
Oracle® Fusion Middleware
REST API for Oracle Platform Security
Services

12c (12.2.1.3.0)
E80297-01
August 2017

Oracle Fusion Middleware REST API for Oracle Platform Security Services, 12c (12.2.1.3.0)

E80297-01

Copyright © 2016, 2017, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience v

Documentation Accessibility v

Related Documents v

Conventions v

 What's New In This Guide

New and Changed Features for 12c (12.2.1.3.0) vii

New and Changed Features for 12c (12.2.1.2.0) vii

New and Changed Features for 12c (12.2.1) vii

1 About the OPSS REST API

1.1 Introducing the OPSS REST API 1-1

1.2 General URL Structure for OPSS Resources 1-2

1.3 Authenticating REST Resources 1-2

1.4 Using HTTP Methods with OPSS REST 1-2

1.5 HTTP Status Codes for HTTP Methods 1-3

2 Registering OPSS Clients

2.1 POST Registration Method 2-1

2.2 GET Registration Method 2-3

2.3 PUT Registration Method 2-3

2.4 DELETE Registration Method 2-4

3 Managing Credentials in the Credential Store

3.1 POST Credentials Method 3-1

3.2 GET Credentials Using Map and Key Method 3-2

3.3 GET Credentials Using Map Method 3-3

3.4 GET Credential Using Resource ID 3-4

iii

3.5 PUT Credential Using Resource ID 3-5

3.6 DELETE Credential Using Resource ID 3-6

4 Managing Keystores

4.1 POST New KSS Keystore Method 4-1

4.2 POST Import KSS Keystore Method 4-3

4.3 PUT Password Update KSS Keystore Method 4-5

4.4 POST Trusted Certificate KSS Keystore Method 4-6

4.5 GET Stripe KSS Keystores Method 4-8

4.6 GET Alias KSS Keystore Method 4-9

4.7 GET Trusted Certificate KSS Keystore Method 4-10

4.8 DELETE Trusted Certificate KSS Keystore Method 4-12

4.9 POST Secret Key KSS Keystore 4-13

4.10 GET Secret Key Properties KSS Keystore Method 4-15

4.11 DELETE Secret Key KSS Keystore Method 4-16

4.12 POST Key Pair KSS Keystore 4-18

4.13 GET Key Pair KSS Keystore Method 4-19

4.14 DELETE Key Pair KSS Keystore Method 4-21

4.15 DELETE Keystore Service KSS Keystore Method 4-22

5 Creating and Validating Trust Tokens

5.1 POST Trust Service Issue Token Method 5-1

5.2 POST Trust Service Validate Token Method 5-3

6 Authorizing Access

6.1 GET PDP Link Method 6-1

6.2 POST Policy Decision Method 6-2

iv

Preface

This preface describes the document accessibility features and conventions used in
this guide—REST API for Oracle Platform Security Services.

Audience
This document is intended for software developers and architects who are interested
in using Oracle Platform Security Services (OPSS) through a RESTful API. The
audience must already be familiar with OPSS to use this guide.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Accessible Access to Oracle Support

Oracle customers who have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=trs if you are hearing impaired.

Related Documents
For more information, see the following documents in the Oracle Platform Security
Services documentation set:

• Release Notes for Oracle Platform Security Services

• Securing Applications with Oracle Platform Security Services

• Infrastructure Security WLST Command Reference

• Java API Reference for Oracle Platform Security Services

• Java API Reference for Oracle Platform Security Services MBeans

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

v

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Convention Meaning

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

vi

What's New In This Guide

This section summarizes the new features and significant product changes for Oracle
Platform Security Services (OPSS) in Oracle Fusion Middleware 12c (12.2.1.x).

New and Changed Features for 12c (12.2.1.3.0)
This document does not contain any new or changed features.

New and Changed Features for 12c (12.2.1.2.0)
In release 12.2.1.2.0, the changes to this document include:

Minor corrections throughout the document, which includes the addition of DELETE
Credential Using Resource ID.

New and Changed Features for 12c (12.2.1)
Oracle Platform Security Services 12c (12.2.1) includes the following new and
changed features for this document.

• Registration service RESTful API, which provides REST clients with the ability to
register with the security platform.

• Credentials service RESTful API, which provides REST clients with the ability to
use the Credential Store Framework (CSF) to manage credentials in a secure
form. See Managing Credentials in the Credential Store .

• Keystore service RESTful API, which provides REST clients with the ability to use
the Keystore Service (KSS) to view and manage keystores. See Managing
Keystores .

• Trust service RESTful API, which provides REST clients with the ability to manage
trust tokens. See Creating and Validating Trust Tokens.

• Authorization service RESTful API, which provides REST clients with the ability to
manage XACML3.0 REST profile authorization. See Authorizing Access .

vii

1
About the OPSS REST API

This section introduces the Oracle Fusion Middleware representational state transfer
(REST) API for managing Oracle Platform Security Services (OPSS).
This chapter includes the following sections:

• Introducing the OPSS REST API

• General URL Structure for OPSS Resources

• Authenticating REST Resources

• Using HTTP Methods with OPSS REST

• HTTP Status Codes for HTTP Methods

1.1 Introducing the OPSS REST API
The OPSS REST API provides access to core OPSS functionality over a REST
interface. The REST API enables a wider range of languages and platforms to use
OPSS services. The API also provides applications with the flexibility to use newer
functionality without having to wait for the corresponding language-specific APIs to be
implemented.

The services discussed in this reference include:

• Registration Service – A service that is used to register a client with OPSS. A
client must register with OPSS in order to use any of the other services. See
Registering OPSS Clients .

• Credentials Service – A service that is used to create and view credentials. See
Managing Credentials in the Credential Store .

• Keystore Service – A service that is used to manage keysores. See Managing
Keystores .

• Trust Service – A service that is used to create and validate trust tokens. See
Creating and Validating Trust Tokens.

• Authorization Service – A service that is used to authorize access to resources
using a policy decision point system. See Authorizing Access .

1-1

Note:

To deploy OPSS REST API services, your domain must include the OPSS
REST Service Application Template. You can select this template when
creating your domain, or you can extend an existing domain to include it. For
more information, see the following topics:

– Configuring Fusion Middleware Domains in WebLogic Domains Using the
Configuration Wizard

– Oracle OPSS REST Service Application Template in Domain Template
Reference

1.2 General URL Structure for OPSS Resources
Use the following URL to manage security:

https://host:port/opss/v2/resource

Where:

• host:port—Host and port where Oracle Fusion Middleware is running.

• resource—Relative path that defines the REST resource. Available resources are
described throughout this guide. To access the Web Application Definition
Language (WADL) document which defines each of the resources, specify
application.wadl in the URL. For example:

https://host:port/opss/v2/application.wadl

1.3 Authenticating REST Resources
You access the Oracle Fusion Middleware REST resources over HTTP and must
provide your Oracle WebLogic Server administrator user name and password.

For example, to authenticate using cURL, pass the user name and password using the
-u cURL option.

curl -i -X GET -u username:password https://myhost:7001/opss/v2/keystore

For GET and DELETE methods, which do not send data in the request body, if a keystore
or key is password-protected, you must pass the Base64-encrypted keystore and key
passwords, respectively, in custom headers. For example:

curl -i -X DELETE -u username:password -H keystorePassword:cHdkMQ== -H
keyPassword:bXlQd2Qy https://myhost:7001/opss/v2/
keystoreservice?"stripeName=myStripe&keystoreName=myKeystore"

1.4 Using HTTP Methods with OPSS REST
The OPSS REST endpoints support standard HTTP semantics.

Chapter 1
General URL Structure for OPSS Resources

1-2

REST Method Task

GET Retrieve information about the REST resource.

POST Add a REST resource.

PUT Update a REST resource.

DELETE Delete a REST resource.

1.5 HTTP Status Codes for HTTP Methods
The HTTP methods used to manipulate the resources described in this section return
one of the following HTTP status codes:

HTTP Status Code Description

200 OK The request was successfully completed. A 200 status is returned for successful GET
or POST method.

201 Created The request has been fulfilled and resulted in a new resource being created. The
response includes a Location header containing the canonical URI for the newly
created resource.

A 201 status is returned from a synchronous resource creation or an asynchronous
resource creation that completed before the response was returned.

202 Accepted The request has been accepted for processing, but the processing has not been
completed. The request may or may not eventually be acted upon, as it may be
disallowed at the time processing actually takes place.

When specifying an asynchronous (__detached=true) resource creation (for
example, when deploying an application), or update (for example, when redeploying
an application), a 202 is returned if the operation is still in progress. If
__detached=false, a 202 may be returned if the underlying operation does not
complete in a reasonable amount of time.

The response contains a Location header of a job resource that the client should poll
to determine when the job has finished. Also, returns an entity that contains the
current state of the job

400 Bad Request The request could not be processed because it contains missing or invalid
information (such as, a validation error on an input field, a missing required value,
and so on).

401 Unauthorized The request is not authorized. The authentication credentials included with this
request are missing or invalid.

403 Forbidden The user cannot be authenticated. The user does not have authorization to perform
this request.

404 Not Found The request includes a resource URI that does not exist.

405 Method Not Allowed The HTTP verb specified in the request (DELETE, GET, POST, PUT) is not supported for
this request URI.

Chapter 1
HTTP Status Codes for HTTP Methods

1-3

HTTP Status Code Description

406 Not Acceptable The resource identified by this request is not capable of generating a representation
corresponding to one of the media types in the Accept header of the request. For
example, the client's Accept header request XML be returned, but the resource can
only return JSON.

415 Not Acceptable The client's ContentType header is not correct (for example, the client attempts to
send the request in XML, but the resource can only accept JSON).

500 Internal Server Error The server encountered an unexpected condition that prevented it from fulfilling the
request.

503 Service Unavailable The server is unable to handle the request due to temporary overloading or
maintenance of the server. The Oracle WSM REST web application is not currently
running.

Chapter 1
HTTP Status Codes for HTTP Methods

1-4

2
Registering OPSS Clients

Oracle Platform Security Services (OPSS) uses the Registration service to provision
an authorization policy for a client. The Security service uses these policies to make
authorization decisions. REST clients are required to register themselves to access
security services.

Section Method Resource Path

POST Registration Method POST /opss/v2/

GET Registration Method GET /opss/v2/

PUT Registration Method PUT /opss/v2/

DELETE Registration Method DELETE /opss/v2/

2.1 POST Registration Method
Use the POST method to register a new client. An application role with a unique name
inside the OPSS rest application stripe is created. Users and groups that are passed
as input of the POST method are made members of the application role. Grants to the
specified resources are automatically provisioned in the OPSS REST application
stripe.

Note:

The same clientName attribute value is required to identify the client when
making changes to registration data.

REST Request

POST /opss/v2/opssRestClient/

Request Body

Media types for the request or response body.

Media Types: application/json

The request body contains the details of the register request:

Table 2-1 Registration Attributes

Attribute Description Required

“clientName“ A unique name that identifies the client. Yes

2-1

Table 2-1 (Cont.) Registration Attributes

Attribute Description Required

“policystoreStripe“ The policy store stripe to which the client is
assigned

No

“keystore“ A list of keystores used for the client No

“credentialMap“ A name of the credential map that is used to store
credential keys.

No

“auditComponent“ A unique name to identify the audit rules for a client No

“trustIssueIDD“ A list identity domains that can issue trust tokens No

“trustValidateIDD“ A list identity domains that can validate trust tokens No

“adminGroup“ A group with the operator role No

“operatorGroup“ A group with the operator role No

“viewerGroup“ A group with the viewer role No

All attributes other than clientName can be specified multiple times. A user should
specify at least one of either: policystoreStripe, keystore, credentialMap,
auditComponent, trustIssueIDD, or trustValidateIDD for the service scopes. In addition,
a user should specify at least one of either: adminGroup, operatorGroup, or viewerGroup
so that some group has privileges.

For service scope attributes, a wild card (*) can be specified to grant all scopes to the
client. The wildcard should be used carefully.

Response Body

The output of a POST request is a Resource ID.

cURL Example

The following example shows how to register a client by submitting a POST request on
the REST resource using cURL

curl -i -X POST -u username:password --data @register.json
 -H Content-Type:application/json https://myhost:7001/opss/v2/opssRestClient

Example of Request Body

The following shows an example of the request body in JSON format.

{
 "clientName": "myClientName",
 "policystoreStripe": "CRM",
 "keystore": ["appA", "appB/store1"],
 "credentialMap": "mapA",
 "auditComponent": "myComponent",
 "trustIssueIDD" : ["cisco", "intel"],
 "trustValidateIDD" : ["cisco", "intel"],
 "adminGroup":"myGroup1",
 "operatorGroup":"myGroup2",

Chapter 2
POST Registration Method

2-2

 "viewerGroup":"myGroup3"
}

2.2 GET Registration Method
Use the GET method to view the client attributes for a registered client.

REST Request

GET /opss/v2/opssRestClient/clientName

Response Body

Media types for the request or response body.

Media Types: application/json

The response body contains the client registration attributes. For details about the
registration attributes, see Table 2-1.

cURL Example

The following example shows how to view the registered client by submitting a GET
request on the REST resource using cURL

curl -i -X GET -u username:password https://myhost:7001/opss/v2/opssRestClient/
 myClientName

Example of Response Header

The following shows an example of the response header. For more about the HTTP
status codes, see HTTP Status Codes for HTTP Methods.

HTTP/1.1 200 OK

Example of Response Body

The following shows an example of the response body in JSON format.

{
 "clientName": "myClientName",
 "policystoreStripe": "CRM",
 "keystore": ["appA", "appB/store1"],
 "credentialMap": "mapA",
 "auditComponent": "myComponent",
 "trustIssueIDD" : ["cisco", "intel"],
 "trustValidateIDD" : ["cisco", "intel"],
 "adminGroup":"myGroup1",
 "operatorGroup":"myGroup2",
 "viewerGroup":"myGroup3"
}

2.3 PUT Registration Method
Use the PUT method to update the attributes of a registered client.

REST Request

PUT /opss/v2/opssRestClient/clientName

Chapter 2
GET Registration Method

2-3

Request Body

Media types for the request or response body.

Media Types: application/json

The request body contains the client registration attributes. For details about the
registration attributes, see Table 2-1.

cURL Example

The following example shows how to update client attributes by submitting a PUT
request on the REST resource using cURL

curl -i -X POST -u username:password --data @register.json
 -H Content-Type:application/json https://myhost:7001/opss/v2/opssRestClient/
 myClientName

Example of Request Body

The following shows an example of the request body in JSON format.

{
 "clientName": "myClientName",
 "policystoreStripe": "CRM",
 "keystore": ["appA", "appB/store1"],
 "credentialMap": "mapA",
 "auditComponent": "myComponent",
 "trustIssueIDD" : ["cisco", "intel"],
 "trustValidateIDD" : ["cisco", "intel"],
 "adminGroup":"myGroup1",
 "operatorGroup":"myGroup2",
 "viewerGroup":"myGroup3"
}

2.4 DELETE Registration Method
Use the DELETE method to remove a registered client.

REST Request

DELETE /opss/v2/opssRestClient/clientName

cURL Example

The following example shows how to delete a delete a registered client by submitting a
DELETE request on the REST resource using cURL.

curl -i -X DELETE -u username:password https://myhost:7001/opss/v2/opssRestClient/
 myClientName

Chapter 2
DELETE Registration Method

2-4

3
Managing Credentials in the Credential
Store

Oracle Platform Security Services (OPSS) uses the Credential Store Framework
(CSF) to manage credentials in a secure form. You can view and manage credentials
in the store using REST.

Section Method Resource Path

POST Credentials Method POST /opss/v2/credentials

GET Credentials Using Map and Key
Method

GET /opss/v2/credentials/

GET Credentials Using Map Method GET /opss/v2/credentials

GET Credential Using Resource ID GET /opss/v2/credentials/resourceId

PUT Credential Using Resource ID PUT /opss/v2/credentials/resourceId

DELETE Credential Using Resource
ID

DELETE /opss/v2/credentials/resourceId

3.1 POST Credentials Method
Use the POST method to create new credentials in the credential store.

REST Request

POST /opss/v2/credentials

Request Body

Media types for the request or response body.

Media Types: application/json

The request body contains the details of the create request:

Table 3-1 Credentials Attributes

Attribute Description Required

“userName“ Username for the credential Yes

“password“ Password for the credential Yes

“description“ A description for the credential Optional

3-1

Table 3-1 (Cont.) Credentials Attributes

Attribute Description Required

“expiration“ The expiration date for the credential formatted as yyyy-
MM-dd' T'HH:mm:ss.SSSZ.

Optional

“namespace“ a unique name for the credential namespace Yes

“name“ A unique name that identifies the credential Yes

Response Body

The output of a POST request is a Resource ID.

cURL Example

The following example shows how to create a credential in the credential store by
submitting a POST request on the REST resource using cURL

curl -i -X POST -u username:password --data @createcred.json -H Content-
Type:application/json https://myhost:7001/opss/v2/credentials

Example of Request Body

The following shows an example of the request body in JSON format.

{
 "userName": "myUser3",
 "password": "mypass123",
 "description": "mydescription",
 "expiration": "5000-07-04T12:08:56.235-0700",
 "namespace: "MyMap",
 "name":"myKey"
}

3.2 GET Credentials Using Map and Key Method
Use the GET method to search the entire CSF for a credential given its map and key
name.

REST Request

GET /opss/v2/credentials

Response Body

Media types for the request or response body.

Media Types: application/json

The response body contains attributes for the credential. For details about credential
attributes, see Table 3-1.

cURL Example

The following example shows how to view credentials in a credential store by
submitting a GET request on the REST resource using cURL.

Chapter 3
GET Credentials Using Map and Key Method

3-2

curl -i -X GET -u username:password https://myhost:7001/idaas/platform/
 opss/v2/credentials?filter=map=mymap,key=mykey

Example of Response Header

The following shows an example of the response header. For more about the HTTP
status codes, see HTTP Status Codes for HTTP Methods.

HTTP/1.1 200 OK

Example of Response Body

The following shows an example of the response body in JSON format.

{
 "id": "1234567890"
 "userName": "myUser3",
 "password": "mypass123",
 "description": "mydescription",
 "expiration": "5000-07-04T12:08:56.235-0700",
 "type": "PasswordCredential"
}

3.3 GET Credentials Using Map Method
Use the GET method to search the entire CSF for a list of credentials given a map
name.

Note:

If a map contains generic credentials, then it will not be present in the list.

REST Request

GET /opss/v2/credentials

Response Body

Media types for the request or response body.

Media Types: application/json

The response body contains attributes for the credentials. For details about credential
attributes, see Table 3-1.

cURL Example

The following example shows how to view credentials in a credential store by
submitting a GET request on the REST resource using cURL.

curl -i -X GET -u username:password https://myhost:7001/opss/v2/credentials?
 filter=map=mymap

Example of Response Header

The following shows an example of the response header. For more about the HTTP
status codes, see HTTP Status Codes for HTTP Methods.

Chapter 3
GET Credentials Using Map Method

3-3

HTTP/1.1 200 OK

Example of Response Body

The following shows an example of the response body in JSON format.

{
 "credentials": [
 {
 "id": "1234567890",
 "userName": "myUser",
 "password": "mypass123",
 "description": "mydescription",
 "expiration": "5000-07-04T12:08:56.235-0700",
 "type": "PasswordCredential"
 },
 {
 "id": "1234567890",
 "userName": "myUser2",
 "password": "mypass123",
 "description": "mydescription",
 "expiration": "5000-07-04T12:08:56.235-0700",
 "type": "PasswordCredential"
 }
]
}

3.4 GET Credential Using Resource ID
Use the GET method to search the entire CSF for a credential given its Resource ID.

REST Request

GET /opss/v2/credentials/resourceId

Response Body

Media types for the request or response body.

Media Types: application/json

The response body contains attributes for the credential. For details about credential
attributes, see Table 3-1.

cURL Example

The following example shows how to view credentials in a credential store by
submitting a GET request on the REST resource using cURL.

curl -i -X GET -u username:password https://myhost:7001/opss/v2/credentials/
 1234567890

Example of Response Header

The following shows an example of the response header. For more about the HTTP
status codes, see HTTP Status Codes for HTTP Methods.

HTTP/1.1 200 OK

Example of Response Body

Chapter 3
GET Credential Using Resource ID

3-4

The following shows an example of the response body in JSON format.

{
 "id": "1234567890"
 "userName": "myUser3",
 "password": "mypass123",
 "description": "mydescription",
 "expiration": "5000-07-04T12:08:56.235-0700",
 "type": "PasswordCredential"
}

3.5 PUT Credential Using Resource ID
Use the PUT method to update an existing credential in the credential store. The entry
must exist for the operation to succeed.

REST Request

PUT /opss/v2/credentials/resourceId

Request Body

Media types for the request or response body.

Media Types: application/json

The request body contains the details of the create request.

Table 3-2 Credentials Attributes

Attribute Description Required

“userName“ Username for the credential No

“password“ Password for the credential No

“description“ A description for the credential No

“expiration“ The expiration date for the credential formatted as yyyy-
MM-dd' T'HH:mm:ss.SSSZ.

No

“namespace“ “myMap4” No

“name“ “myKey22” No

cURL Example

The following example shows how to replace an existing credential in the credential
store by submitting a PUT request on the REST resource using cURL.

curl -i -X PUT -u username:password --data @replacecred.json -H Content-
Type:application/json https://myhost:7001/opss/v2/credentials

Example of Request Body

The following shows an example of the request body in JSON format.

{
 "userName": "myUser3",

Chapter 3
PUT Credential Using Resource ID

3-5

 "password": "mypass123",
 "description": "mydescription",
 "expiration": "5000-07-04T12:08:56.235-0700",

3.6 DELETE Credential Using Resource ID
Use the DELETE method to remove the entire CSF for a credential given its Resource
ID. The entry must exist for the operation to succeed.

REST Request

DELETE /opss/v2/credentials/resourceId

cURL Example

The following example shows how to delete a credential from a credential store by
submitting a DELETE request on the REST resource using cURL.

curl -i -X DELETE -u username:password https://myhost:7001/opss/v2/credentials/
 1234567890

Chapter 3
DELETE Credential Using Resource ID

3-6

4
Managing Keystores

Oracle Platform Security Services (OPSS) uses the Keystore Service (KSS) to view
and manage keystores. You can view and manage keystores using a set of REST
resources.

Section Method Resource Path

POST New KSS Keystore Method POST /opss/v2/keystoreservice

POST Import KSS Keystore Method POST /opss/v2/keystoreservice/keystore

PUT Password Update KSS Keystore Method PUT /opss/v2/keystoreservice

POST Trusted Certificate KSS Keystore
Method

POST /opss/v2/keystoreservice/certificates

GET Stripe KSS Keystores Method GET /opss/v2/keystoreservice/{stripeName}

GET Alias KSS Keystore Method GET /opss/v2/keystoreservice/alias/{stripeName}/
{keystoreName}/{entryType}

GET Trusted Certificate KSS Keystore
Method

GET /opss/v2/keystoreservice/certificates

DELETE Trusted Certificate KSS Keystore
Method

DELETE /opss/v2/keystoreservice/certificates

POST Secret Key KSS Keystore POST /opss/v2/keystoreservice/secretkey

GET Secret Key Properties KSS Keystore
Method

GET /opss/v2/keystoreservice/secretkey

DELETE Secret Key KSS Keystore Method DELETE /opss/v2/keystoreservice/secretkey

POST Key Pair KSS Keystore POST /opss/v2/keystoreservice/keypair

GET Key Pair KSS Keystore Method GET /opss/v2/keystoreservice/keypair

DELETE Key Pair KSS Keystore Method DELETE /opss/v2/keystoreservice/keypair

DELETE Keystore Service KSS Keystore
Method

DELETE /opss/v2/keystoreservice

4.1 POST New KSS Keystore Method
Use the POST method to create a new Keystore Service (KSS) Keystore.

REST Request

POST /opss/v2/keystoreservice

4-1

Request Body

Media types for the request or response body.

Media Types: application/json

The request body contains the details of the create request:

Attribute Description Required

“stripeName” Name of the stripe to contain the
KSS keystore.

Yes

“keystoreName” Name for the KSS keystore. Yes

”keystorePassw
ord”

Password for the KSS keystore. No

“permissionBas
ed”

Boolean value that specifies
whether to create a permission-
based keystore.

No

Response Body

Media types for the request or response body.

Media Types: application/json

The response body returns the status of the create operation, including:

Attribute Description

“ERROR_CODE” If “STATUS” is set to “Failed”, provides the error code.

“ERROR_MSG” If “STATUS” is set to “Failed”, provides the contents of the
error message.

“STATUS” Status of operation. For example, “SUCCEEDED” or “FAILED”.

cURL Example

The following example shows how to create a KSS keystore by submitting a POST
request on the REST resource using cURL.

curl -i -X POST -u username:password --data @createkss.json -H Content-
Type:application/json https://myhost:7001/opss/v2/keystoreservice

Example of Request Body

The following shows an example of the request body in JSON format.

{
 "stripeName" : "myStripe",
 "keystoreName" : "myKeystore",
 "keystorePassword" : "myPwd",
 "permissionBased" : "false"
}

Chapter 4
POST New KSS Keystore Method

4-2

Note:

A password is required unless creating a permission-based keystore
("permission" : "true").

Example of Response Header

The following shows an example of the response header. For more about the HTTP
status codes, see HTTP Status Codes for HTTP Methods.

HTTP/1.1 200 OK

Example of Response Body

The following shows an example of the response body in JSON format.

{
 "STATUS": "SUCCEEDED"
}

Example of Creating Permission-Based Keystore

The following shows an example of the request body in JSON format.

{
 "stripeName" : "myStripe",
 "keystoreName" : "permKeystore",
 "permissionBased" : "true"
}

4.2 POST Import KSS Keystore Method
Use the POST method to import a Keystore Service (KSS) keystore from a JKS
keystore file.

REST Request

POST /opss/v2/keystoreservice/keystore

Request Body

Media types for the request or response body.

Media Types: multipart/form-data

The response body contains information about the import request, including:

Attribute Description Required

“stripeName” Name of the stripe. Yes

“keystoreImpor
tByte”

Byte array of keystore data Yes

“keystoreName” Name for the JKS keystore. Yes

Chapter 4
POST Import KSS Keystore Method

4-3

Attribute Description Required

“keystorePassw
ord”

Password for the local keystore file
that is being imported and the
keystore entry, if password-
protected.

No

“keystoreType” Keystore type. This value must be
set to JKS.

Yes

“keyAliasList” List of aliases for the keys to be
imported from the keystoreFile.

Yes

“keyPasswordLi
st”

List of passwords for the keys to be
imported from the keystoreFile.

No

“permissionBas
ed”

Boolean value that specifies
whether to import as a permission-
based keystore.

No

Response Body

Media types for the request or response body.

Media Types: application/json

The response body contains information about the import operation, including:

Attribute Description

“ERROR_CODE” If “STATUS” is set to “Failed”, provides the error code.

“ERROR_MSG” If “STATUS” is set to “Failed”, provides the contents of the
error message.

“SUCCES MSGS” Success message.

cURL Example

The following example shows how to import a KSS keystore by submitting a POST
request on the REST resource using cURL.

curl -i -X PUT -u username:password --data @updatekss.json -H
Content-Type:application/json https://myhost:7001/opss/v2/keystoreservice/keystore

Example of Request Body

The following shows an example of the request body in JOSN format.

"stripeName" : "myStripe",
"keystoreName" : "myKeystore",
"keyAliasList" : ["myAlias"],
"keystorePassword" : "welcome1",
"keyPasswordList" : ["welcome"],
"keystoreType" : "JKS",
"permissionBased" : "false",
"keystoreImportBytes" : [-2, -19, -2, -19, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 2, 0, 6,
109, 121, 99, 101, 114, 116, 0, 0, 1, 86, 125, 119, -27, 113, 0, 5, 88, 46, 53, 48,
57, 0, 0, 3, -61, 48, -126, 3, -65, 48, -126, 2, -89, -96, 3, 2, 1, 2, 2, 16, 64, 4,

Chapter 4
POST Import KSS Keystore Method

4-4

72, -122, -60, 65, -17, 59, 100, 58, -128, 102, 64, -102, -4, -96, 48, 13, 6, 9, 42,
-122, 72, -122, -9, 13, 1, 1, 11, 5, 0, 48, 120, 49, 11, 48, 9, 6, 3, 85, 4, 6, 19,
2, 85, 83, 49, 16, 65, -117, -74]
}

Example of Response Header

The following shows an example of the response header. For more about the HTTP
status codes, see HTTP Status Codes for HTTP Methods.

HTTP/1.1 200 OK

Example of Response Body

The following shows an example of the response body in JSON format.

{
 "SUCCESS_MSG":"Aliases: myAlias imported
 successfully"
}

4.3 PUT Password Update KSS Keystore Method
Use the PUT method to update the password for a Keystore Service (KSS) keystore.

REST Request

PUT /opss/v2/keystoreservice

Request Body

Media types for the request or response body.

Media Types: application/json

The response body contains information about the Load Balancer patches, including:

Attribute Description Required

“stripeName” Name of the stripe. Yes

“keystoreName” Name of the KSS keystore. Yes

“newPassword” New password for the keystore. Yes

“oldPassword” Old password for the keystore. Yes

Response Body

Media types for the request or response body.

Media Types: application/json

The response body returns the status of the update operation, including:

Attribute Description

“ERROR_CODE” If “STATUS” is set to "Failed", provides the error code.

Chapter 4
PUT Password Update KSS Keystore Method

4-5

Attribute Description

“ERROR_MSG” If “STATUS” is set to “Failed”, provides the contents of the
error message.

“STATUS” Status of operation. For example, “SUCCEEDED” or “FAILED”.

cURL Example

The following example shows how to import a KSS keystore by submitting a PUT
request on the REST resource using cURL.

curl -i -X PUT -u username:password --data @updatekss.json -H Content-
Type:application/json https://myhost:7001/opss/v2/keystoreservice

Example of Request Body

The following shows an example of the request body in JSON format.

{
 "stripeName" : "myStripe",
 "keystoreName" : "mykssstore",
 "oldPassword" : "myPwd",
 "newPassword" : "myNewPwd"
}

Example of Response Header

The following shows an example of the response header. For more about the HTTP
status codes, see HTTP Status Codes for HTTP Methods.

HTTP/1.1 200 OK

Example of Response Body

The following shows an example of the response body in JSON format.

{
 "STATUS": "SUCCEEDED"
}

4.4 POST Trusted Certificate KSS Keystore Method
Use the POST method to import a trusted certificate into a Keystore Service (KSS)
keystore.

REST Request

POST /opss/v2/keystoreservice/certificates

Request Body

Media types for the request or response body.

Media Types: application/json

The response body contains information about the import request, including:

Chapter 4
POST Trusted Certificate KSS Keystore Method

4-6

Attribute Description Required

“keyAliasList” List that contains alias for the trusted
certificate.

Yes

“keystoreEntry” Base64-encoded certificate. Yes

“keystoreType” Keystore entry type. Valid values include:
Certificate, TrustedCertificate, or
SecretKey.

Yes

“keystoreName” Name of the KSS keystore. Yes

“stripeName” Name of the stripe. Yes

“keystorePasswor
d”

Password for the KSS keystore. No

“keyPasswordList” List that contains key password for the trust
certificate.

No

Response Body

Media types for the request or response body.

Media Types: application/json

The response body returns the status of the import operation, including:

Attribute Description

“ERROR_CODE” If “STATUS” is set to "Failed", provides the error code.

“ERROR_MSG” If “STATUS” is set to “Failed”, provides the contents of the
error message.

“STATUS” Status of operation. For example, “SUCCEEDED” or “FAILED”.

“SUBJECT_DN” Subject DN list that was imported.

cURL Example

The following example shows how to create a KSS keystore by submitting a POST
request on the REST resource using cURL.

curl -i -X POST -u username:password --data @importcertkss.json -H Content-
Type:application/json https://myhost:7001/opss/v2/keystoreservice/certificates

Example of Request Body

The following shows an example of the request body in JSON format.

{
 "keyAliasList" : ["myAlias"],
 "keystoreEntry":
"MIIC7DCCAqqgAwIBAgIEalhBSjALBgcqhkjOOAQDBQAwSDEKMAgGA1UEBhMBeTEKMAgGA1UECBMB
\neTEKMAgGA1UEBxMBeTEKMAgGA1UEChMBeTEKMAgGA1UECxMBeTEKMAgGA1UEAxMBeTAeFw0xNDA3\nMDMxM
TAwMTZaFw0xNDEwMDExMTAwMTZaMEgxCjAIBgNVBAYTAXkxCjAIBgNVBAgTAXkxCjAIBgNV
\nBAcTAXkxCjAIBgNVBAoTAXkxCjAIBgNVBAsTAXkxCjAIBgNVBAMTAXkwggG3MIIBLAYHKoZIzjgE

Chapter 4
POST Trusted Certificate KSS Keystore Method

4-7

\nATCCAR8CgYEA/X9TgR11EilS30qcLuzk5/YRt1I870QAwx4/gLZRJmlFXUAiUftZPY1Y+r/F9bow
\n9subVWzXgTuAHTRv8mZgt2uZUKWkn5/oBHsQIsJPu6nX/rfGG/g7V+fGqKYVDwT7g/bTxR7DAjVU
\nE1oWkTL2dfOuK2HXKu/
yIgMZndFIAccCFQCXYFCPFSMLzLKSuYKi64QL8Fgc9QKBgQD34aCF1ps9\n3su8q1w2uFe5eZSvu/
o66oL5V0wLPQeCZ1FZV4661FlP5nEHEIGAtEkWcSPoTCgWE7fPCTKMyKbh
\nPBZ6i1R8jSjgo64eK7OmdZFuo38L+iE1YvH7YnoBJDvMpPG+qFGQiaiD3+Fa5Z8GkotmXoB7VSVk\nAUw7/
s9JKgOBhAACgYBrvzkjozmv6t6T0GNJES1R3ypRsBs8VLX2g3GotHd7Kht/TCj4HikelZDd
\nuL0t96R5Q4A3srOgSIZ
+0INRs1ER8y1Q37LyJNfyqYn5KqLBlN9bhSYAfcuIpjwIXGVfLQGdByD7\ntr4PSvZQx18K6p68HUCh
+jXQT9+7n3ZUIBzH5aMhMB8wHQYDVR0OBBYEFPdMpcEBbYSCYMdJiE4r
\ncQxf7Me4MAsGByqGSM44BAMFAAMvADAsAhQH/G1ixrEaWAG3lGWafkHgXxnzhwIUW5eSctgmaQBj
\nvKaY0E6fYJzcp5c=",
 "keystoreType" : "TrustedCertificate",
 "keystoreName" : "myKeystore",
 "stripeName" : "myStripe",
 "keystorePassword" : "myPwd"
 "keyPasswordList" : ["mykeyPwd"]
}

Example of Response Header

The following shows an example of the response header. For more about the HTTP
status codes, see HTTP Status Codes for HTTP Methods.

HTTP/1.1 200 OK

Example of Response Body

The following shows an example of the response body in JSON format.

{
 "STATUS": "SUCCEEDED"
 "SUBJECT_DN": "CN=y,OU=y,O=y,L=y,ST=y,C=y"
}

4.5 GET Stripe KSS Keystores Method
Use the GET method to return all Keystore Service (KSS) keystores for a stripe.

REST Request

GET /opss/v2/keystoreservice/{stripeName}

Parameters

The following table summarizes the GET request parameters.

Name Description Type Required

“stripeName” Name of stripe for which you want to view all
KSS keystores.

Path Yes

Response Body

Media types for the request or response body.

Media Types: application/json

The response body contains information about the certificate, including:

Chapter 4
GET Stripe KSS Keystores Method

4-8

Attribute Description

“keystores” List of keystores in the stripe.

cURL Example

The following example shows how to view all certificates for an alias by submitting a
GET request on the REST resource using cURL.

curl -i -X GET -u username:password https://myhost:7001/opss/v2/keystoreservice/
myStripe

Example of Response Header

The following shows an example of the response header. For more about the HTTP
status codes, see HTTP Status Codes for HTTP Methods.

HTTP/1.1 200 OK

Example of Response Body

The following shows an example of the response body in JSON format.

{
 "keystores":["trust","castore"]
}

4.6 GET Alias KSS Keystore Method
Use the GET method to view the alias for the Keystore Service (KSS) keystore.

REST Request

GET /opss/v2/keystoreservice/alias/{stripeName}/{keystoreName}/{entryType}

Parameters

The following table summarizes the GET request parameters.

Name Description Type Required

“stripeName” Name of the stripe. Path Yes

“keystoreName” Name of the keystore. Path Yes

“entryType” Keystore type. Valid values include Certificate,
TrustedCertificate, or SecretKey. Wildcard "*"
means all the types.

Path Yes

keystorePassword Base64 encoded keystore password Header No

Response Body

Media types for the request or response body.

Media Types: application/json

Chapter 4
GET Alias KSS Keystore Method

4-9

The response body contains information about the certificate, including:

Attribute Description

“Alias” List of keystore aliases in the stripe.

cURL Example

The following example shows how to view all certificates for an alias by submitting a
GET request on the REST resource using cURL.

curl -i -X GET -u username:password https://myhost:7001/opss/v2/keystoreservice/
alias/myStripe/myKeystore/TrustedCertificate

Example of Response Header

The following shows an example of the response header. For more about the HTTP
status codes, see HTTP Status Codes for HTTP Methods.

HTTP/1.1 200 OK

Example of Response Body

The following shows an example of the response body in JSON format.

{
 "Alias":["myAlias"]
}

4.7 GET Trusted Certificate KSS Keystore Method
Use the GET method to view trusted certificates in the Keystore Service (KSS)
keystore. If the keystore is password-protected, you must provide a Base64-encoded
header value for the keystore password.

REST Request

GET /opss/v2/keystoreservice/certificates

Parameters

The following table summarizes the GET request parameters.

Name Description Type Required

“stripeName“ Name of the stripe. Query Yes

“keystoreName“ Name of the keystore. Query Yes

“keyAlias“ Alias for trusted certificate. Query Yes

“keystoreEntryTy
pe“

Type of keystore entry. Valid values
include Certificate,
TrustedCertificate, or
CertificateChain.

Query Yes

“keystorePasswor
d“

Password for the KSS keystore. Header No

Chapter 4
GET Trusted Certificate KSS Keystore Method

4-10

Name Description Type Required

“keyPassword“ Password for the key. Header No

Response Body

Media types for the request or response body.

Media Types: application/json

The response body contains information about the certificate, including:

Attribute Description

“CONTENT“ Contents of the Base64-encoded certificate.

“Extensions“ Optional extensions that are used to issue a certificate for a specific
purpose. Each extension includes the following:

• Object identifier (oid) that uniquely identifies it
• Flag indicating whether the extension is critical
• Set of values

“ISSUER_DN“ List of trusted distinguished names.

“NOT_AFTER“ Date the certificate expires.

“NOT_BEFORE“ Date the certificate is activated.

“SERIAL_NO“ Serial number of the JKS keystore.

“SIGNATURE“ Base64-encoded signature key.

“SIGNING_ALGORITHM“ Signing algorithm for the alias.

“SUBJECT_DN“ Subject distinguished names list.

“PUBLIC KEY“ String of public key value.

cURL Example

The following example shows how to view all certificates for an alias by submitting a
GET request on the REST resource using cURL.

curl -i -X GET -u username:password -H keystorePassword:cHdkMQ== -H
keyPassword:bXlQd2Qy https://myhost:7001/opss/v2/keystoreservice/
certificates?"stripeName=myStripe&keystoreName=myKeystore&keyAlias=client&keystoreEnt
ryType=Certificate"

Example of Response Header

The following shows an example of the response header. For more about the HTTP
status codes, see HTTP Status Codes for HTTP Methods.

HTTP/1.1 200 OK

Example of Response Body

The following shows an example of the response body in JSON format.

Chapter 4
GET Trusted Certificate KSS Keystore Method

4-11

{
 "SUBJECT_DN":"CN=y,OU=y,O=y,L=y,ST=y,C=y",
 "ISSUER_DN":"CN=y,OU=y,O=y,L=y,ST=y,C=y",
 "NOT_BEFORE":"Fri Jul 25 02:45:11 PDT 2014",
 "NOT_AFTER":"Thu Oct 23 02:45:11 PDT 2014",
 "SERIAL_NO":"982191050",
 "SIGNING_ALGORITHM":"1.2.840.10040.4.3",
 "PUBLIC_KEY": "MIIBtzCCASwGByqGSM44BAEwggEfAoGBAP1/
U4EddRIpUt9KnC7s5Of2EbdSPO9EAMMeP4C2USZpRV1AIlH7WT2NWPq/xfW6MPbLm1Vs14E7gB00b/
JmYLdrmVClpJ+f6AR7ECLCT7up1/63xhv4O1fnxqimFQ8E
+4P208UewwI1VBNaFpEy9nXzrith1yrv8iIDGZ3RSAHHAhUAl2BQjxUjC8yykrmCouuEC/
BYHPUCgYEA9+GghdabPd7LvKtcNrhXuXmUr7v6OuqC+VdMCz0HgmdRWVeOutRZT
+ZxBxCBgLRJFnEj6EwoFhO3zwkyjMim4TwWeotUfI0o4KOuHiuzpnWRbqN/C/ohNWLx
+2J6ASQ7zKTxvqhRkImog9/hWuWfBpKLZl6Ae1UlZAFMO/7PSSoDgYQAAoGAa785I6M5r
+rek9BjSREtUd8qUbAbPFS19oNxqLR3eyobf0wo+B4pHpWQ3bi9LfekeUOAN7KzoEiGftCDUbNREfMtUN
+y8iTX8qmJ+SqiwZTfW4UmAH3LiKY8CFxlXy0BnQcg+7a+D0r2UMdfCuqevB1Aofo10E/fu592VCAcx
+U=""CONTENT":"-----BEGIN CERTIFICATE-----
\nMIIC7DCCAqqgAwIBAgIEOosLyjALBgcqhkjOOAQDBQAwS
EKMAgGA1UEBhMBcjEKMAgGA1UECBMB\ncjEKMAgGA1UEBxMBcjEKMAgGA1UEChMBcjEKMAgGA1UECxM
cjEKMAgGA1UEAxMBUjAeFw0xNDA3\nMjUwOTQ1MTFaFw0xNDEwMjMwOTQ1MTFaMEgxCjAIBgNVBAYTA
IxCjAIBgNVBAgTAXIxCjAIBgNV\nBAcTAXIxCjAIBgNVBAoTAXIxCjAIBgNVBAsTAXIxCjAIBgNVBAM
AVIwggG3MIIBLAYHKoZIzjgE\nATCCAR8CgYEA\/X9TgR11EilS30qcLuzk5\/YRt1I870QAwx4\/gL
RJmlFXUAiUftZPY1Y+r\/F9bow\n9subVWzXgTuAHTRv8mZgt2uZUKWkn5\/oBHsQIsJPu6nX\/rfGG
/g7V+fGqKYVDwT7g\/bTxR7DAjVU\nE1oWkTL2dfOuK2HXKu\/yIgMZndFIAccCFQCXYFCPFSMLzLKS
YKi64QL8Fgc9QKBgQD34aCF1ps9\n3su8q1w2uFe5eZSvu\/o66oL5V0wLPQeCZ1FZV4661FlP5nEHE
GAtEkWcSPoTCgWE7fPCTKMyKbh\nPBZ6i1R8jSjgo64eK7OmdZFuo38L+iE1YvH7YnoBJDvMpPG+qFG
iaiD3+Fa5Z8GkotmXoB7VSVk\nAUw7\/s9JKgOBhAACgYAjhpZybXj6rlXDow8srnSFE9dZJJpCKaQV
ACagQogePV+xlqPClDOoiQJ\nuvuUGHerDrThC1\/Wq5Uj1+TnkSKTy0qYxmQoq56xALa47np9TKtqt
4Vy8eUUorakG4lrjNt\/EgR\nfO675n+qINkKXKpcxaCicupRCYPkPXlnT4mtyKMhMB8wHQYDVR0OBB
EFDKbmPa2Il6SylJRPTv8\nQ+4CqpEhMAsGByqGSM44BAMFAAMvADAsAhQbkmlaUG5QDR5mXUiYC74p
\/FBOwIUGx5lc5Y01ppo\nvK3UgL7M8E3eOfc=\n-----END CERTIFICATE-----",
 "SIGNATURE":FEZN2l4SPFEK5jt2QZRb5Q==",
 "Extensions":"{subjectKeyIDExtension {oid = 2.5.29.14 critical = false, value =
329b98f6b6225e92ca52513d3bfc43ee02aa9121}}"
}

4.8 DELETE Trusted Certificate KSS Keystore Method
Use the Delete method to delete a certificate from a Keystore Service (KSS) keystore.
If the keystore is password-protected, you must provide Base64-encoded header
values for the keystore and key passwords.

REST Request

DELETE /opss/v2/keystoreservice/certificates

Parameters

The following table summarizes the DELETE request parameters.

Name Description Type Required

“stripeName“ Name of stripe. Query Yes

“keystoreName“ Name of the keystore. Query Yes

“keyAlias“ Alias for the certificate in the KSS keystore. Query Yes

Chapter 4
DELETE Trusted Certificate KSS Keystore Method

4-12

Name Description Type Required

“keystorePassword“ Base64 encoded keystore password. Header No

“keyPassword“ Base64 encoded key password. Header No

Response Body

Media types for the request or response body.

Media Types: application/json

The response body returns the status of the import operation, including:

Attribute Description

“ERROR_CODE” If “STATUS” is set to “Failed”, provides the error code.

“ERROR_MSG” If “STATUS” is set to “Failed”, provides the contents of the error message.

“STATUS” Status of operation. For example, “SUCCEEDED”.

cURL Example

The following example shows how to delete a trusted certificate from the keystore by
submitting a DELETE request on the REST resource using cURL.

curl -i -X DELETE -u username:password -H keystorePassword:cHdkMQ== -H
keyPassword:bXlQd2Qy https://myhost:7001/opss/v2/keystoreservice/
certificates?"stripeName=myStripe&keystoreName=myKeystore&keyAlias=myAlias"

Example of Response Header

The following shows an example of the response header. For more about the HTTP
status codes, see HTTP Status Codes for HTTP Methods.

HTTP/1.1 200 OK

Example of Response Body

The following shows an example of the response body in JSON format.

{
 "STATUS": "SUCCEEDED"
}

4.9 POST Secret Key KSS Keystore
Use the POST method to create a secret key used in symmetric encryption/decryption
for a KSS keystore.

REST Request

POST /opss/v2/keystoreservice/secretkey

Chapter 4
POST Secret Key KSS Keystore

4-13

Request Body

Media types for the request or response body.

Media Types: application/json

The request body contains the details of the create request:

Attribute Description Required

“stripeName“ Name of the stripe. Yes

“keystoreName“ Name for the KSS keystore. Yes

“keyAliasList“ List that contains alias for the secret key. Yes

“keySize“ Size measured in bits of the of the key used
in cryptographic algorithm.

Yes

“keyAlgorithm“ Controls the cryptographic characteristics
of the algorithms that are used when
securing messages.

Yes

“keystorePassword“ Password for the KSS keystore. No

“keyPasswordList“ List that contains password for the key. No

Response Body

Media types for the request or response body.

Media Types: application/json

The response body returns the status of the import operation, including:

Attribute Description

“ERROR_CODE“ If “STATUS“ is set to “Failed“, provides the error code.

“ERROR_MSG“ If “STATUS“ is set to “Failed“, provides the contents of the
error message.

“STATUS“ Status of operation. For example, “SUCCEEDED“ or “FAILED“.

cURL Example

The following example shows how to create a secret key by submitting a POST
request on the REST resource using cURL.

curl -i -X POST -u username:password --data @secretkey.json -H Content-
Type:application/json https://myhost:7001/opss/v2/keystoreservice/secretkey

Example of Request Body

The following shows an example of the request body in JSON format.

{
 "stripeName" : "myStripe",
 "keystoreName" : "myKeystore",

Chapter 4
POST Secret Key KSS Keystore

4-14

 "keyAliasList" : ["myKeyAlias"],
 "keySize" : "56",
 "keyAlgorithm" : "DES",
 "keystorePassword" : "myPwd",
 "keyPasswordList" : ["myKeyPwd"]
}

Example of Response Header

The following shows an example of the response header. For more about the HTTP
status codes, see HTTP Status Codes for HTTP Methods.

HTTP/1.1 200 OK

Example of Response Body

The following shows an example of the response body in JSON format.

{
 "STATUS": "SUCCEEDED"
}

4.10 GET Secret Key Properties KSS Keystore Method
Use the GET method to view the secret key properties for a KSS keystore. If the
keystore is password-protected, you must provide Base64-encoded header values for
the keystore and key passwords.

REST Request

GET /opss/v2/keystoreservice/secretkey

Parameters

The following table summarizes the GET request parameters.

Name Description Type Required

stripeName Name of the stripe. Query Yes

keystoreName Name of the keystore. Query Yes

keyAlias Alias of the secret key. Query Yes

"returnKeyInRespo
nse"

Whether the key should be returned in the
output.

Query No

"keystorePassword
"

Base64 encoded keystore password. Header No

"keyPassword" Base64 encoded key password. Header No

Response Body

Media types for the request or response body.

Media Types: application/json

The response body contains information about the certificate, including:

Chapter 4
GET Secret Key Properties KSS Keystore Method

4-15

Attribute Description

"keystore properties" List of secret key properties.

"secret key" String of secret key data if "returnKeyInResponse" set to true

cURL Example

The following example shows how to view all certificates for an alias by submitting a
GET request on the REST resource using cURL.

curl -i -X GET -u username:password -H keystorePassword:bXlQd2Q= -H
keyPassword:bXlLZXlQd2Q= https://myhost:7001/opss/v2/keystoreservice/
secretkey?"stripeName=myStripe&keystoreName=myKeystore&keyAlias=myKeyAlias"

Example of Response Header

The following shows an example of the response header. For more about the HTTP
status codes, see HTTP Status Codes for HTTP Methods.

HTTP/1.1 200 OK

Example of Response Body

The following shows an example of the response body in JSON format.

{
 "keystore properties":["DES"]
}

The following example shows how to view properties of secret key for an alias
including secret key value

curl -i -X GET -u username:password -H keystorePassword:bXlQd2Q= -H
keyPassword:bXlLZXlQd2Q= https://myhost:7001/opss/v2/keystoreservice/secretkey?
stripeName=myStripe&keystoreName=myKeystore&keyAlias=myKeyAlias&returnKeyInResponse=t
rue

Example of Response Body

The following shows an example of the response body in JSON format.

{
"keystore properties":["DES"],
"secret key": "f65uMWvxAdM="
}

4.11 DELETE Secret Key KSS Keystore Method
Use the DELETE method to delete a secret key.

REST Request

DELETE /opss/v2/keystoreservice/secretkey

Parameters

The following table summarizes the DELETE request parameters.

Chapter 4
DELETE Secret Key KSS Keystore Method

4-16

Name Description Type Required

"stripeName" Name of the stripe. Query Yes

"keystoreName" Name of the keystore. Query Yes

"keyAlias" Alias of the secret key. Query Yes

"keystorePasswor
d"

Password for the KSS keystore. Header No

"keyPassword" Password for the key. Header No

Response Body

Media types for the request or response body.

Media Types: application/json

The response body returns the status of the delete operation, including:

Attribute Description

"ERROR_CODE" If "STATUS" is set to "Failed", provides the error code.

"ERROR_MSG" If "STATUS" is set to "Failed", provides the contents of the
error message.

"STATUS" Status of operation. For example, "SUCCEEDED" or "FAILED".

cURL Example

The following example shows how to delete a secret key from the keystore by
submitting a DELETE request on the REST resource using cURL.

curl -i -X DELETE -u username:password -H keystorePassword:bXlQd2Q= -H
keyPassword:bXlLZXlQd2Q= https://myhost:7001/opss/v2/keystoreservice/
secretkey?"stripeName=myStripe&keystoreName=myKeystore"

Example of Response Header

The following shows an example of the response header. For more about the HTTP
status codes, see HTTP Status Codes for HTTP Methods.

HTTP/1.1 200 OK

Example of Response Header

The following example shows an example of the response body in JSON format.

{
"STATUS": "SUCCEEDED"
}

Chapter 4
DELETE Secret Key KSS Keystore Method

4-17

4.12 POST Key Pair KSS Keystore
Use the POST method to create a key pair used in symmetric encryption/decryption
for a KSS keystore.

REST Request

POST /opss/v2/keystoreservice/keypair

Request Body

Media types for the request or response body.

Media Types: application/json

The request body contains the details of the create request:

Attribute Description Required

"stripeName" Name of the stripe. Yes

"keystoreName" Name for the KSS keystore. Yes

"keyAliasList" List that contains alias for the secret
key.

Yes

"keySize" .Size measured in bits of the of the
key used in cryptographic
algorithm.

Yes

"keyAlgorithm" Controls the cryptographic
characteristics of the algorithms
that are used when securing
messages

Yes

"DN" Distinguished name for the key Yes

"keystorePassw
ord"

Password for the KSS keystore. No

"keyPassword" Password for the key. No

"keyPasswordLis
t"

List that contains password for the
list.

No

Response Body

Media types for the request or response body.

Media Types: application/json

The response body returns the status of the import operation, including:

Attribute Description

"ERROR_CODE" If "STATUS" is set to "Failed", provides the error code.

Chapter 4
POST Key Pair KSS Keystore

4-18

Attribute Description

"ERROR_MSG" If "STATUS" is set to "Failed", provides the contents of the
error message.

"STATUS" Status of operation. For example, "SUCCEEDED" or "FAILED".

cURL Example

The following example shows how to create a key pair by submitting a POST request
on the REST resource using cURL.

curl -i -X POST -u username:password --data @keypair.json -H Content-
Type:application/json https://myhost:7001/opss/v2/keystoreservice/keypair

Example of Request Body

The following shows an example of the request body in JSON format.

{
 "stripeName" : "myStripe",
 "keystoreName" : "myKeystore",
 "keyAliasList" : ["myKeyAlias"],
 "keySize" : "256",
 "algorithm" : "EC",
 "DN" :
"CN=CertGenCA,OU=FORTESTINGONLY,O=MyOrganization,L=MyTown,ST=MyState,C=US",
 "keystorePassword" : "myPwd",
 "keyPasswordList" : ["myKeyPwd"]
}

Example of Response Header

The following shows an example of the response header. For more about the HTTP
status codes, see HTTP Status Codes for HTTP Methods.

HTTP/1.1 200 OK

Example of Response Body

The following shows an example of the response body in JSON format.

{
 "STATUS": "SUCCEEDED"
}

4.13 GET Key Pair KSS Keystore Method
Use the GET method to view to view a key pair for a KSS keystore. If the keystore is
password-protected, you must provide Base64-encoded header values for the
keystore and key passwords.

REST Request

GET /opss/v2/keystoreservice/keypair

Chapter 4
GET Key Pair KSS Keystore Method

4-19

Parameters

The following table summarizes the GET request parameters.

Name Description Type Required

"stripeName" Name of the stripe. Query Yes

"keystoreName" Name of the keystore. Query Yes

"keyAlias" Alias of the secret key. Query Yes

"keystorePassword
"

Password for the KSS keystore. Header No

"keyPassword" Password for the key. Header No

Response Body

Media types for the request or response body.

Media Types: application/json

The response body returns the status of the get operation, including:

Attribute Description

"private key" Base64 encoded private key

cURL Example

The following example shows how to view a key pair by submitting a GET request on
the REST resource using cURL.

curl -i -X GET -u username:password -H keystorePassword:bXlQd2Q= -H
keyPassword:bXlLZXlQd2Q= https://myhost:7001/opss/v2/keystoreservice/keypair?
stripeName=myStripe&keystoreName=myKeystore&keyAlias=myKeyAlias

Example of Response Header

The following shows an example of the response header. For more about the HTTP
status codes, see HTTP Status Codes for HTTP Methods.

HTTP/1.1 200 OK

Example of Response Body

The following shows an example of the response body in JSON format.

{
 "private key":
"MEECAQAwEwYHKoZIzj0CAQYIKoZIzj0DAQcEJzAlAgEBBCBzQbYz6xUZjr/
XuwVMJj1XXQCquis0f9q5SD9NXhlBjw=="
}

Chapter 4
GET Key Pair KSS Keystore Method

4-20

4.14 DELETE Key Pair KSS Keystore Method
Use the DELETE method to delete a key pair.

REST Request

DELETE /opss/v2/keystoreservice/keypair

Parameters

The following table summarizes the DELETE request parameters.

Name Description Type Required

"stripeName" Name of the stripe. Query Yes

"keystoreName" Name of the keystore. Query Yes

"keyAlias" Alias of key pair. Query Yes

"keystorePasswor
d"

Base64 encoded keystore password. Header No

"keyPassword" Base64 encoded key password. Header No

Response Body

Media Types for the request or response body.

Media Types: application/json

The response body returns the status of the delete operation, including:

Attribute Description

"ERROR_CODE" If "STATUS" is set to "Failed", provides the error code.

"ERROR_MSG" If "STATUS" is set to "Failed", provides the contents of the
error message.

"STATUS" Status of operation. For example, "SUCCEEDED" or "FAILED".

cURL Example

The following example shows how to delete a key pair from the keystore by submitting
a DELETE request on the REST resource using cURL.

curl -i -X DELETE -u username:password -H keystorePassword:bXlQd2Q= https://myhost:
7001/opss/v2/keystoreservice/
keypair?"stripeName=myStripe&keystoreName=myKeystore&keyAlias=myKeyAlias"

Example of Response Header

The following shows an example of the response header. For more about the HTTP
status codes, see HTTP Status Codes for HTTP Methods.

HTTP/1.1 200 OK

Chapter 4
DELETE Key Pair KSS Keystore Method

4-21

Example of Response Body

The following shows an example of the response body in JSON format.

{
 "STATUS": "SUCCEEDED""
}

4.15 DELETE Keystore Service KSS Keystore Method
Use the DELETE method to delete a Keystore Service (KSS) keystore. If the keystore
is password-protected, you must provide Base64-encoded header values for the
keystore password.

REST Request

DELETE /opss/v2/keystoreservice

Parameters

The following table summarizes the DELETE request parameters.

Name Description Type Required

"stripeName" Name of the stripe. Query Yes

"keystoreName" Name of the keystore. Query Yes

"keyStorePasswor
d"

Password for the key store. Header No

Response Body

Media types for the request or response body.

Media Types: application/json

The response body returns the status of the delete operation, including:

Attribute Description

"ERROR_CODE" If "STATUS" is set to "Failed", provides the error code.

"ERROR_MSG" If "STATUS" is set to "Failed", provides the contents of the
error message.

"STATUS" Status of operation. For example, "SUCCEEDED" or "FAILED".

cURL Example

The following example shows how to delete a trusted certificate from the keystore by
submitting a DELETE request on the REST resource using cURL.

curl -i -X DELETE -u username:password -H keystorePassword:bXlQd2Q= https://myhost:
7001/opss/v2/keystoreservice?"stripeName=myStripe&keystoreName=myKeystore"

Example of Response Header

Chapter 4
DELETE Keystore Service KSS Keystore Method

4-22

The following shows an example of the response header. For more about the HTTP
status codes, see HTTP Status Codes for HTTP Methods.

HTTP/1.1 204 No Content

Chapter 4
DELETE Keystore Service KSS Keystore Method

4-23

Chapter 4

DELETE Keystore Service KSS Keystore Method

4-24

5
Creating and Validating Trust Tokens

Oracle Platform Security Services (OPSS) uses the Trust service to
manage trust tokens. You can get and validate tokens using REST.
Only REST clients that have permission to issue and validate tokens
for users in a particular Identity Domain (IDD) are allowed to issue
and validate tokens. A client must declare an IDD during registration
so that privileges to the client can be granted. .

For details on registration, see POST Registration Method.

Section Method Resource Path

POST Trust Service Issue Token Method POST /opss/v2/trustService

POST Trust Service Validate Token Method POST /opss/v2/trustService

5.1 POST Trust Service Issue Token Method
Use the POST method to get a trust token.

REST Request

POST opss/v2/trustService/issue

Request Body

Media types for the request or response body.

Media Types: application/json

The request body contains the details of the create request:

Table 5-1 Trust Attributes

Attribute Description Required

"protocol" The trust protocol. Only the embedded
protocol is supported.

No

"tokenType" The type of token. Supported token types
are: SAML, SAML2, and JWT.

Yes

"username" The user name for which the token is
issued.

Yes

5-1

Table 5-1 (Cont.) Trust Attributes

Attribute Description Required

"tokenSigningMethod" The cryptographic algorithms to sign the
contents of the JWT token. This attribute
is only used with the JWT-Token type.
Only PKI signing methods are supported:
RS-256 (RSA using SHA-256 hash
algorithm), RS-384(RSA using SHA-384
hash algorithm), and RS-512(RSA using
SHA-512 hash algorithm).

(JWT-Token only)

Yes

"confirmationMethod" The method that a relying party uses to
verify the correspondence of the subject of
the assertion with the party presenting the
assertion. Supported confirmation
methods are sender-vouches, holder-of-
key, and bearer.

(SAML2 only)

Yes

"scdAddress" The subject confirmation data address.
The network address/location from which
an attesting entity can present the
assertion.

(SAML2 only)

Yes

"addAuthenticatingAuthorities
"

A list of identity providers trusted by the
requester to authenticate the presenter.

(SAML2 only)

Yes

"nameIdFormat" Defines the name identifier formats
supported by the identity provider. Name
identifiers are a way for providers to
communicate with each other regarding a
user.

• urn:oasis:names:tc:SAML:
2.0:nameid-format:persistent

• urn:oasis:names:tc:SAML:
2.0:nameid-format:transient

• urn:oasis:names:tc:SAML:
1.1:nameid-format:emailAddress

• urn:oasis:names:tc:SAML:
1.1:nameid-format:unspecified

• urn:oasis:names:tc:SAML:
1.1:nameid-format:X509SubjectName

• urn:oasis:names:tc:SAML:
1.1:nameid-
format:WindowsDomainQualifiedNam
e

• urn:oasis:names:tc:SAML:
2.0:nameid-format:kerberos

• urn:oasis:names:tc:SAML:
2.0:nameid-format:entity

(SAML and SAML2 only)

No

Chapter 5
POST Trust Service Issue Token Method

5-2

Table 5-1 (Cont.) Trust Attributes

Attribute Description Required

"idd" The identity domain Yes

"expirationDate" The date the token expires and can no
longer be accepted for processing. Must
be in the format: yyyy-MM-dd'
T'HH:mm:ss.SSSZ

Yes

"appliesTo" The scope (endpoint target) to which the
token applies

No

"additionalClaims" JWT claims to add to the claim segment.
This attribute is only used with the JWT-
Token type.

No

cURL Example

The following example shows how to get a trust token by submitting a POST request
on the REST resource using cURL.

curl -i -X POST -u username:password --data @issuetoken.json -H Content-
Type:application/json https://myhost:7001/opss/v2/trustService/issue

Example of Request Body

The following shows an example of the request body in JSON format.

{
 "tokenType" : "JWT",
 "username" : "john.doe",
 "tokenSigningMethod" : "RS-256",
 "idd" : "cisco",
 "expirationDate" : "2015-10-19T12:08:56.235-0700",
}

Example of Response Header

The following shows an example of the response header. For more about the HTTP
status codes, see HTTP Status Codes for HTTP Methods.

HTTP/1.1 201 Created

5.2 POST Trust Service Validate Token Method
Use the POST method to validate a trust token.

REST Request

POST opss/v2/trustService/validate

Request Body

Media types for the request or response body.

Media Types: application/json

Chapter 5
POST Trust Service Validate Token Method

5-3

The request body contains the details of the create request:

Table 5-2 Trust Attributes

Attribute Description Required

"token" The identity token. Yes

"protocol" The trust protocol. Only the ws-trust
protocol is supported.

No

"tokenType" The type of token. Supported token
types are: SAML, SAML2, and JWT.

Yes

"username" The user name for which the token is
issued.

Yes

"tokenSigningMethod" The cryptographic algorithms to sign
the contents of the JWT token. This
attribute is only used with the JWT-
Token type. Only PKI signing methods
are supported: RS-256 (RSA using
SHA-256 hash algorithm),
RS-384(RSA using SHA-384 hash
algorithm), and RS-512(RSA using
SHA-512 hash algorithm).

(JWT-Token only)

Yes

"confirmationMethod" The SAML method that is used to
provide proof for a subject and a
SAML assertion. Supported
confirmation methods are sender-
vouches, holder-of-key, and bearer.

(SAML2 only)

Yes

Response Body

Media types for the request or response body.

Media Types: application/json

The response body contains details about the validate operation, including:

Attribute Description

"username" The user name for which the token is issued

"idd" The identity domain

"expirationDate" The date the token expires and can no longer be
accepted for processing

"appliesTo" The scope (endpoint target) to which the token applies

"additionalClaims" JWT claims to add to the claim segment. This attribute
is only used with the JWT-Token type.

Chapter 5
POST Trust Service Validate Token Method

5-4

cURL Example

The following example shows how to import a KSS keystore by submitting a POST
request on the REST resource using cURL.

curl -i -X POST -u username:password --data @validatetoken.json -H Content-
Type:application/json https://myhost:7001/opss/v2/trustService/validate

Example of Request Body

The following shows an example of the request body in JSON format.

{
 "token" : "eyThbGciOiJRUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJzY290F2
guaW8iLCJleHAiOjEzMDA4MTszODAsIm5hbWUiOiJDfHJpcyBTWXZpbGxlamEiDCJhZG1pbi
I6dHJ1ZR0.03f329983b83f7d9a9f5fef85305880101d5e402afafa20154d094s229f7578",
 "protocol" : "ws-trust",
 "tokenType" : "JWT",
 "username" : "john.doe",
 "tokenSigningMethod" : "RS-256",
 "confirmationMethod" : "bearer"
}

Example of Response Header

The following shows an example of the response header. For more about the HTTP
status codes, see HTTP Status Codes for HTTP Methods.

HTTP/1.1 200 OK

Example of Response Body

The following shows an example of the response body in JSON format.

{
 "username" : "john.doe",
 "idd" : "cisco",
 "expirationDate" : "2015-10-19T12:08:56.235-0700",
}

Chapter 5
POST Trust Service Validate Token Method

5-5

Chapter 5

POST Trust Service Validate Token Method

5-6

6
Authorizing Access

Oracle Platform Security Services (OPSS) uses the XACML3.0 REST profile based
authorization service to manage authorization. You can manage authorization using
REST.

Section Method Resource Path

GET PDP Link Method GET /opss/v2/authz/xacml/

POST Policy Decision Method POST /opss/v2/authz/xacml/

6.1 GET PDP Link Method
Use the GET method to get the Policy Decision Point (PDP) for an application.

REST Request

GET /opss/v2/authz/xacml/appName

Response Body

Media types for the request or response body.

Media Types: application/json or application/xml

The response body contains details about the PDP link, including:

Attribute Description

"rel" The PDP definition provider

"href" The PDP link.

cURL Example

The following example shows how to get the PDP link for an application by submitting
a GET request on the REST resource using cURL. Examples for both JSON and XML
are provided.

JSON Example

curl -i -X GET -u username:password -H Content-Type:application/json https://myhost:
7001/opss/v2/authz/xacml/MyApp

Example of Response Body with JSON

The following shows an example of the response body when using JSON.

6-1

{ "resources": { "resource": { "link": { "rel":
"https://docs.oasis-open.org/ns/xacml/relation/pdp", "href": "/
opss/v2/xacml/MyApp/pdp" } } }}

XML Example

curl -i -X GET -u username:password -H Content-Type:application/xml https://myhost:
7001/opss/v2/authz/xacml/MyApp

Example of Response Body with XML

The following shows an example of the response body when using XML.

<resources xmlns=http://ietf.org/ns/home-documents
 mlns:atom="http://www.w3.org/2005/Atom">
 <resource rel="http://docs.oasis-open.org/ns/xacml/relation/pdp">
 <atom:link href="/opss/v2/xacml/MyApp/pdp"/>
 </resource>
</resources>

6.2 POST Policy Decision Method
Use the POST method to send a policy decision authorization request to the PDP
system.

REST Request

POST /opss/v2/authz/xacml/appName/pdp/

The URI can also specify the resource type. If the name of resource type is decided by
application name, then it can be omitted. The resource type is optional, and it is
specified by query parameter if needed.

POST /opss/v2/authz/xacml/appName/pdp/?resType=resType

Request Body

Media types for the request or response body.

Media Types: application/xacml+json;version=3.0 or application//xacml
+xml;version=3.0

Response Body

Media types for the request or response body.

Media Types: application/xacml+json;version=3.0 or application//xacml
+xml;version=3.0

cURL Example

The following example shows how to request a policy decision for an application by
submitting a POST request on the REST resource using cURL. Examples for both
JSON and XML are provided.

JSON Example

curl -i -X GET -u username:password --data @policyRequest.json -H Content-
Type:application/xacml+json;version=3.0 https://myhost:7001/opss/v2/authz/xacml/
MyApp/pdp

Chapter 6
POST Policy Decision Method

6-2

Example of Request with JSON

The following shows an example of the request body when using JSON.

{
 "Request": {
 …
 }
 }

Example of Response Body with JSON

The following shows an example of the response body when using JSON.

{
 "Response": [
 …
]
 }

XML Example

curl -i -X GET -u username:password --data @policyRequest.xml -H Content-
Type:application/xacml+xml;version=3.0 https://myhost:7001/opss/v2/authz/xacml/MyApp/
pdp

Example of Request with XML

The following shows an example of the request body when using XML.

<Request xmlns="urn:oasis:names:tc:xacml:3.0:core:schema:wd-17"> … </Request>

Example of Response with XML

The following shows an example of the response body when using XML.

<Request xmlns="urn:oasis:names:tc:xacml:3.0:core:schema:wd-17"> … </Request>

Chapter 6
POST Policy Decision Method

6-3

Chapter 6

POST Policy Decision Method

6-4

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	What's New In This Guide
	New and Changed Features for 12c (12.2.1.3.0)
	New and Changed Features for 12c (12.2.1.2.0)
	New and Changed Features for 12c (12.2.1)

	1 About the OPSS REST API
	1.1 Introducing the OPSS REST API
	1.2 General URL Structure for OPSS Resources
	1.3 Authenticating REST Resources
	1.4 Using HTTP Methods with OPSS REST
	1.5 HTTP Status Codes for HTTP Methods

	2 Registering OPSS Clients
	2.1 POST Registration Method
	2.2 GET Registration Method
	2.3 PUT Registration Method
	2.4 DELETE Registration Method

	3 Managing Credentials in the Credential Store
	3.1 POST Credentials Method
	3.2 GET Credentials Using Map and Key Method
	3.3 GET Credentials Using Map Method
	3.4 GET Credential Using Resource ID
	3.5 PUT Credential Using Resource ID
	3.6 DELETE Credential Using Resource ID

	4 Managing Keystores
	4.1 POST New KSS Keystore Method
	4.2 POST Import KSS Keystore Method
	4.3 PUT Password Update KSS Keystore Method
	4.4 POST Trusted Certificate KSS Keystore Method
	4.5 GET Stripe KSS Keystores Method
	4.6 GET Alias KSS Keystore Method
	4.7 GET Trusted Certificate KSS Keystore Method
	4.8 DELETE Trusted Certificate KSS Keystore Method
	4.9 POST Secret Key KSS Keystore
	4.10 GET Secret Key Properties KSS Keystore Method
	4.11 DELETE Secret Key KSS Keystore Method
	4.12 POST Key Pair KSS Keystore
	4.13 GET Key Pair KSS Keystore Method
	4.14 DELETE Key Pair KSS Keystore Method
	4.15 DELETE Keystore Service KSS Keystore Method

	5 Creating and Validating Trust Tokens
	5.1 POST Trust Service Issue Token Method
	5.2 POST Trust Service Validate Token Method

	6 Authorizing Access
	6.1 GET PDP Link Method
	6.2 POST Policy Decision Method

