Oracle® Fusion Middleware
REST API for Oracle Platform Security
Services

12c (12.2.1.3.0)
E80297-01
August 2017

ORACLE"



Oracle Fusion Middleware REST API for Oracle Platform Security Services, 12¢ (12.2.1.3.0)
E80297-01
Copyright © 2016, 2017, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.



Contents

Preface
Audience v
Documentation Accessibility %
Related Documents \Y
Conventions v
What's New In This Guide
New and Changed Features for 12c (12.2.1.3.0) Vi
New and Changed Features for 12c (12.2.1.2.0) Vi
New and Changed Features for 12¢ (12.2.1) Vil
1 About the OPSS REST API
1.1 Introducing the OPSS REST API 1-1
1.2 General URL Structure for OPSS Resources 1-2
1.3 Authenticating REST Resources 1-2
1.4 Using HTTP Methods with OPSS REST 1-2
1.5 HTTP Status Codes for HTTP Methods 1-3
2 Registering OPSS Clients
2.1 POST Registration Method 2-1
2.2 GET Registration Method 2-3
2.3 PUT Registration Method 2-3
2.4 DELETE Registration Method 2-4
3 Managing Credentials in the Credential Store
3.1 POST Credentials Method 3-1
3.2 GET Credentials Using Map and Key Method 3-2
3.3 GET Credentials Using Map Method 3-3
3.4 GET Credential Using Resource 1D 3-4

ORACLE iii



3.5 PUT Credential Using Resource 1D 3-5
3.6 DELETE Credential Using Resource ID 3-6
Managing Keystores
4.1 POST New KSS Keystore Method 4-1
4.2 POST Import KSS Keystore Method 4-3
4.3 PUT Password Update KSS Keystore Method 4-5
4.4 POST Trusted Certificate KSS Keystore Method 4-6
4.5 GET Stripe KSS Keystores Method 4-8
4.6 GET Alias KSS Keystore Method 4-9
4.7 GET Trusted Certificate KSS Keystore Method 4-10
4.8 DELETE Trusted Certificate KSS Keystore Method 4-12
4.9 POST Secret Key KSS Keystore 4-13
4.10 GET Secret Key Properties KSS Keystore Method 4-15
4.11 DELETE Secret Key KSS Keystore Method 4-16
4,12 POST Key Pair KSS Keystore 4-18
4.13 GET Key Pair KSS Keystore Method 4-19
4.14 DELETE Key Pair KSS Keystore Method 4-21
4.15 DELETE Keystore Service KSS Keystore Method 4-22
Creating and Validating Trust Tokens
5.1 POST Trust Service Issue Token Method 5-1
5.2 POST Trust Service Validate Token Method 5-3
Authorizing Access
6.1 GET PDP Link Method 6-1
6.2 POST Policy Decision Method 6-2
v

ORACLE



Preface

This preface describes the document accessibility features and conventions used in
this guide—REST API for Oracle Platform Security Services.

Audience

This document is intended for software developers and architects who are interested
in using Oracle Platform Security Services (OPSS) through a RESTful API. The
audience must already be familiar with OPSS to use this guide.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at ht t p: // www. or acl e. cont pl s/ t opi ¢/ | ookup?
ctx=accé& d=docacc.

Accessible Access to Oracle Support

Oracle customers who have purchased support have access to electronic support
through My Oracle Support. For information, visit htt p: // www. or acl e. cont pl s/t opi ¢/
| ookup?ct x=acc&i d=i nf o or visit htt p: // ww. or acl e. conf pl s/ t opi ¢/ | ookup?

ctx=acc&i d=trs if you are hearing impaired.

Related Documents

For more information, see the following documents in the Oracle Platform Security
Services documentation set:

* Release Notes for Oracle Platform Security Services

e Securing Applications with Oracle Platform Security Services
* Infrastructure Security WLST Command Reference

e Java API Reference for Oracle Platform Security Services

* Java API Reference for Oracle Platform Security Services MBeans

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

ORACLE


http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

ORACLE

Preface

Convention Meaning

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

nonospace

Monospace type indicates commands within a paragraph, URLSs, code
in examples, text that appears on the screen, or text that you enter.

Vi



What's New In This Guide

This section summarizes the new features and significant product changes for Oracle
Platform Security Services (OPSS) in Oracle Fusion Middleware 12¢ (12.2.1.x).

New and Changed Features for 12¢ (12.2.1.3.0)

This document does not contain any new or changed features.

New and Changed Features for 12¢ (12.2.1.2.0)

In release 12.2.1.2.0, the changes to this document include:

Minor corrections throughout the document, which includes the addition of DELETE
Credential Using Resource ID.

New and Changed Features for 12¢ (12.2.1)

Oracle Platform Security Services 12c¢ (12.2.1) includes the following new and
changed features for this document.

ORACLE

Registration service RESTful API, which provides REST clients with the ability to
register with the security platform.

Credentials service RESTful API, which provides REST clients with the ability to
use the Credential Store Framework (CSF) to manage credentials in a secure
form. See Managing Credentials in the Credential Store .

Keystore service RESTful API, which provides REST clients with the ability to use
the Keystore Service (KSS) to view and manage keystores. See Managing
Keystores .

Trust service RESTful API, which provides REST clients with the ability to manage
trust tokens. See Creating and Validating Trust Tokens.

Authorization service RESTful API, which provides REST clients with the ability to
manage XACML3.0 REST profile authorization. See Authorizing Access .

Vii






About the OPSS REST API

This section introduces the Oracle Fusion Middleware representational state transfer
(REST) API for managing Oracle Platform Security Services (OPSS).
This chapter includes the following sections:

Introducing the OPSS REST API

General URL Structure for OPSS Resources
Authenticating REST Resources

Using HTTP Methods with OPSS REST
HTTP Status Codes for HTTP Methods

1.1 Introducing the OPSS REST API

The OPSS REST API provides access to core OPSS functionality over a REST
interface. The REST API enables a wider range of languages and platforms to use
OPSS services. The API also provides applications with the flexibility to use newer
functionality without having to wait for the corresponding language-specific APIs to be
implemented.

The services discussed in this reference include:

ORACLE

Registration Service — A service that is used to register a client with OPSS. A
client must register with OPSS in order to use any of the other services. See
Registering OPSS Clients .

Credentials Service — A service that is used to create and view credentials. See
Managing Credentials in the Credential Store .

Keystore Service — A service that is used to manage keysores. See Managing
Keystores .

Trust Service — A service that is used to create and validate trust tokens. See
Creating and Validating Trust Tokens.

Authorization Service — A service that is used to authorize access to resources
using a policy decision point system. See Authorizing Access .

1-1



Chapter 1
General URL Structure for OPSS Resources

# Note:

To deploy OPSS REST API services, your domain must include the OPSS
REST Service Application Template. You can select this template when
creating your domain, or you can extend an existing domain to include it. For
more information, see the following topics:

— Configuring Fusion Middleware Domains in WebLogi ¢ Donai ns Usi ng t he
Configuration Wzard

— Oracle OPSS REST Service Application Template in Donei n Tenpl at e
Ref erence

1.2 General URL Structure for OPSS Resources

Use the following URL to manage security:

https://host: port/opss/v2/resource

Where:

*  host :port—Host and port where Oracle Fusion Middleware is running.

e resour ce—Relative path that defines the REST resource. Available resources are
described throughout this guide. To access the Web Application Definition
Language (WADL) document which defines each of the resources, specify
appl i cation. wadl in the URL. For example:

https://host: port/opss/v2/ application.wadl

1.3 Authenticating REST Resources

1.4 Using

ORACLE

You access the Oracle Fusion Middleware REST resources over HTTP and must
provide your Oracle WebLogic Server administrator user name and password.

For example, to authenticate using cURL, pass the user name and password using the
-u cURL option.

curl -i -X GET -u username: password https://nyhost: 7001/ opss/ v2/ keyst ore

For GET and DELETE methods, which do not send data in the request body, if a keystore
or key is password-protected, you must pass the Base64-encrypted keystore and key
passwords, respectively, in custom headers. For example:

curl -i -X DELETE -u usernane: password -H keyst or ePasswor d: cHlkM®== -H
keyPasswor d: bXl Q2Qy https://myhost: 7001/ opss/v2/
keyst oreservi ce?"stri peName=nySt ri pe&keyst or eNane=nyKeyst or e"

HTTP Methods with OPSS REST

The OPSS REST endpoints support standard HTTP semantics.

1-2



Chapter 1
HTTP Status Codes for HTTP Methods

REST Method Task

CET Retrieve information about the REST resource.
PCST Add a REST resource.

PUT Update a REST resource.

DELETE Delete a REST resource.

1.5 HTTP Status Codes for HTTP Methods

The HTTP methods used to manipulate the resources described in this section return
one of the following HTTP status codes:

HTTP Status Code

Description

200 OK

201 Created

202 Accepted

400 Bad Request

401 Unauthorized

403 Forbidden

404 Not Found

405 Method Not Allowed

ORACLE

The request was successfully completed. A 200 status is returned for successful GET
or POST method.

The request has been fulfilled and resulted in a new resource being created. The
response includes a Location header containing the canonical URI for the newly
created resource.

A 201 status is returned from a synchronous resource creation or an asynchronous
resource creation that completed before the response was returned.

The request has been accepted for processing, but the processing has not been
completed. The request may or may not eventually be acted upon, as it may be
disallowed at the time processing actually takes place.

When specifying an asynchronous (__det ached=t r ue) resource creation (for
example, when deploying an application), or update (for example, when redeploying
an application), a 202 is returned if the operation is still in progress. If

__detached=f al se, a 202 may be returned if the underlying operation does not
complete in a reasonable amount of time.

The response contains a Location header of a job resource that the client should poll
to determine when the job has finished. Also, returns an entity that contains the
current state of the job

The request could not be processed because it contains missing or invalid
information (such as, a validation error on an input field, a missing required value,
and so on).

The request is not authorized. The authentication credentials included with this
request are missing or invalid.

The user cannot be authenticated. The user does not have authorization to perform
this request.

The request includes a resource URI that does not exist.

The HTTP verb specified in the request (DELETE, GET, POST, PUT) is not supported for
this request URI.

1-3



Chapter 1
HTTP Status Codes for HTTP Methods

HTTP Status Code

Description

406 Not Acceptable

415 Not Acceptable

500 Internal Server Error

503 Service Unavailable

The resource identified by this request is not capable of generating a representation
corresponding to one of the media types in the Accept header of the request. For
example, the client's Accept header request XML be returned, but the resource can
only return JSON.

The client's ContentType header is not correct (for example, the client attempts to
send the request in XML, but the resource can only accept JSON).

The server encountered an unexpected condition that prevented it from fulfilling the
request.

The server is unable to handle the request due to temporary overloading or
maintenance of the server. The Oracle WSM REST web application is not currently
running.

ORACLE

1-4



Registering OPSS Clients

Oracle Platform Security Services (OPSS) uses the Registration service to provision
an authorization policy for a client. The Security service uses these policies to make
authorization decisions. REST clients are required to register themselves to access

security services.

Section Method Resource Path
POST Registration Method PCST lopssiv2/
GET Registration Method GET lopssiv2/
PUT Registration Method PUT lopssiv2/
DELETE Registration Method DELETE lopssiv2/

2.1 POST Registration Method

ORACLE

Use the POST method to register a new client. An application role with a unique name
inside the OPSS rest application stripe is created. Users and groups that are passed
as input of the POST method are made members of the application role. Grants to the

specified resources are automatically provisioned in the OPSS REST application
stripe.

# Note:

The same cl i ent Nane attribute value is required to identify the client when
making changes to registration data.

REST Request

PCST / opss/v2/ opssRestCient/

Request Body
Media types for the request or response body.
Media Types: application/|son

The request body contains the details of the register request:

Table 2-1 Registration Attributes
|

Attribute Description Required

“cli ent Nare*“ A unique name that identifies the client. Yes

2-1



ORACLE

Chapter 2
POST Registration Method

Table 2-1 (Cont.) Registration Attributes
|

Attribute Description Required

“policystoreStripe” The policy store stripe to which the client is No
assigned

“keyst ore” A list of keystores used for the client No

“credential Map“ A name of the credential map that is used to store No

credential keys.

“audi t Conponent * A unique name to identify the audit rules for a client  No
“trustlssuel DD A list identity domains that can issue trust tokens No
“trustValidatel DD A list identity domains that can validate trust tokens  No
“adm nG oup“ A group with the operator role No
“oper at or G oup“ A group with the operator role No
“vi ewer G oup” A group with the viewer role No

All attributes other than cl i ent Name can be specified multiple times. A user should
specify at least one of either: pol i cystoreStri pe, keyst ore, credenti al Map,

audi t Conponent , trust | ssuel DD, or trust Val i dat el DD for the service scopes. In addition,
a user should specify at least one of either: adm nG oup, oper at or G oup, O vi ewer G oup
so that some group has privileges.

For service scope attributes, a wild card (*) can be specified to grant all scopes to the
client. The wildcard should be used carefully.

Response Body

The output of a POST request is a Resource ID.

cURL Example

The following example shows how to register a client by submitting a POST request on
the REST resource using cCURL

curl -i -X POST -u username: password --data @egister.json
-H Content - Type: appl i cation/json https://myhost: 7001/ opss/v2/ opssRest Ol i ent

Example of Request Body
The following shows an example of the request body in JSON format.

{
“clientName": "nyCientName",

"policystoreStripe": "CRM,

"keystore": ["appA', "appB/storel"],
"credential Map": "mapA",

"audi t Conponent": "myConponent ",
"trustlssuel DD" : ["cisco", "intel"],
"trustValidatelDD' : ["cisco", "intel"],
"adm nG oup": "nyG oupl",
"operatorGoup":"nyG oup2",

2-2



Chapter 2
GET Registration Method

"vi ewer Group": "nyG oup3"
}

2.2 GET Registration Method

Use the GET method to view the client attributes for a registered client.

REST Request

CET /opss/v2/ opssRestdient/clientNanme

Response Body
Media types for the request or response body.
Media Types: application/json

The response body contains the client registration attributes. For details about the
registration attributes, see Table 2-1.

cURL Example

The following example shows how to view the registered client by submitting a GET
request on the REST resource using cURL

curl -i -X GET -u usernane: password https://nyhost: 7001/ opss/ v2/ opssRestClient/
myd i ent Nane

Example of Response Header

The following shows an example of the response header. For more about the HTTP
status codes, see HTTP Status Codes for HTTP Methods.

HTTP/ 1.1 200 OK

Example of Response Body
The following shows an example of the response body in JSON format.

{
“clientName": "nyCientName",

"policystoreStripe": "CRM,
"keystore": ["appA', "appB/storel"],
"credential Map": "mapA",
"audi t Conponent": " myConponent ",
"trustlssuel DD" : ["cisco", "intel"],
"trustValidatelDD' : ["cisco", "intel"],
"adm nG oup”: "nyG oupl",
"operator G oup": "nyG oup2",
"vi ewer G oup": "nmyG oup3”

}

2.3 PUT Registration Method

Use the PUT method to update the attributes of a registered client.

REST Request

PUT /opss/v2/ opssRestdient/clientNane

ORACLE 2-3



Chapter 2
DELETE Registration Method

Request Body
Media types for the request or response body.
Media Types: application/json

The request body contains the client registration attributes. For details about the
registration attributes, see Table 2-1.

cURL Example

The following example shows how to update client attributes by submitting a PUT
request on the REST resource using cURL

curl -i -X POST -u username: password --data @egister.json
-H Content - Type: appl i cation/json https://mhost: 7001/ opss/v2/ opssRestCient/
myd i ent Nane

Example of Request Body
The following shows an example of the request body in JSON format.

{
“clientNane": "nyCientName",

"policystoreStripe": "CRM,
"keystore": ["appA', "appB/storel"],
"credential Map": "mapA",
"audi t Conponent”: "nyConponent ",
"trustlssuel DD" : ["cisco", "intel"],
"trustValidatelDD' : ["cisco", "intel"],
"adm nG oup”": "nyG oupl",
“operatorGoup": "nyGoup2",
"vi ewer Group": "nyG oup3"

}

2.4 DELETE Registration Method

Use the DELETE method to remove a registered client.

REST Request

DELETE /opss/v2/ opssRest i ent/client Nane

cURL Example

The following example shows how to delete a delete a registered client by submitting a
DELETE request on the REST resource using cURL.

curl -i -X DELETE -u usernane: password https://nyhost: 7001/ opss/v2/ opssRestdient/
myd i ent Nane

ORACLE 2.4



Managing Credentials in the Credential
Store

Oracle Platform Security Services (OPSS) uses the Credential Store Framework
(CSF) to manage credentials in a secure form. You can view and manage credentials
in the store using REST.

Section Method Resource Path

POST Credentials Method POST [ opss/v2/credentials

GET Credentials Using Map and Key  GET [ opss/v2/ credential s/

Method

GET Credentials Using Map Method ~ GET /opss/v2/credentials

GET Credential Using Resource ID GET [ opss/v2/ credential s/resourceld
PUT Credential Using Resource ID PUT [ opss/v2/ credential s/resourceld

DELETE Credential Using Resource  DELETE  /opss/v2/credential s/resourceld
ID

3.1 POST Credentials Method

Use the POST method to create new credentials in the credential store.

REST Request

PCST /opss/v2/ credential s

Request Body
Media types for the request or response body.
Media Types: application/json

The request body contains the details of the create request:

Table 3-1 Credentials Attributes

Attribute Description Required
“user Name* Username for the credential Yes
“passwor d* Password for the credential Yes
“description” A description for the credential Optional

ORACLE 3-1



Chapter 3
GET Credentials Using Map and Key Method

Table 3-1 (Cont.) Credentials Attributes

_______________________________________________________________________|
Attribute Description Required

“expiration” The expiration date for the credential formatted as yyyy- Optional
MW dd' T HH: nm ss. SSSZ.

“nanespace” a unique name for the credential namespace Yes

“name" A unique name that identifies the credential Yes

Response Body

The output of a POST request is a Resource ID.

cURL Example

The following example shows how to create a credential in the credential store by
submitting a POST request on the REST resource using cURL

curl -i -X POST -u username: password --data @reatecred.json -H Content-
Type: application/json https://nyhost: 7001/ opss/v2/credentials

Example of Request Body
The following shows an example of the request body in JSON format.

{
"user Name": "myUser3",
"password": "nypass123",
"description": "mydescription”,
"expiration": "5000-07-04T12: 08: 56. 235-0700",
"nanespace: "M/Mp",

"name": " nyKey"
}

3.2 GET Credentials Using Map and Key Method

ORACLE

Use the GET method to search the entire CSF for a credential given its map and key
name.

REST Request

CGET /opss/v2/credentials

Response Body
Media types for the request or response body.
Media Types: application/json

The response body contains attributes for the credential. For details about credential
attributes, see Table 3-1.

cURL Example

The following example shows how to view credentials in a credential store by
submitting a GET request on the REST resource using cURL.

3-2



Chapter 3
GET Credentials Using Map Method

curl -i -X GET -u usernane: password https://nyhost: 7001/i daas/ pl at f or nf
opss/v2/ credential s?filter=map=nymap, key=nykey

Example of Response Header

The following shows an example of the response header. For more about the HTTP
status codes, see HTTP Status Codes for HTTP Methods.

HTTP/ 1.1 200 X

Example of Response Body
The following shows an example of the response body in JSON format.

{
"id": "1234567890"

"user Name": "myUser3",

"password": "nypass123",

"description": "mydescription”,

"expiration": "5000-07-04T12: 08: 56. 235-0700",
"type": "PasswordCredential"”

}

3.3 GET Credentials Using Map Method

ORACLE

Use the GET method to search the entire CSF for a list of credentials given a map
name.

# Note:

If a map contains generic credentials, then it will not be present in the list.

REST Request

CET /opss/v2/credentials

Response Body
Media types for the request or response body.
Media Types: application/|son

The response body contains attributes for the credentials. For details about credential
attributes, see Table 3-1.

cURL Example

The following example shows how to view credentials in a credential store by
submitting a GET request on the REST resource using cURL.

curl -i -X GET -u usernane: password https://nmyhost: 7001/ opss/v2/ credential s?
filter=map=nynmap

Example of Response Header

The following shows an example of the response header. For more about the HTTP
status codes, see HTTP Status Codes for HTTP Methods.

3-3



Chapter 3
GET Credential Using Resource ID

HTTP/ 1.1 200 K

Example of Response Body

The following shows an example of the response body in JSON format.

{

"credential s": [

{
"id": "1234567890",
"user Name": "nmyUser",
"password": "nypass123",
"description”: "mydescription”,
"expiration": "5000-07-04T12: 08: 56. 235-0700",
"type": "PasswordCredential"”
I3
{
"id": "1234567890",
"user Name": "myUser2",
"password": "nypass123",
"description": "mydescription”,
"expiration": "5000-07-04T12: 08: 56. 235-0700",
"type": "PasswordCredential"”
}

}

3.4 GET Credential Using Resource ID

ORACLE

Use the GET method to search the entire CSF for a credential given its Resource ID.

REST Request

GET /opss/v2/ credential s/resourceld

Response Body
Media types for the request or response body.
Media Types: appl i cation/|son

The response body contains attributes for the credential. For details about credential
attributes, see Table 3-1.

cURL Example

The following example shows how to view credentials in a credential store by
submitting a GET request on the REST resource using cURL.

curl -i -X GET -u username: password https://nyhost: 7001/ opss/v2/credential s/
1234567890

Example of Response Header

The following shows an example of the response header. For more about the HTTP
status codes, see HTTP Status Codes for HTTP Methods.

HTTP/ 1.1 200 X

Example of Response Body

3-4



Chapter 3
PUT Credential Using Resource ID

The following shows an example of the response body in JSON format.

{
"id": "1234567890"

"userName": "nyUser3",

"password": "nypassl123",

"description": "mydescription”,

"expiration": "5000-07-04T12: 08: 56. 235-0700",
"type": "PasswordCredential"

}

3.5 PUT Credential Using Resource ID

ORACLE

Use the PUT method to update an existing credential in the credential store. The entry
must exist for the operation to succeed.

REST Request

PUT /opss/v2/credential s/resourceld

Request Body
Media types for the request or response body.
Media Types: application/|son

The request body contains the details of the create request.

Table 3-2 Credentials Attributes

Attribute Description Required
“user Name* Username for the credential No
“passwor d* Password for the credential No
“description” A description for the credential No
“expiration” The expiration date for the credential formatted as yyyy- No

MV dd' T HH nm ss. SSSZ.

“namespace” “myMap4” No

name “myKey22” No

cURL Example

The following example shows how to replace an existing credential in the credential
store by submitting a PUT request on the REST resource using cURL.

curl -i -X PUT -u usernane: password --data @epl acecred.json -H Content-
Type: application/json https://nyhost: 7001/ opss/v2/credential s

Example of Request Body

The following shows an example of the request body in JSON format.

{
"userName": "nyUser3",

3-5



Chapter 3
DELETE Credential Using Resource ID

"password": "nypass123",
"description": "mydescription",
"expiration": "5000-07-04T12: 08: 56. 235- 0700"

3.6 DELETE Credential Using Resource ID

ORACLE

Use the DELETE method to remove the entire CSF for a credential given its Resource
ID. The entry must exist for the operation to succeed.

REST Request

DELETE /opss/v2/ credential s/ resourcel d

cURL Example

The following example shows how to delete a credential from a credential store by
submitting a DELETE request on the REST resource using cURL.

curl -i -X DELETE -u usernane: password https://nyhost: 7001/ opss/v2/ credential s/
1234567890

3-6



Managing Keystores

Oracle Platform Security Services (OPSS) uses the Keystore Service (KSS) to view
and manage keystores. You can view and manage keystores using a set of REST

resources.

Section Method Resource Path

POST New KSS Keystore Method POST [ opss/ v2/ keyst or eservi ce

POST Import KSS Keystore Method POST [ opss/ v2/ keyst or eservi ce/ keyst ore

PUT Password Update KSS Keystore Method PUT / opss/ v2/ keyst or eservi ce

POST Trusted Certificate KSS Keystore POST [ opss/ v2/ keyst oreservi ce/ certificates

Method

GET Stripe KSS Keystores Method CGET [ opss/ v2/ keyst or eservi ce/ {stri peNane}

GET Alias KSS Keystore Method CGET [ opss/ v2/ keyst oreservice/ al i as/{stripeName}/
{keyst oreName}/{entryType}

GET Trusted Certificate KSS Keystore CET [ opss/v2/ keyst oreservice/certificates

Method

DELETE Trusted Certificate KSS Keystore DELETE [ opss/ v2/ keyst oreservice/ certificates

Method

POST Secret Key KSS Keystore POST [ opss/ v2/ keyst or eservi ce/ secr et key

GET Secret Key Properties KSS Keystore CGET [ opss/ v2/ keyst or eservi ce/ secr et key

Method

DELETE Secret Key KSS Keystore Method DELETE [ opss/ v2/ keyst or eservi ce/ secr et key

POST Key Pair KSS Keystore POST [ opss/ v2/ keyst or eservi ce/ keypai r

GET Key Pair KSS Keystore Method CGET [ opss/ v2/ keyst or eservi ce/ keypai r

DELETE Key Pair KSS Keystore Method DELETE [ opss/ v2/ keyst or eservi ce/ keypai r

DELETE Keystore Service KSS Keystore DELETE [ opss/ v2/ keyst or eservi ce

Method

4.1 POST New KSS Keystore Method

Use the POST method to create a new Keystore Service (KSS) Keystore.

REST Request

PCST / opss/ v2/ keyst or eservi ce

ORACLE

4-1



ORACLE

Chapter 4
POST New KSS Keystore Method

Request Body
Media types for the request or response body.
Media Types: application/json

The request body contains the details of the create request:

Attribute Description Required

“stripeName” Name of the stripe to contain the Yes
KSS keystore.

“keystoreName”  Name for the KSS keystore. Yes
"keyst orePassw  Password for the KSS keystore. No
ord”

“perm ssionBas  Boolean value that specifies No
ed” whether to create a permission-

based keystore.

Response Body
Media types for the request or response body.
Media Types: appl i cation/|son

The response body returns the status of the create operation, including:

Attribute Description
“ ERROR_CODE" If “ STATUS" is set to “Fai | ed”, provides the error code.
“ ERROR_MSG' If “ STATUS" is set to “Fai | ed”, provides the contents of the

error message.

“ STATUS" Status of operation. For example, “ SUCCEEDED" or “ FAI LED".

cURL Example

The following example shows how to create a KSS keystore by submitting a POST
request on the REST resource using cURL.

curl -i -X POST -u username: password --data @reatekss.json -H Content-
Type: application/json https://nyhost: 7001/ opss/v2/ keystoreservice

Example of Request Body
The following shows an example of the request body in JSON format.

{
"stripeNane" : "nyStripe",
"keystoreNanme" : "nyKeystore",
"keyst orePassword" : "nyPwd",
"perm ssi onBased" : "fal se"

4-2



Chapter 4
POST Import KSS Keystore Method

# Note:

A password is required unless creating a permission-based keystore
("pernission" : "true").

Example of Response Header

The following shows an example of the response header. For more about the HTTP
status codes, see HTTP Status Codes for HTTP Methods.

HTTP/ 1.1 200 X

Example of Response Body

The following shows an example of the response body in JSON format.
{

}

" STATUS": " SUCCEEDED"

Example of Creating Permission-Based Keystore
The following shows an example of the request body in JISON format.

{
"stripeNane" : "nyStripe",
"keystoreName" : "permKeystore",
"perm ssi onBased" : "true"

}

4.2 POST Import KSS Keystore Method

ORACLE

Use the POST method to import a Keystore Service (KSS) keystore from a JKS
keystore file.

REST Request

PCST /opss/ v2/ keyst or eservi ce/ keystore

Request Body
Media types for the request or response body.
Media Types: nul tipart/formdata

The response body contains information about the import request, including:

Attribute Description Required
“stripeName” Name of the stripe. Yes
“keystorel npor  Byte array of keystore data Yes
tByte”

“keystoreName”  Name for the JKS keystore. Yes

4-3



Chapter 4
POST Import KSS Keystore Method

Attribute Description Required
“keyst orePassw  Password for the local keystore file  No
ord” that is being imported and the

keystore entry, if password-

protected.

“keystoreType”  Keystore type. This value must be Yes
set to JKS.

“keyAliasList” List of aliases for the keys to be Yes
imported from the keyst or eFi | e.

“keyPasswor dLi List of passwords for the keys to be  No

st” imported from the keyst or eFi | e.
“perni ssionBas  Boolean value that specifies No
ed” whether to import as a permission-

based keystore.

Response Body
Media types for the request or response body.
Media Types: application/json

The response body contains information about the import operation, including:

Attribute Description
“ ERROR_CODE" If “STATUS" is set to “Fai | ed”, provides the error code.
“ ERROR_MSG' If “STATUS" is set to “Fai | ed”, provides the contents of the

error message.

“ SUCCES MsGS” Success message.

cURL Example

The following example shows how to import a KSS keystore by submitting a POST
request on the REST resource using cURL.

curl -i -X PUT -u usernane: password --data @updatekss.json -H
Cont ent - Type: application/json https://nyhost: 7001/ opss/v2/ keyst oreservicel keystore

Example of Request Body

The following shows an example of the request body in JOSN format.

"stripeNanme" : "nyStripe",
"keyst oreName" : "nyKeystore",

"keyAliasList" : ["nyAlias"],
"keyst orePassword" : "wel conel",
"keyPasswordLi st" : ["wel cone"],
"keystoreType" : "JKS',

"perm ssi onBased" : "false",

"keystorel nportBytes" : [-2, -19, -2, -19, 0, O, O, 2, O, O, O, 1, O, O, O, 2, O, 6,
109, 121, 99, 101, 114, 116, O, O, 1, 86, 125, 119, -27, 113, 0, 5, 88, 46, 53, 48,
57, 0, 0, 3, -61, 48, -126, 3, -65, 48, -126, 2, -89, -96, 3, 2, 1, 2, 2, 16, 64, 4,

ORACLE 4-4



Chapter 4
PUT Password Update KSS Keystore Method

72, -122, -60, 65, -17, 59, 100, 58, -128, 102, 64, -102, -4, -96, 48, 13, 6, 9, 42,
-122, 72, -122, -9, 13, 1, 1, 11, 5 0, 48, 120, 49, 11, 48, 9, 6, 3, 85, 4, 6, 19,
2, 85, 83, 49, 16, 65, -117, -74]

}

Example of Response Header

The following shows an example of the response header. For more about the HTTP
status codes, see HTTP Status Codes for HTTP Methods.

HTTP/ 1.1 200 K

Example of Response Body

The following shows an example of the response body in JSON format.
{

"SUCCESS MSG':"Aliases: nyAlias inported
successful | y"

}

4.3 PUT Password Update KSS Keystore Method

Use the PUT method to update the password for a Keystore Service (KSS) keystore.

REST Request

PUT /opss/ v2/ keyst oreservice

Request Body
Media types for the request or response body.
Media Types: application/|son

The response body contains information about the Load Balancer patches, including:

Attribute Description Required
“stripeName” Name of the stripe. Yes
“keystoreNanme”  Name of the KSS keystore. Yes
“newPasswor d” New password for the keystore. Yes
“ol dPasswor d” Old password for the keystore. Yes

Response Body
Media types for the request or response body.
Media Types: application/json

The response body returns the status of the update operation, including:

Attribute Description

“ ERROR_CODE" If “ STATUS" is set to "Fai | ed", provides the error code.

ORACLE 4.5



Chapter 4
POST Trusted Certificate KSS Keystore Method

Attribute Description

“ ERROR_MSG' If “ STATUS" is set to “ Fai | ed”, provides the contents of the
error message.

“ STATUS" Status of operation. For example, “ SUCCEEDED" or “FAILED".

cURL Example

The following example shows how to import a KSS keystore by submitting a PUT
request on the REST resource using cURL.

curl -i -X PUT -u username: password --data @updatekss.json -H Content -
Type: application/json https://nyhost: 7001/ opss/v2/ keystoreservice

Example of Request Body
The following shows an example of the request body in JSON format.

{
"stripeNane" : "nyStripe",
"keystoreNanme" : "nykssstore",
"ol dPassword" : "nyPwd",
"newPassword" : " nmyNewPwd"

}

Example of Response Header

The following shows an example of the response header. For more about the HTTP
status codes, see HTTP Status Codes for HTTP Methods.

HTTP/ 1.1 200 OK

Example of Response Body

The following shows an example of the response body in JSON format.

" STATUS": " SUCCEEDED"
}

4.4 POST Trusted Certificate KSS Keystore Method

ORACLE

Use the POST method to import a trusted certificate into a Keystore Service (KSS)
keystore.

REST Request

PCST / opss/ v2/ keyst oreservice/certificates

Request Body
Media types for the request or response body.
Media Types: application/|son

The response body contains information about the import request, including:

4-6



Chapter 4
POST Trusted Certificate KSS Keystore Method

Attribute Description Required
“keyAliasList” List that contains alias for the trusted Yes
certificate.
“keystoreEntry” Base64-encoded certificate. Yes
“keyst or eType” Keystore entry type. Valid values include: Yes
Certificate, TrustedCertificate, or
Secret Key.
“keyst or eNane” Name of the KSS keystore. Yes
“stripeName” Name of the stripe. Yes
“keyst orePasswor  Password for the KSS keystore. No
q

“keyPasswordList”  List that contains key password for the trust ~ No

certificate.

ORACLE

Response Body
Media types for the request or response body.
Media Types: application/|son

The response body returns the status of the import operation, including:

Attribute Description

“ ERROR_CODE’ If “ STATUS" is set to " Fai | ed", provides the error code.

“ ERROR_MSG' If “ STATUS" is set to “Fai | ed”, provides the contents of the
error message.

“ STATUS" Status of operation. For example, “ SUCCEEDED" or “FAI LED’.

“ SUBJECT_DN' Subject DN list that was imported.

cURL Example

The following example shows how to create a KSS keystore by submitting a POST
request on the REST resource using cURL.

curl -i -X POST -u usernane: password --data @nportcertkss.json -H Content-
Type: application/json https://nyhost: 7001/ opss/v2/ keystoreservice/certificates

Example of Request Body
The following shows an example of the request body in JSON format.

{
"keyAliasList" : ["nyAias"],
"keystoreEntry":
"M | C7DCCAqqgAW BAgl Eal hBSj ALBgcghkj OOAQDBQAWSDEKMAGGAL UEBhMBe TEKMAG GALUECBNVB
\ ne TEKMAg GA1 UEBX MBe TEKMAg GA1 UECh MBe TEKMAG GAL UECK MBe TEKMAG GAL UEAX MBe TAe FwOx NDA3\ nVDIVKM
TAWMI ZaFwOx NDEWVDEX MT AWM ZaVEgx G Al BgNVBAYTAXkxCj Al BgNVBAGTAXkxCj Al BgNV
\ nBACTAXkxCj Al ByNVBAOTAXkxCj Al ByNVBAS TAXkxCj Al BgNVBAMIAXkwggG3M | BLAYHKoZI zj gE

4-7



Chapter 4
GET Stripe KSS Keystores Method

\ NATCCARBCg YEA/ X9TgR11Ei | S30qcLuzk5/ YRt 11 870QAwx4/ gLZRIm FXUAI Uf t ZPY1Y+r / FO9bow
\ n9subVW XgTuAHTRv8nZgt 2uZUKVkn5/ 0BHsQ sJPu6nX/ r f GG g7V+ GaKYVDWT7g/ bTxR7DAj VU
\ nELoVKTL2df QuK2HXKu/
yI gMZndFI Acc CFQCXYFCPFSM.zLKSuYKi 64QL8FgcIQKBgQD34aCF1ps9\ n3su8qlw2uFe5eZSvu/
0660L5VOWL.PQeCZ1FZV4661FI PSnEHEI GAt EK\W SPoTCgWETf PCTKMyKbh
\ nPBZ6i 1R8] Sj go64eK70miZFuo38L+i E1YvH7YnoBJDvMPGHqFGQ ai D3+Fa5Z8Ckot mXoB7VSVK\ nAUW?/
S9JKgOBhAACYYBr vzkj oznv6t 6 TOGNJES1IR3ypRsBs8VLX2g3Cot HA7Kht / TCj 4Hi kel ZDd
\ nuLOt 96R5Q4A3sr OgSI Z
+01 NRs1ER8y 1Q37LyINf yqYn5KqLBI N9bhSYAf cul pj wi XGvf LQGdBy D7\ nt r 4PSvZQx 18K6p68HUCh
+) XQT9+7n3ZUl Bz H5aMMB8WHQYDVROOBBYEFPdMyc EBbYSCYMIJi E4r
\ ncxf 7Me4MAs GBy q GSMA4 BAMFAAMY ADAs AhQH/ GLi xr EaWAG3I GMaf kHgXxnzhwt UWbeSct gnma QB
\ nvKaYOE6f YJzcp5¢c=",

"keystoreType" : "TrustedCertificate",

"keystoreNanme" : "nyKeystore",

"stripeNane" : "nyStripe",

"keyst orePassword" : "nyPwd"

"keyPasswordLi st" : ["nykeyPwd"]
}

Example of Response Header

The following shows an example of the response header. For more about the HTTP
status codes, see HTTP Status Codes for HTTP Methods.

HTTP/ 1.1 200 X

Example of Response Body
The following shows an example of the response body in JSON format.

{
" STATUS": " SUCCEEDED"

"SUBJECT DN': "CN=y, QUy, O=y, L=y, ST=y, C=y"
}

4.5 GET Stripe KSS Keystores Method

ORACLE

Use the GET method to return all Keystore Service (KSS) keystores for a stripe.

REST Request

CET /opss/v2/ keystoreservice/ {stri peNane}

Parameters

The following table summarizes the GET request parameters.

Name Description Type Required

“stripeName” Name of stripe for which you want to view all Path Yes
KSS keystores.

Response Body
Media types for the request or response body.
Media Types: application/|son

The response body contains information about the certificate, including:

4-8



Chapter 4
GET Alias KSS Keystore Method

Attribute Description

“keyst ores” List of keystores in the stripe.

cURL Example

The following example shows how to view all certificates for an alias by submitting a
GET request on the REST resource using cURL.

curl -i -X GET -u usernane: password https://nyhost: 7001/ opss/v2/ keyst or eservi ce/
myStripe

Example of Response Header

The following shows an example of the response header. For more about the HTTP
status codes, see HTTP Status Codes for HTTP Methods.

HTTP/ 1.1 200 K

Example of Response Body

The following shows an example of the response body in JSON format.
{

}

"keystores":["trust","castore"]

4.6 GET Alias KSS Keystore Method

Use the GET method to view the alias for the Keystore Service (KSS) keystore.

REST Request

GET /opss/v2/ keystoreservice/alias/{stripeNane}/{keystoreNane}/{entryType}

Parameters

The following table summarizes the GET request parameters.

Name Description Type Required
“stripeName” Name of the stripe. Path Yes
“keyst or eNane” Name of the keystore. Path Yes
“entryType” Keystore type. Valid values include Certificate, Path Yes
TrustedCertificate, or Secret Key. Wildcard "*"
means all the types.
keystorePassword Base64 encoded keystore password Header No
Response Body
Media types for the request or response body.
Media Types: application/|son
ORACLE

4-9



Chapter 4
GET Trusted Certificate KSS Keystore Method

The response body contains information about the certificate, including:

Attribute Description

“Alias” List of keystore aliases in the stripe.

cURL Example

The following example shows how to view all certificates for an alias by submitting a
GET request on the REST resource using cURL.

curl -i -X GET -u usernane: password https://nyhost: 7001/ opss/v2/ keyst or eservi ce/
alias/nmyStripel myKeystore/ TrustedCertificate

Example of Response Header

The following shows an example of the response header. For more about the HTTP
status codes, see HTTP Status Codes for HTTP Methods.

HTTP/ 1.1 200 K
Example of Response Body

The following shows an example of the response body in JSON format.

{
}

"Alias":["nyAlias"]

4.7 GET Trusted Certificate KSS Keystore Method

ORACLE

Use the GET method to view trusted certificates in the Keystore Service (KSS)
keystore. If the keystore is password-protected, you must provide a Base64-encoded

header value for the keystore password.
REST Request

CET /opss/v2/ keystoreservice/certificates

Parameters

The following table summarizes the GET request parameters.

Name Description Type Required
“stripeName” Name of the stripe. Query Yes
“keyst or eNane" Name of the keystore. Query Yes
“keyAl i as" Alias for trusted certificate. Query Yes
“keystoreEntryTy Type of keystore entry. Valid values Query Yes
pe* include Certificate,

TrustedCertificate, or

CertificateChain.
“keyst orePasswor  Password for the KSS keystore. Header No
du

4-10



Chapter 4
GET Trusted Certificate KSS Keystore Method

Name Description Type Required

“keyPasswor d* Password for the key. Header No

Response Body
Media types for the request or response body.
Media Types: application/|son

The response body contains information about the certificate, including:

Attribute Description
“ CONTENT* Contents of the Base64-encoded certificate.
“Ext ensi ons* Optional extensions that are used to issue a certificate for a specific
purpose. Each extension includes the following:
*  Object identifier (oid) that uniquely identifies it
*  Flag indicating whether the extension is critical
*  Set of values
“| SSUER_DN* List of trusted distinguished names.
“ NOT_AFTER' Date the certificate expires.
“ NOT_BEFORE* Date the certificate is activated.
“SERI AL_NO* Serial number of the JKS keystore.
“ Sl GNATURE" Base64-encoded signature key.
“ Sl GNI NG_ALGCRI THW Signing algorithm for the alias.
“ SUBJECT_DN* Subject distinguished names list.
“PUBLI C KEY* String of public key value.
cURL Example
The following example shows how to view all certificates for an alias by submitting a
GET request on the REST resource using cURL.
curl -i -X GET -u usernane: password -H keyst or ePasswor d: cHIkME= - H
keyPassword: bXl @d2Qy  https://nyhost: 7001/ opss/ v2/ keyst or eservi ce/
certificates?"stri peNane=nyStri pe&keyst or eNane=nyKeyst or e&keyAl i as=cl i ent &eyst or eEnt
ryType=Certificate"
Example of Response Header
The following shows an example of the response header. For more about the HTTP
status codes, see HTTP Status Codes for HTTP Methods.
HTTP/ 1.1 200 K
Example of Response Body
The following shows an example of the response body in JSON format.
ORACLE 4-11



Chapter 4
DELETE Trusted Certificate KSS Keystore Method

"SUBJECT_DN': " CN=y, Oy, O=y, L=y, ST=y, C=y",

"I SSUER_DN": " CNey, OU=y, O=y, L=y, ST=y, C=y",

"NOT_BEFORE": "Fri Jul 25 02:45:11 PDT 2014",

"NOT_AFTER": "Thu Cct 23 02:45:11 PDT 2014",

"SERI AL_NO': "982191050",

"SI GNI NG_ALGORI THM': " 1. 2. 840. 10040. 4. 3",

"PUBLI C_KEY": "M | Bt zOCASWGBy qGSMA4BAEWggEf AoGBAP1/
WAEddRI pUt 9KnC7s50F 2Ebd SPO9EAMVEP4C2USZpRVIAI | HTWI2NWPg/ xf WeMPbLLVs 14E7gB00b/
JmyLdr mVCl pJ+f 6AR7ECLCT7upl/ 63xhv4OLf nxqi nFQBE
+4P208Uewn 1VBNaFpEy9nXzri t hlyrv8i | DGZ3RSAHHAhUAI 2BQ xU C8yykr mCouuEC/
BYHPUCG YEA9+GghdabPd7LvKt ¢Nr hXuXmr 7v6QuqC+VdMCz OHgndRW/e Qut RZT
+ZxBxCBgLRIFnEj] 6EW0FhO3zwkyj M miTwéot Uf | 004KQuHi uzpnWRbgN &/ ohNWLx
+2J6ASQ7zKTxvghRkl mog9/ hWiVf BpKLZI 6Ae1Ul ZAFMY 7PSSoDgYQAA0GAa785! 6MVbr
+r ek9Bj SREt Ud8qUbAbPFS190NxqLR3eyobf Owo+B4pHpWBbi 9Lf eke UCAN7KzoEi G t CDUbNREF M UN
+y8i TX8qm)+Sqi WZTf WHUMAH3Li KY8CFx| Xy0BnQcg+7a+D0r 2UMIf CugevB1Aof 010E/ f u592VCACx
+U="" CONTENT": "-- - - - BEG N CERTI FI CATE- - -- -
\ nM | C7DCCAqqgAWM BAgl ECosLyj ALBgcghkj OOAQDBQAWS
EKMAgGALUEBhMBcj EKMAgGALUECBMB\ ncj EKMAgGALUEBX MBcj EKMAGGALUEChMBej EKMAgGALUECKM
cj EKMAgGALUEAXMBU AeFwOxNDA3\ nM UaOTQLMTFaFwOx NDEWY MMOTQLMTFaMEgXx G Al BgNVBAYTA
I xG Al BgNVBAGTAXI xCj Al ByNVA nBACTAXI xCj Al BgNVBAOTAXI xCj Al BgNVBASTAXI xG Al BgNVBAM
AVI wggG3M | BLAYHK0ZI zj gE\ nATCCARBCgYEA\ / X9TgRL1Ei | S30qcLuzk5\ / YRt 11 870Qawx4\ / gL
RIm FXUAI Uf t ZPY1Y+r\/ FObowh n9subWe XgTuAHTRv8nZgt 2uZUKWkn5\ / 0BHsQ sJPuénX\ / r f GG
[ g7V+f GaKYVDWT7g\ / bTXR7DAj VU nELoVK TL2df QuK2HXKuU\ / yI gMZndFI Acc CFQCXYFCPFSMLzLKS
YKi 64QL8FgcIKBgQD34aCF1ps9\ n3su8qlw2uFe5eZSvul / 0660L5VOWLPQeCZ1FZV4661FI PSnEHE
GAt EKW SPoTCgWE7 PCTKMyKbh\ nPBZ6i 1R8] Sj go64eK7OmdZFuo38L+i E1YvH7YnoBJDvMpPGHGFG
i ai D3+Fa5Z8Gkot mXoB7VSVk\ nAUw7\ / s9JKgOBhAACGYA] hpZybXj 6r | XDow8sr nSFE9dZJJpCKaQV
ACagQogePV+xI gPCl DOoi QI\ nuvuUGHer Dr ThC1\ / W§5Uj 1+Tnk SKTy0qYxmQog56xALad7np9TKt gt
4\y8eUlor akGAl rj Nt \ / EgR\ nf 0675n+q! NkKXKpcxaC cupRCYPKPXI nT4nt y KMhiVB8WHQYDVROOBB
EFDKbnPa2l | 6Syl JRPTv8\ nQ+4CqpEhMAS GBy qGSMA4BANFAAMY ADAs AhQbk m aUGSQDR5mXUi YC74p
\/ FBOM UGx5I ¢5Y01ppo\ nvK3UgL7MBE3eCf c=\n- - - - - END CERTI FI CATE- - - - -

"SI GNATURE" : FEZN2| 4SPFEKS5j t 2QZRo5Q==",

"Extensions":"{subj ect Keyl DExtension {oid = 2.5.29.14 critical = false, value =
329h98f 606225e€92¢a52513d3bf c43ee02aa9121} } "
}

4.8 DELETE Trusted Certificate KSS Keystore Method

Use the Delete method to delete a certificate from a Keystore Service (KSS) keystore.
If the keystore is password-protected, you must provide Base64-encoded header
values for the keystore and key passwords.

REST Request

DELETE /opss/v2/ keyst oreservice/ certificates

Parameters

The following table summarizes the DELETE request parameters.

Name Description Type Required
“stripeName” Name of stripe. Query Yes

“keyst or eNange*“ Name of the keystore. Query Yes

“keyAl i as” Alias for the certificate in the KSS keystore. Query Yes
ORACLE 4-12



Chapter 4
POST Secret Key KSS Keystore

Name Description Type Required
“keyst or ePasswor d* Base64 encoded keystore password. Header No
“keyPasswor d* Base64 encoded key password. Header No

Response Body
Media types for the request or response body.
Media Types: application/|son

The response body returns the status of the import operation, including:

Attribute Description

“ ERROR_CODE" If “ STATUS" is set to “ Fai | ed”, provides the error code.

“ ERROR_MSG' If “ STATUS" is set to “ Fai | ed”, provides the contents of the error message.
“ STATUS" Status of operation. For example, “ SUCCEEDED" .

cURL Example

The following example shows how to delete a trusted certificate from the keystore by
submitting a DELETE request on the REST resource using cURL.

curl -i -X DELETE -u usernane: password -H keyst or ePasswor d: cHdkM®= -H
keyPasswor d: bXl Qd2Qy https://nyhost: 7001/ opss/ v2/ keyst or eservi cel
certificates?"stri peNane=nmyStri pe&keyst or eNane=nyKeyst or e€keyAl i as=nyAl i as"

Example of Response Header

The following shows an example of the response header. For more about the HTTP
status codes, see HTTP Status Codes for HTTP Methods.

HTTP/ 1.1 200 X

Example of Response Body
The following shows an example of the response body in JSON format.

{
}

4.9 POST Secret Key KSS Keystore

Use the POST method to create a secret key used in symmetric encryption/decryption
for a KSS keystore.

" STATUS": " SUCCEEDED"

REST Request

PCOST / opss/ v2/ keyst or eservi ce/ secr et key

ORACLE 4-13



Chapter 4
POST Secret Key KSS Keystore

Request Body
Media types for the request or response body.
Media Types: application/json

The request body contains the details of the create request:

Attribute Description Required
“stripeName” Name of the stripe. Yes
“keyst or eNane* Name for the KSS keystore. Yes
“keyAl i asList"” List that contains alias for the secret key. Yes
“keySi ze" Size measured in bits of the of the key used Yes

“keyAl gorithnf

in cryptographic algorithm.

Controls the cryptographic characteristics Yes
of the algorithms that are used when
securing messages.

“keyst orePassword*  Password for the KSS keystore. No

“keyPasswor dLi st “ List that contains password for the key. No

ORACLE

Response Body
Media types for the request or response body.
Media Types: application/|son

The response body returns the status of the import operation, including:

Attribute Description
“ ERROR_CODE" If “ STATUS" is set to “ Fai | ed", provides the error code.
“ ERROR_MSG' If “ STATUS" is set to “Fai | ed", provides the contents of the

error message.

“ STATUS" Status of operation. For example, “ SUCCEEDED" or “ FAI LED".

cURL Example

The following example shows how to create a secret key by submitting a POST
request on the REST resource using cURL.

curl -i -X POST -u username: password --data @ecretkey.json -H Content-
Type: appl i cation/json https://nyhost: 7001/ opss/ v2/ keyst oreservi ce/ secret key

Example of Request Body
The following shows an example of the request body in JSON format.

{
"stripeNane" : "nyStripe",
"keyst oreNanme" : "nyKeystore",

4-14



Chapter 4
GET Secret Key Properties KSS Keystore Method

"keyAliasList" : ["nyKeyAlias"],

"keySi ze" : "56",

"keyAl gorithnt : "DES',

"keyst orePassword" : "nyPwd",

"keyPasswordLi st" : ["nyKeyPwd"]
}

Example of Response Header

The following shows an example of the response header. For more about the HTTP
status codes, see HTTP Status Codes for HTTP Methods.

HTTP/ 1.1 200 X

Example of Response Body

The following shows an example of the response body in JSON format.
{

}

" STATUS": " SUCCEEDED"

4.10 GET Secret Key Properties KSS Keystore Method

ORACLE

Use the GET method to view the secret key properties for a KSS keystore. If the
keystore is password-protected, you must provide Base64-encoded header values for

the keystore and key passwords.
REST Request
CET /opss/ v2/ keyst oreservi cel secret key

Parameters

The following table summarizes the GET request parameters.

Name Description Type Required
stripeNanme Name of the stripe. Query Yes
keyst or eName Name of the keystore. Query Yes
keyAl i as Alias of the secret key. Query Yes
"returnKeyl nRespo  Whether the key should be returned in the Query No

nse" output.

"keyst orePassword Base64 encoded keystore password. Header No
"keyPasswor d" Base64 encoded key password. Header No

Response Body
Media types for the request or response body.

Media Types: application/|son

The response body contains information about the certificate, including:

4-15



Chapter 4
DELETE Secret Key KSS Keystore Method

Attribute Description
"keystore properties” List of secret key properties.
"secret key" String of secret key data if "returnKeylnResponse" set to true

cURL Example

The following example shows how to view all certificates for an alias by submitting a
GET request on the REST resource using cURL.

curl -i -X GET -u usernane: password -H keyst orePasswor d: bXl Qd2Q= -H
keyPasswor d: bXl LZXI Qd2Q= https:// myhost: 7001/ opss/ v2/ keyst or eservi ce/
secret key?"stri peNane=nySt ri pe&keyst or eNane=nyKeyst or e&keyAl i as=nmyKeyAl i as"

Example of Response Header

The following shows an example of the response header. For more about the HTTP
status codes, see HTTP Status Codes for HTTP Methods.

HTTP/ 1.1 200 K

Example of Response Body

The following shows an example of the response body in JSON format.
{

}

"keystore properties":["DES"]

The following example shows how to view properties of secret key for an alias
including secret key value

curl -i -X GET -u usernane: password -H keyst orePasswor d: bXl Qd2Q= -H

keyPasswor d: bXl LZX Qd2Q= https://myhost: 7001/ opss/ v2/ keyst or eser vi ce/ secr et key?
stripeName=nyStri pe&keyst or eName=nyKeyst or e€keyAl i as=nyKeyAl i asé&r et ur nKeyl nResponse=t
rue

Example of Response Body
The following shows an example of the response body in JSON format.

{

"keystore properties":["DES'],
"secret key": "f65uMAXAdME"

}

4.11 DELETE Secret Key KSS Keystore Method

Use the DELETE method to delete a secret key.

REST Request

DELETE /opss/ v2/ keyst oreservi ce/ secret key

Parameters

The following table summarizes the DELETE request parameters.

ORACLE 4-16



Chapter 4
DELETE Secret Key KSS Keystore Method

Name Description Type Required
"stripeName" Name of the stripe. Query Yes
"keyst or eNane" Name of the keystore. Query Yes
"keyAlias" Alias of the secret key. Query Yes
"keyst orePasswor Password for the KSS keystore. Header No

q

"keyPasswor d" Password for the key. Header No

Response Body
Media types for the request or response body.
Media Types: application/|son

The response body returns the status of the delete operation, including:

Attribute Description
" ERROR_CODE" If " STATUS" is set to " Fai | ed", provides the error code.
" ERROR_MSG' If " STATUS" is set to "Fai | ed", provides the contents of the

error message.

" STATUS" Status of operation. For example, " SUCCEEDED" or " FAI LED".

cURL Example

The following example shows how to delete a secret key from the keystore by
submitting a DELETE request on the REST resource using cURL.

curl -i -X DELETE -u usernane: password -H keystorePassword: bXl @2Q= -H
keyPasswor d: bXl LZXI Qd2Q= https://myhost: 7001/ opss/ v2/ keyst oreservi ce/
secret key?"stri peName=nySt ri pe&keyst or eNanme=nyKeyst or e"

Example of Response Header

The following shows an example of the response header. For more about the HTTP
status codes, see HTTP Status Codes for HTTP Methods.

HTTP/ 1.1 200 X

Example of Response Header

The following example shows an example of the response body in JSON format.

{
"STATUS'": " SUCCEEDED'

}

ORACLE 4-17



4.12 POST Key Pair KSS Keystore

Use the POST method to create a key pair used in symmetric encryption/decryption
for a KSS keystore.

REST Request

POST / opss/ v2/ keyst oreservi cel keypai r

Request Body

Media types for the request or response body.

Media Types: application/json

Chapter 4
POST Key Pair KSS Keystore

The request body contains the details of the create request:

Attribute Description Required
"stripeName" Name of the stripe. Yes
"keystoreName"  Name for the KSS keystore. Yes
"keyAliasList" Listthat contains alias for the secret Yes
key.
"keySi ze" .Size measured in bits of the of the  Yes
key used in cryptographic
algorithm.
"keyAl gorithnl  Controls the cryptographic Yes
characteristics of the algorithms
that are used when securing
messages
"DN' Distinguished name for the key Yes
"keystorePassw Password for the KSS keystore. No
ord"
"keyPasswor d" Password for the key. No
"keyPasswordLis List that contains password for the No

t

list.

Response Body

Media types for the request or response body.

Media Types: application/json

The response body returns the status of the import operation, including:

Attribute

Description

" ERROR_CCDE"

ORACLE

If " STATUS" is set to "Fai | ed", provides the error code.

4-18



Chapter 4
GET Key Pair KSS Keystore Method

Attribute Description

" ERROR_MSG' If " STATUS" is set to " Fai | ed", provides the contents of the
error message.

" STATUS" Status of operation. For example, " SUCCEEDED" or " FAI LED".

cURL Example

The following example shows how to create a key pair by submitting a POST request
on the REST resource using cURL.

curl -i -X POST -u username: password --data @eypair.json -H Content-
Type: application/json https://nyhost: 7001/ opss/v2/ keystoreservi cel keypair

Example of Request Body

The following shows an example of the request body in JSON format.

{

"stripeNane" : "nyStripe",
"keystoreNanme" : "nyKeystore",
"keyAliasList" : ["nyKeyAlias"],
"keySi ze" : "256",

"algorithnt : "EC',

"DN'

" CN=Cer t GenCA, OU=FORTESTI NGONLY, O=MyOr gani zat i on, L=MyTown, ST=M/St at e, C=US",
"keyst orePassword" : "nyPwd",
"keyPasswordLi st" : ["nyKeyPwd"]

}

Example of Response Header

The following shows an example of the response header. For more about the HTTP
status codes, see HTTP Status Codes for HTTP Methods.

HTTP/ 1.1 200 OK

Example of Response Body

The following shows an example of the response body in JSON format.

" STATUS": " SUCCEEDED"
}

4.13 GET Key Pair KSS Keystore Method

ORACLE

Use the GET method to view to view a key pair for a KSS keystore. If the keystore is
password-protected, you must provide Base64-encoded header values for the
keystore and key passwords.

REST Request

CET /opss/ v2/ keyst oreservi ce/ keypai r

4-19



Chapter 4
GET Key Pair KSS Keystore Method

Parameters

The following table summarizes the GET request parameters.

Name Description Type Required
"stripeName" Name of the stripe. Query Yes
"keyst or eNane" Name of the keystore. Query Yes
"keyAlias" Alias of the secret key. Query Yes
"keystorePassword Password for the KSS keystore. Header No
"keyPasswor d" Password for the key. Header No

Response Body
Media types for the request or response body.
Media Types: application/|son

The response body returns the status of the get operation, including:

Attribute Description

"private key" Base64 encoded private key

cURL Example

The following example shows how to view a key pair by submitting a GET request on
the REST resource using cURL.

curl -i -X GET -u usernane: password -H keyst orePasswor d: bXl Qd2Q= -H
keyPasswor d: bXl LZXI Qd2Q= https://nyhost: 7001/ opss/ v2/ keyst or eser vi ce/ keypai r ?
stripeName=nyStri pe&keyst or eName=nyKeyst or e€keyAl i as=nyKeyAl i as

Example of Response Header

The following shows an example of the response header. For more about the HTTP
status codes, see HTTP Status Codes for HTTP Methods.

HTTP/ 1.1 200 K
Example of Response Body
The following shows an example of the response body in JSON format.
{
"private key":

" MEECAQMEWYHK0ZI 2] 0CAQYI KoZI zj ODAQEIZAl AGEBBCBZ QbY26XUZj 1 |
XuwWMJj 1XXQCqui sOf 9g5SDONXhI Bj we="

}

ORACLE 4-20



Chapter 4
DELETE Key Pair KSS Keystore Method

4.14 DELETE Key Pair KSS Keystore Method

ORACLE

Use the DELETE method to delete a key pair.

REST Request

DELETE / opss/ v2/ keyst or eservi ce/ keypai r

Parameters

The following table summarizes the DELETE request parameters.

Name Description Type Required
"stripeName" Name of the stripe. Query Yes
"keyst or eNang" Name of the keystore. Query Yes
"keyAl i as" Alias of key pair. Query Yes
"keyst orePasswor Base64 encoded keystore password. Header No

q

"keyPasswor d" Base64 encoded key password. Header No

Response Body
Media Types for the request or response body.
Media Types: application/json

The response body returns the status of the delete operation, including:

Attribute Description
" ERROR_CODE" If " STATUS" is set to " Fai | ed", provides the error code.
" ERROR_MSG' If " STATUS" is set to "Fai | ed", provides the contents of the

error message.

" STATUS" Status of operation. For example, " SUCCEEDED" or " FAI LED".

cURL Example

The following example shows how to delete a key pair from the keystore by submitting
a DELETE request on the REST resource using cURL.

curl -i -X DELETE -u usernane: password -H keyst orePasswor d: bXl Qd2Q= https://nyhost:
7001/ opss/ v2/ keyst or eser vi ce/

keypai r ?"stri peName=ny St ri pe&keyst or eName=nyKeyst or e&keyAl i as=nyKeyAl i as"
Example of Response Header

The following shows an example of the response header. For more about the HTTP
status codes, see HTTP Status Codes for HTTP Methods.

HTTP/ 1.1 200 OK

4-21



Chapter 4
DELETE Keystore Service KSS Keystore Method

Example of Response Body

The following shows an example of the response body in JSON format.
{

}

" STATUS": " SUCCEEDED""

4.15 DELETE Keystore Service KSS Keystore Method

ORACLE

Use the DELETE method to delete a Keystore Service (KSS) keystore. If the keystore
is password-protected, you must provide Base64-encoded header values for the

keystore password.
REST Request
DELETE / opss/ v2/ keyst or eser vi ce

Parameters

The following table summarizes the DELETE request parameters.

Name Description Type Required
"stri peName" Name of the stripe. Query Yes
"keyst or eName" Name of the keystore. Query Yes
"keySt or ePasswor  Password for the key store. Header No

q

Response Body
Media types for the request or response body.
Media Types: application/|son

The response body returns the status of the delete operation, including:

Attribute Description
" ERROR_CODE" If " STATUS" is set to " Fai | ed", provides the error code.
" ERROR_MSG' If " STATUS" is set to "Fai | ed", provides the contents of the

error message.

" STATUS" Status of operation. For example, " SUCCEEDED" or " FAI LED".

cURL Example

The following example shows how to delete a trusted certificate from the keystore by
submitting a DELETE request on the REST resource using cURL.

curl -i -X DELETE -u usernane: password -H keyst orePasswor d: bXl Qd2Q= https://myhost:
7001/ opss/ v2/ keyst or eservi ce?"stri peName=ny St ri pe&keyst or eName=nyKeyst or e"

Example of Response Header

4-22



Chapter 4
DELETE Keystore Service KSS Keystore Method

The following shows an example of the response header. For more about the HTTP
status codes, see HTTP Status Codes for HTTP Methods.

HTTP/ 1.1 204 No Content

ORACLE 4-23



Chapter 4

DELETE Keystore Service KSS Keystore Method

ORACLE" 4-24



Creating and Validating Trust Tokens

Oracle Platform Security Services (OPSS) uses the Trust service to
manage trust tokens. You can get and validate tokens using REST.
Only REST clients that have permission to issue and validate tokens
for users in a particular Identity Domain (IDD) are allowed to issue
and validate tokens. A client must declare an IDD during registration
so that privileges to the client can be granted. .

For details on registration, see POST Registration Method.

Section

Method Resource Path

POST Trust Service Issue Token Method

POST Trust Service Validate Token Method

[ opss/ v2/trust Service

[ opss/v2/trust Service

5.1 POST Trust Service Issue Token Method

Use the POST method to get a trust token.

REST Request

PCOST opss/v2/trust Servicelissue

Request Body

Media types for the request or response body.

Media Types: application/|son

The request body contains the details of the create request:

Table 5-1 Trust Attributes

Attribute Description Required

"protocol " The trust protocol. Only the embedded No
protocol is supported.

"t okenType" The type of token. Supported token types  Yes
are: SAM., SAML2, and JWI.

"user nane" The user name for which the token is Yes
issued.

ORACLE

5-1



ORACLE

Chapter 5

POST Trust Service Issue Token Method

Table 5-1 (Cont.) Trust Attributes

Attribute

Description

Required

"t okenSi gni nghet hod"

“confirmationMet hod"

"scdAddress"

"addAut henti catingAuthorities

"namel dFor mat "

The cryptographic algorithms to sign the
contents of the JWT token. This attribute
is only used with the JWT-Token type.
Only PKI signing methods are supported:
RS-256 (RSA using SHA-256 hash
algorithm), RS-384(RSA using SHA-384
hash algorithm), and RS-512(RSA using
SHA-512 hash algorithm).

(JWT-Token only)

The method that a relying party uses to
verify the correspondence of the subject of
the assertion with the party presenting the
assertion. Supported confirmation
methods are sender - vouches, hol der - of -
key, and bearer.

(SAML2 only)

The subject confirmation data address.
The network address/location from which
an attesting entity can present the
assertion.

(SAML2 only)

A list of identity providers trusted by the
requester to authenticate the presenter.

(SAML2 only)

Defines the name identifier formats
supported by the identity provider. Name
identifiers are a way for providers to
communicate with each other regarding a
user.

. urn:oasis:names:tc:SAML:
2.0:nameid-format:persistent

e urn:oasis:names:tc:SAML:
2.0:nameid-format:transient

e urn:oasis:names:tc:SAML:
1.1:nameid-format:emailAddress

. urn:oasis:names:tc:SAML:
1.1:nameid-format:unspecified

. urn:oasis:names:tc:SAML:
1.1:nameid-format:X509SubjectName

e urn:oasis:names:tc:SAML:
1.1:nameid-
format:WindowsDomainQualifiedNam
e

e urn:oasis:names:tc:SAML:
2.0:nameid-format:kerberos

. urn:oasis:names:tc:SAML:
2.0:nameid-format:entity

(SAML and SAML2 only)

Yes

Yes

Yes

Yes

No

5-2



Chapter 5
POST Trust Service Validate Token Method

Table 5-1 (Cont.) Trust Attributes
|

Attribute Description Required
"idd" The identity domain Yes
"expirationDate" The date the token expires and can no Yes

longer be accepted for processing. Must
be in the format: yyyy- M\ dd'
T HH: nm ss. SSSZ

"appl i esTo" The scope (endpoint target) to which the No
token applies

"addi tional d ai ns" JWT claims to add to the claim segment. No
This attribute is only used with the JWT-
Token type.

cURL Example

The following example shows how to get a trust token by submitting a POST request
on the REST resource using cURL.

curl -i -X POST -u username: password --data @ssuetoken.json -H Content-
Type: application/json https://nyhost: 7001/ opss/v2/trust Service/issue

Example of Request Body
The following shows an example of the request body in JSON format.

{
"t okenType" : "JW",

"username" : "john.doe",

"t okenSi gni nghet hod" : "RS-256",

"idd" : "cisco",

"expirationDate" : "2015-10-19T12: 08: 56. 235- 0700",
}

Example of Response Header

The following shows an example of the response header. For more about the HTTP
status codes, see HTTP Status Codes for HTTP Methods.

HTTP/ 1.1 201 Created

5.2 POST Trust Service Validate Token Method

ORACLE

Use the POST method to validate a trust token.

REST Request

POST opss/v2/trustService/validate

Request Body
Media types for the request or response body.

Media Types: appl i cation/|son

5-3



Chapter 5
POST Trust Service Validate Token Method

The request body contains the details of the create request:

Table 5-2 Trust Attributes

Attribute Description Required
"t oken" The identity token. Yes
"protocol " The trust protocol. Only the ws-t r ust No

protocol is supported.

"t okenType" The type of token. Supported token Yes
types are: SAML, SAM_2, and JWI.

"user name" The user name for which the token is Yes
issued.

"t okenSi gni nghet hod" The cryptographic algorithms to sign Yes

the contents of the JWT token. This
attribute is only used with the JWT-
Token type. Only PKI signing methods
are supported: RS-256 (RSA using
SHA-256 hash algorithm),
RS-384(RSA using SHA-384 hash
algorithm), and RS-512(RSA using
SHA-512 hash algorithm).

(JWT-Token only)

"confirmationMet hod" The SAML method that is used to Yes
provide proof for a subject and a
SAML assertion. Supported
confirmation methods are sender -
vouches, hol der - of - key, and bearer.

(SAML2 only)

Response Body
Media types for the request or response body.
Media Types: appl i cation/|son

The response body contains details about the validate operation, including:

Attribute Description

"user nane" The user name for which the token is issued
"idd" The identity domain

"expirationDate" The date the token expires and can no longer be

accepted for processing
"appl i esTo" The scope (endpoint target) to which the token applies

"addi tional C ai ns" JWT claims to add to the claim segment. This attribute
is only used with the JWT-Token type.

ORACLE 5-4



ORACLE

Chapter 5
POST Trust Service Validate Token Method

cURL Example

The following example shows how to import a KSS keystore by submitting a POST
request on the REST resource using cURL.

curl -i -X POST -u username: password --data @alidatetoken.json -H Content-
Type: application/json https://nyhost: 7001/ opss/v2/trust Service/validate

Example of Request Body

The following shows an example of the request body in JSON format.

{
"token" : "eyThbGeci G JRUzI INi | sl nR5cCl 61 kpXVCJI9. eyJpc3M QO JzY290F2
guaw8i LCJI eHAi G EzMDA4MIsz ODAs | mbhbWli O JDf HIpcy BTWKZpbGx| anEi DCIhZGLpbi
| 6dHI1ZR0. 03f 329983b83f 7d9a9f 5f ef 85305880101d5e402af af a20154d094s229f 7578"
"protocol" : "ws-trust",
"t okenType" : "JW",
"username" : "john.doe",
"t okenSi gni ngMet hod" : "RS-256",
“confirmationMethod" : "bearer"

}

Example of Response Header

The following shows an example of the response header. For more about the HTTP
status codes, see HTTP Status Codes for HTTP Methods.

HTTP/ 1.1 200 X

Example of Response Body
The following shows an example of the response body in JSON format.

{

"username" : "john.doe",
"idd" : "cisco",
“expirationDate" : "2015-10-19T12: 08: 56. 235-0700",

5-5



Chapter 5

POST Trust Service Validate Token Method

ORACLE" 5-6



Authorizing Access

Oracle Platform Security Services (OPSS) uses the XACML3.0 REST profile based
authorization service to manage authorization. You can manage authorization using

REST.
Section Method Resource Path
GET PDP Link Method CGET [ opss/ v2/ aut hz/ xacm /
POST Policy Decision Method POST [ opss/ v2/ aut hz/ xacm /

6.1 GET PDP Link Method

Use the GET method to get the Policy Decision Point (PDP) for an application.

REST Request

CET /opss/v2/ aut hz/ xacm / appNane

Response Body
Media types for the request or response body.
Media Types: appl i cation/json or application/xn

The response body contains details about the PDP link, including:

Attribute Description
"rel" The PDP definition provider
"href" The PDP link.

cURL Example

The following example shows how to get the PDP link for an application by submitting
a GET request on the REST resource using cURL. Examples for both JISON and XML
are provided.

JSON Example

curl -i -X GET -u usernane: password -H Content - Type: application/json https://nyhost:
7001/ opss/ v2/ aut hz/ xacm / MyApp

Example of Response Body with JSON

The following shows an example of the response body when using JSON.

ORACLE 6-1



Chapter 6
POST Policy Decision Method

{ "resources": { "resource": { "link": { "rel":
"https://docs. oasi s-open. org/ ns/ xacn /rel ati on/ pdp", “href": "/

opss/ v2/ xacm | MyApp/ pdp" } } 1}

XML Example

curl -i -X GET -u usernane: password -H Content - Type: application/xm https://nyhost:

7001/ opss/ v2/ aut hz/ xacm / MyApp

Example of Response Body with XML
The following shows an example of the response body when using XML.

<resources xm ns=http://ietf.org/ns/home-docunents
m ns: aton="http: // ww. w3. or g/ 2005/ At oni' >
<resource rel ="http://docs. oasi s-open. org/ ns/ xacm /rel ati on/ pdp" >
<atomlink href="/opss/v2/xacm | MyApp/ pdp"/>
</resource>
</resources>

6.2 POST Policy Decision Method

ORACLE

Use the POST method to send a policy decision authorization request to the PDP
system.

REST Request
PCST / opss/ v2/ aut hz/ xacm / appNane/ pdp/

The URI can also specify the resource type. If the name of resource type is decided by
application name, then it can be omitted. The resource type is optional, and it is
specified by query parameter if needed.

PCST /opss/ v2/ aut hz/ xacm / appNane/ pdp/ ?r esType=r esType

Request Body
Media types for the request or response body.

Media Types: appl i cation/ xacni +j son; versi on=3. 0 or appl i cati on//xacn
+xm ; version=3.0

Response Body
Media types for the request or response body.

Media Types: appl i cation/ xacni +j son; versi on=3. 0 or appl i cati on//xacn
+xm ; versi on=3.0

cURL Example

The following example shows how to request a policy decision for an application by
submitting a POST request on the REST resource using cURL. Examples for both
JSON and XML are provided.

JSON Example

curl -i -X GET -u usernane: password --data @olicyRequest.json -H Content-
Type: appl i cation/ xacnl +j son; version=3.0 https://nyhost: 7001/ opss/ v2/ aut hz/ xacm /

My App/ pdp

6-2



ORACLE

Chapter 6
POST Policy Decision Method

Example of Request with JISON
The following shows an example of the request body when using JSON.

{
"Request": {

}
}

Example of Response Body with JSON
The following shows an example of the response body when using JSON.

{

"Response": [
]
}
XML Example
curl -i -X GET -u username: password --data @olicyRequest.xm -H Content-

Type: appl i cation/xacm +xm ; version=3.0 https://nyhost: 7001/ opss/v2/ aut hz/ xacm / MyApp/
pdp

Example of Request with XML

The following shows an example of the request body when using XML.
<Request xm ns="urn:oasis:nanes:tc:xacn :3.0: core: schema: wd-17"> ... </ Request >
Example of Response with XML

The following shows an example of the response body when using XML.

<Request xml ns="urn: oasi s: nanes:tc: xacn : 3. 0: core: schema: wd- 17"> ... </ Request >

6-3



Chapter 6

POST Policy Decision Method

ORACLE" 6-4



	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	What's New In This Guide
	New and Changed Features for 12c (12.2.1.3.0)
	New and Changed Features for 12c (12.2.1.2.0)
	New and Changed Features for 12c (12.2.1)

	1 About the OPSS REST API
	1.1 Introducing the OPSS REST API
	1.2 General URL Structure for OPSS Resources
	1.3 Authenticating REST Resources
	1.4 Using HTTP Methods with OPSS REST
	1.5 HTTP Status Codes for HTTP Methods

	2 Registering OPSS Clients
	2.1 POST Registration Method
	2.2 GET Registration Method
	2.3 PUT Registration Method
	2.4 DELETE Registration Method

	3 Managing Credentials in the Credential Store
	3.1 POST Credentials Method
	3.2 GET Credentials Using Map and Key Method
	3.3 GET Credentials Using Map Method
	3.4 GET Credential Using Resource ID
	3.5 PUT Credential Using Resource ID
	3.6 DELETE Credential Using Resource ID

	4 Managing Keystores
	4.1 POST New KSS Keystore Method
	4.2 POST Import KSS Keystore Method
	4.3 PUT Password Update KSS Keystore Method
	4.4 POST Trusted Certificate KSS Keystore Method
	4.5 GET Stripe KSS Keystores Method
	4.6 GET Alias KSS Keystore Method
	4.7 GET Trusted Certificate KSS Keystore Method
	4.8 DELETE Trusted Certificate KSS Keystore Method
	4.9 POST Secret Key KSS Keystore
	4.10 GET Secret Key Properties KSS Keystore Method
	4.11 DELETE Secret Key KSS Keystore Method
	4.12 POST Key Pair KSS Keystore
	4.13 GET Key Pair KSS Keystore Method
	4.14 DELETE Key Pair KSS Keystore Method
	4.15 DELETE Keystore Service KSS Keystore Method

	5 Creating and Validating Trust Tokens
	5.1 POST Trust Service Issue Token Method
	5.2 POST Trust Service Validate Token Method

	6 Authorizing Access
	6.1 GET PDP Link Method
	6.2 POST Policy Decision Method


