include that MAR as part of the
application's EAR file that you deploy to the application server.

9.6 Learning More About MDS
When you are ready to enable Oracle Metadata Services (MDS) customization of the
Fusion web application by end users, you may consult documentation dedicated to
these tasks in the Oracle Fusion Middleware documentation library.
The following resources provide detailed information about using MDS:

• Customizing Applications with MDS in Developing Fusion Web Applications with
Oracle Application Development Framework

• Allowing User Customizations at Runtime in Developing Fusion Web Applications
with Oracle Application Development Framework

• Allowing User Customization on JSF Pages in Developing Web User Interfaces
with Oracle ADF Faces

• Managing the Metadata Repository in Administering Oracle Fusion Middleware
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10
Deployment of Applications Containing
Oracle ADF Features

This chapter describes the concepts behind and the high-level process of deploying
Oracle ADF applications to an application server.
This chapter includes the following sections:

• About Deployment of Applications that Contain Oracle ADF Features

• Key Concepts of Deploying ADF Applications

• Key Components of Deploying ADF Applications

• Overview of the ADF Application Deployment Process Flow

• Learning More About Deploying ADF Applications

10.1 About Deployment of Applications that Contain Oracle
ADF Features

Deploying the Fusion web application that you develop with Oracle ADF is supported
by JDeveloper tools.
Deployment is the process of packaging application files as an archive file and
transferring that file to a target application server. You can use JDeveloper to deploy
ADF applications directly to the application server or indirectly to an archive file as the
deployment target, and then install this archive file to the target server.

10.2 Key Concepts of Deploying ADF Applications
Deploying the Fusion web application that you develop with Oracle ADF can be tested
in JDeveloper using Integrated WebLogic Server. Once verified, deployment of the
ADF application to a standalone server in a production or other environment is
supported by a variety of administration tools.
This section outlines key aspects of the process of preparing and completing
deployment of ADF applications.

10.2.1 Test Deployment with Integrated WebLogic Server
For test running an application during development, you can use JDeveloper to run an
application in Integrated WebLogic Server. When running an application in the
Integrated WebLogic Server, you do not have to manually complete many of the steps
that are necessary for deployment to a standalone server. For example, you do not
have to create a deployment profile or an EAR file, and the ADF Runtime libraries are
automatically included in the Integrated WebLogic Server instance.
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10.2.2 Deployment Tools
For deployment to standalone servers, you can choose from among the following tools
and approaches:

• Oracle Enterprise Manager Fusion Middleware Control

• Scripting tools that are specific to a given application server, such as WebLogic
Scripting Tool (WLST)

• Administration consoles, such as Oracle WebLogic Administration Console

• Command scripts and Ant scripts

• JDeveloper

10.2.3 Test Deployment on a Standalone Server
Before you deploy your application to a production server, you may wish to test the
application on a standalone server instance that is not in a production environment.
Doing so enables you to make sure that the application deploys as expected in a
remote environment. This step is recommended to help identify and fix potential
problems in the deployment that otherwise would not be revealed by running the
application in an Integrated WebLogic Server instance, where most of the steps are
automated to benefit the development workflow and are not geared toward a
production server environment.

10.3 Key Components of Deploying ADF Applications
Deploying the Fusion web application is accomplished with the aid of an enterprise
archive (EAR) file and requires installation of ADF Runtime libraries on the target
application server.
This section outlines the key elements that are necessary for deploying an ADF
application to an application server.

10.3.1 Enterprise Archive (EAR) File
ADF applications are generally deployed to application servers as EAR files. EAR files
are composite archives that contain one or more other archives, such as WAR, JAR,
and MAR files, and one or more deployment descriptors.

10.3.2 ADF Runtime Libraries
Applications that use any ADF components or features need ADF Runtime libraries
installed on the application server in order to run. Such components and features
includes ADF Business Components, ADF Model data binding, ADF task flows, or
ADF Faces components.
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10.4 Overview of the ADF Application Deployment Process
Flow

Deploying the Fusion web application follows a step-by-step process that is supported
by JDeveloper tools.
Once your application is developed, you follow the steps below to deploy the
application to a standalone server. These steps do not include running the application
in Integrated WebLogic Server from JDeveloper.

1. Create deployment profiles to define the way the application contents are
packaged into archive files that will be deployed to the target environment. In
addition to specifying the format and contents of the archive file, a deployment
profile includes dependency information, platform-specific instructions, and other
information.

2. Create or edit the necessary deployment descriptors for the target server.
Deployment descriptors are XML server configuration files that define the
configuration of an application for deployment and that are deployed with the
application as needed.

When developing the application in JDeveloper, the necessary deployment
descriptor files for Oracle WebLogic Server are generated. JDeveloper also
provides visual editors for these files that you can use to view and edit properties.

3. Prepare the application's security policies and credentials for migration to the
standalone server. This includes ensuring that any policies and credentials that
you have set up for testing purposes are removed from the application's
configuration files and setting up application roles that map to standard roles on
the target server.

4. In the user interface project's web.xml file, register any ADF MBeans that you want
to use.

ADF MBeans correspond to various configuration files. After the application has
been deployed, you can change configuration properties by accessing the ADF
MBeans using the Enterprise Manager Fusion Middleware Control MBean
browser.

5. In JDeveloper, generate an EAR file from the deployment profile.

6. Set up a standalone instance of the target application server for test deploying and
install the ADF runtime in that instance.

7. Migrate the application's policy store to the domain level on the standalone server
instance.

You typically handle the migration task outside of JDeveloper using tools like
Oracle Enterprise Manager Fusion Middleware Control. For details about using
tools outside of JDeveloper to migrate the policy store to the domain-level in a
standalone environment, see Migrating from a Test to a Production Environment in
Securing Applications with Oracle Platform Security Services.

8. Test deploy the application using any of the approaches cited in Deployment Tools
and fix any problems that arise.

9. On the target server, make sure that the ADF runtime libraries are installed and
add the application's policy store.
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10. Deploy the application to the target server.

10.5 Learning More About Deploying ADF Applications
When you are ready to deploy the Fusion web application based on Oracle ADF and
to configure the runtime environment, you may consult documentation dedicated to
these tasks in the Oracle Fusion Middleware documentation library.
For more information on preparing applications for deployment, see Deploying Fusion
Web Applications in Developing Fusion Web Applications with Oracle Application
Development Framework.

For more information on setting up standalone servers on which to deploy
applications, deploying the applications, and then configuring and managing the
deployed applications, see Part II Basic Administration in Administering Oracle ADF
Applications.

For more information on migrating security policies and credentials to the target
server, see Migrating from a Test to a Production Environment in Securing
Applications with Oracle Platform Security Services.

For more information on deploying Oracle ADF Essentials applications to GlassFish
see Deploying ADF Applications to GlassFish in Developing Fusion Web Applications
with Oracle Application Development Framework.
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Part V
Appendix

This appendix provides additional information that helps to explain the concepts of
Oracle Application Development Framework (Oracle ADF).
This part contains the following appendix:

• ADF Business Components and Familiar 4GL Tools





A
ADF Business Components and Familiar
4GL Tools

This appendix compares key components in ADF Business Components to
conceptually similar functionality offered by the enterprise 4GL tools PeopleTools,
Siebel Tools, and ADO.NET.
This appendix includes the following sections:

• Comparison to PeopleTools

• Comparison to Siebel Tools

• Comparison to ADO.NET

A.1 Comparison to PeopleTools
Data access functionality of ADF Business Components parallels functionality in 4GL
tools, such as PeopleTools. Mapping familiar PeopleTools concepts may help you to
understand how ADF Business Components implements them.
If you have developed solutions in the past with PeopleTools, you are familiar with the
PeopleTools component structure. ADF Business Components implement the data
access functionality you are familiar with from PeopleTools.
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Table A-1    Familiar Concepts for PeopleTools Developers

This concept Maps to Oracle ADF With these similarities

Headless
Components

Application Modules Oracle ADF adheres to an MVC pattern and separates the model
from the view. Pages, which you are familiar with in the PeopleTools
Component, are defined in the view layer, using standard
technologies like JSF and ADF Faces components for web-based
applications or Swing for desktop-fidelity client displays.

The ADF application module defines the data structure, just like the
PeopleTools Component Buffer does. By defining master-detail
relationships between ADF query components that produce row sets
of data, you make sure that any application module that works with
the data can reuse the natural hierarchy as required, similar to the
scroll levels in the Component Buffer.

Similar to the Component Interface you are familiar with, the
application module is a service object that provides access to
standard methods, as well as additional developer-defined business
logic. In order to present a "headless" data service for a particular
user interface, the Component Interface restricts a number of
PeopleTools functions that are related to UI interaction. The
application module is similar to the Component Interface in that it
provides a "headless" data service, but in contrast it does not do this
by wrapping a restricted view of an existing user interface. Instead,
the application module is designed to deal exclusively with business
logic and data access. Rather than building a Component Interface
on top of the component, with ADF Business Components you first
build the application module service that is independent of a user
interface, and then build one or more pages on top of this service to
accomplish some end-user task in your application.

The application module is associated with a transaction object in the
same way that the PeopleTools Component Buffer is. The application
module also provides a database connection for the components it
contains. Any logic you associate today with the transaction as
Component PeopleCode, in ADF Business Components you would
define as logic on the application module.

Logic associated with records in the transaction, that today you write
as Component Record PeopleCode or Component Record Field
PeopleCode, should probably not be defined on the application
module. ADF Business Components has view objects that allow for
better re-use when the same record appears in different components.

In summary, PeopleTools uses the component for the container
concept, whereas ADF Business Components uses the application
module. That is where the similarity ends. Do not assume that all of
your component code will migrate to an application module. First,
understand the concept of the view object, which is the layer between
the entity object and the application module. Then, decide which of
your component code is suitable for an application module and which
is suitable for view objects.
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Table A-1    (Cont.) Familiar Concepts for PeopleTools Developers

This concept Maps to Oracle ADF With these similarities

Record Definition Entity Object The entity object is the mapping to the underlying data structure, just
like the PeopleTools Record Definition maps to the underlying table
or view. You'll often create one entity object for each of the tables
that you need to manipulate your application.

Similar to how you declare a set of valid values for fields like
"Customer Status" using PeopleTools' translate values, in ADF
Business Components you can add declarative validations to the
individual attributes of an entity object. Any logic you associate with
the record that applies throughout your applications, which today you
write as Record PeopleCode or Record Field PeopleCode, can be
defined in ADF Business Components on the entity object.

Row Set View Object Just like a PeopleTools row set, a view object can be populated by a
SQL query. Unlike a row set, a view object definition can contain
business logic.

Any logic which you would find in Component Record PeopleCode is
a likely candidate to define on the view object. Component Record
PeopleCode is directly tied to the component, but a view object can
be associated with different application modules. Whereas you can
use the same record definition in many PeopleTools components,
Oracle ADF allows you to reuse the business logic across multiple
applications.

The view object queries data in exactly the "shape" that is useful for
the current application. Many view objects can be built on top of the
same entity object.

You can define relationships between view objects to create master-
detail structures, just as you find them in the scroll levels in the
PeopleTools component.

A.2 Comparison to Siebel Tools
Data access functionality of ADF Business Components parallels functionality in 4GL
tools, such as Siebel Tools. Mapping familiar Siebel Tools concepts may help you to
understand how ADF Business Components implements them.
If you have developed solutions in the past with Siebel Tools version 7.0 or earlier, you
will find that ADF Business Components implements all of the familiar data access
functionality you are familiar with, with numerous enhancements.
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Table A-2    Familiar Concepts for Siebel Tools Developers

This concept Maps to Oracle ADF With these similarities

Table Object Entity Object Like the Siebel Table object, the ADF entity object describes the
physical characteristics of a single table, including column names
and physical data types. Both objects contain sufficient information to
generate the DDL (data definition language) statements to create the
physical tables in the database. In ADF Business Components you
define associations between entity objects to reflect the foreign keys
present in the underlying tables. These associations allow view
object queries used by user interface pages to automatically join
business information. ADF Business Components handles list of
values (LOV) objects that you reference from data columns through a
combination of declarative entity-level validation rules and view
object attribute-level LOV definitions. You can also encapsulate other
declarative or programmatic business logic with these entity object
"table" handlers that is automatically reused in any view of the data
you create.

Business
Component

View Object Like the Siebel Business Component, the ADF view object describes
a logical mapping on top of the underlying physical table
representation. Both the Siebel Business Component and the ADF
view object allow you to provide logical field names, data, and
calculated fields that match the needs of the user interface. As with
the Siebel Business Component, with the ADF view object you can
define view objects that join information from various underlying
tables. The related ADF view link is similar to the Siebel Link object
and allows you to define master-detail relationships. In ADF Business
Components, your view object definitions can exploit the full power of
the SQL language to shape the data as required by the user
interface.

Business Object Application Module The Siebel Business Object lets you define a collection of business
components. The ADF application module performs a similar task,
allowing you to create a collection of master-detail view objects that
act as a "data model" for a set of related user interface pages. In
addition, the application module provides a transaction and database
connection context for this group of data views. You can make
multiple requests to objects obtained from the application module and
these participate in the same transaction.

A.3 Comparison to ADO.NET
Data access functionality of ADF Business Components parallels functionality in 4GL
tools, such as ADO.NET. Mapping familiar ADO.NET concepts may help you to
understand how ADF Business Components implements them.
If you have developed solutions in the past with Visual Studio 2003 or 2005, you are
familiar with using the ADO.NET framework for data access. ADF Business
Components implements all of the data access functionality you are familiar with from
ADO.NET, with numerous enhancements.
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Table A-3    Familiar Concepts for ADO.NET Developers

This concept Maps to Oracle ADF With these similarities

Data Set Application Module The application module component plays the same role as the
ADO.NET data set. It is a strongly typed service component that
represents a collection of row sets called view object instances,
which are similar to ADO.NET data tables. An application module
exposes a service interface that surfaces the rows of data in a
developer-configurable set of its view instances as an SDO-
compatible service (accessible as a web service, or as an SCA
composite). The application module works with a related transaction
object to provide the context for the SQL queries that the view
objects execute. The application module also provides the context for
modifications saved to the database by the entity objects, which play
the role of the ADO.NET data adapter.

Data Adapter Entity Object The entity object component is like a strongly typed ADO.NET data
adapter. It represents the rows in a particular table and handles the
find-by-primary-key, insert, update, delete, and lock operations for
those rows. In ADF Business Components, you don't have to specify
these statements yourself, but you can override them if you need to.
The entity object encapsulates validation or other business logic
related to attributes or entire rows in the underlying table. This
validation is enforced when data is modified and saved by the end
user using any view object query that references the underlying entity
object. One difference in ADF Business Components is that the
arbitrary, flexible querying is performed by SQL statements at the
view object instance level, but the view objects and entity objects
coordinate automatically at runtime.

Data Block View Object The view object component performs the "data retrieval" portion of
the data block functionality. Each view object encapsulates a SQL
query, and at runtime each one manages its own query result set. If
you connect two or more view objects in master-detail relationships,
that coordination is handled automatically. While defining a view
object, you can link any of its query columns to underlying entity
objects. By capturing this information, the view object and entity
object can cooperate automatically for you at runtime to enforce your
domain business logic, regardless of the "shape" of the business
data required by the user's task.
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