
Transports and 
Interfaces: Siebel 
Enterprise Application 
Integration

Siebel 2018
April 2018



 

Copyright © 2005, 2018 Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions 
on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in 
your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, 
modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any 
means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for 
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-
free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing 
it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, 
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users 
are “commercial computer software” pursuant to the applicable Federal Acquisition Regulation and 
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and 
adaptation of the programs, including any operating system, integrated software, any programs installed 
on the hardware, and/or documentation, shall be subject to license terms and license restrictions 
applicable to the programs. No other rights are granted to the U.S. Government. 

This software or hardware is developed for general use in a variety of information management 
applications. It is not developed or intended for use in any inherently dangerous applications, including 
applications that may create a risk of personal injury. If you use this software or hardware in dangerous 
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and 
other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any 
damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be 
trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks 
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, 
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced 
Micro Devices. UNIX is a registered trademark of The Open Group. Android is a trademark of Google Inc. 
Apple and iPad are registered trademark of Apple Inc.

This software or hardware and documentation may provide access to or information about content, 
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and 
expressly disclaim all warranties of any kind with respect to third-party content, products, and services 
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and 
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use 
of third-party content, products, or services, except as set forth in an applicable agreement between you 
and Oracle.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website 
at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle 
Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit 
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.



Contents
Transports and Interfaces: Siebel Enterprise Application Integration 1

Chapter 1:  What’s New in This Release

Chapter 2:  EAI Transports and Interfaces Overview
About EAI Transports 11

About EAI Transport Methods 12
Outbound Methods for a Transport Business Service 13
Inbound Methods for a Transport Business Service 13

Using Named Subsystems for Transport Parameters 14
Rules of Precedence for Parameter Specification 14
Common EAI Transport Parameters 15

About Object Interfaces and EAI 17

Database-Level Interfacing 18

Chapter 3:  EAI MQSeries Server Transport
About the EAI MQSeries Server Transport Business Service 19

About the MQPMO_SYNCPOINT Option 20
EAI MQSeries Server Transport Parameters 20
Exposing MQMD Headers as Properties 21
EAI MQSeries Server Transport Named Subsystem 25

Using the SendReceive Method with MQSeries 25

Dispatch Error Handling for the EAI MQSeries Server Transport 25

Increasing the Maximum Message Length on IBM WebSphere MQ 26

Using the EAI MQSeries Server Transport on AIX 26

About EAI MQSeries Transport Re-Entrance 27

About Message ID Tracking for an Inbound Message 28

Invoking a Workflow Using MQSeries Server Receiver 28

Chapter 4:  EAI MSMQ Transport
About Microsoft Message Queuing (MSMQ) 31

About the EAI MSMQ Transport 31
Transports and Interfaces: Siebel Enterprise Application Integration Siebel
2018

3



Contents ■ 
Methods for Sending and Receiving Messages 32
EAI MSMQ Transport Named Subsystems 33

Configuring the EAI MSMQ Transport Servers 33

Configuring EAI MSMQ Transport for Various Send and Receive Scenarios 34
EAI MSMQ Transport Prerequisites 34
EAI MSMQ Transport Parameters 35
About Defining Integration Objects 35
Sending Outbound Messages with EAI MSMQ Transport 36
Receiving Inbound Messages with MSMQ Receiver 41

Chapter 5:  EAI Java Business Service
About the EAI Java Business Service 47

Requirements for Implementing a Java Business Service 47

Creating a Java Business Service 54
Defining a Business Service in Java 54
About Implementing a Business Service in Java 55
About Exception Handling for the Java Business Service 55

About the Lifecycle of a 32-bit Java Business Service 56

Example of a Java Business Service 56

About the Lifecycle of a 64-bit Java Business Service 57

Restrictions for Implementing a Java Business Service 57

Troubleshooting the Java Business Service 57

Chapter 6:  EAI JMS Transport
About the EAI JMS Transport Business Service 59

About Synchronous and Asynchronous Invocation 60

About the JMS Publish-and-Subscribe Model 61

About Operations (Methods) of the EAI JMS Transport 61

Features Not Supported for Use with the Siebel JMS Transport 62

About JMS Message Types 62

About Sending and Receiving XML 63

About Multistep Operations Within a JMS Session 63

About Undeliverable Messages in JMS Transport 64

Detailed Input and Output Specifications for the EAI JMS Transport 64
JMS Headers and Properties 64
Transports and Interfaces: Siebel Enterprise Application Integration Siebel 
2018

4 



Contents ■
Input Arguments Used by the Dispatch Step 65
About the Output of the JMS Transport 69

Configuring the EAI JMS Transport 70
About the JMSSubsys Named Subsystem 71
About the JavaContainerSubsys Named Subsystem 71
About the JMS Receiver 72
About Reconnecting to the External JMS Queue 74
Creating a JMS Subsystem by Using the Siebel Web Client 75

Sending and Receiving JMS Messages 75

Receiving, Dispatching, and Sending JMS Messages 79

Sending and Receiving Custom JMS Properties 82

Enabling Authentication and Authorization for the EAI JMS Transport 84
About JMS Credential Specification 85
Configuring Credentials in JNDI 85
Configuring Credentials in JMS 86
Configuring Against Oracle WebLogic Server 86
Configuring Against TIBCO Enterprise Message Service 87
Configuring Against IBM WebSphere MQ 88
About Security Configuration on the JMS Server 88

Troubleshooting for the JMS Transport 89

About Logging for the JMS Transport 90

About Caching for the JMS Transport 90

Chapter 7:  EAI HTTP Transport
About the EAI HTTP Transport 91

System Requirements for Using the EAI HTTP Transport 92
Selecting the Appropriate Business Service for HTTP 92

Using POST and GET 93

EAI HTTP Transport Named Subsystems 93

EAI HTTP Transport Method Arguments 94

Sending a Message Using the EAI HTTP Transport 98

Using the EAI HTTP Transport for Inbound Integration 100
Preparing to Use the EAI HTTP Transport for Inbound Integration 100
Specifying HTTP Parameters for Inbound Integration 101
Using the EAI HTTP Transport in Session Mode 101
Using the EAI HTTP Transport in Sessionless Mode 104

Process of Using the EAI HTTP Transport for Inbound Messages 106
Transports and Interfaces: Siebel Enterprise Application Integration Siebel
2018

5



Contents ■ 
Handling EAI HTTP Transport Business Service Errors 109

Processing and Sending Outbound XML Documents 110

Sending and Receiving Messages with the EAI HTTP Transport 112

Examples Using HTTP Request 114
Controlling Login Sessions with Session Mode 114
Sending Requests in Sessionless Mode 115
Accessing a URL Protected by Basic Authentication 115
Providing Client Certificate Information for TLS Mutual Authentication 116

Creating Custom Headers for the EAI HTTP Transport Service 117

About Sending and Receiving Messages Through HTTP 117

About Transport Headers and HTTP Response Headers 118

Chapter 8:  Integrating Siebel Business Applications with 
Java Applications

About Siebel Business Applications and Java Applications 119

About the JDB Business Service API 121

About the Siebel Code Generator 121
Invoking the Siebel Code Generator 122
Code Generated for a Business Service 122
About Methods of Java Classes Generated for a Business Service 124
About the Code Generated for an Integration Object 126

About Running the Java Data Bean 129
Connect String and Credentials for the SiebelDataBean 129
Connection Parameters for the SiebelDataBean 130
Examples Using Generated Code for Integration Objects 133

About the Siebel Resource Adapter 135
Using the Resource Adapter 135
About the Connect String and Credentials for the Java Connector 135
About JCA Logging 138

Chapter 9:  EAI DLL and EAI File Transports
About the EAI DLL Transport 143

EAI DLL Transport Methods 143
EAI DLL Transport Parameters 144
Creating a DLL to Call a Function in an External DLL 144

About the EAI File Transport 147
EAI File Transport Methods 147
Transports and Interfaces: Siebel Enterprise Application Integration Siebel 
2018

6 



Contents ■
Using the EAI File Transport Methods 148
Generating Unique Filenames 148
EAI File Transport Parameters 149
Enabling Write Access for the EAI File Transport 150
EAI File Transport Named Subsystem 151

Chapter 10: Transcode Service Business Service
About the Transcode Service Business Service 153

Transcode Service Business Service Methods 154
Convert Method 154
Validate Method 155

Transcode Service Business Service Examples 156
Using the Validate Method 156
Using the Convert Method 158

Index
Transports and Interfaces: Siebel Enterprise Application Integration Siebel
2018

7



Contents ■ 
Transports and Interfaces: Siebel Enterprise Application Integration Siebel 
2018

8 



1 What’s New in This Release
What’s New in Transports and Interfaces: Siebel Enterprise 
Application Integration, Siebel 2018
No new features have been added to this guide for this release. This guide has been updated to 
reflect only product name changes.

NOTE: Siebel 2018 is a continuation of the Siebel 8.1/8.2 release.

What’s New in Transports and Interfaces: Siebel Enterprise 
Application Integration, Siebel Innovation Pack 2017, Rev. B
This guide has been updated to correct or remove obsolete product and component terms.

NOTE: Siebel Innovation Pack 2017 is a continuation of the Siebel 8.1/8.2 release.
Transports and Interfaces: Siebel Enterprise Application Integration Siebel
2018

9



What’s New in This Release ■ 
Transports and Interfaces: Siebel Enterprise Application Integration Siebel 
2018

10 



2 EAI Transports and Interfaces 
Overview
Siebel Enterprise Application Integration (EAI) provides mechanisms for exchanging data between 
Siebel Business Applications and external systems. 

This chapter includes the following topics on these mechanisms:

■ About EAI Transports on page 11

■ About EAI Transport Methods on page 12

■ Using Named Subsystems for Transport Parameters on page 14

■ About Object Interfaces and EAI on page 17

■ Database-Level Interfacing on page 18

About EAI Transports
Transports allow Siebel Business Applications to exchange data with external applications using 
standard technologies for both synchronous and asynchronous communication protocols.

Transports handle all data as binary data (bytes) because the IsTextData parameter that was 
available in previous releases is no longer supported. If you want to use character conversion on the 
transport, then you use the CharSetConversion parameter. Handling the data as binary defers any 
character set conversion until needed and avoids conversion at the transport level to prevent data 
corruption. For example, treating a UTF-8 encoded Extensible Markup Language (XML) document as 
text when the conversion executes leads to an XML string in the local code page, while its header 
still describes UTF-8. It is best to treat all self-describing data, including XML, as binary. 

Character conversion is available in a number of business services. These business services are:

■ EAI Transport business services (MQ Series, MSMQ, JMS, HTTP, DLL, File)

■ XML Converter business services 

■ Transcode Service business service

When business services are invoked from a workflow, the valid set of encodings is controlled by a 
picklist. If the business services are invoked through scripting or similar mechanisms, then the 
character set name is supplied textually. 

NOTE: For data validation or conversion from one encoding to another, you can use the Transcode 
Service business service. For information about the Transcode Service business service, see 
Chapter 10, “Transcode Service Business Service.”
Transports and Interfaces: Siebel Enterprise Application Integration Siebel
2018

11



EAI Transports and Interfaces Overview ■ About EAI Transport Methods
Transports provide connectivity to virtually any communication protocol that can represent data as 
text or binary messages, including MQSeries from IBM, MSMQ from Microsoft, Java Message Service 
(JMS), and HTTP. EAI Transports allow Siebel Business Applications to integrate with Web-based 
applications as well as legacy systems that are encapsulated using middleware. Transports are 
interchangeable. If you change technologies at any point, then you can reuse existing workflows and 
logic by switching the transport adapter.

Transports can:

■ Support bidirectional exchange of messages.

■ Run within the Siebel Application Object Manager.

■ Invoke and be invoked by Workflow Process Manager and EAI Dispatch Service. 

■ Be invoked within an eScript or VBScript.

■ Send and receive messages in XML format. 

■ Pass messages through, or convert messages into, property sets for XML and MIME messages.

Available transports include: 

■ EAI MQSeries Server Transport. For information about these transports, see Chapter 3, “EAI 
MQSeries Server Transport.”

■ EAI MSMQ Transport. For information about this transport, see Chapter 4, “EAI MSMQ Transport.”

■ EAI JMS Transport. For information about this transport, see Chapter 6, “EAI JMS Transport.”

■ EAI HTTP Transport. For information about this transport, see Chapter 7, “EAI HTTP Transport.”

■ EAI DLL Transport and EAI File Transport. For information about these transports, see Chapter 9, 
“EAI DLL and EAI File Transports.”

NOTE: The transport business services are not re-entrant. This applies not only to receivers, but also 
to nonreceiver mode because users can define scripts in the business service that invoke the same 
business service. For more information about transport re-entrance, see “About EAI MQSeries 
Transport Re-Entrance” on page 27.

About EAI Transport Methods
The method on a transport adapter’s business service controls the action to be performed by the 
transport. There are two outbound methods and three inbound methods available for EAI Transports. 
Not every method is available on every transport. These methods are described in the following 
topics:

■ “Outbound Methods for a Transport Business Service” on page 13

■ “Inbound Methods for a Transport Business Service” on page 13

For each method, there are a number of common parameters, as shown on Table 2 on page 16, as 
well as transport-specific parameters that are discussed in the respective chapter for each transport. 
Transports and Interfaces: Siebel Enterprise Application Integration Siebel 
2018

12 



EAI Transports and Interfaces Overview ■ About EAI Transport Methods
Outbound Methods for a Transport Business Service
Available outbound methods depend on the transport business service in use, such as EAI MSMQ 
Transport. The business service sends messages from the Siebel application using the appropriate 
communications protocol, such as MQSeries, MSMQ, HTTP, and so on. There are two outbound 
methods that you use to send requests from a Siebel application to another application:

■ Send. Sends a message from a Siebel application when the Siebel application does not require 
a response. This is an asynchronous request method (except for the EAI HTTP Transport, which 
expects a correct HTTP response), because the Siebel application does not wait for a response 
before continuing with the process.

■ Send and Receive (SendReceive). Sends a message from the Siebel application when the 
Siebel application requires a response before continuing. This is a synchronous request and 
response method, because it must receive a response before the Siebel application can continue.

Inbound Methods for a Transport Business Service
Available inbound methods depend on the transport business service in use, such as EAI MSMQ 
Transport. The inbound methods monitor a specified queue and upon receipt of a message, dispatch 
it to another service. 

There are three inbound methods that can be used to receive requests from another application: 

■ Receive. Receives an inbound request message and returns it to the caller of the transport.

■ Receive and Execute (ReceiveDispatch). Receives an inbound request message and calls 
another service with the inbound message as input. This called service is known as the Dispatch 
Service, and the method that is called is known as the Dispatch Method.

■ Receive, Execute, and Send (ReceiveDispatchSend). This is a request/response method. It 
receives an inbound request message, calls another service with the inbound message as input, 
and then sends the output of the called service as a response. To suppress the response, you can 
create an output property, on the dispatch service, of type EmptyResponse and set it to True.

NOTE: To receive a message and send a reply using the ReceiveDispatchSend method, you must 
use the <Value> process property in dispatched workflows to hold the message.

NOTE: There are server components (called receivers) on top of the inbound methods that run as 
Siebel Server tasks. When running an EAI receiver such as MQSeries Server or MSMQ Receiver (using 
the methods ReceiveDispatch or ReceiveDispatchSend), if the dispatch service has an error, then the 
receiver shuts down. Check the Status column on the Component Tasks for details about the cause 
of the error.
Transports and Interfaces: Siebel Enterprise Application Integration Siebel
2018

13



EAI Transports and Interfaces Overview ■ Using Named Subsystems for Transport 
Parameters
Using Named Subsystems for Transport 
Parameters
Named subsystems are groupings of defined enterprise parameters that are stored in the Siebel 
Gateway. You use named subsystems to specify methods and parameters for EAI Transports. 
Transport business services take two subsystem names as parameters, which you define using the 
Siebel Server Manager:

■ Transport Connection Subsystem (ConnectionSubsystem)

■ Transport Data Handling Subsystem (DataHandlingSubsystem)

Values for parameters in a named subsystem are common to every user of the subsystem across the 
enterprise. Subsystem names themselves are parameters for server components. You can logically 
group parameters into various subsystems.

For the two EAI Transport named subsystem parameters, ConnectionSubsystem and 
DataHandlingSubsystem, two parameters exist for the EAI receivers: ReceiverConnectionSubsystem 
and ReceiverDataHandlingSubsystem. The EAI Receiver looks up these parameters from the server 
component parameters and copies the corresponding properties (ConnectionSubsystem and 
DataHandlingSubsystem) to the input property set of the transport business service.

NOTE: You must create named subsystems and specify the parameters for the subsystems. Then, 
you specify the named subsystems you created, for example, as business service user properties in 
a workflow or through scripting. You must specify named subsystem parameters by the values of 
their Alias fields in the Profile Parameters list.

The following subtopics are discussed in this topic:

■ “Rules of Precedence for Parameter Specification” on page 14

■ “Common EAI Transport Parameters” on page 15

Rules of Precedence for Parameter Specification
You can specify the two named subsystem parameters, ConnectionSubsystem and 
DataHandlingSubsystem, as either business service user properties or as run-time arguments. If you 
specify the parameters in both locations, then the business service user property takes precedence 
over the run-time arguments.

NOTE: For additional information about named subsystems, see Siebel System Administration 
Guide.

You specify every other parameter in one of the two named subsystems or as run-time arguments. 
Siebel EAI looks for the parameter in the ConnectionSubsystem or the DataHandlingSubsystem, 
depending on which parameter it is. If you specified the appropriate named subsystem, then Siebel 
EAI always looks for the parameter there. 

If you do not specify the parameter in this named subsystem, even if you specified it as a run-time 
argument, then the run-time specification is ignored. Siebel EAI looks for the parameter in a run-
time specification only if no appropriate named subsystem is specified.
Transports and Interfaces: Siebel Enterprise Application Integration Siebel 
2018

14 



EAI Transports and Interfaces Overview ■ Using Named Subsystems for Transport
Parameters
Common EAI Transport Parameters
To configure the EAI Transports, you create named subsystems for data handling and connection 
parameters, as presented in Table 1.

The data handling parameters are presented in Table 2 on page 16. These parameters are common 
to every transport method. After you create the named subsystems, you then specify these named 
subsystems as parameters in the service method argument or the business service user property.

Table 1. Dispatch Parameter Usage

When You... Use This Parameter...

Call any Business Service DispatchService. This parameter must be used in 
conjunction with DispatchMethod.

Call any Business Service DispatchMethod. This parameter must be used in 
conjunction with DispatchService.

Call the Dispatch Rule Set Business 
Service 

DispatchRuleSet.

Call any Workflow DispatchWorkflowProcess.
Transports and Interfaces: Siebel Enterprise Application Integration Siebel
2018

15



EAI Transports and Interfaces Overview ■ Using Named Subsystems for Transport 
Parameters
Table 2. Common Data Handling Parameters for Transport Methods

Parameter Name Description

CharSetConversion CharSetConversion specifies if and how a character set conversion 
needs to occur before or after sending or receiving data from the 
external system. Legal values are None, UTF-8, and UTF-16.

Default is None. Use the default value for this parameter for self-
describing content such as XML and MIME. 

When used with a Receive method, CharSetConversion implies that 
the external data being read is in whatever charset specified by 
this setting and must be converted to String. Therefore, the output 
<Value> is a String whenever CharSetConversion is specified. If no 
CharSetConversion is specified, then the output <Value> is in 
binary and retains its original encoding.

When used with a Send method, CharSetConversion defines the 
character set for the output data. The data in <Value> is converted 
to the character set specified by CharSetConversion.

Depending on the value of this parameter, transport business 
services do implicit character set conversions, if necessary. Note 
that same CharSetConversion is assumed for requests and 
responses.

ConverterService Default is EAI XML Converter. This is the name of the business 
service to use for serializing property sets to a buffer and 
unserializing buffers to property sets. This parameter receives 
arguments through business service user properties if the 
converter service can accept them. 

NOTE: You cannot use an arbitrary service as a converter service.

DispatchMethod DispatchMethod parameter specifies the dispatch method. 
Specification of DispatchService is mutually exclusive with 
specification of a DispatchRuleSet or a DispatchWorkflowProcess. 
This parameter is only applicable for the ReceiveDispatch and 
ReceiveDispatchSend methods. 

DispatchRuleSet DispatchRuleSet specifies the name of the dispatch rule set for the 
Dispatcher Service. Specification of DispatchRuleSet is mutually 
exclusive with specification of DispatchWorkflowProcess or 
Dispatch Service. This parameter is only applicable for the 
ReceiveDispatch and ReceiveDispatchSend methods. 

DispatchService DispatchService specifies the dispatch service. Specification of 
DispatchService is mutually exclusive with specification of a 
DispatchRuleSet or DispatchWorkflowProcess. This parameter is 
only applicable for the ReceiveDispatch and ReceiveDispatchSend 
methods. 
Transports and Interfaces: Siebel Enterprise Application Integration Siebel 
2018

16 



EAI Transports and Interfaces Overview ■ About Object Interfaces and EAI
About Object Interfaces and EAI
Object Interfaces allow integration between the Siebel application and external applications. Object 
Interfaces can be called by eScripts and VB or used within a workflow. The workflow can use other 
business services and transports as needed.

Available object interface support includes Siebel Java Data Beans for integration with Java EE 
applications. For information, see Chapter 8, “Integrating Siebel Business Applications with Java 
Applications.”

DispatchWorkflowProcess DispatchWorkflowProcess specifies the name of the workflow to 
dispatch to. Specification of DispatchWorkflowProcess is mutually 
exclusive with specification of DispatchRuleSet or Dispatch 
Service. This parameter is only applicable for the ReceiveDispatch 
and ReceiveDispatchSend methods.

IgnoreCharSetConvErrors Default is False. This parameter specifies whether character set 
conversion errors are ignored. If False, with any such errors, then 
the transport service propagates the error.

Impersonate Default is False. This parameter indicates whether or not the 
receiver executes the incoming request using the default 
credentials of the receiver or those provided in the incoming XML 
document. If this parameter is set to True, then the receiver 
analyzes the incoming XML document (<SiebelMessage> element) 
for the eaiusername and eaipassword credential attributes. If 
these credentials are found, then the receiver attempts to relogin 
with the credential. If the Impersonate parameter is set to True 
and the credentials are not found or are not a valid Siebel 
username or password, then an error message is returned.

RollbackOnDispatchError Default is True. This parameter indicates whether or not to roll 
back transport transaction if a Dispatch Method fails. This 
parameter is only available for the transactional transports 
MQSeries Server and MSMQ.

SiebelTransactions Default is True. This parameter indicates whether or not to nest the 
Siebel transaction within the transport transaction. This parameter 
is only available for the transactional transports MQSeries Server 
and MSMQ. If this parameter is set to False, then the transaction 
support is turned off at the transport level. This setting means that 
if the transaction fails, then there is no rollback at the Siebel 
transaction level.

Table 2. Common Data Handling Parameters for Transport Methods

Parameter Name Description
Transports and Interfaces: Siebel Enterprise Application Integration Siebel
2018

17



EAI Transports and Interfaces Overview ■ Database-Level Interfacing
Database-Level Interfacing
In addition to transports and object interfaces, Siebel Business Applications provide Enterprise 
Integration Manager (EIM) for high-volume data exchange and batch loading. You use the set of 
interface tables that serve as intermediate tables between your external data source and the Siebel 
Database.

NOTE: For more information about Siebel EIM and the interface tables, see Siebel Enterprise 
Integration Manager Administration Guide.
Transports and Interfaces: Siebel Enterprise Application Integration Siebel 
2018

18 



3 EAI MQSeries Server Transport
This chapter discusses the EAI MQSeries Server Transport business service. It includes the following 
topics:

■ About the EAI MQSeries Server Transport Business Service on page 19

■ Using the SendReceive Method with MQSeries on page 25

■ Dispatch Error Handling for the EAI MQSeries Server Transport on page 25

■ Increasing the Maximum Message Length on IBM WebSphere MQ on page 26

■ Using the EAI MQSeries Server Transport on AIX on page 26

■ About EAI MQSeries Transport Re-Entrance on page 27

■ About Message ID Tracking for an Inbound Message on page 28

■ Invoking a Workflow Using MQSeries Server Receiver on page 28

This chapter assumes that you understand the architecture and operation of IBM WebSphere MQ 
(formerly known as IBM MQSeries). For more information, consult the IBM WebSphere MQ 
documentation at:

http://www.ibm.com/support

About the EAI MQSeries Server 
Transport Business Service
The Siebel EAI MQSeries Server Transport provides a messaging solution to help you integrate data 
between Siebel Business Applications and external applications that can interface with IBM 
WebSphere MQ. The EAI MQSeries Server Transport business service transports messages to and 
from IBM WebSphere MQ queues. It uses the Message queuing API (MQI).

NOTE: The EAI MQSeries Server Transport can connect only to IBM WebSphere MQ Server software. 
The IBM WebSphere MQ Server must be running on the same system as your Siebel Server. Before 
using the EAI MQSeries Server Transport, you must install and configure the IBM WebSphere MQ 
software. Contact your IBM sales representative for details.

The EAI MQSeries Server Transport supports the inbound and outbound methods described in 
“Outbound Methods for a Transport Business Service” on page 13 and “Inbound Methods for a Transport 
Business Service” on page 13. This topic includes the following information:

■ “About the MQPMO_SYNCPOINT Option” on page 20

■ “EAI MQSeries Server Transport Parameters” on page 20

■ “Exposing MQMD Headers as Properties” on page 21

■ “EAI MQSeries Server Transport Named Subsystem” on page 25
Transports and Interfaces: Siebel Enterprise Application Integration Siebel
2018

19



EAI MQSeries Server Transport ■ About the EAI MQSeries Server Transport Business 
Service
About the MQPMO_SYNCPOINT Option
The EAI MQ Series Server Transport business service uses the MQPMO_SYNCPOINT option for 
sending messages to IBM WebSphere MQ using the IBM MQ API.

MQPMO_SYNCPOINT sends the message with syncpoint control. A syncpoint is a logical point in the 
execution of a program where changes made by the program can be saved. The message request 
operates within the unit of work: the message is not visible outside the unit of work until the unit of 
work is saved. If the unit of work is rolled backed, then the message is deleted. For more information 
about syncpoint options, consult the IBM WebSphere MQ documentation at:

http://www.ibm.com/support

EAI MQSeries Server Transport Parameters
In addition to supporting the common transport parameters presented in Table 2 on page 16, the EAI 
MQSeries Server Transport uses the parameters shown in Table 3. These can be specified as service 
method arguments, subsystem parameters, or user properties.

NOTE: To send to a model queue, the model queue must have a definition type of PERMANENT and 
the following arguments must be supplied in the workflow: Model Queue, Physical Queue, Queue 
Manager, and Message Text.

Table 3. EAI MQSeries Server Transport-Specific Parameters

Argument Display Name Description

MqAcknowledgements Receive 
Acknowledgements

Default is False. This parameter specifies 
whether or not delivery and arrival 
acknowledgements are to be received.

MqAckPhysicalQueueName Acknowledgement 
Physical Queue 
Name

If the MqAcknowledgements is set to True, 
then this parameter contains the name of the 
physical queue for acknowledgements to 
responses.

MqAckQueueManagerName Acknowledgement 
Queue Manager 
Name

Defaults to MqQueueManagerName if 
unspecified. If MqAcknowledgements is set to 
True, then this parameter contains the name 
of the queue manager for acknowledgements 
to responses.

MqModelQueueName Model Queue Name Name of the MQSeries model queue.
Transports and Interfaces: Siebel Enterprise Application Integration Siebel 
2018

20 



EAI MQSeries Server Transport ■ About the EAI MQSeries Server Transport Business
Service
In addition to the EAI MQSeries Server Transport, you can run the MQSeries Server Receiver, which 
is a server component that periodically checks the MQSeries queues you specify, for inbound 
messages. 

NOTE: The persistence of the message is the same as the persistence of the queue itself.

Exposing MQMD Headers as Properties
In the inbound direction, that is, when a message is received from a queue, the EAI MQSeries Server 
Transport feature exposes the MQMD headers as properties of a property set. The supported headers 
are summarized in Table 6 on page 23.

MqPhysicalQueueName Physical Queue 
Name

Name of the MQSeries physical queue. You 
can also create an alias queue which points to 
a target queue and use the alias queue name 
as the input argument physical queue name 
and send messages to the target queue.

NOTE: Using an alias queue works. However, 
since the alias queue does not have a backout 
queue defined, the receiver cannot roll back 
to the backout queue.

MqQueueManagerName Queue Manager 
Name

Name of the MQSeries queue manager. If this 
parameter is not specified, then the default 
Queue Manager Name, as specified in the 
MQSeries configuration, is used. The 
Response Queue Manager is the same as 
MqQueueManagerName.

MqRespModelQueueName Response Model 
Queue Name

Name of model queue for response 
connection. 

MqRespPhysicalQueueName Response Physical 
Queue Name

Name of physical queue for response 
connection.

MqFormat MQSeries Format The format of the message from the Siebel 
application to the outbound queue.

MqSleepTime Sleep Time Default is 20000 milliseconds. The timeout 
interval on receive calls, in milliseconds.

Table 3. EAI MQSeries Server Transport-Specific Parameters

Argument Display Name Description
Transports and Interfaces: Siebel Enterprise Application Integration Siebel
2018

21



EAI MQSeries Server Transport ■ About the EAI MQSeries Server Transport Business 
Service
In the outbound direction, that is, when a message is placed on a queue, the EAI MQ Server Transport 
supports the headers shown in Table 4 to be set by the caller.

You can set a MQMD message header for the Siebel application by specifying it as a property in a 
property set on the outbound side. Whereas on the inbound side, the MQMD message header of the 
response is exposed to the user as a property on the output property set.

Table 4. Valid Outbound (Input) Headers

Header Value

CodedCharSetId MQCCSI_Q_MGR, MQCCSI_INHERIT, MQCCSI_EMBEDDED, or any positive 
Long

Encoding MQENC_NATIVE or any positive Long

Expiry Any positive Long

MsgType Any nonnegative Long

Persistence MQPER_PERSISTENT, MQPER_NOT_PERSISTENT, or 
MQPER_PERSISTENCE_AS_Q_DEF

Priority MQPRI_PRIORITY_AS_Q_DEF or any nonnegative Long

Report The only settable value is MQRO_NONE. 

ReplyToQ Name of the reply queue, for example, myQueue.

ReplyToQ is set in the message header of an incoming MQ message by the 
sender application. This sets dynamically the queue for the response sent by 
Siebel CRM. ReplyToQ is valid for the ReceiveDispatchSend method.

NOTE: If the Response queue is specified using a static configuration, then 
the ReplyToQ header of the incoming message is ignored. The static 
configuration overrides dynamic queuing.

ReplyToQ can also be set by the Siebel application, as 
MQMD_S_In_ReplyToQ while using the Send method, to specify the 
response parameters.

ReplyToQMgr Name of the reply queue manager, for example, myQueueManager.

ReplyToQMgr is set in the message header of an incoming MQ message by 
the sender application. This sets dynamically the queue manager for the 
response sent by Siebel CRM. ReplyToQMgr is valid for the 
ReceiveDispatchSend method.

NOTE: If the Response queue is specified using a static configuration, then 
the ReplyToQMgr header of the incoming message is ignored. The static 
configuration overrides dynamic queuing.

ReplyToQMgr can also be set by the Siebel application, as 
MQMD_S_In_ReplyToQMgr while using the Send method, to specify the 
response parameters.
Transports and Interfaces: Siebel Enterprise Application Integration Siebel 
2018

22 



EAI MQSeries Server Transport ■ About the EAI MQSeries Server Transport Business
Service
On the inbound side, you can have the supported MQMD message headers as part of the output 
property set without having to do extra steps to see these MQMD message headers.

On the outbound side, you can set the MQMD message headers using the EAI MQSeries Server 
Transport. To modify the MQMD message headers on the outbound side, the property value for 
FullMQMDControl must be set to TRUE.

During the sending business service step (EAI MQSeries Server Transport.Send) within the workflow, 
input arguments are added that can modify MQMD headers. Once the property FullMQMDControl is 
set to TRUE, you can modify other MQMD headers as the examples show in Table 5.

NOTE: In workflows and scripts, you set and get MQMD parameters using their full names, for 
example, MQMD_S_In_Encoding.

.

NOTE: When using the Message Type header (MQMD_S_In_MsgType), make sure that the message 
type set makes sense in context. For example, if the Send method is used to send a message to 
MQSeries, then do not set the MsgType to MQMT_REQUEST. If the SendReceive method is used to 
send and request a response from MQSeries, then the MsgType of MQMT_REQUEST is applicable (this 
is automatically set by the Siebel application). In Table 5, MsgType is set to TestMsgHeader.

Table 6 summarizes the MQMD message headers that are exposed as properties in a property set.

Table 5. Examples of Input Arguments for Outbound MQMD Headers

Property Type Example Value

MQMD_S_In_CodedCharSetId Literal 1208

MQMD_S_In_Encoding Literal MQENC_NATIVE

MQMD_S_In_Expiry Literal MQEI_UNLIMITED

MQMD_S_In_MsgType Literal TestMsgHeader

MQMD_S_In_Persistence Literal MQPER_PERSISTENT

MQMD_S_In_Priority Literal MQPRI_PRIORITY_AS_Q_DEF

MQMD_S_In_ReplyToQ Literal myQueue

MQMD_S_In_ReplyToQMgr Literal myQueueManager

Table 6. MQMD Message Headers

Field Data Type Description
Input or Output 
Property?

AccountingToken MQBYTE32 Accounting token Output

ApplIdentityData MQCHAR32 Application data relating to identity Output

ApplOriginData MQCHAR4 Application data relating to origin Output

BackCount MQLONG Backout counter Output
Transports and Interfaces: Siebel Enterprise Application Integration Siebel
2018

23



EAI MQSeries Server Transport ■ About the EAI MQSeries Server Transport Business 
Service
CodedCharSetId MQLONG Character set identifier of message 
data

Input and output

CorrelId MQBYTE24 Correlation identifier Output

Encoding MQLONG Numeric encoding of message data Input and output

Expiry MQLONG Message lifetime Input and output

Feedback MQLONG Feedback or reason code Output

Format MQCHAR8 Format name of message data Input and output

GroupId MQBYTE24 Group Identifier Output

MsgFlags MQLONG Flags that specify attributes of the 
message or control its processing

Output

MsgSeqNumber MQLONG Sequence number of logical message 
within group

Output

MsgType MQLONG Message type Input and output

Offset MQLONG Offset of data in physical message 
from start of logical message

Output

OriginalLength MQLONG Length of original message Output

Persistence MQLONG Message persistence Input and output

Priority MQLONG Message priority Input and output

PutApplName MQCHAR28 Name of application that sent the 
message

Output

PutApplType MQLONG Type of application that sent the 
message

Output

PutDate MQCHAR8 Date when message was sent Output

PutTime MQCHAR8 Time when message was sent Output

ReplyToQ MQCHAR48 Name of reply queue Input and output

ReplyToQMgr MQCHAR48 Name of reply queue manager Input

Report MQLONG Options for report messages Output

UserIdentifier MQCHAR12 User identifier Output

Version MQLONG Structure version number Output

Table 6. MQMD Message Headers

Field Data Type Description
Input or Output 
Property?
Transports and Interfaces: Siebel Enterprise Application Integration Siebel 
2018

24 



EAI MQSeries Server Transport ■ Using the SendReceive Method with MQSeries
EAI MQSeries Server Transport Named Subsystem
The EAI MQSeries Transport can read parameters from a named subsystem. For the EAI MQSeries 
Server Transport, the named subsystem type is MqSeriesServerSubsys.

The following is an example of the EAI MQSeries Server Transport and the commands to create a 
named subsystem and start a receiver:

create named subsystem MyMqSrvrSubsys for subsystem MQSeriesServerSubsys with 
MqPhysicalQueueName=Receiver, MqRespPhysicalQueueName=Sender, 
MqQueueManagerName=myQueueMgr

create named subsystem SiebelEcho for subsystem EAITransportDataHandlingSubsys with 
DispatchService="Workflow Utilities", DispatchMethod=ECHO

start task for comp MqSeriesSrvRcvr with 
ReceiverConnectionSubsystem=MyMqSrvrSubsys, 
ReceiverDataHandlingSubsystem=SiebelEcho, ReceiverMethodName=ReceiveDispatchSend

For a discussion of named subsystems for Siebel EAI, see Chapter 2, “EAI Transports and Interfaces 
Overview.” For more information about named subsystems, see Siebel System Administration Guide.

Using the SendReceive Method with 
MQSeries
The SendReceive method on the EAI MQSeries Server Transport sends a message and waits for a 
response from the target application on a response queue. This response message corresponds to 
the original message using the correlation ID in MQSeries.

NOTE: It is the responsibility of the external application to set the correlation ID of the response to 
the Siebel Business Application to the message ID of the original message.

NOTE: It is recommended that, when using the EAI MQSeries Server Transport business service with 
the SendReceive method, you check the TimedOut process property. If you send a message and the 
MQ transport times out waiting for a response, then the business service does not raise an error but 
the TimedOut value is true.

Dispatch Error Handling for the EAI 
MQSeries Server Transport
When using the ReceiveDispatch and ReceiveDispatchSend methods, certain MQSeries behavior 
might affect your messages.

NOTE: The transaction does not end when the message is received from the queue because it waits 
for the entire dispatch process to either complete successfully for commit or fail for rollback.

If all of the following conditions are met, then the message is sent to the Backout Requeue Queue 
of the current queue manager: 

■ A dispatch error has occurred.
Transports and Interfaces: Siebel Enterprise Application Integration Siebel
2018

25



EAI MQSeries Server Transport ■ Increasing the Maximum Message Length on IBM 
WebSphere MQ
■ The RollbackOnDispatchError property is set to TRUE.

■ The message has been rolled back by a count exceeding the Backout Threshold of the queue.

NOTE: If the Backout Requeue Queue has not been specified for the Queue Manager, then the 
message is sent to the Dead Letter Queue of the current queue manager. If there is no specified Dead 
Letter Queue for the current queue manager, then the queue defaults to the 
SYSTEM.DEAD.LETTER.QUEUE.

Increasing the Maximum Message 
Length on IBM WebSphere MQ
The MaxMsgLength queue manager attribute in the IBM WebSphere MQ software defines the 
maximum length of a message that can be handled by a queue manager. The MaxMsgLength queue 
attribute is the maximum length of a message that can be handled by a queue.

The default maximum message length on IBM WebSphere MQ is 4 MB. If the message is too large 
for the queue, then MQRC_MSG_TOO_BIG_FOR_Q is returned. Similarly, if the message is too large 
for the queue manager, then MQRC_MSG_TOO_BIG_FOR_Q_MGR is returned.

If you are handling large messages, then you can change the MaxMsgLength queue manager and 
queue attributes independently. You can set the queue manager attribute value between 32768 bytes 
and 100 MB; you can set the queue attribute value between 0 and 100 MB.

After changing one or both of the MaxMsgLength attributes, restart your applications and channels 
to ensure that the changes take effect. For more information, consult the IBM WebSphere MQ 
documentation at:

http://www.ibm.com/support

Using the EAI MQSeries Server 
Transport on AIX
When you use the EAI MQSeries Server Transport on AIX, the shared memory segment required by 
the EAI MQSeries Server process can collide with the shared memory segment required by the queue 
manager. By default, the EAI MQSeries queue manager attempts to use shared memory segment 
number 8. The EAI MQSeries Server Transport does not rely on any specific number and uses 
whatever segment is given to the process by the AIX operating system.

However, if you are using the default configuration, then there is a possibility that the EAI MQSeries 
Server process gets segment number 8 from the operating system first, and as a result the queue 
manager cannot get its segment. In this case, the EAI MQSeries Server Transport service fails with 
an error code of 2059 because it cannot connect to the queue manager.

Fixing a Shared Memory Segment Conflict on AIX
You edit the mqs.ini file, found in the /var/mqm directory, to fix a shared memory segment conflict 
with the EAI MQSeries Server Transport on AIX.
Transports and Interfaces: Siebel Enterprise Application Integration Siebel 
2018

26 



EAI MQSeries Server Transport ■ About EAI MQSeries Transport Re-Entrance
To fix a shared memory segment conflict with the EAI MQSeries Server Transport on 
AIX
1 Shut down any queue manager connected to the EAI MQSeries Transport.

2 Edit the /var/mqm/mqs.ini file. In the QueueManager section, for each queue manager of 
interest, add an additional line explicitly specifying the shared memory segment to use. For 
example:

QueueManager:
Name=myQueueManager
Prefix=/var/mqm
Directory=myQueueManager
IPCCBaseAddress=12

3 Restart each queue manager.

NOTE: This example shows shared number 12 as the memory segment number. Valid values for the 
IPCCBaseAddress are 4, 5, 8, 9, 10, 11, and 12, although 8 has been found to be problematic. It is 
possible to get a shared memory segment conflict even with the number set to 12, if the operating 
system has allocated segment 12 to the EAI MQSeries Server process ahead of the queue manager. 
If this is the case, then a different segment number must be specified.

Configuring AIX to Run the Siebel Server with Less Memory
If the EAI MQSeries Server Transport business service on AIX continues to fail even after you have 
followed the previous procedures, then you can configure the AIX environment to run Siebel Server 
with less memory using the environment variable LDR_CNTRL. After you have finished, follow the 
procedures in the preceding topic. For more information about setting parameters for AIX, see Siebel 
Performance Tuning Guide.

To configure the AIX environment to run the Siebel Server with less memory 
1 Shut down the Siebel Server.

2 In the shell that you use to bring up the Siebel Server, set the environment variable LDR_CNTRL. 
Using csh:

setenv LDR_CNTRL MAXDATA=0x30000000

NOTE: You can save the setting in the siebenv.sh or siebenv.csh.

3 Restart the Siebel Server with this environment variable.

About EAI MQSeries Transport Re-
Entrance
The EAI MQSeries Server Receiver uses the EAI MQSeries Server Transport business service but 
cannot dispatch to a workflow that either uses this business service as one of its steps or dispatches 
directly to this business service.
Transports and Interfaces: Siebel Enterprise Application Integration Siebel
2018

27



EAI MQSeries Server Transport ■ About Message ID Tracking for an Inbound Message
While in-process re-entrance is not supported, you can indirectly invoke the EAI MQSeries Server 
Transport as one of the steps out of process by calling the Synchronous Server Requests business 
service.

About Message ID Tracking for an 
Inbound Message
You can keep track of Message IDs of inbound messages by creating a process property, MsgId, of 
type String, and then adding an output argument with the following configuration to the Send step 
of your process as shown in Table 7.

This captures the Message IDs that the Queue Manager assigned to the messages in the MsgId 
process property.

Invoking a Workflow Using MQSeries 
Server Receiver
Following are examples of commands to create named subsystems and start a MQSeries Server 
Receiver to invoke a workflow.

NOTE: If there is either an exception step or an error process in your workflow, then the workflow 
assumes that the error step or the error process handles the error and the workflow does not send 
the error out. To capture the error, insert a stop step into your workflow. Note that by adding a stop 
step, the caller gets the generic workflow stop error and not the original error, but the original error 
is stored in the Error Code and Error Message process properties.

Command to Create an EAI Transport Data Handling Subsystem
The following command creates an EAI Transport Data Handling Subsystem:

create named subsystem MYDataSubSys for subsystem EAITransportDataHandlingSubsys 
with DispatchWorkflowProcess="MQ Inbound Workflow"

Command to Create an EAI Transport Connection Subsystem
The following command creates an EAI Transport Connection Subsystem:

create named subsystem MYSubSys for subsystem mqseriesserversubsys with 
MQQueueManagerName=QueueMgr, MQPhysicalQueueName=LocalQueue

Table 7. Output Argument for Send Step

Type Output Argument

Output Argument MQSeries Message Identifier
Transports and Interfaces: Siebel Enterprise Application Integration Siebel 
2018

28 



EAI MQSeries Server Transport ■ Invoking a Workflow Using MQSeries Server Receiver
Command to Start an MQSeries Server Receiver
The following command starts an MQSeries Server Receiver:

start task for component MqSeriesSrvRcvr with ReceiverConnectionSubsystem=MYSubSys, 
ReceiverDataHandlingSubsystem=MYDataSubSys, ReceiverMethodName=ReceiveDispatch

When calling your workflow by the MQSeries Server Receiver, it is not necessary to include a step to 
pull the messages off the queue and pass them to the next step. The MQSeries Server Receiver 
automatically pulls the messages off the queue and passes them on if:

■ You have created a new process property of data type String and a default string of <Value>. 
This process property stores the inbound message text picked up by the MqSeriesSrvRcvr.

■ In your workflow step, where you handle the inbound messages from IBM WebSphere MQ, you 
insert an input argument of <Value> with type Process Property. The Property Name is the name 
of the process property that you created in the previous step.

NOTE: When you type in <Value>, the display name might change to Message Text or XML 
Document.
Transports and Interfaces: Siebel Enterprise Application Integration Siebel
2018

29



EAI MQSeries Server Transport ■ Invoking a Workflow Using MQSeries Server Receiver
Transports and Interfaces: Siebel Enterprise Application Integration Siebel 
2018

30 



4 EAI MSMQ Transport
This chapter discusses Oracle’s implementation of Microsoft Message Queuing (MSMQ) support with 
the EAI MSMQ Transport business service. It includes the following topics:

■ About Microsoft Message Queuing (MSMQ) on page 31

■ Configuring the EAI MSMQ Transport Servers on page 33

■ Configuring EAI MSMQ Transport for Various Send and Receive Scenarios on page 34

About Microsoft Message Queuing 
(MSMQ)
Many large organizations are integrating various enterprise business applications into application 
networks. These networks allow applications to communicate with each other and share data, either 
automatically or by request. Technologies such as Microsoft Message Queuing (MSMQ) provide a 
messaging infrastructure for transporting data from one application to another, without the need for 
programming.

MSMQ allows applications running at different times to communicate across heterogeneous networks 
and systems, even when one or many of those systems are temporarily offline. Because applications 
send messages to queues and read messages from queues, the messages are always available and 
remain in the queue for as long as required. For example, the messages are still there when a system 
that was offline comes back online to retrieve them. Optionally, messages can be sent to a dead letter 
queue after a predetermined amount of time has passed to help make sure that only timely, relevant 
messages are received.

The following subtopics are described in this topic:

■ “About the EAI MSMQ Transport” on page 31

■ “Methods for Sending and Receiving Messages” on page 32

■ “EAI MSMQ Transport Named Subsystems” on page 33

About the EAI MSMQ Transport
EAI MSMQ Transport is a Siebel business service that can be customized using Siebel Tools. With 
Siebel Tools, you define integration objects to be transported across the EAI MSMQ Transport 
business service. EAI MSMQ Transport is responsible for sending and receiving messages between a 
Siebel application and MSMQ queues. EAI MSMQ Transport allows you to:

■ Send a message to an external system

■ Send and receive synchronous messages between a Siebel application and an external system
Transports and Interfaces: Siebel Enterprise Application Integration Siebel
2018

31



EAI MSMQ Transport ■ About Microsoft Message Queuing (MSMQ)
■ Receive a message and perform an action based on that message within a Siebel application

■ Receive a message, perform an action within a Siebel application, and then send a synchronous 
response to the external system

Methods for Sending and Receiving Messages
EAI MSMQ Transport supports two transport modes: sending messages and receiving messages. The 
following methods are supported:

■ Send

■ Send and Receive Response (SendReceive)

■ Receive

■ Receive and Execute Service (ReceiveDispatch)

■ Receive, Execute, Send Response (ReceiveDispatchSend)

Messages from a Siebel Application to an External System
You configure EAI MSMQ Transport using the Siebel Business Process Designer, where you specify 
various parameters, such as the queue where Siebel outbound messages are sent. You configure the 
message itself using the integration object feature within Siebel Tools. The message can be in any 
text or binary format, including XML. The default format is XML, where the integration object defines 
the XML Schema Definition (XSD) or the Document Type Definition (DTD) associated with the XML 
document.

You configure the EAI MSMQ Transport at design time to specify the MSMQ queue computer name 
and the queue name. You use the EAI MSMQ Transport along with the Siebel Business Process 
Designer Manager to model business processes for sending messages to the external system. 

You can configure the EAI MSMQ Transport to send messages to external systems when an event 
occurs in a Siebel application. For example, suppose that one of your sales representatives enters a 
new opportunity for an account into a Siebel application. This information needs to be sent to other 
business units that might or might not be using a Siebel application. The message can be sent using 
EAI MSMQ Transport as the transport mechanism to inform these external systems.

EAI MSMQ Transport can also be used synchronously to send a message and receive a response back 
from an external system in a single session. For example, suppose that one of your customers calls 
your Call Center requesting information on an account. The sales agent initiates a process to send a 
request with the account name from a Siebel application to an external mainframe system using the 
EAI MSMQ Transport. In response, the sales agent then receives a list of transaction details for that 
customer displayed within a Siebel application form.

Messages to a Siebel Application from an External System
External applications can send messages to a Siebel application using EAI MSMQ Transport. These 
messages are received and routed by the EAI MSMQ Receiver in conjunction with the MSMQ system. 
Transports and Interfaces: Siebel Enterprise Application Integration Siebel 
2018

32 



EAI MSMQ Transport ■ Configuring the EAI MSMQ Transport Servers
The EAI MSMQ Receiver is a Siebel Server component that waits for messages in a specified queue. 
If you select the Receive, Execute, Send Response method, then the EAI MSMQ Receiver waits for a 
response from a Siebel application and places the output into a response queue.

EAI MSMQ Transport Named Subsystems
The EAI MSMQ Transport can read parameters from a named subsystem. For this transport, the 
named subsystem type is MSMQSubsys.

For a discussion of named subsystems for Siebel EAI, see Chapter 2, “EAI Transports and Interfaces 
Overview.” For more information about named subsystems, see Siebel System Administration Guide.

Configuring the EAI MSMQ Transport 
Servers
The instructions in this topic are for configuring the EAI MSMQ Transport servers. Use a two-server 
setup, configured as listed in the following topic. However, you can implement a single server or 
multiple servers.

MSMQ Primary Enterprise Controller
You configure the MSMQ Primary Enterprise Controller with the following components:

■ Windows Server (for supported versions, see the Certifications tab on My Oracle Support)

NOTE: For information about the Certifications application, see 1492194.1 (Article ID) on My 
Oracle Support.

■ MSMQ Server

■ As many MSMQ queues as needed

■ Relevant ODBC driver

■ Siebel Server

■ Siebel Gateway

■ Siebel Web Client

■ Siebel Tools

Regional Enterprise Server and MSMQ Client
You configure the Regional Enterprise Server and MSMQ Client with the following components:

■ Windows Server (for supported versions, see the Certifications tab on My Oracle Support)

NOTE: For information about the Certifications application, see 1492194.1 (Article ID) on My 
Oracle Support.

■ MSMQ Client
Transports and Interfaces: Siebel Enterprise Application Integration Siebel
2018

33



EAI MSMQ Transport ■ Configuring EAI MSMQ Transport for Various Send and Receive 
Scenarios
■ As many MSMQ queues as needed

■ The relevant ODBC driver

■ Siebel Server

■ Siebel Gateway

■ Siebel Web Client

NOTE: The MSMQ Server can reside on either the MSMQ Primary Enterprise Controller or the 
Regional Enterprise Server. This functionality is independent of the underlying database. You can use 
any supported database, including IBM DB2, DB2 for z/OS, Oracle Database, and Microsoft SQL 
Server.

Configuring EAI MSMQ Transport for 
Various Send and Receive Scenarios
The EAI MSMQ Transport and the Siebel Business Process Designer Manager work in tandem to 
transfer data using MSMQ from one Siebel application to another Siebel application or to an external 
application. You can set up a workflow and choose attributes and values to define the transport for 
a particular send or receive scenario.

The following topics are described:

■ “EAI MSMQ Transport Prerequisites” on page 34

■ “EAI MSMQ Transport Parameters” on page 35

■ “About Defining Integration Objects” on page 35

■ “Sending Outbound Messages with EAI MSMQ Transport” on page 36

■ “Receiving Inbound Messages with MSMQ Receiver” on page 41

EAI MSMQ Transport Prerequisites
You must set up both Microsoft SQL Server and MSMQ before configuring the EAI MSMQ Transport. 
In addition, the Siebel Business Process Designer Manager functionality must be available within 
Siebel Tools and Siebel Web Client.
Transports and Interfaces: Siebel Enterprise Application Integration Siebel 
2018

34 



EAI MSMQ Transport ■ Configuring EAI MSMQ Transport for Various Send and Receive
Scenarios
EAI MSMQ Transport Parameters
Table 8 presents the parameters used for configuring the EAI MSMQ Transport.

About Defining Integration Objects
Before you use the EAI MSMQ transport, you must define integration objects for use with the 
transport. The various methods explained in the following pages assume that this integration object 
has already been defined. You define your Siebel messages as integration objects using Siebel Tools. 
These messages correspond to the information that you want to exchange between the Siebel 
application and an external application. An example of an integration object would be an order, an 
account, a quote, or a contact.

After you have created an integration object, you can then send the message corresponding to this 
integration object through the EAI MSMQ Transport, either as part of a workflow or as a custom 
business service.

Table 8. EAI MSMQ Transport Parameters

Parameter Description

EndOfData Set to True to indicate end of data.

MsmqPhysicalQueueName Name of the MSMQ Queue. Can be used for both sending and 
receiving messages.

MsmqQueueMachineName Computer that owns the queue specified by the physical queue 
name.

MsmqRespQueueMachineName Computer that owns the queue specified by 
MsmqRespQueueName.

MsmqRespQueueName Name of the response queue.

MsmqSleepTime Default is 20000 milliseconds. The amount of time that the EAI 
MSMQ Transport business service waits to receive a message.

TimedOut If no message is received in seconds specified in SleepTime, 
then the TimedOut argument in the Output Property set is set 
to True.

IgnoreCorrelationId Default is False. Set to ignore Correlation Id value on the 
inbound messages. If this flag is True, then the message is 
picked up from the queue regardless of the correlation Id on the 
message. This parameter is ignored for the SendReceive 
Method because Correlation Id is required to match the 
response with the original message.

LargeMessageSupport Default is True. Set to enable or disable large-message 
(messages over 4 MB) support.

Set IgnoreCorrelationId to False for Large Message Support.
Transports and Interfaces: Siebel Enterprise Application Integration Siebel
2018

35



EAI MSMQ Transport ■ Configuring EAI MSMQ Transport for Various Send and Receive 
Scenarios
For information about creating integration objects, see Integration Platform Technologies: Siebel 
Enterprise Application Integration.

Sending Outbound Messages with EAI MSMQ Transport
With the Siebel application as the sender (outbound messaging), you design a workflow that queries 
for a record (such as a contact) and then converts that record to an XML document. The XML 
document is then sent to an MSMQ queue.

Because MSMQ imposes a limit of four megabytes on the size of the messages it can handle, the EAI 
MSMQ Transport separates outbound Siebel messages larger than four megabytes into smaller 
messages acceptable to MSMQ. The message is then reassembled after it has left MSMQ and arrived 
at your partner’s system.

There are two methods for sending messages from a Siebel application to MSMQ:

■ Send

■ Send and Receive Response (SendReceive)

Sending Messages with EAI MSMQ Transport
The following procedure describes how to set up your system to send a message to an external 
system using the EAI MSMQ Transport.

To send messages from a Siebel application to MSMQ
1 Access the Windows Computer Management tool by choosing the Start menu, Programs, 

Administrative Tools, and then Computer Management.

2 Set up an MSMQ queue to receive messages from the Siebel application. Give the queue an easily 
identified name, such as fromsiebel, as shown in the following illustration.

The MSMQ queue you
create will appear in the

list of queues.
Transports and Interfaces: Siebel Enterprise Application Integration Siebel 
2018

36 



EAI MSMQ Transport ■ Configuring EAI MSMQ Transport for Various Send and Receive
Scenarios
3 Set the queue to be Transactional. 

NOTE: This flag allows Siebel Business Applications to group a number of Send or Receive 
messages. This is critical when large data sets are being used because it allows a commit or a 
rollback to be executed without failure.

4 In Siebel Tools, set up a workflow for sending a message to MSMQ. Define the flow as shown in 
the following figure:

NOTE: For details on the Business Process Designer, see Siebel Business Process Framework: 
Workflow Guide.

5 Create the following process properties:

6 Set up the first step of the workflow, after Start, to use the EAI Siebel Adapter business service 
with the Query method to query the information from the Siebel database using the following 
input and output arguments:

Name Data Type In/Out Value

Employee Message Hierarchy In/Out Not applicable

Employee XML Binary In/Out Not applicable

Error Code String In/Out Not applicable

Error Message String In/Out Not applicable

Object Id String In/Out Row Id of an Employee record

Siebel Operation Object Id String In/Out Not applicable

Input Argument Type Value Property Name 

OutputIntObjectName Literal Sample 
Employee

Not applicable

PrimaryRowId Process 
Property

Not applicable Object Id

Property Name Type Output Argument

Employee Message Output Argument SiebelMessage
Transports and Interfaces: Siebel Enterprise Application Integration Siebel
2018

37



EAI MSMQ Transport ■ Configuring EAI MSMQ Transport for Various Send and Receive 
Scenarios
7 Set up the second step to use the EAI XML Converter business service with the PropSetToXML 
method to convert the data extracted from the Siebel Database to XML format using the following 
input and output arguments:

8 Set up the third step to use EAI MSMQ Transport with the Send method to send the information 
to the external system, using the following input arguments:

9 Save the workflow and run it from the Workflow Simulator. 

Confirm that a message was sent to the queue using the MSMQ Explorer. In this example, if the 
simulation is successful, then a message is in the fromSiebel queue and contains an XML file with 
employee information.

Sending and Receiving Messages with EAI MSMQ Transport
The following procedure describes how to set up your system to send a message to an external 
system using the EAI MSMQ Transport and receive a synchronous message back from the external 
system by the EAI MSMQ Transport.

To send a literal to MSMQ and receive a response
1 Access the Windows Computer Management tool by choosing the Start menu, Programs, 

Administrative Tools, and then Computer Management.

2 Set up an MSMQ queue to receive messages from the Siebel application, and give the queue an 
easily identified name, such as fromsiebel.

3 Set up another queue to send messages to the Siebel application, and give the queue an easily 
identified name, such as tosiebel.

Input Argument Type Property Name

SiebelMessage Process Property Employee Message

Property Name Type Output Argument

Employee XML Output Argument <Value>

Input Argument Type Value Property Name

<Value> Process 
Property

Not applicable Employee XML

MsmqPhysicalQueueName Literal private$\FromSiebel Not applicable

MsmqQueueMachineName Literal SiebelServer

Computer name where the 
Siebel MSMQ Transport is 
running.

Not applicable
Transports and Interfaces: Siebel Enterprise Application Integration Siebel 
2018

38 



EAI MSMQ Transport ■ Configuring EAI MSMQ Transport for Various Send and Receive
Scenarios
4 In Siebel Tools, set up a workflow for sending a message out and receiving a message in response 
using EAI MSMQ Transport. Define the flow as shown in the following figure:

NOTE: For details on the Business Process Designer, see Siebel Business Process Framework: 
Workflow Guide.

5 Create the following process properties:

6 Set up the first step of the workflow after Start to use EAI Siebel Adapter with the Query method 
to query the information from the Siebel Database using the following input and output 
arguments:

Name Data Type In/Out

Test Message Hierarchy In/Out

Test XML Binary In/Out

Error Code String In/Out

Error Message String In/Out

Object Id String In/Out

Siebel Operation Object Id String In/Out

Input Argument Type Value
Property 
Name

Property Data 
Type

OutputIntObjectName Literal Sample Employee Not applicable Not applicable

PrimaryRowId Process 
Property

Not applicable Object Id String

Property Name Type Output Argument

Test Message Output Argument SiebelMessage
Transports and Interfaces: Siebel Enterprise Application Integration Siebel
2018

39



EAI MSMQ Transport ■ Configuring EAI MSMQ Transport for Various Send and Receive 
Scenarios
7 Set up the second step to use the EAI XML Converter business service with the 
IntObjHierToXMLDoc method to convert the data extracted from the Siebel Database to XML 
format, using the following input and output arguments:

8 Set up the third step of the workflow, after Start, to use the EAI MSMQ Transport business service 
with the SendReceive method to receive the incoming XML message, using the following input 
and output arguments:

Input Argument Type Property Name Property Data Type

SiebelMessage Process Property Test Message Hierarchy

Property Name Type Output Argument

Test XML Output Argument <Value>

Input Argument Type Value
Property 
Name

Property 
Data Type

<Value> Process 
Property

Not applicable Test XML Binary

MsmqPhysicalQueueName Literal fromsiebel Not 
applicable

Not applicable

MsmqQueueMachineName Literal SiebelServer1

Computer name 
where the Siebel 
MSMQ Transport is 
running.

Not 
applicable

Not applicable

MsmqRespQueueMachineName Literal SiebelServer2 Not 
applicable

Not applicable

MsmqRespQueueName Literal tosiebel Not 
applicable

Not applicable

Property Name Type Output Argument

Test XML Output Argument <Value>
Transports and Interfaces: Siebel Enterprise Application Integration Siebel 
2018

40 



EAI MSMQ Transport ■ Configuring EAI MSMQ Transport for Various Send and Receive
Scenarios
9 Set up the fourth step to use the EAI XML Converter business service with the 
XMLDocToIntObjHier method to convert the XML message to a Siebel Message using the following 
input and output arguments:

10 Set up the last step to use the EAI Siebel Adapter with the Upsert method to update the Siebel 
Database, using the following input argument:

11 Save the workflow and run a test using the Workflow Simulator. 

The output property set must have a message in the Value field. Additionally, the EndOfData 
argument in the property set must be set to True.

NOTE: To test this scenario adequately, you must have a partner application that can accept the 
message and return a response. The correlation ID of the response message must be set to the 
message ID of the message originally sent by the Siebel application.

Receiving Inbound Messages with MSMQ Receiver
With the Siebel application as the receiver (inbound messaging), you design a workflow that reads 
from the queue and converts the XML messages found there into Siebel message format. Then, the 
EAI Siebel Adapter updates the appropriate tables within the Siebel Database. 

NOTE: MSMQ Receiver must run on the same computer where you have defined the receiving queue.

There are two methods for receiving messages for a Siebel application:

■ Receive and Execute Service (ReceiveDispatch)

■ Receive, Execute, Send Response (ReceiveDispatchSend)

Receiving and Dispatching MSMQ Messages with MSMQ Receiver
The following procedure describes how to set up your system to receive an inbound message from 
MSMQ by MSMQ Receiver, then perform an action based on that message within the Siebel 
application.

Input Argument Type Property Name Property Data Type

<Value> Process Property Test XML Binary

Property Name Type Output Argument

Test Message Output Argument SiebelMessage

Input Argument Type Property Name Property Data Type

SiebelMessage Process Property Test Message Hierarchy
Transports and Interfaces: Siebel Enterprise Application Integration Siebel
2018

41



EAI MSMQ Transport ■ Configuring EAI MSMQ Transport for Various Send and Receive 
Scenarios
To receive and dispatch messages using the EAI MSMQ Transport (MSMQ Receiver)
1 Access the Windows Computer Management tool by choosing the Start menu, Programs, 

Administrative Tools, and then Computer Management.

2 Set up a queue to send messages to the Siebel application:

a Name the queue an easily identified name, such as toSiebel.

b Create a message in the queue.

NOTE: To test this procedure adequately, you must have a partner application that can send a 
valid message for the Siebel application to the queue.

3 Create a named subsystem for the MSMQ Receiver using the following lines:

create named subsystem MyMSMQSubsys for subsystem MSMQSubsys with 
MsmqQueueMachineName=SiebelServer1, MsmqPhysicalQueueName=fromSiebel, 
MsmqRespQueueMachineName=SiebelServer2, MsmqRespQueueName=toSiebel

create named subsystem SiebelEcho for subsystem EAITransportDataHandlingSubsys 
with DispatchService="Workflow Process Manager", DispatchMethod=RunProcess, 
DispatchWorkflowProcess=”MyMSMQWorkflow”

start task for comp MSMQRcvr with ReceiverConnectionSubsystem=MyMSMQSubsys, 
ReceiverDataHandlingSubsystem=SiebelEcho, ReceiverMethodName=ReceiveDispatch

NOTE: The DispatchService and DispatchMethod parameters are optional.

4 In Siebel Tools, set up a workflow for receiving and dispatching a message from MSMQ as shown 
in the following figure:

NOTE: For details on the Business Process Designer, see Siebel Business Process Framework: 
Workflow Guide.

5 Create the following process properties:

Name Data Type In/Out

Test Message Hierarchy In/Out

Test XML Binary In/Out

Error Code String In/Out

Error Message String In/Out

Object Id String In/Out

Siebel Operation Object Id String In/Out
Transports and Interfaces: Siebel Enterprise Application Integration Siebel 
2018

42 



EAI MSMQ Transport ■ Configuring EAI MSMQ Transport for Various Send and Receive
Scenarios
6 Set up the first step of the workflow after Start to use the EAI XML Converter business service 
with the XMLDocToIntObjHier method to convert the XML message to a Siebel Message using the 
following input and output arguments:

7 Set up the second step to use the EAI Siebel Adapter with the Upsert method to update the Siebel 
Database, using the following input arguments:

NOTE: In order to test this scenario adequately, you must have a partner application that can 
send a valid message for the Siebel application to the queue.

8 Save the workflow.

Receiving, Dispatching, and Sending MSMQ Messages with MSMQ 
Receiver
The following procedure shows you how to set up your system to receive an inbound message from 
MSMQ by MSMQ Receiver, perform an action within a Siebel application based on that message, and 
then send a synchronous response back to the external system.

To receive, dispatch, and send messages using the EAI MSMQ Transport (MSMQ 
Receiver)
1 Access the Windows Computer Management tool by choosing the Start menu, Programs, 

Administrative Tools, and then Computer Management.

2 Set up an MSMQ queue to receive messages from the Siebel application.

Give the queue an easily identified name, such as fromSiebel.

3 Set up another queue to send messages to the Siebel application.

a Name the queue an easily identified name, such as toSiebel.

b Create a message in the queue.

NOTE: To test this procedure adequately, you must have a partner application that can send 
a valid message for the Siebel application to the queue.

Input Argument Type Property Name Property Data Type

<Value> Process Property Test XML Binary

Property Name Type Output Argument

Test Message Output Argument SiebelMessage

Input Argument Type Property Name Property Data Type

SiebelMessage Process Property Test Message Hierarchy
Transports and Interfaces: Siebel Enterprise Application Integration Siebel
2018

43



EAI MSMQ Transport ■ Configuring EAI MSMQ Transport for Various Send and Receive 
Scenarios
4 Create a named subsystem for the MSMQ Receiver using the following lines:

create named subsystem MyMSMQSubsys for subsystem MSMQSubsys with 
MsmqQueueMachineName=SiebelServer1, MsmqPhysicalQueueName=fromSiebel, 
MsmqRespQueueMachineName=SiebelServer2, MsmqRespQueueName=toSiebel

create named subsystem SiebelEcho for subsystem EAITransportDataHandlingSubsys 
with DispatchService="Workflow Process Manager", DispatchMethod=RunProcess, 
DispatchWorkflowProcess=”MyMSMQWorkflow”

start task for comp MSMQRcvr with ReceiverConnectionSubsystem=MyMSMQSubsys, 
ReceiverDataHandlingSubsystem=SiebelEcho, 
ReceiverMethodName=ReceiveDispatchSend

NOTE: The DispatchService and DispatchMethod parameters are optional.

5 In Siebel Tools, set up a workflow for receiving and dispatching a message from MSMQ as shown 
in the following figure:

NOTE: For details on the Business Process Designer, see Siebel Business Process Framework: 
Workflow Guide.

6 Create the following process properties:

Name Data Type In/Out Value

Test Message Hierarchy In/Out Not applicable

Test XML Binary In/Out Test Message from Siebel Server

Error Code String In/Out Not applicable

Error Message String In/Out Not applicable

Object Id String In/Out Not applicable

Siebel Operation Object Id String In/Out Not applicable
Transports and Interfaces: Siebel Enterprise Application Integration Siebel 
2018

44 



EAI MSMQ Transport ■ Configuring EAI MSMQ Transport for Various Send and Receive
Scenarios
7 Set up the first step of the workflow after Start to use the EAI XML Converter business service 
with the XMLDocToIntObjHier method to convert the XML message to a Siebel Message using the 
following input and output arguments:

8 Set up the second step to use the EAI Siebel Adapter with the Upsert method to update the Siebel 
Database, using the following input arguments:

NOTE: To test this scenario adequately, you must have a partner application that can send a valid 
message for the Siebel application to the queue.

9 Save the workflow.

After running the workflow, confirm that the message is removed from the queue using the 
MSMQ Explorer. In this example, the Siebel Database is updated with the message in the 
fromSiebel queue. Also, a response message is in the queue specified by the 
MSMQRespQueueName and MSMQRespQueueMachineName arguments.

Input Argument Type Property Name Property Data Type

<Value> Process Property Test XML Binary

Property Name Type Output Argument

Test Message Output Argument SiebelMessage

Input Argument Type Property Name Property Data Type

SiebelMessage Process Property Test Message Hierarchy
Transports and Interfaces: Siebel Enterprise Application Integration Siebel
2018

45



EAI MSMQ Transport ■ Configuring EAI MSMQ Transport for Various Send and Receive 
Scenarios
Transports and Interfaces: Siebel Enterprise Application Integration Siebel 
2018

46 



5 EAI Java Business Service
This chapter discusses the EAI Java Business Service. It includes the following topics:

■ About the EAI Java Business Service on page 47

■ Requirements for Implementing a Java Business Service on page 47

■ Creating a Java Business Service on page 54

■ About the Lifecycle of a 32-bit Java Business Service on page 56

■ Example of a Java Business Service on page 56

■ Restrictions for Implementing a Java Business Service on page 57

■ Troubleshooting the Java Business Service on page 57

About the EAI Java Business Service
The EAI Java Business Service (JBS) is a service framework that allows custom business services to 
be implemented in Java and run from a Siebel application. The framework consists of the following:

■ A template business service, EAI Java Business Service, which is defined in the repository.

■ An abstract Java class, com.siebel.eai.SiebelBusinessService, that defines the interface of the 
Java class that implements the business service.

The EAI Java Business Service works in two different ways:

■ 32-bit JVM. The EAI Java Business Service works by creating a 32-bit Java Virtual Machine (JVM) 
in-process with the Siebel application and invoking Java implementations using Java Native 
Interface (JNI). Each Siebel process (component) has at most one JVM. JVMs are not shared 
across components.

■ 64-bit JVM. The EAI Java Business Service works by creating a 64-bit Java Virtual Machine (JVM) 
that runs in a separate process from Siebel application and invokes Java implementations using 
HTTP.

Requirements for Implementing a Java 
Business Service
To implement a Java business service, the following software must be installed and properly 
configured on each Siebel Server or Siebel Mobile and Developer Web Clients: 

■ A Java Runtime Environment (JRE)

■ All necessary Java code
Transports and Interfaces: Siebel Enterprise Application Integration Siebel
2018

47



EAI Java Business Service ■ Requirements for Implementing a Java Business Service
■ A configured named subsystem of type:

■ JVMSubSys for a 32-bit JRE or 

■ JavaContainerSubSys for a 64-bit JRE

The named 32-bit subsystem supplies the following parameters to the JBS: DLL, CLASSPATH, and 
VMOPTIONS. These parameters are described as follows.

■ DLL. The complete path of the JRE library, as shown in Table 9.

Table 9. Complete 32-bit JRE Library Paths for Various Operating Systems

Operating 
System

JRE 
Library Typical Location on Server and Environment Variable Setting

AIX libjvm.so /usr/java/jre/lib/ppc/j9vm

You must include both /usr/java/jre/lib/ppc/ and /usr/java/
jre/lib/ppc/j9vm in the LIBPATH variable.

For example:

■ siebenv.csh:

setenv LIBPATH=/siebel/siebsrvr/lib:/siebel/siebsrvr/
mw/lib:/siebel/siebsrvr/SYBSsa90/lib:/usr/lib:/siebel/
siebsrvr/lib:/oracle_client/app/oracle/OraHome_1/
lib32:/oracle_client/app/oracle/OraHome_1/lib:/usr/
java/jre/lib/ppc/:/usr/java/jre/lib/ppc/j9vm

■ siebenv.sh:

LIBPATH=/siebel/siebsrvr/lib:/siebel/siebsrvr/mw/lib:/
siebel/siebsrvr/SYBSsa90/lib:/usr/lib:/siebel/siebsrvr/
lib:/oracle_client/app/oracle/OraHome_1/lib32:/
oracle_client/app/oracle/OraHome_1/lib:/usr/java/jre/
lib/ppc/:/usr/java/jre/lib/ppc/j9vm

HP-UX libjvm.sl /opt/java/jre/lib/PA_RISC2.0/server

Set the environment variable SHLIB_PATH to include the JVM’s jre 
and server directories.

Set LD_PRELOAD in the siebmtshw file located in /siebsrvr/bin.

For example:

setenv SHLIB_PATH=${SHLIB_PATH}:/opt/java/jre/lib/
PA_RISC2.0; export SHLIB_PATH

In siebmtshw:

LD_PRELOAD=/opt/java/jre/lib/PA_RISC2.0/server/
libjvm.sl

export LD_PRELOAD
Transports and Interfaces: Siebel Enterprise Application Integration Siebel 
2018

48 



EAI Java Business Service ■ Requirements for Implementing a Java Business Service
■ CLASSPATH. The classpath used by the JVM.

The classpath must include the following Siebel JAR files as well as all Java code implementing 
the desired business service. 

The required Siebel JAR files are:

■ Siebel.jar

■ SiebelJI_lang.jar (lang corresponds to the default language for your installation).

Linux libjvm.so /usr/java/jdk/jre/lib/i386/server

Set the environment variable LD_LIBRARY_PATH to include the JVM’s 
server directory.

For example:

setenv LD_LIBRARY_PATH=/usr/java/jdk/jre/lib/i386/server: /
usr/java/jdk/jre/lib/i386

Oracle 
Solaris

libjvm.so /usr/jdk/instances/jdk/jre/lib/sparc/server

Set the environment variable LD_LIBRARY_PATH to include the JVM’s 
server directory. Add /platform/SUNW,Sun-Fire-V440/lib to 
LD_LIBRARY_PATH.

For example:

■ siebenv.csh:

setenv LD_LIBRARY_PATH=/usr/jdk/instances/jdk/jre/lib/
sparc/server:/platform/SUNW,Sun-Fire-V440/
lib:{LD_LIBRARY_PATH}

■ siebenv.sh:

LD_LIBRARY_PATH=/usr/jdk/instances/jdk/jre/lib/sparc/
server:/platform/SUNW,Sun-Fire-V440/
lib:{LD_LIBRARY_PATH};export LD_LIBRARY_PATH

Windows jvm.dll JDK installation directory

If using Java 7, then set the environment variable Path to include the 
JRE library. This is not necessary for Java 5 or 6.

For example:

<JRE_HOME>\jre7\bin\client\jvm.dll

Table 9. Complete 32-bit JRE Library Paths for Various Operating Systems

Operating 
System

JRE 
Library Typical Location on Server and Environment Variable Setting
Transports and Interfaces: Siebel Enterprise Application Integration Siebel
2018

49



EAI Java Business Service ■ Requirements for Implementing a Java Business Service
■ VMOPTIONS. Java Virtual Machine options. On all platforms, except AIX, it is recommended that 
the option -Xusealtsigs be used to make sure that the signal handlers used by the Siebel Server 
do not conflict with those of the JVM.

NOTE: The -Xusealtsigs option is mandatory for use on the Oracle Solaris platform. The JVM 
options do not load successfully into the Application Object Manager without this option.

The named 64-bit subsystem supplies the following parameters to the JBS: CONTAINERURL, 
CLASSPATH, and OPTIONS. These parameters are described as follows.

■ CONTAINERURL: The URL to the Java Web Container server for all the JBS requests.

■ CLASSPATH: The classpath used by the JVM.

The classpath must include the location of the jndi.properties file. 

Ensure that the file contains the file name of the jndi.properties file. 

With Java 8, the required JAR files for the execution of JMS must reside on the Java Web 
Container server. The Siebel.jar and SiebelJI_enu,jar are packaged within the war file. All other 
JMS Provider Jars depending on the usage of customer must be placed in the lib directory of the 
Apache Tomcat server.

■ OPTIONS: In the Java 64-bit subsystem, OPTIONS is not used. Therefore, OPTIONS must be set 
using the CATALINA_OPTS option in the setenv.bat or setenv.sh file of the javacontainer based 
on the operating system. An example is as follows:

Windows

javacontainerX\bin\setenv.bat

set CATALINA_OPTS=-Djava.compiler=NONE

non-Windows

File: javacontainerX/bin/setenv.sh

CATALINA_OPTS="-Djava.compiler=NONE"

The following topics are also discussed here:

■ “Creating a 32-bit Java Subsystem by Using the Siebel Server Manager” on page 51

■ “Creating a 64-bit Java Subsystem by Using the Siebel Server Manager” on page 51

■ “Creating a 32-bit Java Subsystem by Using the Siebel Web Client” on page 51

■ “Creating a 64-bit Java Subsystem by Using the Siebel Web Client” on page 52

■ “Creating a 32-bit Java Subsystem by Using the Siebel Dedicated Client” on page 53

■ “Creating a 64-bit Java Subsystem by Using the Siebel Dedicated Client” on page 53

■ “About Platform-Specific Configurations for the JVM” on page 54
Transports and Interfaces: Siebel Enterprise Application Integration Siebel 
2018

50 



EAI Java Business Service ■ Requirements for Implementing a Java Business Service
Creating a 32-bit Java Subsystem by Using the Siebel Server Manager
The following example shows how to create a named 32-bit Java subsystem using the Siebel Server 
Manager:

create named subsystem JAVA for subsystem JVMSubSys with
DLL="D:\jdk\jre\bin\server\jvm.dll",
CLASSPATH="c:\cp\Siebel.jar;c:\cp\SiebelJI_enu.jar;c:\cp\myJARs.jar;.",
VMOPTIONS="-Xrs -Djava.compiler=NONE"

NOTE: On Oracle Solaris, the create statement might be truncated. To avoid this, you can set 
CLASSPATH in the create statement and DLL and VMOPTIONS in the Siebel application.

Alternatively, the parameters to the Java Business Service can be specified in the application 
configuration (CFG) file instead of a named subsystem. This applies only to the Siebel Mobile and 
Developer Web Clients, and not the Siebel Server.

[JAVA]
DLL = D:\jdk\jre\bin\server\jvm.dll
CLASSPATH = c:\cp\Siebel.jar;c:\cp\SiebelJI_enu.jar;c:\cp\myJARs.jar;.
VMOPTIONS = -Xrs -Djava.compiler=NONE

Creating a 64-bit Java Subsystem by Using the Siebel Server Manager
The following example shows how to create a named 64-bit Java subsystem using the Siebel Server 
Manager:

create named subsystem JAVA64 for subsystem JavaContainerSubSys
change param CONTAINERURL=http://localhost:<Config Agent HTTP Port>/siebel/jbs for 
named subsystem JAVA64
change param CLASSPATH=<JNDI file path> for named subsystem JAVA64
change param JVMSubsys= JAVA64 for comp sccobjmgr_enu

Based on your usage, place all other JMS Provider jars in the lib directory of the Apache Tomcat 
server.

NOTE: In Innovation Pack 2017 Siebel Server, the JAVA64 subsystem is preconfigured with the 
required CONTAINERURL, which eliminates the need for you to create the JAVA64 subsystem 
manually. However, you can modify parameters such as CLASSPATH-based JNDI file path.

Creating a 32-bit Java Subsystem by Using the Siebel Web Client
The following is an alternative procedure for creating a Java subsystem by using the Siebel Web 
Client. 

To create a Java subsystem by using the Siebel Web Client
1 In the Siebel client, navigate to the Administration - Server Configuration screen, Enterprises 

view.

2 In the first list applet, select the Enterprise Server that you want to configure.

3 In the middle applet, click the Profile Configuration tab.
Transports and Interfaces: Siebel Enterprise Application Integration Siebel
2018

51



EAI Java Business Service ■ Requirements for Implementing a Java Business Service
4 Click New to create a new component profile and set the following parameters:

5 In the Profile Parameters list applet (the last applet), set the following values:

a Set the Value of the JVM Classpath parameter to one of the following:

❏ The location of the jndi.properties file (if using the JMS Transport).

❏ The JMS provider JAR files (if using the JMS Transport).

❏ The Siebel.jar and SiebelJI_enu.jar files. These files can be installed by using either 
Siebel Tools or the Siebel Server. An example of these files for Microsoft Windows follows:

c:\Oracle\Middleware\wlserver_10.3\server\lib\weblogic.jar;c:\siebel\jndi;
c:\siebel\siebsrvr\CLASSES\Siebel.jar; 
c:\siebel\siebsrvr\classes\SiebelJI_enu.jar

b Set the Value of the JVM DLL Name parameter to the path where you have the jvm.dll file 
installed. For example:

D:\jdk\jre\bin\server\jvm.dll

c Set the Value of the JVM Options record to any JVM-specific options that you would like to enable, 
for example:

-Djava.compiler=NONE

Creating a 64-bit Java Subsystem by Using the Siebel Web Client
The following is an alternative procedure for creating a 64-bit Java subsystem by using the Siebel 
Web Client. 

To create a 64-bit Java subsystem by using the Siebel Web Client
1 In the Siebel client, navigate to the Administration - Server Configuration screen, Enterprises 

view.

2 In the first list applet, select the Enterprise Server that you want to configure.

3 In the middle applet, click the Profile Configuration tab.

4 Click New to create a new component profile and set the following parameters:

Name Value

Profile JAVA

Alias JAVA

Subsystem Type JVMSubsys

Name Value

Profile JAVA64
Transports and Interfaces: Siebel Enterprise Application Integration Siebel 
2018

52 



EAI Java Business Service ■ Requirements for Implementing a Java Business Service
5 In the Profile Parameters list applet (the last applet), set the following values:

a Set the Value of the JVM Classpath parameter to one of the following:

❏ The location of the jndi.properties file (if using the JMS Transport).

b Set CONTAINERURL to point to the java container. For example:

CONTAINERURL=http://localhost:<Config Agent HTTP Port>/siebel/jbs for named 
subsystem JAVA64

c Based on your usage, place all other JMS Provider jars in the lib directory of the Apache Tomcat 
server.

NOTE: In Innovation Pack 2017 Siebel Server, the JAVA64 subsystem is preconfigured with the 
required CONTAINERURL, which eliminates the need for you to create the JAVA64 subsystem 
manually. However, you can modify parameters such as CLASSPATH-based JNDI file path.

Creating a 32-bit Java Subsystem by Using the Siebel Dedicated Client
For dedicated client, define subsystem in the .cfg file with name JAVA. 

Define the 32-bit subsystem as follows:

[JAVA]
DLL = “<jre Install Dir>\bin\server\jvm.dll”
CLASSPATH = “c:\cp\Siebel.jar;c:\cp\SiebelJI_enu.jar;c:\cp\myJARs.jar”;
VMOPTIONS = “-Xrs -Djava.compiler=NONE”

Creating a 64-bit Java Subsystem by Using the Siebel Dedicated Client
For dedicated client, define subsystem in the .cfg file with name JAVA.

Define the 64-bit subsystem as follows:

[JAVA]
FullName = JAVA
Description = Generic
SubsysType = JavaContainerSubSys
CONTAINERURL = http://localhost:<Config Agent Port>/siebel/jbs
CLASSPATH = <JNDI file path>

Based on your usage, place all other JMS Provider jars in the lib directory of the Apache Tomcat 
server.

NOTE: For dedicated client, the subsystem name is JAVA in both 32 bit and 64 bit subsystems.

Alias JAVA64

Subsystem Type JavaContainerSubSys

Name Value
Transports and Interfaces: Siebel Enterprise Application Integration Siebel
2018

53



EAI Java Business Service ■ Creating a Java Business Service
About Platform-Specific Configurations for the JVM
Depending on the platform, it is necessary to set certain environment variables to load the JVM 
properly:

■ AIX. Make sure that you have the environment variable LIBPATH set to include the JVM's shared 
libraries, /usr/java/jre/lib/ppc/ and /usr/java/jre/lib/ppc/j9vm. For example:

setenv LIBPATH=/siebel/siebsrvr/lib:/siebel/siebsrvr/mw/lib:/siebel/siebsrvr/
SYBSsa90/lib:/usr/lib:/siebel/siebsrvr/lib:/oracle_client/app/oracle/OraHome_1/
lib32:/oracle_client/app/oracle/OraHome_1/lib:/usr/java/jre/lib/ppc/:/usr/java/
jre/lib/ppc/j9vm

For more information about setting the LIBPATH environment variable, see the documentation 
for IBM SDK and Java Runtime Environments (JREs) at:

http://www.ibm.com/support

■ HP-UX. Make sure that you have the environment variable SHLIB_PATH set to include the JVM's 
jre and server directories. For example:

setenv SHLIB_PATH /opt/java/jre/lib/PA_RISC2.0:/opt/java/jre/lib/PA_RISC2.0/
server:${SHLIB_PATH}

Set the variable LD_PRELOAD to the full path of the Java library.

■ Oracle Solaris, Windows. No additional settings are needed.

When a Java business service is invoked on UNIX from a server component (for example, the JMS 
Receiver; see Chapter 6, “EAI JMS Transport” for more information), the necessary settings must be 
done in the script that creates the component. 

For the receiver, the script is siebshw; for the Application Object Managers, it is siebmtshw. These 
scripts are present in the bin directory where the Siebel Server is installed.

Creating a Java Business Service
The following topics describe how to create a Java business service:

■ “Defining a Business Service in Java” on page 54

■ “About Implementing a Business Service in Java” on page 55

■ “About Exception Handling for the Java Business Service” on page 55

Defining a Business Service in Java
You define a business service in Java by:

■ Defining a new business service in the repository using Siebel Tools.

■ Specifying the necessary Java classes.
Transports and Interfaces: Siebel Enterprise Application Integration Siebel 
2018

54 



EAI Java Business Service ■ Creating a Java Business Service
To define and specify a new Java business service in Siebel Tools 
1 Copy the EAI Java Business Service (using the Copy Record command in Siebel Tools) and 

rename the copy.

NOTE: Checking the Cache column when you are creating the new Java business service causes 
the same Java object to be reused by subsequent invocations within the same session. See 
“About the Lifecycle of a 32-bit Java Business Service” on page 56.

2 Add a business service user property named @class, whose value is the fully qualified name of 
the Java class (for example, com.example.siebelBusinessService.ImportCustomer). 

About Implementing a Business Service in Java
Once the Java business service has been defined in Siebel Tools, the Java class must be implemented. 
The Java class implementing the business service must extend 
com.siebel.eai.SiebelBusinessService.

SiebelBusinessService is an abstract Java class found in Siebel.jar. It declares three methods:

■ destroy. This method is called when the Java object is released by the Siebel application. It has 
a default empty implementation and can be overridden for the purpose of performing any 
cleanup.

■ invokeMethod. This method contains a default implementation that calls doInvokeMethod and 
catches any exceptions that are thrown by it. It does not declare any exceptions. It is invoked 
by means of JNI in the Siebel application’s native process. This method is not intended to be 
overridden.

■ doInvokeMethod. This method must be implemented by the subclass that implements the 
business service. It takes as arguments the methodName, input property set, and output 
property set. The property sets are instances of com.siebel.data.SiebelPropertySet. This method 
throws SiebelBusinessServiceException.

About Exception Handling for the Java Business Service
Errors are handled by throwing a com.siebel.eai.SiebelBusinessServiceException class. The 
constructor for this class takes two String arguments, an error code and an error message. The error 
code can be used for programmatic handling in Siebel eScript when the business service is called. 
Both the error code and the error message are displayed as an ordinary Siebel error message.

It is strongly recommended that proper error handling be employed when implementing the Java 
Business Service class. By invoking a SiebelBusinessServiceException, the standard Siebel error 
handling facilities are employed.

If any other exception is received from doInvokeMethod, then an error is produced with the details 
of the exception.
Transports and Interfaces: Siebel Enterprise Application Integration Siebel
2018

55



EAI Java Business Service ■ About the Lifecycle of a 32-bit Java Business Service
About the Lifecycle of a 32-bit Java 
Business Service
A JVM is created in-process with the Siebel process the first time a Java business service is invoked. 
Thereafter, the same JVM is used for all invocations of any Java business services.

An instance of the Java class implementing a business service is created the first time that business 
service is invoked. This instance is released through JNI when the native business service is 
destroyed. For business services that are not cached, this occurs whenever the caller (workflow, 
script) releases the native business service. For business services that are cached, this occurs when 
the session is destroyed (for example the user logs out). For a business service marked as cached 
in the repository, repeated invocations by a user during a single session invoke methods on the same 
Java object.

Example of a Java Business Service
Following is an example of a Java class implementing a business service:

package com.example.jbs;
import com.siebel.data.SiebelPropertySet;
import com.siebel.eai.SiebelBusinessServiceException;
public class AddBusinessService extends com.siebel.eai.SiebelBusinessService {
public void doInvokeMethod(String methodName, SiebelPropertySet input, 

SiebelPropertySet output) throws SiebelBusinessServiceException {
String X = input.getProperty("X");
String Y = input.getProperty("Y");
if (X == null || X.equals("") || (Y == null) || Y.equals("")) 

throw new SiebelBusinessServiceException("NO_PAR", "Missing param");

if (!methodName.equals ("Add"))
throw new SiebelBusinessServiceException("NO_SUCH_METHOD”, "No such method");

else {
int x = 0;
int y = 0;
try {

x = Integer.parseInt(X);
y = Integer.parseInt(Y);

}
catch (NumberFormatException e) {

throw new SiebelBusinessServiceException("NOT_INT", "Noninteger passed");
}
int z = x + y; 
output.setProperty("Z", new Integer(z).toString());
}

}
}

Transports and Interfaces: Siebel Enterprise Application Integration Siebel 
2018

56 



EAI Java Business Service ■ About the Lifecycle of a 64-bit Java Business Service
About the Lifecycle of a 64-bit Java 
Business Service
An instance of a Java class implementing a business service is created when it is invoked for the first 
time. This Java instance is stored in the Object Pool that is maintained inside the Java Web Container 
server. The Java instance is released from the Object Pool when the destroy method is called on the 
business service, or if the business service has been idle for more than 1800 seconds. During a single 
session, all repeated invocations by a user are invoked on the same Java Object. The Java Object is 
borrowed from the Object Pool and is returned to the pool after execution of a request.

You can configure the Java Object idle time in the siebsrvr.properties file. For the 64-bit Java 
Business Service, the following parameters have been added to the siebsrvr.properties file:

■ Lang. This parameter defines the language for logging messages. The default value is enu.

■ JBSLogLevel. This parameter defines the log level for the Java Business Service. The value of 
this parameter is an integer between 0-5. The default value is 2.

■ JBSSessKeepAlive. This parameter defines the idle time for a Java Business Service class 
object in the Object Pool. The default values is 1800 seconds. 

Restrictions for Implementing a Java 
Business Service
When implementing a Java business service, keep in mind the following recommendations and 
restrictions:

■ Each business service method invocation is atomic and stateless.

■ The explicit creation of threads is discouraged. It is not recommended that customers invoke a 
threaded component from a Java business service.

■ All data and context required to perform the necessary business functions must be provided as 
input to the class. The external Java class cannot call back into the Siebel application to obtain 
additional context.

Troubleshooting the Java Business 
Service
A common source of errors is the Java CLASSPATH. Remember the following conventions of the Java 
CLASSPATH:

■ On UNIX, CLASSPATH entries are separated by a colon (:); on Windows, by a semicolon (;).

■ If .class files are to be used instead of .jar files, then the root directory (for example, the one 
containing the com folder) must be listed in the CLASSPATH.

If the Java business service states that the com.siebel.data.SiebelPropertySet class is not found, 
then the Siebel.jar files are not correctly specified in the CLASSPATH.
Transports and Interfaces: Siebel Enterprise Application Integration Siebel
2018

57



EAI Java Business Service ■ Troubleshooting the Java Business Service
If the Java business service implementation cannot be found, then the .class or .jar file containing 
its code is not properly specified in the CLASSPATH.

To help troubleshoot CLASSPATH errors, you can use one of the following utilities to see where the 
Application Object Manager or Web client is looking for the .jar files:

■ Windows: filemon. For more information about filemon, see:

http://www.microsoft.com

■ UNIX: truss/strace
Transports and Interfaces: Siebel Enterprise Application Integration Siebel 
2018

58 



6 EAI JMS Transport
This chapter discusses the EAI JMS Transport business service. It includes the following topics:

■ About the EAI JMS Transport Business Service on page 59

■ About Synchronous and Asynchronous Invocation on page 60

■ About the JMS Publish-and-Subscribe Model on page 61

■ About Operations (Methods) of the EAI JMS Transport on page 61

■ Features Not Supported for Use with the Siebel JMS Transport on page 62

■ About JMS Message Types on page 62

■ About Sending and Receiving XML on page 63

■ About Multistep Operations Within a JMS Session on page 63

■ About Undeliverable Messages in JMS Transport on page 64

■ Detailed Input and Output Specifications for the EAI JMS Transport on page 64

■ Configuring the EAI JMS Transport on page 70

■ Sending and Receiving JMS Messages on page 75

■ Receiving, Dispatching, and Sending JMS Messages on page 79

■ Sending and Receiving Custom JMS Properties on page 82

■ Enabling Authentication and Authorization for the EAI JMS Transport on page 84

■ Troubleshooting for the JMS Transport on page 89

■ About Logging for the JMS Transport on page 90

■ About Caching for the JMS Transport on page 90

About the EAI JMS Transport Business 
Service
The EAI JMS Transport business service is an API for accessing enterprise messaging systems. It 
supports the ability to send and receive messages by way of Java Message Service (JMS) servers. 
JMS defines two messaging models: point-to-point (by way of JMS queues) and publish-and-
subscribe (by way of JMS topics). Both are supported by the Siebel EAI JMS Transport.

JMS queues and topics are identified by their Java Naming and Directory Interface (JNDI) names. A 
JNDI naming service is required to use the EAI JMS Transport. It contains entries for the queues and 
topics used.
Transports and Interfaces: Siebel Enterprise Application Integration Siebel
2018

59



EAI JMS Transport ■ About Synchronous and Asynchronous Invocation
Invoked Business Service methods read the JNDI properties in the Siebel application framework 
using the classpath defined for a named subsystem and then pass the information using HTTP to the 
Java layer that resides in the Java Web Container server.

The API of the EAI JMS Transport is very similar to other Siebel messaging APIs such as the EAI 
MQSeries Server Transport and EAI MSMQ Transport.

The EAI JMS Transport is built using the Java Business Service and therefore inherits all the 
requirements of that business service. This includes the independent installation of a Java Virtual 
Machine (JVM) and the configuration of the Siebel application to identify and create the JVM.

Oracle supports integration, using the EAI JMS Transport, with any JMS provider that conforms to 
the JMS 1.0.2b standard. The EAI JMS Transport provides support for basic integration with both 
queues and topics, with message types that are specified in “About JMS Message Types” on page 62.

Oracle does not support any vendor extensions to the JMS standard except where specified enhanced 
functionality is released and documented as part of a Siebel CRM release. The EAI JMS Transport 
provides basic JMS 1.0.2b functionality as described in this chapter. This transport does not provide 
access to advanced capabilities, such as any capabilities of the JMS 1.1 standard that are not 
backward-compatible with JMS 1.0.2b, or provide access to any other functionality that is not 
described in the Siebel Bookshelf. For information about JMS standards, see:

http://www.oracle.com/technetwork/java/jms/index.html 

About Synchronous and Asynchronous 
Invocation
Like the EAI MQSeries Server Transport, the EAI JMS Transport has two modes of execution: 
synchronous and asynchronous. Synchronous execution involves invoking individual methods of the 
JMS Transport directly, just like any other business service. Because the caller waits for the method 
to return, such invocation is synchronous. Asynchronous execution means listening for messages 
arriving on a particular queue and taking action whenever one arrives. This involves the creation of 
a separate Siebel component, called a JMS Receiver. Like the MQ Receiver, whenever a message 
arrives on the queue, the JMS Receiver dispatches to a business service (or workflow) and optionally 
sends a reply message.

NOTE: The JMS Receiver uses the EAI JMS Transport business service but cannot dispatch to a 
workflow that either uses this business service as one of its steps or dispatches directly to this 
business service. While in-process re-entrance is not supported, you can indirectly invoke the EAI 
JMS Transport as one of the steps out of process by calling the Synchronous Server Requests 
business service.
Transports and Interfaces: Siebel Enterprise Application Integration Siebel 
2018

60 



EAI JMS Transport ■ About the JMS Publish-and-Subscribe Model
About the JMS Publish-and-Subscribe 
Model
The traditional message model, where a message is sent to a queue and later removed by a single 
receiver, is called point-to-point messaging. In addition to this familiar model, JMS also supports the 
publish-and-subscribe messaging model. Here, messages are published to topics, rather than sent 
to queues. Interested receivers subscribe to individual topics and receive a copy of each message 
published to the topic. To subscribe, a subscriber registers with the topic, providing a unique 
identifier.

For more information about the JMS publish-and-subscribe model, see:

http://www.oracle.com/technetwork/java/jms/index.html

JMS queues and topics are identified by their JNDI names. A JNDI naming service is required to use 
the JMS Transport. The JNDI naming service contains entries for the JMS queues (implementers of 
javax.jms.Queue) and topics (implementers of javax.jms.Topic) used, as well as the necessary JMS 
connection factories (implementers of either javax.jms.QueueFactory or javax.jms.Topic).

All methods that receive messages automatically time out if no message is available. The timeout 
length is three seconds by default and can be specified by the ReceiveTimeout argument. A value of 
zero for this argument disables the timeout, causing the method to wait indefinitely for a message 
to arrive. Whether a call to Receive or Subscribe timed out is provided as the TimedOut property of 
the output property set.

Subscriptions to JMS topics are always durable subscriptions. 

The term dispatch is used to refer to the operation of calling a business service or workflow, passing 
as input the content of a newly received message.

About Operations (Methods) of the EAI 
JMS Transport
The following is a summary of supported operations for use with the EAI JMS Transport:

■ Receive. Receive a message from a JMS queue.

■ ReceiveDispatch. Receive a message from a JMS queue, then dispatch.

■ ReceiveDispatchSend. Receive a message from a JMS queue, dispatch, and then send the 
result to a (possibly different) JMS queue. 

■ Send. Send a message to a JMS queue.

■ SendReceive. Send a message to a JMS queue then receive a message from a (possibly 
different) JMS queue.

The JMSCorrelationID header of the reply message must be equal to the JMSCorrelationID of the 
message sent, unless it is null (if none was provided as an input to SendReceive), in which case 
it must be the JMSMessageID of the message sent.

■ Subscribe. Receive a message from a JMS topic. The subscriber identifier must be supplied as 
an input to this method.
Transports and Interfaces: Siebel Enterprise Application Integration Siebel
2018

61



EAI JMS Transport ■ Features Not Supported for Use with the Siebel JMS Transport
■ SubscribeDispatch. Receive a message from a JMS topic, then dispatch. The subscriber 
identifier must be supplied as an input to this method.

■ Publish. Publish a message to a JMS topic.

The arguments to these methods and their exact semantics (along with valid values, default values, 
and so on) are described in the topic “Detailed Input and Output Specifications for the EAI JMS 
Transport” on page 64. All methods require the JNDI name of JMS ConnectionFactory and the JNDI 
name of the queue or topic.

Features Not Supported for Use with the 
Siebel JMS Transport
The following features are not supported for use with the Siebel JMS Transport:

■ Message Selection. JMS has a feature called Message Selection, by which a receiver or 
subscriber can filter the messages it receives by specifying certain criteria. This feature is not 
supported by the Siebel JMS Transport.

■ Concurrency with non-JMS messaging. It is not recommended that JMS messaging be used 
concurrently (for a single queue) with non-JMS messaging. For example, it is not recommended 
that a message be sent by way of JMS and later read using native tools. JMS vendors do not 
typically support such usage; it can result in the appearance of additional headers or additional 
obscure data in the body of the message.

■ Transport Layer Security (TLS). The Siebel JMS Transport is primarily designed to support 
message exchange with external messaging systems (providers) using the JMS 1.0.2b standard. 
The JMS standard is not bound to transport layers, such as TCP/IP, and does not address 
transport layer-specific features, such as securing TCP/IP socket connections using TLS. For 
information about enabling and using TLS with the Siebel JMS Transport, contact the vendor of 
your JMS system. For information about the JMS 1.0.2b standard, see:

http://www.oracle.com/technetwork/java/jms/index.html

About JMS Message Types
JMS defines five types of messages: TextMessage, BytesMessage, ObjectMessage, MapMessage, and 
StreamMessage. The Siebel JMS Transport supports only the types TextMessage and BytesMessage. 
If the JMS Transport receives an ObjectMessage, MapMessage, or StreamMessage from the JMS 
server, then the error Unsupported Message Type is produced.

Like all Siebel business services, the output of any method is a property set. If a BytesMessage is 
received, then the value of the property set has Binary type. If a TextMessage is received, then the 
value has String type. 
Transports and Interfaces: Siebel Enterprise Application Integration Siebel 
2018

62 



EAI JMS Transport ■ About Sending and Receiving XML
Conversely, the input to any method is also a property set. For methods that involve sending or 
publishing a message, the type of message sent or published depends on the type of the value of 
the input property set. If the type is Binary, then a BytesMessage is sent and published. If the type 
is String, then a TextMessage is sent and published. 

NOTE: The Siebel Business Service Simulator in Siebel Call Center always creates the input with a 
value type of String. 

About Sending and Receiving XML
Messages whose content is XML are generally best treated as binary data and sent as 
BytesMessages. For example, the output of the Siebel business service EAI XML Converter is binary; 
therefore, if this is passed as the input to Send, then a BytesMessage is sent.

If XML is sent as a TextMessage, then the characters are encoded as UTF-16. Therefore, the XML 
document declares its encoding to be UTF-16.

Typically, when a message containing an XML document is received by the Siebel application, it is 
desirable to convert the document to a property set representation before processing it. This is 
accomplished automatically during the Dispatch step by specifying the ConverterService argument 
to be either XML Converter or EAI XML Converter. For more details about these converter services 
see XML Reference: Siebel Enterprise Application Integration.

About Multistep Operations Within a JMS 
Session
All JMS operations are performed in the context of a transactional JMS QueueSession. If a send or 
receive operation throws an exception, then the session is immediately rolled back. If the operation 
is successful, then the session is committed, unless the operation is part of a larger multistep 
operation. In the case of multistep operations, the transaction is handled as follows: 

■ SendReceive. If the send operation succeeds, then the JMS session is committed and a receive 
operation is performed. This is necessary because the receive operation might depend on a 
response to the first message.

■ ReceiveDispatch. If the receive operation fails, then the JMS session is rolled back, and the 
dispatch operation is not attempted. If the receive operation succeeds, then the dispatch 
operation is attempted. If the dispatch succeeds, then the JMS session is committed; otherwise, 
both the Siebel transaction and the JMS session are rolled back.

■ SubscribeDispatch. Same as ReceiveDispatch.

■ ReceiveDispatchSend. If the receive operation fails, then the JMS session is rolled back, and 
further operations are not attempted. If the receive operation succeeds, then the dispatch 
operation is attempted. If the dispatch operation fails, then the JMS session and the Siebel 
transaction are rolled back; otherwise, the send operation is attempted. If the send operation 
fails, then the JMS session and the Siebel transaction are rolled back; otherwise, both are 
committed.
Transports and Interfaces: Siebel Enterprise Application Integration Siebel
2018

63



EAI JMS Transport ■ About Undeliverable Messages in JMS Transport
Each Dispatch operation is performed within a Siebel transaction. 

NOTE: Do not attempt ReceiveDispatch and ReceiveDispatchSend operations from within an existing 
Siebel transaction, as nested transactions are not supported.

Also, as with all Siebel EAI receivers, if an operation fails during the execution of the JMS Receiver, 
then the JMS Receiver component terminates. (A timeout is not a failure.)

About Undeliverable Messages in JMS 
Transport
If a message is undeliverable, in the sense that repeated attempts by the Siebel JMS Transport to 
receive the message fail, then the message must be removed from the queue. Most JMS vendors 
provide some mechanism for dealing with such “poison messages.” Oracle WebLogic, for example, 
can be configured to limit the number of times it attempts to deliver a message before redirecting 
the message to an error queue or deleting the message altogether.

Detailed Input and Output Specifications 
for the EAI JMS Transport
This topic provides detailed information about the exact semantics of all input arguments and output 
values for each method of the EAI JMS Transport.

The following topics are discussed:

■ “JMS Headers and Properties” on page 64

■ “Input Arguments Used by the Dispatch Step” on page 65

■ “About the Output of the JMS Transport” on page 69

JMS Headers and Properties
Every JMS message has a set of standard headers. Some of these headers can be specified as 
arguments to the methods of the JMS Transport that involve sending or publishing, and some are 
available as properties of the output property set of methods that involve receiving or subscribing. 
These are detailed in Table 10 on page 65, Table 11 on page 67, and Table 12 on page 69.

A JMS message can also be assigned properties. These might be user-defined properties specific to 
a particular application, or JMS-defined properties (for example JMSXProducerTXID) that are 
optionally supported by the JMS vendor. A property can be an instance of any Java class or any of 
the primitive Java types. All properties of a message received by the Siebel JMS Transport are 
available as properties of the output property set.
Transports and Interfaces: Siebel Enterprise Application Integration Siebel 
2018

64 



EAI JMS Transport ■ Detailed Input and Output Specifications for the EAI JMS Transport
The name of the property is the original name with the eleven characters SIEBEL_JMS: prefixed; the 
value is the string obtained by converting the original value to a Java String. Conversely, when a 
message is sent, any property of the input property set whose name begins with SIEBEL_JMS: is 
added to the message as a JMS Message string property with the prefix SIEBEL_JMS: removed. For 
example, the property SIEBEL_JMS:foo is added to the message as the string property foo.

Input Arguments Used by the Dispatch Step
Table 10 shows the options for each input argument of the JMS Transport methods, except the user-
defined properties and arguments used by the Dispatch step. R denotes a required argument; NR 
denotes an optional argument (not required); and I denotes an argument that is ignored. Notes 
following the table provide further explanation for particular values.

Table 10. Dispatch Step Input Arguments

Input Argument Send Publish

Send

Receive Receive Subscribe

Receive 

Dispatch

Receive 

Dispatch 

Send

Subscribe 

Dispatch

ConnectionFactory R R R R R R R R

ReceiveQueue I I R R I R R I

ReceiveTimeout I I NR NR NR NR NR NR

SendQueue R I R I I I R I

Topic I R I I R I I R

ConnectionUserna
me

NR NR NR NR NR NR NR NR

ConnectionPasswor
d

NR NR NR NR NR NR NR NR

SendUsername NR I NR I I NR I I

SendPassword NR I NR I I NR I I

ReceiveUsername I I NR I I I NR I

ReceivePassword I I NR I I I NR I

TopicUsername I NR I I NR I I NR

TopicPassword I NR I I NR I I NR

SubscriberIdentifier I I I I R I I R

JMS Headers

JMSPriority NR NR NR I I I NR2 I

JMSDeliveryMode NR NR NR I I I NR2 I

JMSExpiration NR NR NR I I I NR2 I
Transports and Interfaces: Siebel Enterprise Application Integration Siebel
2018

65



EAI JMS Transport ■ Detailed Input and Output Specifications for the EAI JMS Transport
Some special notes regarding particular values in Table 10 on page 65:

■ When the JMSReplyTo header is used, the SendQueue value is ignored.

■ When the JMSPriority, JMSDeliveryMode, JMSExpiration, JMSReplyTo, or JMSType header is used, 
these values are assigned to the reply message during the Send step.

■ The JMSReplyTo header of the sent message is set to the value of the ReceiveQueue argument.

■ The JMSCorrelationID header of the reply message cannot be set directly. The JMSCorrelationID 
of the reply message is set to the JMSCorrelationID of the received message, unless empty, in 
which case it is set to its JMSMessageID.

■ For DispatchService, DispatchMethod, DispatchWorkflowProcess, and DispatchRuleSet method 
arguments, one of the following three combinations is required:

■ (DispatchService && DispatchMethod)

■ DispatchWorkflowProcess

■ DispatchRuleSet

■ The ConnectionUsername and ConnectionPassword input parameters apply to IBM WebSphere 
MQ only.

NOTE: When sending messages to IBM WebSphere MQ, ConnectionUsername and 
ConnectionPassword are required for the Windows 2012 Server platform and recommended for 
all other Windows platforms.

JMSReplyTo NR NR I I I I NR2 I

JMSType NR NR NR I I I NR2 I

JMSCorrelationID NR NR NR I I I I I

Dispatch

Connection
Subsystem

NR NR NR NR NR NR NR NR

DataHandling
Subsystem

I I I I I NR NR NR

DispatchService I I I I I R R R

DispatchMethod I I I I I R R R

DispatchWorkflow
Process

I I I I I R R R

DispatchRuleSet I I I I I R R R

ConverterService I I I I I NR NR NR

Table 10. Dispatch Step Input Arguments

Input Argument Send Publish

Send

Receive Receive Subscribe

Receive 

Dispatch

Receive 

Dispatch 

Send

Subscribe 

Dispatch
Transports and Interfaces: Siebel Enterprise Application Integration Siebel 
2018

66 



EAI JMS Transport ■ Detailed Input and Output Specifications for the EAI JMS Transport
■ The SendUsername, SendPassword, ReceiveUsername, ReceivePassword, TopicUsername, and 
TopicPassword input parameters apply to Oracle WebLogic only.

■ The JMSType and JMSCorrelationID input arguments can also be used as output arguments.

■ For the ConnectionSubsystem input argument, a subsystem can be provided instead of the 
connection parameters. However, it must contain the same required method arguments as used 
for the connection parameters.

■ For the DataHandlingSubsystem input argument, a subsystem can be provided instead of the 
dispatch parameters. However, it must contain the same required method arguments as used for 
the dispatch parameters.

■ The ConverterService input argument is used to process the output of the received message 
before dispatching.

In place of providing the arguments individually, the single argument ConnectionSubsystem can be 
provided. Its value must be the name of a valid named subsystem of type JMSSubsys, and it must 
include all of the arguments that are required by the method to which it is passed. See “About the 
JMS Receiver” on page 72 for more information about that named subsystem.

JMS message properties are also supported as input arguments (properties) as described in “JMS 
Headers and Properties” on page 64.

Input Argument Values
Table 11 provides details for each input argument about the allowable values, default values, and 
special values, as well as the behavior if an invalid value is passed.

Table 11. Values for Input Arguments

Input Default
Allowable 
Values

Special 
Values

If Value 
Invalid

ConnectionFactory NONE JNDI connection 
factory name

Not 
applicable

ERROR

ReceiveQueue NONE JNDI queue name Not 
applicable

ERROR

ReceiveTimeout 3000 Any integer greater 
than or equal to 0

0: Wait 
indefinitely

Noninteger 
defaults to 
3000

Integer less 
than 0 
defaults to 0

ConnectionUsername NONE Valid username Not 
applicable

Not 
applicable

ConnectionPassword NONE Valid password Not 
applicable

Not 
applicable
Transports and Interfaces: Siebel Enterprise Application Integration Siebel
2018

67



EAI JMS Transport ■ Detailed Input and Output Specifications for the EAI JMS Transport
SendQueue NONE JNDI queue name Not 
applicable

ERROR

SendUsername NONE Valid username Not 
applicable

Not 
applicable

SendPassword NONE Valid password Not 
applicable

Not 
applicable

ReceiveUsername NONE Valid username Not 
applicable

Not 
applicable

ReceivePassword NONE Valid password Not 
applicable

Not 
applicable

TopicUsername NONE Valid username Not 
applicable

Not 
applicable

TopicPassword NONE Valid password Not 
applicable

Not 
applicable

Topic NONE JNDI topic name Not 
applicable

ERROR

SubscriberIdentifier NONE ANY STRING Not 
applicable

Not 
applicable

JMS Headers

JMSCorrelationID NOT SET ANY STRING Not 
applicable

Not 
applicable

JMSPriority javax.jms.Message.
DEFAULT_PRIORITY 
(4)

Any integer from 0 
to 9

(0 lowest; 
9 highest)

DEFAULT

JMSDeliveryMode javax.jms.Delivery
Mode.PERSISTENT

PERSISTENT, 
NON_PERSISTENT

Not 
applicable

DEFAULT

JMSExpiration javax.jms.Message.
DEFAULT_TIME_TO_
LIVE (0)

Any nonnegative 
integer

0: Message 
never 
expires

DEFAULT

JMSReplyTo NOT SET JNDI queue name Not 
applicable

ERROR

JMSType SiebelJMSMessage ANY STRING Not 
applicable

Not 
applicable

Dispatch

ConnectionSubsystem NONE A JMSSubsys 
named subsystem

Not 
applicable

ERROR

Table 11. Values for Input Arguments

Input Default
Allowable 
Values

Special 
Values

If Value 
Invalid
Transports and Interfaces: Siebel Enterprise Application Integration Siebel 
2018

68 



EAI JMS Transport ■ Detailed Input and Output Specifications for the EAI JMS Transport
About the Output of the JMS Transport
The output of the JMS Transport methods includes the following parts:

■ The content of the received message (if the method involves receiving a message). See the 
previous topic, “Input Arguments Used by the Dispatch Step” on page 65, for details about typing.

■ JMS properties of the received message (if the method involves receiving a message), as 
described in the topic “JMS Headers and Properties” on page 64.

■ Certain JMS headers of the message sent or received, as described in Table 12.

■ The special properties TimedOut (if the method involves receiving a message) and DispatchError 
(if the method involves dispatching), as described in Table 12. Each property is either True or 
False.

Table 12 enumerates for each method of JMS Transport the JMS headers and other distinguished 
properties that appear as properties of the output property set of the method. Yes means the 
argument is present; No means the argument is absent.

DataHandlingSub
system

NONE An 
EAITransportData
HandlingSubsys 
named subsystem

Not 
applicable

ERROR

DispatchService NONE Business service 
name

Not 
applicable

ERROR

DispatchMethod NONE Business service 
method

Not 
applicable

ERROR

DispatchWorkflow
Process

NONE Workflow name Not 
applicable

ERROR

DispatchRuleSet NONE Rule set name Not 
applicable

ERROR

ConverterService NONE Business service 
name

Not 
applicable

ERROR

Table 12. Dispatch Step Output Arguments

Output Send Publish

Send

Receive Receive Subscribe

Receive 

Dispatch

Receive 

Dispatch 

Send

Subscribe 

Dispatch

TimedOut No No Yes Yes Yes Yes Yes Yes

JMSType+ No No Yes Yes Yes Yes No Yes

Table 11. Values for Input Arguments

Input Default
Allowable 
Values

Special 
Values

If Value 
Invalid
Transports and Interfaces: Siebel Enterprise Application Integration Siebel
2018

69



EAI JMS Transport ■ Configuring the EAI JMS Transport
Some special notes regarding the information in this table:

■ Yes1: JMSMessageID, the value assigned by the JMS server of the sent (or published) message.

■ Yes2: JMSMessageID, the value assigned by the JMS server of the received (or subscribed) 
message.

■ +: An output argument that can also be used as an input argument.

All other message properties (user-defined; not JMS headers) are provided as output properties with 
SIEBEL_JMS: prefixed to the original property name, and the value is converted to a String.

For the multistep methods ReceiveDispatch, ReceiveDispatchSend, and SubscribeDispatch, 
properties are passed between the individual steps according to the following rules:

■ All outputs of the Receive (or Subscribe) step are passed as inputs to the subsequent Dispatch 
step. 

■ In the case of an error during the Dispatch step, its output is returned.

■ The input to the Dispatch step includes all properties in the original input as well as properties 
returned by the Receive (or Subscribe) step.

Configuring the EAI JMS Transport
The EAI JMS Transport is built using the Java Business Service and therefore inherits all the requirements 
of that business service. This includes the independent installation of a Java Virtual Machine (JVM) and 
the configuration of the Siebel application to identify and create the VM. Configuration of the Siebel 
application requires creating a named subsystem of type JVMSubSys with the necessary properties. 
Refer to the Java Business Service documentation for instructions on how to configure the JVM named 
subsystem. 

The EAI JMS Transport requires that the CLASSPATH property of the JVM subsystem include the following 
packages or classes:

■ Siebel.jar

■ SiebelJI_lang.jar (where lang corresponds to the default language for your installation)

JMSCorrelation
ID+

No No Yes Yes Yes Yes No Yes

JMSRedelivered No No Yes Yes Yes Yes No Yes

JMSTimestamp No No Yes Yes Yes Yes No Yes

JMSMessageID Yes1 Yes1 Yes2 Yes2 Yes2 Yes Yes1 Yes

DispatchError No No No No No Yes Yes Yes

Table 12. Dispatch Step Output Arguments

Output Send Publish

Send

Receive Receive Subscribe

Receive 

Dispatch

Receive 

Dispatch 

Send

Subscribe 

Dispatch
Transports and Interfaces: Siebel Enterprise Application Integration Siebel 
2018

70 



EAI JMS Transport ■ Configuring the EAI JMS Transport
■ A directory containing the location of the jndi.properties file

The jndi.properties file contains the necessary name value pairs required to perform a JNDI 
lookup and bind to the remote queue.

■ Necessary classes and JAR files as required by the JMS provider.

NOTE: You can have only one JVM loaded in a process, and therefore only one JVM subsystem in a 
process. If you try to load more than one JVM subsystem into a process, then an error occurs.

If you want multiple JVM subsystems, then you must configure additional components. For example, 
you can have EAIObjMgr_WL pointing to a JVM subsystem called JAVA_WL and EAIObjMgr_ORACLE 
pointing to a JVM subsystem called JAVA_ORACLE.

To verify that the CLASSPATH and jndi.properties are properly configured, see “Troubleshooting for 
the JMS Transport” on page 89.

The following JMS Transport configuration topics are also discussed here:

■ “About the JMSSubsys Named Subsystem” on page 71

■ “About the JMS Receiver” on page 72

■ “About Reconnecting to the External JMS Queue” on page 74

■ “Creating a JMS Subsystem by Using the Siebel Web Client” on page 75

About the JMSSubsys Named Subsystem
The arguments to any method of JMS Transport can be supplied individually as properties of the input 
property set or as part of a named 32-bit subsystem of type JMSSubsys. When invoking the JMS 
Transport asynchronously by starting a JMS Receiver component, the arguments must be supplied 
by way of a named subsystem.

This subsystem supplies all of the necessary parameters for any one of these three methods: 
ReceiveDispatch, ReceiveDispatchSend, or SubscribeDispatch. The parameters for the three 
methods are ConnectionFactory, ReceiveQueue, SendQueue, Topic, SubscriberIdentifier, 
ReceiveTimeout, JMSType, JMSPriority, JMSExpiration, and JMSDeliveryMode.

In addition, this subsystem has a property JVMSubsys, which can be given the name of the JVM 
subsystem instance to use. The default value is JAVA. Therefore, if the property JVMSubsys is not 
explicitly given a value, then there must be a properly configured instance of the type JVMSubSys 
named JAVA.

About the JavaContainerSubsys Named Subsystem
The arguments to any method of JMS Transport can be supplied individually as properties of the input 
property set or as part of a named 64-bit subsystem of type JavaContainerSubsys. When invoking 
the JMS Transport asynchronously by starting a JMS Receiver component, the arguments must be 
supplied by way of a named subsystem.
Transports and Interfaces: Siebel Enterprise Application Integration Siebel
2018

71



EAI JMS Transport ■ Configuring the EAI JMS Transport
This subsystem supplies all of the necessary parameters for any one of these three methods: 
ReceiveDispatch, ReceiveDispatchSend, or SubscribeDispatch. The parameters for the three 
methods are CONTAINERURL and CLASSPATH.

For more information about configuring the JavaContainerSubsys subsystem, see “Creating a 64-bit 
Java Subsystem by Using the Siebel Server Manager” on page 51 and “Creating a 64-bit Java Subsystem 
by Using the Siebel Web Client” on page 52.

About the JMS Receiver
The JMS Receiver (alias EAIJMSRcvr) is a Siebel Server component that makes it possible for the JMS 
Transport to be invoked asynchronously. The JMS Receiver:

■ Listens for messages arriving on a JMS queue or topic and takes action whenever a message 
arrives.

■ Repeatedly invokes a single method of the JMS Transport: ReceiveDispatch, 
ReceiveDispatchSend, or SubscribeDispatch.

■ Takes a message from the queue and dispatches it to the corresponding workflow or business 
service for execution. If execution is successful, then the message is committed to the queue. If 
there is an error, then the message is rolled back to the queue.

■ Uses AUTO_ACKNOWLEDGE mode. In AUTO_ACKNOWLEDGE mode, the session automatically 
acknowledges the receipt of a message when it has either successfully returned from a call to 
receive or the message listener it has called to process the message successfully returns.

About Multithreading in the JMS Receiver Component
The JMS Receiver is multithreaded and operates in batch mode. (In some previous versions, this 
component was single-threaded and ran in the background.)

A task for the JMS Receiver component starts automatically when the Siebel Server is started, where 
Default Tasks (alias DfltTasks) is set to 1. Otherwise, you must start tasks manually. For more 
information about DfltTasks, see Siebel System Administration Guide.

When a JMS Receiver task is started, a main task and several worker threads are created, whose 
number depends on the MinWorkQThreads and MaxWorkQThreads parameters listed in Table 13.

After the worker threads are created, the main task thread starts calling the specified method on the 
EAI JMS Transport business service in an infinite loop, until a shutdown component is signaled. At 
the same time, the worker threads start their own infinite loop and perform the same duties as the 
main thread: they call the specified method on the EAI JMS Transport business service.
Transports and Interfaces: Siebel Enterprise Application Integration Siebel 
2018

72 



EAI JMS Transport ■ Configuring the EAI JMS Transport
In effect, the ReceiveDispatchSend operation (or any method specified) is now called by multiple 
threads in the same task. Previously, a single sequential call to the ReceiveDispatchSend method was 
made in a single process. Now, the same operation happens in parallel. The thread parallelism 
effectively increases scalability while limiting CPU load and memory utilization.

Considerations When Using Multithreading
Multithreading works best when messages are atomic; that is, their processing does not depend on 
the processing of other messages. The messages can be processed in parallel without conflicts.

If one message is dependent on another, then the messages must be processed in the correct order. 
For example, you must create an account before creating a service request for it, and create an order 
before adding an order line item.

You can use validation scripting to make sure that parents are created before children. However, 
creating a data architecture that does not require additional scripting will deliver a performance 
benefit to the end-to-end solution.

About Configuring the JMS Receiver
An instance of the JMS Receiver is configured with the parameters of a JMSSubsys named subsystem, 
which specify the queue or topic to listen to, and the action to be taken.

The JMSReceiver task has the following three parts:

■ ReceiverConnectionSubsystem is the named subsystem.

■ ReceiverDataHandlingSubsystem dispatches the message from the ReceiveQueue to the 
workflow previously defined.

■ ReceiverMethodName is the EAI JMS Transport business service method invoked.

Table 13. Siebel Server Parameters Used in Multithreading

Parameter Description

MaxTasks Total number of tasks that can run concurrently on a Siebel Application Object 
Manager. For more information about MaxTasks, see Siebel Performance 
Tuning Guide.

MaxMTServers Maximum number of multithreaded processes that can run concurrently on a 
Siebel Application Object Manager. For more information about 
MaxMTServers, see Siebel Performance Tuning Guide.

MinMTServers Minimum number of multithreaded processes that can run concurrently on a 
Siebel Application Object Manager. For more information about 
MinMTServers, see Siebel Performance Tuning Guide.

MaxWorkQThreads Maximum number of worker threads in a process. The default is 4.

MinWorkQThreads Minimum number of worker threads in a process. The default is 4.

MaxWorkQLength Maximum number of work items handled by a worker thread. The default is 
20.
Transports and Interfaces: Siebel Enterprise Application Integration Siebel
2018

73



EAI JMS Transport ■ Configuring the EAI JMS Transport
The following is an example of how an instance of the JMS Receiver can be configured and run by 
using the Siebel Server Manager command-line interface:

create named subsystem MyJMSConnSubsys_SR for subsystem JMSSubsys with
ConnectionFactory="weblogic.examples.jms.QueueConnectionFactory",
ReceiveQueue="weblogic.examples.jms.exampleQueueReceive",
SendQueue="weblogic.examples.jms.exampleQueueSend",
ReceiveTimeout=3000

create named subsystem SiebelEcho for subsystem EAITransportDataHandlingSubsys with
DispatchService="Workflow Utilities",
DispatchMethod="ECHO"

start task for comp JMSReceiver with
ReceiverConnectionSubsystem=MyJMSConnSubsys_SR,
ReceiverDataHandlingSubsystem=SiebelEcho,
ReceiverMethodName=ReceiveDispatchSend

For a detailed workflow example using a JMS Receiver, see “Receiving, Dispatching, and Sending JMS 
Messages” on page 79. For a discussion of named subsystems for Siebel EAI, see Chapter 2, “EAI 
Transports and Interfaces Overview.” For more information about administering named subsystems, 
see Siebel System Administration Guide.

About Reconnecting to the External JMS Queue
If the external system is not ready to receive messages, then the JMS Receiver component fails when 
it attempts to connect. To avoid this failure, two new parameters have been added to the JMS 
Receiver: CompMaxRetries and CompRetryInterval. You can set these parameters as needed.

The reconnection parameters for the JMS Receiver are described in Table 14.

These parameters are used with the AutoRestart and NumRestart parameters. AutoRestart enables 
restart attempts when set to TRUE. NumRestart determines how many attempts are made to restart 
the JMS Receiver task if it fails.

CompMaxRetries and CompRetryInterval control reconnection attempts to the JMS queue to avoid 
JMS Receiver failure. AutoRestart and NumRestart are used when the JMS Receiver task ends with 
an error unrelated to losing the queue connectivity. For more information about NumRestart and 
AutoRestart, see Siebel System Administration Guide.

Table 14. Reconnection Parameters for the JMS Receiver Component

Parameter
Default 
Value Description

CompMaxRetries 10 Specifies the number of times the reconnection is attempted. 
Valid values are positive integers.

CompRetryInterval 60 Specifies the interval in seconds between each retry. Valid values 
are positive integers.
Transports and Interfaces: Siebel Enterprise Application Integration Siebel 
2018

74 



EAI JMS Transport ■ Sending and Receiving JMS Messages
Creating a JMS Subsystem by Using the Siebel Web 
Client
The following is an alternative procedure for creating a JMS Subsystem by using the Siebel Web 
Client and then configuring the JMS Transport.

To configure the JMS Transport by using the Siebel Web Client
1 In the Siebel client, navigate to the Administration - Server Configuration screen, Enterprises 

view.

2 In the first list applet, select the Enterprise Server that you want to configure.

3 In the middle applet, click the Profile Configuration tab.

4 Click New to create a new component profile and set the following parameters:

5 In the Profile Parameters list applet (the last applet), specify the parameters required for the 
type of operations the subsystem will support (for example, Receive or ReceiveDispatchSend). 

For example, if this subsystem needed to support the ReceiveDispatchSend operation, then at 
least the following values must be set:

Sending and Receiving JMS Messages
The following procedure describes how to set up the Siebel application to send a message to an 
external system using the EAI JMS Transport and receive a corresponding reply from the external 
system.

Name Value

Profile JMS_Q1ReceiveDispatchSend

Alias JMS_Q1ReceiveDispatchSend

Subsystem Type JMSSubsys

Name Value

ConnectionFactory examples.jms.QueueConnectionFactory

JVM Subsystem JAVA

ReceiveQueue examples.jms.fromSiebel

SendQueue examples.jms.toSiebel

Receive Timeout 1000
Transports and Interfaces: Siebel Enterprise Application Integration Siebel
2018

75



EAI JMS Transport ■ Sending and Receiving JMS Messages
To send and receive messages with the JMS Transport
1 Set up a JMS queue to receive messages from the Siebel application and give the queue an easy-

to-identify name, such as fromSiebel. 

Refer to your JMS provider documentation on how to administer, monitor, and define new 
persistent queues.

2 Set up a JMS queue to send messages to the Siebel application. 

Refer to your JMS provider documentation on how to administer, monitor and define new 
persistent queues.

a Give the queue an easy-to-identify name, such as toSiebel.

b Create a message in the queue.

NOTE: To test this scenario adequately, you must have a partner application that can place a 
valid message for the Siebel application into the queue.

3 In Siebel Tools, set up a workflow for sending a message out and receiving a message in response 
using the EAI JMS Transport. Define the flow as shown in the following figure.

NOTE: For details on the Business Process Designer, see Siebel Business Process Framework: 
Workflow Guide.

4 Create the following process properties:

Name Data Type
In/
Out Default String Comments

OrderXML Binary In Not applicable Not applicable

JMSConnectionFactory String In examples.jms.
ConnectionFactory

JNDI name of 
the JMS 
connection 
factory

JMSReceiveQueue String In examples.jms.toSiebel JNDI name of 
the queue
Transports and Interfaces: Siebel Enterprise Application Integration Siebel 
2018

76 



EAI JMS Transport ■ Sending and Receiving JMS Messages
5 Set up the first step of the workflow to use the Siebel Order ASI with the QueryById method to 
query the information from the Siebel database using the following input and output arguments:

6 Set up the second step of the workflow to use the EAI XML Converter with the 
IntObjHierToXMLDoc method to convert the data extracted from the Siebel database to XML 
using the following input and output arguments:

JMSSendQueue String In examples.jms.fromSiebel JNDI name of 
the queue

JMSReceiveTimeout String In 180000 Not applicable

Order Message Integration 
Object

In Not applicable Not applicable

Input Argument Type Property Name

PrimaryRowId Process Property Object Id

Property Name Type Output Argument

Order Message Output Argument SiebelMessage

Input Argument Type Value Property Name

GenerateProcessingInstructions Literal False Not applicable

SiebelMessage Process Property Not applicable Order Message

Property Name Type Output Argument

OrderXML Output Argument <Value>

Name Data Type
In/
Out Default String Comments
Transports and Interfaces: Siebel Enterprise Application Integration Siebel
2018

77



EAI JMS Transport ■ Sending and Receiving JMS Messages
7 Set up the third step of the workflow, after Start, to use the EAI JMS Transport with the 
SendReceive method using the following input and output arguments:

8 Set up the fourth step to use the EAI XML Converter with the XMLDocToIntObjHier method to 
convert the XML message to an Integration Object using the following input and output 
arguments:

9 Set up the last step to use the Siebel Order ASI with the Synchronize message to update the 
Siebel database using the following input and output arguments:

Input Argument Type Property Name

<Value> Process Property OrderXML

ConnectionFactory Process Property JMSConnectionFactory

ReceiveQueue Process Property JMSReceiveQueue

ReceiveTimeout Process Property JMSReceiveTimeout

SendQueue Process Property JMSSendQueue

Property Name Type Output Argument

OrderXML Output Argument <Value>

Input Argument Type Property Name

<Value> Process Property OrderXML

Property Name Type Output Argument

Order Message Output Argument SiebelMessage

Input Argument Type Property Name

SiebelMessage Process Property Order Message

Property Name Type Output Argument

Order Message Output Argument SiebelMessage
Transports and Interfaces: Siebel Enterprise Application Integration Siebel 
2018

78 



EAI JMS Transport ■ Receiving, Dispatching, and Sending JMS Messages
10 Save and deploy the workflow.

It is recommended that the Workflow Simulator be used for testing purposes.

NOTE: To test this scenario adequately, you must have a partner application that can accept the 
message and return a response. The correlation ID of the response message must be set to the 
message ID of the message originally sent by the Siebel application.

Receiving, Dispatching, and Sending 
JMS Messages
The procedure in this section describes how to set up your system to receive inbound messages from 
JMS, perform an action within the Siebel application based upon the message, and send a 
synchronous response back to the external system.

To receive, dispatch, and send messages using EAI JMS Transport
1 Set up a JMS queue to receive messages from the Siebel application and give the queue an easy 

to identify name, such as fromSiebel. 

Refer to your JMS provider documentation on how to administer, monitor, and define new 
persistent queues.

2 Set up a JMS queue to send messages to the Siebel application. 

Refer to your JMS provider documentation on how to administer, monitor and define new 
persistent queues.

a Give the queue an easy-to-identify name such as toSiebel.

b Create a message in the queue.

NOTE: To test this scenario adequately, you must have a partner application that can place a 
valid message for the Siebel application into the queue.

3 In Siebel Tools, set up a workflow to process the incoming XML request. 

The following workflow receives the incoming XML document and converts it to an integration 
object, executes a query using Siebel Order application service, and converts the response to an 
XML document as shown in the following figure:

NOTE: For details on the Business Process Designer, see Siebel Business Process Framework: 
Workflow Guide.
Transports and Interfaces: Siebel Enterprise Application Integration Siebel
2018

79



EAI JMS Transport ■ Receiving, Dispatching, and Sending JMS Messages
4 Create the following process properties:

5 Set up the first step of the workflow, after Start, to use the EAI XML Converter with the 
XMLDocToIntObjHier method. 

This step converts the incoming XML document to an integration object representation using the 
following input and output arguments:

6 Set up the second step to use the Siebel Order ASI with the QueryByExample method. 

This step queries the Order business object based upon the provided XML document using the 
following input and output arguments:

Name Data Type In/Out Default String Comments

<Value> Binary In/Out <Value> Order Integration 
Object 

Order Message Hierarchy In/Out Not applicable XML representation 
of the integration 
object

Input Argument Type Property Name

<Value> Process Property <Value>

Property Name Type Output Argument

Order Message Output Argument SiebelMessage

Input Argument Type Property Name

SiebelMessage Process Property Order Message

Property Name Type Output Argument

Order Message Output Argument SiebelMessage
Transports and Interfaces: Siebel Enterprise Application Integration Siebel 
2018

80 



EAI JMS Transport ■ Receiving, Dispatching, and Sending JMS Messages
7 Set up the third step to use the EAI XML Converter with the IntObjHierToXMLDoc method. 

This step converts the integration object to a well-formed XML document using the following 
input and output arguments:

8 Save and deploy the workflow.

For details on deploying workflows, see Siebel Business Process Framework: Workflow Guide.

9 Define a JMS Connection subsystem using SrvrMgr (command line utility) or the Server 
Administration screen. 

NOTE: Restart the Siebel Server to make the new subsystem available.

Following is an example using SrvrMgr:

NOTE: ConnectionFactory, ReceiveQueue and SendQueue require JNDI names, which varies 
depending upon the JMS provider and your implementation.

create named subsystem JMSToFromSiebel for subsystem JMSSubsys with 
ConnectionFactory="jndiName.ConnectionFactory", 
ReceiveQueue="jndiName.toSiebel ", 
SendQueue="jndiName.fromSiebel",
ReceiveTimeout=3000

10 Define a data handling subsystem to dispatch the message from the toSiebel queue to the 
workflow as previously defined (JMS Query Order):

create named subsystem QueryOrder for subsystem EAITransportDataHandlingSubsys 
with DispatchWorkflowProcess="JMS Query Order"

NOTE: The Siebel Server must be restarted in order for the data handling subsystem to be 
available.

11 After restarting the Siebel Server, start a new JMS Receiver from the SrvrMgr command line. 

The following is an example that instructs the receiver to use the JMSToFromSiebel connection 
subsystem defined in Step 9, the QueryOrder data handling subsystem defined in Step 10, and 
instructs the receiver to use the ReceiveDispatchSend method of the EAI JMS Transport:

start task for comp JMSReceiver with 
ReceiverConnectionSubsystem= JMSToFromSiebel,
ReceiverDataHandlingSubsystem=QueryOrder,
ReceiverMethodName=ReceiveDispatchSend

Input Argument Type Property Name

SiebelMessage Process Property Order Message

Property Name Type Output Argument

<Value> Output Argument <Value>
Transports and Interfaces: Siebel Enterprise Application Integration Siebel
2018

81



EAI JMS Transport ■ Sending and Receiving Custom JMS Properties
12 Place a message resembling the following on the toSiebel queue:

NOTE: A third-party product such as Hermes (available from Sourceforge.net) is required to 
place a message on a queue. In the following sample document, the Siebel Order ASI queries for 
all orders associated with the Hibbings Manufacturing account.

<?xml version="1.0" encoding="UTF-16"?>
<SiebelMessage IntObjectName="Order Interface">

<ListOfOrderInterface>
<Orders>

<Account>Hibbings Manufacturing</Account>
</Orders>

</ListOfOrderInterface>
</SiebelMessage>

Sending and Receiving Custom JMS 
Properties
Properties can be assigned to a JMS message. A property can be an instance of any Java class or any 
of the primitive Java types. All properties of a message received by the Siebel JMS Transport are 
available as properties of the output property set. The Siebel EAI infrastructure can send and receive 
custom JMS properties without having to write custom code.

The name of a custom property is the original name with the eleven characters SIEBEL_JMS: 
prefixed; the value is the string obtained by converting the original value to a Java String object. 
When sending a message, any property of the input property set whose name begins with 
SIEBEL_JMS: is added to the message being sent as a JMS Message string property with the prefix 
SIEBEL_JMS: removed. For example, the property SIEBEL_JMS:foo is added to the message as the 
string property foo.

Receiving Custom Properties in Inbound Messages
Inbound messages are received through the JMS Receiver component (ReceiveDispatchSend or 
ReceiveDispatch method). This component is usually configured to dispatch the message to a 
workflow process.

To receive a custom JMS property in a workflow process
1 Create a workflow process property as follows:

NOTE: There is no space between the colon and the custom property name.

2 Repeat Step 1 for every custom JMS property that is expected to be received and processed.

Name Data Type In/Out

SIEBEL_JMS:name String In/Out
Transports and Interfaces: Siebel Enterprise Application Integration Siebel 
2018

82 



EAI JMS Transport ■ Sending and Receiving Custom JMS Properties
At run time, the Siebel EAI infrastructure automatically copies the value of the correct JMS property 
from the received message to the appropriate Workflow process property.

For example, to have two JMS properties called TLFXUserId and TLFXGroupId available to a workflow 
process, you must define two process properties called SIEBEL_JMS:TLFXUserId and 
SIEBEL_JMS:TLFXGroupId.

The workflow process can also set the values of the JMS properties using a step that calls the 
Workflow Utilities business service (Echo method) as shown in the following example:

An input argument (SOV_Group and SOV_User in the example) can be any string, with the 
requirement that the same string must be used as the output argument.

Because the process properties are defined as In/Out, they are passed back to the caller (the JMS 
Receiver in this case). The JMS Transport includes them in the output message as JMS properties.

For more information about creating workflow processes, see Siebel Business Process Framework: 
Workflow Guide.

Sending Custom Properties in Outbound Messages
In the standard application, outbound messages are sent to the JMS queue using the EAI JMS 
Transport business service (Send and SendReceive methods).

The standard BS though does not have the ability to set custom JMS properties, but it is extremely 
easy to create a new clone of the EAI JMS Transport BS to handle those.

To set custom JMS properties in outbound messages
1 In Siebel Tools, create and open a workspace.

2 Copy the EAI JMS Transport business service, then give the copy a new name and display name, 
such as My EAI JMS Clone.

Input Argument Type Value

SOV_Group Expression “SOV_Group”

SOV_User Expression “SOV_User”

Property Name Type Output Argument

SIEBEL_JMS:TLFXGroupId Output Argument SOV_Group

SIEBEL_JMS:TLFXUserId Output Argument SOV_User
Transports and Interfaces: Siebel Enterprise Application Integration Siebel
2018

83



EAI JMS Transport ■ Enabling Authentication and Authorization for the EAI JMS Transport
3 In the new business service, add business service method arguments to the Send method as 
follows:

4 Repeat Step 3 for the SendReceive method, but enter Input / Output for the Type property.

Using Input / Output as the Type is necessary if the external system modifies the JMS properties 
and the new values are read into the Siebel application.

5 Deliver the workspace.

The new business service can be used in any workflow process. You can pick the custom JMS 
properties as input argument names when defining workflow steps, and the custom JMS properties 
are added to the JMS message. For more information about creating workflow processes, see Siebel 
Business Process Framework: Workflow Guide. For more information about business services, see 
Integration Platform Technologies: Siebel Enterprise Application Integration.

Enabling Authentication and 
Authorization for the EAI JMS Transport
Authentication and authorization can be configured on JMS servers to protect JMS destinations. 
Oracle supports the following scenarios for use in the Siebel application:

■ Require username and password to perform a JNDI lookup.

■ Require username and password to create connections to the JMS server.

■ Require username and password to send, receive, publish, subscribe from, or subscribe to JMS 
destinations that have the authorization enforced by a JMS server.

The responsibility of the Siebel EAI JMS Transport business service as a JMS client is twofold:

■ Provides configuration mechanism and read credentials from the Siebel application configuration 
file.

■ Establishes proper security context for executing privileged operations. 

The following authentication and authorization topics are also discussed:

■ “About JMS Credential Specification” on page 85

■ “Configuring Credentials in JNDI” on page 85

■ “Configuring Credentials in JMS” on page 86

■ “Configuring Against Oracle WebLogic Server” on page 86

■ “Configuring Against TIBCO Enterprise Message Service” on page 87

■ “Configuring Against IBM WebSphere MQ” on page 88

■ “About Security Configuration on the JMS Server” on page 88

Name Data Type Type

SIEBEL_JMS:name String Input
Transports and Interfaces: Siebel Enterprise Application Integration Siebel 
2018

84 



EAI JMS Transport ■ Enabling Authentication and Authorization for the EAI JMS Transport
About JMS Credential Specification
The following method arguments are added to the EAI JMS Transport business service methods to 
use when completing the JMS credential specification:

■ ConnectionUsername and ConnectionPassword. The credentials used to create JMS 
connections (applicable for use with IBM WebSphere MQ only, see “Configuring Against IBM 
WebSphere MQ” on page 88).

■ SendUsername and SendPassword. The credentials used to send messages to SendQueue 
(applicable for use with Oracle WebLogic only, see “Configuring Against Oracle WebLogic Server” 
on page 86).

■ ReceiveUsername and ReceivePassword. The credentials used to receive messages from 
ReceiveQueue (applicable for use with Oracle WebLogic only, see “Configuring Against Oracle 
WebLogic Server” on page 86).

■ TopicUsername and TopicPassword. The credentials used to publish/subscribe to/from Topic 
(applicable for use with Oracle WebLogic only, see “Configuring Against Oracle WebLogic Server” 
on page 86).

Send and receive credentials are specified separately because some JMS business service methods 
(SendReceive and ReceiveDispatchSend) contain both send and receive operations, and it is possible 
that SendQueue and ReceiveQueue are protected by different credentials.

Configuring Credentials in JNDI
JNDI credentials are specified in the jndi.properties file by setting java.naming.security.principal to 
the username and java.naming.security.credentials to the password. For more details, refer to the 
JNDI specification. The construction of the naming context automatically reads the credentials from 
the jndi.properties file and uses those credentials to connect to a JNDI server if authentication is 
required to perform JNDI lookup.

For security reasons, Siebel CRM requires that the value of java.naming.security.credentials 
(representing the JNDI password) in the jndi.properties file be encrypted. The JNDIEncryptionCheck 
parameter in the JMSSubsys named subsystem is set to TRUE by default to enforce the encryption 
requirement. In this case, Siebel CRM decrypts the encrypted value of 
java.naming.security.credentials.

NOTE: JNDIEncryptionCheck is TRUE in all newly created named subsystems based on JMSSubsys. 
For any older subsystems in which JNDIEncryptionCheck is not set to TRUE, the 
java.naming.security.credentials value in the jndi.properties file is not treated as an encrypted value.

Customers encrypt the value of java.naming.security.credentials in the jndi.properties file by using 
the following encryption utilities:

■ EncryptJndi.sh, found in the <SIEBEL_ROOT>/ses/siebsrvr/bin folder on UNIX

■ EncryptJndi.bat, found in the <SIEBEL_ROOT>\ses\siebsrvr\bin folder on Windows
Transports and Interfaces: Siebel Enterprise Application Integration Siebel
2018

85



EAI JMS Transport ■ Enabling Authentication and Authorization for the EAI JMS Transport
Configuring Credentials in JMS
JMS-related credentials (those listed in the JMS credential specification) are passed in through a 
Siebel application-defined configuration mechanism. For configuring JMS-related credentials, see 
“Configuring the EAI JMS Transport” on page 70.

JMS Password Encryption
When passwords are provided through service input properties (ConnectionPassword, 
SendPassword, ReceivePassword, or TopicPassword), they are encrypted manually using the Siebel 
encryptstring utility. The EAI JMS Transport business service attempts to decrypt the password 
before using it. Passwords supplied using the name server have already been encrypted by the server 
manager; therefore, it is not necessary to encrypt it again with encryptstring.

NOTE: The encryptstring utility is located in the BIN directory of your installation of the Siebel 
Server. For more information, see Siebel Security Guide.

Configuring Against Oracle WebLogic Server
The following instructions let you configure the EAI JMS Transport business service against Oracle 
WebLogic Server.

NOTE: For detailed information relevant to client configuration tasks for similar products, such as 
Oracle SOA Suite, see vendor documentation from Oracle.

To configure the EAI JMS Transport business service against Oracle WebLogic 
Server
1 Authorize a user to send from SendQueue using SendUsername and SendPassword.

2 Authorize a user to receive from ReceiveQueue using ReceiveUsername and ReceivePassword.

3 Authorize a user to publish and subscribe to and from Topic using TopicUsername and 
TopicPassword.

By default, the Oracle WebLogic server does not require a username or password to connect to 
or lookup JNDI objects. If the server does require this, then configure the EAI JMS Transport 
business service following Step 4 and Step 5.

4 ConnectionUsername and ConnectionPassword are set to a user who can connect to the JMS 
server, but the user has no privileges for any JMS destinations. 

ConnectionUsername and ConnectionPassword can also be left blank if the JMS server accepts 
anonymous connections.

5 If JNDI lookup is protected, then the jndi.properties file contains the 
java.naming.security.principal and the java.naming.security.credentials parameters that are 
used to perform the JNDI lookup. 

NOTE: The JNDI principal and credentials are set to a user who can only perform the JNDI 
lookup, but has no privileges for any JMS destinations.
Transports and Interfaces: Siebel Enterprise Application Integration Siebel 
2018

86 



EAI JMS Transport ■ Enabling Authentication and Authorization for the EAI JMS Transport
Configuring Against TIBCO Enterprise Message Service
For the TIBCO Enterprise Message Service (EMS) client, no separate security context is needed for 
each operation. Once a connection is established, with the proper credential, all requests sent 
through the same connection use the same connection security context. This means that switching 
the security context requires switching connections.

For the ReceiveDispatchSend method, the implication is that the receive credentials must be the 
same as the send credentials. Receive and send must be executed on the same session or connection 
to remain a single transaction.

To configure the EAI JMS Transport business service against TIBCO EMS
1 ConnectionUsername and ConnectionPassword are set to proper credentials for executing the 

JMS operations specified by the JMS business service method. 

For example, in the Send method, both ConnectionUsername and ConnectionPassword are set to 
the credentials that are authorized to send messages to SendQueue. 

In the ReceiveDispatchSend method, ConnectionUsername and ConnectionPassword are set to 
the credentials that can both send to SendQueue and receive from ReceiveQueue.

2 Set the following input properties to empty:

■ SendUsername

■ SendPassword 

■ ReceiveUsername

■ ReceivePassword 

■ TopicUsername

■ TopicPassword

3 The jndi.properties file contains the java.naming.security.principal and 
java.naming.security.credentials properties that are used to connect to the EMS server and to 
lookup JNDI objects. 

However, the connection to the EMS server, and the ability to lookup JNDI objects, does not occur 
if anonymous access is enabled by TIBCO EMS. For more information, see the TIBCO EMS 
documentation. 

NOTE: These JNDI credentials are set separately from ConnectionUsername and 
ConnectionPassword.
Transports and Interfaces: Siebel Enterprise Application Integration Siebel
2018

87



EAI JMS Transport ■ Enabling Authentication and Authorization for the EAI JMS Transport
Configuring Against IBM WebSphere MQ
For the IBM WebSphere MQ client, no separate security context is needed for each operation. Once 
a connection is established, all requests sent through the same connection use the same connection 
context. 

NOTE: The IBM WebSphere MQ server does not perform authentication by default. By default, 
passwords are not validated. Setup authentication for IBM WebSphere MQ is a task for the IBM 
WebSphere MQ administrator, not the Siebel application administrator.

For the ReceiveDispatchSend method, the implication is that the receive credentials must be the 
same as the send credentials. Receive and send must be executed on the same session or connection 
to remain a single transaction.

To configure the EAI JMS Transport business service against IBM WebSphere MQ
1 Set the ConnectionUsername and ConnectionPassword to the proper credentials to execute the 

JMS operations specified by the JMS business service method. For example, in the Send method, 
both ConnectionUsername and ConnectionPassword must be set to the credentials that are 
authorized to send messages to SendQueue. 

NOTE: ConnectionUsername and ConnectionPassword are required for the Windows 2012 Server 
platform and recommended for all other Windows platforms.

2 In the ReceiveDispatchSend method, set the ConnectionUsername and ConnectionPassword to 
the credentials that can both send to SendQueue and receive from ReceiveQueue.

3 Make sure the jndi.properties file contains the java.naming.security.principal and 
java.naming.security.credentials properties that are used to connect to the EMS server and to 
look up JNDI objects. 

NOTE: These JNDI credentials are set separately from ConnectionUsername and 
ConnectionPassword.

For more information about configuring the EAI JMS Transport business service against IBM 
WebSphere MQ, see 828113.1 (Article ID) on My Oracle Support.

About Security Configuration on the JMS Server
For information about how to protect JMS resources on the JMS server, see the specific vendor 
documentation.
Transports and Interfaces: Siebel Enterprise Application Integration Siebel 
2018

88 



EAI JMS Transport ■ Troubleshooting for the JMS Transport
Troubleshooting for the JMS Transport
Several diagnostic methods are present in the EAI JMS Transport to assist in troubleshooting 
CLASSPATH, JNDI, and problems connecting to the JMS server:

■ CheckClasspath. Iterates through the JVM’s classpath, checking for the existence of each 
directory in the file system.

NOTE: The length of the classpath is limited to 1024 characters. However, it might be truncated 
when displayed in the user interface and srvrmgr command-line interface. To see the entire 
classpath, examine the log file. For information about logging, see “About Logging for the JMS 
Transport” on page 90.

■ CheckJNDIContext. Creates a JNDI InitialContext based on parameters (context factory class, 
URL) in the jndi.properties file.

Lists the parameters and the entries found in the context, as well as the names and classes of 
the administered objects.

■ CheckJNDIObjects. Retrieves administered objects (connection factory, queue, topic) from 
JNDI.

If CheckJNDIObjects finishes without errors, then JNDI binding is proper.

If CheckJNDIObjects finishes with errors, then it means that the JNDI binding has not been done 
properly. Rebind the JNDI objects or check the jndi.properties file to see if the provider URL is 
pointing to the correct location.

■ CheckJMSServer. Invokes JMS methods directly and simply. If SendQueue is specified, then 
CheckJMSServer sends a message and then receives a message. If SendQueue is not specified 
and Topic is specified, then it creates a durable subscriber, publishes a message, receives it, and 
then unsubscribes.

If CheckJMSServer finishes without errors, then both the queuing system and JMS are 
communicating properly.

If CheckJMSServer finishes with errors, then it means that the JMS queue in the queuing system 
is not functioning properly. Check the corresponding queue in the queuing system.

■ CheckAll. Executes all checks: CheckClasspath, CheckJNDIContext, CheckJNDIObjects, 
CheckJMSServer.
Transports and Interfaces: Siebel Enterprise Application Integration Siebel
2018

89



EAI JMS Transport ■ About Logging for the JMS Transport
Table 15 contains more details on arguments used with some of the JMS Transport debugging 
methods. The arguments listed are used by all three methods.

About Logging for the JMS Transport
The JMS Transport logs messages to a file if the Java system property jms.log is set. This property 
is specified among the VMOPTIONS in the JVM subsystem using the -Djms.log option.

The -Djms.log option must specify the path and file name but not the extension, because the JMS 
Transport automatically adds the .txt extension plus some information about the PID and thread ID.

For example, by using:

VMOPTIONS="-Djms.log=C:\temp\mylog"

the log file generated is:

C:\temp\mylog_xxx_yyy.txt

For more information about JMS logging, refer to the JMS vendor’s documentation.

About Caching for the JMS Transport
JMS Receiver connections are cached in Siebel Business Applications. In Siebel CRM version 8.1 and 
later, JNDI objects are also cached for performance and reliability. Caching eliminates the JNDI 
service as a point of failure.

JNDI object caching is active by default. To turn off caching (that is, to force JNDI lookup every time), 
use the DisableJNDIObjectCache business service method argument for any EAI JMS Transport 
business service method (operation). When DisableJNDIObjectCache is set to true, JNDI objects are 
not cached.

Table 15. Arguments to Use with the JMS Transport for Debugging Methods

Method Argument Display Name Type Description

CheckJNDIObjects

CheckJMSServer

CheckAll

ConnectionFactory Connection 
Factory

Input JNDI name for the 
JMSConnectionFactory

SendQueue Send Queue Input JNDI name for the queue 
(optional)

Topic Topic Input JNDI name of the topic 
(optional)
Transports and Interfaces: Siebel Enterprise Application Integration Siebel 
2018

90 



7 EAI HTTP Transport
This chapter discusses EAI HTTP Transport, its methods, and workflow examples illustrating using 
EAI HTTP Transport with different methods. This chapter includes the following topics:

■ About the EAI HTTP Transport on page 91

■ Using POST and GET on page 93

■ EAI HTTP Transport Named Subsystems on page 93

■ EAI HTTP Transport Method Arguments on page 94

■ Sending a Message Using the EAI HTTP Transport on page 98

■ Using the EAI HTTP Transport for Inbound Integration on page 100

■ Process of Using the EAI HTTP Transport for Inbound Messages on page 106

■ Handling EAI HTTP Transport Business Service Errors on page 109

■ Processing and Sending Outbound XML Documents on page 110

■ Sending and Receiving Messages with the EAI HTTP Transport on page 112

■ Examples Using HTTP Request on page 114

■ Creating Custom Headers for the EAI HTTP Transport Service on page 117

■ About Sending and Receiving Messages Through HTTP on page 117

■ About Transport Headers and HTTP Response Headers on page 118

About the EAI HTTP Transport
The use of the Internet protocols and technologies for business (such as HTTP, HTML, and XML) has 
created a requirement for automatically sending Siebel data to external sites, either on the Internet 
or outside the enterprise firewall to external Web sites. To meet this need, the technologies built into 
Siebel EAI provide a way to send and receive messages over HTTP. Siebel EAI HTTP Transport 
business service lets you send XML messages over HTTP to a target URL (Web site). The Siebel 
Application Interface (AI) serves as the transport to receive XML messages sent over the HTTP 
protocol to a Siebel application. 

The EAI HTTP Transport business service is based on the CSSHTTPTransService class. You can use 
one of the following two methods with this transport:

■ Send. This method supports outbound messages (XML documents sent from a Siebel application 
to an external system). The Send method means that the response coming back from the 
external application is not interpreted by the Siebel application, but the Web server returns a 
correct HTTP response.
Transports and Interfaces: Siebel Enterprise Application Integration Siebel
2018

91



EAI HTTP Transport ■ About the EAI HTTP Transport
■ SendReceive. This method supports outbound messages (XML documents sent to a Siebel 
application from an external system). This method is called Send and Receive a Response and 
the HTTP response body is the response for the request.

Each method has its own arguments, techniques, and applications. The EAI HTTP Transport allows 
you to send messages across the Internet using the standard HTTP protocol. Using this transport, 
you can send messages to any URL. The XML document sent can then be acted upon by any Web-
based application, including those written in Java, JavaScript, VBScript, or any other Web-enabled 
technology.

NOTE: When using the EAI HTTP Transport with the Transport Layer Security (TLS) protocol, you 
might have to install certificates on the Siebel Server. For more information, see Siebel Security 
Guide.

System Requirements for Using the EAI HTTP Transport 
To use the EAI HTTP Transport, you must install and configure the following components of Siebel 
Business Applications, and make sure that they are operational:

■ Siebel Application Interface (AI). To provide the necessary HTTP listening services and 
invoke the requisite workflow through a business service method.

■ Workflows. To accept incoming XML documents and pass them through an integration object 
into the business object to update Siebel data.

■ Business services. To execute the necessary actions.

Selecting the Appropriate Business Service for HTTP
The business service required to process a given XML document that is received from an external 
system using the EAI HTTP Transport depends on the processing you perform on the data. The way 
to approach this is to accept the output of the EAI HTTP Transport and store it as a process property 
that you define, and process it later in the workflow based on the format of the data.

For example, you could pass the string into a custom business service that you build to parse the 
input, query some data in a Siebel application based on the data, and then update the appropriate 
field in the Siebel application. If the data is formatted as a SiebelMessage, then you could use the 
EAI XML Converter business service with the XMLDocToIntObjHier method to pass an integration 
object instance to the EAI Siebel Adapter for further processing.

NOTE: Do not use the Web Engine HTTP TXN business service for inbound HTTP transport sessions. 
This business service is intended only for Siebel user interface sessions in the Siebel Web Client or 
Siebel Mobile Web Client. It is not compatible with invocation from the EAI Application Object 
Manager task. For information about the Web Engine HTTP TXN business service, see Siebel Portal 
Framework Guide.
Transports and Interfaces: Siebel Enterprise Application Integration Siebel 
2018

92 



EAI HTTP Transport ■ Using POST and GET
Using POST and GET
The HTTP protocol supports the GET and POST methods. You might be familiar with these methods 
if you have ever built a Web-based CGI form:

■ GET. Requests a representation of the specified resource. GET is the most common method used 
on the Web today.

■ POST. Submits data to be processed, such as from an HTML form, to the identified resource. The 
data is included in the body of the request. This might result in the creation of a new resource, 
updates to existing resources, or both.

The EAI HTTP Transport imposes certain restrictions on your use of transport features when using 
the POST or GET method. Table 16 identifies restrictions on these HTTP methods.

EAI HTTP Transport Named Subsystems
The EAI HTTP Transport, like every other Siebel transport, reads required parameters from a named 
subsystem instead of the configuration (.cfg) file. The eai.cfg file entries list the external service 
name and the name of the named subsystem to be used. For example:

SiebelQuery = SiebelQueryDispatch

There is no [Properties] section for SiebelQueryDispatch in the .cfg file. The name is used to look up 
the named subsystem list and dispatch accordingly. Use named subsystems for property 
specification. Predefined named subsystems have been created for you already, such as:

■ SiebelQueryDispatch

■ SiebelExecuteDispatch

■ SiebelUpsertDispatch

NOTE: You can create additional named subsystems as needed using Siebel Server Manager. 

For a discussion of named subsystems for Siebel EAI, see Chapter 2, “EAI Transports and Interfaces 
Overview.” For more information about named subsystems, see Siebel System Administration Guide.

Table 16. Restrictions on GET and POST Methods with EAI HTTP Transport

Method Restriction

Get The HTTP Body has no significance when using GET. During a GET process, only the 
universal resource locator (URL) is used for the request.

NOTE: Passing user credentials in the URL is not supported in Siebel CRM.

Post The HTTP Body is relevant only when using POST. The HTTP Body is encoded with a 
default mechanism used to encode URLs. The HTTP Content-Type application/xxx-
form-urlencoded is the default content type used for request bodies. The content is 
sent as it is without any special content encoding, such as Base64.
Transports and Interfaces: Siebel Enterprise Application Integration Siebel
2018

93



EAI HTTP Transport ■ EAI HTTP Transport Method Arguments
EAI HTTP Transport Method Arguments
In addition to the method arguments (data handling parameters) in “Common EAI Transport 
Parameters” on page 15, EAI HTTP Transport methods take the arguments presented in Table 17 on 
page 94. Parameters are optional unless specified as required.

Table 17. EAI HTTP Transport Send and SendReceive Arguments

Parameter
Display 
Name Description

<Value> User-Defined 
Message 
Text

Input and Output data passed as a string. This is 
the value stored in the Value field of the property 
set, either input or output. If you specify the 
HTTPRequestBodyTemplate, then the <Value> 
parameter is ignored and the 
HTTPRequestBodyTemplate parameter is used 
instead.

CharSetConversion Character 
Set 
Conversion 
for Text Data

Character set conversion from the external 
system. The default is None.

ConnectionSubsystem Connection 
Subsystem

Subsystem containing connection parameters.

ConverterService Converter 
Service

Business service used to serialize and unserialize 
hierarchical data to raw buffer and the reverse. 
Must implement the DocToHier and HierToDoc 
methods. The default is EAI XML Converter.

DataHandlingSubsystem Data 
Handling 
Subsystem

Subsystem containing data handling parameters.

EndOfData End of Data Output parameter whose value is True if the end of 
the data has been reached.

HTTPAccept HTTP Accept Default is text/*. The explicit value for the Accept: 
header to override the default. Specifies the MIME 
types accepted by the sender.

HTTPAllowCaching Allow 
Caching

Default is N. By default, the responses for specific 
URL addresses are not cached by the EAI HTTP 
Transport. Set this flag to Y to enable caching. 

Note that this can lead to undesirable side effects, 
as old data from earlier requests can be exposed 
from the cache buffer.
Transports and Interfaces: Siebel Enterprise Application Integration Siebel 
2018

94 



EAI HTTP Transport ■ EAI HTTP Transport Method Arguments
HTTPAllowPersistentCookies Allow 
Persistent 
Cookies

Default is N. A session cookie is used to tie 
requests and logoff operations to the user session 
started at the login, when communicating with any 
session-cookie-based system. Leaving this flag set 
to N leaves the persistence of cookies in the control 
of the EAI HTTP transport, which is the default 
behavior.

All session cookies persist in memory only as long 
as the current session. Session cookies are not 
written to disk.

If you want to use persistent cookies, that is, if 
persistence between logins is required and you 
want cookies to be written to disk, then set the 
parameter to Y. 

HTTPCertAuthority HTTP Cert 
Authority

The name of the authority that issues the mutual 
authentication certificate, in RDN (Relative 
Distinguished Name) format.

For example:

CN=ServerName123, OU=Department, 
O=organization, L=Location, C=Country, 
E=email@example.com

represents a certificate issued by Microsoft 
Certificate Authority running on the server 
ServerName123. RDN notation is case insensitive.

For information about configuring client TLS 
authentication, see Siebel Security Guide.

HTTPCertSerialNo HTTP Cert 
Serial No

The mutual authentication certificate serial 
number, in hexadecimal format as a string without 
space characters in between. For example, the 
serial number “19 8b 11 d1 3f 9a 8f fe 69 a0" must 
be provided as:

198b11d13f9a8ffe69a0

Serial numbers are case insensitive.

For information about configuring client TLS 
authentication, see Siebel Security Guide.

Table 17. EAI HTTP Transport Send and SendReceive Arguments

Parameter
Display 
Name Description
Transports and Interfaces: Siebel Enterprise Application Integration Siebel
2018

95



EAI HTTP Transport ■ EAI HTTP Transport Method Arguments
HTTPContentType HTTP 
Content Type

Default is application/xxx-form-urlencoded. The 
explicit value for the Content-Type: header to 
override the default. Specifies the type of data sent 
in the body of the request.

HTTPImplicitCharsetDetection Implicit 
Character 
Set 
Detection

Default is False. This is the implicit character set 
detection for incoming data. Do not set it to True 
for self-describing documents such as XML. If set 
to True, then this overrides the CharSetConversion 
parameter.

HTTPLoginBodyTemplate Login Body 
Template

Specifies the HTTP request body that is used when 
HTTPLoginURLMethod is POST. By putting login 
information into the HTTP body (as opposed to 
putting it into the URL) for sending, this method 
provides stronger security than sending the login 
information in the URL. Generally, the login 
parameters in a login query are specified in the 
body of the request that uses the POST method.

Required for session mode only if the 
HTTPLoginMethod parameter is set to POST.

HTTPLoginMethod Login Method HTTP method to be used for logging in. If no Login 
Method is specified, then this parameter defaults 
to the HTTPRequestMethod value.

Required for session mode.

HTTPLoginURLTemplate Login URL 
Template

Template for the URL used for the login operation. 
This operation is separate from the request 
operation and assumes communication mode is 
session mode. If there is a separate login, then one 
or more request and response messages are 
expected.

Required for session mode.

HTTPLogoffMethod Log Off 
Method

Defaults is HTTPLoginMethod. HTTP method to be 
used for logging off.

Required for session mode.

Table 17. EAI HTTP Transport Send and SendReceive Arguments

Parameter
Display 
Name Description
Transports and Interfaces: Siebel Enterprise Application Integration Siebel 
2018

96 



EAI HTTP Transport ■ EAI HTTP Transport Method Arguments
HTTPLogoffURLTemplate Log Off URL 
Template

Template for the URL that is used for the logoff 
operation. This operation is separate from the 
request operation and assumes that the mode of 
communication is session mode. If it is set, then 
the logoff operation is completed. Otherwise, 
logoff is skipped. The purpose of the logoff 
operation is to end a session that was started with 
the corresponding login.

Required for session mode.

HTTPMaxIdleSeconds Max Idle 
Seconds

Maximum number of seconds to allow connections 
to be idle. After the elapsed max idle time, the 
connection is invalidated and restarted.

HTTPNoAutoRedirect No Auto 
Redirect

Default is N. This means auto-redirect is enabled. 
Setting this parameter to Y disables auto-
redirection of messages to other URLs. 

HTTPRequestBodyTemplate Request 
Body 
Template

HTTP Body to use with the POST method. This 
overrides any request body specified in the Value 
field of the input property set.

HTTPRequestMethod Request 
Method

HTTP method to use with the data request, such as 
POST or GET.

Required for both session and sessionless modes.

HTTPRequestURLTemplate Request URL 
Template

Template for the request URL, which is the address 
to which the data is sent or from which a response 
is requested.

Required for both session and sessionless modes.

HTTPSleepTime Sleep Time Default is 120000 milliseconds. The timeout 
interval on login, send, and logoff requests in 
milliseconds.

HTTPUserAgent HTTP User 
Agent

Default is Mozilla/4.0. The explicit value for the 
User-Agent: header to override the default. 
Specifies the name/version of the client program.

IgnoreCharSetConvErrors Ignore 
Character 
Set 
Conversion 
Errors

Ignore character set conversion errors if True. 
Else, propagate the errors to the caller (default 
behavior).

TimedOut Timed Out True if receive timed out and no data was available. 
False if request completed.

Table 17. EAI HTTP Transport Send and SendReceive Arguments

Parameter
Display 
Name Description
Transports and Interfaces: Siebel Enterprise Application Integration Siebel
2018

97



EAI HTTP Transport ■ Sending a Message Using the EAI HTTP Transport
Sending a Message Using the EAI HTTP 
Transport
The following procedure demonstrates how to send information from a Siebel application to another 
Web-based application using the EAI HTTP Transport.

To send a message
1 Create an integration object in Siebel Tools based on a given business object. 

2 Refine the integration object created in Step 1 to specify just those business components and 
fields that you want to exchange with the external application.

NOTE: For details about integration objects, see Integration Platform Technologies: Siebel 
Enterprise Application Integration.

3 In Siebel Tools, set up a workflow to send this information to an external system as shown in the 
following figure:

NOTE: For details on the Business Process Designer, see Siebel Business Process Framework: 
Workflow Guide.

a Create the following process properties:

Name Data Type In/Out Value

Account Message Integration Object In/Out Not applicable

Account XML Binary In/Out Not applicable

Error Code String In/Out Not applicable

Error Message String In/Out Not applicable

Object Id String In/Out Row Id of an account

Siebel Operation Object Id String In/Out Not applicable
Transports and Interfaces: Siebel Enterprise Application Integration Siebel 
2018

98 



EAI HTTP Transport ■ Sending a Message Using the EAI HTTP Transport
b Set up the first step of the workflow after Start to use the EAI Siebel Adapter with the Query 
method to query the information from the Siebel Database, using the following input and output 
arguments:

c Set up the second step to use the EAI XML Converter with the IntObjHierToXMLDoc method to 
convert the data extracted from the Siebel Database to XML format, using the following input 
and output arguments:

d Set up the third step to use the EAI HTTP Transport with the Send method to send the information 
to the external system, using the following input and output arguments: 

Input Argument Type Value
Property 
Name 

Property 
Data Type

OutputIntObjectName Literal Sample 
Account

Not 
applicable

Not 
applicable

PrimaryRowId Process Property Not applicable Object Id String

Property Name Type Output Argument

Account Message Output Argument SiebelMessage

Input Argument Type Property Name Property Data Type

SiebelMessage Process Property Account Message Integration Object

Property Name Type Output Argument

Account XML Output Argument <Value>

Input Argument Type Value
Property 
Name 

Property 
Data 
Type

<Value> Process 
Property

Not applicable Account XML String

HTTPRequestMethod Literal POST Not 
applicable

Not 
applicable

HTTPRequestURLTemplate Literal http://$web_address$/
$request_param$

Not 
applicable

Not 
applicable

Property Name Type Output Argument

Account XML Output Argument <Value>
Transports and Interfaces: Siebel Enterprise Application Integration Siebel
2018

99



EAI HTTP Transport ■ Using the EAI HTTP Transport for Inbound Integration
e Save the workflow and run it from the Workflow Simulator. 

4 Specify how this workflow is invoked, using one of the following methods:

■ Configure the RunTime Events to trigger the workflow. 

■ Create a button on the appropriate view in the Siebel application to call this workflow. 

■ Use workflow policies on the opportunity business object to trigger the workflow.

Using the EAI HTTP Transport for 
Inbound Integration
The EAI HTTP Transport uses the Siebel Application Interface (AI) to provide inbound messaging from 
an application that uses HTTP. The EAI HTTP Transport can be used in session or sessionless mode.

The following topics are discussed:

■ “Preparing to Use the EAI HTTP Transport for Inbound Integration” on page 100

■ “Specifying HTTP Parameters for Inbound Integration” on page 101

■ “Using the EAI HTTP Transport in Session Mode” on page 101

■ “Using the EAI HTTP Transport in Sessionless Mode” on page 104

Preparing to Use the EAI HTTP Transport for Inbound 
Integration
To use the EAI HTTP Transport for inbound integration, you must perform certain tasks that might 
not be required when using the EAI HTTP Transport for outbound integration:

1 Install and configure the Siebel Application Interface (AI), Siebel Gateway, and Siebel Server.

2 Start the Siebel Application Interface (AI), Siebel Gateway, and Siebel Server.

3 Start the Siebel Application Interface (AI) to be able to use the EAI HTTP Transport.

4 Configure AI to run the EAI HTTP Transport for inbound integration. See “Specifying HTTP 
Parameters for Inbound Integration” on page 101.

5 Set certain configuration parameters for whatever Siebel Server you are using.

The server component you are running must be a Siebel Application Object Manager component.

NOTE: You can type http://Web_Server_Name/siebel/app/eai-/lang in a Web browser on any 
computer that has connectivity to the Application Interface to check the connectivity between the 
computer issuing the URL (for the EAI HTTP Transport) and AI. This URL brings up the login page of 
the Siebel application corresponding to ObjectManager_lang, confirming the connectivity between AI 
and the URL-issuing computers.
Transports and Interfaces: Siebel Enterprise Application Integration Siebel 
2018

100 



EAI HTTP Transport ■ Using the EAI HTTP Transport for Inbound Integration
Specifying HTTP Parameters for Inbound Integration
The EAI HTTP Transport is built into Siebel Application Interface (AI). To use it, you set certain 
configuration parameters of the AI profile of the application interface. Your Siebel application 
installation includes a configuration file called AI profile. Review the configuration file to make sure 
that the parameters are set properly. Use named subsystems to dispatch to a workflow as described 
in “Using Named Subsystems for Transport Parameters” on page 14.

To configure AI to run the EAI HTTP Transport for inbound integration
NOTE: For instructions on how to create or modify the Application Interface (AI) profile, see Siebel 
Installation Guide for the operating system you are using.

1 Launch Siebel Management Console (SMC).

2 Open the AI profile deployed to AI.

3 Look for the application eai (lang). Where lang is the three-letter language code for the 
language you are using, such as enu for U.S. English.

If this application does not exist then add one with name as eai and Object Manager as 
EAIObjmgr_lang.

4 In the Basic Information section of the eai (lang) application, select Configure EAI HTTP Inbound 
Transport parameter to enable the HTTP inbound transport.

5 Submit the AI profile.

Using the EAI HTTP Transport in Session Mode
The session mode uses the HTTP session cookie to retain the session information between the HTTP 
requests. The session mode can be viewed when a sequence of calls is supported from an HTTP 
application into the EAI HTTP Transport.

To use the EAI HTTP Transport in session mode
1 Log in to the Siebel application. If successful, then an HTTP session cookie named _sn is returned 

in an HTTP set-cookie header.

2 Submit one or more subsequent requests.

Each request is intended as a call to a Siebel business service or workflow depending on the 
configuration of the named subsystem in use. Requests must contain the session cookie (_sn) 
from Step 1 in either the HTTP cookie header or the URL string as a parameter.

3 Log off. The request must contain the session cookie from Step 1 on page 101. The cookie refers 
to the session to be closed.

NOTE: For session mode inbound HTTP requests, the expiration date of the cookie sent to the client 
application is not set, because it is expected that this cookie is used to send multiple requests within 
the same session.
Transports and Interfaces: Siebel Enterprise Application Integration Siebel
2018

101



EAI HTTP Transport ■ Using the EAI HTTP Transport for Inbound Integration
Example Requests for the HTTP Protocol in Session Mode
HTTP protocol requests can be represented as URLs for HTTP GET, and as a combination of URL and 
request body for HTTP POST. The following topics explain in detail how each of the session mode calls 
is configured.

Table 18 presents each of the Login HTTP Request variables for session mode.

Login HTTP Request Example
In this example, if the call completes successfully, then it returns a session cookie:

■ Using HTTP POST:

URL = http://webserver/path

HTTP Body = 
SWEExtSource=source&SWEExtCmd=ExecuteLogin&UserName=username&Password=password

■ Example Login URL:

http://www.example.com/siebel/app/eai/enu

NOTE: Passing user credentials in the URL is not supported in Siebel CRM.

Table 18. Session Mode Variables

Variable Description

webserver URL of the Web server that has Siebel Application Interface (AI) installed, such as 
www.myserver.com.

path Virtual path on the server referring to the specific AI profile configuration. The 
default is /siebel/app/eai/lang, where lang is the language in which you are 
running the applicable Siebel Application Object Manager.

source Named subsystem as specified in the [HTTP Services] section in the application 
configuration (.cfg) file.

username Siebel user name for the Application Object Manager login.

NOTE: Passing user credentials in the URL is not supported in Siebel CRM.

password Password for the login user name.
Transports and Interfaces: Siebel Enterprise Application Integration Siebel 
2018

102 



EAI HTTP Transport ■ Using the EAI HTTP Transport for Inbound Integration
Data Exchange HTTP Request Example
In this example, for the call to complete successfully, it must include the session cookie from the 
login:

■ Using HTTP GET:

URL = http://webserver/path?SWEExtData=data text

where data text is the business service input data. Most of the time, this is the text of an XML 
document that on the server side is converted to a property set and passed to the business 
service.

With GET requests, the XML document is included in the URL. Therefore the XML document must 
be URL-encoded. For example, the URL encoding for a space is %20.

To make sure that the decoded XML document passed to the XML Converter is valid, use an 
escape code for any special characters (that is, use an ampersand, followed by the special 
character’s escape characters, followed by a semi-colon) before encoding them for the URL. For 
more information, see the topic on special (escape) characters in XML Reference: Siebel 
Enterprise Application Integration.

■ Using HTTP POST:

URL = http://webserver/path

HTTP Body = data text

where data text is the business service input data. Most of the time, this is the text of an XML 
document that on the server side is converted to a PropertySet and passed to the business 
service.

Data that is sent as part of the URL must be in Unicode format before it is encoded for the URL. 
POST requests can send the data without URL encoding but must include the Content-Type HTTP 
header. The Content-Type must specify the character set of the incoming data, for example:

Content-Type=text/xml;charset="UTF-8"

NOTE: For XML messages being received by way of the Inbound HTTP Transport, only a Unicode 
(UTF-8 or UTF-16) format (with accordant encoding XML-processing header attribute and 
encoded XML data) is allowed. No ISO or Windows code pages are accepted.

■ Example Request URL:

http://www.exampleserver.com/siebel/app/eai/enu?SWEExtData=<?xml version="1.0"
encoding="UTF-8"?>

<SiebelMessage MessageId="" MessageType="Integration Object"
IntObjectName="Sample Account">

<ListofSampleAccount>

<Account>

<Name>A. K. Parker Distribution</Name>

<ListOfContact>
Transports and Interfaces: Siebel Enterprise Application Integration Siebel
2018

103



EAI HTTP Transport ■ Using the EAI HTTP Transport for Inbound Integration
<Contact>

<FirstName>Stan</FirstName>

<LastName>Graner</LastName>

</Contact>

</ListOfContact>

</Account>

</ListofSampleAccount>

</SiebelMessage>

Logoff HTTP Request
This request must include the session cookie from the login request.

■ Using HTTP GET:

URL = http://webserver/path?SWEExtCmd=Logoff

NOTE: Always use HTTP GET for the Logoff HTTP Request.

■ Example Logoff URL:

http://www.example.com/siebel/app/eai/enu?SWEExtCmd=Logoff

Using the EAI HTTP Transport in Sessionless Mode
Using the EAI HTTP Transport in sessionless mode allows you to use one URL to perform Login, 
Request, and Logoff in a single HTTP request. This mode does not use session cookies because there 
is no login session between the HTTP requests. The disadvantage of this mode is the overhead 
incurred by the Application Object Manager needing to log in with every request.

Table 19 presents each of the variables for sessionless mode.

Table 19. Sessionless Mode Variables (1 of 2)

Variable Description

webserver URL of the Web server that has Siebel Application Interface (AI) installed, such as 
www.myserver.com.

path Virtual path on the server referring to the specific AI profile configuration. The 
default is siebel/app/eai/lang, where lang is the language in which you are running 
the applicable Siebel Application Object Manager.

source Named subsystem as specified in the [HTTP Services] section in the application 
configuration (.cfg) file.
Transports and Interfaces: Siebel Enterprise Application Integration Siebel 
2018

104 



EAI HTTP Transport ■ Using the EAI HTTP Transport for Inbound Integration
Example Request for the HTTP Protocol in Sessionless Mode
In this example using HTTP POST, the URL describes the parameters for the HTTP Inbound Transport 
call over HTTP. Unlike session mode, the SWEExtCmd is Execute, not ExecuteLogin.

URL = http://webserver/path

HTTP Body = SWEExtSource=source&SWEExtCmd=Execute&UserName=username&Password=
password&SWEExtData=data text

NOTE: When using sessionless mode with the POST method, the XML data text must be URL-
encoded to prevent any errors.

When using the sessionless mode with the POST method, the data text includes the login credentials 
as well as the XML document. Therefore, it is recommended that the data text be URL-encoded and 
that the Content-Type header be set to application/x-www-form-urlencoded without specifying the 
character set (for example, ;charset=UTF-8). 

Use an escape code for any special characters (that is, use an ampersand, followed by the special 
character’s escape characters, followed by a semi-colon) before encoding them for the URL. For more 
information, see the topic on special (escape) characters in XML Reference: Siebel Enterprise 
Application Integration.

Example for Sessionless Mode
URL = http://www.example.com/siebel/app/eai/enu

HTTP Body = 
SWEExtSource=SiebelQuery&SWEExtCmd=Execute&UserName=user1&Password=login123
&SWEExtData=<?xml version="1.0" encoding="UTF-8"?>

<SiebelMessage MessageId="" MessageType="Integration Object" IntObjectName="Sample 
Account">

<ListofSampleAccount>

<Account>

<Name>A. K. Parker Distribution</Name>

<ListOfContact>

username Siebel user name for the Siebel Application Object Manager login.

NOTE: Passing user credentials in the URL is not supported in Siebel CRM.

password Password for the login user name.

data text Business service input data. Most of the time, this is the text of an XML document 
that on the server side is converted to a PropertySet and passed to the business 
service. For more information about how to pass Properties and PropertySet to 
Business Services, see Siebel Business Process Framework: Workflow Guide.

Table 19. Sessionless Mode Variables (2 of 2)

Variable Description
Transports and Interfaces: Siebel Enterprise Application Integration Siebel
2018

105



EAI HTTP Transport ■ Process of Using the EAI HTTP Transport for Inbound Messages
<Contact>

<FirstName>Stan</FirstName>

<LastName>Graner</LastName>

</Contact>

</ListOfContact>

</Account>

</ListofSampleAccount>

</SiebelMessage>

Process of Using the EAI HTTP Transport 
for Inbound Messages
To use the EAI HTTP Transport for inbound messages, you complete two tasks:

1 “Setting Up the Business Service” on page 106

2 “Creating the Workflow to Receive Messages” on page 107

Both tasks are explained in this topic. This scenario assumes incoming XML. Your business 
requirements dictate whether and how you adapt these steps to fit your needs.

Setting Up the Business Service
First you set up the business service for use in the workflow.

To set up the business service
1 Start Siebel Tools, connecting to the server.

2 Create or open a workspace.

3 Find the business service named Workflow Process Manager.

4 Copy this record and rename the copy EAITEST.

5 In the Business Service User Props list, add a new record:

a Enter ProcessName in the Name column.
Transports and Interfaces: Siebel Enterprise Application Integration Siebel 
2018

106 



EAI HTTP Transport ■ Process of Using the EAI HTTP Transport for Inbound Messages
b Enter EAITEST in the Value column, as shown in the following illustration.

6 Deliver the workspace.

NOTE: You can also deploy the business service to the run-time database to make it available. 
For more information, see Integration Platform Technologies: Siebel Enterprise Application 
Integration.

7 Restart the Siebel Server.

8 Verify that the EAI Object Manager has started.

Creating the Workflow to Receive Messages
After you set up the business service, you create a workflow to receive messages.

To create the new workflow to receive messages
1 In Siebel Tools, set up a new workflow as shown here and give it a unique name, such as EAITEST.

For information about the Business Process Designer, see Siebel Business Process Framework: 
Workflow Guide.
Transports and Interfaces: Siebel Enterprise Application Integration Siebel
2018

107



EAI HTTP Transport ■ Process of Using the EAI HTTP Transport for Inbound Messages
2 Create the following process properties:

3 Set up the Incoming XML step to use the EAI XML Converter with the XMLDocToIntObjHier 
method. This step converts the message, using the following input and output arguments:

Name Data Type
Default 
String In/Out Description

IncomingXML Binary <Value> In/Out By creating the IncomingXML process 
property, anything that is sent as data is 
placed in this variable. This allows you 
to then perform a given action on that 
data. If the POST method was used, 
then the data sent in the Body is stored 
in this property. If the GET method was 
used, then the data sent in the URL is 
stored in this property.

Account 
Message

Hierarchy Not 
applicable

In/Out This is hierarchy format of the incoming 
XML.

<Value> Binary Not 
applicable

In/Out Used to get the XML string that has 
been read or converted.

Content-Type String text/html Out It indicates the content type of the 
response body. If you want to see the 
response in the same Web page, then 
you must set the Default String 
parameter to text/html.

Input Argument Type Property Name Property Data Type

<Value> Process Property IncomingXML Hierarchy

Property Name Type Output Argument

Account Message Output Argument SiebelMessage
Transports and Interfaces: Siebel Enterprise Application Integration Siebel 
2018

108 



EAI HTTP Transport ■ Handling EAI HTTP Transport Business Service Errors
4 Set up the UpdateSiebel step to use the EAI Siebel Adapter with the Insert or the Update method 
and the following input and output arguments to update the Siebel Database.

NOTE: The HTTP response for inbound requests is determined by looking at the <Value> portion 
of the output property set. HTTP response headers can be set by setting properties on the output 
property set. If the process properties are set as In/Out (the default), then the values appear as 
HTTP headers on the HTTP response from the Siebel Server. Set each process property that you 
do not want as an HTTP header to In or None (the latter if the process property is only for use 
inside the workflow).

5 Save your workflow and test it using the Workflow Simulator.

For information about the Workflow Simulator, see Siebel Business Process Framework: Workflow 
Guide.

Handling EAI HTTP Transport Business 
Service Errors
A business service that is called by the EAI HTTP Transport might return an error when standard HTTP 
headers are used to send error information back to the caller. Each of the headers has a sequence 
number at the end to support the return of multiple errors. The text of each error message is 
captured in the Siebel-Error-Message header, and the Siebel error symbol is set in the Siebel-Error-
Symbol header as follows:

Siebel-Error-Message-1: Error: error message text

Siebel-Error-Symbol-1: ERR_SYMBOL

...

Siebel-Error-Message-n:

Siebel-Error-Symbol-n:

Inbound HTTP also returns HTTP Error 500 (Internal Server Error) to indicate that there was an error 
from a business service. Examine the error headers for additional error information.

NOTE: To troubleshoot an Inbound HTTP request, run the Siebel Workflow Simulator or Business 
Service Simulator. For information about the Workflow Simulator, see Siebel Business Process 
Framework: Workflow Guide. For information about the Business Service Simulator, see Integration 
Platform Technologies: Siebel Enterprise Application Integration.

Input Argument Type Property Name Property Data Type

SiebelMessage Process Property Account Message Hierarchy

Property Name Type Value Output Argument

<Value> Literal <h1>Update Completed</h1> Not applicable
Transports and Interfaces: Siebel Enterprise Application Integration Siebel
2018

109



EAI HTTP Transport ■ Processing and Sending Outbound XML Documents
Processing and Sending Outbound XML 
Documents
This topic explains how to use Siebel Tools and the Siebel application to set up the EAI HTTP Transport 
to process and send outbound XML documents. When you want to send XML messages based on 
Siebel integration objects to an external system across Internet-support protocols, you use the EAI 
HTTP Transport business service.

You can specify the parameters that control the behavior of transports in the following ways:

■ “Specifying Parameters as Business Service User Properties” on page 110

■ “Specifying Parameters as Subsystem Parameters” on page 110

■ “About Parameters as Run-Time Properties” on page 111

■ “About Parameters in Parameter Templates” on page 111

Specifying Parameters as Business Service User Properties
You specify parameters as business service user properties in Siebel Tools. These parameters go into 
effect after you have delivered the changes or deployed the business service to the run-time 
database. When using this method, keep the following in mind:

■ These parameters stay in effect as long as you continue to use the same run-time business 
service and do not create a newer specification for the business service parameters.

■ If you define the same parameter as a subsystem parameter or as a run-time property, then the 
subsystem parameter or run-time property overrides any values you have defined in Siebel Tools 
and delivered or deployed to the run-time database.

For more information about deploying business services to the run-time database, see Integration 
Platform Technologies: Siebel Enterprise Application Integration.

Specifying Parameters as Subsystem Parameters
You specify parameters in the Siebel client.

To specify the subsystem parameters
1 In the Siebel client, navigate to the Administration - Server Configuration screen, Enterprises 

view.

2 In the first list applet, select the Enterprise Server that you want to configure.

3 In the middle applet, click the Profile Configuration tab.
Transports and Interfaces: Siebel Enterprise Application Integration Siebel 
2018

110 



EAI HTTP Transport ■ Processing and Sending Outbound XML Documents
4 Click New to create a new component profile, then set the following parameters:

5 In the Profile Parameters list applet (the last applet), specify the parameters required for the 
type of operations the subsystem supports:

Then, in the workflow on the Siebel Web Client, you specify the Connection Subsystem input 
argument to the HTTP Transport, and the value is the named subsystem that you created. For the 
case given here, it is HTTP_test. You can test the workflow in the Workflow Simulator.

About Parameters as Run-Time Properties
You specify HTTP parameters as run-time properties by passing them as values in an input property 
set to the EAI HTTP Transport business service. You can pass the values to the business service by 
way of a workflow or through a program that calls the EAI HTTP Transport business service directly.

NOTE: Subsystem parameters take precedence over run-time parameters.

About Parameters in Parameter Templates
Parameter templates allow you more flexibility in specifying parameters. You can use variables to 
specify certain elements of a given parameter value. The following example shows how to specify a 
variable for a login password, rather than hard-coding a password into the parameter.

HTTPLoginURLTemplate = http://www.example.com/
login.jsp?Username=ronw&Password=$PWD$

where

PWD is 421ax7 (for example)

The business service, EAI HTTP Transport in this case, receives the parameter template. The token, 
shown here as $PWD$, indicates that the business service looks for a parameter called PWD from a 
user property or run-time parameter. Dollar signs ($) delimit the token in the template definition. 
The token specifies the actual password variable. The token is case-sensitive: Pwd is different from 
PWD or pwd.

Name Value

Profile HTTP_test

Alias HTTP_test

Subsystem Type HTTPSubSys

Name Value

HTTPRequestURLTemplate "http://www.example.com"

HTTPRequestMethod "GET"
Transports and Interfaces: Siebel Enterprise Application Integration Siebel
2018

111



EAI HTTP Transport ■ Sending and Receiving Messages with the EAI HTTP Transport
The token must be defined as either a business service user property or as a run-time parameter in 
the input property set. For example, you could specify the HTTPLoginURLTemplate as a user property 
of the business service, and username and password as run-time properties. Any logins that specify 
the template always use the same template, but different users can specify unique user names and 
passwords at run time.

Sending and Receiving Messages with 
the EAI HTTP Transport
You can use the EAI HTTP Transport to send and receive messages. The following procedure 
illustrates how you can use EAI HTTP Transport with the SendReceive method to query employee 
information from the Siebel Database, send it out, echo it using the Workflow Utilities ECHO service, 
and send it back to the workflow to write the response back to a file.

To create a workflow to send and receive messages
1 Create a named subsystem HTTPsendreceive_conn for subsystem HTTPSubSys using the 

following lines: 

HTTPLoginMethod=GET

HTTPLoginURLTemplate="http://websrvr.example.com:16007/myapplication/
login.jsp?usr=V1&psw=v2"

HTTPLogoffMethod=GET

HTTPLogoffURLTemplate="http://websrvr.example.com:16007/myapplication/
logoff.jsp"

HTTPRequestMethod=POST

HTTPRequestURLTemplate="http://websrvr.example.com:16007/myapplication/
data.jsp"

2 Create a named subsystem MyEchoSubsys for subsystem EAITransportDataHandlingSubsys 
using the following lines:

DispatchService="Workflow Utilities"

DispatchMethod=ECHO

3 In your eai.cfg file, add the following line in the [HTTP Services] section:

MyEcho = MyEchoSubsys
Transports and Interfaces: Siebel Enterprise Application Integration Siebel 
2018

112 



EAI HTTP Transport ■ Sending and Receiving Messages with the EAI HTTP Transport
4 In Siebel Tools, set up a new workflow as follows:

NOTE: For details on the Business Process Designer, see Siebel Business Process Framework: 
Workflow Guide.

5 Create the following process properties:

6 Retrieve the employee message using the EAI Siebel Adapter with the Query method to query 
the information from the database using the following input and output arguments.

7 Convert the message to XML using the EAI XML Converter with the Integration Object Hierarchy 
to XML Document method and the following input and output arguments to convert the message.

Name Data Type In/Out

Employee Message Hierarchy In/Out

Employee XML Binary In/Out

Error Code String In/Out

Error Message String In/Out

Object Id String In/Out

Response Binary In/Out

Input Argument Type Value
Property 
Name

Property Data 
Type

OutputIntObjectName Literal Sample 
Employee

Not applicable Not applicable

PrimaryRowId Process Property Not applicable Object Id String

Property Name Type Output Argument

Employee Message Output Argument SiebelMessage

Input Argument Type Property Name Property Data Type

SiebelMessage Process Property Employee Message Hierarchy

Property Name Type Output Argument

Employee XML Output Argument <Value>
Transports and Interfaces: Siebel Enterprise Application Integration Siebel
2018

113



EAI HTTP Transport ■ Examples Using HTTP Request
8 Send and receive the converted XML message using the EAI HTTP Transport with the Send and 
Receive Response method and the following input and output arguments.

9 Write the message to the file using the EAI File Transport with the Send method and the following 
input arguments.

10 Save your workflow and test it using the Workflow Simulator.

Examples Using HTTP Request
This topic provides the following examples of using the EAI HTTP Transport business service:

■ “Controlling Login Sessions with Session Mode” on page 114

■ “Sending Requests in Sessionless Mode” on page 115

■ “Accessing a URL Protected by Basic Authentication” on page 115

■ “Providing Client Certificate Information for TLS Mutual Authentication” on page 116

Controlling Login Sessions with Session Mode
The session mode allows control over login sessions. In this mode you log in first and open a session. 
Any message can be exchanged without having to log in again until you explicitly log off.

The following example shows parameters for Request and Logoff in a session mode HTTP request. 
Session cookies are required in a case such as this.

NOTE: You enter each of the following URLs as a continuous line of code. 

Input Argument Type Value
Property 
Name

Property 
Data Type

<Value> Process 
Property

Not applicable Employee XML String

ConnectionSubsystem Literal HTTPsendreceive_conn Not applicable Not applicable

Property Name Type Output Argument

Response Output Argument <Value>

Input Argument Type Value
Property 
Name

Property 
Data Type

<Value> Process Property Not applicable Response Binary

FileName Literal C:\SendRec.txt Not applicable Not applicable
Transports and Interfaces: Siebel Enterprise Application Integration Siebel 
2018

114 



EAI HTTP Transport ■ Examples Using HTTP Request
■ The following URL passes a query string as the SWEExtData value along with the GET request:

HTTPRequestURLTemplate = "http://$ServerPath$/
start.swe?SWEExtData=<Prop>somedata</Prop>HTTPRequestMethod='GET'"

■ The following URL logs off from the server:

HTTPLogoffURLTemplate = "http://$ServerPath$/start.swe?SWEExtCmd=Logoff"

In these URL examples, the following parameter is used:

■ ServerPath = "siebel1/eai"

In the examples, the ServerPath variable value of siebel1/eai is substituted for the token 
$ServerPath$.

Any XML document represented by the entry for SWEExtData can be put into the body. This would 
change the sample code so that HTTPRequestURLTemplate would read as:

HTTPRequestURLTemplate = "http://$ServerPath$/start.swe?"

Sending Requests in Sessionless Mode
The following example includes a Request Method, a Request, and a Login for a sessionless mode 
request. In this example, the request is simply passed to the secure server using the POST 
command. Unlike the Session Mode example, this request sends data in the body of the request. This 
request does not require cookies.

HTTPRequestMethod = "POST"

HTTPRequestURLTemplate = "https://accounts.mypartnerexample.com/server/login.asp"

HTTPRequestBodyTemplate = "Acct=ABCIntl&User=$Username$&pwd=$Password$"

Username = "acctuser"

Password = "123456789abcdefg"

Accessing a URL Protected by Basic Authentication
Siebel Business Applications support server, or basic, authentication. You can use basic 
authentication with the EAI HTTP Transport to send messages. For more information about 
authentication, see Siebel Security Guide.

The format for accessing a URL protected by basic authentication with HTTP Outbound is:

http://username:password@host/rest of the URL

For example:

http://Administrator:manage@127.0.0.1:5555/example.com/stuff

NOTE: The EAI HTTP Transport business service does not provide standard parameters to support 
the use of Digest HTTP Authentication.
Transports and Interfaces: Siebel Enterprise Application Integration Siebel
2018

115



EAI HTTP Transport ■ Examples Using HTTP Request
Providing Client Certificate Information for TLS Mutual 
Authentication
In certain versions, Siebel Business Applications support client authentication for TLS-based 
communications (also known as mutual authentication) using the EAI HTTP Transport business 
service, and for workflows and outbound Web service calls that call the EAI HTTP Transport business 
service.

NOTE: For information about the specific versions that support mutual authentication, see 560965.1 
(Article ID) on My Oracle Support.

CAUTION: It is strongly recommended to use Transport Layer Security (TLS) for best security, 
where possible. Using Secure Sockets Layer (SSL) is not supported for secure environments. For 
current information about TLS support, see 1944467.1 (Article ID) on My Oracle Support. See also 
Siebel Security Guide.

If client authentication is enabled, then the Siebel Server presents a client certificate to an external 
Web server by supplying values for the EAI HTTP Transport parameters HTTPCertSerialNo and 
HTTPCertAuthority.

If the EAI HTTP Transport business service is invoked directly by Siebel eScript or a workflow, then 
you can specify the HTTPCertSerialNo and HTTPCertAuthority parameters by setting input properties 
(business service method arguments).

The following is an example of the code used to call the EAI HTTP Transport business service using 
Siebel eScript:

var oService = TheApplication().GetService("EAI HTTP Transport");

var oInputs = TheApplication().NewPropertySet();

var oOutputs = TheApplication().NewPropertySet();

oInputs.SetProperty("HTTPRequestMethod", "GET");

oInputs.SetProperty("HTTPRequestURLTemplate", sUrl);

// Set the Serial Number of the Client Certificate

oInputs.SetProperty("HTTPCertSerialNo", "00d802dc387dd867b9");

// Set the RDN for the CA of the certificate

oInputs.SetProperty("HTTPCertAuthority","E=cacert@oracle.com,CN=somecertcomputer,
OU=ca,O=oracle,L=boston,C=usa");

// Invoke EAI HTTP Transport

oService.InvokeMethod("SendReceive", oInputs, oOutputs);
Transports and Interfaces: Siebel Enterprise Application Integration Siebel 
2018

116 



EAI HTTP Transport ■ Creating Custom Headers for the EAI HTTP Transport Service
NOTE: If the EAI HTTP Transport business service is invoked indirectly by an outbound Web service, 
then you can specify the HTTPCertSerialNo and HTTPCertAuthority parameters as input arguments 
for the outbound Web Service Dispatcher. For information about setting parameters for the EAI HTTP 
Transport business service for outbound Web services, see Integration Platform Technologies: Siebel 
Enterprise Application Integration.

NOTE: On the UNIX (MainWin) operating system, SHA-2 encryption is not supported for the EAI 
HTTP Transport.

For more information about configuring TLS mutual authentication using the EAI HTTP Transport, see 
Siebel Security Guide.

Creating Custom Headers for the EAI 
HTTP Transport Service
Custom headers can be created when sending a request through the EAI HTTP Transport service 
using a script or a workflow. 

To create custom headers for the EAI HTTP Transport service
■ Create a new input property in the input to the HTTP transport.

The name of the property must have a prefix of HDR. or HDR_ followed by the name of the 
custom header, for example:

httpIn.SetProperty("HDR.CustomHttpHeader","MyValue");
httpSvc.InvokeMethod("SendReceive", httpIn, httpOut);

A custom HTTP header with a name of "CustomHttpHeader" and a value of "MyValue" is the result.

NOTE: The HDR_ prefix can be useful in workflows for avoiding interference with the period (.) 
notation used in creating property sets.

About Sending and Receiving Messages 
Through HTTP
To send and receive messages through HTTP, you set up a workflow with the SendReceive method. 

The Receive part of that method receives the response in an output argument of that method. You 
can then use the response to perform an upsert operation using an integration object and EAI Siebel 
Adapter, or display the response to your user. In this scenario, none of your quote integration design 
uses the eai.cfg or the Application Interface. You are performing an outbound HTTP call and waiting 
for a response synchronously. 

You can then communicate the response to the user by displaying the returned error message in a 
browser alert or use the new User Interact step of the workflow to refresh the view and show any 
new updates to fields to the user. The User Interact step can run synchronously or asynchronously, 
in the local Siebel Application Object Manager or on the server. 
Transports and Interfaces: Siebel Enterprise Application Integration Siebel
2018

117



EAI HTTP Transport ■ About Transport Headers and HTTP Response Headers
About Transport Headers and HTTP 
Response Headers
This topic describes how transport headers and HTTP response headers work with HTTP Transport 
(outbound) to form a cookie handling system. HTTP Transport handles the cookie it receives from the 
server by storing and then creating a valid request transport header that it sends back to the server 
as a part of the request.

By exposing all the HTTP response headers as a part of output property set, you can handle the 
response accordingly. You can have all the HTTP response headers, as well as HTTP Status code, as 
part of the output property set.

Transport headers are preserved across various connections and are a part of the transport service 
and not the HTTP connection.

Features of Transport Headers
Transport headers have the following features:

■ Every connection has its own transport header.

■ The transport header separately stores each cookie sent by the server during a connection. 

For example, each name, domain, value pair, along with path, and other attributes (if present) 
are stored as a separate cookie in the transport header.

■ Each cookie in the transport header has a distinct name. 

Two cookies with the same name cannot be present in the transport header at the same time. 
The second cookie overwrites the first one. Therefore, since the transport header is implemented 
as a CSSMapStringToPtr class, each cookie is hashed in the transport header based on its name.

■ The transport header classifies cookies into two categories: 

■ Type HTTP Version 1 and later. 

■ Preliminary Netscape cookie spec type.

■ When a ToString function is called on the transport header, it scans through the header and 
collects all the cookies in the header and creates a request transport header (based on the cookie 
category).

■ The transport header is cleared when the connection is terminated.

■ During SendReceive, the HTTP response has HTTP headers associated with it. Expose those 
response HTTP headers as properties of the output property set.

All of these HTTP header properties are distinguished from other properties by adding the prefix 
HDR. in front of the property (header) name.

■ Also, HTTP Status code for the HTTP request sent by way of EAI HTTP Transport is exposed as a 
property in the output property set. The property is called StatusCode.
Transports and Interfaces: Siebel Enterprise Application Integration Siebel 
2018

118 



8 Integrating Siebel Business 
Applications with Java 
Applications
This chapter discusses the integration of Java applications with Siebel Business Applications. It 
includes the following topics:

■ About Siebel Business Applications and Java Applications on page 119

■ About the JDB Business Service API on page 121

■ About the Siebel Code Generator on page 121

■ About Running the Java Data Bean on page 129

■ About the Siebel Resource Adapter on page 135

About Siebel Business Applications and 
Java Applications
Many enterprises develop Java applications to meet a variety of business requirements. Typically, 
these applications combine existing enterprise information systems with new business functions to 
deliver services to a broad range of users. Oracle supports integration of its business services and 
business objects using the Siebel Java Data Bean. The Siebel Java Data Bean can be used for 
interaction with various kinds of Siebel application objects:

■ Business objects and business components

■ Business services and property sets

■ Integration objects

In all cases, the Java code acts as client-side proxy stub to the corresponding object on the Siebel 
Server. It does not implement the functionality of the object in Java.

For ease of use, the Siebel Code Generator can be used to produce Java code based on the Siebel 
Java Data Bean for any specific business service or integration object. This generated code has an 
API specific to the chosen business service or integration object. 

Additionally, Siebel Business Applications support the Java EE Connector Architecture (JCA) with the 
Siebel Resource Adapter. The Siebel Resource Adapter supports the invocation of business services.

About the JDB Business Object API
The Java Data Bean provides an API to Siebel business objects and their business components. The 
API is similar in function to the API provided for other platforms, such as COM.
Transports and Interfaces: Siebel Enterprise Application Integration Siebel
2018

119



Integrating Siebel Business Applications with Java Applications ■ About Siebel 
Business Applications and Java Applications
Example of the Business Object and Business Component Interface
Following is a code sample demonstrating use of the business object API. The sample shows how the 
Java Data Bean might be used to search for a Contact with a particular login name. 

The first step in using the Siebel Java Data Bean is to log in to the Object Manager of the Siebel 
Server. The first parameter, the connection string, specifies the protocol, server name, enterprise 
name, and Application Object Manager name. Once logged into the Object Manager, the methods 
getBusObject and getBusComp are used to obtain business objects and their business components. 

The code sample activates fields to allow the query to retrieve data for the specific fields, specifies 
the search criteria, and executes the query. If the query is successful, then the first and last name 
of the contact are printed to the standard output.

import com.siebel.data.*;

public class ObjectInterfaceExample {
public static void main(String[] args) throws SiebelException {

String connectString = 
"siebel://examplecomputer:2321/siebel/SCCObjMgr_enu"; 

SiebelDataBean dataBean = new SiebelDataBean(); 
dataBean.login(connectString, "USER", "PWD", "enu");
SiebelBusObject busObject = dataBean.getBusObject("Contact");
SiebelBusComp busComp = busObject.getBusComp("Contact"); 

busComp.setViewMode(3);
busComp.clearToQuery();
busComp.activateField("First Name");
busComp.activateField("Last Name");
busComp.activateField("Id");
busComp.setSearchSpec("Login Name", "thomas");
busComp.executeQuery2(true,true);

if (busComp.firstRecord()) {
System.out.println("Contact ID: " + busComp.getFieldValue("Id"));
System.out.println("First name: " + busComp.getFieldValue("First Name"));
System.out.println("Last name: " + busComp.getFieldValue("Last Name"));

}
busComp.release();
busObject.release();
dataBean.logoff();

}

If the query results in multiple records, then the record set can be iterated as follows:

if (busComp.firstRecord()) {
// obtain the fields/values from this record
while (busComp.nextRecord()){

// obtain the fields/values from the next record
}

}

Transports and Interfaces: Siebel Enterprise Application Integration Siebel 
2018

120 



Integrating Siebel Business Applications with Java Applications ■ About the JDB
Business Service API
About the JDB Business Service API
Aside from the business object and business component API, the primary point of integration with 
the Siebel application is by using business services.

There are several ways to invoke a business service. The simplest way is using the Siebel Java Data 
Bean directly, as shown in the following example. Alternatively, Siebel Tools provides a Code 
Generator which creates, for any business service, Java classes that invoke the business service. The 
generated code can invoke the business service either using the Siebel Java Data Bean or using the 
Siebel Resource Adapter. The creation and use of generated code is described in the next topic. The 
Siebel Resource Adapter is part of the Java EE Connector Architecture, which is described in “About 
the Siebel Resource Adapter” on page 135.

The following is an example of invoking a business service directly using the Siebel Java Data Bean.

import com.siebel.data.SiebelDataBean;
import com.siebel.data.SiebelException;
import com.siebel.data.SiebelPropertySet;
import com.siebel.data.SiebelService;
public class BasicDataBeanTest {

public static void main(String[] args) throws SiebelException {
SiebelDataBean dataBean = new SiebelDataBean();
dataBean.login("siebel://examplecomputer:2321/siebel/SCCObjMgr_enu", "USER", 
"PWD", "enu");
SiebelService businessService = dataBean.getService("Workflow Utilities");
SiebelPropertySet input = new SiebelPropertySet();
SiebelPropertySet output = new SiebelPropertySet();
input.setValue("Please echo this");
businessService.invokeMethod("Echo", input, output); 
System.out.println("Output: " + output.toString());

}
}

About the Siebel Code Generator
JavaBeans for invoking a particular business service can be generated using the Siebel Code 
Generator. These JavaBeans provide a uniform mechanism for interacting with the Siebel application 
from a Java or Java EE application. The JavaBean for a particular business service provides facilities 
for creating inputs and invoking methods. The JavaBean representing a business service can be 
based on either the Siebel Java Data Bean or on the Siebel Java EE Connector Architecture (JCA) 
Resource Adapter.

For business services whose methods have integration objects as input or output, JavaBeans 
representing the integration objects must be generated separately. These beans provide facilities for 
creating the integration objects and setting their fields.

The business services most commonly used for integration are EAI Siebel Adapter and various ASI 
business services based on the data sync service. The methods of these business services typically 
have inputs and outputs that are property sets of a special type called integration objects. Siebel 
Java integration provides special support for working with integration objects.
Transports and Interfaces: Siebel Enterprise Application Integration Siebel
2018

121



Integrating Siebel Business Applications with Java Applications ■ About the Siebel 
Code Generator
The following Siebel Code Generator topics are also discussed:

■ “Invoking the Siebel Code Generator” on page 122

■ “Code Generated for a Business Service” on page 122

■ “Connect String and Credentials for the SiebelDataBean” on page 129

■ “Connection Parameters for the SiebelDataBean” on page 130

Invoking the Siebel Code Generator
This topic describes how to invoke the Siebel Code Generator to create JavaBeans for either a Siebel 
business service or a Siebel integration object.

To invoke the Siebel Code Generator
1 Start Siebel Tools.

NOTE: For information about how to use Siebel Tools, see Using Siebel Tools.

2 Select Business Service or Integration Object in the Object Explorer.

NOTE: If Integration Object is not present, then add it by checking Integration Object on the 
Object Explorer tab of the Development Tools Options window opened by selecting View, then 
Options.

3 Select the desired business service or integration object.

For example, at the first section of the Integration Object list, there is a set of three buttons: 
Synchronize, Generate Schema, and Generate Code.

4 Click Generate Code.

5 Complete the Code Generator wizard:

a Leave the business service as is. There is only one available, the Siebel Code Generator.

b Select either Java(JDB) (Java Data Bean) or Java(JCA) (Java EE Connector Architecture/Siebel 
Resource Adapter) for the Supported Language.

c Browse to select an existing folder as the output folder. Your Java code for the selected business 
services or integration objects is stored in subdirectories there, as explained next.

d Click Finish.

The code is generated and the wizard closes, returning you to the Business Service or 
Integration Object form.

Code Generated for a Business Service 
The code generated for a business service includes a class representing the business service itself 
as well as classes representing inputs and outputs of its methods. These classes are described in 
detail in this topic. 
Transports and Interfaces: Siebel Enterprise Application Integration Siebel 
2018

122 



Integrating Siebel Business Applications with Java Applications ■ About the Siebel
Code Generator
ASI business services based on the data sync service have integration objects as part of the input or 
output of their methods. The JavaBeans representing these integration objects must be generated 
separately from the business service.

The classes for a given business service reside in a package in one of the following: 

■ com.siebel.service.jdb.business service name or

■ com.siebel.service.jca.business service name

Depending on whether the beans are based on the Java Data Bean or the Siebel JCA Resource 
Adapter. For example, generated JDB code for the EAI Siebel Adapter resides in the package 
com.siebel.service.jdb.eaisiebeladapter. 

The Code Generator creates the standard Java directory structure reflecting the package structure. 
As shown in Figure 1, a subfolder named com is created in the folder specified during the generation 
process. The com folder contains a folder named siebel, which again contains a folder named 
service. Under the service folder is a folder named jdb (or jca), containing a folder named for 
the business service. This last folder contains the classes for the business service. Each class is 
defined in its own file.

One Java class is generated to represent the business service itself. The name of the class is the 
name of the business service with all special characters replaced by underscores (_) and 
BusServAdapter appended to the end. For example, the class representing EAI Siebel Adapter is 
EAI_Siebel_AdapterBusServAdapter.

The Java class has one method for each method of the business service. Its name is the name of the 
method with m prefixed. For code based on the Java Data Bean, the class is a subclass of 
com.siebel.integration.adapter.SiebelJDBAdapterBase. For code based on the Siebel Resource 
Adapter, the class is a subclass of com.siebel.integration.adapter.SiebelJCAAdapterBase.

Figure 1. Directory Structure Created to Contain Java Code for Business Services

A folder is created under jdb (or jca) 
for every business service generated. 
The folder holds several Java files.
Transports and Interfaces: Siebel Enterprise Application Integration Siebel
2018

123



Integrating Siebel Business Applications with Java Applications ■ About the Siebel 
Code Generator
Additionally, for each method of the business service defined in Siebel Tools, one Java class is created 
for the method's input and one for the method's output. The name of the class is the name of the 
method with Input or Output appended. The class encapsulates all input (or output) arguments for 
the method. Each argument is represented as a field whose name is that of the argument with f 
prefixed. For each field, public set and get methods are provided Java methods for reading and 
writing their values. 

For example, the business service CC XML Converter, which has two methods, PropSetToXML and 
XMLToPropSet, generates the following four classes:

■ CC_XML_Converter BusServiceAdapter

■ PropSetToXMLInput

■ PropSetToXMLOutput

■ XMLToPropSetInput

The first class, CC_XML_Converter BusServiceAdapter, represents the business service as a whole; 
it has methods mPropSetToXML and mXMLToPropSet. The other three classes represent the input or 
output parameters of the two methods. (Notice there is no class XMLToPropSetOutput because that 
method has no outputs.) Those three classes each have methods to read and write the individual 
parameters, as well as methods to convert to and from a com.siebel.data.SiebelPropertySet.

About Methods of Java Classes Generated for a Business 
Service
Table 20, Table 21 on page 125, and Table 22 on page 125 describe methods that are present in the 
generated Java code for every business service. Generic names (for example, GenericService and 
GenericMethod) are substituted for the actual names of the business service, methods, and arguments.

Methods for Java class 
com.siebel.service.jdb.GenericServiceBusServAdapter
Table 20 lists methods of the Java class com.siebel.service.jdb.GenericServiceBusServAdapter 
generated for an example business service, GenericService, having the business service method 
GenericMethod.

Table 20. Java Class com.siebel.service.jdb.GenericServiceBusServAdapter Methods Generated

Method Description

GenericServiceBusServAdapter() Constructor that uses the default properties 
file, siebel.properties. 

GenericServiceBusServAdapter(SiebelDataBean) Constructor that reuses the resources of an 
existing SiebelDataBean.

GenericServiceBusServAdapter(String) Constructor taking the name of the 
properties file to use.
Transports and Interfaces: Siebel Enterprise Application Integration Siebel 
2018

124 



Integrating Siebel Business Applications with Java Applications ■ About the Siebel
Code Generator
Methods for Java class com.siebel.service.jdb.GenericMethodInput
Table 21 lists methods of the Java class com.siebel.service.jdb.GenericMethodInput generated for an 
example business service method, GenericMethod.

Methods for Java class com.siebel.service.jdb.GenericMethodOutput 
Methods
Table 22 lists methods of the Java class com.siebel.service.jdb.GenericMethodOutput generated for an 
example business service method, GenericMethod.

GenericServiceBusServAdapter(String, String, 
String)

Constructor taking the username, 
password, and connect string.

GenericServiceBusServAdapter(String, String, 
String, String)

Constructor taking the username, 
password, connect string, and language.

GenericMethod(GenericMethodInput) Invokes the specified business service 
method.

Table 21. Java Class com.siebel.service.jdb.GenericMethodInput Methods Generated

Method Description

GenericMethodInput() Constructor.

GenericMethodInput(SiebelPropertySet) Constructor that sets its fields from the given 
property set.

fromPropertySet(SiebelPropertySet) Copies field values from the given property set. 

toPropertySet() Returns a SiebelPropertySet with the properties 
and values corresponding to the fields of this 
object.

getfGenericArgument() Returns the value of business service method 
argument.

setfGenericArgument(String) Sets the value of a business service method 
argument.

Table 22. Java class com.siebel.service.jdb.GenericMethodOutput Methods Generated

Method Description

GenericMethodOutput() Constructor. 

GenericMethodOutput(SiebelPropertySet) Constructor that sets its fields from the given 
property set.

Table 20. Java Class com.siebel.service.jdb.GenericServiceBusServAdapter Methods Generated

Method Description
Transports and Interfaces: Siebel Enterprise Application Integration Siebel
2018

125



Integrating Siebel Business Applications with Java Applications ■ About the Siebel 
Code Generator
About the Code Generated for an Integration Object
Integration objects are special kinds of property sets that are the input and output of business 
services based on the data sync service. JavaBeans based on integration objects are designed to be 
used with those business services or with the EAI Siebel Adapter and can be used to query, delete, 
upsert, and synchronize information in the Siebel Server's database.

The integration object, and each of its components, has its own Java class, stored in the package 
com.siebel.local.IntegrationObjectName. The class for the integration object has IO appended to the 
end, and the class for an integration component has IC appended. The Code Generator creates the 
standard Java directory structure reflecting the package structure. In the selected folder, a subfolder 
named com is created, containing a subfolder siebel, containing a subfolder local, which contains 
one subfolder for each integration object that was generated. The Java files are stored in the lowest 
directory. This structure is shown in Figure 2.

For example, the integration object Sample Account; which has five components Account, Account 
Attachment, Account_Organization, Business Address, and Contact; generates the following six 
classes: 

■ Sample_AcccountIO

■ AccountIC

■ Account_AttachmentIC

fromPropertySet(SiebelPropertySet) Copies field values from the given property set.

toPropertySet() Returns a SiebelPropertySet with the properties 
and values corresponding to the fields of this 
object.

getfGenericArgument () Returns the value of business service method 
argument.

setfGenericArgument () Sets the value of a business service method 
argument.

Figure 2. Directory Structure Created of Java Code Generated for Integration Objects

Table 22. Java class com.siebel.service.jdb.GenericMethodOutput Methods Generated

Method Description

One folder is created under local for 
each integration object that is 
generated. It contains all Java files 
for that integration object.
Transports and Interfaces: Siebel Enterprise Application Integration Siebel 
2018

126 



Integrating Siebel Business Applications with Java Applications ■ About the Siebel
Code Generator
■ Account_OrganizationIC

■ Business_AddressIC

■ ContactIC

The first class, suffixed with IO, represents the entire integration object. It has methods to construct 
the object, to read and write fields, to add integration object components, and to convert to and from 
a SiebelPropertySet. The other five classes, suffixed with IC, represent the individual integration 
object components and provide methods that are for constructing the component to read and write 
fields and to convert to and from a SiebelPropertySet.

Methods of Java Classes Generated for an Integration Object
Table 23 describes methods that are present in the generated Java code for every integration object, 
using the example integration object GenericIntObj.

Table 23. Java Class com.siebel.local.GenericIntObjIO Methods Generated

Object Description

addfintObjInst(SiebelHierarchy) Adds an integration object component object to the 
integration object.

clone Returns a copy of the integration object.

equals(Object) Determines whether integration object has the 
same data as the integration object passed.

fromPropertySet(SiebelPropertySet) Copies the data from the given property set to the 
integration object.

getfIntObjectFormat Returns a String containing the format of the 
integration object.

getfIntObjectName Returns the integration object name property.

getfintObjInst Returns a Vector representation of the integration 
object.

getfMessageId Returns the MessageId property of the integration 
object.

getfMessageType Returns the MessageType property of the 
integration object.

getfOutputIntObjectName Returns the OutputIntObjectName property of the 
integration object.

Generic_ObjectIO() Default constructor.

Generic_ObjectIO(SiebelPropertySet ps) Creates an integration object (and its hierarchy) 
based on a property set.

setfIntObjectFormat Sets the IntObjectFormat property of the 
integration object.
Transports and Interfaces: Siebel Enterprise Application Integration Siebel
2018

127



Integrating Siebel Business Applications with Java Applications ■ About the Siebel 
Code Generator
Methods of Java Classes Generated for an Integration Object 
Component
Table 24 describes methods that are present in the generated Java code for every integration object 
component, using an example integration object component, GenericIntComp, having the child 
component GenericIntCompChild and field GenericField.

setfIntObjectName Sets the IntObjectName property of the integration 
object.

setfMessageId Sets the MessageId property of the integration 
object.

setfMessageType Sets the MessageType property of the integration 
object.

setfOutputIntObjectName Sets the OutputIntObjectName property of the 
integration object.

toPropertySet Returns a SiebelPropertySet representation of the 
integration object.

Table 24. Java Class com.siebel.local.GenericIntCompIC Methods Generated

Object Component Description

addfGenericIntCompChildIC(GenericIntCompChildIC) Adds to the integration object component 
the given child integration object 
component.

clone Returns a copy of the integration object.

equals(Object) Determines whether the integration object 
component has the same data as the 
passed integration object component.

fromPropertySet(SiebelPropertySet) Populates the integration object 
component based upon the contents of a 
property set.

getfGenericIntCompChildIC Returns a Vector containing all child 
integration object components of type 
ChildIntObjComp associated with the 
integration object component.

getfGenericField() Returns the value of the field GenericField.

GenericIntCompIC() Default constructor.

GenericIntCompIC(SiebelPropertySet) Creates an integration object component 
from a property set.

Table 23. Java Class com.siebel.local.GenericIntObjIO Methods Generated

Object Description
Transports and Interfaces: Siebel Enterprise Application Integration Siebel 
2018

128 



Integrating Siebel Business Applications with Java Applications ■ About Running the
Java Data Bean
About Running the Java Data Bean
Two Siebel .jar files are needed to compile and run a Java application that uses the Java Data Bean:

■ Siebel.jar

■ SiebelJI_lang.jar (lang is the installed language pack; for example, SiebelJI_enu.jar for English 
or SiebelJI_jpn.jar for Japanese.) 

These jar files are provided with the standard Siebel installation under the directory 
INSTALLED_DIR\classes.

Documentation of individual classes is provided in the form of javadoc (Siebel_JavaDoc.jar), which 
is installed when installation option Siebel Java Integrator (a component of the Siebel Tools or the 
Siebel Server installer) is chosen. This .jar file contains the up-to-date javadoc for the Siebel Java 
Data Bean, Siebel Resource Adapter, and dependent classes.

NOTE: The Siebel Data Bean is not thread-safe: simultaneous access by different threads is not 
supported. This restriction applies to all objects obtained from the same instance of SiebelDataBean. 
For example, if two instances of SiebelBusObj are obtained from the same instance of 
SiebelDataBean, then methods on them are not invoked simultaneously by different threads.

Connect String and Credentials for the SiebelDataBean
When using the SiebelDataBean directly, without any generated code, three arguments must be 
passed to the login method. A fourth argument, language code, is optional.

■ connect string

■ Siebel username

■ Siebel password

■ language code (default is enu)

The connect string has the following form:

siebel://SiebelServerName:SCBPort/EnterpriseName/XXXObjMgr_lang

For example:

siebel://examplecomputer:2321/mysiebelenterprise/SCCObjMgr_enu

setfGenericField(val) Sets the value of the field GenericField.

toPropertySet Returns a property set representation of 
the integration object component.

Table 24. Java Class com.siebel.local.GenericIntCompIC Methods Generated

Object Component Description
Transports and Interfaces: Siebel Enterprise Application Integration Siebel
2018

129



Integrating Siebel Business Applications with Java Applications ■ About Running the 
Java Data Bean
When using generated code, these parameters can be taken from the siebel.properties file, which 
must be in the classpath of the Java Virtual Machine (JVM). These properties are read from 
siebel.properties at the time an instance of the generated business service class is created using that 
explicitly specifies siebel.properties, for example:

Siebel_AccountBusServAdapter svc = new 
Siebel_AccountBusServAdapter("siebel.properties");

They can be overridden by calling the methods setConnectString, setUserName, setPassword, and 
setLanguage any time prior to calling initialize() or invoking a business service method (such as 
GenericMethod in Table 20 on page 124). This is the behavior when the default (no-argument) 
constructor of the generated Java class is used.

Alternatively, the generated class provides the following four constructors with arguments:

■ One String argument: the name of the property file to be used.

■ Three String arguments: the connect string, username, and password. No properties file is used.

■ Four String arguments: the connect string, username, password, and language. No properties 
file is used.

■ SiebelDataBean argument: the SiebelDataBean passed already has parameters assigned and its 
login method executed.

Connection Parameters for the SiebelDataBean
Regardless of how the SiebelDataBean is invoked, certain parameters of the connection can be set 
using the properties file. These are siebel.conmgr.txtimeout, siebel.conmgr.poolsize, 
siebel.conmgr.sesstimeout, siebel.conmgr.retry, and siebel.conmgr.jce. 

Other connection parameters can also be specified in the properties file, but they are used only in 
conjunction with generated code (subclasses of 
com.siebel.integration.adapter.SiebelJDBAdapterBase or SiebelJCAAdapterBase). 
Transports and Interfaces: Siebel Enterprise Application Integration Siebel 
2018

130 



Integrating Siebel Business Applications with Java Applications ■ About Running the
Java Data Bean
Table 25 gives the details of these parameters.

Table 25. Properties in the siebel.properties File

Property Description

siebel.conmgr.txtimeout The number of milliseconds to wait after sending a request to 
the Siebel Server. Must be a positive integer; other values 
are ignored. The default value is 600000 milliseconds (10 
minutes); the maximum value is 2,147,483,647 ms 
(approximately 25 days).

siebel.conmgr.poolsize For each Application Object Manager process, a pool of open 
connections is maintained and shared by all users of that 
process. This parameter specifies the maximum number of 
connections that are stored in the pool. Its value must be a 
positive integer less than 500; other values are ignored. The 
default is 2.

siebel.conmgr.sesstimeout The number of seconds the Siebel Server waits before 
disconnecting an idle client session. Its value must be a 
nonnegative integer. The default is 2700 seconds (45 
minutes); the maximum value is 2,147,483,647 s 
(approximately 68 years).

siebel.conmgr.jce Determines whether encryption of transmissions is done 
using Java Cryptography Extension (JCE) or RSA (if the 
connection uses encryption). 1 indicates JCE; 0 indicates 
RSA. The default is 0.

siebel.conmgr.retry The number of attempts to be made at establishing a 
connection (opening a session) before giving up. Must be a 
positive integer. The default is 3.

siebel.conmgr.virtualhosts A listing of virtual servers representing a group of like 
servers that perform the same function, for example, call 
center functions.

An incoming login for the call center virtual server tries 
servers from the list in a round-robin fashion.

An example of such a list follows:

VirtualServer1=sid1:host:port,sid2:host:port...;
VirtualServer2=...

where VirtualServer1, VirtualServer2, and so on, are 
assigned lists of real Siebel Servers with host names and port 
numbers (of the local SCBroker component).

siebel.connection.string The Siebel connect string. For information about the syntax 
of the connect string, see Siebel Object Interfaces Reference.
Transports and Interfaces: Siebel Enterprise Application Integration Siebel
2018

131



Integrating Siebel Business Applications with Java Applications ■ About Running the 
Java Data Bean
Here is a sample siebel.properties file:

siebel.connection.string = siebel://examplecomputer:2321/siebel/EAIObjMgr_enu
siebel.user.name = User1
siebel.user.password = password
siebel.user.language = enu
siebel.user.encrypted = false
siebel.conmgr.txtimeout = 300000
siebel.conmgr.poolsize = 5
siebel.conmgr.sesstimeout = 3600
siebel.conmgr.retry = 5
siebel.conmgr.jce = 1
siebel.loglevel = 0

siebel.loglevel The level of messages to be logged. Must be a positive 
integer less than 6. Other values are ignored or throw an 
exception. 0 causes only FATAL messages to be logged; 1 
ERROR; 2 WARN; 3 INFO; 4 DETAIL; 5 DEBUG. The default 
is 0.

NOTE: The siebel.loglevel parameter is used only in 
conjunction with the generated code for the 
SiebelJCAAdapterBase subclass.

siebel.logfile The name of a file to which logging is directed. Strings that 
cause a FileNotFoundException cause an error to be logged 
and are ignored. The default is to print to the JVM’s standard 
output.

NOTE: The siebel.logfile parameter is used only in 
conjunction with the generated code for the 
SiebelJCAAdapterBase subclass.

siebel.user.name The Siebel username to be used for logging in to the 
Application Object Manager.

siebel.user.password The Siebel password to be used for logging in to the 
Application Object Manager.

siebel.user.language The language code indicating the natural language to be used 
for messages and other strings. Default is enu.

siebel.jdb.classname The name of a subclass of com.siebel.data.SiebelDataBean 
to use instead of SiebelDataBean. Strings that do not specify 
a valid class or specify a class that is not a subclass of 
SiebelDataBean cause an error log to be logged and 
SiebelDataBean to be used instead.

Table 25. Properties in the siebel.properties File

Property Description
Transports and Interfaces: Siebel Enterprise Application Integration Siebel 
2018

132 



Integrating Siebel Business Applications with Java Applications ■ About Running the
Java Data Bean
Examples Using Generated Code for Integration Objects
The following code examples use the code generation facilities provided in Siebel Tools. For more 
information, see “About the Siebel Code Generator” on page 121, for both business services and 
integration objects. By using the code generation facilities, many of the complexities of the Siebel 
property sets and business service interfaces have been abstracted, providing a standards-based 
JavaBean interface.

Siebel Account Business Service Example
The following is a code sample invoking the QueryByExample method of the Siebel Account business 
service. In addition to the generated code for Siebel Account (resident in 
com.siebel.service.jdb.siebelaccount), the sample uses the generated code for the Account Interface 
integration object (resident in com.siebel.local.accountinterface).

The code invokes the QueryByExample method of the Siebel Account business service. The 
parameter to this method is formed from an instance of the Account Interface integration object, 
which serves as the example, essentially specifying a search criterion of all accounts that start with 
the letters Ai. The output integration object is converted to a Vector and iterated through to print the 
names of matching accounts.

import com.siebel.data.SiebelDataBean;
import com.siebel.data.SiebelException;
import com.siebel.service.jdb.siebelaccount.Siebel_AccountBusServAdapter;
import com.siebel.service.jdb.siebelaccount.QueryByExampleInput;
import com.siebel.service.jdb.siebelaccount.QueryByExampleOutput;
import com.siebel.local.accountinterface.Account_InterfaceIO;
import com.siebel.local.accountinterface.AccountIC;
public class JDBSiebelAccount {

public static void main(String[] args) throws SiebelException {
Siebel_AccountBusServAdapter svc = new Siebel_AccountBusServAdapter("USER",
"PWD","siebel://examplecomputer:2321/siebel/SCCObjMgr_enu","enu");
// Create the example-accounts starting with "Ai":
AccountIC acctIC = new AccountIC();
Account_InterfaceIO acctIO = new Account_InterfaceIO();
acctIO.addfintObjInst(acctIC);
acctIC.setfName("Ai*");
QueryByExampleInput qbeIn = new QueryByExampleInput();
qbeIn.setfSiebelMessage(acctIO);

// Call QueryByExample
QueryByExampleOutput qbeOut = svc.mQueryByExample(qbeIn);
acctIO = new Account_InterfaceIO(qbeOut.getfSiebelMessage().toPropertySet());
Vector ioc = acctIO.getfintObjInst();

// print the name of each account returned:
if (!ioc.isEmpty()) {

for(int i=0; i < ioc.size(); i++) {
acctIC = (AccountIC) ioc.get(i);
System.out.println(acctIC.getfName());

}
}

}

Transports and Interfaces: Siebel Enterprise Application Integration Siebel
2018

133



Integrating Siebel Business Applications with Java Applications ■ About Running the 
Java Data Bean
EAI Siebel Adapter Business Service Example
The following example uses the generated code for the EAI Siebel Adapter business service. An 
instance is instantiated using the constructor that takes an instance of SiebelDataBean. The 
QueryPage method is called; its output is actually an Account Interface integration object, but the 
object returned is not strongly typed and instead is used to construct an Account Interface instance. 
The generated code for Account Interface is also needed for this example.

import com.siebel.data.SiebelDataBean;
import com.siebel.data.SiebelException;
import com.siebel.local.accountinterface.Account_InterfaceIO;
import com.siebel.local.accountinterface.AccountIC;
import com.siebel.service.jdb.eaisiebeladapter.EAI_Siebel_AdapterBusServAdapter;
import com.siebel.service.jdb.eaisiebeladapter.QueryPageInput;
import com.siebel.service.jdb.eaisiebeladapter.QueryPageOutput;
public class DataBeanDemo {

public static void main(String[] args) throws SiebelException {
SiebelDataBean m_dataBean = new SiebelDataBean();
String conn = "siebel://examplecomputer:2321/siebel/SCCObjMgr_enu";
m_dataBean.login(conn, "USER", "PWD", "enu");
// Construct the EAI Siebel Adapter, using the data bean
EAI_Siebel_AdapterBusServAdapter svc = 
new EAI_Siebel_AdapterBusServAdapter(m_dataBean);
svc.initialize();
try {

// Set values of the arguments to the QueryPage method. 
QueryPageInput qpInput = new QueryPageInput();
qpInput.setfPageSize(Integer.toString(10)); // Return 10 records.
qpInput.setfOutputIntObjectName("Account Interface");
qpInput.setfStartRowNum(Integer.toString(0)); // Start at record 0.
QueryPageOutput qpOutput = svc.mQueryPage(qpInput);

// Construct the integration object using the QueryPage output
Account_InterfaceIO acctIO = 

new Account_InterfaceIO(qpOutput.getfSiebelMessage().toPropertySet());

// Convert the results to a vector for processing
Vector ioc = acctIO.getfintObjInst();

// Print name of each account
if (!ioc.isEmpty()) {

for (int i = 0; i < ioc.size(); i++) {
AccountIC acctIC = ((AccountIC) ioc.get(i));
System.out.println(acctIC.getfName());

}
}

}
catch (SiebelException e) {}
finally {

m_dataBean.logoff();
}

}
}

Transports and Interfaces: Siebel Enterprise Application Integration Siebel 
2018

134 



Integrating Siebel Business Applications with Java Applications ■ About the Siebel
Resource Adapter
About the Siebel Resource Adapter
The Siebel Resource Adapter is for use within the Java EE Connector Architecture (JCA) by Java EE-
based applications (EJBs, JSPs, servlets) that are deployed on containers. JCA provides clients with 
a standard interface to multiple enterprise information services such as the Siebel application.

The Siebel Resource Adapter implements system-level contracts that allow a standard Java EE 
application server to perform services such as pooling connections and managing security. This is 
referred to as operation within a managed environment.

The Java EE Connection Architecture also provides for operation in a nonmanaged environment, 
where the client need not be deployed in a Java EE container, but instead uses the adapter directly. 
In this case, the client takes responsibility for services such as managing security.

The Siebel Resource Adapter has transaction support level NoTransaction. This means that the Siebel 
Resource Adapter does not support local or JTA transactions. For more information about JCA, see:

http://jcp.org/en/jsr/detail?id=322

The following Siebel Resource Adapter topics are also discussed:

■ “Using the Resource Adapter” on page 135

■ “About the Connect String and Credentials for the Java Connector” on page 135

■ “About JCA Logging” on page 138

Using the Resource Adapter
When deploying the Siebel Resource Adapter to a Java EE application server (for example, Oracle 
Application Server, Oracle WebLogic Server, or IBM WebSphere MQ), you must make sure that the 
necessary Siebel JAR files are included. The Siebel JAR files that must be added to the classpath are:

■ SiebelJI.jar

■ SiebelJI_lang.jar (lang is the installed language pack; for example, SiebelJI_enu.jar for English 
or SiebelJI_jpn.jar for Japanese.) 

The resource adapter archive, or RAR file, might also be required for deployment. Refer to the 
documentation of the Java EE application server for more information about deploying a JCA adapter 
on the server.

The following topics contain code samples for both managed and nonmanaged environments. 

About the Connect String and Credentials for the Java 
Connector
The Java Connector Architecture allows for credentials to be supplied using either Container-
Managed Sign-on or Application-Managed Sign-On. 
Transports and Interfaces: Siebel Enterprise Application Integration Siebel
2018

135



Integrating Siebel Business Applications with Java Applications ■ About the Siebel 
Resource Adapter
With Container-Managed Sign-On, the application server's container identifies the principal and 
passes it to the JCA adapter in the form of a JAAS Subject. Application servers provide their own 
system of users and roles; such a user must be mapped to Siebel user and password for the purpose 
of the JCA adapter. Application servers allow the specification of such mappings. With Container-
Managed Sign-On, the Siebel connect string and language must be specified in the deployment 
descriptor of the adapter (ra.xml). If a Siebel user name and password are present in the descriptor, 
then they are used by the application server only to create an initial connection to the Siebel 
application when the application server is started, which is not necessary.

With Application-Managed Sign-On, the client application must provide the credentials and connect 
string. This is done just as for the Java Data Bean, as described in “About Running the Java Data Bean” 
on page 129, by either supplying them in siebel.properties or setting them programmatically using 
setUserName, setPassword, setConnectString, and setLanguage. If any of these parameters are 
supplied using Application-Managed Sign-On, then supply all four of them in that manner.

NOTE: Connection parameters beginning with siebel.conmgr are read from siebel.properties, 
whether the adapter is being used in managed or nonmanaged mode.

Managed Code Sample Using the Siebel Resource Adapter
The following is a code sample using the Siebel Resource Adapter in a managed environment. The 
sample is a servlet that makes a simple invocation to a business service using the generated JCA 
code. (For more information about generating code, see “About the Siebel Code Generator” on 
page 121.)

The JCA ConnectionFactory is obtained through JNDI. Credentials are obtained at run time from the 
JAAS Subject passed to the servlet. The connect string and language are obtained from the 
deployment descriptor (ra.xml). Other connection parameters are obtained from the 
siebel.properties file.

NOTE: The siebel.properties file must be in the JVM classpath and must be specified explicitly when 
the business service instance is created.

import javax.naming.*;
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import com.siebel.integration.jca.cci.SiebelConnectionFactory;
import com.siebel.service.jca.eaifiletransport.*;
public class ManagedConnectionServlet extends HttpServlet {

public void doGet(HttpServletRequest request, HttpServletResponse response) 
throws IOException,ServletException {
PrintWriter reply = response.getWriter();

try {
// Specify siebel.properties in the constructor.
EAI_File_TransportBusServAdapter bs = new 
EAI_File_TransportBusServAdapter(“siebel.properties”);
InitialContext jndi = new InitialContext();
SiebelConnectionFactory scf = 
(SiebelConnectionFactory)jndi.lookup("siebelJCA"); 
bs.setConnectionFactory(scf);
Transports and Interfaces: Siebel Enterprise Application Integration Siebel 
2018

136 



Integrating Siebel Business Applications with Java Applications ■ About the Siebel
Resource Adapter
// Username and password obtained from JAAS Subject passed by server at 
runtime.
// Connect string and language obtained from deployment descriptor, ra.xml. 
ReceiveInput input = new ReceiveInput();
input.setfCharSetConversion("UTF-8");
input.setfFileName("D:\\helloWorld.txt");
ReceiveOutput output = bs.mReceive(input);
reply.println(output.getf_Value_());

}
catch (Exception e) {

reply.println("Exception:" + e.getMessage());
}

}
}

Nonmanaged Code Sample Using the Siebel Resource Adapter
The following is a code sample using the Siebel Resource Adapter in a nonmanaged environment. 
The sample performs the same function as the Managed sample; it is a servlet that makes a simple 
invocation to a business service using the generated JCA code. (For more information about 
generating code, see “About the Siebel Code Generator” on page 121.)

The JCA ConnectionFactory is created directly. The username, password, connect string, and 
language are obtained from siebel.properties or set programmatically. Other connection parameters 
are obtained from the siebel.properties file.

NOTE: The siebel.properties file must be in the JVM classpath and must be specified explicitly when 
the business service instance is created.

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import com.siebel.integration.jca.cci.notx.SiebelNoTxConnectionFactory;
import com.siebel.service.jca.eaifiletransport.*;
public class BookshelfNonManagedConnectionSample extends HttpServlet {

public void doGet(HttpServletRequest request, HttpServletResponse response) 
throws IOException, ServletException {

PrintWriter reply = response.getWriter();

try {
EAI_File_TransportBusServAdapter bs = new 
EAI_File_TransportBusServAdapter(“siebel.properties”);
bs.setConnectionFactory(new SiebelNoTxConnectionFactory());
// Username, password, connect string, and language are read from
// siebel.properties, which must be in the classpath of the servlet
// and be specified in the constructor.
// Alternatively, they can be set here programmatically:
// bs.setUserName("USER");
// bs.setPassword("PWD");
// bs.setConnectString("siebel://examplecomputer:2321/siebel/
SCCObjMgr_enu");

ReceiveInput input = new ReceiveInput();
Transports and Interfaces: Siebel Enterprise Application Integration Siebel
2018

137



Integrating Siebel Business Applications with Java Applications ■ About the Siebel 
Resource Adapter
input.setfCharSetConversion("UTF-8");
input.setfFileName("D:\\helloWorld.txt");
ReceiveOutput output = bs.mReceive(input);

reply.println(output.getf_Value_());

}
catch (Exception e) {

reply.println("Exception:" + e.getMessage());
}

}
}

About JCA Logging
The following improvements have been made to JCA logging in Oracle’s Siebel CRM version 8.0 and 
later:

■ Appending JCA logs to one file, which is found in the working directory of the JVM.

Previously, each JCA thread would overwrite the same log file over and over again. Now all JCA 
threads log into one file. When the log file size exceeds 100 MB, it is renamed and a new one is 
started. For example, test.log is renamed to test_1166581351656.log, where the value is the 
number of milliseconds since 1970.

■ Proper logging of call stacks for LOG_DEBUG.

Previously, JCA log events in the LOG_DEBUG level (level 5) logged the call stack, but the call 
stack was often incomplete and cryptic. Now the call stack is a complete Java call stack.

■ Logging of thread names.

Previously, the JCA logs did not include the thread name. Now that all threads log to one file, 
each line contains the thread name. An example of a line in the log file is:

[SIEBEL INFO] Thread[Servlet.Engine.Transports : 4,5,main] [2010-11-04 
15:58:38.058] [SiebelManagedConnection(2137125295)] Cleaning up 0 handles on 
SiebelManagedConnection(2137125295)

■ New logging in LOG_DETAIL (level 4):

■ When a listener thread is created (logs the host and port):

[SIEBEL DETAIL] Thread[Thread-1482,5,main] [2010-11-04 16:12:10.139] [] creating 
socket for listening thread: host=xyz port=9312

■ When the main thread sends a request to the Siebel Server (logs the packet number):

[SIEBEL DETAIL] Thread[Thread-1482,5,main] [2010-11-04 16:12:56.521] [] set 
tx=2813

[SIEBEL DETAIL] Thread[Thread-1482,5,main] [2010-11-04 16:12:56.521] [] wait=1 
tx=2813
Transports and Interfaces: Siebel Enterprise Application Integration Siebel 
2018

138 



Integrating Siebel Business Applications with Java Applications ■ About the Siebel
Resource Adapter
■ When the main thread receives a response:

[SIEBEL DETAIL] Thread[Thread-1482,5,main] [2010-11-04 16:12:56.580] [] end loop 
tx=2813 isDone

■ Before the listener thread reads a packet (logs the number of bytes in the packet):

[SIEBEL DETAIL] Thread[Thread-54,5,Listener Threads] [2010-11-04 16:12:56.575] [] 
about to read to bytes: len=1800

■ As the listener thread reads the packet (logs the packet number and number of bytes read 
thus far):

[SIEBEL DETAIL] Thread[Thread-54,5,Listener Threads] [2010-11-04 16:12:56.575] [] 
read some bytes: tx=2813 len=1800 read=1800

■ Logging call stacks when opening and closing a connection to the Siebel Server.

Previously, the JCA logs for LOG_INFO (level 3) logged the opening and closing of a connection, 
but did not log the call stack. Now the call stack is logged, for example:

[SIEBEL INFO] Thread[Servlet.Engine.Transports : 2,5,main] [2010-11-05 
07:53:26.078] [SiebelConnection(507473761)] Opening a new connection to Siebel 
...

java.lang.Throwable

at com.siebel.integration.util.a.trace(Unknown Source)

at com.siebel.integration.util.SiebelTrace.trace(Unknown Source)

at com.siebel.integration.jca.cci.SiebelConnection.a(Unknown Source)

at com.siebel.integration.jca.cci.SiebelConnection.initialize(Unknown 
Source)

at com.siebel.integration.jca.cci.SiebelConnection.<init>(Unknown Source)

at com.siebel.integration.jca.cci.notx.SiebelNoTxConnection.<init>(Unknown 
Source)

at com.siebel.integration.jca.spi.notx.SiebelNoTxManagedConnectionFactory
.createManagedConnection(Unknown Source)

at com.ibm.ejs.j2c.poolmanager.FreePool
.createManagedConnectionWithMCWrapper(FreePool.java(Compiled Code))

at com.ibm.ejs.j2c.poolmanager.FreePool
.createOrWaitForConnection(FreePool.java(Compiled Code))

at com.ibm.ejs.j2c.poolmanager.PoolManager
.reserve(PoolManager.java(Compiled Code))

at com.ibm.ejs.j2c.ConnectionManager
.allocateMCWrapper(ConnectionManager.java(Compiled Code))

at com.ibm.ejs.j2c.ConnectionManager
.allocateConnection(ConnectionManager.java(Compiled Code))
Transports and Interfaces: Siebel Enterprise Application Integration Siebel
2018

139



Integrating Siebel Business Applications with Java Applications ■ About the Siebel 
Resource Adapter
at 
com.siebel.integration.jca.cci.SiebelConnectionFactory.getConnection(Unknown 
Source)

at com.siebel.integration.adapter.SiebelJCAAdapterBase
.invoke(SiebelJCAAdapterBase.java(Compiled Code))

...

[SIEBEL INFO] Thread[Servlet.Engine.Transports : 2,5,main] [2010-11-05 
07:53:26.243] [SiebelConnection(507473761)] Opened a new connection to Siebel 
(Siebel session : siebel.tcpip.none.none://myserver.example.com:2321/esblp01/
SCCObjMgr_enu/!10.6373.3ba70.465c2246)

[SIEBEL INFO] Thread[Thread-56,5,main] [2010-11-05 07:54:38.484] 
[SiebelConnection(974516018)] Closing the connection

java.lang.Throwable

at com.siebel.integration.util.a.trace(Unknown Source)

at com.siebel.integration.util.SiebelTrace.trace(Unknown Source)

at com.siebel.integration.jca.cci.SiebelConnection.a(Unknown Source)

at com.siebel.integration.jca.cci.SiebelConnection.close(Unknown Source)

at com.siebel.integration.jca.spi.SiebelManagedConnection.destroy(Unknown 
Source)

at com.ibm.ejs.j2c.MCWrapper.destroy(MCWrapper.java:1380)

at com.ibm.ejs.j2c.poolmanager.FreePool
.cleanupAndDestroyMCWrapper(FreePool.java(Compiled Code))

at com.ibm.ejs.j2c.poolmanager.PoolManager
.reclaimConnections(PoolManager.java(Compiled Code))

at com.ibm.ejs.j2c.poolmanager.PoolManager
.executeTask(PoolManager.java(Compiled Code))

at com.ibm.ejs.j2c.poolmanager.TaskTimer
.executeTask(TaskTimer.java(Compiled Code))

at com.ibm.ejs.j2c.poolmanager.TaskTimer.run(TaskTimer.java:113)

■ Logging execution of a request in LOG_INFO (level 3).

Previously, execution of a request was logged in LOG_DEBUG. Now the request is logged in 
LOG_INFO with no call stack, for example:

[SIEBEL INFO] Thread[Servlet.Engine.Transports : 2,5,main] [2010-11-05 
07:53:26.244] [SiebelConnection(507473761)] Executing 
com.siebel.integration.jca.client.SiebelInteractionSpec@1b6bef7c
Transports and Interfaces: Siebel Enterprise Application Integration Siebel 
2018

140 



Integrating Siebel Business Applications with Java Applications ■ About the Siebel
Resource Adapter
Mapping a JCA Thread to a Siebel Server Task and Log File
From the JCA logging information, you can find the Siebel Server task and log file, which can be 
useful in diagnosing threads that use large amounts of CPU time.

To map a JCA thread to a Siebel Server task and log file
1 Examine the JCA log file to find the high-CPU thread, for example:

[SIEBEL INFO] Thread[Servlet.Engine.Transports : 2,5,main] [2010-11-05 
07:53:26.243] [SiebelConnection(507473761)] Opened a new connection to Siebel 
(Siebel session : siebel.tcpip.none.none://myserver.example.com:2321/esblp01/
SCCObjMgr_enu/!10.6373.3ba70.465c2246)

The Siebel session URL takes the following form:

siebel[.transport][.encryption][.compression]://host[:port]/EnterpriseServer/
AppObjMgr_lang/!AppObjMgrID.ProcessID.TaskID.timestamp

where the Application Object Manager ID, process ID, task ID, and timestamp are represented 
by hexadecimal numbers.

2 Use the Siebel session URL to find the following parameters, converting hexadecimal numbers to 
decimal:

3 Find the corresponding Siebel Server log file, which is in the SIEBEL_SERVER_ROOT/log directory:

■ Windows:

AppObjMgr_lang_AppObjMgrID_taskID.log

For example:

SCCObjMgr_enu_0016_244336.log

■ UNIX:

AppObjMgr_lang_taskID.log

For example:

SCCObjMgr_enu_244336.log

Parameter Example

Host myserver.example.com

Siebel Enterprise Server esblp01

Application Object Manager_lang SCCObjMgr_enu

Application Object Manager ID 10 (16 decimal)

Task ID 3ba70 (244336 decimal)
Transports and Interfaces: Siebel Enterprise Application Integration Siebel
2018

141



Integrating Siebel Business Applications with Java Applications ■ About the Siebel 
Resource Adapter
Transports and Interfaces: Siebel Enterprise Application Integration Siebel 
2018

142 



9 EAI DLL and EAI File Transports
This chapter discusses the EAI DLL Transport and EAI File Transport business services. It includes 
the following topics:

■ About the EAI DLL Transport on page 143

■ About the EAI File Transport on page 147

About the EAI DLL Transport
You use the EAI DLL Transport when you want to call a function that exists in an external DLL. You 
must know the exported function in the DLL that you want to invoke. You specify the EAI DLL 
Transport as one of the business services in your workflow.

NOTE: The EAI DLL Transport only accepts String type as input or output to the external DLL. The 
external function also must return String type.

The following topics are discussed here:

■ “EAI DLL Transport Methods” on page 143

■ “EAI DLL Transport Parameters” on page 144

■ “Creating a DLL to Call a Function in an External DLL” on page 144

EAI DLL Transport Methods
The EAI DLL Transport supports sending messages using the following methods:

■ Send

■ SendReceive
Transports and Interfaces: Siebel Enterprise Application Integration Siebel
2018

143



EAI DLL and EAI File Transports ■ About the EAI DLL Transport
EAI DLL Transport Parameters
Use the Send or SendReceive method as needed when you want to pass data from the Siebel 
Database to an external system. These methods require an input property set. In addition to the 
common parameters described in Chapter 2, “EAI Transports and Interfaces Overview,” the EAI DLL 
Transport takes the parameters presented in Table 26.

Calling a Function in an External DLL
The following procedure shows how to call a function in an external DLL.

To call a function in an external DLL
1 Create a workflow.

NOTE: For details on creating workflows, see Siebel Business Process Framework: Workflow 
Guide.

2 Set the first business service, after the Start, to use the EAI DLL Transport. Usually, this object 
is named Send.

3 Double-click to set the input properties for the EAI DLL Transport.

4 Select a method, either Send, or Send and Receive Response.

5 Select the input arguments that you want to use from the list, as presented in Table 26 on 
page 144.

6 Enter any output arguments required and save your work.

Creating a DLL to Call a Function in an External DLL
The following procedure illustrates how to create a DLL to use the EAI DLL Transport business service 
to call a function in an external DLL.

As of Siebel Innovation Pack 2014, a new mechanism is provided to free memory allocated. The 
creator of the external DLL can now expose additional API functions to free memory. Two new 
business service method arguments, DLLExternalFunction and DLLExternalFunctionFreeMemory, are 
added to the Send and SendReceive methods. Both arguments are optional input arguments.

■ To use the new mechanism for memory deallocation, you must use both of these arguments 
together: DLLExternalFunction and DLLExternalFunctionFreeMemory.

Table 26. EAI DLL Transport Parameters

Argument Description

DLLName Name of the (request/response) DLL.

ExternalFunction Function in the DLL to invoke.

Return Value The return value from the function called. This value is an output property.
Transports and Interfaces: Siebel Enterprise Application Integration Siebel 
2018

144 



EAI DLL and EAI File Transports ■ About the EAI DLL Transport
■ Customers can optionally use the old approach of only exposing the old argument, 
ExternalFunction, instead of exposing the new memory freeing API functions. If you continue to 
use ExternalFunction instead of the new arguments, then the old mechanism is used for memory 
deallocation. With the old mechanism, failure might occur when the EAI DLL Transport business 
service performs the memory deallocation.

The signature for the new memory freeing function would resemble the following:

extern "C" int __declspec(dllexport) TestFree(void* Value)

To create a DLL
1 Open a VC++ project by choosing the Open menu, then New.

2 Select a Win32 Dynamic Link Library and give a name to the project, such as MyDLL.

3 In the next dialog box, select the option Simple dll project.

The following files are created by default:

■ MyDLL.cpp

■ StdAfx.h

■ StdAfx.cpp

4 Make the following changes in the StdAfx.h and Main.cpp files and check the results in the 
process simulator:

// MyDLL.cpp : Defines the exported functions for the DLL application.

//

#include "stdafx.h"

#include <string.h>

#include <stdio.h>

#include <io.h>

#include <malloc.h>

extern "C" int __declspec(dllexport) TestEAI(const XMLDataBuf* pValue, XMLDataBuf* 
Value)

{

FILE *fp = NULL;

int retf = 0;
Transports and Interfaces: Siebel Enterprise Application Integration Siebel
2018

145



EAI DLL and EAI File Transports ■ About the EAI DLL Transport
int rc = 0;

if ((fp = fopen("testeai.txt", "wb")) != NULL)

{

fprintf(fp, "Before test");

fwrite(pValue->pData, sizeof(char), (size_t)pValue->nLength, fp);

fprintf(fp, " After Test");

fclose(fp);

}

else return -1;

if ((fp = fopen("testeai.txt", "rb")) != NULL)

{

rc = (int)_filelength(_fileno(fp));

Value->pData = (void *)malloc((size_t)(rc + 1));

rc = (int)fread(Value->pData, sizeof(char), (size_t)rc, fp);

fclose(fp);

Value->nLength = rc;

((char*)Value->pData)[rc] = (char)NULL;

}

else return -2;

return rc;

}

extern "C" int __declspec(dllexport) TestFree(void* Value)

{

if(Value != NULL){
Transports and Interfaces: Siebel Enterprise Application Integration Siebel 
2018

146 



EAI DLL and EAI File Transports ■ About the EAI File Transport
free (Value);

Value = NULL;

}

return 0;

}

About the EAI File Transport
The EAI File Transport helps move data between a Siebel application and an external file.

NOTE: The EAI File Transport is different from EAI XML Read from File. The EAI XML Read from File 
uses a Siebel Message in Hierarchical format as the output property. When reading in data, the EAI 
File Transport uses a process property with Data Type of Binary as the output property by default; if 
CharsetConversion is set, then it uses a string output property instead.

The following topics are discussed here:

■ “EAI File Transport Methods” on page 147

■ “Using the EAI File Transport Methods” on page 148

■ “Generating Unique Filenames” on page 148

■ “EAI File Transport Parameters” on page 149

■ “Enabling Write Access for the EAI File Transport” on page 150

■ “EAI File Transport Named Subsystem” on page 151

EAI File Transport Methods
The EAI File Transport supports two transport modes: sending messages and receiving messages. It 
uses the following methods:

■ Send

■ SendReceive

■ Receive

■ ReceiveDispatch

■ ReceiveDispatchSend
Transports and Interfaces: Siebel Enterprise Application Integration Siebel
2018

147



EAI DLL and EAI File Transports ■ About the EAI File Transport
Using the EAI File Transport Methods
You create a workflow to use the EAI File Transport, defining and refining the workflow as needed to 
meet your unique business requirements.

To create a workflow using the EAI File Transport
1 Create a workflow in Siebel Tools.

NOTE: For details on creating workflows, see Siebel Business Process Framework: Workflow 
Guide.

2 Set up a step in the workflow to use the EAI File Transport. Usually, this object is named Send.

3 Double-click to set the input properties for the EAI File Transport.

4 Select a method that fits your business needs. 

5 Select the input arguments that you want to use from the list of arguments. The full list is 
presented in Table 27 on page 149.

6 Enter any output arguments required and save your work.

Generating Unique Filenames
When using the EAI File Transport, you can have the system generate unique file names for you, as 
needed. One way is to specify the directory name only. The other way is to include $$ in the filename.

NOTE: If a directory is not specified when using the EAI XML Write to File, EAI XML Read from File, 
or the EAI File Transport business service, then the FileName input argument defaults to the directory 
where the Siebel application is running.

Directory Only. To generate the unique file name, only enter the directory name. For example, 
instead of specifying the filename as d:\data\record1.xml, just specify d:\data. For every call of 
the workflow, a unique name is generated in the directory. To find out the file name generated, 
specify FileName as an output argument for the File Transport Workflow Step.

Using $$. For generating filenames based on the $$ wildcard, specify the filename in the form 
d:\data\record$$.xml. At run time, Siebel application replaces the $$ with a unique row ID, for 
example:

d:\data\record3-149.xml

NOTE: The file name generated by using $$ is not returned as the output filename property.
Transports and Interfaces: Siebel Enterprise Application Integration Siebel 
2018

148 



EAI DLL and EAI File Transports ■ About the EAI File Transport
EAI File Transport Parameters
In addition to the common parameters presented in “Common EAI Transport Parameters” on page 15, 
the EAI File Transport takes the parameters presented in Table 27. These parameters can be specified 
as service method arguments, subsystem parameters, or user properties.

Table 27. EAI File Transport Parameters

Display Name Parameter Description

Append To File AppendToFile Default is False. A value of True means that, if 
the file exists, then the method appends the 
message to the existing file. A value of False 
specifies that the method overwrites any 
existing file.

Delete File after 
Receive

DeleteFile Default is False. A value of True means that an 
attempt is made to delete the file after 
receiving it. If permissions prevent deletion, 
then no error is given, but the information is 
traced.

File Name FileName The name of the file to be received by the file 
transport. 

For the Send method, if a file name is not 
provided, then a random name is used for the 
output file. You must specify an explicit path for 
file name. You can also use $$ as the wildcard 
symbol in the file name. For example, if you 
specify a file name of “file$$.xml,” then Siebel 
CRM creates files like file1-134.xml, 
fileA25.xml, and file242_12B.xml.

For the Receive method, a specific file name 
must be provided. The use of wildcards such as 
$$ is not allowed. The source file is deleted 
upon receiving if DeleteFile is set to True. If 
DeleteFile is set to False (the default), then the 
source file is not deleted.

Response File 
Name

RespFileName Name of the file containing the response when 
using the SendReceive Method.

Sleep Time FileSleepTime The timeout interval on receive calls, in 
milliseconds.

This specifies the maximum amount of time 
that the service waits for a response. Default is 
20000 milliseconds.
Transports and Interfaces: Siebel Enterprise Application Integration Siebel
2018

149



EAI DLL and EAI File Transports ■ About the EAI File Transport
Enabling Write Access for the EAI File Transport
The EAIFileTransportFolders parameter allows you to enable write access for the EAI File Transport 
for specific folders within the Siebel file system. The EAIFileTransportFolders parameter can be set 
at the enterprise or server level as a semicolon-separated list.

By default, the Siebel temporary folder, SIEBSRVR_ROOT\TEMP, is a permitted folder and is not 
required to be explicitly configured with the EAIFileTransportFolders parameter. If the parameter is 
not configured, then writing is allowed only to the Siebel temporary folder; any attempt to write a 
file to a folder other than the Siebel temporary folder fails.

CAUTION: Do not allow write access to the SIEBSRVR_ROOT\BIN folder. Write access to the BIN folder 
allows anyone to overwrite Siebel system DLL files.

Configuring the EAIFileTransportFolders Parameter at the Enterprise 
Level
You use the srvrmgr utility to configure the EAIFileTransportFolders parameter at the enterprise level.

To configure the EAIFileTransportFolders parameter at the enterprise level
■ Use the following command in srvrmgr:

change ent param EAIFileTransportFolders=\\fileserver\fs1;\\fileserver2\fs2

Configuring the EAIFileTransportFolders Parameter at the Server 
Level
You use the srvrmgr utility to configure the EAIFileTransportFolders parameter at the server level.

To configure the EAIFileTransportFolders parameter at the server level
■ Use the following command in srvrmgr:

change param EAIFileTransportFolders=\\fileserver\fs1;\\fileserver2\fs2 for 
server servername

Configuring the EAIFileTransportFolders Parameter in the Application 
Configuration File
You add a new section to the application configuration file to configure the EAIFileTransportFolders 
parameter.

To configure the EAIFileTransportFolders parameter in the application configuration 
file
1 Open the application configuration file, such as uagent.cfg, in a text editor.
Transports and Interfaces: Siebel Enterprise Application Integration Siebel 
2018

150 



EAI DLL and EAI File Transports ■ About the EAI File Transport
2 Add the following section:

[EAIFileTransportConfigSubsys]

EAIFileTransportFolders = \\fileserver\fs1;\\fileserver2\fs2

EAI File Transport Named Subsystem
The EAI File Transport can read parameters from a named subsystem. For the EAI File Transport, the 
named subsystem type is FileTranspSubsys.

The following example shows how to use the FileTranspSubsys named subsystem with EAI File 
Transport business service methods.

Receiving a Message and Writing It to a File
This example uses the Receive method of the EAI File Transport business service to receive a 
message as a file, then it uses the Send method of the EAI File Transport business service and the 
FileTranspSubsys named subsystem to write the message to a file.

To receive a message and write it to a file
1 Define an EAI File Transport named subsystem, for example:

create named subsystem FileConnSubsys_sub for subsystem FileTranspSubsys with 
FileName="D:\temp\FileOut.txt", AppendToFile=true

2 Create a workflow as follows:

NOTE: For details on the Business Process Designer, see Siebel Business Process Framework: 
Workflow Guide.

3 Define the following process properties:

Name Data Type In/Out Default String

BinaryMsg Binary In/Out Not applicable

Error Code String In/Out Not applicable

Error Message String In/Out Not applicable

Object Id String In/Out Not applicable

Process Instance Id String In/Out Not applicable

Siebel Operation Object Id String In/Out Not applicable
Transports and Interfaces: Siebel Enterprise Application Integration Siebel
2018

151



EAI DLL and EAI File Transports ■ About the EAI File Transport
4 Set up the first business service step to use the EAI File Transport business service with the 
Receive method and the following input and output arguments:

5 Set up the second business service step to use the EAI File Transport business service with the 
Send method and the following input arguments:

Input Argument Type Value

FileName Literal D:\temp\InputToFile.txt

Property Name Type Output Argument

BinaryMsg Output Argument <Value>

Input Argument Type Value Property Name

<Value> Process Property Not applicable BinaryMsg

ConnectionSubsystem Literal FileConnSubsys_sub Not applicable
Transports and Interfaces: Siebel Enterprise Application Integration Siebel 
2018

152 



10 Transcode Service Business 
Service
This chapter discusses the Transcode Service business service. It includes the following topics:

■ About the Transcode Service Business Service on page 153

■ Transcode Service Business Service Methods on page 154

■ Transcode Service Business Service Examples on page 156

About the Transcode Service Business 
Service
The Transcode Service business service converts data from one character-set encoding to another. 
It can also validate conversions before they are performed.

The conversion implementation is portable, and does not rely on the operating system or any third-
party products for codepage definitions. Supported error detection includes output-buffer overflow, 
memory-allocation failure, invalid data in the input encoding stream, and substitution in the output 
encoding stream.

NOTE: Windows fallback (that is, approximate) conversions are not supported.

The Transcode Service business service provides data conversion and validation of conversion 
between the following encodings:

■ ASCII

■ 874 (Thai)

■ 932 (Japanese)

■ 936 (Simplified Chinese)

■ 949 (Korean)

■ 950 (Traditional Chinese)

■ 1250

■ 1251

■ 1252 (Western European)

■ 1253

■ 1254

■ 1255

■ 1256

■ 1257
Transports and Interfaces: Siebel Enterprise Application Integration Siebel
2018

153



Transcode Service Business Service ■ Transcode Service Business Service Methods
■ 1258

■ UTF-8

■ UTF-16LE

■ UTF-16BE

■ UTF-16

For a list of the languages supported by Siebel Business Applications, and the supported code pages 
for each database, see 1513102.1 (Article ID) on My Oracle Support. See also Siebel Global 
Deployment Guide and see the Certifications tab on My Oracle Support. For information about the 
Certifications application, see 1492194.1 (Article ID) on My Oracle Support.

Transcode Service Business Service 
Methods
The Transcode Service business service has two methods:

■ “Convert Method” on page 154

■ “Validate Method” on page 155

Convert Method
This method converts the value in the input property set to the target encoding in the output. You 
use this method when data enters or leaves Oracle’s Siebel Business Applications and conversion is 
required so that the next software component in the processing chain can recognize the data.

The Convert method has the method arguments shown in Table 28.

Table 28. Convert Method Arguments

Method Argument Required Description

<Value> Yes Data to convert.

ConversionMode Yes The mode can be StringToEncoding, EncodingToString, or 
EncodingToEncoding.

SourceEncoding No Encoding from which data is converted. Required for the 
EncodingToString and EncodingToEncoding modes.

TargetEncoding No Encoding to which data is converted. Required for the 
StringToEncoding and EncodingToEncoding modes.

IgnoreConversionErrors No To ignore character conversion errors (invalid-character 
errors or substitution errors), set IgnoreConversionErrors 
to TRUE.

NOTE: This argument is not shown in Siebel Tools.
Transports and Interfaces: Siebel Enterprise Application Integration Siebel 
2018

154 



Transcode Service Business Service ■ Transcode Service Business Service Methods
Validate Method
To avoid problems associated with relying on third-party applications to convert data, you can use 
the Validate method of the Transcode Service business service. The Validate method confirms the 
input property set hierarchy or the value of the input property set. You can use this method to check 
that a character is valid within a particular character set before performing the conversion. You can 
choose not to send the data to the external application if validation fails.

If validation fails, then the Transcode Service business returns a client-side error code (Error Code). 
The log file contains detailed information about what went wrong, including the failure type, first 
position in the input, and where conversion failed.

The Validate method has the method arguments shown in Table 29.

Table 29. Validate Method Arguments

Method Argument Required Description

ValidationMode No Can be Value or left blank.

If the mode is Value, then only <Value> is validated. 
Otherwise, the entire property set hierarchy is validated.

SourceEncoding No Encoding from which data is converted.

Required when ValidationMode is set to Value and the input 
value contains binary data. Conversion from binary data in 
SourceEncoding to binary data in TargetEncoding is implied.

TargetEncoding Yes Encoding to which data is converted.

<Value> No If <Value> is used (ValidationMode is set to Value), then only 
it is validated. Otherwise, the entire property set hierarchy is 
validated.

SiebelMessage No If the validation is for a hierarchy of type Siebel Message, for 
example, the output of the EAI Siebel Adapter, then this 
argument refers to the property set.

NOTE: This argument is not shown in Siebel Tools.

XMLHierarchy No If the validation is for an XML hierarchy, for example, the 
output of the ReadXMLHier method of the EAI XML Read from 
File business service method, then this argument refers to the 
property set.

NOTE: This argument is not shown in Siebel Tools.
Transports and Interfaces: Siebel Enterprise Application Integration Siebel
2018

155



Transcode Service Business Service ■ Transcode Service Business Service Examples
Transcode Service Business Service 
Examples
The following examples show how to use the Validate and Convert methods of the Transcode Service 
business service:

■ “Using the Validate Method” on page 156

■ “Using the Convert Method” on page 158

Using the Validate Method
The following examples demonstrate the use of the Validate method of the Transcode Service 
business service:

■ “XML Hierarchy Example” on page 156

■ “Siebel Message Example” on page 157

XML Hierarchy Example
In this workflow example, a file encoded in codepage 932 (Japanese) is read into an XML hierarchy, 
then validated for conversion into codepage 1252 (Western European).

To create the validation workflow
1 Create a workflow as follows:

NOTE: For details on the Business Process Designer, see Siebel Business Process Framework: 
Workflow Guide.

2 Define the following process properties:

Name Data Type In/Out

Error Code String In/Out

Error Message String In/Out

Siebel Operation Object Id String In/Out

XMLHier Hierarchy In/Out
Transports and Interfaces: Siebel Enterprise Application Integration Siebel 
2018

156 



Transcode Service Business Service ■ Transcode Service Business Service Examples
3 Set up the first business service step to use the EAI XML Read from File business service with 
the ReadXMLHier method and the following input and output arguments:

4 Set up the second business service step to use the Transcode Service business service with the 
Validate method and the following input arguments:

Siebel Message Example
In this workflow example, an account record is read from an integration object by the EAI Siebel 
Adapter as a Siebel Message, then validated for conversion from UTF-8 (Unicode) to codepage 1252 
(Western European).

To create the validation workflow
1 Create a workflow as follows:

NOTE: For details on the Business Process Designer, see Siebel Business Process Framework: 
Workflow Guide.

2 Define the following process properties:

Input Argument Type Value

FileName Literal c:\JPN_JIS.xml

Property Name Type Output Argument

XMLHier Output Argument XMLHierarchy

Input Argument Type Value Property Name

SourceEncoding Literal CP932 Not applicable

TargetEncoding Literal CP1252 Not applicable

ValidationMode Literal Not applicable Not applicable

XMLHierarchy Process Property Not applicable XMLHier

Name Data Type In/Out

Error Code String In/Out

Error Message String In/Out

Object Id String In/Out
Transports and Interfaces: Siebel Enterprise Application Integration Siebel
2018

157



Transcode Service Business Service ■ Transcode Service Business Service Examples
3 Set up the first business service step to use the EAI Siebel Adapter business service with the 
Query method and the following input and output arguments:

4 Set up the second business service step to use the Transcode Service business service with the 
Validate method and the following input arguments:

Using the Convert Method
The following workflow example demonstrates the use of the Convert method of the Transcode 
Service business service. An account record is read from an integration object by the EAI Siebel 
Adapter as a Siebel Message, converted from UTF-8 (Unicode) to codepage 932 (Japanese), and then 
written to an XML file.

Process Instance Id String In/Out

Siebel Operation Object Id String In/Out

SiebelMsg Hierarchy In/Out

Input Argument Type Value Property Name

OutputIntObjectName Literal Sample Account Not applicable

PrimaryRowId Process Property Row ID of the account record Object Id

Property Name Type Output Argument

SiebelMsg Output Argument SiebelMessage

Input Argument Type Value Property Name

SourceEncoding Literal UTF-8 Not applicable

TargetEncoding Literal CP1252 Not applicable

ValidationMode Literal Not applicable Not applicable

SiebelMessage Process Property Not applicable SiebelMsg

Name Data Type In/Out
Transports and Interfaces: Siebel Enterprise Application Integration Siebel 
2018

158 



Transcode Service Business Service ■ Transcode Service Business Service Examples
To create the conversion workflow
1 Create a workflow as follows:

NOTE: For details on the Business Process Designer, see Siebel Business Process Framework: 
Workflow Guide.

2 Define the following process properties:

3 Set up the first business service step to use the EAI Siebel Adapter business service with the 
Read Siebel Msg method and the following input and output arguments:

Name Data Type In/Out

Error Code String In/Out

Error Message String In/Out

Object Id String In/Out

Process Instance Id String In/Out

Siebel Operation Object Id String In/Out

SiebelMsg Hierarchy In/Out

SiebelMsgJPN Hierarchy In/Out

Input Argument Type Value Property Name

OutputIntObjectName Literal Sample Account Not applicable

PrimaryRowId Process Property Row ID of the account record Object Id

Property Name Type Output Argument

SiebelMsg Output Argument SiebelMessage
Transports and Interfaces: Siebel Enterprise Application Integration Siebel
2018

159



Transcode Service Business Service ■ Transcode Service Business Service Examples
4 Set up the second business service step to use the Transcode Service business service with the 
Convert method and the following input and output arguments:

5 Set up the third business service step to write the converted integration object hierarchy to an 
XML file using the EAI XML Write to File business service with the WriteEAIMsg method. This step 
requires the following input arguments:

Input Argument Type Value Property Name

SourceEncoding Literal UTF-8 Not applicable

TargetEncoding Literal CP932 Not applicable

ConversionMode Literal EncodingToEncoding Not applicable

<Value> Process Property Not applicable SiebelMsg

Property Name Type Output Argument

SiebelMsgJPN Output Argument <Value>

Input Argument Type Value Property Name

FileName Literal File to write, for example, 
d:\temp\acct_record_JPN.xml

Not applicable

<Value> Process Property Not applicable SiebelMsgJPN
Transports and Interfaces: Siebel Enterprise Application Integration Siebel 
2018

160 



Index
A
addfChildIntObjComp integration object 

component 128
addfIntObject method, about 127
AIX

configuring with less memory 27
shared memory conflict, fixing 26

authentication, with HTTP outbound 115

B
batch loading, about 18
business services

EAI HTTP Transport, setting up for 106
parameter templates, using 111

C
.cfg file entries, using named subsystems 

instead 93
character conversion argument, availability 

of 11
CharSetConversion parameter, about 16
client certificate parameters, providing as 

input properties to EAI HTTP 
Transport 116

clone integration object component 128
clone method, about 127
CompMaxRetries parameter, JMS Receiver 

reconnection 74
CompRetryInterval parameter, JMS Receiver 

reconnection 74
ConnectionSubsystem parameter, about 

using 14
Convert method, Transcode Service business 

service
about 154
example 158

ConverterService parameter, about 16
CSSHTTPTransService class, about 91

D
data handling parameters (table) 16
data transfer, about high volume 18
DataHandlingSubsystem, about using 14
dead letter queue, about 31
dispatch error handling for EAI MQSeries 

Server Transport 25

Dispatch method, about 13
Dispatch parameter usage, table of 15
Dispatch service, about 13
DispatchMethod parameter, about 16
DispatchRuleSet parameter, about 16
DispatchService parameter, about 16
DispatchWorkflowProcess parameter, 

about 17
DLLs, external

DLL, making 145
EAI DLL Transport, using to call a 

function 144
methods, supported 143
parameters, about 144

E
EAI DLL Transport

DLL, making 145
external DLL, calling a function 144
methods, supported 143
parameters, about 144

EAI File Transport
about 147
EAI XML Read from File, compared to 147
enabling write access 150
file names, generating 148
methods 147
named subsystems, about reading from and 

examples 151
parameters (table) 149
receiving message and writing to file, 

example 151
workflow, creating 148

EAI HTTP Transport
about and methods 91
business service, selecting 92
external system, using messages returned 

from 117
HTTP outbound, basic authentication 

with 115
HTTP request in session mode 114
inbound messaging, about 100
inbound messaging, specifying HTTP 

parameters 101
named subsystems, about and example 93
POST and GET methods, about and 

restrictions 93
Transports and Interfaces: Siebel Enterprise Application Integration Siebel
2018

161



Index ■ F
send and receive messages, creating 
workflow 112

Send and SendReceive arguments (table) 94
sending messages 98
session mode, controlling login sessions 114
session mode, example requests 102
sessionless mode, example request 105
sessionless mode, secure request in 115
Siebel Server, setting configuration 

parameters 100
system requirements 92
transport header and HTTP response headers, 

working with 118
using in session mode 101
using in sessionless mode 104

EAI HTTP Transport, inbound
business service, setting up 106
error handling 109
usage checklist 106
workflow, creating 107

EAI HTTP Transport, outbound
HTTP parameter templates 111
HTTP parameters as run-time properties 111
parameters, about specifying 110
providing client certificate parameters as 

input properties 116
server authentication 115
server-side parameters, specifying 110

EAI JMS Transport business service
See also Java Message Service (JMS) 

Transport
about 59
about JMS credentials 85
configuring against IBM WebSphere MQ 88
configuring against Oracle WebLogic 

Server 86
configuring against TIBCO Enterprise Message 

Service 87
configuring credentials in JMS 86
configuring JNDI properties 85
custom JMS properties, sending and 

receiving 82
enabling authentication and authorization 84
supported JMS standards 60

EAI MQSeries Server Transport
See also inbound messages
about 19
AIX environment, configuring with less 

memory 27
AIX, using on 26
dispatch error handling 25
increasing maximum message length 26
MQMD headers, exposing 21
MQPMO_SYNCPOINT option 20

MQSeries Server Receiver, about using 21
named subsystems, about reading from and 

example 25
parameters (table) 20
re-entrance process, about using 27
SendReceive method, using 25

EAI MSMQ Transport
about 31
inbound messages, receiving 41
integration objects, defining 35
MSMQ, sending literal to and receiving a 

response 38
outbound messages, sending with 36
parameters (table) 35
prerequisites, about 34
receiving and dispatching messages using 

MSMQ Receiver 42
receiving, dispatching, and sending messages 

using MSMQ Receiver 43
Siebel application, sending messages 

from 36
EAI XML Read from File, compared to EAI File 

Transport 147
equals integration object component 128
equals method, about 127
error

dispatch service error, receiver shuts down 
(troubleshooting) 13

workflow, capturing error in workflow 28
error handling

EAI HTTP Transport 109
EAI MQSeries Server Transport, for 25

external system
messages, using returned from 117
Siebel application, sending messages 

from 32
Siebel application, sending to 32

F
file names, generating 148
FileTranspSubsys named subsystem, about 

and example of use 151
fromPropertySet method

integration object 127
integration object component 128

G
GET method

about and restrictions (table) 93
getfChildIntOb integration object 

component 128
getfFieldName integration object 

component 128
Transports and Interfaces: Siebel Enterprise Application Integration Siebel 
2018

162 



Index ■ H
getfIntObjectFormat method, about 127
getfIntObjectName method, about 127
getfintObjInst method, about 127
getfMessageId method, about 127
getfMessageType method, about 127
getfOutputIntObjectName method, 

about 127

H
HTTP response headers, working with 118

I
IBM MQSeries

See EAI MQSeries Server Transport; IBM 
WebSphere MQ

IBM WebSphere MQ
See also EAI MQSeries Server Transport
about connecting to 19
configuring EAI JMS Transport against 88
deploying Siebel Resource Adapter 135

IgnoreCharSetConvErrors parameter, 
about 17

Inbound EAI HTTP Transport business 
service

See EAI HTTP Transport, inbound
inbound messages

See also EAI MQSeries Server Transport
about 100
EAI Transport, receiving 41
HTTP parameters, specifying 101
Message Id tracking 28
Siebel Server, setting configuration 

parameters 100
inbound methods

about 13
dispatch service error, receiver shuts down 

(troubleshooting) 13
list of 13

integration objects
EAI MSMQ Transport, defining for 35
generated JavaBean for 126
Java code directory structure 124
Java code, generating 122

Integration_ObjectIO method, about 127
IntObjCompIC

integration object component, default Java 
methods 128

integration object component, default method 
(SiebelPropertySet) 128

J
JAR files

Java Business Service, required 49, 50

Siebel Resource Adapter, required 135
Java Business Service (JBS)

classes and methods 55
creating 54
example 56
exception handling 55
lifecycle 56, 57
restrictions 57
troubleshooting 57

Java code, integration objects
directory structure 124
generating 122

Java EE Connector Architecture (JCA)
connect string and credentials, about 135
logging, about 138
mapping a thread to a Siebel Server task and 

log file 141
support for Siebel Resource Adapter, 

about 135
Java Message Service (JMS) Transport

See also EAI JMS Transport business service
about 59
asynchronous invocation 60
caching 90
configuring 70
enabling authentication and authorization 84
features not supported 62
headers and properties 64
input arguments 65
JMS Receiver, about and configuring 72
JMS Receiver, about multithreading 72
JMS Receiver, about reconnecting 74
JMS subsystem, creating using Siebel 

client 75
JMSSubsys named subsystem 71
logging 90
message types supported 62
multistep operations within a session 63
operations 61
output arguments 69
publish-and-subscribe model 61
receiving, dispatching, and sending 

messages 79
sending and receiving custom JMS 

properties 82
sending and receiving messages 75
sending and receiving XML 63
supported standards 60
synchronous invocation 60
troubleshooting 89
undeliverable messages 64

Java Naming and Directory Interface (JNDI)
names 59
object caching 90
Transports and Interfaces: Siebel Enterprise Application Integration Siebel
2018

163



Index ■ L
Java subsystems
creating with Siebel Dedicated Client 53
creating with Siebel Server Manager 51
creating with Siebel Web Client 51, 52

Java Virtual Machine (JVM)
named subsystem parameters (table) 48
platform-specific configurations 54

L
login

controlling sessions with session mode 114

M
Message Id tracking for inbound 

messages 28
Message queuing API (MQI)

See EAI MQSeries Server Transport
messages

EAI MSMQ Transport, receiving and 
dispatching 42

EAI MSMQ Transport, receiving, dispatching, 
and sending 43

external system, sending messages to 32
IBM WebSphere MQ, increasing length 26
inbound messages, receiving with EAI MSMQ 

Transport 41
JMS Receiver multithreading, about and 

considerations 72
Message Id tracking for inbound 

messages 28
outbound messages, sending with EAI MSMQ 

Transport 36
sending and receiving messages, methods 

for 32
Siebel application to an external system, 

sending 32
Microsoft Message Queuing Transport

See MSMQ Transport
model queue, about sending to 20
MQI (Message queuing API)

See EAI MQSeries Server Transport
MQMD headers

about exposing 21
message headers (table) 23

MQPMO_SYNCPOINT option, about 20
MQSeries Application Messaging Interface 

(AMI)
See EAI MQSeries Server Transport

MQSeries Server Receiver
using, about 21
workflow, invoking 28

MSMQ Client
configuring 33

MSMQ transport
See also EAI MSMQ transport
about 31
EAI MSMQ Transport, about 31
sending and receiving messages, methods 

for 32
MSMQ Transport Server, configuring

See also EAI MSMQ Transport
MSMQ Primary Controller, about 

configuring 33
Regional Enterprise Server and MSMQ Client, 

configuring 33
multithreading in the JMS Receiver, about 

and considerations 72

N
named subsystems

data handling parameters (table) 16
Dispatch parameter usage (table) 15
EAI Transport parameters 15
FileTranspSubsys 151
object interfaces, about and support of 17
parameter specification precedence rules 14
parameters, about specifying in business 

service 14
named subsystems, configuring

object interfaces, about and support of 17

O
object interfaces

about and support of 17
Oracle Application Server

deploying Siebel Resource Adapter 135
Oracle WebLogic Server

configuring EAI JMS Transport against 86
deploying Siebel Resource Adapter 135

Outbound EAI HTTP Transport business 
service

See EAI HTTP Transport, outbound
outbound messages, sending with EAI MSMQ 

Transport 36
outbound methods, about and list of 13

P
parameter templates, about 111
parameters

data handling parameters (table) 16
Dispatch parameter usage (table) 15
DLL Transport parameters (table) 144
EAI File Transport (table) 149
EAI MQSeries Server Transport parameters 

(table) 20
EAI MSMQ Transport parameters (table) 35
Transports and Interfaces: Siebel Enterprise Application Integration Siebel 
2018

164 



Index ■ R
EAI Transport parameters, about 15
specification precedence rules 14
specifying as run-time properties 111

POST method
about and restrictions (table) 93
session mode login example 102

R
Receive and Execute inbound method, 

about 13
Receive inbound method, about 13
Receive, Execute, Send inbound method, 

about 13
ReceiveDispatch inbound method, about 13
ReceiveDispatch method, about dispatch 

error handling 25
ReceiveDispatchSend inbound method, 

about 13
ReceiveDispatchSend method

dispatch error handling, about 25
receiving messages

external system to a Siebel application 32
external system, from a Siebel 

application 32
methods for 32

Regional Enterprise Server, configuring 33
request/response method, about 13
Resource Adapter

See Siebel Resource Adapter
RollbackOnDispatchError parameter, 

about 17
run-time properties, parameters as 111

S
Send and Receive outbound method, 

about 13
Send method

arguments (table) 94
EAI HTTP Transport, about 91

sending messages
methods for 32
Siebel application from an external 

system 32
Siebel application to an external system 32

SendReceive method
arguments (table) 94
EAI HTTP Transport, about 91
EAI Transport, using with 112
HTTP outbound, basic authentication 

with 115
HTTP request in session mode 114
MQSeries, using with 25
secure request in sessionless mode 115

session mode, using with EAI HTTP 
Transport 101

sessionless mode, using with EAI HTTP 
Transport 104

setfFieldName integration object 
component 129

setfIntObjectFormat method, about 127
setfIntObjectName method, about 128
setfMessageId method, about 128
setfMessageType method, about 128
setfOutputIntObjectName method, 

about 128
shared memory conflict with EAI MQSeries 

Server Transport on AIX 26
Siebel Application Interface (AI) 

connectivity, checking 100
Siebel Code Generator

about 121
examples 133

Siebel EAI Transports
See transports; Transport methods

Siebel JAR files
Java Business Service, required 49, 50
Siebel Resource Adapter, required 135

Siebel JavaBean
See Siebel Resource Adapter

Siebel JavaBean Wizard
folders and files, about created for integration 

object 124
integration objects, generating for 122

Siebel Resource Adapter
about 135
using 135

Siebel Server
configuration parameters, setting 100

Siebel Tools
EAI MSMQ transport, about customizing 31
outbound HTTP Transport messages 110
role in specifying business service user 

properties 110
Siebel Workflow Process Manager

See EAI MSMQ Transport
SiebelTransactions parameter, about 17

T
templates, about parameter templates 111
TIBCO Enterprise Message Service, 

configuring EAI JMS Transport 
against 87

toPropertySet
integration object 128
integration object component 129

Transcode Service business service
Transports and Interfaces: Siebel Enterprise Application Integration Siebel
2018

165



Index ■ U
about 153
conversion example 158
Convert method 154
examples 156
methods 154
Validate method 155
validation examples 156

transport headers, working with 118
Transport methods

See also named subsystems; named 
subsystems, configuring; transports

about 12
data handling parameters (table) 16
inbound methods 13
outbound methods 13

transports
See also named subsystems; named 

subsystems, configuring; Transport 
methods

about and list of 12
communication connectivity, about 11
Dispatch parameter usage (table) 15
parameters, about 15
role of 11
Transport methods 12

U
URL, checking connectivity to AI 100

V
Validate method, Transcode Service 

business service
about 155
examples 156

W
WebLogic

See Oracle WebLogic Server
WebSphere

See IBM WebSphere MQ
workflows

EAI File Transport, using to create 148
EAI HTTP Transport, creating to receive 

messages 107
EAI HTTP Transport, sending messages 98
EAI HTTP Transport, setting up for 112
error, capturing in workflow 28
HTTP outbound, basic authentication 

with 115
HTTP request in session mode 114
messages, using returned from external 

system. 117
MQSeries Server Receiver, invoking a process 

using 28
sessionless mode, secure request in 115

write access, enabling for EAI File 
Transport 150
Transports and Interfaces: Siebel Enterprise Application Integration Siebel 
2018

166 


	Contents
	1 What’s New in This Release
	What’s New in Transports and Interfaces: Siebel Enterprise Application Integration, Siebel 2018
	What’s New in Transports and Interfaces: Siebel Enterprise Application Integration, Siebel Innova...

	2 EAI Transports and Interfaces Overview
	About EAI Transports
	About EAI Transport Methods
	Outbound Methods for a Transport Business Service
	Inbound Methods for a Transport Business Service

	Using Named Subsystems for Transport Parameters
	Rules of Precedence for Parameter Specification
	Common EAI Transport Parameters

	About Object Interfaces and EAI
	Database-Level Interfacing

	3 EAI MQSeries Server Transport
	About the EAI MQSeries Server Transport Business Service
	About the MQPMO_SYNCPOINT Option
	EAI MQSeries Server Transport Parameters
	Exposing MQMD Headers as Properties
	EAI MQSeries Server Transport Named Subsystem

	Using the SendReceive Method with MQSeries
	Dispatch Error Handling for the EAI MQSeries Server Transport
	Increasing the Maximum Message Length on IBM WebSphere MQ
	Using the EAI MQSeries Server Transport on AIX
	Fixing a Shared Memory Segment Conflict on AIX
	Configuring AIX to Run the Siebel Server with Less Memory

	About EAI MQSeries Transport Re- Entrance
	About Message ID Tracking for an Inbound Message
	Invoking a Workflow Using MQSeries Server Receiver
	Command to Create an EAI Transport Data Handling Subsystem
	Command to Create an EAI Transport Connection Subsystem
	Command to Start an MQSeries Server Receiver


	4 EAI MSMQ Transport
	About Microsoft Message Queuing (MSMQ)
	About the EAI MSMQ Transport
	Methods for Sending and Receiving Messages
	Messages from a Siebel Application to an External System
	Messages to a Siebel Application from an External System

	EAI MSMQ Transport Named Subsystems

	Configuring the EAI MSMQ Transport Servers
	MSMQ Primary Enterprise Controller
	Regional Enterprise Server and MSMQ Client

	Configuring EAI MSMQ Transport for Various Send and Receive Scenarios
	EAI MSMQ Transport Prerequisites
	EAI MSMQ Transport Parameters
	About Defining Integration Objects
	Sending Outbound Messages with EAI MSMQ Transport
	Sending Messages with EAI MSMQ Transport
	Sending and Receiving Messages with EAI MSMQ Transport

	Receiving Inbound Messages with MSMQ Receiver
	Receiving and Dispatching MSMQ Messages with MSMQ Receiver
	Receiving, Dispatching, and Sending MSMQ Messages with MSMQ Receiver



	5 EAI Java Business Service
	About the EAI Java Business Service
	Requirements for Implementing a Java Business Service
	Creating a 32-bit Java Subsystem by Using the Siebel Server Manager
	Creating a 64-bit Java Subsystem by Using the Siebel Server Manager
	Creating a 32-bit Java Subsystem by Using the Siebel Web Client
	Creating a 64-bit Java Subsystem by Using the Siebel Web Client
	Creating a 32-bit Java Subsystem by Using the Siebel Dedicated Client
	Creating a 64-bit Java Subsystem by Using the Siebel Dedicated Client
	About Platform-Specific Configurations for the JVM

	Creating a Java Business Service
	Defining a Business Service in Java
	About Implementing a Business Service in Java
	About Exception Handling for the Java Business Service

	About the Lifecycle of a 32-bit Java Business Service
	Example of a Java Business Service
	About the Lifecycle of a 64-bit Java Business Service
	Restrictions for Implementing a Java Business Service
	Troubleshooting the Java Business Service

	6 EAI JMS Transport
	About the EAI JMS Transport Business Service
	About Synchronous and Asynchronous Invocation
	About the JMS Publish-and-Subscribe Model
	About Operations (Methods) of the EAI JMS Transport
	Features Not Supported for Use with the Siebel JMS Transport
	About JMS Message Types
	About Sending and Receiving XML
	About Multistep Operations Within a JMS Session
	About Undeliverable Messages in JMS Transport
	Detailed Input and Output Specifications for the EAI JMS Transport
	JMS Headers and Properties
	Input Arguments Used by the Dispatch Step
	Input Argument Values

	About the Output of the JMS Transport

	Configuring the EAI JMS Transport
	About the JMSSubsys Named Subsystem
	About the JavaContainerSubsys Named Subsystem
	About the JMS Receiver
	About Multithreading in the JMS Receiver Component
	About Configuring the JMS Receiver

	About Reconnecting to the External JMS Queue
	Creating a JMS Subsystem by Using the Siebel Web Client

	Sending and Receiving JMS Messages
	Receiving, Dispatching, and Sending JMS Messages
	Sending and Receiving Custom JMS Properties
	Receiving Custom Properties in Inbound Messages
	Sending Custom Properties in Outbound Messages

	Enabling Authentication and Authorization for the EAI JMS Transport
	About JMS Credential Specification
	Configuring Credentials in JNDI
	Configuring Credentials in JMS
	JMS Password Encryption

	Configuring Against Oracle WebLogic Server
	Configuring Against TIBCO Enterprise Message Service
	Configuring Against IBM WebSphere MQ
	About Security Configuration on the JMS Server

	Troubleshooting for the JMS Transport
	About Logging for the JMS Transport
	About Caching for the JMS Transport

	7 EAI HTTP Transport
	About the EAI HTTP Transport
	System Requirements for Using the EAI HTTP Transport
	Selecting the Appropriate Business Service for HTTP

	Using POST and GET
	EAI HTTP Transport Named Subsystems
	EAI HTTP Transport Method Arguments
	Sending a Message Using the EAI HTTP Transport
	Using the EAI HTTP Transport for Inbound Integration
	Preparing to Use the EAI HTTP Transport for Inbound Integration
	Specifying HTTP Parameters for Inbound Integration
	Using the EAI HTTP Transport in Session Mode
	Example Requests for the HTTP Protocol in Session Mode

	Using the EAI HTTP Transport in Sessionless Mode
	Example Request for the HTTP Protocol in Sessionless Mode


	Process of Using the EAI HTTP Transport for Inbound Messages
	Setting Up the Business Service
	Creating the Workflow to Receive Messages

	Handling EAI HTTP Transport Business Service Errors
	Processing and Sending Outbound XML Documents
	Specifying Parameters as Business Service User Properties
	Specifying Parameters as Subsystem Parameters
	About Parameters as Run-Time Properties
	About Parameters in Parameter Templates

	Sending and Receiving Messages with the EAI HTTP Transport
	Examples Using HTTP Request
	Controlling Login Sessions with Session Mode
	Sending Requests in Sessionless Mode
	Accessing a URL Protected by Basic Authentication
	Providing Client Certificate Information for TLS Mutual Authentication

	Creating Custom Headers for the EAI HTTP Transport Service
	About Sending and Receiving Messages Through HTTP
	About Transport Headers and HTTP Response Headers
	Features of Transport Headers


	8 Integrating Siebel Business Applications with Java Applications
	About Siebel Business Applications and Java Applications
	About the JDB Business Object API
	Example of the Business Object and Business Component Interface

	About the JDB Business Service API
	About the Siebel Code Generator
	Invoking the Siebel Code Generator
	Code Generated for a Business Service
	About Methods of Java Classes Generated for a Business Service
	Methods for Java class com.siebel.service.jdb.GenericServiceBusServAdapter
	Methods for Java class com.siebel.service.jdb.GenericMethodInput
	Methods for Java class com.siebel.service.jdb.GenericMethodOutput Methods

	About the Code Generated for an Integration Object
	Methods of Java Classes Generated for an Integration Object
	Methods of Java Classes Generated for an Integration Object Component


	About Running the Java Data Bean
	Connect String and Credentials for the SiebelDataBean
	Connection Parameters for the SiebelDataBean
	Examples Using Generated Code for Integration Objects
	Siebel Account Business Service Example
	EAI Siebel Adapter Business Service Example


	About the Siebel Resource Adapter
	Using the Resource Adapter
	About the Connect String and Credentials for the Java Connector
	Managed Code Sample Using the Siebel Resource Adapter
	Nonmanaged Code Sample Using the Siebel Resource Adapter

	About JCA Logging
	Mapping a JCA Thread to a Siebel Server Task and Log File



	9 EAI DLL and EAI File Transports
	About the EAI DLL Transport
	EAI DLL Transport Methods
	EAI DLL Transport Parameters
	Calling a Function in an External DLL

	Creating a DLL to Call a Function in an External DLL

	About the EAI File Transport
	EAI File Transport Methods
	Using the EAI File Transport Methods
	Generating Unique Filenames
	EAI File Transport Parameters
	Enabling Write Access for the EAI File Transport
	Configuring the EAIFileTransportFolders Parameter at the Enterprise Level
	Configuring the EAIFileTransportFolders Parameter at the Server Level
	Configuring the EAIFileTransportFolders Parameter in the Application Configuration File

	EAI File Transport Named Subsystem
	Receiving a Message and Writing It to a File



	10 Transcode Service Business Service
	About the Transcode Service Business Service
	Transcode Service Business Service Methods
	Convert Method
	Validate Method

	Transcode Service Business Service Examples
	Using the Validate Method
	XML Hierarchy Example
	Siebel Message Example

	Using the Convert Method


	Index

