
Configuring Siebel Open
UI
Siebel 2018
September 2018

Copyright © 2005, 2018 Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions
on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in
your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast,
modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-
free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing
it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are “commercial computer software” pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed
on the hardware, and/or documentation, shall be subject to license terms and license restrictions
applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group. Apple and iPad are registered
trademarks of Apple Inc. Android is a trademark of Google Inc.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use
of third-party content, products, or services, except as set forth in an applicable agreement between you
and Oracle.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website
at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle
Support. For information,
visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Configuring Siebel Open UI Siebel 2018 3

Contents

Chapter 1: Preface
Audience 11

Documentation Accessibility 11

Access to Oracle Support 11

Related Documents 11

Conventions 11

Chapter 2: What’s New in This Release

Chapter 3: Overview of Siebel Open UI
About Siebel Open UI 15

Overview of Siebel Open UI 15
Example Customizations That You Can Make with Siebel Open UI 16
Open Development Environment 17
Siebel Open UI JavaScript API Support 18
Multiple Client Environment 18
Support for More Than One Usage 18
New Notification User Interfaces 19
Mobile Environments 19

How Siebel CRM Renders Siebel Open UI Clients 19
How Siebel CRM Renders Div Containers on Siebel Servers 20

About Using This Book 23
Important Terms and Concepts 23
How This Book Indicates Computer Code and Variables 25
How This Book Describes Objects 26
About the Siebel Innovation Pack 27
Support for Customizing Siebel Open UI 27
Getting Help from Oracle 29

Chapter 4: Architecture of Siebel Open UI
About the Siebel Open UI Development Architecture 31

Overview of the Siebel Open UI Development Architecture 31
Example of How Siebel Open UI Renders a View or Applet 37
Customizing the Presentation Model and Physical Renderer 41

Configuring Siebel Open UI Siebel 2018

Contents ■

4

Customizing the Physical Renderer 43
Customizing a Plug-in Wrapper 43
Stack That Siebel Open UI Uses to Render Objects 43
Items in the Development Architecture You Can Modify 47
Example Client Customizations 48
Differences in the Server Architecture Between High Interactivity and Siebel Open UI 48
Differences in the Client Architecture Between High Interactivity and Siebel Open UI 50

Life Cycle of User Interface Elements 51
Summary of Presentation Model Methods 51
Life Cycle of a Physical Renderer 53
Example of the Life Cycle of a User Interface Element 55
Explanation of Callouts 55

Chapter 5: Example of Customizing Siebel Open UI
Roadmap for Customizing Siebel Open UI 57

Process of Customizing the Presentation Model 58
Creating the Presentation Model 58
Customizing the Setup Logic of the Presentation Model 60
Customizing the Presentation Model to Identify the Records to Delete 62
Customizing the Presentation Model to Delete Records 66
Overriding Predefined Methods in Presentation Models 70
Customizing the Presentation Model to Handle Notifications 71
Attaching an Event Handler to a Presentation Model 74
Customizing Methods in the Presentation Model to Store Field Values 77
Customizing the Presentation Model to Call the Siebel Server and Delete a Record 79

Process of Customizing the Physical Renderer 80
Setting Up the Physical Renderer 80
Customizing the Physical Renderer to Render the Carousel 82
Customizing the Physical Renderer to Bind Events 84
Customizing the Physical Renderer to Bind Data 86
Customizing the Physical Renderer to Refresh the Carousel 87
Modifying CSS Files to Support the Physical Renderer 90

Process of Customizing the Plug-in Wrapper 92
Creating the Plug-in Wrapper 93
Customizing the Plug-in Wrapper to Display the Control Differently 95
Customizing the Plug-in Wrapper to Bind Custom Events to a Control 97
Customizing the Plug-in Wrapper to Define Custom Events 98
Customizing the Plug-in Wrapper to React to Value Changes of a Control 101
Attaching the Plug-in Wrapper to a Control Conditionally 103

Configuring the Manifest for the Recycle Bin Example 105

Contents ■

Configuring Siebel Open UI Siebel 2018 5

Configuring the Manifest for the Color Box Example 107

Testing Your Modifications 108

Chapter 6: Customizing Siebel Open UI
Guidelines for Customizing Siebel Open UI 109

Guidelines for Customizing Presentation Models 109
Guidelines for Customizing Physical Renderers 111
Guidelines for Customizing Plug-in Wrappers 112
Guidelines for Customizing Presentation Models and Physical Renderers and Plug-in
Wrappers 112

Doing General Customization Tasks 113
Preparing Siebel Tools to Customize Siebel Open UI 113
Modifying the Application Configuration File 114
Deriving Presentation Models, Physical Renderers and Plug-in Wrappers 115
Adding Presentation Model Properties That Siebel Servers Send to Clients 115
Configuring Siebel Open UI to Bind Methods 119
Calling Methods for Applets and Business Services 120
Using the Base Physical Renderer Class With Nonapplet Objects 123
Creating Components 127
Customizing How Siebel Open UI Displays Error Messages 128
Customizing Navigation Options 131
Example of Restricting Navigation Options 132

Customizing Events 133
Refreshing Custom Events 134
Overriding Event Handlers 134
Attaching an Event Handler to an Event 135
Attaching More Than One Event Handler to an Event 135
Stopping Siebel Open UI From Calling Event Handlers 136
Attaching and Validating Event Handlers in Any Sequence 137
Customizing the Sequence that Attaches and Validates Event Handlers 143
Using AttachEventHandler Prior to Siebel CRM Release 8.1.1.13 143
Overriding the OnControlEvent Method and Then Calling a Superclass 144
Allowing Blocked Methods for HTTP GET Access 144

Managing Files 145
Organizing Files That You Customize 145
Updating Relative Paths in Files That You Customize 147
Specifying Dependencies Between Presentation Models or Physical Renderers and Other
Files 148

Configuring Manifests 150
Overview of Configuring Manifests 150

Configuring Siebel Open UI Siebel 2018

Contents ■

6

Configuring Custom Manifests 153
Adding Custom Manifest Expressions 163
Adding JavaScript Files to Manifest Administrative Screens 165

About Preferences 165

Chapter 7: Customizing Styles, Applets, Fields, and
Controls

Customizing Logos, Themes, Backgrounds, Tabs, Styles, and Fonts 169
Customizing the Logo 169
Customizing Themes 173
Customizing the Synergy Theme 176
Customizing the Aurora Theme 178
Customizing Browser Tab Labels 180
Using Cascading Style Sheets to Modify the Position, Dimension, and Text Attributes of an
Object 180
Adding Fonts to Siebel Open UI 181

Customizing Applets 185
Displaying and Hiding Fields 185
Allowing Users to Drag and Drop Data Into List Applets 190
Expanding and Collapsing Applets 192
Customizing List Applets to Display a Box List 194
Customizing List Applets to Render as Carousels 197
Customizing List Applets to Render as Maps 203
Customizing List Applets with Class Names 206
Disabling Oracle Maps 207
Configuring the Focus in Siebel Applets 207
Adding Static Drilldowns to Applets 208
Allowing Users to Change the Applet Visualization 210
Displaying Applets Differently According to the Applet Mode 218
Adding Custom User Preferences to Applets 224
Customizing Applets to Capture Signatures from Desktop Applications 228
Customizing Applets to Capture Signatures for Siebel Mobile Applications 233
Customizing Applets to Display Record Counts for Navigation Links 237

Customizing Controls 238
Creating and Managing Client-Side Controls 239
Displaying Control Labels in Different Languages 251
Customizing the Busy Cursor to Display While a Business Service Executes 253

Chapter 8: Customizing Calendars and Schedulers
Customizing Calendars 263

Contents ■

Configuring Siebel Open UI Siebel 2018 7

Using Fields to Customize Event Styles for the Calendar 263
Allowing Users to Copy Items from List Applets to Create Calendar Events 266
Customizing Event Styles for the Calendar 266
Customizing Calendar Work Days 267
Customizing How Calendars Display Timestamps 269
Replacing Standard Interactivity Calendars 270
Customizing How Users View Calendar Availability 270
Customizing the Calendar All Day Slot 271

Customizing Resource Schedulers 271
Overview of Customizing Resource Schedulers 272
Customizing a Resource Scheduler 274
Customizing the Filter Pane in Resource Schedulers 285
Customizing the Resource Pane in Resource Schedulers 287
Customizing the Timescale Pane in Resource Schedulers 290
Customizing the Schedule Pane in Resource Schedulers 297
Customizing Participant Availability in Resource Schedulers 304
Customizing Tooltips in Resource Schedulers 308

Chapter 9: Configuring Siebel Open UI to Interact with
Other Applications

Displaying Data from External Applications in Siebel Open UI 313
Siebel Portal Framework 313
Integrating External Content 315
Displaying Data from External Applications in Siebel Views 341
Displaying Data from External Applications in Siebel Applets 345

Displaying Data from Siebel Open UI in External Applications 349
Displaying Siebel Portlets In External Applications 349
Configuring Advanced Options 354
Configuring Communications with Siebel Portlets When Hosted Inside iFrame 356
Additional Considerations 359
Limitations 360
Preparing Standalone Applets 360
Using iFrame Gadgets to Display Siebel CRM Applets in External Applications 361
SWE API 363

Web Engine HTTP TXN Business Service 365
About the Web Engine HTTP TXN Business Service 365
Web Engine HTTP TXN Business Service API 366
Example of Using Web Engine HTTP TXN Business Service 369
Sample Code for Invoking Methods of Web Engine HTTP TXN Business Service 374

Configuring Siebel Open UI Siebel 2018

Contents ■

8

Chapter 10: Customizing Siebel Open UI for Siebel Mobile
Disconnected

Overview of Customizing Siebel Open UI for Siebel Mobile Disconnected 381
Operations You Can Customize When Clients Are Offline 381
Operations You Cannot Customize When Clients Are Offline 382
Process of Customizing Siebel Open UI for Siebel Mobile Disconnected 383

Doing General Customization Tasks for Siebel Mobile Disconnected 384
Modifying Manifest Files for Siebel Mobile Disconnected 384
Registering Methods to Make Sure Siebel Open UI Runs Them in the Correct Sequence

387
Using Siebel Business Services or JavaScript Services to Customize Siebel CRM Objects

388
Using Custom JavaScript Methods 393
Using Custom Siebel Business Services 396
Configuring Data Filters 400
Configuring Objects That Siebel Open UI Does Not Display in Clients 400
Configuring Error Messages for Disconnected Clients 400
About Siebel Mobile Application Logging 403

Customizing Siebel Pharma for Siebel Mobile Disconnected Clients 403
Configuring Interactive Detailing in the Siebel Open UI Application for Siebel Pharma 406

Customizing Siebel Service for Siebel Mobile Disconnected Clients 413
Allowing Users to Commit Part Tracker Records 414
Allowing Users to Return Parts 416
Allowing Users to Set the Activity Status 424

Methods You Can Use to Customize Siebel Mobile Disconnected 427
Methods You Can Use in the Applet Class 428
Methods You Can Use in the Business Component Class 430
Methods You Can Use in the Business Object Class 450
Methods You Can Use in the Business Service Class 452
Methods You Can Use in the Application Class 454
Methods You Can Use in the Model Class 458
Methods You Can Use in the Service Model Class 459
Methods You Can Use in Offline Classes 459
Other Methods You Can Use with Siebel Mobile Disconnected 460

Appendix A: Application Programming Interface
Overview of the Siebel Open UI Client Application Programming Interface 463

Methods of the Siebel Open UI Application Programming Interface 464
Presentation Model Class 464
Presentation Model Class for Applets 477

Contents ■

Configuring Siebel Open UI Siebel 2018 9

Presentation Model Class for List Applets 496
Presentation Model Class for Menus 502
Physical Renderer Class 504
Plug-in Wrapper Class 510
Plugin Builder Class 512
Template Manager Class 514
Event Helper Class 518
Business Component Class 520
Applet Class 520
Applet Control Class 522
GetEDEnabled Method 524
Business Service Class 534
Application Model Class 535
Control Builder Class 545
Locale Object Class 545
Component Class 553
Component Manager Class 557
Other Classes 559

Methods for Pop-Up Objects, Google Maps, and Property Sets 561
Pop-Up Presentation Models and Physical Renderers 561
Methods of the Popup Physical Renderer 565
Method That Integrates Google Maps 565
Methods That Manipulate Property Sets 570

Appendix B: Reference Information for Siebel Open UI
Life Cycle Flows of User Interface Elements 577

Life Cycle Flows That Save Records 577
Life Cycle Flows That Handle User Navigation 579
Life Cycle Flows That Send Notifications 583
Life Cycle Flows That Create New Records in List Applets 585
Life Cycle Flows That Handle User Actions in List Applets 589

Notifications That Siebel Open UI Supports 595
Summary of Notifications That Siebel Open UI Supports 596
Using Notifications with Operations That Call Methods 604
NotifyGeneric Notification Type 605
NotifyStateChanged Notification Type 608
Example Usages of Notifications 611

Property Sets That Siebel Open UI Supports 618

Siebel CRM Events That You Can Use to Customize Siebel Open UI 620
Events That You Can Use to Customize Form Applets 621

Configuring Siebel Open UI Siebel 2018

Contents ■

10

Events That You Can Use to Customize List Applets 634

Languages That Siebel Open UI Supports 641
Languages That Siebel Open UI Supports for Windows, AIX, Oracle Solaris, and HP-UX

641
Languages That Siebel Open UI Supports for Linux RH, Linux SuSe, Enterprise Linux, and
Java Locale Code 642

Screens and Views That Siebel Mobile Uses 643
Screens and Views That Siebel Consumer Goods Uses 644
Screens and Views That Siebel Sales Uses 645
Screens and Views That Siebel Service Uses 646
Screens and Views That Siebel Pharma Uses 647

Controls That Siebel Open UI Uses 648
Predefined Controls That Siebel Open UI Uses 648
Other Controls That Siebel Open UI Uses 649

Browser Script Compatibility 650
Sequence That Siebel Open UI with Custom Browser Script 650
How Siebel Open UI Handles Custom Client Scripts 651
Browser Script Object Types 653
Event Handlers You Can Use to Handle Predefined Events 653
Event Handlers You Can Use to Handle Predefined DOM Events 654
Methods You Can Use in Browser Script 655

Appendix C: Post-Upgrade Configuration Tasks
Updating Physical Renderer Customizations for Controls 659

Control DOM Access and Changes 659
Control Value Access and Changes 660
Control State Manipulation 661

Modifying Physical Renderer Code for Event Helper 662
Binding Stray DOM Events 662
Binding Events for Controls 665

Overriding Plug-In Wrappers 667
About Overriding Plug-In Wrappers 667
Overview of the Skeleton Structure of a Plug-in Wrapper 668
About Presentation Model-Injected APIs in Plug-in Wrappers 670

Appendix D: Glossary

Index

Configuring Siebel Open UI Siebel 2018 11

1 Preface

This guide covers Siebel Open UI.

Audience
This guide is intended for administrators and anyone who customizes the user interface.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program
website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support through My Oracle
Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or
visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Related Documents
For more information, see the following documents on Oracle Technology Network:

■ Using Siebel Tools

■ Siebel Developer’s Reference

Conventions
The following text conventions are used in this document:

Convention Meaning

italic Italic type indicates book titles, emphasis, a defined term, or placeholder
variables for which you supply particular values.

monospace Monospace type indicates commands within a paragraph, code in examples,
text that appears on the screen, or text that you enter.

Configuring Siebel Open UI Siebel 2018

Preface ■ Conventions

12

Configuring Siebel Open UI Siebel 2018 13

2 What’s New in This Release

What’s New in Configuring Siebel Open UI, Siebel CRM 18.9 Update
The following information lists the changes in this revision of the documentation to support this
release of the software.

NOTE: Siebel 2018 is a continuation of the Siebel 8.1/8.2 release.

Table 1 lists the changes in this revision of the documentation in Configuring Siebel Open UI..

What’s New in Configuring Siebel Open UI, Siebel 2018
No new features have been added to this guide for this release. This guide has been updated to
reflect only product name changes.

NOTE: Siebel 2018 is a continuation of the Siebel 8.1/8.2 release.

Table 1. What’s New in Configuring Siebel Open UI, Siebel CRM 18.9 Update

Topic Description

“To display control labels in
different languages” on
page 251

Modified topics. Updated the procedure to reflect changes to
the UI.

Configuring Siebel Open UI Siebel 2018

What’s New in This Release ■

14

What’s New in Configuring Siebel Open UI, Siebel Innovation Pack
2017, Rev. A
Table 2 lists the changes in this revision of the documentation in Configuring Siebel Open UI.

Table 2. What’s New in Configuring Siebel Open UI, Siebel Innovation Pack 2017, Rev. A.

Topic Description

Various topics Modified topics. This guide has been updated to correct or
remove obsolete product and component terms.

The Web Template syntax has moved to a new syntax called
Object Definition Html (ODH) that is well formed html. It
moves information that is used to be in tags into attributes
inside html.

“Siebel Portal Framework” on
page 313

“Integrating External Content” on
page 315

“SWE API” on page 363

“Web Engine HTTP TXN Business
Service API” on page 366

Added topics. These topics from the Portal Framework Guide
were added to the Configuring Siebel Open UI Guide. The
remainder of the Portal Framework Guide is obsolete and was
removed.

Configuring Siebel Open UI Siebel 2018 15

3 Overview of Siebel Open UI

This chapter describes an overview of Oracle’s Siebel Open UI. It includes the following topics:

■ About Siebel Open UI

■ How Siebel CRM Renders Siebel Open UI Clients on page 19

■ About Using This Book on page 23

About Siebel Open UI
This topic describes Siebel Open UI. It includes the following information:

■ Overview of Siebel Open UI

■ Example Customizations That You Can Make with Siebel Open UI on page 16

■ Open Development Environment on page 17

■ Siebel Open UI JavaScript API Support on page 18

■ Multiple Client Environment on page 18

■ Support for More Than One Usage on page 18

■ New Notification User Interfaces on page 19

■ Mobile Environments on page 19

Overview of Siebel Open UI
Siebel Open UI is an open architecture that you can use to customize the user interface that your
enterprise uses to display Siebel CRM business process information. These processes must meet the
requirements of a wide range of employee, partner, and customer applications. You can use Siebel
Tools to do these customizations, and you can also use Web technologies, such as HTML, CSS, or
JavaScript. Siebel Open UI uses these technologies to render the Siebel Open UI client in the Web
browser. It uses no proprietary technologies, such as browser plug-ins or ActiveX.

Siebel Open UI can run any Siebel business application on any Web browser that is compliant with
the World Wide Web Consortium (W3C) standards. It can display data in Web browsers that support
Web standards on various operating systems, such as Windows, Mac OS, or Linux. For example:

■ Internet Explorer

■ Google Chrome

■ Mozilla Firefox

■ Apple Safari

Configuring Siebel Open UI Siebel 2018

Overview of Siebel Open UI ■ About Siebel Open UI

16

Siebel Open UI uses current Web design principles, such as semantic HTML and unobtrusive
JavaScript. These principles make sure configuration for the following items remains separate from
one another:

■ Data and metadata that determines HTML content

■ Cascading Style Sheet configurations that determine styling and layout

■ JavaScript behavior that determines client logic

You can modify each of these items separately and independently of each other. Siebel Open UI
dynamically adjusts itself to the screen space available on the device and platform from which it is
being accessed. Siebel Open UI will hide some of the objects that it displays on a Siebel screen when
it displays Siebel CRM data in a list or form on the smaller footprint of a mobile device. Hiding these
objects, such as menus or tabs, can help to optimize mobile screen usage. Siebel Open UI can use
swipe and zoom features that are native on a tablet for the same user interface that it uses for
keyboard and mouse events that are native on a desktop.

Siebel Open UI can reference a third-party resource. For example, you can configure Siebel Open UI
to get data from a supplier website, incorporate it with Siebel CRM data, and then display this data
in the client. For example, it can get literature information from a supplier, and then include this
information in a detailed display that includes information about the product, such as images,
diagrams, or parts lists. It can mix this information with Siebel CRM data, such as customers who
own this product, or opportunities who might be interested in purchasing this product.

The architecture that Siebel Open UI uses includes well-defined customization points and a
JavaScript API that allow for a wide range of customization for styling, layout, and user interface
design. For more information, see Chapter 4, “Architecture of Siebel Open UI”. For more information
about the JavaScript API that Siebel Open UI uses, see Appendix A, “Application Programming
Interface”.

For information about deploying Siebel Open UI, including supported features, see Article ID
1499842.1 on My Oracle Support. For more information about using Siebel Tools, see Using Siebel
Tools.

Example Customizations That You Can Make with Siebel
Open UI
The following list describes a few of the example customizations that you can make with Siebel Open
UI. You can use JavaScript to implement most of these examples. It is often not necessary to use
Siebel Tools to do these customizations:

■ Refresh only the part of the screen that Siebel Open UI modifies.

■ Display and hide fields.

■ Configure a spell checker.

■ Display a list applet as a box list, carousel, or grid.

■ Display data from an external application in a Siebel CRM view or applet.

■ Display a Siebel CRM view or applet in an external application.

Overview of Siebel Open UI ■ About Siebel Open UI

Configuring Siebel Open UI Siebel 2018 17

■ Display a Google map.

■ Use cascading style sheets to modify HTML elements, including position, and dimension of
an element.

■ Use HTML to customize the logo that your company uses or to customize the background image.

■ Use JavaScript to configure menus, menu items, and the layout.

■ Display Siebel CRM data in a Google map or add maps that include location data.

■ Create a custom mobile list.

■ Configure scrolling, swipe, swipe scrolling, infinite scrolling, and the height of the scroll area.

■ Configure a view to use landscape or portrait layout.

■ Configure toggle controls and toggle row visibility.

For more information about these examples, see Chapter 6, “Customizing Siebel Open UI”.

Open Development Environment
You can use Siebel Tools or a development tool of your choice to customize Siebel Open UI so that
it fits in your business environment and meets specific user requirements. You might not require Web
development in many situations because the Siebel Tools configuration works for the Siebel Open UI
client. You can use a predefined, uncustomized deployment, or you can use Siebel Tools to customize
Object Definition Htmls. You can use only Web development or you can use Siebel Tools and Web
development depending on your implementation requirements.

You can use Siebel Open UI with the rendering environment of your choice. You can use your
preferred Integrated Development Environment (IDE) to write native JavaScript code on top of the
API that Siebel CRM uses, or with the JavaScript API that Siebel Open UI uses. For more information,
see Chapter 6, “Customizing Siebel Open UI”. For more information about the JavaScript API that
Siebel Open UI uses, see Appendix A, “Application Programming Interface”.

You can use HTML, CSS, or JavaScript to add features. For example, you can do the following:

■ Create smooth transitions between swipe, accordion, or carousel views.

■ Create multifont displays.

■ Expand, collapse, or resize an applet.

■ Use open-source JavaScript code that can reuse work from the open-source development
community.

■ Use a plug-in, proprietary development environment, or native development environment that
you choose, to create a custom rendering architecture that resides on top of the JavaScript API
that Siebel Open UI uses.

■ Use intraworkspace communication and DOM (Document Object Model) access and manipulation
through JavaScript.

■ Do a limited pilot test of your customizations in your current Siebel Server implementation.

■ Preserve your existing customizations.

Configuring Siebel Open UI Siebel 2018

Overview of Siebel Open UI ■ About Siebel Open UI

18

Siebel Open UI JavaScript API Support
The JavaScript API that Siebel Open UI uses is recommended over browser scripting. You can use
your own Integrated Development Environment to write JavaScript and you can customize the
JavaScript API that Siebel Open UI provides.

This JavaScript API allows you to do the following:

■ Include Siebel Open UI objects, such as views or applets, in a third-party user interface.

■ Integrate external content in the Siebel Open UI client.

■ Use public and documented JavaScript APIs that support your business logic without rendering
objects that depend on a specific or proprietary technology.

For more information about this JavaScript API, see Appendix A, “Application Programming Interface”.

Multiple Client Environment
Siebel Open UI can do the following to support different client environments:

■ Display data in any client that meets the World Wide Web Consortium standards. For example, a
corporate desktop, laptop, seven-inch tablet, or ten-inch tablet. Siebel Open UI can display a
typical Siebel CRM desktop client in the smaller footprint that a tablet provides.

■ Display data in a browser.

■ Display data simultaneously from a single Siebel business application to more than one client
environment.

Siebel Open UI works the same way for the following client types:

■ Siebel Web Client

■ Siebel Mobile Web Client

■ Siebel Dedicated Web Client, also known as the Thick Client

Support for More Than One Usage
Siebel Open UI adjusts to the unique attributes that each client uses so that the user can do the
same task on a variety of client types. It can optimize the intrinsic capabilities of each client type or
device so that they provide a desirable user experience for the novice user and for the expert user.
An administrator can configure Siebel Open UI to meet some of these individual skill levels. Siebel
Open UI can do the following:

■ Support applications that you customize to meet appearance and behavior requirements or usage
patterns of various devices, such as smartphones, tablets, desktop computers, or laptop
computers.

■ Use flexible layout options that support a tree tab layout or a custom navigation design.

■ Automatically hide tabs and navigation panes when not in use to optimize space.

Overview of Siebel Open UI ■ How Siebel CRM Renders Siebel Open UI Clients

Configuring Siebel Open UI Siebel 2018 19

■ Allow employees, partners, and customers to use the same business process and validation with
different levels of access.

■ Use user interactions that are consistent with current Web applications.

■ Support layout and gesture capabilities for mobile users who use a tablet or smartphone device.

New Notification User Interfaces
Siebel Open UI includes elements from social media and smartphones that improve user productivity,
such as notification applets. It combines these capabilities with other Siebel CRM innovations to
provide the following capabilities:

■ Use a notification area that displays messages. The user can access this area at any time without
disrupting current work.

■ Hover the mouse to toggle between summary and detail information for a record.

■ Use native Web browser functionality. For example, use bookmarks, zoom, swipe, printing and
print preview, and spell checker.

■ Use intuitive system indicators for busy events or to cancel a time-consuming operation.

■ Allow navigation through a wide range of data entry and navigation capabilities through the
keyboard, mouse, tablet, or gesturing.

For more information, see “Notifications That Siebel Open UI Supports” on page 595.

Mobile Environments
Siebel Open UI on a mobile interface uses the same architecture that Siebel Open UI on a desktop
application uses. For more information, see Siebel Connected Mobile Applications Guide.

Siebel Open UI architecture follows Responsive Web Design patterns, which allow the same content
to be displayed differently based on the device from which it is being accessed.

How Siebel CRM Renders Siebel Open UI
Clients
Siebel CRM does the following to render a Siebel Open UI client:

■ Uses HTML div elements and HTML tables in SWE templates to determine physical layout instead
of the HTML frames that high interactivity uses. Siebel Open UI does not use div elements to
structure a page. The entire page hierarchy that Siebel Open UI uses is a hierarchy of div
elements. Siebel Open UI does not use the HTML frame.

■ Uses cascading style sheets (CSS) to specify position, dimension, and styling for HTML elements,
such as font color and font type, instead of the HTML code that high interactivity uses. This
styling does not apply to the objects that an ActiveX control renders in a high-interactivity client,
such as a list applet.

Configuring Siebel Open UI Siebel 2018

Overview of Siebel Open UI ■ How Siebel CRM Renders Siebel Open UI Clients

20

This configuration is more closely aligned with current guidelines for Web design than the
configuration that high interactivity uses. Siebel Open UI allows you to customize how Siebel CRM
renders individual objects in the client without having to use Siebel Tools, and it allows you use an
alternative configuration, such as your custom configuration or a third-party configuration, to bind
the Siebel business layer to user interface objects. Siebel Open UI allows you to customize an
existing ODH or create a new ODH.

How Siebel CRM Renders Div Containers on Siebel
Servers
Figure 1 illustrates how the Siebel Server uses OD tags that reside in ODH to render div containers
on the Siebel Server. For example, it renders a tag with type od-type=”view” as a view container. It
does the same rendering on this server for Siebel Open UI that it does for high interactivity.

Figure 1. How Siebel Servers Use ODH to Render Containers on the Siebel Server

How Siebel CRM Handles Data in Siebel Open UI
Figure 2 illustrates how Siebel CRM uses a presentation model, which is a JavaScript file that
resides in the client that specifies how to handle the metadata and data that Siebel Open UI gets
from the Siebel Server. Siebel CRM then displays this information in a list applet or form applet in
the client. The presentation model provides a logical abstraction of the metadata, transaction data,
and behavior for part of the user interface. Siebel Open UI includes a presentation model for each
significant part of the user interface, such as the application menu, toolbars, screen tabs, visibility
drop-down lists, applet menus, different types of applets, and so on. The presentation model does
not render the HTML in the user interface.

Figure 2. How Siebel CRM Handles Data in Siebel Open UI

Overview of Siebel Open UI ■ How Siebel CRM Renders Siebel Open UI Clients

Configuring Siebel Open UI Siebel 2018 21

How Siebel CRM Renders Objects in Siebel Open UI
Figure 3 illustrates how Siebel CRM uses a physical renderer, which is a JavaScript file that Siebel
Open UI uses to render the user interface. A physical renderer contains instructions that describe
how to render the physical presentation and interaction for a user interface element, such as a grid,
carousel, form, tree, tab, menu, button, and so on. Each physical renderer references a presentation
model, and it uses the metadata, data, and behavior that this presentation model defines to render
an object in the client. For more information about presentation models and physical renders, see
“About the Siebel Open UI Development Architecture” on page 31.

Figure 3. How Siebel CRM Renders Objects in Siebel Open UI

Configuring Siebel Open UI Siebel 2018

Overview of Siebel Open UI ■ How Siebel CRM Renders Siebel Open UI Clients

22

Examples of How You Can Customize Siebel Open UI
Siebel Open UI uses the presentation model and the physical renderer to separate the logical user
interface from the rendering. This configuration allows you to modify the user interface without
having to modify the logical structure and behavior of the client. For example, you can modify the
physical renderer so that it uses a third-party, grid-to-carousel control to display a list applet as a
carousel without modifying a presentation model. For more information about this example, see
“Customizing List Applets to Render as Carousels” on page 197.

Overview of Siebel Open UI ■ About Using This Book

Configuring Siebel Open UI Siebel 2018 23

You can use the physical renderer of a control to implement a variety of configurations so that Siebel
Open UI can render this control at nearly any physical location in the browser and with your custom
logic. You can use the physical renderer to display different parts of the same applet in different
physical panes in a Siebel screen. For example, you can configure Siebel Open UI to display a
temporary recycle bin that uses data from the presentation model to render data in a pane that is
physically separate from the data that the list applet displays. For more information about this
example, see Chapter 5, “Example of Customizing Siebel Open UI”.

You can use the presentation model to modify the logical behavior of the user interface without
modifying the physical renderer. For example, you can modify a presentation model to add a list
column in a list applet so that it iterates through list columns and renders them without modifying
the physical renderer. This column can reside on the client even if the Siebel Server contains no
representation of it.

You can customize at the control level writing plug-in wrappers that govern how a control should
appear and behave when a certain set of conditions are satisfied. A check box appearing as a
flipswitch on mobile devices is an example of this type of implementation.

About Using This Book
This topic includes information about how to use this book. It includes the following information:

■ Important Terms and Concepts

■ How This Book Indicates Computer Code and Variables on page 25

■ How This Book Describes Objects on page 26

■ About the Siebel Innovation Pack on page 27

■ Support for Customizing Siebel Open UI on page 27

■ Getting Help from Oracle on page 29

Important Terms and Concepts
This book uses the following terms and concepts that you must understand before you customize
Siebel Open UI:

■ A user is a person who uses the client of a Siebel business application to access Siebel CRM data.

■ The user interface is the interface that the user uses in the client to access data that Siebel Open
UI displays.

■ The client is the client of a Siebel business application. Siebel Call Center is an example of a
Siebel business application. Siebel Open UI renders the user interface in this client.

■ The server is the Siebel Server, unless noted otherwise.

■ An administrator is anyone who uses an administrative screen in the client to configure Siebel
CRM. The Administration - Server Configuration screen is an example of an administrative
screen.

Configuring Siebel Open UI Siebel 2018

Overview of Siebel Open UI ■ About Using This Book

24

■ Predefined Siebel Open UI is the ready-to-use version of Siebel Open UI that Oracle provides to
you before you make any customization to Siebel Open UI.

■ A Siebel CRM object is an object that resides in the Siebel Runtime Repository. For example, a
screen, view, applet, business component, menu, or control is each an example of a Siebel
object. The Contact List Applet is an example of a Siebel CRM applet. A Siebel CRM applet is not
equivalent to a Java applet. For more information, see Configuring Siebel Business Applications.

■ A predefined object is an object that comes already defined with Siebel CRM and is ready to use
with no modification. The objects that Siebel Tools displays in the Object List Editor immediately
after you install Siebel Tools are predefined objects.

■ A custom object is a predefined object that you modified or a new object that you create.

■ The term focus indicates the currently active object in the client. To indicate the object that is in
focus, Siebel CRM typically sets the border of this object to a solid blue line.

■ To derive a value is to use one or more properties as input when calculating this value. For
example, Siebel Open UI can derive the value of a physical renderer property from one or more
other properties. For more information, see “Deriving Presentation Models, Physical Renderers and
Plug-in Wrappers” on page 115.

■ The term class describes a JavaScript class. It does not describe the Siebel class object type,
unless noted otherwise, or unless described in the context of the Siebel Object Hierarchy. For
more information about the Siebel class object type, see Siebel Object Types Reference.

■ The term reference describes a relationship that exists between two objects, where one object
gets information from another object or sends information to this object. For example, in the
Siebel Object Hierarchy, the Opportunity List Applet references the Opportunity business
component to get opportunity records from this business component, and the Opportunity
business component references the S_OPTY table to get opportunity records from this table.

■ The term instance describes the current, run-time state of an object. For example, a business
component instance is a run-time occurrence of a business component. It includes all the run-
time data that the business component currently contains, such as the values for all fields and
properties of this business component. For example, an instance of the Contact business
component includes the current, run-time value of the City field that resides in this business
component, such as San Francisco. You can configure Siebel Open UI to get a business
component instance, and then modify this data or call the methods that this business component
references.

For more information about these terms and other background information, see the following items:

■ A complete list of terms that this book uses, see Appendix D, “Glossary”.

■ Using the Siebel Open UI client, see Siebel Fundamentals for Open UI.

■ Enabling the Siebel Server to run Siebel Open UI, see the Siebel Installation Guide for the
operating system you are using.

■ Using Siebel Tools, see Using Siebel Tools.

Overview of Siebel Open UI ■ About Using This Book

Configuring Siebel Open UI Siebel 2018 25

How This Book Indicates Computer Code and Variables
Computer font indicates a value that you enter or text that Siebel CRM displays. For example:

This is computer font

Italic text indicates a variable value. For example, the n and the method_name in the following
syntax description are variables:

Named Method n: method_name

The following is an example of this code:

Named Method 2: WriteRecord

How This Book Indicates Code That You Can Use as a Variable and
Literal
You can write some code as a literal or a variable. For example, the Home method sets a record in
the current set of records as the active row. It uses the following syntax:

busComp.Home();

where:

■ busComp identifies the business component that contains the record that Home sets.

You can use busComp as a literal or a variable. If you declare busComp as a variable in some other
section of code, and if it contains a value of Account when you use the Home method, then Home
sets a record in the Account business component as the active record. You can also use the following
code, which also sets a record in the Account business component as the active record:

Account.Home();

Case Sensitivity in Code Examples
The code examples in this book use standard JavaScript and HTML format for uppercase and
lowercase characters. It is recommended that you use the following case sensitivity rules that this
book uses:

■ All code that occurs outside of a set of double quotation marks (" ") is case sensitive. The only
exception to this rule occurs with path and file names.

■ All code that occurs inside a set of angle brackets (<>) is case sensitive. The only exception to
this rule is any code that you enclose with a set of double quotation marks that you nest inside
a set of angle brackets.

The following example is valid:

function RecycleBinPModel(){
 SiebelAppFacade.RecycleBinPModel.superclass.constructor.apply(this, arguments);
}

The following example is not valid. Bold font indicates the code that is not valid:

Configuring Siebel Open UI Siebel 2018

Overview of Siebel Open UI ■ About Using This Book

26

function Recyclebinpmodel(){
 SiebelAppFacade.RecycleBinPModel.superclass.constructor.apply(this, arguments);
}

How This Book Describes Objects
For brevity, this book describes how an object, such as a user property, does something. For
example, this book might state the following:

"The Copy Contact user property copies contacts."

In strict technical terms, the Copy Contact user property only includes information that some other
Siebel CRM object uses to copy contacts.

For brevity, to describe how Siebel CRM uses the value that a property contains, in some instances
this book describes only the property name. For example, assume Siebel CRM displays the value that
the Display Name property contains. This property is a property of a tree node object. This book only
states the following:

"Siebel CRM displays the Display Name property of the tree node."

In reality, Siebel CRM displays the value that the Display Name property contains.

About Objects and Metadata
A Siebel object definition defines the metadata that Siebel Open UI uses to run a Siebel application.
The Account List Applet that Siebel Tools displays in the Object List Editor is an example of an object
definition. It includes metadata that Siebel Open UI uses to render the Account List Applet, such as
the height and width of all controls that the applet contains, and all the text labels that it must display
on these controls. The Siebel Repository is a set of database tables that stores these object
definitions. Examples of types of objects include applets, views, business components, and tables.
You use Siebel Tools to create or modify an object definition.

The object manager hosts a Siebel application, providing the central processing for HTTP
transactions, database data, and metadata, which is data that the object definitions contain. It is
different from Siebel CRM data, which is data that is specific to your business, such as account names
and account addresses.

For more information, Configuring Siebel Business Applications.

How This Book Describes Relationships Between Objects
An object definition includes properties and a property includes a value. For example, the Business
Object property of the Account Address view contains a value of Account. To describe this
relationship, this book might state the following:

The Account Address view references the Account business object.

Overview of Siebel Open UI ■ About Using This Book

Configuring Siebel Open UI Siebel 2018 27

Sometimes the relationship between objects occurs through more than one object. For brevity, this
book does not always describe the entire extent of relationships that exists between objects through
the entire Siebel Object Hierarchy. For example, because the Account business object references the
Account business component, and the Account Address view references the Account business object,
this book might state the following:

The Account Address view references the Account business component.

About the Siebel Innovation Pack
Oracle provides the functionality that this guide describes as part of Siebel Innovation Pack. To use
this functionality, you must install the innovation pack and do the postinstallation configuration
tasks. For more information about the functionality that Siebel Innovation Pack includes, see the
applicable Siebel Maintenance Release Guide on My Oracle Support.

Depending on the software configuration that you purchase, your Siebel business application might
not include all the features that this book describes.

Support for Customizing Siebel Open UI
Siebel CRM supports the following customizations in Siebel Open UI. You must carefully consider the
implications of doing this customization and development:

■ Siebel Open UI allows you to use predefined or existing Siebel repository information in your
deployment without customization. Siebel Open UI uses this repository information to render the
user interface. This rendering does require user acceptance testing.

■ You can use Siebel Tools to customize Siebel Open UI so that it works in your business
environment and meets user requirements. You configure the same Object Definition Templates.

■ You can use your Web development skills and the Siebel Open UI JavaScript API to customize
Siebel Open UI. For details about this API, see Appendix A, “Application Programming Interface”.
Oracle continues to support browser scripting in previous releases, but strongly recommends that
you convert any browser script that your deployment currently uses so that it uses the Siebel
Open UI JavaScript API.

■ You can combine Siebel Tools development with development of the Siebel Open UI JavaScript
API simultaneously, as needed.

■ Siebel CRM supports including Siebel Open UI or individual Siebel Open UI objects in a third-party
user interface. Views and applets are examples of Siebel Open UI objects.

■ Siebel CRM supports integrating external content in the Siebel Open UI client.

■ You can modify the cascading style sheets that come predefined with Siebel Open UI to rebrand
your deployment and customize the user experience.

■ Siebel Open UI supports usage of Siebel SmartScript to specify workflow. For more information,
see Siebel SmartScript Administration Guide.

■ You can use HTML, CSS, or JavaScript to add features. For example, you can do the following:

Configuring Siebel Open UI Siebel 2018

Overview of Siebel Open UI ■ About Using This Book

28

■ Build user interfaces on any technology that can integrate with the Siebel Open UI JavaScript
API.

■ Use your preferred, open-source JavaScript library, such as jQuery, from the open-source
development community, or you can use the environment that Siebel Open UI provides.

■ Use a plug-in, proprietary development environment, or a native development environment.
You can use these environments to create a custom rendering architecture that integrates
with the Siebel Open UI JavaScript API.

■ Use intraworkspace communication and DOM access and manipulation through JavaScript
programming.

■ Do a pilot user acceptance test of your Siebel Open UI deployment that uses your current
Siebel Server implementation.

■ Preserve your existing configurations and customizations.

Support That Siebel Open UI Provides
It is strongly recommended that you carefully consider the support policies that this topic describes
before you customize Siebel Open UI. For more information about the support that Oracle provides,
see Scope of Service for Siebel Configuration and Scripting - Siebel Open UI (Article ID 1513378.1)
on My Oracle Support.

Support for the Siebel Open UI JavaScript API Oracle only supports usage and features of
the Siebel Open UI JavaScript API as described in Oracle’s published documentation. This policy
makes sure that your deployment properly uses this API and helps to make sure your deployment
works successfully. You are fully responsible for support of any custom code that you write that uses
this API. For product issues that are related to this API, Oracle might request a minimal test case
that exercises your API modifications.

Oracle supports your usage of an Integrated Development Environment (IDE) of your choice that you
use to write native JavaScript code that you then deploy to work with the Siebel Open UI JavaScript
API. Oracle does not support the features of or the quality of any third-party IDE.

Oracle supports your usage of the Siebel Open UI JavaScript API with a rendering environment and
system integration that you choose. Oracle has implemented Siebel Open UI in HTML. You can use
this implementation as a template for your deployment on other technologies. This template
approach allows you to expedite development. However, Oracle can in no way support these
customizations because this work is outside the scope of Oracle's support for customizations. It is
recommended that you work with Oracle's Application Expert Services on any implementation issues
you encounter that are related to the Siebel Open UI JavaScript API. For more information, see
“Getting Help from Oracle” on page 29.

If your current deployment includes an integration that resides on the desktop, and if this integration
does not easily support migration to JavaScript integration, then it is recommended that you move
this integration to the Siebel Server, or use a Web service on the desktop that can integrate to this
server.

Overview of Siebel Open UI ■ About Using This Book

Configuring Siebel Open UI Siebel 2018 29

Support for Code Suggestions, Examples, and Templates Oracle provides code examples
only to help you understand how to use the Siebel Open UI JavaScript API with Siebel Open UI. Oracle
does not support your usage of these code examples. It only supports usage of this API as described
in Appendix A, “Application Programming Interface”

Getting Help from Oracle
The predefined application that Oracle provides includes integration interfaces that allow you to
modify or to create a new user interface. You can use these integration interfaces to create your own
presentation model or physical renderer, at your discretion. It is your responsibility to create and
maintain any customizations that you make. For more information, see “About the Presentation
Model” on page 33 and “About the Physical Renderer” on page 36.

To get help from Oracle with configuring Siebel Open UI, you can create a service request (SR) on
My Oracle Support. Alternatively, you can phone Global Customer Support directly to create a service
request or to get a status update on your current SR. Support phone numbers are listed on My Oracle
Support. You can also contact your Oracle sales representative for Oracle Advanced Customer
Services to request assistance from Oracle's Application Expert Services.

Configuring Siebel Open UI Siebel 2018

Overview of Siebel Open UI ■ About Using This Book

30

Configuring Siebel Open UI Siebel 2018 31

4 Architecture of Siebel Open UI

This chapter describes the architecture that you can use to customize Siebel Open UI. It includes the
following topics:

■ About the Siebel Open UI Development Architecture

■ Life Cycle of User Interface Elements on page 51

About the Siebel Open UI Development
Architecture
This topic describes the development architecture that you can use to customize Siebel Open UI. It
includes the following information:

■ Overview of the Siebel Open UI Development Architecture

■ Example of How Siebel Open UI Renders a View or Applet on page 37

■ Customizing the Presentation Model and Physical Renderer on page 41

■ Customizing the Physical Renderer on page 43

■ Customizing a Plug-in Wrapper on page 43

■ Stack That Siebel Open UI Uses to Render Objects on page 43

■ Items in the Development Architecture You Can Modify on page 47

■ Example Client Customizations on page 48

■ Differences in the Server Architecture Between High Interactivity and Siebel Open UI on page 48

■ Differences in the Client Architecture Between High Interactivity and Siebel Open UI on page 50

Overview of the Siebel Open UI Development
Architecture
Siebel Open UI uses objects to deploy each element that it displays in the client. You can customize
each of these objects. You can customize each object separately. Each object resides in a layer that
implements a particular area of customization. For example, you can customize each of the following
items:

■ Application

■ Screen

■ View

Configuring Siebel Open UI Siebel 2018

Architecture of Siebel Open UI ■ About the Siebel Open UI Development Architecture

32

■ Applet

■ Applet Control

■ Menu

■ Application menu

■ Applet menu

■ Toolbar

■ Application toolbar

■ Navigation object

■ Tabs at different levels

■ Visibility menu

■ Predefined Query (PDQ) menu

Architecture You Can Use to Customize Siebel Open UI
Figure 4 illustrates the basic architecture that you can use to customize Siebel Open UI. For an
overview of how Siebel Open UI uses the presentation model and physical renderer, see “How Siebel
CRM Renders Div Containers on Siebel Servers” on page 20.

Architecture of Siebel Open UI ■ About the Siebel Open UI Development Architecture

Configuring Siebel Open UI Siebel 2018 33

Figure 4. Architecture You Can Use to Customize Siebel Open UI

About the Presentation Model
The presentation model is a JavaScript file that specifies how to handle the metadata and data
that Siebel Open UI gets from the Siebel Server, and then displays this information in a list applet
or form applet in the client. It allows you to customize behavior, logic, and content. It determines
the logic to apply, captures client interactions, such as the user leaving a control, collects field
values, and sets properties. A presentation model can get the following items from the proxy, and
then expose them for external use. These properties and methods are similar to the properties and
methods that most software models use:

■ Properties. Contains information about the current state of each user interface element. For
example, if Siebel Open UI currently displays or hides a field.

■ Methods. Implements behavior that modifies the state of an object. For example, if the user
chooses a value, then a method can hide a field.

Configuring Siebel Open UI Siebel 2018

Architecture of Siebel Open UI ■ About the Siebel Open UI Development Architecture

34

A presentation model can contain customization information that is separate from the predefined
configuration information that Siebel Open UI uses for physical rendering. For example, it can display
or hide a field according to a pick value.

For more information, see “Example of a Presentation Model” on page 39.

About the Template Manager
The template manager is a JavaScript object that provides HTML markup as requested by a physical
renderer, a plug-in wrapper or any other active JavaScript object running in Siebel Open UI. A
template manager ensures that each component of Siebel Open UI generates exactly the same
markup, enhanced with a predefined classname, for similar type of UI controls that is independent
of device, browser, and resolution. For example, if a text field is being rendered in Siebel Open UI,
it must use same a classname, for example, "siebui-input, whether it is being rendered in a browser
on a desktop, or a mobile device.

About the Template Manager in Responsive Web Design One of the most crucial
aspects of responsive Web design is to have clean and virtually identical DOM elements within a
specific classname for a control. For example, an anchor can also be styled in such a way that it
appears similarly to a button in one context and in another might appear as a hyperlink.

You must, however, provide the same DOM element for a particular type consistently, coupled with
a specialized classname, when required. The template manager then acts as an HTML content
provider for all types of primitives controls.

How it Works The template manager expects the caller, which in most cases would be renderers
or plug-in wrappers, to provide certain information on what kind of control they need. For example,
does the caller need to create input element? Depending on the type and other parameters specified
by the caller, the template manager determines the control that is required, then builds an HTML
string and returns that string to the caller. The template manager also provides the flexibility to add
more DOM attributes which may or may not be standard, for example mobile specific "data-"
attributes, or automation attributes.

For more information about the template manager class, see “Template Manager Class” on page 514.

About Event Helper Objects Event helper objects facilitate event binding in a physical
renderer or a plug-in wrapper. They consolidate events across platforms, most importantly
standardize events such as touch and click. The differences required in rendered markup and the
behavioral aspects, if any, can be handled internally by the template manager and the even helper
object respectively.

For more information about the event helper objects, see “About Event Helper Objects” on page 34.

Architecture of Siebel Open UI ■ About the Siebel Open UI Development Architecture

Configuring Siebel Open UI Siebel 2018 35

About Plug-in Wrappers
A plug-in wrapper is a complete and independent manager of an applet control and its life-cycle. It
is entirely responsible for all actions of a control, including but not limited to its showing, value
management, event handling. Plug-in wrappers cater to control level management. A plug-in
wrapper allows the wrapper to handle the control of specific functionalities. Individual renderers will
delegate the control-specific-functionalities to the wrappers. The wrappers handle the applet control
level implementation.

Figure 5 outlines the class structure of plug-in wrappers.

Figure 5. Class Structure of Plug-in Wrappers

Explanation of the elements in Figure 5:

■ Base Plug-In Wrapper. This is the base specification class. It defines the base properties and
methods to which every plug-in wrapper must adhere. No functionality is implemented in this
class and it is not recommended that any derivation or customization occur from this class.

■ Field Plug-In Wrapper. This is the class that defines the default functionality of a control. All
APIs have a definition, and this plug-in wrapper is a fallback class for all customizations. You may
choose to derive a custom wrapper from this class if your intention is to write a new
customization.

■ Plug-In Wrapper 1, Plug-In Wrapper 2, Plug-In Wrapper 3, Plug-In Wrapper N. These
are Siebel Open UI out-of-the-box customizations that are used to display specific types of
controls. Examples of these are date pickers, drop-down menus, flip switches and signatures.
You may choose to derive a custom wrapper from one of these classes if your intention is to
slightly modify the functionality of an existing plug-in wrapper.

Configuring Siebel Open UI Siebel 2018

Architecture of Siebel Open UI ■ About the Siebel Open UI Development Architecture

36

For more information about plug-in wrappers, including detailed instructions about creating and
customizing a plug-in wrapper, see “Process of Customizing the Plug-in Wrapper” on page 92, and
“Plug-in Wrapper Class” on page 510.

About the Plug-in Builder
The plugin builder wires the physical renderer to a plug-in wrapper for a given control and a given
set of conditions. It also provides a decoupling between physical renderers, such as an applet, and
plug-in wrappers for controls in that applet.

For more information see, “About Plug-in Wrappers” on page 35, and “Plugin Builder Class” on
page 512.

About the Physical Renderer
A physical renderer is a JavaScript file that Siebel Open UI uses to render the user interface. It binds
a presentation model to a control. It can enable different behavior between a desktop client and a
mobile client. It allows the presentation model to remain independent of the physical user interface
objects layer. It allows you to use custom or third-party JavaScript code to render the user interface.
It can display the same records in the following different ways:

■ List Applet

■ Carousel

■ Calendar

■ Mind Map

For more information, see “Example of a Physical Renderer” on page 39.

How Siebel Open UI Uses the Presentation Model and the Physical
Renderer and Plug-In Wrapper
Siebel Open UI uses presentation models and physical renderers to bind data to the user interface.

A user interface object includes a combination of the following items:

■ Physical presentation and interaction for a user interface element. For example, a grid,
carousel, form, tree, tab, menu, button, and so on.

■ Logical presentation and interaction that Siebel Open UI can physically display in more
than one way. For example, Siebel Open UI can display a list of records in a grid or in a carousel.
The logical representation of this data includes the metadata that Siebel Open UI uses to
determine the Siebel CRM information that this list of records contains. It does not include
information that Siebel Open UI uses to physically display this list as a grid or carousel.

■ Presentation and interaction information. Includes application metadata, transaction data,
and configuration information that determines client behavior. Siebel Open UI binds these items
to the generic presentation. For example, it can determine whether or not a field is required, and
then identify the data that it must display in a list column, or it can identify the business service
method that it binds to a button.

Architecture of Siebel Open UI ■ About the Siebel Open UI Development Architecture

Configuring Siebel Open UI Siebel 2018 37

Siebel Open UI can bind metadata, data, and logical behavior to a generic user interface in a highly
configurable and declarative manner. It drives a fixed set of user interface presentation and
interaction options. For example, you can configure an application so that a field is required or uses
a hierarchical picklist. It also allows you to do the following customizations:

■ Add a completely new presentation or interaction feature in the user interface. For
example, display or hide a field according to a pick value.

■ Create a new or modify an existing logical user interface object. For example, you can use
Siebel Open UI to customize an object so that it displays a list of records in an infinite scroll list,
which is an object that allows the user to view these records in a sliding window that displays
records over a larger list of records that already exist in the client. It allows the user to do an
infinite scroll in a mobile user interface. Note that, from a usability standpoint, it is almost always
preferable to configure Siebel Open UI to use an interface that allows the user to page through
sets of records rather than use a scroll list. This configuration reduces uncertainty regarding the
records that Siebel Open UI has or has not displayed in the visible portion of the client.

■ Modify the type of user interface element that Siebel Open UI uses to display
information. For example, you can configure Siebel Open UI to display a list of records in a
carousel instead of on a grid. You can also configure Siebel Open UI to display a check box control
in a grid or a form as a flip switch.

Example of How Siebel Open UI Renders a View or
Applet
Figure 6 illustrates how Siebel Open UI renders the Contact Form Applet.

Configuring Siebel Open UI Siebel 2018

Architecture of Siebel Open UI ■ About the Siebel Open UI Development Architecture

38

Figure 6. Example of How Siebel Open UI Renders a View or Applet

Explanation of Callouts
Siebel Open UI does the following to render the Contact Form Applet:

1 The user attempts to navigate to the Contact Form Applet.

2 Siebel Open UI creates the view that displays this applet.

3 Siebel Open UI references the manifest to identify the files it must download to the client. For
more information, see “Configuring Manifests” on page 150.

4 Siebel Open UI downloads the JavaScript files it identified in Step 3 to the client.

5 A presentation model formats the data and applies application logic. For more information, see
“About the Presentation Model” on page 33.

6 A physical renderer registers itself with a corresponding object. A presentation model also does
this registration. For more information, see “Example of a Physical Renderer” on page 39.

7 A physical renderer fetches and incorporates plug-in wrappers for its applet controls. For more
information, see “Example of a Plug-in Wrapper” on page 40.

8 Siebel Open UI loads the cascading style sheets according to the manifest configuration that it
referenced in Step 3.

9 Siebel Open UI uses a presentation model, physical renderer, and cascading style sheets to
render the Contact Form Applet.

Architecture of Siebel Open UI ■ About the Siebel Open UI Development Architecture

Configuring Siebel Open UI Siebel 2018 39

Example of a Presentation Model
Figure 7 describes how the partialrefreshpm.js file does a partial refresh. It is recommended that you
include this business logic in a presentation model so that more than one modeler can reuse it. To
get a copy of this file, see Article ID 1494998.1 on My Oracle Support. To view an example that uses
this file, see “Displaying and Hiding Fields” on page 185.

Figure 7. Example of a Presentation Model

Explanation of Callouts The partialrefreshpm.js file includes the following sections:

1 Creates the JavaScript namespace.

2 Uses the Define method to make sure Siebel Open UI can identify the constructor. For more
information, see “Define Method” on page 559.

3 Creates the presentation model class.

4 Customizes a predefined presentation model to support partial refresh logic.

5 Includes the logic that Siebel Open UI runs if the user changes records.

6 Includes the logic that Siebel Open UI runs if the user modifies a field value in a record.

Example of a Physical Renderer
Figure 8 describes how the partialrefreshpr.js file does a partial refresh for a physical renderer. To
get a copy of this file, see Article ID 1494998.1 on My Oracle Support. To view an example that uses
this file, see “Displaying and Hiding Fields” on page 185.

Configuring Siebel Open UI Siebel 2018

Architecture of Siebel Open UI ■ About the Siebel Open UI Development Architecture

40

Figure 8. Example of a Physical Renderer

Explanation of Callouts The partialrefreshpr.js file includes the following sections:

1 Creates the JavaScript namespace.

2 Uses the Define method to make sure Siebel Open UI can identify the constructor. For more
information, see “Define Method” on page 559.

3 Creates the physical renderer class.

4 Specifies the ShowJobTitleRelatedField property.

5 Includes the logic that Siebel Open UI runs if it modifies ShowJobTitleRelatedField.

Example of a Plug-in Wrapper
Figure 9 describes how the ColorBoxPW.js file does a partial refresh for a physical renderer. To get a
copy of this file, see Article ID 1494998.1 on My Oracle Support. To view an example that uses this
file, see “Process of Customizing the Plug-in Wrapper” on page 92.

Architecture of Siebel Open UI ■ About the Siebel Open UI Development Architecture

Configuring Siebel Open UI Siebel 2018 41

Figure 9. Example of a Plug-in Wrapper

Explanation of Callouts The ColorBoxPW.js file includes the following sections:

1 Creates the JavaScript namespace.

2 Uses the Define method to make sure Siebel Open UI can identify the constructor. For more
information, see “Define Method” on page 559.

3 Creates the plug-in wrapper class.

4 Implements the Life Cycle and Interface Methods of a Plug-in Wrapper.

5 Implements events handlers and other methods specific to the given Plug-in Wrapper.

6 Wires the Plug-in Wrapper to the Physical Renderer (optionally) based on conditionals.

Customizing the Presentation Model and Physical
Renderer
Siebel Open UI uses two JavaScript files to implement the presentation model and the physical
renderer and plug-in wrappers that it uses to display an applet. For example, it uses the following
files to display a carousel:

■ ListPModel.js for the presentation model

■ CarouselRenderer.js for the physical renderer

It uses the following files to display a grid:

Configuring Siebel Open UI Siebel 2018

Architecture of Siebel Open UI ■ About the Siebel Open UI Development Architecture

42

■ JQGridRenderer.js for the physical renderer

■ ListPModel.js for the presentation model

It uses the following concatenated file for all applet controls:

■ pwinfra.js is a concatenation of all the plug-in wrapper objects used for all standard applet
controls in the Siebel application

Customizing the Presentation Model
Siebel Open UI considers static and dynamic values as part of the presentation model that it uses.
For example, a list applet includes columns and renders data in each column in every row. Metadata
specifies the column name and other details for each column, such as required, editable, and so on.
These values are static. Siebel Open UI does not modify them unless you configure it to modify them
as part of a customization effort. A list applet can also include dynamic values. For example, a value
that identifies the record that is in focus, or the total number of visible records. Siebel Open UI can
modify the value of a dynamic value in reply to an external event according to the behavior of the
model. For example, if the user clicks a field in a record, and if this record is not in focus, then Siebel
Open UI modifies the property that stores the focus information to the record that the user clicked.
You can implement this type of functionality in a presentation model. For more information, see
“About the Presentation Model” on page 33.

Example of Customizing the Static and Dynamic Values of a
Presentation Model
You can modify a presentation model to add a list column. For example, you can modify the SIS
Product List Applet so that it displays a Select column that allows the user to choose more than one
record, and then press Delete to delete them. You only modify a presentation model to implement
this example. You do not modify a physical render. Siebel Open UI uses the JQGridRenderer physical
renderer for the grid control. JQGridRenderer is sufficiently generic that it can iterate any list of
columns that the presentation model returns. To view an example of this modification, see
“Customizing List Applets to Render as Maps” on page 203.

Example of Customizing the Behavior of a Presentation Model
You can add behavior to a presentation model. For example, you can configure a presentation model
to display or hide a set of fields according to the value of another field. You can configure Siebel Open
UI so that the Job Title field on the Contacts form applet determines whether or not it displays the
Work# field and the Main Fax# field of a contact. If the Job Title includes a value, then Siebel Open
UI displays the Work# field and the Main Fax# field. A presentation model defines this conditional
display. The physical renderer requires no configuration to implement this example. It queries the
presentation model, and then renders these fields according to the instructions that it gets from the
presentation model. You can implement this behavior on the client without modifying any
configuration on the Siebel Server. For a detailed description of an example that uses this type of
configuration, see Chapter 5, “Example of Customizing Siebel Open UI.”

Architecture of Siebel Open UI ■ About the Siebel Open UI Development Architecture

Configuring Siebel Open UI Siebel 2018 43

Customizing the Physical Renderer
You can use a physical renderer to modify how Siebel Open UI renders an object. For example, Siebel
Open UI displays the predefined Contact Affiliations list applet as a typical Siebel CRM list. You can
modify this list to display as a carousel. You can modify how the user scrolls through a set of records,
which is a physical aspect of the applet that a physical renderer defines. But this list is still a list of
records that is a logical representation of the applet that the presentation model defines. You do not
modify this logical representation. To view an example of this type of modification, see “Customizing
List Applets to Render as Carousels” on page 197. For more information, see “About the Physical
Renderer” on page 36.

Customizing a Plug-in Wrapper
You can use a plug-in wrapper to modify how Siebel Open UI renders an Applet Control object. For
example, Siebel Open UI displays all fields with boolean values as Check Boxes. You can modify this
to display them as flip switch controls. You can modify how the user sets and resets the value of the
boolean field, which is a physical aspect of the applet control that a plugin wrapper defines. But this
control is still a boolean field: the logical representation of the applet control that the presentation
model defines. You do not modify this logical representation. To view an example of this type of
modification, “Customizing a Plug-in Wrapper” on page 43. For more information, see “About Plug-in
Wrappers” on page 35.

Stack That Siebel Open UI Uses to Render Objects
Figure 10 on page 44 describes the stack that Siebel Open UI uses to render objects. It uses the
applet object as an example.

Configuring Siebel Open UI Siebel 2018

Architecture of Siebel Open UI ■ About the Siebel Open UI Development Architecture

44

Figure 10. Stack That Siebel Open UI Uses to Render Objects

Explanation of Callouts
The stack that Siebel Open UI uses to render objects includes the following items:

1 Physical layout and styling. Allows you to use HTML to display content, JavaScript to
customize logic, and cascading style sheets to customize layout and styling in the client. You can
position or hide controls to achieve almost any layout requirement.

2 Physical renderer. For more information, see “About the Physical Renderer” on page 36 and
“About Plug-in Wrappers,”.

Architecture of Siebel Open UI ■ About the Siebel Open UI Development Architecture

Configuring Siebel Open UI Siebel 2018 45

3 Presentation model. For more information, see “About the Presentation Model” on page 33.

4 Proxy objects. Includes object instances for the client proxy. Each of these instances represents
an instance of a corresponding repository object that resides on the Siebel Server. Example
objects include a view, applet, business object, or business component. A proxy object includes
only enough logic to allow the client to use the same functionality that the server object uses,
including the data and metadata that the server object requires. A proxy object exposes the
interface for scripting in the client, but it does not allow you to significantly modify the physical
user interface. You can customize only the information that flows from the Siebel Server to the
client. You cannot customize how Siebel Open UI uses the metadata or data in the proxy object
to render the physical user interface. In this example, proxy objects include the applet proxy and
business component proxy that contain data and metadata from the Server Response property
set. For more information, see “Browser Script Compatibility” on page 650.

5 Siebel Property Set. A hierarchy that Siebel Open UI uses to communicate between objects
that reside on the Siebel Server and the proxies that reside in the client.

6 SWE runtime applet object. Exposes scripting interfaces that allow you to modify the applet
so that it can control the business component or business service that this applet references. The
applet that resides on the Siebel Server gets a request from the proxy applet instance that
resides in the client. If necessary, it sends the request to a business component or business
service. Siebel Open UI does not currently include a scripting interface that allows you to modify
the property set that the applet sends to the client.

7 Applet metadata. The applet object in the Siebel Runtime Repository that contains information
that Siebel Open UI uses to bind the user interface to the business component. Siebel Open UI
maps this information through business component fields. This binding can include only a one-
to-one mapping between one applet control and one business component field. Siebel Open UI
does not allow more complex bindings. You can configure Siebel Open UI to get data through a
presentation model in the client to develop functionality that is similar to the functionality that a
more complex binding provides. For more information, see “About Objects and Metadata” on
page 26.

Example Stack That Siebel Open UI Uses to Render Objects
This topic describes a typical example of how Siebel Open UI uses a presentation model and physical
renderer for an applet that it displays in a view. Every object that Siebel Open UI renders uses this
same object stack. You can customize objects in this stack to modify rendering and behavior. For
example, you can customize the presentation model and physical renderers that implement view
navigation to use tree navigation instead of the predefined nested tab navigation.

Figure 11 on page 46 describes an example stack that Siebel Open UI uses to display a calendar
applet.

Configuring Siebel Open UI Siebel 2018

Architecture of Siebel Open UI ■ About the Siebel Open UI Development Architecture

46

Figure 11. Example Stack That Siebel Open UI Uses to Render Objects

Explanation of Callouts Siebel Open UI uses the following items to display a calendar applet:

1 Jquery FullCalendar. The physical JavaScript control. A third-party typically provides this
control.

2 jqfullcalrenderer.js. Binds the CallPresentationModel object that the calpmodel.js file contains
with the third-party calendar control.

3 calpmodel.js. Describes the logical behavior for the calendar user interface that Siebel Open UI
displays on a list applet.

Architecture of Siebel Open UI ■ About the Siebel Open UI Development Architecture

Configuring Siebel Open UI Siebel 2018 47

4 Activity proxies. Includes proxies for the Activity Calendar Applet and the Activity business
component.

Items in the Development Architecture You Can Modify
Figure 12 indicates the predefined items in the development architecture that Oracle provides and
the items that you can modify. It delineates areas where you can customize Siebel Open UI.

Figure 12. Items in the Development Architecture You Can Modify

Configuring Siebel Open UI Siebel 2018

Architecture of Siebel Open UI ■ About the Siebel Open UI Development Architecture

48

Example Client Customizations
Table 3 describes some example client customizations you can do in Siebel Open UI. For detailed
examples, see Chapter 6, “Customizing Siebel Open UI.”

Differences in the Server Architecture Between High
Interactivity and Siebel Open UI
Figure 13 compares the server architecture between high interactivity and Siebel Open UI.

Table 3. Example Client Customizations

Customization Work You Must Do

Customize a list applet
or form applet.

You can use Siebel Tools to customize a list or form applet in the Siebel
Repository. This work completes the basic binding to the Siebel object
layer and displays a list or form in the client. No client customization is
required. For more information, see Using Siebel Tools.

Add custom client
behavior.

You modify a presentation model. For example:

Display or hide a control. For example, show a control if the user
chooses a value from a drop down list. You add the required logic to a
presentation model. You add or remove the control from the set of
controls that Siebel Open UI already displays in the applet proxy in the
client. For example, to add a local control in the client, you add this
control in the presentation model to the set of controls that the proxy
already contains.

Some configuration requirements do not require you to modify the
physical renderer. For example, it is not necessary to modify the
physical renderer to display a control because the predefined
implementation for getting all fields from the client is already available.

Modify the theme of a page. For example, you can configure Siebel
Open UI to modify the theme of a page if the user changes the
orientation of a tablet device. You add the logic that modifies styles
that the user interface elements use when Siebel Open UI modifies the
orientation state in the presentation model.

Add generic client
behavior.

You use a control to render the presentation model. For example, to
render a list applet as a carousel, you use the appropriate third-party
control.

Add specific applet
control-level behavior
and rendering.

For example, you can customize plug-in wrappers to make a boolean
field render and behave like a flip switch, rather than a check box.

Position controls and
customize style.

You modify CSS files.

Architecture of Siebel Open UI ■ About the Siebel Open UI Development Architecture

Configuring Siebel Open UI Siebel 2018 49

Figure 13. Comparing Server Architecture Between High Interactivity and Siebel Open UI

Explanation of Callouts
This comparison between the architecture that high interactivity uses and that Siebel Open UI uses
includes the following items:

1 Rendering customization in high interactivity requires you to use a SWEFrame customization at
the applet level.

2 Rendering customization in Siebel Open UI allows you to use SWEFrame customization, an
equivalent customization, or to customize the physical renderer independently at any level of the
object hierarchy, including at the subapplet level for an applet control.

Configuring Siebel Open UI Siebel 2018

Architecture of Siebel Open UI ■ About the Siebel Open UI Development Architecture

50

3 High interactivity always starts rendering at the view level. It uses predefined code in the user
interface hierarchy, from a request processing perspective.

4 Siebel Open UI uses objects, so rendering can occur at the screen, view, applet, or control level.

Differences in the Client Architecture Between High
Interactivity and Siebel Open UI
Figure 14 compares the ActiveX UI architecture that a high-interactivity client uses to the
architecture that Siebel Open UI uses.

Figure 14. Comparing Client Architecture Between High Interactivity and Siebel Open UI

Architecture of Siebel Open UI ■ Life Cycle of User Interface Elements

Configuring Siebel Open UI Siebel 2018 51

Explanation of Callouts
This comparison between high interactivity and Siebel Open UI includes the following items:

1 Client Environment. The Siebel Open UI client environment allows you to customize run-time
configurable objects to meet a wide range of rendering requirements, from supporting more than
one Web browser type to deploying to various client form factors.

2 Style sheets. The Siebel application or Application Interface serves static style sheets.

3 Object Definition Htmls. The Siebel application serves dynamic Object Definition Htmls.

Life Cycle of User Interface Elements
This topic describes how Siebel Open UI uses presentation model methods and physical renderer
methods, and the methods that the presentation model and physical renderer calls during the life
cycle of a user interface element.

The presentation model uses the following sequence of methods:

1 Init

2 Setup

The presentation model processes the events that it receives from the physical renderer during the
life cycle. It also processes the replies for requests that the Siebel Server sends. Siebel Open UI can
make the following calls to the presentation model during a life cycle:

■ Call from the physical renderer because of a user action.

■ Notification that the Siebel Server sends. For more information, see “Notifications That Siebel
Open UI Supports” on page 595.

■ Process property set that the Siebel Server sends.

■ Completion request to get a follow-up request after the proxy finishes processing a reply from
the Siebel Server.

The physical renderer continues to render each modification that occurs in the presentation model,
and the AttachPMBinding method binds each of these modifications during the Init call to the physical
renderer. One of the following items then signals these modifications:

■ Siebel Open UI runs a presentation model method.

■ Siebel Open UI modifies the value of a presentation model property.

For more information about the methods that this topic describes, see Appendix A, “Application
Programming Interface.”

Summary of Presentation Model Methods
This topic summarizes some of the methods that a presentation model uses during the life cycle of
a user interface element.

Configuring Siebel Open UI Siebel 2018

Architecture of Siebel Open UI ■ Life Cycle of User Interface Elements

52

How Siebel Open UI Uses the Init Method of the Presentation Model
The Init method uses the following methods to configure the properties, methods, and bindings of
the presentation model. For an example that uses Init, see “Creating the Presentation Model” on
page 58:

■ AddProperty. Adds a property to a presentation model. This property can be simple or derived.
If you use AddProperty to define a derived property, then Siebel Open UI uses the Get method
on the presentation model to calculate and return the property value. For more information about
deriving values, see “Deriving Presentation Models, Physical Renderers and Plug-in Wrappers” on
page 115. For more information, see “Get Method” on page 474.

■ AddMethod. Adds a method to the presentation model. For more information, see “AddMethod
Method” on page 466.

■ AttachEventHandler. Attaches a method that handles the logical event. Siebel Open UI calls
this method when it sends an event to the presentation model through the OnControlEvent
method. For more information, see “OnControlEvent Method” on page 475 and
“AttachEventHandler Method” on page 468.

■ AttachNotificationHandler. Attaches a method that handles the notification that Siebel Open
UI calls when the Siebel Server sends a notification to an applet. A notification is a message that
Siebel Open UI sends to the client when this client requests Siebel Open UI to modify a business
component. For example, to create or delete a business component record. For more information,
see “Notifications That Siebel Open UI Supports” on page 595.

■ AttachPSHandler. Handles other incoming property sets that the Siebel Server sends to the
client. It can extract the values that a property set contains to individual properties or do other
processing.

■ AttachPreProxyExecuteBinding. Attaches a method to the presentation model. Siebel Open
UI calls AttachPreProxyExecuteBinding before it processes the reply that it receives from the
Siebel Server, but after it receives a reply from this server to the method that Siebel Open UI
supplies as an argument. For more information, see “Customizing Events” on page 133.

■ AttachPostProxyExecuteBinding. Attaches a method to the presentation model. Siebel Open
UI calls AttachPostProxyExecuteBinding after it processes the reply from the Siebel Server.

The physical renderer calls the following presentation model methods:

■ Get. Gets the value of a property that resides in a presentation model.

■ ExecuteMethod. Runs a method that the AddMethod method calls. For more information, see
“ExecuteMethod Method” on page 473.

■ OnControlEvent. Calls an event. The physical renderer uses the OnControlEvent method to call
the presentation model and send an event. To call the method, the presentation model uses a
binding that exists between the event and the presentation model method and the
AttachEventHandler method. For more information, see “OnControlEvent Method” on page 475
and “AttachEventHandler Method” on page 468.

■ SetProperty. Sets the value of a presentation model property. The physical renderer can set this
value directly in some situations. For more information, see “SetProperty Method” on page 475.

Architecture of Siebel Open UI ■ Life Cycle of User Interface Elements

Configuring Siebel Open UI Siebel 2018 53

How Siebel Open UI Uses the Setup Method of the Presentation Model
The Setup method extracts the values that a property set contains. If Siebel Open UI creates an
object on the Siebel Server, such as a frame, then this server sends the property set that describes
this object to the client. Siebel Open UI uses this property set to set up the presentation model
properties in the client. The Setup method uses the AddProperty method to extract this property set
into presentation model properties. It does this work the first time Siebel Open UI creates the user
interface object in the client. For more information, see “Methods That Manipulate Property Sets” on
page 570. For an example that uses Setup, see “Customizing the Setup Logic of the Presentation
Model” on page 60.

Life Cycle of a Physical Renderer
Figure 15 illustrates the life cycle of a physical renderer. For examples of various life cycle flows, see
“Life Cycle Flows of User Interface Elements” on page 577.

Figure 15. Life Cycle of a Physical Renderer

Explanation of Callouts
The physical renderer uses methods in the following sequence:

1 Renderer. Creates the renderer.

2 Init. Initializes and sets up the AttachPMBinding method. For more information, see “Init Method”
on page 474.

Configuring Siebel Open UI Siebel 2018

Architecture of Siebel Open UI ■ Life Cycle of User Interface Elements

54

3 ShowUI. Displays a physical control that corresponds to an applet control. It renders the
container for the metadata, data, and event bindings. For example, when Siebel Open UI renders
a list applet as a grid, ShowUI renders the third-party grid control that it uses for the applet.
Also, ShowUI calls all of the plug-in wrappers of the associated applet controls. For more
information, see “ShowUI Method” on page 509.

4 BindEvents. Sets up the user interface binding of events to the physical user interface,
represented as HTML elements. It captures the user actions, and then translates these actions
to logical events in the physical renderer before Siebel Open UI sends them to the presentation
model for processing. Also, BindEvents calls all of the plug-in wrappers of the associated applet
controls. For more information, see “BindEvents Method” on page 505.

5 BindData. Downloads metadata and data from the Siebel Server to the client proxy, and then
binds this data to the user interface. The list columns that a list applet uses is an example of
metadata, and the record set that this list applet uses is an example of data. Also, BindData calls
all of the plug-in wrappers of the associated applet controls. For more information, see “BindData
Method” on page 505.

6 AttachPMBinding. Attaches handlers to notifications that occur during the life cycle. For more
information, see “AttachPMBinding Method” on page 471. For more information about notifications
that can occur during the life cycle, see “Notifications That Siebel Open UI Supports” on page 595.

GetPM. Calls a method that the presentation model contains. It is recommended that you use
GetPM only to call the following presentation model methods:

❏ ExecuteMethod

❏ OnControlEvent

❏ Get

❏ SetProperty

You can use ExecuteMethod or OnControlEvent to call a method that modifies the state of the
presentation model or to call a method that reads this state. You can use the Get method to get
the value of a presentation model property. You can use SetProperty to set the value of a
presentation model property.

For more information, see “GetPM Method for Physical Renderers” on page 508 and
“OnControlEvent Method” on page 475.

7 EndLife. Ends the life of the physical renderer. For more information, see “EndLife Method” on
page 507.

Life Cycle of a Plug-in Wrapper
The plug-in wrapper uses methods in the following sequence:

1 ShowUI. Performs show related activities for a control. For more information see “ShowUI
Method” on page 509.

2 BindEvents. Attaches events to the DOM instance of the control. For more information see
“BindEvents Method” on page 505.

3 BindData. Initializes data to the DOM instance of the control. For more information see BindData
Method.

Architecture of Siebel Open UI ■ Life Cycle of User Interface Elements

Configuring Siebel Open UI Siebel 2018 55

4 EndLife. Ends the life of the Plug-in Wrapper. For more information see “EndLife Method” on
page 507.

Example of the Life Cycle of a User Interface Element
Figure 16 describes the life cycle of the calendar user interface element.

Figure 16. Example of the Life Cycle of a User Interface Element

Explanation of Callouts
The following sequence occurs during the life cycle of a calendar user interface object:

1 The user clicks a button that refreshes the calendar.

2 The Init method adds the following items to the physical renderer:

AttachPMBinding ("ProcessCalendarData", RefreshUI)

Configuring Siebel Open UI Siebel 2018

Architecture of Siebel Open UI ■ Life Cycle of User Interface Elements

56

3 The physical renderer sends the following method to the presentation model:

OnControlEvent("Refresh_Calendar",RequestCalendarData)

For more information, see “OnControlEvent Method” on page 475.

4 The Init method adds the following items to the presentation model:

AddProperty (MeetingDates, list of dates)
AddMethod (RequestCalendarData, implementation)
AttachEventHandler ("Refresh_Calendar", RequestCalendarData)
AttachNotificationHandler ("GetCalendarOUIData", ProcessCalendarData)
AttachPostProxyExecute ("GetCalendarOUIData",SetDefaultFocus)

For more information, see “AttachEventHandler Method” on page 468.

5 The presentation model sends the RequestCalendarData method to the Activity Calendar Applet
proxy.

6 The Activity Calendar Applet proxy sends a request to the Siebel Server to call the
RequestCalendarData method.

7 The Siebel Server gets metadata from the Activity Calendar Applet that resides on this server,
and then sends the GetCalendarOUIData notification method to the presentation model. For more
information, see “About Objects and Metadata” on page 26.

8 The presentation model does the following:

a Runs the ProcessCalendarData method and the SetDefaultFocus method.

b Sends the RefreshUI method to the physical renderer. This method gets the relevant properties
from the presentation model.

9 The physical renderer refreshes the calendar.

Configuring Siebel Open UI Siebel 2018 57

5 Example of Customizing Siebel
Open UI

This chapter includes a detailed example that describes the typical tasks that you can do to customize
Siebel Open UI. It includes the following topics:

■ Roadmap for Customizing Siebel Open UI

■ Process of Customizing the Presentation Model on page 58

■ Process of Customizing the Physical Renderer on page 80

■ Process of Customizing the Plug-in Wrapper on page 92

■ Configuring the Manifest for the Recycle Bin Example on page 105

■ Configuring the Manifest for the Color Box Example on page 107

■ Testing Your Modifications on page 108

Roadmap for Customizing Siebel Open
UI
You do the following tasks to customize Siebel Open UI:

■ Process of Customizing the Presentation Model on page 58

■ Process of Customizing the Physical Renderer on page 80

■ Process of Customizing the Plug-in Wrapper on page 92

■ Configuring the Manifest for the Recycle Bin Example on page 105

■ Configuring the Manifest for the Color Box Example on page 107

■ Testing Your Modifications on page 108

You can use this sequence as a general guideline to create your own customizations. To summarize,
you do the following work:

■ Modify a presentation model. You customize the presentation model that implements the
recycle bin that contains the records that a user deletes in a view. You add a Select list column
and modify the Delete button so that the user can choose more than one record, and then delete
them from the server database. You configure Siebel Open UI to do a local backup on the client
of the chosen records. This configuration requires you to modify the metadata that Siebel Open
UI uses in the client and to modify client behavior. It does not require you to modify rendering.
So, you only modify the presentation model. You do not modify the physical renderer to
implement this part of the example.

Configuring Siebel Open UI Siebel 2018

Example of Customizing Siebel Open UI ■ Process of Customizing the Presentation Model

58

■ Modify a physical renderer. You customize a physical renderer for a third-party carousel
control that displays the recycle bin contents and that allows the user to restore deleted records.
You modify the physical renderer so that Siebel Open UI displays a local back up copy of the
deleted records in a carousel control, and then allows the user to choose and restore each of
these records. This configuration modifies the physical representation of the records so that
Siebel Open UI displays them in a modified grid. It also modifies the physical interactivity that
allows the user to choose records in the carousel.

■ Modify a plug-in wrapper. You customize a specific control by writing a plug-in wrapper (CW)
or plugin wrapper (PW). In this example, if the customization is on the Opportunity List applet,
a custom PW will be written for the probability field which will add a colorbox to the field, which
will then change colors based on the value in the probability field. Also, clicking on the box will
open a legend that explains the colors.

For background information about the architecture that this example uses, see “Stack That Siebel
Open UI Uses to Render Objects” on page 43 and “Life Cycle of User Interface Elements” on page 51.

Process of Customizing the Presentation
Model
This task is a step in “Roadmap for Customizing Siebel Open UI” on page 57.

To customize the presentation model, do the following tasks:

1 Creating the Presentation Model

2 Customizing the Setup Logic of the Presentation Model on page 60

3 Customizing the Presentation Model to Identify the Records to Delete on page 62

4 Customizing the Presentation Model to Delete Records on page 66

5 Overriding Predefined Methods in Presentation Models on page 70

6 Customizing the Presentation Model to Handle Notifications on page 71

7 Attaching an Event Handler to a Presentation Model on page 74

8 Customizing Methods in the Presentation Model to Store Field Values on page 77

9 Customizing the Presentation Model to Call the Siebel Server and Delete a Record on page 79

Creating the Presentation Model
This task is a step in “Process of Customizing the Presentation Model” on page 58.

The presentation model uses the Init method to configure the properties, methods, and bindings of
the presentation model, and the Setup method to extract the values that a property set contains.
For more information about these methods, see “Life Cycle of User Interface Elements” on page 51.

Figure 17 illustrates the code you use to create the presentation model. Each number in this figure
identifies the corresponding step number in the numbered task list that this book includes
immediately after this figure.

Example of Customizing Siebel Open UI ■ Process of Customizing the Presentation Model

Configuring Siebel Open UI Siebel 2018 59

Figure 17. Setting Up the Presentation Model

To create the presentation model
1 Create the custom presentation model file:

a Download a copy of the recyclebinpmodel.js file to the following folder:

INSTALL_DIR\applicationcontainer\webapps\siebel\scripts\siebel\custom

This topic describes how to modify code that resides in the recyclebinpmodel.js file. It is
recommended that you get a copy of this file to assist in your understanding of how to
implement the example that this topic describes. This file includes all the code that this
example uses. It also includes more comments that describe code functionality. To get a copy
of this file, see Article ID 1494998.1 on My Oracle Support.

For more information about the folders you can use to store your customizations, see
“Organizing Files That You Customize” on page 145. For more information about the
language_code, see “Languages That Siebel Open UI Supports” on page 641.

b Use a JavaScript editor to open the recyclebinpmodel.js file that you downloaded in Step a.

2 Make sure the RecycleBinPModel class does not exist and that you do not configure Siebel Open
UI to override this class. You add the following code:

if(typeof(SiebelAppFacade.RecycleBinPModel) === "undefined"){

3 Make sure a namespace exists that Siebel Open UI can use to prevent conflicts:

SiebelJS.Namespace("SiebelAppFacade.RecycleBinPModel");

4 Use the Define method to identify the presentation model file:

define("siebel/custom/recyclebinpmodel", [], function(){

You must use the Define method to make sure Siebel Open UI can identify the constructor. You
must include the relative path and the name of the presentation model file without the file name
extension. For more information, see “Define Method” on page 559.

5 Define the class:

SiebelAppFacade.RecycleBinPModel = (function(){

Configuring Siebel Open UI Siebel 2018

Example of Customizing Siebel Open UI ■ Process of Customizing the Presentation Model

60

6 Load the SiebelApp.Constants namespace that defines the constants that Siebel Open UI uses:

var consts = SiebelJS.Dependency("SiebelApp.Constants");

7 Define the class constructor:

function RecycleBinPModel(){
 SiebelAppFacade.RecycleBinPModel.superclass.constructor.apply(this, arguments);
}

8 Set up the injected dependency:

SiebelJS.Extend(RecycleBinPModel, SiebelAppFacade.ListPresentationModel);

For more information about injected dependency, see “About Dependency Injection” on page 65.

9 Return the constructor:

return RecycleBinPModel;
 } ());
 return "SiebelAppFacade.RecycleBinPModel";
});

10 Save the recyclebinpmodel.js file.

Customizing the Setup Logic of the Presentation Model
This task is a step in “Process of Customizing the Presentation Model” on page 58.

In this topic, you customize the setup logic of the presentation model so that it adds the Selected
list column to an applet. You add the control that you configure for this example to the ListColumns
list that resides in the client.

Figure 18 illustrates the code you use to customize the setup logic of the presentation model. Each
number in this figure identifies the corresponding step number in the numbered task list that this
book includes immediately after this figure.

Figure 18. Customizing the Setup Logic of the Presentation Model

To customize the setup logic of the presentation model
In the recyclebinpmodel.js file, identify the property or method of the object that you must modify.

Example of Customizing Siebel Open UI ■ Process of Customizing the Presentation Model

Configuring Siebel Open UI Siebel 2018 61

1 To do this identification, you can examine the JavaScript API methods to identify the method that
most closely matches the behavior that your example requires. For more information about this
JavaScript API, see Appendix A, “Application Programming Interface.”

You can use the following list as a guide to get you started, depending on the area of the Siebel
application that your customization must modify:

■ Application methods. For more information, see “Application Model Class” on page 535.

■ Applet methods. For more information, see “Presentation Model Class for Applets” on
page 477.

■ List applet methods. For more information, see“Presentation Model Class for List Applets” on
page 496.

■ Applet control methods. For more information, see “Applet Control Class” on page 522.

■ Menu methods. For more information, see “Presentation Model Class for Menus” on page 502.

■ Siebel business service methods. For more information, see “Business Service Class” on
page 534.

In this example, you can examine the presentation model that Siebel Open UI uses for list applets
to identify the property or method that the object you must modify uses. To identify this property,
see “Properties of the Presentation Model That Siebel Open UI Uses for Applets” on page 479.

After examining these properties, assume that you determine that Siebel Open UI uses the
GetListOfColumns method that the presentation model references. In general, when you examine
a property or method in a list applet, it is recommended that you first examine the list
presentation model that a list uses, and then the applet presentation model that a form applet
uses.

You must add the Selected list column to a list applet. The Selected list column is a control that
Siebel Open UI displays in the client. So, you add it to the list of listOfColumns that Siebel Open
UI already uses.

2 Specify the method that the presentation model runs as part of the Setup life cycle:

RecycleBinPModel.prototype.Setup = function(propSet){

In this example, you configure Siebel Open UI to create a control that it displays only in the
client, and then insert it into the GetListOfColumns property of the applet. You add this code in
the Setup life cycle method of the presentation model because this logic is related to the work
that Siebel Open UI does to create the applet. Siebel Open UI must create the applet first, and
then insert the control. For more information, see “Summary of Presentation Model Methods” on
page 51.

3 Create a new instance of the AppletControl object:

var mycontrol = SiebelApp.S_App.GetAppletControlInstance

This example requires Siebel Open UI to create a new listOfColumns and to add it to the
GetListOfColumns array. You can use the GetAppletControlInstance method to create a new
instance of the AppletControl object. For more information, see “GetAppletControlInstance
Method” on page 538.

4 Name the instance:

Configuring Siebel Open UI Siebel 2018

Example of Customizing Siebel Open UI ■ Process of Customizing the Presentation Model

62

"Client_Select",

You must specify a unique name for the instance. This example uses Client_Select, which is a
unique value that Siebel Open UI can use to determine the operation that it must perform.

5 Specify the control type:

consts.get("SWE_CTRL_CHECKBOX"),
"Select",
"Select",
"50");
this.Get("GetListOfColumns")["SelectionBox"] = mycontrol;
SiebelAppFacade.RecycleBinPModel.superclass.Setup.call(this, propSet);
};

where:

■ consts.get("SWE_CTRL_CHECKBOX") specifies the control as a check box.

■ Select specifies the display name. You can specify any display name.

■ 50 specifies the width of the column.

For more information about control types, see “Applet Control Class” on page 522.

6 Save the recyclebinpmodel.js file.

Customizing the Presentation Model to Identify the
Records to Delete
This task is a step in “Process of Customizing the Presentation Model” on page 58.

In this topic, you modify the list column control that you created in Step 3 on page 61. This control
uses a check box, so you must make sure that Siebel Open UI stores the value of this check box
when the user toggles it.

Figure 19 illustrates the code that you use to customize the presentation model logic to identify the
records to delete. Each number in this figure identifies the corresponding step number in the
numbered task list that this book includes immediately after this figure.

Example of Customizing Siebel Open UI ■ Process of Customizing the Presentation Model

Configuring Siebel Open UI Siebel 2018 63

Figure 19. Customizing the Presentation Model Logic to Identify the Records to Delete

To customize the presentation model to identify the records to delete
1 In the recyclebinpmodel.js file, add the method that Siebel Open UI must call:

this.AddMethod("LeaveField", PreLeaveField, {sequence:true, scope:this});

where:

■ AddMethod adds the LeaveField method. To identify the method that you must add when you
do your own customization work, you can examine the life cycles that Siebel Open UI uses
that most closely meets your business requirement. To view these life cycles, see “Life Cycle
Flows of User Interface Elements” on page 577.

■ In this example, the business requirement is to save the value in a control. Siebel Open UI
saves the value of a control when the user navigates away from the control, so it calls the
LeaveField method to handle this requirement. For more information, see “LeaveField Method”
on page 488 and “Flow That Handles Focus Changes in List Applets” on page 582.

Configuring Siebel Open UI Siebel 2018

Example of Customizing Siebel Open UI ■ Process of Customizing the Presentation Model

64

■ PreLeaveField, {sequence : true, scope : this} configures Siebel Open UI to call your
custom LeaveField method before it calls the predefined LeaveField method. It does this
during the Init life cycle when it runs the AddMethod method. It is recommended that you
set up the presentation model methods at the beginning of the Init life cycle call that contains
most of the properties and dependency injections, including predefined and custom methods.
For more information about Init, see “Life Cycle of User Interface Elements” on page 51. For
more information, see “About Dependency Injection” on page 65.

It is recommended that you use a named method to specify the Prexxx customization method,
such as PreLeaveField. This configuration makes sure that Siebel Open UI uses the same method
for all presentation model instances. It is not recommended that you specify the Prexxx
customization method as an anonymous method in the AddMethod call because Siebel Open UI
creates this anonymous method for every presentation model instance that resides in memory,
possibly for more than one applet in the same view. Defining an anonymous method in this
situation might cause a conflict.

2 Create the condition:

if (ctrl.GetName() === "Client_Select"){

The Setup method uses the GetName method with a literal return value of Client_Select. It
identifies the method that Siebel Open UI uses for your custom control. For more information,
see “GetName Method for Applet Controls” on page 526.

3 Make sure Siebel Open UI returns your custom logic after it sets the CancelOperation part of the
return value to true:

returnStructure["CancelOperation"] = true;

This configuration overrides the predefined code when Siebel Open UI calls LeaveField for your
new list column. In this example, you must implement LeaveField for the control, so it is not
desirable to call the predefined code for this control after Siebel Open UI finishes running your
customization of the LeaveField method. For more information about using ReturnStructure when
you modify a method, see “AddMethod Method” on page 466.

4 Configure Siebel Open UI to return a value of true after it sets the CancelOperation part of
returnStructure to true:

returnStructure["ReturnValue"] = true;

The LeaveField method returns a value of true to indicate success in this example, so you must
make sure Siebel Open UI uses the same logic after your customization finishes running and
returns a value. This configuration makes sure the Init life cycle continues on the success path
after the custom LeaveField method runs. You can use ReturnValue to make sure Siebel Open UI
sets the return value of your custom implementation to the required value. In this example, you
set this value to true.

5 Disable the processing that Siebel Open UI does for the control that is in focus:

this.ExecuteMethod("SetActiveControl", null);

This code sets the active control to null. For more information, see “Disabling Automatic Updates”
on page 66 and “SetActiveControl Method” on page 491.

6 Add the property that Siebel Open UI uses to store the set of records that are pending deletion:

Example of Customizing Siebel Open UI ■ Process of Customizing the Presentation Model

Configuring Siebel Open UI Siebel 2018 65

this.AddProperty("DeletionPendingSet", []);

The set of records that are pending deletion represent the state of your custom presentation
model, so you add the DeletionPendingSet property to store the field values for this set of
records.

7 Identify the records that Siebel Open UI must delete:

var delObj = this.Get("DeletionPendingSet");
var currentSelection = this.Get("GetSelection");
if(value === "Y"){
 delObj[currentSelection] = this.Get("GetRecordSet")[currentSelection];
}
else{
 delObj[currentSelection] = null;
}

Siebel Open UI must identify the records that the user chooses to delete so that it can populate
a value into the DeletionPendingSet property. To identify this property, you can examine the
properties that the presentation model uses for the applet. This work is similar to the work you
do in Step 1 on page 61 to identify the property in the presentation model that Siebel Open UI
uses for lists, except in this topic you examine the properties described in “Properties of the
Presentation Model That Siebel Open UI Uses for Applets” on page 479.

After examining these properties, assume you determine that Siebel Open UI uses the
GetSelection property to get the index of the record that the user has chosen from among all the
records that Siebel Open UI displays. You also determine that you can use the GetRecordSet
property to get this full set of records.

8 Save the recyclebinpmodel.js file.

About Dependency Injection
Dependency injection is a software development technique that Siebel Open UI uses to create a
dependency between a presentation model and a physical renderer. If Siebel Open UI modifies a
method or property that resides in the presentation model, then it also modifies a method or property
that resides in the physical renderer. It allows Siebel Open UI to implement logic at run-time rather
than during a compile. These dependency injections allow it to use an injected dependency chain,
which is a series of two or more dependency injections.

You can modify Siebel Open UI to make this chaining depend on conditions that Siebel Open UI
modifies at run time. It can use all the methods that the Init method references in “Summary of
Presentation Model Methods” on page 51 for dependency injection. For an example that uses
dependency injection, see “Customizing the Physical Renderer to Refresh the Carousel” on page 87.

Configuring Siebel Open UI Siebel 2018

Example of Customizing Siebel Open UI ■ Process of Customizing the Presentation Model

66

Disabling Automatic Updates
Siebel Open UI sends updated field values to the Siebel Server for any fields that the user has
modified in the client. In this example, you must disable this update functionality for the current
control. You can reference the documentation for the predefined applet to identify the presentation
model property that you must modify. In this situation, the documentation indicates that you can
configure Siebel Open UI to use the SetActiveControl property of the active control on the applet and
set it to null. For more information, see “Disabling Automatic Updates” on page 66, “SetProperty
Method” on page 475, and “SetActiveControl Method” on page 491.

ExecuteMethod calls a method that the presentation model references. It makes sure that Siebel
Open UI runs all injected dependency chains that the method requires when it runs. You must use
ExecuteMethod to call any predefined or custom method that a presentation model references. For
more information, see “About Dependency Injection” on page 65 and “ExecuteMethod Method” on
page 473.

Customizing the Presentation Model to Delete Records
This task is a step in “Process of Customizing the Presentation Model” on page 58.

Figure 20 illustrates the code you use to configure the presentation model to delete records. In this
topic, you configure Siebel Open UI to customize and conditionally override the InvokeMethod
method. Each number in this figure identifies the corresponding step number in the numbered task
list that this book includes immediately after this figure.

Figure 20. Customizing the Presentation Model to Delete Records

Example of Customizing Siebel Open UI ■ Process of Customizing the Presentation Model

Configuring Siebel Open UI Siebel 2018 67

To customize the presentation model to delete records
1 In the recyclebinpmodel.js file, add the method that Siebel Open UI uses to delete a record:

this.AddMethod("InvokeMethod", PreInvokeMethod, {sequence:true, scope:this});

You must identify the method that Siebel Open UI uses when the user clicks Delete. To do this
identification, it is recommended that you examine the flowchart that Siebel Open UI uses during
a typical life cycle when it calls methods that reside on the Siebel Server. For this example, the
life cycle flowchart indicates that Siebel Open UI calls the DeleteRecord method when it calls the
InvokeMethod method. You add this code in the Init method. For more information, see “Life
Cycle Flows That Create New Records in List Applets” on page 585 and “DeleteRecord Method” on
page 436.

This configuration is similar to the configuration you added in Step 1 on page 59 that includes the
AddMethod method and the sequence statement.

2 Call the custom logic only if Siebel Open UI calls the DeleteRecord method:

if ((methodName === "DeleteRecord") && !this.Get("InDeletion")){

This code examines the value of the InDeletion property.

3 Set the InDeletion property to true only if Siebel Open UI starts the deletion process:

this.SetProperty("InDeletion", true);

This code determines whether or not Siebel Open UI is already running an instance of your
custom delete process, and then makes sure that no more than one of these instances runs at
the same time. The InDeletion property determines whether or not the deletion process is
currently running.

You could use the following code in the Init method to add this property:

this.AddProperty("inDeletion", false)

This example demonstrates how you can use SetProperty to use a property temporarily so that
it is similar to a conditional flag. This example uses SetProperty to create this property only when
necessary. If Siebel Open UI calls the Get method before it calls the SetProperty method, then
the JavaScript returns a value of undefined, which is the default value that JavaScript assigns
to any variable that is not defined.

4 Get the set of records where the Selected value of each of these records includes a check mark:

var deletionPending = this.Get("DeletionPendingSet");

This code gets the state of the set of records before the user clicks Delete. Siebel Open UI stores
this information in the DeletionPendingSet property in the LeaveField customization that you
added in Step 6 on page 64.

5 Determine whether or not the user has chosen at least one record for deletion:

if (deletionPending.length > 0){

This code represents this condition as > 0, where 0 indicates the number of records chosen.

6 Iterate through all the records that the user has chosen to delete:

Configuring Siebel Open UI Siebel 2018

Example of Customizing Siebel Open UI ■ Process of Customizing the Presentation Model

68

for (var counter = deletionPending.length - 1; counter >= 0; counter--){
 var currentObj = deletionPending[counter];
 if (currentObj){
 }
}

7 Disable the processing that Siebel Open UI does for the control that is in focus:

this.ExecuteMethod("SetActiveControl", null);

For more information, see “Disabling Automatic Updates” on page 66 and “SetActiveControl
Method” on page 491.

8 Modify the application state so that Siebel Open UI references the record that it must delete:

this.ExecuteMethod ("HandleRowSelect", counter, false, false);

To identify this code when you customize Siebel Open UI, it is recommended that you examine
“Flow That Handles Navigation to Another Row in List Applets” on page 589. In this example, this
flow indicates that you must use the HandleRowSelect method. The presentation model that
Siebel Open UI uses for list applets references HandleRowSelect, so you can configure Siebel
Open UI to use ExecuteMethod to call it. For more information, see “HandleRowSelect Method” on
page 499.

9 Make sure that Siebel Open UI can call the DeleteRecord method:

if(this.ExecuteMethod("CanInvokeMethod", "DeleteRecord")){

It is recommended that you configure Siebel Open UI to call CanInvoke before it calls another
method to make sure that it can call this other method in the context of the object that is
currently in scope. Siebel Open UI can use the CanInvoke method to model complex logic for any
record that exists in the Siebel Database that resides on the Siebel Server. This logic can
determine whether or not Siebel Open UI can call an operation according to the scope that it
applies to the current object, such as a record that is in scope. In this example, it determines
whether or not it can call the DeleteRecord method.

You can use the method descriptions in Appendix A, “Application Programming Interface,” to
identify the method that you must use in your customization work.

For more information about the method that this example uses, see “CanInvokeMethod Method
for Presentation Models” on page 481.

10 Add a property that Siebel Open UI can use to store information about the records that it sends
to the Siebel Server for deletion:

this.AddProperty("ObjectsUnderDeletion", []);

11 Delete the record:

this.Get("ObjectsUnderDeletion")[this.Get("GetSelection")] = currentObj;
var inputPS = SiebelApp.S_App.NewPropertySet();
this.ExecuteMethod ("InvokeMethod", "DeleteRecord", inputPS);

where:

Example of Customizing Siebel Open UI ■ Process of Customizing the Presentation Model

Configuring Siebel Open UI Siebel 2018 69

■ ObjectsUnderDeletion inserts the record into a backed up record set, and if this insert occurs
at an index location that is equal to the index of the selected row, then Siebel Open UI can
reference the selected row to identify the correct index to use when processing the
NotifyDeleteNotification reply. The Siebel Server sends this reply. Siebel Open UI must
identify the record where it set the notification when it handles the NotifyDeleteNotifications
notification. You can configure Siebel Open UI to call HandleRowSelect to select the row
before it sends the request to delete the record.

■ GetSelection is a property of the applet presentation model that includes an index that
identifies the chosen record. This record resides in the record set that resides in the client.
When you develop your own customization, you can reference the documentation to identify
the property that your customization requires. For more information, see “Properties of the
Presentation Model That Siebel Open UI Uses for Applets” on page 479.

■ InvokeMethod is a method that resides in the presentation model that Siebel Open UI uses
for a list applet. You can use ExecuteMethod to call it.

■ false configures Siebel Open UI to make a synchronous request to the Siebel Server. A
synchronous request makes sure that Siebel Open UI sends all DeleteRecord requests to the
server before it exits the loop. If it exits the loop during a synchronous request, then it sends
all DeleteRecord requests sequentially. In this situation, it sends the requests to the server
so that the server can process a reply for the previous request, including the delete
completion notifications. The server does this processing during a synchronous request
before it sends the next DeleteRecord request.

12 Set the DeletionPendingSet property to zero:

this.SetProperty("DeletionPendingSet", []);

This code sets the DeletionPendingSet property to zero after Siebel Open UI finishes running all
the DeleteRecord calls on the Siebel Server.

13 Set the CancelOperation member of the returnStructure to true:

returnStructure ["CancelOperation"] = true;

You configure Siebel Open UI to set this member before it exits the outer loop that processes the
deletionPending records. You do this so that Siebel Open UI does not use the DeleteRecord
argument to make another call to the predefined InvokeMethod method. For more information
about ReturnStructure, see “AddMethod Method” on page 466.

14 Set the InDeletion flag to false:

this.SetProperty("InDeletion", false);

You configure Siebel Open UI to set this property before it exits the conditional block that does the
InvokeMethod processing for the DeleteRecord method.

Save the recyclebinpmodel.js file.

About Synchronous Requests
 A synchronous request is a type of request that Siebel Open UI sends to the Siebel Server, and then
waits for a reply to this request before it continues any other processing.

Configuring Siebel Open UI Siebel 2018

Example of Customizing Siebel Open UI ■ Process of Customizing the Presentation Model

70

The GetSelection request is synchronous, so Siebel Open UI cannot send another request to move
the selection to a different record before the Siebel Server sends a reply notification that indicates
a successful deletion. When processing this notification, the intended row is the same row that Siebel
Open UI most recently selected. Siebel Open UI can use the selected row as a common index that it
can use to reference the record.

Overriding Predefined Methods in Presentation Models
This task is a step in “Process of Customizing the Presentation Model” on page 58.

If Siebel Open UI calls the GetFormattedFieldValue method for a control that it only displays in the
Siebel Open UI client, then this client cannot not find the field in the list of fields that it uses, and
the client creates an error. To avoid this situation, in this topic you customize Siebel Open UI to
override the predefined GetFormattedFieldValue method so that it does not create an error when it
calls GetFormattedValue for your new list column. For more information, see “GetFormattedFieldValue
Method” on page 486.

To override predefined methods in presentation models
1 Use the flowcharts to identify the method that you must modify.

Siebel Open UI displays values for applet controls and list columns after it gets these values from
the client. It caches these values in the client after it downloads them from the Siebel Server. To
identify the method that handles these values, you can examine the flowchart that describes how
Siebel Open UI creates a new record in a list applet, and then updates the client. In this example,
the flowchart indicates that it calls the GetFormattedFieldValue method. If the physical renderer
requires the ShowControlValue method, then it calls the presentation model to run the
GetFormattedFieldValue method. For more information, see “Flow That Creates New Records in
List Applets, Updating the User Interface” on page 587.

2 In the recyclebinpmodel.js file, configure Siebel Open UI to conditionally override and customize
the method:

RecycleBinPModel.prototype.Init = function(){
 SiebelAppFacade.RecycleBinPModel.superclass.Init.call(this);
 this.AddMethod("GetFormattedFieldValue", PreGetFormattedFieldValue,
{sequence:true,scope:this});
 .
 .
 .
function PreGetFormattedFieldValue(control, bUseWS, recIndex, returnStructure){
 if (control.GetName() === "Client_Select"){
 returnStructure["CancelOperation"] = true;
 returnStructure["ReturnValue"] = "";
 }
}

Where:

■ this.AddMethod adds the PreGetFormattedFieldValue method in the Init life cycle and
specifies PreGetFormattedFieldValue as the customization.

Example of Customizing Siebel Open UI ■ Process of Customizing the Presentation Model

Configuring Siebel Open UI Siebel 2018 71

■ sequence: true specifies to call the custom PreGetFormattedFieldValue before it calls the
predefined GetFormattedFieldValue method.

■ The following code in the custom method determines whether or not the control that Siebel
Open UI is currently examining is the client-only control:

if (control.GetName() === "Client_Select")

If it is, then Siebel Open UI sets the CancelOperation member of the returnStructure to true
and the ReturnValue to null. For more information about returnStructure, see “AddMethod
Method” on page 466.

3 Save the recyclebinpmodel.js file.

Customizing the Presentation Model to Handle
Notifications
This task is a step in “Process of Customizing the Presentation Model” on page 58.

The Siebel Server sends a record deletion confirmation when it receives the InvokeMethod request
for the DeleteRecord method. You can write a handler for the NotifyDeleteRecord notification to
process this confirmation in the client. For more information, see “DeleteRecord Method” on page 436.

Siebel Open UI packages the notification that it gets from the Siebel Server in the business
component layer as part of a reply property set. This property set includes information about server
state modifications or replies to requests for state information. For example, if Siebel Open UI
deletes a record that resides on the server, then the following work occurs:

1 Siebel Open UI sends a NotifyDeleteRecord notification to the client.

2 The client sends a request to the server.

3 The server processes the request.

4 Siebel Open UI examines the relevant modifications that exist on the server, and then collects
and packages notifications that are ready to communicate to the client.

5 If the client sends an InvokeMethod call for the DeleteRecord method to the server, then the
Siebel Web Engine sends a NotifyDeleteRecord notification from the business component layer to
the client.

For more information about the business component layer, see Configuring Siebel Business
Applications.

Figure 21 on page 72 illustrates the code you use to customize the presentation model to handle
notifications. Each number in this figure identifies the corresponding step number in the numbered
task list that this book includes immediately after this figure.

Configuring Siebel Open UI Siebel 2018

Example of Customizing Siebel Open UI ■ Process of Customizing the Presentation Model

72

Figure 21. Customizing the Presentation Model to Handle Notifications

To customize the presentation model to handle notifications
1 Identify the notification type that Siebel Open UI must handle.

Examine the notification types in the “Notifications That Siebel Open UI Supports” on page 595
topic. Look for a notification type that indicates it might include the information that your
customization requires. For this example, the notification type for the NotifyDeleteRecord
notification is SWE_PROP_BC_NOTI_DELETE_RECORD.

2 Examine the methods that the presentation model references that indicate they might be useful
for your customization.

The AttachNotificationHandler method is the appropriate method to use for this example. For
more information, see “AttachNotificationHandler Method” on page 469.

3 In the recyclebinpmodel.js file, add the AttachNotificationHandler to the Init method of the
presentation model:

this.AttachNotificationHandler(consts.get("SWE_PROP_BC_NOTI_DELETE_RECORD"),
HandleDeleteNotification);

4 Add the custom method that Siebel Open UI uses to handle replies from NotifyDeleteRecord and
to populate the recycle bin:

function HandleDeleteNotification(propSet){

5 Get the property that you use to identify the objects that Siebel Open UI has flagged for deletion:

var objectsUnderDeletion = this.Get("ObjectsUnderDeletion");

You configured this property in Step 10 on page 68 to back up the records that Siebel Open UI is
in the process of deleting.

6 Determine whether or not any records exist in the In Progress list:

Example of Customizing Siebel Open UI ■ Process of Customizing the Presentation Model

Configuring Siebel Open UI Siebel 2018 73

if(objectsUnderDeletion.length > 0){

Siebel Open UI must process these records, and then move them to the recycle bin. In this step
and in several subsequent steps, you do more than one examination to make sure the notification
instance that Siebel Open UI is handling is the instance that it requires for the notification
handler. Some repeating notifications might exist that you must process to avoid duplication.

7 Identify the row that is involved with the NotifyDeleteRecord notification:

var activeRow = propSet.GetProperty(consts.get("SWE_PROP_BC_NOTI_ACTIVE_ROW"));

In this example, you use the SWE_PROP_BC_NOTI_ACTIVE_ROW property. For more information
about this property, see “Summary of Notifications That Siebel Open UI Supports” on page 596.

8 Make sure that this notification confirms the deletion, and make sure that this notification is not
a duplicate:

if(activeRow == this.Get("GetSelection") && objectsUnderDeletion[activeRow]){

where:

❏ The following code determines whether or not the record that the NotifyDeleteRecord
method references is the currently selected record:

activeRow == this.Get("GetSelection")

This example uses a synchronous request, so Siebel Open UI selects the record that the
DeleteRecord method references in the context of PreInvokeMethod. It selects no other
record after it makes this initial selection while the Siebel Server sends the delete
confirmation notification to the client. For more information, see “About Synchronous
Requests” on page 69.

❏ The following code makes sure that this notification is not a duplicate:

objectsUnderDeletion[activeRow]

It determines whether or not Siebel Open UI has already removed the record that it is
examining in a previous instance of handling the same notification for the same record.

9 Add a property that Siebel Open UI can use to store the list of records that the user deletes but
might retrieve from the recycle bin:

this.AddProperty("DeletionCompleteSet", []);

10 Store the deleted record:

this.Get("DeletionCompleteSet").push(objectsUnderDeletion[activeRow]);

The conditional block where this code resides determines that this notification is not a duplicate
NotifyDeleteRecord notification for the record that the DeleteRecord method requests deletion.
So, this push statement pushes the deleted record into the DeletionCompletedSet property that
you defined in Step 9.

11 Remove the record from the Deletion in Progress list:

objectsUnderDeletion[activeRow] = null;

12 Add the RefreshList method:

Configuring Siebel Open UI Siebel 2018

Example of Customizing Siebel Open UI ■ Process of Customizing the Presentation Model

74

this.AddMethod("RefreshList", function(){});

Siebel Open UI must refresh the recycle bin after Step 11 on page 73 adds a record to this recycle
bin. You can use dependency injection through the AttachPMBinding method to inform the
physical renderer that the recycle bin requires a refresh. For more information, see “About
Dependency Injection” on page 65. For more information, see “How Siebel Open UI Uses
Nondetailed Data to Indicate Modifications That Occur in Detailed Data” on page 74.

13 Run the RefreshList method:

this.ExecuteMethod("RefreshList");

14 Save the recyclebinpmodel.js file.

How Siebel Open UI Uses Nondetailed Data to Indicate Modifications
That Occur in Detailed Data
Siebel Open UI uses the dependency that exists between the presentation model and the physical
renderer to indicate a high-level modification in a property or method, such as a modifying the list
of records that it must display. This dependency configures Siebel Open UI to run a high-level
renderer method, such as a method that repopulates the entire physical markup of columns and data
in the grid container. The renderer method then gets the detailed presentation model attributes, such
as columns and data, through properties or methods that the presentation model contains.

This example uses the RefreshList method as an indicator that Siebel Open UI modified something
in the DeletionCompletedSet property. When you configure the physical renderer in “Customizing the
Physical Renderer to Refresh the Carousel” on page 87, you configure Siebel Open UI to use the
AttachPMBinding method to bind a physical renderer method to the RefreshList method. You also
configure it to use this physical renderer method to get the detailed data that the
DeletionCompletedSet method references. Siebel Open UI gets this data from the presentation
model so that the physical renderer can render it. For more information, see “AttachPMBinding
Method” on page 471.

Attaching an Event Handler to a Presentation Model
This task is a step in “Process of Customizing the Presentation Model” on page 58.

At this point in this example, you have set up and customized the presentation model to choose
records to delete, to delete them, and then to move them to the recycle bin. In this topic, you modify
the presentation model to allow the user to click an item in the carousel, and then click the plus sign
(+) to restore the record.

Figure 22 illustrates the code you use to attach an event handler to a presentation model. Each
number in this figure identifies the corresponding step number in the numbered task list that this
book includes immediately after this figure.

Example of Customizing Siebel Open UI ■ Process of Customizing the Presentation Model

Configuring Siebel Open UI Siebel 2018 75

Figure 22. Attaching an Event Handler to a Presentation Model

To attach an event handler to a presentation model
1 In the recyclebinpmodel.js file, add the method that handles the event:

function OnClickRestore(index){

The name of an event handler typically starts with the following prefix:

On

Siebel Open UI calls this method when the user clicks the plus sign (+).

2 Bind the OnClickRestore method to the RESTORE custom event:

this.AttachEventHandler("RESTORE", OnClickRestore);

This code adds the RESTORE custom event. The physical renderer sends this event to the
presentation model, and then this presentation model runs OnClickRestore. The
AttachEventHandler method sets up a dependency injection, so you add it in the Init method. For
more information, see “AttachEventHandler Method” on page 468 and “About Dependency
Injection” on page 65.

3 Identify the method that Siebel Open UI uses when a user creates a record.

Examine the “Flow That Creates New Records in List Applets, Calling the Siebel Server” on page 586.
Note that Siebel Open UI uses the NewRecord method, and then uses the WriteRecord method
as an input argument for the InvokeMethod method when it runs InvokeMethod in the
presentation model. For more information, see “NewRecord Method” on page 530.

4 Determine how Siebel Open UI stores the field values of a new record that a user creates.

Examine “Flow That Handles Focus Changes in List Applets” on page 582. This flow describes the
process that occurs between the initial NewRecord call and the WriteRecord call when Siebel
Open UI creates a record in the client. It stores the field values in the client while the user enters
these values and navigates from one field to another field. For more information, see
“WriteRecord Method” on page 449.

Siebel Open UI can do the following to create a record that it restores through the OnClickRestore
event handler:

■ Run the InvokeMethod method for the NewRecord.

Configuring Siebel Open UI Siebel 2018

Example of Customizing Siebel Open UI ■ Process of Customizing the Presentation Model

76

■ Store values that the user enters in each field, and use values from the records that Siebel
Open UI stores in the recycle bin.

■ Run the InvokeMethod method for WriteRecord with the client already configured to include
the field values for the record.

5 Make sure Siebel Open UI can use the NewRecord method in the applet:

if(this.ExecuteMethod("CanInvokeMethod", "NewRecord")){

If Siebel Open UI cannot run the NewRecord method, then it exits this conditional statement.

6 Add the property that Siebel Open UI uses to store the index that identifies the record it must
restore:

this.AddProperty("restorationIndex", -1);

The physical renderer must specify the record to restore. To do this, it uses the
DeletionCompletedSet property to get the restorationIndex of this record from the client and
store it. It then sends this index to the presentation model as part of a request to restore the
record. The restorationIndex is an index that resides in the DeletionCompletedSet property of
the record.

Siebel Open UI sends this value from the recycle bin record that the user chooses to restore. The
OnClickRestore method receives this property, and then Siebel Open UI stores this value in the
restorationIndex property of the presentation model.

7 Configure the OnClickRestore method:

this.SetProperty("inRestoration", true);
this.SetProperty("restorationIndex", index);
this.ExecuteMethod("InvokeMethod", "NewRecord", null, false);
this.ExecuteMethod("InvokeMethod", "WriteRecord", null, false);

where:

■ NewRecord and WriteRecord are input arguments to the InvokeMethod method. In Step 3 on
page 75 you determined that Siebel Open UI uses the NewRecord method or the WriteRecord
method as an input argument for the InvokeMethod, so you specify these methods in this
code.

Siebel Open UI stores the field values of a record in the WriteRecord request before it sends this
request to the Siebel Server. It stores these values differently depending on whether it creates
a record from the recycle bin or whether the user creates a new record. The physical user
interface layer does not store these values if the user attempts to restore a record from the
recycle bin. It stores these values only if the user creates a new record. You write this
customization in the next topic in this example, “Customizing Methods in the Presentation Model
to Store Field Values” on page 77.

This customization runs only while WriteRecord is running to restore a record from the recycle
bin. It does not run when the user creates a new record and Siebel Open UI calls WriteRecord.
When you start this restoration logic in the OnClickRestore method, you set a presentation model
property that serves as a flag that indicates that a recycle bin restoration is in progress. An
explicit AddProperty call does not exist for this property, so Siebel Open UI creates this property
only if the user uses the recycle bin.

Example of Customizing Siebel Open UI ■ Process of Customizing the Presentation Model

Configuring Siebel Open UI Siebel 2018 77

8 Save the recyclebinpmodel.js file.

Customizing Methods in the Presentation Model to Store
Field Values
This task is a step in “Process of Customizing the Presentation Model” on page 58.

In this topic, you use the ExecuteMethod method to store the values of the record that the user is
attempting to restore from the recycle bin.

Figure 23 illustrates the code you use to customize a method in the presentation model to store the
field values of records. Each number in this figure identifies the corresponding step number in the
numbered task list that this book includes immediately after this figure.

Figure 23. Customizing a Method in the Presentation Model to Store the Field Values of Records

To customize methods in the presentation model to store field values
1 In the recyclebinpmodel.js file, add a condition that makes sure Siebel Open UI runs the

customization logic only if the user is restoring a record from the recycle bin, and not adding a
new record:

else if(methodName === "WriteRecord" && this.Get("inRestoration")){

This if statement examines the value of the methodName in the WriteRecord argument and the
value of the inRestoration property. For more information, see “WriteRecord Method” on page 449.

2 Get the set of records for the recycle bin:

var recordSet = this.Get("DeletionCompleteSet");

In Step 10 on page 73, you configured the DeletionCompletedSet property of the presentation
model to store each record that the user adds to the recycle bin.

3 Get the back up copy of the record that the physical renderer requests to restore:

Configuring Siebel Open UI Siebel 2018

Example of Customizing Siebel Open UI ■ Process of Customizing the Presentation Model

78

var record = recordSet[this.Get("restorationIndex")];

To get this value, you access the restorationIndex property that you added in Step 6 on page 76.

4 Identify the method that Siebel Open UI uses to indicate that the user navigated away from an
applet.

To do this, you can examine “Flow That Handles Focus Changes in List Applets” on page 582. Note
that Siebel Open UI calls the LeaveField method as the last step in the flow. This method
determines whether or not Siebel Open UI removed the focus from a field in an applet, so Siebel
Open UI uses this step in the flow as a flag to signal that it must store the field values. To get
information about the methods that the flowcharts describe when you develop your own
customization, you can use the descriptions in Appendix A, “Application Programming Interface.”

5 Get the list of columns that the list applet contains. This list is identical to the list of columns that
the DeletionCompleteSet property contains:

var listOfColumns = this.Get("ListOfColumns");

6 Get the list of controls that the list applets contains:

var controls = this.Get("GetControls");

For more information about the GetControls property, see “Properties of the Presentation Model
That Siebel Open UI Uses for Applets” on page 479.

7 Store the field values:

for(var i = 0, len = listOfColumns.length; i < len; i++){
 var control = controls[listOfColumns[i].name];
 if(control){
 this.ExecuteMethod("LeaveField", control, record[control.GetFieldName()],
 true);}
 }
}

where:

■ The following code iterates through the applet controls that correspond to the list columns of
that the record that the DeletionCompleteSet property identifies:

for(var i = 0, len = listOfColumns.length; i < len; i++)

■ this.ExecuteMethod calls the LeaveField method that you identified in Step 4. It calls this
method one time for each iteration. It sends the field value from the corresponding control
of the record that DeletionCompleteSet identifies. It sends this value to an argument. When
this code iterates, it runs the LeaveField method for every control that Siebel Open UI must
populate in the new record that it is using to restore the deleted record from the recycle bin.

■ Siebel Open UI must send the LeaveField method as a control and store a value for this
control. In this example, it iterates through each control that the list applet contains, and
sends the value of the corresponding list column that it uses for the control from the record
that the DeletionCompleteSet property gets in Step 2 on page 77.

■ For a description of the arguments that LeaveField uses, “Summary of Methods That You Can
Use with the Presentation Model for Applets” on page 478.

Example of Customizing Siebel Open UI ■ Process of Customizing the Presentation Model

Configuring Siebel Open UI Siebel 2018 79

■ record stores the field value of the record that Siebel Open UI is restoring. The subsequent
WriteRecord call packages and sends these values to the Siebel Server.

Siebel Open UI stores these values when it runs the LeaveField method. For more information
about this flow, see “Flow That Handles Focus Changes in List Applets” on page 582.

8 Save the recyclebinpmodel.js file.

Customizing the Presentation Model to Call the Siebel
Server and Delete a Record
This task is a step in “Process of Customizing the Presentation Model” on page 58.

In this topic, you configure the presentation model to remove the record from the recycling bin. You
use a dependency injection to call a method on the Siebel Server after the stack that Siebel Open UI
uses to call the server has finished processing. For more information, see “About Dependency
Injection” on page 65 and “Customizing Events” on page 133.

To customize the presentation model to call the Siebel Server and delete a record
1 In the recyclebinpmodel.js file, add the following code to the Init method:

this.AttachPostProxyExecuteBinding("WriteRecord", PostWriteRecord);

You use the Init method to send a WriteRecord call to the Siebel Server. For more information,
see “WriteRecord Method” on page 449 and “AttachPostProxyExecuteBinding Method” on page 471.

2 Add the following code anywhere in the recyclebinpmodel.js file:

function PostWriteRecord(methodName, inputPS, outputPS){
 if(this.Get("inRestoration")){
 this.Get("DeletionCompleteSet")[this.Get("restorationIndex")] = null;
 this.ExecuteMethod("RefreshList");
 this.SetProperty("inRestoration", false);
}

where:

PostWriteRecord does the following work:

■ Removes the record that Siebel Open UI restored in Step 7 on page 78. It removes this record
from the DeletionCompleteSet property.

■ Calls the RefreshList method to start another round of binding to the physical renderer. In
the next topic in this example, you configure Siebel Open UI to call the
HandleDeleteNotification method to refresh the list and to remove the record from the recycle
bin in the client.

■ Sets the inRestoration property of the presentation model to false. You set this property to
true in Step 7 on page 78 to indicate that Siebel Open UI is restoring a record. The
restoration is now finished, so you can configure Siebel Open UI to set inRestoration to false.

3 Save the recyclebinpmodel.js file.

Configuring Siebel Open UI Siebel 2018

Example of Customizing Siebel Open UI ■ Process of Customizing the Physical Renderer

80

Process of Customizing the Physical
Renderer
This task is a step in “Roadmap for Customizing Siebel Open UI” on page 57.

To customize the physical renderer, do the following tasks:
1 Setting Up the Physical Renderer

2 Customizing the Physical Renderer to Render the Carousel on page 82

3 Customizing the Physical Renderer to Bind Events on page 84

4 Customizing the Physical Renderer to Bind Data on page 86

5 Customizing the Physical Renderer to Refresh the Carousel on page 87

6 Modifying CSS Files to Support the Physical Renderer on page 90

In this topic, you customize the JQGridRenderer physical renderer that Siebel Open UI uses with a
presentation model for a typical Siebel list applet so that it renders this applet as a grid. You add the
rendering capabilities for the carousel that Siebel Open UI uses to render the recycle bin. You also
modify the grid style to accommodate the carousel control. You use methods in the physical renderer
to do this work. For a description of these methods, including the sequence you use to configure
them, see “Life Cycle of a Physical Renderer” on page 53.

Setting Up the Physical Renderer
This task is a step in “Process of Customizing the Physical Renderer” on page 80.

Figure 24 illustrates the code that you use to set up the physical renderer. Each number in this
figure identifies the corresponding step number in the numbered task list that this book includes
immediately after this figure.

Figure 24. Setting Up the Physical Renderer

Example of Customizing Siebel Open UI ■ Process of Customizing the Physical Renderer

Configuring Siebel Open UI Siebel 2018 81

To set up the physical renderer
1 Download a copy of the recyclebinrenderer.js file to the following folder:

INSTALL_DIR\applicationcontainer\webapps\siebel\scripts\siebel\custom

It is recommended that you get a copy of this file to assist in your understanding of how to
implement the example that this topic describes. This file includes all the code that this example
uses. It also includes more comments that describe code functionality. To get a copy of this file,
see Article ID 1494998.1 on My Oracle Support.

For more information about the folders you can use to store your customizations, see “Organizing
Files That You Customize” on page 145. For more information about the language_code, see
“Languages That Siebel Open UI Supports” on page 641.

2 Use a JavaScript editor to open the recyclebinpmodel.js file that you downloaded in Step 1.

3 Verify that the RecycleBinRenderer class does not exist, and that you do not configure Siebel
Open UI to override this class:

if(typeof(SiebelAppFacade.RecycleBinRenderer) === "undefined"){

4 To prevent potential conflicts, create a namespace that Siebel Open UI can use:

SiebelJS.Namespace("SiebelAppFacade.RecycleBinRenderer");

5 Use the Define method to identify the physical renderer file:

define("siebel/custom/recyclebinrenderer", ["3rdParty/jcarousel/lib/
jquery.jcarousel.min", "siebel/jqgridrenderer"], function () {

You must use the Define method to make sure Siebel Open UI can identify the constructor. You
must include the relative path and the name of the presentation model file without the file name
extension. For more information, see “Define Method” on page 559.

6 Define the class:

SiebelAppFacade.RecycleBinRenderer = (function(){

7 Declare the variables that Siebel Open UI uses throughout the physical renderer code:

var siebConsts = SiebelJS.Dependency("SiebelApp.Constants");

8 Create the class constructor:

function RecycleBinRenderer(pm){
 SiebelAppFacade.RecycleBinRenderer.superclass.constructor.call(this, pm);
 this.listOfCols = ["Name", "Location"];
}

9 Define the inheritance:

SiebelJS.Extend(RecycleBinRenderer, SiebelAppFacade.JQGridRenderer);

For more information about inheritance, see “About Dependency Injection” on page 65.

10 Save the recyclebinrenderer.js file.

Configuring Siebel Open UI Siebel 2018

Example of Customizing Siebel Open UI ■ Process of Customizing the Physical Renderer

82

Customizing the Physical Renderer to Render the
Carousel
This task is a step in “Process of Customizing the Physical Renderer” on page 80.

The ShowUI method of the JQGridRenderer physical renderer renders a list applet in the JQGrid
control. This method places the third-party JCarousel control next to the grid. For more information,
see “ShowUI Method” on page 509.

Figure 25 illustrates the code you use to customize the physical renderer to render a list applet. Each
number in this figure identifies the corresponding step number in the numbered task list that this
book includes immediately after this figure.

Figure 25. Customizing the Physical Renderer to Render the Carousel

To customize the physical renderer to render list applets
1 In the recyclebinrenderer.js file, call the ShowUI method of the physical renderer:

SiebelAppFacade.RecycleBinRenderer.superclass.ShowUI.call(this);

If you customize a physical renderer, then it is recommended that you call each life cycle method
of the predefined renderer before you run any custom logic.

2 Get the presentation model instance:

var pm = this.GetPM();

For more information, see “GetPM Method for Physical Renderers” on page 508.

Example of Customizing Siebel Open UI ■ Process of Customizing the Physical Renderer

Configuring Siebel Open UI Siebel 2018 83

3 Calculate the placeholder ID of the HTML node that Siebel Open UI uses as the container for the
predefined applet:

var placeHolder = "s_" + pm.Get("GetFullId") + "_div";

You use this ID to modify the HTML Document Object Model (DOM). For example, to position the
carousel in the recycle bin. The GetFullId property gets the unique ID of each applet that is in
scope in a view. It is uses the following format:

s_FullID_div

where:

■ FullId in this example is S_A1. The entire ID in this example is s_S_A1_div. FullId is not a
complete ID. It is a part of the ID string template named s_FullId_div.

For more information, see “Properties of the Presentation Model That Siebel Open UI Uses for
Applets” on page 479.

4 Build the HTML for the third-party carousel plug-in:

var carouselHtml = "<div class='siebui-jcarousel-wrapper'> " +
 "<div class='siebui-jcarousel' id=\"" + placeHolder + "_recycle\"> " +
 "<ul class='siebui-list-carousel' >" +
 "" +
 "" +
 "</div>" +
 "‹ " +
 "›" +
 "</div>";

5 Add a CSS class:

.addClass("siebui-list-recyclebin")

6 Add the constructed HTML for the carousel after the carousel container:

.after(carouselHtml)

7 Modify the existing jcarousel div container, to make it a carousel:

a Locate the jcarousel div container in the first child of the parent container. The container will look
similar to the following:

.eq(0)

.hide()

.children("div.siebui-jcarousel")

b Make a carousel out of the jcarousel that you located in Step a:

.jcarousel({
});

8 Save the recyclebinrenderer.js file.

Configuring Siebel Open UI Siebel 2018

Example of Customizing Siebel Open UI ■ Process of Customizing the Physical Renderer

84

Customizing the Physical Renderer to Bind Events
This task is a step in “Process of Customizing the Physical Renderer” on page 80.

In this topic, you add the following functionality to the carousel:

■ If the user hovers the mouse over a record in the carousel, then display a restore button as a
plus sign (+).

■ If the user removes the hover, then hide the restore button.

■ If the user clicks the plus sign (+), then call the presentation model to restore the record.

■ To the HTML node that Siebel Open UI uses for the restore button.

■ Styling changes that affect the appearance of the carousel based on user actions.

Figure 26 illustrates the code you use to customize the physical renderer to bind events to the
carousel. Each number in this figure identifies the corresponding step number in the numbered task
list that this book includes immediately after this figure.

Figure 26. Customizing the Physical Renderer to Bind Events to the Carousel

To add this functionality, you must customize Siebel Open UI to attach an event handler to each of
the following items:

Example of Customizing Siebel Open UI ■ Process of Customizing the Physical Renderer

Configuring Siebel Open UI Siebel 2018 85

■ The carousel item, for every hover activity.

■ The HTML node that Siebel Open UI uses for the Restore button.

■ The Next and Previous icons in the carousel.

To customize the physical renderer to bind events
1 In the recyclebinrenderer.js file, call the BindEvents method of the physical renderer:

SiebelAppFacade.RecycleBinRenderer.superclass.BindEvents.call(this);

For more information, see “BindEvents Method” on page 505.

2 Identify the placeholder:

var placeHolder = "s_" + this.GetPM().Get("GetFullId") + "_div";

3 Attach three event handlers for hover and click:

$("#" + placeHolder)
 .parent()
 .delegate("div.siebui-carousel-item", "mouseenter", { ctx: this },
ShowRestoreButton)
 .delegate("div.siebui-carousel-item", "mouseleave", { ctx: this },
HideRestoreButton)
 .delegate("a.siebui-citem-add", "click", { ctx: this }, AddFromRecycleBin);

ShowRestoreButton is called when a user hovers on a carousel item, and HideRestoreButton is
called when the hovering ends. If the user clicks the Add button, then AddFromRecycleBin is
called.

4 Attach styling events to the Previous and Next buttons of the carousel:

$("#" + placeHolder + "_recycle")
 .parent()
 .find('.siebui-jcarousel-prev')
 .on('jcarouselcontrol:active', function () {
 $(this).removeClass('siebui-jcarousel-ctrl-inactive');
 })
 .on('jcarouselcontrol:inactive', function () {
 $(this).addClass('siebui-jcarousel-ctrl-inactive');
 })
 .jcarouselControl({
 target: '-=1'
 });

$("#" + placeHolder + "_recycle")
 .parent()
 .find('.siebui-jcarousel-next')
 .on('jcarouselcontrol:active', function () {
 $(this).removeClass('siebui-jcarousel-ctrl-inactive');
 })
 .on('jcarouselcontrol:inactive', function () {
 $(this).addClass('siebui-jcarousel-ctrl-inactive');
 })

Configuring Siebel Open UI Siebel 2018

Example of Customizing Siebel Open UI ■ Process of Customizing the Physical Renderer

86

 .jcarouselControl({
 target: '+=1'
 });

In this example, the first part of the code is finding the Previous button in the carousel container,
and then attaching jcarousel:active and jcarousel:inactive events to it. When these events
are triggered by the third-party plug-in, we call methods that set and unset styling classes on
the buttons. Similarly, the styling classes are attached and removed for the Next button.

5 Define the handler methods:

a Use the following code to find the child for the add button and show it:

function ShowRestoreButton(evt) {
 if (evt && evt.currentTarget) {
 $(evt.currentTarget).children("a.siebui-citem-add").show();
 }
}

b Use the following code to find the child for the add button and hide it:

function HideRestoreButton(evt) {
 if (evt && evt.currentTarget) {
 $(evt.currentTarget).children("a.siebui-citem-add").hide();
 }
}

c Use the following code to call the Restore method on the PM with the relevant index parameter

function AddFromRecycleBin(evt) {
 var pm = evt.data.ctx.GetPM();
 if (evt && evt.currentTarget) {
 pm.OnControlEvent("RESTORE", $(evt.currentTarget).parent().data("index"));
 }
}

6 Save the recyclebinrenderer.js file.

Customizing the Physical Renderer to Bind Data
This task is a step in “Process of Customizing the Physical Renderer” on page 80.

The carousel in this example does not render data. Siebel Open UI only renders data in this example
if it adds a record to or deletes a record from the recycle bin.

To customize the physical renderer to bind data
1 In the recyclebinrenderer.js file, add the following code to

SiebelAppFacade.RecycleBinRenderer = (function(){:

Example of Customizing Siebel Open UI ■ Process of Customizing the Physical Renderer

Configuring Siebel Open UI Siebel 2018 87

RecycleBinRenderer.prototype.BindData = function(){
 SiebelAppFacade.RecycleBinRenderer.superclass.BindData.apply(this, arguments);
};

For more information, see “BindData Method” on page 505.

2 Save the recyclebinrenderer.js file.

Customizing the Physical Renderer to Refresh the
Carousel
This task is a step in “Process of Customizing the Physical Renderer” on page 80.

At this point in this example, you have configured the ShowUI, BindData, and BindEvents methods
of the physical renderer, and this renderer displays the carousel with no records. To display deleted
records in the carousel, you customize Siebel Open UI to bind the data from these deleted records
to the carousel control. To do this, you use dependency injection through the AttachPMBinding
method. For more information, see “About Dependency Injection” on page 65 and “AttachPMBinding
Method” on page 471.

Siebel Open UI includes the AttachPMBinding method in the presentation model, but it is
recommended that you configure Siebel Open UI to call it from the physical renderer so that the
presentation model remains independent of methods that you declare in the physical renderer.
AttachPMBinding adds a dependency from a physical renderer method to a presentation model
method or property. If Siebel Open UI modifies a property value or runs a method in the presentation
model, then it uses this dependency to call a method that resides in the physical renderer.

Figure 27 on page 88 illustrates the code you use to customize the physical renderer to refresh the
carousel. Each number in this figure identifies the corresponding step number in the numbered task
list that this book includes immediately after this figure.

Configuring Siebel Open UI Siebel 2018

Example of Customizing Siebel Open UI ■ Process of Customizing the Physical Renderer

88

Figure 27. Customizing the Physical Renderer to Refresh the Recycle Bin

To customize the physical renderer to refresh the recycle bin
1 In the recyclebinrenderer.js file, bind the RefreshCarousel method that the physical renderer

contains to the RefreshList method that the presentation model contains:

this.AttachPMBinding("RefreshList", RefreshCarousel);

In this example, you implemented the RefreshList method in the presentation model in Step 12
on page 73. This presentation model calls the RefreshList method when the user adds a record
or removes a record from the recycle bin. AttachPMBinding configures Siebel Open UI to call
RefreshCarousel when the presentation model runs the RefreshList method. You must configure
your custom physical renderer to call the AttachPMBinding method so that it overrides the Init
function. You must make sure you configure Siebel Open UI to call the Init function of the
superclass before it creates or attaches a modification in your custom physical renderer.

You must specify all AttachPMBinding calls in the Init function in the physical renderer.

2 Configure the RefreshCarousel to read the value of the DeletionCompleteSet property in the
physical renderer:

Example of Customizing Siebel Open UI ■ Process of Customizing the Physical Renderer

Configuring Siebel Open UI Siebel 2018 89

var pm = this.GetPM(),
 placeHolder = "s_" + pm.Get("GetFullId") + "_div",
 recordSet = pm.Get("DeletionCompleteSet"),

3 Calculate the container in the HTML DOM that hosts the carousel:

el = $("#" + placeHolder + "_recycle"),

4 Construct the new mark-up:

for (var i = 0, len = recordSet.length; i < len; i++) {
 if (recordSet[i]) {
 markUp += "" + GetCurrentCarouselItems.call(this, recordSet[i],
this.listOfCols, i) + "";
 count++;
 }
}

This code does the following work:

■ Loops through the set of records that the DeletionCompleteSet property contains.

■ Adds the records and the separate items.

■ Sends the index of the record that resides in the DeletionCompleteSet property to the
GetCurrentCarouselItems method.

■ Uses the GetCurrentCarouselItems method to create the markup for each carousel item.

■ Uses GetCurrentCarouselItems to add the index to the markup for the individual item. This
configuration makes sure the item is available if the user chooses to restore the record.

5 Determine the space that should be occupied by the grid, based on whether the carousel contains
any records:

if (count > 0) {
 $("#" + placeHolder).addClass("siebui-span-md-10");
 el.parent().show().addClass("siebui-span-md-2");
}
else {
 $("#" + placeHolder).removeClass("siebui-span-md-10");
 el.parent().hide().removeClass("siebui-span-md-2");
}

This step adds classes that decide the width of the original grid, effectively creating a fluid grid.

6 Add the newly constructed markup in Step 4, to the appropriate container:

el.children("ul.siebui-list-carousel").html(markUp);

7 Indicate to the plug-in that the content requires a reload:

el.jcarousel('reload');

8 Hide the restore button in the carousel:

el.find("a.siebui-citem-add").hide();

9 Remove the DOM references:

Configuring Siebel Open UI Siebel 2018

Example of Customizing Siebel Open UI ■ Process of Customizing the Physical Renderer

90

el = null;

It is recommended that you remove any DOM references that you create.

10 Save the recyclebinrenderer.js file.

Modifying CSS Files to Support the Physical Renderer
This task is a step in “Process of Customizing the Physical Renderer” on page 80.

In this topic, you modify the CSS files so that they support the CSS classes that the physical renderer
uses.

To modify CSS files to support the physical renderer
1 Open the CSS file, add the following code, and then save your changes:

.siebui-list-recyclebin {
 margin : 0px;
}

.siebui-jcarousel-wrapper {
 position: relative;
 height: 450px;
}

.siebui-jcarousel {
 position: relative;
 overflow: hidden;
 height: 100% !important;
 margin: 5px;
 width : 80%;
 border: 10px solid #fff;
 -webkit-border-radius: 5px;
 -moz-border-radius: 5px;
 border-radius: 5px;
 -webkit-box-shadow: 0 0 2px #999;
 -moz-box-shadow: 0 0 2px #999;
 box-shadow: 0 0 2px #999;
}

.siebui-jcarousel ul {
 width: 98%;
 position: relative;
 list-style: none;
 margin: 0;
 padding: 0;
}

.siebui-jcarousel ul li {
 margin-bottom : 5px;
}

Example of Customizing Siebel Open UI ■ Process of Customizing the Physical Renderer

Configuring Siebel Open UI Siebel 2018 91

.siebui-jcarousel-prev,

.siebui-jcarousel-next {
 transform: rotate(90deg);
 transform-origin: left top 0;
 float : left;
 position: absolute;
 width: 30px;
 height: 30px;
 text-align: center;
 background: #4E443C;
 color: #fff;
 text-decoration: none;
 text-shadow: 0 0 1px #000;
 font: 24px/27px Arial, sans-serif;
 -webkit-border-radius: 30px;
 -moz-border-radius: 30px;
 border-radius: 30px;
 -webkit-box-shadow: 0 0 2px #999;
 -moz-box-shadow: 0 0 2px #999;
 box-shadow: 0 0 2px #999;
}

 .siebui-jcarousel-prev {
 top : 0px;
 left : 45%;
}

 .siebui-jcarousel-next {
 top : 450px;
 left: 45%;
}

 .siebui-jcarousel-prev:hover span,
.siebui-jcarousel-next:hover span {
 display: block;
}

 .siebui-jcarousel-prev.inactive,
.siebui-jcarousel-next.inactive {
 opacity: .5;
 cursor: default;
}

div.siebui-carousel-col{
 display : block;
}
div.siebui-carousel-item{
 height : 75px;
 padding : 5px;
 border : 1px solid #acacac;
 text-align : center;
 padding-top: 20px;
 word-wrap : break-word;
 -webkit-border-radius: 5px;

Configuring Siebel Open UI Siebel 2018

Example of Customizing Siebel Open UI ■ Process of Customizing the Plug-in Wrapper

92

 -moz-border-radius: 5px;
 border-radius: 5px;
}

a.siebui-citem-add{
 display : block;
 top : 2px;
 right : 2px;
 float : right;
 width : 16px;
 height : 16px;
 background: url(../images/plus.png) no-repeat center center;
}

2 Add the CSS files that the third-party uses:

a In Windows Explorer, navigate to the following folder:

INSTALL_DIR\applicationcontainer\webapps\siebel\scripts\3rdParty

b Add the following subfolder hierarchy to the 3rdParty folder:

\jcarousel\skins\tango\

c Save the following files to the tango folder that you added in Step b:

next-horizontal.png
next-vertical.png
prev-horizontal.png
prev-vertical.png
skin.css

To get a copy of these files, see Article ID 1494998.1 on My Oracle Support. For more
information about the CSS files and renderers that Siebel Open UI uses to render a list applet
as a carousel, see “Customizing List Applets to Render as Carousels” on page 197.

3 Save the jquery.jcarousel.js file to the following folder:

INSTALL_DIR\applicationcontainer\webapps\siebel\scripts\3rdParty

Siebel Open UI uses this file to render a carousel. To get a copy of this file, see Article ID
1494998.1 on My Oracle Support.

Process of Customizing the Plug-in
Wrapper
This task is a step in “Roadmap for Customizing Siebel Open UI” on page 57.

To customize a plug-in wrapper, do the following tasks:
1 “Creating the Plug-in Wrapper” on page 93.

2 “Customizing the Plug-in Wrapper to Display the Control Differently” on page 95.

Example of Customizing Siebel Open UI ■ Process of Customizing the Plug-in Wrapper

Configuring Siebel Open UI Siebel 2018 93

3 “Customizing the Plug-in Wrapper to Bind Custom Events to a Control” on page 97.

4 “Customizing the Plug-in Wrapper to Define Custom Events” on page 98.

5 “Customizing the Plug-in Wrapper to React to Value Changes of a Control” on page 101.

6 “Attaching the Plug-in Wrapper to a Control Conditionally” on page 103.

Creating the Plug-in Wrapper
This task is a step in “Process of Customizing the Plug-in Wrapper” on page 92.

The plug-in wrapper uses the Init method to configure the properties, methods, and bindings. For
more information about these methods, see “Life Cycle of User Interface Elements” on page 51.

Figure 28 illustrates the code you use to create the plug-in wrapper. Each number in this figure
identifies the corresponding step number in the numbered task list that this book includes
immediately after this figure.

Figure 28. Creating the Plug-in Wrapper

Configuring Siebel Open UI Siebel 2018

Example of Customizing Siebel Open UI ■ Process of Customizing the Plug-in Wrapper

94

This topic describes how to modify code that resides in the ColorBoxPW.js file. It is recommended
that you get a copy of this file to assist in your understanding of how to implement the example that
this topic describes. This file includes all the code in this example. It also includes more comments
that describe code functionality. To get a copy of this file, see Article1494998.1 on My Oracle
Support.

For more information about the folders you can use to store your customizations, see “Organizing
Files That You Customize” on page 145. For more information about the language_code, see
“Languages That Siebel Open UI Supports” on page 641.

To create the plug-in wrapper
1 Create the plug-in wrapper file:

a Download a copy of the ColorBox.js file to the following folder:

INSTALL_DIR\applicationcontainer\webapps\siebel\\language_codefiles\custom

b Use a JavaScript editor to open the ColorBoxPW.js file that you downloaded in Step a.

2 Make sure the ColorBoxPW class does not exist and that you do not configure Siebel Open UI to
override this class. You add the following code:

if(typeof(SiebelAppFacade.ColorBoxPW) === "undefined"){

3 Make sure a namespace exists that Siebel Open UI can use to prevent conflicts:

SiebelJS.Namespace("SiebelAppFacade.ColorBoxPW");

4 Use the Define method to identify the presentation model file:

define("siebel/custom/ColorBoxPW", [siebel/basePW], function(){

You must use the Define Method to ensure that Siebel Open UI can identify the constructor. You
must include the relative path and the name of the presentation model file without the file name
extension. For more information, see “Define Method” on page 559

NOTE: Any third-party files that the plug-in wrapper uses must be mentioned in the
dependencies section of the define statement.

5 Define the class:

SiebelAppFacade.ColorBoxPW = (function(){

6 Define the class constructor:

function ColorBoxPW(){
SiebelAppFacade.ColorBoxPW.superclass.constructor.apply(this,
arguments);
}

7 Set up the injected dependency:

SiebelJS.Extend(ColorBoxPW, SiebelAppFacade.DropDownPW);

For more information about injected dependency, see “About Dependency Injection” on page 65.

8 Return the constructor:

Example of Customizing Siebel Open UI ■ Process of Customizing the Plug-in Wrapper

Configuring Siebel Open UI Siebel 2018 95

return ColorBoxPW;
} ());
return SiebelAppFacade.ColorBoxPW;
});

9 Attach the plug-in wrapper:

SiebelApp.S_App.PluginBuilder.AttachPW(consts.get("SWE_CTRL_COMBOBOX"),
SiebelAppFacade.ColorBoxPW, function (control) {

10 Write the condition for which the plug-in wrapper should kick in:

return (control.GetName() === "Probability2");

11 Save the ColorBoxPW.js file.

Customizing the Plug-in Wrapper to Display the Control
Differently
This task is a step in “Process of Customizing the Plug-in Wrapper” on page 92.

In this step, you customize the setup logic of the plug-in wrapper so that it adds a color-box to the
control.

In this example, the ShowUI method will be overridden to add a different element on to the DOM as
a part of this control. The functionality of the control will remain unaffected, effectively, you will be
decorating it with a new element.

This is an optional step: the base functionality of how a control looks and behaves can be completely
changed based on your requirements. An out-of-the-box example of this type of modification is a flip
switch that appears instead of a check box on touch devices in Siebel Open UI, which is accomplished
using a plug-in wrapper.

Figure 29 on page 96 illustrates the code you use to customize the ShowUI method of the plug-in
wrapper. Each number in this figure identifies the corresponding step number in the numbered task
list that this book includes immediately after this figure.

Configuring Siebel Open UI Siebel 2018

Example of Customizing Siebel Open UI ■ Process of Customizing the Plug-in Wrapper

96

Figure 29. Customizing the Plug-in Wrapper to Display the Control Identity

To customize the plug-in wrapper to display the control differently
1 In the colorboxpw.js file, introduce the ShowUI method that is a part of the life cycle of rendering

a control.

ColorBoxPW.prototype.ShowUI = function (control) {

2 Call the superclass method to get the dropdown to appear:

SiebelAppFacade.ColorBoxPW.superclass.ShowUI.call(this, control);

This will call the ShowUI method of the DropDownPW class, which is responsible for showing the
drop down field in the Siebel Open UI client.

3 Get a reference to the existing element, and if it exists, get the parent element:

var el = this.GetEl();
if (el && el.length) {
parent = el.parent();

NOTE: This step is required to position the new DOM element as a sibling to the current element.

The GetEl() API framework method is a plug-in wrapper space that retrieves the jQuery element
representing the control. parent() is a jQuery call which retrieves the parent node of the element
in the DOM. For more information about the GetEl() API method, see Chapter 4, “Architecture of
Siebel Open UI.”

4 Add a new HTML div, which will serve as our color box:

parent.append("<div id='colorbox_" + el.attr("name") + "' ></div>");

You must specify a unique name for the element. In this example, colorbox_ is added to the
existing name of the original element. The append() and attr() specifications are both jQuery
APIs. The former adds DOM elements at the end of a given element and the latter extracts the
specified attribute.

5 Style the newly created div. This will serve as our colorbox:

Example of Customizing Siebel Open UI ■ Process of Customizing the Plug-in Wrapper

Configuring Siebel Open UI Siebel 2018 97

parent.find("div[id^=colorbox]").css({
 "width": "inherit",
 "height": "20px",
 "background-color": "inherit"
 });

The css()is a JQuery API that applies CSS styles to the given element. In this example, the
colorbox gets the same width as the original dropdown and a height of 20 pixels. The original
background color is inherited from the dropdown.

6 Save the ColorBoxPW.js file.

Customizing the Plug-in Wrapper to Bind Custom Events
to a Control
This task is a step in “Process of Customizing the Plug-in Wrapper” on page 92.

In this topic, you attach behavioral methods to the colorbox element that you created in “Creating
the Plug-in Wrapper” on page 93.

In this example, the BindEvent method will be overridden to attach custom handlers to a new
element. The event handlers of the control will remain unaffected, and the new element will be
decorated with some events.

This is an optional step: the base functionality of how a control looks and behaves can be completely
changed based on your requirements. An out-of-the-box example of this type of modification is a flip
switch that appears instead of a check box on touch devices in Siebel Open UI, which is accomplished
using a plug-in wrapper.

Figure 30 illustrates the code you use to customize the BindEvents method of the plug-in wrapper.
Each number in this figure identifies the corresponding step number in the numbered task list that
this book includes immediately after this figure.

Figure 30. Customizing the Plug-In Wrapper to Bind Custom Events to a Control

Configuring Siebel Open UI Siebel 2018

Example of Customizing Siebel Open UI ■ Process of Customizing the Plug-in Wrapper

98

To customize the plug-in wrapper to bind custom events to a control
1 In the colorboxpw.js file, introduce the BindEvents method that is a part of the life cycle of

rendering a control.

ColorBoxPW.prototype.BindEvents = function () {

2 Call the superclass method to attach the event handlers from the dropdown element:

SiebelAppFacade.ColorBoxPW.superclass.BindEvents.call(this);

This step calls the BindEvents of the DropDownPW class, which is responsible for attaching the
events that the drop down field requires to operate correctly.

3 Get the element that was created and attached as a sibling to the actual dropdown element, and
the Event Helper object:

var colorbox = this.GetEl().parent().find("div[id^=colorbox]"),
 evHelper = this.Helper("EventHelper");
 if (colorbox && colorbox.length && evHelper) {

The Helper API is the framework method in the plug-in wrapper space that enables retrieving
helper objects by name. For more information about the Helper API, see Chapter 4, “Architecture
of Siebel Open UI.”

4 Attach the required events to the new DOM element that was created. In this example, three
handlers are attached to one element:

evHelper
 .Manage(colorbox, "mouseenter", { ctx: this }, OnMouseEnter)
 .Manage(colorbox, "mouseleave", { ctx: this }, OnMouseLeave)
 .Manage(colorbox, "click", { ctx: this }, OnClick)

The Helper API is a method in the Event Helper object that takes the following four elements:
the DOM element to which events should be attached, the event to be attached, the handler to
be run, and other arguments. In this case, you are attaching one event for the each user hovering
over the element, exiting the hover, and clicking on the element. For more information about the
Helper API, see Chapter 4, “Architecture of Siebel Open UI.”

Customizing the Plug-in Wrapper to Define Custom
Events
This task is a step in “Process of Customizing the Plug-in Wrapper” on page 92.

In this topic, you define the behavioral methods that have been attached to the colorbox element
that you created in you created in “Creating the Plug-in Wrapper” on page 93.

Figure 31 on page 99 illustrates the code you use to define the handlers of the plug-in wrapper. Each
number in this figure identifies the corresponding step number in the numbered task list that this
book includes immediately after this figure.

Example of Customizing Siebel Open UI ■ Process of Customizing the Plug-in Wrapper

Configuring Siebel Open UI Siebel 2018 99

Figure 31. Customizing the Plug-In Wrapper to Define Custom Events

To define the event handlers for the plug-in wrapper
1 In the colorboxpw.js file, introduce the following private methods that will get called when the

attached events occur on the element:

a The OnMouseEnter handler:

function OnMouseEnter() {
 $(this).append("<div id='info'>Click for Info...</div>");
}

In this example, OnMouseEnter gets called when the mouseenter event occurs on the color
box piece of the DOM. The context passed during the attachment of the events will be passed
on to the handler method. Consequently, the this definition refers to the plug-in wrapper. In
this example, a div is attached with an id of info that displays the following text: Click for
Info….

b The OnMouseLeave handler:

function OnMouseLeave() {
 $(this).find("#info").remove();
}

This is the complementary method to the OnMouseEnter handler, and gets called when the
onmouseleave event occurs on the color box DOM. This method removes the div that was
previously added, consequently removing the display text.

NOTE: The two events will not run on touch devices, since they have no equitable actions.

Configuring Siebel Open UI Siebel 2018

Example of Customizing Siebel Open UI ■ Process of Customizing the Plug-in Wrapper

100

2 Introduce the OnClick handler.

Click is standardized by the event helper object to achieve uniformity across different devices.
Consequently, it may be translated to different events based on the user’s device. The click
handler shows a popup that defines the meaning of the different colors that the box can take on.
In the first piece of the handler in this example, HTML built of a few styled divs and some
corresponding text that forms the content of the information we are trying to show in the popup
is constructed. The handler, and the content that is attached to the parent element are displayed
here:

var parent = $(this).parent(),
html = "<div id='legend' title='Legend'>"
 + "

"
 + "<div style='width: 200px; height: 20px; background-color: rgb(255, 0,
0);'>  Do Not Pursue</div>
"
 + "<div style='width: 200px; height: 20px; background-color:
orange;'>  Pursue If Time Permits</div>
"
 + "<div style='width: 200px; height: 20px; background-color: rgb(255, 255,
0);'>  Pursue</div>
"
 + "<div style='width: 200px; height: 20px; background-color: rgb(0, 128,
0);'>  Pursue Aggressively</div>
"
 + "</div>";
parent.append(html);

3 Make the section into a popup.

For this, use the jQuery-UI provided dialog() API. In this example, the element is located by id
using find, and converted to a modal dialog box:

parent.find("#legend").dialog({
 resizeable: false,
 height: 275,
 width: 225,
 modal: true,
 buttons: {
 Cancel: function () {
 $(this).dialog("close");
 }
 }
});

This sets properties for the popup and adds a cancel button that closes the popup.

4 Attach the required events to the new DOM element that we have created. Here we will attach
three handlers on to this element.

Example of Customizing Siebel Open UI ■ Process of Customizing the Plug-in Wrapper

Configuring Siebel Open UI Siebel 2018 101

evHelper
 .Manage(colorbox, "mouseenter", { ctx: this }, OnMouseEnter)
 .Manage(colorbox, "mouseleave", { ctx: this }, OnMouseLeave)
 .Manage(colorbox, "click", { ctx: this }, OnClick)

The Helper API is a method in the Event Helper object that takes the DOM element in order to
attach events. The attached event and the handler are deployed, along with other arguments.n
this case, we are attaching one event each for the user hovering over the element, exiting the
hover, and clicking on the element. For more information about the Helper API, see Chapter 4,
“Architecture of Siebel Open UI.”

Customizing the Plug-in Wrapper to React to Value
Changes of a Control
This task is a step in “Process of Customizing the Plug-in Wrapper” on page 92.

In this topic, you define behavioral customizations when changes occur in a control value. These
changes affect the appearance of the colorbox element that you created in “Creating the Plug-in
Wrapper” on page 93.

Figure 32 on page 102 illustrates the code you use to style the color box based on the value that is
being set on a control. Each number in this figure identifies the corresponding step number in the
numbered task list that this book includes immediately after this figure.

Configuring Siebel Open UI Siebel 2018

Example of Customizing Siebel Open UI ■ Process of Customizing the Plug-in Wrapper

102

Figure 32. Customizing the Plug-In Wrapper to React to Value Changes of a Control

To define the value based modifications in the plug-in wrapper
1 In the colorboxpw.js file, introduce the SetValue method that is a part of the life cycle of a

control's existence.

ColorBoxPW.prototype.SetValue = function (value, index) {

The SetValue API is called as part of a control life cycle when a value change occurs on the
control, either directly by the user, or by the Siebel application. This call is responsible for the
value change to appear in the DOM. In this example, SetValue is overridden in order to read into
the value change that is happening on the control, and consequently makes modifications to the
color box based on the value. For more information about the SetVAlue API, see Chapter 4,
“Architecture of Siebel Open UI.”

2 Call the superclass method to make sure that the dropdown receives the intended value:

SiebelAppFacade.ColorBoxPW.superclass.SetValue.call(this);

This will call the SetValue of the DropDownPW class, which is responsible for applying the correct
value on to the dropdown field itself.

3 Get the new DOM element and the value that is being set:

Example of Customizing Siebel Open UI ■ Process of Customizing the Plug-in Wrapper

Configuring Siebel Open UI Siebel 2018 103

var colorbox = this.GetEl(index).parent().find("div[id^=colorbox]");
if (colorbox && colorbox.length) {
 var val = parseInt(value);

Because the value is in string form, and our future actions on this value involve treating it as a
number, we need to convert it into a number form. The standard JavaScript method that is used
for the purpose is parseInt.

4 Validate the value and specify values that modify the color box in different ways:

if (!isNaN(val)) {
 if (val >= 0 && val < 25) {
 colorbox.css("background-color", "red");

 }
 else if (val < 50) {
 colorbox.css("background-color", "orange");
 }
 else if (val < 75) {
 colorbox.css("background-color", "yellow");
 }
 else {
 colorbox.css("background-color", "green");
 }
}
else {
 colorbox.css("background-color", "inherit");
}

In this example, the value is verified to ensure that it is a number. If it is not, the background
color is set to inherit, which sets the color to the same color as the dropdown element. This
behavior would be applicable, for example, in cases where the user has entered a blank value,
or inadvertently provided a string. If the value is a number, then use an if-else construct to define
ranges and apply different colors on to the color box DOM element.

Attaching the Plug-in Wrapper to a Control Conditionally
This task is a step in “Process of Customizing the Plug-in Wrapper” on page 92.

This topic describes how to attach the plug-in wrapper you created in “Creating the Plug-in Wrapper”
on page 93 to a control.

Figure 33 on page 104 illustrates the code you use to attach the plug-in wrapper to a control
conditionally. Each number in this figure identifies the corresponding step number in the numbered
task list that this book includes immediately after this figure.

Configuring Siebel Open UI Siebel 2018

Example of Customizing Siebel Open UI ■ Process of Customizing the Plug-in Wrapper

104

Figure 33. Attaching the Plug-in Wrapper to a Control

To attach the plug-in wrapper to a control conditionally
1 In the colorboxpw.js file, introduce the AttachPW method from the PluginBuilder namespace that

attaches the presently defined plug-in wrapper to a given type of control:

SiebelApp.S_App.PluginBuilder.AttachPW(consts.get("SWE_CTRL_COMBOBOX"),
SiebelAppFacade.ColorBoxPW, function (control) {

In this customization, the intention is to apply the plug-in wrapper to a dropdown type of control. To
achieve this customization the SWE_CTRL_COMBOBOX is used for the dropdown type. All controls
are customizable. With this customization, every dropdown encountered by the Siebel Open UI client
will use this method.

2 Define the condition under which the attachment should occur, and to which specific instance of
the control. The return value of the method used in Step 1 decides whether the plug-in wrapper
attaches to a particular control. Returning true will mean a positive attachment.

return (control.GetName() === "Probability2");

Use the control object to create this condition. Since the intention is to attach the plug-in wrapper
for all repository controls that have a name of Probability2, true will be returned when the
name of the condition matches.

NOTE: Plug-in wrappers are not restricted to any Presentation Model or Physical Renderer. Also,
a customization defined on a plug-in wrapper will be applicable throughout the Siebel Open UI
client, as long as the condition is satisfied. In this example, any control having a repository name
of "Probability2" in any screen or view will be attached to this plug-in wrapper.

3 Define conditions for plug-in wrapper attachments. Conditions used can be as complex as
necessary, based on the requirements. Use following examples as guidance for defining
conditions:

Attach a plug-in wrapper to all TextArea fields in Opportunity List applet:
SiebelApp.S_App.PluginBuilder.AttachPW(consts.get("SWE_CTRL_TEXTAREA"),
SiebelAppFacade.CustomPW, function (control) {
 return (control.GetAppplet().GetName() === "Opportunity List Applet");
});

a Attach a plug-in wrapper to all Date Fields in Contact Form applet and Account Form Applet:

SiebelApp.S_App.PluginBuilder.AttachPW(consts.get("SWE_CTRL_DATE_PICK"),
SiebelAppFacade.CustomPW, function (control) {
 var appletName = control.GetAppplet().GetName();

Example of Customizing Siebel Open UI ■ Configuring the Manifest for the Recycle Bin
Example

Configuring Siebel Open UI Siebel 2018 105

 return (appletName === "Contact Form Applet" || appletName === "Account Form
Applet");
});

b Attach a plug-in wrapper to a specific Text Box in a specific applet only:

SiebelApp.S_App.PluginBuilder.AttachPW(consts.get("SWE_CTRL_TEXT"),
SiebelAppFacade.CustomPW, function (control) {
 var appletName = control.GetAppplet().GetName();
 return (appletName === "Contact Form Applet" && control.GetName() === "Last
Name");
});

c Attach a plug-in wrapper to all Dropdowns in a particular application:

SiebelApp.S_App.PluginBuilder.AttachPW(consts.get("SWE_CTRL_COMBOBOX"),
SiebelAppFacade.CustomPW, function (control) {
 return (SiebelApp.S_App.GetName() === "Siebel EPharma")
});

d Attach a plug-in wrapper to all check boxes in a view when they are accessed on touch devices:

SiebelApp.S_App.PluginBuilder.AttachPW(consts.get("SWE_CTRL_CHECKBOX"),
SiebelAppFacade.CustomPW, function (control) {
 return (SiebelAppFacade.DecisionManager.IsTouch() &&
control.GetApplet().GetView().GetName === "Opportunity Detail View")
});

Configuring the Manifest for the Recycle
Bin Example
This task is a step in “Roadmap for Customizing Siebel Open UI” on page 57.

This topic describes how to configure the manifest for the recycle bin example. For more information,
see “Configuring Manifests” on page 150.

To configure the manifest for the recycle bin example
1 Make sure your presentation model and physical renderer use the define method.

You do this in Step 4 on page 59 for the presentation model and in Step 5 on page 81 for the
physical renderer.

2 Log in to a Siebel client with administrative privileges.

3 Navigate to the Administration - Application screen, and then the Manifest Files view.

4 In the Files list, add the following files:

Configuring Siebel Open UI Siebel 2018

Example of Customizing Siebel Open UI ■ Configuring the Manifest for the Recycle Bin
Example

106

siebel/custom/recyclebinrenderer.js
siebel/custom/recyclebinpmodel.js
siebel/custom/carouselrenderer.js
3rdParty/jcarousel/skins/tango/skin.css
files/theme-aurora.css

The file that resides in the files folder is the predefined file that you use in this example.

5 Administer the manifest for the physical renderer:

a Navigate to the Administration - Application screen, and then the Manifest Administration view.

b In the UI Objects list, specify the following applet.

c In the Object Expression list, add the following expression. The physical renderer uses this
expression to render the applet in a desktop platform.

d In the Files list, add the following files:

siebel/custom/recyclebinrenderer.js

e In the UI Objects list, specify the following applet.

f In the Object Expression list, add a record with no value in the Expression field.

g In the Files list, add the following file:

siebel/custom/recyclebinpmodel.js

Field Value

Type Applet

Usage Type Physical Renderer

Name SIS Account List Applet

Field Value

Expression Desktop

Level 1

Field Value

Type Applet

Usage Type Presentation Model

Name SIS Account List Applet

Example of Customizing Siebel Open UI ■ Configuring the Manifest for the Color Box
Example

Configuring Siebel Open UI Siebel 2018 107

Configuring the Manifest for the Color
Box Example
This task is a step in “Roadmap for Customizing Siebel Open UI” on page 57.

In this topic, you will configure the manifest for the color box plug-in wrapper example. For more
information, see “Configuring Manifests” on page 150.

To configure the manifest for the color box example
1 Verify that your plug-in wrapper uses the define method.

2 Log in to the Siebel Open UI client with administrative privileges.

3 Navigate to the Administration - Application screen, and then the Manifest Files view.

4 In the Files list, add the following file:

siebel/custom/colorboxpw.js

5 Modify the manifest for the physical renderer:

a Navigate to the Administration - Application screen, and then the Manifest Administration view.

b In the UI Objects list, add a new record with the following values:

c In the Object Expression list, add the following subexpression.

d In the Files list, add the file that you created in Step 4.

siebel/custom/colorboxpw.js

Field Value

Type Application

Usage Type Common

Name PLATFORM INDEPENDENT

Field Value

Group Name Leave empty

Expression Desktop

Level 1

Operator Leave empty

Web Template Name Leave empty

Configuring Siebel Open UI Siebel 2018

Example of Customizing Siebel Open UI ■ Testing Your Modifications

108

Testing Your Modifications
This task is a step in “Roadmap for Customizing Siebel Open UI” on page 57.

In this topic, you test your modifications.

To test your modifications
1 Log in to the Siebel Open UI client, and then navigate to the Accounts screen.

2 Use the Select column to choose five account records, and then click Delete.

3 Siebel Open UI deletes the records and adds them to the carousel recycle bin.

4 To restore a record, click the following plus (+) icon in the carousel recycle bin:

5 Verify that Siebel Open UI recreates the record on the Siebel Server and adds it back to the
Account list.

6 Navigate to the Opportunities screen, then to the Opportunities List view

7 Verify that the Probability field in the Opportunity form applet displays the color box and exhibits
the correct behavior based on changes to values and clicks.

Configuring Siebel Open UI Siebel 2018 109

6 Customizing Siebel Open UI

This chapter describes how to customize Siebel Open UI. It includes the following topics:

■ Guidelines for Customizing Siebel Open UI

■ Doing General Customization Tasks on page 113

■ Customizing Events on page 133

■ Managing Files on page 145

■ Configuring Manifests on page 150

■ About Preferences on page 165

Guidelines for Customizing Siebel Open
UI
This topic describes guidelines for configuring Siebel Open UI. It includes the following information:

■ Guidelines for Customizing Presentation Models

■ Guidelines for Customizing Physical Renderers on page 111

■ Guidelines for Customizing Plug-in Wrappers on page 112

■ Guidelines for Customizing Presentation Models and Physical Renderers and Plug-in Wrappers on
page 112

Some Siebel Open UI customizations use the same configuration that a Siebel Business Application
uses. For example, you can use the information that Configuring Siebel Business Applications
describes to configure the following items in Siebel Open UI:

■ List applets

■ Form applets

■ Views that contain more than one applet

■ Applet controls and list columns

Guidelines for Customizing Presentation Models
It is recommended that you apply the following guidelines if you configure a presentation model:

■ Make sure you customize Siebel Open UI so that the user-interface state is separate from the
rendering of this state. The guidelines in this topic describe how to do this.

Configuring Siebel Open UI Siebel 2018

Customizing Siebel Open UI ■ Guidelines for Customizing Siebel Open UI

110

■ Add a new presentation model only after you consider all other customization options, such as
modifying code in a Object Definition Html or using Siebel Tools to modify an object. To examine
some examples that do not modify the presentation model, see Chapter 6, “Customizing Siebel
Open UI”.

A presentation model implements the entire abstraction of the user interface content, so the
predefined implementation of a presentation model implements the predefined abstraction.
There are only a few types of basic user interface abstractions, such as single record, list, tree,
and so on. It is recommended that you use a predefined presentation model for each of these
basic abstractions that Oracle provides you.

■ Make sure Siebel Open UI models all the state variables that it requires to achieve a rich client
behavior, and that it models these state variables as presentation model properties. These
properties can reside in the presentation model on the client, or the Siebel Server can provide
them from an applet. You can add methods that modify these properties and that manage the
state changes after you configure Siebel Open UI to add them. Siebel Open UI typically calls
these methods due to a user action, or if the server sends a notification. If a method modifies
the logical state of the user interface, then Siebel Open UI uses the AttachPMBinding method to
add a binding trigger to the physical renderer. This trigger binds the modified state to the physical
user interface. For more information, see “AttachPMBinding Method” on page 471.

Siebel Open UI strictly defines each life cycle method. To help make sure your implementation is
clean and readable, it is recommended that you use the following guidelines:

■ Make sure Siebel Open UI uses all presentation model state variables as properties. You must
use the AddProperty method to create these properties. You must not use ordinary JavaScript
variables to create these properties.

■ Use methods to implement all state changes of the presentation model. Use the AddMethod
method to create these methods.

■ Make sure Siebel Open UI uses the AttachEventHandler method to bind each method that the
presentation model contains to an event that the physical renderer contains. Each event occurs
as the result of some physical user action. This configuration makes sure Siebel Open UI binds
each user action to the required logic and modifies the user interface state. For more information,
see “AttachEventHandler Method” on page 468.

■ When Siebel Open UI sends a reply, it includes all modifications that occur in the business
component layer. It includes these modifications in the reply that it sends in a Notification
property set. You must use the AttachNotificationHandler method to add this notification. For
more information, see “Notifications That Siebel Open UI Supports” on page 595:

■ Siebel Open UI packages a reply from the server for any predefined type of request. It
includes this package in a predefined reply property set. You must use the AttachPSHandler
method to add the handler for any property set type that the server sends.

■ You must use the AttachPostProcessingHandle method to add any post-processing handler
that does follow up logic on a server request, such as a NewRecord request. You can add this
logic after Siebel Open UI finishes processing the reply for this request. Setting the focus for
a control is an example of this kind of configuration.

Customizing Siebel Open UI ■ Guidelines for Customizing Siebel Open UI

Configuring Siebel Open UI Siebel 2018 111

■ Siebel Open UI does the initial setup of the presentation model when it initializes the Siebel view
or application, depending on whether the user interface object resides inside or outside of the
view. The server sends a property set that includes all the initialization attributes. The proxy uses
most of these attributes, but you must use the AddProperty method to get the values that the
presentation model requires to set and store the state.

■ You must use the following methods in the physical renderer the first time Siebel Open UI renders
the user interface:

■ BindEvents. Binds the presentation model methods to the appropriate events on a control.
For more information, see “BindEvents Method” on page 505.

■ BindData. Accesses the presentation model properties, and then sends them to the control
through the methods that this control exposes. For more information, see “BindData Method”
on page 505.

■ You must configure Siebel Open UI to bind any state changes to the presentation model that
occur after the physical renderer finishes the initial rendering. To do this, you configure Siebel
Open UI to call the AttachPMBinding method on the physical renderer. This configuration specifies
the method that the physical renderer must call or the properties that it must access so that it
can send data back to the control. This configuration allows Siebel Open UI to render the user
interface after it modifies the presentation model state.

Guidelines for Customizing Physical Renderers
It is recommended that you apply the following guidelines if you configure a physical renderer:

■ Use a physical renderer only to implement methods that render the presentation model state:

■ Do not include any other logic in a physical renderer.

■ Do not include business logic that modifies the user interface state.

■ Do not include manipulations or life cycle control of individual controls or fields. It is
recommended that those types of customizations should be maintained separately, in the
Plug-in Wrapper.

■ Only use a physical renderer to send user action events to the presentation model, and use
the presentation model to do all the work that is necessary to modify a state.

■ Allow the physical renderer to rebind the new presentation model state to the rendered user
interface only after the presentation model finishes modifying the state of the logical user
interface.

■ Do not use a physical renderer to add any presentation attributes to the Document Object Model
(DOM). Example attributes include position, color, or any other styling. To modify a presentation
attribute, you must attach or detach a style that you define in a CSS file.

■ Configure Siebel Open UI to do all rendering only in physical renderers or plug-in wrappers. It is
strongly recommended that you do not configure Siebel Open UI to do direct DOM manipulation.
If you cannot avoid direct DOM manipulation, then you must do this manipulation in a physical
renderer or in a plug-in wrapper. Configure Siebel Open UI to send data, metadata, or state
information to controls only from a physical renderer. For more information, see “About Objects
and Metadata” on page 26.

Configuring Siebel Open UI Siebel 2018

Customizing Siebel Open UI ■ Guidelines for Customizing Siebel Open UI

112

■ In most situations, if you add a presentation model, then you must also add a corresponding
physical renderer. You typically use a presentation model to add custom logic in the client. This
logic typically determines a physical behavior that requires a physical renderer to do the
rendering. For example, in most situations, you cannot configure a predefined applet that also
renders custom logic. Siebel Open UI structures custom JavaScript logic in the presentation
model and physical renderer as a customization of predefined Siebel Open UI. This structure
allows Siebel Open UI to use JavaScript and to use other logic that a predefined Siebel Open UI
implementation provides, such as events, Siebel arrays, and so on. It is not recommended that
you configure JavaScript that is independent of Siebel Open UI, and that also modifies Siebel
CRM data or physical behavior.

Guidelines for Customizing Plug-in Wrappers
It is recommended that you apply the following guidelines when configuring a plug-in wrapper:

■ Use a plug-in wrapper exclusively to implement methods that manage the life cycle of an
individual control or field.

■ Do not include any other logic in a plug-in wrapper.

■ Do not include business logic that modifies the user interface state.

■ Use a physical renderer, exclusively, to send user action events on a field to the presentation
model. Use the presentation model to do all the actions that require modifying a state.

■ Allow the plug-in wrapper to rebind the new presentation model state to the rendered control
only after the presentation model finishes modifying the state of the logical user interface.

■ Do not use a plug-in wrapper to add presentation attributes to the Document Object Model
(DOM). Examples of these types of attributes include: position, color, or any other styling
attribute. To modify a presentation attribute, you must attach or detach a style that you define
in a CSS file.

■ In most situations, if you add a plug-in wrapper, then you must also add a corresponding physical
renderer that interacts with the plug-in wrapper. Typically a plug-in wrapper is used to add
custom logic to controls in the client. This logic determines a physical behavior that requires a
physical renderer to do the handling for this wrapper.

Guidelines for Customizing Presentation Models and
Physical Renderers and Plug-in Wrappers

a It is recommended that you apply the following guidelines if you configure the presentation
model and physical renderer for a client object:

■ Determine the following items for any element that you intend to customize:

■ The presentation model you must use

■ The plug-in wrapper you must use and the physical renderer that you must use with the
presentation model

Customizing Siebel Open UI ■ Doing General Customization Tasks

Configuring Siebel Open UI Siebel 2018 113

■ Configure the manifest so that Siebel Open UI can identify the JavaScript files it must download
to the client so that it can render the user interface element. For more information, see
“Configuring Manifests” on page 150.

■ Modify the physical renderer and presentation model for user interface objects that do not reside
in a view, such as navigation tabs. Only one of these elements resides on a single Siebel page,
and they do not vary during a Siebel session. So, you can configure the physical renderer and
the presentation model for each of these elements in the manifest.

■ You must place all custom presentation models, physical renderers and plug-in wrappers in the
custom folder. For more information about this folder, see “Organizing Files That You Customize”
on page 145.

Doing General Customization Tasks
This topic describes some of the general customization tasks that you can do in Siebel Open UI. It
includes the following information:

■ Preparing Siebel Tools to Customize Siebel Open UI

■ Modifying the Application Configuration File on page 114

■ Deriving Presentation Models, Physical Renderers and Plug-in Wrappers on page 115

■ Adding Presentation Model Properties That Siebel Servers Send to Clients on page 115

■ Configuring Siebel Open UI to Bind Methods on page 119

■ Calling Methods for Applets and Business Services on page 120

■ Using the Base Physical Renderer Class With Nonapplet Objects on page 123

■ Creating Components on page 127

■ Customizing How Siebel Open UI Displays Error Messages on page 128

■ Customizing Navigation Options on page 131

■ Example of Restricting Navigation Options on page 132

Preparing Siebel Tools to Customize Siebel Open UI
This topic describes how to prepare Siebel Tools so that you can use it to customize Siebel Open UI.
For more information, see Using Siebel Tools.

To prepare Siebel Tools to customize Siebel Open UI
1 Open Siebel Tools.

For more information, see Using Siebel Tools.

2 Choose the View menu, and then the Options menu item.

3 Click the Object Explorer tab.

Configuring Siebel Open UI Siebel 2018

Customizing Siebel Open UI ■ Doing General Customization Tasks

114

4 Scroll down through the Object Explorer Hierarchy window to locate the object type you must
display

It is recommended that you set up Siebel Tools to display all object types. To display an object
type and all child object types of an object type, make sure the parent includes a check mark
with a white background.

5 Click OK.

Modifying the Application Configuration File
You can use the configuration file to specify parameters that determine how a specific Siebel
application runs. For more information about the application configuration file, see Configuring Siebel
Business Applications.

To modify the application configuration file
1 Open Windows Explorer, and then navigate to the following folder:

INSTALL_DIR\eappweb\bin\language_code

For more information about the language_code, see “Languages That Siebel Open UI Supports” on
page 641.

2 Use a text editor to open the application configuration file that you must modify.

Each Siebel application uses a different configuration file. For example, Siebel Call Center uses
the uagent.cfg file. The application configuration file uses the .cfg file extension.

3 Locate the section that you must modify.

Each application configuration file uses brackets to indicate a section. For example:

[InfraUIFramework]

4 Modify an existing parameter or add a separate line for each parameter that you must specify.

Use the following format:

parameter_name = "<param1 param2>"

where:

■ param1 and param2 are the names of the parameters.

For example:

TreeNodeCollapseCaption = "<img src='images/tree_collapse.gif' alt='-' border=0
align=left vspace=0 hspace=0>"

Customizing Siebel Open UI ■ Doing General Customization Tasks

Configuring Siebel Open UI Siebel 2018 115

Deriving Presentation Models, Physical Renderers and
Plug-in Wrappers
Deriving is a coding technique that you can use with Siebel Open UI to create a reference between
two presentation models, physical renderers, or plug-in wrappers. Where Siebel Open UI derives one
presentation model, physical renderer or plug-in wrapper from another presentation model, physical
renderer or plug-in wrapper. This referencing can make sure that the derived object uses the same
logic as the source object. It also helps to reduce the amount of coding you must perform.

The following code includes all the code required to derive one presentation model from another
presentation model:

NOTE: The same methodology can be applied for physical renderers and plug-in wrappers.

if(typeof(SiebelAppFacade.derived_PM_name) === "undefined"){
 SiebelJS.Namespace("SiebelAppFacade.derived_PM_name");
 define("siebel/custom/derived_PM_name", ["siebel/custom/source_PM"],function(){
 . . .
SiebelJS.Extend(derived_PM_name, SiebelAppFacade.source_PM);
});
}

where:

■ derived_PM_name is the name of a presentation model that references another presentation
model.

■ source_PM is the name of a presentation model that provides the code that derived_PM_name
uses. The source_PM must already exist.

You must include the define and Extend statements.

For example, the following code derives a presentation model named derivedpm2 from another
presentation model, named derivedpm1:

if(typeof(SiebelAppFacade.derivedpm2) === "undefined"){
 SiebelJS.Namespace("SiebelAppFacade.derivedpm2");
 define("siebel/custom/derivedpm2", ["siebel/custom/derivedpm1"], function(){
 . . .
SiebelJS.Extend(derivedpm2, SiebelAppFacade.derivedpm1);
});
}

Adding Presentation Model Properties That Siebel
Servers Send to Clients
This topic describes how to add presentation model properties that the Siebel Server sends to the
client. It includes the following information:

■ Adding Presentation Model Properties That Siebel Servers Send for Applets on page 116

■ Adding Presentation Model Properties That Siebel Servers Send for Views on page 117

Configuring Siebel Open UI Siebel 2018

Customizing Siebel Open UI ■ Doing General Customization Tasks

116

■ Customizing Control User Properties for Presentation Models on page 118

It is strongly recommended that you configure custom presentation model properties only if the
predefined presentation model properties do not meet your requirements.

Adding Presentation Model Properties That Siebel Servers Send for
Applets
This topic describes a general approach to customizing applet user properties for presentation
models. The Siebel Server sends these properties to the client.

To add presentation model properties that Siebel Servers send for applets
1 Add user properties to the applet:

a Open Siebel Tools.

For more information, see Using Siebel Tools.

b In the Object Explorer, click Applet.

c In the Applets list, query the Name property for the applet that you must modify.

For example, query the Name property for Contact List Applet.

d In the Object Explorer, expand the Applet tree, and then click Applet User Prop.

e In the Applet User Props list, add the following applet user property.

f (Optional) Specify more ClientPMUserPropn user properties, as necessary.

You can specify more than one ClientPMUserPropn user property, as necessary. Repeat Step e
for each ClientPMUserPropn user property that you require.

g Compile your modifications.

2 Modify the presentation model:

Name Value

ClientPMUserPropn

For example,
ClientPMUserProp1

user_property_name

You can specify one or more user properties. Siebel Open UI sends
these user properties to the presentation model that it uses in the
client to display the applet. To specify more than one user property,
use a comma and a space to separate each user property name. For
example:

User Property1, User Property2

Each user property that you specify must exist in the Siebel
repository, and each of these user properties must contain a value in
the Value property.

Customizing Siebel Open UI ■ Doing General Customization Tasks

Configuring Siebel Open UI Siebel 2018 117

a Use a JavaScript editor to open your custom presentation model file that Siebel Open UI will use
to display the applet that you modified in Step 1 on page 117.

b If your custom presentation model does not override the Setup method, then configure Siebel
Open UI to do this override.

For more information about how to configure an override, see “Process of Customizing the
Presentation Model” on page 58.

c Locate the following section of code:

presentation_model.Setup(propSet)

For example, if the class name is CustomPM, then locate the following code:

CustomPM.prototype.Setup = function (propSet)

d Add the following code to the section that you located in Step c:

var consts = SiebelJS.Dependency("SiebelApp.Constants");
var apm = propSet.GetChildByType(consts.get("SWE_APPLET_PM_PS"));

where:

❏ SWE_APPLET_PM_PS is a predefined constant that Siebel Open UI uses to get the
presentation model properties that it uses to display the applet. The Siebel Server sends
these properties in a property set.

e Add the following code anywhere in the presentation model:

var value = apm.GetProperty("user_property_name")

For example:

var value = apm.GetProperty("User Property1")

You must configure Siebel Open UI so that it runs the Setup method that you specify in Step c
before it encounters the code that you add in Step e.

Adding Presentation Model Properties That Siebel Servers Send for
Views
This topic describes how to customize view user properties for presentation models. The Siebel
Server sends these properties to the client.

To add presentation model properties that Siebel Servers send for views
1 Add user properties to the view:

a Open Siebel Tools.

For more information, see Using Siebel Tools.

b In the Object Explorer, click View.

Configuring Siebel Open UI Siebel 2018

Customizing Siebel Open UI ■ Doing General Customization Tasks

118

c In the Views list, query the Name property for the view that you must modify.

For example, query the Name property for Contact List View.

d In the Object Explorer, expand the View tree, and then click View User Prop.

e Do Step 1, Step e on page 116 through Step g on page 116, except add view user properties to
a view instead of adding applet user properties to an applet.

2 If your custom view presentation model does not override the Setup method, then configure
Siebel Open UI to do this override:

a Do Step 2 on page 116 except use vpm instead of apm:

b Use a JavaScript editor to open the presentation model file that Siebel Open UI uses to display
the view that you modified in Step 1 on page 117.

c Add the following code:

var consts = SiebelJS.Dependency("SiebelApp.Constants");
var vpm = propSet.GetChildByType(consts.get("SWE_VIEW_PM_PS"));

where:

❏ SWE_VIEW_PM_PS is a predefined constant that Siebel Open UI uses to get the presentation
model properties that it uses to display the view. The Siebel Server sends these
properties in a property set.

d Add the following code:

var value = vpm.GetProperty("user_property_name")

For example:

var value = vpm.GetProperty("User Property1")

For more information about how to configure an override, see “Process of Customizing the
Presentation Model” on page 58.

Customizing Control User Properties for Presentation Models
This topic describes how to customize control user properties for a presentation model.

To customize control user properties for presentation models
1 Add user properties to the control:

a Open Siebel Tools.

For more information, see Using Siebel Tools.

b In the Object Explorer, click Applet.

c In the Applets list, query the Name property for the applet that you must modify.

For example, query the Name property for Contact List Applet.

d In the Object Explorer, expand the Applet tree, and then Control.

Customizing Siebel Open UI ■ Doing General Customization Tasks

Configuring Siebel Open UI Siebel 2018 119

e In the Controls list, query the Name property for the control that you must modify.

For example, query the Name property for NewRecord.

f In the Object Explorer, expand the Control tree, and then click Control User Prop.

g In the Control User Props list, do Step 1Step e on page 116 through Step g, except add control
user properties to the control instead of adding applet user properties to an applet.

2 Modify the custom presentation model of the applet where the control resides:

NOTE: This step can also be accomplished using a plug-in wrapper written for customizing the
control.

a Configure Siebel Open UI to get the control object. You can do one of the following:

❏ Use the following code to get the control object from the GetControls presentation model
property:

var controls = this.Get("GetControls");
for (var control in controls){
var cpm = control.GetPMPropSet(consts.get("SWE_CTRL_PM_PS"));
// Do something with cpm
}

❏ Use the following the GetControl method to get an instance of the Account Name control:

var myControl = this.GetControl ("Account Name");
var cpm = myControl.GetPMPropSet(consts.get("SWE_CTRL_PM_PS"));

b Add the following code:

var consts = SiebelJS.Dependency("SiebelApp.Constants");
var cpm = control.GetPMPropSet(consts.get("SWE_CTRL_PM_PS"));

where:

❏ GetPMPropSet is a method that gets the property set for this control. For more
information, see “GetPMPropSet Method” on page 527.

❏ SWE_CTRL_PM_PS is a predefined constant that Siebel Open UI uses to get the presentation
model that it uses for the control object. The Siebel Server sends these properties in a
property set.

c Add the following code:

var value = cpm.GetProperty("user_property_name")

For example:

var value = cpm.GetProperty("User Property1")

Configuring Siebel Open UI to Bind Methods
This topic includes some examples that describe how to bind methods. For other examples that bind
methods, see the following topics:

Configuring Siebel Open UI Siebel 2018

Customizing Siebel Open UI ■ Doing General Customization Tasks

120

■ “Example of the Life Cycle of a User Interface Element” on page 55

■ “Customizing the Physical Renderer to Refresh the Carousel” on page 87

■ “Text Copy of Code That Does a Partial Refresh for the Presentation Model” on page 187

Binding Methods That Reside in the Physical Renderer
You can use the AttachPMBinding method to bind a method that resides in a physical renderer and
that Siebel Open UI must call when the presentation model finishes processing.

To bind methods that reside in the physical renderer
1 Add the method reference in the physical renderer.

2 Configure Siebel Open UI to send the scope in the binderConfig argument of the AttachPMBinding
method as a scope property.

For more information, see “AttachPMBinding Method” on page 471.

Conditionally Binding Methods
The example in this topic conditionally binds a method.

To conditionally bind methods
■ Add the following code:

this.AttachPMBinding("DoSomething",function(){SiebelJS.Log("After
DoSomething");},{when: function(function_name){return false;}});

where:

■ function_name identifies the name of a function.

In this example, if Siebel Open UI calls DoSomething, then the presentation model calls the
function_name that the when condition specifies, and then tests the return value. If function_name
returns a value of:

■ true. Siebel Open UI calls the AttachPMBinding method.

■ false. Siebel Open UI does not call the AttachPMBinding method.

If you do not include the when condition, then Siebel Open UI runs the DoSomething method, and
then calls the AttachPMBinding method. For more information, see “AttachPMBinding Method” on
page 471.

Calling Methods for Applets and Business Services
This topic includes some examples that describe how to call methods for applets and business
services. For other examples that call methods, see the following topics:

Customizing Siebel Open UI ■ Doing General Customization Tasks

Configuring Siebel Open UI Siebel 2018 121

■ “Customizing the Presentation Model to Delete Records” on page 66

■ “Attaching an Event Handler to a Presentation Model” on page 74

■ “Using Custom JavaScript Methods” on page 393

■ “Using Custom Siebel Business Services” on page 396

■ “Customizing Siebel Pharma for Siebel Mobile Disconnected Clients” on page 403

Calling Methods
The example in this topic describes how to call a method when the user clicks a button.

To call methods for buttons
1 Modify the plug-in wrapper:

a Use a JavaScript editor to open the plug-in wrapper for the button.

b Locate the click handler for the button.

c Add the following code to the code you located in Step b:

var inPropSet = CCFMiscUtil_CreatePropSet();
//Define the inPropSet property set with the information that InvokeMethod sends
as input to the method that it calls.
var ai= {};
ai.async = true;
ai.selfbusy = true;
ai.scope = this;
ai.mask = true;
ai.opdecode = true;
ai.errcb = function(){
 //Code occurs here for the method that Siebel Open UI runs if the AJAX call fails
 };
ai.cb = function(){
 //Code occurs here for the method that Siebel Open UI runs if the AJAX call is
successful
 };
this.GetPM().ExecuteMethod("InvokeMethod",input arguments, ai);

where:

❏ input arguments lists the arguments that InvokeMethod sends as input to the method
that it calls.

For example, the following code specifies to use the InvokeMethod method to call the
NewRecord method, using the properties that the inPropSet variable specifies for the ai
argument:

this.GetPM().ExecuteMethod("InvokeMethod", "NewRecord", inPropSet, ai)

For more information, see “InvokeMethod Method for Application Models” on page 541 and
“NewRecord Method” on page 530.

Configuring Siebel Open UI Siebel 2018

Customizing Siebel Open UI ■ Doing General Customization Tasks

122

2 Modify the presentation model:

a Use a JavaScript editor to open the presentation model for the applet that you must modify.

b Locate the code that calls the Init method.

c Add the following code to the code that you located in Step b:

this.AttachPreProxyExecuteBinding("method_name", function(methodName, inputPS,
outputPS){// Include code here that Siebel Open UI runs before the applet proxy
sends a reply.});

this.AttachPostProxyExecuteBinding("method_name", function(methodName, inputPS,
outputPS){// Include code here that Siebel Open UI runs after the applet proxy
sends a reply.});

where:

❏ method_name identifies the name of the method that InvokeMethod calls. Note that
Siebel Open UI comes predefined to set the value of the methodName argument in the
following code to WriteRecord, by default. You must not modify this argument:

function(methodName, inputPS, outputPS)

For example:

this.AttachPreProxyExecuteBinding("WriteRecord", function(methodName, inputPS,
outputPS){// Include code here that Siebel Open UI runs before the applet proxy
sends a reply.});

this.AttachPostProxyExecuteBinding("WriteRecord", function(methodName, inputPS,
outputPS){// Include code here that Siebel Open UI runs after the applet proxy
sends a reply.});

For more information, see “WriteRecord Method” on page 449, “AttachPostProxyExecuteBinding
Method” on page 471, and “AttachPreProxyExecuteBinding Method” on page 473.

Calling Methods for Business Services
The example in this topic describes how to call a method for a business service when the user clicks
a button.

To call methods for buttons
1 Use a JavaScript editor to open the plug-in wrapper for the button.

2 Locate the click handler for the button.

3 Add the following code to the code that you located in Step 2:

var service = SiebelApp.S_App.GetService("business_service_name");
if (service) {
 var inPropSet = CCFMiscUtil_CreatePropSet();
 //Code occurs here that sets the inPropSet property set with all information that
Siebel Open UI must send as input to the method that it calls.
 var ai = {};

Customizing Siebel Open UI ■ Doing General Customization Tasks

Configuring Siebel Open UI Siebel 2018 123

 ai.async = true;
 ai.selfbusy = true;
 ai.scope = this;
 ai.mask = true;
 ai.opdecode = true;
 ai.errcb = function(){
 //Code occurs here for the method that Siebel Open UI runs if the AJAX call fails
 };
 ai.cb = function(){
 //Code occurs here for the method that Siebel Open UI runs if the AJAX call
is successful
 };
 service.InvokeMethod("method_name", "input_arguments", ai);
}

For more information, see “InvokeMethod Method for Presentation Models” on page 487.

Using the Base Physical Renderer Class With Nonapplet
Objects
This topic describes how to use the Base Physical Renderer class with nonapplet objects that you
customize. It includes the following topics:

■ Hierarchy That the Base Physical Renderer Class Uses on page 124

■ Using Methods with the Base Physical Renderer Class on page 124

■ Declaring the AttachPMBinding Method When Using the Base Physical Renderer Class on page 126

■ Sending an Arbitrary Scope on page 126

■ Accessing Proxy Objects on page 127

■ Modifying Nonapplet Configurations for Siebel CRM Version 8.1.1.10, 8.2.2.3, or Earlier on page 127

The BasePhysicalRenderer class simplifies calls that Siebel Open UI makes to the AttachPMBinding
method for nonapplet objects. You can configure Siebel Open UI to use the BasePhysicalRenderer
class to identify the physical renderer, call AttachPMBinding, and specify the configuration for the
scope of a nonapplet object. You can then use a custom physical renderer to call AttachPMBinding
with the appropriate handler.

Siebel Open UI uses the PhysicalRenderer class to interface with and to render applets. Starting with
Siebel CRM versions 8.1.1.11 and 8.2.2.4, it uses the BasePhysicalRenderer class to render
nonapplet objects. It uses this class to separate the interface to the physical renderer from the
physical renderer. Siebel Open UI uses the BasePhysicalRenderer class only with nonapplet objects,
such as the toolbar or predefined query bar.

If your deployment includes nonapplet custom rendering, and if it uses Siebel CRM version 8.1.1.10,
8.2.2.3 or earlier, then it is strongly recommended, but not required, that you modify your
configuration so that it uses the BasePhysicalRenderer class to render your custom, nonapplet
objects. If your deployment uses the PhysicalRenderer class to render nonapplet objects, then this
class will provide access to applet functionality and properties that it does not require to do the
rendering, which could degrade performance or result in rendering problems.

Configuring Siebel Open UI Siebel 2018

Customizing Siebel Open UI ■ Doing General Customization Tasks

124

Siebel Open UI defines the BasePhysicalRenderer class in the basephyrenderer.js file.

Hierarchy That the Base Physical Renderer Class Uses
Figure 34 illustrates the hierarchy that the BasePhysicalRenderer class uses for non-mobile
applications. The member variable is a variable that is associated with the class. All methods can
access this member variable.

Figure 34. Hierarchy That the Base Physical Renderer Class Uses

Using Methods with the Base Physical Renderer Class
Table 4 on page 124 describes how to use methods with the BasePhysicalRenderer class.

Table 4. How to Use Methods with the Base Physical Renderer Class

Method Description

Init Use this method to initialize the BasePhysicalRenderer class. For more
information, see “Init Method” on page 474.

GetPM Use this method to retrieve the presentation model object on which the
base physical renderer is running. For more information, see “GetPM
Method for Physical Renderers” on page 508.

Customizing Siebel Open UI ■ Doing General Customization Tasks

Configuring Siebel Open UI Siebel 2018 125

ShowUI Use this method to display the DOM area corresponding to this physical
renderer. Any customization on rendering of controls owned by this
applet should be left to the respective plug-in wrappers. For more
information, see “ShowUI Method” on page 510 and “Deriving
Presentation Models, Physical Renderers and Plug-in Wrappers” on
page 115.

BindEvents Use this method to attach event handlers to the applet area that runs
on this physical renderer. Any customizations relating to event
attachment to controls owned by this applet should be left to the
respective plug-in wrappers. For more information, see “BindEvents
Method” on page 505.

BindData Use this method to bind data attributes to the applet area that runs on
this physical renderer. Any customizations relating to event attachment
to controls owned by this applet should be left to the respective plug-in
wrappers. For more information, see “BindData Method” on page 505 and
“Deriving Presentation Models, Physical Renderers and Plug-in Wrappers”
on page 115.

AttachPMBinding Use this method to configure Siebel Open UI to do the same work that
the AttachPMBinding method does in a presentation model. You can use
the following argument to call the AttachPMBinding method:

scope

You can use the following arguments with the AttachPMBinding method:

■ methodName. Identifies the method that the
BasePhysicalRenderer class binds.

■ handler. Identifies the handler method that Siebel Open UI uses for
this binding.

■ handlerScope. Identifies the scope where the
BasePhysicalRenderer class runs the handler. If you do not specify
the handlerScope, then the BasePhysicalRenderer class uses the
default scope.

For more information, see “AttachPMBinding Method” on page 471.

EndLife Use this method to end the life of the physical renderer. It is
recommended that you use the EndLife method to clean up the custom
event handler. This clean up includes releasing events, deleting unused
variables, and so on. For more information, see “EndLife Method” on
page 507.

Table 4. (Continued)How to Use Methods with the Base Physical Renderer Class

Method Description

Configuring Siebel Open UI Siebel 2018

Customizing Siebel Open UI ■ Doing General Customization Tasks

126

Declaring the AttachPMBinding Method When Using the Base Physical
Renderer Class
If you configure Siebel Open UI to use the BasePhysicalRenderer class, then you must declare the
AttachPMBinding method.

To declare the AttachPMBinding method when using the Base Physical Renderer
class
1 Use a JavaScript editor to open your custom physical renderer.

2 Locate the Init method.

3 Add the following code to the Init method that you located in Step 2:

CustomPhysicalRenderer.prototype.Init = function(){
 // Be a good citizen. Call Superclass first
 SiebelAppFacade.CustomPhysicalRenderer.superclass.Init.call(this);
 // Call AttachPMBinding here.
}

For example:

CustomPhysicalRenderer.prototype.Init = function(){
 SiebelAppFacade.CustomPhysicalRenderer.superclass.Init.call(this);
 this.AttachPMBinding("EndQueryState", EndQueryState);
}

Sending an Arbitrary Scope
An arbitrary scope is any scope other than the scope that calls the handler. You can configure Siebel
Open UI to send to the AttachPMBinding method any scope that is available in the physical renderer.
You can use the BasePhysicalRenderer class to send an arbitrary scope that identifies the handler
method that Siebel Open UI must use.

To send an arbitrary scope
1 Use a JavaScript editor to open your custom physical renderer.

2 Add the following code to send an arbitrary scope as an argument:

this.AttachPMBinding ("FocusOnApplet", FocusOnApplet, arbitrary_scope);

For example:

this.AttachPMBinding ("FocusOnApplet", FocusOnApplet, SiebelAppFacade.S_App);

where:

■ SiebelAppFacade.S_App is an arbitrary scope because it is not the calling scope that the this
statement identifies, which Siebel Open UI assumes in BasePR, by default. In this example,
the FocusOnApplet handler must exist in the SiebelAppFacade.S_App scope.

Customizing Siebel Open UI ■ Doing General Customization Tasks

Configuring Siebel Open UI Siebel 2018 127

Accessing Proxy Objects
If you must write code that accesses a proxy object, then it is strongly recommended that you access
this proxy object through a physical renderer. The physical renderer typically exposes the interfaces
that allow access to operations that Siebel Open UI performs on the proxy object. The example in
this topic accesses a proxy object for an active control.

To access proxy objects
1 Use a JavaScript editor to open your custom physical renderer.

2 Add the following code:

this.ExecuteMethod("SetActiveControl", control);

This example code accesses a proxy object so that Siebel Open UI can modify an active control.

It is recommended that you do not write code that directly accesses a proxy object from a physical
renderer. In the following example, Siebel Open UI might remove the GetProxy method from the
presentation model, and any code that references GetProxy might fail. It is recommended that you
do not use the following code:

this.GetProxy().SetActiveControl(control);

Modifying Nonapplet Configurations for Siebel CRM Version 8.1.1.10,
8.2.2.3, or Earlier
Siebel Open UI removed the scope argument for calls that it makes to the AttachPMBinding method
with nonapplet objects, starting with Siebel CRM versions 8.1.1.11 and 8.2.2.4. You can modify your
custom code to use this new configuration.

To modify nonapplet configurations for Siebel CRM versions 8.1.1.10, 8.2.2.3, or
earlier
1 Use a JavaScript editor to open your custom physical renderer.

2 Locate the following code:

this.GetPM().AttachPMBinding ("FocusOnApplet", FocusOnApplet, {scope:this});

In this example, AttachPMBindings uses the scope argument to do a call in Siebel CRM version
8.1.1.10, 8.2.2.3, or earlier.

3 Replace the code that you located in Step 2 with the following code:

this.AttachPMBinding ("FocusOnApplet", FocusOnApplet);

You can use this code starting with Siebel CRM versions 8.1.1.11 and 8.2.2.4.

Creating Components
The example in this topic configures Siebel Open UI to attach a local component

Configuring Siebel Open UI Siebel 2018

Customizing Siebel Open UI ■ Doing General Customization Tasks

128

as the child of a view component, and it uses the property set that Siebel Open UI uses to create
this component to specify the name of the module.

Siebel Open UI uses this module for the presentation model and the physical renderer.

To create components
1 Create the property set. Use the following code:

var psInfo = CCFMiscUtil_CreatePropSet();
psInfo.SetProperty(consts.get("SWE_UIDEF_PM_CTR"), "siebel/custom/customPM");
psInfo.SetProperty(consts.get("SWE_UIDEF_PR_CTR"), "siebel/custom/customPR");

where:

■ siebel/custom/customPM is the module name that identifies the siebel/custom/customPM.js
presentation model

■ siebel/custom/customPR is the module name that identifies the siebel/custom/customPR.js
physical renderer

2 Create the dependency object. Use the following code:

var dependency = {};
dependency.GetName = function(){return "custom_Dependency_object";}

This example assumes that it is not necessary that this component references an applet, so the
code limits the scope to a view.

3 Call the MakeComponent method. Use the following code:

SiebelAppFacade.ComponentMgr.MakeComponent(SiebelApp.S_App.GetActiveView(),
psInfo, dependency);

For more information, see “MakeComponent Method” on page 558 and “GetActiveView Method” on
page 537.

Customizing How Siebel Open UI Displays Error
Messages
Prior to Siebel CRM release 8.1.1.13, Siebel Open UI used the ErrorObject method to display the
error dialog box. This method calls a browser alert method that displays the dialog box as a browser
notification. Beginning with Siebel CRM release 8.1.1.13, you can modify this configuration so that
Siebel Open UI displays the notification in a status bar or in a custom dialog box.

Siebel Open UI uses the following rendering files to display error messages:

■ errorobjectrenderer.js. Displays an error alert or SWEAlert message.

■ errorstatusbarrenderer.js. Displays an error message in a custom error status bar in the
browser.

■ errorpopuprenderer.js. Displays a custom dialog box that includes an error message.

Customizing Siebel Open UI ■ Doing General Customization Tasks

Configuring Siebel Open UI Siebel 2018 129

Note the following:

■ The errorobjectrenderer.js file is the only file that comes predefined with Siebel Open UI and
does not require you to configure the manifest or to modify a method. You must not modify this
file.

■ The errorpopuprender.js file is in the sample folder and must be moved to the custom folder.

■ The manifest does not come predefined to use the errorstatusbarrenderer.js file or the
errorpopuprenderer.js file. If your customization requires one of these files, then you must add
it to the manifest. Create a manifest files entry with the name siebel/
custom.errorpopuprenderer.js

■ Siebel Open UI renders only one of these files at a time. If you add errorstatusbarrenderer.js
or errorpopuprenderer.js to the manifest, then Siebel Open UI uses one of these files instead
of errorobjectrenderer.js.

■ Create a platform independent entry in the Manifest Administration view with type=Application
and level= Common and add the siebel/custom/errorpopuprenderer.js file.

■ Clear the cache and start the application to get errorpopuprenderer.js loaded to the
application.

■ Use #_sweview_popup in the CSS file to customize error messages. For example:

#_sweview_popup {
color: red !important;
font-style: italic;
height: 300px !important;

}

■ These files reference the following method. For more information about this method, see
“ShowErrorMessage Method” on page 560:

ShowErrorMessage(message)

■ Each file uses the typical sequence that a physical renderer uses. For example, each file calls the
following methods in the following sequence. You must not modify this sequence. For more
information, see “Life Cycle of a Physical Renderer” on page 53:

■ ShowUI

■ BindData

■ BindEvents

For more information about configuring error messages in Siebel Open UI, see “Configuring Error
Messages for Disconnected Clients” on page 400.

To customize how Siebel Open UI displays error messages
1 Optional. Modify the style that Siebel Open UI uses when it displays the error status bar.

If your customization uses the errorstatusbarrenderer.js file, then you can style the status bar
by adding style rules for the siebui-statusbar class in a custom cascading style sheet and place
it in following folder:

Configuring Siebel Open UI Siebel 2018

Customizing Siebel Open UI ■ Doing General Customization Tasks

130

files\custom\my-style.css

You must add the style sheet to the manifest by following the steps outlined in “Configuring
Manifests” on page 150.

2 Configure the manifest. For more information about how to do this step, see “Configuring
Manifests” on page 150:

a Log in to a Siebel client with administrative privileges.

b Navigate to the Administration - Application screen, and then the Manifest Files view.

c Add one of the following files, depending on your customization requirements:

custom/errorstatusbarrenderer.js
custom/errorpopuprenderer.js

d Navigate to the Manifest Administration view.

e In the UI Objects list, specify the following object.

f In the Object Expression list, add the following subexpression.

g In the Files list, click Add.

h In the Files dialog box, click Query.

i In the Name field, enter the path and file name that you added in Step c:

files/custom/my-style.css

j Click Go.

3 Test your work:

a Log out of, and then log back into the client.

Table 5. Field Table 6. Value

Type Application

Usage Type Theme

Name PLATFORM INDEPENDENT

Field Value

Group Name Leave empty.

Expression Desktop

Level 1

Siebel Open UI only uses the renderer whose level is set
to 1.

Operator Leave empty.

Web Template Name Leave empty.

Customizing Siebel Open UI ■ Doing General Customization Tasks

Configuring Siebel Open UI Siebel 2018 131

b Do something that results in an error.

c Verify that the client displays an error message according to your modifications.

Customizing Navigation Options
The Siebel Open UI client can be configured to control the navigation options available to users. By
default the Side Menu icon is used to control navigation. Without configuration, two additional
options are available for navigation: Tab and Tree.

In some deployments, you might want to restrict the use of a navigation option to a predefined
group. This topic explains how to control which navigation options are available to which users.

To customize the available navigation options
1 Create an expression for the navigation option that you want to restrict:

a Log in to a Siebel client with administrative privileges.

b Navigate to the Administration - Application screen, and then the Manifest Expressions view.

c Click the plus (+) icon to create a new expression.

d Specify a name for the expression.

e Specify the restrictive expression.

2 Create a copy of the navigation type that you want to restrict:

a Navigate to the Administration - Application screen, and then the Manifest Administration view.

b In the UI Objects list, search with the following specifications:

c Select the navigation option that you want to modify. The three available options are
NAVIGATION_SIDE, NAVIGATION_TAB, and NAVIGATION_TREE.

d Take note of the exact file name that is listed in Files applet, you will need this information in a
later step.

e Select the Edit menu, then Copy Record.

3 Edit the navigation type:

a Select the copy of the navigation type that you created in Step 2.

b Click the plus (+) icon in Object Expression applet.

Field Value

Type Navigation

Usage Type Physical Renderer

Name NAVIGATION*

You can reference any navigation option.

Configuring Siebel Open UI Siebel 2018

Customizing Siebel Open UI ■ Doing General Customization Tasks

132

c In the Expression field, specify the expression that you created in Step 1.

d Click the plus (+) icon in the Files applet and add the file that you noted inStep 2, Step d.

4 Verify your work:

a Log out of the client, and then log back into the client.

This step refreshes the manifest.

b Navigate to the User Preferences screen, then the Behavior view.

c Verify that the correct options are available in the Navigation Control drop-down menu for the
user with which you are logged in.

Example of Restricting Navigation Options
The example in this topic describes how to restricts the Tree navigation option to only the ADMIN
user in Siebel Open UI.

This topic gives one example of restricting navigation options. You might use this feature differently,
depending on your business model.

To restrict the Tree navigation option to only the ADMIN user
1 Create an expression that restricts availability to administrator only:

a Log in to a Siebel client with administrative privileges.

b Navigate to the Administration - Application screen, and then the Manifest Expressions view.

c Click the plus (+) icon create a new expression.

d Specify the following in the Name field:

Admin Only

e Specify the following in the Expression field:

GetProfileAttr('Login Name') = 'ADMIN'

2 Create a copy of the NAVIGATION_TREE object:

a Navigate to the Administration - Application screen, and then the Manifest Administration view.

b In the UI Objects list, search with the following specifications:

c Select the NAVIGATION_TREE record.

Field Value

Type Navigation

Usage Type Physical Renderer

Name NAVIGATION_TREE

Customizing Siebel Open UI ■ Customizing Events

Configuring Siebel Open UI Siebel 2018 133

d Select the Edit menu, then Copy Record.

3 Edit the new NAVIGATION_TREE record:

a Select the copy of the NAVIGATION _TREE record.

b Click the plus (+) icon in Object Expression applet.

c In the Expression field, specify the expression Admin Only.

d Click the plus (+) icon in the Files applet to add the following file:

jsTreeCtrl.js

4 Verify your work:

a Log out of the client, and then log back into the client as a user other than ADMIN.

b Navigate to the User Preferences screen, then the Behavior view.

c Verify that the only the following two options are available in the Navigation Control drop-down
menu:

❏ Side Menu

❏ Tab

d Log out of the client, and then log back into the client as the ADMIN user.

e Navigate to the User Preferences screen, then the Behavior view.

f Verify that the only the following three options are available in the Navigation Control drop-down
menu:

❏ Side Menu

❏ Tab

❏ Tree

Customizing Events
This topic includes some examples that describe how to customize the way Siebel Open UI uses
events. It includes the following information:

■ Refreshing Custom Events on page 134

■ Overriding Event Handlers on page 134

■ Attaching an Event Handler to an Event on page 135

■ Attaching More Than One Event Handler to an Event on page 135

■ Stopping Siebel Open UI From Calling Event Handlers on page 136

■ Attaching and Validating Event Handlers in Any Sequence on page 137

■ Customizing the Sequence that Attaches and Validates Event Handlers on page 143

■ Using AttachEventHandler Prior to Siebel CRM Release 8.1.1.13 on page 143

■ Overriding the OnControlEvent Method and Then Calling a Superclass on page 144

Configuring Siebel Open UI Siebel 2018

Customizing Siebel Open UI ■ Customizing Events

134

■ Allowing Blocked Methods for HTTP GET Access on page 144

For more information about how Siebel Open UI uses events and examples that configure them, see
the following topics:

■ How Siebel Open UI Uses the Init Method of the Presentation Model on page 52

■ Life Cycle of a Physical Renderer on page 53

■ Attaching an Event Handler to a Presentation Model on page 74

■ Customizing the Physical Renderer to Bind Events on page 84

■ Modifying CSS Files to Support the Physical Renderer on page 90

■ AttachNotificationHandler Method on page 469

■ Siebel CRM Events That You Can Use to Customize Siebel Open UI on page 620

Refreshing Custom Events
Siebel Open UI does not come predefined to refresh a custom event. The example in this topic
describes how to modify this behavior.

To refresh custom events
1 Add the following code:

this.AddMethod("RefreshHandler", function(x, y, z){
 // Add code here that does processing for RefreshHandler.
});

This code adds the RefreshHandler custom event handler.

2 Add the following code in the presentation model so that it is aware of the event that the
RefreshEventHandler specifies:

this.AttachEventHandler("Refresh", "RefreshHandler");

For more information, see “AttachEventHandler Method” on page 468.

3 Add the following code in the bindevents method of the plug-in wrapper:

this.Helper("EventHelper").Manage(buttonEl, "click", { ctx: this },
function(event){
 event.data.ctx.GetPM().OnControlEvent("Refresh", value1, value2, valueN);

This code binds the event to the presentation model. For more information, see “OnControlEvent
Method” on page 475.

Overriding Event Handlers
The example in this topic configures Siebel Open UI to override an event handler that the predefined
presentation model references.

Customizing Siebel Open UI ■ Customizing Events

Configuring Siebel Open UI Siebel 2018 135

To override event handlers
1 Configure Siebel Open UI to refresh a custom event.

For more information, see “Customizing Events” on page 133.

2 Add the following code to your custom presentation model:

this.AddMethod(SiebelApp.Constants.get("PHYEVENT_INVOKE_CONTROL"),
function(controlName) {
 // Process button click
 return false;
});

This code configures Siebel Open UI to return the following value from the event handler. It
makes sure this presentation model does not continue processing:

false

Attaching an Event Handler to an Event
This topic describes how to attach an event handler to an event.

To attach an event handler to an event
■ Use the following code:

this.AddMethod("custom_method", function(){});
this.AttachEventHandler("custom_event", "custom_method");

The physical renderer or the plug-in wrapper triggers these handlers when the following code is
executed:

this.GetPM().OnControlEvent("custom_event", param1, param2)

The presentation model uses the custom_method to identify the function that it must call and
when to call it. The presentation model also sends the parameters that OnControlEvent provides.
For more information, see “AttachEventHandler Method” on page 468.

Attaching More Than One Event Handler to an Event
This topic describes how to attach more than one event handler to an event.

To attach more than one event handler to an event
■ Use the following code:

Configuring Siebel Open UI Siebel 2018

Customizing Siebel Open UI ■ Customizing Events

136

this.AttachEventHandler("custom_event", "custom_method_1");
this.AttachEventHandler("custom_event", "custom_method_2");
this.AttachEventHandler("custom_event", "custom_method_3");

The physical renderer or the plug-in wrapper triggers these handlers when the following code is
executed:

this.GetPM().OnControlEvent("custom_event", param1, param2)

The presentation model determines that it must handle three events, and it handles them in the
reverse order that you specify them. In this example, it uses the following sequence when it
handles the event:

1. custom_method_3

2. custom_method_2

3. custom_method_1

The presentation model sends the same values for the parameters that OnControlEvent specifies
for each event handler.

For more information, see “AttachEventHandler Method” on page 468.

Stopping Siebel Open UI From Calling Event Handlers
You can configure the AttachEventHandler method to stop calling event handlers at any point during
the event handling process. The example in this topic assumes your configuration includes one
predefined event handler and three custom event handlers, and that custom_event_handler_2 stops
the processing according to a condition.

To stop Siebel Open UI from calling event handlers
■ Use the following code:

this.AddMethod("custom_event_handler_2", function(param1, param2, returnStructure){
 if(condition){
 returnStructure[consts.get("SWE_EXTN_CANCEL_ORIG_OP")] = true;
 returnStructure[consts.get("SWE_EXTN_STOP_PROP_OP")] = true;
 returnStructure[consts.get("SWE_EXTN_RETVAL")] = return_value ;
 }
});
this.AttachEventHandler("event_name", "custom_event_handler_2");

where:

■ consts references SiebelApp.Constants.

■ return_value contains a value that Siebel Open UI returns to the object that called
OnControlEvent.

This code does the following work:

Customizing Siebel Open UI ■ Customizing Events

Configuring Siebel Open UI Siebel 2018 137

■ Sets the SWE_EXTN_CANCEL_ORIG_OP and SWE_EXTN_STOP_PROP_OP properties according to
a condition.

■ Stops event handlers from running.

■ Uses SWE_EXTN_RETVAL to return a value to the object that called OnControlEvent.

For more information, see “AttachEventHandler Method” on page 468.

Attaching and Validating Event Handlers in Any
Sequence
You can configure Siebel Open UI to attach and validate an event handler in any sequence, depending
on your requirements. The example in this topic does some custom validation, and then runs an
event handler in a custom presentation model named derivedpm2.js. If the user triggers a control
focus event, then Siebel Open UI runs the validator before it calls the event. Siebel Open UI uses the
value that the validator returns to determine whether or not to run the custom event handler and
the predefined event handler. This predefined event handler is the default event handler that the
predefined presentation model uses for the event. This topic describes the derivedpm1.js and
derivedpm2.js files. To get a copy of these files, see Article ID 1494998.1 on My Oracle Support.

To attach and validate event handlers in any sequence
1 Use a JavaScript editor to create a custom presentation model that Siebel Open UI derives from

a predefined presentation model:

a Create a new file named derivedpm1.js. Save this file in the following folder:

siebel\custom

For more information about:

❏ This file, see “Complete Contents of the derivedpm1 Presentation Model” on page 141.

❏ This folder, see “Organizing Files That You Customize” on page 145.

b Configure the custom derivedpm1 presentation model that you created in Step a so that Siebel
Open UI derives it from the predefined ListPresentationModel. You add the following code:

if(typeof(SiebelAppFacade.derivedpm1) === "undefined"){
 SiebelJS.Namespace("SiebelAppFacade.derivedpm1");
 define("siebel/custom/derivedpm1", [], function(){
 SiebelAppFacade.derivedpm1 = (function(){
 var siebConsts = SiebelJS.Dependency("SiebelApp.Constants"),
 CANCEL_OPR = consts.get("SWE_EXTN_CANCEL_ORIG_OP"),
 STOP_PROP = consts.get("SWE_EXTN_STOP_PROP_OP");
 function derivedpm1(){
 SiebelAppFacade.derivedpm1.superclass.constructor.apply(this, arguments);
 }

Configuring Siebel Open UI Siebel 2018

Customizing Siebel Open UI ■ Customizing Events

138

 SiebelJS.Extend(derivedpm1, SiebelAppFacade.ListPresentationModel);
 derivedpm1.prototype.Init = function(){
 SiebelAppFacade.derivedpm1.superclass.Init.call(this);

For more information, see “Deriving Presentation Models, Physical Renderers and Plug-in
Wrappers” on page 115.

c Make sure the derivedpm1 presentation model includes a handler for the
PHYEVENT_COLUMN_FOCUS event. You add the following code:

 this.AttachEventHandler(siebConsts.get("PHYEVENT_COLUMN_FOCUS"),
function()
 {
 SiebelJS.Log("Control focus 1");
 arguments[arguments.length - 1][consts.get("SWE_EXTN_CANCEL_ORIG_OP"
)] = false;
 });

For more information about the method that this code uses, see “AttachEventHandler Method”
on page 468.

d Validate the handler that you added in Step c. You add the following code:

 this.AddValidator(siebConsts.get("PHYEVENT_COLUMN_FOCUS"), function(){
 return true;
 });
};

For more information about the method that this code uses, see “AddValidator Method” on
page 468.

e Finish the setup that you started in Step b on page 138. You add the following code:

 derivedpm1.prototype.Setup = function(propSet){
 SiebelAppFacade.derivedpm1.superclass.Setup.call(this, propSet);
 };
 return derivedpm1;
 } ());
 return "SiebelAppFacade.derivedpm1";
 });
}

f Save your changes, and then close the derivedpm1.js file.

2 Use a JavaScript editor to create another custom presentation model that Siebel Open UI derives
from the custom presentation model that you created in Step 1 on page 137:

a Create a new file named derivedpm2.js. Save this file in the following folder:

siebel\custom

For more information about this file, see “Complete Contents of the derivedpm1 Presentation
Model” on page 141.

b Configure the custom derivedpm2 presentation model that you created in Step a so that Siebel
Open UI derives it from the derivedpm1 presentation model. You add the following code:

Customizing Siebel Open UI ■ Customizing Events

Configuring Siebel Open UI Siebel 2018 139

if(typeof(SiebelAppFacade.derivedpm2) === "undefined"){
 SiebelJS.Namespace("SiebelAppFacade.derivedpm2");
 define("siebel/custom/derivedpm2", ["siebel/custom/derivedpm1"], function(){
 SiebelAppFacade.derivedpm2 = (function(){
 var siebConsts = SiebelJS.Dependency("SiebelApp.Constants"),
 CANCEL_OPR = consts.get("SWE_EXTN_CANCEL_ORIG_OP"),
 STOP_PROP = consts.get("SWE_EXTN_STOP_PROP_OP");
 function derivedpm2(){
 SiebelAppFacade.derivedpm2.superclass.constructor.apply(this, arguments);

}
 SiebelJS.Extend(derivedpm2, SiebelAppFacade.derivedpm1);
 derivedpm2.prototype.Init = function(){
 SiebelAppFacade.derivedpm2.superclass.Init.call(this);

c Make sure the derivedpm2 presentation model includes a handler for the
PHYEVENT_COLUMN_FOCUS event. You add the following code:

this.AttachEventHandler(siebConsts.get("PHYEVENT_COLUMN_FOCUS"), function()
{
 SiebelJS.Log("Control focus 2");
});

d Validate the handler that you added in Step c. You add the following code:

this.AttachEventHandler(siebConsts.get("PHYEVENT_COLUMN_FOCUS"), function()
{
 SiebelJS.Log("Control focus 2");
});
this.AddValidator(siebConsts.get("PHYEVENT_COLUMN_FOCUS"), function(row, ctrl,
val){
 //custom validation
 }
});

where:

❏ custom validation validates the values.

For example, the following code validates that the handler handles the Hibbing Mfg account:

this.AttachEventHandler(siebConsts.get("PHYEVENT_COLUMN_FOCUS"), function()
{
 SiebelJS.Log("Control focus 2");
});
this.AddValidator(siebConsts.get("PHYEVENT_COLUMN_FOCUS"), function(row, ctrl,
val){
 if(ctrl.GetDisplayName() === "Account" && val === "Hibbing Mfg"){
 return true;
 }
});

e Finish the setup that you started in Step b on page 138. You add the following code:

 };
 derivedpm2.prototype.Setup = function(propSet){
 SiebelAppFacade.derivedpm2.superclass.Setup.call(this, propSet);

Configuring Siebel Open UI Siebel 2018

Customizing Siebel Open UI ■ Customizing Events

140

 };
 return derivedpm2;
 } ());
 return "SiebelAppFacade.derivedpm2";
 });
}

f Save your changes, and then close the derivedpm2.js file.

3 Configure the manifest. For more information about how to do this step, see “Adding Custom
Manifest Expressions” on page 163:

a Log in to a Siebel client with administrative privileges.

b Navigate to the Administration - Application screen, and then the Manifest Files view.

c Add the file that you created in Step 2.

For this example, you add the following file:

custom/derivedpm2.js

Note that your configuration derives the derivedpm2.js from the derivedpm1.js file, so it is
not necessary to add derivedpm1.js to the manifest.

d Navigate to the Manifest Administration view.

e In the UI Objects list, specify the following object.

f In the Object Expression list, add the following subexpression.

g In the Files list, add the following file:

custom/derivedpm2.js

Field Value

Type Applet

Usage Type Presentation Model

Name Opportunity List Applet

You can reference any list applet. For this example, use
Opportunity List Applet.

Field Value

Group Name Leave empty.

Expression Desktop

Level 1

Operator Leave empty.

Web Template Name Leave empty.

Customizing Siebel Open UI ■ Customizing Events

Configuring Siebel Open UI Siebel 2018 141

4 Log out of the client, and then log back into the client.

This step refreshes the manifest.

5 Verify your work:

a Navigate to the Opportunity List Applet.

b Click anywhere in the Account field.

c Verify that the browser console log displays the following text:

Control Focus 2

The handler that you specified in the derivedpm2.js file in Step 2 specifies this text.

d Verify that the browser console log displays the following text:

Control Focus 1

The handler that you specified in the derivedpm1.js file in Step 1 on page 137 specifies this
text.

Complete Contents of the derivedpm1 Presentation Model
The following code is the complete contents of the derivedpm1 presentation model:

if(typeof(SiebelAppFacade.derivedpm1) === "undefined"){
 SiebelJS.Namespace("SiebelAppFacade.derivedpm1");
 define("siebel/custom/derivedpm1", [], function(){
 SiebelAppFacade.derivedpm1 = (function(){
 var siebConsts = SiebelJS.Dependency("SiebelApp.Constants"),
 CANCEL_OPR = consts.get("SWE_EXTN_CANCEL_ORIG_OP"),
 STOP_PROP = consts.get("SWE_EXTN_STOP_PROP_OP");
 function derivedpm1(){
 SiebelAppFacade.derivedpm1.superclass.constructor.apply(this, arguments);
 }
 SiebelJS.Extend(derivedpm1, SiebelAppFacade.ListPresentationModel);
 derivedpm1.prototype.Init = function(){
 SiebelAppFacade.derivedpm1.superclass.Init.call(this);
 this.AttachEventHandler(siebConsts.get("PHYEVENT_COLUMN_FOCUS"), function()
 {
 SiebelJS.Log("Control focus 1");
 arguments[arguments.length - 1][consts.get("SWE_EXTN_CANCEL_ORIG_OP")]
= false;
 });
 this.AddValidator(siebConsts.get("PHYEVENT_COLUMN_FOCUS"), function(){
 return true;
 });
 };
 derivedpm1.prototype.Setup = function(propSet){
 SiebelAppFacade.derivedpm1.superclass.Setup.call(this, propSet);
 };
 return derivedpm1;
 } ());

Configuring Siebel Open UI Siebel 2018

Customizing Siebel Open UI ■ Customizing Events

142

 return "SiebelAppFacade.derivedpm1";
 });
}

Complete Contents of the derivedpm2 Presentation Model
The following code is the complete contents of the derivedpm2 presentation model:

if(typeof(SiebelAppFacade.derivedpm2) === "undefined"){
 SiebelJS.Namespace("SiebelAppFacade.derivedpm2");
 define("siebel/custom/derivedpm2", ["siebel/custom/derivedpm1"], function(){
 SiebelAppFacade.derivedpm2 = (function(){
 var siebConsts = SiebelJS.Dependency("SiebelApp.Constants"),
 CANCEL_OPR = consts.get("SWE_EXTN_CANCEL_ORIG_OP"),
 STOP_PROP = consts.get("SWE_EXTN_STOP_PROP_OP");
 function derivedpm2(){
 SiebelAppFacade.derivedpm2.superclass.constructor.apply(this, arguments);
}
SiebelJS.Extend(derivedpm2, SiebelAppFacade.derivedpm1);
derivedpm2.prototype.Init = function(){
SiebelAppFacade.derivedpm2.superclass.Init.call(this);
this.AttachEventHandler(siebConsts.get("PHYEVENT_COLUMN_FOCUS"), function()
{
SiebelJS.Log("Control focus 2");
});
this.AddValidator(siebConsts.get("PHYEVENT_COLUMN_FOCUS"), function(row, ctrl,
val){
if(ctrl.GetDisplayName() === "Account" && val === "Hibbing Mfg"){
return true;
}
});
};
derivedpm2.prototype.Setup = function(propSet){
SiebelAppFacade.derivedpm2.superclass.Setup.call(this, propSet);
};
return derivedpm2;
} ());
return "SiebelAppFacade.derivedpm2";
});
}

Customizing Siebel Open UI ■ Customizing Events

Configuring Siebel Open UI Siebel 2018 143

Customizing the Sequence that Attaches and Validates
Event Handlers
The example in this topic illustrates how you can modify the sequence that Siebel Open UI uses to
attach and validate event handlers so that it stops any further event handler processing after a
validation occurs. It does some custom validation, and then runs an event handler in a file named
derivedpm2.js. If the user triggers a control focus event, then Siebel Open UI runs the custom event
handler that displays a message in the Browser console log. The validator then returns a value of
false, so Siebel Open UI stops any further event handler processing for the custom event handler
and for the predefined event handler.

To customize the sequence that attaches and validates event handlers
1 Do Step 1 on page 137.

2 Do Step 2 on page 138, but specify the validator first, and then the event handler. You use the
following code:

this.Addvalidator(siebConsts.get("PHYEVENT_COLUMN_FOCUS"), function(){
 custom validation
 return true;
});
this.AttachEventHandler(siebConsts.get("PHYEVENT_COLUMN_FOCUS"), function()
{
 Siebjs.Log("Control Focus 2");
});

For more information about the methods that this code uses, see “AddValidator Method” and
“AttachEventHandler Method” on page 468.

3 Do Step 5 on page 141, but verify that Siebel Open UI displays the following text in the browser
console log:

Control Focus 2
Control Focus 1

Using AttachEventHandler Prior to Siebel CRM Release
8.1.1.13
Prior to Siebel CRM release 8.1.1.13, the AttachEventHandler method returns one of the following
values. This configuration allows AttachEventHandler to attach only one custom event to an event:

■ true. Attached an event handler successfully.

■ false. Did not attach an event handler successfully.

It uses the following syntax:

AttachEventHandler("eventName", eventHandler());

where:

Configuring Siebel Open UI Siebel 2018

Customizing Siebel Open UI ■ Customizing Events

144

■ eventName is a string that identifies the name of the event that Siebel Open UI must attach to
the event.

■ eventHandler identifies the method that Siebel Open UI calls.

For more information, see “AttachEventHandler Method” on page 468.

Overriding the OnControlEvent Method and Then Calling
a Superclass
You must not configure Siebel Open UI to override the OnControlEvent method to handle an event,
and then call a superclass. For example, assume you configure Siebel Open UI to override the
listpmodel.js file, and that the derived class resides in the derivedpm1.js file. Assume you then use
the following code to override the OnControlEvent method that resides in the pmodel.js file. This file
specifies the base presentation model class:

derivedpm1.prototype.OnControlEvent = function(event_name)
{
}

In this situation, when an event occurs, Siebel Open UI calls the overridden OnControlEvent instead
of the pmodel.prototype.OnControlEvent. You must avoid this configuration. For more information,
see “OnControlEvent Method” on page 475.

Allowing Blocked Methods for HTTP GET Access
In Siebel Innovation Pack 2014 and later, read and write operations have been separated for all
applets, business components, and business service methods.

If you want to allow access to a blocked method for HTTP GET access, a user property has been
introduced for applets and business services to include methods on a white list, thereby allowing
access using HTTP GET.

This topic describes how to allow blocked methods for HTTP GET access using the
GETEnabledMethods user property.

To allow blocked methods for HTTP GET access
1 Open Siebel Tools.

For more information, see Using Siebel Tools.

2 In the Object Explorer, click Applet.

3 In the Applets list, locate the applet or business service to which you want to add the
GETEnabledMethods user property.

4 In the Object Explorer, expand the Applet tree, and then click Applet User Prop.

Customizing Siebel Open UI ■ Managing Files

Configuring Siebel Open UI Siebel 2018 145

5 In the Applet User Props list, add the user property with the values:

NOTE: It is recommended to list only read-only methods in the white list for HTTP GET access.
Methods that perform write operations should not be listed.

Managing Files
This topic describes how to manage files. It includes the following information:

■ Organizing Files That You Customize

■ Updating Relative Paths in Files That You Customize on page 147

■ Specifying Dependencies Between Presentation Models or Physical Renderers and Other Files on
page 148

■ Configuring Custom Manifests on page 153

You also use the manifest to manage files. For more information, see “Configuring Manifests” on
page 150.

Organizing Files That You Customize
This topic describes how to organize files that you customize. A predefined file is a type of file that
comes configured ready-to-use with Siebel Open UI. A custom file is a predefined file that you modify
or a new file that you create. A .png file that you use for your company logo is an example of a
custom file. You can customize the following types of files:

■ JavaScript files

■ CSS files

■ Image files, such as .jpg or .png files.

■ HTML files.

■ XML files.

Note the following guidelines:

■ You must modify any relative paths that your custom file contains. For more information, see
“Updating Relative Paths in Files That You Customize” on page 147.

■ The folder structures that this topic describes applies to all cached and deployed files.

Field Value

Name GETEnabledMethods

Value MethodName1, MethodName2, ... MethodNameN

Where MethodNameX is the name of a method that should
be accessible by way of HTTP GET.

Configuring Siebel Open UI Siebel 2018

Customizing Siebel Open UI ■ Managing Files

146

■ Any third-party libraries that you use must reside in a predefined folder or in a custom folder.

NOTE: You must not modify any files that reside in the folders that Table 7 on page 147 describes.
You must make sure that these folders contain only Oracle content, and that your custom folders
contain only custom content. This configuration helps to avoid data loss in these folders. If you
modify any predefined file, then Siebel Open UI might fail, and it might not be possible to recover
from this failure.

To organize files that you customize
■ Store all your custom CSS files and image files that reside on the client in one of the following

folders:

INSTALL_DIR\applicationcontainer\webapps\siebel\files\custom
INSTALL_DIR\applicationcontainer\webapps\siebel\images\custom

where:

■ INSTALL_DIR is the folder where you installed the client.

■ Store all your custom presentation models and physical renderers in the following folder:

INSTALL_DIR\applicationcontainer\webapps\siebel\scripts\siebel\custom

Oracle stores predefined presentation models and physical renderers in the following folder. You
must not modify any file that resides in this folder:

INSTALL_DIR\applicationcontainer\webapps\siebel\scripts\siebel

Customizing Siebel Open UI ■ Managing Files

Configuring Siebel Open UI Siebel 2018 147

Where Siebel Open UI Stores Predefined Files in Siebel Open UI
Clients
Table 7 describes where Siebel Open UI stores predefined files in the Siebel Open UI client. You must
not modify any of these files. Instead, you can copy the file, and then save this copy to one of your
custom folders.

Updating Relative Paths in Files That You Customize
If you customize a file, and if you save this custom file in a custom folder, then you must modify any
relative paths that this file references. For example, if you copy the rules from a predefined .css file
into a custom .css file, then you must modify the relative paths that your custom .css file references
so that they reference the correct file. For an example of this configuration, see “Customizing the
Logo” on page 169.

To update relative paths in files that you customize
1 Create a custom file.

For more information about custom files, see “Organizing Files That You Customize” on page 145.

Table 7. Where Siebel Open UI Stores Predefined Files in Siebel Open UI Clients

File Type Folders Where Siebel Open UI Stores Predefined Files

JavaScript
files

Siebel Open UI stores JavaScript files in the following folders:

INSTALL_DIR\applicationcontainer\webapps\siebel\scripts
INSTALL_DIR\applicationcontainer\webapps\siebel\scripts\siebel
INSTALL_DIR\applicationcontainer\webapps\siebel\scripts\3rdParty

These folders contain JavaScript files only for predefined Siebel Open UI. You must
not modify these files, and you must not store any custom files in these folders. The
3rdParty folder might contain CSS files that the third-party JavaScript files require.

CSS files Siebel Open UI stores CSS files in the following folders:

INSTALL_DIR\applicationcontainer\webapps\siebel\files
INSTALL_DIR\applicationcontainer\webapps\siebel\files\3rdParty

These folders contain CSS files only for predefined Siebel Open UI. You must not
modify these files, and you must not store any custom files in these folders.

Image
files

Siebel Open UI stores image files in the following folders:

INSTALL_DIR\applicationcontainer\webapps\siebel\images

These folders contain image files only for predefined Siebel Open UI. You must not
modify these files, and you must not store any custom files in this folder. To support
color schemes, Siebel Open UI converts the images that Oracle provides from GIF
files to PNG files.

Configuring Siebel Open UI Siebel 2018

Customizing Siebel Open UI ■ Managing Files

148

2 Search your custom file for any relative paths.

For example, images/ in the following code is an example of a relative path:

src=images/ebus.gif

3 Modify the relative path so that it can correctly locate the file that it references.

For example:

src=INSTALL_DIR/applicationcontainer/webapps/siebel/images/ebus.gif

4 Do Step 2 and Step 3 for every relative path that your custom file contains.

Specifying Dependencies Between Presentation Models
or Physical Renderers and Other Files
A presentation model or physical renderer sometimes includes a module dependency, which is a
relationship that occurs when this presentation model or physical renderer depends on another file.
The Define method recognizes each of these items as a JavaScript code module, which is an object
that the module_name argument identifies as depending on other modules to run correctly. You
specify the module_name argument when you use the Define method to identify the JavaScript files
that Siebel Open UI must download for a presentation model or physical renderer. For more
information, see “Define Method” on page 559.

Consider the following example that uses the customPR.js file to define the physical renderer. This
renderer depends on plug-in X and plug-in Y, and it uses the following directory structure:

Customizing Siebel Open UI ■ Managing Files

Configuring Siebel Open UI Siebel 2018 149

In this example, the following logical dependencies exist between the customPR.js file and the x-
core.js file, x-helper.js file, and the customPR.js file:

Siebel Open UI then uses the following logic at run-time for this example:

1 The user navigates to a view that includes an applet that uses the customPR physical renderer.

2 The Siebel Server server sends a reply to the client that includes information about the property
set and the physical layout.

3 The view processes the information that the Siebel Server sends in Step 2, and then determines
that it must use siebel/custom/customPR.js to render the applet.

4 The RequireJS script loader uses the customPR.js file name to identify siebel/custom/customPR
as the module name, and then sends a request to the Siebel Server for this module.

5 If Siebel Open UI already loaded this module, then it returns the module object to the client and
proceeds to Step 7.

6 If Siebel Open UI has not already loaded this module, then it does the following work:

a Sends a request to the Application Interface for the siebel/custom/customPR.js file.

b If dependencies exist, then Siebel Open UI sends a request for these dependent modules, and
then runs the modules in the browser.

c Siebel Open UI runs the script for the siebel/custom/customPR.js file in the browser.

7 Siebel Open UI uses the module object to create a new instance of the presentation model and
the physical renderer.

To help manage your customizations, it is strongly recommended that you use a module name that
is similar to the relative location of the file name. You use the manifest administration screens to
specify the manifest for these dependencies.

Configuring Siebel Open UI Siebel 2018

Customizing Siebel Open UI ■ Configuring Manifests

150

To specify dependencies between presentation models or physical renderers and
other files
1 Use the list_of_dependencies argument when you use the Define method in your presentation

model or physical renderer.

For an example that uses the list_of_dependencies argument, see “Setting Up the Physical
Renderer” on page 80. For more information, see “Define Method” on page 559.

2 If file dependencies require that you configure Siebel Open UI to download files in a specific
order, then do “Configuring Manifests”.

Configuring Manifests
This topic describes how to configure Siebel Open UI manifests. It includes the following topics:

■ Overview of Configuring Manifests

■ Configuring Custom Manifests on page 153

■ Adding Custom Manifest Expressions on page 163

■ Adding JavaScript Files to Manifest Administrative Screens on page 165

Overview of Configuring Manifests
A manifest is a set of instructions that Siebel Open UI uses to identify the JavaScript files that it must
download from the Siebel Server to the client so that it can render screens, views, applets, menus,
controls, and other objects. For an overview of how Siebel Open UI uses this manifest, see “Example
of How Siebel Open UI Renders a View or Applet” on page 37.

Siebel CRM versions 8.1.1.9 and 8.1.1.10 use an XML manifest file to identify these JavaScript files
in the following situations:

■ When Siebel Open UI initializes the Siebel application. Siebel Open UI does this download only
for one Siebel application at a time.

■ The first time Siebel Open UI must display an applet in a Siebel application.

Starting with Siebel CRM versions 8.1.1.11 and 8.2.2.4, Siebel Open UI replaces the XML manifest
file with manifest data that it stores in the Siebel Database. You cannot modify this predefined
manifest data, but you can use the Manifest Administration screen in the client to configure the
manifest data that your customization requires. For more information about using a utility that
migrates your custom manifest configurations from Siebel CRM version 8.1.1.9 or 8.1.1.10 to version
8.1.1.11 or 8.2.2.4, see the topic that describes migrating the Siebel Open UI manifest file in Siebel
Database Upgrade Guide.

Customizing Siebel Open UI ■ Configuring Manifests

Configuring Siebel Open UI Siebel 2018 151

Example of How Siebel Open UI Identifies the JavaScript Files It Must
Download
Figure 35 describes an example of how Siebel Open UI uses the manifest to identify the JavaScript
file it must download so that it can use the presentation model for the SIS Account List Applet. The
manifest maps the recyclebinpmodel.js file that resides in the siebel/custom folder to the
presentation model that it uses to display this applet. For details about this example, see “Creating
the Presentation Model” on page 58 and “Configuring the Manifest for the Recycle Bin Example” on
page 105.

Figure 35. Example of How Siebel Open UI Identifies the JavaScript Files It Must Download

Explanation of Callouts The example manifest administration includes the following items:

1 The Files list specifies the siebel/custom/recyclebinpmodel.js file.

2 The presentation model specifies siebel/custom/recyclebinpmodel when it calls the define
method.

Configuring Siebel Open UI Siebel 2018

Customizing Siebel Open UI ■ Configuring Manifests

152

Example of a Completed Manifest Administration
Figure 36 includes an example of a completed manifest administration that configures Siebel Open
UI to download JavaScript files for the Contact List Applet. For more information about how to
configure this example, see “Configuring Custom Manifests” on page 153.

Figure 36. Example Manifest Administration

Explanation of Callouts The example manifest administration includes the following items:

1 The Grid group uses the AND operator to group three expressions into the following group
expression:

Desktop AND EditList AND Grid

A group expression is a type of expression that Siebel Open UI uses to arrange subexpressions
into a group in the Object Expression list.

2 Siebel Open UI uses the Level field to determine the order it uses to evaluate expressions. It uses
the following sequence:

a It uses the Level field to determine the order it uses to evaluate group expressions. In this
example, it uses the following sequence:

❏ Evaluates the Grid group first.

❏ Evaluates the Tile group next.

❏ Evaluates the Map group last.

Customizing Siebel Open UI ■ Configuring Manifests

Configuring Siebel Open UI Siebel 2018 153

b It uses the Level field within a group to determine the order it uses to evaluate each
subexpression, which is a type of expression that Siebel Open UI displays as part of a group in
the Object Expressions list. It displays each subexpression in an indented position after the group
expression. In this example, it uses the following sequence to evaluate subexpressions that
reside in the Grid group:

❏ Evaluates the Desktop expression first.

❏ Evaluates the EditList expression next.

❏ Evaluates the Grid expression last.

In this example, Siebel Open UI evaluates all the expressions that reside in the Grid group,
and then does one of the following according to the result of this evaluation:

❏ All expressions that reside in the Grid group evaluate to true. Siebel Open UI
downloads the file that the Files list specifies.

❏ Any expression that resides in the Grid group evaluates to false. Siebel Open UI
discards the entire Grid group, and then evaluates the Tile group.

3 Siebel Open UI uses the Files list to identify the files it must download. In this example, it does
the following evaluation:

■ If the platform is a desktop, and if the mode is EditList, and if the user chooses Grid, then it
downloads the siebel/jqgridrenderer.js file.

■ If the platform is a desktop, and if the mode is EditList, and if the user chooses Tile, then it
downloads the siebel/Tilescrollcontainer.js file.

To view an example that allows the user to choose Grid or Tile, see “Allowing Users to Change the
Applet Visualization” on page 210.

Configuring Custom Manifests
This topic describes how to configure the example described in “Example of a Completed Manifest
Administration” on page 152. For other examples that configure the manifest to download objects for:

■ Web templates and modified applet modes, see “Allowing Users to Change the Applet Visualization”
on page 210.

■ Different Web templates, physical renderers, and presentation models depending on the applet
and the user responsibility, see “Displaying Applets Differently According to the Applet Mode” on
page 218.

■ The physical renderer and the presentation model, see “Configuring the Manifest for the Recycle
Bin Example” on page 105.

■ A custom theme, see “Customizing the Logo” on page 169 and “Customizing Themes” on page 173.

To configure custom manifests
1 Make sure your custom presentation model or physical renderer uses the Define method:

a Use a JavaScript editor to open your custom presentation model or physical renderer.

Configuring Siebel Open UI Siebel 2018

Customizing Siebel Open UI ■ Configuring Manifests

154

b In the section where you configure Siebel Open UI to do the setup, make sure you use the Define
method to identify the presentation model file or the physical renderer file.

For an example that does this setup, see “Example of How Siebel Open UI Identifies the
JavaScript Files It Must Download” on page 151.

2 Configure the manifest files:

a Log in to a Siebel client with administrative privileges.

b Navigate to the Administration - Application screen, and then the Manifest Files view.

c Verify that the Manifest Files view includes the files that Siebel Open UI must download for your
custom deployment.

For this example, verify that the Manifest Files view includes the following files:

siebel/listapplet.js
siebel/jqgridrenderer.js

If the Manifest Files view does not include these files, then add them now. For more
information, see “Adding JavaScript Files to Manifest Administrative Screens” on page 165.

3 Configure the UI object:

a Navigate to the Administration - Application screen, and then the Manifest Administration view.

b In the UI Objects list, specify the following object.

For more information, see “Fields of the UI Objects List” on page 157.

4 Configure the Grid group:

For more information about how to configure a group, see “Adding Group Expressions” on
page 160.

Field Value

Type Applet

Usage Type Physical Renderer

Name Contact List Applet

Customizing Siebel Open UI ■ Configuring Manifests

Configuring Siebel Open UI Siebel 2018 155

a In the Object Expression list, add the following subexpression.

For more information, see “Fields of the Object Expression List” on page 159.

b Add another subexpression.

c Add another subexpression.

d Add the following group expression.

Field Value

Group Name Leave empty.

Expression Desktop

Level 1

Operator Leave empty.

Web Template Name Leave empty.

Field Value

Group Name Leave empty.

Expression EditList

Level 2

Operator Leave empty.

Web Template Name Leave empty.

Field Value

Group Name Leave empty.

Expression Grid

Level 3

Operator Leave empty.

Web Template Name Leave empty.

Field Value

Group Name Leave empty.

Expression Grid

Level 1

Operator Leave empty.

Web Template Name Leave empty.

Configuring Siebel Open UI Siebel 2018

Customizing Siebel Open UI ■ Configuring Manifests

156

e Use the Move Up and Move Down buttons to arrange the subexpressions in ascending numeric
order according to the value in the Level field. Make sure the Object Expression list displays all
subexpressions after the group expression.

f Use the Indent and Outdent buttons so that Siebel Open UI displays the subexpressions after
and indented from the group expression. The tree in the Inactive Flag field displays this
indentation.

g In the UI Objects list, query the Name property for the name of the UI object that you are
configuring. This query refreshes the Manifest Administration screen so that you can edit the
Group Name and Operator fields of the group expression.

h In the Object Expressions list, expand the tree that Siebel Open UI displays in the Inactive Flag
field.

i Set the following fields of the group expression.

5 Specify the files that Siebel Open UI must download for the Grid group:

a Make sure the Grid group expression is chosen in the Object Expression list.

b In the Files list, click Add.

c In the Files dialog box, click Query.

d In the Name field, enter the path and file name of the file.

For example, enter the following value:

siebel/jqgridrenderer.js

e Click Go.

If the Files dialog box does not return the file that your deployment requires, then you must
use the Manifest Files view to add this file before you can specify it in the Files list. For more
information, see “Adding JavaScript Files to Manifest Administrative Screens” on page 165.

f Click OK.

6 Configure the Tile group:

a Repeat Step 4 on page 154, with the following differences:

❏ For the group expression, set the Group Name field to Tile and the Level field to 2.

❏ For the last subexpression, set the Expression field to Tile.

b Repeat Step 5 on page 156, except add the following file:

siebel/tilescrollrenderer.js

7 Configure the Map group:

a Repeat Step 4 on page 154, with the following differences:

Field Value

Group Name Grid

Operator AND

Customizing Siebel Open UI ■ Configuring Manifests

Configuring Siebel Open UI Siebel 2018 157

❏ For the group expression, set the Group Name field to Map and the Level field to 3.

❏ Add only one subexpression with the Expression field set to Map.

b Repeat Step 5 on page 156, except add the following file:

siebel/custom/siebelmaprenderer.js

8 In the Object Expression list, use the Move Up, Move Down, Indent, and Outdent buttons until
the Object Expression list resembles the configuration in Figure 36 on page 152.

Fields of the UI Objects List
Table 8 describes the fields of the UI Objects list.

Table 8. Fields of the UI Objects List

Field Description

Inactive
Flag

Set to one of the following values:

■ Y. Make the object inactive. Make sure you set the Inactive Flag to Y for any
custom object that your deployment does not require.

■ N. Make the object active. Make sure you set the Inactive Flag to N for any
custom object that your deployment requires.

The Inactive Flag allows you to configure more than one manifest. You can
activate or deactivate each of these configurations during development. You can
set the Inactive Flag in the same way for each object that the Manifest
Administration view displays.

Type Choose one of the following values to specify the type of Siebel CRM object that
you are customizing:

■ Application

■ View

■ Applet

■ Navigation

■ Toolbar

■ Menu

■ Control

For more information, see “How Siebel Open UI Chooses Files If Your Custom
Manifest Matches a Predefined Manifest” on page 161.

Configuring Siebel Open UI Siebel 2018

Customizing Siebel Open UI ■ Configuring Manifests

158

Usage Type Specify how Siebel Open UI must download files. Choose one of the following
values:

■ Common. Siebel Open UI downloads the files when it initializes the Siebel
application. Siebel Call Center is an example of a Siebel application.

■ Theme. Siebel Open UI downloads only the files it requires to support a
theme that you customize. For an example that uses this value, see
“Customizing the Logo” on page 169.

■ Presentation Model. Siebel Open UI downloads the files that your custom
presentation model requires.

■ Physical Renderer. Siebel Open UI downloads the files that your custom
physical renderer requires.

■ Web Template. Siebel Open UI uses ODH according to the Name property
of the Web template. You specify this OD content in the Web template in
Siebel Tools. For more information, see “Identifying the ODH” on page 162.

For more information, see “How Siebel Open UI Chooses Files If Your Custom
Manifest Matches a Predefined Manifest” on page 161.

Name Enter the name of your custom object. For example, if you set the Type to Applet,
then you must specify the value that Siebel Tools displays in the Name property
of the applet.

Table 8. (Continued)Fields of the UI Objects List

Field Description

Customizing Siebel Open UI ■ Configuring Manifests

Configuring Siebel Open UI Siebel 2018 159

Fields of the Object Expression List
Table 9 describes the fields of the Object Expression list. You can configure a simple expression, or
you can configure a complex expression that includes AND or OR operators, and that can include
nested levels. For an example that includes complex expressions, see “Configuring Custom Manifests”
on page 153.

Table 9. Fields of the Object Expression List

Field Description

Group Name If the record that you are adding to the Object Expressions list is part of a group
of two or more expressions, and if this record is the group expression, then enter
a value in the Group Name field and leave the Expression field empty.

The Object Expressions list is a hierarchical list. You can use it to specify complex
expressions that you enter as more than one record in this list.

You must add more than one record and indent at least one of them before you
can enter a group name. For more information about how to do this work, see
“Adding Group Expressions” on page 160.

Expression If the record that you are adding to the Object Expressions list is:

■ Not a group expression. Set a value in the Expression field and leave the
Group Name field empty.

■ A group expression. Leave the Expression field empty and enter a value in
the Group Name field.

If the Expression list does not include the expression that your deployment
requires, then you must add a custom expression. For more information, see
“Adding Custom Manifest Expressions” on page 163.

Level Enter a number to determine the order that Siebel Open UI uses to evaluate
expressions that the Object Expression list contains. Siebel Open UI evaluates
these expressions in ascending, numeric order according to the values that the
Level field contains. If the Type field in the UI Objects list:

■ Is Application, then Siebel Open UI evaluates every expression. It downloads
each file that the Files list specifies for each expression that it evaluates to
true.

■ Is not Application, and if Siebel Open UI evaluates an expression to true, then
it does the following:

■ Downloads the file that the Files list specifies for this expression

■ Does not process any expression that exists further down in the order

■ Does not download any other files

Configuring Siebel Open UI Siebel 2018

Customizing Siebel Open UI ■ Configuring Manifests

160

Adding Group Expressions
You must use the sequence that this topic describes when you add a group expression. For an
example that uses this sequence, see “Configuring Custom Manifests” on page 153. For more
information about group expressions and subexpressions, see “Example of a Completed Manifest
Administration” on page 152.

To add group expressions
1 Navigate to the Administration - Application screen, and then the Manifest Administration view.

2 In the UI Objects list, locate the UI object that you must modify.

3 In the Object Expression list, add the subexpressions.

4 Add the group expression. Leave the Group and Operator fields empty.

5 Use the Move Up and Move Down buttons to arrange the subexpressions in ascending numeric
order according to the value in the Level field. Make sure the Object Expression list displays all
subexpressions after the group expression.

6 Use the Indent and Outdent buttons so that Siebel Open UI displays the subexpressions after
and indented from the group expression. The tree in the Inactive Flag field displays this
indentation.

7 In the UI Objects list, query the Name property for the name of the UI object that you are
configuring. This query refreshes the Manifest Administration screen so that you can edit the
Group Name and Operator fields of the group expression.

Operator If the record that you are adding to the Object Expressions list is a group
expression, then you must specify the logical operator that Siebel Open UI uses
to combine the subexpressions that the group contains. You can use one of the
following values:

■ AND. Specifies to combine subexpressions. If you specify AND, then Siebel
Open UI downloads files only if it evaluates every subexpression in the group
to true.

■ OR. Specifies to consider individually each subexpression that resides in the
group. If you specify OR, then Siebel Open UI downloads files according to
the first subexpression that it evaluates to true.

If the record that you are adding to the Object Expressions list is not a group
expression, or if it does not reside first in the hierarchy, then leave the Operator
field empty.

Web Template
Name

If you set the Usage Type field in the UI Objects list to Web Template, then you
must specify the name of the Siebel CRM Web template file in the Web Template
Name field. To identify this file name, see “Identifying the ODH” on page 162.

Table 9. Fields of the Object Expression List

Field Description

Customizing Siebel Open UI ■ Configuring Manifests

Configuring Siebel Open UI Siebel 2018 161

8 In the Object Expressions list, expand the tree that Siebel Open UI displays in the Inactive Flag
field.

9 Set the values for the Group Name field and the Operator field of the group expression.

How Siebel Open UI Chooses Files If Your Custom Manifest Matches a
Predefined Manifest
If the values that you specify in the Type, Usage Type, and Name fields of the UI Objects list are
identical to the values that a predefined UI object specifies, then Siebel Open UI uses your custom
manifest. For example, Siebel Open UI comes predefined with a UI Object record with the Type set
to Applet, the Usage Type set to Physical Renderer, and the Name set to Contact List Applet. To
override this configuration, you must do the following work:

■ Create a new record in the UI Objects list that contains the same values in the Type, Usage Type,
and Name fields that the predefined record contains.

■ Add a new record in the Object Expression list that evaluates to true.

■ Add a new record in the Files list for the object expression that evaluates to true.

The only exception to this rule occurs in the following situation:

■ You set the Type to Application.

■ You set the Usage Type to Common.

■ A winning expression exists in your customization. A winning expression is an expression that
Siebel Open UI evaluates to true, and that Siebel Open UI then uses to identify the files it must
download according to the configuration that the Manifest Administration view specifies.

In this situation, Siebel Open UI downloads the files that:

■ The predefined manifest configuration specifies

■ The winning expression of your custom manifest configuration specifies

Configuring Siebel Open UI Siebel 2018

Customizing Siebel Open UI ■ Configuring Manifests

162

Table 10 describes how Siebel Open UI chooses files if your manifest configuration matches the
predefined manifest configuration for a UI object. The Configuration column describes values that
the UI Objects list of the Manifest Administration screen contains.

Identifying the ODH
This topic describes how to identify the ODH that a Web template uses.

Table 10. How Siebel Open UI Chooses Files If Your Custom Manifest Matches the Predefined
Manifest

Configuration

Predefined
Configuration
Exists

Custom
Configuration
Exists Result

Type is
Application and
Usage Type is
Common

Yes No Siebel Open UI downloads files
according to the winning predefined
expressions.

Type is
Application and
Usage Type is
Common

Yes Yes Siebel Open UI downloads files
according to the winning predefined
expression and the winning custom
expressions.

Usage Type is
not Common

Yes No Siebel Open UI downloads files
according to the first predefined
expression that it evaluates to true.

If more than one expression exists,
then it uses the level to determine
the sequence it uses to evaluate
these expressions.

Usage Type is
not Common

Yes Yes Siebel Open UI downloads files
according to the first custom
expression that it evaluates to true.

If more than one expression exists,
then it uses the level to determine
the sequence it uses to evaluate
these expressions.

If Siebel Open UI does not evaluate
any custom expression to true, then
it uses a predefined expression for
this object.

Customizing Siebel Open UI ■ Configuring Manifests

Configuring Siebel Open UI Siebel 2018 163

To identify the Web template file name
1 Open Siebel Tools.

For more information, see Using Siebel Tools.

2 In the Object Explorer, click Web Template.

3 In the Web Templates list, locate the object definition for the Web template.

For example, if you entered Applet Form Grid Layout in the Name field in the UI Objects list, then
query the Name property in the Web Templates list for Applet Form Grid Layout.

The Definition Column lists the Object Definition for the queried Web template.

For example, Siebel Open UI uses the CCAppletFormGridLayout Web template for the Applet
Form Grid Layout Web template.

Adding Custom Manifest Expressions
This topic describes how to add a custom manifest expression.

To add custom manifest expressions
1 Log in to a Siebel client with administrative privileges.

2 Navigate to the Administration - Application screen, and then the Manifest Expressions view.

Configuring Siebel Open UI Siebel 2018

Customizing Siebel Open UI ■ Configuring Manifests

164

3 In the Expressions list, add the following expression.

Using Temporary Manifest Expressions During Development
It is recommended that you configure a temporary manifest expression that makes the manifest
specific to a single user. This configuration allows you to test and troubleshoot the manifest
configuration, if necessary.

To use temporary manifest expressions during development
1 Configure a manifest.

For more information, see “Configuring Custom Manifests” on page 153.

2 In the Expressions list, add an expression that configures the manifest for a single user.

For example:

Field Value

Name Enter text that describes the expression. For example, enter the following
value:

Desktop

Siebel Open UI uses this value as an abbreviation for the expression that
it displays in the Expression field in the Object Expression list in the
Manifest Administration screen. It uses this abbreviation only to improve
readability of the Object Expression list.

Expression Enter an expression. For example, to apply the expression according to
the:

■ Platform, use the following expression:

GetProfileAttr("Platform Name") = 'Desktop'

This example applies the expression for desktop platforms.

■ User position, use the following expression:

GetProfileAttr("Primary Position Type") = "Sales Representative"

This example applies the expression for the Sales Representative position.

Siebel Open UI uses this value when it evaluates expressions that reside in
the Object Expression list. For more information, see “GetProfileAttr
Method” on page 539.

Name Expression

CCHENG GetProfileAttr("Login Name") = 'CCHENG'

Customizing Siebel Open UI ■ About Preferences

Configuring Siebel Open UI Siebel 2018 165

3 Log out of the client, and then log back in to the client using the ID that you specified in Step 2
on page 164.

If you encounter an error during the log in, or if the client stops responding, then do the
following:

a Close the client session.

b Log in with a user ID that is different from the ID that you specified in Step 2 on page 164.

c Troubleshoot the manifest configuration error.

For example, assume you configure a manifest that references a custom file in the siebel/
custom folder, but you forget to add this custom file to this folder. If you attempt to log in to
the client with this configuration, then the client might stop responding, and you might not
be able to examine the manifest configuration. If you configure a temporary expression that
is specific to a single user, then you can log in as a different user and troubleshoot the
manifest configuration.

4 If necessary, fix the manifest configuration.

5 Remove the expression that you added in Step 2 on page 164.

Adding JavaScript Files to Manifest Administrative
Screens
This topic describes how to add a JavaScript file to the manifest administrative screens.

To add JavaScript files to manifest administrative screens
1 Log in to a Siebel client with administrative privileges.

2 Navigate to the Administration - Application screen, and then the Manifest Files view.

3 In the Files list, add a new record for each JavaScript file that you must add.

Make sure you include the path. For example, to add the mycustomrenderer.js file, you add the
following value:

custom/mycustomrenderer.js

You can now add this file in the Files list in the Manifest Administration view. For more information
about how to do this, see Step 5 on page 156.

About Preferences
Siebel Tools has preferences that control the appearance and behavior of user interface elements.
To set these preferences, navigate to Administration-Application, and then System Preferences.

Configuring Siebel Open UI Siebel 2018

Customizing Siebel Open UI ■ About Preferences

166

Table 11 describes some of the preferences available.

Table 11. Siebel Open UI Preferences

System Preference
Name

Default
Value Description

Enable Responsive
Label

Y Enables Smart Labels. Input fields qualified for
responsiveness start showing a label as soon as any
input character is typed in them. These fields must have
a input value,

 Enable Elastic Grid Y Enables Elastic Grid. When enabled, a list applet’s height
is reduced to the height required for the number of
records being displayed in the UI.

 Busy Cursor Timeout 30 Controls the maximum time the cursor shows as busy.
The default value is 30 seconds and is also the minimum
value.

The Busy Cursor Timeout preference provides a way to
customize the maximum timeout of the application based
on the customer process and usage. This system
preference does not change the busy cursor behavior. It
provides a way to customize the hourglass timing. Busy
Cursor Timeout can be interrupted by other processes
that also have timeouts, such as Message Bar interval,
Portlet session timeout, or any custom implementation
that does a polled server call at regular intervals. The
Busy Cursor Timeout value should be less than the
timeout values of these processes.

The end of the busy cursor period can indicate one of the
following events:

1 A process may take more time than the maximum
Busy Cursor Timeout value and the maximum time
has been reached.

2 The process has completed.

3 The process has been interrupted by another module.

Starting with look
ahead

N Controls the autocomplete logic in drop-down menus
based on the value of the drop-down input field. When set
to N (or False) the look ahead logic is "Contains". When
set to Y (or True), the look ahead logic is "Starting with".
For example, when set to N, and the value of the input
field is tom, then the drop-down menu displays values
such as tomb, atomic, and custom. When set to Y, the
drop-down menu displays only tomb from the same set of
data.

Customizing Siebel Open UI ■ About Preferences

Configuring Siebel Open UI Siebel 2018 167

Configuring Siebel Open UI Siebel 2018

Customizing Siebel Open UI ■ About Preferences

168

Configuring Siebel Open UI Siebel 2018 169

7 Customizing Styles, Applets,
Fields, and Controls

This chapter describes how to customize styles, applets, fields, and controls. It includes the following
topics:

■ Customizing Logos, Themes, Backgrounds, Tabs, Styles, and Fonts

■ Customizing Applets on page 185

■ Customizing Controls on page 238

Customizing Logos, Themes,
Backgrounds, Tabs, Styles, and Fonts
This topic describes how to customize the logo, theme, background image, and style that Siebel Open
UI displays in the client. It includes the following information:

■ Customizing the Logo

■ Customizing Themes on page 173

■ Customizing the Synergy Theme on page 176

■ Customizing the Aurora Theme on page 178

■ Customizing Browser Tab Labels on page 180

■ Using Cascading Style Sheets to Modify the Position, Dimension, and Text Attributes of an Object on
page 180

■ Adding Fonts to Siebel Open UI on page 181

You can make these modifications in the client at run time. You can then copy them into CSS files on
the Siebel Server, and then deploy them to all users.

Customizing the Logo
Starting with Siebel Innovation Pack 2014, Siebel Open UI defines the logo that it displays in the
client in CSS files instead of coding the logo in ODH. It uses the following predefined code to display
the logo in the Aurora theme for screen sizes larger than 1199 pixels:

#_sweclient #_sweappmenu .siebui-logo

 float: left;

height: 40px !important;

line-height: 40px;

Configuring Siebel Open UI Siebel 2018

Customizing Styles, Applets, Fields, and Controls ■ Customizing Logos, Themes,
Backgrounds, Tabs, Styles, and Fonts

170

background-image: url("../images/ebus.gif");

background-repeat: no-repeat;

background-origin: content-box;

background-position: 4px 12px;

width: 106px;

white-space: nowrap;

}

You can configure Siebel Open UI to override this code, or you can create your own custom theme
so that you can display a custom logo. You can configure Siebel Open UI to display a separate logo
in each theme. For more information about overriding an existing theme, or adding a new theme,
see Open UI Deployment Guide (Article ID 1499842.1) on My Oracle Support.

To customize the logo
1 Create a JPG file that includes your custom logo.

For example, my-logo.jpg.

2 Copy the file you created in Step 1 to the following folders:

INSTALL_DIR\applicationcontainer\webapps\siebel\images\custom

3 Use an editor to open your custom CSS file that resides in the following folder:

INSTALL_DIR\applicationcontainer\webapps\siebel\files\custom

For example, open the my-style.css file.

4 Add the following code:

#_sweclient #_sweappmenu .siebui-logo {

 background-image: url('../../images/custom/my-logo.jpg')

}

5 (Optional) Modify the logo attributes, as necessary:

a Use an editor to open your custom CSS file.

For example, open my-style.css.

b Add your custom code.

Siebel Open UI uses the following predefined code to specify the logo attributes:

#_sweclient #_sweappmenu .siebui-logo {

 float: left;

 height: 40px !important;

Customizing Styles, Applets, Fields, and Controls ■ Customizing Logos, Themes,
Backgrounds, Tabs, Styles, and Fonts

Configuring Siebel Open UI Siebel 2018 171

 line-height: 40px;

 background-image: url("../images/ebus.gif");

 background-repeat: no-repeat;

 background-origin: content-box;

 background-position: 4px 12px;

 width: 106px;

 white-space: nowrap;

}

You can modify each of these attributes, as necessary. For example, you can modify the
following width and height attributes to decrease the width and height of the logo to
accommodate your custom logo image:

#_sweclient #_sweappmenu .siebui-logo {

 width: 25px;

 height: 25px;

}

6 Configure the manifest. For more information about how to do this step, see “Configuring
Manifests” on page 150:

a Log in to a Siebel client with administrative privileges.

b Navigate to the Administration - Application screen, and then the Manifest Files view.

c Add the file that you modified in Step 4 on page 170.

For this example, you add the following file:

custom/my-style.css

d Navigate to the Manifest Expressions view.

e In the Expressions list, add the following expression.

Field Value

Name GRAY_TAB

Expression LookupName (OUI_THEME_SELECTION, Preference
("Behavior","DefaultTheme")) = "GRAY_TAB"

where:

■ LookupName is a method that converts the language-
dependent name of the theme to the language-independent
name of theme. Siebel Open UI uses the language-
independent name.

Configuring Siebel Open UI Siebel 2018

Customizing Styles, Applets, Fields, and Controls ■ Customizing Logos, Themes,
Backgrounds, Tabs, Styles, and Fonts

172

f Navigate to the Manifest Administration view.

g In the UI Objects list, specify the following object.

h In the Object Expression list, add the following subexpression.

i In the Object Expression list, add the following subexpression.

j Use the Move Up, Move Down, Indent, and Outdent buttons to rearrange the subexpressions, as
necessary.

k In the Files list, click Add.In the Files dialog box, click Query.

l In the Name field, enter the following path and file name:

custom/my-style.css

m Click Go.

7 Log out of the client, log back in to the client, and then verify that Siebel Open UI replaces the
Oracle logo with your custom logo.

Field Value

Type Application

Usage Type Theme

Name PLATFORM DEPENDENT

Field Value

Group Name Leave empty.

Expression Desktop

Level 1

Operator Leave empty.

Web Template Name Leave empty.

Field Value

Group Name Leave empty.

Expression Enter the value that you specified in Step e on page 171.

Level 2

Operator Leave empty.

Web Template Name Leave empty.

Customizing Styles, Applets, Fields, and Controls ■ Customizing Logos, Themes,
Backgrounds, Tabs, Styles, and Fonts

Configuring Siebel Open UI Siebel 2018 173

Customizing Themes
This topic includes an example that customizes the theme that Siebel Open UI displays in the client.
It describes how to add a custom theme named Mobile Theme Gold that Siebel Open UI displays on
a tablet.

The User Preferences - Behavior screen in the Siebel Mobile client allows the user to choose the
theme that this client displays. Siebel Open UI comes predefined with one theme for the tablet and
one theme for the phone, by default. It constrains the theme that the user can choose depending on
whether the user uses a phone, tablet, or desktop computer.

To customize themes
1 Create a new style sheet named theme-gold.css. Save this new file in the following folder:

INSTALL_DIR\applicationcontainer\webapps\siebel\files\custom

You can use any .css file that includes your custom theme. You can also specify multiple .css files.
For this example, use theme-gold.css.

2 Add the new theme to the OUI_THEME_SELECTION list of values:

a Open Siebel Tools. Connect to the database that your Siebel Mobile application uses.

For more information, see Using Siebel Tools.

b Click the Screens application-level menu, click System Administration, and then click List of
Values.

c Right-click in the List of Values list, and then click New Record.

d Add the following value to the OUI_THEME_SELECTION list of values.

e For the new theme to be displayed only for desktop, then under Object Expression, add a new
record with Expression = Desktop and Level = 1. For the new theme to be displayed for all
platforms (desktop, mobile, and so on), then under Object Expression add a new record with
Expression is null and Level = 1.

Property Value

Type OUI_THEME_SELECTION

Display Value Gold

Language-Independent
Code

GOLD_THEME

The value that you specify must match the theme
name that you define in the manifest. In this
example, this name is GOLD_THEME.

Parent LIC NAVIGATION_TAB

NAVIGATION_TREE

NAVIGATION_SIDE

Configuring Siebel Open UI Siebel 2018

Customizing Styles, Applets, Fields, and Controls ■ Customizing Logos, Themes,
Backgrounds, Tabs, Styles, and Fonts

174

3 Configure the manifest. For more information about how to do this step, see “Adding Custom
Manifest Expressions” on page 163:

a Log in to a Siebel client with administrative privileges.

b Navigate to the Administration - Application screen, and then the Manifest Files view.

c Add the file that you created in Step 1 on page 173.

For this example, add the following file:

files/custom/theme-gold.css

d Navigate to the Manifest Expressions view.

e In the Expressions list, add the following expression.

f Navigate to the Manifest Administration view.

g In the UI Objects list, specify the following object.

Field Value

Name GOLD_THEME

Expression LookupName (OUI_THEME_SELECTION, Preference
("Behavior","DefaultTheme")) = "GOLD_THEME"

where:

■ LookupName is a method that converts the language-
dependent name of the theme to the language-independent
name of theme. Siebel Open UI uses the language-
independent name.

Field Value

Type Application

This example configures Siebel Open UI to display your
custom theme for the entire Siebel application. To specify
this theme for a single object, see “Customizing Themes
for Other Objects” on page 175.

Usage Type Theme

Name PLATFORM DEPENDENT

Customizing Styles, Applets, Fields, and Controls ■ Customizing Logos, Themes,
Backgrounds, Tabs, Styles, and Fonts

Configuring Siebel Open UI Siebel 2018 175

h In the Object Expression list, add the following subexpression.

i In the Files list, add the file that you created in Step 1 on page 173.

For this example, you add the following file:

files/custom/theme-gold.css

You can use the Sequence field to determine the sequence that Siebel Open UI uses when it
downloads cascading style sheets.

4 Test your modifications:

a Login to the Siebel Open UI client.

b Click User Preferences, click Behavior, and then click Edit.

c Verify that the Theme field includes the Gold value.

d Click Gold, and then click Save.

e Log out of the Siebel Open UI client, and then log back in.

f Verify that the Siebel Open UI client displays Gold theme.

Customizing Themes for Other Objects
This topic describes how to customize themes other objects and portlet applications.

To customize themes for other objects and portlet applications
■ Do Step 1 on page 173 through Step 4 on page 175, except for Step 3, Step e on page 173, and

specify the object type and name of the object where Siebel Open UI must apply the style.

For example, to apply the style only for an applet, set the Type to Applet, and the Name to the
applet name, such as Contact List Applet.

To specify the theme for another application, use the following expression:

Field Value

Group Name Leave empty.

Expression Gold Theme

If you must add a theme to some other platform, such as
a phone or desktop, then specify this other platform. For
example, specify Phone instead of Tablet.

Level 1

Operator Leave empty.

Web Template Name Leave empty.

Configuring Siebel Open UI Siebel 2018

Customizing Styles, Applets, Fields, and Controls ■ Customizing Logos, Themes,
Backgrounds, Tabs, Styles, and Fonts

176

GetProfileAttr("PortletId") = "PtId"

where:

■ PtId is the PtId argument of the URL to a Siebel portlet.

For example:

GetProfileAttr("PortletId") = "CRMOPTY1"

For more information about PtId, see “Configuring Siebel Open UI to Consume Siebel Portlets” on
page 350.

Customizing the Synergy Theme
In Siebel Innovation Pack 2015, the Synergy theme was introduced. This topic describes elements
of the Synergy theme that can be customized. For more information about the Synergy theme, see
Fundamentals for Siebel Open UI.

The Synergy theme is designed for Available Tab navigation only and is not suitable for Side Menu
or Tree navigation.

Adding Landing Pages
By default, the landing page is enabled for all desktop applications. Follow the instructions in this
topic to add a Synergy theme landing page for mobile applications.

To add landing page for mobile applications
1 Navigate to the Administration - Runtime Events screen, and then the Action Sets view.

2 Create an action set with a Name of your choosing and default field values.

3 Add a new action to the action set you created in Step 2 with the following defined values:

4 Navigate to the Administration - Runtime Events screen, and then the Action Sets view.

Field Value

Name Action Name

For example, Landing Page.

Sequence 1

Profile Attribute Is Landing Page Enabled

Value TRUE

Customizing Styles, Applets, Fields, and Controls ■ Customizing Logos, Themes,
Backgrounds, Tabs, Styles, and Fonts

Configuring Siebel Open UI Siebel 2018 177

5 Create a run-time event with the following values:

Removing Applets from Landing Pages
Follow the instructions in this topic to configure Synergy theme landing page.

To configure content on landing pages
1 Navigate to the Administration - Personalization screen, and then the Applets view.

2 Query for the applet that you want to remove from the landing page.

3 Add the following expression:

GetProfileAttr("Is SUI_THEME Landing View") = 'FALSE'

NOTE: If there are any existing expressions, use the AND operator.

Removing Landing Pages
By default, in Siebel Open UI, desktop applications are configured to have landing pages. Whereas
mobile applications do not have default landing pages. Follow the instructions in this topic to skip
the display of landing page entirely.

To remove landing pages
1 Navigate to the Administration - Runtime Events screen, and then the Action Sets view.

2 Create an action set with a Name of your choosing and default field values.

3 Add a new action to the action set you created in Step 2 with the following defined values:

Field Value

Object Type Application

Object Name Name of application

For example, Siebel Universal Agent.

Event Login

Action Set Name Select the action set that was created in Step 2 on
page 176.

Sequence Sequence number

Field Value

Name Action Name

For example, Remove Landing Page.

Sequence 1

Configuring Siebel Open UI Siebel 2018

Customizing Styles, Applets, Fields, and Controls ■ Customizing Logos, Themes,
Backgrounds, Tabs, Styles, and Fonts

178

4 Navigate to the Administration - Runtime Events screen, and then the Action Sets view.

5 Create a run-time event with the following values:

6 Navigate to the Administration - Personalization screen, and then the Applets view.

7 Query for the Conditional Expression using containing the following string:

"*Is SUI_THEME Landing View*"

8 Select a record from the results of the search performed in Step 7, then remove the following
expression from the Conditional Expression string:

GetProfileAttr('Is SUI_THEME Landing View') = 'FALSE'

9 Repeat Step 8 for every record returned in the search performed in Step 7.

10 Select Reload Personalization Rules from the applet menu.

Customizing the Aurora Theme
This topic describes how to customize the Aurora theme. For more information about the Aurora
theme, see Fundamentals for Siebel Open UI.

To customize the Aurora theme
1 Create new CSS rules in mycustom.css and place the file in:

 <install_dir>\applicationcontainer\webapps\siebel\files\custom

2 Navigate to the Sitemap and query for manifest and then select Manifest Files.

3 From the drop-down menu choose Name, then enter files in the text field and run the query.

Profile Attribute Is Landing Page Enabled

Value FALSE

Field Value

Object Type Application

Object Name Name of application

For example, Siebel Universal Agent.

Event Login

Action Set Name Select the action set that was created in Step 2 on
page 177.

Sequence Sequence number

Field Value

Customizing Styles, Applets, Fields, and Controls ■ Customizing Logos, Themes,
Backgrounds, Tabs, Styles, and Fonts

Configuring Siebel Open UI Siebel 2018 179

4 Click the plus (+) icon in the menu bar.

5 In the name field, enter the path to the new CSS file, for example:

 files\custom\<mycustom.css>

6 Navigate to Manifest Administration and query for the Usage Type of Theme.

7 Click the plus (+) icon in the menu bar.

8 Create a new Platform Dependent record and click the plus (+) icon in Object Expressions.

9 Create an Aurora theme expression by clicking the plus icon (+) and entering "Aurora" in the
Expression field.

10 Click the MVG icon.

11 In the Expressions pop-up window, click OK.

12 Set the new object expression’s level to 1.

13 Click the plus (+) icon in the Files menu bar.

14 In the Files pop-up window, click the Search icon.

15 Enter files in the search field and click the Execute icon.

16 Select the check box for your new CSS file and click OK.

17 Navigate to Tools, User Preferences, and then Behavior.

18 From the Theme drop-down menu choose Aurora.

19 Close the application and then restart it.

The changes you made in the new CSS file are now active.

Configuring Siebel Open UI Siebel 2018

Customizing Styles, Applets, Fields, and Controls ■ Customizing Logos, Themes,
Backgrounds, Tabs, Styles, and Fonts

180

Customizing Browser Tab Labels
Siebel Open UI uses the view Title that you define in Siebel Tools to set the Browser tab label. If this
Title is not defined, then Siebel Open UI displays the Id of the current record as the label. For
example, it might display 2-HB474 as the Browser tab label:

If the label is not set for the view, the Id of the selected record is displayed by default. The tab name
for the browser is set with the view Title or Title String Override, if it is defined within Siebel Tools.
The same view Title is also looked up when the following script is called:

SiebelApp.S_App.GetActiveView().GetTitle().

Using Cascading Style Sheets to Modify the Position,
Dimension, and Text Attributes of an Object
The example in this topic describes how to modify the cascading style sheet. You move the
Predefined Query (PDQ) to a different location and you modify the text color of the Predefined Query.

To use cascading style sheets to modify the position, dimension, and text attributes
of an object
1 Add these CSS rules to the end of your custom style sheet, my-style.css:

#_sweclient #_sweappmenu .PDQToolbarContainer {

 position: absolute;

 top: 40px;

 left: 610px;

Customizing Styles, Applets, Fields, and Controls ■ Customizing Logos, Themes,
Backgrounds, Tabs, Styles, and Fonts

Configuring Siebel Open UI Siebel 2018 181

 width: 140px;

}

#_sweclient #_sweappmenu .PDQToolbarContainer select {

 color: red;

 width: 140px;

}

2 Save the my-style.css file.

3 Verify that the Predefined Query drop-down list appear in the Help menu.

Adding Fonts to Siebel Open UI
This topic describes how to add custom fonts to Siebel Open UI. Although you can add custom fonts,
it is recommended that your Siebel Open UI deployment use only Web-safe fonts because you might
not be able to control font usage. For example, assume you deploy a custom font to all users in your
company, and that you also add this font to Siebel Open UI. Assume that one of your Siebel Open
UI users chooses this font in a text editor in Siebel Open UI, and then sends this text in an email
message to an external customer who has not installed this custom font on their computer. In this
situation, your Siebel Open UI user can read the font but the external customer cannot read it.

Using Web-safe fonts helps to make sure that any Browser or other client, such as a desktop
computer or mobile device, can correctly render the text that your users provide, regardless of how
each user configures font usage in their individual Browsers or clients, or the level of font
customization that exists in your deployment environment. For more information about Web-safe
fonts, see the topic that describes Web Safe Font Combinations at http://www.w3schools.com/
cssref/css_websafe_fonts.asp.

To add fonts to Siebel Open UI
1 Create a JavaScript file that adds your custom font:

a Create a new JavaScript file named ckeditorfontadditions.js, and then save this file in the custom
folder.

For more information about this folder, see “Organizing Files That You Customize” on page 145.

b Add the following code to the file that you created in Step a. This code adds the fonts that Siebel
Open UI displays in the Font picklists when the user edits text in the client:

if (typeof(SiebelAppFacade.CKEDITOREXTN) == "undefined") {

 Namespace('SiebelAppFacade.CKEDITOREXTN');

 (function() {

 SiebelApp.EventManager.addListner("postload", ckeditorextn, this);

 var updatedFont = "";

Configuring Siebel Open UI Siebel 2018

Customizing Styles, Applets, Fields, and Controls ■ Customizing Logos, Themes,
Backgrounds, Tabs, Styles, and Fonts

182

 function ckeditorextn() {

 try {

 if (CKEDITOR &&

 CKEDITOR.config.font_names !== updatedFont) {

 CKEDITOR.config.font_names = CKEDITOR.config.font_names +

 'font_families'

 updatedFont = CKEDITOR.config.font_names;

 }

 } catch (error) {

 // Nothing to do.

 }

 }

 }());

}

where:

❏ CKEDITOR.config.font_names is a predefined function that Siebel Open UI uses to store
the list of fonts that it uses.

❏ font_families specifies one or more font families that Siebel Open UI uses to render the
font.

❏ catch (error) catches any error that might occur when Siebel Open UI attempts to render
the fonts that you specify. If an error occurs, then Siebel Open UI uses a predefined font
to display the control.

For this example, use the following code for font_families:

';Calibri/Calibri, Verdana, Geneva, sans-serif;'

For more information about how to specify the font family, see “Specifying Font Families” on
page 183.

2 Administer the manifest:

For more information about how to do this step, see “Configuring Manifests” on page 150.

a Log in to the client as an administrator.

b Navigate to the Administration - Application screen, and then the Manifest Files view.

c In the Files list, add the file that you created in Step 2.

You add the following record:

Customizing Styles, Applets, Fields, and Controls ■ Customizing Logos, Themes,
Backgrounds, Tabs, Styles, and Fonts

Configuring Siebel Open UI Siebel 2018 183

siebel/custom/ckeditorfontadditions.js

d Navigate to the Administration - Application screen, and then the Manifest Administration view.

e In the UI Objects list, add a new record. Use values from the following table.

f In the Object Expression list, add the following subexpression.

g In the Files list, add the file that you created in Step 2 on page 182.

You add the following record:

siebel/custom/ckeditorfontadditions.js

h Refresh the manifest. Log out of the client, and then log back in to the client.

3 Verify that Siebel Open UI added your custom fonts:

a Navigate to the Administration Communications screen, and then the All Templates view.

b In the Compose Template section, in the Text window, click the Font drop-down, and then make
sure the Font list displays the font that you specified in Step 1, Step b on page 181.

Specifying Font Families
You can use the following code to specify the font family:

function ckeditorextn() {

 try {

 if (CKEDITOR &&

 CKEDITOR.config.font_names !== updatedFont) {

 CKEDITOR.config.font_names = CKEDITOR.config.font_names +

 'font_families'

 updatedFont = CKEDITOR.config.font_names;

Type Usage Type Name

Application Common PLATFORM INDEPENDENT

Field Value

Group Name Leave empty.

Expression Desktop

Level 1

Operator Leave empty.

Web Template Name Leave empty.

Configuring Siebel Open UI Siebel 2018

Customizing Styles, Applets, Fields, and Controls ■ Customizing Logos, Themes,
Backgrounds, Tabs, Styles, and Fonts

184

 }

 } catch (error) {

 // Nothing to do.

where:

■ font_families specifies one or more font families that Siebel Open UI uses to render the font.

font_families can include one or more families. You must precede each font family with a semi-
colon (;). For example:

;font_family_1;font_family_2;font_family_n

You must use the following format for each font family:

font_name/font_label,substitute_font_1,substitute_font_2, substitute_font_n,
generic_font_family

where:

■ font_name specifies the name of the font, such as Calibri.

■ font_label specifies the text label. It displays this label in the Font picklists in the client.

■ substitute_font_1 specifies the font if the font that font_name specifies does not exist in the
client computer.

■ substitute_font_2 specifies the font if the font that substitute_font_1 specifies does not exist in
the client computer.

■ generic_font_family specifies the font family if the font that substitute_font_n specifies does not
exist in the client computer. Siebel Open UI chooses a font from this generic font family.

It is recommended that you specify a substitution font that resembles the font that it substitutes.
For example, Calibri is a sans-serif, proportionally spaced font. If you specify Calibri as the
font_name, then it is recommended that you specify a close approximation to Calibri for
substitute_font_1, such as Verdana, which is also a sans-serif, proportionally spaced font. It is
recommended that you use this same approach when you specify the remaining substitution fonts.
For example, specify Geneva for substitute_font_2.

Consider the following example:

';Calibri/My Font, Verdana, Geneva, sans-serif;'

This code configures Siebel Open UI to do the following:

■ Adds Calibri to the list of fonts that Siebel Open UI displays in Font picklists.

■ Uses My Font as the label for the Calibri font that Siebel Open UI displays in Font picklists.

■ If Calibri is not installed on the client computer, then Siebel Open UI uses the following sequence
to determine the font that it displays:

a Uses Verdana for My Font.

b If Verdana is not installed on the client computer, then it uses Geneva for My Font.

Customizing Styles, Applets, Fields, and Controls ■ Customizing Applets

Configuring Siebel Open UI Siebel 2018 185

c If Geneva is not installed on the client computer, then it uses any sans-serif font that is installed
on the client computer for My Font.

If you specify a font that includes a space character, then you must use double-quotes to enclose the
entire font name. For example, you must use double quotes to enclose Times New Roman and Courier
New:

';"Times New Roman"/My Font,Georgia,"Courier New",Serif;'

For more information about font families, see the topic that describes the CSS font family property
at the W3 Schools website at http://www.w3schools.com/cssref/pr_font_font-family.asp.

Customizing Applets
This topic describes how to customize applets. It includes the following information:

■ Displaying and Hiding Fields

■ Allowing Users to Drag and Drop Data Into List Applets on page 190

■ Expanding and Collapsing Applets on page 192

■ Customizing List Applets to Display a Box List on page 194

■ Customizing List Applets to Render as Carousels on page 197

■ Customizing List Applets to Render as Maps on page 203

■ Customizing List Applets with Class Names on page 206

■ Disabling Oracle Maps on page 207

■ Configuring the Focus in Siebel Applets on page 207

■ Adding Static Drilldowns to Applets on page 208

■ Allowing Users to Change the Applet Visualization on page 210

■ Displaying Applets Differently According to the Applet Mode on page 218

■ Adding Custom User Preferences to Applets on page 224

■ Customizing Applets to Capture Signatures from Desktop Applications on page 228

■ Customizing Applets to Capture Signatures for Siebel Mobile Applications on page 233

■ Customizing Applets to Display Record Counts for Navigation Links on page 237

Displaying and Hiding Fields
The example in this topic describes how to configure Siebel Open UI to display a field. To view a
diagram that illustrates some of the objects you modify and the relationships between these objects,
see “Configuring Manifests” on page 150.

This topic is similar to the “Displaying and Hiding Fields” on page 185 topic, but with fewer details. It
demonstrates how you can quickly modify a presentation model.

Configuring Siebel Open UI Siebel 2018

Customizing Styles, Applets, Fields, and Controls ■ Customizing Applets

186

To customize the fields that are visible in an applet
1 Copy the JavaScript files:

a Download a copy of the partialrefreshpm.js file to the following folder:

INSTALL_DIR\applicationcontainer\webapps\siebel\scripts\siebel\custom

For more information about this file, see “Text Copy of Code That Does a Partial Refresh for the
Presentation Model” on page 187.

b Download a copy of the partialrefreshpr.js file to in the following folder:

INSTALL_DIR\applicationcontainer\webapps\siebel\scripts\siebel\custom

For more information about this file, see “Text Copy of Code That Does a Partial Refresh for the
Physical Renderer” on page 188.

2 Configure the manifest:

a Log in to a Siebel client with administrative privileges.

For more information about the screens that you use in this step, see “Configuring Manifests”
on page 150.

b Navigate to the Administration - Application screen, and then the Manifest Files view.

c In the Files list, add the following files.

d Navigate to the Administration - Application screen, and then the Manifest Administration view.

e In the UI Objects list, specify the following applet.

f In the Object Expression list, add the following expression. The physical renderer uses this
expression to render the applet in a mobile platform.

Field Value

Name siebel/custom/partialrefreshpr.js

Name siebel/custom/partialrefreshpm.js

Field Value

Type Applet

Usage Type Physical Renderer

Name Contact Form Applet

Field Value

Expression Mobile

Level 1

Customizing Styles, Applets, Fields, and Controls ■ Customizing Applets

Configuring Siebel Open UI Siebel 2018 187

g In the Files list, add the following file:

siebel/custom/partialrefreshpr.js

h In the UI Objects list, specify the following applet.

i In the Object Expression list, add a record with no value in the Expression field.

j In the Files list, add the following file:

siebel/custom/partialrefreshpm.js

3 Test your modifications:

a Open the browser in the client computer, and then clear the browser cache.

b Open the Siebel application, and then navigate to the Contact Form Applet.

c Delete the value in the Job Title field, and then step out of the field.

d Make sure Siebel Open UI removes the values from the Work # and the Main Fax # fields.

e Add a value to the Job Title field, and then step out of the field.

f Make sure Siebel Open UI adds values to the Work # and the Main Fax # fields.

Text Copy of Code That Does a Partial Refresh for the Presentation
Model
To get a copy of the partialrefreshpm.js file, see Article ID 1494998.1 on My Oracle Support. If you
do not have access to this file on My Oracle Support, then you can open a JavaScript editor, create
a new file named partialrefreshpm.js, copy the following code into this file, and then save your
modifications:

if(typeof(SiebelAppFacade.PartialRefreshPM) === "undefined"){

 SiebelJS.Namespace("SiebelAppFacade.PartialRefreshPM");

 define("siebel/custom/partialrefreshpm", [], function () {(

 SiebelAppFacade.PartialRefreshPM = (function(){

 function PartialRefreshPM(proxy){

 SiebelAppFacade.PartialRefreshPM.superclass.constructor.call(this, proxy);

 }

Field Value

Type Applet

Usage Type Presentation Model

Name Contact Form Applet

Configuring Siebel Open UI Siebel 2018

Customizing Styles, Applets, Fields, and Controls ■ Customizing Applets

188

 SiebelJS.Extend(PartialRefreshPM, SiebelAppFacade.PresentationModel);

 PartialRefreshPM.prototype.Init = function(){

 SiebelAppFacade.PartialRefreshPM.superclass.Init.call(this);

 this.AddProperty("ShowJobTitleRelatedField", "");

 this.AddMethod("ShowSelection", SelectionChange,{sequence : false, scope :
this});

 this.AddMethod("FieldChange", OnFieldChange,{sequence : false, scope: this});

 };

 function SelectionChange(){

 var controls = this.Get("GetControls");

 var control = controls["JobTitle"];

 var value = this.ExecuteMethod("GetFieldValue", control);

 this.SetProperty("ShowJobTitleRelatedField", (value ? true: false));

 }

 function OnFieldChange(control, value){

 if(control.GetName() === "JobTitle"){

 this.SetProperty("ShowJobTitleRelatedField", (value ? true: false));

 }

 }

 return PartialRefreshPM;

 }());

}

Text Copy of Code That Does a Partial Refresh for the Physical
Renderer
To get a copy of the partialrefreshpr.js file, see Article ID 1494998.1 on My Oracle Support. If you
do not have access to this file on My Oracle Support, then you can open a JavaScript editor, create
a new file named partialrefreshpr.js, copy the following code into this file, and then save your
modifications:

if(typeof(SiebelAppFacade.PartialRefreshPR) === "undefined"){

SiebelJS.Namespace("SiebelAppFacade.PartialRefreshPR");

//Module with its dependencies

Customizing Styles, Applets, Fields, and Controls ■ Customizing Applets

Configuring Siebel Open UI Siebel 2018 189

define("siebel/custom/partialrefreshpr", ["order!3rdParty/
jquery.signaturepad.min", "order!siebel/phyrenderer"], function () {

SiebelAppFacade.PartialRefreshPR = (function(){

function PartialRefreshPR(pm){

SiebelAppFacade.PartialRefreshPR.superclass.constructor.call(this, pm);

}

SiebelJS.Extend(PartialRefreshPR, SiebelAppFacade.PhysicalRenderer);

PartialRefreshPR.prototype.Init = function () {

SiebelAppFacade.PartialRefreshPR.superclass.Init.call(this);

// To act when FieldChange method is raised at PM level and execute our
custom code

this.AttachPMBinding("FieldChange", FieldChange);

};

function ModifyLayout(){

var controls = this.GetPM().Get("GetControls");

var control = controls["JobTitle"];

var value = this.GetPM().ExecuteMethod("GetFieldValue", control);

var canShow = (value ? true : false);

var WorkPhoneNum = controls["WorkPhoneNum"];

var FaxPhoneNum = controls["FaxPhoneNum"];

if(canShow){

$("#WorkPhoneNum_Label").parent().show(); // We need to take the parent
to get the whole div to hide

$("[name='" + WorkPhoneNum.GetInputName() + "']").parent().show();

$("#FaxPhoneNum_Label").parent().show();

$("[name='" + FaxPhoneNum.GetInputName() + "']").parent().show();

}

else{

$("#WorkPhoneNum_Label").parent().hide();

$("[name='" + WorkPhoneNum.GetInputName() + "']").parent().hide();

Configuring Siebel Open UI Siebel 2018

Customizing Styles, Applets, Fields, and Controls ■ Customizing Applets

190

$("#FaxPhoneNum_Label").parent().hide();

$("[name='" + FaxPhoneNum.GetInputName() + "']").parent().hide();

}

}

function FieldChange (control, value, index) {

if(control.GetName() === "JobTitle"){

ModifyLayout.call(this);

}

}

// We are overloading the standard PR ShowSelection to apply our customization

// We ensure to first call the parent ShowSelection

PartialRefreshPR.prototype.ShowSelection = function(index) {

SiebelAppFacade.PartialRefreshPR.superclass.ShowSelection.call(this,index)
;

ModifyLayout.call(this);

};

return PartialRefreshPR;

} ());

return "SiebelAppFacade.PartialRefreshPR";

});

}

Allowing Users to Drag and Drop Data Into List Applets
The example in this topic describes how to allow users to select and move data from a spreadsheet
to the Contact List applet. You cannot use a calculated field value for the Client PM User Properties.

To allow users to select and move data into list applets
1 Modify the list applet:

Customizing Styles, Applets, Fields, and Controls ■ Customizing Applets

Configuring Siebel Open UI Siebel 2018 191

a Open Siebel Tools.

For more information, see Using Siebel Tools.

b In the Object Explorer, click Applet.

c In the Applets list, query the Name property for Contact List Applet.

d In the Object Explorer, expand the Applet tree, and then click Applet User Prop.

e In the Applet User Properties list, add the following applet user properties.

f Compile your modifications.

2 Identify the columns that you must select and move:

a Log in to the client, navigate to the Contacts screen, and then the Contacts List.

b In the contact form, notice the required fields.

Siebel Open UI uses an asterisk (red color) to indicate each required field. In the contact
form, the Last Name and First Name fields are required.

3 Create a spreadsheet:

a Open a spreadsheet application, such as Microsoft Excel.

b In the first row, add the column headers for the columns that you must select and move.

❏ For each column name that you include, make sure the column name is identical to the
column name that the list applet displays in the client.

❏ Siebel Open UI does not require you to include all column headers. However, you must
include all the required column headers that you noticed in Step 2.

❏ You can include column headers in any order.

c Add data rows immediately after the column header row that you added in Step b.

For example, add rows that include information about each contact, such as first name and
last name.

Your completed work might resemble the following spreadsheet:

4 Select and move the data:

Name Value

ClientPMUserProp EnableDragAndDropInList

EnableDragAndDropInList TRUE

Configuring Siebel Open UI Siebel 2018

Customizing Styles, Applets, Fields, and Controls ■ Customizing Applets

192

a In the spreadsheet application, choose the cells that include the header and data information.

b Select and move the cells that you chose in Step a to the Contact List Applet in the Siebel
application.

Do the following to select and move cells in Excel. Your spreadsheet program might work
differently:

❏ Position the cursor over a corner of the selection area until Excel displays the cursor as
a four-way arrow.

❏ Right-click and hold down the mouse button over the cursor.

❏ Move the selection area to the Contact List Applet.

❏ Release the mouse button.

c Verify that Siebel Open UI added the data rows to the list applet.

Expanding and Collapsing Applets
This topic describes how to configure Siebel Open UI to display an applet as expanded or collapsed,
by default.

To expand and collapse applets
1 Modify the applet:

a Open Siebel Tools.

For more information about using Siebel Tools, see Using Siebel Tools.

b In the Object Explorer, click Applet.

c In the Applets list, query the Name property for the applet that you must modify.

For example, query for SIS Account Entry Applet.

d In the Object Explorer, expand the Applet tree, and then click Applet User Property.

e In the Applet User Properties list, create two new applet user properties. Use values from the
following table.

f Compile your work.

Name Value

ClientPMUserProp Default Applet Display Mode

Default Applet Display
Mode

Use one of the following values:

■ Expanded. Siebel Open UI displays the applet
in an expanded state, by default.

■ Collapsed. Siebel Open UI displays the applet
in a collapsed state, by default.

Customizing Styles, Applets, Fields, and Controls ■ Customizing Applets

Configuring Siebel Open UI Siebel 2018 193

2 Modify the Web template:

a Identify the Web template that you must modify, and then open it for editing.

b Add the following code:

<div od-type=”form”>
<div od-if="Web Engine State Properties, IsPrintOff">
 <div class="od-context-SelectStyle">
</div>
 <div class="siebui-collapsible-applet">
 <table datatable="0" summary="" width="100%" cellpadding="0"cellspacing="0"
border="0" align="center"
 <div class="siebui-collapsible-applet-header">
 <div od-include="CCTitle_Named"/>
 <div od-include="CCFormButtonsTop"/>
 <div od-type=”error” type="Popup">
 <table datatable="0" summary="" class="od-context-Applet” width="100%"
cellpadding="0"
</div>
 <div class="siebui-collapsible-applet-content">
 <div od-type=”form-applet-layout”>
 </div>
 <div>
 <div>
 <table>
 <div>

where:

❏ siebui-collapsible-applet. Identifies the applet body.

❏ siebui-collapsible-applet-header. Identifies the section where Siebel Open UI adds
the expand button or the collapse button.

❏ siebui-collapsible-applet-content. Identifies the section that Siebel Open UI
expands or collapses.

3 Test your work:

a Log in to the client.

b Navigate to the applet that you modified in Step 1 on page 192.

c Verify that Siebel Open UI displays the applet as expanded or collapsed according to the value
that you set for the Default Applet Display Mode applet user property in Step 1 on page 192.

d Verify that Siebel Open UI displays the expand and collapse button correctly.

If Siebel Open UI expands the applet, then it must display the following collapse icon in the
the applet:

If Siebel Open UI collapses the applet, then it must display the following expand icon in the applet:

Configuring Siebel Open UI Siebel 2018

Customizing Styles, Applets, Fields, and Controls ■ Customizing Applets

194

Customizing List Applets to Display a Box List
This topic describes how to customize a list applet to display a box list. You customize how Siebel
Open UI renders an applet, the content it displays, and the style that it uses in the client.

To customize list applets to display a box list
1 Log in to the client.

2 Navigate to a view that displays a typical Siebel list applet.

For example, navigate to the Accounts screen, and then the Accounts list.

Notice that Siebel Open UI displays the typical predefined list.

3 Open Windows Explorer, and then navigate to the following folder:

INSTALL_DIR\applicationcontainer\webapps\siebel\scripts\siebel

For example:

C:\16.0\applicationcontainer\webapps\siebel\scripts\siebel

4 Rename the existing jqgridrenderer.js file that resides in the folder you accessed in Step 3 to
jqgridrenderer_original.js.

5 Download the jqgridrenderer_tile.js file to the folder you accessed in Step 3.

The jqgridrenderer_tile file prevents Siebel Open UI from initializing the jqgrid control and from
rendering other fields in the grid. To get a copy of this file, see Article ID 1494998.1 on My Oracle
Support.

6 Rename the jqgridrenderer_tile.js file to jqgridrenderer.js.

Customizing Styles, Applets, Fields, and Controls ■ Customizing Applets

Configuring Siebel Open UI Siebel 2018 195

7 In the Siebel Open UI client, press the F5 key to refresh the screen.

8 In Windows Explorer, navigate to the following folder:

INSTALL_DIR\applicationcontainer\webapps\siebel\files\custom

9 Use an editor to open the my-style.css file.

10 Copy the following code into the theme_base.css file. This code configures Siebel Open UI to
display account names in a series of vertical boxes:

/*---*/

/* Styles for alternate List display demo */

/*---*/

.siebui-boxlist {

 width: 100%;

 height: 100%;

 overflow: auto;

}

.siebui-boxlist-pager,.siebui-boxlist-items{

 display: table-row;

Configuring Siebel Open UI Siebel 2018

Customizing Styles, Applets, Fields, and Controls ■ Customizing Applets

196

 white-space: nowrap;

 width: 100%;

}

.siebui-boxlist-item, siebui-boxlist-item-selected {

 padding: 100px 0px;

 height: 40px;

 border-radius: 5px;

 float: left;

 width: 120px;

 overflow: hidden;

 margin: 5px 12px;

 color: #222!important;

 text-shadow: 0 1px 0 rgba(255, 255, 255, 0.7);

 text-align: center;

}

.siebui-boxlist-item {

 background: rgb(250, 250, 250);

 background: -moz-linear-gradient(top, rgba(250, 250, 250, 1) 0%, rgba(225, 225,
225, 1) 100%);

 background: -webkit-gradient(linear, left top, left bottom, color-stop(0%,
rgba(250, 250, 250, 1)), color-stop(100%, rgba(225, 225, 225, 1)));

 background: -webkit-linear-gradient(top, rgba(250, 250, 250, 1) 0%, rgba(225, 225,
225, 1) 100%);

 border-bottom: 1px solid #AAA;

 box-shadow: 0 0 3px rgba(0, 0, 0, 0.4);

 -webkit-box-shadow: 0 0 3px rgba(0, 0, 0, 0.4);

}

.siebui-boxlist-item-selected {

 background: rgb(250, 250, 250);

 background: -moz-linear-gradient(top, rgba(249, 238, 167, 0.5) 0%, rgba(251, 236,
136, 0.5) 100%)!important;

Customizing Styles, Applets, Fields, and Controls ■ Customizing Applets

Configuring Siebel Open UI Siebel 2018 197

 background: -webkit-gradient(linear, left top, left bottom, color-stop(0%,
rgba(249, 238, 167, 0.5)), color-stop(100%, rgba(251, 236, 136, 0.5)))!important;

 background: -webkit-linear-gradient(top, rgba(249, 238, 167, 0.5) 0%, rgba(251,
236, 136, 0.5) 100%)!important;

 border-bottom: 1px solid #AAA;

 box-shadow: 0 0 3px rgba(0, 0, 0, 0.4);

 -webkit-box-shadow: 0 0 3px rgba(0, 0, 0, 0.4);

}

/*---*/

/* Styles for alternate List display demo */

/*---*/

11 Navigate to the Siebel Open UI client, and then press the F5 key to refresh the screen.

The client displays the modified layout.

Customizing List Applets to Render as Carousels
The example in this topic describes how to customize Siebel Open UI to render a list applet as a
carousel in Siebel Call Center. To view different example carousel styles and to get the code for these
styles, see the http://sorgalla.com/projects/jcarousel Web site.

To customize list applets to render as carousels
1 Add records in the client:

a Open the client, navigate to the Contacts screen, and then click the Contact List link.

b Add the following contact.

c Click the link in the Last Name.

d Click the Affiliations link.

e In the Affiliations list, add four affiliations.

f Make sure you choose a different value in the Account field for each record. Accept default values
for all other fields.

g Log out of the client.

Field Value

Last Name Aamos

First Name Ray

Configuring Siebel Open UI Siebel 2018

Customizing Styles, Applets, Fields, and Controls ■ Customizing Applets

198

2 Add the JavaScript files that Siebel Open UI uses to render the carousel:

a Save the carouselrenderer.js file to the following folder:

INSTALL_DIR\applicationcontainer\webapps\siebel\scripts\siebel\custom

To get a copy of this file, see Article ID 1494998.1 on My Oracle Support.

The carouselrenderer.js file is a physical renderer that bridges a JCarousel third-party control
plug-in to the list presentation model that the listpmodel.js file defines. The List Applet and
the Carousel applet use the same presentation model for the business logic that it uses to
display each user interface. The only difference is how Siebel Open UI renders each applet.

b Save the jquery.jcarousel.js file to the following folder:

INSTALL_DIR\applicationcontainer\webapps\siebel\scripts\3rdParty\jcarousel

To get a copy of this file, see Article ID 1494998.1 on My Oracle Support. Oracle downloads
and integrates this 3rdParty Carousel package into Siebel Open UI through the physical
renderer. You must never modify these third-party plug-in files. If you require a configuration
that the third-party plug-in does not meet, then you must modify the physical renderer
instead of the third-party plug-in.

3 Add the CSS file that the third-party uses:

a In Windows Explorer, navigate to the following folder:

INSTALL_DIR\applicationcontainer\webapps\siebel\scripts\3rdParty

b Add the following subfolder hierarchy to the 3rdParty folder:

\jcarousel\skins\tango\

c Save the skin.css file to the tango folder that you added in Step b:

To get a copy of this file, see Article ID 1494998.1 on My Oracle Support.

4 Add files to the manifest:

a Log in to a Siebel client with administrative privileges.

For more information about the screens that you use in this step, see “Configuring Manifests”
on page 150.

b Navigate to the Administration - Application screen, and then the Manifest Files view.

c In the Files list, add the following files. You must add a separate record for each file:

siebel/custom/carouselrenderer.js

3rdParty/jcarousel/skins/tango/skin.css

files/theme-aurora.css

Files that reside in the files folder are predefined files that you use in this example.

5 Administer the manifest for the applet:

a Navigate to the Administration - Application screen, and then the Manifest Administration view.

Customizing Styles, Applets, Fields, and Controls ■ Customizing Applets

Configuring Siebel Open UI Siebel 2018 199

b In the UI Objects list, specify the following applet.

c In the Object Expression list, add the following expression. Siebel Open UI uses this expression
to render the applet on a desktop platform.

d In the Files list, add the following file:

siebel/custom/carouselrenderer.js

6 Administer the manifest for the Aurora theme:

a Navigate to the Manifest Expressions view.

b In the Expressions list, add the following expression.

c Navigate to the Manifest Administration view.

d In the UI Objects list, specify the following object.

Field Value

Type Applet

Usage Type Physical Renderer

Name Pharma Professional Affiliation From List Applet

Field Value

Expression Desktop

Level 1

Field Value

Name Aurora Theme

Expression LookupName (OUI_THEME_SELECTION, Preference
("Behavior","DefaultTheme")) = "AURORA_THEME"

Field Value

Type Application

Usage Type Theme

Name PLATFORM DEPENDENT

Configuring Siebel Open UI Siebel 2018

Customizing Styles, Applets, Fields, and Controls ■ Customizing Applets

200

e In the Object Expression list, add the following subexpression.

f In the Files list, add the following files:

files/theme-aurora.css

3rdParty/jcarousel/skins/tango/skin.css

7 Test your modifications:

a Clear the browser cache.

b Open the Siebel application, and then navigate to the contact that includes the affiliations that
you added in Step 1 on page 197.

Field Value

Group Name Leave empty.

Expression Aurora Theme

Level 1

Operator Leave empty.

Web Template Name Leave empty.

Customizing Styles, Applets, Fields, and Controls ■ Customizing Applets

Configuring Siebel Open UI Siebel 2018 201

c Make sure the affiliations view contains carousel data that runs together because no styling is
defined for the carousel content. To fix this problem, do Step 8.

8 Modify the styling that Siebel Open UI uses to render the view:

a Use a JavaScript editor to open the carouselrenderer.js file that you copied in Step 2 on
page 198.

b Locate the following code:

itemMarkup += "
";

c Modify the code you located in Step b to the following. You remove the break:

itemMarkup += "";

d Use a JavaScript editor to open the skin.css file.

e Locate the following code:

.jcarousel-skin-tango .jcarousel-item {

 width: 75px;

 height: 75px;

Configuring Siebel Open UI Siebel 2018

Customizing Styles, Applets, Fields, and Controls ■ Customizing Applets

202

}

f Modify the code you located in Step e on page 201 to the following. Bold font indicates the code
that you must modify:

.jcarousel-skin-tango .jcarousel-item {

 width: 318px;

 height: 75px;

}

g Locate the following code:

.jcarousel-skin-tango .jcarousel-item-horizontal {

 margin-left: 0;

 margin-right: 10px;

}

h Modify the code you located in Step g to the following. Bold font indicates the code that you must
modify:

.jcarousel-skin-tango .jcarousel-item-horizontal {

 margin-left: 10;

 margin-right: 10px;

 color: black;

}

9 Test your modifications:

a Clear the browser cache.

b Refresh the view that you examined in Step 7 on page 200.

c Make sure the styling no longer contains carousel data that overlaps, and that each record is
displayed in its own block.

Customizing Styles, Applets, Fields, and Controls ■ Customizing Applets

Configuring Siebel Open UI Siebel 2018 203

Customizing List Applets to Render as Maps
A list applet can be configured to display a map instead of a standard list of records. When the list
applet is configured to display a map, the following features are available:

■ Markers. A marker is displayed on the map at the location address for each record.

■ Contextual menu. Clicking a marker reveals a contextual menu with the following options:

■ View Details. Clicking this option opens a pop-up dialog box with details about the record
associated with the marker.

■ Select. Clicking this option zooms in on the map to the location address associated with the
marker record.

■ Tooltip. When you hover over a marker, a tooltip is revealed, showing the address associated
with the record.

■ Map panning.

■ Map zooming.

The example in this topic describes how to customize Siebel Open UI to render a list applet as a map
in Siebel Open UI.

To customize list applets to render as maps
1 Add files to the manifest:

a Log in to a Siebel client with administrative privileges.

For more information about the screens that you use in this step, see “Configuring Manifests”
on page 150.

b Navigate to the Administration - Application screen, and then the Manifest Files view.

c In the Files list, add the following files. You must add a separate record for each file:

siebel/mappmodel.js

siebel/maprenderer.js

2 Administer the manifest for the applet:

a Navigate to the Administration - Application screen, and then the Manifest Administration view.

b In the UI Objects list, specify the following applet.

Field Value

Type Applet

Usage Type Physical Renderer

Name Applet Name

Where Applet Name is the name of the applet in which you
want the map to appear.

Configuring Siebel Open UI Siebel 2018

Customizing Styles, Applets, Fields, and Controls ■ Customizing Applets

204

c In the Object Expression list, add the following expression. Siebel Open UI uses this expression
to render the applet on a desktop platform.

d In the Files list, add the following file:

siebel/custom/maprenderer.js

e In the UI Objects list, specify the following applet.

m In the Object Expression list, add the following expression. Siebel Open UI uses this expression
to render the applet on a desktop platform.

n In the Files list, add the following file:

siebel/custom/mappmodel.js

3 Define the PM user properties:

a Open Siebel Tools.

For more information about using Siebel Tools, see Using Siebel Tools.

b In the Object Explorer, click Applet.

c In the Applets list, query the Name property for the applet that you must modified in Step 2 on
page 203.

d In the Object Explorer, expand the Applet tree, and then click Applet User Property.

Field Value

Expression Desktop

Level 1

Field Value

f Type g Applet

h Usage
Type

i Presentation Mode

j Name k Applet Name

l Where Applet Name is the name of the applet in which
you want the map to appear.

Field Value

Expression Desktop

Level 1

Customizing Styles, Applets, Fields, and Controls ■ Customizing Applets

Configuring Siebel Open UI Siebel 2018 205

e In the Applet User Properties list, create four new applet user properties. Use values from the
following table.

When specifying the Value field for the MapMarkerLocation and the MapMarkerTitle, the
business component specified must meet at least one of the following conditions in order to
properly display the markers on the map:

❏ It must be exposed in the list column of the list applet configured for the map.

❏ It must be exposed as an applet control or list column of a sibling applet to the map
applet of the same business component.

❏ It must be set as a private field.

f Compile your work.

4 Define the Web Template for the map:

a Open Siebel Tools.

For more information about using Siebel Tools, see Using Siebel Tools.

b In the Object Explorer, expand the Applet tree, and then click Applet Web Template.

c In the Applet Web Templates list, add the following applet Web template.

d Make sure Siebel Tools defines ODH for the Web template that you defined in Step c.

For example, make sure the Web Template Definition column in Siebel Tools includes ODH for
Applet Map template. If your deployment requires a new Web template, then you must define
it before you can define the applet Web template. For more information about configuring
Web templates, see Configuring Siebel Business Applications.

5 Test your modifications:

a Clear the browser cache.

Name Value

MapMarkerLocation Business Component

MapMarkerTitle Business Component

MapSelectedRowImage The SVG image, as added in the CSS

MapUnSelectedRowImage The SVG image, as added in the CSS

Property Description

Name Enter text that describes the visualization behavior. For
example, enter Map View to describe a map visualization.

Type Edit List

Web Template Choose a Web template that defines the desired visualization.
For example, choose Applet Map.

Configuring Siebel Open UI Siebel 2018

Customizing Styles, Applets, Fields, and Controls ■ Customizing Applets

206

b Refresh the list applet that you modified in Step 2 on page 203.

c Make sure that it renders a map.

Customizing List Applets with Class Names
You can use class names at the record level to customize list applets. Using the Applet PM user
property you can define a class name based on a condition that is evaluated for each row in the list
applet. Before you begin to customize a list applet:

■ Configure a calculated field in a business component to use for applying the class name. Make
sure the calculation produces an appropriate value that can be evaluated to produce the desired
effect. For example, if you want to apply the class name when the calculated value is 1, 2, or 3,
make sure that your calculation can handle all possible values it may encounter and produces
the desired result.

■ If the calculated field is not exposed in the UI, expose it as a business component private field.

■ Configure the Applet PM User Property as follows (assuming the calculated field is named Record
State):

■ Name: Record State Field, Value: Record_State

■ For each possible value for Record_State, create a name-value pair

❏ Name: <State1>, Value <Class1>

❏ Name: <Staten>, Value <Classn>

■ Configure the Applet PM User Property to include all of the previously configured name-value
pairs:
Name: ClientPMUserProp, Value: Record State Field, State1, State2, ... Staten

For example, you can make a row in a list applet appear in a specific color if the revenue column has
a value greater than $500. The following procedure explains how to implement this customization.

To customize a list applet to display a row in color based on the value of a specific
column
1 Create a calculated field named "Record State" with the following calculated expression:

[revenue > 500]

2 Expose the field as a Business Component Private field.

3 Configure the Presentation Model property as:

a Name: Record State field

b Value: Record State

4 For each expected value of the expression (in this example, true or false), add name-value pairs:

a Name: true

b Value: siebui-row-good-revenue

c Name: false

Customizing Styles, Applets, Fields, and Controls ■ Customizing Applets

Configuring Siebel Open UI Siebel 2018 207

d Name: siebui-row-avg-revenue

5 Configure the properties to be exposed as Presentation Model properties:

a Name: ClientPMUserProp

b Value: Record State Field, true, false

List applet rows having a revenue value greater than $500 have the siebui-row-good-revenue
classname added. Rows that do not meet this criterion have the siebui-row-avg-revenue
classname added. You can now add the a CSS definition to show the siebui-row-good-revenue
rows in the spcified color if the revenue column has a value greater than $500.

Disabling Oracle Maps
Oracle Maps is configured as the default display for the Contact List Applet and the Contact Form
Applet. You can disable the use of Oracle Maps by removing the configuration specified in
“Customizing List Applets to Render as Maps” on page 203, or by using the following procedure.

To disable Oracle Maps
1 Run the Siebel application.

2 Navigate to Sitemap, Administration Application, and then Manifest Application.

3 Query for the Contact List Applet in the Name field.

4 In Activate all the fields having Group Name as Map in the "Object Expression" Applet.

5 Close the Siebel application.

6 In Siebel Tools, navigate to Applet Query for Contact Form Applet -> Go to Control.

7 Deactivate the Show Route control.

Configuring the Focus in Siebel Applets
If you modify an applet, then you must make sure that your modification does not adversely affect
how Siebel Open UI sets the focus in this applet. Siebel Open UI does the following work to set the
focus in applets:

1 Sets the focus to the list column that includes a list column user property that specifies a default
focus, such as DefaultFocus_Edit. This list column is a child object type of the list applet. For
more information about default focus user properties, see the topic that describes Specifying the
Default Applet Focus in Siebel Developer’s Reference.

2 If the list column user property described in Step 1 does not exist, then Siebel Open UI examines
the columns of a row from first to last (left to right), and then places the focus on the first
editable control that it encounters. It continues examining rows in this way until it finds an
editable control, or until it reaches the last column of the last row.

3 If Siebel Open UI does not find any editable controls in Step 2, then it sets the focus on the first
non-editable control that the list applet displays.

Configuring Siebel Open UI Siebel 2018

Customizing Styles, Applets, Fields, and Controls ■ Customizing Applets

208

4 If Siebel Open UI does not find any non-editable controls in Step 3, then it sets the focus on the
div container that it uses to display the list applet.

Assume you do the following configuration:

■ Use Siebel Tools to add a large number of list columns to the SIS Account List Applet.

■ Make all list columns except the last list column read-only.

■ Log in to the client, navigate to the Account list view, and then run a query.

In this situation, Siebel Open UI places the focus on the last list column that the list applet contains.
The div container might not contain enough room to display this list column, the list column might
not be visible in the applet, and you might not be able to use the applet because the focus is on a
column that you cannot access.

To configure the focus in list applets
■ Make sure your configuration does not set the focus to a list column or field that Siebel Open UI

displays only partially or does not display at all.

You can use the following guidelines:

■ If Siebel Open UI sets the focus to a list column that contains a DefaultFocus list column user
property, then make sure it correctly displays this list column after you finish your
modifications.

■ If Siebel Open UI sets the focus to an editable or non-editable control, then make sure Siebel
Open UI correctly displays this control after you finish your modifications.

To follow these guidelines, it might be necessary for you to rearrange the first-to-last sequence
that Siebel Open UI uses to display list columns and controls in the list applet.

Adding Static Drilldowns to Applets
This topic describes how to add a static drill-down to a form applet so that the drill down object
displays the name of the destination field, such as the primary account name, in the popup label
when the user clicks a drill down link. If you do not do this configuration on a custom form applet
that you create, then the drill down link displays the data from the field as the label, such as the
account name, and not the caption text from the control. For information about how to configure a
drill down on a form applet, see Article ID 539183.1 on My Oracle Support.

To add static drilldowns to applets
1 Create a static drilldown object on the applet that you must modify:

a Open Siebel Tools.

For more information about using Siebel Tools, see Using Siebel Tools.

b In the Object Explorer, click Applet.

c In the Applets list, query the Name property for the applet that you must modify.

Customizing Styles, Applets, Fields, and Controls ■ Customizing Applets

Configuring Siebel Open UI Siebel 2018 209

d In the Object Explorer, expand the Applet tree, and then click Control.

e In the Controls list, create the following control.

For more information, see the topics about creating static drill down objects in Configuring
Siebel Business Applications.

f In the Object Explorer, click Applet.

g In the Applets list, right-click the record of the applet you are modifying, and then choose Edit
Web Layout.

h Add the control that you created in Step e on page 209 to the layout.

i Compile your modifications.

2 Test your modifications:

a Log in to the client.

b Navigate to the applet you modified, and then make sure it displays your new static drill down
object with the correct label.

For example, the following screen capture includes the correct Last Name label, and it
displays the correct data in the field. If you do not do the configuration that this topic
describes, then Siebel Open UI might display Last Name - Drilldown as the label and as the
data in the field.

Property Value

Field Specify the same field that you specified in the Hyperlink Field
property of the drill down object that you created in Step a.

HTML Type Text

Configuring Siebel Open UI Siebel 2018

Customizing Styles, Applets, Fields, and Controls ■ Customizing Applets

210

Allowing Users to Change the Applet Visualization
This topic describes how to modify an applet so that the user can change the applet visualization.
The applet visualization is a type of configuration that specifies the layout that Siebel Open UI uses
to display the applet. List, form, tile, map, grid, and carousel are each an example of an applet
visualization.

Siebel Open UI allows the user to set some user preferences that determine how it displays an applet.
The user can navigate to the User Preferences screen, and then use the Behavior view to set these
preferences. For example, if the user chooses a value in the Visualization field of the Behavior view,
such as Tile, and then navigates to a list applet that includes a tile configuration, such as the
Opportunity List Applet, then Siebel Open UI displays this applet as a set of tiles. If the user clicks
Grid in this applet, then Siebel Open UI displays the applet as a grid and sets Grid as the default
layout only for the Opportunity List Applet. This local setting takes precedence over the global setting
that the user sets in the Visualization field in the Behavior view. Siebel Open UI continues to use a
tile layout for all other applets that include a tile configuration. In this situation, it displays the
Opportunity List Applet as a grid even if the user logs out and then logs back in to the client.

Figure 37 includes the Contacts List that you modify in this topic so that it allows the user to change
the applet visualization. It illustrates how Siebel Open UI displays this list after you successfully
finish the configuration. The user can click one of the applet visualization buttons, such as Tile, to
change the applet visualization.

Figure 37. Contacts List That Allows Users to Change the Applet Visualization

This topic describes how to configure the manifest for a custom applet visualization. For information
about configuring the manifest for a predefined configuration, see “Configuring Manifests for
Predefined Visualizations” on page 217.

To allow users to change the applet visualization
1 Modify the applet in Siebel Tools:

a Open Siebel Tools.

For more information, see Using Siebel Tools.

b In the Object Explorer, click Applet.

c In the Applets list, query the Name property for the applet that you must modify.

For example, query the Name property for Contact List Applet.

Customizing Styles, Applets, Fields, and Controls ■ Customizing Applets

Configuring Siebel Open UI Siebel 2018 211

d In the Object Explorer, expand the Applet tree, and then click Applet Web Template.

The Applet Web Templates list displays the applet modes that Siebel Tools defines for the
applet. For example, Base, Edit, and Edit List. For more information about these modes, see
“Displaying Applets Differently According to the Applet Mode” on page 218.

e In the Applet Web Templates list, add the following applet Web template.

f Make sure Siebel Tools defines an ODH for the Web template that you defined in Step e.

For example, make sure the “Definition” column of Web Template in Siebel Tools includes
ODH for the Applet Tile Web template. If your deployment requires a new Web template, then
you must define it before you can define the applet Web template. For more information
about configuring Web templates, see Configuring Siebel Business Applications.

Property Description

Name Enter text that describes the visualization behavior. For
example, enter Edit Tile to describe a tile visualization that
allows the user to modify field values.

Sequence Enter a value of 1000 or greater. To help you quickly
recognize how Siebel Open UI uses a Web template, it is
recommended that you use a value of:

■ 1000 or greater for a Web template that Siebel Open UI
uses to determine the applet visualization, such as a Tile.

■ 1, 2, or 3 for a Web template that Siebel Open UI uses to
determine the applet mode, such as Edit List.

Type Specify the applet mode, such as Edit or Edit List.

Web Template Choose a Web template that defines the desired visualization.
For example, choose Applet Tile.

Configuring Siebel Open UI Siebel 2018

Customizing Styles, Applets, Fields, and Controls ■ Customizing Applets

212

g Repeat Step d on page 211 and Step e on page 211 for each Web template that your deployment
requires.

Your completed work in Siebel Tools must resemble the following configuration.

h Compile your modifications.

2 Configure the manifest for the applet that you modified in Step 1 on page 210:

a Log in to a Siebel client with administrative privileges.

For more information about the screens that you use in this step, see “Configuring Manifests”
on page 150.

b Navigate to the Administration - Application screen, and then the Manifest Files view.

c In the Files list, add the following predefined files.

d Navigate to the Administration - Application screen, and then the Manifest Administration view.

e In the UI Objects list, specify the following applet.

Field Value

Name siebel/mappmodel.js

siebel/Tilescrollcontainer.js

Field Value

Type Applet

Customizing Styles, Applets, Fields, and Controls ■ Customizing Applets

Configuring Siebel Open UI Siebel 2018 213

f In the Object Expression list, add the expressions that Siebel Open UI uses to render the applet
for this Web template in the various visualizations and applet modes that you defined in Step 1
on page 210.

Your completed work must resemble the following configuration. Use the Move Up, Move
Down, Indent, and Outdent buttons to create the hierarchy. Note that you do not add files in
the Files list for a Web template. You only add files for a presentation model or physical
renderer. For more information about how to create these object expressions, see
“Configuring Manifests” on page 150.

Usage Type Web Template

Name Contact List Applet

Field Value

Configuring Siebel Open UI Siebel 2018

Customizing Styles, Applets, Fields, and Controls ■ Customizing Applets

214

g Configure the manifest for the presentation model for each applet visualization that you defined
in Step 1 on page 210.

You add the UI object, object expressions, and files until the Manifest Administration screen
resembles the following configuration.

h Repeat Step g for each applet visualization that you configured in Siebel Tools.

Customizing Styles, Applets, Fields, and Controls ■ Customizing Applets

Configuring Siebel Open UI Siebel 2018 215

i Configure the physical renderer for each applet visualization that you defined in Step 1 on
page 210.

You add the UI object, object expressions, and files until the Manifest Administration screen
resembles the following configuration:

If you do not do this administration, then Siebel Open UI uses the jqgridrenderer.js file for the
physical renderer for a list applet, by default.

3 (Optional) Modify the strings that Siebel Open UI uses for the labels of the applet visualization
buttons.

Do the following:

a In Siebel Tools, choose the Screens application-level menu, click System Administration, and
then click List of Values.

b In the List of Values list, query the Type property for OUI_MODE_VISUALIZATION.

Configuring Siebel Open UI Siebel 2018

Customizing Styles, Applets, Fields, and Controls ■ Customizing Applets

216

c Make sure the Language-Independent Code property for each record that Siebel Tools displays
in the List of Values list includes the same string that you modified in Step 2, Step g on page 214.

For example, make sure the Language-Independent Code property includes the following
values:

Siebel Open UI uses the value that the Display Value property contains as the label for each
applet visualization button. To view these buttons, see Figure 37 on page 210.

d Compile your modifications.

e Log in to the client.

f Navigate to the Administration - Application screen, and then the Manifest Expressions view.

g In the Manifest Expressions view, modify the following strings, as necessary.

For example, Siebel Open UI uses the Tile string in the Expression field for the Tile
expression. You can modify these strings to meet your deployment requirements.

4 Test your modifications:

a Log out of the client, and then log back in.

b Navigate to the Contacts screen, and then the Contacts List view.

c Verify that Siebel Open UI displays the Grid, Tile, and Map visualization buttons.

The visualization buttons must resemble the buttons that Figure 37 on page 210 displays.

d Click each visualization button, and then verify that Siebel Open UI displays the visualization that
is associated with the button that you click.

Type Display Value
Language-Independent
Code

OUI_MODE_VISUALIZAT
ION

Tile Tile

Map Map

Grid Grid

Name Expression

Tile GetObjectAttr("VisualMode") = 'Tile'

Map GetObjectAttr("VisualMode") = 'Map'

Grid GetObjectAttr("VisualMode") = 'Grid'

Customizing Styles, Applets, Fields, and Controls ■ Customizing Applets

Configuring Siebel Open UI Siebel 2018 217

Configuring Manifests for Predefined Visualizations
Table 12 summarizes different manifest configurations for visualizations that come predefined with
Siebel Open UI. It includes all the configuration required. For example, you do not configure any
expressions or files for Web templates.

The following physical renderer modifies the List presentation model so that it can use the Google
Map plugin for jQuery:

siebel/custom/siebelmaprenderer.js

Oracle provides this file only as an example that does a map visualization for a list applet. Oracle
does not support usage of siebelmaprenderer.js with Google Maps.

Table 12. Configuring Manifests for Predefined Visualizations

Visualization Presentation Model Physical Render Web Template

Tile Set Usage Type to
Presentation Model.

Set Name to List Applet
Name.

Add the following to the
Files list:

siebel/listpmodel.js

Set Usage Type to
Physical Renderer.

Set Name to List Applet
Name.

Add the following to the
Files list:

siebel/
Tilescrollcontainer.j
s

Set Usage Type to Web
Template.

Set the Name to Edit
Tile.

Grid Same as Tile. Set Usage Type to
Physical Renderer.

Set Name to List Applet
Name.

Add the following to the
Files list:

siebel/
jqgridrenderer.js

No manifest
administration is
necessary. You use
Siebel Tools to configure
Edit List Web templates.

Map Same as Tile except add
the following file:

siebel/mappmodel.js

Same as Grid except add
the following file:

siebel/custom/
siebelmaprenderer.js

Set Usage Type to Web
Template.

Set the Name to Edit
Tile.

Configuring Siebel Open UI Siebel 2018

Customizing Styles, Applets, Fields, and Controls ■ Customizing Applets

218

Displaying Applets Differently According to the Applet
Mode
This topic describes how to configure Siebel Open UI to display applets differently according to the
applet mode. It includes the following topics:

■ “Configuring Siebel Open UI to Use Different Web Templates According to the Applet Mode” on
page 218

■ “Configuring Siebel Open UI to Use Different Physical Renderers and Presentation Models According
to the Applet Mode” on page 221

The applet mode is a type of behavior of an applet Web template that determines whether or not the
user can or cannot create, edit, query, or delete Siebel CRM records in an applet. Edit, Edit List, Base,
New, and Query are examples of applet modes. This topic describes how to modify the presentation
model, or to modify the physical render and Web templates, to set the applet mode for an applet.

You can use a Web template to modify the physical layout of objects in the client that the Siebel
Server renders as containers, such as the markup for an applet container. You can also use a physical
renderer to modify how the client renders objects in the client, for example, to modify the markup
that it uses to display a grid, menu, or tab.

For more information about applet modes and how to configure them in Siebel Tools, see the topic
that describes how to control how the user creates, edits, queries, and deletes CRM data in
Configuring Siebel Business Applications.

Configuring Siebel Open UI to Use Different Web Templates According
to the Applet Mode
The example in this topic configures Siebel Open UI to display the same applet differently according
to the following responsibility that Siebel CRM assigns to the current user:

■ Display the applet as an editable list for the CEO.

■ Display the applet as an editable grid for a Business Analyst.

To implement this example, you configure Siebel Open UI to use more than one Web template, where
each of these Web templates reference a different ODH:

■ You use the predefined Applet List (Base/EditList) Web template that references the
CCAppletList_B_EL Web template. This template uses an editable list layout.

■ You add a new Edit Grid List Web template. This template uses an editable grid layout.

You configure manifest expressions to determine the Web template that Siebel Open UI uses
according to the user who is currently using the client.

This example configures the Contact List Applet to include the following applet Web templates:

■ Edit List applet Web template that runs in edit list mode and uses the Applet List(Base/EditList)
Web template.

■ Edit Grid List applet Web template that runs in edit list mode and uses the Applet List Web
template.

Customizing Styles, Applets, Fields, and Controls ■ Customizing Applets

Configuring Siebel Open UI Siebel 2018 219

To configure Siebel Open UI to use different Web templates according to the applet
mode
1 Examine the predefined Web template that this example uses:

a Open Siebel Tools.

For more information, see Using Siebel Tools.

b In the Object Explorer, click Web Template.

c In the Web Templates list, query the Name property for the following value:

"Applet List (Base/EditList)"

d In the Object Explorer, select the Web Template, and then click Web Template File.

e Notice the value that the Filename property contains.

This example uses the predefined Applet List (Base/EditList) Web template to display the
applet in a list layout that the user can edit. This Web template uses the CCAppletList_B_EL
Web template to display this layout. It is not necessary to modify this Web template for this
example.

2 Add a custom Web template:

a In the Object Explorer, click Web Template.

b In the Web Templates list, add the following Web template.

c In the Object Explorer, click Web Template File.

d In the Web Template Files list, add the following Web template file.

3 Modify the applet:

Property Value

Name Edit Grid List

Property Value

Name Edit Grid List

Filename Specify the file that Siebel Open UI must use to display this
applet in a grid layout that the user can edit. For example:

EditGridList

Configuring Siebel Open UI Siebel 2018

Customizing Styles, Applets, Fields, and Controls ■ Customizing Applets

220

a Do Step 1 on page 219, but also add the following applet Web template to the Contact List
Applet.

b Compile your modifications.

4 Configure the manifest:

a Log in to a Siebel client with administrative privileges.

b Navigate to the Administration - Application screen, and then the Manifest Expressions view.

For more information about the screens that you use in this step, see “Configuring Manifests”
on page 150.

c In the Expressions list, add the following expressions.

For more information, see “GetProfileAttr Method” on page 539.

d Navigate to the Manifest Administration view.

e In the UI Objects list, specify the following applet.

Property Value

Name Edit Grid List

Web Template Edit Grid List

You specify the Web template that you added in Step 1 on
page 219.

Type Edit List

Name Expression

Exp_User 1 GetProfileAttr("Primary Responsibility Name") = "Admin"

Exp_User 2 GetProfileAttr("Primary Responsibility Name") = "CEO"

Field Value

Type Applet

Usage Type Web Template

Name Contact List Applet

Customizing Styles, Applets, Fields, and Controls ■ Customizing Applets

Configuring Siebel Open UI Siebel 2018 221

f In the Object Expression list, add expressions until this list resembles the following configuration.

Note the following:

❏ You specify the same name that you examined in Step 1 on page 219 for the Web
Template Name for user 1.

❏ You specify the same name that you added in Step 2 on page 219. For the Web Template
Name for the user 2.

❏ You specify the expressions that you added in Step c on page 220. These expressions
configure Siebel Open UI to display an edit list for a user who possesses the CEO
responsibility, and a grid for a user who possesses the Business Analyst responsibility.

❏ If the Usage Type is Web Template, then you do not specify any files in the Files list.

5 Test your modifications:

a Log in to the client as a user that Siebel CRM associates with the CEO responsibility, and then
make sure Siebel Open UI uses the Edit List Web template to display the applet as a list.

b Log out of the client, log back in to the client as a user that Siebel CRM associates with the
Business Analyst responsibility, and then make sure Siebel Open UI uses the Edit Grid List Web
template to display the applet as a grid.

Configuring Siebel Open UI to Use Different Physical Renderers and
Presentation Models According to the Applet Mode
The example in this topic configures Siebel Open UI to download different presentation models and
physical renderers depending on the following mode that the Contact List Applet must use:

■ Edit List mode. Download a file named list_PM.js for the custom presentation model and a file
named list_PR.js for the custom physical renderer.

■ New mode. Download a file named new_PM.js for the custom presentation model and a file
named new_PR.js for the custom physical renderer.

You can use any name for your custom presentation models and physical renderers.

To configure Siebel Open UI to use different physical renderers and presentation
models according to the applet mode
1 Customize your presentation models and physical renderers.

In this example, assume you customized the following files:

Configuring Siebel Open UI Siebel 2018

Customizing Styles, Applets, Fields, and Controls ■ Customizing Applets

222

■ list_PM.js

■ list_PR.js

■ new_PM.js

■ new_PR.js

2 Add your custom presentation models and physical renderers to the manifest:

a Log in to the client with administrative privileges.

b Navigate to the Administration - Application screen, and then the Manifest Files view.

For more information about the screens that you use in this step, see “Configuring Manifests”
on page 150.

c In the Files list, add the following files that you customized in Step 1 on page 221.

3 Configure the manifest for Edit List mode:

a Navigate to the Manifest Administration view.

b In the UI Objects list, specify the following applet.

c In the Object Expression list, add the following expression.

d In the Files list, add the following file:

siebel/custom/list_PM.js

Siebel Open UI uses the file that you specify for the presentation model that it uses to display
the Contact List Applet in Edit List mode.

Field Value

Name siebel/custom/list_PM.js

Name siebel/custom/list_PR.js

Name siebel/custom/new_PM.js

Name siebel/custom/new_PR.js

Field Value

Type Applet

Usage Type Presentation Model

Name Contact List Applet

Field Value

Expression EditList

Level 1

Customizing Styles, Applets, Fields, and Controls ■ Customizing Applets

Configuring Siebel Open UI Siebel 2018 223

e In the UI Objects list, specify the following applet.

f In the Object Expression list, add the following expression.

g In the Files list, add the following file:

siebel/custom/list_PR.js

Siebel Open UI uses the file that you specify for the physical renderer that it uses to display
the Contact List Applet in Edit List mode.

4 Configure the manifest for New mode:

a In the UI Objects list, specify the following applet.

b In the Object Expression list, add the following expression.

c In the Files list, add the following file:

siebel/custom/new_PM.js

Siebel Open UI uses the file that you specify for the presentation model that it uses to display
the Contact List Applet in New mode.

Field Value

Type Applet

Usage Type Physical Renderer

Name Contact List Applet

Field Value

Expression EditList

Level 1

Field Value

Type Applet

Usage Type Presentation Model

Name Contact List Applet

Field Value

Expression New

Level 1

Configuring Siebel Open UI Siebel 2018

Customizing Styles, Applets, Fields, and Controls ■ Customizing Applets

224

d In the UI Objects list, specify the following applet.

e In the Object Expression list, add the following expression.

f In the Files list, add the following file:

siebel/custom/new_PR.js

Siebel Open UI uses the file that you specify for the physical renderer that it uses to display
the Contact List Applet in New mode.

5 Test your modifications.

Adding Custom User Preferences to Applets
This topic describes how to customize default applet behavior so that Siebel Open UI remembers the
actions the user takes that effect this behavior. Expand and collapse is an example of this behavior.
The example in this topic customizes a physical renderer to display the Opportunity List Applet applet
as expanded or collapsed, by default, depending on how the user most recently displayed the applet.
For example, assume the user navigates to the Opportunity List Applet, and then expands the applet.

Siebel Open UI then displays more records in the list. In the predefined behavior, if the user logs out
of the client, logs back in to the client, and then navigates to this list again, then Siebel Open UI
does not remember that the user expanded the list. This topic describes how to customize Siebel
Open UI so that it remembers this user action.

You can use this example as a guideline to modify a predefined applet behavior or to create your own
custom applet behavior.

To add custom user preferences to applets
1 Add the user preference to your custom physical renderer and presentation model:

a Use a JavaScript editor to open your custom physical renderer that renders the Opportunity List
Applet.

b Add the custom user preference. You add the following code:

Field Value

Type Applet

Usage Type Physical Renderer

Name Contact List Applet

Field Value

Expression New

Level 1

Customizing Styles, Applets, Fields, and Controls ■ Customizing Applets

Configuring Siebel Open UI Siebel 2018 225

var pm = this.GetPM();

var inputPS = CCFMiscUtil_CreatePropSet();

inputPS.SetProperty("Key", "user_preference_name");

inputPS.SetProperty("user_preference_name", "user_preference_value");

pm.OnControlEvent(siebConsts.get("PHYEVENT_INVOKE_CONTROL"),
pm.Get(siebConsts.get("SWE_MTHD_UPDATE_USER_PREF")), inputPS);

pm.SetProperty("user_preference_name", "user_preference_value");

c Use a JavaScript editor to open your custom presentation model that renders the Opportunity
List Applet.

d Add a presentation model property that references the custom user preference. You add the
following code

var pm = this.GetPM();

var value = pm.Get("user_preference_name");

You must make sure that Siebel Open UI derives your custom presentation model from the
Presentation Model class. This class contains the logic that saves user preferences in
presentation model properties. For more information, see “Adding Presentation Model
Properties That Siebel Servers Send to Clients” on page 115.

2 Add the expand and collapse button:

a Use a JavaScript editor to open the physical renderer that you edited in Step 1, Step a on
page 224.

b Add the following code to the end of the Show method:

var id1 = this.GetPM().Get("GetFullId") + '-siebui-cust-expandcollapse-btn';

var expcolbtn = "<button " +

"id= '" + id1 + "' " +

"class= 'appletButton' " +

"aria-label=ExpandCollapse " +

"type=\"button\" " +

"title=ExpandCollapse " + ">" + "ExpandCollapse" + "</button>";

c Add the following code to the end of the BindEvent method. This code binds the button click.

$("#" + pm.Get("GetFullId") + "-" + "siebui-cust-expandcollapse-
btn").bind("click", {ctx: this},

function (e) {

var self = e.data.ctx,

pm = self.GetPM();

Configuring Siebel Open UI Siebel 2018

Customizing Styles, Applets, Fields, and Controls ■ Customizing Applets

226

SiebelJS.Log("Expand");

var inputPS = CCFMiscUtil_CreatePropSet();

var value = pm.Get ("Expand-Collapse");

inputPS.SetProperty("Key", "Expand-Collapse");

if(value === "Collapse")

{

inputPS.SetProperty("Expand-Collapse", "Expand");

pm.SetProperty("Expand-Collapse", "Expand");

}

else

{

inputPS.SetProperty("Expand-Collapse", "Collapse");

pm.SetProperty("Expand-Collapse", "Collapse");

}

pm.OnControlEvent(siebConsts.get("PHYEVENT_INVOKE_CONTROL"),pm.Get(siebConsts.g
et("SWE_MTHD_UPDATE_USER_PREF")), inputPS);

if(value === "Collapse")

{

pm.SetProperty("Expand-Collapse", "Expand");

//Write Code to expand the applet

$("#s_" + pm.Get("GetFullId") + "_div").find(".siebui-collapsible-applet-
content").show();

}

else

{

pm.SetProperty("Expand-Collapse", "Collapse");

//Write Code to collapse the applet

$("#s_" + pm.Get("GetFullId") + "_div").find(".siebui-collapsible-applet-
content").hide();

}

}

Customizing Styles, Applets, Fields, and Controls ■ Customizing Applets

Configuring Siebel Open UI Siebel 2018 227

);

d Add the following code to the end of the ShowUI method. This code accesses the default value
of the custom Expand-Collapse user preference, and then instructs Siebel Open UI to display the
applet as expanded or collapsed according to the user preference value:

PhysicalRenderer.prototype.ShowUI()

{

var pm = this.GetPM();

var value = pm.Get ("Expand-Collapse");

if(value === "Collapse")

{

//Write Code to collapse the applet

$("#s_" + pm.Get("GetFullId") + "_div").find(".siebui-collapsible-applet-
content").hide();

}

else

{

//Write Code to expand the applet

$("#s_" + pm.Get("GetFullId") + "_div").find(".siebui-collapsible-applet-
content").show();

}

}

e Use an HTML editor to open the HTML that Siebel Open UI uses to display the Opportunity List
Applet, and then add the following code:

$("#s_" + this.GetPM().Get("GetFullId") + "_div").find(".siebui-collapsible-
applet").append(expcolbtn);

For more information about how to edit HTML code for an applet, see “Customizing Logos,
Themes, Backgrounds, Tabs, Styles, and Fonts” on page 169.

3 Test your modifications:

a Log in to the client, and then navigate to the Opportunity List Applet.

b Click the expand and collapse button, and then verify that Siebel Open UI expands the applet.

c Log out of the client, log back in to the client, navigate to the Opportunity List Applet, and then
verify that Siebel Open UI displays the same expanded state that you set in Step 2, Step b on
page 225.

Configuring Siebel Open UI Siebel 2018

Customizing Styles, Applets, Fields, and Controls ■ Customizing Applets

228

Customizing Applets to Capture Signatures from
Desktop Applications
A signature capture is an electronic capture of a user signature. This topic describes how to
customize applets to capture signatures for calls in Siebel Open UI.

NOTE: This task uses Siebel Pharma as an example, but the procedure is similar when modifying a
different application. For more information about migrating signatures from High Interactivity to
Siebel Open UI, see the topic about configuring the digital migration service for signatures and the
topic about rendering signatures in the user interface in Siebel Life Sciences Guide.

To customize applets to capture signatures for desktop applications
1 Copy a signature form applet that comes predefined with Siebel Open UI:

a Open Siebel Tools.

For more information, see Using Siebel Tools.

b In the Object Explorer, click Applet.

c In the Applets list, locate an applet that includes a signature capture configuration.

For this example, locate the following applet:

LS Pharma Call Signature Form Applet

d Right-click the applet you located in Step c, and then click Copy Record.

e Add an _PUI suffix to the name. For example:

LS Pharma Call Signature Form Applet_PUI

2 Add applet user properties:

a In the Object Explorer, expand the Applet tree, and then click Applet User Prop.

b In the Applet User Props list, add the following applet user properties.

3 Add controls:

a In the Object Explorer, click Control.

b In the Controls list, add the following controls.

Name Value

CanInvokeMethod: ClearSignature TRUE

Signature Min Length 5

Name Description

Clear Signature Set the MethodInvoked property to ClearSignature.

Address Set the Field property to Address.

Customizing Styles, Applets, Fields, and Controls ■ Customizing Applets

Configuring Siebel Open UI Siebel 2018 229

4 Add an applet Web template:

a In the Object Explorer, click Applet Web Template.

b In the Applet Web Templates list, right-click the Base applet Web template, and then click Copy
Record.

c Set the following properties.

5 Modify the drilldown objects:

a In the Object Explorer, click Drilldown Object.

b In the Drilldown Objects list, modify the following value of the Hyperlink Field property of the
Apply Drilldown and the Cancel Drilldown drilldown objects.

6 Copy a predefined view:

a In the Object Explorer, click View.

b In the Views list, locate a view that includes a signature capture configuration.

For this example, locate the following view:

LS Pharma Call Signature Capture View

c Right-click the view you located in Step b, and then click Copy Record.

d Add an _PUI suffix to the name. For example:

LS Pharma Call Signature Capture View_PUI

7 Modify the view Web template:

Signature Capture Set the following properties:

■ Set the Field property to Signature

■ Set the HTML Type property to InkData.

Disclaimer Text

Signature Header
Text

Set the Read Only property to TRUE

Property Value

Name Edit

Type Edit

Old Value New Value

Signature Header Text Address

Name Description

Configuring Siebel Open UI Siebel 2018

Customizing Styles, Applets, Fields, and Controls ■ Customizing Applets

230

a In the Object Explorer, expand the View tree, expand the View Web Template tree, and then click
View Web Template Item.

b In the View Web Template Items list, query the Name property for the following value:

LS Pharma Call Signature Form Applet

c Modify the following value of the Name property.

d Modify the following value of the Applet Mode property.

8 Modify a call form applet that comes predefined with Siebel Open UI:

a In the Object Explorer, click Applet.

b In the Applets list, locate an applet that includes a call form configuration.

For this example, locate the following applet:

Pharma Professional Call Form Applet

c In the Object Explorer, expand the Applet tree, and then click Applet User Prop.

d In the Applet User Props list, add the following applet user property.

e In the Object Explorer, click Drilldown Object.

f In the Drilldown Objects list, query the Name property for Signature Capture Drilldown.

g Create a copy of this record, add the new drilldown to the record copy, and update the following
field:

9 Modify the screen:

a In the Object Explorer, click Screen.

Old Value New Value

LS Pharma Call Signature Form
Applet

LS Pharma Call Signature Form Applet_PUI

Old Value New Value

Base Edit

Name Value

Signature Applet NamePUI LS Pharma Call Signature Form Applet_PUI

Name New Value

Signature Capture DrillDownPUI LS Pharma Call Signature Capture View_PUI

Customizing Styles, Applets, Fields, and Controls ■ Customizing Applets

Configuring Siebel Open UI Siebel 2018 231

b In the Screens list, locate a screen that displays the signature form and call form applets.

For this example, locate the following screen:

LS Pharma Calls Screen

c In the Object Explorer, expand the Screen tree, and then click Screen View.

d In the Screen Views list, query the Name property for the following value:

LS Pharma Call Signature Capture View

e Create a copy of the LS Pharma Call Signature Capture View, and update the following field:

10 Compile your modifications.

11 Administer your customization:

a Log in to the client with administrative privileges.

b Navigate to the Administration - Application screen, and then the Views view.

c In the Views list, query the Name property for the following value:

LS Pharma Call Signature Capture View

d Make a note of the field values of the responsibility that the client displays in the Responsibilities
list.

e In the Views list, add the following view.

f In the Responsibilities list, add a responsibility. Use the same field values that you noted in
Step c.

g Navigate to the Administration - Personalization screen, and then the Applets view.

h In the Applets list, add the following applet.

Old Value New Value

LS Pharma Call Signature Capture
View

LS Pharma Call Signature Capture View_PUI

Field Value

View Name LS Pharma Call Signature Capture View_PUI

Field Value

Name LS Pharma Call Signature Form Applet_OUI

Configuring Siebel Open UI Siebel 2018

Customizing Styles, Applets, Fields, and Controls ■ Customizing Applets

232

i In the Rule Sets list, add the following rule set.

12 Add the applet LS Pharma Call Signature Form Applet_PUI to the manifest administration as
follows:

a Log in to the client with administrative privileges.

b Navigate to the Administration - Application screen, and then the Manifest Administration view.

c Under UI Objects, create a new record with the following values:

d Under Object Expression, add the following child applet for the record created in Step c.

e Under Files, set the following file values:

13 Test your modifications.

a Log in to the Siebel Open UI client (for example, Siebel Pharma application).

b Navigate to a contact call where you want to capture the signature.

c Click Sign to open the Signature Capture view.

d Verify that the Signature Capture view applet displays correctly - that is, according to the
customizations detailed in this procedure.

Field Value

Name Pharma Call Default

Sequence 1

Start Date Any date that has already occurred. For example, 01/01/2012.

Interactive Flag Type Usage Type Name

N Applet Physical
Renderer

LS Pharma Call Signature
Form Applet_PUI

Interactive Flag Expression Level

N Desktop 1

Interactive Flag Name

N 3rdParty/jquery.signaturepad.min.js

Customizing Styles, Applets, Fields, and Controls ■ Customizing Applets

Configuring Siebel Open UI Siebel 2018 233

Customizing Applets to Capture Signatures for Siebel
Mobile Applications
A signature capture is an electronic capture of a user signature. This topic describes how to
customize applets to capture signatures in Siebel Mobile applications.

NOTE: This task uses Siebel Pharma as an example, but the procedure is similar when modifying a
different application. For more information about migrating signatures from High Interactivity to
Siebel Open UI, see the topic about configuring the digital migration service for signatures and the
topic about rendering signatures in the user interface in Siebel Life Sciences Guide.

To customize applets to capture signatures for Siebel Mobile applications
1 Create a new business component and add a new field.

a Create a new Signature business component with the values shown in the following table.

b Create a new Signature business component field with the values shown in the following table.

2 Create a new Form Applet with the values shown in the following table, adding an _PUI suffix to
the name.

3 Add applet user properties:

a In the Object Explorer, expand the Applet tree, and then click Applet User Prop.

Property Value

Name Signature BC

Class CSSBCBase

Property Value

Name Signature

Type DTYPE_NOTE

Text Length 16,383

Force Activation Selected

Name Class
Business
Component

Signature Form Applet_PUI CSSFrameBase Signature BC

Configuring Siebel Open UI Siebel 2018

Customizing Styles, Applets, Fields, and Controls ■ Customizing Applets

234

b In the Applet User Props list, add the following applet user properties as required.

4 Add controls:

a In the Object Explorer, click Control.

b In the Controls list, add the following controls.

5 Add an applet Web template:

a In the Object Explorer, click Applet Web Template.

b In the Applet Web Templates list, right-click and select new record.

Name Value

CanInvokeMethod: ClearSignature TRUE

Parent BC Name, for example:

■ For Siebel Pharma, Parent BC Name is:
Parent BC Name: Pharma Professional Call -
Mobile

■ For Siebel Service, Parent BC Name is:
Parent BC Name: Action

For example:

■ Pharma Professional Call
- Mobile

■ Action

Signature Field Signature

Signature Length 1600

Signature Min Length 5

Use Apply Drilldown Y

Use Cancel Drilldown Y

Name Description

Clear Signature Set the MethodInvoked property to ClearSignature.

Address Set the Field property to Address.

Note: You can create other fields such as Contact First
Name in addition to the Address field as required.

Signature Capture Set the following properties:

■ Set the Field property to Signature.

■ Set the HTML Type property to InkData.

Apply Signature Set the MethodInvoked property to ApplySignature.

Cancel Signature Set the MethodInvoked property to CancelSignature.

Customizing Styles, Applets, Fields, and Controls ■ Customizing Applets

Configuring Siebel Open UI Siebel 2018 235

c Set the following properties.

6 Create the following new drilldown objects:

a In the Object Explorer, click Drilldown Object.

b In the Drilldown Objects list, configure the values shown in the following table as required for
the Apply Drilldown and the Cancel Drilldown drilldown objects.

NOTE: The values shown in the following table (for View, Business Component, and so on)
are examples only - you can choose a different view and business component as required.

7 Expose the Controls in the Applet Web Template item as follows:

a In the Object Explorer, click Applet.

b Select Applet "Signature Form Applet_PUI", then right-click and select Edit Web Layout.

c Select Edit mode.

d Select and move the Signature field and the Apply Signature, Cancel Signature, and Clear
Signature buttons on the Web Layout.

8 Compile your modifications.

9 Add the applet Signature Form Applet_PUI to the manifest administration as follows:

a Log in to the client with administrative privileges.

b Navigate to the Administration - Application screen, and then the Manifest Administration view.

c Under UI Objects, create a new record with the following values:

Property Value

Name Edit

Type Edit

Web Template SIA Applet Form Grid Layout - No Menu_OUI

Name
Hyperlink
Field View

Source
Field

Business
Component

Destination
Field

Apply
Drilldown

Address LS Pharma
Professional Call
Execute View - Mobile

Activity
Id

Pharma
Professional Call
- Mobile

Id

Cancel
Drilldown

Address LS Pharma
Professional Call
Execute View - Mobile

Activity
Id

Pharma
Professional Call
- Mobile

Id

Interactive Flag Type Usage Type Name

N Applet Physical
Renderer

Signature Form Applet_PUI

Configuring Siebel Open UI Siebel 2018

Customizing Styles, Applets, Fields, and Controls ■ Customizing Applets

236

d Under Object Expression, add the following child applet for the record created in Step c on
page 235.

e Under Files, set the following file values:

f Under UI Objects, create a new record with the following values:

g Under Object Expression, add the following child applet for the record created in Step f.

h Under Files, set the following file values:

10 Test your modifications.

a Log in to the Siebel Open UI client.

b Navigate to a view where the Signature Form Applet_PUI is exposed.

c Verify that the Signature Capture view applet displays correctly - that is, according to the
customizations detailed in this procedure.

Interactive Flag Expression Level

N <Empty> 2

N Mobile 1

Interactive Flag Name

N 3rdParty/jquery.signaturepad.min.js

N siebel/signviewpr.js

Interactive Flag Type Usage Type Name

N Applet Presentation
Model

Signature Form Applet_PUI

Interactive Flag Expression Level

N Mobile 1

Interactive Flag Name

N siebel/signviewpm.js

Customizing Styles, Applets, Fields, and Controls ■ Customizing Applets

Configuring Siebel Open UI Siebel 2018 237

Customizing Applets to Display Record Counts for
Navigation Links
This topic describes how to customize an applet to display record counts for navigation links. The
Navigation Links Runtime business component includes fields applicable to record counts for
navigation links. Also, the CCAppletList_tile_NavLink_ss Web template includes the siebui-record-
count class to hold the record count and the error image that appears when the record count cannot
be retrieved.

After you complete the procedure in this topic, administrators can access the Siebel Open UI client,
and use the Navigation Links view of the Administration - Application screen to display the number
of records in the location to which a link navigates. For navigation links that appear in tiles, this
record count appears beneath the display name for the navigation link. For navigation links that
appear in lists, this record count appears in the Record Count field in the lists.

Currently, record counts for navigation links are available for only the Siebel eService application.

To customize an applet to display record counts for navigation links
1 Configure the manifest:

a Log in to a Siebel client with administrative privileges.

For more information about the screens that you use in this step, see “Configuring Manifests”
on page 150.

b Navigate to the Administration - Application screen, and then the Manifest Files view.

c In the Files list, add the following file if it does not already exist in the list:

siebel/navlinkpr.js

d Navigate to the Administration - Application screen, and then the Manifest Administration view.

e In the UI Objects list, select the applet for which you want to display record counts for navigation
links.

The applet must have a value in the Usage Type field of Physical Renderer.

f In the Object Expression list, select the appropriate expression for the applet.

g In the Files list, add the following file:

siebel/navlinkpr.js

2 If navigation links appear in a list, then include the Record Count field in the list:

a Open Siebel Tools.

For more information about using Siebel Tools, see Using Siebel Tools.

b In the Object Explorer, click Applet.

c In the Applets list, query the Name property for the applet in which to include the Record Count
field.

This applet has a Business Component property of Navigation Links Runtime.

Configuring Siebel Open UI Siebel 2018

Customizing Styles, Applets, Fields, and Controls ■ Customizing Controls

238

d In the Object Explorer, expand the Applet tree, then expand the List tree, and then click List
Column.

e In the List Columns list, create a new list column with a value of List Record Count for the Field
property.

f Compile your work.

3 (Optional) Change the location of the record count number from its default location in the corner
of tiles:

a Open the appropriate CSS file for editing.

For example, open the theme-aurora.css file, which is located at
install_location\applicationcontainer\webapps\siebel\files.

b Locate the siebui-record-count class in this file.

c Change the information for this class to change the location of the record count number.

For example, to center the record count number in the center of tiles, change the information
for this class as follows:

siebel-record-count {

 text-align: center;

 padding-top: 10px;

}

Customizing Controls
This topic describes how to customize a control. It includes the following information:

■ Creating and Managing Client-Side Controls on page 239

■ Displaying Control Labels in Different Languages on page 251

■ Customizing the Busy Cursor to Display While a Business Service Executes on page 254

This book includes a number of other topics that also customize controls. For more information
about:

■ Overview information about customizing controls, see “Examples of How You Can Customize Siebel
Open UI” on page 22, “Example Client Customizations” on page 48, and “Guidelines for Customizing
Siebel Open UI” on page 109

■ Adding a control to a presentation model, see “Customizing the Setup Logic of the Presentation
Model” on page 60

■ Modifying a list column control so that Siebel Open UI stores the value of the control check box,
see “Customizing the Presentation Model to Identify the Records to Delete” on page 62

■ Customizing control user properties, see “Customizing Control User Properties for Presentation
Models” on page 118

■ Accessing a proxy object for an active control, see “Accessing Proxy Objects” on page 127

Customizing Styles, Applets, Fields, and Controls ■ Customizing Controls

Configuring Siebel Open UI Siebel 2018 239

■ Customizing control themes, see “Customizing Themes for Other Objects” on page 175

■ Rendering controls according to control type, see “Customizing List Applets to Render as Maps” on
page 203

■ Adding a control that does a static drill-down, see “Adding Static Drilldowns to Applets” on
page 208

■ Customizing controls in an applet, see “Customizing Applets to Capture Signatures from Desktop
Applications” on page 228

■ Adding controls to the calendar, “Customizing a Resource Scheduler” on page 274

Creating and Managing Client-Side Controls
The example in this topic describes how to create a text box that the Siebel Open UI client displays,
and is not represented on the Siebel server. This is a Siebel Open UI client implementation, and as
such, data will not be maintained after the user navigates away from the view containing this type
of control. You can also create similar controls, such as date/time, check box, combobox, and so on.

This example shows how to configure client-side controls in list applets, however, the same principals
can be applied to form applets.

To create controls in the client
1 Create a custom presentation model:

a Use a JavaScript editor to create a new file named clientctrlpmodel.js. Save this file in the
following folder:

siebel\custom

For more information about:

❏ The complete presentation model that this example uses, see “Text Copy of the Client
Control Presentation Model File” on page 246.

❏ This folder, see “Organizing Files That You Customize” on page 145.

b Add the following code to the file that you created in Step a.

This code does the basic set up:

if(typeof(SiebelAppFacade.ClientCtrlPModel) === "undefined"){

 SiebelJS.Namespace('SiebelAppFacade.ClientCtrlPModel');

 //Module with its dependencies

 define("siebel/custom/clientctrlpmodel", [], function () {

 SiebelAppFacade.ClientCtrlPModel = (function(){

 var consts = SiebelJS.Dependency("SiebelApp.Constants");

 /* *

Configuring Siebel Open UI Siebel 2018

Customizing Styles, Applets, Fields, and Controls ■ Customizing Controls

240

 * Constructor Function - ClientCtrlPModel

 *

 * Parameter - Be a good citizen. Pass All parameter to superclass.

 * */

 function ClientCtrlPModel(proxy){

 var m_recordset = [];

 SiebelAppFacade.ClientCtrlPModel.superclass.constructor.call(this, proxy);

c Add the client control:

 this.AddMethod("AddClientControl", null, { core : true });

 // add into method array

 this.GetClientRecordSet = function() {

 return m_recordset ;

 };

 }

For more information, see “AddMethod Method” on page 466 and “AddClientControl Method,”.

d Extend the ListPresentationModel object:

 /* Siebel OpenUI uses the ListPresentationModel object to initialize every
list applet. So, to maintain the functionality that ListPresentationModel
provides, you extend it.*/

 SiebelJS.Extend(ClientCtrlPModel, SiebelAppFacade.ListPresentationModel);

 ClientCtrlPModel.prototype.Init = function(){

 SiebelAppFacade.ClientCtrlPModel.superclass.Init.call(this);

e Determine whether or not Siebel Open UI has removed the focus from the field in the applet,
and then temporarily store the value that the user entered in the control:

 /* Attach Post Handler for LeaveField */

 this.AddMethod("LeaveField", PostLeaveField, { sequence : false, scope :
this });

For more information, see “LeaveField Method” on page 488 and “PreGetFormattedFieldValue
Method” on page 532.

f Get the format that the field uses to store the value for the control:

 /* Attach Pre Handler for GetFormattedFieldValue */

 this.AddMethod("GetFormattedFieldValue", PreGetFormattedFieldValue, {
sequence : true, scope : this });

Customizing Styles, Applets, Fields, and Controls ■ Customizing Controls

Configuring Siebel Open UI Siebel 2018 241

 /* Attach Handler for Delete Record Notification as well */

 this.AttachNotificationHandler(consts.get(
"SWE_PROP_BC_NOTI_DELETE_RECORD"), HandleDeleteNotification);

For more information, see “GetFormattedFieldValue Method” on page 486.

g Get the data from memory stored in Step f on page 240, and then display this data in the client
control:

function PreGetFormattedFieldValue(control, bUseWS, recIndex, returnStructure){

 if (utils.IsEmpty(recIndex)){

 recIndex = this.Get("GetSelection");

 }

 if (recIndex >=0) {

 var clientObj = this.GetClientRecordSet();

 var recordSet=this.Get("GetRawRecordSet");

 var id = recordSet[recIndex]["Id"];

 var flag = false;

 var value;

 switch(control.GetName()){

 case "TestEdit":

 value = recordSet[recIndex]["Name"];

 flag = true;

 break;

 }

 if (flag){

 if(clientObj[id] && clientObj[id][control.GetName()]){

 value = clientObj[id][control.GetName()];

 }

 else if (clientObj[id]){

 clientObj[id][control.GetName()] = value;

 }

 else{

 var recordclient = {};

Configuring Siebel Open UI Siebel 2018

Customizing Styles, Applets, Fields, and Controls ■ Customizing Controls

242

 recordclient[control.GetName()] = value;

 clientObj[id] = recordclient;

 }

 returnStructure["CancelOperation"] = true;

 returnStructure["ReturnValue"] = value;

 }

 }

}

For more information, see “PreGetFormattedFieldValue Method” on page 532.

h Save the value after the user leaves the client control:

function PostLeaveField(control, value, notLeave, returnStructure){

 var clientObj = this.GetClientRecordSet();

 var currSel = this.Get("GetSelection");

 var recordSet=this.Get("GetRawRecordSet");

 var id = recordSet[currSel]["Id"];

 if (clientObj[id]){

 switch(control.GetName()){

 case "TestEdit":

 clientObj[id][control.GetName()] = returnStructure["ReturnValue"] ;

 break;

 }

 }

}

For more information, see “PreGetFormattedFieldValue Method” on page 532.

i Delete the reference to the record data that Siebel Open UI stored in the client for the control:

 function HandleDeleteNotification(propSet){

 var activeRow = propSet.GetProperty(consts.get(
"SWE_PROP_BC_NOTI_ACTIVE_ROW"));

 if(activeRow === this.Get("GetSelection")){

 var delObj = this.GetClientRecordSet();

 delObj[activeRow] = null;

Customizing Styles, Applets, Fields, and Controls ■ Customizing Controls

Configuring Siebel Open UI Siebel 2018 243

 }

 }

For more information, see “HandleDeleteNotification Method” on page 529.

j Create a property set for the control.

For this example, you use the following code to create a property set for the text box control:

 ClientCtrlPModel.prototype.UpdateModel = function(psInfo){

 /// Specify the property set for Edit box

 SiebelAppFacade.ClientCtrlPModel.superclass.UpdateModel.call(this, psInfo);

 var ctrlTxtInfo = SiebelAppFacade.PresentationModel.GetCtrlTemplate
("TestEdit", "Test Edit", consts.get("SWE_CTRL_TEXTAREA"), 1);

For more information about this code, see “Creating Property Sets for Client- Side Controls” on
page 255.

k Add the property set information so that Siebel Open UI can add it to the proxy:

this.ExecuteMethod("AddClientControl", ctrlTxtInfo);

l Return the ClientCtrlPModel that you set up in Step b on page 239:

 };

 return ClientCtrlPModel;

 } ());

 return "SiebelAppFacade.ClientCtrlPModel";

 });

}

2 Configure the manifest:

a Log in to a Siebel client with administrative privileges.

b Navigate to the Administration - Application screen, and then the Manifest Files view.

c In the Files list, add the following new files.

d Navigate to the Administration - Application screen, and then the Manifest Administration view.

Field Value

Name siebel/custom/clientctrlpmodel.js

Configuring Siebel Open UI Siebel 2018

Customizing Styles, Applets, Fields, and Controls ■ Customizing Controls

244

e In the UI Objects list, specify the following applet.

f In the Object Expression list, add the following expression. The physical renderer uses this
expression to render the applet in a desktop platform.

g In the Files list, add the following file:

siebel/custom/clientctrlpmodel.js

h To refresh the manifest, log out of the client, and then log back in to the client.

3 Test your work:

a Navigate to any list applet, and then verify that it displays the control that you added.

In Step 1, Step b on page 239, you extended the ListPresentationModel object that Siebel
Open UI uses to display every list applet. So, you can navigate to any list applet.

Creating Property Sets for Client- Side Controls
You can use the following code to create a property set for a control that Siebel Open UI displays in
the client:

ClientCtrlPModel.prototype.UpdateModel = function(psInfo){

/// Specify the property set for the control

SiebelAppFacade.ClientCtrlPModel.superclass.UpdateModel.call(this, psInfo);

var variable_name= SiebelAppFacade.PresentationModel.GetCtrlTemplate

 ("control_name", "display_name", consts.get("control_type"), column_index);

 ctrlComboInfo.SetPropertyStr(consts.get("control_property"),
"property_attribute")

where:

■ control_name, display_name, control_type, and column_index are arguments of the
GetCtrlTemplate method. For more information about these arguments, see “GetCtrlTemplate
Method” on page 474.

Field Value

Type Applet

Usage Type Presentation Model

Name Account List Applet

Field Value

Expression Desktop

Level 1

Customizing Styles, Applets, Fields, and Controls ■ Customizing Controls

Configuring Siebel Open UI Siebel 2018 245

■ control_property specifies a control property. For example, SWE_PROP_WIDTH specifies the
width of the control, in pixels.

■ property_attribute specifies an attribute of the control that control_property specifies. For
example, 200 sets the width of the control to 200 pixels.

For example, the following code creates a variable named ctrlComboInfo for the TestCombo control.
It sets the width and height of this control to 200 pixels, and centers it

ClientCtrlPModel.prototype.UpdateModel = function(psInfo){

/// Specify the property set for the control

SiebelAppFacade.ClientCtrlPModel.superclass.UpdateModel.call(this, psInfo);

ClientCtrlPModel.prototype.UpdateModel = function(psInfo){

/// Specify the property set for the control

SiebelAppFacade.ClientCtrlPModel.superclass.UpdateModel.call(this, psInfo);

var ctrlComboInfo = SiebelAppFacade.PresentationModel.GetCtrlTemplate ("TestCombo",

 "Test Drop Down", consts.get("SWE_CTRL_COMBOBOX"), 10);

 ctrlComboInfo.SetPropertyStr(consts.get("SWE_PROP_WIDTH"), "200")

 ctrlComboInfo.SetPropertyStr(consts.get("SWE_PROP_HEIGHT"), "200")

 ctrlChkboxInfo.SetPropertyStr(consts.get("SWE_PROP_JUSTIFICATION"), "center");

For more information about control_property and property_attribute, see “Properties That You Can
Specify for Client-Side Controls” on page 245. For more information about other control properties that
you can specify, such as Sort or Vertical Scroll, see the topic that describes the control Applet Object
Type in Siebel Object Types Reference.

Properties That You Can Specify for Client-Side Controls
Table 13 describes the properties that you can specify for controls. The Comparable Applet Control
or Description column of this table includes the name of the applet control property that is similar to
the SWE control property. If no applet control property is similar to the SWE control property, then
this column includes a description. For more information about these applet control properties, see
the topic that describes controls in the applet object types section of Siebel Object Types Reference.

Table 13. Properties That You Can Specify for Controls

SWE Control Property Comparable Applet Control or Description

SWE_PROP_CURR_FLD Identifies the field that is currently chosen.

SWE_PROP_CASE_SENSITIVE Specifies to make text in the control case-sensitive.

SWE_PROP_DISP_FORMAT Display Format

SWE_PROP_DISP_MODE HTML Display Mode

Configuring Siebel Open UI Siebel 2018

Customizing Styles, Applets, Fields, and Controls ■ Customizing Controls

246

Text Copy of the Client Control Presentation Model File
The following code from the clientctrlpmodel.js file adds example controls to the client. You can
examine this code for your reference. To get a copy of this file, see Article ID 1494998.1 on My Oracle
Support:

SWE_PROP_DISP_MAX_CHARS HTML Max Chars Displayed

SWE_PROP_DISP_NAME Specifies the label that Siebel Open UI uses to identify
this control in the client.

SWE_PROP_FLD_NAME Field Name

SWE_PROP_HEIGHT HTML Height

SWE_PROP_HTML_ATTRIBUTE HTML Attributes

SWE_PROP_IS_BOUND_PICK Specifies that the control is a bound picklist.

SWE_PROP_IS_ENCODE HTML Display Mode

SWE_PROP_INPUTMETHOD MethodInvoked

SWE_PROP_JUSTIFICATION Text Alignment

SWE_PROP_LABEL_JUSTIFICATION Specifies the text alignment for a column header that
Siebel Open UI displays in a list control.

SWE_PROP_MAX_SIZE HTML Max Chars Displayed

SWE_PROP_NAME Name

SWE_PROP_PICK_APLT Pick Applet

SWE_PROP_POPUP_HEIGHT Specifies the height of the popup dialog box, in pixels.

SWE_PROP_PROMPT Prompt Text

SWE_PROP_POPUP_WIDTH Specifies the width of the popup dialog box, in pixels.

SWE_PROP_IS_DYNAMIC Specifies whether or not Siebel Open UI dynamically
displays values in the control.

SWE_PROP_SPAN Specifies to span control contents across multiple
fields. This property is not applicable for list controls.

SWE_PROP_SEQ HTML Sequence

SWE_PROP_TYPE Type, HTML Type, or Field Retrieval Type

SWE_PROP_WIDTH Width

SWE_PROP_COLINDEX Specifies the index number of a column.

SWE_PROP_ICON_MAP Bitmap

SWE_PROP_IS_SORTABLE Sort

Table 13. (Continued)Properties That You Can Specify for Controls

SWE Control Property Comparable Applet Control or Description

Customizing Styles, Applets, Fields, and Controls ■ Customizing Controls

Configuring Siebel Open UI Siebel 2018 247

if(typeof(SiebelAppFacade.ClientCtrlPModel) === "undefined"){

 SiebelJS.Namespace('SiebelAppFacade.ClientCtrlPModel');

 //Module with its dependencies

 define("siebel/custom/clientctrlpmodel", [], function () {

 SiebelAppFacade.ClientCtrlPModel = (function(){

 var consts = SiebelJS.Dependency("SiebelApp.Constants");

 /* *

 * Constructor Function - ClientCtrlPModel

 *

 * Parameter - Be a good citizen. Pass All parameter to superclass.

 * */

 function ClientCtrlPModel(proxy){

 var m_recordset = [];

 SiebelAppFacade.ClientCtrlPModel.superclass.constructor.call(this, proxy);

 this.AddMethod("AddClientControl", null, { core : true });

 // add into method array

 this.GetClientRecordSet = function() {

 return m_recordset ;

 };

 }

 /* Siebel OpenUI uses the ListPresentationModel object to initialize every list
applet. So, to maintain the functionality that ListPresentationModel provides, you
extend it.*/

 SiebelJS.Extend(ClientCtrlPModel, SiebelAppFacade.ListPresentationModel);

 ClientCtrlPModel.prototype.Init = function(){

 SiebelAppFacade.ClientCtrlPModel.superclass.Init.call(this);

 /* Attach Post Handler for LeaveField */

 this.AddMethod("LeaveField", PostLeaveField, { sequence : false, scope : this
});

 /* Attach Pre Handler for GetFormattedFieldValue */

 this.AddMethod("GetFormattedFieldValue", PreGetFormattedFieldValue, { sequence
: true, scope : this });

Configuring Siebel Open UI Siebel 2018

Customizing Styles, Applets, Fields, and Controls ■ Customizing Controls

248

 /* Attach Handler for Delete Record Notification as well */

 this.AttachNotificationHandler(consts.get("SWE_PROP_BC_NOTI_DELETE_RECORD"
), HandleDeleteNotification);

 };

 function PreGetFormattedFieldValue(control, bUseWS, recIndex, returnStructure){

 if (utils.IsEmpty(recIndex)){

 recIndex = this.Get("GetSelection");

 }

 if (recIndex >=0) {

 var clientObj = this.GetClientRecordSet();

 var recordSet=this.Get("GetRawRecordSet");

 var id = recordSet[recIndex]["Id"];

 var flag = false;

 var value;

 switch(control.GetName()){

 case "TestEdit":

 value = recordSet[recIndex]["Name"];

 flag = true;

 break;

 }

 if (flag){

 if(clientObj[id] && clientObj[id][control.GetName()]){

 value = clientObj[id][control.GetName()];

 }

 else if (clientObj[id]){

 clientObj[id][control.GetName()] = value;

 }

 else{

 var recordclient = {};

 recordclient[control.GetName()] = value;

Customizing Styles, Applets, Fields, and Controls ■ Customizing Controls

Configuring Siebel Open UI Siebel 2018 249

 clientObj[id] = recordclient;

 }

 returnStructure["CancelOperation"] = true;

 returnStructure["ReturnValue"] = value;

 }

 }

 }

 function PostLeaveField(control, value, notLeave, returnStructure){

 var clientObj = this.GetClientRecordSet();

 var currSel = this.Get("GetSelection");

 var recordSet=this.Get("GetRawRecordSet");

 var id = recordSet[currSel]["Id"];

 if (clientObj[id]){

 switch(control.GetName()){

 case "TestEdit":

 clientObj[id][control.GetName()] = returnStructure["ReturnValue"] ;

 break;

 }

 }

 }

 function HandleDeleteNotification(propSet){

 var activeRow = propSet.GetProperty(consts.get(
"SWE_PROP_BC_NOTI_ACTIVE_ROW"));

 if(activeRow === this.Get("GetSelection")){

 var delObj = this.GetClientRecordSet();

 delObj[activeRow] = null;

 }

 }

 ClientCtrlPModel.prototype.UpdateModel = function(psInfo){

 /// PS Attribute info for Edit box

Configuring Siebel Open UI Siebel 2018

Customizing Styles, Applets, Fields, and Controls ■ Customizing Controls

250

 SiebelAppFacade.ClientCtrlPModel.superclass.UpdateModel.call(this, psInfo);

 var ctrlTxtInfo = SiebelAppFacade.PresentationModel.GetCtrlTemplate
("TestEdit", "Test Edit", consts.get("SWE_CTRL_TEXTAREA"), 1);

 this.ExecuteMethod("AddClientControl", ctrlTxtInfo);

 };

 return ClientCtrlPModel;

 } ());

 return "SiebelAppFacade.ClientCtrlPModel";

 });

}

Configuring Client-Side Multi-Select
Siebel Open UI uses a client-side control implementation to display a Multi-Select check box column
in list applets. While this is primarily intended for touch-based devices where multiple selection of
rows is not possible using the Shift + Click or Ctrl + Click, it can also be configured for desktop
browsers.

The Multi Row Select Checkbox Display user property controls the behavior and availability of the
client-side multi-select check boxes. The property can have the following values:

■ TOUCH-HIDE. The multi-select column does not appear on touch devices.

■ TOUCH-SHOW. The multi-select column appears on touch devices.

■ NONTOUCH-HIDE. The multi-select column does not appear on desktop and non-touch based
devices.

■ NONTOUCH-SHOW. The multi-select column appears on desktops and non-touch based Touch
devices.

When the user property is not configured for an applet, the default behavior is to show the Multi-
Select column on touch devices and hide the column on non-touch devices. Administrators can use
the user property to override this behavior on a per-list applet basis.

To configure a multi-select check box for a list applet
1 Open Siebel Tools.

For more information, see Using Siebel Tools.

2 In the Object Explorer, click Applet.

3 In the Applets list, locate the applet that you want to configure.

4 Add the applet user property to the applet that you located in Step 3:

a In the Object Explorer, expand the Applet tree, and then click Applet User Prop.

Customizing Styles, Applets, Fields, and Controls ■ Customizing Controls

Configuring Siebel Open UI Siebel 2018 251

b In the Applet User Props list, add the following applet user property with one of the possible
values:

5 Compile the applet object.

6 Restart the Siebel server.

Your changes will now be visible in the Siebel Open UI client.

Displaying Control Labels in Different Languages
This topic describes how to modify the custom_messages.js file so that Siebel Open UI displays the
text for a control label according to the language that the client browser uses. You can also modify
the presentation model instead of modifying the custom_messages.js file. For more information
about how to do this, see “Customizing Presentation Models to Display Control Labels in Different
Languages” on page 253. For more information about language support, see “Languages That Siebel
Open UI Supports” on page 641.

To display control labels in different languages
1 Create the following folder structure, if it does not exist, where <lang> is the language code such

as DEU:

AI_DIR/siebel/scripts/siebel/custom/<lang>

2 Copy custom_messages.js from below folder to the folder created in Step 1:

AI_DIR/siebel/scripts/siebel/samples

3 Open the file you saved in Step 2 using a JavaScript editor.

4 Locate the following code:

function _SWEgetGlobalCustomMsgAry()

{

 if (! _SWEbCMsgInit)

 {

 SWEbCMsgInit = true;

 }

 return _SWEcustommsgAry;

}

Name Values

Multi Row Select Checkbox Display TOUCH-HIDE, TOUCH-SHOW, NONTOUCH-
HIDE, NONTOUCH-SHOW

Configuring Siebel Open UI Siebel 2018

Customizing Styles, Applets, Fields, and Controls ■ Customizing Controls

252

5 Add the code in bold to the code that you located in Step 4:

function _SWEgetGlobalCustomMsgAry()

{

 if (! _SWEbCMsgInit)

 {

 SWEbCMsgInit = true;

 SWEcustommsgAry["ID"] = "custom_string";

 }

 return _SWEcustommsgAry;

}

where:

■ ID is a string that you use to reference the custom_string. You can use any value for ID.

■ custom_string is a text string that includes text that you manually translate into the language
that your deployment requires.

For example, you can use the following code to convert the text label that Siebel Open UI uses
for the New button that it displays on the Contact List Applet to Neu, and the Delete button to
Löschen:

function _SWEgetGlobalCustomMsgAry()

{

 if (! _SWEbCMsgInit)

 {

 SWEbCMsgInit = true;

 SWEcustommsgAry["New"] = "Neu";

 SWEcustommsgAry["Delete"] = "Löschen";

 }

 return _SWEcustommsgAry;

}

6 Save the file.

7 Navigate to the Administration - Application screen of your Siebel client, then the Manifest
Expressions view.

NOTE: You need to have administrative privileges in the Siebel client.

Customizing Styles, Applets, Fields, and Controls ■ Customizing Controls

Configuring Siebel Open UI Siebel 2018 253

8 In the Expressions list, add the following expression for the language where the string will be
used:

9 Navigate to the Manifest Files view to add the new file under manifest files.

10 Add an entry for custom_message.js in the new folder created in Step 1 as follows:

siebel/custom/deu/custom_messages.js

11 Navigate to the Manifest Administration view to add a new record.

12 In the Objects UI list, create a new entry and specify the object as follows:

13 In the Object Expression list, add the following subexpression:

14 In the Files list, click Add.

15 In the Files dialog box, query for the path and filename that you added in Step 10.

16 Click Go.

17 Save the changes to the manifest.

18 Log out of the Siebel client, clear browser cache, and log in again.

19 Test your work:

a Navigate to the screen that includes the control that Siebel Open UI uses to display the translated
string that you modified in Step 4.

b Verify that the control displays the translated string.

Customizing Presentation Models to Display Control Labels in
Different Languages
This topic describes how to customize a presentation model so that it displays a control label in a
different language instead of modifying the custom_messages.js file.

Field Name Expression

Value <Name of the expression>
such as Dutch

Language()=’<Language code>
such as DEU

Field Type Usage Type Name

Value Application Common PLATFORM_INDEPENDENT

Field Group Name Expression Level

Value Not Applicable Dutch 1

Configuring Siebel Open UI Siebel 2018

Customizing Styles, Applets, Fields, and Controls ■ Customizing Controls

254

To customize presentation models to display control labels in different languages
1 Use a JavaScript editor to open the presentation model that Siebel Open UI uses to display the

control label that you must modify.

For more information, see “About the Presentation Model” on page 33.

2 Add the following code to call the ExecuteMethod method that the presentation model uses. You
can add this code anywhere in the presentation model file:

pm.ExecuteMethod("AddLocalString","ID","custom_string");

where:

■ AddLocalString is the name of the method that ExecuteMethod calls to add your custom
string.

For more information about how this example uses ID and custom_string, see “Displaying Control
Labels in Different Languages” on page 251. For more information about these methods, see
“AddLocalString Method” on page 465 and “ExecuteMethod Method” on page 473.

For example, add the following code:

pm.ExecuteMethod("AddLocalString", "New", "Neu");

pm.ExecuteMethod("AddLocalString", "Delete", "Löschen");

3 Test your work:

a Navigate to the screen that includes the control that Siebel Open UI uses to display the translated
string that you modified in Step 2.

b Verify that the control displays the translated string.

Customizing the Busy Cursor to Display While a
Business Service Executes
You can force a busy cursor to appear while a selected business service is executing. The example
in this topic describes how to configure this behavior.

There is a system preference for Busy Cursor Timeout. For more information, see “About Preferences”
on page 165.

To display a busy cursor while a Business Service executes
1 Create an applet with a button that invokes an always-on method.

2 Create a physical renderer to respond to the method invocation.

3 Create a business service to be invoked.

a The following is an example of a business service.

function Service_PreInvokeMethod (MethodName, Inputs, Outputs)
{

Customizing Styles, Applets, Fields, and Controls ■ Customizing Controls

Configuring Siebel Open UI Siebel 2018 255

var nReturn = ContinueOperation;
switch (MethodName) {
case "ExampleMethod":
var count;
for (var i=1; i<4000000; i++) {
Outputs.SetProperty("OutputProperty", "OutputValue");
Outputs.SetProperty("ReturnedProperty", Inputs.GetProperty("InputProperty"));
count++;
 }
Return = CancelOperation;
break;
}
 return (nReturn);
}

4 Make sure the business service is invokable from the client using the application user property.

5 Update the physical renderer to invoke the business service workOnBusyCursor control upon
method invocation.

6 Test your work:

a Navigate to any list applet, and then verify that it displays the control that you added.

Creating Property Sets for Client- Side Controls
You can use the following code to create a property set for a control that Siebel Open UI displays in
the client:

ClientCtrlPModel.prototype.UpdateModel = function(psInfo){
/// Specify the property set for the control
SiebelAppFacade.ClientCtrlPModel.superclass.UpdateModel.call(this, psInfo);
var variable_name= SiebelAppFacade.PresentationModel.GetCtrlTemplate
 ("control_name", "display_name", consts.get("control_type"), column_index);
 ctrlComboInfo.SetPropertyStr(consts.get("control_property"),
"property_attribute")

where:

■ variable_name specifies the name of a variable.

■ control_name, display_name, control_type, and column_index are arguments of the
GetCtrlTemplate method. For more information about these arguments, see “GetCtrlTemplate
Method” on page 474.

■ control_property specifies a control property. For example, SWE_PROP_WIDTH specifies the
width of the control, in pixels.

■ property_attribute specifies an attribute of the control that control_property specifies. For
example, for the SWE_PROP_WIDTH property, a value of 200 sets the width of the control to 200
pixels.

For example, the following code creates a variable named ctrlComboInfo for the TestCombo control.
It sets the width and height of this control to 200 pixels, and centers it

ClientCtrlPModel.prototype.UpdateModel = function(psInfo){

Configuring Siebel Open UI Siebel 2018

Customizing Styles, Applets, Fields, and Controls ■ Customizing Controls

256

/// Specify the property set for the control

SiebelAppFacade.ClientCtrlPModel.superclass.UpdateModel.call(this, psInfo);

ClientCtrlPModel.prototype.UpdateModel = function(psInfo){

/// Specify the property set for the control

SiebelAppFacade.ClientCtrlPModel.superclass.UpdateModel.call(this, psInfo);

var ctrlComboInfo = SiebelAppFacade.PresentationModel.GetCtrlTemplate ("TestCombo",

 "Test Drop Down", consts.get("SWE_CTRL_COMBOBOX"), 10);

 ctrlComboInfo.SetPropertyStr(consts.get("SWE_PROP_WIDTH"), "200")

 ctrlComboInfo.SetPropertyStr(consts.get("SWE_PROP_HEIGHT"), "200")

 ctrlChkboxInfo.SetPropertyStr(consts.get("SWE_PROP_JUSTIFICATION"), "center");

For more information about control_property and property_attribute, see “Properties That You Can
Specify for Client-Side Controls” on page 245. For more information about other control properties that
you can specify, such as Sort or Vertical Scroll, see the topic that describes the control Applet Object
Type in Siebel Object Types Reference.

Properties That You Can Specify for Client-Side Controls
Table 14 describes the properties that you can specify for controls. The Comparable Applet Control
or Description column of this table includes the name of the applet control property that is similar to
the SWE control property. If no applet control property is similar to the SWE control property, then
this column includes a description. For more information about these applet control properties, see
the topic that describes controls in the applet object types section of Siebel Object Types Reference.

Table 14. Properties That You Can Specify for Controls

SWE Control Property Comparable Applet Control or Description

SWE_PROP_CURR_FLD Specifies the field that is currently chosen.

SWE_PROP_CASE_SENSITIVE Specifies to make text in the control case-sensitive.

SWE_PROP_DISP_FORMAT Display Format

SWE_PROP_DISP_MODE HTML Display Mode

SWE_PROP_DISP_MAX_CHARS HTML Max Chars Displayed

SWE_PROP_DISP_NAME Specifies the label that Siebel Open UI uses to identify
this control in the client.

SWE_PROP_FLD_NAME Field Name

SWE_PROP_HEIGHT HTML Height

SWE_PROP_HTML_ATTRIBUTE HTML Attributes

Customizing Styles, Applets, Fields, and Controls ■ Customizing Controls

Configuring Siebel Open UI Siebel 2018 257

Text Copy of the Client Control Presentation Model File
The following code from the clientctrlpmodel.js file adds example controls to the client. You can
examine this code for your reference. To get a copy of this file, see Article ID 1494998.1 on My Oracle
Support:

if(typeof(SiebelAppFacade.ClientCtrlPModel) === "undefined"){

 SiebelJS.Namespace('SiebelAppFacade.ClientCtrlPModel');

 //Module with its dependencies

 define("siebel/custom/clientctrlpmodel", [], function () {

 SiebelAppFacade.ClientCtrlPModel = (function(){

SWE_PROP_IS_BOUND_PICK Specifies that the control is a bound picklist.

SWE_PROP_IS_ENCODE HTML Display Mode

SWE_PROP_INPUTMETHOD MethodInvoked

SWE_PROP_JUSTIFICATION Text Alignment

SWE_PROP_LABEL_JUSTIFICATION Specifies the text alignment for a column header that
Siebel Open UI displays in a list control.

SWE_PROP_MAX_SIZE HTML Max Chars Displayed

SWE_PROP_NAME Name

SWE_PROP_PICK_APLT Pick Applet

SWE_PROP_POPUP_HEIGHT Specifies the height of the popup dialog box, in pixels.

SWE_PROP_PROMPT Prompt Text

SWE_PROP_POPUP_WIDTH Specifies the width of the popup dialog box, in pixels.

SWE_PROP_IS_DYNAMIC Specifies whether or not Siebel Open UI dynamically
displays values in the control.

SWE_PROP_SPAN Specifies to span control contents across multiple
fields. This property is not applicable for list controls.

SWE_PROP_SEQ HTML Sequence

SWE_PROP_TYPE Type, HTML Type, or Field Retrieval Type

SWE_PROP_WIDTH Width

SWE_PROP_COLINDEX Specifies the index number of a column.

SWE_PROP_ICON_MAP Bitmap

SWE_PROP_IS_SORTABLE Sort

Table 14. (Continued)Properties That You Can Specify for Controls

SWE Control Property Comparable Applet Control or Description

Configuring Siebel Open UI Siebel 2018

Customizing Styles, Applets, Fields, and Controls ■ Customizing Controls

258

 var consts = SiebelJS.Dependency("SiebelApp.Constants");

 /* *

 * Constructor Function - ClientCtrlPModel

 *

 * Parameter - Be a good citizen. Pass All parameter to superclass.

 * */

 function ClientCtrlPModel(proxy){

 var m_recordset = [];

 SiebelAppFacade.ClientCtrlPModel.superclass.constructor.call(this, proxy);

 this.AddMethod("AddClientControl", null, { core : true });

 // add into method array

 this.GetClientRecordSet = function() {

 return m_recordset ;

 };

 }

 /* Siebel OpenUI uses the ListPresentationModel object to initialize every list
applet. So, to maintain the functionality that ListPresentationModel provides, you
extend it.*/

 SiebelJS.Extend(ClientCtrlPModel, SiebelAppFacade.ListPresentationModel);

 ClientCtrlPModel.prototype.Init = function(){

 SiebelAppFacade.ClientCtrlPModel.superclass.Init.call(this);

 /* Attach Post Handler for LeaveField */

 this.AddMethod("LeaveField", PostLeaveField, { sequence : false, scope : this
});

 /* Attach Pre Handler for GetFormattedFieldValue */

 this.AddMethod("GetFormattedFieldValue", PreGetFormattedFieldValue, { sequence
: true, scope : this });

 /* Attach Handler for Delete Record Notification as well */

 this.AttachNotificationHandler(consts.get("SWE_PROP_BC_NOTI_DELETE_RECORD"
), HandleDeleteNotification);

 };

 function PreGetFormattedFieldValue(control, bUseWS, recIndex, returnStructure){

Customizing Styles, Applets, Fields, and Controls ■ Customizing Controls

Configuring Siebel Open UI Siebel 2018 259

 if (utils.IsEmpty(recIndex)){

 recIndex = this.Get("GetSelection");

 }

 if (recIndex >=0) {

 var clientObj = this.GetClientRecordSet();

 var recordSet=this.Get("GetRawRecordSet");

 var id = recordSet[recIndex]["Id"];

 var flag = false;

 var value;

 switch(control.GetName()){

 case "TestEdit":

 value = recordSet[recIndex]["Name"];

 flag = true;

 break;

 }

 if (flag){

 if(clientObj[id] && clientObj[id][control.GetName()]){

 value = clientObj[id][control.GetName()];

 }

 else if (clientObj[id]){

 clientObj[id][control.GetName()] = value;

 }

 else{

 var recordclient = {};

 recordclient[control.GetName()] = value;

 clientObj[id] = recordclient;

 }

 returnStructure["CancelOperation"] = true;

 returnStructure["ReturnValue"] = value;

 }

Configuring Siebel Open UI Siebel 2018

Customizing Styles, Applets, Fields, and Controls ■ Customizing Controls

260

 }

 }

 function PostLeaveField(control, value, notLeave, returnStructure){

 var clientObj = this.GetClientRecordSet();

 var currSel = this.Get("GetSelection");

 var recordSet=this.Get("GetRawRecordSet");

 var id = recordSet[currSel]["Id"];

 if (clientObj[id]){

 switch(control.GetName()){

 case "TestEdit":

 clientObj[id][control.GetName()] = returnStructure["ReturnValue"] ;

 break;

 }

 }

 }

 function HandleDeleteNotification(propSet){

 var activeRow = propSet.GetProperty(consts.get(
"SWE_PROP_BC_NOTI_ACTIVE_ROW"));

 if(activeRow === this.Get("GetSelection")){

 var delObj = this.GetClientRecordSet();

 delObj[activeRow] = null;

 }

 }

 ClientCtrlPModel.prototype.UpdateModel = function(psInfo){

 /// PS Attribute info for Edit box

 SiebelAppFacade.ClientCtrlPModel.superclass.UpdateModel.call(this, psInfo);

 var ctrlTxtInfo = SiebelAppFacade.PresentationModel.GetCtrlTemplate
("TestEdit", "Test Edit", consts.get("SWE_CTRL_TEXTAREA"), 1);

 this.ExecuteMethod("AddClientControl", ctrlTxtInfo);

 };

 return ClientCtrlPModel;

Customizing Styles, Applets, Fields, and Controls ■ Customizing Controls

Configuring Siebel Open UI Siebel 2018 261

 } ());

 return "SiebelAppFacade.ClientCtrlPModel";

 });

}

Configuring Client-Side Multi-Select
Siebel Open UI uses a client-side control implementation to display a Multi-Select check box column
in list applets. While this is primarily intended for touch-based devices where multiple selection of
rows is not possible using the Shift + Click or Ctrl + Click, it can also be configured for desktop
browsers.

The Multi Row Select Checkbox Display user property controls the behavior and availability of the
client-side multi-select check boxes. The property can have the following values:

■ TOUCH-HIDE. The multi-select column does not appear on touch devices.

■ TOUCH-SHOW. The multi-select column appears on touch devices.

■ NONTOUCH-HIDE. The multi-select column does not appear on desktop and non-touch based
devices.

■ NONTOUCH-SHOW. The multi-select column appears on desktops and non-touch based Touch
devices.

When the user property is not configured for an applet, the default behavior is to show the Multi-
Select column on touch devices and hide the column on non-touch devices. Administrators can use
the user property to override this behavior on a per-list applet basis.

To configure a multi-select check box for a list applet
1 Open Siebel Tools.

For more information, see Using Siebel Tools.

2 In the Object Explorer, click Applet.

3 In the Applets list, locate the applet that you want to configure.

4 Add the applet user property to the applet that you located in Step 3:

a In the Object Explorer, expand the Applet tree, and then click Applet User Prop.

b In the Applet User Props list, add the following applet user property with one of the possible
values:

5 Compile the applet object.

Name Values

Multi Row Select Checkbox Display TOUCH-HIDE, TOUCH-SHOW, NONTOUCH-
HIDE, NONTOUCH-SHOW

Configuring Siebel Open UI Siebel 2018

Customizing Styles, Applets, Fields, and Controls ■ Customizing Controls

262

6 Restart the Siebel server.

Your changes will now be visible in the Siebel Open UI client.

Configuring Siebel Open UI Siebel 2018 263

8 Customizing Calendars and
Schedulers

This chapter describes how to customize calendars and schedulers. It includes the following topics:

■ Customizing Calendars

■ Customizing Resource Schedulers on page 271

Customizing Calendars
This topic includes examples of customizing the calendar that Siebel Open UI displays. It includes
the following information:

■ Using Fields to Customize Event Styles for the Calendar

■ Allowing Users to Copy Items from List Applets to Create Calendar Events on page 266

■ Customizing Event Styles for the Calendar on page 266

■ Customizing Calendar Work Days on page 267

■ Customizing How Calendars Display Timestamps on page 269

■ Replacing Standard Interactivity Calendars on page 270

■ Customizing How Users View Calendar Availability on page 270

■ Customizing the Calendar All Day Slot on page 271

Using Fields to Customize Event Styles for the Calendar
Siebel Open UI comes predefined to use the Status field in the Action business component to supply
the event style, by default. You can modify it to use any bounded, single-value field that resides in
the Action business component.

To use fields to customize event styles for the calendar
1 Identify the applet that you must modify:

a In the client, navigate to the calendar page that displays the style that you must modify.

b Click the Help menu, and then click About View.

c Copy the applet name that the dialog box displays to the clipboard.

2 Identify the field that must supply the event style:

a Open Siebel Tools.

For more information, see Using Siebel Tools.

Configuring Siebel Open UI Siebel 2018

Customizing Calendars and Schedulers ■ Customizing Calendars

264

b In the Object Explorer, click Business Component.

c In the Business Components list, locate the Action business component.

d In the Object Explorer, expand the Business Component tree, and then click Field.

e In the Fields list, identify a bounded, single-value field.

Siebel Open UI will use this field to supply the values that it displays in the Legend in the
calendar in the client.

3 Modify the applet:

a In the Object Explorer, click Applet.

b Click in the Applets list, click the Query menu, and then click New Query.

c Paste the applet name that you copied in Step 1 on page 263 into the Name property, and then
press the Enter key.

To modify styles for:

❏ All calendar applets. You can add user properties to the Calendar Base Applet. Siebel
Open UI uses this applet to set styles for all applets.

❏ One specific applet. You can add user properties to an individual applet. User properties
that you define on an individual applet override the styles that the Calendar Base Applet
specifies.

d In the Object Explorer, expand the Applet tree, and then click Applet User Prop.

e In the Applet User Props list, add the following applet user property.

Property Value

Name CSS Event Style

Value Enter the name of the field that you identified in Step 2 on
page 263.

Customizing Calendars and Schedulers ■ Customizing Calendars

Configuring Siebel Open UI Siebel 2018 265

f In the Applet User Props list, add the following applet user property.

Siebel Open UI will use the values that this list of values contains to populate the CSS Class
tags in the HTML, and then to render the event and legend styles. It uses the EventStyle
property that contains the language independent code. It uses the set of language
independent codes that this field contains to define the range of possible values. The CSS
Event Style LOV user property allows you to define a single set of styles that Siebel Open UI
can use for all languages in a multilingual environment.

If the CSS Event Style user property does not exist, or if the CSS Event Style LOV user
property does not exist, then Siebel Open UI uses the following default values:

❏ Status for the field.

❏ EVENT_STATUS for the list of values.

4 Compile your modifications.

5 Restart the Siebel application.

6 In the client, navigate to the Administration - Data screen, and then click List of Values.

7 Query the List of Values list for all of the unique language independent codes that exist for this
list of values type.

For example, query the Type field for TODO_TYPE.

8 Use a style sheet editor to open the theme-calendar.css file.

9 For each value that you find in Step 7, create the following two styles.

When Siebel Open UI creates the HTML to render the Calendar, it specifies these styles in the
CLASS tag for the event and for the legend. It specifies the strings for the language independent
code for the field with spaces removed. For example:

? .fc-event-skin.calendar-EventStyle-Completed and #color_square_Completed

? .fc-event-skin.calendar-EventStyle-NotStarted and #color_square_NotStarted

Property Value

Name CSS Event Style LOV

Value Enter the LOV type that the field that you identified in Step 2 on
page 263 uses.

Style Description

.fc-event-skin.calendar-EventStyle-
LOVName

Siebel Open UI uses this style for the event.

#color_square_LOVName Siebel Open UI uses this style for the square that
it displays on the legend.

Configuring Siebel Open UI Siebel 2018

Customizing Calendars and Schedulers ■ Customizing Calendars

266

? .fc-event-skin.calendar-EventStyle-InProgress and #color_square_InProgress

For an example of customizing a style sheet, see “Customizing Event Styles for the Calendar” on
page 266.

10 Save the theme-calendar.css file.

11 Clear the browser cache.

12 Navigate to the Calendar view.

13 Make sure Siebel Open UI displays the correct styles.

Allowing Users to Copy Items from List Applets to
Create Calendar Events
You can configure Siebel Open UI so that the user can copy an item from a list applet, and then paste
it on a calendar to create an event.

Allowing users to copy items from list applets to create calendar events
1 Do Step 1 on page 173.

2 Test your work:

a Log in to the client, and then navigate to the list applet that you modified in Step 1.

1. Confirm that you can copy a record from the list applet, and then paste it on the
calendar to create an event.

Customizing Event Styles for the Calendar
Style sheet attributes determine the color, transparency, font, and other styles for each status. You
can modify these styles. You can use any single value field that resides in the Action business
component to determine the style that Siebel Open UI uses to render events in the calendar. Siebel
Open UI uses the value that the Status field contains to determine how the client displays an event
in the calendar, by default. For example:

■ Done

■ Not Started

■ Planned

■ Success

To customize event styles for the calendar
1 Use an editor to open the theme-calendar.css file.

Customizing Calendars and Schedulers ■ Customizing Calendars

Configuring Siebel Open UI Siebel 2018 267

2 Locate the code that specifies the style that you must modify.

For example, locate the following code:

#color_square_LOV_name {color: custom_attributes important;}

.fc-event-skin.calendar-EventStyle-LOV_name{

{custom_attributes}

where:

■ LOV_name identifies the event status that you must modify, such as Done or NotStarted.

NOTE: The LOV name specified in the code should not include spaces.

■ custom_attributes specify the style properties you can modify, such as the background
color or font type.

3 Modify the code that you located in Step 2, as necessary.

For example:

#color_square_Done {color: #d3ffd7!important;}

.fc-event-skin.calendar-EventStyle-Done {

 background: #d3ffd7;

 border-color:#A8FFAF;

}

In this example, Siebel Open UI modifies the style for each Done appointment. It also modifies
the style for the Done entry in the legend that it displays in the upper-left corner of the calendar.

If Siebel Open UI cannot find a matching style for a LOVName, then it displays events in the
default text color, which is typically black on white.

4 Save your modifications, clear the browser cache, and then verify that Siebel Open UI displays
the style you defined for the Done status.

Customizing Calendar Work Days
Siebel Open UI allows the user to specify values for the Workdays field and the Week Start field. It
uses the user preferences that reference the Locale values, by default. It stores the following items:

■ Stores locale preferences in the Locale table (S_LOCALE).

■ Stores user preferences as predefault values from Locale values.

■ Stores user preferences in the user preferences file.

Configuring Siebel Open UI Siebel 2018

Customizing Calendars and Schedulers ■ Customizing Calendars

268

Specifying Work Days
If the user sets the user preference for the Weekly Calendar View to Work Week, then Siebel Open
UI displays only the days that are specified as workdays. This preference can be specified at several
levels, so Siebel Open UI uses the following priority:

1 Personal user preference.

2 Locale preference for the current user locale.

3 Applet user property. This property provides high interactivity support.

4 If none of these items are set, then Siebel Open UI displays the Monday through Friday, five day
workweek.

Specifying the First Day of the Week
If the set of visible days does not include the First Day of Week preference, then Siebel Open UI
displays the next visible day. For example, if the user uses a Monday through Friday, five-day
workweek, and if the First Day of Week is Saturday, then Siebel Open UI displays Monday as the first
day of the week in the Work Week calendar. It does this because Monday is the first visible day that
occurs after Saturday.

Specifying Work Days and the First Day of the Week
You can define a default value for all users according to the locale, but a user can override this value.
For example, assume the following:

■ The existing Work Week setting for all users is Monday through Friday, as determined by the
Locale settings that the Siebel administrator sets.

■ A set of users work Monday through Friday.

■ Another set of users who provide weekend support work Wednesday through Sunday.

■ Each weekend user logs into the Siebel client and uses the User Preferences Calendar view to set
their Wednesday through Sunday schedule. Siebel Open UI stores this modification in the user
preferences file.

In this situation, Siebel Open UI does the following:

■ Displays Monday through Friday for each user who does not use the User Preferences Calendar
view to modify their preference

■ Displays Wednesday through Sunday for each user who uses the User Preferences Calendar view
to modify their preference

Customizing Calendars and Schedulers ■ Customizing Calendars

Configuring Siebel Open UI Siebel 2018 269

Customizing How Calendars Display Timestamps
You specify an applet user property to customize how the calendar displays timestamps.

NOTE: If you have customized calendar to display timestamps, but still cannot see a timestamp, it
might be hidden because the browser window is too small. In this case, modifications can be made
to be made to the CSS.

To customize how calendars display timestamps
1 Open Siebel Tools.

For more information, see Using Siebel Tools.

2 In the Object Explorer, click Applet.

3 In the Applets list, locate any calendar applet.

4 In the Object Explorer, expand the Applet tree, and then click Applet User Prop.

5 In the Applet User Props list, query the Name property for the following value:

Enable Daily Time Display

6 Set the Value property to one of the following values:

■ Always. Always display the timestamp immediately before the meeting subject. For
example, 8:00 AM - 9:00 AM My Meeting.

■ Never. Do not display the timestamp.

■ Off-interval. Display the timestamp immediately before the meeting subject only if the
meeting starts or ends at a time that is not consistent with the user preference that specifies
how to display time intervals. For example, if the user preference includes intervals of 8:00,
8:30, 9:00, and so on, and if a meeting occurs from:

❏ 8:00 to 8:30. Do not display the timestamp.

❏ 8:03 to 8:14. Display the timestamp.

❏ 8:00 to 8:15. Display the timestamp.

An off-interval meeting is a meeting that does not start and end on a calendar increment.
For example, if the calendar displays 30 minute increments, and if the user creates a meeting
that does not start and end on the half-hour, then this meeting is an off-interval meeting. A
15 minute meeting that starts at 9:05 AM is an example of an off-interval meeting.

If you do not specify an applet user property for a:

■ Daily view or weekly view. Siebel Open UI uses an off-interval value.

■ Monthly view. Siebel Open UI always displays the timestamp.

7 Repeat Step 5 and Step 6 for the following applet user property:

Enable 5Day Time Display

8 Repeat Step 5 and Step 6 for the following applet user property:

Configuring Siebel Open UI Siebel 2018

Customizing Calendars and Schedulers ■ Customizing Calendars

270

Enable Monthly Time Display

Replacing Standard Interactivity Calendars
Some standard interactivity calendars do not work properly in Siebel Open UI. This topic describes
how to replace the calendars that standard-interactivity uses with the calendars that Siebel Open UI
uses.

To replace standard interactivity calendars
1 Modify the applet:

a Open Siebel Tools.

For more information, see Using Siebel Tools.

b In the Object Explorer, click Applet.

c In the Applets list, query the Name property for the following value:

LS CIM eCalendar Weekly Applet

NOTE: This step describes how to search for specific standard interactivity calendar. If you
want to replace a different standard interactivity calendar, query for it in this step.

d Modify the Class property from CSSSWEFrameCalGridLS to the following value:

CSSSWEFrameActHICalGrid

This modification replaces standard-interactivity applets.

e Compile your modifications.

2 Test your modifications:

a Log in to the client.

b Make sure Siebel Open UI displays the correct applets.

For example, make sure the Fullcalendar applet replaces the LS CIM eCalendar
Weekly Applet.

Customizing How Users View Calendar Availability
Calendar availability is the amount of free time in a user’s agenda for a specific day. Available time
is calculated by taking the number of working hours defined by the user, and subtracting any events
already scheduled for that day within the working hours. You can configure Siebel Open UI to display
the number of free hours available for a user in the monthly view. If you choose to show calendar
availability, you will no longer see scheduled events in the monthly view. Instead, each day will have
the available free hours displayed. This topic describes how to show and hide the calendar
availability.

Customizing Calendars and Schedulers ■ Customizing Resource Schedulers

Configuring Siebel Open UI Siebel 2018 271

To show and hide calendar availability
1 Open Siebel Tools.

For more information, see Using Siebel Tools.

2 In the Object Explorer, click Applet.

3 In the Applets list, locate any calendar applet.

4 In the Object Explorer, expand the Applet tree, and then click Applet User Prop.

5 In the Applet User Props list, query the Name property for the following value:

Enable BusyFreeTime

6 Set the Value property to one of the following values:

■ Y. Show calendar availability.

■ N. Hide calendar availability.

Customizing the Calendar All Day Slot
The calendar all day slot is an area in calendar before the workday hours that lists all day events. All
day events are calendar appointments that start and end at 00:00:00 in the user’s time zone. By
default, the all day slot is hidden. This topic describes how to show and hide the calendar all day slot.

To show or hide the calendar all day slot
1 Open Siebel Tools.

For more information, see Using Siebel Tools.

2 In the Object Explorer, click Applet.

3 In the Applets list, locate any calendar applet.

4 In the Object Explorer, expand the Applet tree, and then click Applet User Prop.

5 In the Applet User Props list, query the Name property for the following value:

Enable AllDay Slot

6 Set the Value property to one of the following values:

■ Y. Show the calendar all day slot.

■ N. Hide the calendar all day slot.

Customizing Resource Schedulers
This topic describes how to customize a resource scheduler. It includes the following topics:

■ Overview of Customizing Resource Schedulers on page 272

Configuring Siebel Open UI Siebel 2018

Customizing Calendars and Schedulers ■ Customizing Resource Schedulers

272

■ Customizing a Resource Scheduler on page 274

■ Customizing the Filter Pane in Resource Schedulers on page 285

■ Customizing the Resource Pane in Resource Schedulers on page 287

■ Customizing the Timescale Pane in Resource Schedulers on page 290

■ Customizing the Schedule Pane in Resource Schedulers on page 297

■ Customizing Participant Availability in Resource Schedulers on page 304

■ Customizing Tooltips in Resource Schedulers on page 308

This topic includes example values that customize the resource scheduler that Siebel Hospitality
uses. You can use a different set of values to customize a different Siebel application.

Overview of Customizing Resource Schedulers
Figure 38 includes an example of a resource scheduler, which is a type of bar chart that includes a
schedule that allows the user to schedule a resource. In this example, the Function Space Diary is a
resource scheduler that allows the user to schedule a room in a hotel. The room is the resource. You
can use a different resource scheduler to meet the deployment requirements of your Siebel
application.

Figure 38. Example of a Resource Scheduler

Explanation of Callouts
The resource scheduler includes the following items:

Customizing Calendars and Schedulers ■ Customizing Resource Schedulers

Configuring Siebel Open UI Siebel 2018 273

1 Date navigation bar. Allows the user to modify the date that Siebel Open UI displays in the
schedule.

2 Time scale selector. Includes the following time scales:

■ D/H. Days and hours.

■ D/DP. Days and day parts.

■ W/D. Weeks and days.

■ W/DP. Weeks, days, and day parts.

■ M/D. Months and days.

■ M/DW. Months, days of the week, and day parts.

A day part is a time period that occurs during the day. For example, morning, afternoon,
evening, and night are examples of day parts. You can customize the time period that defines a
day part. For example, the morning day part comes predefined as 8:00 AM to Noon. You can
modify it to another time period, such as 9:00 AM to Noon. For information about customizing
the day part, see Step 5.

3 Filter pane. Allows the user to filter data that Siebel Open UI displays in the schedule.

4 Resource pane. Displays a list of resources. A resource is something that a resource scheduler
can use to support an event. A room is an example of a resource. An event is something that
occurs in a resource. A meeting is an example of an event.

5 Timescale pane. Displays a time scale that includes date and time information. It includes the
following items:

■ The major axis is a dimension that Siebel Open UI displays in the time scale. In this
example, the major axis displays the current day, which is Monday, July 22.

■ The minor axis is a dimension that Siebel Open UI displays in the time scale. In this
example, the minor axis displays the time of day, such as 10:00 AM.

■ The third axis is a dimension that Siebel Open UI displays in the time scale. It displays this
axis as a third dimension in addition to the major axis and the minor axis. You can use the
third axis to display Siebel CRM information according to your deployment requirements. In
this example, the third axis displays the total number of rooms that are available for the
current day. For example, 300/380 indicates that 300 rooms out of a total of 380 rooms are
available for the current day.

6 Schedule pane. Displays the schedule as a timeline. Includes events that are scheduled for each
resource.

7 Legend. Displays a legend that describes the meaning of each color that Siebel Open UI displays
in the Schedule pane.

Configuring Siebel Open UI Siebel 2018

Customizing Calendars and Schedulers ■ Customizing Resource Schedulers

274

Using Abbreviations When Customizing the Resource Scheduler
An abbreviation is an optional shortened version of a value that you can specify in the Value
property of an object that a resource scheduler uses. ST is an example of an abbreviation. It
indicates the start time of a resource scheduler. Siebel Open UI uses these abbreviations to reduce
the amount of information that it sends from the Siebel Server to the client. This book includes the
abbreviations that you can use for Siebel Hospitality. Unless noted elsewhere, these abbreviations
come predefined with Siebel Open UI, and you can use only the abbreviations that this book
describes. For help with using abbreviations, see “Getting Help from Oracle” on page 29.

Customizing a Resource Scheduler
This topic describes how to customize a resource scheduler.

To customize a resource scheduler
1 Configure the applet that Siebel Open UI uses to display the resource scheduler:

a Open Siebel Tools.

For more information, see Using Siebel Tools.

b In the Object Explorer, click Applet.

This example includes the minimum set of objects that you must add. To view predefined
applets that Siebel Open UI uses for a resource scheduler, you can query the name property
for TNT Function Bookings Gantt Applet or, to simplify creating your resource scheduler, you
can make a copy of one of these applets, and then modify the copy.

c In the Applets list, add a new applet, or copy one of the applets mentioned in Step b.

d Set the following property for the applet that you added in Step c.

e In the Object Explorer, expand the Applet tree, and then click Applet User Prop.

f In the Applet User Props list, add the following applet user properties. Each value in the Value
property supports this example. You can use values that your deployment requires. You must
include all of these user properties.

Property Value

Class CSSSWEFrameGantt

Name Value Description

Gantt Open UI Service TNT Gantt UI Service Specify the business service name that
Siebel Open UI uses to save system
preferences and user preferences.

Physical_Renderer GanttTNTRenderer Specify the name of the class that Siebel
Open UI uses for the physical renderer.

Customizing Calendars and Schedulers ■ Customizing Resource Schedulers

Configuring Siebel Open UI Siebel 2018 275

Presentation_Model GanttTNTPresentationMod
el

Specify the name of the class that Siebel
Open UI uses for the presentation model.

ClientPMUserProp EnableTooltip,Date
Padding for TimeScale
LIC,DateBar Navigation
TS

Specify the user properties that Siebel
Open UI makes available to JavaScript
files that reside on the client. You must
use a comma to separate each user
property name.

Date Padding for
TimeScale LIC

time_scale_identifier:

number_of_pages
Specify the number of pages that Siebel
Open UI uses in the cache for the time
scale. For more information, see
“Customizing the Cache That Siebel Open
UI Uses for Time Scales” on page 283.

DateBar Navigation TS time_scale_identifier:

small_date_change,

big_date_change

Specify the date navigation buttons. For
more information, see “Customizing the
Date Navigation Buttons” on page 283.

Duration for TimeScale
LIC

time_scale_identifier:num
ber_of_days

For example:

1:7;2:1;4:1;32:36;64:3
1;128:7;256:35;512:1;1
024:1

Specify the number of days that Siebel
Open UI sends to the cache for each time
scale. For example, the following value
specifies to send seven days of data to
the cache for the Week/Day time scale:

1:7

You can use a semicolon to specify days
for more than one time scale.

Siebel Open UI uses a number to identify
each time scale. For more information,
see “Determining the Number That Siebel
Open UI Uses to Identify Time Scales” on
page 285.

No. Of Panes 3 This applet user property specifies the
number of panes that Siebel Open UI
displays. A resource scheduler always
displays the Resource pane, Time Scale
pane, and the Scheduler pane, so you
must not modify this applet user
property.

Custom Control Name s_Diary Specify the name of the custom control.

Name Value Description

Configuring Siebel Open UI Siebel 2018

Customizing Calendars and Schedulers ■ Customizing Resource Schedulers

276

Custom Control "Legend Control
Name,s_Legend"

Specify the tag that Siebel Open UI uses
to render each custom control. Siebel
Open UI uses this information to parse
the input property set when it renders a
custom control. Use the following format
for each value:

control_name,tag_name

where:

■ control_name specifies the name of
the custom control.

■ tag_name specifies the tag name
that you define in the Tag Name
control user property in Step c on
page 274.

For example, the following value
specifies to use the s_Legend tag for the
Legend Control Name control:

Legend Control Name,s_Legend

You can use Custom Control 1 and
Custom Control 2 to specify more
controls, as required.

Custom Control 1 "DateBar Control
Name,s_DateBar"

Custom Control 2 "GanttChart,s_Diary"

Name Value Description

Customizing Calendars and Schedulers ■ Customizing Resource Schedulers

Configuring Siebel Open UI Siebel 2018 277

g Configure system preferences and user preferences.

In the Applet User Props list, add the following applet user properties. Each value in the Value
property supports this example. You can use values that your deployment requires. You must
include all of these user properties.

Name Value Description

Support System
Preferences

Y If the value is N or empty, then Siebel
Open UI does not support system
preference usage with a resource
scheduler.Support User Preferences Y

System_Pref Field
number

For example,
System_Pref Field 1,
System_Pref Field 2, and
so on.

"GntAXCtrl:Time Scale",
"TST",
"TNT_SHM_GNTAX_TIME_
SCALE"

Specify the default values that Siebel
Open UI uses in a resource scheduler.
You can use the following abbreviations:

■ TST. Specifies the Time Scale.

■ ST. Specifies the start time of the
schedule.

■ ET. Specifies the End time of the
schedule.

If a field is a LOV field, then you must
specify the LOV name so that the code
gets the language-dependent value.

For more information about the
abbreviations that the Value property
contains, see “Using Abbreviations When
Customizing the Resource Scheduler” on
page 274.

System_Pref_Prefix GntAXCtrl: Specify the prefix that Siebel Open UI
uses for every system preference that it
uses with a resource scheduler. You must
use this prefix. Siebel Open UI only
queries system preferences that include
this prefix. It does this query in the
System Preferences business
component.

Configuring Siebel Open UI Siebel 2018

Customizing Calendars and Schedulers ■ Customizing Resource Schedulers

278

You can use these system preferences and user preferences to configure Siebel Open UI to
do decision making in your custom JavaScript code that resides on the client. For example,
you can set a user preference for the default time scale to Month and Day, and then use this
default in your custom JavaScript code to set the default time scale. User preferences take
precedence over system preferences. If a user preference exists, then Siebel Open UI uses
it instead of the corresponding system preference.

h Specify the methods that Siebel Open UI uses with the Siebel Server.

In the Applet User Props list, add the following applet user properties. These applet user
properties specify the methods that Siebel Open UI uses with the Siebel Server. You must
add them so that Siebel Open UI can call the methods that reside on the Siebel Server. You
must not modify these methods. You must also add a CanInvokeMethod applet user property
for every method that your custom JavaScript calls on the Siebel Server. Make sure you set
the Value property for each of these applet user properties to True.

User_Pref Field number

For example, User_Pref
Field 1, User_Pref Field 2,
and so on.

"Display Toggle - Query",
"Display Toggle"

Specify the user preference name. Siebel
Open UI sends an abbreviation of this
user preference to the client.

User_Pref_Prefix Diary Specify the prefix that Siebel Open UI
uses for every user preference that it
uses with a resource scheduler. You must
use this prefix. Siebel Open UI queries
only the user preferences that include
this prefix. It does this query in the User
Preferences business component.

Property Description

CanInvokeMethod:
DoInvokeDrilldown

A resource scheduler supports drilldowns through the Resource,
Schedule, and Timescale panes. If the user clicks a label in one of
these panes, then Siebel Open UI calls the DoInvokeDrilldown method.

CanInvokeMethod:
DoOperation

Calls the DoOperation method. Siebel Open UI calls this method for
various events, such as select and move, extend, shrink, create task,
and so on.

CanInvokeMethod:
FilterDisplayOptions

Specifies how Siebel Open UI displays bookings when the user clicks
Set to set criteria in the Filter pane. You must configure Siebel Open
UI to call the FilterDisplayOptions method, typically through the Set
button. This configuration enables Siebel Open UI to filter events
according to the attributes that it defines for each control.

CanInvokeMethod:
FilterGantt

Specifies how Siebel Open UI displays bookings when the user sets a
criteria in the Filter pane.

Name Value Description

Customizing Calendars and Schedulers ■ Customizing Resource Schedulers

Configuring Siebel Open UI Siebel 2018 279

2 Configure optional applet user properties.

You can use applet user properties to implement the optional customizations that your resource
scheduler configuration requires. For more information about how to do this customization, see
the following topics:

■ Customizing the Filter Pane in Resource Schedulers on page 285

■ Customizing the Resource Pane in Resource Schedulers on page 287

■ Customizing the Timescale Pane in Resource Schedulers on page 290

■ Customizing the Schedule Pane in Resource Schedulers on page 297

■ Customizing Tooltips in Resource Schedulers on page 308

3 Add controls:

a In the Object Explorer, click Control.

CanInvokeMethod:
InitPopup

Calls the popup dialog box for some operations, such as select and
move, create task, and so. You cannot customize this behavior.

CanInvokeMethod:
InvokeOperation

Specifies the method that Siebel Open UI calls when the user clicks a
button in the popup applet. You cannot customize this behavior. This
popup applet is the TNT Gantt Popup Applet that Siebel Open UI
configures for the applet user property.

CanInvokeMethod:
ReSetFilterGantt

Resets the resource filter options to default values. Siebel Open UI
displays these options in the Filter pane.

CanInvokeMethod:
RefreshGantt

Calls the Refreshgantt method. Siebel Open UI uses this method to
refresh a resource scheduler.

CanInvokeMethod:
ResetDisplayOptions

Resets the display filter options to default values. Siebel Open UI
displays these options in the Filter pane.

CanInvokeMethod:
SaveControlValues

Stores the user preference values that the Filter pane fields contain.
You cannot customize this behavior.

Property Description

Configuring Siebel Open UI Siebel 2018

Customizing Calendars and Schedulers ■ Customizing Resource Schedulers

280

b In the Controls list, add the following controls.

Note the following:

❏ A resource scheduler requires each of these controls for the time scale.

❏ You must add a control for each time scale.

❏ Set the Name property of each control to the time_scale_identifier, such as 1, 2, 4, and
so on. Siebel Open UI uses a number to identify each time scale, such as 128 or 256. It
does not use values 8, 16, or 32 for time scales with Siebel Hospitality. It might use
different values for a different Siebel application. For more information, see “Determining
the Number That Siebel Open UI Uses to Identify Time Scales” on page 285.

❏ Set the HTML Type property of each control to MiniButton.

❏ Set the Method Invoked property of each control to RefreshGantt.

Name Caption - String Reference

1 SBL_TNT_TS_WEEK_DAY

2 SBL_TNT_TS_DAY_DAYPART

4 SBL_TNT_TS_DAY_HOUR

64 SBL_TNT_TS_MONTH_DAY

128 SBL_TNT_TS_WEEKDAY_DAYPART

256 SBL_TNT_TS_MONTH_DAY_OF_WEEK

Customizing Calendars and Schedulers ■ Customizing Resource Schedulers

Configuring Siebel Open UI Siebel 2018 281

c In the Controls list, add the following controls.

Make sure you set the Caption - String Reference property of the GoToResource control to
SBL_GO_TO-1004233041-4MM. Do not set this property for the other controls.

d In the Object Explorer, expand the Control tree, click Control User Prop, and then use the Control
User Props list to add the following control user properties to each of the controls that you added
in Step c.

Set the Name property for each control user property to Tag Name. Each of these control user
properties specifies a tag name for the control. This configuration allows the JavaScript code
to access the tag.

4 Edit the Web template:

a In the Object Explorer, click Applet Web Template.

Name HTML Type Class Description

GanttChart CustomControl CSSSWEFrameGantt Specifies the main resource
scheduler control.

GanttDateBar CustomControl CSSSWEFrameGantt Specifies the Date bar that
contains the date controls.
Allows the user to modify the
date in a resource scheduler.

Legend CustomControl CSSSWEFrameGantt Specifies the legend that Siebel
Open UI displays in a resource
scheduler.

GoToResource Field Leave empty. Specifies the optional input text
control that searches for
resources that reside in the
Resource pane.

Siebel Open UI binds the event
to this control in the JavaScript
that resides on the client, so
you must use GoToResource as
the name.

Parent Control Value Property

GanttChart s_Diary

GanttDateBar s_DateBar

Legend s_Legend

Configuring Siebel Open UI Siebel 2018

Customizing Calendars and Schedulers ■ Customizing Resource Schedulers

282

b In the Applet Web Templates list, create the following applet Web template.

c In the Object Explorer, click Applet.

d In the Applets list, right-click the applet that you are modifying, and then click Edit Web
Template.

e In the Web Template Editor, add each of the controls that you added in Step 3, Step c on
page 281 to the layout.

It is recommended that you position each of these controls towards the other end (right side)
of the layout.

f Set the Item Identifier property of the GanttDateBar control to 3000.

g Close the Web Layout Editor.

5 Configure the application:

a In the Object Explorer, click Application.

b In the Applications list, query the Name property for the application that you are modifying.

c In the Object Explorer, expand the Application tree, and then click Application User Prop.

d In the Application User Props list, add the following application user property.

You must add a new application user property for each business service that your
customization calls in the client. In this example, you specify the Gantt UI Service business
service. You must increment the Name for each application user property that you add. For
example, ClientBusinessService1, ClientBusinessService2, and so on.

6 Compile your modifications.

7 Test your modifications:

a Log in to the client.

b Navigate to the resource scheduler, and then test your modifications.

Property Value

Name Edit

Type Edit

Web Template Applet OUI Gantt

Upgrade Behavior Admin

Property Value

Name ClientBusinessServicenumber

For example, ClientBusinessService1.

Value Gantt UI Service

Customizing Calendars and Schedulers ■ Customizing Resource Schedulers

Configuring Siebel Open UI Siebel 2018 283

Customizing the Cache That Siebel Open UI Uses for Time Scales
This topic describes how to customize the cache that Siebel Open UI uses for time scales.

To customize the cache that Siebel Open UI uses for time scales
1 Specify the number of pages to use in the cache for a time scale.

Use the following value for the Date Padding for TimeScale LIC applet user property:

time_scale_identifier:number_of_pages

where:

■ time_scale_identifier specifies the time scale.

■ number_of_pages specifies the number of pages that Siebel Open UI uses for the previous
operation and for the next operation. It uses these pages when it prepares the page cache
for the time scale that the time_scale_identifier specifies.

The following example specifies the Week/Day time scale LIC, and it specifies to use 2 pages for
the previous operation, and 2 pages for the next operation:

1:2

Siebel Open UI uses a number to identify each time scale. It uses the number 1 to identify the
Week/Day time scale. For more information, see “Determining the Number That Siebel Open UI
Uses to Identify Time Scales” on page 285.

Siebel Open UI always includes a default page, so it uses the following calculation to determine
the total cache page count:

previous pages + default page + next pages

So, the cache size for the 1:2 example is 5:

2 + 1 + 2 = 5

For more examples:

■ 1:1. Use three pages (1+1+1).

■ 1:0. Use one pages (0+1+0).

■ 1:2. Use five pages (2+1+2).

2 (Optional) Add more than one time scale.

Use a semicolon to separate each time scale. For example:

1:1;2:1;4:1;32:1;64:1;128:1;256:1;512:1;1024:1

Customizing the Date Navigation Buttons
When you specify the DateBar Navigation TS applet user property, you specify the time period that
Siebel Open UI uses to reset the current date when the user clicks one of the following buttons:

■ Single arrow facing backwards. Displays the previous date, small date change.

Configuring Siebel Open UI Siebel 2018

Customizing Calendars and Schedulers ■ Customizing Resource Schedulers

284

■ Single arrow facing forward. Displays the next date, small date change.

■ Double arrow facing backwards. Displays the previous date, large date change.

■ Double arrow facing forward. Displays the next date, large date change.

Siebel Open UI displays these buttons at the start and to the end of the date that it displays in the
Date Navigation bar.

To customize the date navigation buttons
1 Specify the DateBar Navigation TS applet user property.

Use the following format:

time_scale_identifier:small_date_change, big_date_change

where:

■ time_scale_identifier identifies the time scale. Siebel Open UI uses a number to identify
each time scale. For more information, see “Determining the Number That Siebel Open UI Uses
to Identify Time Scales” on page 285.

■ small_date_change specifies the number of hours, days, weeks, or months that Siebel Open
UI uses to modify the current date if the user clicks the back arrow or the previous arrow.

■ big_date_change specifies the number of hours, days, weeks, or months that Siebel Open
UI uses to modify the current date if the user clicks the double arrow facing backwards or
the double arrow facing forward.

2 (Optional) Add more than one time scale.

Use a semicolon to separate each time scale. For example:

1:7,30;4:1,7;2:1,7;64:30,365;128:7,30;256:1,35;

Examples of Customizing Date Navigation Buttons The following value customizes the
date navigation buttons:

1:7,30

where:

■ 1. Specifies the time_scale_identifier. For example, 1 specifies the Week/Day time scale.

■ 7. Specifies the number of days. For example, if the current date is August 15, 2013, and if the
user clicks:

■ The back arrow, then Siebel Open UI displays August 8, 2013 as the current date.

■ The forward arrow, then Siebel Open UI displays August 22, 2013 as the current date.

■ 30. Specifies the number of days for the record set. For example, if the current date is August
15, 2013, and if the user clicks:

■ The double arrow facing backwards, then Siebel Open UI displays July 15, 2013 as the
current date.

Customizing Calendars and Schedulers ■ Customizing Resource Schedulers

Configuring Siebel Open UI Siebel 2018 285

■ The double arrow facing forward, then Siebel Open UI displays September 15, 2013 as the
current date.

For another example:

4:1,7

where:

■ 4. Specifies the time_scale_identifier. For example, 4 specifies the Day/Hour time scale.

■ 1. Specifies the number of days. For example, if the current date is August 15, 2013, and if the
user clicks:

■ The back arrow, then Siebel Open UI displays August 14, 2013 as the current date.

■ The forward arrow, then Siebel Open UI displays August 16, 2013 as the current date.

■ 7. Specifies the number of days for the record set. For example, if the current date is August 15,
2013, and if the user clicks:

■ The double arrow facing backwards button, then Siebel Open UI displays August 8, 2013 as
the current date.

■ The double arrow facing forward, then Siebel Open UI displays August 22, 2013 as the
current date.

Determining the Number That Siebel Open UI Uses to Identify Time
Scales
This topic describes how to determine the number that Siebel Open UI uses to identify a time scale.

To determine the number that Siebel Open UI uses to identify time scales
1 Log in to a Siebel client with administrative privileges.

2 Navigate to the Administration - Data screen, and then the List of Values view.

3 Query the Type field for the following value:

TNT_SHM_GNTAX_TIME_SCALE

4 In the Display Value field, locate the time scale that you must modify.

5 In the Language-Independent Code field, make a note of the value.

Siebel Open UI uses the number that it displays in the Language-Independent Code field to
identify the time scale that it displays in the Display Value field.

Customizing the Filter Pane in Resource Schedulers
You can add a custom filter that determines how Siebel Open UI filters resources and determines the
label colors that it uses for events. You add these controls in the Filter pane. For example, you can
add a filter control named Type to filter events according to the value that the Type field contains.

Configuring Siebel Open UI Siebel 2018

Customizing Calendars and Schedulers ■ Customizing Resource Schedulers

286

To customize the Filter pane in resource schedulers
1 In the Object List Editor, choose the applet that you modified in Step 1 on page 274.

2 In the Object List Editor, expand the Applet tree, and then click Control.

3 (Optional) Configure the resource scheduler to filter resources:

a In the Controls list, choose a control that meets your deployment requirements that Siebel Open
UI can use to filter resources.

If no existing controls meet your deployment requirements, then you can add a control.

b In the Object List Editor, expand the Control tree, and then click Control User Prop.

c In the Control User Props list, add the following control user property.

4 (Optional) Configure the resource scheduler to filter resources and events:

a In the Controls list, choose a control that meets your deployment requirements that Siebel Open
UI can use to filter resources and events.

If no existing controls meet your deployment requirements, then you can add a control.

b In the Object List Editor, expand the Control tree, and then click Control User Prop.

Name Value Description

Field Name Max Room Area Sq
Ft

Specify to use the control as part of the
resources filter. The HTML Type property of
this control must be set to Text so that
Siebel Open UI displays a text box that
allows the user to enter a value. Siebel
Open UI then uses the filter resources
according to the value that the user enters.
For example, if the user enters a value of
100, then Siebel Open UI sends the
following value to the FilterGantt business
service method. It sends this value as an
input argument:

Max Room Area Sq Ft = "100"

Customizing Calendars and Schedulers ■ Customizing Resource Schedulers

Configuring Siebel Open UI Siebel 2018 287

c In the Control User Props list, add the following control user property.

5 Use the Web Layout Editor to add the control that you modified in Step 3 on page 286 or Step 4
on page 286 to the Filter pane in the Web template.

You can do this work as part of Step 4, Step e on page 282.

Customizing the Resource Pane in Resource Schedulers
This topic describes how to customize the Resource pane.

To customize the Resource pane in resource schedulers
1 In the Object List Editor, choose the applet that you modified in Step 1 on page 274.

2 In the Object List Editor, expand the Applet tree, and then click Applet User Prop.

3 In the Applet User Props list, add each of the following applet user properties, as required.

Name Value Description

Display
Field Name

Optioned Specify to use the control as part of the
resources filter. The HTML Type property of
this control must be set to CheckBox so that
Siebel Open UI displays a check box that
allows the user to display Optioned events.
Siebel Open UI then filters resources and
events according to the choice that the user
makes. In this example, if the user adds a
check mark, then Siebel Open UI sends the
following value to the DisplayOptions business
service method. It sends this value as an
input argument:

Optioned = "Y"

Name Value Description

Pane 0 Grid Name Resource Specify the name of the Resource pane.

Pane 0 Grid Type RGrid Specify the pane type.

Pane 0 Col number NM,Name Specify the details for the column header that Siebel
Open UI displays in the Resource pane, including the
abbreviated name and the label.

Configuring Siebel Open UI Siebel 2018

Customizing Calendars and Schedulers ■ Customizing Resource Schedulers

288

Pane 0 Col column
number Attr column
attribute number

For example:

Pane 0 Col 1 Attr 2

IID, 206 Specify the identifier that identifies the icon that Siebel
Open UI displays for the column.

Pane 0 Col 0 Attr 1 FLD,Room Name Specify the Room Name business component field that
Siebel Open UI uses to get the value, and then display
it under resource column 0.

Pane 0 Col 0 Attr 2 IDD,Products Specify the following items:

■ IDD. The abbreviation that indicates the name of
the drill down object.

■ Drilldown field. The business component field
that Siebel Open UI uses when the user drills down
to a destination view.

If the user clicks the DDFLD value that Siebel Open UI
displays under resource column 0, then it navigates
the user to the view that the Products drill down object
defines.

Siebel Open UI uses the Pane 0 Col 0 Attr 2 applet user
property in conjunction with the Pane 0 Col 0 Attr 3
applet user property.

You must configure the corresponding drilldown object
that identifies the destination view and the ID. This
drilldown object resides in the applet that you are
configuring.

Pane 0 Col 0 Attr 3 DDFLD,Room Id Specify the following items:

■ DDFLD. The abbreviation that indicates the name
of the drill down field.

■ Drilldown field. The name of the business
component field that Siebel Open UI uses when the
user drills down on resource column 0. Siebel Open
UI uses this field value to navigate the user to the
destination view.

Siebel Open UI uses the Pane 0 Col 0 Attr 3 applet user
property in conjunction with the Pane 0 Col 0 Attr 2
applet user property.

Pane 0 Field number Room Id Specify the business component field that Siebel Open
UI uses to get the Siebel CRM data that it displays in
the Resource pane.

Name Value Description

Customizing Calendars and Schedulers ■ Customizing Resource Schedulers

Configuring Siebel Open UI Siebel 2018 289

4 Configure the font color that Siebel Open UI uses in the Resource pane.

Add the following applet user property.

Pane 0 Join Field Room Id Specify the field that Siebel Open UI uses to join
resources and events. Resources and events are
independent of each other. This join field joins the
events that are related to a resource. For example, a
meeting is an example of an event that can be held in
a room, which is an example of a resource. In this
example, each event includes a Room Id.

Pane 0 Parent Field Parent Room Id Specify the parent business component field that
Siebel Open UI uses to display resources in a hierarchy.

Pane 0 Start Date
Field

Effective Start Specify the Start Date field that Siebel Open UI uses to
prepare a search specification.

Pane 0 View Mode 3 Specify the view mode that this Resource pane
supports. You must use the following numbers to
indicate each view mode:

■ 0. VIEW_SALESREP.

■ 1. VIEW_MANAGER.

■ 2. VIEW_PERSONAL.

■ 3. VIEW_ALL.

■ 4. VIEW_NONE.

■ 5. VIEW_ORG.

■ 6. VIEW_CONTACT.

■ 7. VIEW_GROUP.

■ 8. VIEW_CATALOG.

■ 9. VIEW_SUBORG.

You can use a comma to specify more than one view
mode, where the comma separates each number. For
example, 1,2,3.

Property Value Description

Pane 0 Color
Field

Status Specify the business component field that
determines the color that Siebel Open UI uses to
display a resource. If you do not specify a value,
then Siebel Open UI displays only the color black.

Name Value Description

Configuring Siebel Open UI Siebel 2018

Customizing Calendars and Schedulers ■ Customizing Resource Schedulers

290

5 Configure the icons that Siebel Open UI display next to the Resource Name label in the Resource
pane.

Add the following applet user property.

Customizing the Timescale Pane in Resource Schedulers
This topic describes how to customize the Timescale pane.

To customize the Timescale pane in resource schedulers
1 In the Object List Editor, choose the applet that you modified in Step 1 on page 274.

2 In the Object List Editor, expand the Applet tree, and then click Applet User Prop.

3 In the Applet User Props list, add each of the following applet user properties, as required.

Property Value

Pane 0 Icon
number

Specify the name of a field that Siebel Open UI displays in
the Resource pane, a comma, and then the CSS class that
contains the icon. For example:

Room Backup Required,siebui-backup required

Name Value Description

Pane 1 Grid Name TimeScale Specify the name of the Timescale pane.

Pane 1 Grid Type TGrid Specify the type of the Timescale pane.

Pane 1 BC Name TNT SHM
Property Special
Dates Action

Specify the business component name that Siebel
Open UI uses to get information about special days or
events that it displays in the Timescale pane. It can
use this information to display colors and icons on the
Timescale pane.

Pane 1 End Date
Field

End Date Specify the End Date business component field where
Siebel Open UI applies a search specification to
prepare special days, events information, and so on.

Pane 1 Start Date
Field

Start Date Specify the Start Date business component field where
Siebel Open UI applies a search specification to
prepare special days, events information, and so on.

Customizing Calendars and Schedulers ■ Customizing Resource Schedulers

Configuring Siebel Open UI Siebel 2018 291

4 Configure the third axis that Siebel Open UI displays on the Timescale pane. Add each of the
following user properties, as required.

5 Configure the Day Part time scale:

a Add the Day Part time scale button to the controls.

Use 2 for the Name of this button. This configuration is the LIC value that Siebel Open UI
uses for the Day Part time scale. You must use a value from the time scale list of values to
name each time scale button control. For more information about how to add this button, see
Step 3, Step b on page 280.

Pane 1 Field number Start Date,SD Specify the name of a field that resides in the Data
business component. Siebel Open UI requires an
abbreviation to prepare special day information. Siebel
Open UI sends the field value as an abbreviation to the
client so that the client JavaScript files can use this
information.

Time Scale LOV TNT_SHM_GNTAX
_TIME_SCALE

Specify the LOV name that Siebel Open UI uses for
different time scales.

Name Value Description

Pane 1 BottomAxis
Date Field

Start Date Specify the Date field that Siebel Open UI uses to
search the third axis that resides in the TimeScale
pane business component.

Pane 1 BottomAxis
Field number

where number is a
field number.

Total Group
Available,FLD1

Specify the third axis that resides in the TimeScale
pane business component field. The value contains the
name and abbreviation as FLD1, FLD2, and so on.

Pane 1
BottomAxisBC
Name

TNT SHM FSI
Auth Lvl for
Calendar

Specify the business component name that Siebel
Open UI uses to get the data that it displays in the third
axis. If you do not include this applet user property,
then Siebel Open UI does not display the third axis in
the Timescale pane.

Pane 1
BottomAxisBC
Search Spec

[Product Type] =
LookupValue(PRO
DUCT_TYPE,
'Sleeping Room')

Specify the search specification that Siebel Open UI
applies on the business component for the Third axis in
the TimeScale pane.

Pane 1
BottomAxisBC Sort
Spec

Start Date Specify the sort specification that Siebel Open UI
applies on the business component for the Third axis in
the TimeScale pane.

Name Value Description

Configuring Siebel Open UI Siebel 2018

Customizing Calendars and Schedulers ■ Customizing Resource Schedulers

292

b Add each of the following applet user properties, as required.

6 Configure the colors that Siebel Open UI displays on the time scale. You can configure Siebel
Open UI to modify the colors it uses in time scale cells according to a condition. For example, it
can set the color of a weekend cell. Add each of the following applet user properties, as required.

Name Value Description

Pane 1 Daypart
number

where number is the
day part number.

Morning,NM,06:0
0:00,ST,12:00:0
0,ET,21600,DUR

Siebel Open UI uses the following business component
to provide the dynamic day part data:

TNT SHM Property Day Part Pricing

If this business component does not exist, or if it does
not contain any records, then Siebel Open UI uses this
applet user property to specify the Static Day Part
information that the day part time scale uses. The
value contains the Name, Starttime, Endtime, and
Duration of the daypart.

Pane 1 Daypart
Field number

Name,NM Specify the business component fields that Siebel
Open UI uses to get the day part information. The
value includes the field name and the abbreviation for
this field name.

Pane 1 DaypartBC
Name

TNT SHM
Property Day Part
Pricing

Specify the name of the business component that
Siebel Open UI uses to get the day part information.

Pane 1 DaypartBC
Search Spec

(Empty) Specify the search specification that resides on the
business component that Siebel Open UI uses to get
the day part information. This value comes predefined
as empty.

Pane 1 DaypartBC
Sort Spec

Start Time Specify the sort specification that resides on the
business component that Siebel Open UI uses to get
the day part information.

Name Value Description

Pane 1 Color:
Admin BC

TNT SHM Gantt
AX Admin
Function Status

Specify the business component that Siebel Open UI
uses to display colors for time scale data cells.

Pane 1 Color:Admin
BO

TNT SHM Gantt
Admin System
Pref

Specify the business object that references the
business component that Siebel Open UI uses to
display colors for time scale data cells.

Customizing Calendars and Schedulers ■ Customizing Resource Schedulers

Configuring Siebel Open UI Siebel 2018 293

Pane 1 Color
Application

Y Specify how to get the time scale color. You can use
one of the following values:

■ Y. Get the time scale color from the application
object.

■ N. Get the time scale color from an applet user
property.

Pane 1 Color
Type:Color

Holiday:#3ED143 If the value of the Pane 1 Color Application applet user
property is N, then the value of the Pane 1 Color
Type:Color applet user property must specify the event
and the color that Siebel Open UI uses to indicate this
event. In this example, the event is Holiday and the
color code is #3ED143. For more information about
these color codes, see the ColorHexa website at http:/
/www.colorhexa.com.

Pane 1 Color
Type:Color number

Special
Events:#F76161

If the value of the Pane 1 Color Application applet user
property is N, then the value of the Pane 1 Color
Type:Color number applet user property must specify a
special event and the color that Siebel Open UI uses to
indicate this event.

Pane 1 Colors BC
Color Field

Color LIC If the value of the Pane 1 Color Application applet user
property is Y, then the value of the Pane 1 Colors BC
Color Field applet user property must specify the Color
field that resides in the business component that the
Pane 1 Color: Admin BC applet user property specifies.

Pane 1 Colors BC
Type Field

Inventory Status If the value of the Pane 1 Color Application applet user
property is Y, then the value of the Pane 1 Colors BC
Type Field applet user property must specify the type
of field that resides in business component that the
Pane 1 Color: Admin BC applet user property specifies.

Pane 1 Hour Axis
Business Service
Method

EventsTSHourMa
p

Specify the business service method that Siebel Open
UI uses to get the hour axis colors that it displays in
the Timescale pane.

Pane 1 Hour Axis
Business Service
Name

TNT Utility
Service

Specify the business service that Siebel Open UI uses
to get the hour axis colors that it displays in the
Timescale pane.

Pane 1 Hour Axis
Color

Y Specify how to color the hour cells. You can use one of
the following values:

■ Y. Use a variety of colors in the cells.

■ N. Use only black in the cells.

Name Value Description

Configuring Siebel Open UI Siebel 2018

Customizing Calendars and Schedulers ■ Customizing Resource Schedulers

294

7 Specify how to display weekends. Add the following applet user properties, as required.

Name Value Description

Pane 1 Weekend
Application

Y Specify how to get the weekend information. You can
use one of the following values:

■ Y. Get the weekend information from the
application object.

■ N. Get the weekend information from an applet
user property.

Pane 1 Weekend BC TNT SHM
Weekend Admin

If the value of the Pane 1 Weekend Application applet
user property is Y, then the Pane 1 Weekend BC applet
user property must specify the business component
that Siebel Open UI uses to get the weekend
information.

Pane 1 Weekend BC
Field:Day

Week Day Num If the value of the Pane 1 Weekend Application applet
user property is Y, then the Pane 1 Weekend BC
Field:Day applet user property must specify the
business component field that Siebel Open UI uses to
get the weekend information.

Pane 1 Weekend BC
Field:Weekend Flag

Weekend
Weekday Flag

If the value of the Pane 1 Weekend Application user
property is Y, then the Pane 1 Weekend BC
Field:Weekend Flag user property must specify the
business component field that Siebel Open UI uses to
get the weekend information.

The Pane 1 Weekend BC Field:Day user property
specifies the day information.

The Pane 1 Weekend BC Field:Weekend Flag user
property specifies to configure this day as a weekday
or as a weekend day.

Pane 1 Weekend BO SHM Site If the value of the Pane 1 Weekend Application applet
user property is Y, then the Pane 1 Weekend BO applet
user property must specify the business object that
Siebel Open UI uses to get the weekend information.

Pane 1 Weekend
Property Admin BC

SHM Site Specify the business component that Siebel Open UI
uses to get weekend information from the Siebel
Server.

Pane 1 Weekend
Property Admin BC
Field

Property Id Specify the field that resides in the property business
component.

Pane 1 Weekend
Property BC

SHM Site Specify the business component that Siebel Open UI
uses to get the property information.

Customizing Calendars and Schedulers ■ Customizing Resource Schedulers

Configuring Siebel Open UI Siebel 2018 295

8 Configure the icons that Siebel Open UI displays and the text that it uses with these icons in time
scale cells according to a condition. Add the following applet user properties, as required.

Pane 1 Weekend
Property Field

Property Id Specify the business component field that Siebel Open
UI uses to get the property information.

Pane 1 Weekends 0,5,6 Specify the days that Siebel Open UI uses as weekend
days. If the value of the Pane 1 Weekend Application
applet user property is N, then the Pane 1 Weekends
applet user property must specify the days that Siebel
Open UI uses to identify weekend days. You must use
the following numbers to represent each day:

■ 0. Sunday.

■ 1. Monday.

■ 2. Tuesday.

■ 3. Wednesday.

■ 4. Thursday.

■ 5. Friday.

■ 6. Saturday.

Use a comma to separate each number. For example,
a value of 0,5,6 in the Pane 1 Weekends user property
customizes Siebel Open UI to use Sunday, Friday, and
Saturday as weekend days.

Name Value Description

Pane 1 Icon number Sell Notes,siebui-
sellnotes

Specify the field value from the business component
that the Pane 1 BC Name applet user property
identifies, and the class name of the cascading style
sheet that Siebel Open UI uses to render the time scale
cells. You must use a comma to separate these values.

You can configure more than one Pane 1 Icon number
applet user property. For example, you can configure
Pane 1 Icon 1, Pane 1 Icon 2, and so on.

Name Value Description

Configuring Siebel Open UI Siebel 2018

Customizing Calendars and Schedulers ■ Customizing Resource Schedulers

296

9 Configure the drilldowns that Siebel Open UI uses on the major axis and the third axis. If you
configure a drill-down, then you must configure each of the following applet user properties.

Customizing Time Scales That Siebel Open UI Displays in the
Timescale Pane
This topic describes how to specify the Pane 1 Date Drilldown applet user property. You specify the
time scales that Siebel Open UI displays when the user clicks a date in the Timescale pane, such as
Monday, July 22.

To customize time scales that Siebel Open UI displays in the Timescale pane
1 Determine the number that Siebel Open UI uses to identify the time scale that you must modify.

For more information, see “Determining the Number That Siebel Open UI Uses to Identify Time
Scales” on page 285.

2 Add the value that you determined in Step 1 to the value of the Pane 1 Date Drilldown applet
user property. Use the following format:

source:destination

where:

■ source identifies the time scale that the user clicks. Siebel Open UI uses a number to identify
each time scale. For more information, see “Determining the Number That Siebel Open UI Uses
to Identify Time Scales” on page 285.

Name Value Description

Pane 1 Date
Drilldown

source:destinatio

n
Specify the time scale that Siebel Open UI displays
when the user clicks a date in the Timescale pane.
For more information, see “Customizing Time Scales
That Siebel Open UI Displays in the Timescale Pane”
on page 296.

Pane 1 Item
Drilldown Name

Time Scale Drilldown Specify the drill-down object that resides in the
applet that Siebel Open UI uses to display the third
axis. You must also configure this drill-down object
in the applet.

Pane 1 Item
Drilldown Field

OUI Property Id Specify the field that contains the value that Siebel
Open UI uses when it does a drill down operation on
a label that resides in the third axis.

Siebel Open UI uses this field value to navigate the
user to the destination view according to the
drilldown object that the Pane 1 Item Drilldown
Name applet user property specifies.

Customizing Calendars and Schedulers ■ Customizing Resource Schedulers

Configuring Siebel Open UI Siebel 2018 297

■ destination identifies the time scale that the resource scheduler displays when the user
clicks the source.

For example, the following value configures Siebel Open UI to display the Day/Day-Part time
scale when the user clicks the Week/Day time scale:

1:2

3 (Optional) Allow the user to navigate between time scales.

You can use a semicolon to separate each time scale. For example:

1:2;2:256;4:256;64:2;128:2;256:2;

Customizing the Schedule Pane in Resource Schedulers
This topic describes how to customize the Schedule pane.

To customize the Schedule pane in resource schedulers
1 In the Object List Editor, choose the applet that you modified in Step 1 on page 274.

2 In the Object List Editor, expand the Applet tree, and then click Applet User Prop.

3 In the Applet User Props list, add each of the following applet user properties, as required.

Name Value Description

Pane 2 Grid Name Utilization Specify the pane name.

Pane 2 Grid Type UGrid Specify the pane type.

Pane 2 Field number Function Space
Id,FSI

Specify the business component fields that contain the
information that Siebel Open UI displays in the
Schedule pane. Siebel Open UI sends information from
these fields to the client. Use the following format:

field name,abbreviated name

You can specify more than one field. For example, Pane
2 Field 1, Pane 2 Field 2, and so on.

Pane 2 BC Name TNT SHM
Function Booking
VBC

Specify the business component that Siebel Open UI
uses to get information about the events that it
displays in the Schedule pane.

Pane 2 BC Sort Spec Function Space
Id, Start Date
Time

Specify the business component fields that Siebel
Open UI uses for the sort specification that it uses to
sort the records that it displays in the Schedule pane.
You must use a comma to separate each field name.

Configuring Siebel Open UI Siebel 2018

Customizing Calendars and Schedulers ■ Customizing Resource Schedulers

298

Pane 2 BC Search
Spec

"[Activity Type] =
Completed"

Specify the business component fields that Siebel
Open UI uses for the search specification that it uses
to identify the records that it displays in the Schedule
pane. You can use an equation or a field name. For
more information about specifying a search
specification, see Configuring Siebel Business
Applications.

Pane 2 End Date
Field

Absolute End
Date Time

Specify the end date field where Siebel Open UI does
the search according to the search specification.

Pane 2 Start Date
Field

Start Date Time Specify the start date field where Siebel Open UI does
the search according to the search specification.

To formulate the search specification, Siebel Open UI
joins the field that you specify in the Pane 2 Start Date
Field applet user property with the field that you
specify in the Pane 2 End Date Field applet user
property.

Pane 2 Start Attrib ST Specify the abbreviation that Siebel Open UI uses for
the start date field.

Pane 2 End Attrib ET Specify the abbreviation that Siebel Open UI uses for
the end date field.

Pane 2 Join Field Function Space Id Specify the field that Siebel Open UI uses as the
identifier when it matches rows with other panes.

Pane 2 Bypass
Overlap For Status

Dependency Specify the type of events that Siebel Open UI does not
split when an event overlap occurs. An event overlap
is a condition that occurs if more than one event occurs
at the same time. Siebel Open UI splits the row height
of each overlapping event so that it can display them
in the same screen space that it normally uses to
display an event that does not overlap.

In this example, Siebel Open UI does not split any
Dependency events that overlap.

You can use a comma to bypass multiple event types.
For example, you can use the following value to bypass
Dependency and Optioned events:

Dependency,Optioned

Pane 2 Overlap
Event LOV Type

TNT_SHM_INV_S
TATUS

Specify the LOV type that Siebel Open UI uses for the
inventory status when events overlap.

Pane 2 Overlap
Event Logical Order
Based Field Attr

GS Specify the abbreviation that Siebel Open UI uses for
the field that it displays in the Schedule pane when
events overlap.

Name Value Description

Customizing Calendars and Schedulers ■ Customizing Resource Schedulers

Configuring Siebel Open UI Siebel 2018 299

4 Configure the colors that Siebel Open UI uses for the events that it displays in the Schedule pane.
It modifies these colors according to a condition. For example, it can use a color for a Reserved
event. Add each of the following applet user properties, as required.

Pane 2 Overlap
Event Logical Order
Values

Reserved,

Option Reserved,

Overbooked,

Optioned,

Unreserved,

Unavailable,

Unavailable
Instance,

Out of Order,

Temporary

Specify the order that Siebel Open UI uses to display
overlapping events, according to status. In this
example, Siebel Open UI displays statuses in the
following order. It displays Reserved events first and
Temporary events last:

■ Reserved

■ Option Reserved

■ Overbooked

■ Optioned

■ Unreserved

■ Unavailable

■ Unavailable Instance

■ Out of Order

■ Temporary

Pane 2 Round
Minutes Events

15 Specify the number that Siebel Open UI uses to resize
an event. If the user resizes an event, then Siebel
Open UI rounds the time according to the value that
you specify. For example, assume you specify 15 as the
value for this applet user property. Assume an event
starts at 08:00 AM and ends 10:00 AM. If the user
drags the end time for this event from 10:00 AM to
10:12 AM, then Siebel Open UI rounds this end time
according to the closest 15 minute increment, where
15 is measured from the beginning of the hour. In this
example, it rounds the end time to 10:15 AM.

Name Value Description

Pane 2 Color number INV_STATUS_Res
erved,GREEN

Specify the INV_STATUS color that Siebel Open UI uses
for the LOV type.

Pane 2 Event Color
Service Method

EventsColorMap Specify the business service method that Siebel Open
UI uses to get the event colors.

Pane 2 Event Color
Service Name

TNT Utility
Service

Specify the business service that Siebel Open UI uses
to get the event colors.

Pane 2 Event
Default Color

#6495ed Specify the default color that Siebel Open UI uses for
events.

Name Value Description

Configuring Siebel Open UI Siebel 2018

Customizing Calendars and Schedulers ■ Customizing Resource Schedulers

300

Pane 2 Status LIC
Field number

INVENTORY_STA
TUS,GS

Specify the colors that Siebel Open UI uses for the
inventory status. For example, specify the abbreviation
that you defined in the Pane 2 Overlap Event Logical
Order Based Field Attr applet user property. You
defined these user properties in Step 3 on page 297.

Pane 2 Status LOV
Type

TNT_FSD_COLOR
_SCHEMA

Specify the color scheme that Siebel Open UI uses for
events. To modify schemes, do the following:

■ Log in to a Siebel client with administrative
privileges.

■ Navigate to the Administration - Data screen, and
then the List Of Values view.

■ Query the Type Field for
TNT_FSD_COLOR_SCHEMA.

■ Modify the fields, as necessary.

Pane 2 Status LOV Type specifies only the color
schemes that are available. To configure Siebel Open
UI to display a color according to a condition in Siebel
Hospitality, you must use the Function Status Color
Schema list that resides in the Function Space Diary
Administration view of the Function Space
Administration screen. For example, to use a color for
the Prospect status in Siebel Hospitality. Configuration
for your Siebel application might be different than it is
for Siebel Hospitality.

Name Value Description

Customizing Calendars and Schedulers ■ Customizing Resource Schedulers

Configuring Siebel Open UI Siebel 2018 301

5 Configure the icons and the text for these icons that Siebel Open UI uses with the events that it
displays in the Schedule pane according to a condition. Add each of the following applet user
properties, as required.

Name Value Description

Pane 2 Icon number DNMF,siebui-
donotmove

Specify the abbreviation that you defined in the
corresponding applet user property and the class
where the corresponding cascading style sheet resides.
For example, specify the abbreviation that you defined
in the Pane 2 Field 0 applet user property. You defined
these user properties in Step 3 on page 297.

Siebel Open UI uses this configuration for the icon. Use
a comma to separate the abbreviation from the class
name.

You can configure more than one applet user property.
For example, Pane 2 Icon 0, Pane 2 Icon 1, and so on.

Pane 2 Item Icon
Fields

DNMF,NF,DF,SF,F
SF,HF,AF,2HHF,SF
F

Specify the abbreviations that you defined for the
corresponding user properties in Step 3 on page 297.
For example, specify the abbreviations for the Pane 2
Field 0 applet user property, the Pane 2 Field 1 applet
user property, and so on. The abbreviations in this
example come predefined with Siebel Hospitality. You
cannot use any other abbreviation. You must use a
different set of abbreviations for your Siebel
application.

Use a comma to separate each abbreviation.

Configuring Siebel Open UI Siebel 2018

Customizing Calendars and Schedulers ■ Customizing Resource Schedulers

302

6 Configure Drag and Drop.

NOTE: Drag and Drop functionality is a feature that you can enable or disable for the bar chart
Schedule Pane in Siebel Open UI which either allows you to or prevents you from moving items
around the Schedule Pane. You move an item by first selecting the item and (with the mouse
button depressed) then moving the item elsewhere (and releasing the mouse button).

Siebel Open UI uses a business service method to implement drag and drop functionality. This
step describes how to specify the input arguments that this method requires. You add each of
the following applet user properties.

Name Value Description

Disable Drag for
Ganttchart

N Specify to allow the user to select and move items. Use
one of the following values:

■ Y. Allows you to select and move items.

■ N. Does not allow you to select and move items.

DragnDrop:
Service Inputs 1

"Service Name",
"TNT Gantt UI
Service"

Specify the business service that Siebel Open UI uses to
handle a drag and drop operation. You must use this
value. You cannot modify it.

DragnDrop:
Service Inputs 2

"Service
Method",
"DragnDrop"

Specify the business service method that Siebel Open UI
uses to handle a drag and drop operation. You must use
this value. You cannot modify it.

DragnDrop:
Service Inputs 3

"BO", "Quote" Specify the business object.

DragnDrop:
Service Inputs 4

You can use these applet user properties to specify more
input arguments that your deployment requires.

DragnDrop:
Service Inputs 5

DragnDrop:
Service Inputs 6

DragnDrop:
Service Inputs 7

Customizing Calendars and Schedulers ■ Customizing Resource Schedulers

Configuring Siebel Open UI Siebel 2018 303

7 Configure other Schedule pane behavior, such as drilldown, extend, shrink, add, update, and
delete. Add each of the following applet user properties, as required.

Name Value Description

Create Task:
Service Inputs 1

"Service Name",
"TNT Gantt UI
Service"

Specify the business service that Siebel Open UI uses if
the user clicks OK in the popup dialog box that it displays
in the Schedule pane.

Create Task:
Service Inputs 2

"Service
Method",
"CreateBookingR
ecord"

Specify the business service method that Siebel Open UI
uses if the user clicks OK in a popup dialog box.

Disable Resize for
Ganttchart

N Specify to allow the user to resize an activity or a
booking. Use one of the following values:

■ Y. Allow resizing.

■ N. Do not allow resizing.

ExtendShrink:
Service Inputs 1

"Service Name",
"TNT Gantt UI
Service"

Specify the business service that Siebel Open UI uses to
handle a resize operation.

ExtendShrink:
Service Inputs 2

"Service
Method",
"ExtendShrink"

Specify the business service method that Siebel Open UI
uses to handle a resize operation.

Pane 2 Disable
ExtendShrink
Views

:32:256: Specify to disable resizing for a time scale. For example,
32 and 256 each represent a time_scale_identifier:

■ 32. Specifies the Month/Day-of-Week time scale.

■ 256. Specifies the Month/Day-of-Week/Day Part
scale.

Siebel Open UI uses a number to identify each time
scale. For more information, see “Determining the
Number That Siebel Open UI Uses to Identify Time Scales”
on page 285.

You must include a color before and after each identifier.

Show Task Details:
Service Inputs 1

"Service Name",
"TNT Gantt UI
Service"

Specify the business service that Siebel Open UI uses if
the user double-clicks a booking, a task, or an activity,
and then clicks OK in a popup dialog box.

Configuring Siebel Open UI Siebel 2018

Customizing Calendars and Schedulers ■ Customizing Resource Schedulers

304

Customizing Participant Availability in Resource
Schedulers
This topic describes how to customize the controls that Siebel Open UI uses to display information
about participant availability in a resource scheduler. You use custom cascading style sheet files to
do some of this modification. For more information about how to organize these files, see “Organizing
Files That You Customize” on page 145.

To customize participant availability in resource schedulers
1 Allow or disallow the user to resize the panes that Siebel Open UI uses to display information

about participant availability:

a Log in to Siebel Tools.

b In the Object Explorer, click Applet.

c In the Applets list, query the Name property for Calendar GanttChart OUI Applet.

d In the Object Explorer, expand the Applet tree, and then click Applet User Prop.

e In the Applet User Props list, modify the following applet user property.

Show Task Details:
Service Inputs 2

"Service
Method",
"CreateBookingR
ecord"

Specify the business service method that Siebel Open UI
uses if the user double-clicks a booking, a task, or an
activity, and then clicks OK in a popup dialog box.

Pane 2 Item
Drilldown Name

Activity
Drilldown

Specify the drill-down object that Siebel Open UI uses
when the user clicks a label in the Schedule pane. Siebel
Open UI navigates the user to the view that this drill-
down object defines.

This configuration works in conjunction with the DDID
value that you configure in the Pane 2 Field number
applet user property.

You must configure the corresponding drilldown object in
the applet.

Name Description

Disable Resize for
Ganttchart

Specify to allow the user to resize an activity or a
booking. Use one of the following values:

■ Y. Allow resizing.

■ N. Do not allow resizing.

Note: This user property applies to all schedulers.

Name Value Description

Customizing Calendars and Schedulers ■ Customizing Resource Schedulers

Configuring Siebel Open UI Siebel 2018 305

2 Modify the color that Siebel Open UI uses to display events:

a In the Object Explorer, click Business Service.

b In the Business Services list, query the Name property for Calendar Gantt Color Service.

c In the Object Explorer, expand the Business Service tree, and then click Business Service User
Prop.

d In the Business Service User Props list, modify the following business service user property.

3 Compile your modifications.

4 Modify the icons that Siebel Open UI uses to display information about participant availability. To
do this, you can use one the following siebui-calgantt-icon CSS classes in your custom CSS file.

Name Description

Event Status Mapping
Color

For information about how to set this business
service user property, see “Setting the Color for
Events” on page 307.

Description Example

To modify the icon that
Siebel Open UI uses for
employees, use the siebui-
calgantt-icon-employee
CSS class.

.siebui-calgantt-icon-employee {

 width: 16px;

 height: 16px;

 float: left;

 margin-top: 2px;

 background: url(../images/employees_icon.gif) no-repeat
center center;

}

Configuring Siebel Open UI Siebel 2018

Customizing Calendars and Schedulers ■ Customizing Resource Schedulers

306

5 Modify how Siebel Open UI displays information about the current record.

You can use the .siebui-currentRecord CSS class in one of your custom CSS files. For example:

.siebui-currentRecord {

 border-left: 3px solid green;

 border-right: 3px solid red;

 z-index: 1000;

}

This example modifies the class only for the current event. To change the default color for all
events, modify the user property to the following:

Pane 2 Event Default Color

6 Verify your work:

a Log into the client.

b On the Home page, click My Calendar.

To modify the icon that
Siebel Open UI uses for
contacts, use the siebui-
calgantt-icon-contact CSS
class.

.siebui-calgantt-icon-contactcall {

 width: 16px;

 height: 16px;

 float: left;

 margin-top: 2px;

 background: url(../images/contact_call.jpg) no-repeat
center center;

}

To modify the icon that
Siebel Open UI uses for
resources, use the
calgantt-icon-resource
CSS class.

.siebui-calgantt-icon-resource {

 width: 16px;

 height: 16px;

 float: left;

 margin-top: 2px;

 background: url(../images/resoure-items.gif) no-repeat
center center;

}

Description Example

Customizing Calendars and Schedulers ■ Customizing Resource Schedulers

Configuring Siebel Open UI Siebel 2018 307

c On the application-level menu, click Edit, and then click New Record.

Siebel Open UI displays the eCalendar Detail View that contains the scheduling control.

d Verify that the resource scheduler includes the modifications that you configured in Step 2 on
page 305 through Step 5 on page 306.

Setting the Color for Events
You can use the Event Status Mapping Color business service user property to set the color for each
event type. It uses the following syntax:

"status_abbreviation,event_type:color_value"

where:

■ status_abbreviation is defined in the Pane 2 Status LIC Field applet user property. Siebel Open
UI uses this applet user property to display the scheduling control. In this example, you set
status_abbreviation to GS (Gantt Status). You can use any abbreviation. It is recommended
that you use a short abbreviation, such as GS, to reduce the amount of information that Siebel
Open UI must communicate.

■ event_type specifies the type of event. For example, it can specify one of the following values:

■ Accepted

■ Declined

■ Not Responded

■ color_value specifies a hexadecimal value that identifies the color that the cascading style sheet
uses to display an event. For example, a color_value of #FF0000 specifies to display an event
as red.

You can use the following syntax to specify multiple color values:

"status_abbreviation,event_type:color_value;status_abbreviation,event_type:color_v
alue;"

where:

■ ; (semi-colon) separates each color value.

For example, the following code sets the color for each event type:

"GS,Accepted:#d3ffd7;Declined:#6600CC;Not Responded:#000000"

where:

■ Accepted:#d3ffd7 sets the RGB color for Accepted events to light green (red at 82.75%, green
at 100%, and blue at 84.31%).

■ Declined:#6600CC sets the RGB color for Declined events to purple (red at 40%, green at 0%,
and blue at 80%).

Configuring Siebel Open UI Siebel 2018

Customizing Calendars and Schedulers ■ Customizing Resource Schedulers

308

■ Not Responded:#000000 sets the RGB color for Not Responded events to black (red at 0%, green
at 0%, and blue at 0%).

NOTE: If you are setting the color for events in a Participant Availability scheduling control, the
Business Service that requires modification is the Calendar Gantt Color Service. The value can
be found in the Pane 2 Event Color Service Name user property in the applet.

For more information about how to use a hexadecimal number to represent a color, see the page
about color codes at the ColorCodeHex website at http://www.colorcodehex.com.

Using CSS Classes to Set the Color for Events You can use the following code instead of
modifying the Calendar Gantt Color Service business service to set event colors:

siebui-calgantt-event_type

For example, you can add the following class to one of your custom CSS files to set the border color
for Not Responded events to yellow:

.siebui-calgantt-NotResponded {
border: 1px solid #FFFF00;
}

Customizing Tooltips in Resource Schedulers
This topic describes how to customize the Tooltips that Siebel Open UI displays in a resource
scheduler.

To customize tooltips in resource schedulers
1 In the Object List Editor, choose the applet that you modified in Step 1 on page 274.

2 In the Object List Editor, expand the Applet tree, and then click Applet User Prop.

3 In the Applet User Props list, add each of the following applet user properties, as required.

Name Value Description

Pane 2 Tooltip BC
Name

TNT SHM FSI
Booking

Specify the business component that Siebel Open UI
uses to get the tooltip information for the events that it
displays in the Schedule pane. This business
component must contain the information that Siebel
Open UI displays in the tooltip.

Pane 2 Tooltip BO
Name

SHM Site Specify the business object that references the
business component that you specify in the Pane 2
Tooltip BC Name applet user property.

Customizing Calendars and Schedulers ■ Customizing Resource Schedulers

Configuring Siebel Open UI Siebel 2018 309

Pane 2 Tooltip Field
number

Quote Name Tip Specify the business component fields that Siebel Open
UI uses to get the information that it displays in the
tooltips in the Schedule pane. Siebel Open UI adds a
new line for each of these field values in the tooltips and
displays them consecutively. For example:

Event1
Holiday resorts
10:00
12:00

Pane 0 Tooltip BC
Name

TNT Product - ISS
Admin

Specify the business component that Siebel Open UI
uses to get the tooltip information for the Resource
pane.

Pane 0 Tooltip BO
Name

SHM Site Specify the business object that references the
business component that you specify in the Pane 0
Tooltip BC Name applet user property.

Pane 0 Tooltip Field
number

Physical Area Tip Specify the business component field that Siebel Open
UI uses to get the information that it displays in the
tooltips for the Resource pane.

Pane 0 Tooltip
Header Field

Name Specify the business component field that Siebel Open
UI uses to get the information that it displays in the first
field in the tooltips for Resource pane.

Pane 1 Tooltip BC
Name

TNT SHM Property
Special Dates
Action

Specify the business component that Siebel Open UI
uses to get the information that it displays in the
tooltips for the Timescale pane.

Pane 1 Tooltip BO
Name

SHM Site Specify the business object that references the
business component that you specify in the Pane 1
Tooltip BC Name applet user property.

Pane 1 Tooltip Field
number

Tooltip Specify the business component field that Siebel Open
UI uses to get the information that it displays in the
tooltips for the Timescale pane.

Pane 1 Tooltip
SortSpec

Type Specify the sort specification that Siebel Open UI uses
to sort the records in the business component that it
uses to get the tooltip information for the Timescale
pane. Siebel Open UI uses this configuration to sort
sentences in a tooltip that includes more than one
sentence.

EnableTooltip Y Specify to display or not display the tooltip. Use one of
the following values:

■ Y. Display the tooltip.

■ N. Do not display the tooltip.

Name Value Description

Configuring Siebel Open UI Siebel 2018

Customizing Calendars and Schedulers ■ Customizing Resource Schedulers

310

4 Configure any special functionality that your tooltip deployment requires. Add each of the
following applet user properties, as required.

Name Value Description

Pane 2 Tooltip
Service Method

GetEventTooltipI
nfo

Specify the business service method that Siebel Open
UI uses to get the tooltip information for the Schedule
pane. If you do not specify this applet user property,
then Siebel Open UI calls the default business service,
and then displays data according to the configurations
of the following user properties:

■ Pane 2 Tooltip BC Name

■ Pane 2 Tooltip BO Name

■ Pane 2 Tooltip Field number

Pane 2 Tooltip
Service Name

TNT Gantt UI
Service

Specify the business service name that Siebel Open UI
uses to get the tooltip information for the Schedule
pane. If you do not specify this applet user property,
then Siebel Open UI calls the default business service,
and then displays data according to the configurations
of the following user properties:

■ Pane 2 Tooltip BC Name

■ Pane 2 Tooltip BO Name

■ Pane 2 Tooltip Field number

Pane 1 Tooltip
Service Method

GetTSTooltipInfo Specify the business service method that Siebel Open
UI uses to get the tooltip information for the Timescale
pane. If you do not specify this applet user property,
then Siebel Open UI calls the default business service,
and then displays data according to the configurations
of the following user properties:

■ Pane 1 Tooltip BC Name

■ Pane 1 Tooltip BO Name

■ Pane 1 Tooltip Field number

Pane 1 Tooltip
Service Name

TNT Gantt UI
Service

Specify the business service that Siebel Open UI uses
to get the tooltip information for the Timescale pane.
If you do not specify this applet user property, then
Siebel Open UI calls the default business service, and
then displays data according to the configurations of
the following user properties:

■ Pane 1 Tooltip BC Name

■ Pane 1 Tooltip BO Name

■ Pane 1 Tooltip Field number

Customizing Calendars and Schedulers ■ Customizing Resource Schedulers

Configuring Siebel Open UI Siebel 2018 311

Pane 0 Tooltip
Service Method

GetResTooltipInfo Specify the business service method that Siebel Open
UI uses to get the tooltip information for the Resource
pane. If you do not specify this applet user property,
then Siebel Open UI calls the default business service,
and then displays data according to the configurations
of the following user properties:

■ Pane 0 Tooltip BC Name

■ Pane 0 Tooltip BO Name

■ Pane 0 Tooltip Field number

Pane 0 Tooltip
Service Name

TNT Gantt UI
Service

Specify the business service that Siebel Open UI uses
to get the tooltip information for the Resource pane. If
you do not specify this applet user property, then
Siebel Open UI calls the default business service, and
then displays data according to the configurations of
the following user properties:

■ Pane 0 Tooltip BC Name

■ Pane 0 Tooltip BO Name

■ Pane 0 Tooltip Field number

Name Value Description

Configuring Siebel Open UI Siebel 2018

Customizing Calendars and Schedulers ■ Customizing Resource Schedulers

312

Configuring Siebel Open UI Siebel 2018 313

9 Configuring Siebel Open UI to
Interact with Other Applications

This chapter describes how to configure Siebel Open UI to interact with other applications. It includes
the following topics:

■ Displaying Data from External Applications in Siebel Open UI on page 313

■ Displaying Data from Siebel Open UI in External Applications on page 349

■ Web Engine HTTP TXN Business Service on page 365

Displaying Data from External
Applications in Siebel Open UI
This topic describes how to configure Siebel Open UI to interact with other applications. It includes
the following information:

■ Siebel Portal Framework on page 313

■ Integrating External Content on page 315

■ Displaying Data from External Applications in Siebel Views on page 341

■ Displaying Data from External Applications in Siebel Applets on page 345

Siebel Portal Framework
This topic provides an overview of Oracle’s Siebel Portal Framework and summarizes the technologies
that make up the Portal Framework. It contains the following information:

■ Portal Framework Overview on page 313

■ Portal Framework Architecture on page 314

Portal Framework Overview
Enterprises are often composed of many different information technology resources, such as:

■ Shared network directories.

■ Department intranet sites.

■ Legacy applications.

■ Applications developed in-house.

■ Purchased Web applications.

Configuring Siebel Open UI Siebel 2018

Configuring Siebel Open UI to Interact with Other Applications ■ Displaying Data from
External Applications in Siebel Open UI

314

With many disparate applications and technologies, IT resources are difficult to maintain and difficult
to use. For example, applications:

■ Follow different user interface guidelines.

■ Are rendered with different themes.

■ Track profile attributes differently.

■ Vary in the quality of online assistance.

■ Have separate login and password credentials.

■ Have different search functionality.

One solution to this problem is to integrate the various applications and content sources used in an
enterprise and present them in a single user interface, called a portal. The Siebel Portal Framework
allows you to do this. The Portal Framework provides you with the tools and supporting technologies
that allow you to:

■ Aggregate external data with Siebel data and present it in the Siebel user interface.

■ Deliver Siebel CRM data to external applications.

■ Integrate external application business logic and data with Siebel Business Applications.

Portal Framework Architecture
The portal framework includes the following framework components:

■ Enterprise Application Integration

■ Portal Agents that integrate external content into the Siebel user interface

Enterprise Application Integration
Siebel EAI provides mechanisms for sharing data and business logic with other applications,
including:

■ Integration objects

■ Virtual business objects

■ Programming APIs

■ Predefined adapters and connectors

For more information about Siebel EAI, see Overview: Siebel Enterprise Application Integration and
other EAI titles on the Siebel Bookshelf. The Siebel Bookshelf is available on Oracle Technology
Network (OTN) and Oracle Software Delivery Cloud. It might also be installed locally on your intranet
or on a network location.

Configuring Siebel Open UI to Interact with Other Applications ■ Displaying Data from
External Applications in Siebel Open UI

Configuring Siebel Open UI Siebel 2018 315

Portal Agents
Portal Agents provide you with a mechanism to retrieve content from a non-Siebel source and display
it in the Siebel user interface. The Portal Agent retrieves content on behalf of the user, logging on to
the external application using the user’s credentials and retrieving only the content that is targeted
for the user. Portal Agents provide single sign-on capability and a profile tracking mechanism. For
more information about Portal Agents, see “About Portal Agents” on page 315.

Integrating External Content
This topic provides an overview of Portal Agents. It describes the configuration and administration
tasks necessary to display external content in the Siebel user interface. It also includes a reference
topic that lists all of the commands available for use with Portal Agents. This chapter contains the
following information:

■ About Portal Agents on page 315

■ Process of Creating Portal Agents on page 319

■ Determining the Login Requirements on page 319

■ Portal Agent Configuration on page 321

■ Portal Agent Administration on page 323

■ Defining End-User Login Credentials on page 331

■ Example Portal Agent on page 332

■ Reviewing the SWE Log File on page 336

■ Portal Agent Command Reference on page 336

About Portal Agents
Portal Agents allow you to integrate external data into the Siebel user interface. Portal Agents
retrieve data by sending HTTP requests to external applications, and then display the HTML results
in a Siebel applet or on some other portion of a Siebel application Web page.

Portal Agents combine a set of features and technologies that allow you to integrate external content
at the user interface layer, including the following:

■ Single sign-on technology (SS0). For applications that are participating in a single sign-on
framework, this feature eliminates the need for the user to enter login credentials, such as user
name and password, more than once for each work session. For more information about single
sign on, see Siebel Security Guide.

■ Session management and session reuse. Allows the Siebel application and the external
application to maintain a user’s session context, without reauthenticating for subsequent
requests. This minimizes session resource overhead on the external application, and allows the
user to retain session context, such as shopping cart contents.

■ Time-out handling. The Siebel Server automatically reauthenticates when a request is
submitted after the external application’s timeout period has passed.

Configuring Siebel Open UI Siebel 2018

Configuring Siebel Open UI to Interact with Other Applications ■ Displaying Data from
External Applications in Siebel Open UI

316

■ Symbolic URLs, with multiple disposition types. Allows content to be displayed in different
ways, such as in a new browser window, inline with the other content, in an <iframe> tag. For
more information, see “About Disposition Types” on page 316.

■ Session proxy. For content integrated using a disposition type of Inline, the Siebel Server
manages the interactions with external applications on behalf of the user. For more information
about the Inline disposition type, see “Inline Disposition Type” on page 317.

■ Symbolic URL commands. Commands that direct the Portal Agent to assemble the URL for the
external application in several ways. These include dynamically referencing the user’s user name
and password, retrieving stored user name and password values, retrieving data from the user’s
personalization profile, establishing the size of an <iframe> tag, and determining whether to set
the browser cookies from the application server’s login page. For a complete list of commands,
see “Portal Agent Command Reference” on page 336.

NOTE: Portal Agents do not integrate data at the data layer or integrate business logic. Other
mechanisms in the Siebel Portal Framework, such as Integration Objects and Virtual Business
Components, are designed to meet those types of integration needs. For more information about
Siebel EAI, see Overview: Siebel Enterprise Application Integration.

This topic contains the following information:

■ Portal Agents and Authentication Strategies on page 316

■ About Disposition Types on page 316

Portal Agents and Authentication Strategies
Portal Agents can be configured to support different authentication strategies:

■ Simple Portal Agents. The external application does not require any authentication
parameters.

■ Single Sign-On Portal Agents. The external application requires authentication parameters.
Form-based Portal Agents send authentication parameters as part of the body portion of the HTTP
request.

For more information about authentication, see Siebel Security Guide.

About Disposition Types
One of the steps in setting up a Portal Agent is creating a symbolic URL. The symbolic URL specifies
the information necessary to construct the HTTP request to send to the external application.
Symbolic URLs can be one of several disposition types. The disposition type determines the following:

■ The interaction between the browser, the Siebel Server, and the external application.

■ How external content is displayed in the user interface.

It is important to understand these disposition types and determine which one suits your integration
needs. Each disposition type is discussed in one of the following topics:

■ Inline Disposition Type on page 317

■ IFrame Disposition Type on page 317

■ Form Redirect Disposition Type on page 318

Configuring Siebel Open UI to Interact with Other Applications ■ Displaying Data from
External Applications in Siebel Open UI

Configuring Siebel Open UI Siebel 2018 317

For information about defining symbolic URLs, see “Defining Symbolic URLs” on page 325.

Inline Disposition Type

With a symbolic URL disposition type of Inline, the Siebel Server receives content sent by an external
application. It combines the external content with Siebel-produced content and composes a single
HTML page, which it then sends to the client browser for display to the user. Optionally, links in the
aggregated content are rewritten so they reference the Siebel Server (proxy), rather than
referencing the external application server directly. This allows the Siebel Server to handle links in
the aggregated content in such a way that it appears to the user as one integrated application rather
than from different application servers.

The Inline disposition type supports session management. The Siebel Server uses session
management to manage session cookies and automatically log in again to an external application
after a time out occurs.

The Inline disposition type requires that:

■ The page you are integrating does not include complex JavaScript and does not reference frames.

■ The maximum number of characters in the calling URL is 2048.

■ No methods other than the GET method are invoked.

If the Inline disposition type is not appropriate, then you might try the IFrame disposition type.

IFrame Disposition Type

Use this disposition type when aspects of the external application do not allow content to be
aggregated with other Siebel content. For more information, see “Portal Agent Restrictions” on
page 318.

The IFrame disposition type uses the <iframe> tag to create an internal frame as part of the page
generated by the Siebel Server. It allows the Portal Agent to retrieve content to populate the internal
frame. This content does not pass through the Siebel Server, but is directly requested by the client
and sent by the application server to the user’s browser. Although this disposition type is not as
preferable as the Inline disposition type, in most cases, it is a method that works.

The IFrame disposition type supports JavaScript and frames. Therefore, if the Inline disposition type
does not work, then the IFrame option is the best option. The IFrame disposition type also supports
the Session Keep Alive feature. However, it does not support session management.

The IFrame disposition type works in many cases. However, it does not work when frames displayed
within the <iframe> tag refer to top-level JavaScript objects. If frames in the page that you are trying
to integrate refer to top-level JavaScript objects, then you might use the Web Control disposition
type instead, if it is applicable.

Contextual Navigation Between Siebel Business Applications and Oracle Business
Intelligence Pages

Configuring Siebel Open UI Siebel 2018

Configuring Siebel Open UI to Interact with Other Applications ■ Displaying Data from
External Applications in Siebel Open UI

318

When an Oracle® Business Intelligence (Oracle BI) page is integrated with a Siebel application
through the portal framework and the portal content is dependent on the Siebel record, any change
or update of the record in the Siebel application must also be reflected in the portal content. For
example, for an Oracle BI applet embedded in a view with the Account List applet, its content
dynamically changes at the same time that the content is changed within the Account List applet. To
enable this behavior, you must do the following:

■ Define a symbolic URL. For more information, see “Defining Symbolic URL Arguments” on
page 327.

■ Set parameters for the symbolic URL. For more information, see “Portal Agent Command
Reference” on page 336.

Form Redirect Disposition Type

In the Form Redirect scenario, the Siebel Web client submits a request to the Siebel Server. The
Siebel Server creates a form with the necessary authentication information in it, and then sends the
form back to the browser. The browser loads the form and then submits it to the external host for
processing. The external host sends back the results, which the browser displays in a new window.

The Form Redirect disposition type is usually displayed in a new window, rather than inline with other
Siebel applets.

The Form Redirect disposition type is not commonly used with Siebel Business Applications.

Portal Agent Restrictions

Portal Agents are meant to bring existing applications and content into the Siebel user interface
without requiring additional modifications of the external application. However, this is not always
possible due to the way HTML and Web browsers are designed. For example:

■ The use of frames by an external application might not be amenable to inline aggregation
methods.

■ Specific frame references in the returned content referring to global frames (_NEW, _TOP,
.parent()) might not be amenable to inline aggregation methods.

■ Reliance on JavaScript functions defined in (assumed) external frames might not be amenable to
inline aggregation methods.

■ URLs that are created dynamically by JavaScript might not be amenable to any fixup techniques,
because the URLs would not be easily parsed on the HTML content.

For these reasons, an Inline disposition type does not work often. However, if you control both the
Siebel application instance and the external application, and can resolve some of these issues, then
the Inline disposition type might work correctly. For more information about the Inline disposition
type, see “Inline Disposition Type” on page 317.

If you do not have control over the external application, the IFrame disposition type is the method
most likely to provide satisfactory results. It works with about 80% of the form-based application
sites tested. For more information about the IFrame disposition type, see “IFrame Disposition Type”
on page 317.

Disposition Types Summary

Configuring Siebel Open UI to Interact with Other Applications ■ Displaying Data from
External Applications in Siebel Open UI

Configuring Siebel Open UI Siebel 2018 319

Table 15 summarizes the characteristics of each disposition type.

Process of Creating Portal Agents
To create a Portal Agent, perform the following tasks:

1 “Determining the Login Requirements” on page 319.

2 “Configuring Business Components to Handle External Data” on page 322.

3 Complete one of the following:

■ “Displaying External Content Within an Applet” on page 322.

■ “Displaying External Content Outside of an Applet” on page 323.

4 “Defining Web Applications” on page 324.

5 “Defining Symbolic URLs” on page 325.

6 “Defining Symbolic URL Arguments” on page 327.

Determining the Login Requirements
Before you configure Portal Agents, you must understand what information is required by the
external application to authenticate users. Typically, this information is gathered using a form page,
also called a login page, and then sent to the external application. You must determine exactly what
information the form gathers from the user and sends to the external application, including field
names and values.

Table 15. Disposition Types Summary

Disposition
Type Benefits Limitations

Inline ■ Inline integration with the
Siebel user interface.

■ Session management, including
managing session cookies and
automatic re-login after time
out.

■ Opens an external URL in a new
popup window.

■ Only works in very few cases.

■ Does not work with complex
JavaScript.

■ Does not work if there are reference to
frames.

■ Supports the GET method only.

■ URL limited to 2048 characters.

IFrame ■ Inline integration with the
Siebel user interface. Supports
complex JavaScript.

■ Supports references to frames.

■ Session Keep Alive supported.

■ Works for most cases.

■ No session management.

■ Does not support frames that
reference top-level JavaScript objects.

■ Does not open an external URL in a
popup window.

Configuring Siebel Open UI Siebel 2018

Configuring Siebel Open UI to Interact with Other Applications ■ Displaying Data from
External Applications in Siebel Open UI

320

In cases where you have specific knowledge about how an external application is implemented and
can consult with authoritative sources regarding how the application authenticates users,
determining the required input fields and values is relatively simple.

In cases where you do not have specific knowledge about how an external application is
implemented, you must attempt to understand its authentication method by examining the
application’s login page. The steps describe an approach that you can use to reverse-engineer a login
page and provide related Portal Agent configuration tips.

NOTE: It is not always possible to reverse-engineer a login page. For example, JavaScript might
process login field values prior to delivering the POST back to the application server, session values
might be encoded in the form itself, or session values might be stored in the browser's session
cookies.

This task is a step in “Process of Creating Portal Agents” on page 319.

To reverse-engineer a login page
1 Navigate to the external application’s login page and determine whether the external application

uses authentication.

For more information, see “Defining Symbolic URLs” on page 325.

2 If the external application uses form-based authentication, then view the login page’s HTML
using your browser’s view source command.

3 Identify the form on the login page that asks for user credentials (the form might ask for other
information as well) and identify the input fields in this form used to authenticate users.

It is usually best to strip out all non-form lines of HTML and to isolate the <input> tags. That is,
remove lines previous to <form ...> and after </form> and remove lines that are not part of the
<input> tags.

4 Determine whether the method attribute of the <form> tag is POST.

If it is POST, then you must define the PostRequest command as an argument of the symbolic
URL. For more information, see “Defining Symbolic URL Arguments” on page 327 and “PostRequest
Command” on page 339.

If it is GET, then you do not have to define a symbolic URL command, because the default method
of symbolic URLs is GET.

5 Determine the target of the form’s action attribute, which is usually specified as action="some
string".

If the target of the action attribute is an absolute URL, one that begins with http or a forward
slash (/), then use this URL as the base of the Portal Agent.

If it is a relative address, then you also have to determine where the root of the URL is defined.
It could be defined relative to the URL of the login page itself (most common), in a <codebase>
tag (rare) or in JavaScript (hard to determine).

The target URL is defined using the Host Administration View and the Symbolic URL
Administration view. For more information, see “Defining the External Host” on page 324 and
“Defining Symbolic URLs” on page 325.

Configuring Siebel Open UI to Interact with Other Applications ■ Displaying Data from
External Applications in Siebel Open UI

Configuring Siebel Open UI Siebel 2018 321

6 Determine any argument values defined in the target URL.

These are the characters after the ? character. Usually, these are simple field-value constants.
The exception is when a field or a value is a session identifier that is dynamically assigned by the
external application server and is only valid for a period before it times out. In this case, it might
not be possible to configure a Portal Agent. Define any argument values contained in the target
URL as symbolic URL arguments. For more information, see “Defining Symbolic URL Arguments”
on page 327.

7 Identify each of the form’s <input> tags and determine which ones are necessary to send to the
external application for authentication.

Often there are <input> tags in the form with a type attribute of hidden that are not evident
when interacting with the application. Determining whether hidden fields are optional or required
is often process of trial and error.

Some <input> tags might not have values identified. Either these fields are awaiting input to be
entered by the user (for example, login name or password) or they are hidden fields with no
values.

■ If the input field is specific to the user (it asks for the user’s login name and password), then
you can use UserLoginId Command and UserLoginPassword Command commands to instruct
the Portal Agent to retrieve the user’s credentials from the user’s My Logins view. For more
information, see “Defining End-User Login Credentials” on page 331.

■ If there are hidden fields with no values, then, when you enter them as symbolic URL
arguments, make sure that the Required Argument column is not checked. If it is checked,
and the input field has no value, then the Portal Agent does not send this request to the
target application server, because there is no value to put in its place.

You define the input fields and values as symbolic URL arguments. For more information, see
“Defining Symbolic URL Arguments” on page 327.

NOTE: The Mozilla browser includes a page info command (^I) that analyzes forms on a page and
displays the method, input fields, and so on.

Portal Agent Configuration
Using Portal Agents to integrate external content into the Siebel user interface requires some simple
configuration in Siebel Tools. You must configure a field on the business component to handle
external data and then configure either an applet or a Web page item to display the content in the
user interface. An applet displays external content inside the applet container on a view. A Web page
item displays external content outside of an applet, such as in the banner frame for example.

NOTE: This topic describes the configuration tasks that are unique to integrating external content
with the Siebel user interface. It does not describe standard configuration tasks that you might be
required to perform. For example, after you configure an applet to display external content, you
might have to associate that applet with a view, add the view to a responsibility, and so on. These
additional tasks are standard procedures for configuring Siebel Business Applications and are outside
the scope of this book. For more information about configuring Siebel Business Applications, see
Configuring Siebel Business Applications.

Configuring Siebel Open UI Siebel 2018

Configuring Siebel Open UI to Interact with Other Applications ■ Displaying Data from
External Applications in Siebel Open UI

322

This topic contains the following information:

■ “Configuring Business Components to Handle External Data” on page 322

■ “Displaying External Content Within an Applet” on page 322

■ “Displaying External Content Outside of an Applet” on page 323

Configuring Business Components to Handle External Data
To configure business components to handle external data using a symbolic URL, you must create a
new calculated field on the business component. Rather than representing structured content, such
as records in a database, this field represents the HTML content sent from an external host.

NOTE: Although a symbolic URL displays data that is not stored in the database, the business
component must have at least one record stored in an underlying table so that it is instantiated at
run time.

This task is a step in “Process of Creating Portal Agents” on page 319.

To configure a business component to handle external data using a symbolic URL
1 Create a new field on the business component.

2 Set the field’s Calculated property to TRUE.

3 Set the field’s Type property to DTYPE_TEXT.

4 In the Calculated Value field, enter the name of the symbolic URL (enclosed in double quotes)
that you want to use to submit the HTTP request.

The name of the symbolic URL in the Calculated Value field must be enclosed in double quotes
so that it evaluates as a constant. See the business component named AnalyticsSSO in the Siebel
Repository for an example of fields configured this way.

Displaying External Content Within an Applet
After you have created the calculated field on the business component, you expose it in the user
interface. You display the external content using a control in a form applet or list applet.

NOTE: You can also expose external content outside an applet, such as in the banner area. See
“Displaying External Content Outside of an Applet” on page 323.

This task is a step in “Process of Creating Portal Agents” on page 319.

To display external content within an applet
1 Create an applet that you want to use to display the external content.

The applet must be based on the business component that you configured in “Configuring
Business Components to Handle External Data” on page 322.

2 Add a new control or list column to the applet.

Configuring Siebel Open UI to Interact with Other Applications ■ Displaying Data from
External Applications in Siebel Open UI

Configuring Siebel Open UI Siebel 2018 323

3 Associate the control or list column with a calculated field on the business component that is
configured to represent the external data.

4 Set the control or list column’s Field Retrieval Type property to Symbolic URL.

5 Set the control or list column’s HTML Type property to Field.

Displaying External Content Outside of an Applet
After you have created the calculated field on the business component, you expose it in the user
interface. You can display the external content outside of an applet using Web Page Items.

NOTE: You can also expose external content inside an applet, by using an Applet Control or List
Column. For more information, see “Displaying External Content Within an Applet” on page 322.

This task is a step in “Process of Creating Portal Agents” on page 319.

To display content outside of an applet
1 Start Siebel Tools.

2 Go to the Web Page object type and select the Web page on which to display external data.

3 Create a new Web Page Item or use an existing one.

4 Set the Type property of the Web Page Item to Field.

5 Create the following two Web Page Item Parameters:

NOTE: The symbolic URL is mapped to the calculated field defined for the business component.

Portal Agent Administration
You administer Portal Agents through several views located under the Administration - Integration
screen in the Siebel Web client. As described in the following topics, these views allow you to define
how to handle links, define the external host, and define the HTTP request that is sent to the external
host.

This topic contains the following information:

■ “Defining the External Host” on page 324

■ “Defining Web Applications” on page 324

■ “Defining Symbolic URLs” on page 325

■ “Defining Symbolic URL Arguments” on page 327

■ “Configuring Multiple Symbolic URLs and Hosts for Alternative Execution Locations” on page 329

Name Value

FieldRetrievalType Symbolic URL

SymbolicURL [name of symbolic URL]

Configuring Siebel Open UI Siebel 2018

Configuring Siebel Open UI to Interact with Other Applications ■ Displaying Data from
External Applications in Siebel Open UI

324

■ “Defining Content Fixup” on page 330

Defining the External Host
You define the external data hosts in the Host Administration view. This view allows you to do the
following:

■ Maintain external host names in a single place.

■ Define how to handle (fix) links after external HTML content is rendered.

To define a data host
1 Navigate to the Administration - Integration screen, and then WI Symbolic URL List.

2 From the drop-down menu, select Host Administration.

3 Enter a new record and define the necessary fields.

Some of the fields are described in the following table:

Defining Web Applications
Web applications allow multiple symbolic URLs to send requests to the same Web application and
share the same session. This is useful if you have two different applet controls that use symbolic
URLs to submit requests to the same Web application. You can associate these symbolic URLs to a
single Web application and specify whether they share the same session.

There might be cases in which you do not want requests to share the same session. For example,
you might not want to share a session when a session cookie contains more information than the
session ID, as this could result in unexpected behavior. When you define a Web application, you
specify whether it shares sessions.

Web applications also allow you to define the Time Out value for the session time out feature. The
Session Time Out feature is only applicable to symbolic URLs with a disposition type of Inline.

This task is a step in “Process of Creating Portal Agents” on page 319.

To define a Web application
1 Navigate to the Administration - Integration screen, and then WI Symbolic URL List.

2 From the drop-down menu, select Web Application Administration.

Field Comments

Name Name of the external host.

Virtual Name User-defined name for the host.

Authentication
Type

Leave this value blank. For more information, see “Defining Symbolic URLs”
on page 325.

Configuring Siebel Open UI to Interact with Other Applications ■ Displaying Data from
External Applications in Siebel Open UI

Configuring Siebel Open UI Siebel 2018 325

3 Enter a record and complete the fields.

Some of the fields are described in the following table:

Defining Symbolic URLs
You use the Symbolic URL Administration view to specify how to construct the HTTP request to the
external application and to define any arguments and values to be sent as part of the request.

This task is a step in “Process of Creating Portal Agents” on page 319.

To define a symbolic URL
1 Navigate to the Administration - Integration screen, and then WI Symbolic URL List.

2 From the drop-down menu, select Symbolic URL Administration.

3 In the Symbolic URL Administration list view, enter a new record.

Some of the fields are defined in the following table:

Field Description

Shared Indicates whether requests generated by symbolic URLs associated with
this Web application share the same session.

Time Out Defines the time out parameter for the session management feature, which
is only applicable to symbolic URLs with a disposition type of Inline.

Field Description

URL Use the URL field to enter a URL for the external application. A best practice is
to substitute the host’s Virtual Name, the one that you defined in the Host
Administration view, for the host’s actual name. Doing this makes
administering host names easier, because you might have many symbolic URLs
pointing to one host. If the host name changes, then you only need to change
it in the Host Administration applet rather than having to change it in several
symbolic URL definitions.

For example, https://Virtual_Host/path...

NOTE: Use the Secure Sockets Layer protocol (SSL) with symbolic URLs to
ensure that communication is secure. For more information about using SSL,
see Siebel Security Guide.

For applications that use form-base authentication, the URL is identified by the
action attribute of the <form> tag. For more information, see “Determining the
Login Requirements” on page 319.

Host Name The Virtual Name of the host defined in the Host Administration view.

Configuring Siebel Open UI Siebel 2018

Configuring Siebel Open UI to Interact with Other Applications ■ Displaying Data from
External Applications in Siebel Open UI

326

Fixup Name Name of the fixup type defined in the Fixup Administration view. The fixup type
defines how links embedded in the external HTML content are rendered. For
example:

■ Default. Use this fixup type with the IFrame disposition type. Link fixup is
inside the view. This fixup does not affect any of the links. The links
(relative or absolute) remain as they are with the content being passed
back in its original form.

■ InsideApplet. This fixup converts all of the relative links to absolute links
and any links using a host defined in the Host Administration view are
proxied in order to maintain SWE context.

■ OutsideApplication. This fixup converts all of the relative links to
absolute links using the host and path of the parent URL. No links are
proxied.

Multivalue
Treatment

Determines how arguments are handled. Possible values are:

■ Comma Separated. Instructs SWE to insert a comma between the values
defined in the symbolic URL arguments when appending the arguments to
the URL. It inserts a comma after the value in the first Argument Value field
and the first value in the second Argument Value field. The second
Argument Value field is simply a text string entered by the user.

■ Separate Arguments. Instructs SWE to enter separate arguments for
each value defined in the two Argument Value fields.

■ Use First Record Only. Uses the first record in the current record set.

Field Description

Configuring Siebel Open UI to Interact with Other Applications ■ Displaying Data from
External Applications in Siebel Open UI

Configuring Siebel Open UI Siebel 2018 327

Defining Symbolic URL Arguments
Symbolic URL Arguments allow you to configure Portal Agents in several ways. You use symbolic URL
arguments for two purposes, to define data to be sent to an external host and to submit commands
to SWE that affect the behavior of Portal Agents.

When defining arguments that send data, such as authentication requirements, the Argument Name
and Argument Value are appended to the URL as an attribute-value pair. You can define symbolic URL
arguments that send data as constants or that dynamically retrieve data from the Siebel database.
Symbolic URLs allow you to retrieve data from the user’s instantiated Siebel business component,
such as Service Request or Account, or retrieve data from the Siebel Personalization business
component, such as the user’s ZIP Code or Language.

For information about how to determine required data for applications that use form-based
authentication, see “Determining the Login Requirements” on page 319.

Symbolic URL arguments also allow you to implement commands which you use to define the
behavior of Portal Agents. For usage descriptions of available commands, see “Portal Agent Command
Reference” on page 336.

SSO
Disposition

The value selected in this field determines how the HTTP request is constructed
and sent and how the external content is rendered in the user interface.
Possible values are:

■ Inline. Proxies the request through the Siebel Server and displays content
inline with other applets on a view.

■ IFrame. Uses the <iframe> tag to display content inline with other applets
on a view.

■ Web Control. Uses an ActiveX control to display content inline with other
applets on a view. Browsers displaying symbolic URLs of type Web Control
must be set to handle ActiveX controls. For more information about
browser security settings, see Siebel Security Guide.

■ Form Redirect. SWE constructs a form which it sends back to the browser,
which the browser then sends to the external host. The content received is
displayed in a new window.

■ Server Redirect. SWE sends the browser a 302 Response with the value
of the external host’s URL in the header. The browser is redirected to the
external host. The content received is displayed in a new window. Note that
for Server Redirect there is a required Symbolic URL argument. For more
information, see “Portal Agent Restrictions” on page 318.

For detailed descriptions of each disposition type, see “About Portal Agents” on
page 315.

Web
Application
Name

Associates a Web application with this symbolic URL. For more information
about Web applications, see “Defining Web Applications” on page 324.

Field Description

Configuring Siebel Open UI Siebel 2018

Configuring Siebel Open UI to Interact with Other Applications ■ Displaying Data from
External Applications in Siebel Open UI

328

This task is a step in “Process of Creating Portal Agents” on page 319.

To define symbolic URL arguments
1 Navigate to the Administration - Integration screen, and then WI Symbolic URL List.

2 From the drop-down menu, select Symbolic URL Administration.

3 In the Symbolic URL Administration list view, select the symbolic URL that you want to configure.

4 In the Symbolic URL Arguments form, enter the arguments that need to be sent to the external
host.

Some of the fields are defined in the following table:

Field Description

Name Name of the argument. For arguments of type Constant, Field, and
Personalization Attribute, this field defines the exact field name expected by the
external application. It is the first part of an attribute-value pair appended to the
URL.

For argument types of commands, the Name can usually be anything. The only
exception to this is for the EncodeURL and PreloadURL commands. For more
information, see “Portal Agent Command Reference” on page 336.

Required
Argument

When this field is checked (default) the argument must have a value. If you are
configuring an argument that does not have a value, then uncheck the Required
field. If an argument has no value and the Required field is checked, then the
request is not sent because there is no value to append to the URL.

Argument
Type

The Argument Type determines the source of the data to be send along in the
HTTP request. Possible values are:

■ Constant. Sends the value defined in the Argument Value field in the
request.

■ Field. Sends the value of a single-value or multi-value field from the current
Siebel business component.

■ Profile Attribute. Sends the value of a field from the Siebel Personalization
business component.

■ URL Argument. Data comes from the named argument of the current
request.

■ Language Value. The user’s current language setting; for example, ENU.

■ Command. Implements commands that allow you to affect the behavior of
the symbolic URL. For a complete list of commands, see “Portal Agent
Command Reference” on page 336.

Configuring Siebel Open UI to Interact with Other Applications ■ Displaying Data from
External Applications in Siebel Open UI

Configuring Siebel Open UI Siebel 2018 329

Configuring Multiple Symbolic URLs and Hosts for Alternative Execution Locations
You can configure multiple symbolic URLs and symbolic URL hosts, to execute applications in
alternative locations (for example, for testing or demonstration purposes). This topic contains the
following information:

■ “Configuring Alternative Symbolic URLs” on page 329

■ “Configuring Alternative Symbolic URL Hosts” on page 330

NOTE: When you use an alternative symbolic URL host, all symbolic URLs in the application that are
configured to use that host will use the alternative host name. In contrast, when you use alternative
symbolic URLs, each symbolic URL used in the application must have its own alternative symbolic
URL. Therefore, you can reduce the effort required to execute the application in an alternative
location by using an alternative symbolic URL host rather than a symbolic URL.

Configuring Alternative Symbolic URLs

To use an alternative symbolic URL, define the additional symbolic URL at the Symbolic URL
Administration view, and specify the following parameter in the [DataSources] section of the
application’s configuration file:

Argument
Value

The value of the argument varies depending on the Argument Type. Descriptions
of possible values for each argument type are described here.

If the Argument Type is one of the following:

■ Constant. The Argument Value is the second part of the attribute-value pair
that is appended to the URL.

■ Field. The Argument Value defines a field name from the current business
component. The data from this field is the second part of an attribute-value
pair that is appended to the URL.

■ Profile Attribute. The Argument Value defines a field name on the Siebel
Personalization business component. The data from this field is the second
part of an attribute-value pair that is appended to the URL

■ URL Argument. The Argument Value defines the name of the argument on
the incoming SWE request.

■ Language Value. The Argument Value is left null.

■ Command. The Argument Value typically defines the name of the command.
For more information, see “Portal Agent Command Reference” on page 336.

Append as
Argument

When this field is checked (default), the value is added as a URL argument on
the outgoing request. If this field is not checked, then the value is substituted in
the text of the outgoing URL.

Sequence Determines the sequence of the arguments. In some cases the target host
requires arguments in a particular order.

Field Description

Configuring Siebel Open UI Siebel 2018

Configuring Siebel Open UI to Interact with Other Applications ■ Displaying Data from
External Applications in Siebel Open UI

330

SymbolicURLSuffix. The value of this parameter is appended to the end of the name of the default
symbolic URL to specify the name of the alternative symbolic URL.

For example, if the parameter SymbolicURLSuffix is set to _MyDemo in the application’s
configuration file, and the default symbolic URL name is AccountNews, then the symbolic URL that
is used when the application is executed is AccountNews_MyDemo. The URL value associated with
the AccountNews_MyDemo symbolic URL in the Symbolic URL Administration page is used.

NOTE: When you define the alternative symbolic URL, its name must match the name of the existing
symbolic URL with the value of the SymbolicURLSuffix parameter appended to it.

For more information about defining symbolic URLs, see “Defining Symbolic URLs” on page 325.

Configuring Alternative Symbolic URL Hosts

To use an alternative symbolic URL host, define the additional symbolic URL host at the Host
Administration view, and specify the following parameter in the [DataSources] section of the
application’s configuration file:

SymbolicURLHostSuffix. This value is appended to the end of the name of the existing symbolic
URL host to specify the name of the alternative symbolic URL host.

For example, if the parameter SymbolicURLHostSuffix is set to _demo in the application’s
configuration file, and the existing host name is ABC, then the new host name is ABC_demo. The
host name value associated with ABC_demo in the Host Administration page is used.

NOTE: When you define the alternative symbolic URL host, its name must match the name of the
existing symbolic URL host with the value of the SymbolicURLHostSuffix parameter appended to it.

For more information about defining hosts, see “Defining the External Host” on page 324.

Defining Content Fixup
The Fixup Administration view allows you to define how links embedded within external HTML content
are rendered in the Siebel user interface. The fixup types that you define here will be associated with
symbolic URLs.

To define a fixup type
1 Navigate to the Administration - Integration screen, and then WI Symbolic URL List.

2 From the drop-down menu, select Fixup Administration.

Configuring Siebel Open UI to Interact with Other Applications ■ Displaying Data from
External Applications in Siebel Open UI

Configuring Siebel Open UI Siebel 2018 331

3 Enter a new record and define the fields.

Some of the fields are described in the following table:

NOTE: Fixup is required for all links.

Defining End-User Login Credentials
The Portal Framework provides a mechanism to store user login credentials for external Web
applications. The SSO Systems Administration view allows you to specify an external application and
then enter login credentials on behalf of users. The My Logins view, located in the User Preferences
screen, is used by end users to maintain their own credentials.

To specify an external Web application and define login credentials
1 Navigate to the Administration - Integration screen, and then SSO Systems Admin List.

Field Comments

Link Context Select one of the following values:

■ Do Nothing. This fixup does not affect any of the links. The links (relative
or absolute) remain as they are with the content being passed back in its
original form.

■ Outside Application. This fixup converts all of the relative links to
absolute links using the host and path of the parent URL. No links are
proxied.

■ Inside Application. This fixup converts all of the relative links to
absolute links and any links using a host defined in the Host
Administration view are proxied in order to maintain SWE context. After
the user clicks a link, this fixup type renders HTML in the view, using the
entire view for display.

■ Inside Applet. This fixup handles links the same way as the Inside
Application fixup type. However, in this case, when a user clicks a link, it
renders HTML within an applet. The other applets remain present on the
view.

Context View
Name

Name of the view that displays the link. This is optional.

Link Target Specifies the name of a specific target frame of the link. For example, _blank
for a new browser window or AnyName to open a window of that name. This
option is not often used.

Configuring Siebel Open UI Siebel 2018

Configuring Siebel Open UI to Interact with Other Applications ■ Displaying Data from
External Applications in Siebel Open UI

332

2 In the SSO Systems list, enter a new record and define the following:

3 If you are defining login credentials on behalf of end users, then, in the SSO System Users list,
enter end-user login names and passwords.

Example Portal Agent
This topic provides an example of using a symbolic URL to integrate content from an external site.
The high-level steps to do this are:

1 “Review the Login Form” on page 332.

2 “Define the External Host” on page 333.

3 “Define the Symbolic URL” on page 334.

4 “Define Symbolic URL Arguments” on page 335.

5 “Define User Login Credentials” on page 335.

6 “Testing the Integration” on page 335.

Each of these steps is described in the topics that follow. This example uses www.example.com,
which does not have the login page and other elements described here; substitute your actual site.

NOTE: This example assumes that the underlying objects are already configured to support the
symbolic URL. For more information, see “Portal Agent Configuration” on page 321.

Review the Login Form
By reviewing the login page at www.example.com, you can determine the target URL of the Action
attribute and the required arguments that are being passed to the Web application. Assume that
www.example.com has a login page that contains the following <form> and <input> tags:

<form action="/index.shtm" method="POST" name="frmPassLogin" onsubmit="return
logincheck();">

<input TYPE="TEXT" NAME="SearchString" SIZE="18" MAXLENGTH="100" VALUE="">

<input type="hidden" value="All" name="sc">

<input type="hidden" value="ON" name="FreeText">

Field Description

System Name Name of the external Web application.

Symbolic URL Name Select the name of the symbolic URL that interacts with the external
Web application.

The symbolic URL must be configured with the UserLoginId Command
and UserLoginPassword Command commands as arguments. These
arguments instruct the symbolic URL to pass the stored login
credentials when authenticating with an external Web application.

Description Enter a description of the Web application.

Configuring Siebel Open UI to Interact with Other Applications ■ Displaying Data from
External Applications in Siebel Open UI

Configuring Siebel Open UI Siebel 2018 333

<input type="image" src="/images/nav/button/bttn_form_arrow.gif" NAME="Action"
border="0"/ alt="Submit Search"></td>

<input type="text" name="username" size="18">

<input type="password" name="password" size="18">

<input type="image" src="/images/nav/button/bttn_form_arrow.gif" border="0"
name='login' />

<input type="checkbox" name="remember" checked/> <span
class="bdDkGray">Remember my Login
</span

</form>

From the action attribute of the <form> tag, you can determine that the target URL is relative to the
root of the login page’s URL. Therefore, the target URL is:

www.example.com/index.shtm

You can also determine that the method attribute of the <form> tag is POST:

method="POST"

After reviewing the <input> tags, you can determine that the required arguments are:

username

password

NOTE: Notice that not all input fields are necessary for login.

For more information about reviewing login forms, see “Determining the Login Requirements” on
page 319.

Define the External Host
The external host is simply the address of the login page. In this example, it is www.example.com.
Be sure to provide a meaningful name in the Virtual Host Name field. This value is used instead of
the actual host name when you define the symbolic URL. This makes administration easier if the host
name changes. Also notice that there is no value for the Authentication Type.

Configuring Siebel Open UI Siebel 2018

Configuring Siebel Open UI to Interact with Other Applications ■ Displaying Data from
External Applications in Siebel Open UI

334

Figure 39 shows the external host defined for this example.

For more information, see “Defining the External Host” on page 324.

Define the Symbolic URL
After you define the external host, you can define the symbolic URL. Notice that the URL defined here
uses the Virtual Name of the host, not the actual name. Also notice that, when you select the external
host from the Host Name field, it is populated with the actual host name. When SWE constructs the
URL, it substitutes the actual Host Name for the Virtual Name in the URL. In this example, the fixup
type is Default, because the page is displayed in the browser using the <iframe> tag and therefore,
it is recommended that links not be fixed up in any way.

Figure 40 shows the symbolic URL defined for this example.

For more information about defining symbolic URLs, see “Defining Symbolic URLs” on page 325.

Figure 39. External Host Administration

Figure 40. Symbolic URL

Configuring Siebel Open UI to Interact with Other Applications ■ Displaying Data from
External Applications in Siebel Open UI

Configuring Siebel Open UI Siebel 2018 335

Define Symbolic URL Arguments
You use symbolic URL Arguments to define the information that you want to append as arguments
to the URL. You also use symbolic URL arguments to define commands that you want to execute. In
this case, the following arguments are required:

■ PostRequest. This command instructs SWE to submit the request using a POST method rather
than GET, which is the default. In this case, you know that POST is required because the method
attribute of the <form> tag specifies POST.

■ UserLoginPassword. This command instructs SWE to retrieve the password stored for the user
and pass it to the external application. The name of this argument is the name of the input field
expected by the external application. In this case, it is password.

■ UserLoginID. This command instructs SWE to retrieve the stored login name for the user and
pass it to the external application. The name of this argument is the name of the input field
expected by the external application. In this case, it is username.

Figure 41 shows the symbolic URL arguments defined for this example.

For more information about symbolic URL arguments, see “Defining Symbolic URL Arguments” on
page 327. For more information about symbolic URL commands, see “Portal Agent Command
Reference” on page 336.

Define User Login Credentials
Finally you must define login credentials for a user. The values defined here are appended as
arguments to the URL constructed by SWE. In this case, the following user name and password are
defined:

■ The user name is Joe_Smith@example.com.

■ The password is abracadabra.

Testing the Integration
After completing the previous steps, you can test the integration.

Figure 41. Symbolic URL Arguments

Configuring Siebel Open UI Siebel 2018

Configuring Siebel Open UI to Interact with Other Applications ■ Displaying Data from
External Applications in Siebel Open UI

336

To test the integration
1 Log out of the application.

2 Log back in as the test user.

3 Navigate to the applet or Web page item that is associated with the symbolic URL.

Content from the external host, in this case example.com, is displayed in the Siebel user
interface.

Reviewing the SWE Log File
Reviewing the SWE log file can help you to debug errors in your Portal Agent configuration.

■ The location of the log file is SIEBSRVR_ROOT\log.

■ The name of the log files are swelog_pid.txt and sweusage_pid.txt, where pid is the process ID
of the corresponding Siebel process.

For more information about log files and about configuring log levels, see Siebel System Monitoring
and Diagnostics Guide.

Portal Agent Command Reference
Portal Agent commands allow you to carry out actions such as use a set of stored credentials for
authentication or define additional attributes for the <iframe> tag. These commands are entered as
symbolic URL arguments. For more information, see “Defining Symbolic URLs” on page 325.

The following commands are described in this topic:

■ “EncodeURL Command” on page 337

■ “FreePopup Command” on page 337

■ “IFrame Command” on page 337

■ “IsRecordSensitive Command” on page 338

■ “NoCache Command” on page 338

■ “NoFormFixup Command” on page 339

■ “PreLoadURL Command” on page 339

■ “PostRequest Command” on page 339

■ “UserLoginId Command” on page 339

■ “UserLoginPassword Command” on page 340

■ “UseSiebelLoginId Command” on page 340

■ “UseSiebelLoginPassword Command” on page 340

Configuring Siebel Open UI to Interact with Other Applications ■ Displaying Data from
External Applications in Siebel Open UI

Configuring Siebel Open UI Siebel 2018 337

EncodeURL Command
Use the EncodeURL command to specify whether to encode arguments appended to the symbolic
URL. By default, the URL is encoded. However, some servers do not recognize standard encoding, in
which case you can use this command to not encode the URL.

Define the fields in the Symbolic Arguments applet. See Table 16.

FreePopup Command
Use the FreePopup command to show portal contents in a popup window.

The symbolic URL contains the FreePopup command, it notifies the client that the popup is a free one
and the client displays the contents in the popup window.

FreePopup is supported for FormRedirect, the only disposition type available for opening a portlet in
a popup.

To start the external application as a full browser window, use the values in Table 17.

To start the external application as a modal window, use the values in Table 18.

IFrame Command
Use the IFrame command to define additional HTML attributes for the <iframe> tag.

Table 16. Symbolic URL Arguments

Field Value

Name EncodeURL

Argument Value TRUE or FALSE

Table 17. Symbolic URL Arguments

Name
Required
Argument

Argument
Type

Argument
Value Sequence

Append as
Argument

FreePopup True Command True 1 True

FullWindow True Command True 2 True

Table 18. Symbolic URL Arguments

Name
Required
Argument

Argument
Type

Argument
Value Sequence

Append as
Argument

PopupSize True Command 750x500 1 True

FreePopup True Command True 2 True

Configuring Siebel Open UI Siebel 2018

Configuring Siebel Open UI to Interact with Other Applications ■ Displaying Data from
External Applications in Siebel Open UI

338

Define the fields in the Symbolic URL Arguments applet. See Table 19.

Disposition Types

Use the IFrame command with the IFrame disposition type.

IsRecordSensitive Command
Use the IsRecordSensitive command to turn on or off the record-sensitive feature. Set the value to
TRUE to ensure that a child applet with a symbolic URL is refreshed on the parent record, for
instance, when you embed an Analytics report as a child applet with a requirement that it display
contextual information.

This command is turned off by default. Set this argument value to TRUE in the Symbolic URL
Arguments configuration.

Define the fields in the Symbolic URL Arguments applet. See Table 20.

NoCache Command
Use the NoCache command to instruct SWE not to cache Inline responses on the server. This
command is only valid for the Inline disposition type.

Define the fields in the Symbolic URL Arguments applet. See Table 21.

Table 19. Symbolic URL Arguments

Field Value Example

Name Any Name None

Argument Value IFrame [attribute]=[value] IFrame Height=100 Width=500

Table 20. Symbolic URL Arguments

Field Value

Name IsRecordSensitive

Argument Value TRUE

Table 21. Symbolic URL Arguments

Field Value

Name Any name

Argument Value NoCache

Configuring Siebel Open UI to Interact with Other Applications ■ Displaying Data from
External Applications in Siebel Open UI

Configuring Siebel Open UI Siebel 2018 339

NoFormFixup Command
Use the NoFormFixup command to instruct SWE not to fix up a form by putting proxy SWE arguments
into links that appear on the page.

Define the fields in the Symbolic URL Arguments applet. See Table 22.

PreLoadURL Command
Use this command to specify a preloaded URL. Use this command when the external application
gathers information from a preloaded cookie on the client machine. Use this command with
disposition types of IFrame and Web Control.

Define the fields in the Symbolic URL Arguments applet. See Table 23.

PostRequest Command
Use PostRequest to configure the Portal Agent to use the POST method instead of the GET method,
which is the default. Use this command when the method of the action attribute is POST. This method
avoids displaying user information on a Web page or browser status bar. Use this command with
disposition types of IFrame and Web Control only.

Define the fields in the Symbolic URL Arguments applet. See Table 24.

UserLoginId Command
Use the UserLoginId command to send the stored user login ID for a particular Web application. The
command gets the user’s Login ID from the My Login Credential business component.

Table 22. Symbolic URL Arguments

Field Value

Name Any name

Argument Value NoFormFixup

Table 23. Symbolic URL Arguments

Field Value

Name PreLoadURL

Argument Value [URL]

Table 24. Symbolic URL Arguments

Field Value

Name Any Name

Argument Value PostRequest

Configuring Siebel Open UI Siebel 2018

Configuring Siebel Open UI to Interact with Other Applications ■ Displaying Data from
External Applications in Siebel Open UI

340

For more information about how user login IDs are entered into this business component, see
“Defining End-User Login Credentials” on page 331.

Define the fields in the Symbolic URL Arguments applet. See Table 25.

UserLoginPassword Command
Use the UserLoginPassword command to send the stored user password for a particular Web
application. The command gets the user’s password from the My Login Credential business
component.

For more information about how user passwords are entered into this business component, see
“Defining End-User Login Credentials” on page 331.

Define the fields in the Symbolic URL Arguments applet. See Table 26.

UseSiebelLoginId Command
Use the UseSiebelLoginId command to retrieve the user’s Siebel login ID from the stored set of
credentials.

Define the fields in the Symbolic URL Arguments applet. See Table 27.

UseSiebelLoginPassword Command
Use the UseSiebelLoginPassword command to retrieve the user’s Siebel password from the stored
set of credentials.

Table 25. Symbolic URL Arguments

Field Value

Name [input field name]

Argument Value UserLoginId

Table 26. Symbolic URL Arguments

Field Value

Name [input field name]

Argument Value UserLoginPassword

Table 27. Symbolic URL Arguments

Field Value

Name [input field name]

Argument Value UseSiebelLoginId

Configuring Siebel Open UI to Interact with Other Applications ■ Displaying Data from
External Applications in Siebel Open UI

Configuring Siebel Open UI Siebel 2018 341

Define the fields in the Symbolic URL Arguments applet. See Table 28.

Displaying Data from External Applications in Siebel
Views
The example in this topic describes how to configure Siebel Open UI to get connection details from
LinkedIn, find matching mutual contacts in Affiliation views, and then display the matching records
in a Siebel view.

To display data from external applications in Siebel views
1 Set up the data:

a Log in to LinkedIn, and then identify two connections that include profile pictures and that allow
you to reference them in your configuration.

b Write down the case-sensitive first name and last name for each LinkedIn profile.

c Log in to Siebel Call Center, navigate to the contacts Screen, and then the Contact List view.

d Click New, and then enter the First Name and Last Name values for one of the profiles that you
noted in Step b.

The values you enter must match exactly. Make sure uppercase and lowercase usage is the
same.

e Click New, and then enter the First Name and Last Name values for the other profile you noted
in Step b.

f Navigate to the Opportunity screen, and then the Opportunity List view.

g Click New to create a new opportunity, and then add the contact that you created in Step d to
this new opportunity.

h Click New to create another new opportunity, and then add the contact that you created in Step e
to this new opportunity.

i Log in to the Siebel application using the sample database, and then repeat Step b through
Step e.

j Navigate to the Contact Screen, and then the Contact List view.

k Drill down on the first contact, and then navigate to the third level Affiliations view.

l Click New, and then add the contact that you created in Step d.

m Click New, and then add the contact that you created in Step e.

Table 28. Symbolic URL Arguments

Field Value

Name [input field name]

Argument Value UseSiebelLoginPassword

Configuring Siebel Open UI Siebel 2018

Configuring Siebel Open UI to Interact with Other Applications ■ Displaying Data from
External Applications in Siebel Open UI

342

2 Download the sociallyawarepmodel.js file into the following folder:

INSTALL_DIR\applicationcontainer\webapps\siebel\language_code\files\custom

To get a copy of this file, see Article ID 1494998.1 on My Oracle Support. This code already
contains the configuration that Siebel Open UI requires to authenticate the user with LinkedIn
and to get the connections for this user from LinkedIn. For more information about the
language_code, see “Languages That Siebel Open UI Supports” on page 641.

3 Use a JavaScript editor to open the sociallyawarepmodel.js file that you downloaded in Step 2.

4 Locate the following code:

SociallyAwarePM.prototype.Init = function(){

 SiebelAppFacade.SociallyAwarePM.superclass.Init.call(this);

5 Add the following code immediately under the code you located in Step 4:

this.AddProperty("linkedINRecordSet", []);

this.AddProperty("linkedINMarker", 0);

where:

■ linkedINRecordSet stores the connection details of the current user from LinkedIn.

■ linkedINMarker marks the position in the connection details record set for querying purposes
in the Siebel Database.

6 Add the following code immediately after the code you added in Step 5:

this.AddMethod("QueryForRelatedContacts", QueryForRelatedContacts);

this.AddMethod("GetConnectionByName", GetConnectionByName);

This code allows the presentation model to call the GetConnectionByName method and the
QueryForRelatedContacts method that you add in Step 7.

7 Add the following code immediately after the FetchConnectionFromLinkein method:

function GetConnectionByName(fName, lName){

 var connection = null;

 if(fName && lName){

 var linkedInRecSet = this.Get("linkedINRecordSet");

 for(var i = 0; i < linkedInRecSet.length; i++){

 var current = linkedInRecSet[i];

 if(current.firstName === fName && current.lastName === lName)

 {connection = current;break;}}

 }

return connection;

Configuring Siebel Open UI to Interact with Other Applications ■ Displaying Data from
External Applications in Siebel Open UI

Configuring Siebel Open UI Siebel 2018 343

}

function QueryForRelatedContacts(){

 var currentMark = this.Get("linkedINMarker");

 var recordSet = this.Get("linkedINRecordSet");

 var firstName = "";

 var lastName = "";

 for(var i = currentMark; i < currentMark + 5; i++){

 var current = recordSet[i];

 firstName = firstName + current["firstName"];

 lastName = lastName + current["lastName"];

 if(i < (currentMark + 4))

 {firstName = firstName + " OR ";

 lastName = lastName + " OR ";

 } }

if(firstName !== "" || lastName !== ""){

 SiebelApp.S_App.GetActiveView().ExecuteFrame(

 this.Get("GetName"),

 [

 {field : "Last Name" , value : lastName},

 {field : "First Name", value : firstName}]);

 }

}

where:

■ GetConnectionByName uses the first name and last name to get the connection information
stored on the client. Siebel Open UI gets this information from LinkedIn.

■ QueryForRelatedContacts is the presentation model method that uses the subset of the
LinkedIn connection record that Siebel Open UI sets to query the Siebel Server for matching
records. The notification causes Siebel Open UI to call the BindData method of the physical
renderer as part of the reply processing. The BindData method updates the user interface
with the matching set of records from server. For more information, see “Notifications That
Siebel Open UI Supports” on page 595 and “GetActiveView Method” on page 537.

8 Add the following code immediately after the AddProperty methods you added in Step 5:

this.AddMethod("QueryForRelatedContacts", QueryForRelatedContacts);

Configuring Siebel Open UI Siebel 2018

Configuring Siebel Open UI to Interact with Other Applications ■ Displaying Data from
External Applications in Siebel Open UI

344

this.AddMethod("GetConnectionByName", GetConnectionByName);

These AddMethod calls add the QueryForRelatedContacts method and the GetConnectionByName
method so that Siebel Open UI can call them from the presentation model.

9 Configure the manifest:

a Log in to a Siebel client with administrative privileges.

For more information about the screens that you use in this step, see “Configuring Manifests”
on page 150.

b Navigate to the Administration - Application screen, and then the Manifest Files view.

c In the Files list, add the following file.

d Navigate to the Administration - Application screen, and then the Manifest Administration view.

e In the UI Objects list, specify the following applet.

f In the Object Expression list, add the following expression. Siebel Open UI uses this expression
to render the applet on a desktop platform.

g In the Files list, add the following file:

siebel/custom/sociallyawarepmodel.js

10 Test your modifications.

Field Value

Name siebel/custom/sociallyawarepmodel.js

Field Value

Type Applet

Usage Type Presentation Model

Name Enter any value.

Field Value

Expression Desktop

Level 1

Configuring Siebel Open UI to Interact with Other Applications ■ Displaying Data from
External Applications in Siebel Open UI

Configuring Siebel Open UI Siebel 2018 345

Displaying Data from External Applications in Siebel
Applets
The example in this topic describes how to configure Siebel Open UI to display data from an external
application in a Siebel applet. Siebel Open UI can use a symbolic URL open this external application
from an applet. For example, to display a Google Map or a Linked In view as an applet in a Siebel
application.

NOTE: When a symbolical URL is displayed in the Siebel Web framework, Siebel Open UI sends it
regular ping requests to prevent the session from timing out. This is done because Siebel Open UI
can not detect activity, or lack of activity, on the symbolic URL

The example in this topic configure Siebel Open UI to display a Google map as a child applet in the
Account detail page. The Map displays a location according to the Zip Code of the account record. If
the Zip Code is empty, then it displays the default Google map.

To display data from external applications in Siebel applets
1 Configure the business component:

a Open Siebel Tools.

For more information, see Using Siebel Tools.

b In the Object Explorer, click Business Component.

c In the Business Components list, query the Name property for Account.

d In the Object Explorer, expand the Business Component tree, and then click Field.

e In the Fields list, add the following field.

2 Configure the applet:

a In the Object Explorer, click Applet.

Property Value

Name You can use any value. For this example, use the
following value:

SymbolicURLGoogleMap

Calculated TRUE

Type DTYPE_TEXT

Calculated Value Enter the name of any Symbolic URL enclosed in double
quotation marks. For this example, enter the following
value:

SymbolicURLGoogleMap

You define this Symbolic URL later in this example.

Configuring Siebel Open UI Siebel 2018

Configuring Siebel Open UI to Interact with Other Applications ■ Displaying Data from
External Applications in Siebel Open UI

346

b In the Applets list, query the Name property for SSO Analytics Administration Applet.

In a typical configuration, you create an applet that Siebel Open UI can to use to display the
external content. This applet must reference the business component that you configured in
Step 1 on page 345.

c Copy the applet that you located in Step b, and then set the following properties for this copy.

d In the Object Explorer, expand the Applet tree, expand the List tree, and then click List Column.

e In the List Columns list, set the following properties for the single record that the list displays.

3 Configure the view:

a In the Object Explorer, click View.

b In the Views list, query the Name property for the view that must display the Google map.

For this example, query the Name property for the following value:

Account Detail - Contacts View

c In the Object Explorer, expand the View tree, expand the View Web Template tree, and then click
View Web Template Item.

Property Value

Name GoogleMap

Business Component Account

Title GoogleMap

Property Value

Name SymbolicURLGoogleMap

Field SymbolicURLGoogleMap

Field Retrieval Type Symbolic URL

Configuring Siebel Open UI to Interact with Other Applications ■ Displaying Data from
External Applications in Siebel Open UI

Configuring Siebel Open UI Siebel 2018 347

d In the View Web Template Items list, add the following view Web template item.

Note that you cannot drag, and then drop an applet into the Web Layout Editor in Siebel
Tools. You must add it manually to the Web page.

4 Compile your modifications.

5 Examine the URL that Siebel Open UI must integrate:

a Open the URL that Siebel Open UI must integrate.

For this example, open http://maps.google.com/ in a browser.

b View the source HTML.

For example, if you use Internet Explorer, then click the View menu, and then click Source.
Alternatively, save the file to your computer, and then use an HTML editor to open it.

c Identify the input fields.

It is recommended that you search for the input tag.

In this example, the source displays the name in the following way:

name="q"

You use this value when you define the arguments for the Symbolic URL.

d Determine if the method attribute of the page is one of the following:

❏ POST. You must define the PostRequest command as an argument of the symbolic URL.

❏ GET. you do not need to define a symbolic URL command.

In this example, the method is GET.

e Determine the target of the from action attribute, which is typically specified as action = "some
string". In this situation, it is '/maps'. It is appended to the predefined URL.

6 Configure the symbolic URL:

a Log in to the Siebel client with administrator privileges.

b Navigate to the Administration - Integration screen, and then the WI Symbolic URL List view.

c In the Fixup Administration dropdown list, choose Symbolic URL Administration.

Property Value

Name GoogleMap

Applet GoogleMap

Field Retrieval Type Symbolic URL

Item Identifier Enter the next highest number in the sequence of
numbers that Siebel Tools displays for all records in the
View Web Template Items list.

Configuring Siebel Open UI Siebel 2018

Configuring Siebel Open UI to Interact with Other Applications ■ Displaying Data from
External Applications in Siebel Open UI

348

d In the Symbolic URL Administration list, add the following symbolic URL.

e In the Symbolic URL Arguments list, add the following symbolic URL argument.

f In the Symbolic URL Arguments list, add the following symbolic URL arguments. Siebel Open UI
uses this argument to embed the Google map in the applet.

Field Value

Name SymbolicURLGoogleMap

URL http://maps.google.com/maps

Fixup Name Default

SSO Disposition IFrame

Field Value

Name q

This value is the input tag in HTML for the Google map.

Required Argument N

You set this argument to N because the account might not
include a zip code.

Argument Type Field

Siebel Open UI must send the value in the zip code field
of the account to the Google map.

Argument Value Postal Code

You set this argument to the name of the business
component field that contains the value that Siebel Open
UI must send to the Google map.

Append as Argument Y

Substitute in Text N

Sequence# 1

Field Value

Name output

Required Argument Y

Argument Type Constant

Argument Value embed

Append as Argument Y

Configuring Siebel Open UI to Interact with Other Applications ■ Displaying Data from
Siebel Open UI in External Applications

Configuring Siebel Open UI Siebel 2018 349

7 Test your modifications:

a Navigate to the Accounts screen, and then click Accounts List.

b In the Accounts List, create a new account and include a value in the Zip Code field.

c Drill down on the Account Name field.

d Make sure Siebel Open UI displays a Google map and that this map includes a push pin that
identifies the zip code that you entered in Step b on page 347.

Displaying Data from Siebel Open UI in
External Applications
This topic describes how to display data from Siebel Open UI in an external application. It includes
the following information:

■ Displaying Siebel Portlets In External Applications on page 349

■ Configuring Advanced Options on page 354

■ Configuring Communications with Siebel Portlets When Hosted Inside iFrame on page 356

■ Additional Considerations on page 359

■ Limitations on page 360

■ Preparing Standalone Applets on page 360

■ Using iFrame Gadgets to Display Siebel CRM Applets in External Applications on page 361

■ SWE API on page 363

Siebel Open UI comes predefined to display Siebel CRM data only in a Siebel application, such as
Siebel Call Center. This topic describes how to display Siebel CRM data in an external application or
website, such as Oracle WebCenter or iGoogle.

Displaying Siebel Portlets In External Applications
You can configure Siebel Open UI to display a Siebel portlet. A Siebel portlet is a Siebel Open UI
application that is embedded in a thirty-party website. Oracle WebCenter and iGoogle are examples
of these types of third-party websites. An HMTL iFrame is used in these websites to display part of
the Siebel application in a portlet window.

This topic describes how to display Siebel portlets in external applications. It includes the following
information:

Substitute in Text N

Sequence# 2

Field Value

Configuring Siebel Open UI Siebel 2018

Configuring Siebel Open UI to Interact with Other Applications ■ Displaying Data from
Siebel Open UI in External Applications

350

■ Configuring Siebel Open UI to Consume Siebel Portlets

■ About Siebel Portlet Authentication and Security Requirements on page 352

■ Configuring Views to be Embedded in a Portlet on page 352

■ Configuring Standalone Applets to be Embedded in a Portlet on page 353

■ Configuring View-Based Applets to be Embedded in a Portlet on page 354

Configuring Siebel Open UI to Consume Siebel Portlets
Siebel portlets can be integrated inside a portal application using iFrame or any other mechanism
supported by the portal application. Siebel accepts both GET and POST requests.

To make a Siebel Server available as part of a portal, you can add the server URL to an iFrame that
resides on the main Web page. In this sample code, the HTTP GET method is used:

<HTML>

 <BODY>

 <IFRAME src = "http://server_address/application/
start.swe?SWECmd=SWECmd=GotoView&IsPortlet =1&other_arguments"> </IFRAME>

 </BODY>

</HTML>

where:

■ server_address specifies the address of the Siebel Server.

■ application specifies the Siebel application.

■ SWECmd is a required argument that specifies how to display the Siebel application when the user
accesses this URL.

■ isPortlet is a required argument that informs the Siebel Server that this application runs in a
portlet. The server requires this argument so that it can do the processing it requires to support
a portlet.

■ other_arguments specify how to display the Siebel application. For example, the login
requirements to display, the applets to display, how to size applets, and so on.

For example, consider the following iFRAME src:

http://server_name.example.com/callcenter_enu/start.swe?
SWECmd=GetApplet&SWEApplet=Quote+List+Applet&IsPortlet
=1&SWESM=Edit+List"style="height: 50%;width: 100%;&KeepAlive=1&PtId=my_theme"

Configuring Siebel Open UI to Interact with Other Applications ■ Displaying Data from
Siebel Open UI in External Applications

Configuring Siebel Open UI Siebel 2018 351

Table 29 describes the parts of this iFRAME src that specifies the Siebel URL.

Table 29. Specifying URLs to Siebel Portlets

URL Argument Description

http://
server_name.example.com

Access the Siebel Server that resides at
server_name.example.com.

/callcenter_enu Run the CallCenter application.

/start.swe? Start the Siebel Web Engine.

SWECmd=GetApplet Provide commands to the Siebel Web Engine.

SWEApplet=Quote+List+Applet Display the Quote List Applet.

IsPortlet =1 Run the CallCenter application as a portlet.

SWESM=Edit+List Use the Edit List Mode

KeepAlive=1 Keep Siebel portlet sessions active even if the session is idle
longer than SessionTimeout. Siebel CRM is predefined to expire
a Siebel session that is not in use for a period of time according
to the value that the SessionTimeout server parameter
specifies. In the absence of this parameter, the session timing
out will lead to Siebel Open UI displaying a login dialog box in
the portlet. This behavior might not be desirable in a Siebel
portlet. It is recommended that you set this argument to keep
the session active.

For more information about the KeepAlive parameter, see
“Configuring the Portlet Session to Stay Alive” on page 355.

&PtId=my_theme" You can style a portlet application in such a way that the look
and feel of the exposed application match that of the portal.
The iFrame itself can be styled using a Cascading Style Sheet.

For more information, see “Configuring the Use of Cascading
Style Sheets Instead of iFrame Attributes” on page 355.

In addition, the Siebel application can be styled according to a
theme. A theme can be defined in the Siebel manifest, and the
PtId argument can be used to reference the theme. The theme
defined will be applied to the exposed application.

SWECmd=ExecuteLogin
&SWEUserName=user_name&S
WEPassword=my_password

Provide user name and password authentication arguments.
ExecuteLogin is allowed only through HTTP POST. Oracle
recommends not passing user IDs and password in an HTTP
request due to security reasons.

For more information, see “About Siebel Portlet Authentication
and Security Requirements” on page 352.

Configuring Siebel Open UI Siebel 2018

Configuring Siebel Open UI to Interact with Other Applications ■ Displaying Data from
Siebel Open UI in External Applications

352

Siebel Open UI supports HTTP POST and exposes the Siebel portlet for HTTP POST requests. The
Siebel portal can send the following URL with the listed form fields:

http://server_name.example.com/callcenter_enu/start.swe

SWECmd=ExecuteLogin

SWEUserName=user_name

SWEPassword=my_password

SWEAC=SWECmd=GetApplet

SWEApplet=Quote+List+Applet

IsPortlet =1

KeepAlive=1

PtId=my_theme"

About Siebel Portlet Authentication and Security Requirements
 Siebel Open UI portlets must be configured differently depending on whether the application is
hosted in HTTP and in HTTPS. The recommended configuration guidelines are as follows:

■ HTTP. Implement SSO and access Siebel over HTTP or HTTPS, depending on the requirement.

■ HTTPS. Implement SSO and enable SSL for Siebel.

CAUTION: You should never pass user IDs and passwords in the HTTP request to a Siebel portlet.
Passing user IDs and passwords exposes authentication details to the end user.

Configuring Views to be Embedded in a Portlet
You can allow a view to be embedded in a portlet. Doing so runs the Siebel application in the portlet
and navigates to a specified view. The view specified must be accessible anonymously or by user
who is logged in to the Siebel Open UI client.

To allow a view to be embedded in a portlet, include the following command in the URL:

SWECmd=GotoView; SWEView=<View Name>;]

The full URL should use the conventions in the following example:

http://<siebel_server>/<application>/start.swe?IsPortlet
=1&SWECmd=GotoView&SWEView=<View Name>

For example, with the Opportunities List View embedded in a portlet, the URL would use the
conventions in the following URL:

http://<siebel_server>/<application>/start.swe?IsPortlet
=1&SWECmd=GotoView&SWEView=Opportunities+List+View

Configuring Siebel Open UI to Interact with Other Applications ■ Displaying Data from
Siebel Open UI in External Applications

Configuring Siebel Open UI Siebel 2018 353

Configuring Standalone Applets to be Embedded in a Portlet
Siebel Open UI supports standalone applets. You can expose standalone applets in a portlet. This can
be achieved by providing the following GetApplet command in the URL:

SWECmd=GetApplet; SWEApplet=<Standalone Applet Name>; SWESM=<Applet's Show Mode>

About the SWESM Parameter The SWESM parameter is the default mode for the applet to be
shown, but can be changed to any one of the preconfigured modes of the applet, such as:

■ Base.

■ Edit / Edit List.

■ Query.

The full URL should use the conventions in the following example:

http://<siebel_server>/<application>/start.swe?IsPortlet
=1&SWECmd=GetApplet&SWEApplet=Opportunity+List+Applet&SWESM=Base

About Search Specifications When using standalone applets in portlets, the data displayed in
the standalone applet can be controlled by using search specifications. The search specifications are
applied to various Business Component fields on which the standalone applet is deployed. You can
control the search specifications using the following parameters:

■ BCField<n>. Defines the business component field on which to query.

■ BCFieldValue<n>. Defines the value that the BCField<n> must match for the record to be
displayed.

■ PBCField<n>. Defines the parent business component field on which to query.

■ PBCFieldValue<n>. Defines the value that the PBCField<n> must match for the record to be
displayed.

For example, if you wanted to specify the Opportunities List applet embedded in a portlet and limit
the records displayed to Opportunity Names that match "Test Opportunity" you could use the
following URL:

http://<siebel_server>/<application>/start.swe?IsPortlet
=1&SWECmd=GetApplet&SWEApplet=Opportunity+List+Applet&SWESM=Base&BCField0=Opportun
ity+Name&BCFieldValue0=Test+Opportunity

Search Specifications Guidelines Adhere to these additional guidelines when defining your
search specifications:

■ When specifying multiple business component fields or parent business component fields, use
the AND operator at the end of the final expression. Only records that satisfy all of the matching
criteria are returned by the search.

■ Field values can contain any type of data that is accepted by the Siebel search specification
system. For example, "PBCFieldValue2=Opportunity1+OR+Opportunity2" is a valid value.

■ Field values not exposed in the applet itself can still be used by the URL. These fields will be
explicitly activated and used for the query.

Configuring Siebel Open UI Siebel 2018

Configuring Siebel Open UI to Interact with Other Applications ■ Displaying Data from
Siebel Open UI in External Applications

354

■ Search specifications applied to a URL will work in the context. Therefore, the user will not be
able to access the super-set of records, unless the user navigates to the view in question.

■ If a parent business component field and parent business component field value is configured in
a URL, and the business component does not have a parent business component, then the
specification is ignored.

■ If a business component field is used in the URL that does not exist on the business component,
then the URL is considered invalid and the applet will fail to build. This results in unpredictable
behavior in the portlet.

Configuring View-Based Applets to be Embedded in a Portlet
When an applet has been configured part of a view rather than as a standalone applet, it can still be
exposed in a portlet. To do this, use the GotoView command with the following additional parameters:

SWECmd=GotoView; SWEView=<View_Name>; SWEApplet=<Applet_Name>

Only the applet specified in the portlet will be embedded in the portlet. For example, only the
Opportunity List Applet will be shown using the following URL:

http://<siebel_server>/<application>/start.swe?IsPortlet
=1&SWECmd=GotoView&SWEView=Opportunity+List+View&SWEApplet=Opportunity+List+Applet

NOTE: If an applet that does not exist in the view is specified, then the URL is considered invalid
and the applet fails to build. This results in unpredictable behavior in the portlet.

Configuring Advanced Options
This topic describes advanced options when configuring Siebel Open UI in an external application. It
includes the following information:

■ Configuring Multiple Command Chaining in a URL

■ Configuring the Portlet Session to Stay Alive

■ Configuring the Use of Cascading Style Sheets Instead of iFrame Attributes on page 355

Configuring Multiple Command Chaining in a URL
Use the SWEAC parameter to chain more than one command in a URL. An example, where this might
be useful is a situation where you want to navigate to a certain view and create a new record in that
view's active applet.

To configure multiple command chaining in a URL, include the following attribute in the URL:

SWEAC=SWECmd=NewRecord]

The full URL should use the conventions in the following example:

http://<siebel_server>/<application>/start.swe?IsPortlet
=1&SWECmd=GotoView&SWEView=Opportunities+List+View&SWEAC=SWECmd=NewRecord

Configuring Siebel Open UI to Interact with Other Applications ■ Displaying Data from
Siebel Open UI in External Applications

Configuring Siebel Open UI Siebel 2018 355

The preceding example runs the Siebel application in the portlet and takes the context to the
Opportunity View to create a new record in the active applet on that view.

Configuring the Portlet Session to Stay Alive
Siebel sessions that are not in use will eventually expire. The time for which the session is kept alive
is determined by the value of SessionTimeout Siebel server parameter. In some cases when exposing
Siebel as a portlet expiring sessions this might not be optimal.

To override the SessionTimeout Siebel parameter so that the portlet session stays alive, include the
following attribute in the URL:

KeepAlive=1

[Other values for this parameter are as follows: TRUE, T, ON, and Y.]

The full URL should use the conventions in the following example:

http://<siebel_server>/<application>/start.swe?IsPortlet
=1&SWECmd=GotoView&SWEView=Contact+List+View&KeepAlive=1

When using the KeepAlive attribute, consider these additional guidelines:

■ The KeepAlive attribute value is enforced by monitoring periodic client pings to the Siebel server.
Consequently, the client must be on a network connected to the server.

■ If the KeepAlive attribute value is omitted or set to FALSE the session will eventually timeout and
a login screen is returned to the portlet.

■ Once the KeepAlive attribute is set to TRUE by a request (either the URL or a subsequent
message-based communication) it cannot be changed to FALSE by a subsequent request.

Configuring the Use of Cascading Style Sheets Instead of iFrame
Attributes
The iFrame tag supports a number of attributes, which can be used to control the visual formatting
of the portlet content. For a full list of the attributes, see the following W3C website:

http://www.w3.org/wiki/HTML/Elements/iframe

In recent HTML revisions, many attributes are being deprecated. Consequently, it is recommended
that cascading style sheets be used for visual formatting.

Siebel Open UI attaches CSS classes for the portlet iFrame. In Siebel Open UI, the CSS can be applied
by defining a theme in the Theme.js file and passing the theme name as a parameter in the URL
under PtId.

The full URL should use the conventions in the following example:

http://<siebel_server>/<application>/start.swe?IsPortlet
=1&SWECmd=GotoView&SWEView=Contact+List+View&KeepAlive=1&PtId=CUSTOM_PORTLET_THEME

Where CUSTOM_PORTLET_THEME is defined in Theme.js. If the argument value is omitted, invalid, or
cannot be found in Theme.js, then the Siebel Open UI will use the default theme.

Configuring Siebel Open UI Siebel 2018

Configuring Siebel Open UI to Interact with Other Applications ■ Displaying Data from
Siebel Open UI in External Applications

356

For more information about customizing themes, see “Customizing Themes” on page 173.

Configuring Communications with Siebel Portlets When
Hosted Inside iFrame
This topic outlines the Siebel server parameter configurations that are required and optional to
enable communication with Siebel portlets when hosted inside an iFrame. These parameters can be
modified for the Siebel Component with which the functionality is meant to communicate. The
instructions in this topic are not required when cross-domain communications are not needed.

Planning Across Domain Integrations
Siebel Open UI can be used in same domain IFrames starting in Siebel Innovation Pack 2013 and
supports use across domains starting with Siebel Innovation Pack 2014 release. The following
settings support this feature:

■ Xframe-options allow-from. Allows Siebel to be hosted inside a portal. The portal application
name has to be listed as the Allow-From value.

■ PortletOriginList. Gives the list of allowed applications to communicate with Siebel Open UI
when it is hosted inside an iFrame.

Planning Cross-Domain Integrations
You can use the X-Frame-Options HTTP header to determine whether or not Siebel Open UI can
display a page in a browser in a frame or in an iFrame. This capability is useful to avoid a potential
security problem by making sure a hacker cannot embed the content that Siebel Open UI provides
into another application. The XFrameOptions parameter is a hidden Siebel Server parameter that you
can use to control the value of the X-Frame-Options header. You can set it to one of the following
values:

■ SAMEORIGIN. Display the page only in a frame that resides in the same location as the
page.This is the default value.

■ ALLOW-FROM url. Display the page only in a frame that resides in the specified location. If an
external application accesses a Siebel URI, then you specify the URI that this external application
uses. For example, if the external application uses my_url.com, then you use the following value:
ALLOW-FROM http://my_url.com/
If a browser (such as Chrome or Safari) does not support ALLOW-FROM, then the browser ignores
it.

■ DENY. Do not display the page in a frame or in an iFrame.

Make sure that HTTPS/HTTP transports match for cross-domain sites.

To configure communications with Siebel portlets when hosted inside an iFrame
1 Set up the Siebel server parameters:

a Log in to a Siebel client with administrative privileges.

Configuring Siebel Open UI to Interact with Other Applications ■ Displaying Data from
Siebel Open UI in External Applications

Configuring Siebel Open UI Siebel 2018 357

b Navigate to the Administration - Server Configuration screen, and then the Servers view.

c In the Siebel Servers list, choose a Siebel Server.

d Click Parameters.

e In the Parameters list, add the following parameters.

Parameter Description

PortletAPIKey This is a required parameter. It is a unique key configured as a
server parameter. The source portal program must pass this key
to call the Siebel application exposed as the portlet. The
messaging object used to communicate with Siebel Portal will
need to contain a parameter msg.Key. The msg.Key must match
the key configured in this parameter. If the messaging object
does not contain a key, or contains an invalid one, the invocation
will result in an error in the Siebel portlet.

PortletOriginList This is a required parameter. It defines the list of valid domains
from which the Siebel portlet will accept a communication
request. A comma separated list can be provided for this
parameter. Any invocations coming from domains that are not
listed here will cause an error in the Siebel portlet.

PortletMaxAllowedAttempts This is an optional parameter. Its default value is 3. This
parameter specifies the number of unsuccessful communication
attempts with the portlet before Siebel Open UI blocks any
subsequent calls. An unsuccessful call can occur in the following
situations:

■ A domain attempts to send a communication request to the
portlet, but the PortletOriginList does not specify this
domain.

■ The portlet_key sent by the communicating domain does not
match the parameter specified in the Siebel server.

The Siebel portal will remain blocked up to the time extent as
defined by PortletBlockedInterval after which Siebel Open UI
resets the unsuccessful attempts to zero

PortletBlockedInterval This is an optional parameter. Its default value is 900 seconds.
This parameter specifies the time in seconds for which Siebel
portlet will remain blocked to any communication attempt from
the hosting portal or a neighboring portlet after having exceeded
the number of unsuccessful communication attempts (as defined
by PortletMaxAllowedAttempts). During this time, the Siebel
portlet will still be open to access by the user of the application.
However, no programmatic access is permitted.

Configuring Siebel Open UI Siebel 2018

Configuring Siebel Open UI to Interact with Other Applications ■ Displaying Data from
Siebel Open UI in External Applications

358

2 Based on your configuration, the portal, or another portlet in the portal, add the following object
to your custom code. The SWEView, SWEApplet, and Key arguments are required. All other
arguments are optional:

var msg = new Object();

msg.SWEView = view_name;

msg.SWEApplet = applet_name;

msg.SWECmd =GotoView or GetApplet

msg.Key = portlet_key;

where:

■ view_name specifies the view that Siebel Open UI displays in the portlet window. If you
specify only the view, then Siebel Open UI displays the view and all the applets that this view
contains.

■ applet_name specifies the applet that Siebel Open UI displays in the portlet window. If you
specify only the applet, then Siebel Open UI displays only this applet and no view. If you
specify the view and applet, then Siebel Open UI displays the applet in the view.

■ GotoView or GetApplet specifies whether or not to display a view or an applet in the portlet
window.

■ portlet_key must specify the value that you specify for the PortletAPIKey server parameter
in Step <$elemparanumonly. The Siebel client sends this value to the Siebel Server when it
calls a Siebel application. You must include the msg.Key argument, and the value of this
argument must match the value of the key that the PortletAPIKey server parameter contains
on the Siebel Server. If the messaging object does not contain a key, or if it contains a key
that does not match the value of the server parameter, then Siebel Open UI displays an error
in the Siebel portlet.

For example, the following code displays the Opportunity List Applet inside the Opportunity List
View:

var msg = new Object();

msg.SWEView = Opportunity List View;

msg.SWEApplet = Opportunity List Applet;

msg.Key = oracle123;

3 Add the following code immediately after the code that you added in Step <$elemparanumonly.

document.getElementById('siebelframeid').contentWindow.postMessage(msg, '*');

This code invokes a change in the Siebel Portlet window, so that the requested view or applet
will get loaded in the content area.

Configuring Siebel Open UI to Interact with Other Applications ■ Displaying Data from
Siebel Open UI in External Applications

Configuring Siebel Open UI Siebel 2018 359

4 You can use several SWE commands to display a Siebel portlet in Siebel Open UI. For security
reasons, you can use only the GotoView and GetApplet method to call a Siebel portlet from an
external application. GotoPage and GotoPageTab are not applicable to Siebel Open UI. You can
use the commands in the following table within a Siebel portlet. You cannot use them to call a
portlet.

Additional Considerations
The following list outlines additional considerations when displaying data from Siebel Open UI in
external applications:

■ All parameters passed in a URL need to be URL-encoded. For example, "Account List View" would
become "Account+List+View" or "Account%20List%20View". For more information on URL
encoding, refer to:

http://en.wikipedia.org/wiki/Percent-encoding

■ Anonymous sessions are supported in portlet expositions.

Supported
Values

Inside External Siebel
Application

Called from UI
Element Inside
Siebel Portlet
Container

Called from Outside Siebel
Portlet Container

CanInvokeMeth
od

Yes Yes No

ExecuteLogin Yes. It is not supported for
HTTP GET. It is supported
through HTTP POST.

Not applicable for
this use case.

No. Yes. It is not supported
for HTTP GET. It is supported
through HTTP POST.

GotoView Yes. Use only when
invoked from the browser
address bar by refresh or
history navigation.

Yes Yes

GetApplet Yes Yes Yes

InvokeMethod Yes Yes No

For more information, see
“Allowing Blocked Methods for
HTTP GET Access” on
page 144.

LoadService Yes Yes No

Login Yes Not applicable to
Siebel Open UI.

Not applicable (use SSO or
similar)

Logoff Yes Not applicable to
Siebel Open UI.

No

ReloadCT Yes Yes No

Configuring Siebel Open UI Siebel 2018

Configuring Siebel Open UI to Interact with Other Applications ■ Displaying Data from
Siebel Open UI in External Applications

360

■ Tasks Workflow URLs are also supported in portlets.

■ SWE Commands are limited to the ones mentioned in Step 4 on page 359 of “Configuring
Communications with Siebel Portlets When Hosted Inside iFrame” on page 356. However, other
parameters may be passed in portlet mode to the Siebel server. They will be honored by the
server depending on the context.

■ If the content in the Siebel portlet is bootstrapped to load an applet using the GetApplet method,
then the subsequent messaging to the portlet will be limited to whether the applet can be
invoked. Operations such as invoking of popups or navigating to other views will not be
supported. If these are required, the portlet must be bootstrapped via the GotoView call. For
more information, see “Configuring Standalone Applets to be Embedded in a Portlet” on page 353.

Limitations
The following list outlines limitations when displaying data from Siebel Open UI in external
applications:

■ Siebel supports only one portlet in a valid Siebel session. Consuming more than one portlet that
is targeted to same Siebel session is not supported.

■ Opening Siebel Open UI in multiple browser tabs that share the same Siebel session ID is not
supported.

■ Portal communications as described in “Configuring Communications with Siebel Portlets When
Hosted Inside iFrame” on page 356, is not supported in any version of Microsoft Internet Explorer.
Siebel Open UI uses HTML 5 specified Cross Document Messaging, that is not fully supported in
the latest version of Internet Explorer.

Preparing Standalone Applets
A standalone applet is a type of applet that Siebel Open UI can display outside the context of a Siebel
CRM view. A predefined view references a business object, a business object references a business
component, and an applet also references a business component, but an applet does not reference
a business object in a predefined Siebel Open UI configuration. You must modify this configuration
so that the applet can work independently of the view. To do this, you configure the applet to directly
reference the business object.

To prepare standalone applets
1 Open Siebel Tools.

For more information, see Using Siebel Tools.

2 In the Object Explorer, click Applet.

3 In the Applets list, query the Name property for the applet that Siebel Open UI must display
outside of the view.

4 In the Object Explorer, expand the Applet tree, and then click Applet User Prop.

Configuring Siebel Open UI to Interact with Other Applications ■ Displaying Data from
Siebel Open UI in External Applications

Configuring Siebel Open UI Siebel 2018 361

5 In the Applet User Properties list, add the following applet user property.

Using iFrame Gadgets to Display Siebel CRM Applets in
External Applications
The example in this topic describes how to use iFrame gadgets to configure Siebel Open UI to display
a Siebel applet in an external application.

To use iFrame gadgets to display Siebel CRM applets in external applications
1 Do the setup:

a Create a LinkedIn profile at the http://www.linked.com Web site.

b Create a Gmail profile at the http://www.google.com/ig Web site.

2 Configure the external applications:

a Open a new browser session, navigate to http://www.linked.com/, and then log in to your
profile:

b Open a new browser tab, navigate to http://www.google.com/ig, and then log in to your gmail
profile:

c Navigate to http://www.google.com/ig/settings.

d Click Add More Gadgets.

e In the Search for Gadgets section, enter iFrame Gadget, and then click Search.

f In the Search Results for the iFrame Gadget list, click iFrame Gadget.

g Click Embed This Gadget.

h In the Add This Gadget to Your Webpage page, enter the following URL that Siebel Open UI uses
to display the applet. You enter this URL into the Address of Page to Show field:

http://server_name/callcenter_enu/
start.swe?SWEUserName=user_name&SWEPassword=user_password&SWECmd=ExecuteLogin&S
WEAC=SWECmd=GotoView&SWEView=view_name&IsPortlet=1&SWEApplet=applet_name

where:

❏ server_name identifies the name of the server.

Property Description

Name Enter the following value:

Business Object

Value Enter the name of the business object that this applet must
reference.

Configuring Siebel Open UI Siebel 2018

Configuring Siebel Open UI to Interact with Other Applications ■ Displaying Data from
Siebel Open UI in External Applications

362

❏ user_name identifies the user name.

❏ user_password identifies the user password.

❏ view_name identifies the name of the view that contains the applet.

❏ applet_name identifies the applet that Siebel Open UI must display in the external
application.

For example, you enter the following URL to display the Opportunity list applet:

http://server_name.example.com/callcenter_enu/
start.swe?SWEUserName=%48%4B%49%4D&SWEPassword=%48%4B%49%4D&SWECmd=ExecuteLogin
&SWEAC=SWECmd=GotoView&SWEView=Opportunity+List+View&IsPortlet=1&SWEApplet=Oppo
rtunity+List+Applet

This URL configures the gadget to load the Opportunity applet from the server that this URL
specifies. It uses an encrypted user name and password, represented as the following:

%48%4B%49%4D

It is strongly recommended that you use Web Single Sign-On (SSO) to handle this user name
and password authentication. For more information, see the topic that describes the URL
Login in Siebel Security Guide.

i Click Preview Changes.

j Click Save.

3 Test your modifications:

a Verify that iGoogle refreshes the page and displays the Opportunity list.

b Expand the widget to full screen to display the full width of the list.

c To choose a LinkedIn contact, use the menu that Google displays on the list header of the screen.

d Verify that the Web browser displays the opportunities for the contact that you choose.

Configuring Siebel Open UI to Interact with Other Applications ■ Displaying Data from
Siebel Open UI in External Applications

Configuring Siebel Open UI Siebel 2018 363

e Verify that the chosen LinkedIn contact matches a Siebel contact record.

Make sure the Web browser displays a layout that is similar to the following layout.

SWE API
This topic contains reference information about SWE commands, methods, and arguments:

■ SWE Commands Available in Siebel Open UI on page 364

Configuring Siebel Open UI Siebel 2018

Configuring Siebel Open UI to Interact with Other Applications ■ Displaying Data from
Siebel Open UI in External Applications

364

SWE Commands Available in Siebel Open UI
You can use several SWE commands to display a Siebel portlet in the external application. For
security reasons, you can use only the GotoView and GetApplet methods to call a Siebel portlet from
an external application. GotoPage and GotoPageTab are not applicable in Siebel Open UI. You can use
the commands listed in Table 30 within a Siebel portlet. You cannot use them to call a portlet. For
more information about these commands, see Configuring Siebel Open UI.

Table 30. SWE Commands Available in Siebel Open UI

Supported
Values

Inside Siebel
Application

Called from UI Element
Inside Siebel Portlet
Container

Called from Outside
Siebel Portlet
Container

CanInvokeMethod Yes Yes No

ExecuteLogin Yes

This is not supported
for HTTP GET. It is
supported through
HTTP POST.

Not applicable for this use
case.

Yes

This is not supported
for HTTP GET. It is
supported through
HTTP POST.

GotoView Yes

Use only when invoked
from the browser
address bar by refresh
or history navigation.

Yes Yes

GetAplet Yes Yes Yes

InvokeMethod Yes Yes No

For more information
about allowing
blocked methods for
HTTP GET access, see
Configuring Siebel
Open UI.

LoadService Yes Yes No

Login Yes Not applicable. Not applicable (use
SSO or similar).

Logoff Yes Not applicable. No

ReloadCT Yes Yes No

Configuring Siebel Open UI to Interact with Other Applications ■ Web Engine HTTP
TXN Business Service

Configuring Siebel Open UI Siebel 2018 365

Web Engine HTTP TXN Business Service
This chapter describes the Web Engine HTTP TXN Business Service. It contains the following
information:

■ About the Web Engine HTTP TXN Business Service on page 365

■ Web Engine HTTP TXN Business Service API on page 366

■ Example of Using Web Engine HTTP TXN Business Service on page 369

■ Sample Code for Invoking Methods of Web Engine HTTP TXN Business Service on page 374

About the Web Engine HTTP TXN Business Service
HTTP provides several means to allow Web servers to obtain information from the browser. The most
familiar example is when a user enters data into a form on a Web page and the data is sent to the
Web server, which can access the value of each form field. This example illustrates sending form field
parameters to the Web server with a POST method. In general, a browser can send cookies, headers,
query string parameters, and form field parameters to the Web server. Web servers can also respond
to the browser with cookies and custom headers. The Web Engine HTTP TXN Business Service allows
Siebel Business Applications to retrieve or set cookies, headers, and query string and form field
parameters.

The Web Engine HTTP TXN Business Service can be invoked by scripts or by workflow. The inbound
HTTP request to the Siebel Web Engine (SWE) is parsed and the business service returns property
sets containing cookies, headers, or parameters. In addition, server variables, which are not a part
of the HTTP request header, can also be retrieved. The business service can also set a custom cookie
or header in the HTTP response header generated by the SWE. The business service gives complete
control over the request header received and the response header sent by the SWE.

For more information, see the following topics:

■ “Web Engine HTTP TXN Business Service API” on page 366

■ “Example of Using Web Engine HTTP TXN Business Service” on page 369

■ “Sample Code for Invoking Methods of Web Engine HTTP TXN Business Service” on page 374

Configuring Siebel Open UI Siebel 2018

Configuring Siebel Open UI to Interact with Other Applications ■ Web Engine HTTP
TXN Business Service

366

Web Engine HTTP TXN Business Service API
Table 31 lists the methods exposed by the Web Engine HTTP TXN Business Service.

Table 31. Web Engine HTTP TXN Business Service API

Method Description Parameters

GetAllRequestCookies Retrieves all request cookies
sent from the client to the
server.

InputArguments: Ignored.
OutputArguments: Property Set
hierarchy. Each cookie is a child
Property Set with the TYPE property
set to the cookie name.

GetAllRequestHeaders Retrieves all request headers
sent from the client to the
server.

InputArguments: Ignored.
OutputArguments: Property Set
containing the HTTP Parameter
name-value pairs.

GetAllRequestParameters Retrieves all request
parameters sent from the
client to the server.

InputArguments: Ignored.
OutputArguments: Property Set
containing the HTTP Parameter
name-value pairs.

GetAllResponseCookies Retrieves all response cookies
sent from the server to the
client.

InputArguments: Ignored.
OutputArguments: Property Set
hierarchy. Each cookie is a child
Property Set with the TYPE property
set to the cookie name.

GetAllResponseHeaders Retrieves all response headers
sent from the server to the
client.

InputArguments: Ignored.
OutputArguments: Property Set
containing the HTTP Header name-
value pairs.

GetAllServerVariables Retrieves all server variables. InputArguments: Ignored.
OutputArguments: Property Set
containing the Server Variable
name-value pairs.

GetClientCertificate Retrieves the client certificate
info.

InputArguments: Ignored.
OutputArguments: Property Set
containing certificate name-value
pairs. Currently only returns
Common Name (CN) property of the
certificate.

Configuring Siebel Open UI to Interact with Other Applications ■ Web Engine HTTP
TXN Business Service

Configuring Siebel Open UI Siebel 2018 367

GetRequestCookies Retrieves the request cookies
named in InputArguments.

InputArguments: Property Set
containing the cookie names to
retrieve.
OutputArguments: Property Set
hierarchy. Each cookie is a child
Property Set with the TYPE property
set to the cookie name.

GetRequestHeaders Retrieves the request headers
named in InputArguments.

InputArguments: Property Set
containing the header names to
retrieve.
OutputArguments: Property Set
containing the HTTP Header name-
value pairs.

GetRequestInfo Retrieves the request Web
Session, Headers, Cookies,
Parameters and Client
Certificate information in one
call.

InputArguments: Ignored
OutputArguments: Property Set
hierarchy. Each section is a child
Property Set with the TYPE property
set to 'Headers', 'Cookies',
'Parameters' or 'ClientCertificate'.
The Web Session information is
simply stored as properties of
OutputArguments.

GetRequestParameters Retrieves the request
parameters named in
InputArguments.

InputArguments: Property Set
containing the parameter names to
retrieve.
OutputArguments: Property Set
containing the HTTP Parameter
name-value pairs.

GetResponseCookies Retrieves the response
cookies named in
InputArguments.

InputArguments: Property Set
containing the cookie names to
retrieve.
OutputArguments: Property Set
hierarchy. Each cookie is a child
Property Set with the TYPE property
set to the cookie name.

GetResponseHeaders Retrieves the response
headers named in
InputArguments.

InputArguments: Property Set
containing the header names to
retrieve.
OutputArguments: Property Set
containing the HTTP Header name-
value pairs.

Table 31. Web Engine HTTP TXN Business Service API

Method Description Parameters

Configuring Siebel Open UI Siebel 2018

Configuring Siebel Open UI to Interact with Other Applications ■ Web Engine HTTP
TXN Business Service

368

GetResponseInfo Retrieves the response
Headers and Cookies in one
call.

InputArguments: Ignored.
OutputArguments: Property Set
hierarchy. Each section is a child
Property Set with the TYPE property
set to 'Headers' or 'Cookies'. Content
Type and Status are simply stored as
properties of OutputArguments.

GetServerVariables Retrieves the server variables
named in InputArguments.

InputArguments: Property Set
containing the server variable names
to retrieve.
OutputArguments: Property Set
containing the Server Variable
name-value pairs.

GetWebSessionInfo Retrieves the client's Web
session information.

InputArguments: Ignored.
OutputArguments: Property Set
containing the Web session name-
value pairs—SessionName;
Cookie Name;
SessionId;
Web Session ID;
SessionFrom (Value is 'URL' or
'COOKIE').

SetResponseCookies Sets the response cookies to
the values in InputArguments.

InputArguments: Property Set
hierarchy. Each cookie is a child
Property Set with the TYPE property
set to the cookie name. The
PERSISTENT property determines
whether the cookie persists between
sessions. If the value is Y, then the
cookie persists between browser
sessions. Otherwise, the cookie
exists for one session at a time.

OutputArguments: Ignored.

Table 31. Web Engine HTTP TXN Business Service API

Method Description Parameters

Configuring Siebel Open UI to Interact with Other Applications ■ Web Engine HTTP
TXN Business Service

Configuring Siebel Open UI Siebel 2018 369

Example of Using Web Engine HTTP TXN Business
Service
To invoke each method of the Web Engine HTTP TXN Business Service and write the results to a text
file, use the following two procedures:

■ “Adding Sample Code for Displaying Results of Using the Business Service” on page 369

■ “Adding Sample Code for Invoking Methods of the Business Service” on page 371

Adding Sample Code for Displaying Results of Using the Business
Service
The following procedure shows how to add sample code for displaying results of the Web Engine HTTP
TXN Business Service.

To add sample code for displaying results of Web Engine HTTP TXN Business Service
1 In Oracle’s Siebel Tools, navigate to the desired Applet object, in the Object Explorer.

2 Lock the project, if required.

3 Right-click and select the Edit Server Script option.

4 Add the following three functions, individually to the declarations section:

■ WebApplet_OutputChildPropertySets

■ WebApplet_OutputProperties

■ WebApplet_OutputPropertySet

SetResponseHeaders Sets the response headers to
the values in InputArguments.

InputArguments: Property Set
containing the HTTP Header name-
value pairs.
OutputArguments: Ignored.

SetResponseInfo Sets the response Headers
and Cookies in one call.

InputArguments: Property Set
hierarchy. Each section is a child
Property Set with the TYPE property
set to 'Headers' or 'Cookies'. Content
Type and Status are simply stored as
properties of InputArguments.
OutputArguments: Ignored.

Table 31. Web Engine HTTP TXN Business Service API

Method Description Parameters

Configuring Siebel Open UI Siebel 2018

Configuring Siebel Open UI to Interact with Other Applications ■ Web Engine HTTP
TXN Business Service

370

Sample Code Functions
Sample code for the WebApplet_OutputChildPropertySets Function:

function WebApplet_OutputChildPropertySets(oPropertySet, nLevel, fp)
{
var oChildPropSet;
var nChild = 0;

Clib.fputs('-------------------------------------\n',fp);
Clib.fputs('CHILD PROPERTY SETS\n',fp);
Clib.fputs('-------------------------------------\n',fp);

if (oPropertySet.GetChildCount() == 0)
{

Clib.fputs('(NONE)\n',fp);
}
else
{
for (nChild = 0; (nChild <= oPropertySet.GetChildCount() - 1) ; nChild++)
{
oChildPropSet = oPropertySet.GetChild(nChild);
WebApplet_OutputPropertySet (oChildPropSet, nLevel+1, fp);
}
}
}

Sample code for the WebApplet_OutputProperties Function:

function WebApplet_OutputProperties(oPropertySet, nLevel , fp)
{
var strName;
var strValue;

Clib.fputs('-------------------------------------\n',fp);
Clib.fputs('PROPERTIES\n',fp);
Clib.fputs('-------------------------------------\n',fp);

if (oPropertySet.GetPropertyCount() == 0)
{
Clib.fputs('(NONE)\n',fp);
}
else
{
strName = oPropertySet.GetFirstProperty();
while (strName != '')
{
Clib.fputs(strName + ' : ' + oPropertySet.GetProperty(strName) + '\n' ,fp);
strName = oPropertySet.GetNextProperty();
}
}
}

Configuring Siebel Open UI to Interact with Other Applications ■ Web Engine HTTP
TXN Business Service

Configuring Siebel Open UI Siebel 2018 371

Sample code for the WebApplet_OutputPropertySet Function:

function WebApplet_OutputPropertySet(oPropertySet, nLevel, fp)
{
Clib.fputs('\n',fp);
Clib.fputs('-------------------------------------\n',fp);
Clib.fputs('START' + ' ',fp);
Clib.fputs('LEVEL : ' + nLevel + '\n', fp);
Clib.fputs('-------------------------------------\n',fp);

Clib.fputs('TYPE : ' + oPropertySet.GetType() + '\n',fp);
Clib.fputs('VALUE : ' + oPropertySet.GetValue() + '\n',fp);

WebApplet_OutputProperties(oPropertySet, nLevel, fp);
WebApplet_OutputChildPropertySets(oPropertySet, nLevel, fp);

Clib.fputs('-------------------------------------\n',fp);
Clib.fputs('END' + ' ',fp);
Clib.fputs('LEVEL : ' + nLevel + '\n',fp);
Clib.fputs('-------------------------------------\n',fp);
}

Adding Sample Code for Invoking Methods of the Business Service
The following procedure shows how to add sample code for invoking methods of the Web Engine HTTP
TXN Business Service.

To add sample code for invoking methods of Web Engine HTTP TXN Business Service
1 Add the code from “Sample Code for Invoking Methods of Web Engine HTTP TXN Business Service”

on page 374 to the WebApplet_InvokeMethod event.

2 Compile the project.

3 Start the Siebel application.

4 Navigate to the applet where the server script has been placed.

5 Perform an action on the applet that invokes a SWE method (for example, change the record or
create a new record).

The code generates a text file in the bin directory where the Siebel application is installed
containing results of each method of the Web Engine HTTP TXN Business Service.

Sample Output
The following is an excerpt of the resulting text file.

=====================================
WebApplet InvokeMethod event:
=====================================

=====================================
Method: GetAllRequestCookies
=====================================

Configuring Siebel Open UI Siebel 2018

Configuring Siebel Open UI to Interact with Other Applications ■ Web Engine HTTP
TXN Business Service

372

START LEVEL : 0

TYPE : COOKIES
VALUE :

PROPERTIES

(NONE)

CHILD PROPERTY SETS

START LEVEL : 1

TYPE : SWEUAID
VALUE : 1

PROPERTIES

Max-Age : -1
Domain :
Path :

CHILD PROPERTY SETS

(NONE)

END LEVEL : 1

END LEVEL : 0

=====================================
Method: GetAllRequestHeaders
=====================================

START LEVEL : 0

TYPE : HEADERS
VALUE :

PROPERTIES

HOST : <host computer name>
CACHE-CONTROL : no-cache
CONNECTION : Keep-Alive
COOKIE : SWEUAID=1
USER-AGENT : Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; Q312461; SV1; .NET
CLR 1.1.4322)
CONTENT-TYPE : application/x-www-form-urlencoded

Configuring Siebel Open UI to Interact with Other Applications ■ Web Engine HTTP
TXN Business Service

Configuring Siebel Open UI Siebel 2018 373

ACCEPT-ENCODING : deflate
CONTENT-LENGTH : 348

CHILD PROPERTY SETS

(NONE)

END LEVEL : 0

=====================================
Method: GetAllRequestParameters
=====================================

START LEVEL : 0

TYPE : PARAMETERS
VALUE :

PROPERTIES

SWEActiveView : Account List View
SWERowIds :
SWEP :
SWESP : false
SWECmd : InvokeMethod
SWEMethod : PositionOnRow
SWER : 1
SWEControlClicked : 0
SWEIgnoreCtrlShift : 0
SWEVI :
SWEActiveApplet : Account List Applet
SWERPC : 1
SWEReqRowId : 1
SWEView : Account List View
SWEC : 3
SWERowId : 1-6
SWEShiftClicked : 0
SWETS : 1118939959734
SWEApplet : Account List Applet

CHILD PROPERTY SETS

(NONE)

END LEVEL : 0

Configuring Siebel Open UI Siebel 2018

Configuring Siebel Open UI to Interact with Other Applications ■ Web Engine HTTP
TXN Business Service

374

Sample Code for Invoking Methods of Web Engine HTTP
TXN Business Service
This topic contains the sample code for invoking the methods of the Web Engine HTTP TXN Business
Service and writing the results to a text file. For more information, see “Example of Using Web Engine
HTTP TXN Business Service” on page 369.

Add the following sample code to the WebApplet_InvokeMethod event:

function WebApplet_InvokeMethod (MethodName)
{
var fp = Clib.fopen('testfile.txt','a');
if (fp == null)
{
TheApplication().RaiseErrorText(" ERROR Opening File ")
}
else
{
var oBS = TheApplication().GetService('Web Engine HTTP TXN');
var Inputs = TheApplication().NewPropertySet();
var Outputs = TheApplication().NewPropertySet();
var Headers = TheApplication().NewPropertySet();
var Cookies = TheApplication().NewPropertySet();
var tmpCookie = TheApplication().NewPropertySet();

Clib.fputs('=====================================\n',fp);
Clib.fputs('WebApplet InvokeMethod event:\n',fp);
Clib.fputs('=====================================\n',fp);

Clib.fputs('\n',fp);
Clib.fputs('=====================================\n',fp);
Clib.fputs('Method: GetAllRequestCookies\n',fp);
Clib.fputs('=====================================\n',fp);

Inputs.Reset();
Outputs.Reset();
oBS.InvokeMethod ('GetAllRequestCookies', Inputs, Outputs);
WebApplet_OutputPropertySet(Outputs, 0, fp);

Clib.fputs('\n',fp);
Clib.fputs('=====================================\n',fp);
Clib.fputs('Method: GetAllRequestHeaders\n',fp);
Clib.fputs('=====================================\n',fp);

Inputs.Reset();
Outputs.Reset();
oBS.InvokeMethod ('GetAllRequestHeaders', Inputs, Outputs);
WebApplet_OutputPropertySet(Outputs, 0, fp);

Clib.fputs('\n',fp);
Clib.fputs('=====================================\n',fp);
Clib.fputs('Method: GetAllRequestParameters\n',fp);
Clib.fputs('=====================================\n',fp);

Configuring Siebel Open UI to Interact with Other Applications ■ Web Engine HTTP
TXN Business Service

Configuring Siebel Open UI Siebel 2018 375

Inputs.Reset();
Outputs.Reset();
oBS.InvokeMethod ('GetAllRequestParameters', Inputs, Outputs);
WebApplet_OutputPropertySet(Outputs, 0, fp);

Clib.fputs('\n',fp);
Clib.fputs('=====================================\n',fp);
Clib.fputs('Method: GetAllResponseCookies\n',fp);
Clib.fputs('=====================================\n',fp);

Inputs.Reset();
Outputs.Reset();
oBS.InvokeMethod ('GetAllResponseCookies', Inputs, Outputs)
WebApplet_OutputPropertySet(Outputs, 0, fp);

Clib.fputs('\n',fp);
Clib.fputs('=====================================\n',fp);
Clib.fputs('Method: GetAllResponseHeaders\n',fp);
Clib.fputs('=====================================\n',fp);

Inputs.Reset();
Outputs.Reset();
oBS.InvokeMethod ('GetAllResponseHeaders', Inputs, Outputs);
WebApplet_OutputPropertySet(Outputs, 0, fp);

Clib.fputs('\n',fp);
Clib.fputs('=====================================\n',fp);
Clib.fputs('Method: GetAllServerVariables\n',fp);
Clib.fputs('=====================================\n',fp);

Inputs.Reset();
Outputs.Reset();
oBS.InvokeMethod ('GetAllServerVariables', Inputs, Outputs);
WebApplet_OutputPropertySet(Outputs, 0, fp);

Clib.fputs('\n',fp);
Clib.fputs('=====================================\n',fp);
Clib.fputs('Method: GetRequestCookies\n',fp);
Clib.fputs('=====================================\n',fp);

Inputs.Reset();
Outputs.Reset();

Inputs.SetProperty ('MY-COOKIE', '');
Inputs.SetProperty ('TestCookie', '');
Inputs.SetProperty ('Test1Cookie', '');

oBS.InvokeMethod ('GetRequestCookies', Inputs, Outputs);
WebApplet_OutputPropertySet(Outputs, 0, fp);

Clib.fputs('\n',fp);
Clib.fputs('=====================================\n',fp);
Clib.fputs('Method: GetRequestHeaders\n',fp);
Clib.fputs('=====================================\n',fp);

Configuring Siebel Open UI Siebel 2018

Configuring Siebel Open UI to Interact with Other Applications ■ Web Engine HTTP
TXN Business Service

376

Inputs.Reset();
Outputs.Reset();

Inputs.SetProperty ('MyHEADER', '');
Inputs.SetProperty ('MY_TEST', '');
Inputs.SetProperty ('CONTENT-TYPE', '');
Inputs.SetProperty ('CONTENT-LENGTH', '');

oBS.InvokeMethod ('GetRequestHeaders', Inputs, Outputs);
WebApplet_OutputPropertySet(Outputs, 0, fp);

Clib.fputs('\n',fp);
Clib.fputs('=====================================\n',fp);
Clib.fputs('Method: GetRequestInfo\n',fp);
Clib.fputs('=====================================\n',fp);

Inputs.Reset();
Outputs.Reset();

oBS.InvokeMethod ('GetRequestInfo', Inputs, Outputs);
WebApplet_OutputPropertySet(Outputs, 0, fp);

Clib.fputs('\n',fp);
Clib.fputs('=====================================\n',fp);
Clib.fputs('Method: GetRequestParameters\n',fp);
Clib.fputs('=====================================\n',fp);

Inputs.Reset();
Outputs.Reset();

Inputs.SetProperty ('TestQstr', '');
Inputs.SetProperty ('SWEActiveView', '');
Inputs.SetProperty ('SWECmd', '');
Inputs.SetProperty ('SWEMethod', '');
Inputs.SetProperty ('TestParam', '');

oBS.InvokeMethod ('GetRequestParameters', Inputs, Outputs);
WebApplet_OutputPropertySet(Outputs, 0, fp);

Clib.fputs('\n',fp);
Clib.fputs('=====================================\n',fp);
Clib.fputs('Method: GetResponseCookies\n',fp);
Clib.fputs('=====================================\n',fp);

Inputs.Reset();
Outputs.Reset();

Inputs.SetProperty ('My-Test-COOKIE', '');
Inputs.SetProperty ('_sn', '');

oBS.InvokeMethod ('GetResponseCookies', Inputs, Outputs);
WebApplet_OutputPropertySet(Outputs, 0, fp);

Configuring Siebel Open UI to Interact with Other Applications ■ Web Engine HTTP
TXN Business Service

Configuring Siebel Open UI Siebel 2018 377

Clib.fputs('\n',fp);
Clib.fputs('=====================================\n',fp);
Clib.fputs('Method: GetResponseHeaders\n',fp);
Clib.fputs('=====================================\n',fp);

Inputs.Reset();
Outputs.Reset();

Inputs.SetProperty ('Content-Language', '');
Inputs.SetProperty ('MyHeader', '');

oBS.InvokeMethod ('GetResponseHeaders', Inputs, Outputs);
WebApplet_OutputPropertySet(Outputs, 0, fp);

Clib.fputs('\n',fp);
Clib.fputs('=====================================\n',fp);
Clib.fputs('Method: GetResponseInfo\n',fp);
Clib.fputs('=====================================\n',fp);

Inputs.Reset();
Outputs.Reset();

oBS.InvokeMethod ('GetResponseInfo', Inputs, Outputs);
WebApplet_OutputPropertySet(Outputs, 0, fp);

Clib.fputs('\n',fp);
Clib.fputs('=====================================\n',fp);
Clib.fputs('Method: GetServerVariables\n',fp);
Clib.fputs('=====================================\n',fp);

Inputs.Reset();
Outputs.Reset();

Inputs.SetProperty ('AUTH-USER-ID', '');
Inputs.SetProperty ('SERVER-NAME', '');

oBS.InvokeMethod ('GetServerVariables', Inputs, Outputs);
WebApplet_OutputPropertySet(Outputs, 0, fp);

Clib.fputs('\n',fp);
Clib.fputs('=====================================\n',fp);
Clib.fputs('Method: GetWebSessionInfo\n',fp);
Clib.fputs('=====================================\n',fp);

Inputs.Reset();
Outputs.Reset();

oBS.InvokeMethod ('GetWebSessionInfo', Inputs, Outputs);
WebApplet_OutputPropertySet(Outputs, 0, fp);

Clib.fputs('\n',fp);
Clib.fputs('=====================================\n',fp);
Clib.fputs('Method: SetResponseCookies\n',fp);
Clib.fputs('=====================================\n',fp);

Configuring Siebel Open UI Siebel 2018

Configuring Siebel Open UI to Interact with Other Applications ■ Web Engine HTTP
TXN Business Service

378

Inputs.Reset();
Outputs.Reset();

tmpCookie = null;
tmpCookie = TheApplication().NewPropertySet();

tmpCookie.SetType ('My_Test_Cookie');
tmpCookie.SetValue ('Cookie Value for My_Test_Cookie');
tmpCookie.SetProperty ('Max-Age', '23434343');
tmpCookie.SetProperty ('Domain', '.example.com');
tmpCookie.SetProperty ('Path', 'eapps/test/cookie/path');

Inputs.AddChild (tmpCookie);

tmpCookie = null;
tmpCookie = TheApplication().NewPropertySet();

tmpCookie.SetType ('Another_Cookie');
tmpCookie.SetValue ('Cookie Value for Another_Cookie');
tmpCookie.SetProperty ('Max-Age', '23434343');
tmpCookie.SetProperty ('Domain', 'esales.example.com');
tmpCookie.SetProperty ('Path', 'esales/cookie/path');

Inputs.AddChild (tmpCookie);

oBS.InvokeMethod ('SetResponseCookies', Inputs, Outputs);
Clib.fputs('------------------------------------\n',fp);
Clib.fputs('Input Cookies\n',fp);
Clib.fputs('------------------------------------\n',fp);
WebApplet_OutputPropertySet(Inputs, 0, fp);

oBS.InvokeMethod ('GetAllResponseCookies', Inputs, Outputs);
Clib.fputs('------------------------------------\n',fp);
Clib.fputs('Output Cookies\n',fp);
Clib.fputs('------------------------------------\n',fp);
WebApplet_OutputPropertySet(Outputs, 0, fp);

Clib.fputs('\n',fp);
Clib.fputs('=====================================\n',fp);
Clib.fputs('Method: SetResponseHeaders\n',fp);
Clib.fputs('=====================================\n',fp);

Inputs.Reset();
Outputs.Reset();

Inputs.SetProperty ('MyHeader', 'THIS is MyHeader');

oBS.InvokeMethod ('SetResponseHeaders', Inputs, Outputs);
Clib.fputs('------------------------------------\n',fp);
Clib.fputs('Input Headers\n',fp);
Clib.fputs('------------------------------------\n',fp);
WebApplet_OutputPropertySet(Inputs, 0, fp)

Configuring Siebel Open UI to Interact with Other Applications ■ Web Engine HTTP
TXN Business Service

Configuring Siebel Open UI Siebel 2018 379

oBS.InvokeMethod ('GetAllResponseHeaders', Inputs, Outputs);
Clib.fputs('------------------------------------\n',fp);
Clib.fputs('Output Headers\n',fp);
Clib.fputs('------------------------------------\n',fp);
WebApplet_OutputPropertySet(Outputs, 0, fp);

Clib.fputs('\n',fp);
Clib.fputs('=====================================\n',fp);
Clib.fputs('Method: SetResponseInfo\n',fp);
Clib.fputs('=====================================\n',fp);

Inputs.Reset();
Outputs.Reset();
Headers.Reset();
Cookies.Reset();

Headers.SetType ('HEADERS');
Headers.SetProperty ('ABC_RESPONSE_HEADER1', 'RESPONSE_HEADER1 Value');
Headers.SetProperty ('ABC_RESPONSE_HEADER2', 'RESPONSE_HEADER2 Value');
Headers.SetProperty ('ABC_RESPONSE_HEADER3', 'RESPONSE_HEADER3 Value');
Headers.SetProperty ('ABC_RESPONSE_HEADER4', 'RESPONSE_HEADER4 Value');
Inputs.AddChild(Headers);

Cookies.SetType('COOKIES');

tmpCookie = null;
tmpCookie = TheApplication().NewPropertySet();

tmpCookie.SetType ('My_Test_Cookie2');
tmpCookie.SetValue ('Cookie Value for My_Test_Cookie2');
tmpCookie.SetProperty ('Max-Age', '23434343');

Cookies.AddChild (tmpCookie);

tmpCookie = null;
tmpCookie = TheApplication().NewPropertySet();

tmpCookie.SetType ('Another_Cookie2');
tmpCookie.SetValue ('Cookie Value for Another_Cookie2');
tmpCookie.SetProperty ('Max-Age', '23434343');

Cookies.AddChild (tmpCookie);

Inputs.AddChild (Cookies);

oBS.InvokeMethod ('SetResponseInfo', Inputs, Outputs);
Clib.fputs('------------------------------------\n',fp);
Clib.fputs('Input Info\n',fp);
Clib.fputs('------------------------------------\n',fp);
WebApplet_OutputPropertySet(Inputs, 0, fp);

oBS.InvokeMethod ('GetResponseInfo', Inputs, Outputs);
Clib.fputs('------------------------------------\n',fp);
Clib.fputs('Output Info\n',fp);
Clib.fputs('------------------------------------\n',fp);
WebApplet_OutputPropertySet(Outputs, 0, fp);

Configuring Siebel Open UI Siebel 2018

Configuring Siebel Open UI to Interact with Other Applications ■ Web Engine HTTP
TXN Business Service

380

Clib.fclose(fp);
}
}

Configuring Siebel Open UI Siebel 2018 381

10 Customizing Siebel Open UI for
Siebel Mobile Disconnected

This chapter describes how to customize Siebel Open UI for Siebel Mobile disconnected. It includes
the following topics:

■ Overview of Customizing Siebel Open UI for Siebel Mobile Disconnected

■ Doing General Customization Tasks for Siebel Mobile Disconnected on page 384

■ Customizing Siebel Pharma for Siebel Mobile Disconnected Clients on page 403

■ Customizing Siebel Service for Siebel Mobile Disconnected Clients on page 413

■ Methods You Can Use to Customize Siebel Mobile Disconnected on page 427

Overview of Customizing Siebel Open UI
for Siebel Mobile Disconnected
This topic describes an overview of customizing Siebel Open UI for Siebel Mobile disconnected. It
includes the following information:

■ Operations You Can Customize When Clients Are Offline

■ Operations You Cannot Customize When Clients Are Offline on page 382

■ Process of Customizing Siebel Open UI for Siebel Mobile Disconnected on page 383

Operations You Can Customize When Clients Are Offline
You can customize the following operations when the client is offline:

■ Create, read, update, and delete parent objects and child objects.

■ Modify user interface behavior according to data characteristics, such as read only, required, and
can invoke. Siebel Open UI uses the IsReadonly, IsRequired, and CanInvoke methods to achieve
this behavior.

You can customize the following items when the client is offline:

■ Association applets

■ Applet menu and applet menu items

■ Pick applets

■ Picklists

■ Static picklists

■ Error statuses

Configuring Siebel Open UI Siebel 2018

Customizing Siebel Open UI for Siebel Mobile Disconnected ■ Overview of Customizing
Siebel Open UI for Siebel Mobile Disconnected

382

■ Static drill downs

■ Expressions

■ Searches

Operations You Cannot Customize When Clients Are
Offline
You cannot customize the following operations when the client is offline:

■ Multivalue fields.

■ Multivalue groups.

■ Dynamic controls. A dynamic control is a type of control that Siebel Open UI creates dynamically
at run time. The Siebel repository does not specify a dynamic control. For example, a view might
contain a placeholder for a control that Siebel Open UI dynamically creates and displays at run
time.

■ Dynamic drilldowns.

■ Toggle applets.

■ Language-dependent code conversion to language-independent code. The Siebel Server does
this conversion during synchronization.

■ Custom layout modification.

■ Effective dating. The Siebel EAI Adapter allows Siebel Open UI to access effective dating data.
Effective dating data is data that identifies the start date and the end date for a field or link. A
third-party application can request and receive effective dating data from the Siebel application.
For more information about effective dating, see Overview: Siebel Enterprise Application
Integration and Siebel Public Sector Guide.

■ Siebel Application Response Measurement (SARM) usage.

■ Siebel eScript or Siebel Visual Basic usage. Scripts that reside on the Siebel Server do not work
in an offline client, so you must migrate them to JavaScript that resides on the client. Some
business service scripts do work in offline clients.

■ Drilldown visibility. Siebel Open UI comes predefined to use the visibility that the drill down
definition specifies. If this definition does not exist, or if it contains no values, then Siebel Open
UI uses the view to determine drilldown behavior. If the view does not specify drilldown behavior,
then Siebel Open UI uses business component visibility in the following order to determine
drilldown behavior:

■ SalesRep

■ Personal

■ Org

■ Numeric totals in applets. Some applets display the total for a series of numbers that reside in a
column in a list applet or for all records. Siebel Open UI cannot display these totals while the
client is offline.

Customizing Siebel Open UI for Siebel Mobile Disconnected ■ Overview of Customizing
Siebel Open UI for Siebel Mobile Disconnected

Configuring Siebel Open UI Siebel 2018 383

■ COM object usage, such as run-time events, data maps, or variable maps.

■ Cascade delete.

■ Search specification on a link.

■ Sort specification that includes a date field.

■ User properties for various objects except for the user properties associated with items described
in “Operations You Can Customize When Clients Are Offline” on page 381.

■ Default applet menu items.

■ Workflow processes.

■ CreateRecord method.

■ New record creation from an association popup applet. Siebel Open UI comes predefined to
disable this creation. You can customize Siebel Open UI to enable it.

Note the following offline behaviors:

■ Siebel Open UI displays only the data that it downloads during a full download for any business
component field that it populates through a join that joins different tables.

■ If more than one business component references the same table, and if Siebel Open UI modifies
a business component record for one of these business components, then it does not populate
this modification to the other business components until the user goes online and synchronizes
the client with the Siebel Server.

■ If the Owner Delete property of a business component is set to TRUE, then the user cannot delete
a record in this business component even if this user owns or creates this record. This user must
go online to the delete the record. For more information about this property, see Siebel Object
Types Reference.

Process of Customizing Siebel Open UI for Siebel Mobile
Disconnected
It is recommended that you use the sequence of steps that this topic describes to customize Siebel
Open UI to use a Siebel application in a Disconnected client. Siebel Pharma and Siebel Service are
each an example of a Siebel application. To view examples that use these steps, see “Customizing
Siebel Pharma for Siebel Mobile Disconnected Clients” on page 403 and “Customizing Siebel Service for
Siebel Mobile Disconnected Clients” on page 413.

To customize Siebel Open UI for Siebel Mobile Disconnected
1 Configure the manifest, if necessary.

For more information, see “Modifying Manifest Files for Siebel Mobile Disconnected” on page 384.

2 Create a new JavaScript file or copy an existing one.

You must place all custom presentation models and physical renderers in a custom folder. For
more information about this folder, see “Organizing Files That You Customize” on page 145.

Configuring Siebel Open UI Siebel 2018

Customizing Siebel Open UI for Siebel Mobile Disconnected ■ Doing General
Customization Tasks for Siebel Mobile Disconnected

384

3 Register your custom JavaScript method or Siebel business service.

For more information, see “Using Siebel Business Services or JavaScript Services to Customize
Siebel CRM Objects” on page 388.

4 Add your custom code:

a Declare your variables.

b Use the CanInvokeMethod method to make sure Siebel Open UI can call your custom method or
business service.

c Specify the logic for your custom JavaScript method or Siebel business service.

d Use InvokeMethod to call your custom JavaScript method or Siebel business service.

For more information, see “Using Custom JavaScript Methods” on page 393.

5 Test your modifications.

Doing General Customization Tasks for
Siebel Mobile Disconnected
This topic describes how to do general customization tasks for Siebel Mobile disconnectedin Siebel
Open UI. It includes the following topics:

■ Modifying Manifest Files for Siebel Mobile Disconnected

■ Registering Methods to Make Sure Siebel Open UI Runs Them in the Correct Sequence on page 387

■ Using Siebel Business Services or JavaScript Services to Customize Siebel CRM Objects on page 388

■ Using Custom JavaScript Methods on page 393

■ Using Custom Siebel Business Services on page 396

■ Configuring Data Filters on page 400

■ Configuring Objects That Siebel Open UI Does Not Display in Clients on page 400

■ Configuring Error Messages for Disconnected Clients on page 400

■ About Siebel Mobile Application Logging on page 403

Modifying Manifest Files for Siebel Mobile Disconnected
The cache manifest file specifies the resources that Siebel Open UI must download to the
disconnected client for offline use. Each application uses a separate cache manifest file that uses the
following format:

application_name.manifest

where:

Customizing Siebel Open UI for Siebel Mobile Disconnected ■ Doing General
Customization Tasks for Siebel Mobile Disconnected

Configuring Siebel Open UI Siebel 2018 385

■ application_name identifies the name of the Siebel application, such as Siebel Service for Mobile.
Siebel Open UI converts this name to lower case and replaces each space that the name contains
with an underscore. For example, siebel_service_for_mobile.manifest is the cache manifest
file that Siebel Open UI uses for Siebel Service for Siebel Mobile disconnected.

Manifest files reside in the following folder on the Mobile Web Client:

\SWEApp\applicationcontainer\webapps\siebel\language_code\siebel_service_for_mobil
e.manifest

Siebel Open UI includes only the cache manifest files that it requires to support the Siebel application
that you deploy.

For more information about the language_code, see “Languages That Siebel Open UI Supports” on
page 641.

To modify manifest files for Siebel Mobile disconnected
1 Add resources to the cache manifest file that your application uses, as necessary.

If your deployment requires custom resources to run an application offline, then you must add
these resources to the cache manifest file that this application uses. For example, assume you
must configure Siebel Open UI to run Siebel Service for Siebel Mobile disconnected so that it can
download the following resources, and then use them while the client is offline:

■ my_style.css

■ my_image.png

■ my_script.js

In this situation, you can create a file named my_cache.manifest that includes the following
information:

CACHE MANIFEST

2012-4-27:v1

Explicitly cached 'master entries'.

CACHE:

files/my_style.css

images/my_image.png

scripts/my_script.js

The cache manifest file must use the HTML 5 standard. This standard allows you to run a Perl
script in Step 4 on page 386 that merges your custom cache manifest files into the predefined
application cache manifest files. Siebel Open UI includes this script starting with the Siebel CRM
8.1.1.10 Quick Fix release.

Configuring Siebel Open UI Siebel 2018

Customizing Siebel Open UI for Siebel Mobile Disconnected ■ Doing General
Customization Tasks for Siebel Mobile Disconnected

386

2 Make a backup copy of the predefined manifest file that you must modify.

For example, siebel_service_for_mobile.manifest. You modify this file in Step 4.

It is recommended that you do this backup because the script that you run in this task modifies
the siebel_service_for_mobile.manifest file. You can use this backup if you encounter a problem
when running this script.

3 Open a Windows command line on the computer where the manifest files reside, and then
navigate to the following folder:

\SWEApp\applicationcontainer\webapps\siebel\language_code\

The SWEApp folder resides on the Mobile Web Client. If you are doing this task on the Siebel
Server, then navigate to the following folder:

\<Install_Dir>\applicationcontainer\webapps\siebel\language_code

4 Enter the following command:

Perl mergemanifest.pl -s my_cache.manifest-d application_name.manifest

where:

■ my_cache.manifest specifies the source manifest file. If you do not include the -s switch,
then Siebel Open UI uses the custom.manifest file, by default.

■ application_name.manifest specifies the destination manifest file. You must include the -d
switch.

For example:

Perl mergemanifest.pl -s my_cache.manifest -d siebel_service_for_mobile.manifest

This command merges the custom manifest file that you modified in Step 1 on page 385 into the
predefined siebel_service_for_mobile.manifest file. Note the following:

■ You must run this script any time you modify your cache manifest file or do an upgrade.

■ You must make sure the source and destination files exist.

■ This script adds the CACHE, NETWORK, and FALLBACK sections that reside in the
my_cache.manifest, if they exist, to the end of the corresponding sections that reside in the
siebel_service_for_mobile.manifest file. Your custom entries take precedence over the
predefined Oracle entries that reside in this file.

■ If a file contains more than one CACHE section, NETWORK section, or FALLBACK section, then
this script merges these sections into one section. For example, if two CACHE sections exist,
then this script merges these CACHE sections into a single CACHE section. This merge does
not modify the sequence where the entries reside in the files.

■ The script does not add duplicate entries to the destination file. If the merge results in
duplicate entries, then Siebel Open UI removes the first duplicate from the destination file.
It adds this removed entry to the destination.log file that resides in the folder where the
destination file resides.

■ The script does not include empty lines in the destination file.

■ This script creates the destination.log file every time it runs.

Customizing Siebel Open UI for Siebel Mobile Disconnected ■ Doing General
Customization Tasks for Siebel Mobile Disconnected

Configuring Siebel Open UI Siebel 2018 387

■ If the script finishes the merge, and if the result of this merge is identical to the destination
file, then the script does not update the destination file, and the destination file retains its
original timestamp.

Registering Methods to Make Sure Siebel Open UI Runs
Them in the Correct Sequence
Siebel Mobile disconnected uses a local database, which is a database that resides in the browser
that stores the data that Siebel Open UI requires.

To register methods to make sure Siebel Open UI runs them in the correct sequence
1 On the client computer, use a JavaScript editor to open the file that includes the business service

call that you must modify.

For more information, see “Using Custom JavaScript Methods” on page 393.

2 Locate the code that includes the business service call that you must modify.

3 You can use the ExecuteQuery and FirstRecord methods. Assume you locate the following code
in Step 2:

business_service.prototype.Submit = function () {

 retObj = bc.ExecuteQuery();

 err = retObj.err;

 if(!err){

 retObj = bc.FirstRecord();

 if(!retObj.err){

 //Do an operation here that sets the return value to bRet

 return({err:false,retVal:bRet});

 }

 }

 else{

 SiebelApp.S_App.OfflineErrorObject.SetErrorMsg("messageKey", errParamArray);

 return({err:true});

 }

};

Configuring Siebel Open UI Siebel 2018

Customizing Siebel Open UI for Siebel Mobile Disconnected ■ Doing General
Customization Tasks for Siebel Mobile Disconnected

388

■ where business_service identifies the name of the business service that your custom code
calls. For example, PharmaCallSubmitsvc.

For more information, see “SetErrorMsg Method” on page 459, “FirstRecord Method” on page 437
and “ExecuteQuery Method” on page 436.

In this example, you replace the code that you located in Step 2 on page 387 with the following
code:

PharmaCallSubmitsvc.prototype.Submit = function () {

 var currRetValue={err:false}, retObj;

 retObj=bc.ExecuteQuery();

 err = retObj.err;

 if(!err){

 retObj=bc.FirstRecord();

 if(!retObj.err){

 //Do an operation here that sets the return value to bRet

 currRetValue={err:false,retVal:bRet};

 }

 }

 else{

 SiebelApp.S_App.OfflineErrorObject.SetErrorMsg("messageKey", errParamArray);

 currRetValue={err:true};

 }

 return currRetValue;

};

Using Siebel Business Services or JavaScript Services to
Customize Siebel CRM Objects
This topic describes how to use a Siebel business service or a JavaScript service to customize a
predefined, Siebel CRM applet or business component.

Customizing Predefined Business Components
The example in this topic describes how to register and call a custom JavaScript method that
customizes a predefined business component. You must configure Siebel Open UI to register a
custom method before Siebel Open UI can call it.

Customizing Siebel Open UI for Siebel Mobile Disconnected ■ Doing General
Customization Tasks for Siebel Mobile Disconnected

Configuring Siebel Open UI Siebel 2018 389

To customize predefined business components
1 Use a JavaScript editor to create a new JavaScript file.

2 Specify the input properties that Siebel Open UI must send to the ServiceRegistry method.

The ServiceRegistry method uses input properties to register your custom method. For more
information, see “Properties You Must Include to Register Custom Business Services” on page 453.

You add the following code:

a Create the namespace for the JavaScript class. In this example, you create a namespace for the
pharmacallsvc class:

if (typeof (SiebelApp.pharmacallsvc) === "undefined") {

 SiebelJS.Namespace('SiebelApp.pharmacallsvc');

b Define the variables:

var oconsts = SiebelApp.Offlineconstants;

var inputObj = {};

c Specify the business component where Siebel Open UI applies your customization. In this
example, you specify the Pharma Professional Call - Mobile business component:

inputObj [oconsts.get("DOUIREG_OBJ_NAME")] = "Pharma Professional Call - Mobile";

d Specify the type of object that you are customizing. In this example, you are customizing a
business component:

inputObj [oconsts.get("DOUIREG_OBJ_TYPE")] =
oconsts.get("DOUIREG_OBJ_TYPEBUSCOMP");

e Specify the name of the predefined method that you are customizing. In this example, you are
customizing the WriteRecord method:

inputObj [oconsts.get("DOUIREG_OBJ_MTHD")] = "WriteRecord";

f Specify the name of the JavaScript class where the method you are customizing resides. In this
example, this method resides in the pharmacallsvc class:

inputObj [oconsts.get("DOUIREG_SRVC_NAME")] = "pharmacallsvc";

g Specify the name of the custom service method that contains the customization of the
WriteRecord method:

inputObj [oconsts.get("DOUIREG_SRVC_MTDH")] = "WriteRecord";

h Specify the type of customization:

inputObj [oconsts.get("DOUIREG_EXT_TYPE")] = oconsts.get("DOUIREG_EXT_TYPEPRE");

3 Register the custom JavaScript method that you specified in Step 2. This code calls the
ServiceRegistry method:

SiebelApp.S_App.GetModel().ServiceRegistry(inputObj);

4 Define the constructor:

Configuring Siebel Open UI Siebel 2018

Customizing Siebel Open UI for Siebel Mobile Disconnected ■ Doing General
Customization Tasks for Siebel Mobile Disconnected

390

SiebelApp.pharmacallsvc = (function () {

function pharmacallsvc() {

}

5 Extend the custom JavaScript class:

SiebelJS.Extend(pharmacallsvc, SiebelApp.ServiceModel);

6 Specify the custom WriteRecord method:

pharmacallsvc.prototype.WriteRecord = function (psInputArgs) {//get the inputs

var psOutArgs = SiebelApp.S_App.NewPropertySet();

return psOutArgs;//return the outputs

};

return pharmacallsvc;

} ());

}

The custom method must include your customization logic. This code gets the property set from
the predefined WriteRecord method and uses it as input to your custom WriteRecord method. The
custom WriteRecord method then returns an output property set to the predefined WriteRecord
method.

The following code is the completed code for this topic:

if (typeof (SiebelApp.pharmacallsvc) === "undefined") {

 SiebelJS.Namespace('SiebelApp.pharmacallsvc');

 var oconsts = SiebelApp.Offlineconstants;

 var inputObj = {};

 inputObj [oconsts.get("DOUIREG_OBJ_NAME")] = "Pharma Professional Call - Mobile";

 inputObj [oconsts.get("DOUIREG_OBJ_TYPE")] =
oconsts.get("DOUIREG_OBJ_TYPEBUSCOMP");

 inputObj [oconsts.get("DOUIREG_OBJ_MTHD")] = "WriteRecord";

 inputObj [oconsts.get("DOUIREG_SRVC_NAME")] = "pharmacallsvc";

 inputObj [oconsts.get("DOUIREG_SRVC_MTDH")] = "WriteRecord";

 inputObj [oconsts.get("DOUIREG_EXT_TYPE")] = oconsts.get("DOUIREG_EXT_TYPEPRE");

 SiebelApp.S_App.GetModel().ServiceRegistry(inputObj);

 SiebelApp.pharmacallsvc = (function () {

 function pharmacallsvc() {

Customizing Siebel Open UI for Siebel Mobile Disconnected ■ Doing General
Customization Tasks for Siebel Mobile Disconnected

Configuring Siebel Open UI Siebel 2018 391

 }

 SiebelJS.Extend(pharmacallsvc, SiebelApp.ServiceModel);

 pharmacallsvc.prototype.WriteRecord = function (psInputArgs) {//get the inputs

 var psOutArgs = SiebelApp.S_App.NewPropertySet();

 return psOutArgs;//return the outputs

 };

 return pharmacallsvc;

 } ());

}

7 If you want Siebel Open UI to anonymously register existing applet and business component
objects you can use anonymous registration. This allows administrators to have a common
customization across all applets or all business components.

For example, in order to have the ability to print or click on a specific button in any applet, the
following registration will give the handle of invoke a method in any applet, because the
ObjectName is deliberately omitted:

inputArgs[oconsts.get("DOUIREG_OBJ_NAME")] = "";

inputArgs[oconsts.get("DOUIREG_OBJ_TYPE")]=oconsts.get("DOUIREG_OBJ_TYPEAPPLET");

inputArgs[oconsts.get("DOUIREG_OBJ_MTHD")] = "InvokeMethod";

inputArgs[oconsts.get("DOUIREG_SRVC_NAME")] = "CustomDMService";

inputArgs[oconsts.get("DOUIREG_SRVC_MTDH")] = "InvokeMethodPrint";

inputArgs[oconsts.get("DOUIREG_EXT_TYPE")] = oconsts.get("DOUIREG_EXT_TYPEPRE");

In this case, InvokeMethodPrint will be called for all applets as PRE whenever InvokeMethod is
called for any applet.

Customizing Predefined Applets
The example in this topic registers a custom method that customizes a predefined applet. The work
you do in this topic is very similar to the work you do in “Customizing Predefined Business
Components” on page 388. The only difference occurs when you specify the input object for the applet
and the type of object.

To customize predefined applets
■ Do Step 1 on page 389 through Step 6 on page 390 with the following differences:

■ For Step 2, Step c on page 389, specify the applet where Siebel Open UI applies your
customization. In this example, you specify the Pharma Call Entry Mobile applet:

inputObj [oconsts.get("DOUIREG_OBJ_NAME")] = "Pharma Call Entry Mobile";

Configuring Siebel Open UI Siebel 2018

Customizing Siebel Open UI for Siebel Mobile Disconnected ■ Doing General
Customization Tasks for Siebel Mobile Disconnected

392

■ For Step 2, Step d on page 389, specify the type of object that you are customizing. You
specify an applet instead of a business component:

inputObj [oconsts.get("DOUIREG_OBJ_TYPE")] =
oconsts.get("DOUIREG_OBJ_TYPEAPPLET");

The following code is the completed code for this topic:

if (typeof (SiebelApp.pharmacallsvc) === "undefined") {

 SiebelJS.Namespace('SiebelApp.pharmacallsvc');

 var oconsts = SiebelApp.Offlineconstants;

 var inputObj = {};

 inputObj [oconsts.get("DOUIREG_OBJ_NAME")] = "Pharma Call Entry Mobile";

 inputObj [oconsts.get("DOUIREG_OBJ_TYPE")] =
oconsts.get("DOUIREG_OBJ_TYPEAPPLET");

 inputObj [oconsts.get("DOUIREG_OBJ_MTHD")] = "InvokeMethod";

 inputObj [oconsts.get("DOUIREG_SRVC_NAME")] = "pharmacallsvc";

 inputObj [oconsts.get("DOUIREG_SRVC_MTDH")] = "InvokeMethod";

 inputObj [oconsts.get("DOUIREG_EXT_TYPE")] = oconsts.get("DOUIREG_EXT_TYPEPRE");

 SiebelApp.S_App.GetModel().ServiceRegistry(inputObj);

 SiebelApp.pharmacallsvc = (function () {

 function pharmacallsvc() {

 }

 SiebelJS.Extend(pharmacallsvc, SiebelApp.ServiceModel);

 pharmacallsvc.prototype.InvokeMethod = function (psInputArgs) {//get the inputs

 var psOutArgs = SiebelApp.S_App.NewPropertySet();

 return psOutArgs;//return the outputs

 };

 return pharmacallsvc;

 } ());

}

Customizing Siebel Open UI for Siebel Mobile Disconnected ■ Doing General
Customization Tasks for Siebel Mobile Disconnected

Configuring Siebel Open UI Siebel 2018 393

Using Custom JavaScript Methods
The example in this topic describes how to call a custom JavaScript method that does not customize
a predefined method. Siebel Open UI does not require you to register a custom JavaScript method.
Instead, you configure Siebel Open UI to do the following work:

■ Override the InvokeMethod to call your custom method.

■ Override the CanInvokeMethod method to enable or disable your custom method.

The offline_predefined_js_call_example.js file contains the code that this example describes. To get
a copy of this file, see Article ID 1494998.1 on My Oracle Support.

To use custom JavaScript methods
1 Use a JavaScript editor to create a new JavaScript file.

2 Register the InvokeMethod and CanInvokeMethod methods. You add the following code:

if (typeof (SiebelApp.pharmacallsvc) === "undefined") {

 SiebelJS.Namespace('SiebelApp.pharmacallsvc');

 var inputObj = {};

 var oconsts = SiebelApp.Offlineconstants;

 inputObj[oconsts.get("DOUIREG_OBJ_NAME")] = "Pharma Call Entry Mobile";

 inputObj[oconsts.get("DOUIREG_OBJ_TYPE")] =
oconsts.get("DOUIREG_OBJ_TYPEAPPLET");

 inputObj[oconsts.get("DOUIREG_OBJ_MTHD")] = "CanInvokeMethod";

 inputObj[oconsts.get("DOUIREG_SRVC_NAME")] = "pharmacallsvc";

 inputObj[oconsts.get("DOUIREG_SRVC_MTDH")] = "CanInvokeMethod";

 inputObj[oconsts.get("DOUIREG_EXT_TYPE")] = oconsts.get("DOUIREG_EXT_TYPEPRE");

 SiebelApp.S_App.GetModel().ServiceRegistry(inputObj);

 inputObj[oconsts.get("DOUIREG_OBJ_NAME")] = "Pharma Call Entry Mobile";

 inputObj[oconsts.get("DOUIREG_OBJ_TYPE")] =
oconsts.get("DOUIREG_OBJ_TYPEAPPLET");

 inputObj[oconsts.get("DOUIREG_OBJ_MTHD")] = "InvokeMethod";

 inputObj[oconsts.get("DOUIREG_SRVC_NAME")] = "pharmacallsvc";

 inputObj[oconsts.get("DOUIREG_SRVC_MTDH")] = "InvokeMethod";

 inputObj[oconsts.get("DOUIREG_EXT_TYPE")] = oconsts.get("DOUIREG_EXT_TYPEPRE");

 SiebelApp.S_App.GetModel().ServiceRegistry(inputObj);

 SiebelApp.pharmacallsvc = (function () {

Configuring Siebel Open UI Siebel 2018

Customizing Siebel Open UI for Siebel Mobile Disconnected ■ Doing General
Customization Tasks for Siebel Mobile Disconnected

394

 function pharmacallsvc(pm) {

 }

 SiebelJS.Extend(pharmacallsvc, SiebelApp.ServiceModel); //Extending

 pharmacallsvc.prototype.InvokeMethod = function (psInputArgs) {

 var svcMthdName = "";

 var psOutArgs = SiebelApp.S_App.NewPropertySet();

For more information about this code, see the description about the inputObj argument in
“ServiceRegistry Method” on page 452. Also see “CanInvokeMethod Method” on page 429 and
“Using Siebel Business Services or JavaScript Services to Customize Siebel CRM Objects” on
page 388.

3 Get the value of the MethodName argument from the psInputArgs method:

svcMthdName = psInputArgs.GetProperty("MethodName").toString();

4 Call the Submit method:

if (svcMthdName === "Submit") {

 retObj=this.Submit();

5 Do one of the following:

■ If InvokeMethod handles the submit call that you define in Step 4, then you use the following
code to set the Invoked property to true:

 if (!retObj.err) {

 psOutArgs.SetProperty("Invoked", true);

 currRetValue=({err: "", retVal: psOutArgs});

 }

 else {

 psOutArgs.SetProperty("Invoked", true);

 currRetValue=({err: retObj.err, retVal: psOutArgs});

 }

 });

return currRetValue;}

■ If InvokeMethod does not handle the submit call that you define in Step 4, then you must use
the following code to configure Siebel Open UI to set the Invoked property to false. This code
is required for any InvokeMethod method that you configure Siebel Open UI to override:

 else {

 psOutArgs.SetProperty("Invoked", false);

Customizing Siebel Open UI for Siebel Mobile Disconnected ■ Doing General
Customization Tasks for Siebel Mobile Disconnected

Configuring Siebel Open UI Siebel 2018 395

 currRetValue=({err: "", retVal: psOutArgs});

 }

 return(currRetValue);

};

■ If the current, overridden CanInvokeMethod method handles the submit call that you define
in Step 4 on page 394, then you must set the Invoked property to true. Siebel Open UI
includes the return value in the RetVal property for the method from CanInvokeMethod. You
can set this method according to your requirements:

pharmacallsvc.prototype.CanInvokeMethod = function (psInputArgs) {

 var currRetValue={err:false}, retObj;

 var psOutArgs = SiebelApp.S_App.NewPropertySet();

 var svcMthdName = "";

 svcMthdName = psInputArgs.GetProperty("MethodName").toString();

 if (svcMthdName === "Submit") {

 psOutArgs.SetProperty("Invoked", true);

 psOutArgs.SetProperty("RetVal", true);

 currRetValue=({err: "", retVal: psOutArgs});

 }

6 If the current, overridden CanInvokeMethod method does not handle the submit call, then use
the following code to set the Invoked property to false:

 else {

 psOutArgs.SetProperty("Invoked", false);

 psOutArgs.SetProperty("RetVal", false);

 currRetValue=({err: "", retVal: psOutArgs});

 }

 return(currRetValue);

 };

 pharmacallsvc.prototype.Submit= function (psInputArgs) {

 var psOutArgs = SiebelApp.S_App.NewPropertySet();

 return(psOutArgs);

 };

 return pharmacallsvc;

Configuring Siebel Open UI Siebel 2018

Customizing Siebel Open UI for Siebel Mobile Disconnected ■ Doing General
Customization Tasks for Siebel Mobile Disconnected

396

} ());

Using Custom Siebel Business Services
This topic describes how to call a Siebel business service that you customize. You must configure
Siebel Open UI to register this business service before Siebel Open UI can call it.

To use custom Siebel business services
1 Use a JavaScript editor to create a new JavaScript file.

2 Register your custom business service. You add the following code:

var inputObj = {};

inputObj[oconsts.get("DOUIREG_OBJ_NAME")]= "business_service";

inputObj[oconsts.get("DOUIREG_SRVC_NAME")] = "class";

SiebelApp.S_App.GetModel().ServiceRegistry(inputObj);

where:

■ business_service identifies the name of a custom business service.

■ class identifies the JavaScript class that the custom business service references.

For example:

if (typeof (SiebelApp.PharmaCallValidatorsvc) === "undefined") {

 SiebelJS.Namespace('SiebelApp.PharmaCallValidatorsvc');

 var oconsts = SiebelApp.Offlineconstants;

 var inputObj = {};

 inputObj[oconsts.get("DOUIREG_OBJ_NAME")]= "LS Pharma Validation Service";

 inputObj[oconsts.get("DOUIREG_SRVC_NAME")] = "PharmaCallValidatorsvc";

 SiebelApp.S_App.GetModel().ServiceRegistry(inputObj);

 SiebelApp.PharmaCallValidatorsvc = (function () {

 function PharmaCallValidatorsvc() {

 SiebelApp.PharmaCallValidatorsvc.superclass.constructor.call(this);

 }

Customizing Siebel Open UI for Siebel Mobile Disconnected ■ Doing General
Customization Tasks for Siebel Mobile Disconnected

Configuring Siebel Open UI Siebel 2018 397

 SiebelJS.Extend(PharmaCallValidatorsvc, SiebelApp.ServiceModel);

For more information about the methods that this step uses, see the following topics:

■ Properties You Must Include to Register Custom Business Services on page 453

■ ServiceRegistry Method on page 452

■ Using Siebel Business Services or JavaScript Services to Customize Siebel CRM Objects on
page 388

3 Use CanInvokeMethod to determine if Siebel Open UI can call your custom business service
method.

For example, the following code determines if Siebel Open UI can call the CallValidate business
service method:

PharmaCallValidatorsvc.prototype.CanInvokeMethod = function (svcMthdName) {

 var currRetValue={err:false}, retObj;

 if (svcMthdName === "CallValidate") {

 currRetValue={ err: false, retVal: true };

 return currRetValue;

 }

 else {

 return SiebelApp.PharmaCallValidatorsvc.superclass.CanInvokeMethod.call(this,
svcMthdName);

 }

};

For more information about the methods that this step uses, see “CanInvokeMethod Method” on
page 429.

4 Depending on whether you want to make a call from service to service, or to a standalone
service, use one of the following methods:

a To make a call from one service to another service, use InvokeMethod. This method will call your
custom business service method.

For example, the following code calls the CallValidate business service method:

 PharmaCallValidatorsvc.prototype.InvokeMethod = function (svcMthdName,
psinpargs) {

 var currRetValue={err:false}, retObj;

 var psOutArgs = SiebelApp.S_App.NewPropertySet();

 if (!svcMthdName) {

 currRetValue=({err: "", retVal: true});

Configuring Siebel Open UI Siebel 2018

Customizing Siebel Open UI for Siebel Mobile Disconnected ■ Doing General
Customization Tasks for Siebel Mobile Disconnected

398

 return currRetValue;

 }

 if (svcMthdName === "CallValidate") {

 retObj=this.CallValidate(psinpargs);

 psOutArgs = retObj.retVal;

 this.CleanUp();

 currRetValue=({err:false,retVal:psOutArgs});

 return currRetValue;

 }

 else {

 return
SiebelApp.PharmaCallValidatorsvc.superclass.InvokeMethod.call(this,
svcMthdName, psinpargs);

 }

 }

 PharmaCallValidatorsvc.prototype.CallValidate = function (psinpropset) {

 var currRetValue={err:false}, retObj;

 var psOutArgs = SiebelApp.S_App.NewPropertySet();

 //Some Logic

 currRetValue=({err:false,retVal:psOutArgs});

 return currRetValue;

 };

 };

 return PharmaCallValidatorsvc;

 } ());

}

The call from any other service file must be done as follows:

var service = SiebelApp.S_App.GetService("LS Pharma Validation Service");var
outputSet = service.Invoke("CallValidate", psPropertySet);

Customizing Siebel Open UI for Siebel Mobile Disconnected ■ Doing General
Customization Tasks for Siebel Mobile Disconnected

Configuring Siebel Open UI Siebel 2018 399

b To make a call to a standalone service use the InvokeMethod method. Use the Client- Service
Call method to customize the disconnected mobile client. This allows a service call to be made
from the client, typically from a physical model.

For example, the following code enables you to display the total number of products detailed
in the tooltip. This would be the call from the physical model:

var service = SiebelApp.S_App.GetService("LS Pharma Validation Service");

var inPropSet = SiebelApp.S_App.NewPropertySet();

if (service) {

 retObj=currRetValue=service.InvokeMethod("CountPDMethod", inPropSet);

 var outPropSet = retObj.retVal;

}

In online mode, the call is to the standalone business service in a server, whereas in offline
mode, this invokes the standalone offline business service code.

For example, the following code is for the Sample Offline service:

PharmaCallValidatorsvc.prototype.CanInvokeMethod = function (svcMthdName) {

 var currRetValue={err:false}, retObj;

 if (svcMthdName === " CountPDMethod") {

 currRetValue={ err: false, retVal: true };

 return currRetValue;

 }

 else {

 return
SiebelApp.PharmaCallValidatorsvc.superclass.CanInvokeMethod.call(this,
svcMthdName);

 }

 };

 PharmaCallValidatorsvc.prototype.InvokeMethod = function (svcMthdName,
Inputs) {

 var currRetValue={err:false}, retObj;

 var psOutArgs = CCFMiscUtil_CreatePropSet();

 if (svcMthdName === " CountPDMethod") {

 var BO = SiebelApp.S_App.GetBusObject("Pharma Professional Call -
Mobile");

 var PDBC = BO.GetBusComp("Pharma Call Products Detailed");

Configuring Siebel Open UI Siebel 2018

Customizing Siebel Open UI for Siebel Mobile Disconnected ■ Doing General
Customization Tasks for Siebel Mobile Disconnected

400

 PDBC.SetSearchExpr("[Activity Id] = '" + Inputs.GetProperty("Id") +
"'";);

 retObj=currRetValue=PDBC.ExecuteQuery();

 retObj=currRetValue=PDBC.FirstRecord();

 var result = PDBC.CountRecords();

 Outputs.SetProperty("OutputText",result);

 }

For more information about the methods that this step uses, see the following topics:

■ Invoke Method for Business Services on page 452

■ InvokeMethod Method for Applets on page 429

Configuring Data Filters
It is recommended that you configure filters to reduce the amount of business component data that
Siebel Open UI must download to do offline operations. Siebel Open UI comes predefined with a
number of data filters. You can modify these filters. For more information about how to modify them,
see the chapter about working with data filters in Siebel Mobile Guide: Disconnected.

Configuring Objects That Siebel Open UI Does Not
Display in Clients
The Handheld Business Service only downloads fields, business component data, and business object
data that Siebel Open UI displays in the client. You must configure Siebel Open UI to download these
objects that it does not display in the client. To do this, you use the Settings tab of the Mobile
Application view in the Administration - Siebel Remote screen in the administrative client. For more
information, see the topic that describes configuring application settings in Siebel Mobile Guide:
Disconnected.

Configuring Error Messages for Disconnected Clients
This topic describes how to configure Siebel Open UI to use the SetErrorMsg method in your custom
code to return and display a custom error message in a disconnected client.

To configure error messages for disconnected clients
1 Use an editor to open the file that calls a custom applet, business component, or business

service.

This is the same file that you create in “Using Siebel Business Services or JavaScript Services to
Customize Siebel CRM Objects” on page 388.

Customizing Siebel Open UI for Siebel Mobile Disconnected ■ Doing General
Customization Tasks for Siebel Mobile Disconnected

Configuring Siebel Open UI Siebel 2018 401

2 Locate the code that might return an error message.

For example, assume your deployment includes the following code, and that this code calls a
method that might return an error message:

BusComp.prototype.Caller = function ()

 var currRetValue={err:false}, retObj;

 retObj=currRetValue=this.Called();

In this example, the Called method might return an error message. It calls the Caller method.
These methods might reside in different locations in a production environment.

3 Add the following code to the code that you located in Step 2:

 //Check for any errors

 if(retObj.err){

 currRetValue=retObj;

 }

 else{

 //Positive case

 currRetValue={err:false,retVal:false};

 }

 });

 return currRetValue;

}

This code determines whether or not the Called method returns an error message. If it:

■ Returns an error message, then this code calls the return value to some error.

■ Does not return an error message, then the following code sets the err return value to null:

currRetValue={err:false,retVal :false};

4 Add the following code to the code that you located in Step 3:

BusComp.prototype.Called = function (){

 var currRetValue={err:false}, retObj;

 var errParamArray = [];

 errParamArray.push(value1, valueN);

SiebelApp.S_App.OfflineErrorObject.SetErrorMsg("messageKey", errParamArray);

Configuring Siebel Open UI Siebel 2018

Customizing Siebel Open UI for Siebel Mobile Disconnected ■ Doing General
Customization Tasks for Siebel Mobile Disconnected

402

currRetValue={err:"AppropriateErrorCode",retVal:false};

where:

■ value1 is a property that Siebel Open UI sends to the SetErrorMsg method. You can configure
Siebel Open UI to send up to eight properties.

■ messageKey is a key that Siebel Open UI maps to the message string that it displays.

For more information, see “SetErrorMsg Method” on page 459.

In this example, the following code calls the SetErrorMsg method:

SiebelApp.S_App.OfflineErrorObject.SetErrorMsg("AppropriateErrorCode",
errParamArray);

The following code makes sure Siebel Open UI returns an err value. This value contains the error
code:

currRetValue = {err:"AppropriateErrorCode",retVal:false};

return currRetValue;

The following code is the completed code that this example uses:

BusComp.prototype.Caller = function ()

 var currRetValue={err:false}, retObj;

 retObj=currRetValue=this.Called();

 //Check for any errors

 if(retObj.err){

 currRetValue=(retObj);

 }

 else{

 //Positive case

 currRetValue={err:false,retVal :false};

 }

 return currRetValue;

}

BusComp.prototype.Called = function (){

 var currRetValue={err:false}, retObj;

 var errParamArray = [];

 errParamArray.push(fieldName);

Customizing Siebel Open UI for Siebel Mobile Disconnected ■ Customizing Siebel
Pharma for Siebel Mobile Disconnected Clients

Configuring Siebel Open UI Siebel 2018 403

 SiebelApp.S_App.OfflineErrorObject.SetErrorMsg("ErrorCode", errParamArray);

 currRetValue={err:"AppropriateErrorCode",retVal:false};

 return currRetValue;

}

where:

■ ErrorCode identifies a messageKey. Siebel Open UI gets the message text for the message key
from the swemessages_language_code.js file that resides in an local folder. For example,
swemessages_enu.js. For more information about the language_code, see “Languages That
Siebel Open UI Supports” on page 641.

■ fieldName identifies the name of a business component field. This field contains the values that
Siebel Open UI displays in the error message. For example, the predefined BCErrNoSuchField
message key includes the following message text in the swemessages_enu.js file:

"Field '%1' not found in BusComp."

SetErrorMsg replaces %1 with the value that Siebel Open UI passes in the errParamArray. For
example:

errParamArray.push("Name");

SiebelApp.S_App.OfflineErrorObject.SetErrorMsg("BCErrNoSuchField",errParamArray)

In this example, Siebel Open UI replaces "%1" with the value Name:

"Field 'Name' not found in BusComp."

About Siebel Mobile Application Logging
Users can enable logging for Siebel Mobile applications on their devices. For information about Siebel
Mobile Application logging, see Siebel Mobile Guide: Disconnected.

Customizing Siebel Pharma for Siebel
Mobile Disconnected Clients
This topic includes an example of customizing Siebel Pharma in Siebel Open UI for display in a Siebel
Mobile disconnected client. For more information about the functionality that these customizations
modify, see the chapter that describes how to use the Siebel Mobile Disconnected Application for
Siebel Pharma in Siebel Mobile Guide: Disconnected.

This topic customizes Siebel Pharma to submit a Pharma Call record depending on whether or not
Siebel Open UI already submitted this call. It makes sure Siebel Open UI does not overwrite a call
that it already submitted to the Siebel Server. To submit a call in Siebel Pharma, the user must do
the following work:

■ Enter all information for the call.

Configuring Siebel Open UI Siebel 2018

Customizing Siebel Open UI for Siebel Mobile Disconnected ■ Customizing Siebel
Pharma for Siebel Mobile Disconnected Clients

404

■ Add at least one sample for the call.

■ Get the required signature for the samples that the call includes.

■ Set the status for the call to Planned or Signed.

■ Tap Submit.

Siebel Pharma locks a call after it submits this call, and then the user can no longer edit or update
the call. You can modify some of this behavior. For more information about the work you do in this
topic, see “Process of Customizing Siebel Open UI for Siebel Mobile Disconnected” on page 383. For
more information about the methods that this example uses, see “Methods You Can Use to Customize
Siebel Mobile Disconnected” on page 427.

To customize Siebel Pharma for Siebel Mobile Disconnected clients
1 Create a new JavaScript file.

You can use any file name that is meaningful to your deployment. For example, you can use a
short name that indicates what the business service accomplishes. It is recommended that the
file name end with svc.js or service.js. For example, callsvc.js. To get a copy of this file, see
Article ID 1494998.1 on My Oracle Support. For more information about the folders you can use
to store your customizations, see “Organizing Files That You Customize” on page 145.

2 Add the following code:

SiebelApp.pharmacallsvc = (function () {

 function pharmacallsvc(pm) {

 }

 SiebelJS.Extend(pharmacallsvc, SiebelApp.ServiceModel);

This code adds the pharmacallsvc method to the pharmacallsvc business service.

3 Specify the logic for your method.

4 Add the following code immediately after the code you added in Step 3:

pharmacallsvc.prototype.InvokeMethod = function (psInputArgs) {

 var currRetValue={err:false}, retObj;

 var svcMthdName = "";

 var psOutArgs = SiebelApp.S_App.NewPropertySet();

 svcMthdName = psInputArgs.GetProperty("MethodName").toString();

 if (svcMthdName === "Submit") {

 retObj=currRetValue=this.Submit();

 psOutArgs.SetProperty("Invoked", true);

 currRetValue={err: false, retVal: psOutArgs};

Customizing Siebel Open UI for Siebel Mobile Disconnected ■ Customizing Siebel
Pharma for Siebel Mobile Disconnected Clients

Configuring Siebel Open UI Siebel 2018 405

 }

 return currRetValue;

};

This code configures Siebel Open UI to run InvokeMethod on the business service if the
svcMthdName variable that you defined in Step 3 on page 404 contains a value of Submit.

5 Define the method that includes your customization logic. You add the following code
immediately after the code you added in Step 4 on page 404:

pharmacallsvc.prototype.Submit = function () {

 var currRetValue={err:false}, retObj;

 var model= SiebelApp.S_App.GetModel();

 var pBusObj = model.GetBusObject("boName");

 var pBusComp = pBusObj.GetBusComp("bcName");

 var now = new Date();

 var strStatusField = pBusComp.GetUserProperty("Status Field");

 var pickName =
SiebelApp.S_App.GetActiveView().GetActiveApplet().GetControl("Status").GetPickAppl
et();

 retObj=currRetValue=pBusComp.SetFieldValue(strStatusField, "submit", true);

 retObj=currRetValue=pBusComp.WriteRecord();

 return currRetValue;

}

This code defines the Submit method. It sets the value for the Status field to Submitted. It uses
the following methods:

■ BusComp Method for Applets on page 428

■ SetFieldValue Method on page 445

■ WriteRecord Method on page 449

■ GetActiveView Method on page 537

6 Test your modifications:

a Tap Calls on the application banner to display the Calls list.

b Tap a call in the list that you know you have not submitted, and then tap Submit to submit the
call.

c Verify that Siebel Open UI does the following:

❏ Modifies the call status to Submitted.

Configuring Siebel Open UI Siebel 2018

Customizing Siebel Open UI for Siebel Mobile Disconnected ■ Customizing Siebel
Pharma for Siebel Mobile Disconnected Clients

406

❏ Locks the call

❏ Decreases the sample inventory for the sales representative according to the samples
and promotional items that the call dropped off

❏ Closes the call.

❏ Allows you to review, but not edit the call details.

d Tap a call in the list that you know you have already submitted, and then tap Submit to submit
the call.

Make sure Siebel Open UI does not overwrite this call. Make sure it displays a dialog box that
describes that you have already submitted this call.

Configuring Interactive Detailing in the Siebel Open UI
Application for Siebel Pharma
Configuring interactive detailing involves configuring the Detail button to appear on an applet in the
application. By default, the Detail button appears only for Calls in the Siebel Open UI application for
Siebel Pharma. Selecting the Detail button starts the eDetailer player which is used to deliver
personalized content to customers, to demonstrate information about products to customers, and to
obtain feedback from customers about product presentations and personalized content delivered. For
more information about using the eDetailer player in the Siebel Open UI application for Siebel
Pharma, see Siebel Connected Mobile Applications Guide.

Configuring the Detail Link - Scenario 1: Using New Data Map Object
to Capture Customer Feedback
The following procedure shows you how to configure the Detail link for Contacts in the Siebel Open
UI application for Siebel Pharma, but you follow the same procedure if configuring the Detail link for
any other applet in the application. In the following procedure, you configure a new data map object
(EdetailingContact) to create the Activity and Response record to capture customer feedback.

To configure the Detail link for Contacts in the Siebel Open UI application for Siebel
Pharma
1 Create a new Detail button control and drilldown in the Contact Form Applet in Siebel Tools:

a Open Siebel Tools.

For more information, see Using Siebel Tools.

b In the Object Explorer, click Applet.

c In the Applets list, query the Name property for the Contact Form Applet.

d Create a new Detail button control:

❏ In the Object Explorer, expand the Contact Form Applet, and then Control.

Customizing Siebel Open UI for Siebel Mobile Disconnected ■ Customizing Siebel
Pharma for Siebel Mobile Disconnected Clients

Configuring Siebel Open UI Siebel 2018 407

❏ In the Controls list, create a new button control using values from the following table.

e Define user properties for the Detail button:

❏ In the Object Explorer, expand the Controls tree, and then click Business Component User
Prop.

❏ If you are invoking the business service method Named Method, then the user property
value for Named Method is as follows:

❏ Create input arguments for Named Method with the values shown in the following table.

f Add a new drilldown object for the Detail button control:

❏ In the Object Explorer, expand the Contact Form Applet, and then Drilldown Object.

Property Value

Name EdetailerButton

Caption Detail

Method Invoked ShowEdetaillerPreviewView

This method handles the related view navigation and data for the Detail link
(eDetailer player). ShowEdetailerPreviewView is a new LS PCD Service for
delivering personalized content in the Life Sciences industry. Note that if
Siebel Tools does not display the Method Invoked in the list, then type it in
manually.

User Property Name Value

Named Method 1 "ShowEdetailerPreviewView", "INVOKESVC", "Contact", "LS PCD
Service", "ShowEdetailerPreviewView", "DrilldownName", "Edetailer
Drilldown", "EdetailerDatamapObj", "EdetailingContact",
"CreateBookmark", "true", "'ObjectId'", "[Id]"

Property Name Value Purpose

DrilldownName Edetailer Drilldown Navigates to the eDetailer player view.

EdetailerDatamapObj EdetailingContact Triggers the creation of activities, and the
feedback capture page when finished
showing the presentation.

CreateBookmark TRUE Navigates back to the originating view (for
example, Contact) when done showing the
presentation.

ObjectId Row Id of current
record

Used to log the response captured to the
appropriate contact or account call.

Configuring Siebel Open UI Siebel 2018

Customizing Siebel Open UI for Siebel Mobile Disconnected ■ Customizing Siebel
Pharma for Siebel Mobile Disconnected Clients

408

❏ In the Drilldown Objects list, add a new drilldown object with the values shown in the
following table.

To show only the messaging plans that are related to a particular object (that is, remove the
object for example "Product"), then add a new drilldown object with the values shown in the
following table.

2 Add the Contact business component to the Admin Messaging Plan business object.

a In the Object Explorer, expand the Business Object tree, and then click Business Object
Component.

b In the Business Object Component list, create new records with the values shown in the following
table.

3 Configure a new data map object (EdetailingContact) to create the Activity and Response record:

a Log in to the Siebel business application.

b Navigate to the Administration - Application screen, then the Data Map Administration view.

Property Value

Name Edetailer Drilldown

Hyperlink Field Last Name

View eDetailer Message Plan Preview View

Source Field None

Business Component LS Admin Messagign Plans BC

Property Value

Name Edetailer Drilldown

Hyperlink Field Name

View eDetailer Message Plan Preview View

Source Field Id

Business Component LS Admin Messaging Plans BC

Destination Field Product Id

Business Object Component Value

Bus Comp Link

Contact None

Customizing Siebel Open UI for Siebel Mobile Disconnected ■ Customizing Siebel
Pharma for Siebel Mobile Disconnected Clients

Configuring Siebel Open UI Siebel 2018 409

c Click New and create a new data map object with the values shown in the following table:

d For the EdetailingContact data map object, click New in the Data Map Component applet and add
the following components:

e For the Contact Act data map component, click new in the Data Map Field applet and add the
following fields:

f For the ResponseLog data map component, click new in the Data Map Field applet and add the
following fields:

Data Map Object
Name

Source Business
Object

Destination Business
Object

EdetailingContact Admin Messaging Plan Action

Name

Source
Business
Component

Destination
Business
Component Parent Advanced Options

Contact Act Contact Action None Source Search Specification
= [Id] = GetProfileAttr
('Edetailer Object Id')

ResponseLog eDetailer
Feedback
Capture VBC

LS PCD
Presentation
Details BC

Contact Act None

Source Type Source Destination Type Destination

Field Id Field Primary Contact Id

Source Type Source Destination Type Destination

Field EndTime Field Message End Time

Expression GetProfileAttr("Edetailer Object Id") Field Contact Id

Field ItemName Field Message

Field Mpild Field Message Id

Field ParentMPId Field Message Plan Id

Field ParentMPName Field Message Plan

Field StartTime Field Message Start
Time

Configuring Siebel Open UI Siebel 2018

Customizing Siebel Open UI for Siebel Mobile Disconnected ■ Customizing Siebel
Pharma for Siebel Mobile Disconnected Clients

410

Configuring the Detail Link - Scenario 2: Using New Business
Component User Properties to Capture Customer Feedback
The following procedure shows you how to configure the Detail link in the Siebel Open UI application
for Siebel Pharma specifically. To configure the Detail link in a different Siebel Open UI application
(for example, in the Siebel Open UI application for Siebel Service), follow the procedure shown in
“Configuring the Detail Link - Scenario 1: Using New Data Map Object to Capture Customer Feedback”
on page 406. In the following procedure, you configure new business component user properties
(rather than a new data map object) to capture customer feedback.

To configure the Detail link for Contacts in the Siebel Open UI application for Siebel
Pharma
1 Create a new Detail button control and drilldown in the Contact Form Applet in Siebel Tools:

a Open Siebel Tools.

For more information, see Using Siebel Tools.

b In the Object Explorer, click Applet.

c In the Applets list, query the Name property for the Contact Form Applet.

d Create a new Detail button control:

❏ In the Object Explorer, expand the Contact Form Applet, and then Control.

❏ In the Controls list, create a new button control using values from the following table.

e Define user properties for the Detail button:

❏ In the Object Explorer, expand the Controls tree, and then click Business Component User
Prop.

Property Value

Name EdetailerButton

Caption Detail

Method
Invoked

ShowEdetaillerPreviewView

This method handles the related view navigation and data for
the Detail link (eDetailer player). ShowEdetailerPreviewView is
a new LS PCD Service for delivering personalized content in
the Life Sciences industry. Note that if Siebel Tools does not
display the Method Invoked in the list, then type it in manually.

Customizing Siebel Open UI for Siebel Mobile Disconnected ■ Customizing Siebel
Pharma for Siebel Mobile Disconnected Clients

Configuring Siebel Open UI Siebel 2018 411

❏ If you are invoking the business service method Named Method, then the user property
value for Named Method is as follows:

❏ Create input arguments for Named Method with the values shown in the following table:

f Add a new drilldown object for the Detail button control:

❏ In the Object Explorer, expand the Contact Form Applet, and then Drilldown Object.

User Property
Name Value

Named Method 1 "ShowEdetailerPreviewView", "INVOKESVC", "Pharma
Professional Call", "LS PCD Service",
"ShowEdetailerPreviewView", "DrilldownName",
"Edetailer Drilldown", "CreateBookmark", "true",
"'ObjectId'", "[Id]"

Property Name Value Purpose

DrilldownName Edetailer
Drilldown

Navigates to the eDetailer player
view.

CreateBookmark TRUE Navigates back to the originating
view (for example, Contact) when
done showing the presentation.

ObjectId Row Id of current
record

Used to log the response captured
to the appropriate contact or
account call.

Configuring Siebel Open UI Siebel 2018

Customizing Siebel Open UI for Siebel Mobile Disconnected ■ Customizing Siebel
Pharma for Siebel Mobile Disconnected Clients

412

❏ In the Drilldown Objects list, add a new drilldown object using values from the following
table.

To show only the messaging plans that are related to a particular object, then add a new
drilldown object with the values shown in the following table.

2 Add the Contact business component to the Admin Messaging Plan business object.

a In the Object Explorer, expand the Business Object tree, and then click Business Object
Component.

b In the Business Object Component list, create new records with the values shown in the following
table.

Property Value

Name Edetailer Drilldown

View eDetailer Message Plan Preview View

Hyperlink Field Last Name

Source Field None

Business Component LS Admin Messaging Plans BC

Property Value

Name Edetailer Drilldown

Hyperlink Field Name

View eDetailer Message Plan Preview View

Source Field Id

Business Component LS Admin Messaging Plans BC

Destination Field Product Id

Business Object Component Value

Bus Comp Link

Contact None

Customizing Siebel Open UI for Siebel Mobile Disconnected ■ Customizing Siebel
Service for Siebel Mobile Disconnected Clients

Configuring Siebel Open UI Siebel 2018 413

3 Configure the business component user properties with the values shown in the following table
for the eDetailer Feedback Capture VBC business component:

Customizing Siebel Service for Siebel
Mobile Disconnected Clients
This topic includes some examples that describe how to customize Siebel Service in Siebel Open UI
for a Siebel Mobile disconnected client. It includes the following information:

■ Allowing Users to Commit Part Tracker Records on page 414

■ Allowing Users to Return Parts on page 416

■ Allowing Users to Set the Activity Status on page 424

For more information about:

■ Work you do in this topic, see “Process of Customizing Siebel Open UI for Siebel Mobile
Disconnected” on page 383

■ Methods that these examples use, see “Methods You Can Use to Customize Siebel Mobile
Disconnected” on page 427

■ Functionality that these customizations modify, see the chapter that describes how to use the
Siebel Mobile Disconnected Application for Siebel Service in Siebel Mobile Guide: Disconnected

Business Component User Property Value

eDetailer Feedback Capture VBC|LS PCD Presentation
Details BC FieldMap 1

EndTime|Message End Time

eDetailer Feedback Capture VBC|LS PCD Presentation
Details BC FieldMap 2

ItemName|Message

eDetailer Feedback Capture VBC|LS PCD Presentation
Details BC FieldMap 3

MpiId|Message Id

eDetailer Feedback Capture VBC|LS PCD Presentation
Details BC FieldMap 4

ParentMPId|Message Plan Id

eDetailer Feedback Capture VBC|LS PCD Presentation
Details BC FieldMap 5

ParentMPName|Message Plan

eDetailer Feedback Capture VBC|LS PCD Presentation
Details BC FieldMap 6

StartTime|Message Start Time

eDetailer Feedback Capture VBC|LS PCD Presentation
Details BC FieldMap 7

Response|Respons

SourceBC eDetailer Feedback Capture VBC

DestinationBC LS PCD Presentation Details BC

Configuring Siebel Open UI Siebel 2018

Customizing Siebel Open UI for Siebel Mobile Disconnected ■ Customizing Siebel
Service for Siebel Mobile Disconnected Clients

414

Allowing Users to Commit Part Tracker Records
The example in this topic describes how to enable the Commit button so that users can commit a
Part Tracker record. To set the Commit Flag for a Part Tracker record, the user navigates to the
Activities - Part Tracker view, chooses a Part Tracker record, and then clicks Commit. If the part is:

■ Not already committed, then Siebel Open UI commits the part.

■ Already committed, then Siebel Open UI displays a message that the part is already committed.

To allow users to commit Part Tracker records
1 In Windows Explorer, navigate to the following folder:

INSTALL_DIR\applicationcontainer\webapps\siebel\scripts\siebel\offline

2 Copy the servicecommitpartconsumed.js file to the following folder:

INSTALL_DIR\applicationcontainer\webapps\siebel\files\custom\

For more information, see “Organizing Files That You Customize” on page 145.

3 Use a JavaScript editor to open the file you created in Step 2.

4 Locate the following code that resides near the beginning of the file:

if (typeof (SiebelApp.commitpartconsumed) === "undefined") {

SiebelJS.Namespace('SiebelApp.commitpartconsumed');

5 Add the following code immediately after the code that you located in Step 4:

var inputArgs = {};

 var oconsts = SiebelApp.Offlineconstants;

 inputArgs[oconsts.get("DOUIREG_OBJ_NAME")]= "SHCE Service FS Activity Part
Movements List Applet - Mobile";

inputArgs[oconsts.get("DOUIREG_OBJ_TYPE")]= oconsts.get("DOUIREG_OBJ_TYPEAPPLET");

 inputArgs[oconsts.get("DOUIREG_OBJ_MTHD")]= "CommitPartMvmtClient";

 inputArgs[oconsts.get("DOUIREG_SRVC_NAME")]= "commitpartconsumed";

 inputArgs[oconsts.get("DOUIREG_SRVC_MTDH")] = "CommitPartMvmtClient";

 inputArgs[oconsts.get("DOUIREG_EXT_TYPE")]= null;

 SiebelApp.S_App.GetModel().ServiceRegistry(inputArgs);

This code registers the service. For more information, see “ServiceRegistry Method” on page 452.

6 Add the following CanInvokeMethod method immediately after the code that you added in Step 5:

commitpartconsumed.prototype.CanInvokeMethod = function (svcMthdName) {

 if (svcMthdName === "CommitPartMvmtClient") {

Customizing Siebel Open UI for Siebel Mobile Disconnected ■ Customizing Siebel
Service for Siebel Mobile Disconnected Clients

Configuring Siebel Open UI Siebel 2018 415

 return true;

 }

 else

 return SiebelApp.commitpartconsumed.superclass.CanInvokeMethod.call(

 this,svcMthdName);

};

This code determines whether or not Siebel Open UI can call a method in the current context of
the business component.

7 Add the following InvokeMethod method immediately after the code that you added in Step 6 on
page 414:

commitpartconsumed.prototype.InvokeMethod = function (svcMthdName, psinpargs) {

 var psOutArgs = SiebelApp.S_App.NewPropertySet();

 if (!svcMthdName) {

 return (false);

 }

 if (svcMthdName === "CommitPartMvmtClient") {

 psOutArgs = this.CommitPartMvmtClient();

 }

 else {

 return SiebelApp.commitpartconsumed.superclass.InvokeMethod.call(

 this,svcMthdName, psinpargs);

 }

 return (psOutArgs);

 };

This code calls the CommitPartMvmtClient service method if the user clicks the Commit button.

8 Add the following code immediately after the code that you added in Step 7:

commitpartconsumed.prototype.CommitPartMvmtClient = function () {

 SiebelJS.Log('Invoked CommitPartMvmtClient Method.');

 var pServiceInvBC;

 var cszCommitFlag;

Configuring Siebel Open UI Siebel 2018

Customizing Siebel Open UI for Siebel Mobile Disconnected ■ Customizing Siebel
Service for Siebel Mobile Disconnected Clients

416

 var pModel;

pModel = SiebelApp.S_App.Model;

var pServiceInvBO = pModel.GetBusObject("boName");

pServiceInvBC = pServiceInvBO.GetBusComp("bcName");

cszCommitFlag = pServiceInvBC.GetFieldValue("Commit Txn Flag");

if (cszCommitFlag === 'Y'){

 SiebelJS.Log('Consumed Part Is Already In Committed State');

 }

 else

 {

 // pServiceInvBC.ActivateField("Commit Txn Flag");

 //pServiceInvBC.UpdateRecord();

 pServiceInvBC.SetFieldValue("Commit Txn Flag", "Y", true);

 pServiceInvBC.WriteRecord();

 }

};

This code determines whether or not the record is already committed. The DoInvoke method calls
the CommitPartMvmtClient method, and then the CommitPartMvmtClient method examines the
value of the Commit Txn Flag field. If this value is:

■ Y. Siebel Open UI has already committed the record and displays a Consumed Part Is Already
In Committed State message.

■ N. Siebel Open UI has not committed the record and writes the record to the local database.

For more information about the methods that this code uses, see “GetFieldValue Method” on
page 438, “SetFieldValue Method” on page 445, and “WriteRecord Method” on page 449.

Allowing Users to Return Parts
The example in this topic describes how to enable the RMA button so that a user can return a part.
To return a part, the user creates a part tracker record, and then clicks the RMA button to create a
Return Material Authorization (RMA) record. The work you do to allow a user to return a part is similar
to the work you do to allow a user to commit a Part Tracker record. For example, registering the
service, calling the CanInvoke method, DoInvoke method, and so on.

You add the code that specifies how to do the RMA return in Step 4 on page 417 through Step 10 on
page 423. The rma_return.js file contains this code. To get a copy of this file, see Article ID
1494998.1 on My Oracle Support.

Customizing Siebel Open UI for Siebel Mobile Disconnected ■ Customizing Siebel
Service for Siebel Mobile Disconnected Clients

Configuring Siebel Open UI Siebel 2018 417

To allow users to return parts
1 In Windows Explorer, navigate to the following folder:

INSTALL_DIR\applicationcontainer\webapps\siebel\scripts\siebel\offline

2 Use a JavaScript editor to open the servicecmtparts.js file.

3 Add the following code to the InvokeMethod method:

var model= SiebelApp.S_App.GetModel();

var pBusObj = model.GetBusObject("boName");

var pBusComp = pBusObj.GetBusComp("bcName");

This code gets the active business component for the applet that displays the RMA button.

4 Add the following code. This code declares the objects:

if (typeof (SiebelApp.commitpartconsumed) === "undefined") {

 SiebelJS.Namespace('SiebelApp.commitpartconsumed');

 var inputArgs = {};

 var oconsts = SiebelApp.Offlineconstants;

 inputArgs[oconsts.get("DOUIREG_OBJ_NAME")]="SHCE Service FS Activity Part
Movements List Applet - Mobile";

inputArgs[oconsts.get("DOUIREG_OBJ_TYPE")]=oconsts.get("DOUIREG_OBJ_TYPEAPPLET");

 inputArgs[oconsts.get("DOUIREG_OBJ_MTHD")]="CanInvokeMethod";

 inputArgs[oconsts.get("DOUIREG_SRVC_NAME")]="commitpartconsumed";

 inputArgs[oconsts.get("DOUIREG_SRVC_MTDH")]="CanInvokeMethod";

 inputArgs[oconsts.get("DOUIREG_EXT_TYPE")]=oconsts.get("DOUIREG_EXT_TYPEPRE");

 SiebelApp.S_App.GetModel().ServiceRegistry(inputArgs);

 inputArgs={};

 inputArgs[oconsts.get("DOUIREG_OBJ_NAME")]="SHCE Service FS Activity Part
Movements List Applet - Mobile";

inputArgs[oconsts.get("DOUIREG_OBJ_TYPE")]=oconsts.get("DOUIREG_OBJ_TYPEAPPLET");

Configuring Siebel Open UI Siebel 2018

Customizing Siebel Open UI for Siebel Mobile Disconnected ■ Customizing Siebel
Service for Siebel Mobile Disconnected Clients

418

 inputArgs[oconsts.get("DOUIREG_OBJ_MTHD")]="InvokeMethod";

 inputArgs[oconsts.get("DOUIREG_SRVC_NAME")]="commitpartconsumed";

 inputArgs[oconsts.get("DOUIREG_SRVC_MTDH")]="InvokeMethod";

 inputArgs[oconsts.get("DOUIREG_EXT_TYPE")]=oconsts.get("DOUIREG_EXT_TYPEPRE");

 SiebelApp.S_App.GetModel().ServiceRegistry(inputArgs);

 inputArgs={};

For information about the methods that this code uses, see the following topics:

■ CanInvokeMethod Method on page 429

■ ServiceRegistry Method on page 452

■ InvokeMethod Method for Applets on page 429

5 Add the following code. This code calls the CanInvokeMethod method:

 SiebelApp.commitpartconsumed = (function () {

 function commitpartconsumed(pm) {

 }

 var commitObj = new commitpartconsumed();

 commitpartconsumed.prototype.CanInvokeMethod = function (psInputArgs) {

 var currRetValue={err:false}, retObj;

 var psOutArgs = SiebelApp.S_App.NewPropertySet();

 var svcMthdName = "";

 svcMthdName = psInputArgs.GetProperty("MethodName").toString();

 if (svcMthdName === "CommitPartMvmtClient") {

 psOutArgs.SetProperty("Invoked", true);

 psOutArgs.SetProperty("RetVal", true);

 currRetValue={err:false,retVal:psOutArgs};

 }

 else if (svcMthdName === "OrderPartsRMA") {

 psOutArgs.SetProperty("Invoked", true);

 psOutArgs.SetProperty("RetVal", true);

Customizing Siebel Open UI for Siebel Mobile Disconnected ■ Customizing Siebel
Service for Siebel Mobile Disconnected Clients

Configuring Siebel Open UI Siebel 2018 419

 currRetValue={err:false,retVal:psOutArgs};

 }

 else{

 psOutArgs.SetProperty("Invoked", false);

 psOutArgs.SetProperty("RetVal", false);

 currRetValue={err:false,retVal:psOutArgs};

 }

 return currRetValue;

 };

6 Add the following code. This code calls the InvokeMethod method:

 commitpartconsumed.prototype.InvokeMethod = function (psInputArgs) {

 var currRetValue={err:false}, retObj;

 var svcMthdName = "";

 var psOutArgs = SiebelApp.S_App.NewPropertySet();

 svcMthdName = psInputArgs.GetProperty("MethodName").toString();

 if (svcMthdName === "CommitPartMvmtClient") {

 retObj=currRetValue=this.CommitPartMvmtClient();

 psOutArgs.SetProperty("Invoked", true);

 currRetValue={err:false,retVal:psOutArgs};

 }

 else{

 psOutArgs.SetProperty("Invoked", false);

 currRetValue={err:false,retVal:psOutArgs};

 }

 if (svcMthdName === "OrderPartsRMA") {

 retObj=currRetValue=this.OrderPartsRMA();

 psOutArgs.SetProperty("Invoked", true);

 currRetValue={err:false,retVal:psOutArgs};

 }

Configuring Siebel Open UI Siebel 2018

Customizing Siebel Open UI for Siebel Mobile Disconnected ■ Customizing Siebel
Service for Siebel Mobile Disconnected Clients

420

 else{

 psOutArgs.SetProperty("Invoked", false);

 currRetValue={err:false,retVal:psOutArgs};

 }

 return currRetValue;

 };

7 Add the code that gets values for the following fields:

■ Product Id

■ Product Name

■ Used Quantity

■ Id

■ Status

■ Asset Number

■ Part Number

You add the following code:

commitpartconsumed.prototype.createRMAOrder = function (orderType) {

 var currRetValue={err:false}, retObj;

 var sOrderId;

 var cszOrderId;

 var sAssetNum;

 var sPartNum;

 var sStatus;

 var sProductId;

 var sProductName;

 var sQuantity;

 var sActivityPartMvmtID;

 var pModel;

 var pFSActivityPartsMovementBC;

 var pActionBC;

 var sSR_Id;

 var pServiceRequestBC;

Customizing Siebel Open UI for Siebel Mobile Disconnected ■ Customizing Siebel
Service for Siebel Mobile Disconnected Clients

Configuring Siebel Open UI Siebel 2018 421

 var pOrderEntry_OrdersBC;

 var pOrderEntry_LineItemBC;

 var errParamArray = [];

 pModel = SiebelApp.S_App.Model;

 var pBusObj = pModel.GetBusObject("boName")

 pFSActivityPartsMovementBC=pBusObj.GetBusComp("bcName");

 sOrderId=retObj.retVal;

 if (utils.IsEmpty(sOrderId)){

 retObj=currRetValue=pFSActivityPartsMovementBC.GetFieldValue("");

 var oPsDR_Header:PropertySet = SiebelApp.S_App.NewPropertySet();

 // Cannot use the same property set in GetMultipleFieldValues, must use a

 // different one for the values. The process will not error, but Siebel

 // Open UI will not place the values in the property set.

 var lPS_values:PropertySet = SiebelApp.S_App.NewPropertySet();

 oPsDR_Header.SetProperty("Product Id","");

 oPsDR_Header.SetProperty("Used Quantity","");

 oPsDR_Header.SetProperty("Id","");

 oPsDR_Header.SetProperty("Asset Number","");

 oPsDR_Header.SetProperty("Part Number","");

 sPartNum=retObj.retVal;

 pActionBC =
SiebelApp.S_App.GetActiveView().GetActiveApplet().BusComp().ParentBuscomp();

 retObj=currRetValue=pActionBC.GetFieldValue("Activity SR Id");

 sSR_Id = retObj.retVal;

 if(sSR_Id==""){

 //Activity has no associated SR... Hence the operation will be aborted

 SiebelApp.S_App.OfflineErrorObject.SetErrorMsg("IDS_ERR_FS_MISSING_SR",
errParamArray);

 currRetValue={err: "IDS_ERR_FS_MISSING_SR", retVal:""};

 return currRetValue;

 }

Configuring Siebel Open UI Siebel 2018

Customizing Siebel Open UI for Siebel Mobile Disconnected ■ Customizing Siebel
Service for Siebel Mobile Disconnected Clients

422

 }

 return currRetValue;

}

For information about the methods that this code uses, see “GetFieldValue Method” on page 438.

8 Add the code that gets the parent business component and the following business components:

■ Service Request

■ Order Entry - Orders

■ Order Entry - Line Items

This code also determines whether or not a service request is not associated with the activity. If
not, then it aborts the operation. You add the following code:

else{

 pModel = SiebelApp.S_App.Model;

 pServiceRequestBC = pModel.BusObj("Service Request").BusComp("Service Request");

 pOrderEntry_OrdersBC = SiebelApp.S_App.Model.GetBusObj("Service
Request").BusComp("Order Entry - Orders");

 pOrderEntry_LineItemBC = pModel.BusObj("Service Request").BusComp("Order Entry -
Line Items");

//CREATE ORDER Header.

 retObj=currRetValue=pOrderEntry_OrdersBC.ExecuteQuery();

9 Add the code that creates the Order Header record and sets the field values. For example, for
the Order Type field. You add the following code:

retObj=currRetValue=pOrderEntry_OrdersBC.NewRecord(true);

sLocaleVal = SiebelApp.S_App.Model.GetLovNameVal(orderType, "FS_ORDER_TYPE");

retObj=currRetValue=pOrderEntry_OrdersBC.SetFieldValue("Order Type", sLocaleVal,
true);

retObj=currRetValue=pOrderEntry_OrdersBC.WriteRecord();

retObj=currRetValue=pOrderEntry_OrdersBC.GetFieldValue("Id");

sOrderItemId=retObj.retVal;

retObj=currRetValue=pOrderEntry_OrdersBC.GetFieldValue("Id");

m_sOrderHeaderId=retObj.retVal;

retObj=currRetValue=pOrderEntry_LineItemBC.ExecuteQuery();

For information about the methods that this code uses, see “SetFieldValue Method” on page 445,
“WriteRecord Method” on page 449, “NewRecord Method” on page 530.

Customizing Siebel Open UI for Siebel Mobile Disconnected ■ Customizing Siebel
Service for Siebel Mobile Disconnected Clients

Configuring Siebel Open UI Siebel 2018 423

10 Add the code that creates the order line item record, commits this record, and sets the value for
the Order Item Id field in the active business component. This value is the row Id of the order
header record that Siebel Open UI creates. This code sets the field value for each of the following
fields:

■ Product

■ Quantity Requested

■ Asset #

■ Part #

■ Product Status Code

■ Order Header Id

You add the following code:

retObj=currRetValue=pOrderEntry_LineItemBC.NewRecord(true);

retObj=currRetValue=pOrderEntry_LineItemBC.SetFieldValue("Product Id",
retObj=currRetValue=pOrderEntry_LineItemBC.SetFieldValue("Product", sProductName,
true);

retObj=currRetValue=pOrderEntry_LineItemBC.SetFieldValue("Quantity
Requested",sQuantity, true);

if(!utils.IsEmpty(sAssetNum)){

 retObj=currRetValue=pOrderEntry_LineItemBC.SetFieldValue("Asset Number",
sAssetNum, true);

}

if(!utils.IsEmpty(sPartNum)){

 retObj=currRetValue=pOrderEntry_LineItemBC.SetFieldValue("Part Number", sPartNum,
true);

}

if(!utils.IsEmpty(sStatus)){

 retObj=currRetValue=pOrderEntry_LineItemBC.SetFieldValue("Product Status
Code",sStatus, true);

}

retObj=currRetValue=pOrderEntry_LineItemBC.GetFieldValue("Id");

sOrderItemId=retObj.retVal;

retObj=currRetValue=pOrderEntry_LineItemBC.SetFieldValue("Order Header Id",
m_sOrderHeaderId, true)

retObj=currRetValue=pOrderEntry_LineItemBC.WriteRecord();

Configuring Siebel Open UI Siebel 2018

Customizing Siebel Open UI for Siebel Mobile Disconnected ■ Customizing Siebel
Service for Siebel Mobile Disconnected Clients

424

retObj=currRetValue=pFSActivityPartsMovementBC.SetFieldValue("Order Item
Id",sOrderItemId, true);

retObj=currRetValue=pFSActivityPartsMovementBC.WriteRecord();

11 Save, and then close the servicecmtparts.js file.

12 Test your modifications:

a Log in to the disconnected client.

b Click the Activities tab.

c Create an activity, and then click Part Tracker.

d Create a part tracker record.

e Click the RMA button to create a Return Material Authorization (RMA) record.

f Make sure Siebel Open UI creates the RMA record and displays the correct values in the fields of
this record, such as the Product Id, Product Name, Used Quantity, Quantity Requested, Asset #,
and so on.

Allowing Users to Set the Activity Status
The example in this topic describes how to enable the activity status so that the user can update this
status during the service call life cycle. For example, a field service representative can examine an
Activity that is set to Dispatched, set this status to Acknowledged to acknowledge that this
representative examined the activity, set the status to EnRoute, travel to the customer site, set it to
Arrive, set it to In Progress while working on the service call, and then set it to Finish after finishing
the service call. Siebel Open UI includes the following status values:

■ Dispatched

■ Acknowledged

■ Declined

■ En Route

■ Arrive

■ In Progress

■ Hold

■ Resume

■ Finish

Siebel Open UI enables and disables the status depending on the current value of the status. For
example, if the representative sets the status to Acknowledged, then Siebel Open UI allows the user
to choose the EnRoute status and disables all other values.

The work you do to allow a user to set the status is similar to the work you do to allow a user to
commit a Part Tracker record. For example, registering the service, and so on. For more information,
see “Allowing Users to Commit Part Tracker Records” on page 414.

Customizing Siebel Open UI for Siebel Mobile Disconnected ■ Customizing Siebel
Service for Siebel Mobile Disconnected Clients

Configuring Siebel Open UI Siebel 2018 425

To allow users to set the activity status
1 In Windows Explorer, navigate to the following folder:

INSTALL_DIR\applicationcontainer\webapps\siebel\scripts\siebel\offline

For more information about the language_code, see “Languages That Siebel Open UI Supports” on
page 641.

2 Use a JavaScript editor to open the serviceactstat.js file.

3 Locate the following code:

serviceactstat.prototype.InvokeSetActStatus=function(psInpArgs,svcMthdName){

 var psOutArgs=SiebelApp.S_App.NewPropertySet();

 if(!psInpArgs){

 return (false);

 }

 if(psInpArgs.propArray.MethodName=="AcceptStatus")

 {psOutArgs=this.SetActivityStatus("Acknowledged");

 }

 else if(psInpArgs.propArray.MethodName=="Start"||psInpArgs.propArray.

 MethodName=="ArrivedStatus"){psOutArgs=this.SetActivityStatus("In

 Progress","ArrivedStatus");

 }

 else if(psInpArgs.propArray.MethodName=="DeclineStatus"){

 psOutArgs=this.SetActivityStatus("Declined");

 }

 else if(psInpArgs.propArray.MethodName=="EnrouteStatus"){

 psOutArgs=this.SetActivityStatus("In Progress");

 }

 else if(psInpArgs.propArray.MethodName=="SuspendStatus"){

 psOutArgs=this.SetActivityStatus("On Hold");

 }

 else if(psInpArgs.propArray.MethodName=="ResumeStatus"){

 psOutArgs=this.SetActivityStatus("In Progress");

 }

Configuring Siebel Open UI Siebel 2018

Customizing Siebel Open UI for Siebel Mobile Disconnected ■ Customizing Siebel
Service for Siebel Mobile Disconnected Clients

426

 else if(psInpArgs.propArray.MethodName=="End"||psInpArgs.propArray.

 MethodName=="FinishedStatus"){

 psOutArgs = this.SetActivityStatus("Done","FinishedStatus");

 }

4 Add the following code immediately after the code you located in Step 3 on page 425:

serviceactstat.prototype.SetActivityStatus=function (pStatus,pDateMethodInv){

 var currRetValue={err:false}, retObj;

 SiebelJS.Log('Service Method SetActivityStatus...');

 var strstatvalue;

 var pickName;

 var pickListDef;

 var pModel;

 var pBusComp;

 pModel= SiebelApp.S_App.GetModel();

 var pBusObj = pModel.GetBusObject("boName");

 pBusComp = pBusObj.GetBusComp("bcName");

pickName=SiebelApp.S_App.GetActiveView().GetActiveApplet().GetControl("Status").Ge
tPickApplet();

 pickListDef=pickListDef = pBusComp.GetPickListInfo(pickName);

 pModel=SiebelApp.S_App.Model;

 strstatvalue=pModel.GetLovNameVal("Acknowledged", pickListDef.LOVType);

 currRetValue=pBusComp.ActivateField("Status");

 currRetValue=pBusComp.SetFieldValue("Status",strstatvalue,true);

 currRetValue=pBusComp.ActivateField("Status");

 currRetValue=pBusComp.SetFieldValue("Status",strstatvalue,true);

 if(pDateMethodInv!="")//Todo - Refine this condition for uninitialized/defined or
remove this condition

 {

 var now=new Date();

 if(pDateMethodInv == "ArrivedStatus") {

Customizing Siebel Open UI for Siebel Mobile Disconnected ■ Methods You Can Use to
Customize Siebel Mobile Disconnected

Configuring Siebel Open UI Siebel 2018 427

 currRetValue=pBusComp.SetFieldValue("Started",now,true);

 currRetValue=pBusComp.SetFieldValue("Done","",true);

 }

 else if(pDateMethodInv=="FinishedStatus") {

 currRetValue=pBusComp.SetFieldValue("Done",now,true);

 currRetValue=pBusComp.SetFieldValue("Percent Complete","100%",true);

 }

 }

 currRetValue=pBusComp.WriteRecord();

 return currRetValue;

};

For information about the methods that this code uses, see the following:

■ SetFieldValue Method on page 445

■ WriteRecord Method on page 449

■ GetActiveView Method on page 537

5 Test your modifications:

a Log in to the disconnected client.

b Update the status of an activity.

Make sure Siebel Open UI displays the correct status activity. For example, if you set the
status to Acknowledged, then make sure Siebel Open UI allows you to choose the EnRoute
status and disables all other values.

Methods You Can Use to Customize
Siebel Mobile Disconnected
This topic describes the methods that exist in the Application Programming Interface that you can
use to customize Siebel Mobile Disconnected in Siebel Open UI. It includes the following information:

■ Methods You Can Use in the Applet Class on page 428

■ Methods You Can Use in the Business Component Class on page 430

■ Methods You Can Use in the Business Object Class on page 450

■ Methods You Can Use in the Business Service Class on page 452

■ Methods You Can Use in the Application Class on page 454

■ Methods You Can Use in the Model Class on page 458

Configuring Siebel Open UI Siebel 2018

Customizing Siebel Open UI for Siebel Mobile Disconnected ■ Methods You Can Use to
Customize Siebel Mobile Disconnected

428

■ Methods You Can Use in the Service Model Class on page 459

■ Methods You Can Use in Offline Classes on page 459

■ Other Methods You Can Use with Siebel Mobile Disconnected on page 460

You can configure Siebel Open UI to override or customize some of the methods that this topic
describes. For more information about how to customize or override a method, see “Using Siebel
Business Services or JavaScript Services to Customize Siebel CRM Objects” on page 388.

Methods You Can Use in the Applet Class
This topic describes methods that you can use that reside in the Applet class. It includes the following
information:

■ BusComp Method for Applets

■ BusObject Method for Applets

■ CanInvokeMethod Method on page 429

■ InvokeMethod Method for Applets on page 429

■ Name Method for Applets on page 430

BusComp Method for Applets
The BusComp method returns the business component that the applet references. It uses the
following syntax:

Applet.BusComp()

For example, the following code gets the metadata for the business component that the active applet
references:

SiebelApp.S_App.FindApplet(appletName).BusComp();

Each applet references a business component. If you configure Siebel Open UI to call BusComp on
an applet, then it returns the business component that this applet references.

The BusComp method includes no arguments.

For information about using BusComp in the context of a business object, see “GetBusComp Method
for Business Objects” on page 450.

BusObject Method for Applets
The BusObject method returns the business object that the business component references. It uses
the following syntax:

Applet.BusObject()

For example:

Customizing Siebel Open UI for Siebel Mobile Disconnected ■ Methods You Can Use to
Customize Siebel Mobile Disconnected

Configuring Siebel Open UI Siebel 2018 429

SiebelApp.S_App.FindApplet(appletName).BusObject();

The BusObject method includes no arguments.

CanInvokeMethod Method
The CanInvokeMethod method determines whether or not Siebel Open UI can call a method. It
returns the following properties. If you use CanInvokeMethod, then you must configure it so that it
returns these properties:

■ Invoked. This property returns one of the following values:

■ true. Siebel Open UI examined the method.

■ false. Siebel Open UI did not examine the method.

■ RetVal. This property returns one of the following values:

■ true. Siebel Open UI can call the method.

■ false. Siebel Open UI cannot call the method.

The CanInvokeMethod method uses the following syntax:

Applet.CanInvokeMethod(methodName)

where:

■ methodName is a string that contains the name of the method that CanInvokeMethod examines.
CanInvokeMethod gets this string as a property that resides in an input property set.

For examples that use CanInvokeMethod, see the following topics:

■ Using Custom JavaScript Methods on page 393

■ Using Custom Siebel Business Services on page 396

■ Customizing Siebel Pharma for Siebel Mobile Disconnected Clients on page 403

■ Allowing Users to Return Parts on page 416

InvokeMethod Method for Applets
The InvokeMethod method calls a method. If you use InvokeMethod, then you must configure it so
that it returns a property set that includes one of the following values:

■ true. Siebel Open UI called the method.

■ false. Siebel Open UI did not call the method.

It uses the following syntax:

Applet.InvokeMethod(methodName);

where:

■ MethodName is the value of an input property that identifies the method that InvokeMethod calls.

Configuring Siebel Open UI Siebel 2018

Customizing Siebel Open UI for Siebel Mobile Disconnected ■ Methods You Can Use to
Customize Siebel Mobile Disconnected

430

For example, InvokeMethod in the following code calls the method that the value of the
svcMthdName variable contains:

Applet.InvokeMethod(svcMthdName);

For examples that use InvokeMethod, see “Using Custom JavaScript Methods” on page 393 and
“Allowing Users to Commit Part Tracker Records” on page 414.

Name Method for Applets
The Name method for an applet returns the name of an applet. It uses the following syntax:

Applet.Name()

For example:

SiebelApp.S_App.GetActiveView().GetActiveApplet().Name();

The Name method includes no arguments.

Methods You Can Use in the Business Component Class
This topic describes methods that you can use that reside in the Business Component class. It
includes the following information:

■ ActivateField Method on page 431

■ ActivateMultipleFields Method on page 432

■ Associate Method on page 434

■ ClearToQuery Method on page 434

■ CountRecords Method on page 435

■ DeactivateFields Method on page 436

■ DeleteRecord Method on page 436

■ ExecuteQuery Method on page 436

■ FirstRecord Method on page 437

■ GetAssocBusComp Method on page 437

■ GetFieldValue Method on page 438

■ GetLinkDef Method on page 439

■ GetLastErrCode Method for Business Components on page 439

■ GetLastErrText Method for Business Components on page 440

■ GetMultipleFieldValues Method on page 440

■ GetPicklistBusComp Method on page 441

■ GetSearchExpr Method on page 442

Customizing Siebel Open UI for Siebel Mobile Disconnected ■ Methods You Can Use to
Customize Siebel Mobile Disconnected

Configuring Siebel Open UI Siebel 2018 431

■ GetSearchSpec Method on page 443

■ GetUserProperty Method on page 443

■ GetViewMode Method on page 443

■ InvokeMethod for Business Components on page 443

■ Name Method for Business Components on page 444

■ NextRecord Method on page 444

■ ParentBusComp Method on page 444

■ Pick Method on page 444

■ RefreshBusComp Method on page 445

■ RefreshRecord Method on page 445

■ SetFieldValue Method on page 445

■ SetMultipleFieldValues Method on page 446

■ SetSearchSpec Method on page 447

■ SetViewMode Method on page 447

■ UndoRecord Method on page 448

■ UpdateRecord Method on page 448

■ WriteRecord Method on page 449

ActivateField Method
The ActivateField method activates a business component field. It returns nothing. It uses the
following syntax:

this.ActivateField(field_name);

bc.ActivateField("field_name");// calling from another JavaScript file

where:

■ field_name identifies the name of a business component field.

A field is inactive except in the following situations, by default:

■ The field is a system field, such as Id, Created, Created By, Updated, or Updated By.

■ The Force Active property of the field is TRUE.

■ The Link Specification property of the field is TRUE.

■ An active applet includes the field, and this applet references a business component that is
active.

■ The field resides in an active list applet, and the Show In List property of the list column that
displays this field in the applet is TRUE.

Note the following:

Configuring Siebel Open UI Siebel 2018

Customizing Siebel Open UI for Siebel Mobile Disconnected ■ Methods You Can Use to
Customize Siebel Mobile Disconnected

432

■ Siebel CRM calls the ActivateField method on the field, and then runs the ExecuteQuery method.

■ If Siebel CRM calls the ActivateField method after it calls the ExecuteQuery method, then the
ActivateField method deletes the query context.

■ The ActivateField method causes Siebel CRM to include the field in the SQL statement that the
ExecuteQuery method starts. If Siebel CRM activates a field, and if a statement in the
GetFieldValue method or the SetFieldValue method references the file before Siebel CRM
performs a statement from the ExecuteQuery method, then the activation has no effect.

Example The following example uses the ActivateField method to activate the Login Name field
that resides in the Contact business component:

var currRetValue={err:false}, retObj;

var model= SiebelApp.S_App.GetModel();

var boContact = model.GetBusObject("Contact");

var bcContact = boContact.GetBusComp("Contact");

bcContact.ClearToQuery();

currRetValue=bcContact.ActivateField("Login Name");

var sLoginName = "MYNAME";

bcContact.SetSearchSpec("Login Name", sLoginName);

retObj=currRetValue=bcContact.ExecuteQuery();

if (!retObj.err) {

 model.ReleaseBO(boContact);

}

ActivateMultipleFields Method
The ActivateMultipleFields method activates more than one field. It returns nothing. It uses the
following syntax:

BusComp.ActivateMultipleFields(SiebelPropertySet);

where:

■ SiebelPropertySet is a property set that identifies a collection of properties. These properties
identify the fields that Siebel CRM must activate.

Example 1 The following example uses the ActivateMultipleFields method to activate all the fields
that the property set contains, including the Account Products, Agreement Name, Project Name,
Description, and Name fields:

var ps = SiebelApp.S_App.NewPropertySet();

ps.setProperty("Account Products","");

Customizing Siebel Open UI for Siebel Mobile Disconnected ■ Methods You Can Use to
Customize Siebel Mobile Disconnected

Configuring Siebel Open UI Siebel 2018 433

ps.setProperty("Agreement Name","");

ps.setProperty("Project Name","");

ps.setProperty("Description","");

ps.setProperty("Name","");

BusComp.ActivateMultipleFields(ps);

Example 2 The following example in Siebel eScript queries the Contact business component and
returns the First Name and Last Name of the first contact that it finds:

var currRetValue={err:false}, retObj;

var model= SiebelApp.S_App.GetModel();

var ContactBC = model.GetBusObject("Contact");

var ContactBC = boContact.GetBusComp("Contact");

if (ContactBC)

 {

 var fieldsPS = SiebelApp.S_App.NewPropertySet();

 var valuesPS = SiebelApp.S_App.NewPropertySet();

 fieldsPS. SetProperty("Last Name", "");

 fieldsPS.SetProperty("First Name", "");

 ContactBC.ActivateMultipleFields(fieldsPS);

 ContactBC .ClearToQuery();

 currRetValue=ContactBC.ExecuteQuery();

 if (!retObj.err) {

 retObj=currRetValue=ContactBC.FirstRecord();

 if (!retObj.err) {

 ContactBC .GetMultipleFieldValues(fieldsPS, valuesPS);

 var slName = valuesPS.GetProperty("Last Name");

 var sfName = valuesPS.GetProperty("First Name");

 }

 }

}

return currRetValue;

Configuring Siebel Open UI Siebel 2018

Customizing Siebel Open UI for Siebel Mobile Disconnected ■ Methods You Can Use to
Customize Siebel Mobile Disconnected

434

Associate Method
The Associate method adds an association between the active record that resides in the child
association business component and the parent business component. You can customize or override
this method. It returns the retObj object with err set to one of the following values:

■ true. The Associate method successfully added the record.

■ false. The Associate method did not successfully add the record.

It uses the following syntax:

BusComp. Associate()

where:

■ BusComp identifies an instance of the child business component.

For example:

SiebelApp.S_App.FindApplet(appletName).BusComp().Associate();

It includes no arguments.

An association business component is a type of business component that includes an intertable. For
more information, see “GetAssocBusComp Method” on page 437.

ClearToQuery Method
The ClearToQuery method clears the current query. It returns nothing. It uses the following syntax:

BusComp.ClearToQuery();

It includes no arguments.

Note the following:

■ The ClearToQuery method does not clear the sort specification that Siebel Open UI defines in the
Sort Specification property of a business component.

■ You must use the ActivateField method to activate a field before you can use the ClearToQuery
method. For more information see “ActivateField Method” on page 431.

■ Any search specifications and sort specifications that Siebel Open UI sends to a business
component are cumulative. The business component performs an AND operation for the queries
that accumulate since the last time Siebel CRM performed the ClearToQuery method. An
exception to this configuration occurs if Siebel Open UI adds a new search specification to a field,
and if this field already includes a search specification. In this situation, the new search
specification replaces the old search specification.

Example The following example uses the ClearToQuery method:

var model= SiebelApp.S_App.GetModel();

var oEmpBusObj= model.GetBusObject("Employee");

var oEmpBusComp = oEmpBusObj.GetBusComp("Employee ");

Customizing Siebel Open UI for Siebel Mobile Disconnected ■ Methods You Can Use to
Customize Siebel Mobile Disconnected

Configuring Siebel Open UI Siebel 2018 435

var sLoginName;

oEmpBusComp.ClearToQuery();

oEmpBusComp.SetSearchSpec("Login Name", sLoginName);

oEmpBusComp.ExecuteQuery();

For another example usage of the ClearToQuery method, see “CountRecords Method”.

CountRecords Method
The CountRecords method returns the number of records that a business component contains
according to the search specification and query specification that Siebel Open UI runs on this
business component. It uses the following syntax:

BusComp.CountRecords();

It includes no arguments.

Example The following example uses the CountRecords method:

var currRetValue={err:false}, retObj;

var model= SiebelApp.S_App.GetModel();

var bo = model.GetBusObject("Opportunity ");

var bc = bo.GetBusComp("Opportunity");

if (bc)

 {

 bc .ClearToQuery();

 bc .SetSearchSpec ("Name", "A");

 retObj=currRetValue=bc.ExecuteQuery();

 if (!retObj.err) {

 var count = bc .CountRecords();

 currRetValue={err:false,retVal:count};

 }

 }

return currRetValue;

For more information, see “ClearToQuery Method” on page 434.

Configuring Siebel Open UI Siebel 2018

Customizing Siebel Open UI for Siebel Mobile Disconnected ■ Methods You Can Use to
Customize Siebel Mobile Disconnected

436

DeactivateFields Method
The DeactivateFields method deactivates fields from the SQL query statement of a business
component. It deactivates fields that are currently active. DeactivateFields applies this behavior
except in the following situations:

■ The Force Active property is TRUE.

■ A link requires the field to remain active.

■ A business component class requires the field to remain active.

The DeactivateFields method returns nothing.

It uses the following syntax:

BusComp.DeactivateFields()

For example:

SiebelApp.S_App.FindApplet(appletName).BusComp().DeactivateFields();

It includes no arguments.

You must use the ActivateField method to activate a field before you configure Siebel Open UI to
perform a query for a business component. After Siebel Open UI deactivates a field, you must
configure it to query the business component again or the Siebel application fails.

DeleteRecord Method
The DeleteRecord method deletes the current record from the local database. It returns one of the
following values:

■ error:false. DeleteRecord deleted the record.

■ error:true. DeleteRecord did not delete the record.

It uses the following syntax:

ExecuteQuery Method
The ExecuteQuery method runs a query according to the current value of the Search Specification
property, the current value of the Sort Specification property, or according to both of these
properties. The business component contains these properties. ExecuteQuery runs this query on the
local database. It returns one of the following values:

■ If an error occurs, then it returns err with an error message. For example:

{err: "Error Message",retVal: ""}

■ If an error does not occur, then it returns an empty err message. For example:

{err: "",retVal: ""}

It uses the following syntax:

busComp.ExecuteQuery();

Customizing Siebel Open UI for Siebel Mobile Disconnected ■ Methods You Can Use to
Customize Siebel Mobile Disconnected

Configuring Siebel Open UI Siebel 2018 437

where:

■ busComp identifies the business component that ExecuteQuery uses to get the search
specification or sort specification. You can use busComp as a literal or a variable. For more
information, see “How This Book Indicates Code That You Can Use as a Variable and Literal” on
page 25.

FirstRecord Method
The FirstRecord method moves the record pointer to the first record in a business component,
making this record the current record. It uses the following syntax:

BusComp.FirstRecord();

For example:

SiebelApp.S_App.FindApplet(appletName).BusComp().FirstRecord();

GetAssocBusComp Method
The GetAssocBusComp method returns an instance of the association business component. It uses
the following syntax:

BusComp.GetAssocBusComp();

It includes no arguments.

For more information, see “Associate Method” on page 434.

You can use an association business component to manipulate an association. You can use the
GetAssocBusComp method and the Associate method only with a many-to-many relationship that
uses an intersection table. For example, with accounts and contacts.

Note the following:

■ To associate a new record, you add it to the child business component.

■ To add a record, you use the GetAssocBusComp method and the Associate method.

If a many-to-many link exists, and if Siebel CRM defines an association applet for the child applet,
then you can use the GetAssocBusComp method with the child business component of a parent-child
view.

Example of Using the GetAssocBusComp Method The following example associates a
contact that includes the ContactID Id with an account that includes the AccountId Id:

var currRetValue={err:false}, retObj;

var Model =SiebelApp.S_App.GetModel()

varaccount BO = Model.GetBusObj("Account");

var accountBC = accountBO.GetBusComp("Account");

var contactBC = accountBO.GetBusComp("Contact");

Configuring Siebel Open UI Siebel 2018

Customizing Siebel Open UI for Siebel Mobile Disconnected ■ Methods You Can Use to
Customize Siebel Mobile Disconnected

438

accountBC.SetSearchSpec("Id",[AccountId]);

currRetValue=accountBC.ExecuteQuery ();

currRetValue=accountBC.FirstRecord();// positions on the account record

currRetValue=contactBC.ExecuteQuery ();

currRetValue=contactBC.FirstRecord();

var assocBC = contactBC.GetAssocBusComp();

assocBC.SetSearchSpec("Id",[ContactID]);

currRetValue=assocBC. ExecuteQuery ();

currRetValue=assocBC.FirstRecord();// positions on the contactbc

currRetValue=contactBC.Associate(); // adds the association

 GetFieldValue Method
The GetFieldValue method returns the value of a field for the current record or for the record object
that Siebel Open UI examines. It uses the following syntax:

Buscomp.GetFieldValue("field_name",pRecord)

where:

■ field_name is a string that contains the name of a field. Siebel Open UI returns the value that
this field contains.

■ pRecord is an optional argument that returns the entire record that Siebel Open UI examines. If
you do not specify pRecord, or if it is empty, then GetFieldValue returns only a value in
field_name of the active record.

For example, the following code returns the value of the Account Name field from the current record
of the business component:

Buscomp.GetFieldValue "Account Name")

For another example, the following code returns the field value of the Account Name field. A business
component can include more than one record, but only one of these records is the active record. You
can use pRecord to get the value of a field from a record that is not the active record:

Buscomp.GetFieldValue("Account Name",recordObject)

The GetFieldValue method returns an object that includes an error code and a return value. For more
information, see “Configuring Error Messages for Disconnected Clients” on page 400 and “SetErrorMsg
Method” on page 459.

For more examples that use the GetFieldValue method, see the following topics:

■ Customizing Siebel Pharma for Siebel Mobile Disconnected Clients on page 403

■ Allowing Users to Commit Part Tracker Records on page 414

Customizing Siebel Open UI for Siebel Mobile Disconnected ■ Methods You Can Use to
Customize Siebel Mobile Disconnected

Configuring Siebel Open UI Siebel 2018 439

■ Allowing Users to Return Parts on page 416

You can configure Siebel Open UI to override the GetFieldValue method.

GetLinkDef Method
The GetLinkDef method returns the link definition of the child business component. This business
component is the child in the parent and child relationship of a link. It returns this definition after
Siebel Open UI processes data for the child business component. This definition includes values for
the following properties:

■ Name

■ RecordNum

■ childBusCompName

■ destFieldName

■ interChildColName

■ interParentColName

■ interTableName

■ parentBusCompName

■ primeIdFieldName

■ searchSpec

■ sortSpec

■ srcFieldName

■ NoDelete

■ NoInsert

■ NointerDelete

■ NoUpdate

■ SrcFieldValue

If the value of a property is empty, then GetLinkDef does not return this property in the return object.

The GetLinkDef method uses the following syntax:

linkdef = busComp.GetLinkDef();

var sourcefieldName = linkdef.srcFieldName;

GetLastErrCode Method for Business Components
The GetLastErrCode method returns the error code for the most recent error that the disconnected
client logged. It uses the following syntax:

BusComp.GetLastErrCode()

Configuring Siebel Open UI Siebel 2018

Customizing Siebel Open UI for Siebel Mobile Disconnected ■ Methods You Can Use to
Customize Siebel Mobile Disconnected

440

For example:

SiebelApp.S_App.FindApplet(appletName).BusComp().GetLastErrCode();

This method includes no arguments.

The error code that this method returns is a short integer. An error code of 0 (zero) indicates no error
occurred.

GetLastErrText Method for Business Components
The GetLastErrText method returns a string that contains the text message for the most recent error
that the disconnected client logged. It uses the following syntax:

BusComp.GetLastErrText()

For example:

ActiveBusObject().GetLastErrText();

This method includes no arguments.

GetMultipleFieldValues Method
The GetMultipleFieldValues method returns a value for each field that a property set specifies. It uses
the following syntax:

BusComp.GetMultipleFieldValues(fieldNamesPropSet, fieldValuesPropSet)

where:

■ fieldNamesPropSet is a property set that identifies a collection of fields.

■ fieldValuesPropSet is a property set that includes values for the fields that the
fieldNamesPropSet argument specifies.

If an error occurs, then GetMultipleFieldValues returns err with an error message. For example:

{err: "Error Message",retVal: ""}

If an error does not occur, then GetMultipleFieldValues returns an empty err message. For example:

{err: "",retVal: ""}

You cannot use the same instance of a property set for the fieldNamesPropSet argument and for the
fieldValuesPropSet argument.

Example of Using the GetMultipleFieldValues Method The following example uses the
GetMultipleFieldValues method:

var oPsDR_Header = SiebelApp.S_App.NewPropertySet();

// Cannot use the same property set in GetMultipleFieldValues, must use a

// different one for the values. The process will not error, but Siebel Open UI

Customizing Siebel Open UI for Siebel Mobile Disconnected ■ Methods You Can Use to
Customize Siebel Mobile Disconnected

Configuring Siebel Open UI Siebel 2018 441

// will not place the values in the property set.

var lPS_values = SiebelApp.S_App.NewPropertySet();

oPsDR_Header.SetProperty("Last Name","");

oPsDR_Header.SetProperty("First Name","");

oPsDR_Header.SetProperty("Middle Name","");

var currRetValue={err:false}, retObj;

var model= SiebelApp.S_App.GetModel();

var boContact = model.GetBusObject("Contact");

var bcContact = boContact.GetBusComp("Contact");

bcContact.ActivateMultipleFields(oPsDR_Header);

bcContact.SetSearchSpec("Last Name", "Mead*");

currRetValue=ExecuteQuery();

currRetValue=FirstRecord();

// Use a different property set for the values. If you use the same one

// for arguments you get no values back.

currRetValue=GetMultipleFieldValues(oPsDR_Header, lPS_values);

// Get the value from the output property set.

SiebelJS.Log("FullName is " +lPS_values.GetProperty("First Name") +
lPS_values.GetProperty("Middle Name")+ lPS_values.GetProperty("Last Name"));

GetPicklistBusComp Method
The GetPicklistBusComp method returns a pick business component that Siebel CRM associates with
a field that resides in the current business component. If no picklist is associated with this field, then
this method returns an error. It uses the following syntax:

BusComp.GetPicklistBusComp(FieldName)

You can use the GetPicklistBusComp method to manipulate a picklist, and you can use the name of
the pick business component that the GetPicklistBusComp method returns.

How Siebel Open UI Uses the GetPickListBusComp Method With Constrained
Picklists If Siebel CRM uses the GetPickListBusComp method or the Pick method to pick a record
that resides in a constrained picklist, then the constraint is active. The pick business component that
these methods return contains only the records that meet the constraint.

Configuring Siebel Open UI to Pick a Value from a Picklist This topic describes how to
configure Siebel Open UI to pick a value from a picklist.

Configuring Siebel Open UI Siebel 2018

Customizing Siebel Open UI for Siebel Mobile Disconnected ■ Methods You Can Use to
Customize Siebel Mobile Disconnected

442

To configure Siebel Open UI to pick a value from a picklist
1 Use a JavaScript editor to open the JavaScript file that you must modify. This file resides on the

client.

2 Add code that uses the Pick method to pick the value.

For example, add the following code to the method that Siebel Open UI uses to register the
service:

retObj=currRetValue=this.GetFieldValue("City")

if(retObj.retVal === "San Mateo")

{

 var oBCPick = this.GetPicklistBusComp("State");

 oBCPick.SetSearchSpec("Value", "CA");

 oretObj=currRetValue=oBCPick.ExecuteQuery(ForwardOnly);

 retObj=currRetValue=oBCPick.FirstRecord();

 if(oBCPick.CheckActiveRow()){

 oBCPick.Pick();

 }

}

This code configures Siebel Open UI to use the GetPicklistBusComp method to create an instance
of the picklist business component. For more information, see “Pick Method” on page 444.

GetSearchExpr Method
The GetSearchExpr method returns a string that contains the current search expression that Siebel
Open UI defines for a business component. The following search expression is an example of a string
that GetSearchExpr might return:

[Revenue] > 10000 AND [Probability] > .5

The GetSearchExpr method uses the following syntax:

BusComp.GetSearchExpr();

For example:

SiebelApp.S_App.FindApplet(appletName).BusComp().GetSearchExpr();

The GetSearchExpr method includes no arguments.

If an instance of the business component does not exist, then the GetSearchExpr method returns
nothing.

Customizing Siebel Open UI for Siebel Mobile Disconnected ■ Methods You Can Use to
Customize Siebel Mobile Disconnected

Configuring Siebel Open UI Siebel 2018 443

GetSearchSpec Method
The GetSearchSpec method returns a string that contains the search specification that Siebel Open
UI defines for a business component field in. For example, it might return the following search
specification:

> 10000

The GetSearchSpec method uses the following syntax:

BusComp.GetSearchSpec(FieldName);

For example:

SiebelApp.S_App.FindApplet(appletName).BusComp().GetSearchSpec (FieldName);

GetUserProperty Method
The GetUserProperty method gets the value of a business component user property. It uses the
following syntax:

BusComp.GetUserProperty(business_component_user_property)

where:

■ business_component_user_property is a string that identifies the name of a business component
user property.

For example, the following code gets the value of the Deep Copy business component user property:

SiebelApp.S_App.FindApplet(appletName).BusComp().GetUserProperty ("Deep Copy");

GetViewMode Method
The GetViewMode method returns a Siebel ViewMode constant or the corresponding integer value for
this constant. This constant identifies the current visibility mode of a business component. This mode
determines the records that a query returns according to the visibility rules.

The GetViewMode method uses the following syntax:

BusComp. GetViewMode()

It includes no arguments.

For example:

SiebelApp.S_App.FindApplet(appletName).BusComp().GetViewMode();

InvokeMethod for Business Components
The InvokeMethod method that you can use with business components works the same as the
InvokeMethod method that you can use with applets. For more information about the InvokeMethod
method that you can use with applets, see “InvokeMethod Method for Applets” on page 429.

Configuring Siebel Open UI Siebel 2018

Customizing Siebel Open UI for Siebel Mobile Disconnected ■ Methods You Can Use to
Customize Siebel Mobile Disconnected

444

Name Method for Business Components
The Name method returns the name of a business component. It uses the following syntax:

SiebelApp.S_App.FindApplet(appletName).BusComp()

It includes no arguments.

NextRecord Method
The NextRecord method moves the record pointer to the next record that the business component
contains, making this next record the current record. It adds the next record that the current search
specification and sort specification identifies, and then sets the active row to this record. It adds this
record to the current set of records. It does this work only if the current set of records does not
already contain this next record. It returns this next record. It uses the following syntax:

BusComp.NextRecord()

For example:

SiebelApp.S_App.FindApplet(appletName).BusComp().NextRecord();

It includes no arguments.

ParentBusComp Method
The ParentBusComp method returns the parent business component of a business component. It
uses the following syntax:

BusComp. ParentBusComp()

It includes no arguments.

For example:

SiebelApp.S_App.FindApplet(appletName).BusComp().ParentBuscomp()

Pick Method
The Pick method places the currently chosen record that resides in a pick business component into
the appropriate fields of the parent business component. It uses the following syntax:

BusComp.Pick()

The Pick method includes no arguments.

You cannot use the Pick method to modify the record in a picklist field that is read-only.

For usage information, see “Configuring Siebel Open UI to Pick a Value from a Picklist” on page 441.
For more information about pick business component, see Configuring Siebel Business Applications.

Customizing Siebel Open UI for Siebel Mobile Disconnected ■ Methods You Can Use to
Customize Siebel Mobile Disconnected

Configuring Siebel Open UI Siebel 2018 445

RefreshBusComp Method
The RefreshBusComp method runs the current query again for a business component and makes the
record that was previously active the active record. The user can view the updated view, but the
same record remains highlighted in the same position in the list applet. This method returns nothing.

It uses the following syntax:

BusComp.InvokeMethod("RefreshBusComp")

For example:

currRetValue=buscomp.InvokeMethod("RefreshBusComp");

retObj=currRetValue;

if (!retObj.err){)

It includes no arguments.

RefreshRecord Method
The RefreshRecord method updates the currently highlighted record and the business component
fields in the Siebel client. It positions the cursor on the highlighted record. It does not update other
records that are currently available in the client. This method returns nothing.

It uses the following syntax:

BusComp.InvokeMethod("RefreshRecord ")

For example:

currRetValue=buscomp.InvokeMethod("RefreshRecord");

retObj=currRetValue;

if (!retObj.err){ }

It includes no arguments.

SetFieldValue Method
The SetFieldValue method sets a field value in a record. It returns one of the following values
depending on whether it successfully set the field value:

■ Successfully set the field value. Returns an empty error code.

■ Did not successfully set the field value. Returns an error code.

It uses following syntax.

SetFieldValue(fieldName, fieldValue);

where:

■ fieldName is a string that contains the name of the field that SetFieldValue updates.

Configuring Siebel Open UI Siebel 2018

Customizing Siebel Open UI for Siebel Mobile Disconnected ■ Methods You Can Use to
Customize Siebel Mobile Disconnected

446

■ fieldValue is a string that contains the value that SetFieldValue uses to update the field.

For examples that use the SetFieldValue method, see the following topics:

■ Registering Methods to Make Sure Siebel Open UI Runs Them in the Correct Sequence on page 387

■ Customizing Siebel Pharma for Siebel Mobile Disconnected Clients on page 403

■ Allowing Users to Commit Part Tracker Records on page 414

■ Allowing Users to Return Parts on page 416

■ Allowing Users to Set the Activity Status on page 424

SetMultipleFieldValues Method
The SetMultipleFieldValues method sets new values in the fields of the current record of a business
component. It uses the following syntax:

BusComp.SetMultipleFieldValues (oPropertySet)

The FieldName argument that the property set contains must match the field name that Siebel Tools
displays. This match must be exact, including upper and lower case characters.

In the following example, the FieldName is Name and the FieldValue is Acme:

oPropertySet.SetProperty ("Name","Acme")

Note the following:

■ If an error occurs in the values of any of fields that the property set specifies, then Siebel Open
UI stops the process it is currently running.

■ You can use the SetMultipleFieldValues method only on a field that is active.

■ You must not use the SetMultipleFieldValues method on a field that uses a picklist.

Example The following example in Siebel eScript uses the SetMultipleFieldValues method to set
the values for all fields that the property set identifies, including the Name, Account, and Sales
Stage:

var currRetValue={err:false}, retObj;

varmodel = SiebelApp.S_App.GetModel();

var bo = model.GetBusObj("Opportunity");

var bc = bo.GetBusComp("Opportunity");

var ps =SiebelApp.S_App.NewPropertySet();

ps.SetProperty ("Name", "Call Center Opportunity");

ps.SetProperty ("Account", "Marriott International");

ps.SetProperty ("Sales Stage", "2-Qualified");

bc.ActivateMultipleFields(ps);

Customizing Siebel Open UI for Siebel Mobile Disconnected ■ Methods You Can Use to
Customize Siebel Mobile Disconnected

Configuring Siebel Open UI Siebel 2018 447

currRetValue=bc.NewRecord();

currRetValue=bc.SetMultipleFieldValues(ps);

ps = null;

currRetValue=bc.WriteRecord();

SetSearchSpec Method
The SetSearchSpec method sets the search specification for a business component. It returns
nothing. It uses the following syntax:

BusComp.SetSearchSpec(FieldName,searchSpec);

For example:

SiebelApp.S_App.FindApplet(appletName).BusComp().SetSearchSpec("Id", strCallId);

where:

■ FieldName is a string that identifies the name of the field where Siebel Open UI sets the search
specification.

■ searchSpec is a string that contains the search specification.

You must configure Siebel Open UI to call the SetSearchSpec method before it calls the ExecuteQuery
method. To avoid an unexpected compound search specification on a business component, it is
recommended that you configure Siebel Open UI to call the ClearToQuery method before it calls the
SetSearchSpec method.

SetViewMode Method
The SetViewMode method sets the visibility type for a business component. It returns nothing. It
uses the following syntax:

BusComp.SetViewMode(inMode);

where:

■ inMode identifies the view mode. It contains one of the following integers:

■ 0. Sales Representative.

■ 1. Manager.

■ 2. Personal.

■ 3. All.

■ 4. None.

■ 5. Organization.

■ 6. Contact.

For example:

Configuring Siebel Open UI Siebel 2018

Customizing Siebel Open UI for Siebel Mobile Disconnected ■ Methods You Can Use to
Customize Siebel Mobile Disconnected

448

SiebelApp.S_App.FindApplet(appletName).BusComp().SetViewMode(inMode);

UndoRecord Method
The UndoRecord method reverses any unsaved modifications that the user makes on a record. This
includes reversing unsaved modifications to fields, and deleting an active record that is not saved.
It returns one of the following values:

■ true. UndoRecord successfully deleted the record.

■ false. UndoRecord did not successfully delete the record.

It uses the following syntax:

BusComp.UndoRecord();

It includes no arguments.

For example:

SiebelApp.S_App.FindApplet(appletName).BusComp().UndoRecord();

You can use the UndoRecord method in the following ways:

■ To delete a new record. Use it after Siebel CRM calls the NewRecord method and before it saves
the new record to the Siebel database.

■ To reverse modifications that the user makes to field values. Use it before Siebel CRM uses the
WriteRecord method to save these changes, or before the user steps off the record.

UpdateRecord Method
The UpdateRecord method places the current record in the commit pending state so that Siebel Open
UI can modify it. It returns the retObj object with retVal set to one of the following values:

■ true. The UpdateRecord method successfully placed the current record in the commit pending
state.

■ false. The UpdateRecord method did not successfully place the current record in the commit
pending state.

It uses the following syntax:

this.UpdateRecord();

where:

■ this identifies a business component instance.

For example, the following code calls the CanUpdate method. If CanUpdate indicates that Siebel
Open UI can update the active row, then this code places the current record in the commit pending
state for the business component that this specifies:

 this. UpdateRecord(false)

The UpdateRecord method can run in a Siebel Mobile disconnected client.

Customizing Siebel Open UI for Siebel Mobile Disconnected ■ Methods You Can Use to
Customize Siebel Mobile Disconnected

Configuring Siebel Open UI Siebel 2018 449

For more information, see “CanUpdate Method” on page 482.

WriteRecord Method
The WriteRecord method writes any modifications that the user makes to the current record. If you
use this method with:

■ A connected client. WriteRecord writes these modifications to the Siebel Database that resides
on the Siebel Server.

■ Siebel Mobile disconnected.

■ WriteRecord writes these modifications to the local database that resides on the client.

The WriteRecord method returns one of the following values:

■ error:false. WriteRecord successfully wrote the modifications to the local database.

■ error:true. WriteRecord did not successfully write the modifications to the local database.

The WriteRecord method uses the following syntax:

buscomp.writerecord(bAddSyncQ)

where:

■ bAddSyncQ is an optional argument that specifies to synchronize the modification that
WriteRecord makes to the Siebel Server. You can set this argument to one of the following values:

■ true. Siebel Open UI synchronizes the modification. This is the default setting.

■ false. Siebel Open UI does not synchronize the modification.

For examples that use the WriteRecord method, see the following topics:

■ Registering Methods to Make Sure Siebel Open UI Runs Them in the Correct Sequence on page 387

■ Customizing Predefined Business Components on page 388

■ Customizing Siebel Pharma for Siebel Mobile Disconnected Clients on page 403

■ Allowing Users to Commit Part Tracker Records on page 414

Example You must first configure Siebel Open UI to create new records and set values for fields.
You can then use the following code to call the WriteRecord method to save the new record to the
offline database:

var currRetValue={err:false}, retObj;

var model= SiebelApp.S_App.GetModel();

var bo = model.GetBusObject("Opportunity ");

var bc = bo.GetBusComp("Opportunity");

varstrDEANumber = 9089;

var strDEAExpDate = 02/12/2013;

Configuring Siebel Open UI Siebel 2018

Customizing Siebel Open UI for Siebel Mobile Disconnected ■ Methods You Can Use to
Customize Siebel Mobile Disconnected

450

currRetValue=bc.SetFieldValue("DEA#", strDEANumber);

retObj=currRetValue;

if (!retObj.err) {

 currRetValue=bc.SetFieldValue("DEA Expiry Date", strDEAExpDate);

 retObj=currRetValue;

 if (!retObj.err) {

 currRetValue=bc.SetFieldValue("DEA Expiry Date", strDEAExpDate);

 retObj=currRetValue;

 if (!retObj.err) {

 currRetValue=bc.WriteRecord();

 }

 }

}

Methods You Can Use in the Business Object Class
This topic describes methods that you can use that reside in the Business Object class. It includes
the following information:

■ GetBusComp Method for Business Objects

■ GetLastErrCode Method for Business Objects on page 451

■ GetLastErrText Method for Business Objects on page 451

■ Name Method for Business Objects on page 451

GetBusComp Method for Business Objects
The GetBusComp method returns the business component instance that a business object
references. It uses the following syntax:

SiebelApp.S_App.Model.GetBusObj(business_object).GetBusComp(business_component)

where:

■ business_object identifies the name of a business object.

■ business_component identifies the name of a business component.

Each view references a business object, and each business object references one or more business
components. If you configure Siebel Open UI to call GetBusComp in the context of a business object,
then you must do the following:

Customizing Siebel Open UI for Siebel Mobile Disconnected ■ Methods You Can Use to
Customize Siebel Mobile Disconnected

Configuring Siebel Open UI Siebel 2018 451

■ use the business_object argument to specify the name of the business object that the view
references.

■ use the business_component argument to specify the name of a business component that the
business object references.

For example, the following code gets the business component instance for the Order Entry - Orders
business component that the Service Request business object references:

SiebelApp.S_App.Model.GetBusObj("ServiceRequest").GetBusComp("Order Entry -
Orders")

For information about using BusComp in the context of an applet, see “BusComp Method for Applets”
on page 428. For more information about views, business objects, and business components, and
how they reference each other, see Configuring Siebel Business Applications.

GetLastErrCode Method for Business Objects
The GetLastErrCode method returns the error code for the most recent error that the disconnected
client logged. It uses the following syntax:

BusObj.GetLastErrCode()

For example:

ActiveBusObject().GetLastErrCode();

This method includes no arguments.

The error code that this method returns is a short integer. An error code of 0 (zero) indicates no error
occurred.

GetLastErrText Method for Business Objects
The GetLastErrText method returns a string that contains the text message for the most recent error
that the disconnected client logged. It uses the following syntax:

BusObj.GetLastErrText()

For example:

ActiveBusObject().GetLastErrText();

This method includes no arguments.

Name Method for Business Objects
The Name method returns the name of a business object. It uses the following syntax:

BusObject.Name();

This method includes no arguments.

Configuring Siebel Open UI Siebel 2018

Customizing Siebel Open UI for Siebel Mobile Disconnected ■ Methods You Can Use to
Customize Siebel Mobile Disconnected

452

Methods You Can Use in the Business Service Class
This topic describes methods that you can use that reside in the Business Service class. It includes
the following information:

■ Invoke Method for Business Services

■ ServiceRegistry Method

Invoke Method for Business Services
The Invoke method that you can use with a business service calls the CanInvokeMethod business
service and the InvokeMethod business service. It returns a property set. It uses following syntax:

service.Invoke(method_name, psPropertySet);

where:

■ method_name is a string that identifies the business service method that the Invoke method
calls. The Invoke method also calls the following methods:

■ CanInvokeMethod. Determines whether or not Siebel Open UI can call the business service
method that method_name identifies. Any custom business service file you create must
include the CanInvokeMethod business service method.

■ InvokeMethod. Calls the business service method that method_name identifies. Any
custom business service file you create must include the InvokeMethod business service
method.

For more information about using these methods, see “Using Siebel Business Services or
JavaScript Services to Customize Siebel CRM Objects” on page 388.

■ psPropertySet is a property set that the Invoke method sends to the method that method_name
identifies.

The following example calls the CanAddSample method of the LS Pharma Validation Service business
service:

var service = SiebelApp.S_App.GetService("LS Pharma Validation Service");

var outputSet = service.Invoke("CanAddSample", psPropertySet);

For an example that uses the Invoke method with a business service, see “Using Custom Siebel
Business Services” on page 396.

ServiceRegistry Method
The ServiceRegistry method registers a custom business service method that you define. You must
use it any time that you configure Siebel Open UI to call a custom business service method. It returns
one of the following values:

■ true. Siebel Open UI successfully registered the method.

■ false. Siebel Open UI did not successfully register the method.

It uses following syntax:

Customizing Siebel Open UI for Siebel Mobile Disconnected ■ Methods You Can Use to
Customize Siebel Mobile Disconnected

Configuring Siebel Open UI Siebel 2018 453

SiebelApp.S_App.GetModel().ServiceRegistry(inputObj);

where:

■ inputObj is an object that specifies a set of properties, where each property specifies a name
and a value. The number of properties varies according to object type. For a list of properties
that you can use, see “Properties You Must Include to Register Custom Business Services” on
page 453. The inputObj argument uses the following syntax:

inputObj [oconsts.get("name")] = "value";

where:

■ name specifies the property name

■ value specifies the property value

For example, the following code specifies the DOUIREG_OBJ_NAME property with a value of
Pharma Call Entry Mobile:

inputObj [oconsts.get("DOUIREG_OBJ_NAME")] = "Pharma Call Entry Mobile";

The following code specifies the property name:

oconsts.get("DOUIREG_OBJ_NAME")

Siebel Open UI registers a method for a custom service when it loads the script files that it uses for
this custom service. This configuration makes sure that Siebel Open UI calls the ServiceRegistry
method from the correct location in the code. To view this code in the context of a complete example,
see “Using Custom JavaScript Methods” on page 393.

Properties You Must Include to Register Custom Business Services Table 32 describes
the properties that you must include in the inputObj argument of the ServiceRegistry method when
Siebel Open UI registers a custom business service. The local constants.js file defines each of these
properties as a constant.

Table 32. Properties You Must Include to Register Custom Business Services

Properties Value

DOUIREG_OBJ_NAME The name of a custom business service. For example:

LS Pharma Validation Service

DOUIREG_SRVC_NAME The name of the JavaScript class that the custom business
service references. For example:

PharmaCallValidatorsvc

Configuring Siebel Open UI Siebel 2018

Customizing Siebel Open UI for Siebel Mobile Disconnected ■ Methods You Can Use to
Customize Siebel Mobile Disconnected

454

Table 33 describes the properties you must include in the inputObj argument of the ServiceRegistery
method when Siebel Open UI registers a custom business service that references a predefined applet
or a predefined business component.

Methods You Can Use in the Application Class
This topic describes methods that you can use that reside in the Application class. It includes the
following information:

■ ActiveBusObject Method on page 455

■ ActiveViewName Method on page 455

■ CurrencyCode Method on page 455

■ FindApplet Method on page 456

■ GetBusObject Method on page 456

Table 33. Required Input Properties for Custom Business Services That Reference Predefined
Applets or Business Components

Property Value

DOUIREG_OBJ_TYPE Specifies that this business service method references an applet or a
business component. You must use one of the following values:

■ Use DOUIREG_OBJ_TYPEAPPLET for an applet.

■ Use DOUIREG_OBJ_TYPEBUSCOMP for a business component.

DOUIREG_OBJ_MTHD Name of the predefined business service method that you must
customize. For example, WriteRecord.

DOUIREG_SRVC_NAME The name of the JavaScript class that the Class property of the
business service method references. For example:

pharmacallsvc

DOUIREG_SRVC_MTDH Name of the business service method that you customized. For
example, WriteRecord.

DOUIREG_EXT_TYPE You can use one of the following values:

■ DOUIREG_EXT_TYPEPRE. Siebel Open UI runs the custom
business service method, and then runs the predefined business
service method. You must configure Siebel Open UI to set the
Invoked property to true after it processes
DOUIREG_EXT_TYPEPRE so that it does not make any more calls
to this method.

■ DOUIREG_EXT_TYPEPOST. Siebel Open UI runs the predefined
business service method, and then runs the custom business
service method.

Customizing Siebel Open UI for Siebel Mobile Disconnected ■ Methods You Can Use to
Customize Siebel Mobile Disconnected

Configuring Siebel Open UI Siebel 2018 455

■ GetLastErrCode Method for Applications on page 456

■ GetLastErrText Method for Applications on page 456

■ GetService Method on page 457

■ LoginId Method on page 457

■ LoginName Method on page 457

■ Name Method for Applications on page 457

■ NewPropertySet Method on page 458

■ PositionId Method on page 458

■ PositionName Method on page 458

ActiveBusObject Method
The ActiveBusObject method returns the business object that the active view references. It uses the
following syntax:

Application. ActiveBusObject()

It includes no arguments.

For example:

SiebelApp.S_App.ActiveBusObject();

ActiveViewName Method
The ActiveViewName method returns the name of the active view. It uses the following syntax:

Application. ActiveViewName()

It includes no arguments.

For example:

SiebelApp.S_App. ActiveViewName();

CurrencyCode Method
The CurrencyCode method returns the currency code that Siebel CRM associates with the division of
the user position. For example, USD for U.S. dollars, EUR for the euro, or JPY for the Japanese yen.
It uses the following syntax:

Application. CurrencyCode()

It includes no arguments.

For example:

SiebelApp.S_App. CurrencyCode();

Configuring Siebel Open UI Siebel 2018

Customizing Siebel Open UI for Siebel Mobile Disconnected ■ Methods You Can Use to
Customize Siebel Mobile Disconnected

456

FindApplet Method
The FindApplet method returns the active applet. It uses the following syntax:

Application. FindApplet(appletName)

where:

■ appletName is a string that contains the name of the active applet.

For example, if the Contact List Applet is the current applet, then the appletName variable in the
following code returns the name of this applet as a string:

SiebelApp.S_App.FindApplet(appletName);

GetBusObject Method
The GetBusObject method creates a new instance of a business object. It returns this new business
object instance. It is not synchronous. It uses the following syntax:

Application. GetBusObject(business_object_name)

where:

■ business_object_name is a string that identifies the name of a business object

For example, the following code creates a new instance of the Opportunity business object:

SiebelApp.S_App. GetBusObject(Opportunity);

GetLastErrCode Method for Applications
The GetLastErrCode method returns the error code for the most recent error that the disconnected
client logged. It uses the following syntax:

Application.GetLastErrCode()

For example:

TheApplication().GetLastErrCode();

This method includes no arguments.

The error code that this method returns is a short integer. An error code of 0 (zero) indicates no error
occurred.

GetLastErrText Method for Applications
The GetLastErrText method returns a string that contains the text message for the most recent error
that the disconnected client logged. It uses the following syntax:

Application.GetLastErrText()

For example:

TheApplication().GetLastErrText();

Customizing Siebel Open UI for Siebel Mobile Disconnected ■ Methods You Can Use to
Customize Siebel Mobile Disconnected

Configuring Siebel Open UI Siebel 2018 457

This method includes no arguments.

GetService Method
The GetService method creates an instance of a business service object. It allows you to use the
Invoke method to call this business service object. It uses the following syntax:

SiebelApp.S_App.GetService("business_service_name");

where:

■ business_service_name is a string that identifies the name of the business service that
GetService uses to create the business service object. You must use the same name that you use
when you register this business service. For more information about registering a business
service, and for an example that uses the GetService method, see “Using Custom Siebel Business
Services” on page 396.

The following example creates a business service instance of the LS Pharma Validation Service
business service:

var service = SiebelApp.S_App.GetService("LS Pharma Validation Service");

LoginId Method
The LoginId method returns the login ID of the user who started the Siebel application. It uses the
following syntax:

Application. LoginId()

It includes no arguments.

For example:

SiebelApp.S_App. LoginId();

LoginName Method
The LoginName method returns the login name of the user who started the Siebel application. This
login name is the name that the user enters in the login dialog box. It uses the following syntax:

Application. LoginName()

It includes no arguments.

For example:

SiebelApp.S_App. LoginName();

Name Method for Applications
The Name method returns the name of the Siebel application. It uses the following syntax:

Application. Name()

Configuring Siebel Open UI Siebel 2018

Customizing Siebel Open UI for Siebel Mobile Disconnected ■ Methods You Can Use to
Customize Siebel Mobile Disconnected

458

It includes no arguments.

For example:

SiebelApp.S_App. Name();

NewPropertySet Method
The NewPropertySet method creates a new property set, and then returns this property set to the
code that called this method. It uses the following syntax:

Application. NewPropertySet()

It includes no arguments.

For example:

SiebelApp.S_App. NewPropertySet();

PositionId Method
The PositionId method returns the position ID of the user position. This position ID is the ROW_ID
from the S_POSTN table. Siebel CRM sets this value when the Siebel application starts, by default.
It uses the following syntax:

Application. PositionId()

It includes no arguments.

For example:

SiebelApp.S_App. PositionId();

PositionName Method
The PositionName method returns the name of the current user position. Siebel CRM sets this value
when it starts the Siebel application, by default. It uses the following syntax:

Application. PositionName()

It includes no arguments.

For example:

SiebelApp.S_App. PositionName();

Methods You Can Use in the Model Class
This topic describes methods that you can use that reside in the Model class.

Customizing Siebel Open UI for Siebel Mobile Disconnected ■ Methods You Can Use to
Customize Siebel Mobile Disconnected

Configuring Siebel Open UI Siebel 2018 459

GetLoginId Method
The GetLoginId method returns the login Id of the offline user who is currently logged in to the Siebel
Mobile disconnected client. It uses the following syntax:

Var loginid = SiebelApp.S_App.Model.GetLoginId();

ReleaseBO Method
The ReleaseBO method releases the current business object instance. It returns an instance of the
current applet or current business component. It uses the following syntax:

SiebelApp.S_App.Model.ReleaseBO(objBO);

where:

■ objBO is a variable that identifies the business object instance that Siebel Open UI must release.

Methods You Can Use in the Service Model Class
This topic describes the method that you can use that resides in the Service Model class.

GetContext Method
The GetContext method gets the context that exists when a JavaScript service or a Siebel business
service calls a method. It returns the current applet or business component depending on this
context. It uses the following syntax:

serviceObj.GetContext()

You cannot configure Siebel Open UI to override this method.

Methods You Can Use in Offline Classes
This topic describes a method you can use that resides in the offline classes. It includes the following
information:

■ SetErrorMsg Method

This method resides in the OfflineErrorObject class.

SetErrorMsg Method
The SetErrorMsg method defines an error message for a business service that you customize. It
returns nothing. It uses the following Syntax:

SiebelApp.S_App.OfflineErrorObject.SetErrorMsg("messageKey", errParamArray);

where:

Configuring Siebel Open UI Siebel 2018

Customizing Siebel Open UI for Siebel Mobile Disconnected ■ Methods You Can Use to
Customize Siebel Mobile Disconnected

460

■ messageKey contains the error message key. A message key is a text string that includes
variable characters. %1 is an example of a variable character.

■ errParamArray is an optional array that contains error properties that SetErrorMsg includes in
the error message. SetErrorMsg replaces each variable character that the messageKey contains
with a value from errParamArray.

For an example that uses SetErrorMsg, see “Configuring Error Messages for Disconnected Clients” on
page 400. For an example that uses SetErrorMsg in the context of a call to a custom business service,
see “Registering Methods to Make Sure Siebel Open UI Runs Them in the Correct Sequence” on
page 387.

Other Methods You Can Use with Siebel Mobile
Disconnected
This topic describes other methods that you can use with Siebel Mobile Disconnected. It includes the
following topics:

■ GetBusObj Method

■ GetLovNameVal Method

■ GetLovValName Method on page 461

GetBusObj Method
The GetBusObj method creates a new instance of a business object. It returns this new business
object instance. It uses the following syntax:

SiebelApp.S_App.Model.GetBusObj(business_object_name)

where:

■ business_object_name identifies the name of the business object that GetBusObj uses to create
the new business object instance.

For example, the following code creates a new instance of the Service Request business object:

var pServiceRequestBC = SiebelApp.S_App.Model.GetBusObj(""Service Request"")"

The GetBusObj method resides in the model.js file.

You cannot configure Siebel Open UI to override this method.

GetLovNameVal Method
The GetLovNameVal method gets the value that Siebel Open UI currently displays in the client for a
list of values. It uses the following syntax:

SiebelApp.S_App.Model.GetLovNameVal(LOV_name, LOV_type)

where:

Customizing Siebel Open UI for Siebel Mobile Disconnected ■ Methods You Can Use to
Customize Siebel Mobile Disconnected

Configuring Siebel Open UI Siebel 2018 461

■ LOV_name identifies the name of a list of values.

■ LOV_type identifies the type of list of values that LOV_name identifies.

For example, the following code gets the value that Siebel Open UI currently displays in the client
for the Samples Request list of values:

SiebelApp.S_App.Model.GetLovNameVal(""Samples Request"", ""TODO_TYPE"")"

The GetLovNameVal method resides in the model.js file.

You cannot configure Siebel Open UI to override this method.

GetLovValName Method
The GetLovValName method gets the name of a value that resides in a list of values. It uses the
following syntax:

SiebelApp.S_App.Model.GetLovValName(value_name,LOV_type)

where:

■ value_name identifies the name of a value that resides in a list of values.

■ LOV_type identifies the type of list of values that contains the value that value_name contains.

For example, the following code gets the value that Siebel Open UI currently displays in the client
for the Call value:

SiebelApp.S_App.Model.GetLovValName("Call","TODO_TYPE")

The GetLovValName method resides in the model.js file. You cannot configure Siebel Open UI to
override this method.

Configuring Siebel Open UI Siebel 2018

Customizing Siebel Open UI for Siebel Mobile Disconnected ■ Methods You Can Use to
Customize Siebel Mobile Disconnected

462

Configuring Siebel Open UI Siebel 2018 463

A Application Programming
Interface

This appendix describes reference information for the JavaScript Application Programming Interface
(API) that you can use to customize Siebel Open UI. It includes the following topics:

■ Overview of the Siebel Open UI Client Application Programming Interface

■ Methods of the Siebel Open UI Application Programming Interface on page 464

■ Methods for Pop-Up Objects, Google Maps, and Property Sets on page 561

Overview of the Siebel Open UI Client
Application Programming Interface
Creating a custom client user interface in Siebel Open UI requires that you do the following work:

■ Creating a new presentation model that Siebel Open UI uses in addition to the metadata and data
that it gets from the Web Engine that resides on the Siebel Server.

■ Creating a new physical user interface by creating a custom physical renderer that Siebel Open
UI uses in addition to a predefined or custom presentation model.

You can use the following programming interfaces to implement these presentation models:

■ Presentation model class. Describes the life cycle methods that you must code for a
presentation model and the control methods that Siebel Open UI uses to add presentation model
properties and behavior. For more information, see “Presentation Model Class” on page 464.

■ Physical renderer methods. Describes the life cycle methods that you must code into any
renderer that binds a presentation model to a physical renderer. For more information, see
“Physical Renderer Class” on page 504.

For a summary of these methods and information about how Siebel Open UI uses them, see “Life
Cycle of User Interface Elements” on page 51.

Siebel Open UI defines each class in a separate file. It stores these files in the following folder:

\build_number\APPLICATIONCONTAINER\WEBAPPS\SIEBEL\SCRIPTS\SIEBEL

For brevity, this chapter states that the method does something. In reality, most methods send a
request to a proxy object, and then this proxy object does the actual work.

For more information about the language_code, see “Languages That Siebel Open UI Supports” on
page 641.

Configuring Siebel Open UI Siebel 2018

Application Programming Interface ■ Methods of the Siebel Open UI Application
Programming Interface

464

Methods of the Siebel Open UI
Application Programming Interface
This topic describes the methods of the Siebel Open UI Application Programming Interface. You can
use them to customize Siebel Open UI. It includes the following information:

■ Presentation Model Class

■ Presentation Model Class for Applets on page 477

■ Presentation Model Class for List Applets on page 496

■ Presentation Model Class for Menus on page 502

■ Physical Renderer Class on page 504

■ Plug-in Wrapper Class on page 510

■ Plugin Builder Class on page 512

■ Template Manager Class on page 514

■ Event Helper Class on page 518

■ Business Component Class on page 520

■ Applet Class on page 520

■ Applet Control Class on page 522

■ GetEDEnabled Method on page 524

■ Business Service Class on page 534

■ Application Model Class on page 535

■ Control Builder Class on page 545

■ Locale Object Class on page 545

■ Component Class on page 553

■ Component Manager Class on page 557

■ Other Classes on page 559

Presentation Model Class
This describes the methods that Siebel Open UI uses with the PresentationModel class. It includes
the following information:

■ AddComponentCommunication Method on page 465

■ AddLocalString Method on page 465

■ AddMethod Method on page 466

■ AddProperty Method on page 467

Application Programming Interface ■ Methods of the Siebel Open UI Application
Programming Interface

Configuring Siebel Open UI Siebel 2018 465

■ AddValidator Method on page 468

■ AttachEventHandler Method on page 468

■ AttachNotificationHandler Method on page 469

■ AttachPMBinding Method on page 471

■ AttachPostProxyExecuteBinding Method on page 471

■ AttachPreProxyExecuteBinding Method on page 473

■ ExecuteMethod Method on page 473

■ Get Method on page 474

■ GetCtrlTemplate Method on page 474

■ Init Method on page 474

■ OnControlEvent Method on page 475

■ SetProperty Method on page 475

■ Setup Method for Presentation Models on page 476

Siebel Open UI defines the PresentationModel class in the pmodel.js file.

AddComponentCommunication Method
The AddComponentCommunication method binds a communication method. It uses the following
arguments:

■ methodName is a string that identifies the communication method that Siebel Open UI binds.

■ targetMethod is a string that identifies the method that Siebel Open UI calls after methodName
finishes. It calls this target method in the presentation model context.

■ targetMethodConfig identifies an object that contains configuration properties for targetMethod.

■ targetMethodConfig.scope identifies the object that the AddComponentCommunication method
binds. This object must reference the targetMethod.

■ targetMethodConfig.args is a list of arguments that Siebel Open UI sends to targetMethod when
the AddComponentCommunication method runs.

AddLocalString Method
The AddLocalString method adds a text string. It uses the following syntax:

AddLocalString(ID, custom_string)

where:

■ ID is a string that you use to reference the custom_string. You can use any value for ID.

■ custom_string is any text string.

For example:

Configuring Siebel Open UI Siebel 2018

Application Programming Interface ■ Methods of the Siebel Open UI Application
Programming Interface

466

this.AddMethod("AddLocalString", function (my_text, this is my custom text) {
SiebelApp.S_App.LocaleObject.AddLocalString(my_text, this is my custom text);
return value;
});

This code adds a string named my_text that includes the following string value:

this is my custom text

AddMethod Method
The AddMethod method adds a method to a presentation model. You can use ExecuteMethod to run
the method that AddMethod adds from the presentation model or from the physical renderer. If
AddMethod attempts to add a new method that the predefined client already contains, then the new
method becomes a customization of the predefined method, and this customization runs before or
after the predefined method depending on the CancelOperation part of the return value.

A method that customizes another method can return to the caller without running the method that
it customizes. To do this, you configure Siebel Open UI to set the CancelOperation part of the return
value to true. You set this property on the ReturnStructure object that Siebel Open UI sends to each
method as an argument. For an example that does this configuration, see “Customizing the
Presentation Model to Identify the Records to Delete” on page 62.

The AddMethod method returns one of the following values:

■ True. Added a method successfully.

■ False. Did not add a method successfully.

It uses the following syntax:

AddMethod("methodName",methodDef(argument, argument_n){
}, {methodConfig:value});

where:

■ methodName is a string that contains the name of the method that Siebel Open UI adds to the
presentation model.

■ methodDef is an argument that allows you to call a method or a method reference.

■ argument and argument_n are arguments that AddMethod sends to the method that methodDef
identifies.

■ methodConfig is an argument that you set to one of the following values:

■ sequence. Set to one of the following values:

❏ true. Siebel Open UI calls methodName before it calls the method that already exists in
the presentation model.

❏ false. Siebel Open UI calls methodName after it calls the method that already exists in
the presentation model. The default value is false.

■ override. Set to one of the following values:

Application Programming Interface ■ Methods of the Siebel Open UI Application
Programming Interface

Configuring Siebel Open UI Siebel 2018 467

❏ true. Siebel Open UI does not call the method that already exists in the presentation
model. Instead, it calls the sent method, when necessary. Note that Siebel Open UI can
never override some methods that exist in a predefined presentation model even if you
set override to true.

❏ false. Siebel Open UI calls the method that already exists in the presentation model.

■ scope. Describes the scope that Siebel Open UI must use when it calls methodDef. The
default scope is Presentation Model.

Example of Adding a New Method The following code adds a new ShowSelection method:

this.AddMethod("ShowSelection", SelectionChange,{sequence : false, scope : this});

After Siebel Open UI adds the ShowSelection method, you can use the following code to configure
Siebel Open UI to call this method. It sends a string value of SetActiveControl to the sequence and
a string value of null to the scope argument. To view how Siebel Open UI uses this example, see
Step 5 on page 64:

this.ExecuteMethod("SetActiveControl", null)

Example of Using the Sequence Argument The following code configures Siebel Open UI to
attach a method. It calls this method anytime it calls the InvokeMethod method of the proxy:

this.AddMethod("InvokeMethod", function(){ }, {sequence : true});

This code sets the sequence argument to true, which configures Siebel Open UI to call the method
that it sends before it calls InvokeMethod. The method that it sends gets all the arguments that
InvokeMethod receives. For more information, see “InvokeMethod Method for Presentation Models” on
page 487.

Example of Overriding the Predefined Presentation Model The following example
overrides the predefined presentation model and runs the ProcessDrillDown method:

this.AddMethod("ProcessDrillDown", function(){
}, {override : true});

Other Examples The following examples also use AddMethod:

this.AddMethod("InvokeMethod", function(){console.log("In Invoke Method of PM"),
{override: true});
this.AddMethod("InvokeControlMethod",
DerivedPresentationalModel.prototype.MyInvokeControlMethod,{sequence : true});

For more information, see “Deriving Presentation Models, Physical Renderers and Plug-in Wrappers” on
page 115.

AddProperty Method
The AddProperty method adds a property to a presentation model. Siebel Open UI can access it
through the Get method. It returns one of the following values:

■ True. Added a property successfully.

Configuring Siebel Open UI Siebel 2018

Application Programming Interface ■ Methods of the Siebel Open UI Application
Programming Interface

468

■ False. Did not add a property successfully.

It uses the following syntax:

this.AddProperty("propertyName", propertyValue);

where:

■ propertyName is a string that identifies a property. A subsequent call to this method with the
same propertyName overwrites the previous value.

■ propertyValue assigns a value to the property.

For example, the following code adds the NumOfRows property and assigns a value of 10 to this
property:

this.AddProperty("NumOfRows", 10);
SiebelJS.Log(this.Get("NumOfRows"));

AddValidator Method
The AddValidator method validates an event. It allows you to write a custom validation for any event.
It returns one of the following values:

■ true. Validated the event successfully.

■ false. Did not validate the event successfully.

It uses the following syntax:

Addvalidator(siebConsts.get("event_name"), function(){custom validation}

where:

■ event_name identifies the name of the event that AddValidator validates.

For example, the following code validates the control focus event:

this.AddValidator(siebConsts.get("PHYEVENT_COLUMN_FOCUS"), function(row, ctrl,
val){
if(ctrl.GetDisplayName() === "Account" && val === "Hibbing Mfg"){
return true;
});

You can configure Siebel Open UI to use the value that AddValidator returns to determine whether
or not to stop running handlers for an event. For more information, see “AttachEventHandler Method”
on page 468.

For more information about events, see “Siebel CRM Events That You Can Use to Customize Siebel Open
UI” on page 620.

AttachEventHandler Method
The AttachEventHandler method attaches an event handler to an event. It uses the following values:

Application Programming Interface ■ Methods of the Siebel Open UI Application
Programming Interface

Configuring Siebel Open UI Siebel 2018 469

■ consts.get("SWE_EXTN_CANCEL_ORIG_OP"). If SWE_EXTN_CANCEL_ORIG_OP returns a value
of true, then Siebel Open UI cancels the operation for the predefined event handler. For an
example that sets the value for SWE_EXTN_CANCEL_ORIG_OP, see “Attaching and Validating
Event Handlers in Any Sequence” on page 137.

■ consts.get("SWE_EXTN_STOP_PROP_OP"). If SWE_EXTN_STOP_PROP_OP returns a value of
true, then Siebel Open UI stops the operation for the custom event handler from propagating the
customization.

The AttachEventHandler method uses the following syntax:

AttachEventHandler(event_name, function_reference);

where:

■ event_name identifies the name of an event.

■ function_reference identifies the name of a method that the AddMethod method adds. For
example, PHYEVENT_CONTROL_BLUR. Siebel Open UI calls OnControlEvent to trigger this event,
and then calls the function reference in the scope of the corresponding presentation model.

For more information about:

■ An example that uses AttachEventHandler, see “Example of the Life Cycle of a User Interface
Element” on page 55.

■ Events, see “Siebel CRM Events That You Can Use to Customize Siebel Open UI” on page 620.

■ Using AttachEventHandler, see “Life Cycle Flows of User Interface Elements” on page 577.

■ Deriving a value, see “Deriving Presentation Models, Physical Renderers and Plug-in Wrappers” on
page 115.

AttachNotificationHandler Method
The AttachNotificationHandler attaches a method that handles the notification that Siebel Open UI
calls when the Siebel Server sends a notification to an applet. It does this attachment when the
notification occurs. It returns one of the following values:

■ True. Attached notification handler successfully.

■ False. Did not attach notification handler successfully.

It uses the following syntax:

this.AttachNotificationHandler("notification_name",handler);

where:

■ notification_name is a string that includes the name or type of a notification. For example,
NotifyDeleteRecord or SWE_PROP_BC_NOTI_DELETE_RECORD.

■ handler identifies a notification handler that Siebel Open UI calls when notification processing
finishes. For example, HandleDeleteNotification.

For more information about:

Configuring Siebel Open UI Siebel 2018

Application Programming Interface ■ Methods of the Siebel Open UI Application
Programming Interface

470

■ An example that uses AttachNotificationHandler, see “Customizing the Presentation Model to
Handle Notifications” on page 71

■ Using the AttachNotificationHandle method, see “Customizing Events” on page 133

■ How Siebel Open UI handles notifications, see “Life Cycle Flows of User Interface Elements,”

■ Notifications, see “Notifications That Siebel Open UI Supports” on page 595

Example of Using AttachEventHandler Assume a presentation model named pmodel.js
includes an OnControlEvent method that runs a custom event handler, and that Siebel Open UI sends
an eventConfig object as the last argument in the event handler call. It uses this eventConfig object
in the custom presentation model to set a value for SWE_EXTN_CANCEL_ORIG_OP or
SWE_EXTN_STOP_PROP_OP. This configuration allows AttachEventHandler to create multiple custom
events and to stop an event handler from running.

For example, assume your customization configures Siebel Open UI to do the following:

■ Derive derivedpm1.js from pmodel.js.

■ Derive derivedpm2.js from derivedpm1.js.

■ Derive derivedpm3.js from derivedpm2.js.

■ Include an event handler for PHYEVENT_COLUMN_FOCUS in derivedpm1.js, derivedpm2.js, and
derivedpm3.js.

■ Use derivedpm3.js to set the AttachEventHandler to the value that SWE_EXTN_STOP_PROP_OP
contains.

■ Use the following code so that Siebel Open UI uses the last argument that AttachEventHandler
specifies:

this.AttachEventHandler(siebConsts.get("PHYEVENT_COLUMN_FOCUS"), function()
 {
 SiebelJS.Log("Control focus 1");
 arguments[arguments.length - 1][consts.get("SWE_EXTN_STOP_PROP_OP")] = false;
 });

Siebel Open UI runs AttachEventHandler customizations in a LIFO (last in, first out) sequence. In this
example, it uses the following sequence:

■ Runs event handlers that reside in derivedpm3.js.

■ Runs event handlers that reside in derivedpm2.js.

■ Runs event handlers that reside in derivedpm1.js.

■ Runs event handlers that reside in the predefined presentation model.

So, this example stops the custom PHYEVENT_COLUMN_FOCUS event handlers in the derivedpm2.js
file and the derivedpm1.js file from running.

How Siebel Open UI Uses AttachEventHandler To Manage an Event An event occurs
when the user clicks an object or changes the focus. To manage this event, Siebel Open UI does the
following work:

Application Programming Interface ■ Methods of the Siebel Open UI Application
Programming Interface

Configuring Siebel Open UI Siebel 2018 471

1 Instructs the physical renderer to call the OnControlEvent method. To make this call, it uses the
event name that Siebel Open UI sends to the AttachEventHandler method and corresponding
parameters.

2 Identifies the list of event handlers that it registered with the event name in the Init function of
the presentation model.

3 Uses the OnControlEvent parameters from Step 1 to call each of the event handlers that it
identified in Step 2.

4 Finishes running all the event handlers, and then sends a return value to the object that called
OnControlEvent.

AttachPMBinding Method
The AttachPMBinding method binds a method to an existing method. Siebel Open UI calls the method
that it binds when it finishes processing this existing method. The AttachPMBinding method returns
one of the following values:

■ True. The bind succeeded.

■ False. The bind failed.

It uses the following syntax:

this.AttachPMBinding("method_name",function(){SiebelJS.Log("method_to_call");},{wh
en : function(conditional_function){return value;}});

where:

■ method_name is a string that identifies the name of a method.

■ method_to_call identifies the method that Siebel Open UI calls when it finishes processing
method_name.

■ conditional_function identifies a function that returns one of the following values:

■ true. Calls the AttachPMBinding method.

■ false. Does not call the AttachPMBinding method.

For an example that uses AttachPMBinding, see “Customizing the Physical Renderer to Refresh the
Carousel” on page 87.

For more information about using the AttachPMBinding method, see “Configuring Siebel Open UI to
Bind Methods” on page 119 and “Life Cycle Flows of User Interface Elements” on page 577.

AttachPostProxyExecuteBinding Method
The AttachPostProxyExecuteBinding method binds a method that resides in a proxy or presentation
model to a PostExecute method. Siebel Open UI finishes the PostExecute method, and then calls the
method that AttachPostProxyExecuteBinding identifies. It uses the following syntax:

this.AttachPostProxyExecuteBinding("method_to_call", function(methodName, inputPS,
outputPS){"binder_configuration";return;});

Configuring Siebel Open UI Siebel 2018

Application Programming Interface ■ Methods of the Siebel Open UI Application
Programming Interface

472

where:

■ method_to_call is a string that identifies the method that Siebel Open UI calls.

■ binder_configuration is a string that identifies code that Siebel Open UI runs after the applet
proxy sends a reply.

For more information, see “Refreshing Custom Events” on page 134 and “PostExecute Method” on
page 489.

In the following example, the user clicks the New button in an applet, Siebel Open UI runs the
NewRecord method, and then the client receives the reply from the Siebel Server. In this situation,
you can use the following code to run some logic in the presentation model after Siebel Open UI runs
the PostExecute method as part of the element life cycle:

this.AttachPostProxyExecuteBinding("NewRecord", function(methodName, inputPS,
outputPS){"Do Something for New Record";return;});

The following code runs this same logic in the presentation model for all methods:

this.AttachPostProxyExecuteBinding("ALL", function(methodName, inputPS,
outputPS){"Do Something for all methods";return;});

For more information, see “NewRecord Method” on page 530.

For more examples that use AttachPreProxyExecuteBinding and AttachPostProxyExecuteBinding, see
“Customizing the Presentation Model to Call the Siebel Server and Delete a Record” on page 79 and
“Calling Methods” on page 121.

Using the AttachPreProxyExecuteBinding and AttachPostProxyExecuteBinding
Methods The AttachPreProxyExecuteBinding and AttachPostProxyExecuteBinding methods
provide a generic way to do more processing than the AttachNotificationHandler method provides
before or after the proxy finishes processing the reply from a method that the client or the Siebel
Server calls. A method might cause Siebel Open UI to create a notification from the Siebel Server
that does more post-processing than the client proxy requires. This situation can occur with a custom
method that you implement on the Siebel Server. For example, with an applet, business service, or
some other object type. For more information, see “AttachNotificationHandler Method” on page 469.

Siebel Open UI sends a notification only for a typical modification that occurs in the predefined
product. For example, a new or deleted record or a modified record set. Siebel Open UI might not
be able to identify and process the correct notification. For example, you can configure Siebel Open
UI to make one call to the WriteRecord method from the client, but the server business logic might
cause this method to run more than one time. Siebel Open UI might receive notifications for any
WriteRecord method that occurs for a business component that it binds to the current user interface.
These notifications might contain more information than the reply notification requires. For more
information, see “WriteRecord Method,”.

Application Programming Interface ■ Methods of the Siebel Open UI Application
Programming Interface

Configuring Siebel Open UI Siebel 2018 473

AttachPreProxyExecuteBinding Method
The AttachPreProxyExecuteBinding method binds a method that resides in a proxy or presentation
model to a PostExecute method. Siebel Open UI calls this method, and then runs PostExecute. The
AttachPreProxyExecuteBinding uses the same syntax and arguments that the
AttachPostProxyExecuteBinding method uses, except you configure Siebel Open UI to call the
AttachPreProxyExecuteBinding method. For more information, see “AttachPostProxyExecuteBinding
Method” on page 471.

ExecuteMethod Method
The ExecuteMethod method runs a method. You can use it to run a predefined or custom method
that the presentation model contains. It makes sure Siebel Open UI runs all dependency chains for
the method that it calls. For more information about dependency chains, see “About Dependency
Injection” on page 65.

If the method that ExecuteMethod specifies:

■ Exists. It returns a value from the method that it specifies.

■ Does not exist. It returns the following string:

undefined

It uses the following syntax:

this.GetPM().ExecuteMethod("method_name", arguments);

where:

■ method_name is a string that identifies the name of the method that ExecuteMethod runs. You
must use the AddMethod method to add the method that method_name specifies before you run
ExecuteMethod. If the method that method_name specifies:

■ Exists. Siebel Open UI calls the method that method_name specifies, sends the arguments,
gets the return value, and then sends this return value to the object that called the
ExecuteMethod method.

■ Does not exist. The ExecuteMethod method does nothing.

■ arguments includes a list of one or more arguments where a comma separates each argument.
ExecuteMethod sends these arguments to the method that method_name specifies. It sends
these arguments in the same order that you list them in this argument list.

For examples that use InvokeMethod, see “Customizing the Presentation Model to Delete Records” on
page 66 and “Customizing the Presentation Model to Handle Notifications” on page 71.

For more information about using this method, see “Life Cycle Flows of User Interface Elements” on
page 577.

Configuring Siebel Open UI Siebel 2018

Application Programming Interface ■ Methods of the Siebel Open UI Application
Programming Interface

474

Get Method
The Get method returns the value of the property that Siebel Open UI adds through the AddProperty
method. If Siebel Open UI sends a method in the propertyValue argument of the AddProperty
method, then it calls the Get method, and then sends the return value to the method that calls the
Get method. For an example that uses the Get method, see “Customizing the Presentation Model to
Delete Records” on page 66. For more information about using this method, see “Life Cycle Flows of
User Interface Elements” on page 577.

GetCtrlTemplate Method
The GetCtrlTemplate method gets the template for a control, and then uses values from this template
to create an object. It uses values from this template to set the default values and the format for
the property set that this control uses. It returns nothing. It uses the following syntax:

GetCtrlTemplate ("control_name", "display_name", consts.get("control_type"),
column_index);

where:

■ control_name specifies the name of the control.

■ display_name specifies the label that Siebel Open UI displays in the client for this control.

■ control_type specifies the type of SWE control, such as SWE_CTRL_TEXTAREA. You can specify
one of the following values:

■ SWE_CTRL_URL

■ SWE_CTRL_TEXTAREA

■ SWE_CTRL_TEXT

■ SWE_CTRL_DATE_TZ_PICK

■ SWE_CTRL_DATE_TIME_PICK

■ SWE_CTRL_DATE_PICK

■ SWE_CTRL_CHECKBOX

■ SWE_CTRL_CALC

■ SWE_CTRL_COMBOBOX

■ SWE_CTRL_PWD

■ column_index is an integer that specifies the physical location in the list control.

For example, the following code gets the template for the TestEdit control:

GetCtrlTemplate ("TestEdit", "Test Edit", consts.get("SWE_CTRL_TEXTAREA"), 1);

Init Method
The Init method allows you to use different methods to customize a presentation model, such as
AddMethod, AddNotificationHandler, AttachPMBinding, and so on. It uses the following syntax:

Application Programming Interface ■ Methods of the Siebel Open UI Application
Programming Interface

Configuring Siebel Open UI Siebel 2018 475

Init()

For an example that uses Init, see Step 2 on page 70.

You must not configure Siebel Open UI to override any method that resides in a derived presentation
model except for the Init method or the Setup method. For more information, see “Deriving
Presentation Models, Physical Renderers and Plug-in Wrappers” on page 115.

You must configure Siebel Open UI to do the following:

■ Call the Init method in the predefined presentation model before it calls the Init method in the
derived presentation model.

■ Call the Setup method in the predefined presentation model before it calls the Setup method in
the derived presentation model. For more information, see “Setup Method for Presentation
Models” on page 476.

OnControlEvent Method
The OnControlEvent method calls an event. It uses the following syntax:

OnControlEvent(event_name, event_arguments)

where:

■ event_name identifies the name of an event. You must use event_name to send an event.

For more information about:

■ Examples that use OnControlEvent, see the following topics:

■ Modifying CSS Files to Support the Physical Renderer on page 90

■ Adding Custom User Preferences to Applets on page 224.

■ How Siebel Open UI uses OnControlEvent, see the following topics:

■ How Siebel Open UI Uses the Init Method of the Presentation Model on page 52

■ Siebel CRM Events That You Can Use to Customize Siebel Open UI on page 620

■ Life Cycle Flows of User Interface Elements on page 577

SetProperty Method
The SetProperty method sets the value of a presentation model property. It returns one of the
following values:

■ True. Set the property value successfully.

■ False. Did not set the property value successfully.

It uses the following syntax:

SetProperty(property_name, property_value)

where:

Configuring Siebel Open UI Siebel 2018

Application Programming Interface ■ Methods of the Siebel Open UI Application
Programming Interface

476

■ property_name specifies the name of the property that SetProperty sets.

■ property_value specifies the value that SetProperty sets for property_name.

If the property that the SetProperty method references does not exist, then Siebel Open UI creates
this property and sets the value for it according to the SetProperty method. You can also use the
AddProperty method to add a property.

For examples that use SetProperty, see the following topics:

■ Customizing the Presentation Model to Delete Records on page 66

■ Customizing the Presentation Model to Call the Siebel Server and Delete a Record on page 79

■ Text Copy of Code That Does a Partial Refresh for the Presentation Model on page 187

■ Adding Custom User Preferences to Applets on page 224

■ Using Custom JavaScript Methods on page 393

■ Customizing Siebel Pharma for Siebel Mobile Disconnected Clients on page 403

Setup Method for Presentation Models
The Setup method extracts the values that a property set contains. Siebel Open UI calls this Setup
method when it processes the initial reply from the Siebel Server. It uses the following syntax:

Setup(property_set)

where:

■ property_set identifies the property set that Siebel Open UI uses with the corresponding proxy
object. It contains the property set information for the proxy and any custom property set
information that Siebel Open UI added through the presentation model that resides on the Siebel
Server. If Siebel Open UI must parse a custom property set, then this work must occur in the
Setup method for the derived presentation model. For more information, see “Deriving
Presentation Models, Physical Renderers and Plug-in Wrappers” on page 115.

For example, the following code identifies the childPropset property set:

extObject.Setup(childPropset.GetChild(0));

For more information about:

■ How Siebel Open UI uses this Setup method, see “Summary of Presentation Model Methods” on
page 51. “GetChild Method” on page 573.

■ Examples that use the Setup method, see “Customizing the Setup Logic of the Presentation Model”
on page 60 and “Adding Presentation Model Properties That Siebel Servers Send for Applets” on
page 116.

■ The Setup method that Siebel Open UI uses with components, see “Setup Method for
Components” on page 555.

Application Programming Interface ■ Methods of the Siebel Open UI Application
Programming Interface

Configuring Siebel Open UI Siebel 2018 477

Presentation Model Class for Applets
This topic describes the methods that Siebel Open UI uses with the presentation models that it uses
to display applets. It includes the following information:

■ Summary of Methods That You Can Use with the Presentation Model for Applets on page 478

■ Properties of the Presentation Model That Siebel Open UI Uses for Applets on page 479

■ Adding Code to the Physical Renderer on page 481

■ CanInvokeMethod Method for Presentation Models on page 481

■ CanNavigate Method on page 482

■ CanUpdate Method on page 482

■ ExecuteMethod Method on page 483

■ ExecuteUIUpdate Method on page 483

■ FieldChange Method for Presentation Models on page 484

■ FocusFirstControl Method on page 484

■ GetControl Method on page 485

■ GetControlId Method on page 485

■ GetFieldValue Method on page 486

■ GetFormattedFieldValue Method on page 486

■ GetPhysicalControlValue Method on page 486

■ InvokeMethod Method for Presentation Models on page 487

■ InvokeStateChange Method on page 487

■ IsPrivateField Method on page 488

■ LeaveField Method on page 488

■ NewFileAttachment Method on page 488

■ PostExecute Method on page 489

■ ProcessCancelQueryPopup Method on page 489

■ RefreshData Method on page 490

■ ResetAppletState Method on page 490

■ SetHighlightState Method on page 491

■ SetFocusDefaultControl Method on page 492

■ SetHighlightState Method on page 491

■ SetUpdateConditionals Method on page 492

■ ShowPickPopup Method on page 492

■ ShowPopup Method on page 492

Configuring Siebel Open UI Siebel 2018

Application Programming Interface ■ Methods of the Siebel Open UI Application
Programming Interface

478

■ ShowSelection Method on page 493

■ UpdateAppletMessage Method on page 493

■ UpdateConditionals Method on page 494

■ UpdateCurrencyCalcInfo Method on page 494

■ UpdateQuickPickInfo Method on page 495

■ UpdateStateChange Method on page 495

Siebel Open UI uses the PresentationModel class to define the presentation models that it uses to
display applets. For more information about this class, see “Presentation Model Class” on page 464.

Summary of Methods That You Can Use with the Presentation Model
for Applets
Table 34 lists the methods that you can use with the presentation model that Siebel Open UI uses for
a predefined applet. You cannot configure Siebel Open UI to customize or override any of these
methods except for the PostExecute method. You can configure Siebel Open UI to customize the
PostExecute method.

Table 34. Summary of Methods That You Can Use with the Presentation Model for Applets

Method Callable Bindable

CanInvokeMethod Yes No

CanNavigate Yes No

CanUpdate Yes No

ExecuteMethod Yes No

ExecuteUIUpdate No Yes

FieldChange No Yes

FocusFirstControl No Yes

GetControl Yes No

GetControlId Yes No

GetFieldValue Yes No

GetFormattedFieldValue Yes No

GetPhysicalControlValue No Yes

InvokeMethod Yes No

InvokeStateChange No Yes

IsPrivateField Yes No

LeaveField Yes No

Application Programming Interface ■ Methods of the Siebel Open UI Application
Programming Interface

Configuring Siebel Open UI Siebel 2018 479

Properties of the Presentation Model That Siebel Open UI Uses for
Applets
Table 35 lists the properties of the presentation model that Siebel Open UI uses for applets.

NewFileAttachment No Yes

PostExecute No Yes

ProcessCancelQueryPopup No Yes

RefreshData No Yes

ResetAppletState No Yes

SetActiveControl Yes Yes

SetFocusDefaultControl Yes No

SetFocusToCtrl No Yes

SetHighlightState No Yes

SetUpdateConditionals Yes No

ShowPickPopup Yes No

ShowPopup No Yes

ShowSelection No Yes

UpdateAppletMessage No Yes

UpdateConditionals No Yes

UpdateCurrencyCalcInfo No Yes

UpdateQuickPickInfo No Yes

UpdateStateChange No Yes

Table 35. Properties of the Presentation Model That Siebel Open UI Uses for Applets

Property Description

GetActiveControl Returns a string that identifies the active control of the applet for the
presentation model.

GetAppleLabel Returns a string that includes the applet label.

GetAppletSummary Returns a string that includes the applet summary.

GetControls Returns an array that lists control objects that the applet includes for
the presentation model.

Table 34. (Continued)Summary of Methods That You Can Use with the Presentation Model for

Method Callable Bindable

Configuring Siebel Open UI Siebel 2018

Application Programming Interface ■ Methods of the Siebel Open UI Application
Programming Interface

480

GetDefaultFocusOnNew Returns a string that identifies the control name where Siebel Open
UI must set the default focus when the user creates a new record in
an applet.

GetDefaultFocusOnQuery Returns a string that identifies the control name where Siebel Open
UI must set the default focus when the user runs a query in the
applet.

GetFullId Returns a string that includes the Applet Full Id that the Siebel Server
sends for the presentation model.

GetId Returns a string that includes the applet ID that the Siebel Server
sends for the presentation model. For an example usage of this
property, see “Customizing the Physical Renderer to Render the
Carousel” on page 82.

GetMode Returns a string that identifies the applet mode.

GetName Returns a string that includes the name of the presentation model.

GetPrsrvControl Returns a string that identifies the control object of a preserve control
that Siebel Open UI sets in a leave field.

GetQueryModePrompt Returns a string that identifies the prompt that the applet uses when
Siebel Open UI uses it in query mode.

GetRecordset Returns an array that lists the record set that the applet currently
displays.

GetSelection Returns the number of records the user chooses in the applet.

GetTitle Returns a string that includes the applet title that the presentation
model defines.

GetUIEventMap Returns an array that lists user interface events that are pending.
Each element in this array identifies an event that you can access
using the following code:

this.Get("GetUIEventMap") [index].ev

You can use the following code to access the arguments:

as this.Get("GetUIEventMap") [index].ar

IsInQueryMode Returns a Boolean value that indicates if the applet is in query mode.

IsPure Returns a Boolean value that indicates if the applet has Buscomp.

Table 35. (Continued)Properties of the Presentation Model That Siebel Open UI Uses for Applets

Property Description

Application Programming Interface ■ Methods of the Siebel Open UI Application
Programming Interface

Configuring Siebel Open UI Siebel 2018 481

Adding Code to the Physical Renderer
You add code for some methods to the section of code in the physical renderer that binds the control
to the presentation model. For example, if you must customize code for a currency calculator control,
then you modify the code in the physical renderer that binds the currency calculator control to the
presentation model. This appendix indicates the methods that must use this configuration.

CanInvokeMethod Method for Presentation Models
The CanInvokeMethod method that Siebel Open UI uses for presentation models determines whether
or not Siebel Open UI can invoke a method. It returns one of the following values:

■ true. Siebel Open UI can invoke the method.

■ false. Siebel Open UI cannot invoke the method.

It uses the following syntax:

CanInvokeMethod(method_name)

where:

■ method_name is a string that contains the name of the method that CanInvokeMethod examines.
You must enclose this string in double quotation marks, or use a literal value of methodName.

For example, you can add the following code in a physical renderer to determine whether or not
Siebel Open UI can call the method that method_name specifies, and if it can call this method on the
control that control specifies:

var controlSet = this.GetPM().Get("GetControls");
for(var control in controlSet){
 if(controlSet.hasOwnProperty(control)){
 var caninvoke = this.GetPM().ExecuteMethod("CanInvokeMethod", controlSet[
 control].GetMethodName());
 }
}

To avoid an error on the Siebel Server, it is recommended that you configure Siebel Open UI to use
CanInvokeMethod immediately before it uses InvokeMethod to make sure it can call the method.

For information about the CanInvokeMethod method that Siebel Open UI uses for application models,
see “CanInvokeMethod Method for Application Models,”.

For more examples that use CanInvokeMethod, see the following topics:

■ Customizing the Presentation Model to Delete Records on page 66

■ Attaching an Event Handler to a Presentation Model on page 74

■ Customizing Applets to Capture Signatures from Desktop Applications on page 228

■ Customizing a Resource Scheduler on page 274

■ Using Custom JavaScript Methods on page 393

■ Using Custom Siebel Business Services on page 396

■ Customizing Siebel Pharma for Siebel Mobile Disconnected Clients on page 403

Configuring Siebel Open UI Siebel 2018

Application Programming Interface ■ Methods of the Siebel Open UI Application
Programming Interface

482

■ Allowing Users to Commit Part Tracker Records on page 414

CanNavigate Method
The CanNavigate method determines whether or not the user can navigate a control. It returns one
of the following values:

■ true. The user can navigate the control.

■ false. The user cannot navigate the control.

It uses the following syntax:

CanNavigate(activeControl.GetFieldName())

For example, the following code uses the CanNavigate method to set up a variable named
canNavigate:

var controlSet = this.GetPM().Get("GetControls");
for(var control in controlSet){
 if(controlSet.hasOwnProperty(control)){ var canNavigate =
this.GetPM().ExecuteMethod("CanNavigate", controlSet[
 control].GetName());
 }
}

The following example identifies the controls in a set of controls that reside in an applet proxy. You
can then use the value that CanNavigate returns to determine whether or not Siebel Open UI can
render a control as a link:

var controlSet = this.GetPM().Get("GetControls");
for(var control in controlSet){
 if(controlSet.hasOwnProperty(control)){
 var canNavigate = this.GetPM().ExecuteMethod("CanNavigate", controlSet[
 control].GetName());
 }
}

CanUpdate Method
The CanUpdate method determines whether or not Siebel Open UI can update a control. It returns
one of the following values:

■ true. The user can update the control.

■ false. The user cannot update the control.

It uses the following syntax:

CanUpdate(control_name)

where:

■ control_name identifies the name of the control that CanUpdate examines.

Application Programming Interface ■ Methods of the Siebel Open UI Application
Programming Interface

Configuring Siebel Open UI Siebel 2018 483

The following example identifies the controls that exist in a set of controls that reside in an applet
proxy. You can then use the value that CanUpdate returns to write custom code in the physical
renderer that modifies a control that Siebel Open UI can update:

var controlSet = this.GetPM().Get("GetControls");
for(var control in controlSet){
 if(controlSet.hasOwnProperty(control)){
 var canupdate = this.GetPM().ExecuteMethod("CanUpdate", controlSet[control
].GetName());
 }
}

For an example that uses the CanUpdate method, see “UpdateRecord Method” on page 448.

ExecuteMethod Method
The ExecuteMethod method runs a method that is available in the presentation model. It returns
nothing. It uses the following syntax:

ExecuteMethod("method_name",arguments);

where:

■ method_name is a string that identifies the name of the method that ExecuteMethod runs.

■ arguments lists the arguments that Siebel Open UI requires to run the method that
method_name identifies.

For examples that use ExecuteMethod, see the following topics:

■ Customizing the Presentation Model to Identify the Records to Delete on page 62.

■ Customizing the Presentation Model to Delete Records on page 66

■ Customizing the Presentation Model to Handle Notifications on page 71

■ Calling Methods on page 121

■ Accessing Proxy Objects on page 127

For information about how Siebel Open UI uses the ExecuteMethod method, see “How Siebel Open
UI Uses the Init Method of the Presentation Model” on page 52.

ExecuteUIUpdate Method
The ExecuteUIUpdate method updates objects in the user interface. It uses the following syntax:

ExecuteUIUpdate()

For example, the following code in the applicationcontext.js file updates objects that reside in the
current applet:

applet.ExecuteUIUpdate();

You can configure Siebel Open UI to call the ExecuteUIUpdate method in the following ways:

■ In the physical renderer:

Configuring Siebel Open UI Siebel 2018

Application Programming Interface ■ Methods of the Siebel Open UI Application
Programming Interface

484

this.GetPM().AttachPMBinding("ExecuteUIUpdate", function(){

 custom_code

 });

■ In the presentation model:

this.AddMethod("ExecuteUIUpdate", function(){

custom_code

 }, {sequence: true, scope: this});

For information about where you add this code, see “Adding Code to the Physical Renderer” on
page 481.

FieldChange Method for Presentation Models
The FieldChange method that Siebel Open UI uses with presentation models modifies the value of a
field. It returns nothing. It uses the following syntax:

FieldChange(control, field_value)

where:

■ control identifies the name of a control.

■ field_value is a modified value of the control.

For example, you can add the following code to the physical renderer:

this.GetPM().AttachPMBinding("FieldChange", function(control,field_value){

 custom_code

});

where:

■ custom_code is code that you write that sets the value for the control.

For more information about:

■ Where you add this code, see “Adding Code to the Physical Renderer” on page 481

■ An example that uses the FieldChange method, “Displaying and Hiding Fields” on page 185

■ Using this method, see “Life Cycle Flows of User Interface Elements” on page 577

■ The FieldChange method that Siebel Open UI uses with physical renderers, see “FieldChange
Method for Presentation Models” on page 484

FocusFirstControl Method
The FocusFirstControl method sets the focus on the first control that the presentation model displays.
It uses the following syntax:

Application Programming Interface ■ Methods of the Siebel Open UI Application
Programming Interface

Configuring Siebel Open UI Siebel 2018 485

FocusFirstControl()

You can add the following code to the physical renderer:

this.GetPM().AttachPMBinding("FocusFirstControl", function(){

 custom_code;

});

where:

■ custom_code is code that you write that handles focus updates from the Siebel Server. For
example, updating the enable or disable state of a user interface control that the
UpdateUIButtons method of the physical renderer specifies. For more information about the
UpdateUIButtons method, see “Life Cycle Flows of User Interface Elements” on page 577.

For information about where you add this code, see “Adding Code to the Physical Renderer” on
page 481.

GetControl Method
The GetControl method returns a control instance. It uses the following syntax:

GetControl(control_name)

where:

■ control_name identifies the name of the control that GetControl gets.

You add this code to the physical renderer.

For examples that use GetControl, see the following topics:

■ Customizing Control User Properties for Presentation Models on page 118

■ Customizing Siebel Pharma for Siebel Mobile Disconnected Clients on page 403

GetControlId Method
The GetControlId method gets the control ID of a toggle applet. It uses the following syntax:

GetControlId()

For example, the following code gets the control ID of the toggle applet that Siebel Open UI currently
displays in the client. This code resides in the applet.js file:

return this.GetToggleApplet().GetControlId();

You can add the following code to the physical renderer:

var ToggleEl = this.GetPM().ExecuteMethod("GetControlId");

For information about where you add this code, see “Adding Code to the Physical Renderer” on
page 481.

Configuring Siebel Open UI Siebel 2018

Application Programming Interface ■ Methods of the Siebel Open UI Application
Programming Interface

486

GetFieldValue Method
The GetFieldValue method returns the value of a field. It uses the following syntax:

this.GetFieldValue(field_ame);

where:

■ field_name identifies the name of a field.

For example, the following code gets the current value of the Call Status field:

pBusComp.GetFieldValue("Call Status");

For another example that uses the GetFieldValue method, see “Text Copy of Code That Does a Partial
Refresh for the Presentation Model” on page 187.

GetFormattedFieldValue Method
The GetFormattedFieldValue method gets the format that a field uses to store the value of a control.
It uses the following syntax:

value = this.GetPM().ExecuteMethod("GetFormattedFieldValue", control_name,
flag,index);

where:

■ control_name identifies the name of the control.

■ flag is one of the following values:

■ true. Get the formatted field value from the work set.

■ false. Do not get the formatted field value from the work set.

■ index is an index of the record set.

For an example that uses the GetFormattedFieldValue method, see “Overriding Predefined Methods in
Presentation Models” on page 70.

You add the GetFormattedFieldValue method to the physical renderer.

Siebel Open UI gets the format according to the locale object. For example, 1000 is an unformatted
value, and 1,000 is a formatted value.

GetPhysicalControlValue Method
The GetPhysicalControlValue method gets the value of a physical control. It uses the following
syntax:

GetPhysicalControlValue (control);

For example, the following code gets the value of the physical control that control identifies. This
code resides in the pmodel.js file:

this.GetRenderer().GetPhysicalControlValue(control);

Application Programming Interface ■ Methods of the Siebel Open UI Application
Programming Interface

Configuring Siebel Open UI Siebel 2018 487

The following example binds the physical renderer to the presentation model. You add this code to
the physical renderer:

this.AttachPMBinding("GetPhysicalControlValue", function(control){

 custom_code

});

where:

■ control identifies the control value that Siebel Open UI must get from the physical counterpart
of this control from the presentation model.

■ custom_code is code that you write that gets the value from the physical control.

InvokeMethod Method for Presentation Models
The InvokeMethod method that Siebel Open UI uses for presentation models calls a method on the
applet proxy. It is similar to the InvokeMethod method that Siebel Open UI uses for application
models. For more information, see “InvokeMethod Method for Application Models” on page 541.

InvokeStateChange Method
The InvokeStateChange method invokes a state change. It allows you to configure Siebel Open UI
to handle updates. Siebel Open UI calls it when it sends a can invoke notification update from the
Siebel Server. The InvokeStateChange method uses the following syntax:

InvokeStateChange()

You can add the following code to the physical renderer:

this.GetPM().AttachPMBinding("InvokeStateChange", function(){

 custom_code;

});

where:

■ custom_code is code that you write that handles updates from the Siebel Server. For example,
updating the focus state of a user interface control that the UpdateUIButtons method of the
physical renderer specifies. For more information about the UpdateUIButtons method, see “Life
Cycle Flows of User Interface Elements” on page 577.

For information about where you add this code, see “Adding Code to the Physical Renderer,”.

For more information about using this method, see “Life Cycle Flows of User Interface Elements” on
page 577.

Configuring Siebel Open UI Siebel 2018

Application Programming Interface ■ Methods of the Siebel Open UI Application
Programming Interface

488

IsPrivateField Method
The IsPrivateField method determines whether or not a field is private. A private field is a type of
field that only allows the record owner to view the record. For more information about private fields,
see Siebel Object Types Reference.

The IsPrivateField method returns one of the following values:

■ true. The field that the control references is private.

■ false. The field that the control references is not private.

It uses the following syntax:

this.IsPrivateField(control.GetName())

You add the following code in the physical renderer:

var bPvtField = this.GetPM().ExecuteMethod("IsPrivateField", control.GetName());

LeaveField Method
The LeaveField method determines whether or not Siebel Open UI has removed the focus from a field
in an applet. It returns one of the following values:

■ true. Siebel Open UI has removed the focus from a field. This situation typically occurs when the
user navigates away from the field. To do this navigation, the user clicks another object in the
applet or navigates away from the applet.

■ false. Siebel Open UI has not removed the focus from a field.

It uses the following syntax:

LeaveField(control,value,do_not_leave);

where:

■ control identifies the control that LeaveField examines.

■ value contains the value that Siebel Open UI sets in the proxy for the control.

■ do_not_leave is set to one of the following values:

■ true. Keep the focus on the control.

■ false. Do not keep the focus on the control.

For examples that use the LeaveField method, see “Customizing the Presentation Model to Identify the
Records to Delete” on page 62 and “Customizing Methods in the Presentation Model to Store Field
Values” on page 77.

For more information about using this method, see “Life Cycle Flows of User Interface Elements” on
page 577.

NewFileAttachment Method
The NewFileAttachment method returns the properties of a file attachment. It uses the following
syntax:

Application Programming Interface ■ Methods of the Siebel Open UI Application
Programming Interface

Configuring Siebel Open UI Siebel 2018 489

var attdata = this.GetPM().ExecuteMethod ("NewFileAttachment");

It includes no arguments.

PostExecute Method
The PostExecute method runs in the presentation model after the InvokeMethod method finishes
running. Siebel Open UI calls the InvokeMethod method, returns the call from the Siebel Server, and
then runs PostExecute. The PostExecute method uses the following syntax:

PostExecute(cmd, inputPS, menuPS, lpcsa);

You add this code in the presentation model:

this.AddMethod("PostExecute", function(method_name, input_property_set,

output_property_set){

 {custom_code},

 {sequence : true, scope : this});

where:

■ method_name identifies the method that the Siebel Server called from the applet proxy.

■ input_property_set contains the property set that Siebel Open UI sends to the Siebel Server from
the applet proxy.

■ output_property_set contains the property set that Siebel Open UI sends from the Siebel Server
to the applet proxy.

■ custom_code is code that you write that customizes a PostExecute method.

For an example that uses the PostExecute method, see “Registering Methods to Make Sure Siebel Open
UI Runs Them in the Correct Sequence” on page 387.

For more information about using this method, see “AttachPostProxyExecuteBinding Method” on
page 471 and “Life Cycle Flows of User Interface Elements” on page 577.

ProcessCancelQueryPopup Method
The ProcessCancelQueryPopup method cancels a query dialog box if the user clicks Cancel in this
dialog box. It uses the following syntax:

ProcessCancelQueryPopup()

You can add the following code to the physical renderer:

this.GetPM().AttachPMBinding ("ProcessCancelQueryPopup", function(){custom_code},
{scope : this});

where:

■ custom_code is code that you write that cancels the query dialog box.

Configuring Siebel Open UI Siebel 2018

Application Programming Interface ■ Methods of the Siebel Open UI Application
Programming Interface

490

For information about where you add this code, see “Adding Code to the Physical Renderer” on
page 481.

RefreshData Method
The RefreshData method is proxy method that Siebel Open UI calls when it refreshes an applet in
the client according to data that the applet proxy contains. It returns nothing. It uses the following
syntax:

RefreshData(value)

where:

■ value contains one of the following values:

■ true. Refresh the applet.

■ false. Do not refresh the applet.

For example, the following code refreshes the current applet. It resides in the applet.js file:

this.RefreshData(true);

You can add the following code to the physical renderer:

this.GetPM().AttachPMBinding("RefreshData", function(value){

custom_code});

where:

■ value contains one of the following values:

■ true. Refresh the applet.

■ false. Do not refresh the applet.

■ custom_code is code that you write that refreshes data in the client user interface.

For information about where you add this code, see “Adding Code to the Physical Renderer” on
page 481.

For more information about using this method, see “Life Cycle Flows of User Interface Elements” on
page 577.

ResetAppletState Method
The ResetAppletState method sets the applet to an active state if this applet is not active. It uses
the following syntax:

oldActiveApplet.ResetAppletState();

It includes no arguments.

To use the ResetAppletState method, you bind the physical renderer to the presentation model. The
following example binds the physical renderer to the presentation model. You add this code to the
physical renderer:

Application Programming Interface ■ Methods of the Siebel Open UI Application
Programming Interface

Configuring Siebel Open UI Siebel 2018 491

this.GetPM().AttachPMBinding("ResetAppletState", function(){

//Code that resets the applet

}

});

SetActiveControl Method
The SetActiveControl method sets the active property of a control in an applet. It returns nothing. It
uses the following syntax:

this.ExecuteMethod("SetActiveControl", control_name);

where:

■ control_name identifies the name of a control.

The following code in the presentation model sets the active control to null so that the applet contains
no active control:

this.ExecuteMethod("SetActiveControl", null);

For examples that use the SetActiveControl method, see the following topics:

■ Customizing the Presentation Model to Identify the Records to Delete on page 62

■ Customizing the Presentation Model to Delete Records on page 66

■ Accessing Proxy Objects on page 127

■ AddMethod Method on page 466

The predefined Siebel Open UI code handles an active control for the applet, so it is recommended
that you do not configure Siebel Open UI to directly call the SetActiveControl method. You can use
SetActiveControl only in the context of another call that Siebel Open UI makes to an applet control.

SetHighlightState Method
The SetHighlightState method sets the highlight for the active applet. It uses the following syntax:

SetHighlightState(isActive, newActiveApplet)

For example:

this.SetHighlightState(isActive);

You can add the following code to the physical renderer:

this.AttachPMBinding("SetHighlightState", function(isActive, newActiveApplet){

custom_code

});

where:

Configuring Siebel Open UI Siebel 2018

Application Programming Interface ■ Methods of the Siebel Open UI Application
Programming Interface

492

■ custom_code is code that you write that sets the highlight.

For information about where you add this code, see “Adding Code to the Physical Renderer” on
page 481.

For more information about using this method, see “Life Cycle Flows of User Interface Elements” on
page 577.

SetFocusDefaultControl Method
The SetFocusDefaultControl method sets the default focus flag.

SetUpdateConditionals Method
Siebel Open UI calls the SetUpdateConditionals method when the Siebel Server sends change
selection information or Can Invoke method notifications to the client. It uses the following syntax:

this.SetUpdateConditionals(condition);

where:

■ condition is true or false.

For example, the following code resides in the applet.js file:

this.SetUpdateConditionals(true);

You can add the following code in the physical renderer to the end of the UpdateConditionals method.
This placement makes sure Siebel Open UI runs UpdateConditionals before it runs
SetUpdateConditionals:

this.GetPM().ExecuteMethod("SetUpdateConditionals", false);

For more information, see “Notifications That Siebel Open UI Supports” on page 595.

ShowPickPopup Method
The ShowPickPopup method displays the currency pick applet when the user clicks a pick icon in a
currency calculator control. It uses the following syntax:

ShowPickPopup();

For example, the applet.js file includes the following code:

return this.GetCurrencyApplet().ShowPickPopup(this);

You can use the following code:

this.GetPM().ExecuteMethod("ShowPickPopup");

ShowPopup Method
The ShowPopup method displays a dialog box for a calculator control, date control, or date-time
control. It uses the following syntax:

Application Programming Interface ■ Methods of the Siebel Open UI Application
Programming Interface

Configuring Siebel Open UI Siebel 2018 493

ShowPopup()

For example, the applet.js file includes the following code:

this.ShowPopup(control);

You can add the following code to the physical renderer:

this.GetPM().AttachPMBinding ("ShowPopup", function(control){predefined_code;

},{scope : this});

where:

■ predefined_code is code that exists in the physical renderer that you reuse to display the dialog
box

ShowSelection Method
The ShowSelection method makes a record the active record. It does not return any values. It uses
the following syntax:

ShowSelection()

It includes no arguments.

For example, the pmodel.js file includes the following code:

this.GetApplet(strAppletName).ShowSelection();

It uses the following code to bind the presentation model in the physical renderer:

this.GetPM().AttachPMBinding("ShowSelection", function(){custom_code});

where:

■ custom_code is code that you write. Siebel Open UI runs the ShowSelection method that the
applet proxy calls, and then runs your custom code. You add this custom code to the physical
renderer.

For examples that use the ShowSelection method, see “Text Copy of Code That Does a Partial Refresh
for the Presentation Model” on page 187 and “Example of Adding a New Method” on page 467.

For more information about using this method, see “Life Cycle Flows of User Interface Elements” on
page 577.

UpdateAppletMessage Method
The UpdateAppletMessage method updates an applet message according to modifications that exist
on the Siebel Server. It uses the following syntax:

UpdateAppletMessage()

For example, the applet.js file includes the following code:

this.UpdateAppletMessage();

Configuring Siebel Open UI Siebel 2018

Application Programming Interface ■ Methods of the Siebel Open UI Application
Programming Interface

494

You add the following code to the physical renderer:

this.GetPM().AttachPMBinding ("UpdateAppletMessage", function(){custom_code},
{scope:this});

//e.g. UpdateAppletMessageUI in phyrenderer.

where:

■ custom_code is code that you write that displays a message.

For information about where you add this code, see “Adding Code to the Physical Renderer” on
page 481.

For more information about using this method, see “Life Cycle Flows of User Interface Elements” on
page 577.

UpdateConditionals Method
The UpdateConditionals method runs when Siebel Open UI displays an applet. It uses the following
syntax:

UpdateConditionals()

For example, the listapplet.js file contains the following code:

this.UpdateConditionals();

You can add the following code to the code that updates the physical properties and the HTML
properties of the control:

this.GetPM().AttachPMBinding ("UpdateConditionals", function(){custom_code},{scope
: this});

where:

■ custom_code is code that you write that updates HTML controls. Siebel Open UI runs this code
as soon as the proxy calls the UpdateConditionals method.

For information about where you add this code, see “Adding Code to the Physical Renderer” on
page 481.

UpdateCurrencyCalcInfo Method
The UpdateCurrencyCalcInfo method updates information that Siebel Open UI uses for a currency
calculation. Siebel Open UI calls it when it sends currency information from the Siebel Server. You
can use it to display currency information in an applet. It uses the following syntax:

UpdateCurrencyCalcInfo(0,args)

For example, the applet.js file contains the following code:

this.UpdateCurrencyCalcInfo(0,args);

You can add the following code to the InvokeCurrencyApplet method of the physical renderer:

Application Programming Interface ■ Methods of the Siebel Open UI Application
Programming Interface

Configuring Siebel Open UI Siebel 2018 495

this.GetPM().AttachPMBinding ("UpdateCurrencyCalcInfo", function(){custom_code} ,
{scope : this}});

where:

■ custom_code is code that you write that updates information in the currency calculator control.

For information about where you add this code, see “Adding Code to the Physical Renderer” on
page 481.

UpdateQuickPickInfo Method
The UpdateQuickPickInfo method updates List of Values (LOV) information. Siebel Open UI calls it
when it sends LOV information from the Siebel Server to the client. It uses the following syntax:

UpdateQuickPickInfo(field, true, arrValues, 0);

For example:

this.UpdateQuickPickInfo(field, true, arrValues, 0);

You can add the following code to the physical renderer:

this.GetPM().AttachPMBinding ("UpdateQuickPickInfo", function(){custom_code},
{scope:this});

where:

■ custom_code is code that you write that updates information in the LOV.

For information about where you add this code, see “Adding Code to the Physical Renderer” on
page 481.

For more information about using this method, see “Life Cycle Flows of User Interface Elements” on
page 577.

UpdateStateChange Method
The UpdateStateChange method handles notification updates. Siebel Open UI calls it when it sends
notification updates from the Siebel Server. It uses the following syntax:

UpdateStateChange()

You can add the following code to the physical renderer:

this.GetPM().AttachPMBinding("UpdateStateChange", function(){

 custom_code;

});

where:

■ custom_code is code that you write that handles state change updates from the Siebel Server.
For example, updating the enable or disable state of a user interface control that the
UpdateUIControls method of the physical renderer specifies.

Configuring Siebel Open UI Siebel 2018

Application Programming Interface ■ Methods of the Siebel Open UI Application
Programming Interface

496

For information about where you add this code, see “Adding Code to the Physical Renderer” on
page 481.

For more information about using this method, see “Life Cycle Flows of User Interface Elements” on
page 577 and “Notifications That Siebel Open UI Supports” on page 595.

Presentation Model Class for List Applets
This topic describes the methods that Siebel Open UI uses with the presentation models that it uses
to display list applets. It includes the following information:

■ Summary of Methods That You Can Use with the Presentation Model for Applets on page 478

■ Properties of the Presentation Model That Siebel Open UI Uses for Applets on page 479

■ CellChange Method on page 498

■ HandleRowSelect Method on page 499

■ OnClickSort Method on page 499

■ OnCtrlBlur Method on page 499

■ OnCtrlFocus Method on page 500

■ OnVerticalScroll Method on page 501

■ OnVerticalScroll Method on page 501

■ SetMultiSelectMode Method on page 501

The presentation model that Siebel Open UI uses for list applets uses the ListPresentationModel
class, which is a subclass of the class that Siebel Open UI uses with the presentation models that
display applets.

Siebel Open UI defines this presentation model in the listpmodel.js file. For more information about
the class that Siebel Open UI uses with the presentation models that display applets, see
“Presentation Model Class for Applets” on page 477

Application Programming Interface ■ Methods of the Siebel Open UI Application
Programming Interface

Configuring Siebel Open UI Siebel 2018 497

Properties of the Presentation Model That Siebel Open UI Uses for List
Applets
Table 36 lists the properties of the presentation model that Siebel Open UI uses for a list applet.

Table 36. Properties of the Presentation Model That Siebel Open UI Uses for List Applets

Property Description

GetBeginRow Returns the beginning row number of a list applet.

GetListOfColumns Returns an array, where each item in this array corresponds to a column
control in a list applet. Each of these items is defined as a JSON object
with the following keys:

■ name

■ controlType

■ isLink

■ index

■ bCanUpdate

■ control

For more information about JSON, see the JSON website at:
http://www.json.org.

GetRowIdentifier Returns a string that contains information about the row.

GetRowListRowCount Returns the number of rows that a list applet contains.

GetRowsSelectedArray Returns an array, where each item in this array corresponds to a row
number in a list applet. Each array item includes one of the following
values:

■ true. The row is chosen.

■ false. The row is not chosen.

HasHierarchy Returns a Boolean value that indicates whether or not the list can
include hierarchical records.

Configuring Siebel Open UI Siebel 2018

Application Programming Interface ■ Methods of the Siebel Open UI Application
Programming Interface

498

Summary of Methods That You Can Use with the Presentation Model
That Siebel Open UI Uses for List Applets
Table 37 summarizes the methods that you can use with the presentation model that Siebel Open UI
uses for a list applet. You cannot configure Siebel Open UI to customize or override any of these
methods.

CellChange Method
The CellChange method determines whether or not Siebel Open UI modified the value of a control.
If Siebel Open UI modified this value, then it returns the new value. It uses the following syntax:

CellChange(rowId, field_name, value);

where:

■ rowId is a number of zero through n, where n is the maximum number of rows that the list applet
displays. This number identifies the row that contains the control.

■ field_name identifies the name of the control that Siebel Open UI analyzes to determine whether
or not Siebel Open UI modified the value.

■ value is a value that the control contains.

For example, the following code from the listapplet.js file determines whether or not Siebel Open UI
modified the value of a control. The GetName method identifies this control. The value argument is
a variable that contains the control value:

this.CellChange(rowId, control.GetName(), value);

Siebel Open UI can bind the physical renderer to the CellChange method to determine whether or
not it modified the value for the control.

Table 37. Summary of Methods That You Can Use with the Presentation Model That Siebel Open
UI Uses for List Applet

Method Callable Bindable

CellChange No Yes

HandleRowSelect Yes Yes

OnClickSort Yes No

OnCtrlBlur Yes No

OnCtrlFocus Yes No

OnDrillDown Yes No

OnVerticalScroll Yes No

SetMultiSelectMode No Yes

Application Programming Interface ■ Methods of the Siebel Open UI Application
Programming Interface

Configuring Siebel Open UI Siebel 2018 499

HandleRowSelect Method
The HandleRowSelect method chooses a row. It returns one of the following values:

■ true. Row chosen successfully.

■ false. Row not chosen due to an error in the client or on the Siebel Server.

It uses the following syntax:

HandleRowSelect(rowId, control_key, shift_key);

where:

■ rowId is a number of zero through n, where n is the maximum number of rows that the list applet
displays. This number identifies the row that HandleRowSelect chooses.

■ control_key is one of the following values:

■ true. Choose the CTRL key when choosing the row.

■ false. Do not choose the CTRL key when choosing the row.

■ shift_key is one of the following values:

■ true. Choose the SHIFT key when choosing the row.

■ false. Do not choose the SHIFT key when choosing the row.

For an example that uses HandleRowSelect, see “Customizing the Presentation Model to Delete
Records” on page 66.

For more information about using this method, see “Life Cycle Flows of User Interface Elements” on
page 577.

OnClickSort Method
The OnClickSort method sorts a column. It uses the following syntax:

OnClickSort(name, direction);

where:

■ name identifies the name of the control that Siebel Open UI sorts.

■ direction is one of the following values:

■ asc. Sort the control in ascending order.

■ desc. Sort the control in descending order.

For example, the following code sorts the my_accounts control in descending order:

bReturn = this.GetProxy().OnClickSort(my_accounts, desc);

OnCtrlBlur Method
The OnCtrlBlur method blurs a control, where blur is a state that makes the control not the active
control. It returns nothing. It uses the following syntax:

Configuring Siebel Open UI Siebel 2018

Application Programming Interface ■ Methods of the Siebel Open UI Application
Programming Interface

500

OnCtrlBlur(rowId, control, value);

where:

■ rowId is a number of zero through n, where n is the maximum number of rows that the list applet
displays. This number identifies the row that contains the control.

■ control identifies the control that Siebel Open UI must blur.

■ value is a variable that contains the value of the control.

For example, the following code blurs the my_accounts control. This control resides in the row that
the counter variable identifies. For example, if the counter variable contains a value of 3, then
OnCtrlBlur blurs the my_accounts control that resides in row 3. The value argument is a variable
that contains the control value. For example, if the value of the my_accounts control is Oracle, then
the value variable contains a value of Oracle:

this.ExecuteMethod("OnCtrlBlur", counter, my_accounts, value);

OnCtrlBlur does the localization and notifies the binder method that Siebel Open UI attaches through
the CellChange method, when required. If Siebel Open UI configures the control to do
ImmediatePostChanges, then OnCtrlBlur also runs these modifications.

You must make sure Siebel Open UI uses the OnCtrlFocus method to make the control active before
you use the OnCtrlBlur method. If the control is not active, then Siebel Open UI rejects any
OnCtrlBlur call. For more information, see “OnCtrlFocus Method” on page 500.

For more information about using this method, see “Life Cycle Flows of User Interface Elements” on
page 577.

OnCtrlFocus Method
The OnCtrlFocus method brings a control into focus, where focus is a state that makes the control
the active control. It uses the following syntax:

OnCtrlFocus(rowId, control, value);

where:

■ rowId, control, and value work the same as with the OnCtrlBlur method.

For example, the following code brings the my_accounts control into focus:

this.ExecuteMethod("OnCtrlFocus", counter, my_accounts, value);

For more information about these arguments and this example, see “OnCtrlBlur Method” on page 499.

You must make sure no other control is active. If another control is already active, and if you
configure Siebel Open UI to run OnCtrlFocus, then Siebel Open UI rejects the OnCtrlFocus call.

For more information about using this method, see “Life Cycle Flows of User Interface Elements” on
page 577.

OnDrillDown Method
The OnDrillDown method drills down on a control. It returns one of the following values:

Application Programming Interface ■ Methods of the Siebel Open UI Application
Programming Interface

Configuring Siebel Open UI Siebel 2018 501

■ true. Drilldown succeeded.

■ false. Drilldown failed because an error occurred on the client or on the Siebel Server.

It uses the following syntax:

OnDrillDown(control_name, rowId);

where:

■ control_name identifies the name of the control where Siebel Open UI does the drilldown.

■ rowId is a number of zero through n, where n is the maximum number of rows that the list applet
displays. This number identifies the row that contains the control where Siebel Open UI does the
drilldown.

For example, the following code drills down on the my_accounts control. The counter identifies the
row that contains this control. For more information about how another example uses this counter,
see “OnCtrlBlur Method” on page 499:

this.ExecuteMethod("OnDrillDown", my_accounts, counter);

For more information about using this method, see “Life Cycle Flows of User Interface Elements” on
page 577.

OnVerticalScroll Method
The OnVerticalScroll method scrolls a set of records. It returns nothing. It uses the following syntax:

OnVerticalScroll(scroll_action);

where:

■ scroll_action is one of the following values:

■ nxrc. Scroll down to the next record.

■ pvrc. Scroll up to the previous record.

■ nxst. Page down to the next set of records.

■ pvst. Page up to the prior set of records.

■ scrolldn. Scroll down one page.

■ scrollup. Scroll up one page.

For example, the following code configures Siebel Open UI to scroll to the next record. You add this
code to the physical renderer:

this.ExecuteMethod("OnVerticalScroll", "nxrc");

SetMultiSelectMode Method
The SetMultiSelectMode method determines whether or not a list applet is using multiselect mode.
It uses the following syntax:

SetMultiSelectMode(bInMultiSelMode)

Configuring Siebel Open UI Siebel 2018

Application Programming Interface ■ Methods of the Siebel Open UI Application
Programming Interface

502

where:

■ bIsInMultiSelectMode is a variable that includes one of the following values.

 SetMultiSelectMode returns this value:

■ true. List applet is using multiselect mode.

■ false. List applet is not using multiselect mode.

For example, the following code determines whether or not the list applet that the appletIndex
identifies is using multiselect mode. This code resides in the notifyobject.js file:

for(var appletIndex=0, len = applets.length; appletIndex < len; appletIndex++){

 applets[appletIndex].SetMultiSelectMode(bInMultiSelMode);

The physical renderer can use the AttachPMBinding method in the presentation model to bind to the
SetMultiSelectMode method. The following binding allows the physical renderer to know if the list
applet is in multiselect mode:

this.AttachPMBinding("SetMultiSelectMode", InMultiSelectMode, this);

 function InMultiSelectMode(bIsInMultiSelectMode){

 }

Presentation Model Class for Menus
This topic describes the methods that Siebel Open UI uses with the presentation models that it uses
to display menus. It includes the following information:

■ Properties of the Presentation Model for Menus

■ GetMenuPS Method on page 503

■ OnMenuInvoke Method on page 503

■ ProcessMenuCommand Method on page 504

■ ShowMenu Method on page 504

Properties of the Presentation Model for Menus
Table 38 describes the properties of the presentation model that Siebel Open UI uses for menus.

Table 38. Properties of the Presentation Model for Menus

Property Description

GetObjectType Returns a string that describes object information.

GetRepstrName

GetUIName

Application Programming Interface ■ Methods of the Siebel Open UI Application
Programming Interface

Configuring Siebel Open UI Siebel 2018 503

GetMenuPS Method
The GetMenuPS method returns a property set that includes information about a menu and the menu
items that this menu contains. It uses the following syntax:

GetMenuPS()

It includes no arguments.

For example:

var menuPS = this.ExecuteMethod("GetMenuPS");

The following example includes a typical property set that the GetMenuPS method returns:

childArray

[0]

- childArray

- propArray

- Caption : "Undo Record [Ctrl+U]"

- Command : "*Browser Applet* *UndoRecord*SIS Account List Applet* "

- Enabled : [True|False]

- Type: "Command\|Separator"

OnMenuInvoke Method
The OnMenuInvoke method creates a menu. It returns nothing. It uses the following syntax:

OnMenuInvoke(consts.get("APPLET_NAME")

The applicationcontext.js file includes the following code:

activeAplt.GetMenu().OnMenuInvoke(consts.get("APPLET_NAME")

You can use the following code:

this.ExecuteMethod("OnMenuInvoke", consts.get("APPLET_NAME"),
consts.get("SWE_PREPARE_APPLET_MENU"), consts.get("SWE_MENU_APPLET"), true);

GetId Returns a string that describes the identifier of the menu object. Siebel Open
UI gets this value from the parent menu of this menu object.

GetLabel Returns a string that describes the label of the menu object. Siebel Open UI
gets this value from the parent menu of this menu object.

Table 38. (Continued)Properties of the Presentation Model for Menus

Property Description

Configuring Siebel Open UI Siebel 2018

Application Programming Interface ■ Methods of the Siebel Open UI Application
Programming Interface

504

ProcessMenuCommand Method
The ProcessMenuCommand method runs when the user chooses a menu item. It returns nothing. It
uses the following syntax:

this.ExecuteMethod("ProcessMenuCommand", menuItemCommand);

It includes no arguments.

ShowMenu Method
The ShowMenu method displays a menu. It exists only for binding purposes. It makes sure Siebel
Open UI finishes all processing related to the menu property set. It returns nothing. It uses the
following syntax:

this.AttachPMBinding("ShowMenu", ShowMenuUI, this};

function ShowMenuUI(){

// Include here code that displays the menu control.

}

It includes no arguments.

Siebel Open UI finishes running the ShowMenu method in the proxy, and then immediately runs the
ShowMenuUI method.

You must not configure Siebel Open UI to call the ShowMenu method from an external application.

Physical Renderer Class
This topic describes the methods that Siebel Open UI uses with the PhysicalRenderer class. It
includes the following information:

■ BindData Method on page 505

■ BindEvents Method on page 505

■ EnableControl Method on page 506

■ EndLife Method on page 507

■ FieldChange Method for Physical Renderers on page 507

■ GetPM Method for Physical Renderers on page 508

■ SetControlValue Method on page 508

■ ShowUI Method on page 509

Application Programming Interface ■ Methods of the Siebel Open UI Application
Programming Interface

Configuring Siebel Open UI Siebel 2018 505

BindData Method
The BindData method downloads metadata and data from the Siebel Server to the client proxy, and
then binds this data to the user interface. The list columns that a list applet uses is an example of
metadata, and the record set that this list applet uses is an example of data. The BindData method
uses the following syntax:

BindData(searchData, options);

For example, the following code in the renderer.js file uses the BindData method:

this.GetSearchCtrl().BindData(searchData, options);

For another example, the following code gets the value for a control from the presentation model,
and then binds this value to this control:

CustomPR.prototype.BindData = function(){

 var controlSet = pm.Get("GetControls");

 for(var controlName in controlSet){

 if(controlSet.hasOwnProperty(controlName)){

 var control = controlSet[controlName];

 // Get value for this control from presentation model and bind it to

 //the control.

 }

 }

};

Siebel Open UI expects the physical renderer to use the BindData method to bind data to the physical
control. The BindData method also gets the initial value from the presentation model, and then
attaches this value to the control.

For information about:

■ Examples that use BindData, see the following topics:

■ Customizing the Physical Renderer to Bind Data on page 86

■ Siebel Portal Framework on page 313

■ How Siebel Open UI uses BindData, see the following topics:

■ Life Cycle of a Physical Renderer on page 53

■ Guidelines for Customizing Presentation Models on page 109

BindEvents Method
The BindEvents method binds an event. It returns nothing. It uses the following syntax:

Configuring Siebel Open UI Siebel 2018

Application Programming Interface ■ Methods of the Siebel Open UI Application
Programming Interface

506

BindEvents(this.GetProxy().GetControls());

For example, the following code in the renderer.js file uses the BindEvents method:

this.GetConcreteRenderer().BindEvents(this.GetProxy().GetControls());

For another example, the following code binds a resize event:

CustomPR.prototype.BindEvents = function(){

var controlSet = controls||this.GetPM().Get("GetControls");

for(var control in controlSet){

 if(controlSet.hasOwnProperty(control)){

 // Bind for each control as required.

 }

}

// Resize event

$(window).bind("resize.CustomPR", OnResize, this);

};

function OnResize(){

}

Siebel Open UI expects the physical renderer to use the ShowUI method to do all possible event
binding. The event can reside on an applet control or in the applet area of the DOM. This binding also
applies to any custom event, such as resizing a window. For more information, see “ShowUI Method”
on page 509 and “Siebel CRM Events That You Can Use to Customize Siebel Open UI” on page 620.

For information about how Siebel Open UI uses BindEvents, see the following topics:

■ Life Cycle of a Physical Renderer on page 53

■ Guidelines for Customizing Presentation Models on page 109

■ “Life Cycle Flows of User Interface Elements” on page 577

EnableControl Method
The EnableControl method enables a control. It uses the following syntax:

EnableControl(control_name)

where:

■ control_name identifies the name of the control that EnableControl enables.

Application Programming Interface ■ Methods of the Siebel Open UI Application
Programming Interface

Configuring Siebel Open UI Siebel 2018 507

EndLife Method
The EndLife method ends an event. It returns nothing. It uses the following syntax:

EndLife()

It includes the following arguments:

CustomPR.prototype.EndLife = function(){

$(object).unbind ("event.CustomPR");

};

where:

■ object identifies the object where the event runs.

■ event identifies the name of an event.

It is recommended that you configure Siebel Open UI to end the life of any event that it no longer
requires. This configuration makes sure an event handler does not continue to exist even if no object
references it. For example, assume you attached a resize event on a window, and then Siebel Open
UI finished running this event. The following code ends the resize event on the window object:

CustomPR.prototype.EndLife = function(){

 $(window).unbind ("resize.CustomPR");

};

For information about how Siebel Open UI uses EndLife, see the following topics:

■ Life Cycle of a Physical Renderer on page 53

■ Guidelines for Customizing Presentation Models on page 109

■ Using Methods with the Base Physical Renderer Class on page 124

FieldChange Method for Physical Renderers
The FieldChange method that Siebel Open UI uses with physical renderers modifies the value of a
field. It returns nothing. It uses the following syntax. You add this code to the constructor method
in the physical renderer:

this.GetPM().AttachPMBinding("FieldChange", this.SetControlValue, {scope: this}

It includes no arguments.

For example, you can add the following code to the constructor method that resides in the physical
renderer:

this.GetPM().AttachPMBinding("FieldChange", this.SetControlValue, {scope: this}

);

This code adds the following code to the BinderMethod that resides in the physical renderer:

CustomPR.prototype.SetControlValue = function(control, value){

Configuring Siebel Open UI Siebel 2018

Application Programming Interface ■ Methods of the Siebel Open UI Application
Programming Interface

508

};

Siebel Open UI finishes running the FieldChange method, and then calls the SetControlValue method
that sets the value in the physical instance of the control.

For more information, see “AttachPMBinding Method” on page 471.

For information about the FieldChange method that Siebel Open UI uses with presentation models,
including examples that use FieldChange, see “FieldChange Method for Presentation Models” on
page 484.

GetPM Method for Physical Renderers
The GetPM method returns a presentation model instance. It uses the following syntax:

GetPM()

It includes no arguments.

For example, the jqmlistrenderer.js file includes the following code:

var listOfColumns = this.GetPM().Get("ListOfColumns");

For information about:

■ Examples that use GetPM, see the following topics:

■ Customizing the Physical Renderer to Render the Carousel on page 82

■ Customizing the Physical Renderer to Bind Events on page 84

■ Customizing the Physical Renderer to Refresh the Carousel on page 87

■ Calling Methods on page 121

■ Refreshing Custom Events on page 134

■ Text Copy of Code That Does a Partial Refresh for the Physical Renderer on page 188

■ Adding Custom User Preferences to Applets on page 224

■ How Siebel Open UI uses GetPM, see the following topics:

■ Life Cycle of a Physical Renderer on page 53

■ Using Methods with the Base Physical Renderer Class on page 124

■ The GetPM method that Siebel Open UI uses for components, see “GetPM Method for Components”
on page 554.

SetControlValue Method
The SetControlValue method sets the value for the control that Siebel Open UI sends as an argument.

For an example that uses SetControlValue, see “FieldChange Method for Physical Renderers” on
page 507.

Application Programming Interface ■ Methods of the Siebel Open UI Application
Programming Interface

Configuring Siebel Open UI Siebel 2018 509

For more information about using this method, see “Life Cycle Flows of User Interface Elements” on
page 577.

ShowUI Method
The ShowUI method displays the physical control that corresponds to an applet control. It returns
nothing. It uses the following syntax:

ShowUI()

It includes no arguments.

For example:

CustomPR.prototype.ShowUI = function(){

 var controlSet = this.GetPM().Get("GetControls");

 for(var control in controlSet){

 if(controlSet.hasOwnProperty(control)){

 // Display each control, as required.

 }

 }

};

A physical renderer must provide a definition for each of the following methods:

■ ShowUI

■ BindEvents

■ BindData

It can do this definition in each of these methods or in a superclass, which is a parent class of the
class that the method references.

For information about:

■ Examples that use ShowUI, see the following topics:

■ Customizing the Physical Renderer to Render the Carousel on page 82

■ Adding Custom User Preferences to Applets on page 224

■ How Siebel Open UI uses ShowUI, see the following topics:

■ Life Cycle of a Physical Renderer on page 53

■ Using Methods with the Base Physical Renderer Class on page 124

■ BindEvents Method on page 505

Configuring Siebel Open UI Siebel 2018

Application Programming Interface ■ Methods of the Siebel Open UI Application
Programming Interface

510

Plug-in Wrapper Class
This topic describes the methods that Siebel Open UI uses with the basepw, which is the Plug-in
Wrapper base class. The methods exposed by basepw are as follows:

■ GetEl Method

■ ShowUI Method

■ BindEvents Method on page 511

■ SetValue Method on page 511

■ GetValue Method on page 511

■ BeginQuery Method on page 511

■ EndQuery Method on page 511

■ GetIconMap Method on page 512

■ SetState Method on page 512

GetEl Method
The GetEl method simplifies the process of finding DOM element associated with a particular control
in the applet region. It can detect if the control has multiple instances in the DOM and if so, it will
them return all. If a single instance is required, the index must be passed to this function. It uses
the following syntax:

GetEI(index)

■ Where index is a numerical value representing the row number of the DOM element of the control
that is required. This argument is optional.

Returns the associated jQuery based DOM reference for the control or NULL.

For example, the following code uses the GetUI method to retrieve all DOM element of a particular
control:

var el = this.GetUIWrapper(control).GetEl();

For another example, the following code uses the GetUI method to retrieve index-based DOM
elements of a particular control when the control has multiple DOM instances, as in a list applet:

var el = this.GetUIWrapper(control).GetEl(index);

ShowUI Method
The ShowUI method performs show-related activities for a control. It requires the GetEl method and
the Template Manager to accomplish its purpose.

Application Programming Interface ■ Methods of the Siebel Open UI Application
Programming Interface

Configuring Siebel Open UI Siebel 2018 511

BindEvents Method
The BindEvents method attaches events to the DOM instance of a control. It requires the GetEl
method and the Event Helper to accomplish its purpose.

For more information, see BindEvents Method on page 505.

SetValue Method
The SetValue method sets the value in the DOM instance of control. If there are multiple DOM
instances for the control, the index argument is used to used to determine the instance to which the
value should be set.Customized plug-in wrappers must use this index to find associated DOM
instances and call appropriate value modification APIs in the DOM to reflect the customization.

It uses the following syntax:

SetValue(value, index)

■ Where value identifies the value of the control DOM instance.

■ Where index is a numerical value representing the row number of the DOM element of the control
that is required.

GetValue Method
The GetValue method gets the value of the control field from the DOM. If multiple instances of the
control exist, then the index parameter is used to identify the value of the particular control that is
needed. It uses the following syntax:

GetValue(index)

■ Where index is a numerical value representing the row number of the DOM element of the control
that is required.

BeginQuery Method
The BeginQuery method indicates to a customized PW that it is entering query mode. It uses the
following syntax:

BeginQuery()

It includes no arguments.

EndQuery Method
The EndQuery method indicates to a customized PW that it is exiting query mode. It uses the
following syntax:

EndQuery()

It includes no arguments.

Configuring Siebel Open UI Siebel 2018

Application Programming Interface ■ Methods of the Siebel Open UI Application
Programming Interface

512

GetIconMap Method
The GetIconMap method determines if there are any configured icon maps for a customized PW
control. If it does, the appropriate icon map is returned. It uses the following syntax:

GetIconMap()

It includes no arguments.

SetState Method
The SetState method provides an indicator to a customized PW to set a state to the associated DOM
instances. If there are multiple DOM instances, use the index argument to retrieve the appropriate
element. It uses the following syntax:

SetState(state, flag, index)

■ Where state is one of the following values:

■ EDITABLE. Can be edited.

■ ENABLE. Is enabled.

■ SHOW. Is visible.

■ FOCUS. Is focussed.

■ Where flag indicates if the state should be reversed, and is one of the following values:

■ TRUE. The state should be reversed.

■ FALSE. The state should be maintained.

For example, if the state is set to EDITABLE, and the flag is set to TRUE, the value of state
will be reversed to NON-EDITABLE.

■ Where index is a numerical value representing the row number of the DOM element of the control
that is required.

Plugin Builder Class
This topic describes the Plugin Builder class. The Plugin Builder class wires the Plug-in Wrapper to
the given Applet Control, specifying the conditions under which the wrapper is to be used. It uses
the API AttachPW for this purpose. It uses the following syntax:

SiebelApp.S_App.PluginBuilder.AttachPW(Control Type, PW Class, function (control,
objName) {

 return <conditions>;

■ Where Control Type is the SWE constant for the type of control that you are trying to override
the functionality for. For a complete listing of control types, see “About Supported Template
Manager Controls” on page 514.

■ Where PW Class is the name of the custom wrapper.

Application Programming Interface ■ Methods of the Siebel Open UI Application
Programming Interface

Configuring Siebel Open UI Siebel 2018 513

For example, the following code shows how to attach the Plug-In wrapper with a custom combobox
wrapper that would deploy for all buttons in the Contact List Applet:

SiebelApp.S_App.PluginBuilder.AttachPW(consts.get("SWE_CTRL_COMBOBOX"),
SiebelAppFacade. CustomComboPW, function (control, objName) {

 return (objName === "Contact List Applet");

});

Another example, the following code shows how to attach the Plug-In wrapper with a custom text
box wrapper that would deploy for all text boxes in the Opportunity List Applet or the Sales Order
Form Applet:

SiebelApp.S_App.PluginBuilder.AttachPW(consts.get("SWE_CTRL_TEXT"),
SiebelAppFacade.CustomTextPW, function (control, objName) {

return (objName === "Opportunity List Applet" || objName === "Sales Order Form");

});

Another example, the following code shows how to attach the Plug-In wrapper with a custom
combobox wrapper that would deploy for all combo boxes of a certain name, across the application:

SiebelApp.S_App.PluginBuilder.AttachPW(consts.get("SWE_CTRL_COMBOBOX"),
SiebelAppFacade.CustomComboPW, function (control, objName) {

return (control.GetName() === "Last Name");

});

Another example, the following code shows how to attach the Plug-In wrapper with a custom text
box wrapper that would deploy for only a specific control with a specific name in the Sales Order
Form Applet:

SiebelApp.S_App.PluginBuilder.AttachPW(consts.get("SWE_CTRL_TEXT"),
SiebelAppFacade.CustomTextPW, function (control, objName) {

 return (control.GetName() === "Revenue" && objName === "Sales Order Form");

});

Another example, the following code shows how to attach the Plug-In wrapper with a custom check
box that would deploy for all touch enabled devices:

SiebelApp.S_App.PluginBuilder.AttachPW(consts.get("SWE_CTRL_CHECKBOX"),
SiebelAppFacade.CustomCheckPW, function (control) {

return SiebelAppFacade.DecisionManager.IsTouch();

});

NOTE: The global call depicted in this example can be used in conjunction with other conditions, such
as the ones in previous examples.

For more information about the Attach PW API and examples of how to use the AttachPW API, see
“Configuring the Manifest for the Color Box Example” on page 107.

Configuring Siebel Open UI Siebel 2018

Application Programming Interface ■ Methods of the Siebel Open UI Application
Programming Interface

514

Template Manager Class
This topic describes the Template Manager Class. This topic contains the following topics:

■ About the Template Manager Class

■ About Supported Template Manager Controls

■ Examples Using Template Manager on page 516

About the Template Manager Class
The Template Manager class generates HTML for various controls, and uses the following method and
syntax:

GenerateMarkup(configObject);

The GenerateMarkup method uses only one argument, that is an object. Depending on the properties
present in object, Template Manager chooses the appropriate flow for the generation of the HTML.
The following list describes the different properties that you can specify via configObject:

■ type. Specify the type of control to generate. For a list of types, please see Table 39 on page 515.
When not specified, the value will default to the input field or SWE_CTRL_TEXT.

■ class. Specify the class name to attach to the control. If multiple classes need to be attached,
use a space-separated string. TM will also attaches pre-defined CSS class name for the control,
based on the type of control being generated.

■ id. Specify the ID which needs to be given to the control. Depending on the control type
provided, auto generated value for ID can be attached by TM to the control if not provided.

■ values. Specify the value that needs to be attached to the control.

NOTE: When specifying ComboBox for the type, you can specify an array of values. Also, the
selected index needs to be specified with the property index.

■ attrs. Specify any other attribute that should be attached to the control, in string format. For
example, if you need aria attributes aria-label, aria-labelledby, and aria-describedby to be
attached to the control, you would use the following code:

"aria-label='abc' aria-labelledby='xyz' aria-describedby='123'"

About Supported Template Manager Controls
This topic describes supported Template Manager controls.

Application Programming Interface ■ Methods of the Siebel Open UI Application
Programming Interface

Configuring Siebel Open UI Siebel 2018 515

The Template Manager class provides mark-up for the many types of controls required in Siebel Open
UI. Table 39 lists the supported Template Manager controls.

Table 39. Supported Template Manager Controls

HTML Type in
Siebel Open UI Corresponding SWE Constants Additional Information

Button SWE_PST_BUTTON_CTRL None.

Text Field SWE_CTRL_TEXT None.

span SWE_CTRL_PLAINTEXT None.

Check Box SWE_CTRL_CHECKBOX None.

Date (HTML5) SWE_CTRL_DATE_PICK Falls back to HTML4 input field control.

Date Time
(HTML5)

SWE_CTRL_DATE_TIME_PICK Falls back to HTML4 input field control.

URL (HTML5) SWE_CTRL_URL None.

TEL (HTML5) SWE_CTRL_PHONE Falls back to HTML4 input field control.

File SWE_CTRL_FILE None.

Radio SWE_CTRL_RADIO None.

Eff Date SWE_CTRL_EFFDAT None.

MVG SWE_CTRL_MVG None.

Pick SWE_CTRL_PICK None.

Detail SWE_CTRL_DETAIL None.

Calc SWE_CTRL_CALC None.

Link SWE_CTRL_LINK Links with the address in src property.

MailTo SWE_CTRL_MAILTO Links with the address supplied in src
property.

Img SWE_CTRL_IMAGECONTROL Image with the source provided in src
property.

Text Area SWE_CTRL_TEXTAREA None.

Configuring Siebel Open UI Siebel 2018

Application Programming Interface ■ Methods of the Siebel Open UI Application
Programming Interface

516

Examples Using Template Manager
This topic describes examples of using Template Manager. The examples in this section assume that
tmplMgr is a reference to the Template Manager Object, and consts is a reference to
SiebelApp.Constants object.

Example of Generating Markup for a Normal Text Field In this example, we use the
following code make the call to the Template Manager to generate markup for a normal text field:

var markup = tmplMgr.GenerateMarkup({

 type : consts.get("SWE_CTRL_TEXT")

 });

In the this example, this is the expected HTML string begin held by the markup variable:

<input type="text" class="siebui-input " />

Example of Generating Markup with an Additional className In this example, we use
the following code make the call to the Template Manager to generate markup for with an additional
className:

var markup = tmplMgr.GenerateMarkup({

 type : consts.get("SWE_CTRL_TEXT"),

 class: "siebui-align-left"

 });

In the this example, this is the expected HTML string begin held by the markup variable:

<input type="text" class="siebui-input siebui-align-left" />

Label SWE_CTRL_LABEL None.

ComboBox
(Select)

SWE_CTRL_COMBOBOX Accepts the following additional
configuration:

■ displayValue. An array of values
that should be displayed in the
Option List.

■ value. An array of actual values.

■ index. Zero-based value that
indicates currently selected value.

Table 39. (Continued)Supported Template Manager Controls

HTML Type in
Siebel Open UI Corresponding SWE Constants Additional Information

Application Programming Interface ■ Methods of the Siebel Open UI Application
Programming Interface

Configuring Siebel Open UI Siebel 2018 517

Example of Generating Markup with Additional Attributes In this example, we use the
following code make the call to the Template Manager to generate markup for with additional
attributes:

var markup = tmplMgr.GenerateMarkup({

 type : consts.get("SWE_CTRL_TEXT"),

 attrs: "aria-label=\"abc\" aria-labelledby=\"xyz\" aria-describedby=\"123"

 });

In the this example, this is the expected HTML string begin held by the markup variable:

<input type="text" class="siebui-input " aria-label="abc" aria-labelledby="xyz"
aria-describedby="123 />

Example of Generating a Combo Box with Multiple Options In this example, we use the
following code make the call to the Template Manager to generate a combo box with multiple options,
Value 1, Value 2, and Value 3:

var markup = tmplMgr.GenerateMarkup({

 type : consts.get("SWE_CTRL_COMBOBOX"),

 value: ["Value 1", "Value 2", "Value 3"],

 index: 1 // zero based index

 });

In the this example, this is the expected HTML string begin held by the markup variable:

<select class="siebui-select ">

 <option>Value 1</option>

 <option selected> Value 2</option>

 <option>Value 3</option>

</select>

Example of Generating a Hyperlink In this example, we use the following code make the call
to the Template Manager to generate a hyperlink:

var markup = tmplMgr.GenerateMarkup({

 type : consts.get("SWE_CTRL_LINK"),

 src : "http://www.oracle.com",

 value: "Oracle HomePage"

 });

In the this example, this is the expected HTML string begin held by the markup variable:

Configuring Siebel Open UI Siebel 2018

Application Programming Interface ■ Methods of the Siebel Open UI Application
Programming Interface

518

Oracle HomePage

Event Helper Class
The Event Helper Class uses the Event Helper Object to facilitate Event Binding in the Physical
Renderer or Plug-in Wrapper.

To retrieve the event helper:

var evtHelper = this.Helper("EventHelper");

Manage is the singular API exposed by the Event Helper Class for unified event binding for DOM
elements across multiple platforms. Use the following API specification as a guideline to use the
EventHelper object to bind an event:

evtHelper.Manage(el, eventName, eventData, eventHandler);

NOTE: This syntax is similar to a jQuery bind call. With this call, an attempt is being made to bind
event eventName to element el with event data eventData and event handler eventHandler.

Use the following API specification as a guideline to use delegate-on type for event binding:

evtHelper.Manage(el, eventName, eventData, eventHandler, elChild);

For example:

var evtHelper = this.Helper("EventHelper");

evtHelper.Manage(el, "down" , functionRef);

The down event is attached to element el, with functionRef defined as the Event Handler. Both touch
and mouse events are handled, depending on the environment. The down value will get translated to
mousedown in a mouse-enabled environment, and to touchstart in a touch-enabled environment.

About Event Helper Mappings
In Siebel Innovation Pack 2014 and later, inter-platform event mappings done by the Event Helper
object have been harmonized. Consequently, similar actions that create different events on different
platforms now result in the same behavior across platforms.

Table 40 shows unified event names and their corresponding actions on touch and non-touch
platforms. Using the new unified events creates familiar experiences for users across platforms.

Table 40. Unified Event Name Translations

Unified Event Name
Translation On Non-Touch
Platform

Translation On Touch
Platform

down mousedown touchstart

start mousedown touchstart

click click click

Application Programming Interface ■ Methods of the Siebel Open UI Application
Programming Interface

Configuring Siebel Open UI Siebel 2018 519

Furthermore, the same unified bindings translate to pointer-based events if the Siebel Open UI Client
application detects that the browser supports the pointer object. This behavior is specific to Internet
Explorer browsers and pointer events used by Microsoft to unify event handling across different
devices on Internet Explorer 10 and later.

Table 41 describes the pointer event mapping.

up mouseup touchend

end mouseup touchend

move mousemove touchmove

over mouseover none

out mouseout none

cancel mouseout touchcancel

dnter mouseenter none

leave mouseleave none

hover hover none

focus focus focus

blur blur blur

keydown keydown none

keyup keyup none

keypress keypress keypress

Table 41. Unified Event Name Translations for Windows 8

Unified Event Name
Translation On Windows 8 Internet Explorer Pointer-Based
Devices

down pointerdown

start pointerdown

click click

up pointerup

end pointerup

move pointermove

over pointerover

out pointerout

Table 40. (Continued)Unified Event Name Translations

Unified Event Name
Translation On Non-Touch
Platform

Translation On Touch
Platform

Configuring Siebel Open UI Siebel 2018

Application Programming Interface ■ Methods of the Siebel Open UI Application
Programming Interface

520

About Double-Click
A double click event is usually handled natively by the browser, such as the zoom action in touch
based devices. Consequently, it is not recommended that you attach custom handlers to the double-
click event. Attaching custom handlers might make it impossible to unify the behavior of the double-
click action.

About Events Not Unified by Event Helper
Events not unified by the Event Helper or listed in Table 40 on page 518 and Table 41 on page 519 can
still be used with Manage API to attach custom handlers. This applies to events supported by jQuery
natively and to custom events that are generated by custom PR/PW code or by third-party plug-in
customizations.

For example, a plug-in like iScroll might trigger events such as scollLeft or scrollStop on the
element to which the plug-in is attached. The custom PR code can effectively attach custom handlers
to these events using the Manage API.

Business Component Class
Siebel Open UI defines the Business Component class in the component.js file. You can use the Setup
method with this class. For more information, see “Setup Method for Presentation Models” on
page 476.

Applet Class
This topic describes the methods that Siebel Open UI uses with the Applet class. It includes the
following information:

cancel pointercancel

enter pointerenter

leave pointerleave

hover mspointerhover

focus focus

blur blur

keydown keydown

keyup keyup

keypress keypress

Table 41. (Continued)Unified Event Name Translations for Windows 8

Unified Event Name
Translation On Windows 8 Internet Explorer Pointer-Based
Devices

Application Programming Interface ■ Methods of the Siebel Open UI Application
Programming Interface

Configuring Siebel Open UI Siebel 2018 521

■ AddClientControl Method

■ GetControls Method

■ GetName Method for Applets

■ GetRecordSet Method on page 522

■ GetSelection Method on page 522

Siebel Open UI defines this class in the applet.js file.

AddClientControl Method
The AddClientControl method adds a control in the client. It returns nothing. It uses the following
syntax:

Applet.prototype.AddClientControl = function (ctrlInfo) {

....

}

It includes no arguments.

For an example that uses the GetControls method, see “Customizing Methods in the Presentation
Model to Store Field Values,”.

GetControls Method
The GetControls method returns the set of controls that the current applet uses. It returns this set
as an object. It uses the following syntax:

GetControls()

It includes no arguments.

For an example that uses the AddClientControl method, see “Creating and Managing Client-Side
Controls” on page 239.

GetName Method for Applets
The GetName method that Siebel Open UI uses for applets returns the name of the current applet.
It returns this name in a string. It uses the following syntax:

GetName()

It includes no arguments.

For information about the GetName method that Siebel Open UI uses for other classes, see “GetName
Method for Applet Controls” on page 526 see “GetName Method for Application Models” on page 539.

Configuring Siebel Open UI Siebel 2018

Application Programming Interface ■ Methods of the Siebel Open UI Application
Programming Interface

522

GetRecordSet Method
The GetRecordSet method returns the current set of records that Siebel Open UI displays in the
current applet. It returns these records in an array. It uses the following syntax:

GetRecordSet()

It includes no arguments.

GetSelection Method
The GetSelection method returns the index of the active row of the current record set. It returns this
index as a number. It uses the following syntax:

GetSelection()

It includes no arguments.

Applet Control Class
This topic describes the methods that Siebel Open UI uses with the Applet Control class. It includes
the following information:

■ GetCaseSensitive Method on page 523

■ GetDisabledBmp Method on page 523

■ GetDisplayName Method on page 524

■ GetDispMode Method on page 524

■ GetEnabledBmp Method on page 525

■ GetFieldName Method on page 525

■ GetHeight Method on page 525

■ GetIndex Method on page 525

■ GetInputName Method on page 525

■ GetJustification Method on page 526

■ GetMaxSize Method on page 526

■ GetMethodName Method on page 526

■ GetName Method for Applet Controls on page 526

■ GetPMPropSet Method on page 527

■ GetPopupHeight Method on page 527

■ GetPopupType Method on page 527

■ GetPopupWidth Method on page 528

■ GetPrompt Method on page 528

Application Programming Interface ■ Methods of the Siebel Open UI Application
Programming Interface

Configuring Siebel Open UI Siebel 2018 523

■ GetUIType Method on page 529

■ GetWidth Method on page 529

■ HandleDeleteNotification Method on page 529

■ IsBoundedPick Method on page 529

■ IsCalc Method on page 529

■ IsDynamic Method on page 530

■ IsEditEnabled Method on page 530

■ IsSortable Method on page 530

■ NewRecord Method on page 530

■ NotifyNewData Method on page 531

■ PreGetFormattedFieldValue Method on page 532

■ PostLeaveField Method on page 532

■ SetIndex Method on page 532

Each applet control references the Applet Control class. Siebel Open UI stores this class in the
appletcontrol.js file.

GetCaseSensitive Method
The GetCaseSensitive method determines whether or not a control is case sensitive. It returns one
of the following values:

■ 1. The control is case sensitive.

■ 0. The control is not case sensitive.

It uses the following syntax:

GetCaseSensitive()

It includes no arguments.

For example:

if (control.GetCaseSensitive() === "1"){

// This is the account control.

alert ("Make sure you use the correct case.");

}

GetDisabledBmp Method
The GetDisabledBmp method returns the image source configured for a control if the control is
disabled. It returns one of the following values depending on whether or not the image exists:

Configuring Siebel Open UI Siebel 2018

Application Programming Interface ■ Methods of the Siebel Open UI Application
Programming Interface

524

■ Exists. Returns a string that contains the path to the folder that contains the image.

■ Does not exist. Returns nothing.

It uses the following syntax:

GetDisabledBmp()

It includes no arguments.

GetDisplayName Method
The GetDisplayName method returns the display name of a control. It returns this name in a string.
It uses the following syntax:

GetDisplayName()

It includes no arguments.

For example:

if (control.GetDisplayName () === "Account Name"){

// This is the account control.

alert ("You are leaving Account. This will trigger an immediate post change.");

}

GetDispMode Method
The GetDispMode method returns the display mode of a control. It returns this name in a string. It
uses the following syntax:

GetDispMode()

It includes no arguments.

GetEDEnabled Method
The GetEDEnabled method determines whether or not an Effective Dating (ED) control is enabled. It
returns one of the following values:

■ True. Effective Dating control is enabled.

■ False. Effective Dating control is not enabled.

It uses the following syntax:

GetEDEnabled()

It includes no arguments.

Application Programming Interface ■ Methods of the Siebel Open UI Application
Programming Interface

Configuring Siebel Open UI Siebel 2018 525

GetEnabledBmp Method
The GetEnabledBmp method determines whether or not an image source is configured for a control,
whether or not this image source exists, and whether or not this control is enabled. It returns one
of the following values depending on whether or not the image exists:

■ Exists. It returns a string that contains the path to the folder that contains the image.

■ Does not exist. It returns nothing.

It uses the following syntax:

GetEnabledBmp()

■ It includes no arguments.

GetFieldName Method
The GetFieldName method returns a string that includes the name of the field where a control is
configured. It uses the following syntax:

GetFieldName()

It includes no arguments.

For examples that use GetFieldName, see “Customizing Methods in the Presentation Model to Store
Field Values” on page 77 and “CanNavigate Method” on page 482.

GetHeight Method
The GetHeight method returns a string that includes the height of a control, in pixels. It uses the
following syntax:

GetHeight()

It includes no arguments.

GetIndex Method
The GetIndex method returns the index of a control. This index identifies the control position in the
applet. It uses the following syntax:

GetIndex()

It includes no arguments.

GetInputName Method
The GetInputName method returns a string that includes the HTML Name attribute of a control. It
uses the following syntax:

GetInputName()

It includes no arguments.

Configuring Siebel Open UI Siebel 2018

Application Programming Interface ■ Methods of the Siebel Open UI Application
Programming Interface

526

For examples that use the GetInputName method, see the following topics:

■ Text Copy of Code That Does a Partial Refresh for the Physical Renderer on page 188

■ GetPopupType Method on page 527

■ GetPrompt Method on page 528

GetJustification Method
The GetJustification method returns a string that indicates the text justification. It uses the following
syntax:

GetJustification()

It includes no arguments.

For an example that uses the GetJustification method, see “LookupStringCache Method” on page 543.

GetMaxSize Method
The GetMaxSize method returns the maximum number of characters that the user can enter into a
control. It uses the following syntax:

GetMaxSize()

It includes no arguments.

GetMethodName Method
The GetMethodName method returns a string that includes the name of a method that is configured
on a control. It uses the following syntax:

GetMethodName()

It includes no arguments.

For an example that uses the GetMethodName method, see “CanInvokeMethod Method for
Presentation Models” on page 481.

GetName Method for Applet Controls
The GetName method that Siebel Open UI uses for applet controls returns the name of an applet
control. It returns this name in a string. It uses the following syntax:

GetName()

It includes no arguments.

The following example uses the GetName method:

if (control.GetName() === "Account"){

// This is the account control.

Application Programming Interface ■ Methods of the Siebel Open UI Application
Programming Interface

Configuring Siebel Open UI Siebel 2018 527

alert ("You are leaving Account. This will trigger an immediate post change");

...

For other examples that use the GetName method, see the following topics:

■ Customizing the Presentation Model to Identify the Records to Delete on page 62

■ Overriding Predefined Methods in Presentation Models on page 70

■ Text Copy of Code That Does a Partial Refresh for the Presentation Model on page 187

■ CanNavigate Method on page 482

■ ExecuteMethod Method on page 483

■ IsPrivateField Method on page 488

■ CellChange Method on page 498

For information about the GetName method that Siebel Open UI uses for other classes, see “GetName
Method for Applets” on page 521 see “GetName Method for Application Models” on page 539.

GetPMPropSet Method
The GetPMPropSet method gets the property set for a control. It uses the following syntax:

control.GetPMPropSet(consts.get("SWE_CTRL_PM_PS")

To view an example that uses this method, see “Customizing Control User Properties for Presentation
Models” on page 118.

GetPopupHeight Method
The GetPopupHeight method returns a string that includes one of the following values:

■ The height of the popup that is associated with a control, in pixels.

■ Nothing if Siebel Open UI does not associate a popup dialog box with the control.

It uses the following syntax:

GetPopupHeight()

It includes no arguments.

For an example that uses the GetPopupHeight method, see “GetPopupType Method” on page 527.

GetPopupType Method
The GetPopupType method identifies the type of popup object that Siebel Open UI associates with a
control. It returns a string that includes one of the following values:

■ Pick. Identifies a bounded pick list.

■ Mvg. Identifies a multivalue group.

Configuring Siebel Open UI Siebel 2018

Application Programming Interface ■ Methods of the Siebel Open UI Application
Programming Interface

528

■ Nothing if Siebel Open UI does not associate a popup dialog box with the control.

It uses the following syntax:

GetPopupType()

It includes no arguments.

The following example uses the GetPopupType method to make sure sufficient space exists to display
the popup:

if (control.GetPoupType !== "Pick"){

// There's a Pick defined on this control.

var pHeight = control.GetPopupHeight();

var pWidth= control.GetPopupWidth();

if (pHeight > "60" || pWidth > "200"){

// The pop does not fit in the mobile screen, so we will disable this popup.)

var htmlName = control.GetInputName();

// Set the control into readonly mode.

$("[name=" + htmlName + "]").attr('readonly', true);

}

}

GetPopupWidth Method
The GetPopupWidth method returns a string that includes one of the following values:

■ The width of the popup that is associated with a control, in pixels.

■ Nothing if Siebel Open UI does not associate a popup dialog box with the control.

It uses the following syntax:

GetPopupWidth()

It includes no arguments.

For an example that uses the GetPopupWidth method, see “GetPopupType Method” on page 527.

GetPrompt Method
The GetPrompt method returns a string that includes the prompt text that Siebel Open UI displays
with a control. It uses the following syntax:

GetPrompt()

It includes no arguments.

Application Programming Interface ■ Methods of the Siebel Open UI Application
Programming Interface

Configuring Siebel Open UI Siebel 2018 529

The following example includes the GetPrompt method:

// Alert the user when he lands in the control

if (document.getActiveElement === control.GetInputName(){

alert (SiebelApp.S_App.LookupStringCache(control.GetPrompt()));

}

GetUIType Method
The GetUIType method returns a string that identifies the type of control. For example, multivalue
group, picklist, calculator, and so on. It uses the following syntax:

GetUIType()

It includes no arguments.

GetWidth Method
The GetWidth method returns a string that includes the width of a control, in pixels. It uses the
following syntax:

GetWidth()

It includes no arguments.

HandleDeleteNotification Method
The HandleDeleteNotification method deletes the reference to record data that Siebel Open UI stored
in the client for a control. For an example that uses the HandleDeleteNotification method, see
“Creating and Managing Client-Side Controls” on page 239.

IsBoundedPick Method
The IsBoundedPick method returns one of the following values:

■ true. The field is a bounded picklist.

■ false. The field is not a bounded picklist.

It uses the following syntax:

IsBoundedPick()

It includes no arguments.

IsCalc Method
The IsCalc method returns one of the following values:

■ true. The field is a calculated field.

Configuring Siebel Open UI Siebel 2018

Application Programming Interface ■ Methods of the Siebel Open UI Application
Programming Interface

530

■ false. The field is not a calculated field.

It uses the following syntax:

IsCalc()

It includes no arguments.

IsDynamic Method
The IsDynamic method returns one of the following values:

■ true. The control is a dynamic control.

■ false. The control is not a dynamic control.

It uses the following syntax:

IsDynamic()

It includes no arguments.

IsEditEnabled Method
The IsEditEnabled method returns one of the following values:

■ true. The control is editable.

■ false. The control is not editable.

It uses the following syntax:

IsEditEnabled()

It includes no arguments.

IsSortable Method
The IsSortable method returns one of the following values:

■ true. The control is sortable.

■ false. The control is not sortable.

It uses the following syntax:

IsSortable()

It includes no arguments.

NewRecord Method
The NewRecord method initializes a new record that Siebel Open UI adds to the database that resides
on the Siebel Server. It uses the following syntax:

BusComp.prototype.NewRecord = function (bInsertBefore, bInternal, pIdValue) {}

Application Programming Interface ■ Methods of the Siebel Open UI Application
Programming Interface

Configuring Siebel Open UI Siebel 2018 531

where:

■ bInsertBefore can contain one of the following values:

■ true. Specifies to insert the record before the current record.

■ false. Specifies to insert the record after the current record.

■ bInternal can contain one of the following values:

■ true. Configures the object manager to not call the CanInsert method to determine whether
or not the insert is valid. Configures Siebel Open UI to not send a postevent notification. You
can use true only if specialized business component code calls the NewRecord method.

■ false. Configures the object manager to call the CanInsert method to determine whether or
not the insert is valid. Configures Siebel Open UI to send a postevent notification.

■ pIdValue contains the value that Siebel Open UI uses as the Id for the new record. You can
specify a value for pIdValue to create a new record with a row Id that you specify. If you do not
specify pIdValue, or if it contains no value, then Siebel Open UI automatically creates a new value
for the Id.

For examples that use the NewRecord method, see the following topics:

■ Attaching an Event Handler to a Presentation Model on page 74

■ Calling Methods on page 121

■ Allowing Users to Return Parts on page 416

■ SetMultipleFieldValues Method on page 446

■ UndoRecord Method on page 448

■ AttachPostProxyExecuteBinding Method on page 471

Note the following usage:

■ NewRecord can initialize a new record, and it can also initialize a new record that includes an
association with a parent record.

■ You can configure Siebel Open UI to override the NewRecord method.

■ The NewRecord method returns an object that includes an error code and a return value. For
more information, see “Configuring Error Messages for Disconnected Clients” on page 400 and
“SetErrorMsg Method” on page 459.

■ If you use NewRecord in a Siebel Mobile disconnected environment, then NewRecord adds the
record to the local database instead of the database that resides on the Siebel Server.

NotifyNewData Method
The NotifyNewData method sends an event notification to the client when Siebel Open UI modifies
the value of a field. It returns nothing. It uses the following syntax:

BusComp.prototype.NotifyNewData = function (field_name) {}

where:

Configuring Siebel Open UI Siebel 2018

Application Programming Interface ■ Methods of the Siebel Open UI Application
Programming Interface

532

■ field_name identifies the name of the field that Siebel Open UI modified.

You can use the NotifyNewData method to make sure Siebel Open UI synchronizes the modified field
values between different applets that reside in the same client or that reside in different clients.
NotifyNewData also notifies other fields that reference this field.

You can configure Siebel Open UI to override the NotifyNewData method.

PreGetFormattedFieldValue Method
The PreGetFormattedFieldValue method gets the format that a field uses to store the value of a
control. For an example that uses the PreGetFormattedFieldValue method, see “Creating and
Managing Client-Side Controls” on page 239.

PostLeaveField Method
The PostLeaveField method temporarily stores a value that the user enters in a control. It stores this
value in memory. You use the AddMethod to call the PostLeaveField method. Siebel Open UI then
implicitly calls the PostLeaveField method from the LeaveField method that the listapplet.js file
specifies. For an example that uses the PostLeaveField method, see “Creating and Managing Client-
Side Controls” on page 239.

SetIndex Method
The SetIndex method sets the index of a control. This index identifies the control position in the
applet. The SetIndex method returns nothing. It uses the following syntax:

SetIndex(value)

where:

■ value specifies the number to set for the index.

The following example uses the SetIndex method:

//listOfControls that contains an object of all the controls in the applet

var listOfControls = <AppletPM>.Get("GetControls");

var accountControl = listOfControls["Account"];

var accountIndex= listOfControls["Account"].GetIndex();

var revenueControl = listOfControls["Revenue"];

var revenueIndex= listOfControls["Revenue"].GetIndex();

// Now we can swap the indeces and effectively the tabbing order too.

accountControl.SetIndex (revenueIndex);

revenueControl.SetIndex (accountIndex);

Application Programming Interface ■ Methods of the Siebel Open UI Application
Programming Interface

Configuring Siebel Open UI Siebel 2018 533

JQ Grid Renderer Class for Applets
This topic describes the methods that Siebel Open UI uses with the JQGridRenderer class. It includes
the following information:

■ OnControlBlur Method

■ OnControlMvg Method

■ OnControlPick Method

■ OnPagination Method on page 534

■ OnRowSelect Method on page 534

Siebel Open UIuses this class to render an applet as a form.

OnControlBlur Method
The OnControlBlur method handles an onblur event for a control that resides in a form applet. It uses
the following syntax:

OnControlBlur(arguments)

where:

■ arguments can include the following:

■ rowid

■ cellname

■ value

■ iRow

■ iCol

For information about the OnCtrlBlur method that Siebel Open UI uses with the presentation model
for list applets, see “OnCtrlBlur Method” on page 499.

OnControlMvg Method
The OnControlMvg method handles a multivalue group for a control that resides in a form applet. It
uses the following syntax:

OnControlMvg(column_name)

where:

■ column_name identifies the column that includes the multivalue group.

OnControlPick Method
The OnControlPick method handles a picklist for a control that resides in a form applet. It uses the
following syntax:

Configuring Siebel Open UI Siebel 2018

Application Programming Interface ■ Methods of the Siebel Open UI Application
Programming Interface

534

OnControlPick(column_name)

where:

■ column_name identifies the column that includes the picklist.

OnPagination Method
The OnPagination method handles a pagination that occurs in a form applet. It uses the following
syntax:

OnPagination(title)

where:

■ title identifies the title of the page.

OnRowSelect Method
The OnRowSelect method handles a row click. It runs if the user clicks a row. It starts the
PositionOnRow

that updates the proxy business component. It uses the following syntax:

OnRowSelect(rowId)

where:

■ rowId identifies the row that the user clicked.

Business Service Class
This topic describes the method that Siebel Open UI uses with the Business Service class.

InvokeMethod Method for Business Services
The InvokeMethod method that Siebel Open UI uses for business services calls a method that resides
in the proxy instance of a business service. It returns the name of the property set that this business
service calls. It uses the same syntax and arguments as the InvokeMethod method that Siebel Open
UI uses for application models. For more information, see “InvokeMethod Method for Application
Models” on page 541.

Siebel Open UI uses the GetService method of the application model class to create the method that
InvokeMethod calls. For example, assume you must configure Siebel Open UI to call a business
service from custom code that resides on the client, and that this code does not bind an applet
control that resides in the repository to a business service. You can use InvokeMethod to call a
business service method that a business service instance contains.

Assume you must configure Siebel Open UI to call the following business service:

Task UI Service (SWE)

Application Programming Interface ■ Methods of the Siebel Open UI Application
Programming Interface

Configuring Siebel Open UI Siebel 2018 535

The following code calls a business service method that a business service instance contains:

var service = SiebelApp.S_App.GetService(consts.get("NAME_TASKUISVC"));

For more information, see “GetService Method” on page 540.

The following code calls the GoToInbox method:

if(service){outPS = service.InvokeMethod("GoToInbox", inPS,true);}

Application Model Class
This topic describes the methods that Siebel Open UI uses with the Application Model class. It
includes the following information:

■ CanInvokeMethod Method for Application Models on page 536

■ ClearMainView Method on page 536

■ GenerateSrvrReq Method on page 536

■ GetActiveBusObj Method on page 537

■ GetActiveView Method on page 537

■ GetAppletControlInstance Method on page 538

■ GetAppTitle Method on page 538

■ GetDirection Method on page 539

■ GetName Method for Application Models on page 539

■ GetPageURL Method on page 539

■ GetProfileAttr Method on page 539

■ GetService Method on page 540

■ GotoView Method on page 541

■ InvokeMethod Method for Application Models on page 541

■ IsExtendedKeyBoard Method on page 542

■ IsMobileApplication Method on page 543

■ LogOff Method on page 543

■ LookupStringCache Method on page 543

■ NewProperty Set Method on page 543

■ RemoveService Method on page 544

■ SetDiscardUserState Method on page 544

Configuring Siebel Open UI Siebel 2018

Application Programming Interface ■ Methods of the Siebel Open UI Application
Programming Interface

536

CanInvokeMethod Method for Application Models
The CanInvokeMethod method that Siebel Open UI uses for application models determines whether
or not Siebel Open UI can invoke a method. It uses the same syntax as the CanInvokeMethod method
that Siebel Open UI uses for presentation models. For more information, see “CanInvokeMethod
Method for Presentation Models” on page 481.

ClearMainView Method
The ClearMainView method removes values for the following items:

■ The view

■ All child objects of the view, such as applets and controls

■ The business object that the view references

■ Child objects of the business object that the view references, such as business components and
business component fields

ClearMainView uses the following syntax:

ClearMainView()

ClearMainView only removes values for objects that reside in the client. It does not visually destroy
these objects.

If the user attempts to use an object that ClearMainView has cleared, then Siebel Open UI might not
work as expected.

GenerateSrvrReq Method
The GenerateSrvrReq method creates a request string that Siebel Open UI sends to the Siebel Server
according to the current context of the application. It returns a string that includes a description of
the full request. It uses the following syntax:

GenerateSrvrReq (command)

where:

■ command is a string that identifies the name of the command that Siebel Open UI must request.

For example:

var request = SiebelApp.S_App.GenerateSrvrReq("LogOff"));

In this example, the return value includes a string that contains the following information:

http(s)://server_name/callcenter enu/

start.swe?SWECmd=LogOff&SWEKeepContext=1&SWERPC=1&SRN=L8ct6oeEsPA3Cj7pF6spebyCLm2m
VGpB0D0tqGMcflcb&SWEC=18&SWEActiveApplet=Client Active Applet&SWEActiveView=Client
Active View

Application Programming Interface ■ Methods of the Siebel Open UI Application
Programming Interface

Configuring Siebel Open UI Siebel 2018 537

GetActiveBusObj Method
The GetActiveBusObj method returns the name of the business object that is currently active in the
client. It uses the following syntax:

GetActiveBusObj()

It includes no arguments.

For example:

var busObj = SiebelApp.S_App.GetActiveBusObj();

var busComp = busObj.GetBusCompByName("MyBusComp");

var canUpdate = busComp.CanUpdate();

if (canUpdate){

...

GetActiveView Method
The GetActiveView method returns the name of the view that is currently active in the client. It uses
the following syntax:

GetActiveView()

It includes no arguments.

For example:

var view = SiebelApp.S_App.GetActiveView();

var applet = view.GetActiveApplet();

var canUpdate = applet.CanUpdate();

if (canUpdate){

...

For more examples that use the GetActiveView method, see the following topics:

■ Creating Components on page 127

■ Customizing Browser Tab Labels on page 180

■ Displaying Data from External Applications in Siebel Open UI on page 313

■ Customizing Siebel Pharma for Siebel Mobile Disconnected Clients on page 403

■ Allowing Users to Return Parts on page 416

■ Allowing Users to Set the Activity Status on page 424

■ Name Method for Applets on page 430

Configuring Siebel Open UI Siebel 2018

Application Programming Interface ■ Methods of the Siebel Open UI Application
Programming Interface

538

GetAppletControlInstance Method
The GetAppletControlInstance method creates a control. It returns the name of the control that it
creates. It uses the following syntax:

GetAppletControlInstance (name, uiType, displayName, width, height)

where:

■ name is a string that contains the name that Siebel Open UI assigns to the control.

■ uiType is a string that identifies the type of the control. For more information, see Siebel Object
Types Reference.

■ displayName is a string that contains the name of the control that Siebel Open UI displays in the
client.

■ width is a string that contains a number that specifies the width of the control, in pixels.

■ height is a string that contains a number that specifies the height of the control, in pixels.

For example:

var myControl = SiebelApp.S_App.GetAppletControlInstance (

"MyDropDown",

constants.get("SWE_CTRL_COMBOBOX"),

"I want this to appear on the screen",

"50",

"20");

For another example that uses the GetAppletControlInstance method, see “Customizing the Setup
Logic of the Presentation Model” on page 60.

GetAppTitle Method
The GetAppTitle method returns the title of the current Siebel application. It returns this title in a
string. It uses the following syntax:

GetAppTitle()

It includes no arguments.

For example:

var appTitle = SiebelApp.S_App.GetAppTitle();

if (appTitle === "Siebel Call Center"){

...

Application Programming Interface ■ Methods of the Siebel Open UI Application
Programming Interface

Configuring Siebel Open UI Siebel 2018 539

GetDirection Method
The GetDirection method determines the direction that Siebel Open UI uses to display text. It returns
one of the following values:

■ RTL. Siebel Open UI is configured so the user reads text progressing forward from first-to-last.

■ Null. Siebel Open UI is not configured so the user reads text progressing backwards from last-
to-first.

It uses the following syntax:

GetDirection()

It includes no arguments.

GetName Method for Application Models
The GetName method that Siebel Open UI uses for application models returns the name of the
current Siebel application. For example, Siebel Call Center. It returns this name in a string. It uses
the following syntax:

GetName()

It includes no arguments.

For example:

activeView.ExecuteFrame (activeApplet.GetName(), [{field: this.Get("SearchField"),
value: this.Get("SearchValue")}])

For information about the GetName method that Siebel Open UI uses for other classes, see “GetName
Method for Applets” on page 521 see “GetName Method for Applet Controls” on page 526.

GetPageURL Method
The GetPageURL method returns the URL that the Siebel application uses. It returns this value
without a query string. For example, it can return the following value:

http://computer_name.example.com/start.swe

It uses the following syntax:

GetPageURL()

It includes no arguments.

For example:

finalurl = SiebelApp.S_App.GetPageURL() + strURL.split("start.swe")[1];

GetProfileAttr Method
The GetProfileAttr method returns the value of a user profile attribute. It uses the following syntax:

GetProfileAttr (attribute_name)

Configuring Siebel Open UI Siebel 2018

Application Programming Interface ■ Methods of the Siebel Open UI Application
Programming Interface

540

where:

■ attribute_name is a string that includes the name of an attribute.

Attributes supported are:

■ OperationalMode. The mode of the applet as configured in Applet Web Template. The returned
value can be one of the following: Base, Edit, EditList, New, or Query.

■ VisualMode. The applet visualization, which specifies the layout that Siebel Open UI uses to
display the applet. List, form, tile, map, grid, and carousel are each an example of an applet
visualization.

For examples that use the GetProfileAttr method, see “Adding Custom Manifest Expressions” on
page 163 and “Configuring Siebel Open UI to Use Different Web Templates According to the Applet Mode”
on page 218.

GetService Method
The GetService method creates a business service instance that allows Siebel Open UI to call a
business service method that this business service instance contains. It returns the business service
name. It uses the following syntax:

SiebelApp.S_App.GetService("name"));

where:

■ name is a string that identifies the name of the business service that GetService calls when it
creates the business service instance.

For example, assume you must configure Siebel Open UI to call a business service from custom code
that resides on the client, and that this code does not bind an applet control that resides in the
repository to a business service. You can use the GetService method to create a business service
instance that Siebel Open UI can use to call a business service method that this business service
contains.

Assume you must configure Siebel Open UI to call the following business service:

Task UI Service (SWE)

The following code creates an instance of this business service:

var service = SiebelApp.S_App.GetService("Task UI Service (SWE)"));

You can configure Siebel Open UI to call a business service method that this business service contains
after this instance is available. For example, the following code calls the GoToInbox method that the
Task UI Service (SWE) business service contains:

if(service){outPS = service.InvokeMethod("GoToInbox", inPS,true);}

For more examples that use GetService, see the following topics:

■ Calling Methods for Business Services on page 122

■ RemoveService Method on page 544

Application Programming Interface ■ Methods of the Siebel Open UI Application
Programming Interface

Configuring Siebel Open UI Siebel 2018 541

For information about Siebel Open UI uses GetService with InvokeMethod, see “InvokeMethod Method
for Business Services” on page 534.

GotoView Method
The GotoView method navigates the user to a view in the client. It uses the following syntax:

SiebelApp.S_App.GotoView(view, viewId, strURL, strTarget);

where:

■ view is an object that contains the name of the view. It is required. Other arguments are optional.

■ viewId is an object that contains the Id of the view.

■ strURL is an object that contains a string that Siebel Open UI sends as part of the GotoView
method. This string must use the HTTP query string format that Siebel CRM requires. For
example:

"SWEParam1=valueForParam1&SWEParam2=valueForParam2"

■ strTarget is an object that contains the string target.

For example, assume view contains a value of Account List View. The following code navigates the
user to this view:

SiebelApp.S_App.GotoView(view, viewId, strURL, strTarget);

For more examples that use the GotoView method, see the following topics:

■ SetDiscardUserState Method on page 544

■ Displaying Siebel Portlets In External Applications on page 349

■ Using iFrame Gadgets to Display Siebel CRM Applets in External Applications on page 361

For more information about using this method, see “Life Cycle Flows of User Interface Elements” on
page 577.

Work That Siebel Open UI Does When it Runs the GotoView Method Siebel Open UI
does the following work when it runs the GotoView method:

1 Sets the cursor state to busy.

2 Runs any required validation steps. If a validation fails in the client, then Siebel Open UI returns
a value of false and exits the GotoView method. Implicit Commit is an example of a validation.

3 Adds default arguments.

4 Sends a request to the Siebel Server.

5 Navigates the user to the view that view specifies.

InvokeMethod Method for Application Models
The InvokeMethod method that Siebel Open UI uses for application models calls a method. It returns
a value from the method that it calls. It uses the following syntax:

Configuring Siebel Open UI Siebel 2018

Application Programming Interface ■ Methods of the Siebel Open UI Application
Programming Interface

542

SiebelApp.S_App.InvokeMethod("method_name", psObject, ai);

where:

■ method_name identifies the name of the method that InvokeMethod calls.

■ psObject is an object that contains a property set that InvokeMethod sends as input to the
method that it calls, if required.

■ ai is an object that contains information about how to run AJAX.

For example, the following code calls the NextApplet method. This method sets the next applet as
the active applet of a view:

SiebelApp.S_App.InvokeMethod("NextApplet", psObject, ai);

For more examples that use the InvokeMethod method, including for Disconnected clients, see
the following topics:

■ Customizing the Presentation Model to Delete Records on page 66

■ Attaching an Event Handler to a Presentation Model on page 74

■ Calling Methods on page 121

■ Customizing Predefined Applets on page 391

■ Using Custom JavaScript Methods on page 393

■ Using Custom Siebel Business Services on page 396

■ Customizing Siebel Pharma for Siebel Mobile Disconnected Clients on page 403

■ Allowing Users to Commit Part Tracker Records on page 414

■ Allowing Users to Return Parts on page 416

For more information about using InvokeMethod, see “Calling Methods for Applets and Business
Services” on page 120.

For more information about the InvokeMethod method that Siebel Open UI uses for other classes,
see “InvokeMethod Method for Presentation Models” on page 487 and “InvokeMethod Method for
Business Services” on page 534.

IsExtendedKeyBoard Method
The IsExtendedKeyBoard method determines whether or not Siebel Open UI is configured to use
extended keyboard shortcuts. It returns one of the following values:

■ true. Siebel Open UI is configured to use extended keyboard shortcuts.

■ false. Siebel Open UI is not configured to use extended keyboard shortcuts.

It uses the following syntax:

IsExtendedKeyBoard()

It includes no arguments.

Application Programming Interface ■ Methods of the Siebel Open UI Application
Programming Interface

Configuring Siebel Open UI Siebel 2018 543

IsMobileApplication Method
The IsMobileApplication method determines whether or not Mobile is enabled for the Siebel
application that is currently running in the client. It returns a string that includes one of the following
values:

■ true. Mobile is enabled.

■ false. Mobile is not enabled.

It uses the following syntax:

IsMobileApplication()

It includes no arguments.

LogOff Method
The LogOff method calls the Siebel Server, and then returns the Login page to the client. It uses the
following syntax:

LogOff()

It includes no arguments.

LookupStringCache Method
The LookupStringCache method gets a string from the client string cache. It uses the following
syntax:

LookupStringCache (index)

where:

■ index is a number that identifies the location of a string that resides in the client string cache.

For example:

// Assume appletControl to be the reference of an applet control.

var justification = appletControl.GetJustification(); //Returns text justification
in index.

var stringJustification = SiebelApp.S_App.LookupStringCache (justification);

alert (justification); // Will alert "Left" or "Right"

For another example that uses the LookupStringCache method, see “GetPrompt Method” on page 528.

NewProperty Set Method
The NewPropertySet method creates a new property set instance. It returns this instance. It uses
the following syntax:

NewPropertySet ()

Configuring Siebel Open UI Siebel 2018

Application Programming Interface ■ Methods of the Siebel Open UI Application
Programming Interface

544

It includes no arguments.

For example, the following code resides in the alarm.js file:

var returnPropSet = App ().NewPropertySet();

For more examples that use the NewPropertySet method, see “Customizing the Presentation Model to
Delete Records” on page 66.

RemoveService Method
The RemoveService method removes a business service from the client. It uses the following syntax:

RemoveService (business_service_name)

where:

■ business_service_name identifies the name of the business service that Siebel Open UI removes.

For example, the following code removes the Task UI Service (SWE) business service:

var service = SiebelApp.S_App.GetService("Task UI Service (SWE)"));

// Use service

...

//Remove service

if (service){

If you use RemoveService to remove a business service that does not exist, then Siebel Open UI
might not behave as predicted.

SetDiscardUserState Method
The SetDiscardUserState method sets a property in the client that configures Siebel Open UI to not
evaluate the state before it navigates to another view. It uses the following syntax:

SetDiscardUserState (binary)

where:

■ binary is one of the following values:

■ true. Ignore the state before doing navigation. Siebel Open UI applies this logic for all
potential states, such as a commit is pending, Siebel Open UI is currently opening a dialog
box, and so on. Siebel Open UI runs any GotoView call it receives. It loses the client state.

■ false. Do not ignore the state before doing navigation. Do the client validation.

For example:

// A business condition is met that requires Siebel Open UI to automatically navigate
the user.

SiebelApp.S_App.DiscardUserState (true);

Application Programming Interface ■ Methods of the Siebel Open UI Application
Programming Interface

Configuring Siebel Open UI Siebel 2018 545

// Don't care about user state - we need the navigation to occur.

SiebelApp.S_App.GotoView ("MyView"..);

// Reset

SiebelApp.S_App.DiscardUserState (false);

Control Builder Class
Table 42 describes the methods that Siebel Open UI uses with the ControlBuilder class.

Locale Object Class
This topic describes the methods that Siebel Open UI uses with the Locale Object class. It includes
the following information:

■ FormattedToString Method

■ GetCurrencyList Method on page 547

■ GetDateFormat Method on page 547

■ GetDayOfWeek Method on page 547

Table 42. Methods You Can Use with the SiebelAppFacade.ControlBuilder Class

Method Description

Pick You can use the following properties of the configuration object:

■ target. Specifies the DOM element as a jQuery object.

■ click. Attaches a callback method.

■ scope. Specifies the scope.

■ control. Sent as an argument to the callback method that the click
property specifies.

■ className. Modifies the CSS style of the pick icon.

Mvg

DatePick You can use the following properties of the configuration object:

■ target. Specifies the input control DOM element as a jQuery object with
a calendar icon and attaches a DatePicker event.

Configures Siebel Open UI to display a dialog box that contains only date
options if the user clicks the calendar icon.

DateTimePick does the same as DatePick except the dialog box allows the
user to set the date and time.

■ className. Identifies the class.

DateTimePick

Configuring Siebel Open UI Siebel 2018

Application Programming Interface ■ Methods of the Siebel Open UI Application
Programming Interface

546

■ GetDispCurrencyDecimal Method on page 547

■ GetDispCurrencySeparator Method on page 548

■ GetDispDateSeparator Method on page 548

■ GetDispNumberDecimal Method on page 548

■ GetDispNumberScale Method on page 548

■ GetDispNumberSeparator Method on page 549

■ GetDispTimeAM Method on page 549

■ GetDispTimePM Method on page 549

■ GetDispTimeSeparator Method on page 549

■ GetExchangeRate Method on page 550

■ GetFuncCurrCode Method on page 550

■ GetLocalString Method on page 550

■ GetMonth Method on page 551

■ GetScale Method on page 551

■ GetStringFromDateTime Method on page 551

■ GetTimeFormat Method on page 551

■ GetTimeZoneList Method on page 552

■ GetTimeZoneName Method on page 552

■ SetCurrencyCode Method on page 552

■ SetExchDate Method on page 552

■ SetScale Method on page 553

■ StringToFormatted Method on page 553

FormattedToString Method
The FormattedToString method removes the formatting of a string. It returns the unformatted string.
It uses the following syntax:

FormattedToString(type,value,format)

where:

■ type is a string that identifies the value type of the string. For example: Phone, Currency,
DateTime, or Integer.

■ value is a string that identifies the formatted value of the string.

■ format is a string that identifies the optional format of the string.

For example:

Application Programming Interface ■ Methods of the Siebel Open UI Application
Programming Interface

Configuring Siebel Open UI Siebel 2018 547

SiebelApp.S_App.LocaleObject.FormattedToString("date","11/05/2012","M/D/YYYY")

GetCurrencyList Method
The GetCurrencyList method returns the currency list that the client computer supports. It uses the
following syntax:

GetCurrencyList()

It includes no arguments.

For example:

SiebelApp.S_App.LocaleObject.GetCurrencyList()

GetDateFormat Method
The GetDateFormat method returns the date format for the locale. It uses the following syntax:

GetDateFormat()

It includes no arguments.

For example:

SiebelApp.S_App.LocaleObject.GetDateFormat()

GetDayOfWeek Method
The GetDayOfWeek method returns a string that identifies the day of the week. It uses the following
syntax:

GetDayOfWeek(day,format)

where:

■ day is a number that indicates the index of the day.

■ format is string that specifies the day format.

For example:

SiebelApp.S_App.LocaleObject.GetDayOfWeek(20,"M/D/YYYY")

GetDispCurrencyDecimal Method
The GetDispCurrencyDecimal method returns the decimal point symbol that the client uses for
currency, such as a period (.). It uses the following syntax:

GetDispCurrencyDecimal()

It includes no arguments.

For example:

Configuring Siebel Open UI Siebel 2018

Application Programming Interface ■ Methods of the Siebel Open UI Application
Programming Interface

548

SiebelApp.S_App.LocaleObject.GetDispCurrencyDecimal()

GetDispCurrencySeparator Method
The GetDispCurrencySeparator method the number separator that the currency uses to separate
digits in a currency, such as a comma (,). It uses the following syntax:

GetDispCurrencySeparator()

It includes no arguments.

For example:

SiebelApp.S_App.LocaleObject.GetDispCurrencySeparator()

GetDispDateSeparator Method
The GetDispDateSeparator method returns the symbol that the client uses to separate the days,
weeks, and months of a date. It uses the following syntax:

GetDispDateSeparator()

It includes no arguments.

For example:

SiebelApp.S_App.LocaleObject.GetDispDateSeparator()

GetDispNumberDecimal Method
The GetDispNumberDecimal method returns the symbol that the client uses for the decimal point.
For example, a period (.). It uses the following syntax:

GetDispNumberDecimal()

It includes no arguments.

For example:

SiebelApp.S_App.LocaleObject.GetDispNumberDecimal())

GetDispNumberScale Method
The GetDispNumberScale method returns the number of fractional digits that the client displays. For
example, 2. It uses the following syntax:

GetDispNumberScale()

It includes no arguments.

For example:

SiebelApp.S_App.LocaleObject.GetDispNumberScale()

Application Programming Interface ■ Methods of the Siebel Open UI Application
Programming Interface

Configuring Siebel Open UI Siebel 2018 549

GetDispNumberSeparator Method
The GetDispNumberSeparator method returns the symbol that the client uses to separate digits in a
number. For example, the comma (,). It uses the following syntax:

GetDispNumberSeparator()

It includes no arguments.

For example:

SiebelApp.S_App.LocaleObject.GetDispNumberSeparator())

GetDispTimeAM Method
The GetDispTimeAM method returns the localized string for AM. For example, AM. It uses the
following syntax:

GetDispTimeAM()

It includes no arguments.

For example:

SiebelApp.S_App.LocaleObject.GetDispTimeAM()

GetDispTimePM Method
The GetDispTimePM method returns the localized string for PM. For example, PM. It uses the
following syntax:

GetDispTimePM()

It includes no arguments.

For example:

SiebelApp.S_App.LocaleObject.GetDispTimePM()

GetDispTimeSeparator Method
The GetDispTimeSeparator method returns the symbol that the client uses to separate the parts of
time. For example, the colon (:) symbol. It uses the following syntax:

GetDispTimeSeparator()

It includes no arguments.

For example:

SiebelApp.S_App.LocaleObject.GetDispTimeSeparator()

Configuring Siebel Open UI Siebel 2018

Application Programming Interface ■ Methods of the Siebel Open UI Application
Programming Interface

550

GetExchangeRate Method
The GetExchangeRate method calculates the exchange rate between two currencies. It returns the
exchange rate as a double precision, floating point number. It uses the following syntax:

GetExchangeRate(input_value, output_value, exchange_date)

where:

■ input_value is a string that identifies the currency code that Siebel Open UI uses for the input
value when it calculates the exchange rate.

■ output_value is a string that identifies the currency code that Siebel Open UI uses for the output
value when it calculates the exchange rate.

■ exchange_date is a string that includes the date of the currency exchange.

For example:

SiebelApp.S_App.LocaleObject.GetExchangeRate("USD", "INR", "11/05/2012")

GetFuncCurrCode Method
The GetFuncCurrCode method returns the currency code that the client uses. For example, USD. It
uses the following syntax:

GetFuncCurrCode()

It includes no arguments.

For example:

SiebelApp.S_App.LocaleObject.GetFuncCurrCode()

GetLocalString Method
The GetLocalString method returns the localized string of a key. It uses the following syntax:

GetLocalString(pStringKey : string_name : message_key)

where:

■ pStringKey is a property set that includes the string key.

■ string_name is a string that identifies the name of the localized string that GetLocalString gets.

For example, the following code uses the GetLocalString method when using Siebel Open UI with a
connected client:

SiebelApp.S_App.LocaleObject.GetLocalString("IDS_SWE_LOADING_INDICATOR_TITLE")

For another example, the following code uses the GetLocalString method when using Siebel Open UI
with Siebel Mobile disconnected:

SiebelApp.S_App.OfflineLocaleObject.GetLocalString("IDS_SWE_LOADING_INDICATOR_TITL
E")

Application Programming Interface ■ Methods of the Siebel Open UI Application
Programming Interface

Configuring Siebel Open UI Siebel 2018 551

GetMonth Method
The GetMonth method returns the month that the locale uses. It uses the following syntax:

GetMonth()

It includes no arguments.

For example:

SiebelApp.S_App.LocaleObject.GetMonth()

GetScale Method
The GetScale method returns the scale of the number that Siebel Open UI must display. It uses the
following syntax:

GetScale()

It includes no arguments.

For example:

SiebelApp.S_App.LocaleObject.GetScale()

GetStringFromDateTime Method
The GetStringFromDateTime method formats a date and time string. It returns this formatted date
and time in a string. It uses the following syntax:

GetStringFromDateTime(input_date, input_format, output_format)

where:

■ input_date specifies the date that GetStringFromDateTime formats.

■ input_format describes how input_date is formatted.

■ output_format specifies how to format the output.

For example:

SiebelApp.S_App.LocaleObject.GetStringFromDateTime(2012-12-05, DD/MM/YYYY, M/D/
YYYY)

GetTimeFormat Method
The GetTimeFormat method returns the time format that the locale uses. It uses the following
syntax:

GetTimeFormat()

It includes no arguments.

For example:

SiebelApp.S_App.LocaleObject.GetTimeFormat()

Configuring Siebel Open UI Siebel 2018

Application Programming Interface ■ Methods of the Siebel Open UI Application
Programming Interface

552

GetTimeZoneList Method
The GetTimeZoneList method returns a list of time zones that the locale uses. It uses the following
syntax:

GetTimeZoneList()

It includes no arguments.

For example:

SiebelApp.S_App.LocaleObject.GetTimeZoneList()

GetTimeZoneName Method
The GetTimeZoneName method returns the current time zone that the locale uses. It uses the
following syntax:

GetTimeZoneName()

It includes no arguments.

For example:

SiebelApp.S_App.LocaleObject.GetTimeZoneName()

SetCurrencyCode Method
The SetCurrencyCode method sets the currency code that the locale uses. It returns nothing. It uses
the following syntax:

SetCurrencyCode(currency_code)

where:

■ currency_code is a string that includes the currency code.

For example:

SiebelApp.S_App.LocaleObject.SetCurrencyCode("USD")

SetExchDate Method
The SetExchDate method sets the exchange date that the currency uses. It returns nothing. It uses
the following syntax:

SetExchDate(exchange_date)

where:

■ exchange_date is a string that includes the exchange date.

For example:

SiebelApp.S_App.LocaleObject.SetExchDate("11/05/2012")

Application Programming Interface ■ Methods of the Siebel Open UI Application
Programming Interface

Configuring Siebel Open UI Siebel 2018 553

SetScale Method
The SetScale method sets the scale of the number. It returns nothing. It uses the following syntax:

SetScale(scale)

where:

■ scale is a string that includes the number that SetScale uses to set the scale.

For example:

SiebelApp.S_App.LocaleObject.SetScale("0")

StringToFormatted Method
The StringToFormatted method adds formatting characters to a string. It returns a formatted string.
It uses the following syntax:

StringToFormatted(type,value,format)

The StringToFormatted method uses the same arguments that the FormattedToString method uses.
For more information, see “FormattedToString Method” on page 546.

For example:

SiebelApp.S_App.LocaleObject.StringToFormatted("date","11/05/2012","M/D/YYYY")

Component Class
This topic describes the methods that Siebel Open UI uses with the Component class. It includes the
following information:

■ Component Method

■ GetChildren Method on page 554

■ GetParent Method on page 554

■ GetPM Method for Components on page 554

■ GetPR Method on page 555

■ GetSiblings Method on page 555

■ Setup Method for Components on page 555

■ Show Method for Components on page 556

Component Method
The Component method is a constructor that creates a component object. It returns nothing. It uses
the following syntax:

Component()

Configuring Siebel Open UI Siebel 2018

Application Programming Interface ■ Methods of the Siebel Open UI Application
Programming Interface

554

It includes no arguments.

For example:

var cmpObj = new SiebelAppFacade.Component();

GetChildren Method
The GetChildren method identifies all child components that a parent component contains. It returns
these child components in an array. If no child components exist, then it returns nothing. It uses the
following syntax:

GetChildren()

It includes no arguments.

For example:

var childrenCmp = cmpObj.GetChildren();

where:

■ cmpObj references a component object.

GetParent Method
The GetParent method gets the parent component object. Siebel Open UI uses a tree structure to
manage components. It uses this structure to identify the parent component that a query examines.
It uses the following syntax:

GetParent()

It includes no arguments.

For example:

var parentObj = cmpObj.GetParent();

where:

■ cmpObj references a component object.

GetPM Method for Components
The GetPM method that Siebel Open UI uses for components returns the presentation model object
that the component references. It uses the following syntax:

GetPM()

It includes no arguments.

For example:

var pmObj = cmpObj.GetPM();

Application Programming Interface ■ Methods of the Siebel Open UI Application
Programming Interface

Configuring Siebel Open UI Siebel 2018 555

where:

■ cmpObj references a component object.

If you use GetPM before Siebel Open UI runs the setup call for the component, then GetPM returns
a value that indicates that Siebel Open UI has not yet defined the presentation model object that this
component references.

For information about the GetPM method that Siebel Open UI uses for physical renderers, see “GetPM
Method for Physical Renderers” on page 508.

GetPR Method
The GetPR method returns a physical renderer object that is associated with a component. It uses
the following syntax:

GetPR()

It includes no arguments.

For example:

var prObj = cmpObj.GetPR();

where:

■ cmpObj references a component object.

Siebel Open UI defers creating the physical renderer until it calls the Show function in the
component.

GetSiblings Method
The GetSiblings method returns all siblings. In this context, a sibling is a component that reside at
same the level in the component tree structure as the component that it calls. It returns these values
in an array. If no other components reside at the same level, then it returns nothing. The GetSiblings
method uses the following syntax:

GetSiblings()

It includes no arguments.

For example:

var siblingObjs = cmpObj.GetSiblings();

where:

■ cmpObj references a component object.

Setup Method for Components
The Setup method that Siebel Open UI uses with components does the basic setup for the component
instance, and then prepares the presentation model that this component instance references. It calls
the Setup method that resides in this presentation model. It uses the following syntax:

Configuring Siebel Open UI Siebel 2018

Application Programming Interface ■ Methods of the Siebel Open UI Application
Programming Interface

556

Setup(property_set)

where:

■ property_set identifies a property set that Siebel Open UI passes to the presentation model that
the component references.

The Component Manager calls the Setup method. It is recommended that you do not configure Siebel
Open UI to directly call the setup method on any component object.

For more information about the Setup method that Siebel Open UI uses with presentation models,
see “Setup Method for Presentation Models” on page 476.

Show Method for Components
The Show method that Siebel Open UI uses for components shows a component. It uses the following
syntax:

Show()

It includes no arguments.

Siebel Open UI uses the Component Manager to call the Show method for a component. This Show
method does the following work during this call:

■ If the physical renderer object does not already exist, then the Component Manager creates it.

■ Calls the following methods that reside in the physical renderer:

■ ShowUI

■ BindEvents

■ BindData

For more information about how Siebel Open UI uses these methods, see “Life Cycle of a Physical
Renderer” on page 53.

■ Calls the Show method for every component object it creates while it runs, as necessary.

In some situations, Siebel Open UI might not finish calling the Setup method if it creates the
component after the Component Manager life cycle finishes. In this situation, Siebel Open UI can use
the Show method to call this component to make sure that it completes this life cycle successfully.
For more information, see “Setup Method for Components” on page 555.

It is recommended that you not configure Siebel Open UI to make a direct call to the Show method
for a component.

For more information about using the Show method, see “Life Cycle Flows of User Interface Elements”
on page 577.

For information about the Show method that Siebel Open UI uses for component managers, see
“Show Method for Component Managers” on page 559.

Application Programming Interface ■ Methods of the Siebel Open UI Application
Programming Interface

Configuring Siebel Open UI Siebel 2018 557

Component Manager Class
This topic describes the methods that Siebel Open UI uses with the Component Manager class. It
includes the following information:

■ DeleteComponent Method

■ FindComponent Method

■ MakeComponent Method on page 558

■ Show Method for Component Managers on page 559

The Component Manager class manages components in Siebel Open UI. It can create or delete
components and it allows you to configure Siebel Open UI to search for a component according to
criteria that you specify.

DeleteComponent Method
The DeleteComponent method deletes a component from the component tree. It uses the following
syntax:

DeleteComponent(cmpObj)

where:

■ cmpObj references a component object.

For example, the following code deletes the component that cmpObj references:

SiebelAppFacade.ComponentMgr.DeleteComponent(cmpObj);

FindComponent Method
The FindComponent method identifies a component according to the criteria that a function specifies.
It returns an array that includes component names. If it cannot identify any components, then it
returns nothing. It uses the following syntax:

FindComponent({id : "custom_dependency_object"});

Finding Components According to IDs Siebel Open UI maps the Id of the component to the
name of this component. It does the same mapping when it uses the MakeComponent method to
create a dependency. You can use the following code to find a component according to the component
Id:

var cmpObj = SiebelAppFacade.ComponentMgr.FindComponent({id :

"custom_dependency_object"});

Getting Parents, Siblings, and Children If you provide a component and a relation, then the
FindComponent method gets a list of components according to the component and relation that you
specify. You use the following code:

var cmprelationship = SiebelAppFacade.ComponentMgr.FindComponent({cmp: cmpObj, rel
: consts.get("values")});

Configuring Siebel Open UI Siebel 2018

Application Programming Interface ■ Methods of the Siebel Open UI Application
Programming Interface

558

where:

■ relationship specifies a parent, sibling, or child relationship.

■ cmp is an abbreviation for component. cmpObj identifies the component.

■ rel is an abbreviation for relation. It identifies the type of relationship.

■ values specifies the values to get. To get a list of:

■ Parents, you use SWE_CMP_REL_SIBLING

■ Siblings, you use SWE_CMP_REL_SIBLING

■ Children, you use SWE_CMP_REL_CHILDREN

For example, the following code gets a list of parents:

var cmpParent = SiebelAppFacade.ComponentMgr.FindComponent({cmp: cmpObj, rel :
consts.get("SWE_CMP_REL_PARENT")});

MakeComponent Method
The MakeComponent method creates a component. It returns nothing. It uses the following syntax:

SiebelAppFacade.ComponentMgr.MakeComponent(parent,psInfo, dependency);

where:

■ parent identifies the parent of the component that Siebel Open UI creates. For example, a view,
applet, and so on.

■ psInfo contains property set information that identifies the name of the module that Siebel Open
UI uses for the presentation model and the physical renderer. Siebel Open UI uses this property
set information to create the presentation model. It also passes this property set to the setup
method that it uses to set up the presentation model.

■ dependency identifies an object that Siebel Open UI uses as a template to create the presentation
model. If the presentation model must reference an applet or view, then this dependency must
also reference this same applet or view. To specify the dependency for a local component, you
must use an object that references the GetName method.

The MakeComponent method does the following work:

■ Creates a component.

■ Attaches this component to the component tree. It attaches this component at the tree level that
Siebel Open UI uses for user interface objects.

■ Calls the Setup method that Siebel Open UI uses to create the new component. This Setup
method uses information that the psInfo argument of the MakeComponent method specifies. It
uses this information to create the presentation model. For more information, see “Setup Method
for Components” on page 555.

■ Calls the Setup method that Siebel Open UI uses for the presentation model. This method binds
all objects that are involved in the life cycle that Siebel Open UI runs for the component. For
more information, see “Setup Method for Presentation Models” on page 476.

Application Programming Interface ■ Methods of the Siebel Open UI Application
Programming Interface

Configuring Siebel Open UI Siebel 2018 559

For an example that uses the MakeComponent method, see “Creating Components” on page 127.

Show Method for Component Managers
The Show method that Siebel Open UI uses for component managers displays components. It uses
the following syntax:

Show()

It includes no arguments.

The Show method that Siebel Open UI uses for component managers calls a show on the component
object. This component object then calls a Show method on the physical renderer that the
component references.

You can use the Show method to configure Siebel Open UI to display all components that reside in
the tree that contains the component. If you must configure Siebel Open UI to display only one
component, then is recommended that you use the Show method on each individual component.

For information about the Show method that Siebel Open UI uses for components, see “Setup Method
for Components” on page 555.

Other Classes
This topic describes methods that reside in a class that this appendix does not describe elsewhere.

Define Method
The Define method identifies the modules that Siebel Open UI uses to determine the location of the
presentation model file or physical renderer file that Siebel Open UI must download to the client. It
uses the following syntax:

define (module_name ,list_of_dependencies,function);

where:

■ module_name is a string that specifies the name of a module.

■ list_of_dependencies is an array that lists all the modules that module_name depends on to run
correctly. If no dependencies exist, then this list is not required. For more information, see
“Specifying Dependencies Between Presentation Models or Physical Renderers and Other Files” on
page 148.

■ function identifies a function that must return an object that identifies a function name.

Siebel Open UI recommends that you use the following syntax when you use the define method:

if(typeof("SiebelAppFacade.module_name") === undefined){

 SiebelJS.Namespace("SiebelAppFacade.module_name");

define("siebel/custom/module_name", [], function(){

Configuring Siebel Open UI Siebel 2018

Application Programming Interface ■ Methods of the Siebel Open UI Application
Programming Interface

560

 SiebelAppFacade.module_name = (function(){

 var consts = SiebelJS.Dependency("SiebelApp.Constants");

 function module_name (){

 SiebelAppFacade.module_name.superclass.constructor.apply(this,

arguments);;

 };

 SiebelJS.Extend(module_name, SiebelAppFacade.arguments_2);

 return module_name:

 })();

 return SiebelAppFacade.module_name;

 });

}

where:

■ SiebelAppFacade is the name space.

■ module_name identifies the file name of the presentation model or the physical renderer without
the file name extension. For example:

RecycleBinPModel

■ function defines the class constructor.

You use the Define method when you set up a presentation model or a physical renderer. For an
example usage of this method when setting up:

■ A presentation model, see Figure 17 on page 59.

■ A physical renderer, see Figure 24 on page 80.

For information about how to add manifest files and manifest expressions that reference the
module_name, see “Configuring Manifests” on page 150.

ShowErrorMessage Method
The ShowErrorMessage method specifies the error message that Siebel Open UI displays. It returns
nothing. It uses the following syntax:

ShowErrorMessage(error_message)

where:

■ error_message is a string that contains the text of the error message.

Application Programming Interface ■ Methods for Pop-Up Objects, Google Maps, and
Property Sets

Configuring Siebel Open UI Siebel 2018 561

Methods for Pop-Up Objects, Google
Maps, and Property Sets
This topic describes the methods that Siebel Open UI uses with pop-up objects, Google maps, and
property sets. It includes the following information:

■ Pop-Up Presentation Models and Physical Renderers

■ Method That Integrates Google Maps on page 565

■ Methods That Manipulate Property Sets on page 570

Pop-Up Presentation Models and Physical Renderers
The PopupPModel presentation model specifies how to model pop-up objects. It uses the following
syntax:

SiebelApp.PopupPModel

The PopupRenderer physical renderer specifies how to render pop-up objects. It uses the following
syntax:

SiebelAppFacade.PopupRenderer

If the status of a reply from the Siebel Server is NewPopup, then Siebel Open UI starts processing
this new pop-up object in the client. Siebel Open UI supports modal and nonmodal pop-up objects.

The Popup method specifies how to render pop-up objects. Siebel Open UI typically renders a pop-
up object as a dialog box.

Modal Pop-Up Objects
A modal pop-up object is a type of pop-up object where the metadata for this object contains all of
the following qualities:

■ The URL property specifies a Siebel URL.

■ The SWE_FULL_POPUP_WINDOW_STR property is false.

■ The SWE_FREE_POPUP_STR property is false.

Siebel Open UI can create a modal pop-up in one of the following ways:

■ On the Siebel Server. URL driven. A multivalue group or pick applet are each an example of a
modal pop-up object that Siebel Open UI creates on the Siebel Server. Siebel Open UI sets the
value of the URL property to the following HTML attribute of the popup div element:

src

Siebel Open UI does the following work to create a modal pop-up on the server:

a Calls the loadcontent method to get, and then load the layout from Siebel Server.

b Initializes and renders the pop-up applet.

Configuring Siebel Open UI Siebel 2018

Application Programming Interface ■ Methods for Pop-Up Objects, Google Maps, and
Property Sets

562

■ On the client. Content driven. The Currency pop-up object is an example of a modal pop-up
object that Siebel Open UI creates on the client. Siebel Open UI does the following work to create
a modal pop-up on client:

c Gets the layout and data for the pop-up object.

d Loads the pop-up object into the pop-up dialog box when the user opens this dialog box.

Nonmodal Pop-Up Object
A nonmodal pop-up object is a type of pop-up object where the metadata for this object contains
any of the following qualities:

■ The URL property does not specify a Siebel URL.

■ The SWE_FULL_POPUP_WINDOW_STR property is true.

■ The SWE_FREE_POPUP_STR property is true.

Siebel Open UI uses a nonmodal pop-up object to open an external URL that it stores as data in a
Siebel applet.

Properties of the Pop-Up Presentation Model
Table 43 describes the properties of the PopupPM presentation model. The state, url, and content
properties render and maintain the state of the pop-up object. It is recommended that you not set
the content and the url properties for the same pop-up object.

Table 43. Properties of the Pop-Up Presentation Model

Property Description

canProcessLayout Not applicable.

closeByXDisabled Controls the X control of the pop-up object. You can set this property
to one of the following values:

■ true. Siebel Open UI disables the X control.

■ false. Siebel Open UI enables the X control.

content Contains the HTML source code for the pop-up object. Setting this
property configures Siebel Open UI to load the HTML source code into
the target, and then to call the Initialize method on the pop-up proxy
to update the data.

currPopups Maintains an array of currency pop-ups.

height Specifies the height of the pop-up object, in pixels.

isCancelQryPopupOpen Includes one of the following return values:

■ true. A cancel query object is open.

■ false. No cancel query objects are open.

Application Programming Interface ■ Methods for Pop-Up Objects, Google Maps, and
Property Sets

Configuring Siebel Open UI Siebel 2018 563

isCurrencyOpen Includes one of the following return values:

■ true. A currency pop-up object is open.

■ false. No currency pop-up objects are open.

isPopupClosedByX Includes one of the following return values:

■ true. The user used the X control to close the pop-up object.

■ false. The user did not use the X control to close the pop-up
object.

isPrevPopupVisible ■ Sets the visibility of the parent pop-up object when Siebel Open
UI displays a child pop-up object inside the parent. You can set
this property to one of the following values:

■ true. Siebel Open UI displays the parent.

■ false. Siebel Open UI hides the parent.

noHide Determines whether or not Siebel Open UI can hide the pop-up object.
You can set this property to one of the following values:

■ true. Siebel Open UI can hide the object.

■ false. Siebel Open UI cannot hide the object.

source Contains the source that Siebel Open UI uses to open the pop-up
object. You can set this property to a URL. Siebel Open UI uses this
source property to set the url and content properties of this pop-up
object.

state Opens or closes the pop-up object. You can set this property to one of
the following values

■ open. Siebel Open UI opens an empty dialog box.

■ close. Siebel Open UI closes an open dialog box.

url Specifies the URL that Siebel Open UI uses to open the pop-up object
according to the following mode that the pop-up object uses:

■ Modal. Specifies the source URL that contains the content that
Siebel Open UI displays in the pop-up object.

■ Nonmodal. Specifies the URL that Siebel Open UI uses to load
content into the target HTML element of the pop-up object.

Setting this property configures Siebel Open UI to get the layout for
this pop-up from the Siebel Server, render this layout, and then to call
the Initialize method on the pop-up proxy to load the data.

width Specifies the width of the pop-up object, in pixels.

Table 43. (Continued)Properties of the Pop-Up Presentation Model

Property Description

Configuring Siebel Open UI Siebel 2018

Application Programming Interface ■ Methods for Pop-Up Objects, Google Maps, and
Property Sets

564

Methods of the Popup Presentation Model
Table 44 describes the methods of the PopupPM presentation model. The parentheses that this table
includes after each method name lists the arguments that each method supports. An empty set of
parentheses indicates that the method supports no arguments.

Table 44. Methods of the Pop-Up Presentation Model

Method Name Description

ClearPopup() Sets the pop-up visibility to false and resets various properties
and method values after Siebel Open UI closes the pop-up
object.

OnLoadPopupContent() Loads the HTML for the pop-up object, initializes pop-up applets,
and then calls the show method on the pop-up proxy.

OpenPopup(source, height,
width, full, free, bContent)

Opens the pop-up object according to the arguments that the
ProcessNewPopup method determines. It uses these arguments
to set the properties of the pop-up object. Some of these
arguments call other methods in the PopupPR physical renderer
that load the content in the pop-up object.

ProcessClearPopup(propSet) Calls the ClearPopup method.

ProcessNewPopup(propset) Processes the property set that Siebel Open UI sends to this
method as an argument, and then determines the following
items:

■ The mode that the pop-up object uses

■ Various pop-up window features

■ The width and height of the pop-up object, in pixels.

Siebel Open UI calls the OpenPopup method to open a modal
pop-up object. It does not call OpenPopup to open a nonmodal
pop-up object. Instead, it creates a nonmodal pop-up object
from this ProcessNewPopup method.

SetPopupVisible(bVisible) Modifies the state property of the pop-up object depending on
whether the bVisible argument is true or false.

Application Programming Interface ■ Methods for Pop-Up Objects, Google Maps, and
Property Sets

Configuring Siebel Open UI Siebel 2018 565

Methods of the Popup Physical Renderer
Table 45 describes the methods of the PopupRenderer physical renderer.

Method That Integrates Google Maps
This topic describes the method that Siebel Open UI uses to integrate with Google Maps. It includes
the following topics:

■ GetInlineRoute Method on page 566

■ ShowMapLocations Method on page 568

■ Calling Methods That the Integration with Maps and Location Method Uses on page 569

Table 45. Methods of the Pop-Up Physical Renderer

Method Name Description

BindEvents Binds all events for the pop-up object. For more information, see
“Siebel CRM Events That You Can Use to Customize Siebel Open UI”
on page 620.

EnhanceDialog Resizes the pop-up object according to the width property of the
pop-up object and according to the default width that the client
specifies.

Siebel Open UI calls the EnhanceDialog method when it calls the
OnLoadPopupContent method from the PopupPM presentation
model.

LoadContent If Siebel Open UI modifies the content property of the PopupPM
presentation model, then this LoadContent method loads the
HTML source code that contains the content that the pop-up
object displays.

LoadURL If Siebel Open UI modifies the url property of the PopupPM
presentation model, then this LoadURL method sets the div
element of the src attribute of the pop-up object to the value
that the url property specifies.

SetTitle Sets the title for the pop-up object. Siebel Open UI calls the
SetTitle method when it calls the OnLoadPopupContent method
from the PopupPM presentation model.

SetVisibility Displays or hides the pop-up object according to state property
of the PopupPM presentation model. If the state property is:

■ open. The SetVisibility method displays the pop-up object.

■ close. The SetVisibility method hides the pop-up object.

ShowUI Displays an empty pop-up object.

Configuring Siebel Open UI Siebel 2018

Application Programming Interface ■ Methods for Pop-Up Objects, Google Maps, and
Property Sets

566

The Integration with Maps and Location service allows the user to view CRM data on a
map and get driving directions and other information. If the user taps the postal code of the
contact or account address, then Siebel Open UI displays a Google map that includes the address
and step-by-step information that describes how to navigate from the current location to the
location that the postal code identifies.

This service can get a list of accounts, contacts, or opportunity addresses from the record set that
the list applet contains, and then display these addresses in a map. The list view displays distance
information from the current location. The map view includes pins on the map that indicate the
current location and location of all objects that fall within a radius from the geographic location where
the user is currently situated. If the user clicks a pin, then Siebel Open UI does something depending
on the following type of information that the pin represents:

■ Opportunity or account. Navigates the user to details of the record.

■ Contact. Allows the user to make a telephone call, send an email, or view contact details.

Siebel Open UI uses the google-ui-map plug-in. It includes the following methods in the JQMMapCtrl
class:

■ GetInlineRoute

■ ShowMapLocations

■ Integration with Maps and Location

GetInlineRoute Method
The GetInlineRoute method does the following work:

■ Dynamically loads the Google map method.

■ Gets the current location of the device or browser.

■ Draws the route. It uses the current location as the starting point and the account location as
the destination.

It includes the DestValue argument. This argument identifies the postal code or address of an
account, contact, or opportunity.

Siebel Open UI calls the predefined GetInlineRoute method from a form applet, but you can
customize it to use a list applet. The Integration with Maps and Location service creates a link that
includes an image and a bind click event that references the control link that calls the GetInlineRoute
method. It gets the postal code value from the record that the user chooses in the form applet, and
then sends the value when it calls the GetInlineRoute method in the JQMMapCtrl class. Siebel Open
UI must load the Google method before it calls the GetInlineRoute method. It includes the URL for
the Google method when it loads the JQMMapCtrl class.

Flow That the GetInlineRoute Method Uses The GetInlineRoute method uses the following
flow:

1 Makes sure the Web template file includes a map div element.

2 Calls the LoadAPI method.

Application Programming Interface ■ Methods for Pop-Up Objects, Google Maps, and
Property Sets

Configuring Siebel Open UI Siebel 2018 567

3 Dynamically loads the Google map method. The Google map method is not downloadable so it
dynamically loads the map method when it initializes the JQMMapCtrl class.

4 Calls the LoadMap method.

5 Removes all markers, overlays, and services from the map div element.

6 Creates a Google map in the div element. It uses the div element that it created in the Web
template. It uses the google-ui-map plug-in to create this element in Step 4.

7 It sends the name of the jqmMapCtrl div element to the plug-in to draw the map.

Uses the getCurrentPosition method to get the current geocode of the client
device. This method is available through the navigator.geolocation object. A
geocode is an object that stores the geographic coordinates of a location expressed as
latitude and longitude.

8 Displays the GPS geocode of the current position. It does this only if the browser supports GPS
(Global Positioning System). If the browser does not support GPS, or if GPS is not available, then
Siebel Open UI sets the current location to Oracle headquarters at 500 Oracle Parkway, Redwood
Shores, CA 94065. The following browsers support GPS:

■ Internet Explorer version 9.0

■ Firefox version 3.5

■ Chrome version 5.0

■ Safari version 5.0

■ Opera version 10.60

9 Calls the GetAcctDirections method. It uses the following arguments of the GetAcctDirections
method during this call:

■ mapCanvas. Identifies the div element where Siebel Open UI draws the map.

■ currentLocation. Identifies the device GPS location. If the browser does not support GPS
or if GPS is not available, then it uses the Oracle headquarters address.

■ acctDestination. Identifies the postal code or address from the account, contact or
opportunity record.

Configuring Siebel Open UI Siebel 2018

Application Programming Interface ■ Methods for Pop-Up Objects, Google Maps, and
Property Sets

568

10 Draws the route from the currentLocation to acctDestination. For example:

ShowMapLocations Method
The ShowMapLocations method loads the Google map method, initializes the geocoder service to get
the geocode of the address, and creates a marker for each location that the array contains.

It uses the AcctArray method. This method gets the address or postal code of all account, contact,
or opportunity addresses from the record set that the list applet displays.

Siebel Open UI can call the ShowMapLocations method from a list applet. You can create a button or
link control, and then bind a click event with the control so that this event calls the method. The
ShowMapLocations method uses jqmListRenderert to do the following work:

■ Loop through the record set that the list applet contains

■ Determine the columns that are available

■ Add the nonnull value of each address field in the record to create the full address.

■ Add the address to the array.

Application Programming Interface ■ Methods for Pop-Up Objects, Google Maps, and
Property Sets

Configuring Siebel Open UI Siebel 2018 569

You can bind the ShowMap button control in the Web template with the click event in
jqmListRenderer, and then configure Siebel Open UI to use the account array to call the
ShowMapLocations method in the JQMMapCtrl class.

Flow That the ShowMapLocations Method Uses The ShowMapLocations method uses the
following flow:

1 Calls the LoadAPI method that loads the Google map method. The Google map method is not
downloadable, so Siebel Open UI loads it when it initializes the JQMMapCtrl class and provides
the LoadMap.

2 Calls the LoadAcctsMap method, which does the following work:

a Gets the current geocode of the client device.

b Gets the address of the location so that it can display this address in the Info Window.

c Creates the Google map in the div element. It uses the div element that it created in the Web
template. It used the google-ui-map plug-in to create this element.

d Starts an instance of the Geocoder service.

e Does the following work for each address that the AcctArray method includes:

❏ Gets the geocode of the address.

❏ Sets the marker Position according to the geocode.

❏ Calls the addMarker method to map all markers that the map div element contains.

Calling Methods That the Integration with Maps and Location Method
Uses
You can call methods that the Integration with Maps and Location method uses from a form applet
or list applet in the following way:

1 Initialize the JQMMapCtrl class.

2 Configure Siebel Open UI so that it sends a single account address or postal code and then binds
it to an event that calls the GetInlineRoute method.

Siebel Open UI comes predefined to bind the anchor control for the postal code field to a click
event. Siebel Open UI displays the postal code field as an icon next to the control. It uses this
configuration only for form applets.

To configure a list applet, you must also do the following work:

a Prepare the account array that stores the addresses or postal codes and bind it to an event that
Siebel Open UI can call from a ShowMapLocations method. Siebel Open UI comes predefined to
concatenate the values of Street Address, City and State fields, and then set the nonnull values
that the array contains. It does this so that it can send the array to the method.

b Create a link or button that calls the method.

Configuring Siebel Open UI Siebel 2018

Application Programming Interface ■ Methods for Pop-Up Objects, Google Maps, and
Property Sets

570

Siebel Open UI uses the Google-ui-map plug-in to render the Google map. This plug-in requires a
div id to display the map. This div element can reside in any container. The CCViewDetailMap_Mobile
Web template supports list and map rendering. It contains the following code. It uses the jqmMapCtrl
div id to render the Google map:

<div od-if="Web Engine State Properties, IsMobileApplicationMode">

<div id="SiebelMapContainer" name="SiebelMapContainer"

style="display:none;">

<div id="jqmMapCtrl" name="jqmMapCtrl"></div>

</div>

</div>

Methods That Manipulate Property Sets
This topic describes the methods you can use that manipulate property sets. It includes the following
information:

■ Structure of the Property Set

■ AddChild Method on page 571

■ Clone Method on page 571

■ Copy Method on page 572

■ DeepCopy Method on page 572

■ GetChild Method on page 573

■ GetChildByType Method on page 573

■ InsertChildAt Method on page 573

■ RemoveChild Method on page 574

■ RemoveProperty Method on page 574

■ SetProperty Method on page 574

Structure of the Property Set
Table 46 describes the structure of the property set that Siebel Open UI uses in the client.

Table 46. Structure of the Property Set

Property Description

childArray Array of all child property sets that the parent property set contains.

childEnum Counter that contains the number of children enumerated in the property set.

Application Programming Interface ■ Methods for Pop-Up Objects, Google Maps, and
Property Sets

Configuring Siebel Open UI Siebel 2018 571

AddChild Method
The AddChild method creates a new child property in the property set. It returns one of the following
values:

■ true. Siebel Open UI created a child property.

■ false. Siebel Open UI did not create a child property.

It uses the following format:

AddChild (child)

For example:

outputPS.AddChild (inputPS);

where:

■ inputPS is an argument that identifies the input property set that Siebel Open UI adds to the
childArray of the called on property set object outputPS.

Clone Method
The Clone method creates a new property set and does a full copy of the following property set:

this

It returns a new property set object.

It uses the following format:

Clone()

For example:

outputPS = inputPS.Clone();

It includes no arguments.

propArray Object that contains the values for all properties that the property set contains.

propArrayLen Length of the propArray property.

type Type of the property set.

value Value of the property set.

Table 46. (Continued)Structure of the Property Set

Property Description

Configuring Siebel Open UI Siebel 2018

Application Programming Interface ■ Methods for Pop-Up Objects, Google Maps, and
Property Sets

572

Copy Method
The Copy method copies the following property set:

this

It returns one of the following values:

■ true. Siebel Open UI made a copy of the property set.

■ false. Siebel Open UI did not make a copy of the property set.

It adds every child and subchild in the childArray of the input property set to the childArray of the
following property set:

this

It uses the following format:

Copy(old)

For example:

outputPS.Copy(inputPS);

It uses the following arguments:

■ inputPS. Identifies the input property set that Siebel Open UI copies.

DeepCopy Method
The DeepCopy method makes a full copy of the inputPS property set, and then parses this copy into
the following property set:

this

It returns one of the following values:

■ true. Siebel Open UI made a full copy of the inputPS property set, and then parsed it.

■ false. Siebel Open UI did not make a full copy of the inputPS property set, and then parse it.

It uses the following format:

DeepCopy(inputPS)

For example:

outputPS.DeepCopy (inputPS)

It uses the following arguments:

■ inputPS. An input property set that contains the values that Siebel Open UI copies to the
outputPS property set.

Application Programming Interface ■ Methods for Pop-Up Objects, Google Maps, and
Property Sets

Configuring Siebel Open UI Siebel 2018 573

GetChild Method
The GetChild method returns a child of the property set that resides at an index location that you
specify. It returns a property set object.

It uses the following format:

GetChild (index)

For example:

childPS = inputPS.GetChild (index);

It uses the following arguments:

■ index. Specifies the index of the child that Siebel Open UI gets from the inputPS property set.

GetChildByType Method
The GetChildByType method returns a child of the property set according to the type that you specify.
It returns a property set object. It uses the following format:

GetChildByType (type)

For example:

childPS = inputPS.GetChildByType("vi")

It uses the following arguments:

■ type. Specifies the type of the property set that Siebel Open UI gets from the childArray of the
inputPS property set.

InsertChildAt Method
The InsertChildAt method inserts a new property set in the child array at the location that the index
specifies. It returns one of the following values:

■ true. Siebel Open UI inserted a new property set.

■ false. Siebel Open UI did not insert a new property set.

It uses the following format:

InsertChildAt (child, index)

For example:

outputPS.InsertChildAt(inputPS, 2);

It uses the following arguments:

■ inputPS. Specifies the input property set that Siebel Open UI adds in the childArray of the
outputPS property set.

■ index. Specifies the index where Siebel Open UI adds the inputPS property set to childArray.

Configuring Siebel Open UI Siebel 2018

Application Programming Interface ■ Methods for Pop-Up Objects, Google Maps, and
Property Sets

574

RemoveChild Method
The RemoveChild method removes a child from the child array of the property set at the location that
the index specifies. It returns one of the following values:

■ true. Siebel Open UI removed a child from the child array.

■ false. Siebel Open UI did not remove a child from the child array.

It uses the following format:

RemoveChild (index)

where:

■ index specifies the index of the child property set that Siebel Open UI removes from the
childArray of the outputPS property set.

For example:

outputPS.RemoveChild(2);

RemoveProperty Method
The RemoveProperty method removes a property from the propArray of the property set. It returns
one of the following values:

■ true. Siebel Open UI removed a property from the propArray.

■ false. Siebel Open UI did not remove a property from the propArray.

It uses the following format:

RemoveProperty (name)

where:

■ name specifies the name of the property that Siebel Open UI removes from propArray.

For example:

outputPS.RemoveProperty("prop");

SetProperty Method
The SetProperty method sets a property of the property set. It returns one of the following values:

■ true. Siebel Open UI set a property of the property set.

■ false. Siebel Open UI did not set a property of the property set.

It uses the following format:

SetProperty (name, value)

For example:

inputPS.SetProperty("SelectedItem", val);

Application Programming Interface ■ Methods for Pop-Up Objects, Google Maps, and
Property Sets

Configuring Siebel Open UI Siebel 2018 575

It uses the following arguments:

■ name. Specifies the new property name.

■ value. Specifies the new property value.

Configuring Siebel Open UI Siebel 2018

Application Programming Interface ■ Methods for Pop-Up Objects, Google Maps, and
Property Sets

576

Configuring Siebel Open UI Siebel 2018 577

B Reference Information for
Siebel Open UI

This appendix describes reference information for Siebel Open UI. It includes the following topics:

■ Life Cycle Flows of User Interface Elements

■ Notifications That Siebel Open UI Supports on page 595

■ Property Sets That Siebel Open UI Supports on page 618

■ Siebel CRM Events That You Can Use to Customize Siebel Open UI on page 620

■ Languages That Siebel Open UI Supports on page 641

■ Screens and Views That Siebel Mobile Uses on page 643

■ Controls That Siebel Open UI Uses on page 648

■ Browser Script Compatibility on page 650

Life Cycle Flows of User Interface
Elements
This topic includes flowcharts that you can use to determine the methods that Siebel Open UI uses
during various steps in the life cycle of a user interface element. It includes the following information:

■ Life Cycle Flows That Save Records

■ Life Cycle Flows That Handle User Navigation on page 579

■ Life Cycle Flows That Send Notifications on page 583

■ Life Cycle Flows That Create New Records in List Applets on page 585

■ Life Cycle Flows That Handle User Actions in List Applets on page 589

Life Cycle Flows That Save Records
This topic describes the life cycle flows that Siebel Open UI uses to save records.

Flow That Saves Records If the User Uses a Shortcut
Figure 42 on page 578 illustrates the life cycle flow that Siebel Open UI uses to save a record if the
user simultaneously presses the CTRL and S keys. The numbers in the diagram indicate the sequence
that Siebel Open UI uses during this flow. The A connector connects to the flow described in “Flow
That Saves Records If the User Uses the Save Menu” on page 578.

Configuring Siebel Open UI Siebel 2018

Reference Information for Siebel Open UI ■ Life Cycle Flows of User Interface Elements

578

Figure 42. Flow That Saves Records If the User Uses a Shortcut

Flow That Saves Records If the User Uses the Save Menu
Figure 43 on page 579 illustrates the life cycle flow that Siebel Open UI uses to save a record if the
user clicks Menu, and then the Save Record menu item. The A connector connects to the flow
described in “Flow That Saves Records If the User Uses a Shortcut” on page 577.

Reference Information for Siebel Open UI ■ Life Cycle Flows of User Interface Elements

Configuring Siebel Open UI Siebel 2018 579

Figure 43. Flow That Saves Records If the User Uses the Save Menu

Life Cycle Flows That Handle User Navigation
This topic describes the life cycle flows that Siebel Open UI uses when the user navigates through
various items in the client.

Flow That Siebel Open UI Uses if the User Clicks an Applet in a View
Figure 44 on page 580 illustrates the life cycle flow that Siebel Open UI uses if the user clicks an
applet in a view.

Configuring Siebel Open UI Siebel 2018

Reference Information for Siebel Open UI ■ Life Cycle Flows of User Interface Elements

580

Figure 44. Flow That Siebel Open UI Uses if the User Clicks an Applet in a View

Flow That Siebel Open UI Uses if the User Navigates to a View
Figure 45 on page 581 illustrates the that Siebel Open UI uses if the user navigates to a view.

Reference Information for Siebel Open UI ■ Life Cycle Flows of User Interface Elements

Configuring Siebel Open UI Siebel 2018 581

Figure 45. Flow That Siebel Open UI Uses if the User Navigates to a View

Flow That Handles Focus Changes in Form Applets
Figure 46 on page 582 illustrates the life cycle flow that Siebel Open UI if the focus changes for a field
in a form applet. For example, if the user tabs out a field, clicks outside the field, minimizes the
window, saves the record, and so on.

Configuring Siebel Open UI Siebel 2018

Reference Information for Siebel Open UI ■ Life Cycle Flows of User Interface Elements

582

Figure 46. Flow That Handles Focus Changes in Form Applets

Flow That Handles Focus Changes in List Applets
Figure 47 on page 583 illustrates the life cycle flow that Siebel Open UI if the focus changes for a field
in a list applet. For example, if the user tabs out a field, clicks outside the field, minimizes the
window, saves the record, and so on.

Reference Information for Siebel Open UI ■ Life Cycle Flows of User Interface Elements

Configuring Siebel Open UI Siebel 2018 583

Figure 47. Flow That Handles Focus Changes in List Applets

Life Cycle Flows That Send Notifications
This topic describes the life cycle flows that Siebel Open UI uses to send notifications.

Flow That Notifies the Siebel Server
Figure 48 on page 584 illustrates the life cycle flow that Siebel Open UI uses to notify the Siebel
Server.

Configuring Siebel Open UI Siebel 2018

Reference Information for Siebel Open UI ■ Life Cycle Flows of User Interface Elements

584

Figure 48. Flow That Notifies the Siebel Server

Flow That Sends a Notification State Change
Figure 49 on page 585 illustrates the life cycle flow that Siebel Open UI uses to send a notification
state change. For more information about the notifications that this flow describes, see “Notifications
That Siebel Open UI Supports” on page 595.

Reference Information for Siebel Open UI ■ Life Cycle Flows of User Interface Elements

Configuring Siebel Open UI Siebel 2018 585

Figure 49. Flow That Sends a Notification State Change

Life Cycle Flows That Create New Records in List Applets
This topic describes the life cycle flows that Siebel Open UI uses to create a new record in a list
applet.

Configuring Siebel Open UI Siebel 2018

Reference Information for Siebel Open UI ■ Life Cycle Flows of User Interface Elements

586

Flow That Creates New Records in List Applets, Calling the Siebel
Server
Figure 50 on page 586 illustrates the life cycle flow that Siebel Open UI uses during the call that it
makes to the Siebel Server when it creates a new record in a list applet. Siebel Open UI typically
calls the following methods during this flow: NewRecord, DeleteRecord, EditField, WriteRecord, and
so on. For more information, see “DeleteRecord Method” on page 436, “WriteRecord Method” on
page 449, and “NewRecord Method” on page 530.

Figure 50. Flow That Creates New Records in List Applets, Calling the Siebel Server

Flow That Creates New Records in List Applets, Processing the Server
Reply
Figure 51 on page 587 illustrates the life cycle flow that Siebel Open UI uses when it processes the
reply that it gets from the Siebel Server when it creates a new record in a list applet. This figure
illustrates the flow that occurs after Siebel Open UI receives the reply.

Reference Information for Siebel Open UI ■ Life Cycle Flows of User Interface Elements

Configuring Siebel Open UI Siebel 2018 587

Figure 51. Flow That Creates New Records in List Applets, Processing the Server Reply

Flow That Creates New Records in List Applets, Updating the User
Interface
Figure 52 on page 588 illustrates the life cycle flow that Siebel Open UI uses to update the user
interface. The numbers in the diagram indicate the sequence that Siebel Open UI uses during this
flow.

Configuring Siebel Open UI Siebel 2018

Reference Information for Siebel Open UI ■ Life Cycle Flows of User Interface Elements

588

Figure 52. Flow That Creates New Records in List Applets, Updating the User Interface

Flow That Creates New Records in List Applets, Updating the Proxy
and Presentation Model
Figure 53 on page 589 illustrates the life cycle flow that Siebel Open UI uses to update the proxy and
presentation model.

Reference Information for Siebel Open UI ■ Life Cycle Flows of User Interface Elements

Configuring Siebel Open UI Siebel 2018 589

Figure 53. Flow That Creates New Records in List Applets, Updating the Proxy and Presentation
Model

Life Cycle Flows That Handle User Actions in List Applets
This topic describes the life cycle flows that Siebel Open UI uses depending on an action that the
user does in a list applet.

Flow That Handles Navigation to Another Row in List Applets
Figure 54 on page 590 illustrates the flow that Siebel Open UI uses if the user navigates to another
row in a list applet.

Configuring Siebel Open UI Siebel 2018

Reference Information for Siebel Open UI ■ Life Cycle Flows of User Interface Elements

590

Figure 54. Flow That Handles Navigation to Another Row in List Applets

Flow That Handles the Pagination Button in List Applets
Figure 55 on page 591 illustrates the flow that Siebel Open UI uses if the user clicks the pagination
button in a list applet.

Reference Information for Siebel Open UI ■ Life Cycle Flows of User Interface Elements

Configuring Siebel Open UI Siebel 2018 591

Figure 55. Flow That Handles the Pagination Button in List Applets

Flow That Handles a Column Sort in List Applets
Figure 56 on page 592 illustrates the flow that Siebel Open UI uses if the user sorts a column in a list
applet.

Configuring Siebel Open UI Siebel 2018

Reference Information for Siebel Open UI ■ Life Cycle Flows of User Interface Elements

592

Figure 56. Flow That Handles a Column Sort in List Applets

Flow That Handles a Cell Click in List Applets
Figure 57 on page 593 illustrates the flow that Siebel Open UI uses if the user clicks a cell in a list
applet.

Reference Information for Siebel Open UI ■ Life Cycle Flows of User Interface Elements

Configuring Siebel Open UI Siebel 2018 593

Figure 57. Flow That Handles a Cell Click in List Applets

Flow That Handles a Cell Edit and Blur in List Applets
Figure 58 on page 594 illustrates the flow that Siebel Open UI uses if the user edits a cell in a list
applet, and then navigates away from this cell.

Configuring Siebel Open UI Siebel 2018

Reference Information for Siebel Open UI ■ Life Cycle Flows of User Interface Elements

594

Figure 58. Flow That Handles a Cell Edit and Blur in List Applets

Flow That Handles a Drilldown in List Applets Figure 59 on page 595 illustrates the flow
that Siebel Open UI uses if the user clicks a drilldown field in a list applet.

Reference Information for Siebel Open UI ■ Notifications That Siebel Open UI Supports

Configuring Siebel Open UI Siebel 2018 595

Figure 59. Flow That Handles a Drilldown in List Applets

Notifications That Siebel Open UI
Supports
This topic describes notifications that Siebel Open UI supports. It includes the following information:

■ Summary of Notifications That Siebel Open UI Supports on page 596

■ Using Notifications with Operations That Call Methods on page 604

■ NotifyGeneric Notification Type on page 605

■ NotifyGeneric Notification Type on page 605

■ Example Usages of Notifications on page 611

For more information about configuring Siebel Open UI to use notifications, see
“AttachNotificationHandler Method” on page 469.

Configuring Siebel Open UI Siebel 2018

Reference Information for Siebel Open UI ■ Notifications That Siebel Open UI Supports

596

Summary of Notifications That Siebel Open UI Supports
Table 47 describes the notification types that Siebel Open UI supports. For more information, see
“New Notification User Interfaces” on page 19.

Table 47. Notification Types That Siebel Open UI Supports

Notification Type Description

NotifyBeginNotifys SWE_PROP_BC_NOTI_B
EGIN

Notifies the client business component
that the request that Siebel Open UI sent
to the Siebel Server resulted in at least
one notification from a business
component.

NotifyStateChanged SWE_PROP_BC_NOTI_S
TATE_CHANGED

Specifies a top-level notification for more
than one state change that occurs in the
business component level. Siebel Open UI
uses the following properties to identify
the change and to get the data associated
with the change:

■ state

■ value

Siebel Open UI can provide summary or
detailed state information. For more
information, see “NotifyStateChanged
Notification Type” on page 608.

NotifyGeneric SWE_PROP_BC_NOTI_G
ENERIC

Identifies the predefined and custom
notifications that the Siebel application
must send. Siebel Open UI addresses
most predefined generic notifications to a
particular applet.

You can use NotifyGeneric to get the
exact type for a generic notification.
Siebel Open UI provides actual
information of the changes as an encoded
argument set.

Reference Information for Siebel Open UI ■ Notifications That Siebel Open UI Supports

Configuring Siebel Open UI Siebel 2018 597

NotifyNewSelection SWE_PROP_NOTI_SELEC
TED

Notifies the client business component
that a change occurred in the selection
status. Siebel Open UI calls
NotifyNewSelection two times for each
selection status change:

■ One time a value of false for the last
row selected

■ One time with a value of true for the
new row that Siebel Open UI is
selecting

You cannot use NotifyNewSelection with a
multi-select.

You can use the following syntax in the
property set that Siebel Open UI sends:

SWE_PROP_BC_NOTI_ACTIVE_ROW = index

SWE_PROP_NOTI_SELECTED = Boolean

where:

■ index identifies the index of the row
that Siebel Open UI is activating or
deactivating.

■ Boolean is true or false.

NotifyNewActiveRow SWE_PROP_BC_NOTI_N
EW_ACTIVE_ROW

Notifies the client business component
that a change occurred on an active row
of the corresponding business component
on the Siebel Server. Siebel Open UI
usually uses NotifyNewSelection with
NotifyNewActiveRow.

You can use the following syntax:

SWE_PROP_BC_NOTI_ACTIVE_ROW = row

where:

■ row identifies the row that Siebel
Open UI is activating or deactivating.

Table 47. (Continued)Notification Types That Siebel Open UI Supports

Notification Type Description

Configuring Siebel Open UI Siebel 2018

Reference Information for Siebel Open UI ■ Notifications That Siebel Open UI Supports

598

NotifyDeleteRecord SWE_PROP_BC_NOTI_D
ELETE_RECORD

Notifies the business component in the
client that Siebel Open UI deleted a
record from the current set of records on
the Siebel Server. Siebel Open UI might
use this notification two times for a single
record deletion.

You can use the following syntax in the
property set that Siebel Open UI sends:

SWE_PROP_BC_NOTI_ACTIVE_ROW = index

bUp = Boolean

where:

■ index identifies the index of a record
that resides in the current set of
records that Siebel Open UI is
deleting.

■ Boolean is one of the following
values:

❏ true. Shift records up after
the delete.

❏ false. Shift records down
after the delete.

For an example usage of this notification,
see “Customizing the Presentation Model to
Handle Notifications” on page 71.

Table 47. (Continued)Notification Types That Siebel Open UI Supports

Notification Type Description

Reference Information for Siebel Open UI ■ Notifications That Siebel Open UI Supports

Configuring Siebel Open UI Siebel 2018 599

NotifyDeleteRecordSet SWE_PROP_BC_NOTI_D
ELETE_WORKSET

Notifies the business component in the
client that Siebel Open UI is deleting a
record from the current set of records in
the client. Does not correspond to a
method invoke. Siebel Open UI sends a
separate notification for each record that
it deletes.

You can use the following syntax in the
property set that Siebel Open UI sends:

index:index

NumRows/nr:number

where:

■ index identifies the start index of the
record that Siebel Open UI is deleting.

■ number identifies the number of rows
that Siebel Open UI must delete.

For more information, see “Using
Notifications with Operations That Call
Methods” on page 604.

Table 47. (Continued)Notification Types That Siebel Open UI Supports

Notification Type Description

Configuring Siebel Open UI Siebel 2018

Reference Information for Siebel Open UI ■ Notifications That Siebel Open UI Supports

600

NotifyInsertWorkSet SWE_PROP_BC_NOTI_IN
SERT_WORKSET

Notifies the business component in the
client that Siebel Open UI is inserting a
new record in the current set of records in
the client.

You can use the following syntax in the
property set that Siebel Open UI sends:

index:index_value

SWE_FIELD_VALUE_STR:child

SWE_PROP_VALUE_ARRAY:array

where:

■ index identifies the index of the
record that Siebel Open UI is
inserting.

■ child identifies the child property set
that contains the record data.

■ array is an array that contains the
field values of the record that Siebel
Open UI is inserting. This array must
use the same sequence that the
business component uses when it lists
these field values.

For more information, see “Using
Notifications with Operations That Call
Methods” on page 604.

NotifyNewData SWE_PROP_BC_NOTI_N
EW_DATA

Notifies the business component in the
client that Siebel Open UI is modifying the
current set of records. Siebel Open UI
sends this notification only if it modifies a
record. It does not send this notification if
it only modifies a field value.

NotifyNewPrimary SWE_PROP_BC_NOTI_N
EW_PRIMARY

Sets the primary record in a multi-value
group. The RepopulateField notification
calls NotifyNewPrimary.

Table 47. (Continued)Notification Types That Siebel Open UI Supports

Notification Type Description

Reference Information for Siebel Open UI ■ Notifications That Siebel Open UI Supports

Configuring Siebel Open UI Siebel 2018 601

NotifyNewRecord SWE_PROP_BC_NOTI_N
EW_RECORD

Notifies the client business component
that Siebel Open UI is creating a new
record in the current set of records on the
Siebel Server. You can use the following
syntax in the property set that Siebel
Open UI sends:

SWE_PROP_BC_NOTI_ACTIVE_ROW = index

bInsertBefore = Boolean

where:

■ row identifies the index of the record
that Siebel Open UI is creating.

■ Boolean is one of the following
values:

❏ true. Place the new record
before the previous active
row.

❏ false. Place the new record
after the previous active row.

For a similar usage of this notification,
see “Customizing the Presentation Model to
Handle Notifications” on page 71.

NotifyNewRecordData SWE_PROP_BC_NOTI_N
EW_RECORD_DATA

Sets the do populate flag.

NotifyNewDataWorkSet SWE_PROP_BC_NOTI_N
EW_RECORD_DATA_WS

Updates a record in the current set of
records.

NotifyNewFieldData SWE_PROP_BC_NOTI_N
EW_FIELD_DATA

Notifies the client business component
that Siebel Open UI modified a field value
on the Siebel Server, and that Siebel
Open UI communicated this modification
to the client through the
NotifyNewDataWorkset notification.

You can use the following syntax in the
property set that Siebel Open UI sends:

SWE_PROP_NOTI_FIELD = field

where:

■ field identifies the name of the field
that Siebel Open UI is modifying.

Table 47. (Continued)Notification Types That Siebel Open UI Supports

Notification Type Description

Configuring Siebel Open UI Siebel 2018

Reference Information for Siebel Open UI ■ Notifications That Siebel Open UI Supports

602

NotifyNewDataWorkset SWE_PROP_BC_NOTI_N
EW_DATA_WS

Notifies the client business component of
a field value that Siebel Open UI modified
for a field that resides on the Siebel
Server.

You can use the following syntax in the
property set that Siebel Open UI sends:

SWE_PROP_NOTI_FIELD = field

SWE_PROP_FIELD_VALUES = child

where:

■ field identifies the name of the field
that Siebel Open UI is modifying.

■ child identifies the name of the child
property set that contains the
modification details.

You can use the following syntax in the
child property set:

SWE_PROP_FIELD_ARRAY:string1

SWE_PROP_VALUE_ARRAY:string2

where:

■ string1 is an encoded string that
identifies the field index.

■ string2 is an encoded string that
identifies the field value.

NotifyNewFieldList SWE_PROP_BC_NOTI_N
EW_FIELD_LIST

Refreshes the entire view internally.

NotifyNewRecordDataWS SWE_PROP_BC_NOTI_N
EW_RECORD_DATA_WS

Updates the values in the record set.
Siebel Open UI updates the dirty flag
during previous notifications.

NotifyChangeSelection SWE_PROP_BC_NOTI_C
HANGE_SELECTION

Sets the update conditionals flag and the
row counter.

NotifyEndNotifys SWE_PROP_BC_NOTI_E
ND

Notifies the client business component
that Siebel Open UI is ending the
notification, and that no more server
notifications exist for the current
transaction.

Table 47. (Continued)Notification Types That Siebel Open UI Supports

Notification Type Description

Reference Information for Siebel Open UI ■ Notifications That Siebel Open UI Supports

Configuring Siebel Open UI Siebel 2018 603

NotifyBeginQuery SWE_PROP_BC_NOTI_B
EGIN_QUERY

Notifies the client business component
that Siebel Open UI started a query on
the business component on the Siebel
Server.

NotifyNewQuerySpec SWE_PROP_BC_NOTI_N
EW_QUERYSPEC

Siebel Open UI uses the
NotifyNewQuerySpec notification if the
user refines a query. If the business
component search specification is empty,
then NotifyNewQuerySpec clears all field
search specifications.

NotifyNewFieldQuerySpec SWE_PROP_BC_NOTI_N
EW_FIELD_QUERYSPEC

Notifies the client business component
that Siebel Open UI is doing one of the
following to query the fields of the current
business component on the Siebel
Server:

■ Using a default query specification

■ Starting or running a query

This situation can occur through a
predefined or custom configuration, or in
reply to a query that the user performs.

You can use the following syntax in the
property set that Siebel Open UI sends:

SWE_PROP_NOTI_FIELD =
fieldSWE_PROP_VALUE = search
specification"

where:

■ field identifies the name of the field
that Siebel Open UI is querying.

■ search specification identifies a query
specification that is defined on this
field.

NotifyEndQuery SWE_PROP_BC_NOTI_E
ND_QUERY

Notifies the client business component
that Siebel Open UI is ending a query on
the business component on the Siebel
Server. This situation can occur if the
ExecuteQuery method or the UndoQuery
method runs.

Table 47. (Continued)Notification Types That Siebel Open UI Supports

Notification Type Description

Configuring Siebel Open UI Siebel 2018

Reference Information for Siebel Open UI ■ Notifications That Siebel Open UI Supports

604

Using Notifications with Operations That Call Methods
It is recommended that you do not use some notifications with an operation that calls a method. For
example, if the user paginates to the next page in a set of 10 records, and if you use
NotifyInsertWorkSet with the method that calls this pagination, then Siebel Open UI will create 10
separate NotifyInsertWorkSet notifications.

NotifyExecute SWE_PROP_BC_NOTI_E
XECUTE

Notifies the client business component
that Siebel Open UI is running a business
component on the Siebel Server.

You can use the following syntax in the
property set that Siebel Open UI sends:

srt = sort specifications

where:

■ sort specification identifies the sort
specification that Siebel Open UI
runs.

■ search specification identifies the
search specification that Siebel Open
UI runs.

NotifyScrollAmount SWE_PROP_BC_NOTI_S
CROLL_AMOUNT

Sets the scroll folder and the amount for
a mobile swipe operation.

NotifyPageRefresh SWE_NOTIFY_PAGE_REF
RESH

Updates the urltogo with the URL that
Siebel Open UI uses to refresh a view.
Siebel Open UI gets this URL from a
subsequent executeurltoGo notification.

Table 47. (Continued)Notification Types That Siebel Open UI Supports

Notification Type Description

Reference Information for Siebel Open UI ■ Notifications That Siebel Open UI Supports

Configuring Siebel Open UI Siebel 2018 605

NotifyGeneric Notification Type
Table 48 describes the subtypes of the SWE_PROP_BC_NOTI_GENERIC type that the NotifyGeneric
notification type uses. It includes the predefined and custom notifications that a Siebel application
must send.

Table 48. NotifyGeneric Notification Type

Sub Type Description

SWEICanInvokeMethod Enables the refresh button.

SWEICtlDefChanged Modifies the definition for a control. You can customize Siebel Open
UI to dynamically modify the definition that a control uses. For
example, modifying a definition from JavaScript text box to a
JavaScript combo box.

SWEIPrivFlds Specifies a list of private fields. For example, the Find controls that
Siebel Open UI displays in a dialog box. A private field is a type of
field that only allows the record owner to view the record. For more
information, see Siebel Object Types Reference.

SWEICanUpdate Specifies to display data-driven, read-only behavior.

SWEICanNavigate If a list applet displays zero records, and if the user adds a new
record, then the SWEICanNavigate subtype displays the drilldown
links.

SWEIRowSelection Sends the set of selected rows that exist in the current set of records
to a list applet. You can use the following syntax in the decoded
array:

argsArray[0] = applet name

argsArray[1-x] = value

where:

■ applet name identifies the name of the applet where Siebel Open
UI sends the notification.

■ value is one of the following:

■ 1. Indicates selected.

■ 0. Indicates not selected.

Configuring Siebel Open UI Siebel 2018

Reference Information for Siebel Open UI ■ Notifications That Siebel Open UI Supports

606

SWEAInvokeMethod Adds an operation in the life cycle that the InvokeMethod method
uses. For example, assume you configure an OK button in an
association applet, and that this button closes a dialog box. You can
use the SWEAInvokeMethod subtype to configure this button to
make a subsequent call to the CreateRecord method if the user clicks
OK.

You can use the following syntax in the decoded array:

argsArray[0] = applet

argsArray[1] = method

where:

■ applet identifies the name of the applet that Siebel Open UI calls
during the first operation.

■ method identifies the name of the subsequent method that
Siebel Open UI calls.

For more information, see “InvokeMethod Method for Presentation
Models” on page 487.

DeletePopup Deletes a popup applet. The DeletePopup subtype does not close
an applet in the user interface. You can use ClosePopup to close an
applet.

SetPopupBookmark Sets the context for a popup bookmark to use the state of the
parent applet that resides on the Siebel Server.

Table 48. (Continued)NotifyGeneric Notification Type

Sub Type Description

Reference Information for Siebel Open UI ■ Notifications That Siebel Open UI Supports

Configuring Siebel Open UI Siebel 2018 607

GetQuickPickInfo Sends the values of a picklist to an applet. You can use the following
syntax in the decoded array:

argsArray[0] = placeholder

argsArray[1] = view

argsArray[2] = applet

argsArray[3] = identifier

argsArray[4] = control

argsArray[5-x] = string

where:

■ placeholder is a placeholder array that you can you use.

■ view identifies the name of the view where Siebel Open UI
displays the picklist.

■ applet identifies the name of the applet where Siebel Open UI
displays the picklist.

■ identifier identifies the HTML identifier of the control that
requested the picklist values.

■ control contains one of the following values:

■ true. Picklist is associated with the control.

■ false. Picklist is not associated with the control.

■ string contains the values of the picklist.

BegRow Sends the starting row that the Object Manager uses to display the
current row in the client. You can use the following syntax in the
decoded array:

argsArray[0] = applet name

argsArray[1] = value

where:

■ applet name identifies the name of the applet where Siebel Open
UI sends the notification.

■ value contains the value of the beginning row.

GetCurrencyCalcInfo Gets a currency notification from the currency metadata.

GetCurrencyCodeInfo Gets a currency notification from specific currency data.

Table 48. (Continued)NotifyGeneric Notification Type

Sub Type Description

Configuring Siebel Open UI Siebel 2018

Reference Information for Siebel Open UI ■ Notifications That Siebel Open UI Supports

608

NotifyStateChanged Notification Type
Table 49 describes the subtypes of the NotifyStateChanged type.

CloseCurrencyPickApplet Sends a notification to close a currency applet.

ClosePopup Notifies an applet that Siebel Open UI is closing a popup that is
currently open on this applet. You can use the following syntax in the
decoded array:

argsArray[0] = applet

where:

■ applet identifies the name of the applet.

Table 49. NotifyStateChanged Notification Type

Sub Type Description

activeRow Identifies the active row of the business component. You can use ar
(active row) to abbreviate activeRow.

bCanDelete Returns a Boolean value that includes one of the following values:

■ 0. The business component can delete a field.

■ 1. The business component cannot delete a field.

You can use cd (can delete) as an abbreviation for bCanDelete.

bCanInsert Returns a Boolean value that includes one of the following values:

■ 0. The business component can insert a field.

■ 1. The business component cannot insert a field.

You can use ci (can insert) as an abbreviation for bCanInsert.

bCanInsertDynamic Returns a Boolean value that includes one of the following values:

■ 0. The business component can insert a dynamic field.

■ 1. The business component cannot insert a dynamic field.

You can use cud (can insert dynamic) as an abbreviation for
bCanInsertDynamic.

Table 48. (Continued)NotifyGeneric Notification Type

Sub Type Description

Reference Information for Siebel Open UI ■ Notifications That Siebel Open UI Supports

Configuring Siebel Open UI Siebel 2018 609

bCanMergeRecords Returns a Boolean value that includes one of the following values:

■ 0. Merge is available in multi select mode.

■ 1. Merge is not available in multi select mode.

You can use cm (can merge) as an abbreviation for
bCanMergeRecords.

bCanQuery Returns a Boolean value that includes one of the following values:

■ 0. The business component can query a field.

■ 1. The business component cannot query a field.

You can use cq (can query) as an abbreviation for bCanQuery.

bCanUpdate Returns a Boolean value that includes one of the following values:

■ 0. The business component can update a field.

■ 1. The business component cannot update a field.

You can use cu (can update) as an abbreviation for bCanUpdate.

bCanUpdateDynamic Returns a Boolean value that includes one of the following values:

■ 0. The business component can update a dynamic field.

■ 1. The business component cannot update a dynamic field.

You can use cud (can update dynamic) as an abbreviation for
bCanUpdateDynamic.

bCommitPending Returns a Boolean value that includes one of the following values:

■ 0. A commit is pending on the business component.

■ 1. A commit is not pending on the business component.

You can use cp (commit pending) as an abbreviation for
bCommitPending.

bDelRecPending Returns a Boolean value that includes one of the following values:

■ 0. A delete is pending on the business component.

■ 1. A delete is not pending on the business component.

You can use dp (delete pending) as an abbreviation for
bDelRecPending.

Table 49. (Continued)NotifyStateChanged Notification Type

Sub Type Description

Configuring Siebel Open UI Siebel 2018

Reference Information for Siebel Open UI ■ Notifications That Siebel Open UI Supports

610

bExecuted Returns a Boolean value that includes one of the following values:

■ 0. Siebel Open UI finished processing the business component
records.

■ 1. Siebel Open UI did not finish processing the business
component records.

You can use ex (executed) as an abbreviation for bExecuted.

bHasAssocList Determines whether or not the business component is an association
business component. An association business component is a type of
business component that includes an intertable.

bInMultiSelMode Returns a Boolean value that includes one of the following values:

■ 0. The business component is in multiselect mode.

■ 1. The business component is not in multiselect mode.

You can use ms (multiselect) as an abbreviation for bInMultiSelMode.

bInQueryState Returns a Boolean value that includes one of the following values:

■ 0. The business component is in a query state.

■ 1. The business component is not in a query state.

You can use qs (query state) as an abbreviation for bInQueryState.

bInverseSelection Returns a Boolean value that includes one of the following values:

■ 0. An inverse of selection is occurring on the business
component.

■ 1. An inverse of selection is not occurring on the business
component.

You can use is (inverse selection) as an abbreviation for
bInverseSelection.

bNewRecPending Returns a Boolean value that includes one of the following values:

■ 0. A new record is pending on the business component.

■ 1. A new record is not pending on the business component.

You can use np (new record pending) as an abbreviation for
bNewRecPending.

bNotifyEnabled Returns a Boolean value that includes one of the following values:

■ 0. The business component is not enabled for notifications.

■ 1. The business component is enabled for notifications.

You can use n (enabled) as an abbreviation for bNotifyEnabled.

Table 49. (Continued)NotifyStateChanged Notification Type

Sub Type Description

Reference Information for Siebel Open UI ■ Notifications That Siebel Open UI Supports

Configuring Siebel Open UI Siebel 2018 611

Example Usages of Notifications
This topic describes example usages of notifications.

Example of the NotifyBeginNotifys Notification
The following code is an example usage of the NotifyBeginNotifys notification:

this.AttachNotificationHandler(consts.get("SWE_PROP_BC_NOTI_DELETE_RECORD"),
function (propSet){

// Change has occurred at server BC. Do something here:

this.SetProperty ("Refresh_Renderer", true);

});

Example of the NotifyNewSelection Notification
The following code is an example usage of the NotifyNewSelection notification:

this.AttachNotificationHandler(consts.get("SWE_PROP_NOTI_SELECTED"), function
(propSet){

if (propSet.GetProperty(consts.get("SWE_PROP_NOTI_SELECTED")) === "false")

this.SetProperty ("rowBeingUnselected",
propSet.GetProperty("SWE_PROP_BC_NOTI_ACTIVE_ROW"));

}

});

Example of the NotifyNewFieldData Notification
The following code is an example usage of the NotifyNewFieldData notification:

NumRows Returns the number of rows that Siebel Open UI has currently
identified. You can use nr (number of rows) as an abbreviation for
NumRows.

NumRowsKnown Returns the number of rows that Siebel Open UI has currently
identified for a search specification. You can use nrk (number of rows
known) as an abbreviation for NumRowsKnown.

NumSelected Returns the number of rows that are currently in multiselect mode.
You can use ns (number selected) as an abbreviation for
NumSelected.

Table 49. (Continued)NotifyStateChanged Notification Type

Sub Type Description

Configuring Siebel Open UI Siebel 2018

Reference Information for Siebel Open UI ■ Notifications That Siebel Open UI Supports

612

this.AttachNotificationHandler(consts.get("SWE_PROP_BC_NOTI_NEW_DATA_WS"),
function (propSet){

var field = propset.GetProperty(consts.get("SWE_PROP_NOTI_FIELD"));

if (field === "Customer Last Name"){

// Notify my extension that shows this value in a different way.

this.SetProperty ("RefreshExtn", true);

}

}

Example of the NotifyNewDataWorkset Notification
The following code is an example usage of the NotifyNewDataWorkset notification:

// Trap an incoming change to the field value to do some flagging.

this.AttachNotificationHandler(consts.get("SWE_PROP_BC_NOTI_NEW_DATA_WS"),
function (propSet){

var field = propset.GetProperty(consts.get("SWE_PROP_NOTI_FIELD"));

if (field === "Discount Percentage"){

var childPS = propSet.GetChildByType (consts.get("SWE_PROP_FIELD_VALUES"));

var value;

CCFMiscUtil_StringToArray
(fieldSet.GetProperty(consts.get("SWE_PROP_VALUE_ARRAY")), value);

if (parseFloat(value) > 20){

// Greater than 20% discount? Something fishy!

this.SetProperty ("flagCustomer", true);

}

}

});

Example of the NotifyNewData, NotifyInsertWorkSet, and
NotifyDeleteRecordSet Notifications
The following code is an example usage of the NotifyNewData, NotifyInsertWorkSet, and
NotifyDeleteRecordSet notifications:

// First let's check if there's any change to the client workset.

Reference Information for Siebel Open UI ■ Notifications That Siebel Open UI Supports

Configuring Siebel Open UI Siebel 2018 613

this.AttachNotificationHandler(consts.get("SWE_PROP_BC_NOTI_NEW_DATA"), function
(){

// Yes indeed.

this.SetProperty ("primeRenderer", true);

});

// Now let's say our business is with the 4th record. We want to track if this record
is replaced.

// First we see if this 4th record is being deleted.

this.AttachNotificationHandler(consts.get("SWE_PROP_BC_NOTI_DELETE_WORKSET"),
function (propSet){

if (propSet.GetProperty("index" === 3){// 3 because count starts at 0

if (propSet.GetProperty("nr") === 1 || propSet.GetProperty("NumRows") === 1){

if (this.Get("primeRenderer")){

this.Set("deleted", 4);

}

}

}

});

// Next to the insertion

this.AttachNotificationHandler(consts.get("SWE_PROP_BC_NOTI_INSERT_WORKSET"),
function (propSet){

var underReplacement = this.GetProperty ("deleted");

if (this.Get("primeRenderer") && propSet.GetProperty("index") ===
this.GetProperty("deleted")){

// All conditions met. Now we'll get some info from what is being added.

var childPS = propSet.GetChildByType (consts.get("SWE_FIELD_VALUE_STR"));

var fieldArray;

CCFMiscUtil_StringToArray
(childPS.GetProperty(consts.get("SWE_PROP_VALUE_ARRAY")), fieldArray);

this.SetProperty ("New_Name_Value", fieldArray[2]);

this.SetProperty ("primeRenderer", false);

}

Configuring Siebel Open UI Siebel 2018

Reference Information for Siebel Open UI ■ Notifications That Siebel Open UI Supports

614

});

Example of the NotifyBeginQuery, NotifyNewFieldQuerySpec, and
NotifyEndQuery Notification
The following code is an example usage of the NotifyBeginQuery, NotifyNewFieldQuerySpec, and
NotifyEndQuery notifications:

// Let's see a simple example involving all the three. First we will take up the
query start.

this.AttachNotificationHandler(consts.get("SWE_PROP_BC_NOTI_BEGIN_QUERY"),
function (){

// Query begins - The renderer will use this notification to show a bubble box having
a number of choices. This might be driven off of a dropdown in the actual applet -
we already have the choices.

this.SetProperty ("showBubble", true);

});

// Now we'll attach to Field Spec. If that dropdown has a pre default value, then
we can highlight that choice in our bubble.

this.AttachNotificationHandler(consts.get("SWE_PROP_BC_NOTI_NEW_FIELD_QUERYSPEC"),
function (propSet){

if (propSet.GetProperty(consts.get("SWE_PROP_NOTI_FIELD") === "Customer Type"){

var value = propSet.GetProperty(consts.get("SWE_PROP_VALUE");

var bubbleValues = this.Get (bubbleValueArray);

this.SetProperty ("SetBubbleHighlightIndex", bubbleValues.indexOf(value));

}

});

// Next the obvious. The death of the bubble.

this.AttachNotificationHandler(consts.get("SWE_PROP_BC_NOTI_END_QUERY"), function
(){

this.SetProperty ("showBubble", false);

});

Example of the NotifyEndNotifys Notification
The following code is an example usage of the NotifyEndNotifys notification:

this.AttachNotificationHandler(consts.get("SWE_PROP_BC_NOTI_END"), function (){

// No more notifications. Mark for UI Refresh.

Reference Information for Siebel Open UI ■ Notifications That Siebel Open UI Supports

Configuring Siebel Open UI Siebel 2018 615

this.SetProperty ("refreshUI", true);

});

Example of the SWEIRowSelection Notification
The following code is an example usage of the SWEIRowSelection notification:

this.AttachNotificationHandler(consts.get("SWE_PROP_BC_NOTI_GENERIC"), function
(propSet){

var type = propSet.GetProperty(consts.get("SWE_PROP_NOTI_TYPE"));

if (type === "SWEIRowSelection"){

var argsArray;

CCFMiscUtil_StringToArray (propSet.GetProperty(consts.get("SWE_PROP_ARGS_ARRAY"),
argsArray);

if (argsArray[6] === "1"){

this.SetProperty ("SixthRowSelected", true);

}

}

});

Example of the BegRow Notification
The following code is an example usage of the BegRow notification:

this.AttachNotificationHandler(consts.get("SWE_PROP_BC_NOTI_GENERIC"), function
(propSet){|

var type = propSet.GetProperty(consts.get("SWE_PROP_NOTI_TYPE"));

if (type === "BegRow"){

var argsArray;

CCFMiscUtil_StringToArray (propSet.GetProperty(consts.get("SWE_PROP_ARGS_ARRAY"),
argsArray);

this.SetProperty ("beginRow", parseInt(argsArray[1]));

}

});

Example of the GetQuickPickInfo Notification
The following code is an example usage of the GetQuickPickInfo notification:

Configuring Siebel Open UI Siebel 2018

Reference Information for Siebel Open UI ■ Notifications That Siebel Open UI Supports

616

this.AttachNotificationHandler(consts.get("SWE_PROP_BC_NOTI_GENERIC"), function
(propSet){

var type = propSet.GetProperty(consts.get("SWE_PROP_NOTI_TYPE"));

if (type === "GetQuickPickInfo"){

var argsArray = [];

CCFMiscUtil_StringToArray

(propSet.GetProperty(consts.get("SWE_PROP_ARGS_ARRAY")), argsArray);

if (argsArray[5] === "MyValue"){

// The dropdown contains a value that we don’t like..

// Let us disable it.

this.SetProperty ("disablePick", true);

}

}

});

Example of the ClosePopup Notification
The following code is an example usage of the ClosePopup notification:

this.AttachNotificationHandler(consts.get("SWE_PROP_BC_NOTI_GENERIC"), function
(propSet){

var type = propSet.GetProperty(consts.get("SWE_PROP_NOTI_TYPE"));

if (type === "ClosePopup"){

// The below is just an example. PM's should not alert anything. Leave that to the
PRs.

alert ("Make sure you have collected all details. You next operation will save the
record!");

}

});

Example of the SWEAInvokeMethod Notification
The following code is an example usage of the SWEAInvokeMethod notification:

this.AttachNotificationHandler(consts.get("SWE_PROP_BC_NOTI_GENERIC"), function
(propSet){

var type = propSet.GetProperty(consts.get("SWE_PROP_NOTI_TYPE"));

Reference Information for Siebel Open UI ■ Notifications That Siebel Open UI Supports

Configuring Siebel Open UI Siebel 2018 617

if (type === "SWEAInvokeMethod"){

if (argsArray[1] === "NewRecord"){

// Ah so there's going to be a new record that has happened as a chain.

// Let's set a property so that we can do an AddMethod on this NewRecord,

// and extend it to our liking

this.SetProperty ("isChained", true);

}

}

});

Example of the NotifyStateChanged Notification
The following code is an example usage of the NotifyStateChanged notification:

this.AttachNotificationHandler(consts.get("SWE_PROP_BC_NOTI_STATE_CHANGED"),
function (propSet){

var type = propSet.GetProperty("type");

var value = propSet.GetProperty("value");

// This is just an example. Switch-case is preferred if multiple types need to

// have custom logic

if (type === "cr" || type === "CurRowNum"){

// Current Row has changed at the server.

if (value === this.Get("MyPreviouslyStoredActiveRow")){

// Or not! What's going on. Something wrong with my logic?

}

}

if (type === "nr" || type === "NumRows"){

if (parseInt(value) > 1000){

// Woah, this user seems to be going through a lot of records!

// Shouldn't she be using the query function?

this.SetProperty ("AlertUser", true);

}

}

Configuring Siebel Open UI Siebel 2018

Reference Information for Siebel Open UI ■ Property Sets That Siebel Open UI Supports

618

...

...

});

Property Sets That Siebel Open UI
Supports
Table 50 describes the property sets that Siebel Open UI supports. Siebel Open UI uses the Handle
Response

property set for navigation controls, such as the predefined query, drop down menus, screen tabs,
and view tabs. Siebel Open UI handles the toolbar during setup because it does not dynamically
update the property set.

Table 50. Property Set Types That Siebel Open UI Supports

Property Set Description

SWE_PROP_NC_PDQ_INFO Child property set for the Predefined Query (PDQ). It includes the
list of PDQ items that Siebel Open UI displays. It uses the following
properties:

■ SHOW_EMPTY_STRING. Display an empty PDQ entry.

■ SWE_PROP_NC_CAPTION. Identifies the caption that Siebel
Open UI displays for the PDQ.

SWE_PROP_NC_VISIBILITY
_INFO

Defines the beginning of the visibility property set.

It uses the following properties:

■ SWE_PROP_NC_ITEM_INFO. Identifies the item start
property.

■ SWE_PROP_NC_SCREEN_NAME. Identifies the screen
name.

■ SWE_PROP_NC_VIEW_NAME. Identifies the view name.

■ SWE_PROP_NC_CAPTION. Identifies the display value for
the caption.

■ SWE_PROP_NC_SCREEN_TAB_ICON. Identifies the icon
name to use for the screen tab.

You can use the VisDropDownItem property as the predefined
bubbled handler to do user interface binding.

Reference Information for Siebel Open UI ■ Property Sets That Siebel Open UI Supports

Configuring Siebel Open UI Siebel 2018 619

SWE_PROP_NC_SCREENCT
RL_INFO

Defines information for the first level in a screen.

It uses the all the same properties that the
SWE_PROP_NC_VISIBILITY_INFO property set uses except it does
not use the SWE_PROP_NC_ITEM_INFO property.

You can use the GetTabInfo property as the predefined bubbled
handler.

SWE_PROP_NC_FLOATING_
TAB_INFO

If Siebel Open UI already displays a screen, and if the user clicks
an empty tab, then SWE_PROP_NC_FLOATING_TAB_INFO adds a
new tab. It uses the GetTabInfo property.

SWE_PROP_NC_AGGREGAT
E_INFO

Describes Amazon link information.

It uses the GetTabLinkInfo property.

It uses the following properties:

■ SWE_PROP_NC_VIEW_NAME. Specifies the view name that
Siebel Open UI displays.

■ SWE_PROP_NC_CAPTION. Specifies the caption that Siebel
Open UI displays.

SWE_PROP_NC_SUBDETAIL
_INFO

Specifies information for the fourth level link.

It uses the same properties that the
SWE_PROP_NC_AGGREGATE_INFO property set uses.

SWE_PROP_NC_DETAIL_IN
FO

Specifies the view tab information that Siebel Open UI displays to
start.

It uses the GetTabInfo property. It uses the following properties:

■ SWE_PROP_NC_VIEW_NAME. View name that Siebel Open UI
displays.

■ SWE_PROP_NC_CAPTION. Caption that Siebel Open UI
displays.

You can use the following properties as predefined bubbled
handlers:

■ GetDataReloadDirty. Specifies the flag property.

■ GetSelectedTabKey. Selection of tabs.

■ GetSelectedTabLinkKey. Selection of links underneath tabs.

■ GetTabInfo. All tabs.

■ GetTabLinkInfo. All links.

Table 50. (Continued)Property Set Types That Siebel Open UI Supports

Property Set Description

Configuring Siebel Open UI Siebel 2018

Reference Information for Siebel Open UI ■ Siebel CRM Events That You Can Use to
Customize Siebel Open UI

620

Siebel CRM Events That You Can Use to
Customize Siebel Open UI
This topic describes the Siebel CRM events that you can use to customize Siebel Open UI. The jQuery
library binds actions to JavaScript events, such as mouse down, mouse over, blur, and so on. It also
provides its own events that are part of the jQuery library and not part of Siebel Open UI. Siebel
Open UI uses some Siebel CRM events that jQuery does not define, such as the postload event. This
topic describes these Siebel CRM events. Note the following:

■ All example code that this topic describes must reside in the Init method of your custom
presentation model. For more information, see “Init Method” on page 474.

■ You can use JavaScript methods to manage Siebel CRM events, such as BindEvent,
OnControlEvent, and so on. For more information, see “OnControlEvent Method” on page 475,
“BindEvents Method” on page 505 and “AttachEventHandler Method” on page 468.

Reference Information for Siebel Open UI ■ Siebel CRM Events That You Can Use to
Customize Siebel Open UI

Configuring Siebel Open UI Siebel 2018 621

Events That You Can Use to Customize Form Applets
Table 51 describes the events that you can use to customize a form applet.

Table 51. Events That You Can Use to Customize Form Applets

Event Description

PHYEVENT_APPLET_FOCUS Siebel Open UI triggers the PHYEVENT_APPLET_FOCUS event
when an applet receives focus. You can use it to trigger custom
code when Siebel Open UI sets the focus to the presentation
model that the applet references as the result of a user action.
No objects are available with this event. The following code is
an example usage of this event:

"this.AttachEventHandler(siebConsts.get(""PHYEVENT_APP
LET_FOCUS""),
 function () {
 // My applet recived focus.
 this.SetProperty (""AppletInFocus"", true);
 return (true);
 });"

PHYEVENT_CONTROL_FOCUS Siebel Open UI triggers the PHYEVENT_CONTROL_FOCUS event
when a control in an applet comes into focus. You can use this
event to update the value for this control or to call code
according to this value. You can use it with the following
objects:

■ control. The control object that receives focus.

■ value. The value of the control object that receives focus.

The following code is an example usage of this event:

this.AttachEventHandler(siebConsts.get("PHYEVENT_CONTR
OL_FOCUS"),
 function (control, value) {
 if (this.Get("AppletInFocus"){
 var controlArray = this.Get("FlaggedControlSet");
 if (controlArray.indexOf(control) >= 0){
 // This is a flagged control.
 var valueObject = this.GetProperty
("FlaggedControlsValue");
 if (value > maxValue){
 // Value higher than allowed when receiving
focus. Let's flag this.
 this.SetProperty ("FlagHigher", true);
 }
 }
 }
 return (true);
 });

Configuring Siebel Open UI Siebel 2018

Reference Information for Siebel Open UI ■ Siebel CRM Events That You Can Use to
Customize Siebel Open UI

622

PHYEVENT_CONTROL_BLUR Siebel Open UI triggers the PHYEVENT_CONTROL_BLUR event
when a control in an applet goes out of focus. You can use this
event to update the value for this control or to call code
according to this value. You can use it with the following
objects:

■ control. The control object that lost focus.

■ value. The value of the control object that lost focus.

The following code is an example usage of this event:

"this.AttachEventHandler(siebConsts.get(""PHYEVENT_CON
TROL_BLUR""),
 function (control, value) {
 if (this.Get(""AppletInFocus""){
 var controlArray =
this.Get(""FlaggedControlSet"");
 if (controlArray.indexOf(control) >= 0){
 // This is a flagged control.
 var valueObject = this.GetProperty
(""FlaggedControlsValue"");
 if (valueObject[control.GetName()] !== value){
 // Value change. Need to update internal
storage, and fire any potential extensions attached to
the property.
 valueOjbect[control.GetName()] = value;
 this.SetProperty (""FlaggedControlsValue"",
valueObject);
 }
 }
 }
 return (true);
 });"

Table 51. (Continued)Events That You Can Use to Customize Form Applets

Event Description

Reference Information for Siebel Open UI ■ Siebel CRM Events That You Can Use to
Customize Siebel Open UI

Configuring Siebel Open UI Siebel 2018 623

PHYEVENT_INVOKE_CONTROL Siebel Open UI triggers the PHYEVENT_INVOKE_CONTROL
event when it calls a method that is associated with a control.
Siebel Open UI makes this call in reply to a user action. You can
use this event to configure Siebel Open UI to call a method at
the physical layer before it makes this call at a proxy layer. You
can use this event with the following objects:

■ method. The method that Siebel Open UI calls.

■ inputPS. The input property set that Siebel Open UI sends
to the method that it calls.

The following code is an example usage of this event:

"this.AttachEventHandler(siebConsts.get(""PHYEVENT_INV
OKE_CONTROL""),
 function (method, inputPS, ai) {
 if (method === ""WriteRecord""){
 var valueObject = this.GetProperty
(""FlaggedControlsValue"");
 var min = this.Get(""MinRangeForFlagged"");
 for (var value in valueObject){
 if (value < min){
 alert (""Invalid Values. Think again!"");
 return (false);
 }
 }
 }
 return (true);
 });"

Table 51. (Continued)Events That You Can Use to Customize Form Applets

Event Description

Configuring Siebel Open UI Siebel 2018

Reference Information for Siebel Open UI ■ Siebel CRM Events That You Can Use to
Customize Siebel Open UI

624

PHYEVENT_INVOKE_PICK Siebel Open UI triggers the PHYEVENT_INVOKE_PICK event
when it calls a pop-up control for a picklist. Siebel Open UI
makes this call in reply to a user action on the keyboard or
mouse. You can use this event to configure Siebel Open UI to
handle the action that the pop-up control requests. You can use
it with the following objects:

■ control. The control object of the picklist that Siebel Open
UI called.

The following code is an example usage of this event:

"this.AttachEventHandler(siebConsts.get(""PHYEVENT_INV
OKE_MVG""),
 function (control) {
 if (control === this.GetProperty(""AddressMVG"")){
 varhighValue = this.Get(""HighVal"");
 if (highValue < this.Get (""MinRangeForFlagged""){
 alert (""Sorry, can't popup this MVG"");
 return (false);
 }
 }
 return (true);
 });"

PHYEVENT_INVOKE_MVG Siebel Open UI triggers the PHYEVENT_INVOKE_MVG event
when it calls a pop-up control for a multivalue group. Siebel
Open UI makes this call in reply to a user action on the
keyboard or mouse. You can use this event to configure Siebel
Open UI to handle the action that the pop-up control requests.
You can use it with the following objects:

■ control. The control object of the multivalue group that
Siebel Open UI called.

The following code is an example usage of this event:

"this.AttachEventHandler(siebConsts.get(""PHYEVENT_INV
OKE_MVG""),
 function (control) {
 if (control === this.GetProperty(""AddressMVG"")){
 varhighValue = this.Get(""HighVal"");
 if (highValue < this.Get (""MinRangeForFlagged""){
 alert (""Sorry, can't popup this MVG"");
 return (false);
 }
 }
 return (true);
 });"

Table 51. (Continued)Events That You Can Use to Customize Form Applets

Event Description

Reference Information for Siebel Open UI ■ Siebel CRM Events That You Can Use to
Customize Siebel Open UI

Configuring Siebel Open UI Siebel 2018 625

PHYEVENT_INVOKE_DETAIL Siebel Open UI triggers the PHYEVENT_INVOKE_DETAIL event
when it calls a pop-up details control. Siebel Open UI makes
this call in reply to a user action on the keyboard or mouse. You
can use this event to configure Siebel Open UI to handle the
action that the pop-up control requests. You can use it with the
following objects:

■ control. The control object of the pop-up details control
that Siebel Open UI called.

The following code is an example usage of this event:

"this.AttachEventHandler(siebConsts.get(""PHYEVENT_INV
OKE_DETAIL""),

 function (control) {

 if (control === this.GetProperty(""City"")){

 varhighValue = this.Get(""HighVal"");

 if (highValue < this.Get (""MinRangeForFlagged""){

 alert (""Sorry, can't use this Details"");

 return (false);

 }

 }

 return (true);

 });"

Table 51. (Continued)Events That You Can Use to Customize Form Applets

Event Description

Configuring Siebel Open UI Siebel 2018

Reference Information for Siebel Open UI ■ Siebel CRM Events That You Can Use to
Customize Siebel Open UI

626

PHYEVENT_INVOKE_EFFDAT Siebel Open UI triggers the PHYEVENT_INVOKE_EFFDAT event
when it calls a pop-up effective dating control. Siebel Open UI
makes this call in reply to a user action on the keyboard or
mouse. You can use this event to configure Siebel Open UI to
handle the action that the pop-up control requests. You can use
it with the following objects:

■ control. The control object of the effective dating pop-up
control that Siebel Open UI called.

The following code is an example usage of this event:

"this.AttachEventHandler(siebConsts.get(""PHYEVENT_INV
OKE_EFFDAT""),

 function (control) {

 if (control === this.GetProperty(""AccountTrail"")){

 varhighValue = this.Get(""HighVal"");

 if (highValue < this.Get (""MinRangeForFlagged""){

 alert (""Sorry, can't open this Dating Popup"");

 return (false);

 }

 }

 return (true);

 });"

Table 51. (Continued)Events That You Can Use to Customize Form Applets

Event Description

Reference Information for Siebel Open UI ■ Siebel CRM Events That You Can Use to
Customize Siebel Open UI

Configuring Siebel Open UI Siebel 2018 627

PHYEVENT_INVOKE_COMBO Siebel Open UI triggers the PHYEVENT_INVOKE_COMBO event
when it calls a combo box or dropdown list. Siebel Open UI
makes this call in reply to a user action on the keyboard or
mouse. You can use this event to configure Siebel Open UI to
handle the open action that the combo box or dropdown list
requests. You can use it with the following objects:

■ control. The control object of the combo box or dropdown
list that Siebel Open UI called.

The following code is an example usage of this event:

"this.AttachEventHandler(siebConsts.get(""PHYEVENT_INV
OKE_COMBO""),

 function (control) {

 if (control === this.GetProperty(""Designation"")){

 varhighValue = this.Get(""HighVal"");

 if (highValue < this.Get (""MinRangeForFlagged""){

 alert (""Sorry, can't open this Dropdown"");

 return (false);

 }

 }

 return (true);

 });"

Table 51. (Continued)Events That You Can Use to Customize Form Applets

Event Description

Configuring Siebel Open UI Siebel 2018

Reference Information for Siebel Open UI ■ Siebel CRM Events That You Can Use to
Customize Siebel Open UI

628

PHYEVENT_INVOKE_CURRENC
Y

Siebel Open UI triggers the PHYEVENT_INVOKE_CURRENCY
event when it calls a popup currency calculator. Siebel Open UI
makes this call in reply to a user action on the keyboard or
mouse. You can use this event to configure Siebel Open UI to
handle the open action that the currency calculator requests.
You can use it with the following objects:

■ control. The control object of the currency calculator that
Siebel Open UI called.

The following code is an example usage of this event:

"this.AttachEventHandler(siebConsts.get(""PHYEVENT_INV
OKE_CURRENCY""),

 function (control) {

 if (control ===
this.GetProperty(""RevenueControl"")){

 varhighValue = this.Get(""HighVal"");

 if (highValue < this.Get (""MinRangeForFlagged""){

 alert (""Sorry, can't open this currency
field"");

 return (false);

 }

 }

 return (true);

 });"

Table 51. (Continued)Events That You Can Use to Customize Form Applets

Event Description

Reference Information for Siebel Open UI ■ Siebel CRM Events That You Can Use to
Customize Siebel Open UI

Configuring Siebel Open UI Siebel 2018 629

PHYEVENT_INVOKE_TOGGLE Siebel Open UI triggers the PHYEVENT_INVOKE_TOGGLE event
when it calls a control that includes a toggle layout
configuration. Siebel Open UI makes this call in reply to a user
action to toggle the layout. You can use this event to configure
Siebel Open UI to handle the action that the toggle layout
requests. You can use it with the following objects:

■ value. Contains the value of the toggle control that exists
after the user action.

The following code is an example usage of this event:

"this.AttachEventHandler(siebConsts.get(""PHYEVENT_INV
OKE_TOGGLE""),

 function (value) {

 if (value === this.GetProperty(""FlaggedControl"")){

 varhighValue = this.Get(""HighVal"");

 if (highValue < this.Get (""MinRangeForFlagged""){

 alert (""Sorry, change the Range value to
toggle"");

 return (false);

 }

 }

 return (true);

 });"

Table 51. (Continued)Events That You Can Use to Customize Form Applets

Event Description

Configuring Siebel Open UI Siebel 2018

Reference Information for Siebel Open UI ■ Siebel CRM Events That You Can Use to
Customize Siebel Open UI

630

PHYEVENT_DRILLDOWN_FORM Siebel Open UI triggers the PHYEVENT_DRILLDOWN_FORM
event when it calls a drilldown control that resides on a form
applet. Siebel Open UI makes this call in reply to a user click on
the drilldown. You can use this event to configure Siebel Open
UI to handle the action that the drilldown requests. You can use
it with the following objects:

■ control. Identifies the control object that contains the
destination of the drilldown control.

The following code is an example usage of this event:

"this.AttachEventHandler(siebConsts.get(""PHYEVENT_DRI
LLDOWN_FORM""),

 function (control) {

 if (control === this.GetProperty(""AccountDrill"")){

 varhighValue = this.Get(""HighVal"");

 if (highValue < this.Get (""MinRangeForFlagged""){

 alert (""Sorry, change the Range value to
drilldown"");

 return (false);

 }

 }

 return (true);

 });"

Table 51. (Continued)Events That You Can Use to Customize Form Applets

Event Description

Reference Information for Siebel Open UI ■ Siebel CRM Events That You Can Use to
Customize Siebel Open UI

Configuring Siebel Open UI Siebel 2018 631

PHYEVENT_ENTER_KEY_PRESS Siebel Open UI triggers the PHYEVENT_ENTER_KEY_PRESS
event when the user presses the Enter key. Siebel Open UI
triggers it only if a control is in focus. You can use this event to
handle an Enter key press before the proxy layer uses the
default configuration to handle it. You can use this event with
the following objects:

■ control. Identifies the control object where the user used
the Enter key.

The following code is an example usage of this event:

"this.AttachEventHandler(siebConsts.get(""PHYEVENT_ENT
ER_KEY_PRESS""),

 function (control) {

 if (control === this.GetProperty(""Salary"")){

 varhighValue = this.Get(""HighVal"");

 if (highValue < this.Get (""MinRangeForFlagged""){

 alert (""Sorry, change the Range value to
commit"");

 return (false);

 }

 }

 return (true);

 });"

Table 51. (Continued)Events That You Can Use to Customize Form Applets

Event Description

Configuring Siebel Open UI Siebel 2018

Reference Information for Siebel Open UI ■ Siebel CRM Events That You Can Use to
Customize Siebel Open UI

632

PHYEVENT_ESC_KEY_PRESS Siebel Open UI triggers the PHYEVENT_ESC_KEY_PRESS event
when the user presses the Esc (Escape) key. Siebel Open UI
triggers it only if a control is in focus. You can use this event to
handle an Esc key press before the proxy layer uses the default
configuration to handle it. You can use this event with the
following objects:

■ control. Identifies the control object where the user used
the Esc key.

The following code is an example usage of this event:

"this.AttachEventHandler(siebConsts.get(""PHYEVENT_ESC
_KEY_PRESS""),

 function (control) {

 if (control === this.GetProperty(""Salary"")){

 varhighValue = this.Get(""HighVal"");

 if (highValue < this.Get (""MinRangeForFlagged""){

 alert (""Sorry, change the Range value to undo"");

 return (false);

 }

 }

 return (true);

 });"

Table 51. (Continued)Events That You Can Use to Customize Form Applets

Event Description

Reference Information for Siebel Open UI ■ Siebel CRM Events That You Can Use to
Customize Siebel Open UI

Configuring Siebel Open UI Siebel 2018 633

PHYEVENT_TAB_KEY_PRESS Siebel Open UI triggers the PHYEVENT_TAB_KEY_PRESS event
when the user presses the Tab key. Siebel Open UI triggers it
only if a control is in focus. You can use this event to handle a
Tab key press before the proxy layer uses the default
configuration to handle it. You can use this event with the
following objects:

■ control. Identifies the control object where the user used
the Tab key.

The following code is an example usage of this event:

"this.AttachEventHandler(siebConsts.get(""PHYEVENT_TAB
_KEY_PRESS""),

 function (control) {

 if (control === this.GetProperty(""Salary"")){

 varhighValue = this.Get(""HighVal"");

 if (highValue < this.Get (""MinRangeForFlagged""){

 alert (""Sorry, change the Range value to undo"");

 return (false);

 }

 }

 return (true);

 });"

Table 51. (Continued)Events That You Can Use to Customize Form Applets

Event Description

Configuring Siebel Open UI Siebel 2018

Reference Information for Siebel Open UI ■ Siebel CRM Events That You Can Use to
Customize Siebel Open UI

634

Events That You Can Use to Customize List Applets
Table 52 describes the events that you can use to customize a list applet.

Table 52. Events That You Can Use to Customize List Applets

Event Description

PHYEVENT_SELECT_ROW Siebel Open UI triggers the PHYEVENT_SELECT_ROW event when
the user chooses a row in a list applet. You can use it to determine
whether or not the user clicked a row that is not the current row.
Using this event might cause the state of objects that reside on the
Siebel Server to be inconsistent with the state of objects that
reside in the client.

You can use this event with the following objects:

■ rowIndex. Contains the index of the row that the user clicks.
It uses 0 as the index for the first row.

■ shiftKey. Contains a Boolean value that indicates if the user
pressed the Shift key while choosing a row.

■ controlKey. Contains a Boolean value that indicates if the
user pressed the Ctrl key while choosing a row.

The following code is an example usage of this event:

"this.AttachEventHandler(siebConsts.get(""PHYEVENT_SELECT
_ROW""),
 function (rowIndex, shiftKey, controlKey) {
 if (rowIndex === 0 && shiftKey){
 alert (""Do not multiselect all rows."");
 return (false);
 }
 });"

Reference Information for Siebel Open UI ■ Siebel CRM Events That You Can Use to
Customize Siebel Open UI

Configuring Siebel Open UI Siebel 2018 635

PHYEVENT_COLUMN_FOCU
S

Siebel Open UI triggers the PHYEVENT_COLUMN_FOCUS event
when a column in a list applet comes into focus. You can use it to
identify the column that is in focus, and to call custom code. You
can use this event with the following objects:

■ rowIndex. Contains the index of the current row. It uses 1 as
the index for the first row.

■ control. Identifies the column control object that comes into
focus.

■ value. Contains the value of the column control object.

The following code is an example usage of this event:

"this.AttachEventHandler(siebConsts.get(""PHYEVENT_COLUMN
_FOCUS""),
 function (rowIndex, control, value) {
 if (rowIndex > 5) {
 return (true);
 }
 if (this.Get(""AppletInFocus""){
 var controlArray = this.Get(""FlaggedControlSet"");
 if (controlArray.indexOf(control) >= 0){
 // Declare the flagged control.
 var valueObject = this.GetProperty
(""FlaggedControlsValue"");
 if (value > maxValue){
 // Flag value that is higher than allowed when
receiving focus.
 this.SetProperty (""FlagHigher"", true);
 }
 }
 }
 return (true);
 });"

Table 52. (Continued)Events That You Can Use to Customize List Applets

Event Description

Configuring Siebel Open UI Siebel 2018

Reference Information for Siebel Open UI ■ Siebel CRM Events That You Can Use to
Customize Siebel Open UI

636

PHYEVENT_COLUMN_BLUR Siebel Open UI triggers the PHYEVENT_COLUMN_BLUR event when
a column in a list applet goes out of focus. You can use it to identify
the column that is going out of focus, and to call custom code. You
can use this event with the following objects:

■ rowIndex. Contains the index of the current row. It uses 1 as
the index for the first row.

■ control. Identifies the column control object that is going out
of focus.

■ value. Contains the value of the column control object.

The following code is an example usage of this event:

"this.AttachEventHandler(siebConsts.get(""PHYEVENT_COLUMN
_BLUR""),
 function (rowIndex, control, value) {
 if (rowIndex > 5) {
 return (true);
 }
 if (this.Get(""AppletInFocus""){
 var controlArray = this.Get(""FlaggedControlSet"");
 if (controlArray.indexOf(control) >= 0)) {
 // This is a flagged control.
 var valueObject = this.GetProperty
(""FlaggedControlsValue"");
 if (value > maxValue){
 // Value higher than allowed when receiving focus.
Let's flag this.
 this.SetProperty (""FlagHigher"", true);
 }
 }
 }
 return (true);
 });"

Table 52. (Continued)Events That You Can Use to Customize List Applets

Event Description

Reference Information for Siebel Open UI ■ Siebel CRM Events That You Can Use to
Customize Siebel Open UI

Configuring Siebel Open UI Siebel 2018 637

PHYEVENT_DRILLDOWN_LI
ST

Siebel Open UI triggers the PHYEVENT_DRILLDOWN_LIST event
when the user clicks a drilldown link in a list applet. You can use it
to call custom code when the user clicks a drilldown link. You can
use this event with the following objects:

■ rowIndex. Contains the index of the current row. It uses 1 as
the index for the first row.

■ colName. Contains the name of the column where the
drilldown link resides.

The following code is an example usage of this event:

"this.AttachEventHandler(siebConsts.get(""PHYEVENT_DRILLD
OWN_LIST""),
 function (colName, rowIndex) {
 if (name === ""Type"")){
 varmaxOptyArray = this.Get(""mO"");
 if (maxOptyArray[rowIndex] >
this.Get(""HigVal"")){
 alert (""Fix opportunity value before drilldown."");
 return (false);
 }
 }
 return (true);
 });"

Table 52. (Continued)Events That You Can Use to Customize List Applets

Event Description

Configuring Siebel Open UI Siebel 2018

Reference Information for Siebel Open UI ■ Siebel CRM Events That You Can Use to
Customize Siebel Open UI

638

PHYEVENT_VSCROLL_LIST Siebel Open UI triggers the PHYEVENT_VSCROLL_LIST event when
the user clicks the next page or previous page control in a list
applet or tile applet. You can use it to call custom code when the
user clicks one of these controls. Siebel Open UI does not trigger
this event if the user uses a keyboard shortcut to do the
pagination. You can use this event with the following objects:

■ direction. Includes one the following values that describes the
type of pagination that the user attempted:

■ PAG_NEXT_RECORD. (Prior to Siebel Innovation Pack
2017 only) User paginated to the next record.

■ PAG_PREV_RECORD. (Prior to Siebel Innovation Pack
2017 only) User paginated to the previous record.

■ PAG_NEXT_SET. Displays the next record in the set.

■ PAG_PREV_SET. Displays the previous record in the set.

■ PAG_FIRST_SET. Displays the first record in the set.

■ PAG_LAST_SET. Displays the last record in the set.

■ PAG_SCROLL_UP. User scrolled up.

■ PAG_SCROLL_DN. User scrolled down.

The following code is an example usage of this event:

"this.AttachEventHandler(siebConsts.get(""PHYEVENT_VSCROL
L_LIST""),
 function (direction) {
 if (direction
===SiebelApp.Contants.Get(""PAG_NEXT_SET"")){
 alert (""Jump record by record. Not sets."");
 return (false);
 }
 return (true);
 });"

Table 52. (Continued)Events That You Can Use to Customize List Applets

Event Description

Reference Information for Siebel Open UI ■ Siebel CRM Events That You Can Use to
Customize Siebel Open UI

Configuring Siebel Open UI Siebel 2018 639

PHYEVENT_SORT_LIST Siebel Open UI triggers the PHYEVENT_SORT_LIST event when the
user sorts a list column. You can use it to call custom code when
the user does this sort. You can use this event with the following
objects:

■ colName. Identifies the name of the column that the user is
sorting.

■ direction. Identifies one of the following directions:

■ SORT_ASCENDING. The user is sorting the column in
ascending order.

■ SORT_DESCENDING. The user is sorting the column in
descending order.

The following code is an example usage of this event:

"this.AttachEventHandler(siebConsts.get(""PHYEVENT_SORT_L
IST""),
 function (colName, direction) {
 if (colName === ""Type""){
 if (direction ===
SiebelApp.Constants.Get(""SORT_ASCENDING"")){
 alert (""You cannot sort this column."");
 return (false);
 }
 }
 return (true);
 });"

Table 52. (Continued)Events That You Can Use to Customize List Applets

Event Description

Configuring Siebel Open UI Siebel 2018

Reference Information for Siebel Open UI ■ Siebel CRM Events That You Can Use to
Customize Siebel Open UI

640

PHYEVENT_HIER_EXPAND Siebel Open UI triggers the PHYEVENT_HIER_EXPAND event when
the user expands a row in a hierarchal list applet. You can use it to
call custom code when the user does this expansion. Siebel Open
UI uses this event only with hierarchal list applets. You can use this
event with the following objects:

■ rowNum. Contains the row number that the user is
expanding. It uses 0 as the number for the first row.

The following code is an example usage of this event:

"this.AttachEventHandler(siebConsts.get(""PHYEVENT_HIER_E
XPAND""),
 function (rowNum) {
 if (rowNum === 0)){
 varhighValue = this.Get(""HighVal"");
 if (highValue < this.Get (""MinRangeForFlagged""){
 alert (""Sorry. Change the Range value to expand
this row."");
 return (false);
 }
 }
 return (true);
 });"

PHYEVENT_HIER_COLLAPS
E

Siebel Open UI triggers the PHYEVENT_HIER_COLLAPSE event
when the user collapses a row in a hierarchal list applet. You can
use it to call custom code when the user does this collapse. Siebel
Open UI uses this event only with hierarchal list applets. You can
use this event with the following objects:

■ rowNum. Contains the row number that the user is collapsing.
It uses 0 as the number for the first row.

The following code is an example usage of this event:

"this.AttachEventHandler(siebConsts.get(""PHYEVENT_HIER_C
OLLAPSE""),
 function (rowNum) {
 if (rowNum === 2)){
 varhighValue = this.Get(""HighVal"");
 if (highValue < this.Get (""MinRangeForFlagged""){
 alert (""Sorry, change the Range to collapse this
row."");
 return (false);
 }
 }
 return (true);
 });"

Table 52. (Continued)Events That You Can Use to Customize List Applets

Event Description

Reference Information for Siebel Open UI ■ Languages That Siebel Open UI Supports

Configuring Siebel Open UI Siebel 2018 641

Languages That Siebel Open UI Supports
This topic lists the languages that Siebel Open UI supports. It supports the i18N internationalization
standard. In most situations, it does not hard code strings, and it uses language independent values
for each LOV (list of values) instead of translated values. For more information about how to
customize Siebel Open UI to support multiple languages, see “Displaying Control Labels in Different
Languages” on page 251.

Languages That Siebel Open UI Supports for Windows,
AIX, Oracle Solaris, and HP-UX
Table 53 lists the languages That Siebel Open UI supports for Windows, AIX, Oracle Solaris, and HP-
UX. The Lang column lists the language_code.

Table 53. Languages That Siebel Open UI Supports for Windows, AIX, Oracle Solaris, and HP-UX

Lang Codepage Windows AIX Oracle Solaris HP-UX

ARA 1256 Arabic (Saudi
Arabia)

AR_SA.UTF-8 ar_SA.UTF-8 ar_SA.

utf8

CHS 936 Chinese,
Simplified

ZH_CN.UTF-8 zh_CN.UTF-8 zh_CN.utf8

CHT 950 Chinese,
Traditional

ZH_TW.UTF-8 zh_TW.UTF-8 zh_TW.utf8

CSY 1250 Czech CS_CZ.UTF-8 cs_CZ.UTF-8 univ.utf8

DAN 1252 Danish DA_DK.UTF-8 da_DK.UTF-8 univ.utf8

DEU 1252 German,
Standard

DE_DE.UTF-8 de_DE.UTF-
8@euro

de_DE.utf8

ENU 1252 English,
American

EN_US.UTF-8 en_US.UTF-8 univ.utf8

ESN 1252 Spanish,
Modern

ES_ES.UTF-8 es_ES.UTF-
8@euro

es_ES.utf8

FIN 1252 Finnish FI_FI.UTF-8 fi_FI.UTF-8@euro univ.utf8

FRA 1252 French,
Standard

FR_FR.UTF-8 fr_FR.UTF-8@euro fr_UR.utf8

HEB 1255 Hebrew HE_IL.UTF-8 he_IL.UTF-8 univ.utf8

ITA 1252 Italian,
Standard

IT_IT.UTF-8 it_IT.UTF-8@euro it_IT.utf8

JPN 932 Japanese JA_JP.UTF-8 ja_JP.UTF-8 ja_JP.utf8

KOR 949 Korean KO_KR.UTF-8 ko_KR.UTF-8 ko_KR.utf8

Configuring Siebel Open UI Siebel 2018

Reference Information for Siebel Open UI ■ Languages That Siebel Open UI Supports

642

Languages That Siebel Open UI Supports for Linux RH,
Linux SuSe, Enterprise Linux, and Java Locale Code
Table 54 lists the languages that Siebel Open UI supports for Linux RH, Linux SuSe, Enterprise Linux,
and Java Locale Code. The Lang column lists the language_code.

NLD 1252 Dutch,
Standard

NL_NL.UTF-8 nl_NL.UTF-
8@euro

univ.utf8

PTB 1252 Portuguese,
Brazilian

PT_BR.UTF-8 pt_BR.UTF-8 univ.utf8

PTG 1252 Portuguese,
Standard

PT_PT.UTF-8 pt_PT.UTF-8@euro univ.utf8

SVE 1252 Swedish SV_SE.UTF-8 sv_SE.UTF-8 sv_SE.utf8

THA 874 Thai, Thailand TH_TH.UTF-8 th_TH.UTF-8 th_TH.utf8

RUS 1251 Russian RU_RU.UTF-8 ru_RU.UTF-8 ru_RU.utf8

TRK 1254 Turkish TR_TR.UTF-8 tr_TR.UTF-8 tr_TR.utf8

PLK 1250 Polish PL_PL.UTF-8 pl_PL.UTF-8 pl_PL.utf8

Table 54. Languages That Siebel Open UI Supports for Linux RH, Linux SuSe, Enterprise Linux, and
Java Locale Code

Lang Codepage Linux RH Linux SuSe
Enterprise
Linux

Java Locale
Code

CHS 936 zh_CN.utf8 zh_CN.utf8 zh_CN.utf8 zh_CN

CHT 950 zh_TW.utf8 zh_TW.utf8 zh_TW.utf8 zh_TW

CSY 1250 cs_CZ.utf8 cs_CZ.utf8 cs_CZ.utf8 cs_CZ

DAN 1252 da_DK.utf8 da_DK.utf8 da_DK.utf8 da_DK

DEU 1252 de_DE.utf8 de_DE.utf8 de_DE.utf8 de_DE

ENU 1252 en_US.utf8 en_US.utf8 en_US.utf8 en_US

ESN 1252 es_ES.utf8 es_ES.utf8 es_ES.utf8 es_ES

FIN 1252 fi_FI.utf8 fi_FI.utf8 fi_FI.utf8 fi_FI

FRA 1252 fr_FR.utf8 fr_FR.utf8 fr_FR.utf8 fr_FR

ITA 1252 it_IT.utf8 it_IT.utf8 it_IT.utf8 it_IT

JPN 932 ja_JP.utf8 ja_JP.utf8 ja_JP.utf8 ja_JP

Table 53. (Continued)Languages That Siebel Open UI Supports for Windows, AIX, Oracle Solaris,

Lang Codepage Windows AIX Oracle Solaris HP-UX

Reference Information for Siebel Open UI ■ Screens and Views That Siebel Mobile Uses

Configuring Siebel Open UI Siebel 2018 643

Screens and Views That Siebel Mobile
Uses
This topic describes screens and views that Siebel Mobile uses. It includes the following information:

■ Screens and Views That Siebel Consumer Goods Uses

■ Screens and Views That Siebel Sales Uses on page 645

■ Screens and Views That Siebel Service Uses on page 646

■ Screens and Views That Siebel Pharma Uses on page 647

KOR 949 ko_KR.utf8 ko_KR.utf8 ko_KR.utf8 ko_KR

NLD 1252 nl_NL.utf8 nl_NL.utf8 nl_NL.utf8 nl_NL

PTB 1252 pt_BR.utf8 pt_BR.utf8 pt_BR.utf8 pt_BR

PTG 1252 pt_PT.utf8 pt_PT.utf8 pt_PT.utf8 pt_PT

SVE 1252 sv_SE.utf8 sv_SE.utf8 sv_SE.utf8 sv_SE

THA 874 th_TH.utf8 th_TH.utf8 th_TH.utf8 th_TH

RUS 1251 ru_RU.utf8 ru_RU.utf8 ru_RU.utf8 ru_RU

TRK 1254 tr_TR.utf8 tr_TR.utf8 tr_TR.utf8 tr_TR

POL 1250 pl_PL.utf8 pl_PL.utf8 pl_PL.utf8 pl_PL

Table 54. (Continued)Languages That Siebel Open UI Supports for Linux RH, Linux SuSe,
Enterprise Linux, and Java Locale Code

Lang Codepage Linux RH Linux SuSe
Enterprise
Linux

Java Locale
Code

Configuring Siebel Open UI Siebel 2018

Reference Information for Siebel Open UI ■ Screens and Views That Siebel Mobile Uses

644

Screens and Views That Siebel Consumer Goods Uses
Table 55 lists the predefined screens and views that Siebel Mobile uses for Siebel Consumer Goods.

Table 55. Screens and Views That Siebel Consumer Goods Uses

Screen View Name in Client View Name in Siebel Tools

Accounts Addresses CG Account Addresses View - Mobile

Calls CG Account Calls Views - Mobile

Contacts CG Account Contacts View - Mobile

Accounts CG Account List View - Mobile

Notes CG Account Notes View - Mobile

Orders CG Account Orders View - Mobile

Retail Audits CG Account Product Audits View - Mobile

Product Distribution CG Account Products View - Mobile

Contacts Addresses CG Contact Addresses View - Mobile

Best Call Time CG Contact Best Call Times View - Mobile

Contacts CG Contact List View - Mobile

Routes Route Accounts CG Routes Accounts View - Mobile

Routes CG Routes List View - Mobile

Calls Assessment CG Call Account Assessment View - Mobile

Notes CG Call Account Notes View - Mobile

Merchandising Audits CG Call Merchandising Audits View - Mobile

Orders CG Call Orders View - Mobile

Retail Audits CG Call Retail Audit List View - Mobile

Calls CG Outlet Visit Activities List View - Mobile

Call Items CG Visit Call Items List View - Mobile

Orders Orders CG Order List View - Mobile

Returns Returns CG Return Order List View - Mobile

Reference Information for Siebel Open UI ■ Screens and Views That Siebel Mobile Uses

Configuring Siebel Open UI Siebel 2018 645

Screens and Views That Siebel Sales Uses
Table 56 lists the predefined screens and views that Siebel Mobile uses for Siebel Sales.

Table 56. Screens and Views That Siebel Sales Uses

Screen View Name in Client View Name in Siebel Tools

Accounts Accounts SHCE Account List View - Mobile

Account Contacts SHCE Account Contacts View - Mobile

Account Opportunities SHCE Account Opportunity View - Mobile

Account Address SHCE Account Address View - Mobile

Account Activities SHCE Account Activities View - Mobile

Account Team SHCE Account Team View - Mobile

Contacts Contacts SHCE Sales Contact List View - Mobile

Contact Opportunities SHCE Sales Contact Opportunities View - Mobile

Contact Team SHCE Contact Team View - Mobile

Contact Addresses SHCE Contact Address View - Mobile

Leads Leads SHCE Sales Lead List View - Mobile

Lead Opportunities SHCE Sales Lead Opportunities View - Mobile

Opportunitie
s

Opportunities SHCE Opportunities List View - Mobile

Opportunity Contacts SHCE Sales Opportunities Contacts View - Mobile

Opportunity Products SHCE Sales Opportunities Products View - Mobile

Opportunity Quotes SHCE Sales Opportunities Quotes View - Mobile

Opportunity Activities SHCE Sales Opportunities Activities View - Mobile

Opportunity Team SHCE Sales Opportunities Opportunity Team View -
Mobile

Quotes Quotes SHCE Quote List View - Mobile

Quote Items SHCE Quote QuoteItem View - Mobile

Quote Orders SHCE Quote Order View - Mobile

Quote Team SHCE Quote Team View - Mobile

Orders Orders SHCE Sales Orders List View - Mobile

Order Items SHCE Sales Order line Item View - Mobile

Activities Activities SHCE Activity List View - Mobile

Activity Contact SHCE Sales Activity Contact Form View - Mobile

Activity Employee SHCE Sales Activity Employee Form View - Mobile

Configuring Siebel Open UI Siebel 2018

Reference Information for Siebel Open UI ■ Screens and Views That Siebel Mobile Uses

646

Screens and Views That Siebel Service Uses
Table 57 lists the predefined screens and views that Siebel Mobile uses for Siebel Service.

Table 57. Screens and Views That Siebel Service Uses

Screen
View Name in
Client View Name in Siebel Tools

Activities Service Activities SHCE Service Activity Home Page View - Mobile

Activity Contacts SHCE Service Activity Contact Form View - Mobile

Activity
Recommended Part

SHCE Service FS Activity Recommended Parts Tools -
Mobile

Activity Steps SHCE Service Activity FS Steps View - Mobile

Activity Instructions SHCE Service Activity FS Instructions List view - Mobile

Activity Part Tracker SHCE Service FS Activity Part Movements View - Mobile

Activity Time Tracker SHCE Service Activity Time View - Mobile

Activity Expense
Tracker

SHCE Service Activity FS Expense View - Mobile

Activity Invoices SHCE Service FS Invoice - Auto Invoice View - Mobile

Service
Requests

Service Requests SHCE Service Service Request View - Mobile

Service Request
Orders

SHCE Service SR Orders View - Mobile

Service Request
Activities

SHCE Service SR Activity View - Mobile

Service Request
Invoices

SHCE Service SR Invoices View - Mobile

Accounts Accounts SHCE Service Accounts View - Mobile

Account Contacts SHCE Service Account Contacts View - Mobile

Account Service
Requests

SHCE Service Account SRs View - Mobile

Account Assets SHCE Service Account Assets View - Mobile

Account Entitlements SHCE Service Account Entitlements View - Mobile

Browser Part Browser SHCE Service My Part Browser View - Mobile

Part Browser
Availability

SHCE Service Part Browser Availability View - Mobile

Part Browser
Substitutes

SHCE Service Part Browser Substitute View - Mobile

Reference Information for Siebel Open UI ■ Screens and Views That Siebel Mobile Uses

Configuring Siebel Open UI Siebel 2018 647

Screens and Views That Siebel Pharma Uses
Table 58 lists the predefined screens and views that Siebel Mobile uses for Siebel Pharma.

Orders Orders SHCE Service Orders List View - Mobile

Order Line Items SHCE Service Order line Item View - Mobile

Invoices Invoices SHCE Service Invoice List View - Mobile

Invoice Line Items SHCE Service Invoice line Item View - Mobile

Assets Assets SHCE Service Asset List View - Mobile

Asset Measurements SHCE Service Asset Measurement View - Mobile

Asset Warranty SHCE Service Asset Warranty View - Mobile

Asset Entitlements SHCE Service Asset Entitlements View - Mobile

Asset Readings SHCE Service Asset Reading View - Mobile

Table 58. Screens and Views That Siebel Pharma Uses

Screen View Name in Client View Name in Siebel Tools

Accounts Addresses Pharma Account Addresses View - Mobile

Affiliations Pharma Account Affiliations View - Mobile

Calls Pharma Account Calls View - Mobile

Contacts Pharma Account Contact View - Mobile

Accounts Pharma Account List View - Mobile

Relationships Pharma Account Relationships View - Mobile

Contacts Addresses Pharma Contact Address View - Mobile

Affiliations Pharma Contact Affiliations View - Mobile

Best Time Pharma Contact Best Contact Times View - Mobile

Calls Pharma Contact Call View - Mobile

Contacts Pharma Contact List View - Mobile

Relationships Pharma Contact Relationships View - Mobile

State Licenses Pharma Contact State Licenses View - Mobile

Table 57. (Continued)Screens and Views That Siebel Service Uses

Screen
View Name in
Client View Name in Siebel Tools

Configuring Siebel Open UI Siebel 2018

Reference Information for Siebel Open UI ■ Controls That Siebel Open UI Uses

648

Controls That Siebel Open UI Uses
This topic describes the controls that Siebel Open UI uses.

■ Predefined Controls That Siebel Open UI Uses

■ Other Controls That Siebel Open UI Uses on page 649

Predefined Controls That Siebel Open UI Uses
Table 59 describes the predefined controls that Siebel Open UI uses.

Calls Attendees SIS HH Pharma Account Call Attendee View - Mobile

Product Details SIS HH Pharma Professional Call Products Detailed View
- Mobile

Promotional Items
Dropped

SIS HH Pharma Professional Promotional Items View -
Mobile

Samples Dropped SIS HH Pharma Professional Samples Dropped View -
Mobile

Calls LS Pharma Professional Call Execute View - Mobile

(No Title) LS Pharma Call Signature Capture View - Mobile

Validation Results LS Pharma Call Validation Results View - Mobile

Table 59. Predefined Controls That Siebel Open UI Uses

Control
Name Description Where Defined

Currency Sets the currency. controlbuilder.js

DetailPopup Displays more information for a field.

EffDat Sets the effective date.

Mvg Chooses more than one value.

PhoneCtrl Enters a phone number.

Pick Chooses a value.

SelectCtrl Makes a selection.

List UI Displays records in a list. jqgridrenderer.js

Table 58. (Continued)Screens and Views That Siebel Pharma Uses

Screen View Name in Client View Name in Siebel Tools

Reference Information for Siebel Open UI ■ Controls That Siebel Open UI Uses

Configuring Siebel Open UI Siebel 2018 649

Other Controls That Siebel Open UI Uses
Table 60 describes other controls that Siebel Open UI uses. It uses all these controls in the
controlbuilder.js file in addition to the files that the Where Defined column lists.

btnControl Displays a button. phyrenderer.js

chartControl Displays a chart.

checkBoxCtrl Displays a check box.

comboControl Displays a combobox.

fileControl Uploads files.

imageControl Displays an image.

ink Captures a signature in a mobile environment.

label Displays a label.

link Displays a link that navigates to another view.

mailToControl Sends an email message.

plainText Displays the contents of a field that is not editable, is not
navigable, or does not possess a state. For example, a
label.

radioButton Displays a radio button.

text Displays text.

textArea Displays a text area.

urlControl Displays an external URL. For example, http://
www.google.com.

Map UI Displays a map. siebelmaprenderer
.js

Tiles UI Displays records in a tile. Tilescrollcontainer.
js

Table 60. Other Controls That Siebel Open UI Uses

Control Name Description Where Defined

DatePick Sets the date. datepicker-ext.js

DateTimePick Sets the date and time. jquery-ui-timepicker-addon.js

Calculator Displays a calculator. jquery.calculator.zip

Table 59. (Continued)Predefined Controls That Siebel Open UI Uses

Control
Name Description Where Defined

Configuring Siebel Open UI Siebel 2018

Reference Information for Siebel Open UI ■ Browser Script Compatibility

650

Browser Script Compatibility
Siebel Open UI supports your existing browser script. However, it is recommended that you
customize a presentation model instead of using browser script. It is recommended that you
gradually move any logic that you implement through your existing browser script to the
presentation model.

You can write a browser script in JavaScript. This script can interact with the Document Object Model
(DOM) and with the Siebel Object Model that is available in the Web browser through a shadow
object. You can script the behavior of Siebel events and the browser events that the DOM exposes.

Siebel Open UI uses a JavaScript environment that allows you to implement browser scripting. This
JavaScript API can dynamically refresh page content and instantly commit customization
modifications. If your implementation currently uses browser scripting, then you can refactor
JavaScript to move from your existing employee application to Siebel Open UI. Refactoring is the
process of modifying the internal structure of existing code without modifying the external behavior
of this code. For more information about this JavaScript API, see Appendix A, “Application
Programming Interface.”

Sequence That Siebel Open UI with Custom Browser
Script
The following pseudocode describes the sequence that Siebel Open UI uses if your deployment
includes custom browser script:

PR calls a PM method or event

PM method or event calls an applet proxy method

applet proxy method calls Applet_PreInvokeMethod on browser script

applet proxy uses Call-Server to run applet method on Siebel Server

PM runs Attach Pre Proxy binding for this applet method

applet proxy calls Applet_InvokeMethod that resides in browser script

PM runs Attach Post Proxy binding for this applet method

applet proxy method ends

PM method or event ends

RTCeditor Enters rich text. ckeditor_3.6.3.zip

ckeditor-custom.zip

FileUploader Uploads files. jquery.fileupload.js

Table 60. (Continued)Other Controls That Siebel Open UI Uses

Control Name Description Where Defined

Reference Information for Siebel Open UI ■ Browser Script Compatibility

Configuring Siebel Open UI Siebel 2018 651

PR call ends

where:

■ PR is the physical renderer

■ PM is the presentation model

For example, the following pseudocode describes the sequence that Siebel Open UI uses if the user
clicks New in an applet, and if your deployment includes custom browser script that uses a method
named NewRecord:

PR calss PM.OnControlEvent

PM.OnControlEvent calls Applet.InvokeMethod

Applet.InvokeMethod calls BrowserScript.Applet_PreInvokeMethod

Applet.InvokeMethod calls Siebel Server to run NewRecord method on applet

PM calls PM.AttachPreProxyExecuteBinding for the NewRecord method

Applet.InvokeMethod calls BrowserScript.Applet_InvokeMethod

PM calls PM.AttachPostProxyExecuteBinding for the NewRecord method

Applet.InvokeMethod ends

PM.OnControlEvent ends

PR call ends

How Siebel Open UI Handles Custom Client Scripts
Siebel Open UI uses browser script through a JavaScript shadow object, which is a type of object
that Siebel Open UI uses for client scripting. All other client objects include a corresponding shadow
object, except for the PropertySet. For example, the JSSApplet object includes the JSSAppletShadow
shadow object. Siebel Open UI exposes this shadow object to scripting. When Siebel Open UI
prepares to display the applet, SWE determines whether or not a browser script is defined for this
applet. If this script exists, then Siebel Open UI downloads the browser script file that contains the
definition of the shadow object from the Siebel Server to the client.

For example, assume you write a browser script for an applet to handle the PreInvokeMethod event.
At run-time, Siebel Open UI creates a JavaScript object that it derives from the JSSAppletShadow
object. It runs the PreInvokeMethod event and the event handler of the shadow object before it calls
the DoInvokeMethod event. Each shadow object includes a reference to the underlying object. The
shadow object sends the call to this underlying object, if necessary. For more information about
deriving values, see “Deriving Presentation Models, Physical Renderers and Plug-in Wrappers” on
page 115.

Configuring Siebel Open UI Siebel 2018

Reference Information for Siebel Open UI ■ Browser Script Compatibility

652

How Siebel Open UI Creates Shadow Objects for Applications
Siebel Open UI creates an application shadow object with the following application object during
application startup:

Application InvokeMethod

......................

bRet = this.*FirePreInvokeMethod*(methodName, inputPS);

;return from here if the return value of the PreInvokeMethod is CancelOperation

; continue to invokemethod if the return value is ContinueOperation

......................

this.DoInvokeMethod (methodName, args);

this.*FireInvokeMethod*(methodName, inputPS);

How Siebel Open UI Creates Shadow Objects for Business Objects Siebel Open UI
uses a business object shadow object only in other shadow objects, such as an application shadow
object, applet shadow object, or business component shadow object.

How Siebel Open UI Creates Shadow Objects for Applets, Business
Components, or Business Services
Siebel Open UI does the following to create a shadow object for an applet, business component, or
business service:

■ Siebel Server. Siebel Open UI creates the ObjInfo (SWE_PROP_SHADOW) shadow when it
encounters an object that includes a custom script that you write. The server gets the class name
and the file name of the shadow from the Siebel Runtime Repository. It packages the class name
and file name into the SWE_PROP_SHADOW, and then sends it to client.

■ Client. Siebel Open UI gets the class name and the file name from SWE_PROP_SHADOW, loads
the script file, creates the shadow object with the retrieved class name, and then stores the
shadow pointer in the applet object or the business component object.

The process is the same for a business service except Siebel Open UI uses the
SWE_PST_SERVICE_SHADOWS shadow.

How Siebel Open UI Creates Shadow Objects for Controls
Siebel Open UI does the following to create a shadow object for a control:

■ Siebel Server. Siebel Open UI creates the ObjInfo (SWE_PROP_SHADOW) shadow object if it
encounters a control that includes a script that you write. It gets the event name of the control
from the Siebel Runtime Repository. It packages event names into the SWE_PST_SCRIPTS
shadow, and then sends it to client.

■ Client. Siebel Open UI gets the list of control events from the SWE_PST_SCRIPTS shadow, and
then calls these methods from the corresponding predefined methods.

Reference Information for Siebel Open UI ■ Browser Script Compatibility

Configuring Siebel Open UI Siebel 2018 653

Browser Script Object Types
You can use the following object types in browser script:

■ Application

■ Applet

■ Control

■ Business object

■ Business component

■ Business service property

Event Handlers You Can Use to Handle Predefined
Events
Table 61 describes the event handlers that you can use in browser script to handle a predefined event
for a Siebel object type.

Table 61. Event Handlers You Can Use in Browser Script for a Siebel Object Type

Object Type Event Handler

Application You can use the following event handlers:

■ Application_InvokeMethod

■ Application_PreInvokeMethod

Applet You can use the following event handlers:

■ Applet_ChangeFieldValue

■ Applet_ChangeRecord

■ Applet_InvokeMetohd

■ Applet_PreInvokeMethod

■ Applet_Load

Business component You can use the following event handler:

■ BusComp_PreSetFieldValue

Business service You can use the following event handlers:

■ Service_InvokeMethod

■ Service_PreCanInvokeMethod

■ Service_PreInvokeMethod

Configuring Siebel Open UI Siebel 2018

Reference Information for Siebel Open UI ■ Browser Script Compatibility

654

Event Handlers You Can Use to Handle Predefined DOM
Events
Table 62 describes the event handlers that you can use in browser script to handle a predefined DOM
event for a Siebel control object type.

Table 62. DOM Event Handlers You Can Use in Browser Script for a Siebel Object Type

Object Type Event Handler

Control in the Siebel Open
UI client.

You can use the following event handlers:

■ OnBlur

■ OnFocus

Reference Information for Siebel Open UI ■ Browser Script Compatibility

Configuring Siebel Open UI Siebel 2018 655

Methods You Can Use in Browser Script
Table 63 describes the methods that you can use in a browser script for each Siebel object type that
Oracle’s Siebel Open UI can use.

Table 63. Methods You Can Use in Browser Script for Each Siebel Object Type

Object Type Method

Applet You can use the following methods:

■ ActiveMode

■ BusComp

■ BusObject

■ FindControl

■ InvokeMethod

■ Name

■ ReInit

Application You can use the following methods:

■ FindApplet

■ ActiveApplet

■ ActiveViewName

■ ActiveBusObject

■ ActiveBusComp

■ FindBusObject

■ GetProfileAttr

■ GetService

■ InvokeMethod

■ IsReady

■ Name

■ NewPropertySet

■ SWEAlert

■ ShowModalDialog

■ SeblTrace

Configuring Siebel Open UI Siebel 2018

Reference Information for Siebel Open UI ■ Browser Script Compatibility

656

Business Component You can use the following methods:

■ BusObject

■ GetFieldValue

■ GetFormattedFieldValue

■ GetSearchExpr

■ GetSearchSpec

■ InvokeMethod

■ Name

■ SetFieldValue

■ SetFormattedFieldValue

■ WriteRecord

Business Object You can use the following methods:

■ FirstBusComp

■ GetBusComp

■ Name

■ NextBusComp

Business Service You can use the following methods:

■ InvokeMethod

■ Name

■ SetProperty

■ PropertyExists

■ RemoveProperty

■ GetProperty

■ GetFirstProperty

■ GetNextProperty

Table 63. (Continued)Methods You Can Use in Browser Script for Each Siebel Object Type

Object Type Method

Reference Information for Siebel Open UI ■ Browser Script Compatibility

Configuring Siebel Open UI Siebel 2018 657

Control You can use the following methods:

■ Applet

■ BusComp

■ GetValue

■ Name

■ SetValue

■ SetReadOnly

■ SetEnabled

■ SetVisible

■ SetProperty

■ GetLabelProperty

■ GetProperty

■ SetLabelProperty

Table 63. (Continued)Methods You Can Use in Browser Script for Each Siebel Object Type

Object Type Method

Configuring Siebel Open UI Siebel 2018

Reference Information for Siebel Open UI ■ Browser Script Compatibility

658

Property Set You can use the following methods:

■ AddChild

■ Copy

■ GetChild

■ GetChildCount

■ GetFirstProperty

■ GetNextProperty

■ GetProperty

■ GetPropertyCount

■ GetType

■ GetValue

■ InsertChildAt

■ PropertyExists

■ RemoveChild

■ RemoveProperty

■ Reset

■ SetProperty

■ SetType

■ SetValue

Table 63. (Continued)Methods You Can Use in Browser Script for Each Siebel Object Type

Object Type Method

Configuring Siebel Open UI Siebel 2018 659

C Post-Upgrade Configuration
Tasks

This appendix describes post-upgrade configuration tasks. Depending on the customization of your
deployment, these tasks might be required after upgrading to Siebel Innovation Pack. This appendix
includes the following topics:

■ Updating Physical Renderer Customizations for Controls

■ Modifying Physical Renderer Code for Event Helper on page 662

■ Overriding Plug-In Wrappers on page 667

Updating Physical Renderer
Customizations for Controls
This topic describes how to work with existing customizations of physical renderers. It contains the
following information:

■ Control DOM Access and Changes

■ Control Value Access and Changes on page 660

■ Control State Manipulation on page 661

Control DOM Access and Changes
Beginning in Siebel Innovation Pack 2014, Siebel Open UI uses plug-in wrappers to oversee controls
and their Document Object Model (DOM) manipulations. Any renderer code required to work with
control level DOM elements defers to its respective control plug-in wrapper interface to get the DOM
representation.

Any changes required to the DOM will need to be completed by way of the control plug-in wrapper
interface. The renderer should not make the changes in itself. The plug-in wrapper should be
decorated with the ability to do what is required on the physical UI based on the logical control that
it is representing.

To adhere to the conventions used in Siebel Innovation Pack 2014 and later, you need to determine
if you have code that needs to be modified. To do this you must find the control DOM access with
specific types in your custom renderer code, and replace that code with new code.

To find and modify the control DOM access types in your custom renderer code
1 Determine if you have code that needs to be modified by searching for calls similar to either of

the following code samples:

■ var controElement = $('[name="' + control.GetInputName() + '"]');

Configuring Siebel Open UI Siebel 2018

Post-Upgrade Configuration Tasks ■ Updating Physical Renderer Customizations for
Controls

660

■ var controElement = $('#' + control.GetInputName());

NOTE: Access is not limited to these calls. Similar types of calls that attempt to find the DOM
element using the control object should also be replaced.

2 Replace all instances of calls similar to code discovered in Step 1 on page 659 using following
convention:

var controElement = this.GetUIWrapper(control).GetEl();

These modifications help ensure that the correct jQuery element representing the control on the
UI is retrieved, irrespective of the type of renderer from which the call is being made.

GetUIWrapper is a plug-in builder API that is injected into all physical renderers. It returns the plug-
in wrapper of the control object that is passed to it. There are various APIs, such as GetEl(), that are
executable in the wrapper. For more information about these plug-in wrappers, see “Plug-in Wrapper
Class” on page 510.

Control Value Access and Changes
Beginning in Siebel Innovation Pack 2014, Siebel Open UI requires that renderer code that retrieves
and sets control values from the DOM consults with the plug-in wrapper interface of the control. Any
changes required to the DOM will need to be completed by way of the control plug-in wrapper
interface.

Any changes required to the value of the controls will need to be completed by way of the control
plug-in wrapper interface. The renderer should not make the changes in itself. The plug-in wrapper
should be decorated with the ability to do what is required on the physical UI based on the logical
control that it is representing. Wrapper methods can further be customized to decorate on top of
these values if required.

To adhere to the conventions used in Siebel Innovation Pack 2014 and later, you need to determine
if you have code that needs to be modified. To do this you must find the control value access with
specific types in your custom renderer code, and replace that code with new code.

To find and modify the control value access types in your custom renderer code
1 Determine if you have code that needs to be modified by searching for calls similar to either of

the following code samples:

■ var value = $('[name="' + control.GetInputName() + '"]').val();

■ var value = $('#' + control.GetInputName()).attr('val');

NOTE: Access is not limited to these calls. Similar types of calls that attempt to find the DOM
element using the control object should also be replaced.

2 Replace all instances of calls similar to code discovered in Step 1 using following convention:

Post-Upgrade Configuration Tasks ■ Updating Physical Renderer Customizations for
Controls

Configuring Siebel Open UI Siebel 2018 661

var value = this.GetUIWrapper(control).GetValue();

These modifications help ensure that the correct jQuery element representing the control on the
UI is retrieved, irrespective of the type of renderer from which the call is being made.

GetValue() is the plug-in wrapper API that is responsible for getting the DOM value of the
control. Similar to this explanation, this change will first fetch the correct wrapper for the control
in question and then executes the GetValue API

3 Determine if you have code that needs to be modified by searching for calls similar to either of
the following code samples:

■ $('[name="' + control.GetInputName() + '"]').val(newValue);

■ $('#' + control.GetInputName()).attr('val', newValue);

NOTE: Access is not limited to these calls. Similar types of calls that attempt to find the DOM
element using the control object should also be replaced.

4 Replace all instances of calls similar to code discovered in Step 3 using following convention:

this.GetUIWrapper(control).SetValue(value, index);

NOTE: The value set affects neither the client record set nor the server data, unless explicitly
committed.

5 (Optional) Other customizations might be necessary if you are using a custom plug-in wrapper
that overrides the base wrapper's API which may affect the value before setting it on the DOM.
The following is an example of such a customization:

CustomPW.prototype.SetValue = function (value, index) {

value = value + "_suffix";

SiebelAppFacade.CustomPW.superclass.SetValue.call(this, value, index);

}

Control State Manipulation
Beginning in Siebel Innovation Pack 2014, the manipulation of the DOM state of a control occurs in
a single call in the control’s wrapper element using the SetState API. Previously this type of
manipulation could have been done in many different ways, therefore any custom renderer code
must be located and modified.

To find and modify the control state manipulations in your custom renderer code
1 Determine if you have code similar to the following:

$('[name="' + control.GetInputName() + '"]').hide();

2 Replace all instances of calls similar to code discovered in Step 1 by a call to the control's plug-
in wrapper that internally affects the state of the element and hides it. Use the following code as
guidance:

Configuring Siebel Open UI Siebel 2018

Post-Upgrade Configuration Tasks ■ Modifying Physical Renderer Code for Event Helper

662

this.GetUIWrapper(control).SetState(consts.get("SHOW"), false);

3 Determine if you have code similar to the following:

$('[name="' + control.GetInputName() + '"]').attr("readOnly", "readOnly");

The code here, is a case where a particular control is being made non-editable on the DOM.

4 Replace all instances of calls similar to code discovered in Step 3 on page 661 using following
convention:

this.GetUIWrapper(control).SetState(consts.get("EDITABLE"), false);

5 Determine if you have code similar to the following:

$('[name="' + control.GetInputName() + '"]').focus();

The code here, is a case where there is an attempt to set focus on a particular control.

6 Replace all instances of calls similar to code discovered in Step 5 using following convention:

this.GetUIWrapper(control).SetState(consts.get("FOCUS"), true);

The SetState API exists in the prototype space of the plug-in wrapper and can also be overridden in
a custom plug-in wrapper to be used to affect the functionality of setting states on the control.

For more information about state modification, including parameters accepted by SetState, and the
modifications made to the control element, see Chapter 4, “Architecture of Siebel Open UI,” and
Appendix A, “Application Programming Interface.”

Modifying Physical Renderer Code for
Event Helper
This topic describes how to work with previously customized of physical renderers that deal
specifically with event binding. It describes the changes that are required to allow them to work in
Siebel Innovation Pack 2014 and later. It contains the following information:

■ Binding Stray DOM Events

■ Binding Events for Controls on page 665

Binding Stray DOM Events
In Siebel Innovation Pack 2014 and later, the Event Helper object manages events and their
handlers. This object is available as the custom physical renderer for event handler management.
You can use the helper object to attach custom event handlers to stray DOM objects. The objects fall
into one of the following categories:

■ DOM Elements Configured in SWE OUI Templates. These are DOM elements configured in
the SWE OUI Templates but not in the repository, and are directly addressed and manipulated at
the client-level using JavaScript code.

Post-Upgrade Configuration Tasks ■ Modifying Physical Renderer Code for Event Helper

Configuring Siebel Open UI Siebel 2018 663

■ DOM Elements with No Representation. These are DOM elements that have no
representation on the server, and are completely constructed and manipulated at the client-level
using JavaScript code.

The event helper object can attach and manage event handlers to both types of DOM elements
previously listed. However, it is essential that any stray binding occurring in the custom renderer
code is modified to work with the Event Helper object. The Event Helper object homogenizes events
between different platforms and devices, and consequently, bound handlers are consistently run
across devices.

Modifications Required for DOM Elements Configured in SWE OUI
Templates
You must find and modify the instances of DOM elements configured in SWE OUI templates in your
custom physical renderer code. The ID or the name used to find the DOM will have been configured
as a placeholder using a SWE OUI Template file.

To bind DOM elements configured in SWE OUI templates
1 Determine if you have custom physical renderer code similar to the following:

CustomPhysicalRenderer.prototype.BindEvents = function(){

$("[id=" + "customdiv" + "]").bind("click", { ctx : this }, function(event){

event.data.ctx.GetPM().OnControlEvent(("DIV_CLOSE"));

});

SiebelAppFacade.CustomPhysicalRenderer.superclass.BindEvents.call(this);

};

This event will be attached to a handler in a custom presentation model using an
AttachEventHandler call. The call will then trigger custom functionality when the handler is run.
A possible outcome of this handler is to affect a model property, which would subsequently be
latched on to by a PM binding in the renderer that would hide or remove the div element.

2 Modify the code located in Step 1 to resemble the following code:

CustomPhysicalRenderer.prototype.BindEvents = function () {

var closeElement = $("[id=" + "customdiv " + "]"),

eventHelper = SiebelApp.S_App.PluginBuilder.GetHoByName("EventHelper");

if (eventHelper && closeElement.length) {

eventHelper.Manage(closeElement, "click", { ctx: this }, OnClickDiv);

}

SiebelAppFacade.CustomPhysicalRenderer.superclass.BindEvents.call(this);

};

Configuring Siebel Open UI Siebel 2018

Post-Upgrade Configuration Tasks ■ Modifying Physical Renderer Code for Event Helper

664

function OnClickDiv(event) {

event.data.ctx.GetPM().OnControlEvent(consts.get("DIV_CLOSE"));

}

NOTE: The code in this example is only meant as a guide.

This click event in this code is attached to the stray DOM element using the Manage API of the Event
Helper object. The click is homogenized to work with touch based events on touch based devices.
OnClickDiv is the handler that is passed.

For the full list of parameters that the Manage API uses, see Appendix A, “Application Programming
Interface.”

Modifications Required for DOM Elements with No Representation
For DOM elements with no representation, you must find and modify these instances your custom
physical renderer for code. These are typically found where the DOM is being created and objects
are being attached. This will usually have no representation anywhere in the SWE server.

To bind DOM elements with no representation
1 Determine if you have custom physical renderer code similar to the following:

CustomPhysicalRenderer.prototype.ShowUI = function () {

var clientHTML = "<div id='moreinfo'>Click here for more information about Customer
Types</div>",

appletContainer = this.GetPM().Get("GetFullId");

$("#" + appletContainer).append(clientHTML);

SiebelAppFacade.CustomPhysicalRenderer.superclass.ShowUI.call(this);

};

CustomPhysicalRenderer.prototype.BindEvents = function(){

$("[id=" + "moreinfo" + "]").bind("mouseover", { ctx : this }, function(event){

vent.data.ctx.GetPM().OnControlEvent("MORE_INFO");

});

SiebelAppFacade.CustomPhysicalRenderer.superclass.BindEvents.call(this);

Post-Upgrade Configuration Tasks ■ Modifying Physical Renderer Code for Event Helper

Configuring Siebel Open UI Siebel 2018 665

};

The first section of the code creates a client side piece of the DOM which is appended to the end
of the applet container in the ShowUI section of the custom renderer. The BindEvents section is
then overridden to attach a custom event handler to the DOM element.

The second section of the code is an event that will be attached to a custom presentation model
using an AttachEventHandler call. The call will then trigger custom functionality when the
handler is run. This will display a dialog containing additional information about the contextual
record.

2 Modify the code located in Step 1 on page 664 to resemble the following code:

CustomPhysicalRenderer.prototype.BindEvents = function () {

var moreInfoElement = $("[id=" + "moreinfo" + "]"),

eventHelper = SiebelApp.S_App.PluginBuilder.GetHoByName("EventHelper");

if (eventHelper && moreInfoElement.length) {

eventHelper.Manage(moreInfoElement, "mouseover", { ctx: this }, OnClickMoreInfo);

}

SiebelAppFacade.CustomPhysicalRenderer.superclass.BindEvents.call(this);

};

function OnClickMoreInfo(event) {

event.data.ctx.GetPM().OnControlEvent("MORE_INFO");

}

NOTE: The code in this example is only meant as a guide.

The mouseover event is attached to the stray DOM element that has been created in ShowUI using
the Manage API of the Event Helper object. Mouseover is homogenized to work with touch based
events on touch based devices, if available.

Binding Events for Controls
This topic describes how to bind events for controls. Similarly to stray DOM event binding, any
renderer code that bound events on to existing repository based controls will now have to work with
the Event Helper object to bind handlers to controls instead of direct jQuery calls, which is necessary
to homogenize events bound to controls across different platforms.

To bind control events
1 Determine if you have custom renderer code that contains control event binding of the following

types:

CustomPhysicalRenderer.prototype.BindEvents = function () {

Configuring Siebel Open UI Siebel 2018

Post-Upgrade Configuration Tasks ■ Modifying Physical Renderer Code for Event Helper

666

var controlSet = this.GetPM().Get("GetControls");

for (var controlName in controlSet) {

if (controlSet.hasOwnProperty(controlName)) {

var control = controlSet[controlName];

if (control.GetName() === "Probability") {

$('[name="' + control.GetInputName() + '"]').on("click", { ctx: this }, function () {

event.data.ctx.GetPM().OnControlEvent(("PROBABLITY_CLICK"));

});

}

}

}

SiebelAppFacade.CustomPhysicalRenderer.superclass.BindEvents.call(this);

};

In this code, the complete set of controls is obtained from the framework PM property and the
render is looping through set. Upon encountering a particular control by the repository name
Probability, a click event handler is being bound to the DOM element representing that control
which then triggers the event PROBABILITY_CLICK on to the PM. Eventually, a custom handler is
attached as a customized presentation model using the AttachEventHandler API.

2 Modify the code located in Step 1 on page 665 to resemble the following code:

CustomPhysicalRenderer.prototype.BindEvents = function () {

var eventHelper = SiebelApp.S_App.PluginBuilder.GetHoByName("EventHelper"),

controlSet = this.GetPM().Get("GetControls"),

controlEl = null;

for (var controlName in controlSet) {

if (controlSet.hasOwnProperty(controlName)) {

var control = controlSet[controlName];

if (control.GetName === "Probability") {

controlEl = this.GetUIWrapper(control).GetEl();

if (controlEl.length && eventHelper) {

eventHelper.Manage(controlEl, "click", { ctx: this }, OnClickProbability);

}

Post-Upgrade Configuration Tasks ■ Overriding Plug-In Wrappers

Configuring Siebel Open UI Siebel 2018 667

}

}

}

SiebelAppFacade.CustomPhysicalRenderer.superclass.BindEvents.call(this);

};

function OnClickProbablility(){

event.data.ctx.GetPM().OnControlEvent(("PROBABLITY_CLICK"));

}

In this new code, if the correct control is found using the matching condition, first, the control's
element is obtained using the GetEl() API of the control's wrapper. This is subsequently used in the
Manage() API of the Event Helper to attach a homogenized click handler on to the DOM element of
the control. The named method OnClickProbability is triggered when the event occurs on the control.

Overriding Plug-In Wrappers
This topic describes how to create and apply plug-in wrappers for customization of control
appearance and behavior. It contains the following information:

■ About Overriding Plug-In Wrappers

■ Overview of the Skeleton Structure of a Plug-in Wrapper on page 668

■ About Presentation Model-Injected APIs in Plug-in Wrappers on page 670

About Overriding Plug-In Wrappers
In Siebel Innovation Pack 2014, plug-in wrappers have been introduced to provide an effective
manner in which control objects can be customized. Plug-in wrappers effectively manage the entire
life cycle of an individual control, including but not limited to its DOM creation, appearance, behaviors
and states. For more information about plug-in wrappers, see “About Plug-in Wrappers” on page 35.

Prior to Siebel Innovation Pack 2014, physical renderers were responsible for control behavior. This
meant that control representation and its lifecycle were tightly coupled with the physical renderer in
which it was hosted. The introduction of plug-in wrappers decouples the control representation and
its lifecycle.

Consequently, the physical renderer is no longer aware of the type of controls it needs to deal with,
but rather talks to the plug-in wrapper of the control(s) that it hosts. The actual action will take place
inside the plug-in wrapper. The result is that the plug-in wrapper is not bound to any particular applet
or its physical renderer.

The topics that follow describe how to override plug-in wrappers. For more information about the API
specification and the inheritance hierarchy of the plug-in wrappers, see Chapter 4, “Architecture of
Siebel Open UI.”

Configuring Siebel Open UI Siebel 2018

Post-Upgrade Configuration Tasks ■ Overriding Plug-In Wrappers

668

Overview of the Skeleton Structure of a Plug-in Wrapper
This topic describes the skeleton structure of a plug-in wrapper.

In releases previous to Siebel Innovation Pack 2014, you may have customized Siebel Open UI to
control behavior in physical renderers. This type of customization will now need to be moved into
custom plugin wrappers. The skeleton structure in this topic provides a broad overview of what parts
of a plug-in wrapper you will need to customize to achieve parity with your previous customizations.

Figure 60 illustrates the basic structure of the code you use to override a plug-in wrapper. The
example code, would be contained in an independent file in the following directory:

INSTALL_DIR\applicationcontainer\webapps\siebel\scripts\siebel\custom

For information about deployment and manifest configuration, see Chapter 5, “Example of
Customizing Siebel Open UI.”

Figure 60. Skeleton Structure of the Plug-in Wrapper

Post-Upgrade Configuration Tasks ■ Overriding Plug-In Wrappers

Configuring Siebel Open UI Siebel 2018 669

Explanation of Callouts
1 Definition of the Custom Plug-In Wrapper. Defines a custom wrapper by following the same

ideology as presentation models and physical renderers. It lists the file of the wrapper and lists
the dependencies. This will act as a module identifier to the RequireJS plug-in that Siebel Open
UI uses to manage all client side modules.

NOTE: Controls that use third-party files list the dependencies here. They must be moved out of
the renderer that listed this external dependency.

2 Constructor. Does the required changes and calls the superclass. The choice of class from which
to extend is decided in this section. It can be a new plug-in wrapper, or subset deviation from an
existing plug-in wrapper.

3 Lifecycle Methods. Specifies the methods that have been overridden. There is no need to
override methods that have not been customized, because the superclass method will be called
in instead. Here are the methods that are overridden in this example:

■ ShowUI. Override this method to modify display level changes to the control. You can create
new DOM or modify an existing DOM that is created by the superclass.

■ BindEvents. Override this method to customize event handlers for the control. You can
create new handlers in addition to those being added by the superclass or create an entirely
different set by not calling the BindEvents in the superclass.

■ SetValue. Override this method to affect any value changes to the control. Decorate the
exiting value display mechanism or change it completely by avoiding the call to the
superclass.

■ SetState. Override this method to affect any state changes to the control. Control the
behavior when changes to the state; such as editability, focus, and others; are requested.
One or more states can be affected by controlling calls to the superclass.

4 Private Methods. Use private methods like in presentation models and physical renderers to
handle custom functionality, for example: Event Handler definitions.

5 Declaration of Custom Plug-in Wrappers. This is the section that declares to the framework
that a custom plug-in wrapper has been deployed. It describes the conditions under which the
plug-in wrapper needs to be used. Its parameters are:

■ Control Type. The SWE constant for the type of control for which the functionality is trying
to be overridden.

■ PW Class. The class name of the custom plug-in wrapper.

Return Conditions. This describes the conditions under which the extended plug-in wrapper
should be used. A return of true will attach the extension.

■ Control Object. The instance of the control object for which the decision needs to be made.
All control object APIs are available here. Use this object and its APIs to evaluate the return
value to true for the specific control or controls for which the extension needs to be
applicable.

■ objName. The name of the object, applet or view for which the decision needs to be made.
Use this to evaluate the return value to true for the specific applet for which the extension
needs to be applicable.

Configuring Siebel Open UI Siebel 2018

Post-Upgrade Configuration Tasks ■ Overriding Plug-In Wrappers

670

About Presentation Model-Injected APIs in Plug-in
Wrappers
This topic includes information about presentation model-injected APIs in plug-in wrappers.

You can use the APIs in this topic to achieve the customized functionality you were using previously
in renderers. The code examples for each of the methods in this topic can be used as references
about achieving the same or similar customizations in Siebel Innovation Pack 2014.

For more information about plug-in wrappers, examples of configuration and further information
about APIs, see Chapter 4, “Architecture of Siebel Open UI,” Chapter 5, “Example of Customizing Siebel
Open UI,” and Appendix A, “Application Programming Interface.”

While the following APIs have been described earlier in this documentation in the context of use
within the physical renderer to act as liaisons with the plug-in wrapper, they are also available for
use from within the plug-in wrapper:

■ GetEl. Used to get the DOM (jQuery element) that represents the control.

■ GetValue. Used to access the DOM value of the control.

■ SetValue. Used to set the DOM value of the control.

■ SetState. Used to set various DOM states for the control.

In addition to the APIs listed here, the framework injects certain presentation model-level APIs into
all plug-in wrappers to ease the layering of calls that a plug-in wrapper is required to complete. This
makes programming in customized plug-in wrappers very similar to programming customized
physical renderers. These types of APIs are described in the following topics:

■ Get

■ SetProperty

■ ExecuteMethod on page 671

■ OnControlEvent on page 671

■ Helper on page 672

Get
This API gets the value of a PM property where the control is deployed.

SetProperty
This API allows the plug-in wrapper set a property on the PM on which this control is operating. They
are PM properties that the plug-in wrapper is acting on.

The following example shows how a CustomPW can operate on a PM property, and how another
CustomPW can subsequently use the property for other purposes:

CustomPW1.prototype.ShowUI = function (control) {

// Custom Show Definition

Post-Upgrade Configuration Tasks ■ Overriding Plug-In Wrappers

Configuring Siebel Open UI Siebel 2018 671

if (this.Get("ShowControl1") === true) {

SiebelAppFacade.CustomPW1.superclass.BindEvents.call(this);

}

this.SetProperty("ShowControl2", false);

}

 CustomPW2.prototype.ShowUI = function (control) {

// Custom Show Definition

if (this.Get("ShowControl2") === true) {

SiebelAppFacade.CustomPW2.superclass.BindEvents.call(this);

}

}

ExecuteMethod
This API is similar to the ExecuteMethod in the presentation model: it allows the plug-in wrapper to
execute a method on the PM on which it is operating.

OnControlEvent
This API runs the event handler call up to the presentation model and subsequently any custom event
handlers that may be attached to the event.

The following example shows the usage of APIs in a custom event handler on a custom plug-in
wrapper. It depicts a method that is executed on the presentation model, the return value determines
if the event should be handled or ignored:

function OnClick(evt) {

// This is a custom click handler for my control.

var self = evt.data.ctx,

shouldHonorClick = self.ExecuteMethod("CustomPMMethod");

if (shouldHonorClick) {

 self.OnControlEvent("customClickEvent", self.control, self.dataset);

}

}

Configuring Siebel Open UI Siebel 2018

Post-Upgrade Configuration Tasks ■ Overriding Plug-In Wrappers

672

Helper
This API is used to obtain helper objects from the plug-in wrapper. Currently only the EventHelper
object is present. Any control level custom binding should happen using this helper object.

The following example binds two events on to the control in the customized wrapper, and runs custom
handlers defined in the wrapper:

CustomPW.prototype.BindEvents = function (control) {

var ele = this.GetEl(),

evHelper = this.Helper("EventHelper");

evHelper

.Manage(ele, "click", { ctx: this }, OnClick)

.Manage(ele.next("span"), "hover", { ctx: this }, OpenAlertBox);

};

function OnClick() {

// Custom Definition for element click here

}

function OpenAlertBox() {

// Custom Definition for element next span hover here

}

For a detailed example about using APIs in a customized wrapper, see “Configuring the Manifest for
the Color Box Example” on page 107.

Configuring Siebel Open UI Siebel 2018 673

D Glossary

access control The set of Siebel CRM mechanisms that control the records that the user can
access and the operations that the user can perform on the records.

account A financial entity that represents the relationships between a company and the
companies and people with whom the company does business.

ActiveX A loosely defined set of technologies developed by Microsoft for sharing information
among different applications.

ActiveX control A specific way to implement ActiveX technology. It denotes reusable software
components that use the component object model (COM) from Microsoft. ActiveX controls provide
functionality that is encapsulated and reusable to programs. They are typically, but not always, visual
in nature.

activity Work that a user must track. Examples include a to-do, email sent to a contact, or a
calendar entry with a contact.

activity (Siebel CRM) An object in the Action business component of the Siebel data model that
organizes, tracks, and resolves a variety of work, from finding and pursuing an opportunity to closing
a service request. An Activity also captures an event, such as scheduling a meeting or calendar entry
that occurs at a specific time and displays in the calendar.

administrator Anyone who uses an administrative screen in the client to configure Siebel CRM.
The Administration - Server Configuration screen is an example of an administrative screen.

applet metadata The applet object in the Siebel Runtime Repository that contains information
that Siebel Open UI uses to bind the user interface to the business component.

business component A logical representation of one or more Siebel tables that usually contains
information for a particular functional area, such as opportunity, account, contact, or activity. A
business component can be included in one or more business objects.

business object A logical representation of CRM entities, such as accounts, opportunities,
activities, and contacts, and the logical groupings and relationships among these entities. A business
object uses links to group business components into logical units. The links provide the one-to-many
relationships that govern how the business components interrelate in this business object. For
example, the opportunity business object groups the opportunity, contact, and activities business
components.

carouselrenderer.js file The physical renderer that bridges the JCarousel 3rdParty Control
plug-in to the list presentation model that the listpmodel.js file defines.

Configuring Siebel Open UI Siebel 2018

Glossary ■

674

client The client of a Siebel business application. Siebel Call Center is an example of a Siebel
business application. Siebel Open UI renders the user interface in this client.

client computer The computer that the Siebel Open UI user uses.

client file A file that Siebel Open UI uses on the client computer.

contact A person with whom a user might be required to phone or email to pursue a selling
relationship. Various business objects can refer to a contact, and this does not require a relationship
between the customer and contact. In Siebel CRM, a contact attribute in the context of a business
object is a party that might or might not have a relationship defined.

CRM (Customer Relationship Management) A software application that helps a business
track customer interactions.

customization The process of modifying Siebel Open UI to meet the specific requirements of
your organization.

derive To calculate a value by using one more properties as input. For example, Siebel CRM can
derive the value of a physical renderer property from one or more other properties. For more
information, see “Deriving Presentation Models, Physical Renderers and Plug-in Wrappers” on page 115.

focus Indicates the currently active object in the client. Siebel CRM typically sets the border of this
object to a solid blue line to identify the object that is in focus. For example, if the user edits the
value of field A, then Siebel CRM places a blue border around the perimeter of field A. If the user
tabs from field A to field B in a record, then Siebel CRM removes the blue border from field A and
adds a blue border to field B.

infinite scroll A feature that allows the user to scroll through records in a list applet indefinitely.

inheritance chain An object-oriented programming technique that Siebel Open UI uses where
one class modifies another class.

jqmlistrenderer and jqmgridrenderer Physical renderers that Siebel Open UI uses to render
a list applet in Siebel Mobile.

JQM Grid Renderer An object that uses the jqmgridrenderer.js file to render data in a grid in the
client.

Manifest File An XML file that identifies the JavaScript files that Siebel Open UI must download
to the client browser. It maps applet user properties to JavaScript files. The Siebel Web Engine gets
the JavaScript implementation file information from the Manifest File the first time a user accesses
an applet during a user session. To get this information, it looks up the keys that match the user
property values for this applet.

metadata Object definitions in the Siebel repository that describe the current state of Siebel Open
UI.

Glossary ■

Configuring Siebel Open UI Siebel 2018 675

metadata files XML files that hold information on how the user experience must be shaped.
Siebel Open UI uses metadata files to perform field mapping with the user interface, look ups in the
user interface, application object mapping, and general representation of the user interface.

native mode A user interface mode that allows you to deploy Siebel Open UI to the native Siebel
Open UI client.

object definitions The metadata that Siebel Open UI uses to run a Siebel application. The
Account List Applet that Siebel Tools displays in the Object List Editor is an example of an object
definition. It includes metadata that Siebel Open UI uses to render the Account List Applet, such as
the height and width of all controls in the applet, and all the text labels that it must display on these
controls.

opportunity A qualified sales engagement that represents potential revenue where a sales
representative is willing to officially commit to the pipeline and to include revenue in the sales
forecast. The sales representative monitors the opportunity life cycle. This representative might be
compensated depending on the results of cumulative sales and potentially how well the
representative maintains details about the opportunity.

object manager A system manager that hosts a Siebel application, providing the central
processing for HTTP transactions, database data, and metadata. The Siebel Web Engine and data
manager operate as facilities in the object manager.

parent business component A business component that provides the one in a one-to-many
relationship between two business components in a parent-child relationship.

physical renderer A JavaScript file that Siebel Open UI uses to build the user interface. It allows
you to use custom or third-party JavaScript to render the user interface. It binds a presentation
model to a physical control. It allows this presentation model to remain independent of the physical
user interface objects layer.

physical renderer methods Life cycle methods that you code into any renderer.

predefined Siebel Open UI The ready-to-use version of Siebel Open UI that Oracle provides
you before you make any customization to Siebel Open UI.

predefined object An object that comes defined with Siebel CRM. The objects that Siebel Tools
displays in the Object List Editor immediately after you install Siebel Tools and the Siebel Runtime
Repository, but before you make any customization are predefined objects.

Presentation Model A JavaScript file that allows you to customize behavior, logic, and content
in the client. It contains the metadata and data from the applet and business component that Siebel
Open UI uses to render a simple list applet or form applet. It determines the logic to apply, captures
client interactions, such as the user leaving a control, collects field values, and sets properties.

Presentation Model class A class that includes life cycle methods that you code for the
presentation model and control methods that Siebel Open UI uses to add presentation model
properties and behavior.

Configuring Siebel Open UI Siebel 2018

Glossary ■

676

private field A type of field that only allows the record owner to view the record. for more
information, see Siebel Object Types Reference.

proxy object An object instance that Siebel Open UI uses for the client proxy.

responsibility An entity in the Siebel data model that determines the views that the user can
access. For example, the responsibility of the sales representative allows the user to access the My
Opportunities view, whereas the responsibility of the Siebel CRM developer allows the user to access
administration views. A Siebel CRM developer or system administrator defines the responsibilities.

shadow object A type of object that Siebel Open UI uses for client scripting.

Siebel Business Application An application that is part of Siebel CRM, such as Siebel Call
Center.

Siebel CRM data Business data that is created in Siebel Open UI, data that is created in the client
of a Siebel Business Application, such as Siebel Call Center, or data that resides in the Siebel
database on the Siebel Server.Examples include an opportunity, account, or activity.

Siebel Open UI An open architecture that you can use to customize the user interface that your
enterprise uses to display business process information.

Siebel Repository A set of database tables that stores object definitions. Examples of types of
objects include applets, views, business components, and tables. You use Siebel Tools to create or
modify an object definition

Siebel Property Set A hierarchy that Siebel Open UI uses to communicate between objects that
reside on the Siebel Server and the proxies that reside in the client.

Siebel Server The server that runs the Siebel Server software. The Siebel Server processes
business logic and data access for Oracle’s Siebel Open UI.

Siebel Web services Provides access to an existing Siebel business service or workflow process
as a Web service to be consumed by an external application.

synchronous request A type of request that Siebel Open UI sends to the Siebel Server and then
waits for a reply to this request before it continues any other processing.

SWE runtime applet object An object that exposes scripting interfaces that allow you to
modify the applet so that it can control the business component or business service that this applet
references.

user A person who uses the client of a Siebel business application to access Siebel CRM data.

user interface The graphical user interface that the user uses in the client.

Configuring Siebel Open UI Siebel 2018 677

Index

A
ActiveX

architecture 50
APIs

guidelines for using to customize Presentation
Model 109

JavaScript description 650
public JavaScript support 18
usage with Physical Renderer during life

cycle 51
usage with Presentation Model and Physical

Renderer in life cycle 51
applet

external content, displaying outside 323
external content, displaying within 322

applets
displaying external data in 345
displaying in an external application 361
event handler usage with scripts 653
example usage in object hierarchy 45
example usage in object life cycle 56
modifying to customize calendar event

styles 264
modifying to display a box list 194
rendering as a carousel 197
support for collapsing 381
support for expanding, collapsing,

sizing 17
SWE runtime usage 45
usage as scripting shadow object 652
usage of metadata 45
usage with proxy objects 45
user property GETEnabledMethods 144
user property support for calendar all day

slot 271
user property support for calendar

days 268
user property support for calendar free busy

availability 271
user property support for calendar

timestamps 269
architecture 15, 19, 47, 48, 49, 50,

676
about Siebel Open UI 31
differences in client architecture between high

interactivity and Siebel Open UI 50
differences in server architecture between

high interactivity and Siebel Open
UI 48

Enterprise Application Integration,
about 314

example object hierarchy 45
example of object life cycle 55
life cycle of an element 51
life cycle of user interface elements 51
object hierarchy 43
overview of Siebel Open UI

development 31
Portal Agents, about 315
presentation model and physical

renderer 36
presentation model life cycle methods 51
rendering 17

Aurora theme 178
Aurora theme, customizing 178
authentication strategies, list of Portal

Agents 316
autocomplete 166

B
browser

GPS support 567
scripting 650
standards compliance 15
types supported 15

business components
modifying to customize calendar event

styles 264
usage as shadow object 652
usage with applets 45
usage with notification property set 110
usage with proxy object 45
using to display data in external

applications 345
business components, configuring to handle

external data 322
busy cursor 253
Busy Cursor Timeout 166, 253

C
caches

file organization in 145
calendar

Configuring Siebel Open UI Siebel 2018

Index ■ D

678

customizing work days 267
cascading style sheets

event style usage example of 265
guideline for usage 111
my-style.css usage 195
organization of 145
style usage for pick icon 545
theme-calendar.css usage 266
third-party usage of 147
usage to control layout and styling 44
where stored 147

client
multiple client environments 18

client customizations 48
content, integrating external

See Portal Agent
customization example

configuring a list applet to render as a
carousel 197

displaying or hiding fields 185
embedding Siebel views or applets in an

external application 361
integrating external application data in a

Siebel view 341, 345
modifying a list to display a box list 194

customizations, client 48
customizing Aurora theme 178
customizing the calendar

controlling how the calendar displays
timestamps 269

customizing event styles 266
customizing repeating calendar events for

Mobile 267
specifying the first day of the week 268
specifying values for the work days and week

start fields 267
specifying work days 268

D
disposition types

list of 316
summary, table 319

DOM
access to 17
predefined event 654
specifying element as JQuery object 545
usage guidelines 111
usage with script 650

E
email

support with maps 566
Enable Elastic Grid 166

Enable Responsive Label 166
EncodeURL command, about 337
Enterprise Application Integration

architecture, about 314
errors

SWE log file, using to debug errors 336
Event Helper

class 518
modifying Physical Renderer code for 662

Event Helper Objects
description 34

external content
applet, displaying outside 323
applet, displaying within 322

external data, configuring business
components to handle 322

external host, defining 324

F
Fixup Administration view, using to define a

fixup type 330
fixup type, defining 330
Form Redirect disposition type, about and

scenario 318
FreePopup command, about 337

G
guidelines

configuring physical renderer 111
configuring presentation model 109
configuring presentation model and physical

renderer for client object 112

H
high interactivity applications, fixup type,

about using for links 331
HTML

CLASS tag in 265
event style tags in 265

HTML attributes
IFrame command, about using to

define 337

I
IFrame command, about 337
IFrame disposition type

about 317
summary, table 319

image files
where Open UI stores them 147

Inline disposition type
about 317

Index ■ J

Configuring Siebel Open UI Siebel 2018 679

restriction, use of 318
summary, table 319

J
JavaScript

API 18, 650
browser script usage 650
example usage 198
file usage 113, 147
framework 650
usage for controlling logic 44
variable usage 110

JQuery
calendar 46

L
list applets

customizing to render as maps 203
log file, reviewing SWE log file 336
login

credential, defining 331
page, reverse-engineering 319

login ID
Siebel login ID, about using

UseSiebelLoginId 340
UserLoginId, about using to define for Web

application 339

M
Manifest File

configuring for the color box example 107
guideline for using with Presentation Model

and Physical Renderer 113
using to display a carousel 197
using to display CRM views in external

applications 361
using to display data from external

application 341
using to display fields 185

maps
address map support 345
API for Google maps 565
customizing applets to render as 203
displaying a Google map 345

methods
AddMethod of the Presentation Model

class 466
AddProperty of the Presentation Model

class 467
AttachEventHandler of Presentation Model

class 468
AttachNotificationHandler of Presentation

Model class 469, 475

AttachPMBinding of Presentation Model
class 471

description of in Presentation Model 33
for application model class 535
for Business Component class 520
for the JQ Grid Renderer class 533
for the Presentation Model class 464
guidelines for customizing the Presentation

Model 109
guidelines for using to customize the Physical

Renderer 111
Init usage 55
Physical Renderer 53
Presentation Model 51
used in Presentation Model during life

cycle 51
using to create shadow objects for

applications 652
using to display data from an external

application in a view 345
using to display data from external application

in a view 341
using with browser script 655

mobile
about logging 403
server disconnected screens and

views 643
swipe and zoom support 16

Mozilla browser, about 321

N
NoCache command, about 338
NoFormFixup command, about 339

O
object definition htmls 17
Object definition templates

using to display data from an external
application 346

OpenUITraining-Example 45

P
password

Siebel password, about using
UseSiebelLoginPassword
command 340

UserLoginPassword command, about
using 340

phone
layout support 18
using to get help from Oracle 29

Physical Renderer
description 36

Configuring Siebel Open UI Siebel 2018

Index ■ R

680

guidelines for usage with the Presentation
Model 109

guidelines for using with an client
object 112

methods of 53
post-upgrade task 659
rendering the carousel 82
updating code for Event Helper 662
usage guidelines 111
using to display data from external

application 341
using to display fields 185
using to render carousels 197

plugin builder
class 512

plug-in wrapper
attaching to a control 103
binding custom events to a control 97
class 510
creating 93
customization guidelines 112
customizing 92
customizing control display 95
customizing to react to value changes 101
defining custom events 98
life cycle of 54
post-upgrade task 667

Portal Agent
about and features 315
architecture, about 315
authentication strategies, list of 316
creating, overview of required tasks 319
data layer, about integrating data 316
disposition types summary, table of 319
disposition types, list of 316
Form Redirect disposition type, about and

scenario 318
IFrame disposition type, about 317
Inline disposition type, about 317
login requirements, determining 319
restrictions 318
SWE log file, reviewing 336
symbolic URL commands, about 316

Portal Agent, administration
content fixup, defining 330
external host, defining 324
symbolic URL arguments, defining 327
symbolic URL, defining 325
Web applications, defining 324

Portal Agent, command reference
EncodeURL, about 337
FreePopup about 337
IFrame, about 337
NoCache, about 338

NoFormFixup, about 339
PostRequest, about 339
PreLoadURL, about 339
UserLoginId, about 339
UserLoginPassword, about 340
UseSiebelLoginId, about 340
UseSiebelLoginPassword, about 340

Portal Agent, configuring
about 321
business components, configuring 322
external content, displaying outside an

applet 323
external content, displaying within an

applet 322
SWE log file, reviewing 336

Portal Agent, example
external host, defining 333
login page, reviewing 332
step overview 332
symbolic URL arguments, defining 335
symbolic URL, defining 334
test 335
user login credentials, defining 335

POST method, about using PostRequest to
configure Portal Agent 339

PostRequest command, about 339
PreLoadURL command, about 339
Presentation Model

class and method descriptions 464
customization guidelines 109
description 33
example of using to render applets 45
guidelines for customizing to render client

object 112
guidelines for usage with the Physical

Renderer 111
methods it uses 51
using to display data from external

applications 341
properties

tasks 113

R
reference

browser script compatibility 650
reference, APIs

component class 520
reference, internationalization

support 641

S
sample code

Web Engine HTTP TXN Business

Index ■ T

Configuring Siebel Open UI Siebel 2018 681

Service 371, 374
WebApplet_OutputChildPropertySets

function 370
WebApplet_OutputPropertySet

function 371
screens

views, list of 645
scripting

browser script object types 653
creating shadow objects 652
creating shadow objects for applets, business

components or business
services 652

handling custom client script 651, 652
search

expression in browser script 656
session management, about 315
session proxy, about 316
session re-use, about 315
Siebel Connected Mobile applications

screens and views for Siebel Consumer
Goods 643

Siebel Disconnected Mobile applications
screens and views for Siebel Consumer

Goods 643
Siebel login ID, about using

UseSiebelLoginId command 340
Siebel Open UI, SWE commands for 364
Siebel password, about using

UseSiebelLoginPassword
command 340

Siebel Tools
preparing 113
support for customizing 17
using before you customize the Presentation

Model 110
using to allow blocked methods for HTTP GET

access 144
using to customize event styles 263
using to display calendar all day slot 271
using to display calendar free busy

availability 271
using to display calendar timestamps 269
using to render a grid 173, 191, 192,

204, 205, 208, 210, 219,
228, 270, 274, 345, 360

view names in 644
Simple Portal Agents, about authentication

strategy 316
Single Sign-On Portal Agents authentication

strategy, about 316
Single Sign-On technology (SS0),

about 315
SSO Systems Administration view, using to

specify Web application 331
Starting with look ahead 166
SWE API

SWE commands for Siebel Open UI, table
of 364

SWE commands for Siebel Open UI, table
of 364

SWE log file, reviewing 336
symbolic URL

arguments, defining 327
business component, configuring 322
commands, about 316
defining 325
disposition types, list of 316
EncodeURL, about using to specify encoding

arguments 337
Inline disposition type 317
multiple disposition types, about 316
PreLoad URL, about using 339

T
tasks

properties 113
Template Manager

class 514
description 34

third-party
control 48
JavaScript renderer 36
Jquery FullCalender control 46
package 198
resource 16
user interface 18
where library must reside 146

time-out handling, about 315

U
URL

symbolic usage with external
application 345

UserLoginId command, about 339
UserLoginPassword command, about 340
UseSiebelLoginId command, about 340
UseSiebelLoginPassword command,

about 340

V
view

Affiliations 341
Calendar 266
Contact List 341
displaying data from external application

in 341

Configuring Siebel Open UI Siebel 2018

Index ■ W

682

Opportunity List 341
usage in mobile applications 643

W
Web application

defining 324
specifying and defining login

credentials 331
Web Control disposition type

summary, table 319

Web Engine HTTP TXN Business Service
about invoking 365
methods, example 369
methods, table of 366
sample code 371, 374

WebApplet_OutputChildPropertySets
function

sample code 370
WebApplet_OutputPropertySet function

sample code 371

	Contents
	1 Preface
	Audience
	Documentation Accessibility
	Access to Oracle Support
	Related Documents
	Conventions

	2 What’s New in This Release
	3 Overview of Siebel Open UI
	About Siebel Open UI
	Overview of Siebel Open UI
	Example Customizations That You Can Make with Siebel Open UI
	Open Development Environment
	Siebel Open UI JavaScript API Support
	Multiple Client Environment
	Support for More Than One Usage
	New Notification User Interfaces
	Mobile Environments

	How Siebel CRM Renders Siebel Open UI Clients
	How Siebel CRM Renders Div Containers on Siebel Servers
	How Siebel CRM Handles Data in Siebel Open UI
	How Siebel CRM Renders Objects in Siebel Open UI
	Examples of How You Can Customize Siebel Open UI

	About Using This Book
	Important Terms and Concepts
	How This Book Indicates Computer Code and Variables
	How This Book Indicates Code That You Can Use as a Variable and Literal
	Case Sensitivity in Code Examples

	How This Book Describes Objects
	About Objects and Metadata
	How This Book Describes Relationships Between Objects

	About the Siebel Innovation Pack
	Support for Customizing Siebel Open UI
	Support That Siebel Open UI Provides
	Support for the Siebel Open UI JavaScript API
	Support for Code Suggestions, Examples, and Templates

	Getting Help from Oracle

	4 Architecture of Siebel Open UI
	About the Siebel Open UI Development Architecture
	Overview of the Siebel Open UI Development Architecture
	Architecture You Can Use to Customize Siebel Open UI
	About the Presentation Model
	About the Template Manager
	About the Template Manager in Responsive Web Design
	How it Works
	About Event Helper Objects

	About Plug-in Wrappers
	About the Plug-in Builder
	About the Physical Renderer
	How Siebel Open UI Uses the Presentation Model and the Physical Renderer and Plug-In Wrapper

	Example of How Siebel Open UI Renders a View or Applet
	Explanation of Callouts
	Example of a Presentation Model
	Explanation of Callouts

	Example of a Physical Renderer
	Explanation of Callouts

	Example of a Plug-in Wrapper
	Explanation of Callouts

	Customizing the Presentation Model and Physical Renderer
	Customizing the Presentation Model
	Example of Customizing the Static and Dynamic Values of a Presentation Model
	Example of Customizing the Behavior of a Presentation Model

	Customizing the Physical Renderer
	Customizing a Plug-in Wrapper
	Stack That Siebel Open UI Uses to Render Objects
	Explanation of Callouts
	Example Stack That Siebel Open UI Uses to Render Objects
	Explanation of Callouts

	Items in the Development Architecture You Can Modify
	Example Client Customizations
	Differences in the Server Architecture Between High Interactivity and Siebel Open UI
	Explanation of Callouts

	Differences in the Client Architecture Between High Interactivity and Siebel Open UI
	Explanation of Callouts

	Life Cycle of User Interface Elements
	Summary of Presentation Model Methods
	How Siebel Open UI Uses the Init Method of the Presentation Model
	How Siebel Open UI Uses the Setup Method of the Presentation Model

	Life Cycle of a Physical Renderer
	Explanation of Callouts
	Life Cycle of a Plug-in Wrapper

	Example of the Life Cycle of a User Interface Element
	Explanation of Callouts

	5 Example of Customizing Siebel Open UI
	Roadmap for Customizing Siebel Open UI
	Process of Customizing the Presentation Model
	Creating the Presentation Model
	Customizing the Setup Logic of the Presentation Model
	Customizing the Presentation Model to Identify the Records to Delete
	About Dependency Injection
	Disabling Automatic Updates

	Customizing the Presentation Model to Delete Records
	About Synchronous Requests

	Overriding Predefined Methods in Presentation Models
	Customizing the Presentation Model to Handle Notifications
	How Siebel Open UI Uses Nondetailed Data to Indicate Modifications That Occur in Detailed Data

	Attaching an Event Handler to a Presentation Model
	Customizing Methods in the Presentation Model to Store Field Values
	Customizing the Presentation Model to Call the Siebel Server and Delete a Record

	Process of Customizing the Physical Renderer
	Setting Up the Physical Renderer
	Customizing the Physical Renderer to Render the Carousel
	Customizing the Physical Renderer to Bind Events
	Customizing the Physical Renderer to Bind Data
	Customizing the Physical Renderer to Refresh the Carousel
	Modifying CSS Files to Support the Physical Renderer

	Process of Customizing the Plug-in Wrapper
	Creating the Plug-in Wrapper
	Customizing the Plug-in Wrapper to Display the Control Differently
	Customizing the Plug-in Wrapper to Bind Custom Events to a Control
	Customizing the Plug-in Wrapper to Define Custom Events
	Customizing the Plug-in Wrapper to React to Value Changes of a Control
	Attaching the Plug-in Wrapper to a Control Conditionally

	Configuring the Manifest for the Recycle Bin Example
	Configuring the Manifest for the Color Box Example
	Testing Your Modifications

	6 Customizing Siebel Open UI
	Guidelines for Customizing Siebel Open UI
	Guidelines for Customizing Presentation Models
	Guidelines for Customizing Physical Renderers
	Guidelines for Customizing Plug-in Wrappers
	Guidelines for Customizing Presentation Models and Physical Renderers and Plug-in Wrappers

	Doing General Customization Tasks
	Preparing Siebel Tools to Customize Siebel Open UI
	Modifying the Application Configuration File
	Deriving Presentation Models, Physical Renderers and Plug-in Wrappers
	Adding Presentation Model Properties That Siebel Servers Send to Clients
	Adding Presentation Model Properties That Siebel Servers Send for Applets
	Adding Presentation Model Properties That Siebel Servers Send for Views
	Customizing Control User Properties for Presentation Models

	Configuring Siebel Open UI to Bind Methods
	Binding Methods That Reside in the Physical Renderer
	Conditionally Binding Methods

	Calling Methods for Applets and Business Services
	Calling Methods
	Calling Methods for Business Services

	Using the Base Physical Renderer Class With Nonapplet Objects
	Hierarchy That the Base Physical Renderer Class Uses
	Using Methods with the Base Physical Renderer Class
	Declaring the AttachPMBinding Method When Using the Base Physical Renderer Class
	Sending an Arbitrary Scope
	Accessing Proxy Objects
	Modifying Nonapplet Configurations for Siebel CRM Version 8.1.1.10, 8.2.2.3, or Earlier

	Creating Components
	Customizing How Siebel Open UI Displays Error Messages
	Customizing Navigation Options
	Example of Restricting Navigation Options

	Customizing Events
	Refreshing Custom Events
	Overriding Event Handlers
	Attaching an Event Handler to an Event
	Attaching More Than One Event Handler to an Event
	Stopping Siebel Open UI From Calling Event Handlers
	Attaching and Validating Event Handlers in Any Sequence
	Complete Contents of the derivedpm1 Presentation Model
	Complete Contents of the derivedpm2 Presentation Model

	Customizing the Sequence that Attaches and Validates Event Handlers
	Using AttachEventHandler Prior to Siebel CRM Release 8.1.1.13
	Overriding the OnControlEvent Method and Then Calling a Superclass
	Allowing Blocked Methods for HTTP GET Access

	Managing Files
	Organizing Files That You Customize
	Where Siebel Open UI Stores Predefined Files in Siebel Open UI Clients

	Updating Relative Paths in Files That You Customize
	Specifying Dependencies Between Presentation Models or Physical Renderers and Other Files

	Configuring Manifests
	Overview of Configuring Manifests
	Example of How Siebel Open UI Identifies the JavaScript Files It Must Download
	Explanation of Callouts

	Example of a Completed Manifest Administration
	Explanation of Callouts

	Configuring Custom Manifests
	Fields of the UI Objects List
	Fields of the Object Expression List
	Adding Group Expressions
	How Siebel Open UI Chooses Files If Your Custom Manifest Matches a Predefined Manifest
	Identifying the ODH

	Adding Custom Manifest Expressions
	Using Temporary Manifest Expressions During Development

	Adding JavaScript Files to Manifest Administrative Screens

	About Preferences

	7 Customizing Styles, Applets, Fields, and Controls
	Customizing Logos, Themes, Backgrounds, Tabs, Styles, and Fonts
	Customizing the Logo
	Customizing Themes
	Customizing Themes for Other Objects

	Customizing the Synergy Theme
	Adding Landing Pages
	Removing Applets from Landing Pages
	Removing Landing Pages

	Customizing the Aurora Theme
	Customizing Browser Tab Labels
	Using Cascading Style Sheets to Modify the Position, Dimension, and Text Attributes of an Object
	Adding Fonts to Siebel Open UI
	Specifying Font Families

	Customizing Applets
	Displaying and Hiding Fields
	Text Copy of Code That Does a Partial Refresh for the Presentation Model
	Text Copy of Code That Does a Partial Refresh for the Physical Renderer

	Allowing Users to Drag and Drop Data Into List Applets
	Expanding and Collapsing Applets
	Customizing List Applets to Display a Box List
	Customizing List Applets to Render as Carousels
	Customizing List Applets to Render as Maps
	Customizing List Applets with Class Names
	Disabling Oracle Maps
	Configuring the Focus in Siebel Applets
	Adding Static Drilldowns to Applets
	Allowing Users to Change the Applet Visualization
	Configuring Manifests for Predefined Visualizations

	Displaying Applets Differently According to the Applet Mode
	Configuring Siebel Open UI to Use Different Web Templates According to the Applet Mode
	Configuring Siebel Open UI to Use Different Physical Renderers and Presentation Models According ...

	Adding Custom User Preferences to Applets
	Customizing Applets to Capture Signatures from Desktop Applications
	Customizing Applets to Capture Signatures for Siebel Mobile Applications
	Customizing Applets to Display Record Counts for Navigation Links

	Customizing Controls
	Creating and Managing Client-Side Controls
	Creating Property Sets for Client- Side Controls
	Properties That You Can Specify for Client-Side Controls
	Text Copy of the Client Control Presentation Model File
	Configuring Client-Side Multi-Select

	Displaying Control Labels in Different Languages
	Customizing Presentation Models to Display Control Labels in Different Languages

	Customizing the Busy Cursor to Display While a Business Service Executes
	Creating Property Sets for Client- Side Controls
	Properties That You Can Specify for Client-Side Controls
	Text Copy of the Client Control Presentation Model File
	Configuring Client-Side Multi-Select

	8 Customizing Calendars and Schedulers
	Customizing Calendars
	Using Fields to Customize Event Styles for the Calendar
	Allowing Users to Copy Items from List Applets to Create Calendar Events
	Customizing Event Styles for the Calendar
	Customizing Calendar Work Days
	Specifying Work Days
	Specifying the First Day of the Week
	Specifying Work Days and the First Day of the Week

	Customizing How Calendars Display Timestamps
	Replacing Standard Interactivity Calendars
	Customizing How Users View Calendar Availability
	Customizing the Calendar All Day Slot

	Customizing Resource Schedulers
	Overview of Customizing Resource Schedulers
	Explanation of Callouts
	Using Abbreviations When Customizing the Resource Scheduler

	Customizing a Resource Scheduler
	Customizing the Cache That Siebel Open UI Uses for Time Scales
	Customizing the Date Navigation Buttons
	Examples of Customizing Date Navigation Buttons

	Determining the Number That Siebel Open UI Uses to Identify Time Scales

	Customizing the Filter Pane in Resource Schedulers
	Customizing the Resource Pane in Resource Schedulers
	Customizing the Timescale Pane in Resource Schedulers
	Customizing Time Scales That Siebel Open UI Displays in the Timescale Pane

	Customizing the Schedule Pane in Resource Schedulers
	Customizing Participant Availability in Resource Schedulers
	Setting the Color for Events
	Using CSS Classes to Set the Color for Events

	Customizing Tooltips in Resource Schedulers

	9 Configuring Siebel Open UI to Interact with Other Applications
	Displaying Data from External Applications in Siebel Open UI
	Siebel Portal Framework
	Integrating External Content
	Displaying Data from External Applications in Siebel Views
	Displaying Data from External Applications in Siebel Applets

	Displaying Data from Siebel Open UI in External Applications
	Displaying Siebel Portlets In External Applications
	Configuring Siebel Open UI to Consume Siebel Portlets
	About Siebel Portlet Authentication and Security Requirements
	Configuring Views to be Embedded in a Portlet
	Configuring Standalone Applets to be Embedded in a Portlet
	About the SWESM Parameter
	About Search Specifications
	Search Specifications Guidelines

	Configuring View-Based Applets to be Embedded in a Portlet

	Configuring Advanced Options
	Configuring Multiple Command Chaining in a URL
	Configuring the Portlet Session to Stay Alive
	Configuring the Use of Cascading Style Sheets Instead of iFrame Attributes

	Configuring Communications with Siebel Portlets When Hosted Inside iFrame
	Planning Across Domain Integrations
	Planning Cross-Domain Integrations

	Additional Considerations
	Limitations
	Preparing Standalone Applets
	Using iFrame Gadgets to Display Siebel CRM Applets in External Applications
	SWE API
	SWE Commands Available in Siebel Open UI

	Web Engine HTTP TXN Business Service
	About the Web Engine HTTP TXN Business Service
	Web Engine HTTP TXN Business Service API
	Example of Using Web Engine HTTP TXN Business Service
	Sample Code for Invoking Methods of Web Engine HTTP TXN Business Service

	10 Customizing Siebel Open UI for Siebel Mobile Disconnected
	Overview of Customizing Siebel Open UI for Siebel Mobile Disconnected
	Operations You Can Customize When Clients Are Offline
	Operations You Cannot Customize When Clients Are Offline
	Process of Customizing Siebel Open UI for Siebel Mobile Disconnected

	Doing General Customization Tasks for Siebel Mobile Disconnected
	Modifying Manifest Files for Siebel Mobile Disconnected
	Registering Methods to Make Sure Siebel Open UI Runs Them in the Correct Sequence
	Using Siebel Business Services or JavaScript Services to Customize Siebel CRM Objects
	Customizing Predefined Business Components
	Customizing Predefined Applets

	Using Custom JavaScript Methods
	Using Custom Siebel Business Services
	Configuring Data Filters
	Configuring Objects That Siebel Open UI Does Not Display in Clients
	Configuring Error Messages for Disconnected Clients
	About Siebel Mobile Application Logging

	Customizing Siebel Pharma for Siebel Mobile Disconnected Clients
	Configuring Interactive Detailing in the Siebel Open UI Application for Siebel Pharma
	Configuring the Detail Link - Scenario 1: Using New Data Map Object to Capture Customer Feedback
	Configuring the Detail Link - Scenario 2: Using New Business Component User Properties to Capture...

	Customizing Siebel Service for Siebel Mobile Disconnected Clients
	Allowing Users to Commit Part Tracker Records
	Allowing Users to Return Parts
	Allowing Users to Set the Activity Status

	Methods You Can Use to Customize Siebel Mobile Disconnected
	Methods You Can Use in the Applet Class
	BusComp Method for Applets
	BusObject Method for Applets
	CanInvokeMethod Method
	InvokeMethod Method for Applets
	Name Method for Applets

	Methods You Can Use in the Business Component Class
	ActivateField Method
	Example

	ActivateMultipleFields Method
	Example 1
	Example 2

	Associate Method
	ClearToQuery Method
	Example

	CountRecords Method
	Example

	DeactivateFields Method
	DeleteRecord Method
	ExecuteQuery Method
	FirstRecord Method
	GetAssocBusComp Method
	Example of Using the GetAssocBusComp Method

	GetFieldValue Method
	GetLinkDef Method
	GetLastErrCode Method for Business Components
	GetLastErrText Method for Business Components
	GetMultipleFieldValues Method
	Example of Using the GetMultipleFieldValues Method

	GetPicklistBusComp Method
	How Siebel Open UI Uses the GetPickListBusComp Method With Constrained Picklists
	Configuring Siebel Open UI to Pick a Value from a Picklist

	GetSearchExpr Method
	GetSearchSpec Method
	GetUserProperty Method
	GetViewMode Method
	InvokeMethod for Business Components
	Name Method for Business Components
	NextRecord Method
	ParentBusComp Method
	Pick Method
	RefreshBusComp Method
	RefreshRecord Method
	SetFieldValue Method
	SetMultipleFieldValues Method
	Example

	SetSearchSpec Method
	SetViewMode Method
	UndoRecord Method
	UpdateRecord Method
	WriteRecord Method
	Example

	Methods You Can Use in the Business Object Class
	GetBusComp Method for Business Objects
	GetLastErrCode Method for Business Objects
	GetLastErrText Method for Business Objects
	Name Method for Business Objects

	Methods You Can Use in the Business Service Class
	Invoke Method for Business Services
	ServiceRegistry Method
	Properties You Must Include to Register Custom Business Services

	Methods You Can Use in the Application Class
	ActiveBusObject Method
	ActiveViewName Method
	CurrencyCode Method
	FindApplet Method
	GetBusObject Method
	GetLastErrCode Method for Applications
	GetLastErrText Method for Applications
	GetService Method
	LoginId Method
	LoginName Method
	Name Method for Applications
	NewPropertySet Method
	PositionId Method
	PositionName Method

	Methods You Can Use in the Model Class
	GetLoginId Method
	ReleaseBO Method

	Methods You Can Use in the Service Model Class
	GetContext Method

	Methods You Can Use in Offline Classes
	SetErrorMsg Method

	Other Methods You Can Use with Siebel Mobile Disconnected
	GetBusObj Method
	GetLovNameVal Method
	GetLovValName Method

	A Application Programming Interface
	Overview of the Siebel Open UI Client Application Programming Interface
	Methods of the Siebel Open UI Application Programming Interface
	Presentation Model Class
	AddComponentCommunication Method
	AddLocalString Method
	AddMethod Method
	Example of Adding a New Method
	Example of Using the Sequence Argument
	Example of Overriding the Predefined Presentation Model
	Other Examples

	AddProperty Method
	AddValidator Method
	AttachEventHandler Method
	AttachNotificationHandler Method
	Example of Using AttachEventHandler
	How Siebel Open UI Uses AttachEventHandler To Manage an Event

	AttachPMBinding Method
	AttachPostProxyExecuteBinding Method
	Using the AttachPreProxyExecuteBinding and AttachPostProxyExecuteBinding Methods

	AttachPreProxyExecuteBinding Method
	ExecuteMethod Method
	Get Method
	GetCtrlTemplate Method
	Init Method
	OnControlEvent Method
	SetProperty Method
	Setup Method for Presentation Models

	Presentation Model Class for Applets
	Summary of Methods That You Can Use with the Presentation Model for Applets
	Properties of the Presentation Model That Siebel Open UI Uses for Applets
	Adding Code to the Physical Renderer
	CanInvokeMethod Method for Presentation Models
	CanNavigate Method
	CanUpdate Method
	ExecuteMethod Method
	ExecuteUIUpdate Method
	FieldChange Method for Presentation Models
	FocusFirstControl Method
	GetControl Method
	GetControlId Method
	GetFieldValue Method
	GetFormattedFieldValue Method
	GetPhysicalControlValue Method
	InvokeMethod Method for Presentation Models
	InvokeStateChange Method
	IsPrivateField Method
	LeaveField Method
	NewFileAttachment Method
	PostExecute Method
	ProcessCancelQueryPopup Method
	RefreshData Method
	ResetAppletState Method
	SetActiveControl Method
	SetHighlightState Method
	SetFocusDefaultControl Method
	SetUpdateConditionals Method
	ShowPickPopup Method
	ShowPopup Method
	ShowSelection Method
	UpdateAppletMessage Method
	UpdateConditionals Method
	UpdateCurrencyCalcInfo Method
	UpdateQuickPickInfo Method
	UpdateStateChange Method

	Presentation Model Class for List Applets
	Properties of the Presentation Model That Siebel Open UI Uses for List Applets
	Summary of Methods That You Can Use with the Presentation Model That Siebel Open UI Uses for List...
	CellChange Method
	HandleRowSelect Method
	OnClickSort Method
	OnCtrlBlur Method
	OnCtrlFocus Method
	OnDrillDown Method
	OnVerticalScroll Method
	SetMultiSelectMode Method

	Presentation Model Class for Menus
	Properties of the Presentation Model for Menus
	GetMenuPS Method
	OnMenuInvoke Method
	ProcessMenuCommand Method
	ShowMenu Method

	Physical Renderer Class
	BindData Method
	BindEvents Method
	EnableControl Method
	EndLife Method
	FieldChange Method for Physical Renderers
	GetPM Method for Physical Renderers
	SetControlValue Method
	ShowUI Method

	Plug-in Wrapper Class
	GetEl Method
	ShowUI Method
	BindEvents Method
	SetValue Method
	GetValue Method
	BeginQuery Method
	EndQuery Method
	GetIconMap Method
	SetState Method

	Plugin Builder Class
	Template Manager Class
	About the Template Manager Class
	About Supported Template Manager Controls
	Examples Using Template Manager
	Example of Generating Markup for a Normal Text Field
	Example of Generating Markup with an Additional className
	Example of Generating Markup with Additional Attributes
	Example of Generating a Combo Box with Multiple Options
	Example of Generating a Hyperlink

	Event Helper Class
	About Event Helper Mappings
	About Double-Click
	About Events Not Unified by Event Helper

	Business Component Class
	Applet Class
	AddClientControl Method
	GetControls Method
	GetName Method for Applets
	GetRecordSet Method
	GetSelection Method

	Applet Control Class
	GetCaseSensitive Method
	GetDisabledBmp Method
	GetDisplayName Method
	GetDispMode Method

	GetEDEnabled Method
	GetEnabledBmp Method
	GetFieldName Method
	GetHeight Method
	GetIndex Method
	GetInputName Method
	GetJustification Method
	GetMaxSize Method
	GetMethodName Method
	GetName Method for Applet Controls
	GetPMPropSet Method
	GetPopupHeight Method
	GetPopupType Method
	GetPopupWidth Method
	GetPrompt Method
	GetUIType Method
	GetWidth Method
	HandleDeleteNotification Method
	IsBoundedPick Method
	IsCalc Method
	IsDynamic Method
	IsEditEnabled Method
	IsSortable Method
	NewRecord Method
	NotifyNewData Method
	PreGetFormattedFieldValue Method
	PostLeaveField Method
	SetIndex Method
	JQ Grid Renderer Class for Applets
	OnControlBlur Method
	OnControlMvg Method
	OnControlPick Method
	OnPagination Method
	OnRowSelect Method

	Business Service Class
	InvokeMethod Method for Business Services

	Application Model Class
	CanInvokeMethod Method for Application Models
	ClearMainView Method
	GenerateSrvrReq Method
	GetActiveBusObj Method
	GetActiveView Method
	GetAppletControlInstance Method
	GetAppTitle Method
	GetDirection Method
	GetName Method for Application Models
	GetPageURL Method
	GetProfileAttr Method
	GetService Method
	GotoView Method
	Work That Siebel Open UI Does When it Runs the GotoView Method

	InvokeMethod Method for Application Models
	IsExtendedKeyBoard Method
	IsMobileApplication Method
	LogOff Method
	LookupStringCache Method
	NewProperty Set Method
	RemoveService Method
	SetDiscardUserState Method

	Control Builder Class
	Locale Object Class
	FormattedToString Method
	GetCurrencyList Method
	GetDateFormat Method
	GetDayOfWeek Method
	GetDispCurrencyDecimal Method
	GetDispCurrencySeparator Method
	GetDispDateSeparator Method
	GetDispNumberDecimal Method
	GetDispNumberScale Method
	GetDispNumberSeparator Method
	GetDispTimeAM Method
	GetDispTimePM Method
	GetDispTimeSeparator Method
	GetExchangeRate Method
	GetFuncCurrCode Method
	GetLocalString Method
	GetMonth Method
	GetScale Method
	GetStringFromDateTime Method
	GetTimeFormat Method
	GetTimeZoneList Method
	GetTimeZoneName Method
	SetCurrencyCode Method
	SetExchDate Method
	SetScale Method
	StringToFormatted Method

	Component Class
	Component Method
	GetChildren Method
	GetParent Method
	GetPM Method for Components
	GetPR Method
	GetSiblings Method
	Setup Method for Components
	Show Method for Components

	Component Manager Class
	DeleteComponent Method
	FindComponent Method
	Finding Components According to IDs
	Getting Parents, Siblings, and Children

	MakeComponent Method
	Show Method for Component Managers

	Other Classes
	Define Method
	ShowErrorMessage Method

	Methods for Pop-Up Objects, Google Maps, and Property Sets
	Pop-Up Presentation Models and Physical Renderers
	Modal Pop-Up Objects
	Nonmodal Pop-Up Object
	Properties of the Pop-Up Presentation Model
	Methods of the Popup Presentation Model

	Methods of the Popup Physical Renderer
	Method That Integrates Google Maps
	GetInlineRoute Method
	Flow That the GetInlineRoute Method Uses

	ShowMapLocations Method
	Flow That the ShowMapLocations Method Uses

	Calling Methods That the Integration with Maps and Location Method Uses

	Methods That Manipulate Property Sets
	Structure of the Property Set
	AddChild Method
	Clone Method
	Copy Method
	DeepCopy Method
	GetChild Method
	GetChildByType Method
	InsertChildAt Method
	RemoveChild Method
	RemoveProperty Method
	SetProperty Method

	B Reference Information for Siebel Open UI
	Life Cycle Flows of User Interface Elements
	Life Cycle Flows That Save Records
	Flow That Saves Records If the User Uses a Shortcut
	Flow That Saves Records If the User Uses the Save Menu

	Life Cycle Flows That Handle User Navigation
	Flow That Siebel Open UI Uses if the User Clicks an Applet in a View
	Flow That Siebel Open UI Uses if the User Navigates to a View
	Flow That Handles Focus Changes in Form Applets
	Flow That Handles Focus Changes in List Applets

	Life Cycle Flows That Send Notifications
	Flow That Notifies the Siebel Server
	Flow That Sends a Notification State Change

	Life Cycle Flows That Create New Records in List Applets
	Flow That Creates New Records in List Applets, Calling the Siebel Server
	Flow That Creates New Records in List Applets, Processing the Server Reply
	Flow That Creates New Records in List Applets, Updating the User Interface
	Flow That Creates New Records in List Applets, Updating the Proxy and Presentation Model

	Life Cycle Flows That Handle User Actions in List Applets
	Flow That Handles Navigation to Another Row in List Applets
	Flow That Handles the Pagination Button in List Applets
	Flow That Handles a Column Sort in List Applets
	Flow That Handles a Cell Click in List Applets
	Flow That Handles a Cell Edit and Blur in List Applets
	Flow That Handles a Drilldown in List Applets

	Notifications That Siebel Open UI Supports
	Summary of Notifications That Siebel Open UI Supports
	Using Notifications with Operations That Call Methods
	NotifyGeneric Notification Type
	NotifyStateChanged Notification Type
	Example Usages of Notifications
	Example of the NotifyBeginNotifys Notification
	Example of the NotifyNewSelection Notification
	Example of the NotifyNewFieldData Notification
	Example of the NotifyNewDataWorkset Notification
	Example of the NotifyNewData, NotifyInsertWorkSet, and NotifyDeleteRecordSet Notifications
	Example of the NotifyBeginQuery, NotifyNewFieldQuerySpec, and NotifyEndQuery Notification
	Example of the NotifyEndNotifys Notification
	Example of the SWEIRowSelection Notification
	Example of the BegRow Notification
	Example of the GetQuickPickInfo Notification
	Example of the ClosePopup Notification
	Example of the SWEAInvokeMethod Notification
	Example of the NotifyStateChanged Notification

	Property Sets That Siebel Open UI Supports
	Siebel CRM Events That You Can Use to Customize Siebel Open UI
	Events That You Can Use to Customize Form Applets
	Events That You Can Use to Customize List Applets

	Languages That Siebel Open UI Supports
	Languages That Siebel Open UI Supports for Windows, AIX, Oracle Solaris, and HP-UX
	Languages That Siebel Open UI Supports for Linux RH, Linux SuSe, Enterprise Linux, and Java Local...

	Screens and Views That Siebel Mobile Uses
	Screens and Views That Siebel Consumer Goods Uses
	Screens and Views That Siebel Sales Uses
	Screens and Views That Siebel Service Uses
	Screens and Views That Siebel Pharma Uses

	Controls That Siebel Open UI Uses
	Predefined Controls That Siebel Open UI Uses
	Other Controls That Siebel Open UI Uses

	Browser Script Compatibility
	Sequence That Siebel Open UI with Custom Browser Script
	How Siebel Open UI Handles Custom Client Scripts
	How Siebel Open UI Creates Shadow Objects for Applications
	How Siebel Open UI Creates Shadow Objects for Business Objects

	How Siebel Open UI Creates Shadow Objects for Applets, Business Components, or Business Services
	How Siebel Open UI Creates Shadow Objects for Controls

	Browser Script Object Types
	Event Handlers You Can Use to Handle Predefined Events
	Event Handlers You Can Use to Handle Predefined DOM Events
	Methods You Can Use in Browser Script

	C Post-Upgrade Configuration Tasks
	Updating Physical Renderer Customizations for Controls
	Control DOM Access and Changes
	Control Value Access and Changes
	Control State Manipulation

	Modifying Physical Renderer Code for Event Helper
	Binding Stray DOM Events
	Modifications Required for DOM Elements Configured in SWE OUI Templates
	Modifications Required for DOM Elements with No Representation

	Binding Events for Controls

	Overriding Plug-In Wrappers
	About Overriding Plug-In Wrappers
	Overview of the Skeleton Structure of a Plug-in Wrapper
	Explanation of Callouts

	About Presentation Model-Injected APIs in Plug-in Wrappers
	Get
	SetProperty
	ExecuteMethod
	OnControlEvent
	Helper

	D Glossary
	access control
	account
	ActiveX
	ActiveX control
	activity
	activity (Siebel CRM)
	administrator
	applet metadata
	business component
	business object
	carouselrenderer.js file
	client
	client computer
	client file
	contact
	CRM (Customer Relationship Management)
	customization
	derive
	focus
	infinite scroll
	inheritance chain
	jqmlistrenderer and jqmgridrenderer
	JQM Grid Renderer
	Manifest File
	metadata
	metadata files
	native mode
	object definitions
	opportunity
	object manager
	parent business component
	physical renderer
	physical renderer methods
	predefined Siebel Open UI
	predefined object
	Presentation Model
	Presentation Model class
	private field
	proxy object
	responsibility
	shadow object
	Siebel Business Application
	Siebel CRM data
	Siebel Open UI
	Siebel Repository
	Siebel Property Set
	Siebel Server
	Siebel Web services
	synchronous request
	SWE runtime applet object
	user
	user interface

	Index

