
Siebel Order Management
Infrastructure Guide

Siebel 2018
April 2018

Copyright © 2005, 2018 Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions
on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in
your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast,
modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-
free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing
it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are “commercial computer software” pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed
on the hardware, and/or documentation, shall be subject to license terms and license restrictions
applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group. Android is a trademark of Google Inc.
Apple and iPad are registered trademark of Apple Inc.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use
of third-party content, products, or services, except as set forth in an applicable agreement between you
and Oracle.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website
at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle
Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Contents
Siebel Order Management Infrastructure Guide 1

Chapter 1: What’s New in This Release

Chapter 2: Service-Oriented Architecture
About Business Services 15

About Service-Oriented Architecture 16

How Siebel C/OM Is Built on a Service-Oriented Architecture 18

How Siebel C/OM Can Be Integrated with Other SOA Applications 19

Web Services for Customer Order Management 21
Web Services in Version 8.1 23
Workflows to Activate for Customer Order Management 27

Chapter 3: Signals
About the Signals Mechanism 31

Creating Signal Actions 33
Modifying Signal Properties for Signal Actions 37

Invoking Signals from Controls and Custom Script 38

Using Recursion with Signals 39

Migrating Signals Between Environments 39

Chapter 4: Variable Maps
About Variable Maps 41

Components of Variable Maps 43
About Using ISS Integration Objects with the Variable Map Mechanism 44
Configuring ISS Integration Objects 45

Supported Source Types for Variables 45

About Using Variable Maps 49
Querying with the Business Object Source Type 49
Using the Business Service Source Type to Populate Variables 49
Using the Instance Source Type for the Customizable Product Instance Property Sets 51
Creating Variable Maps 52
Defining the Variable Map Used by a PSP Procedure 54
Siebel Order Management Infrastructure Guide Siebel 2018 3

Contents ■
Migrating Variable Maps Between Environments 55

Variable Map Methods of the Context Service Business Service 56
 56

Chapter 5: PSP Engine
About the Product Selection and Pricing Engine 57

Components of the PSP Engine 62
Controller Workflow 62
Variable Maps 64
PSP Procedures 64
PSP, Siebel Workflow, and Siebel Tools 65
Row Set Transformation Toolkit Business Service 65
Custom Business Services 66

PSP Driver Workflow 66

Conditions and Actions for PSP Procedures 69
PSP-Supported Action Expression Constructs 70
PSP-Specific Functions Used in Action Expressions 70
Row Set Variables Used in Action Expressions 73
Conditions and Action Variables Vary by Transform 73

About Temporary Variables 74

Row Set Transformation Toolkit Methods 74
Aggregate Method 75
Conditional Action Method 76
Dynamic Look-Up Method 77
Dynamic Subprocedure Method 78
Hierarchical Look-Up Method 79
Hierarchical Method 81
Merge Method 82
Query Method 83
Row Set Look-Up Method 84
Rule Set Look-Up Method 85
Simple Look-Up Method 88
Split Method 89

Configuring PSP Procedures 90
Creating PSP Procedures 91
Best Practices for Configuring PSP Procedures 91
Configuring Eligibility, Compatibility, and Pricing 92

Creating a Custom PSP Application 97
Creating a Custom Transform 97
Siebel Order Management Infrastructure Guide Siebel 20184

Contents ■
Calling a PSP Procedure from an External Application 98

About Logging of PSP 98

About Troubleshooting of PSP 99

About Tuning Performance of PSP 101
Enabling PSP Cache 104
Setting Cache Size 104
Using the PSP Generic Cache 105
Optimizing PSP Cache 105
Defining a Cache Refresh Key 106
Configuring a Clear Cache Button 108
About Using the PSP Dynamic Look-Up Transform Cache 111
About PSP Cache Performance Statistics 111

Chapter 6: PSP Waterfall
About Waterfalls 113

About Configuring Waterfall Output 115
Adding New Fields to an Existing Waterfall 116
Creating a New Waterfall 117

 120

Chapter 7: Unified Messaging
About Unified Messaging 121

Components of Unified Messaging 123

Unified Messaging Service Business Service Methods 128

Creating Message Types 129

Configuring the Display of Messages 132

Implementing Multilingual Substituted Text 133

Implementing a Custom Message-Generation Engine 133

About Working with Message Responses 134
Logging Message Responses 134
Attaching a Business Service to a Message Response 135

About Suppressing Duplicate Messages 135

Suppressing Duplicate Messages 136

Migrating Message Types Between Environments 136

Tuning Performance of Unified Messaging 137
Siebel Order Management Infrastructure Guide Siebel 2018 5

Contents ■
Using Unified Messaging with the PSP Engine 137

Chapter 8: Data Validation Manager
About Data Validation Manager 139

Roadmap for Implementing Data Validation Processing 140

Process of Administering Data Validation Rules 140
Defining Error Messages for Data Validation 141
Defining a Data Validation Rule Set 142
Defining Rule Set Arguments 145
Defining Validation Rules 145
Defining Validation Rule Actions 148
Activating a Data Validation Rule Set 149

Process of Invoking the Data Validation Manager Business Service 149
Invoking Data Validation Manager from a Runtime Event 150
Invoking Data Validation Manager from a Workflow 152
Viewing a Validation History 153

Chapter 9: Approvals Manager
About Approval Processing 155

ISS Approval Business Service Methods 157

Defining Approval Items and Approval Stages 158

About Invoking the Approvals Manager Business Service from a Workflow 159
Configuring the Start Step for a Workflow That Invokes the Approvals Manager Business
Service 160
Configuring the Business Service Step for a Workflow That Invokes the Approvals Manager
Business Service 161
Approving or Declining Approval Stages (End User) 161

Chapter 10: Asset-Based Ordering Methods Reference
Product Manipulation Toolkit Business Service Methods 163

User Properties Used by PMT Methods 167
Delta Method 170
Apply Method 182
Trim Method 194
Explode Method 197
Explode Siebel Object Method 200
Find Orders Method 201
Logical Delete Method 202
Get Profile Attribute Method 202
Siebel Order Management Infrastructure Guide Siebel 20186

Contents ■
Get Instance Method 203
Convert Product Instance Method 204
Assign New Service IDs Method 205
Is Fully Ex Method 206
Is Module Licensed Method 207
Merge Method 207
Quote To Revenue Method 208
Reconfigure Product Instance Method 212
Reset Method 213
Retrieve Next Object From List Method 214
Set Action Method 215
Set Exception Error Message Method 215
Set Field Value Method 216
Set Multiple Field Values Method 217
Set Output Header Method 218
Set Product Instance Method 218
Set Profile Attribute Method 219
Synchronize Method 219
Update Multi Object List Method 220
Update Order Line Item Completed Flag Method 221
Get Cfg Button Click Information Method 221
Refresh Business Component Method 222
Invoke BC Method 222
Iterate Process For Selected Rows Method 223
Get Selected Row Count Method 224
Get First Selected Row Values Method 224
Ungroup Method 225

Order Entry Toolkit Business Service Methods 226
CreateAccount Method 227
CreateOrder Method 228
GetBCCount Method 229
GotoView Method 229
SelectPrimary Method 230
SetLIAccounts Method 230
SubmitOrder Method 231
ValidatePayment Method 232
ValidateQuote Method 233
ViewCart Method 233

Account Administration Toolkit Business Service Methods 234
PickAccount Method 234
SetPrimary Method 235
Siebel Order Management Infrastructure Guide Siebel 2018 7

Contents ■
AssociateAccountToUser Method 235
EstablishMtoM Method 236
Invoke BC Method 237

Complex Product AutoMatch Business Service Method 237
Auto Match 237

Chapter 11: Projected Asset Cache
About Projected Asset Cache 243

Projected Asset Cache Business Service Methods 245
Initialize Method 245
Query Method 246
Reset Method 248
Retrieve Method 248

Using the VORD Projected Asset Cache Business Service 249

Chapter 12: Compound Product Validation
About Compound Product Validation Engine Business Service 251

Compound Product Validation Engine Business Service Methods 252
FindFutureDate Method 252
Format Violation Method 253
Validate Method 253
ValidateComplexProduct Method 254
ValidateComplexProductAll Method 255
ValidateComplexProductFromPropertySet Method 256

Chapter 13: Copy Service
About Copy Service 257

Configuring Copy Maps 258

Copy Service Methods 258
GetFieldValueFromInstance Method 259
LoadInstanceFromBC Method 259
SetFieldValueFromInstance Method 260
PopAndReleaseInstance Method 260
Copy Method 260
RefreshBCFromInstance Method 261
CleanupEAI Method 261
CleanupInstance Method 262
LoadEAI Method 262
SetupLineNumbers Method 263
Siebel Order Management Infrastructure Guide Siebel 20188

Contents ■
SetupSyncUpsert Method 264
StoreEAI Method 265
CheckEligibilityHelper Method 265
CalculatePriceHelper Method 266

Chapter 14: Data Transfer Utilities Business Service
About Data Transfer Utilities 269

Considerations for Data Transfer Utilities 269
Using Named Parameters in DTU 271
Calculation Expressions in DTU 272
Using DTU with Order Management Signals 272
About Working with Hierarchical Business Components 273
ISS Copy Service and the Data Transfer Utility 273
Configuring Event-Based Commands for DTU 274
Dynamic Enabling of Commands for DTU 276
Performance Tuning for DTU 277

About Data Maps 278
Data Map Objects 278
Data Map Components 279
Data Map Component Advanced Options 279
Data Map Fields 281
Data Map Field Advanced Options 283
Migrating Data Map Objects Between Environments 283

Example of Defining Data Maps to Use with the DTU 284
Finding the Data Map Object 284
Mapping Headers 284
Mapping Line Items 285
Mapping the Extended Attributes 286

Examples of Invoking the DTU 286
Example of Invoking the DTU from a Signal: Auto Sales Order 287
Example of Invoking DTU from a Workflow: Auto Order Web Service 288
Example of Using DTU Services 289

Data Transfer Utilities Methods 289
DataTransfer Method 290
FAFireEventxxx Method 291
GetActiveViewProp Method 292
TryMockMethod Method 292
QueueMethod Method 292
Siebel Order Management Infrastructure Guide Siebel 2018 9

Contents ■
Chapter 15: Other Component Business Services for C/OM
Context Service Business Service 296

GetRowSetData Method 296
SyncRowSetData Method 296

ISS ATP Service 296
CSSISSFulfillmentService::SetATPInputArgument Method 297
CSSISSFulfillmentService::ATPRunCheck Method 297

ISS Credit Card Transaction Service 298
AuthCharge Method 298
Authorization Method 298
Charge Method 298
Refund Method 298
Reverse Method 298

ISS Credit Check Service 299
CreditCheckRunCheck Method 299
SetCreditCheckResults Method 299

ISS Disable Service 300
DisableCopyXAService Method 300
DisableCheckCanInsert Method 300
RestoreServiceState Method 301

ISS Package Product Service 301
MergeIntoOnePackage Method 301
RemoveFromPackage Method 301

ISS Payment Profile Service 302
SaveAsPaymentProfile Method 302
UpdatePaymentProfile Method 302

ISS Promotion Agreement Manager 302
CalculateDates Method 303
CheckCommitmentCompliance Method 303
FilterCurrentDocument Method 304
FilterPAC Method 304
GetPromotionDetails Method 305
InvokeCopyService Method 306
SetProfileAttributes Method 306
RemoveProfileAttributes Method 307
SetOldAssetDetails Method 307

ISS Promotion CP Admin Service 307
ClearCache Method 308
GetPromotionConstraints Method 308
Siebel Order Management Infrastructure Guide Siebel 201810

Contents ■
ISS Promotion Edit UI Service 308
ApplyEditPromotion Method 308
EditPromotion Method 309

ISS Promotion Management Service 309
ApplyPromotion Method 310
ClearAssociation Method 310
ClearMessages Method 310
CollectAssetList Method 311
GetContext Method 311
GetResponseType Method 311
InitializePAC Method 312
IntegrityCheck Method 312
LoadMessage Method 313
LoadPromRelatedAssets Method 313
MsgResponse Method 313
RecommendPromotion Method 314

ISS Revenue Synchronization Service 314
Quote Method 314
UpdateOppty Method 314

ISS Sequence Service 315
Sequence Method 315

ISS Service Product Service 315
Service Method 315

ISS Shipping Calculation Service 315
CalculateShippingCost Method 315

ISS Shipping Cost Service 316
CalculateShippingCost Method 316

ISS Smart Part Number Generation Service 316
GeneratePartNumber Method 316

ISS Spread Discount Service 317
SpreadDiscount Method 317

ISS Tax Calculation Service 317
TaxCalculation Method 317
InternalTaxCalculation Method 317

ISS Template Service 318
SaveAsTemplate Method 318
OrderTemplate Method 318
OrderTemplateSelectItems Method 318
Siebel Order Management Infrastructure Guide Siebel 2018 11

Contents ■
Index
Siebel Order Management Infrastructure Guide Siebel 201812

1 What’s New in This Release
What’s New in Siebel Order Management Infrastructure Guide, Siebel
2018
No new features have been added to this guide for this release. This guide has been updated to
reflect only product name changes.

NOTE: Siebel 2018 is a continuation of the Siebel 8.1/8.2 release.

What’s New in Siebel Order Management Infrastructure Guide, Siebel
Innovation Pack 2017, Rev. A
This guide has been updated to correct or remove obsolete product and component terms.
Siebel Order Management Infrastructure Guide Siebel 2018 13

What’s New in This Release ■
Siebel Order Management Infrastructure Guide Siebel 201814

2 Service-Oriented Architecture
This chapter discusses Oracle’s Siebel order management which is based on a service-oriented
architecture (SOA), and the services that form the foundation of Customer Order Management
(C/OM) functions. This chapter includes the following topics:

■ “About Business Services” on page 15

■ “About Service-Oriented Architecture” on page 16

■ “How Siebel C/OM Is Built on a Service-Oriented Architecture” on page 18

■ “How Siebel C/OM Can Be Integrated with Other SOA Applications” on page 19

■ “Web Services for Customer Order Management” on page 21

About Business Services
A business service defines reusable business logic that can be executed within the Object Manager.
Business services are the building blocks of all C/OM functions.

Generally, a business service:

■ Can be a built-in service that is defined in Web Tools or a run-time service that is defined in the
Siebel client application by administrators

■ Can be based on the CSSService Class (standard business service) or on specialized classes
(specialized business service)

NOTE: Specialized business services are used only by internal Siebel Engineering personnel. Do
not use specialized business services unless their behavior is specifically documented.

■ Can be configured by properties or scripts (written in Siebel VB or Siebel eScript)

■ Can be used for generic code libraries that are called from other scripts

■ Can be referred to by commands associated with a menu item or toolbar button
Siebel Order Management Infrastructure Guide Siebel 2018 15

Service-Oriented Architecture ■ About Service-Oriented Architecture
About Service-Oriented Architecture
Service-oriented architecture (SOA) is the environment that supports the building of applications
using service technology. Siebel order management is a composite application built following the
discipline of SOA.

SOA allows for sharing of business logic across multiple access channels, using data and application
features wherever they reside. An SOA application must include the following:

■ Smart clients. A set of clients—connected or mobile, and with multiple form factors—provides
for multichannel, role-based access to the application. The clients are “smart” in the sense that
appropriate application code is transparently loaded into the client, allowing high interactivity
with no administration overhead; a smart client offers the advantage of both browser technology
and client or server technology, without the drawbacks of either. Smart clients support role-based
user interfaces.

■ Business processes. SOA supports process-enabled applications. Each process is declaratively
defined as an orchestration of services. The location of services is transparent to the applications,
and the processes may cross applications. Various sections of a process may be implemented in
different applications, each executed under the control of its own process controller, whether
BPEL-compatible or custom.

■ Application services. All application functions are modeled using service technology. All
services—whether data services, business services, or integration services—follow the service
paradigm. Data services use the methods associated with data. Business services may drive role-
based user interfaces or they may implement automated steps. Integration services (or
integration applications) map services consumed to services offered between applications, so
that all services appear to be local to each application, smoothing out the differences in object
structure and service interface semantics.

■ Data sources and service sources. At the logic level, all applications are peers as providers
and consumers of services and data.
Siebel Order Management Infrastructure Guide Siebel 201816

Service-Oriented Architecture ■ About Service-Oriented Architecture
Figure 1 illustrates a service-oriented architecture.

SOA allows for abstraction of the application interface from the application’s implementation.
Because of this abstraction and standardization, generalized (coarse-grained) services can be used
for a wide range of needs. Using generalized services means that there is reduced demand for new
services, and services can be reused in unforeseen contexts. At the same time, services that are
fine-grained can be used for the composition of new services.

Figure 1. Service-Oriented Architecture
Siebel Order Management Infrastructure Guide Siebel 2018 17

Service-Oriented Architecture ■ How Siebel C/OM Is Built on a Service-Oriented
Architecture
How Siebel C/OM Is Built on a Service-
Oriented Architecture
Siebel order management is a composite application following the principles of SOA as follows:

■ Services are autonomous, and they act independently of one another. C/OM business
functions are based on independent services involving pieces of code and data. Each service is a
unique piece of code that stands alone, independent of other services. Services share standards,
schema, and contract—but because services are autonomous, each one has its own
implementation, deployment, and operational environment. For this reason, a service can be
rewritten or replaced with no impact on partner services.

■ Messaging carries information between services. Services interact through messaging. The
only way into and out of a service is through messages. A message’s schema describes the
format and content of the message. A message’s contract describes the message sequences
allowed in and out of the service. The schema definition and the contract definition give a service
its black box nature. A partner service of any given service is aware only of the sequencing of
messages flowing back and forth, not of the service’s inner workings.

■ Boundaries are explicit. Explicit boundaries mean that there is no ambiguity regarding the
location of each part of the code; it is clear whether the code resides inside or outside of the
service. The same principle applies to data. It is known whether a database table resides inside
or outside the service.

■ Service location and compatibility are describable and discoverable. Policies exist as
formal criteria for getting a service to do its work and for specifying service location. The criteria
are located in a document that outlines the service’s rules for use and its location.

In this release, C/OM business processes are implemented as workflows that invoke a series of
internal services. The SOA also allows C/OM applications to incorporate external services into any
business process.

Because Siebel order management is built upon SOA principles, C/OM business functions are
encapsulated in well-defined services. Data is passed to and from services as hierarchical
documents.

The C/OM Signals mechanism provides the service invocation framework. The C/OM Variable Maps
mechanism defines, constructs, and persists the data passed to and from the services.

The service-oriented architecture of Siebel order management also means that C/OM business
processes and functions can be exposed (as stateless services), so that they can be called by
external applications. The service definition and run-time is supported by the Siebel ASI framework.
Siebel Order Management Infrastructure Guide Siebel 201818

Service-Oriented Architecture ■ How Siebel C/OM Can Be Integrated with Other SOA
Applications
How Siebel C/OM Can Be Integrated
with Other SOA Applications
Web Services is the most common enabler of SOA. Siebel Business Applications support both inbound
and outbound Web Services. The Siebel application can:

■ Generate and read WSDL

■ Process and transform XML

■ Receive and process Web Service requests over HTTP

■ Invoke an external Web Service from any Siebel event, script, or Workflow

Outbound Integration of C/OM Services
You can call an external service from C/OM. Predefined integration interfaces can be implemented or
hosted by an external application. Service can be provided by an external application, an integration
server, a Siebel business service, or a Siebel business process (workflow).

Figure 2 illustrates services integration for outbound integration.

Calling an External Service from C/OM
The workflow process shown in Figure 3 provides an example of calling an external service from
Siebel order management. The figure shows a workflow process that includes a subprocess called
Check Inventory Levels. The subprocess includes a step called Perform Inventory Check, which
involves a Web service invocation.

Figure 2. Services Interfaces for Outbound Integration
Siebel Order Management Infrastructure Guide Siebel 2018 19

Service-Oriented Architecture ■ How Siebel C/OM Can Be Integrated with Other SOA
Applications
Web Service Performance
C/OM services such as Pricer or Eligibility are designed to work on batches of data to improve end-
user response times. Any external service called by Pricer or Eligibility must support a batched
interface that processes an entire set of data (such as all line items in an order) in a single invocation.
Thus the overhead associated with Web Service invocation and with context establishment within the
Web Service is only incurred once instead of, potentially, hundreds of times.

How Siebel C/OM Can Be Used with SOA
Siebel customer order management can be used as a service by any SOA application though the
process flow illustrated in Figure 4. In this flow:

■ The external application UI first identifies (through a business process extraction layer) the right
set of Web services that it needs to call to support the business process event.

■ The external application layer then:

■ Identifies the right sequence of Web service invocations.

■ Prepares the input to these Web services, and generates the SOAP message appropriately.

Figure 3. Example: Check Inventory Level During Product Recommendations Algorithm
Siebel Order Management Infrastructure Guide Siebel 201820

Service-Oriented Architecture ■ Web Services for Customer Order Management
■ The Siebel Business Application server Web service listener will receive the soap message, and
if needed, facilitates session management and converts the SOAP message to a native property
set.

■ The signal service invokes a COM signal, or calls the native service and invokes the COM order
management workflow or business service to complete the task.

■ Once the task is completed in the Siebel Business Application, the Siebel application returns a
SOAP message back to the calling application which in turn extracts the output and updates the
UI.

Web Services for Customer Order
Management
The Web services used for customer order management are listed in Table 1.

■ “Web Services in Version 8.1” on page 23 describes the new, modified, and consolidated web
services to support release 8.1 of the software.

■ “Workflows to Activate for Customer Order Management” on page 27 lists the workflows that you
must activate in order to use the Web services for customer order management.

Figure 4. Example: Using Siebel C/OM with SOA
Siebel Order Management Infrastructure Guide Siebel 2018 21

Service-Oriented Architecture ■ Web Services for Customer Order Management
For more information about these Web services and for information about enabling Web services, see
Siebel CRM Web Services Reference.

Table 1. Web Services for Customer Order Management

Namespace Name

http://siebel.com/OrderManagement/ABO ABOWebService

http://siebel.com/OrderManagement/Asset AssetWebService

http://siebel.com/OrderManagement/Quote/PSP CalculatePriceWS

http://siebel.com/OrderManagement/External/PSP CalculatePriceWS

http://siebel.com/OrderManagement/Catalog CatalogWebService

http://siebel.com/OrderManagement/Contact ContactWebService

http://www.siebel.com/OrderManagement/ContextService ContextServiceWrapperService

http://siebel.com/OrderManagement/Quote/PSP EligibilityCompatibility

http://siebel.com/OrderManagement/Order OrderWebService

http://siebel.com/OrderManagement/Configurator ProductConfigurator

http://siebel.com/OrderManagement/Quote/PSP ProductRecommendation

http://siebel.com/OrderManagement/Promotion PromotionWebService

http://siebel.com/OrderManagement/Quote QuoteAddItemsWS

http://siebel.com/OrderManagement/Quote QuoteWebService
Siebel Order Management Infrastructure Guide Siebel 201822

Service-Oriented Architecture ■ Web Services for Customer Order Management
Web Services in Version 8.1
This topic describes the new, modified, and consolidated web services to support release 8.1 of the
software:

■ Table 2 on page 23 lists the Web services that are new for customer order management.

■ Table 3 on page 24 lists the new self service Web services that were added for customer order
management.

■ Table 4 on page 25 lists the new Communications, Media, and Utilities (CMU) Web services for
customer order management.

■ Table 5 on page 25 lists the Web services that were modified for customer order management.

■ Table 6 on page 26 lists the Web services that have been consolidated for customer order
management.

New Web Services
Table 2 lists the Web services that are new for customer order management.

Table 2. New Web Services for Customer Order Management

Type Web Service Name Description

Catalog Get Categories Retrieves a list of all available product
categories in a single Web service interaction.

Publish Catalogs Retrieves all catalog objects (categories,
products, attributes, attribute domains) for a
given catalog including private catalog objects
based on current catalog access control, and
eligibility enforcement options.

Shopping Cart Price Lists Gets all active price lists for a given context.

Order Detail New UI data service (UDS) based on Quote
and Order Web services that activate and
return only the information (fields) that you
requested.

Quote Detail

Quoting

Promotion Get Promotion Gets commitments for a given promotion
asset.

Modify Promotion or Asset Upgrades or migrates a promotion instance to
another promotion. Supports promotion
upgrade or downgrade process from an
external application.

Modify Promotion or Asset Modifies a promotion or asset item from an
external application through the modify asset
Web service.
Siebel Order Management Infrastructure Guide Siebel 2018 23

Service-Oriented Architecture ■ Web Services for Customer Order Management
New Self Service Web Services
Table 3 lists the new self service Web services that were added for customer order management.

Table 3. Self Service Web Services Added for Customer Order Management

Self Service Web Service Description

SelfServicePostLogin Loads the logged in users responsibilities, contact details and
primary account. If the primary account is null, loads the root
account of the logged in user’s contact.

SelfServiceRegistration Performs the following actions for user registration:

■ Creates a user

■ Creates a contact

■ Creates an account, if required

■ Assigns responsibilities

■ Triggers approval process, if applicable

This Web service also performs the reset password and update
password transactions.

SelfServiceContact Allows you to insert, delete, update, and query a contact,
contact details, and the accounts associated with a contact.

SelfServiceAccount Allows you to insert, delete, update, and query accounts,
account addresses, and contacts associated with accounts.

SelfServiceAccountRootPath Queries the account hierarchy details of the requested account.

SelfServiceAllAccountsList Queries accounts and account details.

SelfServiceUser Retrieves user details and user responsibilities.

SelfServiceWebSite Allows you to insert, update, delete, and query the Self Service
site and its details.

OrderDetailWebService Queries Order header, Order Line, Order Payments, Order
Approval, and Shipment details.

SelfServiceSmtpEmail Send an email using the Outbound Communications Manager
business service.

SelfServiceTemplateRule Queries the Self Service Site template rules.

SelfServiceTimeZone Queries the time zone and time zone translation details.

SelfServicePaymentHistory Gets the payment history for a contact or account.

SelfServiceAccountBillingProfile Performs Insert, Delete, Update, and Query on the accounts
billing profile.

SelfServiceAddress Gets the Address details for a particular account or contact.

SelfServiceResponsibility Queries responsibilities.
Siebel Order Management Infrastructure Guide Siebel 201824

Service-Oriented Architecture ■ Web Services for Customer Order Management
New Communications, Media, and Utilities Web Services
Table 4 lists the new Communications, Media, and Utilities (CMU) Web services for customer order
management.

Modified Web Services
Table 5 lists the Web services that were modified for customer order management.

Table 4. New CMU Web Services for Customer Order Management

CMU Web Service Description

CatalogWebService Equivalent to the Publish Catalogs Web service.

OrderDetailWebService Equivalent to the Order Detail Web service.

SelfServiceAccount Equivalent to the SelfServiceAccount Web service.

SelfServiceAllAccountsList Equivalent to the SelfServiceAllAccountsList Web service.

Table 5. Web Services Modified for Customer Order Management

Web Service Description

PromotionWebService The following methods have been added:

■ Promotion Commitments

■ Upgrade Promotion

QuoteWebService Allows you to insert, update, query, and delete the quote
header, quote item, and quote payments.

ProductConfigurator To support release 8.1 of the software, updates the Web
service:

■ To meet all new requirements

■ To fix any issues found
Siebel Order Management Infrastructure Guide Siebel 2018 25

Service-Oriented Architecture ■ Web Services for Customer Order Management
Consolidated Web Services
Table 6 lists the Web services that have been consolidated for customer order management.

Table 6. Consolidated Web Services for Customer Order Management

Web Service Description

QuoteCheckOutWebService This is the Submit Order Web service that invokes the
QuoteCheckOut workflow. The workflow consolidates the
submit order functionality, and the credit card validation
process.

QuotingWebService This Web service is used to save a quote, and it invokes the
Web Channel Quoting Workflow. This workflow consolidates
the following processes:

■ Run the eligibility and compatibility workflow

■ Re-price the quote

■ Calculate delta for ABO quote

■ Perform promotion instance check

■ Calculating shipping charge

■ Calculate Tax

SelfServiceRegistration This is the self service registration process, and it invokes
the SelfServiceRegistration workflow. It consolidates the
following processes:

■ Create a user

■ Create a contact

■ Create an account, if required

■ Assign responsibilities to the user

■ Trigger approval process, if applicable

SelfServicePostLogin SelfServicePostLogin is invoked after a user logs into the
self service application, and it invokes the
SelfServicePostLogin workflow. It consolidates the following
processes:

■ Load contact details and responsibilities

■ Load primary account id and root account details
Siebel Order Management Infrastructure Guide Siebel 201826

Service-Oriented Architecture ■ Web Services for Customer Order Management
Workflows to Activate for Customer Order Management
In addition, to use the Web services for customer order management, you must activate the following
workflows:

■ CalculatePriceExternal

■ Check Eligibility & Compatibility - Default

■ Compatibility Multiple Popup Workflow

■ Configurator Eligibility Compatibility Workflow

■ Configurator External Validate Workflow

■ Configurator Load

■ Configurator PAC Query

■ Configurator Product Info Lookup

■ Configurator Save

■ Contact - New Order

■ Contact - New Quote

■ ContextServiceWrapperService-OrderHeader-Verify

■ ContextServiceWrapperService-OrderItem-Verify

■ ContextServiceWrapperService-QuoteHeader-Verify

■ ContextServiceWrapperService-QuoteItem-Verify

■ Get Config Item Price

■ Get Product List Price

■ Goto_Order

■ Goto_Quote

■ ISS Approval (Agreement)

■ ISS Approval (Order)

■ ISS Approval (Quote)

■ ISS Post Approval Workflow (Agreement)

■ ISS Post Approval Workflow (Order)

■ ISS Post Approval Workflow (Quote)

■ ISS Promotion Agreement Covered Assets Sub Process

■ ISS Promotion Agreement Management Sub Process

■ ISS Promotion Commitment Compliance Check SubProcess

■ ISS Promotion Create Agreement Details

■ ISS Promotion Disconnect Integration SubProcess
Siebel Order Management Infrastructure Guide Siebel 2018 27

Service-Oriented Architecture ■ Web Services for Customer Order Management
■ ISS Promotion Disconnect Process

■ ISS Promotion Disconnect Process - for Verify

■ ISS Promotion Recommendation SubProcess

■ ISS Promotion Upgrade Process

■ ISS Promotion Verify SubProcess

■ ISS Validation (Agreement)

■ ISS Validation (Order)

■ ISS Validation (Quote)

■ PSP Driver Workflow Process

■ PSP Dynamic Matrix - Refresh Matrix Cache

■ PSP Refresh Cache On Cache Key - Price List

■ PSP Waterfall Driver Workflow Process

■ PSP Waterfall Synch Test Workflow

■ PSP Waterfall Synch to DB Workflow

■ Pricing Procedure - Bundle Discount Unit Test

■ Pricing Procedure - Calculate Net Price

■ Pricing Procedure - Default

■ Pricing Procedure - Keep Discount Flag

■ Pricing Procedure - Service

■ Pricing Procedure - Volume Discount

■ Product Compatibility - Default

■ Product Eligibility & Compatibility - Default

■ Product Recommendation Delete Msgs

■ Product Recommendation Driver Workflow

■ Product Recommendation Get Recommended Products

■ SIS OM Active Order Sub-Process

■ SIS OM Active Order Sub-Process - Contact

■ SIS OM Active Quote Sub-process - Contact

■ SIS OM Apply Completed Service Order Line Item to Service Profile

■ SIS OM Auto Select Order Billing and Service Accounts

■ SIS OM Go to Products & Services Sub-Process

■ SIS OM Go to Quote Detail View Sub-Process

■ SIS OM Modify Products & Services Process
Siebel Order Management Infrastructure Guide Siebel 201828

Service-Oriented Architecture ■ Web Services for Customer Order Management
■ SIS OM Modify Products & Services Process - Contact

■ SIS OM Modify Products & Services Process - Quote & Order

■ SIS OM New Products & Services Process

■ SIS OM New Products & Services Process - Contact

■ SIS OM New Products & Services Process - VORD

■ SIS OM Profile Process

■ SIS OM Profile Process - Order

■ SIS OM Quote To Order Workflow PMT Version

■ SIS OM Submit Order Process

■ SIS OM Suspend, Resume Asset Sub-Process

■ SIS OM Suspend, Resume Asset Sub-Process - Contact

■ SIS OM Suspend, Resume Products & Services Process

■ SIS OM Suspend, Resume Products & Services Process - Contact

■ SIS OM Suspend, Resume Products & Services Process - Quote & Order

■ SIS OM Ungroup Order

■ SIS OM Ungroup Quote

For more information about activating workflows, see these Web services and for information about
enabling Web services, see Siebel Business Process Framework: Workflow Guide.
Siebel Order Management Infrastructure Guide Siebel 2018 29

Service-Oriented Architecture ■ Web Services for Customer Order Management
Siebel Order Management Infrastructure Guide Siebel 201830

3 Signals
In earlier releases, Siebel order management functions and function calls were handled locally by
the code in the calling object or business component. In this release, every interaction between C/
OM components occurs through an API invocation that you can configure or redirect. These API
invocations are called signals. A signal is a request to perform a business function.

Each API invocation supports a configurable set of input arguments. The API is handled by a series
of business service methods and workflows that you define using the Administration - Order
Management screen, then the Signals view.

This chapter includes the following topics:

■ “About the Signals Mechanism” on page 31

■ “Creating Signal Actions” on page 33

■ “Invoking Signals from Controls and Custom Script” on page 38

■ “Using Recursion with Signals” on page 39

■ “Migrating Signals Between Environments” on page 39

About the Signals Mechanism
Within Siebel order management, you use the Signals mechanism to invoke configurable business
logic. Signals are used to hold together all the C/OM services, and they are used to call external
services. You configure signals in the run-time client.

Nearly all buttons and engines within Siebel order management invoke business logic by raising a
signal. The business logic invoked comes in the form of one or more business service methods or
workflows.

Signals are versioned objects. The numbering assigned to a signal version means that a new version
of a signal can be developed while you are using the current version in the same production
environment.

A signal action property specifies the business service or workflow to invoke when the signal is
raised. Signal action parameters are the input arguments to signal action workflows or business
service methods.

Components of the Signals Mechanism
Figure 5 shows how a signal created using the Administration - Order Management screen, then the
Signals view is routed through a signal dispatcher to invoke a business service method or workflow.
Siebel Order Management Infrastructure Guide Siebel 2018 31

Signals ■ About the Signals Mechanism
Signals Administration
Administer signals using the Administration - Order Management screen, then the Signals view. Use
the Signals view for creating new signals, working with existing signals, and releasing signals into
production. In the Versions list applet, click the Work Space hyperlink to access the Actions and
Properties tabs, and the Parameters list applet, for the selected signal.

Signal Dispatcher
Signals are dispatched by the Context Service business service. The Context Service business service
reads and caches signal definitions, and then when a business component raises the signal, Context
Service executes the appropriate business service or workflow.

For more information about the Context Service business service, see Chapter 4, “Variable Maps” and
“Context Service Business Service” on page 296.

Signal Sources
All applications supported by the Siebel order management infrastructure can be sources of signals.
A signal can be invoked by any C/OM business component. Signals are not supported on non-C/OM
business components.

Signals are invoked through the standard InvokeMethod call. If the method is not handled by logic
or script on the source business component, then the signal dispatcher (Context Service business
service) is invoked to handle the signal.

Signal Actions
A signal action can be either a business service method or a workflow. By setting the Service Type
field using the Administration - Order Management screen, Signals, and then the Actions view, you
define whether the action is a business service method or a workflow.

Figure 5. Signals Components
Siebel Order Management Infrastructure Guide Siebel 201832

Signals ■ Creating Signal Actions
Creating Signal Actions
You create and modify signal actions in the Signals view. You can set the sequence for a group of
actions, set input arguments for actions, and set filter values that determine when an action
executes. Use the following procedure to create and modify signal actions.

The Signals view lists and describes all the standard signals that are available in your Siebel Business
Application. Table 7 lists some of the signals that are relevant to order management and pricing
administration.

Table 7. Sample Signals Relevant to Order Management and Pricing Administration

Signal Name Description

ApproveItem Invoked by clicking Generate Approvals in quote, order, and
agreement views. Reprices and then generates approval
requests for the current line item.

CalculatePriceAndCheckEligibility Invoked by Add Item and Verify. Performs Pricing and
Eligibility on selected rows.

CalculatePrice Invoked by clicking Reprice or selecting a product for a line
item. Establishes context, calls the pricing procedure, and
then synchronizes any updates back to the database.

CalculatePriceAll Invoked by clicking Reprice All. Establishes context, calls
the pricing procedure, and then synchronizes any updates
back to the database.

CalculatePriceExternal This signal is called when a user calls the method
CalculatePriceExternal for the Pricing Manager business
service; it is used to calculate the price of a product
externally.

CalculatePrice_eSales Invoked by clicking Reprice in Siebel eSales. Establishes
context, calls the pricing procedure, and then synchronizes
any updates back to the database.

CalculatePriceAll_eSales Invoked by clicking Reprice All in Siebel eSales. Establishes
context, calls the pricing procedure, and then synchronizes
any updates back to the database.

CalculatePrice_Configurator Invoked by clicking Reprice in Siebel Configurator.
Establishes context, calls the pricing procedure, and then
synchronizes any updates back to the CP instance.

CheckEligibility Invoked by the Verify Eligibility Status menu item on the
line items applet. Executes the eligibility procedure for the
current line item.

CheckEligibilityAll Not invoked out-of-the-box. Executes the eligibility
procedure for all line items.

CopyOrder Invoked when copying Order records.
Siebel Order Management Infrastructure Guide Siebel 2018 33

Signals ■ Creating Signal Actions
CopyQuote Invoked when copying Quote records.

Get Config Item Price Called when the user calls the GetConfigItemPrice method
of the Pricing Manager business service; it is used to get the
price of a configurable item externally.

Get Product List Price Called when the user calls the GetProductListPrice method
of the Pricing Manager business service; it is used to get the
product list price of the product, as well as other price list
field values (for example, MSRP Price and Cost).

GetUserProdPrice Calculates the list price and net price for a list of products
using the login user profile as context.

MergeIntoOnePackage Invoked by the Package menu item in quote, order, and
agreement views. Calls the ISS Package Product Service to
combine the selected line items into a package; it then
reprices the package.

OrderTemplate Invoked by clicking Add Items in the Catalog or Favorites
list applet. Calls the ISS Template Service to copy line items
from favorites in to the shopping cart.

OrderTemplateCopy Invoked by the ISS Template Service to copy template line
items to the current order.

OrderTemplateSelectItems Invoked by the ISS Template Service to copy template line
items from the available product applet to the current order.

Product Recommendation Signal Invoked by a product selection or by a current line item
change. Calls the Product Recommendation Driver Workflow
to generate and display product recommendation
messages.

QuotesAndOrdersValidate Invoked by clicking the Verify button on a Header or Line
Item. On Header: runs Pricing and Eligibility, verifies
promotions, validates data rules, and validates CP. On Line
Item: checks eligibility and validates CP.

QuoteTemplateCopy Invoked by the ISS Template Service to copy template line
items to the current quote.

QuoteTemplateSelectItems Invoked by the ISS Template Service to copy template line
items from the available product applet to the current
quote.

SetFieldValue Invoked whenever a field value changes in the quote, order
or agreement header, or line items. Triggers various
processing depending on the field changed.

Table 7. Sample Signals Relevant to Order Management and Pricing Administration

Signal Name Description
Siebel Order Management Infrastructure Guide Siebel 201834

Signals ■ Creating Signal Actions
To create and modify signal actions
1 Navigate to the Administration - Order Management screen, then the Signals view.

2 In the Signals list applet, select an existing signal to modify, or create a new signal record.

3 Lock the signal by checking the Locked Flag box.

This locks the object for your user ID.

4 If you are creating a new signal, give it a name and description, and then save the record.

5 In the Versions list applet, click the Work Space link to drill down to the Actions list applet.

6 In the Actions list applet, create a new action, or select an existing signal action.

7 Complete the fields.

a Set the Sequence field value to reflect the sequence number of a particular action relative to
other actions for the signal.

b Set the Service Type field to specify whether the action is a business service method or a
workflow:

❏ If you specified that the signal action is a workflow, enter the workflow’s name in the
Service Name field and enter “RunProcess” in the Service Method field.

❏ If you specified that the signal action is a business service method, enter the business
service name in the Service Name field and enter the method name in the Service Method
field.

c (Optional) Set filter fields for the action as described in the table that follows.

Filter fields limit the execution of a signal action. The action occurs only if all filter field values
specified match the current situation.

SpreadDiscount Invoked by clicking Spread in the spread discount pop-up
applet. Calls the Spread Discount Driver Workflow Process
to query the selected line items and spread the specified
discount.

SpreadDiscount - All Invoked by clicking Spread in the spread discount pop-up
applet when Type is set to All. Calls the Spread Discount
Driver Workflow Process to query all the line items and
spread the specified discount.

VerifyItem Invoked by clicking the Verify button or menu item in
quotes, orders or agreements. Calls workflows to reprice
and check eligibility. Then calls the FINS Validator business
service to execute validation rules.

Table 7. Sample Signals Relevant to Order Management and Pricing Administration

Signal Name Description
Siebel Order Management Infrastructure Guide Siebel 2018 35

Signals ■ Creating Signal Actions
8 (Optional) In the Parameters list applet (at the end), enter input arguments for the action.

As an example, parameters for the CalculatePrice signal are listed in the following table:

9 (Optional) You can specify a CanInvoke check by completing the fields in the Properties list
applet. See “Modifying Signal Properties for Signal Actions” on page 37.

10 Navigate back to the Signals list applet.

11 Click the Release New Version button to release the signal version.

12 If you are creating a new signal action, create a button, script or workflow to invoke the signal.
See “Invoking Signals from Controls and Custom Script” on page 38.

13 Test the signal.

You test the signal by triggering the appropriate event.

Filter Field Allowed Values Description

Application
Name

Any “Application” repository
object name

Used to define industry-specific or
channel-specific logic.

Mode Any string from the ISS_MODE
LOV

Must match the value of the Mode user
property on the business component (such
as Quote, Order, Asset or Agreement).

Instance
Type

Any string from the
ISS_INSTANCE_TYPE LOV

Must match the integration component
name from the integration object specified
in the business component “Instance
Uniform Name EAI Object:[Current
Business Object]” user property, for
example, “Header”, “Line Item”, or
“Payments”.

Fields A semi-colon-separated list of
field names (example:
“Account; Product; Net Price”)

The business component fields for which
the action is executed. The action occurs if
the active field in the calling business
component appears in the list.

Condition A Siebel logical expression
that returns TRUE or FALSE.

If the condition is not empty, the action is
only invoked when the condition returns
TRUE.

Input Argument Example Value

CPScope Whole

RowScope Selected

SubPSPWFName Pricing Procedure - Default

Variable Map - Context Default Pricing Variable Map - Context

Variable Map - Row Set Default Pricing Variable Map - Row Set
Siebel Order Management Infrastructure Guide Siebel 201836

Signals ■ Creating Signal Actions
NOTE: After releasing a new version, you must start a new user session (by logging out and
logging in again) to test the latest version.

14 Using Application Deployment Manager (ADM), promote the updated signal definition to the
production environment. For information about using ADM, see Siebel Application Deployment
Manager Guide.

Modifying Signal Properties for Signal Actions
Signal properties are similar to user properties on repository objects. Signal properties are name-
value pairs used to configure processing. In this release, the only supported use of signal properties
is to provide a CanInvoke check.

NOTE: For some signals (for example, the QuoteAndOrderValidate signal), the CanInvoke property
for the signal can cause related buttons to be disabled. Removing the property, however, results in
enabling the related button.

Name: CanInvoke:Order

Value: [Status] = LookupValue('ORDER_STATUS', 'Open')

To modify signal properties for a CanInvoke check
■ (Optional) You can specify a CanInvoke check by completing the fields in the Properties list applet

as follows:

■ Name. CanInvoke:[Mode]

■ Value. A Boolean expression using one of the following:

❏ Business component fields. The expression can be comprised of real business fields or
pseudo business fields supported by Context Service. Allowed fields include the following:

❏ Profile attributes. As an example, the following table shows a properties setting for the
SetFieldValue signal:

Field Comment

[$IsNewRecordPending] None

[$HasActiveRow] None

[$IsInQueryMode] None

[$CanUpdate] Returns ‘Y’ or ‘N’

[$GetType] Returns instance type such as ‘Line Item’, ‘Header’, ‘XA’

Property Example Attributes

CanInvoke:Any GetProfileAttr('Block Variable Map Operations')='N' OR
GetProfileAttr('Block Variable Map Operations') IS NULL
Siebel Order Management Infrastructure Guide Siebel 2018 37

Signals ■ Invoking Signals from Controls and Custom Script
Example of Signal Properties Settings for a CanInvoke Check
An example of the fields set for a CanInvoke check is listed in Table 8.

NOTE: If CanInvoke logic exists for a specific Mode, it overwrites the CanInvoke logic defined for the
mode Any. In the example for Signal Properties Settings, using Quote mode, the CanInvoke logic
used will be [Status] = LookupValue('ORDER_STATUS', 'Open') instead of [Account Id] is not
null.

Invoking Signals from Controls and
Custom Script
Siebel order management business components route unrecognized InvokeMethod calls to the
Context Service business service’s RaiseSignal method. All business components of class
CSSBCOrderMgmtBase, CSSBCPecBase, and their subclasses, support this routing.

NOTE: CSSBCPecBase only supports standard signals. It does not support custom signals.

You can invoke signals from controls, such as buttons. You can also invoke signals from a script.

Invoking Signals from a Button
Use the following procedure to invoke signals from a button.

To invoke a signal from a button
1 In Web Tools, create or open a workspace and then navigate to Object Explorer.

To use the workspace dashboard, see Using Siebel Tools.

2 Click Applet and then locate the applet you must modify.

3 Expand the applet list in Object Explorer and click Control.

4 Set the MethodInvoked property of the control to the signal name.

5 Save your changes using the gear icon and submit the workspace for delivery.

Invoking Signals from a Script
Use the following procedure to invoke signals from a script.

Table 8. Sample Signal Properties for a CanInvoke Check

Name Value

CanInvoke:Any [Account Id] is not null

CanInvoke:Quote [Status] = LookupValue('ORDER_STATUS', 'Open')
Siebel Order Management Infrastructure Guide Siebel 201838

Signals ■ Using Recursion with Signals
To invoke a signal from a script
1 Access the Siebel Script Editor in Siebel Tools by selecting the affected object in the Object

Explorer.

2 Right-click the object, and choose Edit Scripts.

3 Modify the script to execute the InvokeMethod method on the appropriate C/OM business
component, passing the signal name as the MethodName input argument.

For example:

pQuoteBC.InvokeMethod("Calculate Tax");

Using Recursion with Signals
Recursion of signals is supported, but you cannot use recursive variable map APIs such as GetRowSet
and SyncRowSet in recursed signals. If your recursive signal calls recursive variable map APIs, you
will receive an error message. When this happens, you must revisit the definition of the signal and
make modifications to make sure these variable map APIs are not involved (for example, you might
remove GetRowSet and SyncRowSet, or instead add a CanInvoke method to skip the signal).

Recursive variable map APIs are not supported because these APIs read data from, or write data to,
the database. This kind of recursive read and write is not safe.

For details on how to use signal properties and profile attributes when making sure your recursion
works properly with signals, see “Modifying Signal Properties for Signal Actions” on page 37.

Migrating Signals Between
Environments
Signals can be moved between environments, such as from the development environment to the test
environment, by using the Application Deployment Manager (ADM). For information about using
ADM, see Siebel Application Deployment Manager Guide.

You can also export a specific version of a signal using the Export Version applet menu in the Signal
Version list applet. To import a signal, navigate to the Administration - Products screen, then the
Joint Workspace view. This is a joint workspace for all types of versioned objects (signals, variable
maps, products, product attributes, and so on). For more information about import and export, see
Siebel Product Administration Guide.
Siebel Order Management Infrastructure Guide Siebel 2018 39

Signals ■ Migrating Signals Between Environments
Siebel Order Management Infrastructure Guide Siebel 201840

4 Variable Maps
This chapter explains how variable maps are used by PSP procedures to handle transactional data.
It includes the following topics:

■ “About Variable Maps” on page 41

■ “Components of Variable Maps” on page 43

■ “Supported Source Types for Variables” on page 45

■ “About Using Variable Maps” on page 49

■ “Variable Map Methods of the Context Service Business Service” on page 56

About Variable Maps
Siebel order management applications that use the PSP engine—such as for pricing, eligibility, and
product recommendation—require a consistent way of loading, querying, and synchronizing
transactional data. For example, the Quote Item and Order Entry - Line Items business components
represent fundamentally the same concept, but can use different field names to represent the same
value. Variable maps meet this requirement.

Variable maps are also used to extend the capabilities of customizable product linked items. A linked
item can now refer to a value in a Context property set constructed by the variable maps mechanism.
For more information about linked items, see Siebel Product Administration Guide.

Variable maps provide a mechanism for mapping transactional data to a common namespace
regardless of the data source. PSP procedures rely on variable maps to map the name of a variable
used by a PSP procedure to a field in a Siebel business component or to an attribute used in attribute
pricing.

The variable map mechanism employs the Context Service business service, which provides a set of
APIs for constructing a property set from the current ordering context and synchronizing changes to
that property set back to the source. You can configure the set of data queried and written by a
particular transaction.

NOTE: The variable map APIs work only during an event triggered on a business component derived
from CSSBCOrderMgmtBase, CSSBCPecBase, and their subclasses.

You define the particular variable map used by a PSP procedure in the Signals Administration views
(navigate to the Administration - Order Management screen, then the Signals view).

Concepts of Variable Maps
A variable is a name-value pair in a property set. A variable map is a definition of how to construct
a property set in a given situation and of which changes to save.
Siebel Order Management Infrastructure Guide Siebel 2018 41

Variable Maps ■ About Variable Maps
Each variable has one or more variable sources that define how to retrieve the variable value in a
given mode (such as Quote, Order, or Any). The source type of a variable source can be a business
object query, the active business component instance, a business service, a profile attribute, a
system preference, or a server parameter. A child variable map is another variable map that is
executed for each row retrieved by the current variable map and attached as a child property set. A
Business Service source can also construct a child property set for each row. Figure 6 shows example
child variable map output, in relation to the parent variable map output.

Variable Map Types
There are three types of variable maps:

■ Context. Loads a single row containing shared header-level details (such as Channel, Account
Type, User Role).

■ Row Set. Loads any iteration of rows (such as order line items or shipments for an order).

■ XA. Loads product attributes for a line item.

Working with Variable Maps
You create variable maps using the Administration - Order Management screen, then the Variable
Maps views. Here you define the variables that are queried and written in various situations.

To access the Variable Maps views, navigate to the Administration - Order Management screen, then
the Variable Maps view, and in the Versions list applet, click the Work Space hyperlink. Variable Maps
views include the following:

Figure 6. Example of Child Variable Map Output
Siebel Order Management Infrastructure Guide Siebel 201842

Variable Maps ■ Components of Variable Maps
■ Variable Maps view. Create new variable maps, update existing variable maps, release a
variable map into production.

■ Child Variable Maps view. Define child variable maps to be executed and attached to the
parent. These are returned as a child property set of each row in the parent property set.

■ Modes view. Define modes for variable maps. Set the mode according to the Mode user property
on the business component invoking the signal that causes the variable map to be executed.

To configure mappings from business component field names to the variable map namespace, use
the Integration Object object type in Web Tools. For more information, see “About Using ISS
Integration Objects with the Variable Map Mechanism” on page 44.

Components of Variable Maps
See Figure 7 on page 44 for a graphical representation of the interaction of variable map components.
The way the variable map mechanism works follows the following process:

1 An administrator defines a variable map using the Variable Maps views. This definition is stored
in the Siebel database.

2 A user of a Siebel order management application makes a request (for example, by clicking the
Reprice button). The request triggers a signal, which in turn launches a controller workflow.

3 The controller workflow invokes the Context Service business service’s GetRowSetData method,
passing the variable map name for the line item row set, as well as the required CPScope (such
as the entire customizable product [CP]) and the required RowScope (such as the currently
selected rows).

4 The Context Service business service retrieves the variable map definition (either from the
database or from the cache).

5 The Context Service business service issues the required queries and business service calls to
construct a property set.

For source type Instance, the path specified for the variable is translated into a query against
the active business component using one of the ISS mapping integration objects. For more
information, see “About Using ISS Integration Objects with the Variable Map Mechanism” on
page 44.

6 The Context Service business service returns the resultant row set property set to the controller
workflow.

7 The controller workflow invokes a PSP procedure to update the row set (for example, to attach
prices).

8 The controller workflow invokes the Context Service business service’s SyncRowSetData method
passing the variable map name for the line item row set and the updated row set property set.

9 The Context Service business service writes any updated field values back to the Siebel database.

Figure 7 shows how, in the process described in these steps, the various components of the variable
maps mechanism interact.
Siebel Order Management Infrastructure Guide Siebel 2018 43

Variable Maps ■ Components of Variable Maps
About Using ISS Integration Objects with the Variable
Map Mechanism
A schema of a particular entity, an integration object is metadata; it is a generalized representation
or model of a particular set of data. A Siebel integration object is an object stored in the Siebel
repository that represents a Siebel business object. An ISS integration object is a special type of
Siebel integration object used exclusively within Siebel Order Management.

Generally, a Siebel integration object is used by Siebel EAI to transfer data between Siebel objects
and external objects. ISS integration objects, on the other hand, are used to create mappings
between business components and their Uniform Name mappings. In this way, while ISS integration
uses the Siebel EAI structure used by a Siebel integration object—that is, a structure designed for
data transfer—its main purpose is different from that of Siebel integration objects.

Using ISS integration objects, you can apply the same uniform names, such as “Line Item,” to
different business components (such as Quote Item, Order Item, and so on), because there is no
difference between these business components as far as the PSP engine is concerned.

For general information about integration objects and how to build them, see Integration Platform
Technologies: Siebel Enterprise Application Integration.

For information about configuring ISS integration objects, see “Configuring ISS Integration Objects”
on page 45.

Figure 7. Components of the Variable Map Mechanism
Siebel Order Management Infrastructure Guide Siebel 201844

Variable Maps ■ Supported Source Types for Variables
Configuring ISS Integration Objects
Integration object configuration is used to create uniform field names for different physical business
components (such as Quote Item, Order Item, and so on). When defining variable maps then, you
can specify one source path for all modes.

NOTE: To avoid errors when trying to retrieve data from business components, it is recommended
that you always define the component field names in integration objects, and use the uniform name
in the variable source path for necessary modes only.

At run time, the user property of the business component that raised the signal determines which
integration object to use. For each business component, there are various user properties (such as
the property called Instance Uniform Name EAI Object:Catalog).

To configure ISS integration objects
1 For the business component that raises the signal, set the value of the user property Instance

Uniform Name EAI Object:[BusObj] to the integration object name, for example:

Instance Uniform Name EAI Object:Catalog

In this example, Catalog refers to the business object that the business component is in at run
time.

2 From the integration object definition, use the value in Integration Object Component Name as
the Instance Type.

For example, use Header for the Quote business component in the Catalog business object.

NOTE: For each business object, each business component within it must have a unique Instance
type—for example, no two business components within the Quote business object can be referred
to as Header.

Supported Source Types for Variables
A variable can be derived from a number of sources. The same variable can be derived in different
ways, depending on the Mode user property of the business component invoking the signal that
causes the variable map to be executed.

For example, the Quote Item business component has Mode set to Quote. Using Mode set to Quote,
you retrieve the Product ID from the [Product ID] field in the Quote Item business component for
the current quote. Using a different setting, Mode set to Configuration, you retrieve the [Product ID]
from the [Product ID] value in the Line Items property set of the product instance currently being
configured.

The default setting is Mode = Any.

NOTE: Variable maps work only when invoked by a signal.

You define the driving integration object component for each business component’s mode by
navigating to the Administration - Order Management screen, Variable Maps, then the Modes view.
The driving integration object component for a mode is the component over which the variable map
iterates to generate an output property set.
Siebel Order Management Infrastructure Guide Siebel 2018 45

Variable Maps ■ Supported Source Types for Variables
You set the mode using the user property called Mode. Existing modes are: Asset, Quote, Order,
Payment, Product, Agreement, Configuration.

NOTE: You can configure your own modes. See “Creating Variable Maps” on page 52.

A variable can be derived from the sources listed in Table 9.

Business Object
The Business Object source type, shown in the Variable Sources list applet in Figure 8, is used to
query business components that are not in the current context.

NOTE: You can also query for joined business components (such as Account and Address).

For more information, see “Querying with the Business Object Source Type” on page 49.

Table 9. Supported Source Types for Variable Maps

Source Type Path Example

Business Object [BOName]/[BCName]/[FieldName] Account/Account/Region

Business Service [BusSvcName]/[BusSvcMethod] ABC Assets BS/Get
External Assets

Instance $Current/

[IntegrationObjectComponentType]/

[IntegrationObjectComponentField]

$Current/Line Items/
Quantity

Profile Attribute ProfileAttributeName AnonymousUserZipCode

System [LoginName], or [LogInId], or
[LogInPassword], or Today

Today

Server Parameter [ServerParameter] PARAM_PSP_ELIGIBILITY_D
ISPL_MODE

Figure 8. Business Object Source Type
Siebel Order Management Infrastructure Guide Siebel 201846

Variable Maps ■ Supported Source Types for Variables
Business Service
Used with business services (such as Projected Asset Cache), the Business Service source type allows
you to invoke a business service to populate one or more variables, and to populate a child property
set of the current row. Figure 9 shows the Business Service source type.

Using the Business Service source type, you can populate multiple variables or child variable maps
in a single method invocation. This is possible if the variables are invoking the same business service
and method with the same inputs. This consolidated call to the business service can happen
regardless of the number of variables (that is, Property Set, another one, or a mix of two) needing
to be populated.

NOTE: Make sure the values for the Sequence field contain appropriate numbers. In the example
shown in Figure 9, Account Id is an input for the business service. This input uses the value of
variable Account Id, therefore the Sequence value for Account Id must be smaller than the Sequence
value for Credit Score.

For details on how to populate multiple variables or child variable maps in a consolidated call to the
business service, see “Using the Business Service Source Type to Populate Variables” on page 49.

Instance
The Instance source type can be used to refer to both of the following:

■ The current UI context when viewing quotes and orders

■ The current customizable product instance being configured

Figure 9. Business Service Source Type
Siebel Order Management Infrastructure Guide Siebel 2018 47

Variable Maps ■ Supported Source Types for Variables
Used for Siebel order management business components (such as Order Line Item), the Instance
source type, shown in the Business Component User Properties list applet in Figure 10 on page 48,
allows you to query active UI business components to retrieve variable values. The business
component queried can be a regular, external, or virtual business component.

Used for customizable product instance property sets, the Instance source type retrieves data from
the business component initiating the signal that causes the GetRowSetData method to be called.
Data can also be retrieved from any parent or child business component.

Mapping Integration Objects
For business components, the Instance source type uses mapping of integration objects to resolve
the different business component naming and field naming between Quotes, Orders, Assets, and
Agreements. You map integration objects using Web Tools.

For a customizable product with Instance source type, the instances are loaded by Configurator
services and the structure of these instances is hierarchical with three types: Header, Line Item, and
XA. No other types are supported for a customizable product. The namespace mapping is a simple
match between the type specified in the variable source path and the customizable product Instance
type.

For more information about using the Instance source type, see “Using the Instance Source Type for
the Customizable Product Instance Property Sets” on page 51.

The following topics include further information about creating and using variable maps:

■ “About Variable Maps” on page 41

■ “Components of Variable Maps” on page 43

■ “Supported Source Types for Variables” on page 45

■ “About Using Variable Maps” on page 49

■ “Variable Map Methods of the Context Service Business Service” on page 56

NOTE: For variable map information that is specific to pricing, see Siebel Pricing Administration
Guide.

Figure 10. Instance Source Type
Siebel Order Management Infrastructure Guide Siebel 201848

Variable Maps ■ About Using Variable Maps
About Using Variable Maps
The following topics provide information about how variable maps are used and defined:

■ “Querying with the Business Object Source Type” on page 49

■ “Using the Business Service Source Type to Populate Variables” on page 49

■ “Using the Instance Source Type for the Customizable Product Instance Property Sets” on page 51

■ “Creating Variable Maps” on page 52

■ “Defining the Variable Map Used by a PSP Procedure” on page 54

■ “Migrating Variable Maps Between Environments” on page 55

Querying with the Business Object Source Type
You can query a business component for values by using the Business Object source type.

To query a business component to retrieve variable values
■ In the Variable Sources list applet, set the following fields:

The Search Specification can include any previously evaluated variable value in {}. Use the Sequence
column to provide a correct evaluation sequence.

Using the Business Service Source Type to Populate
Variables
The Business Service source type allows you to invoke a business service to populate:

■ One or more variables as described in “Invoking a Business Service to Populate Variables” on
page 50.

■ A child property set of the current row as described in “Invoking a Business Service to Populate a
Child Property Set” on page 50.

Field Value

Source Type “Business Object”

Path [Business Object]/[Business Component]/[Field Name]

Search Specification [Business Component Search Spec]

Sort Specification (Optional) [Business Component Sort Spec]
Siebel Order Management Infrastructure Guide Siebel 2018 49

Variable Maps ■ About Using Variable Maps
Invoking a Business Service to Populate Variables
Use the following procedure to invoke a business service to populate variables.

To invoke a business service to populate variables
1 In the Variable Sources list applet, set the following fields:

2 In the Variable Source Parameters list applet:

a Add variable source parameters for each input argument. The variable source parameters can
be a literal string or another variable value.

b Add variable source parameters for each output argument, and specify which variable to
populate.

Invoking a Business Service to Populate a Child Property Set
Use the following procedure to invoke a business service to populate a child property set of the
current row.

To invoke a business service to populate a child property set of the current row
1 In the Variable Definitions list applet, set Type (the variable type) to Property Set.

2 In the Variable Sources list applet, set the following fields:

3 In the Variable Source Parameters list applet:

a Add variable source parameters for each input argument. The variable source parameters can
be a literal string or another variable value.

b Add variable source parameters for each output argument and specify which variable to
populate.

Field Value

Source Type “Business Service”

Path [BusSvcName]/[BusSvcMethod]

Field Value

Source Type “Business Service”

Path [BusSvcName]/[BusSvcMethod]
Siebel Order Management Infrastructure Guide Siebel 201850

Variable Maps ■ About Using Variable Maps
Using a Single Invocation to Populate Multiple Variables or Child
Variable Maps
Use the following procedure to populate multiple variables or child variable maps using a single
invocation.

To populate multiple variables or child variable maps in a single method invocation
■ Specify the Source and all the In or Out parameters under a single variable.

It is recommended that other variables have only a definition, no source. This reduces the burden
on the Context Service because a separate call to the business service will be issued if there is
a second variable having the same business service source.

NOTE: A best practice is to compare the source and source parameters from different variables
to determine whether to consolidate. If the values of all these variables can be obtained through
a single call to the business service, combine them and only specify the business service or
method as a source under one variable. Otherwise, the same call will be issued multiple times,
giving the same result each time.

Using the Instance Source Type for the Customizable
Product Instance Property Sets
If you are working with customizable product instance property sets, use the Instance source type.
The Instance source type retrieves data from the business component initiating the signal that
causes the GetRowSetData method to be called. Data can also be retrieved from any parent or child
business component.

To define the data element to be retrieved
■ In the Variable Sources list applet, set the Path to:

$Current/[IntegrationObjectComponentType]/[IntegrationObjectComponentField]

Examples:

$Current/Header/Price List Id
$Current/Line Item/Quantity

Uniform component and field names are defined by integration objects: ISS Quote, ISS Order,
ISS Agreement, and ISS Asset.

Each of these integration objects defines the specific business components and fields that provide
data for a generic value such as Line Item or Quantity. For example, ISS Quote integration
component Line Item maps to the Quote Item business component, whereas ISS Order has the
Line Item integration component mapped to Order Entry – Line Items.

NOTE: To expose a custom business component field in a variable map, you must first add it to
the corresponding ISS [XXX] integration object.
Siebel Order Management Infrastructure Guide Siebel 2018 51

Variable Maps ■ About Using Variable Maps
The ISS integration objects associated with a particular business component are defined by user
properties on the business component, for example: Instance Uniform Name EAI Object:
[Business Object].

NOTE: Make sure that you create a user property for every business object in which the business
component can be exposed.

Creating Variable Maps
You create and modify variable maps in the Variable Maps views of the run-time client. Use the
following procedure to implement a new variable map.

To implement a new variable map
1 Navigate to the Administration - Order Management screen, then the Variable Maps view.

2 In the Variable Maps list applet, create a new record.

3 Give the variable map a name.

4 Lock the variable map by checking the Locked Flag field.

This locks the object for your user ID.

5 In the Versions list applet, click the Work Space hyperlink to drill down on the variable map
version.

6 Click the Modes tab to access the Modes view.

7 In the Modes list applet, define the variable map modes.

8 Click the Details tab and create variable definitions and variable maps.

a In the Variable Definitions list applet, you can define the list of variables in the variable map.
These names are independent of the source.

The In or Out field defines whether the variable map can update the variable.

b In the Variable Sources list applet, you can define the source of the variable for each mode.

9 Define child variable maps, as necessary.

10 Navigate back to the Variable Maps list applet and click the Release New Version button to release
the variable map version.

11 Test the variable map in the run-time client by executing a reprice or another PSP procedure.

12 Using Application Deployment Manager (ADM), promote the updated signal definition to the
production environment.

For information about ADM, see Siebel Application Deployment Manager Guide.
Siebel Order Management Infrastructure Guide Siebel 201852

Variable Maps ■ About Using Variable Maps
Updating an Existing Variable Map
Use the following procedure to update an existing variable map.

To update an existing variable map
1 Navigate to the Administration - Order Management screen, then the Variable Maps view.

2 Select the variable map and lock it by checking the Locked Flag field.

This locks the object for your user ID.

3 In the Versions list applet, click the Work Space hyperlink to drill down on the variable map
version.

4 Modify the variables as necessary.

5 Navigate back to the Variable Maps list applet and click the Release New Version button to release
the variable map version.

6 Test the variable map in the run-time client by executing a reprice or another PSP procedure.

7 Using Application Deployment Manager, promote the updated signal definition to the production
environment.

For information about ADM, see Siebel Application Deployment Manager Guide.

Configuring a Custom Mode User Property for a Business Component
Use the following procedure to configure a customer Mode user property for the driving business
component.

To configure a custom Mode user property for the driving business component
1 On the business component that raises the signal, set the Mode user property.

2 In the Variable Maps, then Modes view, declare the new mode for one or more variable maps.

3 Define variable sources for the mode.

Behavior of the On Null Property When Defining Variables in a Variable
Map
When defining variables in a variable map, note that the On Null property behaves as follows:

■ If a path is specified for a variable, then that variable appears in the Row Set with whatever value
is retrieved. In this instance, the On Null property is an empty string.

■ If no path is specified for a variable and the On Null property is set to Ignore, then the variable
is not included in the Row Set.

■ If no path is specified for a variable, the On Null Property is set to Default, and a default value
is specified, then the variable is included in the Row Set with the default value.
Siebel Order Management Infrastructure Guide Siebel 2018 53

Variable Maps ■ About Using Variable Maps
Defining the Variable Map Used by a PSP Procedure
Variable maps are used by the context service to create the property sets that are used by PSP
Procedures. You specify the variable maps used by a PSP procedure in the Parameters list applet of
the Administration - Order Management screen, then the Signals view.

NOTE: Certain methods of the Context Service business service include variable map arguments for
these definitions. See “Variable Map Methods of the Context Service Business Service” on page 56.

The PSP procedure is independent of the calling context. Most order management signals invoke the
PSP Driver Workflow Process (shown in Figure 12 on page 54), which is a generic controller workflow.
The controller workflow uses variable maps to construct inputs for the PSP procedure. Those variable
maps are defined in the signal that invokes the controller workflow.

Signal parameters define the scope of line items retrieved using the variable map, and they define
the variable maps used to retrieve Context and Row Set data. Figure 11 shows example signal
parameters.

Example of Variable Map Methods in Use
Figure 12 shows the PSP Driver Workflow Process, which is a generic example of a controller
workflow. PSP Driver Workflow Process uses variable maps to retrieve data that is then synchronized
back to the database.

As shown in Figure 12, the PSP Driver Workflow Process steps perform as follows:

Figure 11. Signal Parameters for Variable Maps

Figure 12. PSP Driver Workflow Process
Siebel Order Management Infrastructure Guide Siebel 201854

Variable Maps ■ About Using Variable Maps
■ Get Context Row Set. Calls the Context Service business service method GetRowSetData to
retrieve header-level information using the Context variable map (Variable Map - Context).

■ Get Row Set. Calls the Context Service business service method GetRowSetData to retrieve
row-level information using the Row Set variable map (Variable Map - Row Set) and to scope
input arguments.

■ Dispatch Service. Calls the sub workflow process defined in the calling signal and passes in the
input argument.

■ Set Pricing Date. Sets pricing date based on whether it is for scenario testing:

■ Set system time stamp if it is not for scenario testing:

{Context.Effective Pricing Date} = TimeStamp()

■ Set Active JWS Test DT if it is for scenario testing:

{Context.Effective Pricing Date} = GetProfileAttr("Active JWS Test DT")

■ Sync Row Set. Calls the Context Service business service method SyncRowSetData to write any
updates back to the database (for example, updates to prices).

To define the variable map used by a PSP procedure
1 Navigate to the Administration - Order Management screen, then the Signals view.

2 In the Signals list applet, select the signal that will invoke the PSP procedure.

3 In the Versions list applet, click the Work Space hyperlink to access the Actions list.

4 In the Actions list applet, enter the name of the controller workflow in the Service Name field.

NOTE: Most PSP signals invoke the generic PSP Driver Workflow Process.

5 In the Parameters list applet, (scroll down, if necessary), enter parameters for the signal, as
follows:

■ Using Scope arguments and values, define the scope of line items retrieved by the variable
map.

■ Using Variable Map parameters, define the variable maps used to retrieve Context and Row
Set data.

Migrating Variable Maps Between Environments
You can move variable maps between environments (such as from development to test) by using the
Application Deployment Manager (ADM). For information about using ADM, see Siebel Application
Deployment Manager Guide.

You can also export a specific version of a variable map using the Export Version applet menu in the
Variable Map Version list applet. To import a variable map, navigate to the Administration - Products
screen, then the Joint Workspace view. This is a joint workspace for all types of versioned objects
(signals, variable maps, products, product attributes, and so on). For more information about import
or export, see Siebel Product Administration Guide.
Siebel Order Management Infrastructure Guide Siebel 2018 55

Variable Maps ■ Variable Map Methods of the Context Service Business Service
When exported, a variable map and its child variable maps are exported together into an XML file.
When imported through the joint workspace, both parent and child variable maps will be imported
and listed in the Joint Workspace view.

NOTE: You must go to each of these variable maps separately to release them.

Variable Map Methods of the Context
Service Business Service
The Context Service business service provides the APIs shown in Table 10 for variable maps.

Table 10. Variable Map Methods of the Context Service Business Service

Method Arguments Description

GetRowSetData [in] CPCollapseAll: String By default, if the CPScope requires expansion of
the customizable product to read all products,
after GetRowSetData, this customizable product
is expanded on the UI unless this flag is set to
be true, in which case the customizable product
is collapsed.

[in] CPScope: String Component, Master, Whole, Component, and
Subcomponents. This argument defines which
parts of the current customizable product are
queried.

[out] PropSet: Hierarchy A row set property set containing the query
results.

[in] RowScope: String Current, Selected, or All. Defines which rows the
Context Service service will read data from.

[in] VariableMap: String The variable map defining objects to query.

SyncRowSetData [in] RowSet: Hierarchy The updated row set property set.

[in] VariableMap: String The variable map defining objects to update.
Siebel Order Management Infrastructure Guide Siebel 201856

5 PSP Engine
This chapter describes the Product Selection and Pricing (PSP) engine and explains the how-to
aspects of working with PSP. It includes the following topics:

■ “About the Product Selection and Pricing Engine” on page 57

■ “Components of the PSP Engine” on page 62

■ “PSP Driver Workflow” on page 66

■ “Conditions and Actions for PSP Procedures” on page 69

■ “About Temporary Variables” on page 74

■ “Row Set Transformation Toolkit Methods” on page 74

■ “Configuring PSP Procedures” on page 90

■ “Creating a Custom PSP Application” on page 97

■ “Calling a PSP Procedure from an External Application” on page 98

■ “About Logging of PSP” on page 98

■ “About Troubleshooting of PSP” on page 99

■ “About Tuning Performance of PSP” on page 101

About the Product Selection and Pricing
Engine
The Product Selection and Pricing (PSP) engine is a generalized procedural logic engine for
transforming an input row set into an output row set. PSP is an extension of Siebel Workflow. A PSP
procedure is a workflow process that includes a Business Service step employing methods of the Row
Set Transformation Toolkit business service.

A PSP procedure transforms a set of input rows into a set of output rows by executing matrix lookups,
conditional logic, and external function calls. In this release, the functions of pricing, eligibility
(product, attribute, and promotion), and product recommendation use the PSP engine.

For example, Siebel Pricer uses PSP procedures to apply all of the different types of discounts that
are available with a particular product. Because these discounts are based on a PSP procedure rather
than on C++ code, you can:

■ Change the order in which discounts are applied.

■ Customize the calculations used by discounts.

■ Extend the preconfigured pricing PSP procedure to calculate additional costs or prices and
margin.
Siebel Order Management Infrastructure Guide Siebel 2018 57

PSP Engine ■ About the Product Selection and Pricing Engine
Advantages of PSP Usage
The following are some of the benefits of using PSP procedures as a basis for Siebel order
management tasks:

■ Highly configurable procedural logic eliminates or reduces the need for custom script.

■ PSP methods and infrastructure are optimized for performance (for example, with set-based
processing, caching, and SQL query consolidation).

■ The PSP framework can be extended for use with external services and functions.

■ Integrators can learn this one framework and use it for pricing, eligibility, and so on.

PSP Concepts
A PSP procedure is the sequence of steps involved in transforming an input row set into an output
row set. Examples of steps include a call to a business service, an instance of a transform, a
conditional branch, a subprocedure call, or a terminator (an end step). A PSP procedure is any
workflow that uses methods from the Row Set Transformation Toolkit business service.

A controller workflow is the invocation mechanism for the PSP engine. A PSP procedure is always
called by a controller workflow. A controller workflow retrieves contextual information, invokes a
generic PSP procedure, and then processes the results. It insulates the underlying PSP logic (such
as a pricing procedure) from the calling context (such as repricing a quote or pricing an XML order
passed in through a Web service). For more details on controller workflows, see “Controller Workflow”
on page 62.

A row set is a property set that conforms to the structure defined in “About Row Sets” on page 60. It
is used to represent the set of data upon which the PSP engine operates (such as data for quote line
items).

The Row Set Transformation Toolkit is a business service that exposes a set of methods called
transforms. Transform methods are called by steps within a PSP procedure. A transform accepts one
or more input row sets, performs a series of operations (such as database queries), and then returns
an updated version of the row sets as output. Special step input arguments called actions define the
processing performed by a particular step. An action can perform a wide variety of updates to the
input row set (such as setting the Net Price field value). Most transforms have a defined set of
transform conditions that occur while the transform is executing (for example, the Simple Look-Up
transform queries the database and then raises one or more of the following conditions: On First
Match, On Match, On Last Match, On No Match). The condition raised depends on the result of the
SQL query. Actions are attached to these conditions.
Siebel Order Management Infrastructure Guide Siebel 201858

PSP Engine ■ About the Product Selection and Pricing Engine
How PSP Procedures Are Built
PSP procedures are created in the same way that standard workflows are created, in the Business
Process Designer. The Process Designer is a user interface to help you arrange process objects. You
access it from the Workflow Process object in Siebel Tools. For more information about building
workflows, see Siebel Business Process Framework: Workflow Guide.

Like a standard workflow, a PSP procedure has a start step and an end step. A PSP procedure differs
from a standard workflow in that the steps of a standard workflow perform actions, while the steps
of a PSP procedure transform row sets in some way, as shown in Figure 13. In Figure 13, a set of
product information that includes data on product IDs, names, and quantities is transformed into a
new set of information that includes an additional product as well as pricing information for each
product.

The PSP engine transforms row sets using the methods in the Row Set Transformation Toolkit
business service. For more information about these methods, see “Row Set Transformation Toolkit
Methods” on page 74.

Figure 13. Transformation of a Row Set by a PSP Procedure
Siebel Order Management Infrastructure Guide Siebel 2018 59

PSP Engine ■ About the Product Selection and Pricing Engine
About Row Sets
A type of property set, a row set is a memory structure used to pass data between business services.
A row set is a group of rows where each row contains multiple name-value pairs (paired values). A
row within a row set can have multiple child property sets with name-value pairs; the hierarchy goes
no deeper than these child property sets.

Figure 14 provides a graphical example of a row set. In this figure, the second layer of boxes labeled
“Row 1,” “Row 2,” and “Row 3” are the rows within this example row set. Each of these rows 1 through
3 have name-value pairs for data labeled “ID,” “Price List ID,” “Product ID,” “NRC Price,” and “MRC
Price.” Additionally, each of these rows 1 through 3 contains child property sets, called “NRC Price
Waterfall Row Set” and “MRC Price Waterfall Row Set.” The child property sets contain their own rows
with name-value pairs, for a deeper level of pricing data.
Siebel Order Management Infrastructure Guide Siebel 201860

PSP Engine ■ About the Product Selection and Pricing Engine
For more information about Siebel property sets, see Integration Platform Technologies: Siebel
Enterprise Application Integration.

Figure 14. Example Row Set
Siebel Order Management Infrastructure Guide Siebel 2018 61

PSP Engine ■ Components of the PSP Engine
Components of the PSP Engine
The PSP engine is comprised of the pieces shown in Figure 15 and described in the following topics:

■ “Controller Workflow” on page 62

■ “Variable Maps” on page 64

■ “PSP Procedures” on page 64

■ “PSP, Siebel Workflow, and Siebel Tools” on page 65

■ “Row Set Transformation Toolkit Business Service” on page 65

■ “Custom Business Services” on page 66

Controller Workflow
A controller workflow invokes the PSP engine every time a PSP procedure is called. The controller
workflow insulates the PSP procedure from the calling context. The various calling contexts, such as
Siebel Configurator, a product picklist, or a Web service, each have separate controller workflows.
The PSP Driver Workflow Process is an example of a prebuilt controller workflow. You can configure
your own controller workflows to meet your organization’s particular needs.

NOTE: PSP Driver Workflow Process is the generic controller workflow. For more information, see
“PSP Driver Workflow” on page 66.

Figure 15. Components of PSP
Siebel Order Management Infrastructure Guide Siebel 201862

PSP Engine ■ Components of the PSP Engine
While the PSP procedure transforms row sets in memory, the controller workflow passes those row
sets to the PSP procedure and then determines what to do with the PSP procedure’s output. The
typical flow is:

■ An end user clicks a button or makes some other choice in the interface.

■ This end-user action triggers a signal which executes the controller workflow.

■ The controller workflow establishes the inputs for the PSP procedure by finding data and
constructing this data into row sets. The controller workflow can use the variable maps
mechanism to construct the row sets.

■ The controller workflow calls the PSP procedure and passes the inputs to it.

■ The PSP procedure transforms the inputs and sends the transformed row set back to the
controller workflow.

■ The controller workflow determines what to do with these transformed rows. For example, it
might display the transformed rows on the screen or write them to the database.

The PSP procedure’s only function is to transform row sets in memory. The controller workflow
executes any other actions.

Figure 16 shows an example of a controller workflow.

This controller workflow and its called PSP procedure operate as follows:

1 Get Shared Context Variables. This first step (after the Start step) obtains the needed data
by using the variable maps mechanism (the Context Service business service) to populate a
property set containing context variables shared by all rows (such as Channel, Account Type, or
User Role).

2 Get Selected Line Items as Row Set. This step instructs the Context Service business service
to populate a property set containing the input row set.

3 Price. This Subprocess step calls the Price PSP procedure, passing the context variables and the
input row set. The Price PSP procedure transforms the row set and passes the values back to the
controller workflow.

4 Update Line Items. This step, which also uses variable maps, updates the line items with the
values from the transformed row set. That is, it saves the newly calculated prices.

Figure 16. Example of a Controller Workflow That Invokes the Price PSP Procedure
Siebel Order Management Infrastructure Guide Siebel 2018 63

PSP Engine ■ Components of the PSP Engine
Variable Maps
Variable maps, using the Context Service business service, help the controller workflow to construct
inputs to PSP procedures and process the output of PSP procedures. The Context Service business
service optimizes the querying and updating of row set data by reading data directly from the active
business component, thereby eliminating unnecessary SQL queries. Context Service provides a row-
level delta that determines which line items to update. Batched SQL eliminates unnecessary network
round-trips.

The Context Service business service:

■ Constructs the input row sets. Context Service converts business component data, XML, or
property set data to a common format. It translates from various name spaces to the PSP name
space. It defines the subset of fields required by the PSP procedure.

■ Writes the output row set back to its source. Context Service converts from the common format
back to the business component data, XML, or property set data. It translates from the PSP name
space to the target name space.

NOTE: Most PSP procedures use the Context Service business service, but it is not required for all
PSP procedures. For example, a Web service could invoke Siebel Pricer with a property set directly
generated from the input XML document by XSLT, without using the Context Service business
service.

For more information about variable maps and the Context Service business service, see “Variable
Maps” on page 41.

PSP Procedures
A PSP procedure is any workflow that uses methods from the Row Set Transformation Toolkit
business service. These methods of the Row Set Transformation Toolkit business service are called
PSP transforms. A transform, such as the Simple Look-Up method, processes an input row set. There
are a number of transforms that process input row sets in different ways. For example, the Simple
Look-Up transform uses a simple search expression to look up each input row in a business
component, while the Split transform takes an input row set, evaluates a condition for each of its
rows, then splits the input row set into two output row sets.

NOTE: In addition to invoking Row Set Transformation Toolkit business service methods, a PSP
procedure can invoke methods from custom business services.

Each step in a PSP procedure is a parameterized call to a transform method. A PSP procedure can
call another PSP procedure as a subprocess, to provide for modularization of logic.

The Siebel Business Process Designer interface is used to create both the PSP procedure and the
controller workflow that invokes it. Like any workflow process, a PSP procedure can make use of any
standard Siebel Workflow feature.

Figure 17 shows an example of a PSP procedure used in pricing. Each step is a parameterized call to
a method in the Row Set Transformation Toolkit.
Siebel Order Management Infrastructure Guide Siebel 201864

PSP Engine ■ Components of the PSP Engine
Notice that one of the steps splits the input row set into multiple temporary subsets. Later steps
perform logic on these subsets. The last step merges these subsets, so they form a single row set
again.

PSP, Siebel Workflow, and Siebel Tools
Siebel Workflow—the application you use to define, manage, and enforce your organization’s
business processes by creating workflow processes—is also the application you use to create, edit,
and execute PSP procedures. Siebel Workflow’s Process Designer resides in Siebel Tools.

NOTE: Siebel Workflow is also known as Siebel Business Process Designer, which is the configuration
interface and the administrative interface for Siebel Workflow.

You configure PSP procedures and their controller workflows from the Workflow Process object, a top-
level (highest level) object in the Object Explorer within Siebel Tools. In this way, you use the Process
Designer to enter transforms for PSP procedure steps as input arguments.

For more information about Siebel Workflow, see Siebel Business Process Framework: Workflow
Guide. For more information about configuring PSP procedures, see “Configuring PSP Procedures” on
page 90.

Row Set Transformation Toolkit Business Service
The Row Set Transformation Toolkit is a business service that provides the following methods (also
known as transforms) for manipulating and transforming row sets:

■ Aggregate Method. Calculate the minimum, maximum, average, sum, or count of sub-groups
of the row set.

■ Conditional Action Method. Evaluate a Boolean expression for each row and perform actions
based on the result.

■ Dynamic Look-Up Method. Look up each input row in a business component using a dynamic
search expression (example: attribute adjustment).

Figure 17. Example of a PSP Procedure
Siebel Order Management Infrastructure Guide Siebel 2018 65

PSP Engine ■ PSP Driver Workflow
■ Dynamic Subprocedure Method. Send each input row to the specified subprocedure for
individual processing. Each row can be associated with a different subprocedure.

■ Hierarchical Look-Up Method. Look up the closest, best, or accumulated value in an
adjustment table for each row by considering each parent in a hierarchy (example: parent
company discount).

■ Hierarchical Method. Process a hierarchy of input rows from start to end or end to start
(example: customizable product price roll-up).

■ Merge Method. Combine two or more row sets into a single row set.

■ Query Method. Query a business component and generate a row set.

■ Row Set Look-Up Method. Look up each input row in the specified row set (example: check
compatibility between a product and the list of products currently owned by the customer).

■ Rule Set Look-Up Method. Look up the rules for each input rule set and test the rules against
the row set. Perform actions if the rule set passes or fails (example: identify applicable bundles
or promotions).

■ Simple Look-Up Method. Look up each input row in a business component using a simple search
expression (example: list price, exclusive eligibility).

■ Split Method. Split an input row set into two output row sets by evaluating a condition for each
row.

For each of these methods, you specify a condition and actions, as described in “Conditions and
Actions for PSP Procedures” on page 69. All the methods support the same action syntax and
capabilities. Each method exposes a unique set of conditions and variables.

For details on each of these methods, see “Row Set Transformation Toolkit Methods” on page 74.

Custom Business Services
In addition to calling Row Set Transformation Toolkit business service methods, PSP procedures can
call custom methods that you write using Siebel VB or Siebel eScript. For more information, see
Siebel VB Language Reference and Siebel eScript Language Reference.

PSP Driver Workflow
A controller workflow is the invocation mechanism for each PSP procedure. The workflow called PSP
Driver Workflow Process is the default controller workflow. When a signal calls the controlling
workflow for a process, it passes the names of the PSP procedures to the PSP Driver Workflow.

NOTE: PSP Driver Workflow is the default controller workflow, but you can configure your own
controller workflow to replace the default if you find that modifications are necessary for your
organization’s requirements. You configure a controller workflow in the same way that you configure
a standard workflow process. You specify the arguments of a controller workflow in the signal
definition, so for your custom controller workflow, navigate to the Administration - Order
Management screen, then the Signals view in order to change this definition. For information about
configuring workflow processes, see Siebel Business Process Framework: Workflow Guide.
Siebel Order Management Infrastructure Guide Siebel 201866

PSP Engine ■ PSP Driver Workflow
Arguments for the default PSP Driver Workflow are shown in Figure 18 on page 67. PSP Driver
Workflow is set as the controller workflow for the signal CalculatePriceAll in the Service Name field
of the Actions tab.

The PSP Driver Workflow acts as the controller workflow for the pricing and eligibility PSP procedures.
It calls the Context Service to construct a property set called Row Set containing the selected rows
from the source object (Quote, Order, Agreement, or Customizable Product). It also calls the Context
Service to construct a property set called Context that contains header-level information shared by
all rows (for example: Account Type, Credit Score). It then invokes the PSP procedure specified in
its input arguments. The PSP procedure updates and returns a new version of Row Set. Finally, the
controller workflow instructs the Context Service to save any changes in Row Set back to the source
object.

The PSP Driver Workflow, shown in Figure 19 on page 68, does the following:

1 Asks the Context Service to generate two property sets (row sets): the shared Context and the
Row Set containing individual line items. These are representations of the Line Item and Header
business components using variable maps. For more information about variable maps, see
Chapter 4, “Variable Maps.”

Figure 18. Arguments for the PSP Driver Workflow
Siebel Order Management Infrastructure Guide Siebel 2018 67

PSP Engine ■ PSP Driver Workflow
2 Dispatches to the workflow indicated by the process property PSPWorkflowName. For example,
in the event the user selected RepriceAll, this step dispatches to the Pricing Procedure - Default
workflow to perform all pricing operations.

3 Synchronizes the updated PSP information back to the input data source (Quote, Order,
Agreement, or Customizable Product). The synchronization can be skipped by setting the Sync
process property.

Table 11 provides a list of the steps in the PSP Driver Workflow Process, showing also the business
service and method called by each step.

Figure 19. PSP Driver Workflow Process

Table 11. PSP Driver Workflow Process Steps

Step Name Type Business Service Method Description

Get Context Row Set Business
Service

Context Service GetRowSetData Generate the Context
Property Set which
represents the Header
Buscomp.

Get Row Set Business
Service

Context Service GetRowSetData Generate the Row Set
Property Set which
represents the Line
Item Buscomp.

Set Pricing Date Business
Service

Context Service GetRowSetData Set pricing date.

Dispatch Service Business
Service

ISS PSP Dispatch
Service

CallPSPWorkflow Dynamically dispatch
to a sub-process.
Siebel Order Management Infrastructure Guide Siebel 201868

PSP Engine ■ Conditions and Actions for PSP Procedures
Conditions and Actions for PSP
Procedures
Steps of PSP procedures can call Row Set Transformation Toolkit business service methods. Each Row
Set Transformation Toolkit method (transform) performs a parameterized set of actions based on
conditions that occur as the method executes.

Conditions and actions for each step are entered as input arguments in Siebel Workflow’s Process
Designer in Siebel Tools, as shown in an example in Figure 20:

■ In the Input Argument field, select the condition name.

■ In the Value field, enter the processing to perform if the condition is true.

■ You can specify multiple actions for one condition by using a different index number for the
condition name. In the Figure 20 example, there are multiple actions for the On True 1 condition,
with the condition name On True 1_1, On True 1_2, and On True 1_3.

■ Some Row Set Transformation Toolkit business service methods can include one or more Boolean
conditions to which the other conditions refer. In the Figure 20 example, Condition 1 is a Boolean
condition which checks the values in the Effective From and Effective To fields. The conditions On
True 1_1, On True 1_2, and On True 1_3 are true if this Boolean condition is true.

■ Actions are executed in the sequence specified by the index on the name. For example, the action
for On True 1_1 executes before the action for On True 1_2.

Need to Sync? Decision
Point

None None A user decision point of
whether
synchronization is
needed.

Sync Row Set Business
Service

Context Service SyncRowSetData Synchronizes
information back to
data sources using
Context Service.

Figure 20. Example of Conditions and Actions for a PSP Procedure

Table 11. PSP Driver Workflow Process Steps

Step Name Type Business Service Method Description
Siebel Order Management Infrastructure Guide Siebel 2018 69

PSP Engine ■ Conditions and Actions for PSP Procedures
PSP-Supported Action Expression Constructs
Table 12 defines the types of action expressions supported by PSP.

PSP-Specific Functions Used in Action Expressions
Action expressions support the full Siebel Query Language syntax including functions such as
LookupValue, IfNull, IIF, and InvokeServiceMethod. For more information about Siebel Query
Language, see Siebel Tools Online Help.

In addition to Siebel Query Language syntax functions, action expressions can include the PSP-
specific functions shown in Table 13.

Table 12. Action Constructs

Action Examples

Set a property of a row to
the value of an expression

{Row.Eligibility Status} =
LookupValue('ELIGIBILITY_STATUS','No')

{Parent.Roll-Up Amount} = ToNumber({Parent.Roll-Up
Amount}) + ToNumber({Row.Net Price})

Remove a property from a
row

{Row} -= {Row.Temp Roll-Up Price}

Move a row from one row set
to another

{Output Row Set} += {Row}

{Row Set} += {Output}

Copy a row to another row
set

{Output Row Set} += Copy({Row})

Construct a new row and
attach it as a child to the
specified row set or row

{Row}.{Waterfall} += New(‘Waterfall’, Text = ‘Hello’, Value
= 10)

{Row Set} += New(‘Row’, Text = {Match.Text})

Delete the current row from
a row set

{Row Set} -= {Row}

{Output Row Set} -= {Output}

Table 13. PSP-Specific Functions Used in Action Expressions

Function Description

ToNumber({Row.Qty}) Convert the specified property value to a number.

All values are stored as a string in a property set.

ToDate({Row.Effective Start
Date})

Convert the specified property value to a date.

All values are stored as a string in a property set.
Siebel Order Management Infrastructure Guide Siebel 201870

PSP Engine ■ Conditions and Actions for PSP Procedures
ToCurrency({Row.Net Price},
{Row.Currency Code})

Convert the specified property to a currency.

All values are stored as a string in a property set.

AdjustPrice({Row.Net Price},
{Row.Currency Code},
{Match.Adjustment Type},
{Match.Adjustment Amount},
{Match.Currency Code},
{Match.Exchange Date})

Apply the specified pricing adjustment. This function
automatically converts the currency of monetary
adjustments to match the currency of the line item.

LookUpMessage('Pricer Waterfall
- Selected Contract Adjustment',
[Account] = {Row.Temp Contract
Account})

Retrieve substituted, translated text from the UMS business
service. Payload variables are specified as name-value pairs
after the message type.

For more information about the Unified Messaging
framework, see Chapter 7, “Unified Messaging.” For details
on using the UMS business service in a PSP procedure, see
“Using Unified Messaging with the PSP Engine” on page 137.

GetXA({Row}, ‘Color’) Get an attribute value for a row.

The GetXA method has two different signatures:

1 GetXA({Row},<Attribute Name>)

2 GetXA({Row}, "Name", <Attribute Name>, "LICValue")

For more information about the second signature, see
“Using the Four-Parameter GetXA Signature” on page 72.

Sum({Row Set}, ‘Extended Net
Price’)

Sum the value of a field for all children of a property set.

Avg({Row}.{Shipments}, ‘Cost’) Calculate the average value of a field for all children of a
property set.

Min({Row Set}, ‘Score’) Get the minimum value of a field for all children of a
property set.

Max({Row Set}, ‘Score’) Get the maximum value of a field for all children of a
property set.

Count({Children}) Count the children of a property set.

Round({Row.Price},
{Context.Precision})

Round a number to the specified decimal places.

Table 13. PSP-Specific Functions Used in Action Expressions

Function Description
Siebel Order Management Infrastructure Guide Siebel 2018 71

PSP Engine ■ Conditions and Actions for PSP Procedures
Using the Four-Parameter GetXA Signature
Use the four-parameter GetXA signature if the attribute that you want to obtain is of type integer,
otherwise errors can result in calculations especially where numerous digits are involved.

To use the four-parameter GetXA signature in a workflow, you must add an additional step to retrieve
LICValues for the attributes as described in the following procedure.

To use the four-parameter GetXA signature in a workflow
1 Add an additional step to retrieve LICValues for the attributes as follows:

a In the workflow editor, create a new "Business Service" before executing the GetXA step.

b Set the Business Service Name to "Pricing Manager" and Method to "PopulateAttrLICValue"

c Set the following input parameter:

d Set the following output parameter:

2 Use the following four-parameter GetXA signature:

GetXA({Row}, "Name", <Attribute Name>, "LICValue")

for example, as follows:

{Row.Temp Attr} = ToNumber(GetXA({Row},"Name","Attribute Name","LICValue"))

LookUpMessage API
The Unified Messaging framework’s UMS business service processes all translations using the
LookUpMessage API in a PSP action script. For example, for a pricing waterfall, it might use the
following script:

{Row}.{Net Price Waterfall} += New('Waterfall', [Text] = LookUpMessage({Row.Temp
List Price Message}, [Price List] = {Match.Price List}), [Currency Code] =
{Row.Currency Code}, [Price] = {Row.List Price})

For details on using the UMS business service in a PSP procedure, see “Using Unified Messaging with
the PSP Engine” on page 137.

Input Argument Type Property Name

Row Set Process Property Row Set

Property Name Type Output Argument

Row Set Output Argument Row Set
Siebel Order Management Infrastructure Guide Siebel 201872

PSP Engine ■ Conditions and Actions for PSP Procedures
Row Set Variables Used in Action Expressions
Action expressions operate on the row set variables shown in Table 14.

Conditions and Action Variables Vary by Transform
All Row Set Transformation Toolkit business service methods (transforms) support the same action
syntax and capabilities. However, each method exposes a unique set of conditions and variables. For
example:

■ The Simple Look-Up transform joins each input row to a business component. It exposes On First
Match, On Match, On Last Match, and On No Match conditions.

Actions can reference:

■ Any field in the input row (for example, {Row.Product Id}), or

■ The joined business component (for example, {Match. List Price}).

Table 14. Row Set Variables Used in Action Expressions

Variable Description

{Row Set} The input row set for the step (specified as an input argument).

{Context} The input property set of variables shared by all rows (specified as an
input argument).

{Context} acts as a set of default values for every {Row}. If
{Row.Value} is not specified, then PSP automatically returns
{Context.Value}. This also works for {Parent.Value} in the Hierarchical
transform. If no value is found in {Row} or {Context}, then an error is
raised.

{Output Row Set} The optional output row set for the step. Most steps allow rows to be
updated and written to both {Row Set} and {Output Row Set}.

{Row} The {Row Set} row currently being processed by the transform.

{Output} The last row added to the {Output Row Set} property set.

{Parent} The parent row of {Row}. (Hierarchical transform only.)

{Children} A row set containing the child rows of {Row}. (Hierarchical transform
only.)

{Match} A property set containing name-value pairs from a joined record in a
business component or other row set. (Look-Up transforms only.)

{Property Set.Name} The value of property “Name” in the property set. (Examples: {Row.Net
Price} or {Match.Discount %})

{Property Set}.{Type} The child row set of “Property Set” of type “Type”. (Example:
{Row}.{Net Price Waterfall})
Siebel Order Management Infrastructure Guide Siebel 2018 73

PSP Engine ■ About Temporary Variables
■ The Hierarchical transform sorts the input row set into a series of tree structures and then
navigates each tree from start to end or end to start. It exposes On Leaf Row, On Row, On Parent
Row, and On Top Row conditions. Actions can reference:

■ The current row (example: {Row.Roll-Up Price})

■ Its immediate parent row (example: {Parent.Price})

■ Its child rows (example: {Children.Qty}).

For more information about the conditions and actions for each method, see “Row Set Transformation
Toolkit Methods” on page 74.

About Temporary Variables
You can create temporary variables simply by using a name that is not defined in the Variable Maps.

A temporary variable persists for the life of the property set unless you explicitly delete it using a
{Row} -= {Row.Temp Variable} action. In general, there is no need to delete temporary variables,
because they create little overhead in having a few temp variables.

It is recommended that you use a naming convention for temporary variables, such as beginning
each one with Temp (for example, Temp Roll Up Price), to make sure that they do not conflict with
the names of other variables.

NOTE: Variable names are case sensitive. For example, if you try to refer to the {Row.Net Price}
variable and you mistakenly use {Row.NEt Price}, the application will not recognize the variable.

Row Set Transformation Toolkit Methods
PSP procedures use the methods in the Row Set Transformation Toolkit to manipulate and transform
row sets. The Row Set Transformation Toolkit includes the following methods:

■ “Aggregate Method” on page 75

■ “Conditional Action Method” on page 76

■ “Dynamic Look-Up Method” on page 77

■ “Dynamic Subprocedure Method” on page 78

■ “Hierarchical Look-Up Method” on page 79

■ “Hierarchical Method” on page 81

■ “Merge Method” on page 82

■ “Query Method” on page 83

■ “Row Set Look-Up Method” on page 84

■ “Rule Set Look-Up Method” on page 85

■ “Simple Look-Up Method” on page 88

■ “Split Method” on page 89
Siebel Order Management Infrastructure Guide Siebel 201874

PSP Engine ■ Row Set Transformation Toolkit Methods
Aggregate Method
The Aggregate method calculates the sum, average, minimum, maximum, or count of subgroups of
the input row set.

Arguments

Example
Figure 21 shows an example of arguments for a PSP procedure step named Sum Product Quantity,
which calls the Aggregate method.

Input Argument Description

Context Optional. Property set of variables shared across all rows.

Row Set The set of rows to process.

Output Row Set Output Row Set is always created and contains the aggregation results.
Each row contains the Group By fields plus the Aggregate Fields
(example: Price List ID, Product ID, Qty). For the Count aggregate
type, the output row contains the Group By fields plus a field called
Count.

Process Condition A Boolean condition that is evaluated to determine whether to process
each row.

Aggregate Type Sum, Avg, Min, Max, or Count.

Aggregate Field The field to aggregate (example: Qty). Required for all types except
Count. Multiple fields can be aggregated by specifying a comma-
separated list of field names.

Group By Optional. A comma-separated list of row field names. Defines the groups
of aggregates. (Example: Price List ID, Product ID).

Figure 21. Example of Arguments for Aggregate Method
Siebel Order Management Infrastructure Guide Siebel 2018 75

PSP Engine ■ Row Set Transformation Toolkit Methods
Conditional Action Method
The Conditional Action method evaluates one or more Boolean expression for each row in the row
set and performs actions on the row based on whether the conditions are true.

Arguments

Example
Figure 22 shows an example of arguments for a PSP procedure step named Keep Price, which calls
the Conditional Action method.

Input Argument Description

Context Optional. Property set of variables shared across all rows.

Row Set The set of rows to process.

Output Row Set Optional. The property set used for output.

Process Condition A Boolean condition that is evaluated to determine whether to
process each row.

Condition [1..10] Optional. Boolean expressions that must be satisfied to initiate
corresponding actions. Executed like an If…Else If…Else If…Else
statement.

On True [1..10]_[1..10] Actions to perform if the corresponding condition is true.

On Default [1..10] Actions to perform if none of the conditions is true.

Figure 22. Example of Arguments for Conditional Action Method
Siebel Order Management Infrastructure Guide Siebel 201876

PSP Engine ■ Row Set Transformation Toolkit Methods
Dynamic Look-Up Method
The Dynamic Look-Up method looks up each input row in a dynamic matrix using a dynamic search
expression. For example, it could be used for attribute adjustments.

Arguments

Example
Figure 23 shows an example of arguments for a PSP procedure step named Matrix Adjustment, which
uses the Dynamic Look-Up method.

Input Argument Description

Context Optional. Property set of variables shared across all rows.

Row Set The set of rows to process.

Output Row Set Optional. The property set used for output.

Process Condition A Boolean condition that is evaluated to determine whether to
process each row.

Dynamic Matrix Name The name of the dynamic matrix to query.

Cache Enabled Optional. Whether to cache query results. Y or N. The default is N.

On First Match [1..20] Actions to perform on the first query result for each input row.

On Match [1..20] Actions to perform on every query result for each input row.

On Last Match [1..20] Actions to perform on the last query result for each input row.

On No Match [1..20] Actions to perform if there are no query results for an input row.

Figure 23. Example of Arguments for Dynamic Look-Up Method
Siebel Order Management Infrastructure Guide Siebel 2018 77

PSP Engine ■ Row Set Transformation Toolkit Methods
Dynamic Subprocedure Method
The Dynamic Subprocedure method sends each input row to the specified subprocedure for individual
processing. Each row can be associated with a different subprocedure.

NOTE: Rows are grouped together into an input row set and passed to each subprocedure in a single
invocation.

Arguments

Example
Figure 24 shows an example of arguments for a PSP procedure step named Execute Line Specific
Pricing.

Input Argument Description

Context Optional. Property set of variables shared across all rows.

Row Set The set of rows to process.

Subprocedure Expression Defines the procedure to execute for the row.

[Input Arguments] Any other input arguments to be passed to the subprocedures.

Figure 24. Example of Arguments for Dynamic Subprocedure Method
Siebel Order Management Infrastructure Guide Siebel 201878

PSP Engine ■ Row Set Transformation Toolkit Methods
Hierarchical Look-Up Method
The Hierarchical Look-Up method looks up the closest, best, or accumulated value in an adjustment
table for each row by considering each parent in a hierarchy. For example, it could be used to give
discounts to companies based on their parent-company discounts.

Arguments

Input Argument Description

Context Optional. Property set of variables shared across all rows.

Row Set The set of rows to process.

Output Row Set Optional. The property set used for output.

Process Condition A Boolean condition that is evaluated to determine whether to
process each row.

Hierarchy Business Object The business object to query to retrieve the hierarchy (example:
Account).

Hierarchy Business
Component

The business component to query to retrieve the hierarchy
(example: Account).

Row ID Field The hierarchical ID field in the input row (example: “Account Id”).

HBC ID Field The ID field of the hierarchy business component (example: “Id”).

HBC Parent Field The parent ID field in the hierarchy business component (example:
“Parent Account Id”).

HBC Visibility Mode Optional. The visibility mode of the hierarchy business component
query.

HBC Search Specification Optional. An additional search specification that is applied to the
hierarchy query.

Business Object The business object to query for matching records (example:
Agreement).

Business Component The business component to query for matching records (example:
Agreement Item).

Search Specification A search expression comprised of business component fields,
literals, and variable values from {Context} and {Row}. For
example:

[Product Id] = {Row.Product Id} AND [Effective From] <=
Today() AND ([Effective To] IS NULL OR [Effective To]
>= Today())

In Memory Search
Specification

Optional. Additional terms that are ANDed with the Search
Specification. The In Memory Search Specification is executed in
memory. This can be used only if Cache Enabled is Y.
Siebel Order Management Infrastructure Guide Siebel 2018 79

PSP Engine ■ Row Set Transformation Toolkit Methods
Implementing Aggregate Functions
The arguments for the Hierarchical Look-Up method are used with the aggregate functions shown in
the following table. See Table 15 for further description.

Cache Search Specification Optional. Additional terms that define the key values for the Level
1 cache; for example:

[Price List Id] = {Row.Price List Id})

For more information, see “About PSP Cache” on page 103.

Sort Specification Optional. A comma-separated list of business component fields
used to sort the query result.

Cache Enabled Optional. Specifies whether to cache query results. Y or N. The
default is N.

BC ID Field The hierarchy object ID field on the query business component
(example: Account Id).

On First Match [1..20] Actions to perform on the first query result for each input row.

On Match [1..20] Actions to perform on every query result for each input row.

On Last Match [1..20] Actions to perform on the last query result for each input row.

On No Match [1..20] Actions to perform if there are no query results for an input row.

Table 15. Hierarchical Look-Up Method Aggregate Functions

Aggregate Function Approach

Closest On First Match condition, set the output row value to a match record
value.

Minimum On Match condition, set the output row value to the value of an
expression:

{Row.Value} = IIF({Match.Value} < {Row.Value},
{Match.Value}, {Row.Value})

Maximum On Match condition, set the output row value to the value of an
expression:

{Row.Value} = IIF({Match.Value} > {Row.Value},
{Match.Value}, {Row.Value})

Accumulated On Match condition, set the output row value to the value of an
expression:

{Row.Value} = {Row.Value} + {Match.Value}

NOTE: This can be adjusted to support compounding adjustments.

Input Argument Description
Siebel Order Management Infrastructure Guide Siebel 201880

PSP Engine ■ Row Set Transformation Toolkit Methods
Example
Figure 25 shows an example of arguments for a PSP procedure step named Hierarchical Contract
Adjustment, which uses the Hierarchical Look-Up method.

Hierarchical Method
The Hierarchical method processes a hierarchy of input rows from start to end or end to start. For
example, it could be used for a customizable product price roll-up.

Arguments

Figure 25. Example of Arguments for Hierarchical Look-Up Method

Input Argument Description

Context Optional. Property set of variables shared across all rows.

Row Set The set of rows to process.

Output Row Set Optional. The property set used for output.

Process Condition A Boolean condition that is evaluated to determine whether to
process each row.

Row Id Field The ID field in {Row} (example: “Id”).

Parent Field The name of the parent ID field that defines the hierarchy in the
input row set.

Direction Up or Down. Indicates the direction of traversal of the tree.

On Top Row [1..20] Actions to perform on the first row in each tree.

On Row [1..20] Actions to perform on every row.

On Parent Row [1..20] Actions to perform on every row that has children beneath it in a
tree.

On Leaf Row [1..20] Actions to perform on rows that have no children.
Siebel Order Management Infrastructure Guide Siebel 2018 81

PSP Engine ■ Row Set Transformation Toolkit Methods
Example
Figure 26 shows an example of arguments for a PSP procedure step named Customizable Product
Roll-Up, which uses the Hierarchical method.

Merge Method
The Merge method combines two or more row sets into a single row set.

Arguments

Example
Figure 27 shows an example of arguments for a PSP procedure step named Merge Ineligible, which
uses the Merge method.

Figure 26. Example of Arguments for Hierarchical Method

Input Argument Description

Row Set The target row set into which all other row sets will be merged.

Row Set [1..20] The row sets to merge.

Figure 27. Example of Arguments for Merge Method
Siebel Order Management Infrastructure Guide Siebel 201882

PSP Engine ■ Row Set Transformation Toolkit Methods
Query Method
The Query method queries a business component and generates a row set.

Arguments

Input Argument Description

Context Optional. Property set of variables shared across all rows.

Output Row Set The property set used for output.

Business Object The business object to query.

Business Component The business component to query.

Search Specification A search expression comprised of business component fields,
literals, and variable values from {Context}. For example:

[Account Id] = {Context.Account Id}

In Memory Search
Specification

Optional. Additional terms that are ANDed with the Search
Specification. The In Memory Search Specification is executed in
memory. This can be used only if Cache Enabled is Y.

Cache Search Specification Optional. Additional terms that define the key values for the Level
1 cache; for example:

[Price List Id] = {Row.Price List Id})

For more information, see “About PSP Cache” on page 103.

Process Condition A Boolean condition that is evaluated to determine whether to
process the query.

Sort Specification Optional. A comma-separated list of business component fields
used to sort the query result.

Cache Enabled Optional. Specifies whether to cache query results. Y or N. the
default is N.

On First Match [1..20] Actions to perform on the first query result.

On Match [1..20] Actions to perform on every query result.

On Last Match [1..20] Actions to perform on the last query result.

On No Match [1..20] Actions to perform if there are no query results.
Siebel Order Management Infrastructure Guide Siebel 2018 83

PSP Engine ■ Row Set Transformation Toolkit Methods
Example
Figure 28 shows an example of arguments for a PSP procedure step named Get Account Address,
which uses the Query method.

Row Set Look-Up Method
The Row Set Look-Up method looks up each input row in another row set using a specified search
expression. For example, it could be used to check for compatibility.

Arguments

Example
Figure 29 shows an example of arguments for a PSP procedure step named Flag Incompatible Rows,
which uses the Row Set Look-Up method.

Figure 28. Example of Arguments for Query Method

Input Argument Description

Context Optional. Property set of variables shared across all rows.

Row Set The set of rows to process.

Output Row Set Optional. The property set used for output.

Process Condition A Boolean condition that is evaluated to determine whether to
process each row.

Match Row Set The row set that will be matched with the input row set.

Search Specification A search expression comprised of literals and variable values from
{Context}, {Row}, and {Match}. For example:

{Row.Product Id} = {Match.Product Id}

On First Match [1..20] Actions to perform on the first match for each input row.

On Match [1..20] Actions to perform on every match for each input row.

On Last Match [1..20] Actions to perform on the last match for each input row.

On No Match [1..20] Actions to perform if there are no matches for an input row.
Siebel Order Management Infrastructure Guide Siebel 201884

PSP Engine ■ Row Set Transformation Toolkit Methods
Rule Set Look-Up Method
The Rule Set Look-Up method looks up the rules for each input rule set and tests the rules against
the row set. Then it performs actions if the rule set passes or fails. For example, it could be used for
identifying applicable bundles or promotions.

Arguments

Figure 29. Example of Arguments for Row Set Look-Up Method

Input Argument Description

Context Optional. Property set of variables shared across all rows.

Row Set The set of rows to process.

Output Row Set Optional. The property set used for output.

Process Condition A Boolean condition that is evaluated to determine whether to
process each row.

Business Object The business object to query to retrieve the rules.

Business Component The business component to query to retrieve the rules.

Search Specification A search expression comprised of business component fields,
literals, and variable values from {Context} and {Row}. For
example:

[Required Flag] = 'Y'

In Memory Search
Specification

Optional. Additional terms that are ANDed with the Search
Specification. The In Memory Search Specification is executed in
memory. This can be used only if Cache Enabled is Y.

Cache Search Specification Optional. Additional terms that define the key values for the Level
1 cache; for example:

[Price List Id] = {Row.Price List Id})

For more information, see “About PSP Cache” on page 103.

Sort Specification Optional. A comma-separated list of business component fields
used to sort the query result.
Siebel Order Management Infrastructure Guide Siebel 2018 85

PSP Engine ■ Row Set Transformation Toolkit Methods
Cache Enabled Optional. Specifies whether to cache query results. Y or N. The
default is N.

Rule Set Field The field in the business component that groups the rules into a rule
set (example: Promotion Id, Bundle Id).

Row Join Field The field in the {Row} that is joined to a matching rule (example:
Product Id). This transform tests all rows that join to see if the rule
expression is satisfied.

Rule Join Field The field in the rule business component that is joined to a matching
{Row} (example: Product Id).

Rule Expression Optional. A Boolean expression that defines whether a rule is
satisfied by a row; for example:

"{Match.Min Qty} = 0)

OR

{Match.Min Qty} <= {Row.Qty}")

Pass Only If All Rules Match Y or N. This indicates whether to execute the On Pass … conditions
only if all rules in a rule set pass, or whether to execute those
conditions for any rule that is satisfied.

Row Set Sort Specification Optional. A comma-separated list of {Row} field names that
determine the sequence in which rows in {Row Set} are processed
as they are compared with the rules. This transform is used to make
sure that the highest value item is given away in a buy-one-get-
one-free scenario. This transform is required for backward
compatibility.

Input Argument Description
Siebel Order Management Infrastructure Guide Siebel 201886

PSP Engine ■ Row Set Transformation Toolkit Methods
Rule Sets A property set containing a list of rule sets to test. Each child
property set can contain the following fields:

■ [Rule Set Sequence Id] (optional)

■ [Sequence] (optional)

■ A value for the "Rule Set Field" (example: [Bundle Id])

■ [Next Sequence on Fail] (optional)

For example, the list of promotions that requires integrity checking
or the list of bundles associated with the current price list.

If the [Next Sequence on Pass] field is populated, then the Rule
Sets transform skips to that value of [Sequence] if the current rule
set passes.

If the [Next Sequence on Fail] field is populated, then the transform
skips to that value of [Sequence] if the current rule set fails.

NOTE: There may be multiple sequences of rule sets in the Rule
Sets property set. Individual rule-set sequences are identified by
the optional [Rule Set Sequence Id] field.

Attributes of the rule set being evaluated are exposed to action
syntax as {Rule Set.Value}.

On Pass First Match Occurs for the first row in the row set that matches a rule in a rule
set for which the evaluation criteria are satisfied.

For 'On Pass … [Rule]' conditions, {Row} and {Match} variables are
available to actions.

On Pass Match Occurs for every row in the row set that matches a rule in a rule set
for which the evaluation criteria are satisfied.

For 'On Pass … [Rule]' conditions, {Row} and {Match} variables are
available to actions.

On Pass Last Match Occurs for the last row in the row set that matches a rule in a rule
set for which the evaluation criteria are satisfied.

For 'On Pass … [Rule]' conditions, {Row} and {Match} variables are
available to actions.

On Fail First Rule Occurs for the first rule not satisfied in a failed rule set.

NOTE: For On Fail … [Rule] conditions, only the {Match} variable is
available to actions.

On Fail Rule Occurs for each rule that was not satisfied in a failed rule set.

On Fail Last Rule Occurs for the last rule that was not satisfied in a failed rule set.

Input Argument Description
Siebel Order Management Infrastructure Guide Siebel 2018 87

PSP Engine ■ Row Set Transformation Toolkit Methods
Example
Figure 30 shows an example of arguments for a PSP procedure step named Identify Applicable
Bundles, which uses the Rule Set Look-Up method.

Simple Look-Up Method
The Simple Look-Up method looks up each input row in a business component using a simple search
expression. For example, it could be used to look up list price or exclusive eligibility.

Arguments

Figure 30. Example of Arguments for Rule Set Look-Up Method

Input Argument Description

Context Optional. Property set of variables shared across all rows.

Row Set The set of rows to process.

Output Row Set Optional. The property set used for output.

Process Condition A Boolean condition that is evaluated to determine whether to
process each row.

Business Object The business object to query.

Business Component The business component to query.

Search Specification A search expression comprised of business component fields,
literals, and variable values from {Context} and {Row}. For
example:

[Price List Id] = {Row.Price List Id} AND [Product Id]
= {Row.Product Id}

In Memory Search
Specification

Optional. Additional terms that are ANDed with the Search
Specification. The In Memory Search Specification is executed in
memory. This can be used only if Cache Enabled is Y.
Siebel Order Management Infrastructure Guide Siebel 201888

PSP Engine ■ Row Set Transformation Toolkit Methods
Example
Figure 31 shows an example of arguments for a PSP procedure step named In Price List, which uses
the Simple Look-Up method.

Split Method
The Split method splits an input row set into two output row sets by evaluating a condition for each
row.

Arguments

Cache Search Specification Optional. Additional terms that define the key values for the Level
1 cache; for example:

[Price List Id] = {Row.Price List Id})

For more information, see “About PSP Cache” on page 103.

Sort Specification Optional. A comma-separated list of business component fields
used to sort the query result.

Cache Enabled Optional. Specifies whether to cache query results. Y or N. The
default is N.

On First Match [1..20] Actions to perform on the first query result for each input row.

On Match [1..20] Actions to perform on every query result for each input row.

On Last Match [1..20] Actions to perform on the last query result for each input row.

On No Match [1..20] Actions to perform if there are no query results for an input row.

Figure 31. Example of Arguments for Simple Look-Up Method

Input Argument Description

Context Optional. Property set of variables shared across all rows.

Row Set The set of rows to process.

Input Argument Description
Siebel Order Management Infrastructure Guide Siebel 2018 89

PSP Engine ■ Configuring PSP Procedures
Example
Figure 32 shows an example of arguments for a PSP procedure step named Inclusive Eligibility, which
uses the Split method.

Configuring PSP Procedures
You configure, test, and release a PSP procedure as you would any workflow process. For information
about creating workflow processes, see Siebel Business Process Framework: Workflow Guide.

NOTE: Workflow processes which rely on the UI context and on variable maps and signals can only
be tested in the workspace but cannot be simulated.

Use the following sequence of steps:

1 Create or edit a PSP procedure in the Siebel Tools development environment.

2 From within Siebel Tools, start the Siebel Client in debug mode.

3 In the Siebel Client, test the behavior of the PSP procedure.

4 Activate the PSP procedure in production.

The following topics contain more information about configuring PSP procedures:

■ “Creating PSP Procedures” on page 91

■ “Best Practices for Configuring PSP Procedures” on page 91

■ “Configuring Eligibility, Compatibility, and Pricing” on page 92

Condition A Boolean expression that references {Context} and {Row} field values.

On True Row Set The row set to which rows are moved if Condition evaluates to True.

Figure 32. Example of Arguments for Split Method

Input Argument Description
Siebel Order Management Infrastructure Guide Siebel 201890

PSP Engine ■ Configuring PSP Procedures
Creating PSP Procedures
PSP procedures are created in the same way that standard workflow processes are created. For
information about creating workflow processes, see Siebel Business Process Framework: Workflow
Guide.

To create a PSP procedure
1 In Siebel Tools, create a workflow process.

2 To one or more of the workflow’s steps, add Row Set Transformation Toolkit methods as input
arguments.

CAUTION: PSP requires that each input property set for a PSP procedure step must also be defined
as an output property set, even though the input property set is technically not output. This is
required by a workflow performance optimization that makes sure input and output property sets are
not copied when the transform method is invoked.

Best Practices for Configuring PSP Procedures
To reduce the work of maintenance and to tune performance, follow these guidelines for designing
PSP procedures:

■ Use the standard PSP procedures as your starting point. Trim and tune each PSP procedure
to match your business requirements. PSP procedure execution is critical to the end-user
response time of your Siebel application. Always review the standard, shipped PSP procedures
and trim them as necessary, for example:

■ Eliminate steps that are not required in your implementation.

■ Eliminate variables from the default variable maps that are not required to support your
business logic.

NOTE: These tuning guidelines can have a major impact on performance and scalability. For help
with tuning, create a service request (SR) on My Oracle Support. Alternatively, you can phone
Global Customer Support directly to create an SR or get a status update on your SR. Support
phone numbers are listed on My Oracle Support.

■ Add useful subprocedures. In every case for which the same set of steps is invoked from
multiple places, consider creating a subprocedure for those steps. Then call the subprocedure
rather than repeating the set of steps.

■ Remove unnecessary subprocedures. Avoid or remove subprocedures that are not required
by your organization’s particular needs. This is recommended because subprocedure calls involve
copying the row set, which adds to performance overhead.

■ Keep the logic generic. Do not implement account-specific or product-specific logic in a PSP
procedure. Because this logic changes frequently, it is best for it to be maintained by marketing
administrators.
Siebel Order Management Infrastructure Guide Siebel 2018 91

PSP Engine ■ Configuring PSP Procedures
Configuring Eligibility, Compatibility, and Pricing
Different information is required to configure eligibility, compatibility, and pricing in the following
scenarios:

■ In an asset-based ordering (ABO) environment. For more information, see “Eligibility,
Compatibility, and Pricing Using the Configurator in an ABO Environment” on page 92.

■ In a non-ABO environment. For more information, see “Eligibility, Compatibility, and Pricing Using
the Configurator in a Non-ABO Environment” on page 94.

■ When using the line item UI, as opposed to the Configurator UI

■ The line item UI refers to the Line Items applet in Siebel application. Access the Line Items
applet by navigating to (for example) the Sales Order screen, List, then the Line Items view.

■ This Line Items applet contains a Customize button, which allows you to start the
Configurator if the product in the order line item can be configured. The Configurator creates
a new view (the Configurator UI) to display the line item in a different way, and allow you to
reconfigure the line item.

For more information, see “Eligibility, Compatibility, and Pricing Using the Line Item UI” on page 95.

This topic describes the configuration that is necessary in Business Components, Integration Objects,
and Business Service Properties to set up eligibility, compatibility, and pricing for these different
scenarios.

For information about how to configure additional fields for use in eligibility, compatibility, and
pricing, see “Configuring an Additional Field For Use in Eligibility, Compatibility, and Pricing” on page 95.

Eligibility, Compatibility, and Pricing Using the Configurator in an ABO
Environment
This topic describes how to enable ABO for a Siebel Developer Web Client and a Siebel Application
Object Manager.

Enabling Asset Based Ordering for a Siebel Developer Web Client
Use the following procedure to enable ABO for a Siebel Developer Web client.

To enable Asset Based Ordering for a Siebel Developer Web Client
■ Set the AssetBasedOrderingEnabled parameter in your configuration file (siebel.cfg) to True.

Then when you click the Customize button in the quote items applet or order line items applet in
your Siebel Business Application:

■ No signal is raised.

■ The SIS OM Edit Delta Quote Line Item workflow is invoked
Siebel Order Management Infrastructure Guide Siebel 201892

PSP Engine ■ Configuring PSP Procedures
■ The following integration objects are used to build the Configurator instance property set:

SIS OM Quote
SIS OM Order
SIS OM Asset
Siebel Order Management Infrastructure Guide Siebel 2018 93

PSP Engine ■ Configuring PSP Procedures
Enabling Asset Based Ordering for a Siebel Application Object Manager
Use the following procedure to enable ABO for a Siebel Application Object Manager.

To enable Asset Based Ordering for a Siebel Application Object Manager
1 Set the AssetBasedOrderingEnabled parameter in your Siebel Business Application by navigating

to the Administration - Server Configuration screen, Enterprises, Component Definitions, and
then the Parameters view.

2 Query for the object manager component where you want to enable ABO.

3 Query for the parameter Order Management - Enable Asset Based Ordering, and set the Current
Value to True.

4 Save this record.

Then when you click the Customize button in the quote items applet or order line items applet in
your Siebel Business Application:

■ No signal is raised.

■ The SIS OM Edit Delta Quote Line Item workflow is invoked

■ The following integration objects are used to build the Configurator instance property set:

SIS OM Quote
SIS OM Order
SIS OM Asset

Eligibility, Compatibility, and Pricing Using the Configurator in a
Non-ABO Environment
This topic describes how to disable ABO for a Siebel Developer Web Client and a Siebel Application
Object Manager.

Disabling Asset Based Ordering for a Siebel Developer Web Client
Use the following procedure to disable ABO for a Siebel Developer Web client.

To disable Asset Based Ordering for a Siebel Developer Web Client
■ Set the AssetBasedOrderingEnabled parameter in your configuration file (siebel.cfg) to False.

Then when you click the Customize button in the quote items applet or order line items applet in
your Siebel Business Application:

■ The Customize signal is raised.

■ The Configurator Load workflow is invoked

■ The following integration objects are used to build the Configurator instance property set:

7.7 Quote Integration Object

7.7 Order Entry Integration Object
Siebel Order Management Infrastructure Guide Siebel 201894

PSP Engine ■ Configuring PSP Procedures
Disabling Asset Based Ordering for a Siebel Application Object Manager
Use the following procedure to disable ABO for a Siebel Application Object Manager.

To disable Asset Based Ordering for a Siebel Application Object Manager
1 Set the AssetBasedOrderingEnabled parameter in your Siebel Business Application by navigating

to the Administration - Server Configuration screen, Enterprises, Component Definitions, and
then Parameters view.

2 Query for the object manager component where you want to disable ABO.

3 Query for the parameter Order Management - Enable Asset Based Ordering, and set the Current
Value to False.

4 Save this record.

Then when you click the Customize button in the quote items applet or order line items applet in
your Siebel Business Application:

■ The Customize signal is raised.

■ The Configurator Load workflow is invoked

■ The following integration objects are used to build the Configurator instance property set:

7.7 Quote Integration Object

7.7 Order Entry Integration Object

Eligibility, Compatibility, and Pricing Using the Line Item UI
When the user clicks on the Reprice (Pricing) button or Verify (Eligibility) button in the quote items
applet or order line items applet in the Siebel Business Application, the following integration object
is used to for Eligibility, Compatibility, and Pricing evaluation:

■ ISS Quote

Configuring an Additional Field For Use in Eligibility, Compatibility,
and Pricing
When RaiseSignal is called from a business component (for example, Reprice All from quote), the
instance is a BusComp pointer and data is pulled from the business component that is currently in
memory (that is, the business component that the applet within the view is based on). When the
instance is a BusComp pointer, the integration object is determined by the 'Instance Uniform Name
EAI Object*' user properties on that business component.

■ Example: Reprice All from the "Quote Item List Applet (Pricing)" on the "Quote Item Detail View
(Pricing)" view:

Integration Object (ABO Mode) - ISS Quote

Integration Object (Non ABO Mode) - ISS Quote
Siebel Order Management Infrastructure Guide Siebel 2018 95

PSP Engine ■ Configuring PSP Procedures
When RaiseSignal is called from the Configurator, the instance is a CxObj pointer and data is pulled
from the Configurator instance property set. When the instance is a CxObj pointer, the integration
object is determined by the final property set that is passed into Configurator.

■ Example: Eligibility Check within configurator when launched from Quote UI:

Integration Object (ABO Mode) - SIS OM Asset

Integration Object (Non-ABO Mode) - 7.7 Quote Integration Object

The following procedure describes the objects that must be modified in order to involve an additional
field in the eligibility, compatibility, and pricing processes. Using this procedure ensures consistent
behavior between quotes and orders in the line item UI and in the Configurator UI, in both ABO mode
and in non-ABO mode.

To include additional fields in eligibility, compatibility and pricing
1 Add the field to the following business components:

MACD Quote Item

MACD Order Entry - Line Items

Product Eligibility BusComp

2 Add the field to the following integration objects:

■ Quote UI:

ISS Quote

■ Order UI:

ISS Order

■ Configurator UI (ABO Mode):

SIS OM Quote

SIS OM Order

SIS OM Asset

■ Configurator UI (non-ABO Mode):

7.7 Quote Integration Object

7.7 Order Entry Integration Object

3 Copy the value of the additional field used in the pricing process by creating the corresponding
business service user properties for the SIS OM PMT Service.

4 Add the field to the following variable maps:

■ Quote UI and Order UI:

Default Eligibility Variable Map - Context, and Product Eligibility Variable Map - Context

Default Pricing Variable Map - Context
Siebel Order Management Infrastructure Guide Siebel 201896

PSP Engine ■ Creating a Custom PSP Application
■ Configurator UI (ABO Mode):

Cfg Eligibility Variable Map - Context

Default Pricing Variable Map - Context

■ Configurator UI (non-ABO Mode):

Cfg Eligibility Variable Map - Context

Default Pricing Variable Map - Context

5 Update the following workflow processes as necessary:

.Product Eligibility & Compatibility - Default

.Pricing Procedure - Default

Creating a Custom PSP Application
PSP is a general-purpose mechanism that can be used anywhere in the Siebel application. For
example, you can create a custom PSP procedure to determine the allowed shipping methods for a
line item on an order, or you can create a custom PSP procedure to determine the disclosures that
must be read to a customer before the purchase of a product.

Your custom PSP application must include the following:

■ Matrix tables, business components, and the administrative UI to capture the rules.

■ Signals to invoke the controller workflow. See Chapter 3, “Signals.”

■ A controller workflow that establishes the input context and row set and processes the PSP
output.

■ A PSP procedure that transforms the input row set.

■ If necessary, scripted business service methods that extend the set of Row Set Transformation
Toolkit business service methods. See “Creating a Custom Transform” on page 97.

Creating a Custom Transform
PSP procedures can invoke any custom business service method that you create using Siebel VB or
Siebel eScript. Custom business service methods for PSP follow these guidelines:

■ The row set and context are passed as inputs to the custom business service method.

■ Wherever possible, parameterize new methods to make them flexible and applicable to multiple
situations.

■ The method uses standard property set APIs to read and write from the row set.

■ The row set must be returned as an explicit output argument of the business service method.

For more information, see Siebel VB Language Reference or Siebel eScript Language Reference.
Siebel Order Management Infrastructure Guide Siebel 2018 97

PSP Engine ■ Calling a PSP Procedure from an External Application
Calling a PSP Procedure from an
External Application
You can invoke a PSP procedure from an external application by using a Web service ASI or a
business service API.

To call a PSP procedure from an external application
1 Create a Web Service ASI or expose a business service API.

2 Use the Web Service ASI or business service API to invoke a controller workflow.

3 Use the controller workflow to do the following:

a Convert the XML input document to a row set using the XSLT or the Siebel Data Mapper.

b Construct a Context property set (if required) from the XML input document using XSLT or the
Siebel Data Mapper.

c Invoke the standard PSP procedure.

d Construct an XML response from the output row set.

About Logging of PSP
PSP transforms support logging for troubleshooting and performance tuning. Logging is implemented
using the standard Siebel logging mechanisms. See Siebel System Monitoring and Diagnostics Guide.

With one exception, all PSP logging events have the primary purpose of supporting troubleshooting.
The PSP logging event called PSP Cache supports performance tuning.

Troubleshooting PSP
There are several server parameters used for PSP logging. For details on using PSP logging events
for troubleshooting, see “About Troubleshooting of PSP” on page 99.

Tuning Performance of PSP
For details on using the PSP Cache event and other logging events for performance tuning, see “About
Tuning Performance of PSP” on page 101 and “Logging of Performance” on page 102.
Siebel Order Management Infrastructure Guide Siebel 201898

PSP Engine ■ About Troubleshooting of PSP
About Troubleshooting of PSP
To manage PSP logging-related server parameters, navigate to the Administration - Server
Configuration screen, Servers, and then the Events view, and query on “PSP*”.

The server parameters for PSP logging are listed in Table 16. PSP Cache Event is used for
performance tuning, while all the other server parameters described in this topic are used for
troubleshooting.

Like all other Siebel-standard log events, the default log level is 1, and the log level can be set from
1 to 5. The higher the log level is set, the more messages are logged. Log level settings generate
the types of data listed in Table 17.

The data logged by the PSP logging-related server parameters is explained in the topics that follow.

Table 16. Server Parameters for PSP Logging

Event Type Alias

PSP Cache Event PSPCache

PSP Data Event PSPData

PSP Parser Event PSPParser

PSP Transform Event PSPTransform

PSP Pricer Service Event

NOTE: The PSP Pricer Service Event logging
parameter is used only in implementations
that include Siebel Pricer.

PSPPricerSvc

Table 17. Data Logged by Log Level

 Level Type of Data Logged

1 Error messages

2 Warnings

3 Information

4 Detailed information

5 Debugging information
Siebel Order Management Infrastructure Guide Siebel 2018 99

PSP Engine ■ About Troubleshooting of PSP
PSP Cache Event
Log levels and data logged for PSP Cache Event are listed in Table 18. PSP Cache Event is used for
logging for PSP Cache, and for tuning performance of PSP transforms.

For more information about this event, see “About PSP Cache” on page 103. For information about
other events used to log performance of PSP, see “Logging of Performance” on page 102.

PSP Data Event
Log levels and data logged for PSP Data Event are listed in Table 19. PSP Data Event is used for
logging of PSP transform input arguments.

PSP Parser Event
Log levels and data logged for PSP Parser Event are listed in Table 20. PSP Parser Event is used for
logging of PSP Parser.

PSP Transform Event
Log levels and data logged for PSP Transform Event are listed in Table 21. PSP Transform Event is
used for logging of PSP transforms.

Table 18. Data Logged by Log Level (PSP Cache Event)

 Level Data Logged

3 PSP Cache miss or hit

Keys: first-level key, second-level key

Table 19. Data Logged by Log Level (PSP Data Event)

 Level Data Logged

4 Input arguments (excluding the hierarchy arguments) of each transform are logged
as Name:Value pairs.

5 The whole input property set of each transform is logged as an XML string.

Table 20. Data Logged by Log Level (PSP Parser Event)

 Level Data Logged

5 Debugging information for PSP parser.
Siebel Order Management Infrastructure Guide Siebel 2018100

PSP Engine ■ About Tuning Performance of PSP
PSP Pricer Service Event
Log levels and data logged for PSP Pricer Service Event are listed in Table 22. PSP Pricer Service
Event is used for logging of Pricer service APIs.

About Tuning Performance of PSP
Consider the following when tuning the performance of your preconfigured and custom PSP
procedures:

Preconfigured PSP Procedures
Tune the preconfigured PSP procedures by:

■ Removing steps that your implementation does not require

■ Eliminating unused values from the variable maps

General Design Guidelines
Follow these general design guidelines to further improve the performance of PSP:

■ Optimize eligibility PSP procedures by:

■ Executing low-cost tests first

■ Performing high-cost tests (such as Web Service calls) only in post-pick processing

■ Build performance hints into the procedure definition. Use the Process Condition input argument
in each step to identify the subset of rows in the row set that require processing (example:
"{Row.Promotion Id} IS NOT NULL"). This can eliminate unnecessary SQL and in-memory
operations.

Table 21. Data Logged by Log Level (PSP Transform Event)

 Level Data Logged

3 Business service name

Number of rows processed.

Number of rows deleted.

4 Transform progress information.

5 Debugging information for PSP transforms.

Table 22. Data Logged by Log Level (PSP Pricer Service Event)

 Level Data Logged

5 Debugging information for PSP Pricer business service.
Siebel Order Management Infrastructure Guide Siebel 2018 101

PSP Engine ■ About Tuning Performance of PSP
■ When multiple steps operate on the same subset of rows, split the row set, perform the
operations on the subset of rows, and then merge the two split row sets afterwards.

■ Avoid unnecessary subprocedures. Subprocedure calls involve copying the row set, which it is
best to avoid where possible.

■ Optimize external Web Service calls by:

■ Designing the Web Service interface to be set-based

■ Making sure that a single invocation will process all rows in the row set

■ Use PSP Cache for caching of database query results. For more information about how to tune
PSP performance with caching, see “About PSP Cache” on page 103.

SQL Queries
Use the following guidelines to improve the SQL query performance of PSP:

■ Minimize the number of SQL queries executed. Consolidate multiple Simple Look-Up steps into
one step if the steps use data from the same reference data business component with the same
search specification.

■ Tune SQL queries by:

■ Querying through thin business components to minimize Siebel Object Manager overhead
and reduce query complexity.

■ Making sure that all search specifications have index coverage.

Logging of Performance
PSP provides extensive logging of performance-related data. Analyze the PSP log to determine which
steps are consuming the most processing time and where the caching can be further optimized.

PSP logging that takes place in the server environment is more effective than PSP logging that takes
place locally, because in the server environment there is only one environment variable controlling
the log level for all the events.

You can use the events listed in Table 23 to log the performance of PSP.

Table 23. Server Parameters for Logging Performance of PSP

Event Type Alias Description

Object Manager Business Service
Operation and SetErrorMsg Log

ObjMgrBusServiceLog Logs the performance of business
service methods which include the
PSP transform methods.

Workflow Performance WfPerf Logs the performance at the
workflow level or step level.

PSP Cache Event

For more information, see “About
PSP Cache” on page 103.

PSPCache Logs the performance of PSP
Cache.
Siebel Order Management Infrastructure Guide Siebel 2018102

PSP Engine ■ About Tuning Performance of PSP
When debugging the pricer, the price waterfall output provides valuable clues as to which transforms
and actions were executed. For more details on logging, see “About Logging of PSP” on page 98.

About PSP Cache

Siebel PSP Cache is a mechanism designed to improve performance of PSP transforms. PSP Look-Up
transforms use caching to reduce the number of SQL statements executed by the database. The
cache stores the results of PSP Look-Up transform queries. The cache key is the business object, the
business component, the search specification, and the sort specification.

The PSP Cache of query results is shared across all user sessions on an Object Manager. A particular
query is issued only once for each Object Manager and then shared by all users. This sharing
maximizes the probability of a cache hit and improves performance and scalability for all users on
the server.

Transforms Involving Database Queries
Of all the PSP methods (transforms) provided by the Row Set Transformation Toolkit business
service, those that involve database queries are the following:

■ Simple Look-Up

■ Query

■ Hierarchical Look-Up

■ Rule Set Look-Up

■ Dynamic Look-Up

There are two ways that PSP Cache is implemented: one is special for the Dynamic Look-Up
transform, and the other is for the rest of the transforms:

■ PSP Dynamic Look-Up Transform Cache. This cache is used when the Dynamic Look-Up
transform performs a query. For more information, see “About Using the PSP Dynamic Look-Up
Transform Cache” on page 111.

■ PSP Generic Cache. This cache is used when all transforms other than the Dynamic Look-Up
transform perform a query. For more information, see “Using the PSP Generic Cache” on page 105.
Siebel Order Management Infrastructure Guide Siebel 2018 103

PSP Engine ■ About Tuning Performance of PSP
The following topics contain more information about PSP Cache:

■ “Enabling PSP Cache” on page 104

■ “Setting Cache Size” on page 104

■ “Using the PSP Generic Cache” on page 105

■ “Optimizing PSP Cache” on page 105

■ “Defining a Cache Refresh Key” on page 106

■ “Configuring a Clear Cache Button” on page 108

■ “About Using the PSP Dynamic Look-Up Transform Cache” on page 111

■ “About PSP Cache Performance Statistics” on page 111

Enabling PSP Cache
You turn the PSP Cache on or off using an input argument, at the PSP procedure step level (that is,
one input argument for each step that involves caching). By default, caching is disabled.

To enable caching, add an input argument to the step involving a Look-Up transform or Query
transform, as follows:

Cache Enabled = Y

NOTE: If Cache Enabled is not defined for a PSP procedure step, the default value is N and caching
is not enabled.

Setting Cache Size
To control cache size, use the following server parameters:

■ PSP Level 1 Cache Max Item Count. The server parameter with this display name is
PSPCacheMaxItemCntLevel1. This is the maximum number of business component or cache
refresh key combinations; for example:

Price List Item/Price List Id = ’12-12345’)

The default value is 10000.

■ PSP Level 2 Cache Max Item Count. The server parameter with this display name is
PSPCacheMaxItemCntLevel2. This is the maximum number of distinct queries cached for each PSP
Level 1 Item. The default value is 10000.

When either Level 1 or Level 2 cache reaches capacity, the least recently used query results are
dropped to make space for new cache entries.

It is not possible to directly control the amount of memory consumed by the PSP cache by setting a
total size for PSP cache, as the architecture does not count the memory of each cache item.

NOTE: You must restart the Siebel server for any parameter changes to take effect.

For information about setting server parameters, see Siebel System Administration Guide.
Siebel Order Management Infrastructure Guide Siebel 2018104

PSP Engine ■ About Tuning Performance of PSP
Using the PSP Generic Cache
The PSP Generic Cache is the cache used for all transforms that involve database queries except the
Dynamic Look-Up transform. The Simple Look-Up, Query, Hierarchical Look-Up, and Rule Set Look-
Up transforms use PSP Generic Cache.

Topics that relate only to PSP Generic Cache and not to PSP Dynamic Look-Up Transform Cache are
the following:

■ “Optimizing PSP Cache” on page 105

■ “Defining a Cache Refresh Key” on page 106

■ “Configuring a Clear Cache Button” on page 108

Optimizing PSP Cache
To maximize the cache hit rate (and hence, performance and scalability), partition the transform
search specification into a high selectivity clause that is executed by the database and used as part
of the PSP cache key (the Search Specification input argument) and a low selectivity clause that is
executed by the PSP transform itself to further filter the query results (the In Memory Search
Specification input argument). When you use the In Memory Search Specification input argument in
combination with a Search Specification input argument, your search specification is, effectively,
“[Search Specification] AND [In Memory Search Specification]”. The two search specification
input arguments are divided by purpose as follows:

■ Search Specification. Use this input argument to define highly selective search criteria
executed by the database.

■ In Memory Search Specification. Use this input argument to define low selectivity search
criteria executed by the Siebel Server.

NOTE: The Dynamic Look-Up transform does not support the In Memory Search Specification
input argument. This transform dynamically generates its own search specification.

The order of search implementation is as follows: first the Search Specification input argument is
applied to the database query. Next, the returned result set is further filtered in memory by applying
the In Memory Search Specification input argument.

Example values for Search Specification and In Memory Search Specification are shown in Table 24
for the Pricer Simple Volume Discount step.

Table 24. Example Values for Search Specification Input Arguments

Input Argument Value

Search Specification [Volume Discount Id] = {Row.Volume Discount Id} AND [Volume
Discount Method] = LookupValue('VOL_DISCNT_METHOD', 'SIMPLE')
Siebel Order Management Infrastructure Guide Siebel 2018 105

PSP Engine ■ About Tuning Performance of PSP
The example shown in Table 24 results in one query for each volume discount that retrieves all result
rows. All subsequent queries against that volume discount are served from the cache regardless of
the values for [Extend Quantity Requested] or Timestamp().

NOTE: In Memory Search Specification execution does not use sophisticated database features such
as indexes. Make sure the result set searched in memory is not too large. For example, loading an
entire price list in one query is not likely to improve performance; search a subset of the price list.

For information about PSP Cache performance, see “About PSP Cache Performance Statistics” on
page 111.

Defining a Cache Refresh Key
One complication caused by the PSP engine's extensive use of caching is that changes to reference
data (such as price list line items) that are currently in cache are not reflected immediately after an
updated version of the reference data is released. The PSP Cache persists until a Siebel Server is
restarted. To enable administrative updates against a running system, every administration view that
maintains data cached by PSP has a Clear Cache button that causes all PSP caches on all object
managers in the Siebel Enterprise to purge a subset of the cached data for that particular business
component. That subset of data is defined by the cache refresh key for the business component.

When implementing PSP Cache through the PSP Generic Cache, you can control the granularity of
the cache refresh by defining a cache refresh key for a business component. If no cache refresh key
is defined, the business component is refreshed as a whole. To improve performance, you can use a
cache refresh key to clear only a selected part of the cache.

A business component can have only one cache refresh key. Some business components have a
cache refresh key that comes preconfigured. For example, the Price List Item business component
has a cache refresh key of Price List Id. This means that when the user clicks the Clear Cache button
in the Price List list applet, only the selected price lists are cleared from the cache.

You define a cache refresh key by adding user properties to the Row Set Transformation Toolkit
business service. For each cache refresh key, one pair of user properties is required, as shown in
Table 25.

In Memory Search
Specification

[Minimum Quantity] <= {Row.Extended Quantity Requested} AND
([Maximum Quantity] >= {Row.Extended Quantity Requested} OR
[Maximum Quantity] IS NULL) AND [Volume Discount Start Date] <=
Timestamp() AND ([Volume Discount End Date] >= Timestamp() OR
[Volume Discount End Date] IS NULL)

Table 24. Example Values for Search Specification Input Arguments

Input Argument Value
Siebel Order Management Infrastructure Guide Siebel 2018106

PSP Engine ■ About Tuning Performance of PSP
NOTE: .You must update a workspace with the changes and then deliver it for the changes to take
effect.

Search Specification and Cache Refresh Key
If a cache refresh key is defined for a business component, then every query against that business
component must provide the cache key field values in its Search Specification or in the Cache Search
Specification input argument.

NOTE: Failure to specify the cache refresh key values will result in an error.

Use the Cache Search Specification input argument to avoid unnecessary clauses in the Search
Specification executed by the database. The transform will look first at the Cache Search
Specification, and then at the Search Specification to identify cache key values.

The syntax and structure of the Cache Search Specification input argument are shown in the
following example:

[Price List Id] = {Context.Price List Id} AND [Price List Item Id] = {Row.Price List
Item Id}

Row Set Transformation Toolkit Methods for PSP Cache Refresh
The Row Set Transformation Toolkit methods listed in Table 26, with their corresponding input
arguments and output arguments support refreshing of the PSP cache:

Table 25. User Properties Required for a Cache Refresh Key

Name Value

Cache Key: Price List Item Price List ID

Cache Key: [BC Name] [Key Field 1], [Key Field 2]

Table 26. Row Set Transformation Toolkit Methods for PSP Cache Refresh

Method Description

Get Cache Key Checks the cache key definitions for the specified
business component and constructs a property set
containing the cache key values for each selected
row in the active business component. This enables
multiselect when clearing cache entries (such as
price lists).

In: Business Component Name

Out: Row Set

Refresh Cache Clears the entire PSP cache.

Refresh BC Clears all PSP cache entries for the specified
business component.

NOTE: Refresh BC does not clear the cache if the
business component has a cache key defined.

In: Business Component Name
Siebel Order Management Infrastructure Guide Siebel 2018 107

PSP Engine ■ About Tuning Performance of PSP
When the user clicks the Clear Cache button for business components without a cache key, the
Refresh BC method is called directly by a run-time event. For business components with a cache key
(for example, Price List Item has one preconfigured), the methods Get Cache Key and Refresh BC
On Cache Key are invoked by a workflow that is triggered by a run-time event.

Configuring a Clear Cache Button
The PSP cache persists until the Siebel Server is restarted, but you can force a refresh of cached data
across all servers in the enterprise. In the Administration - Pricing views, Clear Cache buttons exist
for this purpose, to allow administrative updates against a running system. All objects cached by PSP
must support a Clear Cache button that forces this refresh of cached data.

Requirements for configuring Clear Cache buttons vary as follows:

■ If the business component does not have a cache refresh key defined, a run-time event must be
defined to refresh the cache. See “Clear Cache Button for BusComps without a Cache Refresh Key”
on page 108.

■ If the business component does have a cache refresh key defined, a workflow and a run-time
event must be defined to refresh the cache. See “Clear Cache Button for BusComps with a Cache
Refresh Key” on page 109.

NOTE: Although there is a Clear Cache button in the Administration - Pricing screen, then the
Attribute Adjustments view, the run-time event for this button is fixed. This is the Clear Cache button
associated with the PSP Dynamic Look-Up Transform Cache. Do not try to configure this Clear Cache
button as you would the Clear Cache button used by the PSP Generic Cache.

Clear Cache Button for BusComps without a Cache Refresh Key
In this case, you must define a run-time event to refresh the cache.

To configure a new Clear Cache button for a business component without a cache
refresh key defined
1 Create a control in the desired applet where the method invoked is EventMethodCacheRefresh.

2 Navigate to the Administration - Runtime Events screen, then the Action Sets view, and create
a new record in the Action Sets list applet.

3 Give the record a name, such as “Cache Refresh BC - Applet Name”.

4 Create a new record in the middle list applet, with the following values:

Refresh BC On Cache Key Clears all PSP cache entries for the specified
business component and cache key values. The
input Row Set is typically the output of the Get
Cache Key method.

In: Business Component Name

In: Row Set

Table 26. Row Set Transformation Toolkit Methods for PSP Cache Refresh

Method Description
Siebel Order Management Infrastructure Guide Siebel 2018108

PSP Engine ■ About Tuning Performance of PSP
■ Name is PSP Refresh

■ Action Type is BusService

5 In the More Info form applet (at the end), enter the following values:

■ Business Service Name is Row Set Transformation Toolkit

■ Business Service Method is Refresh BC

■ Business Service Context is a list of business component names with commas as the
separator, and with each business component name included in quotation marks

Example:

Business Service Context ="ProcessName", "PSP Refresh Cache On Cache Key -
Price List"

6 Navigate to the Administration - Runtime Events screen, then the Events view, and create a new
record with the following values:

■ Object Type is Applet

■ Object Name is the name of the applet referred to in Step 1

■ Event is InvokeMethod

■ Subevent is EventMethodCacheRefresh

■ Action Set Name is the name of the action set created in Step 2

Clear Cache Button for BusComps with a Cache Refresh Key
In this case, you must define a workflow and a run-time event to refresh the cache.

To configure a new Clear Cache button for a business component with a cache
refresh key defined
1 Create a control in the desired applet where the Method Invoked is EventMethodCacheRefresh,

add the control to the desired applet web template.

2 Define the cache keys by adding user properties to the Row Set Transformation Toolkit business
service, according to the format shown in Table 25, for example:

3 Create a workflow that does the following:

a Calls the Get Cache Key method to determine the selected cache key values.

b Invokes the Refresh BC On Cache Key method for each business component that shares the
same cache key. Figure 33 shows an example of a Clear Cache workflow.

Property Value

Name Cache Key: Price List Item

Value Price List Id
Siebel Order Management Infrastructure Guide Siebel 2018 109

PSP Engine ■ About Tuning Performance of PSP
4 Navigate to the Administration - Runtime Events screen, then the Action Sets view, and create
a new record in the Action Sets list applet with a name such as “Cache Refresh BC - Applet Name”.

5 Create a new record in the middle list applet, with the following values:

6 In the More Info form applet (at the end), enter the following values:

For example:

Business Service Context = PSP Refresh Cache On Cache Key - Price List

7 Navigate to the Administration - Runtime Events screen, then the Events view, and create a new
record with the following values:

Figure 33. Example of a Clear Cache Workflow Process

Property Value

Name PSP Refresh

Action Type BusService

Property Value

Business Service Name Workflow Process Manager

Business Service Method RunProcess

Business Service Context Process Name

Property Value

Object Type Applet

Object Name The name of the applet referred to in Step 1

Event InvokeMethod

Subevent EventMethodCacheRefresh
Siebel Order Management Infrastructure Guide Siebel 2018110

PSP Engine ■ About Tuning Performance of PSP
About Using the PSP Dynamic Look-Up Transform Cache
The Dynamic Look-Up transform has its own cache, called the PSP Dynamic Look-Up Transform
Cache. You enable this for a particular step by setting Cache Enabled to Y, the same as for the generic
PSP cache. No other cache-specific input arguments are supported for the Dynamic Look-Up
Transform.

The Dynamic Look-Up transform supports a preconfigured Clear Cache button; do not modify this
preconfigured Clear Cache button.

NOTE: This is the Clear Cache button in the Administration - Pricing screen, then the Attribute
Adjustments view. The run-time event for this button is fixed. Do not try to configure this Clear Cache
button as you would the Clear Cache button used by the PSP Generic Cache.

About PSP Cache Performance Statistics
To view statistics on PSP Cache performance, navigate to the Administration - Server Management
screen, Tasks, and then the Statistics view, and query on “PSP*”. The Siebel application provides the
following statistics:

■ PSP Cache Hit Total. An integer that indicates how many times the cached query results are
used.

■ PSP Cache Miss Total. An integer that indicates how many times a query cannot be found in
PSP Cache for which a database query has been conducted.

NOTE: The higher the value of PSP Cache Hit Total /(PSP Cache Hit Total + PSP Cache Miss
Total), the better performance exhibited by PSP Cache.

Action Set Name The name of the action set created in Step 4

Property Value
Siebel Order Management Infrastructure Guide Siebel 2018 111

PSP Engine ■ About Tuning Performance of PSP
Siebel Order Management Infrastructure Guide Siebel 2018112

6 PSP Waterfall
This chapter explains the PSP Waterfall mechanism. A PSP procedure can create waterfall output to
explain calculations it has made or actions it has taken. The PSP Waterfall business service displays
or saves that output. This chapter includes the following topics:

■ “About Waterfalls” on page 113

■ “About Configuring Waterfall Output” on page 115

■ “PSP Waterfall Business Service Methods” on page 119

About Waterfalls
A waterfall is an applet or a pop-up window that provides line-item explanation about field values—
displaying any combination of values such as text, numbers, or dates—such as the figures that were
used to arrive at a particular value in a field. As one example of a waterfall, the pricing waterfall
shown in Figure 34 shows the details of the calculation used to arrive at the net price. This example
shows a base price used for an item ordered, minus the discount given to arrive at the net price.

As another example, you might implement a waterfall on a product’s eligibility status, to show the
end user all the reasons a product cannot be purchased (rather than just one reason).

All text displayed to the end user in waterfalls is translatable. the Unified Messaging Service (UMS)
business service dynamically translates and substitutes waterfall text . The UMS business service
processes all translations through the LookUpMessage API in PSP action script:

{Row}.{Net Price Waterfall} += New('Waterfall', [Text] = LookUpMessage({Row.Temp
List Price Message}, [Price List] = {Match.Price List}), [Currency Code] =
{Row.Currency Code}, [Price] = {Row.List Price})

For more information about UMS, see Chapter 7, “Unified Messaging.”

A PSP Procedure Generates Waterfall Output Each Time It Executes
Waterfall output is generated on demand when the user clicks a waterfall-enabled field, but the PSP
procedure generates the waterfall output every time it executes. The waterfall’s output may be

Figure 34. Example of a Pricing Waterfall
Siebel Order Management Infrastructure Guide Siebel 2018 113

PSP Waterfall ■ About Waterfalls
ignored much of the time, but when the user drills into a waterfall-enabled field, the procedure
reruns to generate and then display the waterfall output for that record and field.

For example, the values for the pricing waterfall in Figure 34 on page 113 are generated when the
user clicks the Net Price field in a Quote or Order line item. The waterfall pop-up window appears
displaying these values. The user clicks OK to hide the pop-up window. But even if the user does not
click the Net Price field to view the pricing waterfall, the same waterfall output is generated (but not
saved or displayed without configuration) when the PSP procedure executes.

A Controller Workflow Invokes the PSP Waterfall Business Service
Figure 35 on page 114 shows how the PSP Waterfall mechanism generates and saves waterfall output.
For a PSP procedure that generates waterfall output, such as the Pricing PSP procedure shown in the
diagram, a controller workflow invokes the PSP waterfall business service.

The PSP engine supports the creation of a waterfall with an unlimited number of sequenced child
rows to explain each name-value pair in the row. It is the child rows’ type that defines the waterfall
to which they belong. For example, “Net Price Waterfall” is the type for each of the child rows that
compose the Net Price waterfall. Multiple waterfalls can be created for one row, up to one for each
name-value pair.

Each waterfall has a configurable set of name-value pairs. For example, a pricing waterfall uses
different fields than an eligibility waterfall.

Figure 35. How PSP Works with Waterfall Output
Siebel Order Management Infrastructure Guide Siebel 2018114

PSP Waterfall ■ About Configuring Waterfall Output
Waterfalls and Performance
Waterfall output is generated every time a PSP procedure executes. For example, when the user
clicks a Net Price to display its waterfall, that record is repriced and fresh waterfall output is
generated for display. This process keeps the waterfall output and net price in sync. This process
requires minimal overhead, because it is done in memory.

If a line item is read-only (for example, because it has already been submitted as an order), then it
is not possible to reprice the item. In this case, the waterfall virtual business component looks for
saved waterfall output for that line item and the waterfall displays that saved waterfall output
instead.

NOTE: The ReadOnlyOrderStatus user property is overwritten by the Business Component read-only
field user property (if the value for the business component user property is active). For example, if
ReadOnlyOrderStatus for a BC User Property is set to Billed, Submitted, Completed, and read-only
status for Submitted is Active, then the record is read-only for the status value Submitted (not for
Billed and Completed).

Waterfall output is only saved to the database upon user request. Writing waterfall records to a
database can be costly. The waterfall records are written in the background to minimize end-user
latency. For more information, see “Saving Waterfall Data” on page 119.

Configuration of Waterfalls
When configuring waterfalls, refer to the information provided in the following topics:

■ “About Configuring Waterfall Output” on page 115

■ “PSP Waterfall Business Service Methods” on page 119

About Configuring Waterfall Output
The waterfall output of a PSP procedure is soft-coded in the step actions. Each line item of waterfall
output is created by an action that adds a child record to a named child property set of a {Row}. The
following is an example PSP action that creates a row of waterfall output:

{Row}.{Net Price Waterfall} += New('Waterfall', [Text] = LookUpMessage('Pricer -
Dynamic Matrix Adjustment', [Price Book] = {Match.Price Book}), [Adjustment Type] =
{Match.Adjustment Type}, [Adjustment Amount] = {Match.Adjustment Amount}, [Currency
Code] = {Row.Currency Code}, [Price] = {Row.Start Price})

In this example, a waterfall record is added to the Net Price Waterfall child property set of the current
{Row}.

The fields written to the waterfall record are soft-coded in the action expression (in this case, Text,
Adjustment Type, Adjustment Amount, Currency Code, Price). One common configuration is to
add additional fields to an existing waterfall. “Adding New Fields to an Existing Waterfall” on page 116
describes this configuration.
Siebel Order Management Infrastructure Guide Siebel 2018 115

PSP Waterfall ■ About Configuring Waterfall Output
Another common configuration is to create a new waterfall output for an additional calculated value.
For example, a pricing procedure could calculate the Net Price and the Cost of a line item. A waterfall
explanation of the calculation of Cost could be exposed as a drill-down link on the Cost field in the
UI. You can create many waterfalls for a particular {Row} by defining different child property set
names (such as, {Row.Cost Waterfall} += New("Waterfall", …)). See “Creating a New Waterfall”
on page 117 for detailed instructions.

Further configuration information appears in “Saving Waterfall Data” on page 119.

Adding New Fields to an Existing Waterfall
You can add as many new fields as you like to an existing waterfall using the following procedure as
an example. This example adds an Accounting Code field to the existing Net Price waterfall.

To add a new field to an existing waterfall
1 In Siebel Tools, revise the PSP procedure (for example, revise Pricing Procedure - Calculate Net

Price).

2 Add an extra comma-separated argument to the += New() function in every action that generates
waterfall output. For example:

{Row}.{Net Price Waterfall} += New('Waterfall', [Text] = LookUpMessage('Pricer -
Dynamic Matrix Adjustment', [Price Book] = {Match.Price Book}), [Adjustment Type]
= {Match.Adjustment Type}, [Adjustment Amount] = {Match.Adjustment Amount},
[Currency Code] = {Row.Currency Code}, [Price] = {Row.Start Price}, [Accounting
Code] = {Match.Accounting Code})

The syntax [Accounting Code] = {Match.Accounting Code} adds the new field.

3 Add the new field to the waterfall virtual business component (for example, Net Price Waterfall
VBC).

4 Add the new field to the waterfall pop-up applet (for example, Net Price Waterfall Popup List
Applet).

5 (Optional) If the new field needs to be written to the database:

a Add the new field to the tables used to store this waterfall type (for example, S_QTEIT_WTR_LOG,
S_ORDIT_WTR_LOG, S_AGRIT_WTR_LOG).

b Add the new field to the business components used to persist this waterfall type (for example,
Quote Line Item Waterfall, Order Entry Line Item Waterfall, Service Agreement Line Item
Waterfall).

c Navigate to the Administration Application screen, then the Data Maps view. Add the new field
to the waterfall data map objects (for example, Quote Waterfall Data Map Object, Order
Waterfall Data Map Object, Service Agreement Waterfall Data Map Object).
Siebel Order Management Infrastructure Guide Siebel 2018116

PSP Waterfall ■ About Configuring Waterfall Output
Creating a New Waterfall
You can add a new waterfall output to any PSP procedure. A PSP procedure can have multiple
waterfall outputs.

NOTE: It is recommended that you copy the configuration of the Net Price Waterfall when creating
a new waterfall output.

The following topics contain information about creating new waterfalls:

■ “Populating Child Waterfall Property Sets” on page 117

■ “Exposing the Waterfall Output” on page 118

■ “Saving Waterfall Data” on page 119

Populating Child Waterfall Property Sets
When creating a new waterfall output, you first populate a child waterfall property set for each output
row of the PSP procedure.

To populate a child waterfall property set for each output row of a PSP procedure
1 Create new UMS message types to format text for your new waterfall output. See “Creating

Message Types” on page 129.

2 Define PSP actions to create the waterfall output in your PSP procedure.

a Use the {Row.Waterfall Name} += New() syntax to create a new waterfall record and append
it to the desired waterfall property set. The New() function has the following syntax:

New('Waterfall', Name 1 = Value 1, Name 2 = Value 2,.)

Name n and Value n are the waterfall output field names and values; for example:

Currency Code = USD

b Use the LookUpMessage function to format text in the appropriate language with variable values
substituted through a call to the UMS business service, with the following syntax:

LookUpMessage('Message Name', Name 1 = Value 1, Name 2 = Value 2,.)

Name n and Value n are the payload field names and values that will be used by the UMS
business service to construct the message text; for example:

Price List = Americas Price List
Siebel Order Management Infrastructure Guide Siebel 2018 117

PSP Waterfall ■ About Configuring Waterfall Output
Exposing the Waterfall Output
Next, you expose the waterfall output on the user interface.

To expose the waterfall output as a drilldown on a field in the UI
1 Create a new virtual business component based on class CSSBCVWaterfall.

a Create fields for each waterfall output column.

b Create a field called Name, which is used internally to query the correct data by the waterfall
name.

c Compile the virtual business component.

2 Create a new pop-up applet based on class CSSSWEFrameListPopupWaterfall using the VBC
created in Step 1.

a Set its search specification to query the field Name with a value of the created waterfall, such as:

Name = "Cost Waterfall"

b Define the column layout.

c Compile the applet.

3 Create a drilldown link to the new pop-up applet in each list applet that displays the field
calculated by the PSP procedure.

a Add a drilldown object to the applet defining the field on which the drilldown is displayed and the
drilldown name. Leave all other fields blank.

Example:

Name = "Waterfall Popup 2"; Field = "Cost"

b Add a user property to the applet indicating which waterfall pop-up applet to display upon each
drill-down:

Example:

Name = "Waterfall Popup Applet 2"; Value = "Cost Waterfall Popup List Applet"

NOTE: Multiple waterfall drilldown links are supported by incrementing the index at the end
of the Waterfall Popup Applet N drilldown name.

Applet classes CSSSWEFrameListQuoteItemEC and CSSSWEFrameListWaterfall support
waterfall drill-down.

NOTE: CSSSWEFrameListWaterfall is derived from class CSSSWEFrameListBase directly.

c Compile the applet.
Siebel Order Management Infrastructure Guide Siebel 2018118

PSP Waterfall ■ About Configuring Waterfall Output
Saving Waterfall Data
Waterfall data is saved using Data Transfer Utility (DTU). You can configure the application to save
waterfall records manually or automatically as described in this topic.

To enable persistence of the new waterfall data in the database
1 (One option is to do this by using a command.) In the Siebel application, navigate to the

Administration - Order Management screen, then the Signals view, and add a new signal to save
the waterfall output. Use SaveWaterfall-Order as an example.

a In Siebel Tools, add a command to invoke the signal when the user selects a menu option. Use
SaveWaterfall-Order as an example. Values are described as follows:

 Display Name: [Name to be displayed]

 Name: [Name of the command]

 Method: [Signal Name]

b Create a custom table to store the waterfall output (for example, CX_COST_WATERFALL).

c Create a business component (BC) based on the table with the same field names as in the virtual
business component used to display the waterfall.

d Create a data map object. Use Order Waterfall Data Map Object as an example.

In the Siebel application, navigate to the Administration - Application screen, then the Data
Map Administration view, and create a new data map object.

The source is the VBC and the destination is the BC.

2 (Another option is to save the waterfall data manually by using an applet menu button or an
applet button.) As in Step 1, add a new signal to save the waterfall output.

a In Siebel Tools, add an applet menu button (call it Save Waterfall).

b Add an object to Applet Method Menu Item of the waterfall-triggering applet, and then expose it
to the applet. Values are as follows:

 Command Name: [The command added to save this waterfall]

 Text: Save Waterfall

Alternatively, you can add an applet button (Save Waterfall) in Siebel Tools by adding a control
to the waterfall-triggering applet and then exposing it to the applet. Use the following values:

 Name: Save Waterfall

 Method Invoked: [The signal added to save this waterfall]

 Caption: Save Waterfall

For more information about creating and using signals, see Chapter 3, “Signals.” For more information
about DTU, see the topic about Data Transfer Utility in Siebel Finance Guide.

PSP Waterfall Business Service Methods
Siebel Order Management Infrastructure Guide Siebel 2018 119

PSP Waterfall ■
The PSP Waterfall business service provides the methods described in Table 27.

SyncToDB Input Arguments
The SyncToDB method provides the input arguments described in Table 28.

NOTE: You may prefer to use SyncToDB in a signal, rather than directly in a command, for
synchronizing waterfall data to the database. If so, use the guidance provided in “Saving Waterfall
Data” on page 119.

Table 27. PSP Waterfall Business Service Methods

Method Arguments Description

ShowWaterfallPopup Name = Popup Applet Name

Value = the name of the
waterfall popup applet

Example: “Quote Line Item
Waterfall Popup List Applet”

Display the waterfall pop-up for the current
line item.

SyncToDB See “SyncToDB Input
Arguments” on page 120

Generate waterfall records for the current
quote, order, or agreement and write them
to the database.

For more information, see “Saving Waterfall
Data” on page 119.

Table 28. SyncToDB Input Arguments

Argument Type Value

Pricing Output Row Set Type String RowSet

Waterfall Data Map Object String Quote Waterfall Data Map Object

Waterfall Name Field String Name

Waterfall Parent Id Field String Item Id

Waterfall Parent Id Variable String ID

Waterfall Signal String PSPWaterfallAll

Waterfall Synch Process String PSP Waterfall Synch to DB Workflow

Waterfall Sequence Number Field String Sequence Num
Siebel Order Management Infrastructure Guide Siebel 2018120

7 Unified Messaging
This chapter describes the Unified Messaging framework used by Siebel Business Applications. It
includes the following topics:

■ “About Unified Messaging” on page 121

■ “Components of Unified Messaging” on page 123

■ “Unified Messaging Service Business Service Methods” on page 128

■ “Creating Message Types” on page 129

■ “Configuring the Display of Messages” on page 132

■ “Implementing Multilingual Substituted Text” on page 133

■ “Implementing a Custom Message-Generation Engine” on page 133

■ “About Working with Message Responses” on page 134

■ “About Suppressing Duplicate Messages” on page 135

■ “Suppressing Duplicate Messages” on page 136

■ “Migrating Message Types Between Environments” on page 136

■ “Tuning Performance of Unified Messaging” on page 137

■ “Using Unified Messaging with the PSP Engine” on page 137

About Unified Messaging
The Unified Messaging framework is the mechanism used by Siebel Business Applications to display
messages to users. The foundation of the Unified Messaging framework is the Unified Messaging
Service (UMS) business service. For Siebel order management uses, UMS messages recommend
products and promotions, explain eligibility, provide price waterfalls, and display results of checks
on promotion commitments and integrity. For example, a message prompts a customer service
representative (CSR) to cross-sell batteries and a camera case when a customer is purchasing a
camera. Messages come to the user in the form of a pop-up applet or rows in a list applet in a view.

The Unified Messaging framework supports the display of dynamic, actionable messages. The
framework is an entity independent of the source and type of messages displayed. The Unified
Messaging framework natively supports advanced features such as translation of message text,
substitution of textual values into the message template, logging of message responses, and
suppression of duplicate messages when appropriate (such as advice to a CSR against trying the
same upsell if the customer has already rejected it).
Siebel Order Management Infrastructure Guide Siebel 2018 121

Unified Messaging ■ About Unified Messaging
In Siebel order management, a message is guidance, a recommendation, or an explanation
presented to an end user in response to a button click or an action the end user takes. For example,
the Order Catalog view might display the following message when an end user orders an item that
is temporarily unavailable:

The product you have selected is on back order until [date].

A message’s text is constructed from a fixed message template as well as substitutable text
fragments, such as the name of a product.

Messages displayed are sorted by score. The message-generation algorithm sets the score. For the
simple preconfigured rules-based messages, the user enters the score in an administration view.
Make sure that your messages use a consistent scoring scheme so that the most important messages
of any type appear at the start of the list. The default message-generation algorithms can be
extended to call out to a propensity-based scoring algorithm to dynamically score the messages that
are displayed based on self-learned rules.

Concepts of Unified Messaging
A message type stores the definition of a message, including its text, its bitmap (such as a graphic
of an exclamation point), and its display mode (active or passive). A message type with an active
display mode means that a dialog box is displayed to the user and the user must provide a response;
a passive message type means that the message is displayed to the user without requiring a
response. A message type group is a list of values used to group message types, making them
available in picklists.

Payload is the contents of the message delivered to the end user. The message type payload is a list
of all payload fields that must be provided with every message of a certain type.

A message type response is an allowed response to a message. The allowed responses and their
associated actions are soft-coded in an administration view. For example, a preconfigured upsell
message has “Accept” and “Reject” responses. You can configure an additional “Send E-Mail”
response that automatically emails the upsell product details to the customer.

A message response is a logged response to a message.

Message Types Administration
You implement Unified Messaging for Siebel order management using the Administration - Order
Management screen, then the Message Types views, as follows:

■ All Message Types view. Create new message types. Work with existing message types. Enter
text for messages. Attach titles and bitmaps to messages. Specify whether messages are active
or passive. Specify the group to which the message type belongs.

■ Payload view. Create and work with payload variables, which substitute values into message
text and which are used for automated response processing.

■ Responses view. Create the possible responses for a message type. Control response logging.
Control message suppression. Enable automated processing of responses.

■ Translations view. Enter translations for message text.
Siebel Order Management Infrastructure Guide Siebel 2018122

Unified Messaging ■ Components of Unified Messaging
Components of Unified Messaging
Figure 36 shows the interaction between the components of Unified Messaging.

Registered Message Display Services
The UMS business service relies on pluggable message display services that are responsible for
displaying messages and accepting user responses. These message display services are the
following:

■ List Applet Message Display service

■ Pop-up Applet Message Display service

Figure 37 shows the interaction between UMS and registered message display services.

Figure 36. Components of the Unified Messaging Framework

Figure 37. UMS Communication with Registered Message Display Services
Siebel Order Management Infrastructure Guide Siebel 2018 123

Unified Messaging ■ Components of Unified Messaging
Message display services subscribe to updates to the message cache in the UMS. A message display
service subscribes when it is included in the user interface. A message display service unsubscribes
when it is not included in the user interface. More than one message display service can be
subscribed at the same time.

Update Messages Method
The UMS calls the Update Messages method on the message display service every time the message
cache is updated.

Process Response Method
The message display service invokes the Process Response method on the UMS when the user selects
a response in the UI.

For more information about UMS business service methods, see “Unified Messaging Service Business
Service Methods” on page 128.

Custom Message Display Services
If necessary, you can develop your own message display service for use with the UMS as long as it
adheres to the protocol of method invocations described in “Registered Message Display Services” on
page 123. Using a custom message display service, you may choose to provide a different UI layout
or a filter to display only a subset of messages.

Payload Variables
A payload variable is a name-value pair associated with a message instance. It can be substituted
into the final message text, saved to the database when a response is logged, used as the scope for
duplicate message suppression, or used to process a response. For example:

[Product Id] = "12-E2345", [Product] = "Canon F150", [Account] = "Marriott HQ"

The payload property set is passed with the message to message display services and automated
response services. The payload structure is a set of name-value pairs.

Any payload variable can be substituted into the text by enclosing its name in []. Any payload
variable can be logged to the response table as long as a Response Field mapping is specified.

Payload variables are also used for message suppression. See “About Suppressing Duplicate
Messages” on page 135.

You create payload variables using the Administration - Order Management screen, Message Types,
and then the Payload view.
Siebel Order Management Infrastructure Guide Siebel 2018124

Unified Messaging ■ Components of Unified Messaging
Message Property Set
Characteristics of a message’s structure are described in Table 29.

Message List Property Set
The example that follows shows the structure of a sample message list called “Message List.”

NOTE: Lines in boldface are required properties.

This sample message list consists of a set of messages. Each message has a child property set
providing the payload properties.

Table 29. Message Structure Attributes

Attribute Type Description

Message Id String A unique identifier for the message. This is used to
make sure the same message does not display
twice. Every time a message is displayed, it must be
assigned the same message ID to enable
suppression of repeated messages. This is also used
to identify the message when an action is selected.

Message Type String The message type of the message. Refers to a row
in the Message Types table.

Score Number An integer between 1 and 100 indicating the priority
of the message. This is used to determine the order
in which passive messages are displayed.

Display Mode String (Optional) Indicates how to display the message.
Seed data values are “Active” and “Passive”. You
(the integrator) can extend this list.

NOTE: This input is optional. If not specified for a
particular message, then the Display Mode defaults
from the message type.

[Payload] Property Set A list of name-value pairs that are used to specialize
the display and processing of the message.

Examples:

Line Item Id = “12-ABC123”

Upsell Product = “Canon 128 MB Memory
Card”

The payload attributes are defined in the Message
Type administration view. They are stored as sibling
properties of Message Id, Score, and so on.
Siebel Order Management Infrastructure Guide Siebel 2018 125

Unified Messaging ■ Components of Unified Messaging
CCFPropertySet@0013B0AC p#1 c#1 type="" vt=0 value=""

{

 p["Source"] = "Product Recommendation";

 c[0] CCFPropertySet@0BC04D00 p#0 c#2 type="Message List" vt=0 value=""

 {

 c[0] CCFPropertySet@0BDE0408 p#61 c#2 type="Message" vt=0 value=""

 {

 p["Message Type"] = "Cross-Sell Recommendation";

 p["Score"] = "66";

 p["Message Id"] = "42-4Z1RL";

 p["Display Mode"] = "Passive";

 c[0] CCFPropertySet@0BF0E578 p#14 c#0 type="Payload" vt=0 value=""

 {

 p["Doc Id"] = "42-528T1";

 p["Account Id"] = "";

 p["Related Product Id"] = "99-28GJ1";

 p["Contact Id"] = "";

 p["Line Item Id"] = "42-528VT";

 p["Related Product"] = "10GB Hard Drive";

 p["Reason"] = "Test XSell";

 p["Campaign Id"] = "";

 p["Net Price"] = "";

 p["Prod Id"] = "98-4NVN0";

 p["Currency Symbol"] = "$";

 p["Document Type"] = "Quote";

 p["Product"] = "1006667";

 p["Party Id"] = "";

 }

 }

 c[1] CCFPropertySet@0BD18070 p#61 c#2 type="Message" vt=0 value=""

 {

 p["Message Type"] = "Upsell Recommendation";

 p["Message Type Id"] = "04-E8VXZ";

 p["Score"] = "77";

 p["Message Id"] = "42-4Z1RN";

 c[0] CCFPropertySet@0BE4B178 p#14 c#0 type="Payload" vt=0 value=""
Siebel Order Management Infrastructure Guide Siebel 2018126

Unified Messaging ■ Components of Unified Messaging
 {

 p["Doc Id"] = "42-528T1";

 p["Account Id"] = "";

 p["Related Product Id"] = "99-28GSH";

 p["Contact Id"] = "";

 p["Line Item Id"] = "42-528VT";

 p["Related Product"] = "10MB USB Home Networking Adapter";

 p["Reason"] = "Test UpSell";

 p["Campaign Id"] = "";

 p["Net Price"] = "";

 p["Prod Id"] = "98-4NVN0";

 p["Currency Symbol"] = "$";

 p["Document Type"] = "Quote";

 p["Product"] = "1006667";

 p["Party Id"] = "";

 }

 }

 }

}

Message Responses
A message type with an active display mode means that a dialog box is displayed to the user, and
the user must provide a response. A message type response is an allowed response to a message.
Defining message type responses is part of the process of creating a message type.

You create message type responses using the Administration - Order Management screen, Message
Types, and then the Responses view. For information about creating message type responses, see
“Creating Message Types” on page 129.

Message Translations
The Unified Messaging framework allows for translations of message text and message response
text. If you are implementing message translations, you enter the translations as part of the process
of creating a message type. You create message type translations using the Administration - Order
Management screen, Message Types, and then the Translations view. For information about creating
message translations, see “Creating Message Types” on page 129.
Siebel Order Management Infrastructure Guide Siebel 2018 127

Unified Messaging ■ Unified Messaging Service Business Service Methods
Unified Messaging Service Business
Service Methods
The Unified Messaging Service (UMS) business service exposes the APIs described in Table 30 for
updating the messages in the UMS cache, formatting messages, and attaching a new message
display service. These APIs can be called from any run-time event, signal, workflow, or custom script.

Table 30. UMS Business Service Methods

Method Arguments Description

Add Messages [in] Source: String

[in] Message List: Hierarchy

Add a new list of messages to the
message cache. Associate each
message with the specified source.

Update Messages [in] Source: String

[in] Message List: Hierarchy

Replace the current set of cached
messages for the specified source with
the new list of messages. Associate each
message with the specified source.

Delete Messages [in] Source: String

[in] Message List: Hierarchy

Delete all cached messages associated
with the source or, if specified, the list of
messages provided.

NOTE: For deletion, only the message
IDs need to be identified in the message
list.

Get Messages [out] Message List: Hierarchy Output all unsuppressed, cached
messages (regardless of source)
including information derived from the
message type (such as allowed
responses).

Process Response [in] Source: String

Message Id: String

[in] Response: String

Process the end-user response to the
specified message as defined by the
message type.

Reset Not applicable Delete all cached messages.

Subscribe [in] Business Service: String

[in] Method Name: String

Add a Message Display business service
to the list of services that are informed
when a change occurs to the set of
messages in the cache.
Siebel Order Management Infrastructure Guide Siebel 2018128

Unified Messaging ■ Creating Message Types
Creating Message Types
A message type stores the definition of a message, including its text, its bitmap, and its display
mode. The process of creating a message type involves adding a new message type record, adding
message translations, defining message type responses, and creating translations for message type
responses.

To implement a new message type
1 Navigate to the Administration - Order Management screen, then the Message Types view.

2 In the All Message Types list applet, create a new message type record.

3 Complete the fields for the new message type record. Message Type fields are described in the
table that follows.

Unsubscribe [in] Business Service: String Remove the specified business service
from the list of services that are
informed when a change occurs to the
set of messages in the cache.

Format Message [in/out] Message: Hierarchy Substitute and translate the text for the
input message. The message is not
displayed.

Field Comments

Title Enter the title that will be displayed on the popup applet for an active
message. For example:

Recommendation

Display Mode Select the display mode. Options are:

■ Passive. The message is displayed on the screen, but it does not
demand a response from the user.

■ Active. The message is displayed in a dialog box, and the user must
select a response (such as “Accept” or “Reject”) to close the message
and continue.

Group Use this field to group related messages together. This field constrains pick
applets in administration views, such as in the Administration - Product
screen, then the Product Recommendations view.

Bitmap Select the graphic that will be displayed on this message. For example, you
might display an exclamation point graphic for an alert.

NOTE: The Bitmap field applies only to messages with active display mode.

Table 30. UMS Business Service Methods

Method Arguments Description
Siebel Order Management Infrastructure Guide Siebel 2018 129

Unified Messaging ■ Creating Message Types
4 (Optional) If this text must be translated, click the Translations tab.

■ Add records to the Translations list, and enter the translation for the content of the Full Text
field. You must add one record for each language being translated. Translations fields are
described in the table that follows.

5 Click the Payload tab, and specify the payload variables to be substituted into the Full Text field.
Payload fields are described in the table that follows.

Short Text Enter a short message to be displayed, using text and field names. For
example:

We recommend [Related Product].

NOTE: Short Text is generally not used, except by a custom message
display service.

Full Text Enter a message to be displayed, using text and field names. For example:

We recommend [Related Product] for [Net Price]. [Reason]

Field Comments

Language Enter the code for the language of this translation. For example, enter FRA
for French.

Title Enter the title that will be displayed on the popup applet for an active
message. For example:

Un Recommendation

Short Text Enter a short message to be displayed, using text and field names. For
example:

Nous recommendons [Related Product].

NOTE: Short Text is generally not used, except by a custom message
display service.

Full Text Enter a message to be displayed, using text and field names. For example:

Nous recommendons [Related Product] pour [Net Price]. [Reason]

Field Comments

Payload Enter the name of the payload variable to be substituted with text. For
example:

Campaign Id

Field Comments
Siebel Order Management Infrastructure Guide Siebel 2018130

Unified Messaging ■ Creating Message Types
6 Create a response for the message type.

a Write a custom business service to process the new response.

For information about how to write a response-handler business service, see “Attaching a
Business Service to a Message Response” on page 135.

For example, the custom business service creates an activity to mail product literature to the
customer.

b Compile a new SRF.

c In the Administration - Order Management screen, then the Message Types view, select the
message type for which you are creating a response.

d Click the Responses tab.

e Add the new response to the message type:

❏ Complete the required fields: Name, Business Service, Method.

❏ Set the Log flag to indicate whether to log this response.

❏ Set the Suppress Repetition flag and its corresponding field, if this response causes
suppression of the message.

❏ Resequence the existing responses so that buttons appear in the correct sequence on the
user interface.

7 Create translations for the message type response.

Translations for the message type response make sure that the text displayed on the actionable
buttons is in the correct language.

NOTE: Translation records are not required if your implementation is mono-lingual. For single-
language implementations, the default text in the message type and in the message type
response is used.

8 Test the application by creating a situation where the message is displayed, and then clicking
New Response.

Response Choose from a picklist of values built from the fields of the UMS Response
business component (which is based on the S_COMMUNICATION table). For
example:

Campaign Offer Id

The response field is the field used to record the user response to
messages.

Field Comments
Siebel Order Management Infrastructure Guide Siebel 2018 131

Unified Messaging ■ Configuring the Display of Messages
Configuring the Display of Messages
When configuring the display of messages, you can choose between two preconfigured mechanisms
stored in the UMS, as follows:

■ Add a list applet to a view. If you want the messages to be displayed at all times, then include
the UMF Messages list applet in a view.

■ Expose an icon on an applet. If you do not want to give up the screen space that an applet
requires, then expose the UMF “You've got messages” icon on an applet.

Adding a Message Applet to a View
Use the following procedure to add a message applet to a view.

To add a message applet to a view
1 Add the UMF Message List Applet - SI to the view.

2 Add the UMF Passive Virtual Business Component to the Business Object of the view.

Adding a Message Icon to a View
Use the following procedure to a message icon to a view.

To add a “You’ve got messages” icon to a view
1 Create a new button with the following settings:

■ HTML Bitmap = ICON_TOOLBAR_MSGS

■ HTML Disabled Bitmap= ICON_TOOLBAR_MSGS_OFF

■ HTML Type = MiniButton

■ Method Invoked = MessagePopup

2 Add a user property with the following settings:

■ Name = “Named Method 1: Message Popup”

■ Value = 'INVOKESVC','UMF UI Service','PopupListApplet'

3 Add a user property with the following settings:

■ Name = 'Named Method Check Can Invoke’

■ Submethods = MessagePopup

■ Value = Y
Siebel Order Management Infrastructure Guide Siebel 2018132

Unified Messaging ■ Implementing Multilingual Substituted Text
Implementing Multilingual Substituted
Text
The UMS automatically translates the Title, Short Text, and Full Text for a message. Payload fields
must be either language-independent (such as Price or Product ID), or they must be translated by
the message-generation engine. In this case, you must create translatable payload text for the
message.

To implement multilingual substituted text
1 Add a custom child business component and associated administration view to the payload entity

to store the language overrides for each language code.

2 Add a calculated field to the payload business component to store the system language.

3 Add an outer join from the payload business component to the translation business component
with a search specification that matches the parent Id and the system language code.

4 Add a joined field for the translated field to the payload business component.

5 Add a calculated field that selects the translated text if it is not null or if it otherwise defaults to
the default language text in the payload business component (example: IfNull([Language
Text], [Text])).

The message-generation engine uses the calculated field value (example: [Language Text]) to get
translated text where available.

Implementing a Custom Message-
Generation Engine
Any workflow or custom script can add, update, or delete messages stored and displayed by the
Unified Messaging framework. The PSP engine provides a framework for implementing a custom
message-generation engine. For example, you might implement a PSP procedure to generate
disclosures that must be read before a product can be sold (such as “Are you 21?”) and then display
those messages via Unified Messaging. This topic provides the general approach to implementing a
custom message-generation engine.

To implement a custom message-generation engine
1 Create new message types with associated responses and automated execution business

services.

2 Create a PSP procedure that generates a Message List property set and passes that list to the
UMS using the Update Messages method.

a Use a new source name to distinguish these messages from others that are similar.

b Make sure all payload variables are populated.

c Make sure each message ID is unique and invariant.
Siebel Order Management Infrastructure Guide Siebel 2018 133

Unified Messaging ■ About Working with Message Responses
3 Set up run-time events or signals to execute the new message-generation engine at the desired
points in the UI process flow.

NOTE: Make sure to set up events that clear messages when they no longer apply.

4 Add the Message Display list applet or enable the Pop-Up Message list applet for the views where
the new messages are relevant.

About Working with Message Responses
For each message type, you can specify multiple possible responses. Each response is displayed as
a button labeled with the Name text (or a language-specific translation of the Name text). Buttons
are displayed from left to right, sorted by Sequence #.

Further information about message responses is organized as follows:

■ “Logging Message Responses” on page 134

■ “Attaching a Business Service to a Message Response” on page 135

Logging Message Responses
You set logging of message responses using the Administration - Order Management screen, Message
Types, and then the Responses view.

In the Responses list applet, use the Log flag to indicate whether responses are to be logged for a
message type. You can use this for suppression of duplicate messages and to analyze the
effectiveness of messaging.

Responses are logged to the S_COMMUNICATION table. This table stores marketing campaign
responses. and you can view message responses in the existing campaign analysis views.

With response logging enabled, the following message fields are logged:

■ Message Type Id

■ Message Id

■ Response

■ Display Mode

■ Score

■ Language Code

■ Position In Message List

■ All payload fields with an associated Response Field mapping
Siebel Order Management Infrastructure Guide Siebel 2018134

Unified Messaging ■ About Suppressing Duplicate Messages
Attaching a Business Service to a Message Response
When the user selects a message type response (for example, by clicking the Accept button for an
upsell message), the active message display service informs the UMS by calling its Process Response
method. The UMS then calls the business service method associated with that response.

You define which business service method will handle a response using the Administration - Order
Management screen, Message Types, and then the Responses view.

The Siebel application provides prebuilt methods for handling upsell and cross-sell in the Product
UpSell CrossSell Service business service. You can implement your own automated response-
handling logic (such as for sending an email with product details) by scripting your own business
service method. This method must process the Payload argument, as described in Table 31.

About Suppressing Duplicate Messages
Opportunities to communicate a message (such as an upsell) to a customer are limited. It is
important to deliver the message that provides the highest likelihood of a new sale. Repeating a
previously rejected message to the customer is unlikely to generate a new sale; instead, you are
more likely to make a sale by presenting a new message, even if it has a lower score.

The Unified Messaging framework provides a flexible mechanism for suppressing duplicate
messages. You can implement message suppression for particular responses (such as, implement
suppression for “Reject” but not “Accept”) and for any scope (such as, for an instruction to never
show this message again to the customer, or to not show the message again for this order).

Checking for duplicate messages occurs in two instances:

■ When new messages are provided to the UMS, (for example, with the Add Messages or Update
Messages methods).

■ After a new response has been processed (using the Process Response method).

Suppress Repetition Flag
The UMS attempts to suppress duplicate messages if the Suppress Repetition flag is set for one or
more of the responses for a message type.

Table 31. Product UpSell CrossSell Service Input Argument

Argument Type Description

Payload Hierarchy A property set containing all payload variables
provided with the message when it was added to the
UMS. The message-generation engine must provide
values required to process the message in the
payload variables.
Siebel Order Management Infrastructure Guide Siebel 2018 135

Unified Messaging ■ Suppressing Duplicate Messages
Suppression Scope
The Field column indicates the scope of the message suppression (for example: Party Id, Document
Id, or Line Item Id).

NOTE: Logging must be enabled and the scope variable must be mapped to a field in the response
table in order for duplicate suppression to work.

All responses for a particular message suppression scope (such as Party ID) are loaded with a single
query and cached until the scope changes, for example, with a new caller.

For further information, see “Suppressing Duplicate Messages” on page 136.

Suppressing Duplicate Messages
You set suppression of duplicate messages using the Administration - Order Management screen,
Message Types, and then the Responses view.

A message is suppressed if a response has been logged for that message ID, response, and scope
value; for example:

[Party Id] = '12-W123')

For this reason, the message ID must be unique and invariant.

To enable suppression of duplicate messages
1 Navigate to the Administration - Order Management screen, then the Message Types view.

2 In the All Messages Types list applet, select the message type for which you want to suppress
duplicates.

3 Click the Responses tab to see the Responses list applet.

4 In the Responses list applet, check the Suppress Repetition flag to set suppression for the
message type response.

5 In the Field field, specify the scope of the suppression, for example, the suppression may be
limited to the Party ID field.

Migrating Message Types Between
Environments
Message types can be exported and imported using the applet menu on the All Message Types list
applet.
Siebel Order Management Infrastructure Guide Siebel 2018136

Unified Messaging ■ Tuning Performance of Unified Messaging
Tuning Performance of Unified
Messaging
Note the following considerations when tuning performance of the UMS:

■ Message type definitions are stored in an object manager-level cache. Messages are cached in
memory and never written to the database. The Message Display list applet is based on a virtual
business component that pulls data directly from the in-memory cache.

■ Avoid using duplicate message suppression for business-to-business accounts. Duplicate
suppression processing has to load all previous responses for the account at the beginning of the
call. Loading more than 100 responses will result in a perceptible delay. If you must use duplicate
message suppression in business-to-business situations, configure the message suppression to
suppress duplicates by quote or by order instead of by account.

■ Limit the number of messages displayed. It is generally accepted that the user will not view more
than three or four recommendations at a time.

■ Carefully consider the events that trigger the message-generation mechanism. In general, the
message-generation mechanism will have a larger overhead than the UMS.

Using Unified Messaging with the PSP
Engine
PSP applications such as Pricer and Eligibility use the UMS to format translated, substituted text for
waterfall output or for eligibility reasons. The PSP action syntax provides an API, LookUpMessage,
that in turn invokes the Format Message method on the UMS. This method simply returns the
formatted text. It does not add the message to the UMS cache. Messages formatted in this way do
not support automated responses, duplicate suppression, or logging.

To use the new message type with a PSP procedure
1 After completing Step 5 in “To implement a new message type” on page 129, add an action to the

PSP procedure that invokes the LookUpMessage function for the new message type, passing the
payload fields. See “Example of a LookUpMessage Call” on page 137.

The LookUpMessage function allows the UMS to process translations of the message text.

2 Test the revised PSP procedure.

Example of a LookUpMessage Call
You can use the example that follows as a model for an invocation of the LookUpMessage function.

{Row.Eligibility Reason} = LookUpMessage('Eligibility - Not In Contract Error',
[Account] = {Row.Account Id})
Siebel Order Management Infrastructure Guide Siebel 2018 137

Unified Messaging ■ Using Unified Messaging with the PSP Engine
The PSP engine calls the method Format Message. Arguments for this method are described in
Table 32.

Table 32. Arguments for Format Message Method

Method Arguments Description

Format Message [in/out] Message: Hierarchy Substitute and translate the text for the
input message. The message is not
displayed.
Siebel Order Management Infrastructure Guide Siebel 2018138

8 Data Validation Manager
This chapter discusses the data validation manager. It includes the following topics:

■ “About Data Validation Manager” on page 139

■ “Roadmap for Implementing Data Validation Processing” on page 140

■ “Process of Administering Data Validation Rules” on page 140

■ “Process of Invoking the Data Validation Manager Business Service” on page 149

About Data Validation Manager
Many companies are governed by various regulatory agencies, as well as internal processes and
procedures, to verify the quality and accuracy of their transactions. Data validation is a key
component of many business processes, and can involve many types of transactions, including
orders, applications, claims, and various other service requests.

The Data Validation Manager business service can validate business component data based on a set
of rules. In the case of a rule violation, a custom error message appears or a user-defined error code
is returned. The validation rules are defined using the Siebel Query Language and can be
conveniently constructed using the Personalization Business Rules Designer. The business service
centralizes the creation and management of data validation rules without requiring extensive Siebel
Tools configuration.

The Data Validation Manager business service reduces the need for custom scripts, decreases
implementation costs, and increases application performance.

NOTE: There is no specific encryption support built into the Data Validation Manager. The Data
Validation Manager inherits the CSSQuery function at the business component level, and uses the
CSSQuery functionality to actually check the expression.

The Data Validation Manager features:

■ Search automatically for the proper rule set to execute based on active business objects and
views.

■ Write validation rules based on fields from multiple business components.

■ Apply a validation rule to a set of child business component records to see if a violation occurs
from one or more records.

■ Invoke specific actions to be performed as a result of a validation.

■ Write validation rules that operate on dynamic data supplied at run time together with data from
business component fields.

■ Automatic logging of data validation events.
Siebel Order Management Infrastructure Guide Siebel 2018 139

Data Validation Manager ■ Roadmap for Implementing Data Validation Processing
Some example business rules which can be enforced by the Data Validation Manager business service
are:

■ In an insurance company, claim adjusters are required to enter a closed date whenever they
close a claim. If the adjuster tries to close a claim without a closed date, an error message
appears and the claim record is not committed to the database.

■ In a retail bank, different data validation rules are required for each of dozens of different service
request types. When a customer service representative creates a new service request, the Data
Validation manager identifies the appropriate validation rule set for the specific type of service
request and executes the data validation rules of that rule set.

■ At a health insurance company, customer service representatives use activity plans and activities
to track service requests, and all activities must be closed before the service request can be
closed. When the CSR closes the SR, the DVM loops through all associated activities making sure
status of each is closed. If any are still open, the SR cannot be closed.

Roadmap for Implementing Data
Validation Processing
To automate data validation processing, perform the following processes:

1 “Process of Administering Data Validation Rules” on page 140.

2 “Process of Invoking the Data Validation Manager Business Service” on page 149

Process of Administering Data
Validation Rules
This process is part of “Roadmap for Implementing Data Validation Processing” on page 140.

To support a given data validation business rule in your organization, you first create a data
validation rule set. The rule set is a container which has one or more rule set arguments and one or
more validation rules. The rules contain expressions which are evaluated as being true or false. If
the expression is evaluated as being false, validation rule actions determine the appropriate error
handling behavior.

To administer data validation rules, perform the following tasks:

1 “Defining Error Messages for Data Validation” on page 141

2 “Defining a Data Validation Rule Set” on page 142

3 “Defining Rule Set Arguments” on page 145

4 “Defining Validation Rules” on page 145

5 “Defining Validation Rule Actions” on page 148

6 “Activating a Data Validation Rule Set” on page 149
Siebel Order Management Infrastructure Guide Siebel 2018140

Data Validation Manager ■ Process of Administering Data Validation Rules
Defining Error Messages for Data Validation
This task is a step in “Process of Administering Data Validation Rules” on page 140.

Before defining data validation rules, you must define the error messages that these rules display.
When you create a validation rule, you can choose among these messages to specify the error
message that the rule displays.

NOTE: When creating a validation rule, you also have the option of typing in a message for the rule,
provided that the Err Msg Txt field on the applet is not set to read-only. If the Err Msg Txt field on
the applet is set to read-only, then you cannot enter a message when creating a validation rule;
instead, you must select a message that you have already created.

To activate a rule set
1 Navigate to Administration - Data Validation, and then Validation Messages view.

2 In the Validation Messages list, add a record for each new rule set and complete the necessary
fields. Some fields are described in the table that follows.

Field Comments

Message Code Enter a numeric code or error code that will be associated with the rule.

This code is an alphanumeric value that the application logs in the
validation history record and store in the Return Code output argument
of the business service, if the expression is evaluated to be false. The
existing value of that output argument will be overwritten. Therefore
the Return Code output argument of the business service will contain
the Return Code of the last rule that is evaluated as FALSE. Maximum
number of characters for return code is 30.

For more information, see “Viewing a Validation History” on page 153.

Message Level Enter the level of the error message. This is usually something like
Quote or Order, but it can be any text that describes the level.

Message Source Enter the source of the error. This is the process that generated the
error, such as Quote Validation or Quote Approval.

Message Text Enter the text that is displayed as the error message.
Siebel Order Management Infrastructure Guide Siebel 2018 141

Data Validation Manager ■ Process of Administering Data Validation Rules
Defining a Data Validation Rule Set
This task is a step in “Process of Administering Data Validation Rules” on page 140.

You define validation rule sets in the Administration - Data Validation screen. You can either revise
an existing rule set or create a new one.

■ “Defining a New Validation Rule Set” on page 142

■ “Revising an Existing Validation Rule Set” on page 144

You can import and export validation rule sets by selecting Export Rule Set and Import Rule Set from
the menu button on the Rule Sets list. The validation rule set is saved as an XML file for importing
and exporting purposes.

■ “Exporting a Validation Rule Set” on page 144

■ “Importing a Validation Rule Set” on page 144

To create a validation rule set, specify the business object and business component you want to
validate. The validation rule set will have one or more arguments and contain one or more individual
rules.

Defining a New Validation Rule Set
Use the following procedure to define a new validation rule set.

To define a new validation rule set
1 Navigate to Administration - Data Validation, and then Rule Sets view.

2 In the Validation Rule Set list, add a record for each new rule set and complete the necessary
fields. Some fields are described in the table that follows.

Field Comments

Name Enter a name for this rule set. You can execute a particular rule set by
setting this name as the value of the Rule Set Name input argument of the
Data Validation Manager.

Version Displays a numeric value to differentiate various versions of the same rule
set. Clicking the Revise button creates a new version of an existing rule set
with the version number incremented by one.

Group Enter the group that this rules set is in. You can group a number of rule sets
together by giving them a common group name. You can then execute
these rule sets in one call by setting this group name as the value of the
Group input argument of the Data Validation Manager. Data Validation
Manager executes these rule sets one by one in no particular order.

(Note: If both the Rule Set Name and Group input arguments are specified,
the Group input argument will be ignored.)
Siebel Order Management Infrastructure Guide Siebel 2018142

Data Validation Manager ■ Process of Administering Data Validation Rules
Business
Component

Select the business component to be validated.

Status Displays the rule set status. Options include:

■ In Progress. Default status that appears when the administrator first
creates a new rule set or revises an existing rule set. A rule set can only
be edited when its status is In Progress.

■ Active. Status that appears when the administrator clicks the Activate
button. A rule set can only be invoked when its status is Active.

■ Outdated. Status that appears when the administrator activates a
newer version of the rule set.

■ Inactive. Status that appears when the administrator selects
Deactivate Rule Set from the applet level menu.

Business Object Select the business object to be validated.

Business object is one of the selection criteria under which a rule set is
selected for execution. If the Object Search Type input argument of the
business service is set to \Business Object, Data Validation Manager will
check if the active business object matches the rule set's Business Object
value. If there is a match, the rule set will not be excluded based on the
Business Object criteria. It may be selected or excluded based on other
criteria.

NOTE: This business object must have a primary business component
defined.

Start Date Enter the date when the rule set becomes effective.

End Date Enter the last date this rule set can be used. If not populated, the rule set
never expires.

Conditional
Expression

Enter a selection criterion under which a rule set is selected for execution.
If the Conditional Expression is specified (not NULL) for a rule set, Data
Validation Manager will exclude the rule set from execution if the
conditional expression is evaluated to be FALSE at run time.

If the Conditional Expression is not specified, it is interpreted as TRUE.

Conditional Expression provides a mechanism to perform different
validations on the same business component based on certain field values.
For example, you might have many different types of service requests, and
each type needs to be validated in a different way. Using conditional
expressions based on the Service Request type, Data Validation Manager
can select the appropriate rule set to execute.

Aggregate Error When this check box is selected, Data Validation Manager ignores the
Immediate Display flag of each rule it processes. It aggregates all the error
messages of the rules that are FALSE into one string, and then display the
aggregated error message to the end user.

Field Comments
Siebel Order Management Infrastructure Guide Siebel 2018 143

Data Validation Manager ■ Process of Administering Data Validation Rules
Revising an Existing Validation Rule Set
Use the following procedure to revise an existing validation rule set.

To revise an existing validation rule set
1 Navigate to Administration - Data Validation, and then Rule Sets view.

2 In the Validation Rule Set list, select a rule set and click Revise.

Clicking Revise creates a new version of the rule set and sets the Status to In Progress.

3 Make the appropriate changes in the Validation Rule Set form and click Activate.

Clicking Activate changes the Status from In Progress to Active and makes the record read-only.
The old validation rule set still appears, but the status is now Outdated.

NOTE: You can delete a Validation Rule Set in the same way you delete any other record in Siebel
Business Applications. When you delete a Validation Rule Set, that rule set’s Validation History is also
deleted.

Exporting a Validation Rule Set
Use the following procedure to export a validation rule set.

To export a validation rule set
1 Navigate to Administration - Data Validation.

2 In the Validation Rule Set list, select the rule set or rule sets that you want to export.

3 From the applet menu, choose Export Rule Set.

4 Follow the on-screen prompts to save the rule set as an XML file.

Importing a Validation Rule Set
Use the following procedure to import a validation rule set.

To import a validation rule set
1 Navigate to Administration- Data Validation.

2 In the Validation Rule Set list, choose Import Rule Set from the applet menu.

3 In the Validation Rule Set Import dialog box, locate the file you wish to import and click Import.

The imported rule set appears having a status of In Progress.

4 To activate the imported validation rule set, select it in the Validation Rule Set list and click
Activate.

Clicking Activate changes the rule set Status to Active and makes the record read-only.
Siebel Order Management Infrastructure Guide Siebel 2018144

Data Validation Manager ■ Process of Administering Data Validation Rules
Defining Rule Set Arguments
This task is a step in “Process of Administering Data Validation Rules” on page 140.

You can write a validation expression of a rule which contains user-defined arguments using a syntax
such as:

[Some Buscomp Field Name] = [&Argument Name]

These arguments must be first defined in the Arguments list. Values of these arguments can be set
using the Default Value field. They can also be set at run time by supplying an input argument to the
Data Validation Manager business service. The input argument name must be the same as the
argument name defined in the Arguments list.

Business service input arguments will overwrite whatever default values you have specified in the
Arguments list. The default values only take effect when input arguments are not provided.

You can only define arguments for validation rule sets that have a status of In Progress.

To define a rule set argument
1 Navigate to Administration - Data Validation.

2 In the Rule Sets list, select a rule set with a status of In Progress and drill down on the rule set
name.

3 Click the Arguments view tab.

4 In the Arguments list, add a new record, and complete the necessary fields. Some fields are
described in the following table.

Defining Validation Rules
This task is a step in “Process of Administering Data Validation Rules” on page 140.

For each rule set, you define one or more validation rules. These rules represent the validation
criteria.

You can only define rules for validation rule sets that have a status of In Progress.

Field Comments

Argument Name A string that specifies the name of the argument. You use the notation
[&Argument Name] to refer to the value of the argument in a rule
expression.

Default Value The value that the argument will take on in the absence of a business
service input argument of the same name.

Comments Free text field to provide explanations for the argument.
Siebel Order Management Infrastructure Guide Siebel 2018 145

Data Validation Manager ■ Process of Administering Data Validation Rules
To define a validation rule
1 Navigate to Administration - Data Validation.

2 In the Rule Sets list, select a rule set with a status of In Progress and drill down on the rule set
name.

3 Click the Rules view tab.

4 In the Rules list, add a new record, and complete the necessary fields. Some fields are described
in the following table.

Field Comments

Sequence # Identifies the numeric sequence of this rule in the rule set. The
application evaluates rules in numerical order based on this number.

Business Component The business component upon which the rule is based.

Expression A statement expressed in Siebel Query Language. The application
evaluates whether the expression is true or false. If true, the data
validation manager proceeds to evaluate the next rule. If false, the
application performs the actions defined for the rule.

You can refer to a business component field value using the notion
[Field]. For example, if the business component of the rule is
Opportunity, then an expression [Sales Stage] IS NOT NULL means that
you want to know of the Sales Stage field of the Opportunity business
component contains a value or not.

You can use the syntax [BC.Field] to refer to a field of a business
component different from the one of the validation rule. For example,
you may have a rule which has its business component set as
Opportunity. You can write the following expression stating what is valid:

[Sales Stage] IS NOT NULL AND [Account.Status] = "Active"

[Account.Status] refers to the Status field of the Account business
component. Without a prefix, [Sales Stage] refers to the Sales Stage
field of the business component (Opportunity) of the rule.

You can also use the syntax [&Argument] to refer to a rule set argument.
For example, you may have a rule expression [&Answer] = "Yes". Here
the rule set argument Answer has already been defined in the Arguments
List Applet. Once defined, the argument becomes a business service
input argument which you can populate with dynamic values at run time
(for example, through a workflow).

You can either enter the statement directly in the field or click the
Expression select button to launch the Expression Designer. The
Expression Designer allows you to construct an expression by pointing
and clicking on a pop up window, perform syntax validation, and lookup
definitions of built-in functions supported by the Siebel Query Language.

For more information about the Expression Designer, see Developing and
Deploying Siebel Business Applications.
Siebel Order Management Infrastructure Guide Siebel 2018146

Data Validation Manager ■ Process of Administering Data Validation Rules
5 After the Rules list applet, click the Rule Detail view tab and complete the necessary fields. Some
fields are described in the table that follows.

Message Displays the text of the error message from the Return Code field.

If the expression is evaluated to be false, the application either displays
the error message or writes it to a log file. The maximum number of
characters is 250.

For more information viewing the validation log file, see “Viewing a
Validation History” on page 153.

Apply To This field takes on two values: Current Record and All Records.

When Current Record is chosen, Data Validation Manager applies the
validation rule to the current active business component record. When
All Records is chosen, Data Validation Manager applies the validation rule
to all business component records.

If the business component on the rule is the same as the one on the rule
set, then this field is read only. If the business components on the two
are not the same, you can choose Current Record or All Records.

Return Code Select the return code and error message for this rule.

The Validation Messages dialog box allows you to select codes and
associated error messages that you defined in the step “Defining Error
Messages for Data Validation” on page 141.

CAUTION: If you type a return code rather than selecting if from the
dialog box, the error message is not copied into the rule. The error
message for this rule will be blank.

Start Date Corresponds to the time when the rule becomes effective. A rule is only
evaluated if the Start Date is equal to or earlier than the current date.

End Date Specifies the last date this rule can be used. If not populated, the rule
set never expires. A rule is only evaluated if the End Date is equal to or
later than the current date.

Field Comments

Stop on Error If the expression is evaluated to be false and this field is checked
(TRUE), the application will ignore all subsequent rules.

Immediate Display Defines error message behavior. If the expression is evaluated to be
false, and both Immediate Display and Stop on Error flags are checked
(enabled), the application immediately displays the specified message.

NOTE: If, for the rule set, Aggregate Errors is enabled, the Immediate
Display flag for each rule is ignored. Instead, the application
aggregates all error messages of the rules that are FALSE into one
string, and then display the aggregated error message to the end user.

Field Comments
Siebel Order Management Infrastructure Guide Siebel 2018 147

Data Validation Manager ■ Process of Administering Data Validation Rules
Defining Validation Rule Actions
This task is a step in “Process of Administering Data Validation Rules” on page 140.

The Data Validation Manager business service can perform a sequence of actions when a rule
expression is evaluated to be FALSE. Each action can be set to update a business component in the
active business object or to execute a business service.

Each action has a sequence number. Data Validation Manager executes the actions in ascending order
of their sequence numbers.

To define a data validation rule action
1 Navigate to Administration - Data Validation, and then Rule Sets view.

2 In the Validation Rule Set list, select the rule for which you want to define an action, and drill
down on the Name hyperlink.

3 Click the Actions view tab.

4 In the Actions list, add a new record, and complete the necessary fields. Some fields are
described in the table that follows.

Message The text of the error message. If the expression is evaluated to be
false, the application either displays the error message or writes it to a
log file. The maximum number of characters is 250.

For more information viewing the validation log file, see “Viewing a
Validation History” on page 153.

Field Comments

Sequence # Identifies the numeric sequence of this rule in the rule action. The
application executes actions in numerical order based on this
number.

Type Determines whether the action is to update the current active
business component or execute a business service. Can either be
Business Component or Business Service.

Business Component Name of business component which you want to update. This field
is editable only when Type is set to Business Component.

Business Service Name Name of the business service you want to invoke. This field is
editable only when Type is set to Business Service.

Business Service Method Method of the business service you want to invoke.

Business Service
Context

Name - value pairs which you can use to pass certain values as
input arguments to the business service. For example, "input
argument 1", "value 1", "input argument 2", "value 2".

Field Comments
Siebel Order Management Infrastructure Guide Siebel 2018148

Data Validation Manager ■ Process of Invoking the Data Validation Manager Business
Service
For each action record of type Business Component, enter the field and value information as
described in the table that follows.

Activating a Data Validation Rule Set
This task is a step in “Process of Administering Data Validation Rules” on page 140.

The final step in administering data validation rules is to activate the rule set. Only then can it be
executed by the Data Validation Manager business service.

After you have added and defined all rule set arguments and rules, activate the rule set. After you
activate the rule set, it becomes read-only and can not be edited.

You can only define arguments and rules for validation rule sets that have a status of In Progress. If
you want to revise an existing rule set, see “Revising an Existing Validation Rule Set” on page 144.

To activate a rule set
1 Navigate to Administration - Data Validation.

2 In the Rule Sets list, select the rule set you wish to activate.

NOTE: The status of the rule set must be In Progress in order for you to activate it.

3 Click Activate.

Clicking Activate changes the status of the rule set to Active and makes the record read-only.

Process of Invoking the Data Validation
Manager Business Service
This process is part of “Roadmap for Implementing Data Validation Processing” on page 140.

You can invoke the Data Validation Manager two different ways:

■ Invoking Data Validation Manager from a Runtime Event on page 150

■ Invoking Data Validation Manager from a Workflow on page 152

In either case, you can affect how the business service works by populating certain input arguments
of the business service.

You can view the results of the business service execution by viewing the validation history log (see
Viewing a Validation History on page 153).

Field Comments

Field Name of the business component field you want to update.

Value Value with which you want to update the business component field. This
value must be a constant and cannot be an expression.
Siebel Order Management Infrastructure Guide Siebel 2018 149

Data Validation Manager ■ Process of Invoking the Data Validation Manager Business
Service
Invoking Data Validation Manager from a Runtime Event
This task is a step in Process of Invoking the Data Validation Manager Business Service on page 149.

You can invoke the Data Validation Manager business service from a runtime event. When the
specified runtime event occurs, the application invokes the business service. To invoke the business
service from an event, you first define the event in the Administration - Runtime Events view. For
more information about runtime events, see Siebel Personalization Administration Guide.

To define a runtime event to invoke the Data Validation Manager
1 Navigate to Administration - Runtime Events, and then Action Sets.

2 In the Actions Sets list, add a record and complete the necessary fields.

Some fields are described in the table that follows.

3 In the More Info form, complete the fields using the values described in the table that follows.

Field Comments

Action Type Specifies the type of action. Select BusService.

Sequence Number describing the order in which the action occurs. Execution
begins with the action with the lowest sequence number. Actions with
the same sequence number are executed in random order. Actions
occur in sequence until all actions are completed.

Active Check the box to indicate whether the action will be triggered or not.
Inactive actions are ignored when the event occurs. This is a quick way
to turn off an action without changing the start and end dates.

Field Value Comments

Business Service
Name

Data Validation Manager Name of the business service to
invoke, if the conditional
expression evaluates to TRUE and
the type is BusService.

Enter the value exactly as shown.

Business Service
Method

Validate Method to invoke on the business
service.

Enter the value exactly as shown.

Business Service
Context

Example:

"Rule Set Name", "Validation",
"Enable Log", "Y"

These input arguments are
equivalent to those presented in
Step 2 on page 152.

Name-value pairs to specify the
inputs to the business service
method. Both the name and the
value must be enclosed by
quotation marks and separated by
a comma and a space after the
comma.
Siebel Order Management Infrastructure Guide Siebel 2018150

Data Validation Manager ■ Process of Invoking the Data Validation Manager Business
Service
CAUTION: Failure to use the syntax specified in the Business Service Context field may result
in errors.

4 In the link bar, click Events to associate an event with the action set.

5 In the Events list, add a record and complete the fields as described in the table that follows.

6 Either close down and relaunch the server or mobile clients, or select Reload Runtime Events
from the applet menu.

Field Comments

Name Optional. Select an event alias from the drop-down list. Selecting a
name automatically populates the Object Type, Object Name, Event,
and Subevent fields. This is based on the event template created in the
Event Aliases list.

For more information about creating event aliases, see Siebel
Personalization Administration Guide.

Sequence Required. An event can trigger multiple action sets. Enter numbers in
this field to control when the action set associated with this event in
this record executes relative to other action sets associated with this
event.

Object Type Required. Select BusComp from the drop-down list.

Object Name The name of the application, business component, or applet (depending
on the object type) to which the event occurs.

Event Required. Select from the drop-down list. The choices depend on which
object type you choose. Valid values include:

■ Use the PreWriteRecord business component event if you want to
control whether a record can be written to the database, based on
the outcome from the validation.

■ Use the PreDeleteRecord business component event if you want to
control whether a record can be deleted from the database, based
on the outcome from the validation.

Action Set Required. Select an action set to run when the event occurs. The Name
name is defined in the Action Sets view tab. For more information, see
Step 3.
Siebel Order Management Infrastructure Guide Siebel 2018 151

Data Validation Manager ■ Process of Invoking the Data Validation Manager Business
Service
Invoking Data Validation Manager from a Workflow
This task is a step in Process of Invoking the Data Validation Manager Business Service on page 149.

You can invoke the Data Validation Manager business service from a workflow. This topic describes
some of the possible steps you can include to enable this invocation. You may need to modify and
expand on this procedure to accommodate more complex business requirements. The workflow
process you create must contain the following steps:

■ Start. Initiates the process instance. When the conditions have been met, the application
initiates the process instance.

■ Business Service. A step in a process in which an automated call is made to the Data Validation
Manager service. A workflow process definition can have one or more business service steps.

■ End. A step in a process that specifies when a process instance is finished.

NOTE: The workflow that makes a call to the Data Validation Service must be invoked from a runtime
event. If it is invoked from a script, the script passes no record context to the Data Validation
Manager. The context is passed only with a runtime event. Thus, if you try to invoke a workflow using
a script, the child business component context is not passed to Data Validation Manager, so it cannot
validate the data correctly.

For more information about how to create a start step, business service step, and end step in a
workflow, see Siebel Business Process Framework: Workflow Guide.

To invoke Data Validation Manager from a workflow
1 Create the workflow in Siebel Tools.

2 When you create the business service step, include the following information:

a In the Business Service form, complete the fields described in the following table.

b In the Input Arguments list, create new records to establish your Input Arguments as described
in the following table.

Field Value

Business Service Data Validation Manager

Method Validate

Input Argument Comments

Active Object Can attain a value of Y or N. If the value is N or if this input
argument is not entered into the list applet, the Business Object
and Object Id input arguments must be established and cannot be
NULL.
Siebel Order Management Infrastructure Guide Siebel 2018152

Data Validation Manager ■ Process of Invoking the Data Validation Manager Business
Service
If the data is valid, both the Return Code and the Return Message field remain empty.

NOTE: If the data is invalid, in addition to filling in the Return Code and Return Message, the
workflow engine also generates the generic error message "Error invoking business service." This
error message is an expected result of how the workflow engine treats content populated into the
Error Message process property by a business service. It does not indicate that the Data Validation
Manager failed.

Viewing a Validation History
You can view a history of validation events in the Validation History view. All events display in
chronological order.

BusObj The name of the business object (that is, the functional area) to
which the event occurs. It is required if an Active Object has not
been specified or has a value of N.

By default, the business service uses the primary business
component of the business object (if defined).

Enable Log Valid options include:

■ Y - Application logs all instances when the rule set runs.

■ N - Application does not track any instances of when the rule
set runs.

For more information about the Validation log file, see “To view the
validation history” on page 154.

Object Id The row ID of the principle business component of the business
object. It is required if an Active Object has not been specified or
has a value of N.

Object Search Type Value is View or Business Object and determines which of these two
arguments is used as criteria.

Group Group name to which to restrict data validation rule set selection.

Rule Set Name In the Value field, enter the name of the rule set to be invoked. For
more information, see “To define a new validation rule set” on
page 142.

Input Argument Comments
Siebel Order Management Infrastructure Guide Siebel 2018 153

Data Validation Manager ■ Process of Invoking the Data Validation Manager Business
Service
To view the validation history
■ Navigate to Administration - Data Validation, and then Validation History view.

The Validation History view appears, displaying validation events. Some fields are described in
the table that follows.

For more information about defining rule sets and configuring the Return Code and Return
Message fields, see “Defining Validation Rules” on page 145.

Field Comments

BusComp Name The business component that was validated.

Date The date the validation event happened.

Last Step # Sequence number of the rule evaluated to be false or the last rule
in the rule set.

Return Code The rule's Return Code field value.

Return Message The rule's Message field value.

Started By The login name of the user who executed this rule.

Status Specifies the status of the validation result:

■ Errored Out. Indicates Stop on Error is True. The current rule
is evaluated to be false and further rule evaluation is halted.

■ Error Proceed. Indicates Stop on Error is False; the current
rule is evaluated to be false and the application proceeds to
evaluate the next rule.

■ Completed. Indicates the application has reached the last rule
of the rule set and the rule is evaluated to be True.
Siebel Order Management Infrastructure Guide Siebel 2018154

9 Approvals Manager
Using the Approvals engine, you can define a set of approvers who must approve a requested item.
The Approvals engine processes the defined set of approvers by notifying each approver with a
Universal Inbox record or an email.

Approval processes happen in one of two flow types: sequential or parallel. For sequential approval
processes, the Approvals engine maintains the context of a specified sequence of approvers, and
alerts the next approver after the previous approver has approved the request. For parallel approval
processes, multiple approvers can take action at the same time.

The Approvals engine allows the requester to monitor the approval process using the Approvals view
in the Quotes, Orders, and Agreements screens. Navigate to the Administration - Application screen,
then the Approval Admin view to access the Approvals view.

In order to integrate Universal Inbox with Siebel order management, you use the Approvals view and
the Approval Manager business service.

This chapter includes the following topics:

■ “About Approval Processing” on page 155

■ “ISS Approval Business Service Methods” on page 157

■ “Defining Approval Items and Approval Stages” on page 158

■ “About Invoking the Approvals Manager Business Service from a Workflow” on page 159

■ “Approving or Declining Approval Stages (End User)” on page 161

About Approval Processing
In Siebel order management, administrators can define a number of approval levels without the need
for programming, scripting, or configuring. You can define both basic or multiple-step approval
processing levels based on the needs of your organization. You can invoke approval processing from
a script, a workflow, or a run-time event.

Approval Item
An approval item is an approval process invoked by the Approvals engine. An approval item can be
one of two types: parallel or sequential. An approval item with an Approval Flow Type of Parallel is
set so that all approvers receive the approval request at the same time. An approval item with an
Approval Flow Type of Sequential is set so that each approver receives the approval request only
after the prior person approves. If an approver rejects the request, no other approvers further along
in the sequence sees the approval request.
Siebel Order Management Infrastructure Guide Siebel 2018 155

Approvals Manager ■ About Approval Processing
Approval Stage
The approval stage is the set of individuals who must approve the approval item. An approval item
can have multiple approval stages.

Approval Types
The individual that is set as an approver can be one of the following approval types:

■ Employee. A specific employee within the organization.

■ Position. A general position within the organization.

■ Either of the above. Employee and Position are both multi-value groups. The third option is
Either. If there is more than one owner or position specified against an approval item, then either
one of them is allowed to approve or deny the Inbox item.

NOTE: If your organization defines the relationship between Employee and Position as 1:1, the
distinction between Approval Types is irrelevant. If your organization chooses to use the approval
type Position, only the primary employee for the position is alerted.

Automating an approval process involves the following steps:

■ Administrator defines approval items and approval stages. For more information, see
Defining Approval Items and Approval Stages on page 158.

■ Administrator invokes approval processing. For more information, see About Invoking the
Approvals Manager Business Service from a Workflow on page 159.

■ End users approve or decline an approval stage. For more information, see Approving or
Declining Approval Stages (End User) on page 161.

Interaction of the Approvals engine parts is shown in Figure 38.

Figure 38. Components of the Approvals Engine
Siebel Order Management Infrastructure Guide Siebel 2018156

Approvals Manager ■ ISS Approval Business Service Methods
ISS Approval Business Service Methods
The ISS Approval business service has the following APIs:

■ CreateNewApprovalTasks Method

■ GetApprovalStatus Method

■ SetApprovalDecision Method

CreateNewApprovalTasks Method
This method creates new approval task instances by copying a template from Approval Stage. You
must pass in the Approval Level Name, Requesting Bus Comp, Inbox Type, and Object ID.

For more information about this method, including a description of all method arguments, see the
topic about order management interface methods reference in Siebel Order Management Guide.

GetApprovalStatus Method
This method returns the approval status for the inbox item. The status is one of the following:
Approved, Declined, or In Progress. You must pass in the Approval Level Name, Approval Item ID,
Inbox Type, and Object Id.

For more information about this method, including a description of all method arguments, see the
topic about order management interface methods reference in Siebel Order Management Guide.

SetApprovalDecision Method
This method sets the approval status for a given stage level. You must pass in the Stage ID, Inbox
Type, Object ID, Seq Num, Inbox Item Id, Owner Info Id, and Action LIC.

NOTE: Only Approval Type EMPLOYEE is supported. Position-based and Either approval is not
supported with the Universal Inbox. These are only supported with the My Approval Inbox (Siebel
Industry Applications).

However, Position Type Approval is supported in the sense that it dynamically routes the approval to
the primary employee for the position. But it is not the standard Siebel position-based visibility.

For more information about this method, including a description of all method arguments, see the
topic about order management interface methods reference in Siebel Order Management Guide.
Siebel Order Management Infrastructure Guide Siebel 2018 157

Approvals Manager ■ Defining Approval Items and Approval Stages
Defining Approval Items and Approval
Stages
An administrator defines the approval process by creating approval items and approval stages using
the Administration - Application screen, then the Approval Admin view.

To define approval items and stages
1 Navigate to the Administration - Application screen, then the Approval Admin view.

2 In the Approval Item list, add a record and enter a name in the Approval Item field.

3 In the Approval Flow Type field, select one of the following:

■ Sequential. Indicates this approval item is distributed to approvers one after another in the
sequence specified in the Approval Stage list applet. The application routes the approval item
to the next approver only if the current approver approves the request. If any one approver
in the approval chain declines the request, the approval item is rejected, and no further
routing is conducted.

■ Parallel. Indicates this approval item is distributed to all approvers simultaneously for
approval. The approval item is rejected if at least one approver declines the approval request.

After you have defined an approval item, the next step is to define the appropriate approval
stages. The Approval Item and Approval Stage list applets have a parent-child relationship.

4 In the Approval Stage list, add a record for each approval stage and complete the necessary
fields.

Some fields are described in the following table.

End users use the Inbox screen to approve an approval item. For more information, see Approving
or Declining Approval Stages (End User) on page 161.

Field Description

Sequence # Identifies the numeric sequence of this approval stage in the current
approval item. The application executes approval stages in numerical
order based on this number.

Approval Type Specifies whether the approver is a position or an employee.

Owner Login Name Indicates the login name tied to this approval stage. Relevant only if
Approval Type is Employee.

Owner Position Indicates the position tied to this approval stage. Relevant only if
Approval Type is Position.
Siebel Order Management Infrastructure Guide Siebel 2018158

Approvals Manager ■ About Invoking the Approvals Manager Business Service from a
Workflow
About Invoking the Approvals Manager
Business Service from a Workflow
You can invoke the FINS Approval Item Service from a seed data workflow. To do this, click the
Generate Approvals menu option on the Quote, Order, or Agreement header applet. The workflow
shown in Figure 39 on page 159 is the one invoked through the signal ApproveItem.

You can also invoke the FINS Approval Item Service from a workflow by creating a workflow process
in Siebel Tools containing the following steps:

■ Start. Initiates the process instance. When the conditions have been met, the application
initiates the process instance. See “Configuring the Start Step for a Workflow That Invokes the
Approvals Manager Business Service” on page 160.

■ Business Service. A step in a process that makes an automated call to the FINS Approval Item
Service. A workflow process definition can have one or more business service steps. See
“Configuring the Business Service Step for a Workflow That Invokes the Approvals Manager Business
Service” on page 161.

■ End. A step in a process that specifies when a process instance is finished.

In order for your workflow to execute correctly, the Start and Business Service steps must meet the
minimum requirements described in the referenced sections. For more information about workflows,
see Siebel Business Process Framework: Workflow Guide.

An example of a workflow that invokes the Approvals Manager business service is the ISS Approval
(Order) workflow, shown in Figure 39.

Figure 39. ISS Approval (Order) Workflow
Siebel Order Management Infrastructure Guide Siebel 2018 159

Approvals Manager ■ About Invoking the Approvals Manager Business Service from a
Workflow
Configuring the Start Step for a Workflow That Invokes
the Approvals Manager Business Service
Table 33 details some of the start step parameters for the workflow process.

Table 33. Parameters for Start Step

Field Comments Example

Event The specific event that happens to
the object. The set of available
events is different for different
object types.

Use the WriteRecord business
component event if you want to
trigger the approval process after
the record is written to the
database.

Use the WriteRecordNew business
component event if you want to
trigger the approval process after a
new record is written to the
database.

Event Object The name of the application,
business component, or applet to
which the event occurs.

Contact

Event Object Type The type of object to which the
event occurs. This can be an
application, business component, or
applet.

BusComp

Name The name of the Next step branch.

The name of the branch must be
unique or you cannot import or
export the workflow process.

Next Step The name of the step that follows
when conditions are met.

Picklist of existing process steps.

Type The type of branch. The value can be one of the
following:

■ Condition. This value indicates
that a condition is defined for
the branch.

■ Default. This value indicates that
if nothing else is satisfied, then
this branch is followed.
Additionally, if this value is used,
any conditions defined for the
branch are ignored.
Siebel Order Management Infrastructure Guide Siebel 2018160

Approvals Manager ■ About Invoking the Approvals Manager Business Service from a
Workflow
Configuring the Business Service Step for a Workflow
That Invokes the Approvals Manager Business Service
Table 34 and Table 35 detail some of the business service step parameters and input arguments for
the workflow process.

Approving or Declining Approval Stages
(End User)
End users approve approval items in the Inbox views. Users can view approval items by login name
or position. For more information about setting up approval processing, see Defining Approval Items
and Approval Stages on page 158.

The ISS Post Approval workflows (query on ISS Post Approval Workflow *) are invoked to execute
the ISS Approval service after the approver takes action in the Inbox views.

Table 34. Parameters for Business Service Step

Field Value

Business Service ISS Approval Business Service

Methods CreateNewApprovalTasks

GetApprovalStatus

SetApprovalDecision

Table 35. Input Arguments for Business Service Step

Input Argument Property Name Comments

Approval Identifier Object Id Row Id of the object (for example, a
Service Request) that needs
approval processing.

Approval Item Name Approval Item Name Name of the Approval Item defined
in the Administration - Application
screen, then the Approval Admin
view.

Requesting Buscomp Requesting Buscomp Name of the buscomp object (for
example, a Service Request) that
needs approval processing.
Siebel Order Management Infrastructure Guide Siebel 2018 161

Approvals Manager ■ About Invoking the Approvals Manager Business Service from a
Workflow
To approve or decline an approval stage
1 Navigate to the Inbox views.

2 Select one of the following views:

■ My Approvals. Displays all approval items associated with the user’s login name.

■ My Position Approvals. Displays all approval items associated the current user’s position.

3 To view additional details about an approval item, drill down on the Approval Identifier hyperlink.

4 In that Status field, select Approve or Decline.

Once you select a status, the application populates the Approval By and Approval Date field and
sets the record to read-only.
Siebel Order Management Infrastructure Guide Siebel 2018162

10 Asset-Based Ordering Methods
Reference
This chapter is a reference that explains the methods developed for the business services used for
the asset-based ordering parts of C/OM. It includes the following topics:

■ “Product Manipulation Toolkit Business Service Methods” on page 163

■ “Order Entry Toolkit Business Service Methods” on page 226

■ “Account Administration Toolkit Business Service Methods” on page 234

■ “Complex Product AutoMatch Business Service Method” on page 237

Product Manipulation Toolkit Business
Service Methods
The Product Manipulation Toolkit (PMT) business service is a set of methods that can be linked to
implement order processing workflows. These workflows maintain the service profile as orders are
provisioned.

The two primary methods in this toolkit are:

■ Delta. Creates a Quote or Order that defines the changes required to convert the initial state of
an Asset into the final state of an Asset.

■ Apply. Applies changes defined in Quotes and Orders to an Asset, putting the Asset into a new
state.

The toolkit also provides a number of methods to support Delta and Apply.

This topic begins with a description of “User Properties Used by PMT Methods” on page 167. Then this
topic describes all the methods that the PMT business service calls, which are summarized in
Table 36.

Table 36. PMT Methods

Method Comment

Delta Method on page 170 Generates the actions necessary to change an existing
product with components (asset) into a new product with
components. The set of actions can be written to a quote or
an order.

Apply Method on page 182 Applies changes defined by a Sales order line item to a
customizable asset.
Siebel Order Management Infrastructure Guide Siebel 2018 163

Asset-Based Ordering Methods Reference ■ Product Manipulation Toolkit Business
Service Methods
Trim Method on page 194 Eliminates line items from a delta quote or delta order if
they do not meet the requirements specified in the input
arguments. This action produces a new trimmed quote or
order. The method determines which changes in a
customizable order item to apply to the service profile
stored in Assets.

Explode Method on page 197 Creates multiple instances of a product. The number of
instances is determined by the value of the field defined by
the ExplodeOnField argument. For each new instance, the
value of ExplodeOnField is set to 1. An existing instance is
considered for explosion only if it meets the conditions
specified by ConditionFieldNames and ConditionValues.

Explode Siebel Object Method on
page 200

Functions like Explode except that it also loads the
SiebelMessage integration object from the Siebel database
with a specified business component and synchronizes it
back to the database after the explosion.

Find Orders Method on page 201 Given the asset integration ID of a root line item, this
method finds all instances of order items that have the
same asset integration ID. The order header, matching line
item, its child items and attributes are returned as part of
the output. Other lines item in the same order header with
a different integration IDs are not returned.

Logical Delete Method on page 202 Converts any item of a product instance that has a Deleted
action code to an Update action code and an Inactive status.
Logical Delete only works with a product instance of the
Order type. In other words, the Integration Object passed
in the Siebel Message is based on the Order Entry business
object.

Assign New Service IDs Method on
page 205

Assigns a service point ID, associated with a specified
premise, to each item of the input complex object where the
service point type matches the service type of the product.

Convert Product Instance Method on
page 204

Converts a product instance of one type to another; for
example, quote to order.

Get Instance Method on page 203 Gets a complex product instance from the Product
Configurator.

Get Profile Attribute Method on
page 202

Returns the value of the specified attribute of the user
profile.

Table 36. PMT Methods

Method Comment
Siebel Order Management Infrastructure Guide Siebel 2018164

Asset-Based Ordering Methods Reference ■ Product Manipulation Toolkit Business
Service Methods
Is Fully Ex Method on page 206 Checks a product instance to determine if an explode
operation is required, based upon the value specified by
ExplodeOnField. If the field value is greater than 1 for any
component of the product instance, the method returns N.
Otherwise, the method returns Y.

Is Module Licensed Method on
page 207

Determines whether or not the specified module is licensed.

Merge Method on page 207 Merges the components of one integration object (product
instance) under the header of another integration object.

Quote To Revenue Method on
page 208

Generates revenue line items for each line item in a quote
that matches the criteria specified by the input conditions.
The line items are associated with the opportunity from
which the quote was created.

Reconfigure Product Instance
Method on page 212

Displays the asset that was passed to the Product
Configurator as input, in the Configurator UI.

Reset Method on page 213 Clears out all cached product instances.

Retrieve Next Object From List
Method on page 214

Given a hierarchical integration object with multiple root
components at the second level, this method returns an
integration object that contains the header, one root
component, its children and their attributes.

Set Action Method on page 215 Sets the Action Code field of all items in the hierarchy of a
given product instance to the specified value.

Set Exception Error Message
Method on page 215

Called from the workflow to get the localized error message
text that is associated with the input error code.

Set Field Value Method on page 216 Sets a specified field to the given values for all items in the
product instance that meet an optional condition.

Set Multiple Field Values Method on
page 217

Sets specified fields to the given values for all items in the
product instance.

Set Output Header Method on
page 218

Caches the output header that will be used by the Apply and
Delta methods.

Set Product Instance Method on
page 218

Caches a product instance that will be used as an input
arguments for Apply and Delta methods.

Set Profile Attribute Method on
page 219

Assigns values to attributes in a user profile.

Synchronize Method on page 219 Synchronizes product instance to the database. Optionally,
this method also reprices the instance after it is
synchronized by calling Pricing Manager Reprice or
RepriceAll. This method calls the EAI Siebel Adapter Execute
method to synchronize or upsert.

Table 36. PMT Methods

Method Comment
Siebel Order Management Infrastructure Guide Siebel 2018 165

Asset-Based Ordering Methods Reference ■ Product Manipulation Toolkit Business
Service Methods
Update Multi Object List Method on
page 220

After a root integration component is stripped from the
integration object by the Retrieve Next Object From List
method, this method returns the resulting integration
object.

Update Order Line Item Completed
Flag Method on page 221

Sets the Order Item Processed Flag of the root order line
item to Y, if its status and that of all its child items is
Complete, Rejected, or ‘-‘.

Get Cfg Button Click Information
Method on page 221

Identifies the button the user has clicked in the Complex
Product view.

Refresh Business Component
Method on page 222

Reexecutes all instances of the specific buscomp to get data
from the database.

Invoke BC Method on page 222 Allows a business component-based method to be invoked
from a workflow. Acts as a bridge to pass the business
component name and method name, along with the
parameters, and returns the value required from the
workflow to the specified business component

Iterate Process For Selected Rows
Method on page 223

Loops through all selected rows in the active business
component and initiates the specified workflow process for
each row.

Get Selected Row Count Method on
page 224

Returns the number of rows selected in the active business
component (for example, the business component that
initiated the workflow).

Get First Selected Row Values
Method on page 224

Queries the active business component for a given set of
field values (specified by the Fields argument) to be
assembled and returned in the output property set.

Ungroup Method on page 225 Creates multiple instances of a product. The number of
instances is determined by the value of the field defined by
the ExplodeOnField argument. For each new instance, the
value of ExplodeOnField is set to 1. An existing instance is
considered for explosion only if it meets the conditions
specified by ConditionFieldNames and ConditionValues.

Table 36. PMT Methods

Method Comment
Siebel Order Management Infrastructure Guide Siebel 2018166

Asset-Based Ordering Methods Reference ■ Product Manipulation Toolkit Business
Service Methods
User Properties Used by PMT Methods
The following user properties are used by PMT methods:

■ Alias Action Code. Used by Delta and Apply to extend the standard set of action codes by
creating aliases.

Syntax:

Alias Action Code = "<action code>","<alias action code>","<expr to satisfy on
Delta>"

Example:

Name = Alias Action Code 1
Value = "Update", "Suspend", "[Old Asset Status] = "Active" AND [Asset Status] =
"Suspended""

■ Asset Integration Object Name. Name of the integration object that is based upon the Asset
business object.

■ Attribute Integration Component Name. Name of the integration component that is based
on the extended attribute business component. For example, Quote Item XA is a line item’s
extended attribute. This value must be the same for all three integration objects: asset, quote,
and order.

■ Attribute Item Map. Used by the Convert Product Instance, Delta, and Apply methods to map
Asset, Quote, and Order attribute fields. It allows the methods to transform one data type (Asset,
Quote, or Order) to another data type (Asset, Quote, or Order).

Syntax:

Name = Src Int Obj Name.Src Int Comp Name:Dest Int Obj Name.Dest Int Comp Name
Map #

Value = [Src Field]:[Dst Field]

Example:

Name = SIS OM Quote.XA:SIS OM Order.XA Map 20
Value = [Name]:[Name]

■ Cancel Button Return. Output value of the Get Cfg Button Click Info method when the Cancel
button is clicked in the Complex Product view.

■ Delta Line Item Compare Field. Used by the Delta method to determine which Asset line item
fields are compared to determine if two line items are different.

Syntax:

Delta Line Item Compare Field = [Asset line item Integration Field]:[Quote/Order
line item Integration object field]
Siebel Order Management Infrastructure Guide Siebel 2018 167

Asset-Based Ordering Methods Reference ■ Product Manipulation Toolkit Business
Service Methods
■ Delta Old Field. Used by the Delta method to capture the old value of a line item field when it
is changed by a Modify Order.

Syntax:

Delta Old Field # = [field name]:[field name to store old value]

Example:

Name = Delta Old Field 1
Value = [Status]:[Old Status]

■ Delta XA Compare Field. Used by the Delta method to determine which Asset Line Item’s
attribute fields are compared to determine if two line item’s attributes are different.

Delta Line Item Compare Field = [Asset line item Integration Field]:[Quote/Order
line item Integration object field]

Example: If an Order line item’s Account Id field is mapped to the Asset Line item’s Owner
Account Id, PMT user property Quote Integration Object Name is set to SISOM Order, and user
property Asset Integration Object name is set to SIS OM Asset, the following user property is
created:

SIS OM Order Line Item:SIS OM Asset Line Map 20 [Account Id]:[Owner Account Id]

■ Delta XA Old Field. Used by the Delta method to capture the old value of an XA field when it is
changed by a Modify Order.

Syntax:

Delta XA Old Field # = [field name]:[field name to store old value]

Example:

Name = Delta XA Old Field 1
Value = [Value]:[Old Value]

■ Done Button Return. Output value of the Get Cfg Button Click Info method when the Done
button is clicked in the Complex Product view.

■ Header Integration Component Name. Name of the integration component that is based on
header business components. A Quote is a header of a Quote, an Order is a header of an Order,
and so on. This value must be the same for all three integration objects: asset, quote, and order.

■ Header Map. Similar to the Attribute Item Map except that this user property maps header
fields.

Syntax:

Name = Src Int Obj Name.Src Int Comp Name:Dest Int Obj Name.Dest Int Comp Name
Map #

Value = [Src Field]:[Dst Field]

■ Line Item Integration Component Name. Name of the integration component that is based
on line item business components. Quote Item is a line item component, Order Item is a line item
component, and so on. This value must be the same for all three integration objects: asset,
quote, and order.
Siebel Order Management Infrastructure Guide Siebel 2018168

Asset-Based Ordering Methods Reference ■ Product Manipulation Toolkit Business
Service Methods
■ Line Item Map. Similar to the Attribute Item Map except that this user property maps line item
fields.

Syntax:

Name = Src Int Obj Name.Src Int Comp Name:Dest Int Obj Name.Dest Int Comp Name
Map #

Value = [Src Field]:[Dst Field]

Example: If an Order line item's Account Id field is mapped to the Asset Line item's Owner
Account Id, PMT user property Order Integration Object Name is set to SIS OM Order, and user
property Asset Integration Object name is set to SIS OM Asset, the following user property is
created:

Name = SIS OM Order.Line Item:SIS OM Asset.Line Item Map 20
Value = [Account Id]:[Owner Account Id]

■ Order Integration Object Name. Name of the integration object that is based on an Order
business object.

■ Quote Integration Object Name. Name of the integration object that is based on a Quote
business object.

■ Workflow Product Configuration View. Specifies which view the Product Configurator is to
use when PMT method Reconfigure Product Instance is invoked.

NOTE: The name of the view must be added to both of the following views in the Siebel client:
(1) Application Admin screen, then the Views view
(2) Application Admin screen, then the Responsibilities view

Syntax:

SIS OM Reconfigure Complex Product View Name: Account

SIS OM Complex Product Runtime Instance View - Account
Siebel Order Management Infrastructure Guide Siebel 2018 169

Asset-Based Ordering Methods Reference ■ Product Manipulation Toolkit Business
Service Methods
Delta Method
This method is one of the Product Manipulation Toolkit Business Service Methods. It generates the
actions necessary to change an existing product with components (asset) into a new product with
components. The set of actions can be written to a quote or an order.

Delta compares two complex assets (original and modified) and returns a quote or order. The return
contains line items that specify the actions required to change the asset from the original state to
the final state.

NOTE: An update occurs if a field in the product or any of its attributes changes. The list of fields
being compared is defined by the Delta Line Item Compare Field user properties. This list of fields is
configurable to support customer extensions to the database.

Arguments

Returns
Property Set containing the complex quote or order.

Remarks
Because Delta is used frequently, the following additional information about the method is useful:

■ “User Properties” on page 171

■ “Before Invocation” on page 171

■ “Processing” on page 171

■ “Increasing Quantities of an Asset Component” on page 171

■ “Action Field in the Quote and Order Attribute Tables” on page 172

■ “Action Codes Reset Upon Delta Line Item or Attribute Changes” on page 172

■ “Alias Action Codes” on page 172

■ “Old Value Support” on page 173

■ “Service Item Unique Keys (Asset Integration Id)” on page 173

■ “Action Types” on page 173

Argument Description

SiebelMessage [in] Hierarchical property set containing the final Asset (output returned
from call to PMT business service method Reconfigure Product Instance
Method).

SiebelMessage [out] Hierarchical property set containing a quote or order header, complex
line items, and attributes.

SplitQtyChange [in] Value is N. Controls whether a new line item is created upon an increase
in the quantity of an asset component. This argument is optional. By default
the component line item is split.
Siebel Order Management Infrastructure Guide Siebel 2018170

Asset-Based Ordering Methods Reference ■ Product Manipulation Toolkit Business
Service Methods
User Properties
The Delta method uses the following user properties:

■ Asset Integration Object Name

■ Quote Integration Object Name

■ Order Integration Object Name

■ Delta Line Item Compare Field

■ Delta XA Compare Field

■ Delta Old Field

■ Delta XA Old Field

■ Line Item Map

■ Attribute Item Map

■ Alias Action Code

For descriptions of these user properties, see “User Properties Used by PMT Methods” on page 167.

Before Invocation
Before Delta is invoked, the system must call two other methods:

■ Set Product Instance

Saves the original asset’s configuration before the Product Configurator is called. For more
information, see “Reconfigure Product Instance Method” on page 212.

■ Set Output Header

Saves the quote or order header that will be the Delta output. If a line item or attribute is
associated with the Quote or Order property set, it is stripped from the property set returned by
the Delta method. For more information, see “Set Output Header Method” on page 218.

Processing
During Delta processing, the method:

■ Compares the before and after images to determine the correct action codes for output.

■ Passes all fields in the new customizable asset through to the delta quote or delta order. This
includes all custom fields.

Delta compares a user-configurable set of fields. This includes the parent component ID to make sure
that changes to the product with components structure are reflected as an update.

Increasing Quantities of an Asset Component
If the user edits a customizable asset and increases the quantity of an existing component, the result
is two line items. The first line item represents the original asset. The second line item adds new
copies of that asset. If the original line item is changed, the Delta action is Update or NULL.
Siebel Order Management Infrastructure Guide Siebel 2018 171

Asset-Based Ordering Methods Reference ■ Product Manipulation Toolkit Business
Service Methods
Action Field in the Quote and Order Attribute Tables
Delta logic populates an Action field in the quote attribute and order attribute tables. This field allows
order provisioning logic to determine which of the attributes of a service product has changed.

For example, a delta quote can be represented as shown in Figure 40. In this example, the call
forwarding number changed but the number of rings did not.

Action Codes Reset Upon Delta Line Item or Attribute Changes
When a delta-enabled field in a line item changes (because of direct user input or a process such as
repricing) or an attribute of a line item changes, the action code is automatically set. This is shown
in Table 37.

NOTE: Make the Action field Read-Only to avoid possible violations of configuration rules that could
be caused by changing the action code of a line item.

Alias Action Codes
The Delta method has been extended to support Alias Action Codes. Delta replaces one of the
standard action codes (Add, Update, Delete, -) with an alias action code if a certain condition is met.

Figure 40. Action on Attribute Method Example

Table 37. Line Item Action Code Transitions

Original Action New Action

None Update

Add Add

Update Update

Delete Delete
Siebel Order Management Infrastructure Guide Siebel 2018172

Asset-Based Ordering Methods Reference ■ Product Manipulation Toolkit Business
Service Methods
For example, an action code of Update may be replaced by Suspend if the status field changes from
Active to Suspended. Alias action codes are evaluated for components but not attributes. Alias action
codes are specified by the Alias Action Code user properties.

Old Value Support
When performing a modify order in Siebel Customer Order Management versions prior to 7.7, you can
view the changes made to a product but only the end state, and values prior to the modify are lost.
Downstream provisioning systems require both the prior and current values. For example, a change in
bandwidth from 56K to 1024K might require a new piece of equipment to be installed at the wire center
whereas a change form 2048K to 1024K is simply a downgrade using the existing equipment.

The Delta method has been extended to store the values of fields prior to their being changed. The
prior value is the value of the field in the initial property set being considered by Delta.

Service Item Unique Keys (Asset Integration Id)
The Delta and Apply method operations depend upon the unique keys to each service item. Typically,
the unique key is an invariable combination of fields in the service item record. Because no
combination of user-entered fields is certain to be unique or invariable, the Siebel application
provides a hidden Asset Integration Id field that stores a unique identifier for each service item.

The asset integration ID links the service item to the quotes and orders that modify it. On creation
of a quote to add a new service item a new asset integration ID is generated from the row ID of the
quote line item The quote is converted to an order at which time a new asset integration ID is
generated from the row ID of the order line item. This occurs only if the action code of the quote line
item is ‘Add’ to enforce uniqueness if multiple orders are created from the same quote.

When the completed order is converted into an asset the asset integration ID is copied from the order
line item to asset. When the asset is subsequently modified (Modify or Disconnect) the asset
integration ID is copied to the quote and order line items.

Action Types
Each action types is implemented as a soft-coded list of values. This soft coding supports a
multilingual user interface and allows for industry specific terminology. The action types supported
by the Siebel application are listed in Table 38.

Examples
Review the following Delta method examples:

Table 38. Action Types

Action Type Comments

Add None

Update None

Delete None

None No action
Siebel Order Management Infrastructure Guide Siebel 2018 173

Asset-Based Ordering Methods Reference ■ Product Manipulation Toolkit Business
Service Methods
■ “Generating a Delta Quote to Update an Asset” on page 174

■ “Generating a Delta Quote to Add a New Asset” on page 175

■ “Generating a Delta Quote to Disconnect an Asset” on page 177

■ “Generating a Delta Property Set to Add More Assets” on page 178

■ “Identifying Changes in Product Structure” on page 179

Generating a Delta Quote to Update an Asset
The following example shows how this method generates a delta quote to update an asset.

1 A configuration session starts with the GCI One Bundle in the state shown in the diagram that
follows.
Siebel Order Management Infrastructure Guide Siebel 2018174

Asset-Based Ordering Methods Reference ■ Product Manipulation Toolkit Business
Service Methods
2 A CSR updates the customizable asset, as in the diagram that follows.

3 The Delta method generates the delta quote shown in the diagram that follows.

Generating a Delta Quote to Add a New Asset
The following example shows how this method generates a delta quote to add a new asset.
Siebel Order Management Infrastructure Guide Siebel 2018 175

Asset-Based Ordering Methods Reference ■ Product Manipulation Toolkit Business
Service Methods
1 A configuration session starts with no existing asset. The user configures a new customizable
product, as in the diagram that follows.

2 The Delta method generates the following delta quote.
Siebel Order Management Infrastructure Guide Siebel 2018176

Asset-Based Ordering Methods Reference ■ Product Manipulation Toolkit Business
Service Methods
Generating a Delta Quote to Disconnect an Asset
The following example shows how this method generates a delta quote to disconnect an asset.

1 The user selects a customizable asset in the service profile view, as in the diagram that follows.

2 The user clicks Disconnect.

A workflow runs Delta with the current state of the customizable asset and an empty
customizable asset as input arguments. The resultant delta quote is shown in the diagram that
follows.
Siebel Order Management Infrastructure Guide Siebel 2018 177

Asset-Based Ordering Methods Reference ■ Product Manipulation Toolkit Business
Service Methods
Generating a Delta Property Set to Add More Assets
The following example shows how this method generates a delta property set to add more copies of
an asset.

1 The user selects a customizable asset in the service profile view, as in the diagram that follows.

2 The user makes various changes including changing the quantity of Calling Card from one to
three, as in the diagram that follows.
Siebel Order Management Infrastructure Guide Siebel 2018178

Asset-Based Ordering Methods Reference ■ Product Manipulation Toolkit Business
Service Methods
3 Delta generates the delta property set as shown in the diagram that follows. The calling card
record is split out into the original, unchanged asset and an action to add the new copies of the
original calling card.

Identifying Changes in Product Structure
The following example shows how this method is used to change a product structure.
Siebel Order Management Infrastructure Guide Siebel 2018 179

Asset-Based Ordering Methods Reference ■ Product Manipulation Toolkit Business
Service Methods
1 The user selects a customizable product in the customer profile view, as in the diagram that
follows.

2 Since this asset was created, the customizable product structure has changed to group all
features beneath a Feature Package component. When the product is loaded into the
Configurator, it is relinked and displayed as shown in the diagram that follows.
Siebel Order Management Infrastructure Guide Siebel 2018180

Asset-Based Ordering Methods Reference ■ Product Manipulation Toolkit Business
Service Methods
3 When the new structure is saved, Delta identifies the new Feature Package component and marks
the Call Forwarding feature for update because its parent has changed. This is shown in the
diagram that follows.

Related Information
See the topic about workflows in Siebel Order Management Guide, and the following methods:

■ “Apply Method” on page 182

■ “Trim Method” on page 194

■ “Reconfigure Product Instance Method” on page 212

■ “Set Output Header Method” on page 218

■ “Set Product Instance Method” on page 218
Siebel Order Management Infrastructure Guide Siebel 2018 181

Asset-Based Ordering Methods Reference ■ Product Manipulation Toolkit Business
Service Methods
Apply Method
This method is one of the Product Manipulation Toolkit Business Service Methods. It applies changes
defined by a Sales order line item to a customizable asset. This method uses, as a base, an asset
that is cached as a result of a call to set the Product Instance and optionally, a header (asset, quote,
or order), passed in during the Set Output Header.

Arguments

Returns
An asset PropertySet that represents the original input asset plus the changes defined in the input
quote or order line item.

Remarks
The following information about the Apply method is useful:

■ “Input Arguments” on page 183

■ “Creating a hybrid asset order” on page 184

■ “Service Item Unique Keys” on page 184

■ “Exception Handling” on page 184

Argument Description

OpenOrders [in] Output result of a call to Business Service Find Orders.
(Optional).

For more information, see “Input Arguments” on page 183.

NOTE: Either OpenOrders or SiebelMessage is acceptable as input
but not both.

SiebelMessage [in] Contains a single complex Open Order or an Open Quote Line
Item. (Optional)

NOTE: Either SiebelMessage or OpenOrders is acceptable as input
but not both.

SiebelMessage [out] Output asset image representing a future configurable asset.

Is Apply Result Empty [out] Y if all the line items are removed from the result, or if the
information supplied to create an asset is insufficient information.

NOTE: Either SiebelMessage or Is Apply Result Empty is returned as
output but not both.
Siebel Order Management Infrastructure Guide Siebel 2018182

Asset-Based Ordering Methods Reference ■ Product Manipulation Toolkit Business
Service Methods
Input Arguments
To meet its requirements as a general-purpose tool for processing throughout the Asset-Quote-Order
life cycle, the Apply method can accept a variety of arguments as input. All input parameters are
optional to a varying degree, and the combination of parameters will be determined by the data
present and the desired operation.

Apply handles four possible input parameters:

■ OpenOrders [input] PropertySet representing a series of Open Orders

OpenOrders can be passed as one of two arguments directly in the Apply method invocation.
When a single OpenOrder is to be processed, this argument can be supplied through a standard
SiebelMessage PropertySet, obtained through a call to a standard Siebel Adapter. It can be either
an Order or a Quote subtype (Quote only on Modify Quote Workflows).

When more than one Open Order is involved in creating the Output Asset, OpenOrders is supplied
by a multiple hierarchy OpenOrders type, obtained by invoking the Find Orders Business Service
method. Apply checks for the presence of OpenOrders first, and only looks for the single-order
SiebelMessage if OpenOrders is not supplied. If both are supplied, only OpenOrders is processed.
If neither is supplied and Input Asset is supplied, the Apply method passes the Input Asset
PropertySet back as the Output Asset PropertySet.

■ SiebelMessage [input] PropertySet

This input represents a single Open Order. See the previous description.

■ Asset [input] PropertySet

This argument is passed through the Set Product Instance method invocation before Apply is
invoked. The Input Asset PropertySet is the base Asset upon which all changes from Open Orders
are applied. If no Assets related to the Open Orders are being applied, the call to Set Product
Instance is skipped.

■ Header[output] PropertySet

This argument is passed through the method invocations before Apply is invoked. Ordinarily, the
Output Header normally is not supplied. However, if it is supplied, it is passed into the Business
Service by a separate invocation of Set Output Header immediately before Apply is invoked.

Under most operating conditions, Apply determines the contents of the Output Header from the
Input Asset or the Input Orders. However, when the Output Header is supplied, it is passed into
the Business Service by a separate invocation of SetOutputHeader immediately before Apply is
invoked. The Output Header can be a SiebelMessage PropertySet of type Asset, Order or Quote.
It can be either an empty header without subordinate data or a fully formed hierarchy with
associated child item data. When child item data is carried with the Output Header, the child item
data is removed.

Generally, the Output Header gives the Apply method specific data to create an update Output
Header for later synchronization by a Siebel Adapter. Use it only if the Output Header that results
from Input Asset or the Input Open Order processing is insufficient for resynchronization.

It is also possible (and occasionally valid) to invoke Apply without passing any arguments at all. If
no input is specified at all, Apply returns a value of Y in the Is Apply Result Empty Process Property.
This result is also returned when the resulting Asset contains only a header, but no items.
Siebel Order Management Infrastructure Guide Siebel 2018 183

Asset-Based Ordering Methods Reference ■ Product Manipulation Toolkit Business
Service Methods
Creating a hybrid asset order
Apply creates a hybrid asset-order to simulate the future configuration of a complex product. Taking
an asset representing a complex product as input, Apply overlays all unprocessed items and
attributes of that product from all its open orders onto the asset. Because the asset’s items and
attributes are already provisioned, their action codes will carry the internationalized equivalent of
the *(blank) value.

Service Item Unique Keys
The Apply and Delta method operations depend upon the unique keys to each service item. For more
information, see the description of Delta Method on page 170.

Apply assumes that the asset used as a base on which to apply open orders was set using Set Product
Instance. If no asset is supplied, either the first Open Order or the single (SiebelMessage) Open
Quote or Order will be used as the basis for creating a new complex asset. If neither asset nor Open
Order is supplied, the method returns an Empty result.

Exception Handling
Apply handles all service quote or sales order actions even if they include possible conflicts. For
example, if a service quote line item instructs the method to modify a service item that is already
disconnected, Apply logic ignores the service quote line item. The exception conditions handled by
Apply are listed in the following steps.

Apply is executed in two steps:

1 SetProductInstance (Asset PropSet)

This action initializes internal structures and stores the passed PropertySets that are the result
of an earlier invocation of Siebel EAI Adapters. Because a business service is limited to a single
hierarchy for each invocation, the PMT business service is invoked twice to pass both
PropertySets.

NOTE: The Asset PropertySet is assumed to be a single hierarchy representing a single complex
item, keyed by the integration ID for the root of the complex item.

2 Apply (OpenOrders PropSet)

This action does the following:

■ Retrieves the Asset PropertySet from its internal storage (established by calling Set Product
Instance) and instantiates the output complex object from it.

■ Instantiates a complex object from the OpenOrders PropertySet input parameter.

■ Iterates through the OpenOrder PropertySet, applying each item in turn, repeating for each
open order in ascending chronological sequence.

■ Whenever the hierarchical structure is altered, Apply fixes the output hierarchy to reflect the
OpenOrder.

■ Returns the output property set.

NOTE: The OpenOrders PropertySet is assumed to be one of a Null hierarchy, a single hierarchy
representing one complex item, or a container of iterations of a complex item, each representing
a change over time. The integration ID for the root of the complex item is the key for the item.
Siebel Order Management Infrastructure Guide Siebel 2018184

Asset-Based Ordering Methods Reference ■ Product Manipulation Toolkit Business
Service Methods
The Apply method handles the exception conditions listed in the table that follows.

Examples
Review the following Apply method examples:

■ “Add, Update, Delete a Complex Order” on page 185

■ “Process a new installation” on page 187

■ “Ignores Instructions to Process Absent Items” on page 188

■ “Ignores Instructions to Add an Already Existing Item” on page 190

■ “Process Instructions to Update the Parent of a Component” on page 191

Add, Update, Delete a Complex Order
The following example shows how this method applies add, update, and delete instructions on an
order to an existing asset.

Exception Action Reason

Instruction to add an item
that already exists.

Ignores the add instruction.
Attributes and the price are not
updates.

The instruction is outdated.
Therefore, the attributes are
unreliable.

Instruction to update an
item that no longer exists.

Ignores the update instruction. The instruction is outdated.
It cannot be performed.

Instruction to delete an item
that no longer exists.

Ignores the delete instruction. The action has already
occurred.

Instruction to do nothing to
an item that does not exist.

No action. A sequencing problem may
have occurred.
Siebel Order Management Infrastructure Guide Siebel 2018 185

Asset-Based Ordering Methods Reference ■ Product Manipulation Toolkit Business
Service Methods
1 Start with a customizable asset, as in the diagram that follows.

2 Apply a delta order, as in the diagram that follows.

For more information, see “Delta Method” on page 170.
Siebel Order Management Infrastructure Guide Siebel 2018186

Asset-Based Ordering Methods Reference ■ Product Manipulation Toolkit Business
Service Methods
3 A new customizable asset is created, as in the diagram that follows.

Process a new installation
The following example shows how this method is used to process a new installation.

1 Start with no asset.

2 Apply a new installation.
Siebel Order Management Infrastructure Guide Siebel 2018 187

Asset-Based Ordering Methods Reference ■ Product Manipulation Toolkit Business
Service Methods
3 A new customizable asset is created, as in the diagram that follows.

Ignores Instructions to Process Absent Items
The following example shows how this method is used to process a delta quote that includes an
update to an absent item.

1 Start with a customizable asset from an external profile management system, as in the diagram
that follows.
Siebel Order Management Infrastructure Guide Siebel 2018188

Asset-Based Ordering Methods Reference ■ Product Manipulation Toolkit Business
Service Methods
2 Apply a delta quote that was generated a week before, as in the diagram that follows.

NOTE: The calling card referred to in the delta quote was removed from the profile after the
quote was created. The [UPDATE] Calling Card branch is ignored.

3 The Apply method ignores updates to the service item that no longer exists, but successfully
executes the remaining changes. This is shown in the diagram that follows.
Siebel Order Management Infrastructure Guide Siebel 2018 189

Asset-Based Ordering Methods Reference ■ Product Manipulation Toolkit Business
Service Methods
Ignores Instructions to Add an Already Existing Item
The following example shows how this method is used to process a delta quote that contains an
invalid add instruction.

1 Start with a customizable asset from an external profile management system, as in the diagram
that follows.

2 Apply a delta quote that was generated a week before.

NOTE: The second local line, (650) 213-7575, already exists in the service profile. It was
provisioned by an external system user.

3 Apply ignores add commands where the service item already exists and successfully executes
the remaining changes.
Siebel Order Management Infrastructure Guide Siebel 2018190

Asset-Based Ordering Methods Reference ■ Product Manipulation Toolkit Business
Service Methods
Process Instructions to Update the Parent of a Component
The following example shows how this method is used to process a delta quote that updates the
parent component.

1 Start with a customizable asset in the old product format, as in the diagram that follows.
Siebel Order Management Infrastructure Guide Siebel 2018 191

Asset-Based Ordering Methods Reference ■ Product Manipulation Toolkit Business
Service Methods
2 Apply a delta order that updates the parent component of the Call Forwarding feature, as in the
diagram that follows.

3 The Apply method adds the Feature Package product beneath the local line and reattaches the
existing Call Forwarding feature to the Feature Package, as in the diagram that follows.
Siebel Order Management Infrastructure Guide Siebel 2018192

Asset-Based Ordering Methods Reference ■ Product Manipulation Toolkit Business
Service Methods
Related Information
See the topic about workflows in Siebel Order Management Guide, and the following methods:

■ “Delta Method” on page 170,

■ “Trim Method” on page 194,

■ “Explode Method” on page 197

■ “Set Product Instance Method” on page 218
Siebel Order Management Infrastructure Guide Siebel 2018 193

Asset-Based Ordering Methods Reference ■ Product Manipulation Toolkit Business
Service Methods
Trim Method
This method is one of the Product Manipulation Toolkit Business Service Methods. It eliminates line
items from a delta quote or delta order based on a soft coded rule or Keep Specification. This method
is used, in the Order to Asset workflow, to identify changes in an order item that are ready to apply
to the service profile stored in Assets.

For a line item to be kept in the product instance hierarchy, KeepSpec must be TRUE for that line
item. All children of the line item will also be removed if the parent is removed.

Arguments

Returns
Removes selected line items from the product instance.

Remarks
If the KeepSpec input is TRUE for a line item, it is kept in the product instance hierarchy. If not, it is
eliminated. All children of the line item are removed if the parent is removed.

When Trim is called, the method starts at the top-most (highest) item in the product hierarchy and
works recursively down through its children. If the KeepSpec evaluates to TRUE for a line item, it is
kept in the product instance hierarchy. If not, it and all of its children are eliminated. For example,
the KeepSpec for the Order to Asset workflow is:

(([Status] = LookupValue('FS_ORDER_STATUS', 'Complete')) OR ([Action Code] =
LookupValue('DELTA_ACTION_CODE', 'Existing'))) AND ([Convert To Asset Flag] = 'Y')

To process items with status other than Complete or Existing, add the status values to the KeepSpec
Input Argument.

Argument Description

KeepSpec [in] A Boolean expression based on fields in the current line item. If the line
item is to be retained, KeepSpec must return True. (Required)

Object Id [in] Row Id of the root line item that is used to load the hierarchy if a
SiebelMessage is not passed in. (Optional)

Input Object Type [in] Type of object to which Object Id relates. Must be specified is Object
Id is specified. (Optional)

SiebelMessage [in] Hierarchy to be used if an Object Id is not supplied. (Optional)

SiebelMessage [out] Resulting product instance.

Is Trim Result Empty [out] Y or N value. Y if all line items are removed in the result. Otherwise,
N.
Siebel Order Management Infrastructure Guide Siebel 2018194

Asset-Based Ordering Methods Reference ■ Product Manipulation Toolkit Business
Service Methods
Examples
Review the following Trim method examples:

■ “Trimming Pending and Failed Items” on page 195

■ “Trimming Orphaned Items” on page 196

Trimming Pending and Failed Items
The following example shows how this method is used to eliminate pending and failed items.

1 A new installation is partially complete, as in the diagram that follows.

2 Trim eliminates all Pending and Failed items. It also eliminates the 200 Minutes Free product
because that product has set Track As Asset to N. This is shown in the diagram that follows.
Siebel Order Management Infrastructure Guide Siebel 2018 195

Asset-Based Ordering Methods Reference ■ Product Manipulation Toolkit Business
Service Methods
Trimming Orphaned Items
If an item fails to meet the KeepSpec criteria, this method removes all of its children. The following
example shows this situation.

1 A user starts a new installation in which a parent item is Pending and a child item is Complete,
as in the diagram that follows.
Siebel Order Management Infrastructure Guide Siebel 2018196

Asset-Based Ordering Methods Reference ■ Product Manipulation Toolkit Business
Service Methods
2 Trim eliminates all Pending or Failed items and their children, Complete or not, as in the diagram
that follows.

Related Information
See the topic about workflows in Siebel Order Management Guide, and the following methods:

■ “Delta Method” on page 170

■ “Apply Method” on page 182

Explode Method
This method is one of the Product Manipulation Toolkit Business Service Methods. It creates multiple
instances of a product. The number of instances is determined by the value of the field specified by
the ExplodeOnField argument. For each new instance, the value of ExplodeOnField is set to 1. An
existing instance is considered for explosion only if it meets the conditions specified by
ConditionFieldNames and ConditionValues.

NOTE: Explode works for a quantity set at any level of the product hierarchy.

To exclude fields from being copied from the existing instance to the new instance, add user
properties to the SIS OM PMT Business Service. You can use the ExclusionFieldsUserPropertyTag
input argument to identify the User Properties series used for this purpose.

Arguments

o

Argument Description

RootItemId [in] Root Item Id. Only the subcomponents of the root line item
with a Row Id specified by the RootItemId are considered for
Explode. (Optional)

ExplodeOnField [in] Value of the field specified by ExplodeOnField determines
the number of instances created by Explode. For each new
instance, the value of the ExplodeOnField is set to 1. (Required)

ConditionFieldNames [in] Comma separated list of component field names. An
existing instance is exploded only if the conditions specified by
ConditionFieldNames and ConditionValues are met. (Optional)

ConditionValues [in] Comma separated list of condition values. Standard Siebel
expressions (such as LookupValue) are supported. An existing
instance is exploded only if the conditions specified by
ConditionFieldNames and ConditionValues are met. (Optional)
Siebel Order Management Infrastructure Guide Siebel 2018 197

Asset-Based Ordering Methods Reference ■ Product Manipulation Toolkit Business
Service Methods
Returns
Product set containing multiple copies of the original component.

Remarks
Explode copies any product component whose quantity is greater then (>) 1. It creates multiple
copies, each with quantity set to 1. By default, products with the Convert to Asset flag set to N are
ignored. This method inputs and outputs a property set containing product changes.

A user configurable list identifies fields that are excluded during the copy. For example, a user would
not create multiple copies of a unique identifier such as a telephone number.

The following information about the Explode method is useful:

■ “Excluded Fields” on page 198

■ “User Properties” on page 199

Excluded Fields
All fields, including prices, are copied as they are into each new instance of the service item, except
the following columns that cannot be copied, by default:

■ Asset Integration Id

■ Conflict Id

■ Created

■ Sequence Number

■ Updated

■ Id

■ Integration Id

■ Quantity

■ Service Point Id

■ Extended Quantity

ExclusionFieldsUserPropertyTag [in] Name of the series of user properties that identify fields to
exclude when the object instance is copied. The user property
name is configurable and specified by
ExclusionFieldsUserPropertyTag. (Optional)

SiebelMessage [in] Product instance to be exploded. (Required)

SiebelMessage [out] Product instance (integration object) representing the
exploded business component. (Required)

Is Exploded [out] Status flag (Y or N) which indicates whether the
SiebelMessage has been exploded or not. (Optional)

Argument Description
Siebel Order Management Infrastructure Guide Siebel 2018198

Asset-Based Ordering Methods Reference ■ Product Manipulation Toolkit Business
Service Methods
User Properties
This method uses the default user properties, listed here, to define a list of integration component
fields that are not copied when the parent integration object is exploded.

■ Exclude From Explode.SIS OM Order.Line Item 11 to Exclude From Explode.SIS OM Order.Line
Item 20

■ Exclude From Explode.SIS OM Quote.Line Item 1 to Exclude From Explode.SIS OM Quote.Line
Item 10

The general format for all these user properties is:

<User Prop Name>.<Integration Object Name>.<Integration Component Name>#

■ Examples

Review the following Explode method example: “Copying Components Whose Quantity Exceeds 1” on
page 199.

Copying Components Whose Quantity Exceeds 1
The following example shows this method creates multiple copies of a component.

1 Start with an order to add multiple Calling Cards as part of a GCI One Bundle.

2 Explode copies all components with quantity > 1. The diagram that follows provides an example.

Related Information
See the topic about workflows in Siebel Order Management Guide, and the following methods:

■ “Delta Method” on page 170

■ “Apply Method” on page 182

■ “Trim Method” on page 194

■ “Explode Siebel Object Method” on page 200
Siebel Order Management Infrastructure Guide Siebel 2018 199

Asset-Based Ordering Methods Reference ■ Product Manipulation Toolkit Business
Service Methods
■ “Is Fully Ex Method” on page 206

Explode Siebel Object Method
This method is one of the Product Manipulation Toolkit Business Service Methods. It functions like
Explode Method except that it also loads the SiebelMessage integration object from the Siebel
database with a specified business component and synchronizes it back to the database after the
explosion.

Arguments

Argument Description

IntObjectName [in] Name of the integration object representing the business
component that will be exploded. (Required)

PrimaryRowId [in] Siebel object row ID of the business component that will be
exploded. (Required)

RootItemId [in] Root Item Id. Only the subcomponents of the root line item
specified by the RootItemId are considered for Explode. (Optional)

ExplodeOnField [in] Value of the field specified by ExplodeOnField determines the
number of instances created by Explode. For each new instance, the
value of the ExplodeOnField is set to 1. (Required)

ConditionFieldNames [in] Comma separated list of integration field names. An existing
instance is exploded only if the conditions specified by
ConditionFieldNames and ConditionValues are met.

ConditionValues [in] Comma separated list of condition values. Standard Siebel
expressions (such as LookupValue) are supported in each comma
separated value. An existing instance is exploded only if the conditions
specified by ConditionFieldNames and ConditionValues are met.

ExclusionFieldsUserProp
ertyTag

[in] Name of the series of user properties that identify fields to exclude
when the object instance is copied. The user property name is
configurable and specified by ExclusionFieldsUserPropertyTag.
(Optional)

SiebelMessage [out] Product instance (integration object) representing the exploded
business component. (Optional)

Is Exploded [out] Status flag (Y or N) which indicates whether the SiebelMessage
has been exploded or not. (Optional)
Siebel Order Management Infrastructure Guide Siebel 2018200

Asset-Based Ordering Methods Reference ■ Product Manipulation Toolkit Business
Service Methods
User Properties
This method has the following default user properties:

■ Exclude From Explode.SIS OM Order.Line Item 11 to Exclude From Explode.SIS OM Order.Line
Item 20

■ Exclude From Explode.SIS OM Quote.Line Item 1 to Exclude From Explode.SIS OM Quote.Line
Item 10

Related Information
See the topic about workflows in Siebel Order Management Guide, and the following methods:

■ “Explode Method” on page 197

■ “Is Fully Ex Method” on page 206

Find Orders Method
This method is one of the Product Manipulation Toolkit Business Service Methods. Given the asset
integration ID of a root line item, this method finds all instances of order items that have the same
integration ID. The order header, matching line item, its child items and attributes are returned as
part of the output. Any other line item in the same order header that does not have a matching
integration ID will not be returned.

Arguments

Related Information
See the topic about workflows in Siebel Order Management Guide.

Argument Description

Asset Integration Id [in] Root asset integration ID that is used to open order items to an
asset. (Required)

Search Spec [in] Additional search specification used to look for open orders. This is
a business component search spec that will be applied to the ‘Order
Entry - Line Item (Asset Based) BC. (Optional)

Sort Order Item By [in] Comma separated list of field names. Each field name is optionally
followed by the string (DESCENDING). For example, Last Name
(DESCENDING), First Name. This forces the method to sort the order
line item it locates by the given field names. (Optional)

Open Orders [out] A single hierarchy of type OpenOrders that has child hierarchies
for each open order that is found.
Siebel Order Management Infrastructure Guide Siebel 2018 201

Asset-Based Ordering Methods Reference ■ Product Manipulation Toolkit Business
Service Methods
Logical Delete Method
This method is one of the Product Manipulation Toolkit Business Service Methods. It converts any item
of a product instance that has a Deleted action code to an Update action code and an Inactive status.
Logical Delete only works with a product instance of the Order type. In other words, the Integration
Object passed in the SiebelMessage is based on the Order Entry business object.

Arguments

Remarks
This method takes a complex object as input. It goes through the hierarchy of the complex object
and changes all Deleted action codes to Update. Then, it sets the status of the associated line items
to Inactive.

Related Information
See the topic about workflows in Siebel Order Management Guide.

Get Profile Attribute Method
This method is one of the Product Manipulation Toolkit Business Service Methods. It returns the value
of the specified attribute of the user profile.

Arguments

Returns
Value of the user profile attribute.

Argument Description

ObjectId [in] ID of the object to be loaded. If this optional argument is provided,
the SiebelMessage argument is ignored. (Optional)

SiebelMessage [in] Primary argument if there is no Object Id. This must be an Order
type input. (Required)

SiebelMessage [out] Result of the logical delete.

Argument Description

Profile Attribute Name [in] Name of the user profile attribute to be retrieved.(Required)

Profile Attribute Value [out] Value of the profile attribute. This value is NULL if the attribute is
not set. (Required)
Siebel Order Management Infrastructure Guide Siebel 2018202

Asset-Based Ordering Methods Reference ■ Product Manipulation Toolkit Business
Service Methods
Related Information
See the topic about workflows in Siebel Order Management Guide, and “Set Profile Attribute Method”
on page 219.

Get Instance Method
This method is one of the Product Manipulation Toolkit Business Service Methods. It gets a complex
product instance from the Product Configurator.

Arguments

Returns
Complex product instance.

Related Information
See the topic about workflows in Siebel Order Management Guide, and “Reconfigure Product Instance
Method” on page 212.

Argument Description

Object Id [in] Key used to return the preloaded complex asset. The argument
Instance Id returned by the Reconfigure Product Instance method is passed
here.

Instance Id [out] Passed to this method as output from Reconfigure Product Instance,
this key is used to return a complex asset that was loaded into the Product
Configurator when Reconfigure Product Instance was invoked.

SiebelMessage [out] Complex product instance returned by the Configurator runtime
session.
Siebel Order Management Infrastructure Guide Siebel 2018 203

Asset-Based Ordering Methods Reference ■ Product Manipulation Toolkit Business
Service Methods
Convert Product Instance Method
This method is one of the Product Manipulation Toolkit Business Service Methods. It converts a product
instance of one type to another; for example, quote to order.

Arguments

Returns
Product type change.

Remarks
This method uses the mapping of integration component fields as user properties. The name has the
following format:

Source Int Obj Name.Source Int Comp Name:Dest Int Obj Name.Dest Int Comp Name Map #

The user property value format is:

[Src FieldName]:[Dest Field Name]

NOTE: Src Field Name must be unique for each group of user property mappings.

Related Information
See the topic about workflows in Siebel Order Management Guide.

Argument Description

Output Object Type [in] The input product instance to be converted to this type. (Required)

Object Id [in] ID of the object to be converted. If Object Id is specified Input,
Input Object Type must also be specified. (Optional)

Input Object Type [in] Type of the input product instance. (Only required if Object Id is
specified)

SiebelMessage [in] Product instance to be converted. Not required if Object Id and
Input Object Type are specified. (Optional)

Generate New Item
Integration Id

[in] If the line item’s action code is Add (Y or N value), this argument
forces the system to generate a new unique ID for the Asset Integration
Id field. (Optional)

NOTE: The Integration Id and the Service Id are not the same thing.
The Integration Id is the internal unique identifier. The Service Id is a
free text field that the user may use for telephone numbers, and so on.

Upsert Result [in] Insert and synchronize the resulting product instance back to the
database (Y or N value). (Optional)

SiebelMessage [out] Product instance to be converted. Not required if the Object Id and
Input Object Type are specified.
Siebel Order Management Infrastructure Guide Siebel 2018204

Asset-Based Ordering Methods Reference ■ Product Manipulation Toolkit Business
Service Methods
Assign New Service IDs Method
This method is one of the Product Manipulation Toolkit Business Service Methods. It assigns a service
point ID, associated with a specified premise, to each item of the input complex product for which
the service type of the service point matches the service type of the product.

If a free service point is not available for a product component, a service point is not assigned to it.
On the other hand, if multiple service point IDs are available for the same service type, the system
will pick one of them randomly.

Arguments

Returns
New service point IDs.

User Properties
This method uses the following user properties:

■ Line Item Integration Object Service Account Id Field Name

■ Line Item Integration Object Service Point Id Field Name

■ Line Item Integration Object Service Type Field Name

■ Service Point BC Address Id Field Name

■ Service Point BC Owner Account Id Field Name

■ Service Point BC Service Point Id Field Name

■ Service Point BC Service Type Field Name

■ Service Point Business Component Name

■ Service Point Business Object Name

Related Information
See the topic about workflows in Siebel Order Management Guide.

Argument Description

Premise AddressId [in] Row Id of the address to which services are moving. (Required)

SiebelMessage [in] Service Point Ids are set for this product instance. (Required)

SiebelMessage [out] Product instance with the newly assigned service point IDs.
(Required)
Siebel Order Management Infrastructure Guide Siebel 2018 205

Asset-Based Ordering Methods Reference ■ Product Manipulation Toolkit Business
Service Methods
Is Fully Ex Method
This method is one of the Product Manipulation Toolkit Business Service Methods. It checks a product
instance to determine if an explode operation is required, based upon the value specified by
ExplodeOnField. If the field value is greater than one for any component of the product instance, the
method returns N. Otherwise, the method returns Y.

Arguments

Returns
Y or N.

Remarks
Primarily used in the Apply Completed Service Order Line Item to Service Profile workflow, this
method double checks to determine if the service order line items created from the Siebel database
(earlier in the workflow) have been fully exploded or not. In other words, it determines whether all
line items and the subcomponents were previously processed by the Explode method.

Related Information
See the following methods:

■ “Explode Method” on page 197

■ “Explode Siebel Object Method” on page 200

Argument Description

RootItemId [in] If supplied, only subcomponents of the root item specified by
RootItemId are considered for Explode processing. (Optional)

ExplodeOnField [in] Field (name) that is checked to determine whether explosion is
necessary. (Required)

ConditionFieldNames [in] Comma separated list of integration component field names.
(Optional)

ConditionValues [in] Comma separated list of values. Standard Siebel expressions (such
as LookupValue) are supported in each comma separated value.
(Optional)

SiebelMessage [in] Product instance to be checked for explode processing. (Required)

Result [out] Y or N flag indicating whether the input SiebelMessage has been
exploded. (Required)
Siebel Order Management Infrastructure Guide Siebel 2018206

Asset-Based Ordering Methods Reference ■ Product Manipulation Toolkit Business
Service Methods
Is Module Licensed Method
This method is one of the Product Manipulation Toolkit Business Service Methods. It determines
whether the specified module is licensed.

Arguments

Returns
Y (module licensed) or N (module not licensed).

Related Information
See “ViewCart Method” on page 233.

Merge Method
This method is one of the Product Manipulation Toolkit Business Service Methods. It merges the
components of one integration object (product instance) under the header of another integration
object.

NOTE: Before this method is called, Set Product Instance must be called to cache the target product
instance.

Arguments

Returns
A single product instance containing the merged assets.

Remarks
This method receives two property sets as input, each containing a complex object with hierarchical
assets, quotes, or order items. It copies all the line items from the source complex object to the
target (cached) complex object. The target object’s header information (quote or order headers) are
retained. The merged complex object is returned in an output argument property set.

Argument Description

Module Name [in] Name of the module being checked. (Required)

Result [out] Y if the module is licensed; otherwise N.

Argument Description

SiebelMessage [in] Source product instance to be merged. (Required)

SiebelMessage [out] Merged product instances. (Required)
Siebel Order Management Infrastructure Guide Siebel 2018 207

Asset-Based Ordering Methods Reference ■ Product Manipulation Toolkit Business
Service Methods
Related Information
See the topic about workflows in Siebel Order Management Guide, and “Set Product Instance Method”
on page 218.

Quote To Revenue Method
This method is one of the Product Manipulation Toolkit Business Service Methods. It generates revenue
line items for each line item in a quote that matches the criteria specified by the input conditions.
The line items are associated with the opportunity from which the quote was created.

Arguments

Returns
Revenue line items.

Remarks
The following discussions list user properties associated with this method. They also indicate how the
method adds revenue and determines: revenue amount, revenue dates, number of revenue items,
frequency of revenue line items, annually recurring charges, quarterly recurring charges, monthly
recurring charges, weekly recurring charges, and daily recurring charges.

Argument Description

SiebelMessage [in] Contains a product instance hierarchy.

RootItemId [in] Root item ID.

ConditionFieldNames [in] Names of fields whose value must equal that specified by
ConditionValues. In these cases, the quote line item will be
converted to a revenue line item. In the SIS OM Update Revenue
workflow, the condition fields are action code, price type and
extended amount.

ConditionValues [in] Values that fields must have to satisfy the condition. In the
SIS OM Update Revenue workflow, the action code must be Add
or Update, price type must be One-Time or Recurring, and
extended amount must be non-zero.

ExcludedFieldsUserPropertyTag [in] User properties tag identifying fields that are not copied
from the quote line item to the revenue line item.
Siebel Order Management Infrastructure Guide Siebel 2018208

Asset-Based Ordering Methods Reference ■ Product Manipulation Toolkit Business
Service Methods
User Properties
This method used the following user properties:

■ Quote To Revenue.Quote Item.Due Date Field. Quote Line Item business component field
that determines the first date on which revenue will be added. Out of the box, the quote line item
is the due date.

■ Quote To Revenue.Quote Item.Amount Field. Quote Line Item business component field
used as the revenue amount. Out of the box this is the extended amount.

■ Quote To Revenue.Quote Item.Item Price Field. Quote Line Item business component field
containing the item price.

■ Quote To Revenue.Quote Item.Price Type Field. Quote Line Item business component field
containing the price type.

■ Quote To Revenue.Quote Item.Unit of Measure Field. Quote Line Item business component
containing the unit of measure.

■ Quote To Revenue.Quote Item.Occurence Field. Quote Line Item business component field
containing the number of revenue occurrences.

■ Quote To Revenue.Quote Item.Extended Quantity Field. Quote Line Item business
component field containing the extended quantity.

■ Quote To Revenue.Quote Item.Description Field. Quote Line Item business component field
containing the description.

■ Quote To Revenue.Quote Item.Product Id Field. Quote Line Item business component field
containing the product ID.

■ Quote To Revenue.Revenue.Quantity Field. Revenue business component field containing
the quantity.

■ Quote To Revenue.Revenue.Quotable Field. Revenue business component field indicating
whether the revenue is quotable.

■ Quote To Revenue.Revenue.Date Field. Revenue business component field containing the
revenue date.

■ Quote To Revenue.Revenue.Price Field. Revenue business component field containing the
product price.

■ Quote To Revenue.Revenue.Revenue Field. Revenue business component field containing
the revenue.

■ Quote To Revenue.Revenue.Description Field. Revenue business component field containing
the description.

■ Quote To Revenue.Revenue.Product Id Field. Revenue business component field containing
the product Id.
Siebel Order Management Infrastructure Guide Siebel 2018 209

Asset-Based Ordering Methods Reference ■ Product Manipulation Toolkit Business
Service Methods
Adding Revenue
This method:

■ Adds revenue only for quote line items with an Add or Update action code. Quote line items ‘-’,
and Deleted action codes are ignored.

■ Adds revenue only for quote line items that have an extended amount not equal to zero.

Negative extended amounts are added to revenue.

■ Adds revenue only for price types that are one-time and recurring. It is not calculated for usage.

■ Adds revenue based on product components (in a quote line item).

Determining Revenue Amount
This method:

■ Uses a user property to define the Quote Item business component field that is used for the
revenue amount. The default is the Extended Amount field.

■ Uses the value of this field as the revenue amount for all periods.

Determining Revenue Dates
This method:

■ Uses a user property to define the Quote Item business component field that, in turn, is used to
calculate the first revenue date. The default is the Due Date field.

Determining Number of Revenue Items
The forecast number of revenue occurrences for a product is defined in product administration. When
a quote line item is created the number of forecast revenue occurrences is copied from the product
into the quote line item. There, it can be overridden through the UI or by configuration.

This method:

■ Adds revenue for products with one time price types once on the due date of the quote line item,
regardless of the number of occurrences defined.

■ Adds revenue for products with recurring price types as many times as the number of
occurrences.

Determining Frequency of Revenue Line Items
This method:

■ Adds revenue as it occurs (weekly, monthly, quarterly or annually) instead of grouping it into
monthly totals.

■ Adds the first revenue, for any quote line item, on the due date plus one UoM.

The following UoMs that are allowed: Per Year, Per Month, Per Quarter, Per Week, and Per Day.
Siebel Order Management Infrastructure Guide Siebel 2018210

Asset-Based Ordering Methods Reference ■ Product Manipulation Toolkit Business
Service Methods
Determining Annually Recurring Charges
This method:

■ Adds revenue on the same day every year, starting on the end date of the first period. For
example, if the due date is 7-11-01, the default date of the first billing cycle is 7-11-02 and
revenue is added for 7-11-02, 7-11-03 and so on, for as many occurrences as the quote line item
specifies.

If the end date of the first period falls on February 29th, the revenue date for nonleap years is
February 28th.

Determining Quarterly Recurring Charges
This method:

■ Adds revenue on the same day every three months, starting on the date of the first billing cycle,
the default value of which is 3 months after the quote line item due date. For example, if the due
date is 7-11-01, revenue is added for 10-11-01, 1-11-02, 4-11-02, 7-11-01 and so on, for as
many occurrences as product specifies.

If the end date of the first period falls on the 29th, 30th or 31st of a month, the revenue date
for months that have fewer days is the last day of the same month.

Determining Monthly Recurring Charges
This method:

■ Adds revenue on the same day every month, starting on the date of the first billing cycle which
defaults to one month after the quote line item due date. For example, if the due date is 7-11-
01, revenue is added for 8-11-01, 9-11-01 and so on, for as many occurrences as the product
specifies.

If the due date falls on the 29th, 30th or 31st of a month, the revenue date for months with fewer
days is the last day of the same month.

Determining Weekly Recurring Charges
This method:

■ Adds revenue every 7 days starting on the date of the first billing cycle which defaults to 7 days
after the quote line item due date. For example, if the due date is 7-11-01, revenue is added for
7-18-01, 7-25-01, 8-1-01 and so on, for as many occurrences as the product specifies.

Determining Daily Recurring Charges
The method:

■ Adds revenue every day, starting on the date of the first billing cycle which defaults to one day
after the quote line item due date. For example, if the due date is 7-11-01, revenue is added for
7-12-01, 7-13-01, 7-14-01 and so on, for as many occurrences as the product specifies.
Siebel Order Management Infrastructure Guide Siebel 2018 211

Asset-Based Ordering Methods Reference ■ Product Manipulation Toolkit Business
Service Methods
Reconfigure Product Instance Method
This method is one of the Product Manipulation Toolkit Business Service Methods. It displays, in the
Configurator UI, the asset that was passed to the Product Configurator as input.

NOTE: This method does not return the asset updated by Product Configurator. Instead an event
occurs for the primary business component when the Done button is clicked. At that time, you can
invoke the Get Instance method to obtain the updated asset from the Product Configurator.

Arguments

Returns
Product Configurator display of the reconfigured complex asset.

User Properties
This method applies the user properties listed in the following steps.

NOTE: This view must use the same business object as the workflow that invokes the Reconfigure
Product Instance method.

■ Asset Integration Object Name:

Name of Integration Object based on Asset business components.

■ Complex Product Runtime View Name

Name of view for Product Configurator UI.

Argument Description

Complex Product [in] This product instance, based on Asset, is used as input to the
Configurator.

Row Id [in] Row Id of the Asset.

Event Name [in] Name of the event that is triggered when the user clicks the
Done button.

Primary Business
Component Name

[in] Name of the primary business component of the business
object associated with the workflow that calls this method. This
business component receives the event specified by Event Name.

Pricing Business object [in] Name of the business object to be used for pricing.

Price List Id [in] ID of the price list to be used.

Currency Code [in] Currency code.

Exchange Date [in] Date of the exchange.

Instance Id [out] Returned key. This output can be passed (as input) to the Get
Instance method to return a complex asset, loaded into the Product
Configurator.
Siebel Order Management Infrastructure Guide Siebel 2018212

Asset-Based Ordering Methods Reference ■ Product Manipulation Toolkit Business
Service Methods
Getting an Updated Asset
This method does not return the Asset updated by the Product Configurator. Instead, an event occurs
for the primary business components, passed as parameters to this method, when the Product
Configurator’s Done button is clicked. At that time, the system can call PMT business service method
Get Complex Asset to obtain the updated Asset from the Product Configurator.

Related Information
See the topic about workflows in Siebel Order Management Guide, and “Get Instance Method” on
page 203.

Reset Method
This method is one of the Product Manipulation Toolkit Business Service Methods. It clears out all
cached product instances.

Arguments
None

Returns
There are no cached products.

Remarks
This method has no input or output arguments.

Related Information
See the topic about workflows in Siebel Order Management Guide, and the following methods:

■ “Set Product Instance Method” on page 218

■ “Set Output Header Method” on page 218
Siebel Order Management Infrastructure Guide Siebel 2018 213

Asset-Based Ordering Methods Reference ■ Product Manipulation Toolkit Business
Service Methods
Retrieve Next Object From List Method
This method is one of the Product Manipulation Toolkit Business Service Methods. Given a hierarchical
integration object with multiple root components at the second level (for example, Asset), this
method returns an integration object that contains the header, one root component, its children and
their attributes.

Arguments

Remarks
This method can be called multiple times with the same input argument, each time it returns the
next root component. And, it is used in conjunction with Update Multi Object List to form a loop
control mechanism.

Related Information
See the topic about workflows in Siebel Order Management Guide, and “Update Multi Object List
Method” on page 220.

Argument Description

SiebelMessage [in] Integration object to retrieve the root component from. (Required)

Integration Id [out] Integration Id of the retrieved root integration component.
(Optional)

Object Id [out] Row Id of the retrieved root integration component. (Optional)

Remaining Number of
Objects

[out] Number of root integration components left in the input
integration object. (Required)

SiebelMessage [out] New instance of the integration object containing the header and
first root component (including its children and attributes) of the object
retrieved. (Required)
Siebel Order Management Infrastructure Guide Siebel 2018214

Asset-Based Ordering Methods Reference ■ Product Manipulation Toolkit Business
Service Methods
Set Action Method
This method is one of the Product Manipulation Toolkit Business Service Methods. It sets the Action
Code field of all items in the hierarchy of a given product instance to the specified value.

Arguments

Returns
Newly set action codes.

Remarks
This method takes a property set containing a complex item as input along with an action code
parameter. It goes through the complex item and sets the action code to the value of the action code
argument.

Related Information
See the following methods:

■ “Set Field Value Method” on page 216

■ “Set Multiple Field Values Method” on page 217

Set Exception Error Message Method
This method is one of the Product Manipulation Toolkit Business Service Methods. It is called from the
workflow to get the localized error message text that is associated with the input error code.

Arguments

Argument Description

Action Code [in] Set the action codes of all line items in the hierarchy SiebelMessage to
this value. (Required)

SiebelMessage [in] Product instance whose action code will be updated. (Required)

SiebelMessage [out] Updated product instance.

 Argument Description

Error Code [in] Error code defined in the repository. (Required)

Error Message [out] Localized error message text. (Required)
Siebel Order Management Infrastructure Guide Siebel 2018 215

Asset-Based Ordering Methods Reference ■ Product Manipulation Toolkit Business
Service Methods
Dependencies
Strings corresponding to the supplied Error Code must be defined in the Siebel Database. The seven
predefined error messages are defined in the Siebel repository with the message key prefixed with
IDS_SISOM_ERR_MOVEWF.

Related Information
See the topic about workflows in Siebel Order Management Guide.

Set Field Value Method
It is used optionally to configure conditions so that updates are only run on the subset of items in
the hierarchy that satisfy the conditions.

Arguments

Returns
New field values.

Remarks
As input, this method receives one property set containing a complex object and two strings
representing a field name and field value. The method goes through the line items hierarchy of the
complex object wrapped by the property set, and for each item that satisfies the optional conditions,
locates the named field of each line item, and sets it to the value provided.

Related Information
See the topic about workflows in Siebel Order Management Guide, and the following methods:

■ “Set Action Method” on page 215

■ “Set Multiple Field Values Method” on page 217

Argument Description

Field Name [in] Name of the field to be changed. (Required)

SiebelMessage [in] Product instance. (Required)

Value [in] Literal. (Required)

ConditionFieldNames [in] Comma separated list of integration component field names.
(Optional)

ConditionValues [in] Comma separated list of values. Standard Siebel expressions (such as
LookupValue) are supported. (Optional)

Generate new Id [In] Y or N flag indicating whether to generate a new Row Id for each item.

SiebelMessage [out] Updated product instance. (Required)
Siebel Order Management Infrastructure Guide Siebel 2018216

Asset-Based Ordering Methods Reference ■ Product Manipulation Toolkit Business
Service Methods
Set Multiple Field Values Method
This method is one of the Product Manipulation Toolkit Business Service Methods.

It sets specified fields to the given values for all items in the product instance.

Arguments

Returns
Product instance with updated field values.

Related Information
See the topic about workflows in Siebel Order Management Guide, and the following methods:

■ “Set Action Method” on page 215

■ “Set Field Value Method” on page 216

Argument Description

Field Names [in] Comma separated list of names of fields whose values are to be set.
(Required)

Values [in] Comma separated list of values to which the fields are set.
(Required)

SiebelMessage [in] Product instance hierarchy whose field values are to be set.
(Required)

ConditionFieldNames [in] Comma separated list of integration component field names.
(Optional)

ConditionValues [in] Comma separated list of values. Standard Siebel expressions (such
as LookupValue) are supported. (Optional)

SiebelMessage [out] Updated product instance. (Required)
Siebel Order Management Infrastructure Guide Siebel 2018 217

Asset-Based Ordering Methods Reference ■ Product Manipulation Toolkit Business
Service Methods
Set Output Header Method
This method is one of the Product Manipulation Toolkit Business Service Methods. It caches the output
header that will be used by the Delta method.

Arguments

Returns
Cached output header.

Related Information
See the topic about workflows in Siebel Order Management Guide, and the following methods:

■ “Delta Method” on page 170

■ “Set Action Method” on page 215

■ “Set Product Instance Method” on page 218

Set Product Instance Method
This method is one of the Product Manipulation Toolkit Business Service Methods.

It caches a product instance that will be used as an input arguments for Apply and Delta methods.

Arguments

Returns
Cached product instance.

Related Information
See the topic about workflows in Siebel Order Management Guide, and the following methods:

■ “Delta Method” on page 170

■ “Apply Method” on page 182

■ “Set Output Header Method” on page 218

Argument Description

SiebelMessage [in] Product instance containing the header to be used for the Delta method
output.

Argument Description

SiebelMessage [in] Product instance being saved. (Required)
Siebel Order Management Infrastructure Guide Siebel 2018218

Asset-Based Ordering Methods Reference ■ Product Manipulation Toolkit Business
Service Methods
Set Profile Attribute Method
This method is one of the Product Manipulation Toolkit Business Service Methods.

It assigns values to attributes in a user profile.

Arguments

Returns
New attribute values.

Related Information
See “Get Profile Attribute Method” on page 202.

Synchronize Method
This method is one of the Product Manipulation Toolkit Business Service Methods.

It synchronizes product instance to the database. Optionally, this method also reprices the instance
after it is synchronized by calling the Pricing Manager Reprice-RepriceAll. This method calls the EAI
Siebel Adapter Upsert method to synchronize.

Arguments

Input Argument Description

Profile Attribute Name [in] Name of the attribute being set. (Required)

Profile Attribute Value [in] Value to which the attribute will be set. A NULL value clears the
attribute. (Required)

Argument Description

InMemoryPricing [in] With this argument set to TRUE, only the instance of the CP (root and
subcomponents) in memory is repriced. If it set to FALSE, the
CalculatePriceAll method is called, which reprices the entire document. If
there is a pricing relationship between the line items, such as a total
discount, then you need to set it to FALSE in order to call CalculatePriceAll.
Note that this parameter has a severe performance impact if it set to FALSE
for large quotes or orders with many line items. Default is FALSE. (Boolean,
Optional)

Message Id [in] Passed through to the EAI Siebel Adapter Upsert method. (Optional)

PrimaryRowId [in] Row Id of the business component to be synchronized. (Required)

Reprice [in] Y or N flag indicating whether to reprice or not. (Optional)
Siebel Order Management Infrastructure Guide Siebel 2018 219

Asset-Based Ordering Methods Reference ■ Product Manipulation Toolkit Business
Service Methods
Returns
Synchronized product instance.

Remarks
This method is used when the object to be synchronized has modified quantity or price fields,
requiring a repricing. It is primarily used after Explode.

Related Information
See the topic about workflows in Siebel Order Management Guide, and “Explode Method” on
page 197.

Update Multi Object List Method
This method is one of the Product Manipulation Toolkit Business Service Methods.

After a root integration component and its children are stripped from the integration object, this
method (in conjunction with Retrieve Next Object From List) returns the resulting integration object.

Arguments

Returns
New integration object.

Remarks
This method is used in conjunction with Retrieve Next Object From List to form a loop control
mechanism.

RootItemId [in] If this input is given, only reprice the root line item with a Siebel Object
Row Id that corresponds to this RootItemId and any new line items that
were created from it after an Explode operation. (Optional)

SiebelMessage [in] Product instance to be synchronized.

StatusObject [in] Passed through to EAI Siebel Adapter Upsert method. (Optional)

SiebelMessage [out] Synchronized product instance.

Argument Description

SiebelMessage [out] Integration object left behind after the first root component is retrieved.
(Required)

Argument Description
Siebel Order Management Infrastructure Guide Siebel 2018220

Asset-Based Ordering Methods Reference ■ Product Manipulation Toolkit Business
Service Methods
Related Information
See the topic about workflows in Siebel Order Management Guide, and “Retrieve Next Object From
List Method” on page 214.

Update Order Line Item Completed Flag Method
This method is one of the Product Manipulation Toolkit Business Service Methods. It sets the Order
Item Processed Flag of the root order line item to Y, if its status and the status of all its child items
is one of the values passed in Complete Statuses, or if it is '-'.

NOTE: This method only works with product instance of type Order.

Arguments

Returns
Order Item Processed Flag set to Y or N.

Related Information
See the topic about workflows in Siebel Order Management Guide.

Get Cfg Button Click Information Method
This method is one of the Product Manipulation Toolkit Business Service Methods. It is used to identify
whether a user clicks on the Cancel or Done button from Complex Product View.

Arguments

Argument Description

SiebelMessage [in] Product instance being updated. (Required)

Synchronize [in] Defaults to N. (Optional)

Complete Statuses [in] The default values are Complete or Rejected. To set the Processed
Flag for other status values, add those Status values to this input
argument.

Update Order Items [out] Comma separated list of row IDs for line items that were updated
by this method.

Input Argument Description

Business Object Name (Required) Name of business that Business Component belongs to.

Result [Out] Either Cancel or Done depending on the button clicked by the user.
The actual string value returned is specified by the Cancel Button Return
and Done Button Return user properties respectively. (Required).
Siebel Order Management Infrastructure Guide Siebel 2018 221

Asset-Based Ordering Methods Reference ■ Product Manipulation Toolkit Business
Service Methods
Related Information
See the topic about workflows in Siebel Order Management Guide, and the following methods:

■ “Reconfigure Product Instance Method” on page 212

■ “Get Instance Method” on page 203

Refresh Business Component Method
This method is one of the Product Manipulation Toolkit Business Service Methods. It reexecutes all
instance of the specific buscomp to get data from the database, and also queries all records again.

Arguments

Related Information
See the topic about workflows in Siebel Order Management Guide.

Invoke BC Method
This method is one of the Product Manipulation Toolkit Business Service Methods. It is a generic method
that allows one to invoke a Business Component-based method from Workflow. A Business Service
method is invoked from a workflow by default. This method acts as a bridge to allow one to pass in
the Business Component name and the method name, along with the parameters and return value
required from Workflow to the Business Component specified.

Arguments

Argument Description

Business Object Name [in] Name of business the buscomp belongs to.

Business Component Name [in] Name of the buscomp you want to refresh with data from
database.

Refresh Result [out] Either Fail, NoRefresh, or Succeed. Fail means the method
could not refresh because of insufficient input argument. NoRefresh
means the method did not find any instance of the specified
buscomp. Succeed means it refreshed at lease one instance of the
specified buscomp. (Optional)

Argument Description

BC Name [in] A string to specify the name of Business Component on which
you want to invoke its method. (Required)

Method Name [in] A string to specify the name of the method in the specified
Business Component that you want to invoke. (Required)

Param 0 [in] A string to pass in the first argument to the method. (Optional)
Siebel Order Management Infrastructure Guide Siebel 2018222

Asset-Based Ordering Methods Reference ■ Product Manipulation Toolkit Business
Service Methods
Iterate Process For Selected Rows Method
This method is one of the Product Manipulation Toolkit Business Service Methods. It loops through all
the selected rows in the active business component and invokes the specified workflow for each row.
Input arguments to the workflow come from the fixed inputs plus the values of specified field names
are transformed into workflow argument names based upon the specified mappings.

Arguments

Related Information
See the topic about workflows in Siebel Order Management Guide, and the following methods:

■ “Get Selected Row Count Method” on page 224

■ “Get First Selected Row Values Method” on page 224

Param 1 [in] A string to pass in the second argument to the method.
(Optional)

Param 2 [in] A string to pass in the third argument to the method. (Optional)

Param 3 [in] A string to pass in the fourth argument to the method.
(Optional)

Return Property Name [out] A string to pass out the output of the method. (Optional)

Input Argument Description

All Asset List [in] A property set containing a list of Row IDs.

Fields [In] Comma separated list of field names in the active business component.
(Required)

Fixed Inputs [In] Comma separated list of name-value pairs (Required). For example:

'Active Document Id='+[&Active Document Id] '+'Price List
Id='+[&Price List Id]

List Type [in] String

Mappings [In] Comma separated list of field mappings of the form:

[Bus Comp Field Name]=[Workflow Input Argument]

Process [In] Name of the workflow process to be initiated for each row of the active
business component. (Required)

Delete Connection [In] Y or N flag indicating whether to cascade the process to the connections
associated with selected nodes in a network scenario. (Optional)

Argument Description
Siebel Order Management Infrastructure Guide Siebel 2018 223

Asset-Based Ordering Methods Reference ■ Product Manipulation Toolkit Business
Service Methods
Get Selected Row Count Method
This method is one of the Product Manipulation Toolkit Business Service Methods. It returns the number
of rows selected in the active business component, that is, the business component that initiated the
workflow.

Arguments

Related Information
See the topic about workflows in Siebel Order Management Guide, and the following methods:

■ “Iterate Process For Selected Rows Method” on page 223

■ “Get First Selected Row Values Method” on page 224

Get First Selected Row Values Method
This method is one of the Product Manipulation Toolkit Business Service Methods. It queries the active
business component for a given set of field values for the first selected row. The fields to be retrieved
are specified by the Fields argument. If the Mapping input argument is specified the values of the
fields in the query are remapped to different field names in the output property set.

Arguments

Related Information
See the topic about workflows in Siebel Order Management Guide, and the following methods:

■ “Iterate Process For Selected Rows Method” on page 223

■ “Get Selected Row Count Method” on page 224

Argument Description

Row Count [Out] The number of selected rows. (Required)

Argument Description

Fields [In] Comma separated list of field names in the active business component
for which values are to be retrieved.

Mappings [In] Comma separated list of mappings of the form:

[Bus Comp Field Name]=[Property Set Field Name]

SiebelMessage [Out] Property set containing the requested values.
Siebel Order Management Infrastructure Guide Siebel 2018224

Asset-Based Ordering Methods Reference ■ Product Manipulation Toolkit Business
Service Methods
Ungroup Method
This method is one of the Product Manipulation Toolkit Business Service Methods. It is a business
component-based version of Explode. It creates multiple instances of a product. The number of
instances is determined by the value of the field specified by the Quantity Field argument. For each
new instance, the value of the Quantity Field is set to 1. An existing instance is considered for
ungrouping only if it meets the conditions specified by the Condition Field Names and Condition
Values arguments. The updated business component instances are written to the database.

Arguments

Argument Description

Line Item BC Name [In] Name of the line item business component to be ungrouped.
(Required)

Extended Attribute BC Name [In] Name of the XA business component associated with the line
item business component. (Required)

Quantity Field [In] Name of field in the line item business component that is used
to determine the number of instances to be created. (Required)

Header Id [In] Row Id of the header business component instance. (Required)

Header Id Field [In] Name of the field in the header business component that stores
the Row Id. (Required)

Root Item Id [In] Id of the root item in the line item business component.
(Required)

Root Item Id Field [In] Name of the field in the line item business component that
stores the Root Item Id. (Required)

Parent Item Id Field [In] Name of the field in the line item business component that
stores the Parent Item Id. (Required)

Line Number Field [In] Name of the field in the line item business component that
stores the Line Number. (Required)

XA Header Id Field [In] Name of the field in the XA business component that stores the
Header Id. (Required)

XA Parent Root Id Field [In] Name of the field in the XA business component that stores the
Parent Root Id. (Required)

XA Line Item Id Field [In] Name of the field in the XA business component that stores the
Line Item Id. (Required)

Condition Field Names [In] Comma separated list of field names. An existing instance is
ungrouped only if the conditions specified by Condition Field Names
and Condition Values are met. (Optional)
Siebel Order Management Infrastructure Guide Siebel 2018 225

Asset-Based Ordering Methods Reference ■ Order Entry Toolkit Business Service
Methods
Related Information
See the topic about workflows in Siebel Order Management Guide, and the following methods:

■ “Explode Method” on page 197

■ “Explode Siebel Object Method” on page 200

Order Entry Toolkit Business Service
Methods
The Order Entry Toolkit (OET) business service is a set of methods that allow Siebel order
management processes to be implemented in eSales workflows. The business service includes
methods to manipulate the user's account information, validate payment information, and navigate
to eSales views. These methods summarized in Table 39.

Condition Values [In] Comma separated list of condition values. Standard Siebel
expressions (such as LookupValue) are supported. An existing
instance is ungrouped only if the conditions specified by Condition
Field Names and Condition Values are met. (Optional)

Integer Fields to Split [In] Comma separated list of fields of type Integer for which the
value is to split between the multiple instances. For example, if an
instance has a field value of 12 and a quantity of 4, the integer field
will have a value of 3 in each of the multiple instances. (Optional)

Number Fields to Split [In] Comma separated list of fields of type Number for which the
value is to split between the multiple instances. (Optional)

Table 39. EOT Methods

Method Comment

CreateAccount Method on
page 227

Creates a new account, associates it with the User and associates
specified addresses to that account. The method also sets a
specified field in the Quote BC, if it is required.

CreateOrder Method on
page 228

Converts a quote to an order.

GetBCCount Method on
page 229

Gets the number of rows and first row ID in a BC for the input
Search Spec. If Parent and Child BC names are provided, the
search spec is applied to the Parent BC. If no Parent BC is provided,
the Search Spec in applied to the one input BC.

GotoView Method on page 229 Navigates to the view specified in the input argument.

SelectPrimary Method on
page 230

Selects a record in the picklist into a field.

Argument Description
Siebel Order Management Infrastructure Guide Siebel 2018226

Asset-Based Ordering Methods Reference ■ Order Entry Toolkit Business Service
Methods
CreateAccount Method
This method is one of the Order Entry Toolkit Business Service Methods. It creates a new account,
associates it to the user and associates specified addresses to that account. The method also sets a
specified field in the Quote BC, if it is required.

Arguments

Returns
Row ID of new account.

User Properties
This method uses the following user properties:

SetLIAccounts Method on
page 230

Rolls down the Service and Billing Account field values from the
Quote or Order Header to the line items, if the value is NULL.

SubmitOrder Method on
page 231

Submits the Pending Order by changing the Order Header and Line
Items status to Open. Optionally, sets the Order ID to a defined
(user property) Profile Attribute.

ValidatePayment Method on
page 232

Validates the payment method, verifying that only one payment
method at a time is specified for a quote.

ValidateQuote Method on
page 233

Sets the Invalid Flag for all line items that have a base price of 0
except those that have an Action Code set to Delete.

ViewCart Method on page 233 Navigates to the CME Shopping Cart if licensed; otherwise, to the
standard Shopping Cart.

Argument Description

Account Name [in] Name of the new account. (Required)

Account Type [in] Type of new account. (Required)

Address Id 1 [in] ID of an existing address associated with the new account.
(Optional)

Address Id 2 [in] ID of an existing address associated with the new account.
(Optional)

You can add more Address IDs by incrementing the number.

Quote Account Field [in] Quote business component field to be populated with the
Account Id. (Optional)

New Account Id [out] Row ID of the newly created account.

Table 39. EOT Methods

Method Comment
Siebel Order Management Infrastructure Guide Siebel 2018 227

Asset-Based Ordering Methods Reference ■ Order Entry Toolkit Business Service
Methods
■ CreateAccount: Account BC Name

Name of the business component that is used to create the new account. The default is Account.

■ CreateAccount: Account and Address Intersection BC Name

Name of the business component based on the Account-Address Intersection table that is used
to associate addresses to the new account. The default is Com Account Address Intersection.

■ CreateAccount: Intersection Account Field Name

Account foreign key field in the intersection business component. The default is Account Id.

■ CreateAccount: Intersection Address Field Name

Address foreign key in the intersection business component. The default is Address Id.

This method invokes AssociateAccountToUser method in the CUT Account Administration Toolkit
Service business service.

Related Information
See the following methods:

■ “GetBCCount Method” on page 229

■ “ValidatePayment Method” on page 232

CreateOrder Method
This method is one of the Order Entry Toolkit Business Service Methods. It converts a quote to an
order.

Arguments

Returns
A new Order.

Dependencies
This method first invokes the Shopping Service’s CreateOrder Method, and then it invokes
SubmitOrder.

Argument Description

Quote Id [in] Quote identifier. (Required)

Return Error Code [in] Direction to return an error code. (Optional)

Order Id [out] Order identifier. (Optional)

Error Message [out] Error message. (Optional)
Siebel Order Management Infrastructure Guide Siebel 2018228

Asset-Based Ordering Methods Reference ■ Order Entry Toolkit Business Service
Methods
GetBCCount Method
This method is one of the Order Entry Toolkit Business Service Methods. It gets the number of rows
and first row ID in a BC for the input Search Spec. If Parent and Child BC names are provided, the
search spec is applied to the Parent BC. If no Parent BC is provided, the Search Spec in applied to
the one input BC.

Arguments

Returns
Number of rows and first rowId.

Related Information
See the topic about workflows in Siebel Order Management Guide, and “CreateAccount Method” on
page 227.

GotoView Method
This method is one of the Order Entry Toolkit Business Service Methods. It navigates to the View
specified in the input argument.

Argument Description

BC Name [in] Name of the business component whose rows will be counted.
(Required)

BC SearchSpec [in] Free text search specification. (Optional)

BusObj Name [in] The business components belongs to this business object. If a BusObj
Name is not specified, the business service business object is used.
(Optional)

Parent BC Name [in] Name of the parent business component to which the search criteria is
applied. (Optional)

Field Name [in] Field name to be used as additional input for the search specification.
(Optional)

Field Value [in] Value to be used as additional input for the search specification.
(Optional)

Count [out] Number of rows. (Optional)

First RowId [out] First rowId of the rows. (Optional)
Siebel Order Management Infrastructure Guide Siebel 2018 229

Asset-Based Ordering Methods Reference ■ Order Entry Toolkit Business Service
Methods
Arguments

SelectPrimary Method
This method is one of the Order Entry Toolkit Business Service Methods. It selects a record in the
picklist into a field.

Arguments

Returns
Success or Fail.

Related Information
See the topic about workflows in Siebel Order Management Guide.

SetLIAccounts Method
This method is one of the Order Entry Toolkit Business Service Methods. It rolls down the Service and
Billing Account field values from the Quote or Order Header to the line items, if the value is NULL.

Argument Description

View [in] Name of the view to navigate to. (Required)

KeepContext [in] Set this to TRUE to maintain the context. The destination view must be
based on the same business object as to originating view to keep the
context.

Argument Description

PickList Field [in] Name of the picklist field. (Required)

Primary Row Id [in] Primary rowId (Optional)

Primary ID Field [in] Name of the field that stores the primary Id. Not required if
Primary Row Id is specified. (Optional)

Business Component Name [in] Name of the business component to which the field belongs.
(Optional)

IntersectionTable Field [in] Name of the field in the intersection table that stores the
primary Id. (Optional)

Execute BusComp at Finish [in] TRUE if Base BC is executed after this operation; otherwise,
FALSE. The default is TRUE (case sensitive). (Optional)

ReturnVal [out] Success or Fail.
Siebel Order Management Infrastructure Guide Siebel 2018230

Asset-Based Ordering Methods Reference ■ Order Entry Toolkit Business Service
Methods
Arguments

Returns
New line item values.

Related Information
See the topic about workflows in Siebel Order Management Guide, and “GetBCCount Method” on
page 229.

SubmitOrder Method
This method is one of the Order Entry Toolkit Business Service Methods. It submits the Pending Order
by changing the Order Header and Line Items status to Open. Optionally, it sets the Order Id to a
defined (user property) Profile Attribute.

Arguments

User Properties
The following user properties are associated with this method:

■ Order Field|Value FieldMap X—Field map value. See the next user property definition.

Input Argument Description

Parent BC Name [in] Parent BC name. (Required)

Parent Row Id [in] Parent row Id. (Required)

Line Item BC Name [in] Line item BC name. (Required)

Argument Description

Order Id [in] Order identifier. (Required)

Parent Fieldmap LHS [in] LHS value of the field map used by user properties for field
names in the Parent business component. (Optional)

Parent Fieldmap RHS [in] RHS value of the field map used by user properties for field
values in the Parent business component. (Optional)

Line Item Fieldmap LHS [in] LHS value of the field map uses by user properties for field
names in the Line Item business component. (Optional)

Line Item Fieldmap RHS [in] RHS value of the field map uses by user properties for field
names in the Line Item business component. (Optional)

Return Error Code [in] Direction to return an error code. (Optional)

Error Message [out] Error message. (Optional)
Siebel Order Management Infrastructure Guide Siebel 2018 231

Asset-Based Ordering Methods Reference ■ Order Entry Toolkit Business Service
Methods
■ Order Item Field|Value FieldMap X—Field map value.

Replace X with a numbers starting from 1 and increments of 1. The last FieldMap must have a
value of End.

■ SubmitOrder: Order Header Buscomp—Default = Order Entry - Order.

■ SubmitOrder: Line Item Buscomp—Default = Order Entry - Line Items.

■ SubmitOrder: Line Item Set Field Condition. Default is Status=FS_ORDER_STATUS Pending.

ValidatePayment Method
This method is one of the Order Entry Toolkit Business Service Methods. It validates the payment
method, verifying that only one payment method at a time is specified for a quote.

Arguments

Returns
Error messages.

Related Information
See the topic about workflows in Siebel Order Management Guide, and “CreateAccount Method” on
page 227.

Argument Description

Bill To Account [in] The account whose payment is being validated. (Required)

Credit Card Number [in] Credit card number associated with the account. (Required)

Credit Card Type [in] Type of credit card associated with the account. (Required)

Expiration Month [in] Expiration month of the credit card. (Required)

Expiration Year [in] Expiration year of the credit card. (Required)

PO Number [in] PO number for the account. (Optional)

Return Error Code [in] Direction to return an error code. (Optional)

Error Message [out] Error message. (Required)
Siebel Order Management Infrastructure Guide Siebel 2018232

Asset-Based Ordering Methods Reference ■ Order Entry Toolkit Business Service
Methods
ValidateQuote Method
This method is one of the Order Entry Toolkit Business Service Methods. It sets the Invalid Flag for all
line items that have a base price of 0 except those that have an Action Code set to Delete.

Arguments

Dependency
Invokes the Shopping Service’s ValidateQuote method.

ViewCart Method
This method is one of the Order Entry Toolkit Business Service Methods. It navigates to the CME
Shopping Cart if licensed; otherwise, to the standard Shopping Cart.

Arguments
No input or output arguments.

Remarks
The following user properties may be specified for the Shopping Service:

■ Module Name

Licensed Module Name. The default is CME eSales.

■ Default Shopping Cart View

Name of the view to display if a module is not specified or if the module is specified but not
licensed. The default is Current Quote View (eSales).

■ Licensed Shopping Cart View

Name of the view to display if the module identified by module name is licensed. The default is
CUT Current Quote View (eSales).

Related Information
See the topic about workflows in Siebel Order Management Guide, and “ValidatePayment Method” on
page 232.

Argument Description

Quote Id [in] Quote identifier. (Required)

Return Error Code [in] Direction to return an error code. (Optional)

Invalid [out] Indicates an invalid quote. (Optional)

Error Message [out] Error message. (Optional)

ReturnVal [out] Indicates that the quote is valid. (Optional)
Siebel Order Management Infrastructure Guide Siebel 2018 233

Asset-Based Ordering Methods Reference ■ Account Administration Toolkit Business
Service Methods
Account Administration Toolkit Business
Service Methods
The Account Administration Toolkit (AAT) business service is a set of methods that are used to
manipulate accounts for eSales workflows.

These methods are summarized in Table 40.

PickAccount Method
This method is one of the Account Administration Toolkit Business Service Methods. It sets an account
to current status for a user session. It also sets the account’s price list as the default price list.

Arguments

User Properties
■ SelectCurrent:Login BO/BS—Default = CUT Account Login|CUT Account Login

■ SelectCurrent:BusComp Name to Refresh—Default = Account

Table 40. AAT Methods

Method Comment

PickAccount Method on
page 234

Sets an Account to current for a user session and sets its price list
as the default price list.

SetPrimary Method on
page 235

Picks a record from a picklist and puts it into the set of fields
specified in the picklist field’s pickmap.

AssociateAccountToUser
Method on page 235

Associates an Account with a User.

EstablishMtoM Method on
page 236

Establishes an Account to Contact M:M relationship.

Argument Description

Account Id [in] Row Id of the Account that is set to current status. (Optional)

Account Name [in] Name of the account. (Optional)

Master Account Id [in] Row Id of the ultimate parent of the account. (Optional)

BusComp Name [in] Name of the account business component. (Optional)
Siebel Order Management Infrastructure Guide Siebel 2018234

Asset-Based Ordering Methods Reference ■ Account Administration Toolkit Business
Service Methods
SetPrimary Method
This method is one of the Account Administration Toolkit Business Service Methods. It picks a record
from a picklist and puts it into the set of fields specified in the picklist field’s pickmap.

Arguments

User Properties
■ SelectPrimary: Source Buscomp—Default = User Profile (eApps)

■ SelectPrimary: Source Picklist Field Name—Default =Primary Account Name

AssociateAccountToUser Method
This method is one of the Account Administration Toolkit Business Service Methods. It establishes an
Account to Contract M:M relationship.

Arguments

Argument Description

BusComp Name [in] Name of the business component into which the picklist record
will be picked. (Required)

PickList Field [in] Field name in the business component that has the picklist
defined. (Required)

Primary Id [in] Row Id of the Picklist record that is picked. (Required)

Row Id [in] Row Id of the business component into which the picklist record
is picked. (Required)

Argument Description

Account Id [in] Account identifier. (Required)

Contact Id [in] Contact identifier. (Required)

BusComp Name [in] Name of the business component from which this method is to
be invoked. (Optional)

BusComp ToBe Refreshed [in] Name of the business component that is refreshed after the
operation in order to show updated data. (Optional)
Siebel Order Management Infrastructure Guide Siebel 2018 235

Asset-Based Ordering Methods Reference ■ Account Administration Toolkit Business
Service Methods
User Properties
■ AssociateAccountToUser: Account and Contact Intersection BC—Default = Account Contact.

■ AssociateAccountToUser: Default BC—Default = Account

■ AssociateAccountToUser: Default BD to Re-Execute—Default = Account Id

■ AssociateAccountToUser: Intersection BC Contact Field—Default = Contact Id

■ AssociateAccountToUser: Intersection BC Date Field—Default =Start Date

■ AssociateAccountToUser: Primary Contact Id Field—Default = Primary Contact Id

EstablishMtoM Method
This method is one of the Account Administration Toolkit Business Service Methods. It establishes an
M:M relationship between two entities.

Arguments

Argument Description

MtoMlntXBCName [in] Intersection business component name. (Required)

MtoMlntXDestFldName [in] Intersection business component destination field value.
(Required)

MtoMlntXDestFldValue [in] Intersection business component destination field value.
(Required)

MtoMlntXSrcFldName [in] Intersection business component source field name. (Required)

MtoMlntXSrcFldValue [in] Intersection business component source field value. (Required)
Siebel Order Management Infrastructure Guide Siebel 2018236

Asset-Based Ordering Methods Reference ■ Complex Product AutoMatch Business
Service Method
Invoke BC Method
This method is one of the Account Administration Toolkit Business Service Methods. It is a generic
method that allows one to invoke a Business Component-based method from Workflow. A Business
Service method is invoked from a workflow by default. This method acts as a bridge to allow one to
pass in the Business Component name and the method name, along with the parameters and return
value required from Workflow to the Business Component specified.

Arguments

NOTE: Preconfigured, you can find the usage of this method in the SIS OM Quote to Order Workflow

Complex Product AutoMatch Business
Service Method
The Complex Product AutoMatch Business Service includes one method that is used to match
components in a quote, order, or asset with components in the current version of the product model,
the Auto Match method.

Auto Match
Auto Match compares the input product instance to the customizable product definition. For each
product or class that cannot be located in the definition of the relationship specified by the product
instance, Auto Match searches for that product or class in another relationship under the same parent
in the product definition hierarchy. If the product or class exists in one or more relationships, the
product instance is updated so that the product or class is associated with the first of those
relationships. If the product or class cannot be found in any relationship in the customizable product
definition, the product or class is removed from the product instance. The details of each change
made by Auto Match are added to the AutoMatchReport and returned as the output of the method
with the modified product instance.

Argument Description

BC Name [in] A string to specify the name of Business Component on which you
want to invoke its method. (Required)

Method Name [in] A string to specify the name of the method in the specified Business
Component that you want to invoke. (Required)

Param 0 [in] A string to pass in the first argument to the method (Optional)

Param 1 [in] A string to pass in the second argument to the method (Optional)

Param 2 [in] A string to pass in the third argument to the method (Optional)

Param 3 [in] A string to pass in the fourth argument to the method (Optional)

Return Property Name [out] A string to pass out the output of the method (Optional)
Siebel Order Management Infrastructure Guide Siebel 2018 237

Asset-Based Ordering Methods Reference ■ Complex Product AutoMatch Business
Service Method
Arguments

Examples
Review the following Auto match method examples:

■ “Service Profile Upgraded from SCE 6.x” on page 238

■ “Service Profile Imported from a Legacy System” on page 240

Service Profile Upgraded from SCE 6.x
The following example shows how this method is used when a service profile record is upgraded.

NOTE: In the following examples, a port is an instance of a relationship.

1 The following diagram shows a service profile record that has been upgraded from SCE 6.x:

Argument Description

SiebelMessage [in] Product instance to be transformed by Auto Match.

AutoMatchReport [in] Product instance that has been transformed by Auto Match.
Siebel Order Management Infrastructure Guide Siebel 2018238

Asset-Based Ordering Methods Reference ■ Complex Product AutoMatch Business
Service Method
2 The customizable product definition was reimplemented as shown in the following diagram
(rounded boxes represent a class).

3 Auto match assigns the following port IDs without error, as shown in the following diagram.

NOTE: The Installation component port IDs were assigned without ambiguity because each of their
parent components only have one port that supports the Installation product. Also, the erroneous
port ID originally assigned to the Nokia cell phones was replaced by the correct port ID without
generating an error.
Siebel Order Management Infrastructure Guide Siebel 2018 239

Asset-Based Ordering Methods Reference ■ Complex Product AutoMatch Business
Service Method
Service Profile Imported from a Legacy System
The following example shows how this method is used when a service profile is imported from a
legacy system.

1 The service profile record shown in the following diagram was imported from a legacy system.

2 The customizable product definition is shown in the following diagram.
Siebel Order Management Infrastructure Guide Siebel 2018240

Asset-Based Ordering Methods Reference ■ Complex Product AutoMatch Business
Service Method
3 Auto match does its best to assign port IDs, as shown in the following diagram.

NOTE: The DSL Service component was deleted because it does not exist beneath Local Line. The
Voice-Mail component was reparented and associated with the Calling Features class. The Call
Forwarding component could have been associated with the product relationship or as a member of
the Calling Features class. Hence, it was assigned to the first port found (the product relationship)
and a warning message was issued.
Siebel Order Management Infrastructure Guide Siebel 2018 241

Asset-Based Ordering Methods Reference ■ Complex Product AutoMatch Business
Service Method
Siebel Order Management Infrastructure Guide Siebel 2018242

11 Projected Asset Cache
This chapter describes the VORD Projected Asset Cache business service, also referred to as
“Projected Asset Cache.” This chapter includes the following topics:

■ “About Projected Asset Cache” on page 243

■ “Projected Asset Cache Business Service Methods” on page 245

■ “Using the VORD Projected Asset Cache Business Service” on page 249

The “VORD” in the name of this business service originally stood for Vertical Order Management, but
this business service is now used generally in Siebel Enterprise Applications as well as Siebel Industry
Applications.

About Projected Asset Cache
The Projected Asset Cache is a persistent business service that loads all assets, open orders, and
quote line items matching a specified search specification into memory using the most efficient SQL
queries possible. Projected Asset Cache is used by the Compound Product Validation. It is used by
Network Validation to populate the network nodes pick applet. It is also used by Compatibility for
cross-product compatibility checking. The Projected Asset Cache can be used by any application that
needs a consolidated view of product instances across the quote-to-order-to-asset lifecycle.

Projected Asset Cache automatically converts between the different field names in the Quote, Order,
and Asset business components. The cache is always stored and queried using the Asset field names.
Open Order and Quote line items are applied to the existing assets to generate a future projected
state of the assets for a specified date.

The Projected Asset Cache business service supports multiple concurrent cache instances. When the
cache is initialized, a unique identifier is returned. Subsequent queries must specify the identifier of
the cache to query.

There are two key functions to the Projected Asset Cache:

■ “Retrieve Data” on page 244

■ “Build the Future Requested State” on page 244
Siebel Order Management Infrastructure Guide Siebel 2018 243

Projected Asset Cache ■ About Projected Asset Cache
Retrieve Data
To retrieve data, the Projected Asset Cache queries the following business components:

■ Quote Item: Quote Item XA

■ Order Entry - Line Item: Order Item XA

■ Asset Mgmt - Asset: Asset Mgmt - Asset XA

Within these business components, Projected Asset Cache limits the retrieval of data to only those
fields and attributes required by the rules checkers. To find this information, the Projected Asset
Cache:

■ Loads all the Asset records

■ Finds all open orders associated with these Asset records

■ Loads all quote line items for the current quote associated with the Compound Product.

The Projected Asset Cache then uses a predefined Field Mapping Service business service to translate
the field names among business components.

Build the Future Requested State
After retrieving the data, the Projected Asset Cache builds the future requested state of the product
instances. It takes into consideration all assets matching the search specification and applies all open
orders due to complete prior to the specified date. It then applies the current quote or order to
generate the future requested state.

The array of projected assets generated is stored in the business service. It is available for
performing validations until it is released or a new initialization of the Projected Asset Cache occurs.

Because the Projected Asset Cache can include any field in the Asset Mgmt - Asset business
component, and because it also includes data from the Quote Item and Order Line Item business
components, the fields must be mapped across three different business components.

This mapping is done by the Field Mapping Service business service. You add mappings by creating
new user properties on the Field Mapping Service business service.

Table 41 gives an example of one field mapping, which translates the Service Point Serial Number
field in the Asset Mgmt - Asset business component to the corresponding field in the Quote Item
business component and in the Order Entry - Line Item business component.

NOTE: If you add custom fields to the business components from which the Projected Asset Cache
retrieves data, and you want to use these fields either in simple expression rules or custom rules as
part of a custom business service, you must add new field mappings.

Table 41. Sample of Field Mappings

Name Value

Asset Mgmt - Asset:Quote Item Map 2 [Service Point Serial Number]:[Service Point]

Asset Mgmt - Asset:Order Entry - Line Items
Map 2

[Service Point Serial Number]:[Service Point]
Siebel Order Management Infrastructure Guide Siebel 2018244

Projected Asset Cache ■ Projected Asset Cache Business Service Methods
Projected Asset Cache Business Service
Methods
Projected Asset Cache methods are summarized in Table 42.

“Using the VORD Projected Asset Cache Business Service” on page 249 shows an example of how to
structure the input parameters for the VORD Projected Asset Cache in a workflow.

Initialize Method
The Initialize method creates a new cache for assets that match the specified search expression. It
applies open orders until the specified future date. It applies line items from the specified quote.

The Initialize method retrieves only those fields and attributes specified by the Field and Attribute
input arguments. If a Future Date is provided, open order lines satisfying the search expression that
have a due date prior to the Future Date are applied to the associated assets. If a Quote Id is
provided, the quote line items of the specified quote that satisfy the search expression are applied
to the associated assets.

Arguments

Table 42. Projected Asset Cache Service Methods

Method Comment

“Initialize Method” on page 245 Creates a new cache for assets that match the specified
search expression.

“Query Method” on page 246 Filters the list of assets in the Projected Asset Cache to those
that match the Search Expression.

“Reset Method” on page 248 Removes a specified cache from the Projected Asset Cache.

“Retrieve Method” on page 248 Supports a combined query of the Initialize and Query
methods.

Argument Description

Search Expression [in] Search Expression with which to initialize the cache. Only Assets,
Quote Line Items, Order Line Items and attributes that satisfy the search
expression will be loaded into the cache. (Required)

Field [in] Property set of fields to be retrieved by the Projected Asset Cache.
(Optional)

Attribute [in] Property set of attributes to be retrieved by the Projected Asset
Cache. (Optional)

Future Date [in] Project assets on this date. Only orders that have a due date less
than this future date will be applied. (Optional)
Siebel Order Management Infrastructure Guide Siebel 2018 245

Projected Asset Cache ■ Projected Asset Cache Business Service Methods
Related Information
See “Query Method” on page 246 and “Validate Method” on page 253.

Query Method
The Query method filters the list of components in the Projected Asset Cache to those that match
the Search Expression. It then counts the number of components, sums the values of Aggregate
Field, or calculates the minimum, maximum or average for each unique combination of group-by
fields, and sorts the result by the Sort Field. This method is analogous to a SQL SELECT statement
of the form:

SELECT * | COUNT(*) | SUM([Aggregate Field]) | MAX([Aggregate Field]) |
MIN([Aggregate Field]) | AVG([Aggregate Field]), [Calculated Field] WHERE [Search
Expression] GROUP BY [Group By Field] HAVING [Having Expression] SORT BY [Sort By
Field]".

The search expression supports a list of AND clauses and OR clauses with the following operators:

=, <>, !=, <, >, >=, <=

Arguments

Quote Id [in] Row ID of the quote for which line items are to be queried and loaded
into the Projected Asset Cache. (Optional)

Asset Cache Key [out] Unique identifier with which to access the Projected Asset Cache.
Used by the Query method.

Argument Description

Asset Cache Key [in] Unique identifier with which to query the cache. The key identifies the
projected asset cache to validate, and it is returned by the Initialize
method. (Required)

Search Expression [in] Consider only assets that satisfy this Boolean expression. (Optional)

Example:

([Product Type] = “Connection”) AND (([Service Address] =
“”) OR ([To Service Address] = “”))

Aggregate Function [in] The type of query executed against the projected asset cache. Valid
values are "Sum", "Count", "Max", "Min", "Avg" or "". (Optional)

NOTE: Aggregate Function does not support the use of Date fields.

Aggregate Field [in] The asset field considered by an aggregate query. Example:
Bandwidth. (Optional)

NOTE: Date fields are not supported in aggregate queries.

Argument Description
Siebel Order Management Infrastructure Guide Siebel 2018246

Projected Asset Cache ■ Projected Asset Cache Business Service Methods
Related Information
See “Initialize Method” on page 245 and “Validate Method” on page 253.

Calculated Field [in] Unique identifier with which to query the cache. This key is returned
by the Initialize method. The Calculated Field consists of a property set
containing definitions for calculated fields that are returned as part of the
result set. (Optional)

Example:

{‘Error Text’, ‘[Count] [Product]s have no Service Address
selected’}

Group By Field [in] A property set containing a comma-separated list of fields or
attributes used to group by when evaluating an aggregate function.
(Optional)

Example:

{‘Service Address’, ‘’},{‘To Service Address’, ‘’}

Having Expression [in] Consider only groups that satisfy this Boolean expression. (Optional)

Example:

[Count] > 1

Sort By Field [in] A property set containing a comma-separated list of fields by which
to sort the result set. (Optional)

Example:

{‘Product’, ‘’},{‘Service Id’, ‘’}

Result [out] Property set of projected asset cache entries that satisfy the search
expression. The property set contains child property sets that represent
rows of the result.

Example:

{{{‘Count’, ‘2’}, {‘Service Address’, ’50 Main St., Denver,
CO 80207’}, {‘To Service Address’, ‘101 California, New York
NY 10234’}},

{{‘Count’, ‘4’}, {‘Service Address’, ’50 Main St., Denver,
CO 80207’}, {‘To Service Address’, ‘901 Peach Tree, Atlanta,
GA 98765’}}}

Argument Description
Siebel Order Management Infrastructure Guide Siebel 2018 247

Projected Asset Cache ■ Projected Asset Cache Business Service Methods

,

Reset Method
The Reset method deletes the specified cache (or all caches, if not specified) from the Projected Asset
Cache.

Argument

Related Information
See “Validate Method” on page 253.

Retrieve Method
The Retrieve method supports a combined Initialize or Query, and is essentially a wrapper around
Initialize + Query. The input arguments are the same as those for Initialize. The output argument is
that of Query.

Arguments

Argument Description

Asset Cache Key [in] Unique identifier with which to query the cache. This key is returned by
the Initialize method. (Optional)

Argument Description

Search Expression [in] Search Expression with which to initialize the cache. Only Assets, Quote
Line Items, Order Line Items and attributes that satisfy the search expression
will be loaded into the cache. (Required)

Field [in] Property set of fields to be retrieved by the Projected Asset Cache.
(Optional)

Attribute [in] Property set of attributes to be retrieved by the Projected Asset Cache.
(Optional)

Future Date [in] Project assets on this date. Only orders that have a due date less than this
future date will be applied. (Optional)

Quote Id [in] Row ID of the quote for which line items are to be queried and loaded into
the Projected Asset Cache. (Optional)

Result [out] Property set of projected asset cache entries that satisfy the search
expression. The property set contains child property sets that represent rows
of the result.

Example:

{{{‘Count’, ‘2’}, {‘Service Address’, ’50 Main St., Denver, CO
80207’}, {‘To Service Address’, ‘101 California, New York NY 10234’}}

{{‘Count’, ‘4’}, {‘Service Address’, ’50 Main St., Denver, CO 80207’},
{‘To Service Address’, ‘901 Peach Tree, Atlanta, GA 98765’}}}
Siebel Order Management Infrastructure Guide Siebel 2018248

Projected Asset Cache ■ Using the VORD Projected Asset Cache Business Service
Using the VORD Projected Asset Cache
Business Service
This topic shows how to structure the input parameters for the VORD Projected Asset Cache business
service in a workflow.

To use VORD Projected Asset Cache business service in a workflow
■ The structure for all input parameters must be as follows:

■ All values added to the input PropertySet must be added as child PropertySets.

■ All child PropertySets must have their type set by the SetType PropertySet method.

For example, for each Field argument:

■ Create a new PropertySet, set its type to Field, and then use the SetProperty method to set
the field name.

■ Add this new PropertySet as a child to the main property used in the business service.

For each Search Expression argument:

■ Create a new PropertySet, sets its type to Search Expression, use the SetProperty method
to set the property name as Search Expression, and then set Search Expression as the
property value.

■ Add this new PropertySet as a child to the main property used in the business service.

NOTE: All fields used in the Search Expression field must be present in the Field PropertySet.

Example:

var assetCacheSvc = TheApplication().GetService("VORD Projected Asset Cache");
var svcInputs = TheApplication().NewPropertySet();
var svcOutputs = TheApplication().NewPropertySet();
var field = TheApplication().NewPropertySet();
var search = TheApplication().NewPropertySet();
field.SetType("Field");
field.SetProperty("Network Element Type", "");
var CompoundProduct = "XXXXXXX";
search.SetType("Search Expression");
search.SetProperty("Search Expression", "([Compound Product Number] =
\""+CompoundProduct+"\")");
svcInputs.AddChild(field);
svcInputs.AddChild(search);
assetCacheSvc.InvokeMethod("Initialize", svcInputs, svcOutputs);
var assetCacheKey = svcOutputs.GetProperty("Asset Cache Key");
Siebel Order Management Infrastructure Guide Siebel 2018 249

Projected Asset Cache ■ Using the VORD Projected Asset Cache Business Service
Siebel Order Management Infrastructure Guide Siebel 2018250

12 Compound Product Validation
This chapter is a reference that explains the methods developed for the Compound Product Validation
Engine (CPVE) business service. This chapter includes the following topic:

■ “About Compound Product Validation Engine Business Service” on page 251

■ “Compound Product Validation Engine Business Service Methods” on page 252

About Compound Product Validation
Engine Business Service
The Compound Product Validation Engine (CPVE) business service, VORD CPVE Validation Service, is
a set of methods that allows the Compound Product Validation Engine to be initiated through a
Workflow.

The CPVE business service includes methods to validate a network and display rule violations. These
methods are summarized in Table 43.

Table 43. Compound Product Validation Engine Service Methods

Method Comment

“FindFutureDate Method” on page 252 Gets the due date of the current line item.

“Format Violation Method” on page 253 Formats rules violations in a single string that can be
displayed to the user.

“Validate Method” on page 253 Executes the cross-product validation rules associated
with a compound product and returns any rule
violations.

“ValidateComplexProduct Method” on
page 254

Executes product validation expression validation rules
associated with a complex product and returns any rule
violations.

“ValidateComplexProductAll Method” on
page 255

Executes product validation expression validation rules
associated with the complex product in the document
and returns any rule violations.

“ValidateComplexProductFromPropertySe
t Method” on page 256

Executes product validation expression validation rules
associated with the complex product in the property set
and returns any rule violations.
Siebel Order Management Infrastructure Guide Siebel 2018 251

Compound Product Validation ■ Compound Product Validation Engine Business Service
Methods
Compound Product Validation Engine
Business Service Methods
The CPVE business service includes methods to validate a network and display rule violations. These
methods are as follows:

■ “FindFutureDate Method” on page 252

■ “Format Violation Method” on page 253

■ “Validate Method” on page 253

■ “ValidateComplexProduct Method” on page 254

■ “ValidateComplexProductAll Method” on page 255

■ “ValidateComplexProductFromPropertySet Method” on page 256

FindFutureDate Method
This method gets the value of the field specified by FutureDateFieldName for the business component
instance identified by BusinessComponentName and RowId.

The FindFutureDate method requires the current UI BC context.

Arguments

Related Information
See the topic about workflows in Siebel Order Management Guide.

Argument Description

BusinessComponentName [in] Name of the business component from which to get the future
date. (Required)

RowId [in] Row Id of the business component instance for which to get the
future date. (Required)

FutureDateFieldName [in] Name of the field in the business component that stores the
date. (Required)

FutureDate [out] Value of the return date. (Required)

Returns The value of the date field to use to validate the network at a date
in the future.
Siebel Order Management Infrastructure Guide Siebel 2018252

Compound Product Validation ■ Compound Product Validation Engine Business Service
Methods
Format Violation Method
This method takes a property set of rules violations and formats them in a single string that can be
displayed to the user.

Arguments

Related Information
See the topic about workflows in Siebel Order Management Guide, and “Validate Method” on
page 253.

Validate Method
This method executes the cross-product validation rules associated with a compound product and
returns any rule violations. It queries the Business Component VORD Compound Product Rule for all
the rules defined for the top level product (highest-level network product) of the compound product
(network). It then instantiates the business service for each of the rules and asks them for the fields
and attribute values they need. It then initializes the Projected Asset Cache by asking it to build a
future state of all the root line items within this compound product. This is done by querying the
Quote Item, Order Item, Asset and their XAs for the fields and attributes required by all the rules,
and then applying them to the associated assets. It then invokes the Validate method of each rules
checker business service and creates a consolidated list of rules violations.

The Validate method is called within the VORD Validate (Order) and VORD Validate (Quote)
workflows, which are invoked from the Quote and Order Network Applets.

Arguments

Argument Description

RuleViolation [in] Property set of child property sets of type 'RuleViolation'. (Required)

RuleViolationText [out] Single string containing the formatted rules violations. (Required

Argument Description

CompoundProductNumber [in] Compound Product Number (Network Id) associated with the
compound product to be validated. (Required)

FutureDate [in] Date at which to validate the compound product. (Optional)

QuoteId [in] Row Id of the current quote. (Optional)

CompoundProductNumber [out] Compound Product Number (Network Id) associated with the
compound product. (Required)

RuleViolationEmpty [out] Y or N flag indicating whether there are any violations.
(Required)

RootCompoundProduct [out] Name of the compound product. (Required)
Siebel Order Management Infrastructure Guide Siebel 2018 253

Compound Product Validation ■ Compound Product Validation Engine Business Service
Methods
Related Information
See the topic about workflows in Siebel Order Management Guide, and “Format Violation Method” on
page 253.

ValidateComplexProduct Method
This method executes product validation expression validation rules associated with a complex
product and returns any rule violations. It queries the Business Component VORD Compound Product
Rule for all the rules defined for the top level product (network product) of the compound product
(network). It then instantiates the business service for each of the rules and asks them for the fields
and attribute values they need. It then initializes the Projected Asset Cache by asking it to build a
future state of all the root line items within this compound product. This is done by querying the
Quote Item, Order Item, Asset and their XAs for the fields and attributes required by all the rules,
and then applying them to the associated assets. It then invokes the Validate method of each rules
checker business service and creates a consolidated list of rules violations.

The ValidateComplexProduct method is called within the VORD Validate Complex Product (Order) or
VORD Validate Complex Product (Quote) workflows, which in turn are called within the Verify Item
(Order) or Verify Item (Quote) workflows.

Arguments

Related Information
See the topic about workflows in Siebel Order Management Guide, “Validate Method” on page 253,
and “Format Violation Method” on page 253.

SiebelMessage [out] Property set of child property sets of type 'RuleViolation'.
(Required)

Argument Description

FutureDate [in] Date at which to validate the complex product. (Optional)

IsComplexProduct [in] Y or N flag indicating whether the product is complex. (Optional)

QuoteId [in] Row Id of the current quote. (Optional)

RootAssetIntegrationId [in] Root Id of the integration asset. (Required)

RootProductId [in] Root Id of the product. (Required)

RootProductName [in] Root name of the product. (Optional)

RuleViolationEmpty [out] Y or N flag indicating whether there are any violations.
(Required)

Siebel Message [out] Property set of child property sets of type 'RuleViolation'.
(Required)

Argument Description
Siebel Order Management Infrastructure Guide Siebel 2018254

Compound Product Validation ■ Compound Product Validation Engine Business Service
Methods
ValidateComplexProductAll Method
This method executes product validation expression validation rules associated with the complex
product in the document and returns any rule violations. It queries the Business Component VORD
Compound Product Rule for all the rules defined for the top level product (network product) of the
compound product (network). It then instantiates the business service for each of the rules and asks
them for the fields and attribute values they need. It then initializes the Projected Asset Cache by
asking it to build a future state of all the root line items within this compound product. This is done
by querying the Quote Item, Order Item, Asset and their XAs for the fields and attributes required
by all the rules, and then applying them to the associated assets. It then invokes the Validate method
of each rules checker business service and creates a consolidated list of rules violations.

The ValidateComplexProductAll method is called within the VORD Validate Complex Product All
(Order) or VORD Validate Complex Product All (Quote) workflows, which in turn are called within the
Verify Header (Order) or Verify Header (Quote) workflows.

The ValidateComplexProductAll method requires the current UI BC context.

Arguments

Related Information
See the topic about workflows in Siebel Order Management Guide, “Validate Method” on page 253,
and “Format Violation Method” on page 253.

Argument Description

BusinessComponentName [in] Name of the business component. (Required)

FutureDate [in] Date at which to validate the complex product. (Optional)

QuoteId [in] Row Id of the current quote. (Optional)

RuleViolationEmpty [out] Y or N flag indicating whether there are any violations.
(Required)

SiebelMessage Property set of child property sets of type 'RuleViolation'.
(Required)
Siebel Order Management Infrastructure Guide Siebel 2018 255

Compound Product Validation ■ Compound Product Validation Engine Business Service
Methods
ValidateComplexProductFromPropertySet Method
This method executes the product validation expression validation rules associated with the complex
product in the property set and returns any rule violations.

Arguments

Related Information
See the topic about workflows in Siebel Order Management Guide, “Validate Method” on page 253,
and “Format Violation Method” on page 253.

Argument Description

IdFieldName [in] Row Id of the field name. (Required)

RecordSet [in] The record set. (Optional)

RootProductId [in] Root Id of the product. (Required)

RootProductName [in] Root name of the product. (Optional)

RuleViolation [out] The rule violation. (Optional)

RuleViolationEmpty [out] Y or N flag indicating whether there are any violations.
(Required)
Siebel Order Management Infrastructure Guide Siebel 2018256

13 Copy Service
This chapter explains the use of the ISS Copy business service, or “Copy Service.” This chapter is
organized as follows:

■ “About Copy Service” on page 257

■ “Copy Service Components” on page 258

■ “Copy Service Methods” on page 258

NOTE: The Copy method of the Copy Service is retained for backward compatibility, but it is
recommended that you use the Data Transfer Utility business service for new applications. For more
information, see Chapter 14, “Data Transfer Utilities Business Service.”

About Copy Service
Siebel order management copies data from one document type to another as a transaction
progresses. Example transactions for which data is copied from one document type to another
include the following:

■ Quote-to-Agreement

■ Opportunity-to-Quote

■ Order-to-Agreement

■ Agreement-to-Order

In earlier releases, the mapping between objects was either hard-coded (as in Quote-to-Agreement)
or inconsistently defined (such as with business component user properties or SIS OM PMT
mappings). In this release, all mappings between objects are defined in the Administration -
Application screen, then the Data Map Administration views of the run-time client.

Using the Administration - Data views and the ISS Copy business service, you can create new
mappings and update existing mappings. A mapping can support one or more business components
from a business object (for example, quote, quote line item, and quote payments).

CAUTION: For Quotes and Orders, ISS Copy service is only used to copy Line Items and Attribute
records during the base business component copy operation. After making changes to the repository
(adding or removing columns), you must also change the data map for CopyQuote and CopyOrder
so that the desired set of fields are copied.

The ISS Copy business service (or “Copy service”), provides a mechanism for copying data from one
business object to another. Use the Administration - Application screen, then the Data Map
Administration views to define the business components and fields to be copied in a given situation.

NOTE: With Copy Service, data map object definitions are cached in the object manager. If you make
changes to the definitions, you must restart the Siebel server.
Siebel Order Management Infrastructure Guide Siebel 2018 257

Copy Service ■ Copy Service Methods
Configuring Copy Maps
For information about configuring copy maps, see the topics about creating and validating data maps
in Business Processes and Rules: Siebel Enterprise Application Integration.

Copy Service Components

Components of the Copy Service mechanism are shown in Figure 41.

Data maps are cached in the Object Manager. Copy Service uses batched SQL updates for optimum
throughput.

Copy Service Methods
The Copy Service includes the following methods, which can be called from script or signals:

■ “GetFieldValueFromInstance Method” on page 259

■ “LoadInstanceFromBC Method” on page 259

■ “SetFieldValueFromInstance Method” on page 260

■ “PopAndReleaseInstance Method” on page 260

■ “Copy Method” on page 260

■ “RefreshBCFromInstance Method” on page 261

■ “CleanupEAI Method” on page 261

■ “CleanupInstance Method” on page 262

■ “LoadEAI Method” on page 262

■ “SetupLineNumbers Method” on page 263

■ “SetupSyncUpsert Method” on page 264

Figure 41. Copy Service Components
Siebel Order Management Infrastructure Guide Siebel 2018258

Copy Service ■ Copy Service Methods
■ “StoreEAI Method” on page 265

■ “CheckEligibilityHelper Method” on page 265

■ “CalculatePriceHelper Method” on page 266

GetFieldValueFromInstance Method
This method retrieves the business component field value from the instance.

Arguments

LoadInstanceFromBC Method
The method loads the instance from the business component and pushes it into an instance. If
SourceInstance is specified, the new instance is created by cloning the source instance and
positioning it on the same row ID. Alternatively, BusObj, BusComp, and a search specification can
be used to define the new instance.

The instance business component loaded must not have a parent defined in the BusObj.

Arguments

Argument Description

InstanceName [in] ISS business component instance name.

FieldName [in] Business component field name.

BusCompName [in] Used to specify a business component other than the instance
business component, if necessary. (Optional)

FieldValue [out] The field value.

SearchSpec [out] A search specification of the following format:

[FieldName] = "FieldValue"

Argument Description

SourceInstance [in] The source ISS instance name. If specified, the new instance is
constructed by positioning it on the same row ID as the source
instance. (Optional)

InstanceName [in] Required if SourceInstance is specified. Otherwise, optional
default to “TheInstance”. (Optional)

BusObjName [in] Business object name. (Optional)

BusCompName [in] Business component name. (Optional)
Siebel Order Management Infrastructure Guide Siebel 2018 259

Copy Service ■ Copy Service Methods
SetFieldValueFromInstance Method
The method sets the field value to an instance.

Arguments

PopAndReleaseInstance Method
This method pops out and releases the instances.

Arguments

Copy Method
The method copies the source instance to the destination instance based on the defined copy map.

SearchSpec [in] Search specification on the business component. (Optional)

InsertOnly [in] If set to Y, ???? (Optional)

Argument Description

InstanceName [in] ISS business component instance name.

FieldName [in] business component field name

BusCompName [in] Used to specify a business component other than the instance
business component, if necessary. (Optional)

FieldValue [in] Field value.

GetLOVValue [in] LOV Type. If defined, the FieldValue is the LOV language-
independent code. The actual field value will be the language-
dependent display value as defined by LOV Type or Language
independent code. (Optional)

Argument Description

InstanceName [in] The ISS instance name.

Argument Description
Siebel Order Management Infrastructure Guide Siebel 2018260

Copy Service ■ Copy Service Methods
Arguments

RefreshBCFromInstance Method
The method refreshes the instance business component. If defined in the input argument, the line
item business component is also refreshed.

Arguments

CleanupEAI Method
CleanupEAI frees the memory used by the EAI data structure.

Syntax
CleanupEAI <inputArgs>, <outputArgs>

Input Arguments

Argument Description

SourceInstance [in] Source instance name.

DestinationInstance [in] Destination instance name.

MapName [in] Data map name.

CachedUpdate [in] Y or N. Performance option to allow for cached updates. All SQL
generated in the operation is issued to the database in one batch.
Therefore, a SQL in the block cannot depend on a previous SQL
being committed to the database. (Optional)

Release [in] Source, Destination, or All. If defined, the corresponding
instance(s) is popped up and released after the operation.
(Optional)

Argument Description

InstanceName [in] ISS business component instance name.

BusCompName [in] Used to specify a buscomp other than the instance buscomp, if
necessary. (Optional

BusCompLineItemName [in] Line item buscomp name. (Optional)

Input Argument Description

InstanceCollectionName A string indicating the name of the instance collection
Siebel Order Management Infrastructure Guide Siebel 2018 261

Copy Service ■ Copy Service Methods
Usage
CleanupEAI frees the memory used by the EAI data structure. The name of collection is passed in as
the InstanceCollectionName property.

Invoked From
Browser Script, COM Data Control, COM Data Server, Server Script, Java Data Bean, Siebel Mobile
Web Client Automation Server.

CleanupInstance Method
CleanupInstance frees the memory used by the CxObj data structure.

Syntax
CleanupInstance <inputArgs>, <outputArgs>

Input Arguments

Usage
CleanupInstance frees the memory used by the CxObj data structure. The name of instance is passed
in as the InstanceName property.

Invoked From
Browser Script, COM Data Control, COM Data Server, Server Script, Java Data Bean, Siebel Mobile
Web Client Automation Server.

LoadEAI Method
LoadEAI loads the product line item data structure through EAI and creates the CxObj memory
structure for it.

Syntax
LoadEAI <inputArgs>, <outputArgs>

Input Argument Description

InstanceName A string indicating the name of the instance
Siebel Order Management Infrastructure Guide Siebel 2018262

Copy Service ■ Copy Service Methods
Input Arguments

Output Arguments

Usage
LoadEAI loads the product line item data structure through EAI and creates the CxObj memory
structure for it. The CxObj structure is cached for use later by Configurator UI service and
Configurator Service and also by Eligibility & Compatibility.

Invoked From
Browser Script, COM Data Control, COM Data Server, Server Script, Java Data Bean, Siebel Mobile
Web Client Automation Server.

SetupLineNumbers Method
SetupLineNumbers updates the line numbers for the Line Item being customized corresponding to
the CxObj.

Input Argument Description

ParentObjectId The Quote Id or Order Id or Agreement Id or parent Asset Id

IntegrationObjectName The integration object name to use to load the object through EAI

SearchSpec The search spec to apply when loading the object through EAI.
Format:

[Header.Id] = 'QuoteId' AND [Line Item.Root Id] =
'RootId' (ex. "[Header.Id] = '2-4YOXR' AND [Line
Item.Root Id] = '2-4YOXX'")

InstanceCollectionName
[optional]

A string indicating the name of the instance collection. Defaults to
"TheInstanceCollection"

InstanceName [optional] A string indicating the name of the instance. Defaults to
"TheInstance"

RootId [optional] The row ID of the root product. If empty, then a new row is created
using the Product Id property. This is used during Validation of a
product.

ProductId [optional] Only used if RootId is empty. A dummy memory structure is created
using the Product Id.

Input Argument Description

RootId The row ID for the root product.
Siebel Order Management Infrastructure Guide Siebel 2018 263

Copy Service ■ Copy Service Methods
Syntax
SetupLineNumbers <inputArgs>, <outputArgs>

Input Arguments

Usage
SetupLineNumbers updates the line numbers for the Line Item being customized corresponding to
the CxObj.

Invoked From
Browser Script, COM Data Control, COM Data Server, Server Script, Java Data Bean, Siebel Mobile
Web Client Automation Server.

SetupSyncUpsert Method
SetupSyncUpsert updates EAI operations on CxObj nodes for better performance during the
subsequent sync using EAI.

Syntax
SetupSyncUpsert <inputArgs>, <outputArgs>

Input Arguments

Usage
SetupSyncUpsert updates EAI operations on CxObj nodes for better performance during the
subsequent sync using EAI.

Input Argument Description

HeaderIntCompName Header Integration Component Name

Integration Object Name The integration object name to use to load the object
through EAI

InstanceCollectionName A string indicating the name of the instance collection

InstanceName A string indicating the name of the instance

Line Number Field Line number field

LineItemIntCompName Line Item Integration Component Name

Row Id Line Item Id

Input Argument Description

InstanceCollectionName A string indicating the name of the instance collection
Siebel Order Management Infrastructure Guide Siebel 2018264

Copy Service ■ Copy Service Methods
Invoked From
Browser Script, COM Data Control, COM Data Server, Server Script, Java Data Bean, Siebel Mobile
Web Client Automation Server.

StoreEAI Method
StoreEAI updates the line item by storing the CxObj structure using EAI.

Syntax
StoreEAI <inputArgs>, <outputArgs>

Input Arguments

Usage
StoreEAI updates the line item by storing the CxObj structure using EAI.

Invoked From
Browser Script, COM Data Control, COM Data Server, Server Script, Java Data Bean, Siebel Mobile
Web Client Automation Server.

CheckEligibilityHelper Method
Raises the GetEligibility signal on a configurator instance.

Syntax
CheckEligibilityHelper <inputArgs>, <outputArgs>

Input Argument Description

IntegrationObjectName The integration object name to use to load the object
through EAI

InstanceCollectionName [optional] A string indicating the name of the instance collection.
Defaults to "TheInstanceCollection".

ParentObjId Quote Id, Order Id, Agreement Id, or Asset Id
Siebel Order Management Infrastructure Guide Siebel 2018 265

Copy Service ■ Copy Service Methods
Input Arguments

Output Arguments

Usage
Raises the GetEligibility signal on a configurator instance. This is invoked from the Batch Validate
workflow. The workflow can be modified to skip this step if needed.

Invoked From
Browser Script, COM Data Control, COM Data Server, Server Script, Java Data Bean, Siebel Mobile
Web Client Automation Server.

CalculatePriceHelper Method
Raises the CalculatePrice signal on a configurator instance.

Syntax
CalculatePriceHelper <inputArgs>, <outputArgs>

Input Arguments

Output Arguments

Input Argument Description

InstanceName Name of instance

Mode Quote, Order, Asset or Agreement

Output Argument Description

Status SUCCESS or ERROR

Error Message (Optional) Error message, if any

Input Argument Description

InstanceName Name of instance

Mode Quote, Order, Asset or Agreement

Output Argument Description

Status SUCCESS or ERROR
Siebel Order Management Infrastructure Guide Siebel 2018266

Copy Service ■ Copy Service Methods
Usage
Raises the CalculatePrice signal on a configurator instance. This is invoked from the Batch Validate
workflow. The workflow can be modified to skip this step if needed.

Invoked From
Browser Script, COM Data Control, COM Data Server, Server Script, Java Data Bean, Siebel Mobile
Web Client Automation Server.

Error Number (Optional) Error code, if any

Error Message (Optional) Error message, if any

Output Argument Description
Siebel Order Management Infrastructure Guide Siebel 2018 267

Copy Service ■ Copy Service Methods
Siebel Order Management Infrastructure Guide Siebel 2018268

14 Data Transfer Utilities Business
Service
This chapter describes the Data Transfer Utilities business service. It includes the following topics:

■ “About Data Transfer Utilities” on page 269

■ “About Data Maps” on page 278

■ “Example of Defining Data Maps to Use with the DTU” on page 284

■ “Examples of Invoking the DTU” on page 286

■ “Data Transfer Utilities Methods” on page 289

About Data Transfer Utilities
This business service allows you to transfer data from a source business component to a destination
component. For example, a user can enter data in one view, then use a toolbar command to navigate
to another view. Data entered in the first view is automatically entered in the second view.

Considerations for Data Transfer Utilities
This topic covers considerations that are important when you use the Data Transfer Utilities.

CAUTION: Spool SQL statements during the development stage to verify that all operations are
performed.

Use of Active Business Objects
Data Transfer Utilities execute inside a client's object manager.

The DTU reuses the current active business objects. It does not instantiate an independent source
business object unless directed. This leads to both a leaner memory use and better performance.
This is even more so if the destination business object is the same as the source business object. In
such a case, no new business objects are instantiated for the business service.

Because of the reuse of active objects, you must exercise caution to preserve the current business
object context. For example, the business components must not be in the query state when DTU is
launched.
Siebel Order Management Infrastructure Guide Siebel 2018 269

Data Transfer Utilities Business Service ■ About Data Transfer Utilities
Invocation Context
You can pass a reference to the active Buscomp to DTU, if you invoke the business service from Event
Manager, Buscomp Named Method, or from a workflow process that is invoked by the event manager.
You are not required to have an active Buscomp.

Not all Buscomp events can be used to invoke the DataTransfer method. For example, Query event
in general must not be used to trigger DataTransfer, as the buscomps are not in an updateable state.

In general, use PreDeleteRecord event; do not use DeleteRecord event. The Siebel event manager
does not pass in a reference to the active Buscomp in the DeleteRecord event.

Use special care when the service is used with other business services in a workflow. Other business
services should not interfere the passing of a reference to the active buscomp. Use a spooled SQL
statement to confirm the operations carried out are correct.

Well-Positioned Buscomps
A well-positioned Buscomp is a Buscomp that has been positioned correctly, and whose position
should not be disturbed. DTU uses the following rule:

■ The initiator Buscomp is a well-positioned Buscomp.

■ The ascendants of a well-positioned Buscomp are well-positioned.

■ For a given data map component, the buscomps involved in all its parent data map components
are well positioned.

If the source Buscomp is well-positioned:

■ Data transfer is only invoked on the current row of the source BusComp. Otherwise, the operation
is carried out on all rows in the source BusComp at the moment of invocation.

■ Advanced options such as source search spec, source sort spec should be empty.

If the destination Buscomp is well-positioned:

■ You do not need to specify key fields to retrieve the destination record. Even if you do in this
case, DTU would ignore them.

■ And if the current operation is Insert, it would change to Update by default, unless overridden
by Operation Overrides.

Example of Buscomp That is Not Well-Positioned
Calling the DTU Data Transfer method from an applet that is based on buscomp Quote, but which has
the data mapped source buscomp Opportunity. In this case:

■ The UI context (Quote) does not match the data mapped buscomp (Opportunity), and

■ DTU must query all Opportunity buscomp records, unless the RowId parameter is additionally
passed, to identify a single opportunity record.
Siebel Order Management Infrastructure Guide Siebel 2018270

Data Transfer Utilities Business Service ■ About Data Transfer Utilities
Recursive Invocation
By default, you cannot use the DataTransfer operation to invoke another DataTransfer operation. In
other words, at anytime within a client's object manager, there is only one DataTransfer method in
the call stack.

Using Named Parameters in DTU
You can use named parameters to pass in a run-time dynamic value into Data Transfer Utilities
(DTU). For example, imagine you want to pull a contact's latest information into your Buscomp. At
design-time, you cannot foresee what is the contact’s ID. Instead, you use a named parameter,
&ContactId, and at run time, you pass in the value &ContactId.

Named parameters are defined implicitly in two ways:

■ Business Service Arguments. Pass in the named parameters when DTU is invoked. DTU knows
an argument is a named parameter if the argument name is prefixed with an ampersand (&).

For example:

var psinputs, psoutputs;
var myContactId = '0-45TU890';
psinputs = TheApplication().NewPropertySet();
psoutputs = TheApplication().NewPropertySet();
psinputs.SetProperty ("DataMapObj", "My Test DTU Object");
psinputs.SetProperty ("Operation", "Update");
psinputs.SetProperty ("&ContactId", myContactId);
var obs = TheApplication().GetService("FINS Data Transfer Utilities");
obs.InvokeMethod ("DataTransfer",psinputs, psoutputs);

&ContactId serves as a named parameter.

The input value of a named parameter can be a calculation expression. In order to do so, set the
value to:

Expr: "YourExpression"

which is the syntax of Buscomp field predefault. At run time, the expression is evaluated against
the initiator Buscomp. For more information about initiator buscomp, see the argument
description in DataTransfer Method on page 290.

■ Assignment by DTU. At run time, you can transfer into a named parameter if the field type is
Parameter. When this happens, if the named parameter is still not defined, it is instantiated.

A named parameter must be implicitly defined first before it can be used. In other words, un-
assigned named parameters cannot be used.

Named parameters can be used to define Data Map Component Advanced Options, and Data Map
Field Source or Destination that are of type Expression.

All named parameters are output into the DTU service output arguments.

TIP: Whenever a named parameter is used in DTU, it must be prefixed with &.
Siebel Order Management Infrastructure Guide Siebel 2018 271

Data Transfer Utilities Business Service ■ About Data Transfer Utilities
Calculation Expressions in DTU
When Data Map Field Source or Destination Type is Expression, the Source or Destination Fields are
calculation expressions that follow Siebel Query Language syntax. See Siebel Personalization
Administration Guide for more information about Siebel Query Language.

DTU contains two extensions to Siebel Query Language: curly bracket pair {field}, and named
parameter.

Curly Bracket Pair {field}
Use this syntax to refer to a buscomp field at the other business component side. For example, if you
define the following expression as the source:

{ContactId}

[ContactId] would be evaluated at the destination bsucomp. When {} is involved, please note that
{} takes the highest precedence over other operator. Thus, if you have an expression like:

‘{Last Name}' + 'Test'

{Last Name} has precedence over quotes "". If the person's last name is Agee, {Last Name} is
evaluated to be "Agee". As a result, the final value is:

"Agee" Test

instead of

{Last Name} Test

Named Parameter
A calculation expression can contain named parameters, using the syntax of [&Parameter]. It is
important to pre-fix the ampersand to indicate a named parameter. For example,

"Sadmin's opportunity #" + [&OpptyId]

For more information about named parameters, see Using Named Parameters in DTU on page 271.

Using DTU with Order Management Signals
Order Management signals are a powerful infrastructure that allow you to define complicated runtime
events. For more information, see Chapter 3, “Signals.”

DTU can be directly invoked through a signal. When this happens, the signal infrastructure passes
the row ID of the current instance buscomp to the RowId argument of DTU. This tells DTU which
source buscomp record to work with.

In a rare case when you invoke DTU from a signal, but you do not want DTU to use RowId passed
from the signal as the context, simply set the IgnoreRowId argument to Y.

Since signals pass the RowId argument instead of the buscomp instance into DTU, a new instance of
source buscomp is always created.
Siebel Order Management Infrastructure Guide Siebel 2018272

Data Transfer Utilities Business Service ■ About Data Transfer Utilities
About Working with Hierarchical Business Components
Hierarchical business components, such as Quote Item, are business components that define a
recursive hierarchical foreign key field to themselves. In Web Tools, these buscomps have the
Hierarchical Parent Field attribute defined. Sometimes, their buscomp user properties also contain a
definition for Root ID Field Name. For more information, see Siebel Tools Online Help.

When the data of a hierarchical buscomp is copied to another hierarchical buscomp, care must be
taken to re-wire the hierarchical foreign keys: the hierarchical parent field and the root ID field. They
must be re-wired to point to the corresponding destination records. DTU automatically re-wires those
two foreign keys when a hierarchical buscomp is copied to another hierarchical buscomp.

For performance reasons, many data map objects in Siebel Order Management use a flattened
version of a hierarchical buscomp instead. For example, data map object QuoteToSalesOrder, which
creates a sales order based on a quote, contains the Line Item component that uses Quote Item
(Simple) and Order Entry - Line Items (Simple). Both simple buscomps are not hierarchical. The
reason for using simple buscomps is performance, as hierarchical buscomps require more CPU and
memory. However, when those simple buscomps are used, you must define the foreign key mapping
yourself. This is generally achieved using the field-level advanced option ID Mapping Component
described in Table 48.

This option was referred to as MapId in ISS Copy Service (described in “Data Map Fields” on
page 281), which is not used by DTU in 8.0. For more information, see “ISS Copy Service and the Data
Transfer Utility” on page 273.

In rare cases, you do not want DTU to automatically set hierarchical parent ID and root ID when a
hierarchical buscomp is copied to another hierarchical buscomp. Set the component advanced option
Disable Hierarchy to Y. You must type this option yourself, as it is not available from the pick list in
the data map administration screen.

ISS Copy Service and the Data Transfer Utility
The DataTransfer method of the DTU replaces the Copy method of the ISS Copy Service. DTU offers
more functionality and usability.

ISS Copy Service is still supported. Earlier configurations that use the Copy Service will still work
with the Copy Service in 8.0. Only the AutoOrderSalesQuote and AutoOrderServiceQuote signals are
re-configured to use DTU. It is recommended that new development be based on DTU.

Some differences are between DTU and ISS Copy Service are:

■ DTU does not require you to instantiate the source and destination instances first. Instead DTU
instantiates and deletes them automatically. This makes the invocation easier and safer.

■ Copy service data map field options include:

■ SequenceField. For the DTU data map, SequenceField is renamed as Sequence Field.

■ MapId. For the DTU data map, MapId is renamed as the ID Mapping Component option. The
difference is that the MapId option value is a source buscomp name, and ID Mapping
Component is the data map component name, as DTU allows a buscomp to be used in
multiple components.

For backward compatibility, DTU still recognizes the copy service field options.
Siebel Order Management Infrastructure Guide Siebel 2018 273

Data Transfer Utilities Business Service ■ About Data Transfer Utilities
Configuring Event-Based Commands for DTU
The Data Transfer Utilities (DTU) business service allows you to configure toolbar and menu
commands based on Siebel Event Manager.

To configure event-based commands
1 In Web Tools, create or open a workspace and then navigate to Object Explorer.

To use the workspace dashboard, see Using Siebel Tools.

2 Define a command where:

Business Service is “FINS Data Transfer Utilities” and method is “FAFireEventxxx”.

The method name can be anything that begins with “FAFireEvent”. When the command is
invoked, it, in turn, invokes method EventMethodxxx on the primary buscomp of the active view,
where xxx is of the same value as in FAFireEventxxx.

3 Define a toolbar.

4 Define a toolbar item for the command you defined.

5 Save your changes and submit the workspace for delivery.

6 In the Siebel client, define a run-time event that will receive EventMethodxxx.

7 Navigate to the Administration - Runtime Events screen, then the Events view, and create a
Buscomp run-time event as listed in the following table. See Siebel Personalization
Administration Guide for more information about run-time events.

Alternatively, you can define a workflow that has a Start step that contains run-time events.
When the workflow is activated, both the Action Sets and run-time events are created
automatically for you. For more information, see Siebel Business Process Framework: Workflow
Guide.

8 Siebel run-time events are cached. After you make changes, click the Runtime Events applet
menu item Reload Runtime Events.

Field Entry

Sequence -1

Object Type BusComp

Object Name The name of the business component in which the event is invoked. For a
toolbar command, this is the primary business component in the view in
which the command is invoked.

Event InvokeMethod

Sub Event EventMethodxxx. Choose the same value for xxx that you chose for
FAFireEvent.

Action Set Name The action set that invokes Siebel Workflow Manager or a business service.
Siebel Order Management Infrastructure Guide Siebel 2018274

Data Transfer Utilities Business Service ■ About Data Transfer Utilities
9 Configure dynamic enabling of the command. For more information, see Dynamic Enabling of
Commands for DTU on page 276.
Siebel Order Management Infrastructure Guide Siebel 2018 275

Data Transfer Utilities Business Service ■ About Data Transfer Utilities
10 Define command visibility:

a In Siebel Tools, navigate to Business Services, then FINS Data Transfer Utilities.

b Define a user property in which Name is MethodName GotoView, and Value is set to the name
of a view. MethodName is the name of the command method.

When you define this user property, this method is enabled only for users who have visibility
to the view defined in the value. If the method does not contain a GotoView, visibility is not
imposed on the method.

Dynamic Enabling of Commands for DTU
When a command is invoked from a toolbar button or menu, the Data Transfer Utilities business
service invokes the method EventMethodxxx on the primary business component of the active view.
The primary business component should be derived from CSSBCBase to allow the invocation to be
captured by Siebel Event Manager.

When the view is changed, Siebel framework polls each command for the application-level toolbar
buttons and application menu to determine whether the button or menu items should be made read-
only.

There are two mechanisms for the dynamic enabling and disabling of commands in DTU:

■ Srf mode

■ Mock Event Sink

The System Preference FINS DTU Enable FireEvent Mode is used to determine the mode. The value
should be Srf or Runtime Event. The default value is Srf.

Srf Mode
In the Srf mode, a FAFireEventxxx invocation on a buscomp is enabled if there is a user property
underneath the FINS Data Transfer Utilities business service as such that the name of the user
property is:

Name: FAFireEventxxx Static Enabled BC [n]

Value: Buscomp Name

You can define multiple Buscomps for a FAFireEventxxx method.

Srf mode is introduced primarily for performance reasons. Compared with Runtime Event mode, it
allows fast enabling and disabling of a command button without actually invoking a run-time event.
Srf mode is the default mode.
Siebel Order Management Infrastructure Guide Siebel 2018276

Data Transfer Utilities Business Service ■ About Data Transfer Utilities
Mock Event Sink
When System Preference FINS DTU Enable FireEvent Mode is Runtime Event, Data Transfer Utilities
determines at run time whether a FAFireEventxxx method should be disabled or not by initializing
Mock Event Mode. It sets up a global mock event flag within the client’s object manager. It then
invokes EventMethodxxx on the primary business component of the active view. If this
EventMethodxxx is finally captured by a Mock Event Sink, a global response flag is set. When the
Data Transfer Utilities finds out the response flag is set by a mock event sink, it enables the
FAFireEventxxx method for that particular view. Otherwise, the method is disabled.

Mock Event Sinks are specialized business service methods that capture mock events. They check
whether the client’s OM is in the mock event mode. If not, they do nothing. If so, they reply to the
mock event by setting the response flag as well as the output argument.

MockMethodReplied is Y.

TryMockMethod in Data Transfer Utilities is a mock event sink. DataTransfer method has a built-in
mock event sink.

Performance Tuning for DTU
You can improve performance of DTU by using the following tips:

■ "When the operation is insert, and you are sure no duplicate records would be created in the
process, do not check Key flags. This means that DTU does not need to query the database to
identify duplicates.

■ Use BatchMode in the Option argument whenever possible.

■ Use Cached Updates whenever possible.

■ For bounded picklist fields, MVG primary ID, and MVG source ID fields, skip field validation
whenever possible. Note that skipping the bounded picklist validation would also skip setting
fields of the pick map.

■ When a reference to the active instance buscomp is passed to DTU, it is a delicate balance to
decide whether or not to launch the DTU with a new instance of the source buscomp or re-use
the current active instance. By using the active instance, you avoid using CPU and memory for
the new business object. On the other hand, when DTU works off the active instance, it has to
restore the buscomp context to its original state, causing refreshing and looping of buscomps.
When a large number of buscomps or buscomp records are involved , this can be expensive. This
is why the NewSrcBusObj option is used in the "Auto Order Web Service" example.
Siebel Order Management Infrastructure Guide Siebel 2018 277

Data Transfer Utilities Business Service ■ About Data Maps
About Data Maps
Data maps are the logic defining the flow of data from one location to another. The DTU business
service uses data maps to transfer data from one location in the Siebel application to another.

This topic includes information about the following:

■ “Data Map Objects” on page 278

■ “Data Map Components” on page 279

■ “Data Map Component Advanced Options” on page 279

■ “Data Map Fields” on page 281

■ “Data Map Field Advanced Options” on page 283

■ “Migrating Data Map Objects Between Environments” on page 283

Data Map Objects
Data map objects indicate the data that is being transferred from the source business object to the
destination business object. You can use the Administration - Application screen, then the Data Map
Administration view to define data map objects. Only Siebel administrators have access to this
screen. Data map objects are described in Table 44.

TIP: Data map objects are cached in memory. Whenever you make changes to an existing data map
object, click the Clear Cache button to refresh the cache so that your changes appear.

You can import or export data map objects as XML files through the Data Map Object applet menu
items: XML Import, XML Export.

Table 44. Data Map Objects

Object Description

Name Data map object name. Enter a unique name.

Source Business Object Source business object name.

Destination Business Object Destination business object name. You can specify the same
business object as both source and destination business object.

Inactive Check this box to make the data map object inactive.
Siebel Order Management Infrastructure Guide Siebel 2018278

Data Transfer Utilities Business Service ■ About Data Maps
Data Map Components
Data map components define the mapping at the child business component level. Each data map
object can contain multiple data map components. You can arrange data map components in a
parent-child hierarchy, but you must specify a parent for all except one data map component. The
parentless data map component is called the root data map component. Data map components are
described in Table 45.

Data Map Component Advanced Options
Fine-tune data transfer at the component level by using Advanced Options multi-value fields. Data
map components advanced options are described in Table 46.

All advanced option values can contain named parameters. At run time, the named parameter is
substituted by its run-time value.

If the source Buscomp has been well positioned, the source search spec, the source sort spec, and
source record row number must be evaluated to be empty at run time, otherwise a wrong advanced
option error is encountered. See Well-Positioned Buscomps on page 270 for more information.

Advanced Options does not apply to multi-value group subcomponents.

Table 45. Data Map Components

Component Description

Name Data map component name. Enter a unique name for each data map
component in a data map object.

Source or Destination
Business Component

Source or destination business component name.

If you specify a parent for this data map component, you must define
this business component as a child of the source or destination business
object to which the parent data map component is mapped.

Parent Parent data map component name. If you:

■ Specify a parent, the parent is mapped to particular source and
destination business components. Generally, you map the child data
map component to a child of those source and destination business
components.

■ Do not want to specify a parent, leave it empty to indicate that this
is the root data map component. Each data map object can have
one or more root data map components.

Inactive Check this box to make the data map component inactive.
Siebel Order Management Infrastructure Guide Siebel 2018 279

Data Transfer Utilities Business Service ■ About Data Maps
Table 46. Data Map Components Advanced Options

Component Description

Source Search
Specification

Source Sort
Specification

Defines the source Buscomp search spec and sort spec. The value can be a
literal search spec or sort spec string. It can also contain a named
parameter. See Using Named Parameters in DTU on page 271. For example:

[Id] = [&ContactId]

where ContactId is a named parameter. At run time, only named
parameters are replaced by their string values.

Source Record Row
Number

One can selectively transfer only a subset of source Buscomp records. This
can be defined in three formats:

■ Start-End

■ Start-

■ Number

For example, 0-5, 4-, 0.

NOTE: The row number starts at 0.

Operation Override This option allows one to override the operation at the component level. For
example, if the current operation is Insert, you can use this option to set
some component to operate Update instead.

No Association Y or N. Applicable to buscomps that have association list. By default, it is
Y. Data Transfer Utilities first try to locate the desired destination record in
the associate list. If successful, the located record is associated. Otherwise,
a new record is created.

If N, association of existing records is not attempted. A new record is
created instead.

Cached Updates The valid values include:

■ Source Component

■ Destination Component

■ Source or Destination Component

This is a performance enhancement option that defers sending SQL
statements to the database until they can be sent together. Since none of
the SQL statements is sent until the end, subsequent steps in the block
cannot be dependant on a previous step having been committed to the
database.

When you turn on this option, make sure to confirm all SQL statements are
generated correctly and there is no inter-dependency.
Siebel Order Management Infrastructure Guide Siebel 2018280

Data Transfer Utilities Business Service ■ About Data Maps
Data Map Fields
Data map fields define the field-to-field mapping. Data map fields are described in Table 47.

Field Validation Y or N. By default it is Y.

By default, setting field values in a Siebel BusComp triggers field value
validation. If you have a bounded picklist, the new value is validated
against the picklist and the fields in the pick maps are set. Disabling field
validation also turns off picklists. It is a performance enhancement option.

Source Filter
Specification

An expression in Siebel search specification syntax that is used to filter out
records at the runtime. Only source records whose filter specification
evaluates to be true are transferred.

Filter specification differs from search specification in that search
specification is imposed at the database query, and filter specification is
imposed while looping through the records.

Disable Order
Management Signals

The valid values include

■ Source Component

■ Destination Component

■ Source or Destination Components

When the Disable Order Management Signals option is imposed on the
source or destination components, buscomp operations on those buscomps
do not trigger order management signals during the data transfer process.

Table 47. Data Map Fields

Field Description

Source Type or
Destination Type

Type of the source or destination field. Can be: Field, Expression, or
Parameter:

■ Field. A Siebel Buscomp field.

■ Parameter. A named parameter. The parameter must be prefixed with
an ampersand (&). See Using Named Parameters in DTU on page 271.
For example:

&ContactId

■ Expression. A Siebel calculation expression. See Calculation
Expressions in DTU on page 272.

Table 46. Data Map Components Advanced Options

Component Description
Siebel Order Management Infrastructure Guide Siebel 2018 281

Data Transfer Utilities Business Service ■ About Data Maps
Source or
Destination

The contents of these fields depends on the source and destination type.

If the type is:

■ Field, use Buscomp field name.

■ Expression, use a Siebel calculation expression.

■ Parameter, use a named parameter.

If the destination field is a calculated expression, then the record is not
used to update the destination Buscomp. Instead, the result of the
expression, evaluated at run time, is written back into the source field at
the end of the data transfer operation of the component.

If the Source is:

■ A Buscomp field, then source Buscomp is updated.

■ A Parameter, the corresponding named parameter value is updated.

■ An Expression, nothing happens.

Key Matches the destination records with source records.

For example, the Update operation updates the record in the destination
business component whose key destination fields all match those of the
corresponding source fields.

Each data map component in general contains at least one key field.

When there is no key defined, if the operation is:

■ Insert, DTU would proceed without checking if a duplicate record with
the same key fields already exists.

■ Update, it would update the current destination record.

If the destination business component is populated with an associated list
business component, at least one key field is required.

Source or
Destination Multi-
Value Link

This link indicates that the source and destination fields are multi-value
fields.

Data is transferred from one multi-value field to another by dividing data
map fields into several subcomponents. All entries with the same source
and destination multi-value link constitute a subcomponent. Specify a key
for each subcomponent.

NOTE: Data transfer from a multi-value field to a single-value field is not
allowed.

Table 47. Data Map Fields

Field Description
Siebel Order Management Infrastructure Guide Siebel 2018282

Data Transfer Utilities Business Service ■ About Data Maps
Data Map Field Advanced Options
Data map field advanced options allow you to fine tune data transfer operations at the field level.
These options are described in Table 48.

Migrating Data Map Objects Between Environments
Data map definitions are enabled for export and import by the Application Deployment Manager
(ADM). For information about using ADM, see Siebel Application Deployment Manager Guide.

Table 48. Data Map Field Advanced Options

Option Description

Field Validation Possible values are Y or N. The default is Y.

For more information, see the Field Value component in Table 46. If Field
Validation option is defined at both component and field levels, the field
level definition wins.

Sequence Field Possible values are Y or N. The default value is N.

If the value is Y, a sequence number starting from 1 and increased by 1 is
assigned to the destination field in each record.

Id Mapping
Component

The option is used to re-wire foreign keys. The valid values are the names
of data map components in the data map object. At run time, the source ID
to destination ID mapping of the named data map component defines the
foreign key mapping used by the data map field.

For example, when you copy from quote item to order item in a data map
component Items, the hierarchical parent ID of a quote item cannot be
literally copied to the order item parent ID. It needs to be re-wired to the
corresponding order item ID. The ID mapping component must be Items,
as the quote to order ID mapping is used to look up the order parent ID
field using the value of the quote parent ID field.

For related information, see “Configuring Event-Based Commands for DTU”
on page 274.
Siebel Order Management Infrastructure Guide Siebel 2018 283

Data Transfer Utilities Business Service ■ Example of Defining Data Maps to Use with
the DTU
Example of Defining Data Maps to Use
with the DTU
This topic shows how data mapping is defined to convert a quote into a sales order using the DTU.
This is in essence Auto Quote function of the DTU. This example guides you though the mapping in
the application.

The data copied over mainly consists of a three-level hierarchy:

■ Header

■ Line items

■ Extended attributes (XA)

There are also other auxiliary entities such as payments, requested, and promised scheduled lines.
This example shows how header (“Mapping Headers” on page 284), line items (“Mapping Line Items”
on page 285) and XA (“Mapping the Extended Attributes” on page 286) are mapped. Other entities are
mapped like either line items or XA. First, you must find the data map object where the header, line
item, or XA are mapped as described in “Finding the Data Map Object” on page 284.

Finding the Data Map Object
You must find the data map object where the header, line items, and XA are mapped.

To find the data map object
1 Navigate to the Administration - Application screen, then the Data Map Administration view.

2 In the Data Map Object list, select the record named QuoteToSalesOrder.

The components of this data map object, including Header, Line Item, and XZ, appear in the Data
Map Component list, after the Data Map Object list.

Mapping Headers
First, look at the mapping of the header component, to see how the quote header buscomp is mapped
to the order header buscomp.

Notice that a calculation expression is used to look up the order type LOV to default the order type
to sales order.

Two advanced options at the component level are of interest, because they are both important to
improve performance:

■ Cached Updates. Enables cached updates at the destination buscomp level. All updates at the
order buscomp, and its descendant buscomps, are cached and issued in one batch to the
database.
Siebel Order Management Infrastructure Guide Siebel 2018284

Data Transfer Utilities Business Service ■ Example of Defining Data Maps to Use with
the DTU
■ Skip Order Management Signals. Because of this option, setting field values at the order
buscomp does not trigger order management signals that usually would invoke pricing and
eligibility workflows.

To view the header mapping
1 In the Data Map Component list, select the record named Header.

2 Look at the mapping in the Data Map field list.

Notice that the record with Expression in the Source Type field has the expression
LookupValue("FS_ORDER_TYPE","Sales Order"), which is used to default the order type to sales
order.

3 Click the select button in the Advanced Options field of the Header record to see that Cached
Updates and Skip Order Management Signals are selected as options.

Mapping Line Items
Next, look at the Line Item component.

The record defines its parent as Header, so it is invoked as a child of the Header component.

To improve performance, use simple buscomps instead of the line item buscomps used in the Siebel
Call Center user interface. These improve performance because they are light-weight and, most
important, because they are not defined as hierarchical buscomps.

Because they are not hierarchical, you must define their hierarchical parent fields in the mapping,
using the Data Map Field records with Root Quote Item ID and Parent Quote Item ID in their Source
field.

Both these records use the advanced option with the name ID Mapping Component to define the
foreign keys to define hierarchical parent fields.

NOTE: For backward compatibility, the application retains the advanced option MapId, which
functions like ID Mapping Component.

For more information, see “Configuring Event-Based Commands for DTU” on page 274.

To view the line item mapping
1 In the Data Map Component list, select the record named Line Item.

2 Look at Advanced Option and the mapping in the Data Map field list.
Siebel Order Management Infrastructure Guide Siebel 2018 285

Data Transfer Utilities Business Service ■ Examples of Invoking the DTU
Mapping the Extended Attributes
Next, look at the XA component.

Note that deep XA buscomps are used. In Web Tools, these buscomps are defined as children of the
header buscomps, not as children of line items. This improves performance, because one query can
retrieve all grand-children XA attributes that belong to a quote. To mirror the Tools configuration, XA
is defined as a child of Header in the Data Map Component.

As deep XA buscomps are defined as children of the header, you cannot rely on Siebel buscomp links
to set the parent line item IDs, which are stored in the Object Id field. You also cannot literally take
object ID from quote to order, as the quote XA object ID points to a quote item, and the order XA
object ID points to an order line item. You need to use ID mapping to look up the foreign keys in the
order side. This is realized by the advanced options:

■ Name: ID Mapping Component

■ Value: Line Item

NOTE: For backward compatibility, the application retains the advanced option MapId, which
functions like ID Mapping Component.

For more information, see “Configuring Event-Based Commands for DTU” on page 274.

To view the line item mapping
1 In the Data Map Component list, select the record named XA.

2 Look at Advanced Option and the mapping in the Data Map field list.

Examples of Invoking the DTU
The following topics illustrate the two ways of invoking the DTU, as they are used in the Siebel
application, and how to use DTU services:

■ “Example of Invoking the DTU from a Signal: Auto Sales Order” on page 287

■ “Example of Invoking DTU from a Workflow: Auto Order Web Service” on page 288

■ “Example of Using DTU Services” on page 289 shows how to use a DTU business service to copy
data from one business component to another business component.
Siebel Order Management Infrastructure Guide Siebel 2018286

Data Transfer Utilities Business Service ■ Examples of Invoking the DTU
Example of Invoking the DTU from a Signal: Auto Sales
Order
Auto sales order is a function that creates a sales order from the current quote. It can be invoked by
clicking the Sales Order button in the Quote screen, then the Order view. This button invokes the
signal AutoOrderSalesQuote. This example shows you how this signal invokes the DTU.

To see how the signal AutoSalesOrderQuote invokes the DTU
1 Log into Siebel application as an administrator.

2 Navigate to the Administration - Order Management screen, then the Signals view.

3 Query for AutoOrderSalesQuote.

4 In the last version list applet, drill into version 3.

5 You can see the three actions taken by the signal. Be sure that the you have selected the action
that uses the method DataTransfer of the DTU Business Service, which copies the data into a new
order.

6 In the Properties list, you can view the arguments of the DataTransfer method in the Parameter
list, as shown in the following table:

At runtime, the signal infrastructure also passes the RowId of the current quote ID to DTU.

7 The SharedGlobalDestId parameter allows the destination record ID to be output to a shared
global variable called SharedGlobalDestId. This variable is picked up in by the
RefreshBCFromInstance method, whose arguments are shown in the following table:

The TargetRowIdSharedGlobal argument repositions the order buscomp to this row ID after
refreshing, which is the row ID of the order just created.

Name of Parameter Value

DataMapObj QuoteToSalesOrder

Operation Insert

Option /BatchMode

SharedGlobalDestID Y

Name of Parameter Value

BusCompName Order Entry - Orders

InstanceName ISS Instance

TargetRowIdShared Global DTUSharedGlobalDestId
Siebel Order Management Infrastructure Guide Siebel 2018 287

Data Transfer Utilities Business Service ■ Examples of Invoking the DTU
Example of Invoking DTU from a Workflow: Auto Order
Web Service
The Auto Order web service exposes Siebel's auto order function as a web service. It takes a quote
row ID as the input argument, creates an order based on the quote, and returns a quote integration
object. The web service is implemented by a workflow.

To see how the workflow SISOMAutoOrderWebService invokes the DTU
1 In Oracle’s Siebel Tools, locate the workflow SISOMAutoOrderWebService.

2 In this workflow, select the step DTU Auto Order, which uses DTU to create a new order from a
quote using the DataTransfer method.

3 Display input arguments, which have the values shown in the following table:

Notice that there are some subtle differences from the input arguments of the previous example:

■ Here, RowId is explicitly passed in as an argument, but when you use a signal, the order
management infrastructure implicitly passes in a RowId argument.

■ The Option argument contains "NewSrcBusObj". In the previous example, since signals pass
the "RowId" argument instead of the buscomp instance into DTU, a new instance of the
source buscomp is always created. This workflow specifies its Business Object as Quote. As
a result, DTU receives a reference to the quote business component as part of the invocation
context. Because you use NewSrcBusObj in this argument, DTU does not work off the
instance of the quote buscomp associated with the workflow. Instead it creates a new
instance of the quote business object. For information about why NewSrcBusObj is used, see
“Performance Tuning for DTU” on page 277.

4 Display the output argument for this step, which has the values shown in the following table:

Input Argument Sequence Type Value Property Name

DataMapObj 1 Literal QuoteToSalesOrder None

Operation 2 Literal Insert None

Option 3 Literal /BatchMode/NewSrcBusObj None

RowID 4 Process Property None Object Id

Property Name Sequence Type Output Argument

ActiveOrderId 5 Output Argument &OrderId
Siebel Order Management Infrastructure Guide Siebel 2018288

Data Transfer Utilities Business Service ■ Data Transfer Utilities Methods
5 The newly created order ID is output through the DTU named parameter &OrderId. The
parameter is defined in the data map Header component data map field view, which has the
values shown in the following table:

Example of Using DTU Services
The following example shows how to use the FINS Data Transfer Utility business service to copy data
from one business component to another business component.

To copy a business component and specify a search specification
1 Create an input property set and search specification as follows:

Operation = "Insert"

Option = "/NewSrcBusObj /NewDstBusObj"

DataMapObj = "CopyContact"

&ContactId = "<the contact row_id you want to copy>"

2 Configure DataMapObj ("CopyContact") to include a named parameter as follows:

a Go to the root level data map component in the Data Map Component Applet.

b Open the Advance Options Picker.

c Add following New Advanced Option:

❏ Name: Source Search Specification

❏ Value: [Contact Id]=[&ContactId]

d Clear cache.

3 In the business service simulator, invoke the FINS Data Transfer Utility business service using
the DataTransfer method, passing in the input property set specified in Step 1.

The Siebel CRM client starts copying all the contacts.

4 From the documentation, it may seem like the Init parameters are needed, but they are not. The
InitBO/InitBC input arguments cannot be used to construct a buscomp to start DTU. They are
used to indicate from which buscomp of the active busobj you want to use to launch DTU.

Data Transfer Utilities Methods
This topic describes the following Data Transfer Utilities business service methods:

■ DataTransfer Method on page 290

Order Source Type Source Destination Type Destination

52 Parameter &OrderId Expression [Id]
Siebel Order Management Infrastructure Guide Siebel 2018 289

Data Transfer Utilities Business Service ■ Data Transfer Utilities Methods
■ FAFireEventxxx Method on page 291

■ GetActiveViewProp Method on page 292

■ TryMockMethod Method on page 292

■ QueueMethod Method on page 292

DataTransfer Method
The DataTransfer method transfers data from the source business component to the destination
business component. Its arguments are described in Table 49.

Table 49. Arguments of DataTransfer Method

Argument Description

Data Map Object (Required) The name of the data map object that defines the mapping.

Operation (Required) Valid entries include Insert, Update, Delete, and Upsert.

GotoView (Optional) The name of a view that appears to users after the data transfer
operation.

Option (Optional) A text field that allows you to specify additional options for the
operation. Supported options include:

■ NewSrcBusObj. Force to instantiate a new Source business
object. Use instead of NewBusObj.

■ NewDstBusObj. Force to instantiate a new destination
business object.

■ RootNotCommitted. Suggest DTU not to commit the root
component, if possible.

■ SrcRootAdminMode. Set the source Buscomp of the root
data map component to Admin mode. This is valid only if the
root source Buscomp has not been executed.

■ BatchMode. This is a performance enhancement option that
suppresses runtime events, disables undo, and defers field
pre-defaults until committing the record. Batch mode is
only enabled for source or destination business objects that
are not the active (initiator) business object.

The following syntax is recommended for defining Option:

/option1 /option2 …

For example,

/NewSrcBusObj /NewDstBusObj
Siebel Order Management Infrastructure Guide Siebel 2018290

Data Transfer Utilities Business Service ■ Data Transfer Utilities Methods
NOTE: It is recommended that you specify both InitBO and InitBC specifically when invoking DTU.
DTU requeries the initiator buscomp when InitSearchSpec, InitSortSpec, InitEnumFlg are used.

FAFireEventxxx Method
FAFireEventxxx is a hidden method that you can use to create a toolbar command. It invokes the
method “EventMethodxxx” on the primary business component of the active view. “EventMethodxxx”
triggers the event manager, which invokes either a workflow or a business service.

Initiator Business Object
(Optional)

Used as a sanity check. If the BusObject that invokes DTU is
different from what is specified by the InitBO argument, DTU
exits as an external error.

Initiator Business Object is part of the invocation context. DTU
receives a reference of the initiator business object only when
invoked from Runtime Evens, Buscomp Named Methods, or
workflow processes with its business object defined. DTU can be
invoked without an initiator business object.

Initiator Business Component
(Optional)

By default, the Buscomp that invokes DTU serves as the InitBC.
Initiator Buscomp plays an important role in determining how
records are transferred. Use the InitBC argument to set other
Buscomp in the Initiator BusObject as the Initiator Buscomp.

Initiator Search Specification or
Initiator Sort Specification
(Optional)

Initiator Buscomp search spec and sort spec.

Initiator Buscomp Enumerate
Flag (Optional)

Y or N. By default, Initiator Buscomp Enumerate Flag is N. When
it is true, DataTransfer is applied to each record in the initiator
Buscomp. When InitSearchSpec or InitSortSpec is specified,
InitEnumFlag is implicitly true, even if InitEnumFlg is set to N.

MockMethodReplied Y or N.

RowId (optional) The ID of the root source buscomp record. For more
information, see “Using DTU with Order Management Signals” on
page 272.

IgnoreRowId (optional) Y or N. If Y, RowId argument is then ignored. For more
information, see “Using DTU with Order Management Signals” on
page 272.

SharedGlobalDestId (optional) Y or N. If Y, the destination record ID is output to a shared
global called DTUSharedGlobalDestId.

Table 49. Arguments of DataTransfer Method

Argument Description
Siebel Order Management Infrastructure Guide Siebel 2018 291

Data Transfer Utilities Business Service ■ Data Transfer Utilities Methods
GetActiveViewProp Method
This is an auxiliary function to retrieve the active view’s properties. It does not take any input
arguments.

Arguments

TryMockMethod Method
This is an advanced auxiliary function for administration of the tool bar button workflow. It does not
take any input arguments.

Arguments

QueueMethod Method
Launch a queue method on an applet in another view. When invoked, the UI navigates to the view
specified, and then the Queue method is invoked on the specified applet.

Other input arguments of this method will be cached into the application Shared Global, which can
be retried back.

DTU DataTransfer method has built-in integration with the QueueMethod. When the input argument
DataMapObject has the format:

SharedGlobal: NameofSharedGlobal

Argument Description

Business Object Business object name.

View Active view name.

Screen Active screen name.

Thread Applet Thread applet name.

Is Administration Mode Y or N.

View Mode Code An integer representing Siebel view mode:

■ 0: SalesRep View

■ 1: Manager View

■ 2: Personal View

■ 3: AllView

Argument Description

MockMethodReplied Y or N.
Siebel Order Management Infrastructure Guide Siebel 2018292

Data Transfer Utilities Business Service ■ Data Transfer Utilities Methods
The data map object name can be retrieved from Shared Global with the name NameofSharedGlobal.

Arguments

Argument Description

GotoView Name of the view to go to.

Applet Applet name.

Method Queued method to be invoked on the applet.
Siebel Order Management Infrastructure Guide Siebel 2018 293

Data Transfer Utilities Business Service ■ Data Transfer Utilities Methods
Siebel Order Management Infrastructure Guide Siebel 2018294

15 Other Component Business
Services for C/OM
This chapter describes the Context Service business service, as well as other important C/OM
business services. Information is provided as follows:

■ “Context Service Business Service” on page 296

■ “ISS ATP Service” on page 296

■ “ISS Credit Card Transaction Service” on page 298

■ “ISS Credit Check Service” on page 299

■ “ISS Disable Service” on page 300

■ “ISS Package Product Service” on page 301

■ “ISS Payment Profile Service” on page 302

■ “ISS Promotion Agreement Manager” on page 302

■ “ISS Promotion CP Admin Service” on page 307

■ “ISS Promotion Edit UI Service” on page 308

■ “ISS Promotion Management Service” on page 309

■ “ISS Revenue Synchronization Service” on page 314

■ “ISS Sequence Service” on page 315

■ “ISS Service Product Service” on page 315

■ “ISS Shipping Calculation Service” on page 315

■ “ISS Shipping Cost Service” on page 316

■ “ISS Smart Part Number Generation Service” on page 316

■ “ISS Spread Discount Service” on page 317

■ “ISS Tax Calculation Service” on page 317

■ “ISS Template Service” on page 318

NOTE: This chapter does not address three component business services that are addressed
elsewhere in this guide. For information about Data Validation Manager business service, see
Chapter 8, “Data Validation Manager.” For information about ISS Approval Business Service, see
Chapter 9, “Approvals Manager.” For information about ISS Copy Service, see Chapter 13, “Copy
Service.”
Siebel Order Management Infrastructure Guide Siebel 2018 295

Other Component Business Services for C/OM ■ Context Service Business Service
Context Service Business Service
The Context Service business service has two main functions, as follows:

■ The Context Service business service provides the infrastructure for the C/OM-specific invocation
mechanism called “Raise Signal.” Through use of a signal, you invoke multiple actions (either of
a business service or of a workflow) in a certain order. All associated actions are fully configurable
by an integrator. A signal can be triggered through UI buttons—with the standard Siebel Invoke
Method—or it can be triggered specifically by business services or business components.

■ The Context Service business service acts as the data broker for other C/OM modules, such as
Pricing, Eligibility, Product Recommendation, Promotion, and so on. Through the variable map
APIs (GetRowSetData and SyncRowSetData), Context Service retrieves the current context data,
and then constructs input property sets for other business services. After the property sets are
processed by other business services, they can be synchronized back to the database through
the SyncRowSetData API.

The Context Service business service provides APIs for constructing a property set from the current
ordering context and synchronizing changes to that property set back to the source.

It includes the following methods:

■ “GetRowSetData Method” on page 296

■ “SyncRowSetData Method” on page 296

GetRowSetData Method
See “Variable Map Methods of the Context Service Business Service” on page 56.

SyncRowSetData Method
See “Variable Map Methods of the Context Service Business Service” on page 56.

ISS ATP Service
The ISS ATP business service contains methods for the ISS Fulfillment Service.

It includes the following methods:

■ “CSSISSFulfillmentService::SetATPInputArgument Method” on page 297

■ “CSSISSFulfillmentService::ATPRunCheck Method” on page 297
Siebel Order Management Infrastructure Guide Siebel 2018296

Other Component Business Services for C/OM ■ ISS ATP Service
CSSISSFulfillmentService::SetATPInputArgument
Method
This method is called by the signal ATPInquire. It prepares input arguments before calling the ATP
business service.

Arguments

Example Arguments
[ATP Action]= "Inquire";
[RowId]= "42-4ZBY1";
[Mode] = "Order";

CSSISSFulfillmentService::ATPRunCheck Method
This method provides a business service wrapper function for ATP ASIs.

Arguments

Example Arguments
["ATP Action"] = "Inquire";
["Outbound Integration Object"] = "ATP Check Interface Request - Orders";
["Inbound Integration Object"] = "ATP Check Interface Response - Orders";
["Id"] = "99-2AICU";

Argument Description

ATPAction [in] The action to be specified at the line level: Inquire, Reserve,
UnReserve.

RowId [in] The RowId to process

Mode [in] "Order", "Quote"

Argument Description

Id [in] The header ID for the quote or order.

Line Item Id [in] If “inquire at line level” is called, this contains the line ID. If
“inquire all” is called, then this is empty.

Inbound Integration Object [in] The inbound internal integration object must be quote-
specific or order-specific. This is used for database write.

Outbound Integration Object [in] The outbound internal integration object must be quote-
specific or order-specific. This is used for database query.

ATPAction [in] The action to be specified at the line level: such as Inquire,
Reserve, and so on.
Siebel Order Management Infrastructure Guide Siebel 2018 297

Other Component Business Services for C/OM ■ ISS Credit Card Transaction Service
["Line Item Id"] = "42-4ZBY1";
["Outbound Integration Object1"] = "ATP Check Interface Request - Orders";
["Inbound Integration Object1"] = "ATP Check Interface Response - Orders";

ISS Credit Card Transaction Service
The ISS Credit Card Transaction business service performs credit card authorization tasks.

It includes the following methods:

■ “AuthCharge Method” on page 298

■ “Authorization Method” on page 298

■ “Charge Method” on page 298

■ “Refund Method” on page 298

■ “Reverse Method” on page 298

AuthCharge Method
This method authorizes and settles payment for the current payment line item.

Authorization Method
This method authorizes payment for the current payment line item.

Charge Method
This method settles payment for the current payment line item.

Refund Method
This method refunds payment for the current payment line item.

Reverse Method
This method reverses authorization of payment for the current payment line item.
Siebel Order Management Infrastructure Guide Siebel 2018298

Other Component Business Services for C/OM ■ ISS Credit Check Service
ISS Credit Check Service
The ISS Credit Check business service performs credit status checks and writes status information
to the database.

It includes the following methods:

■ “CreditCheckRunCheck Method” on page 299

■ “SetCreditCheckResults Method” on page 299

CreditCheckRunCheck Method
This method runs a credit check for the selected order or quote from an external ASI source, then
writes the credit status to the database.

Arguments

SetCreditCheckResults Method
This method writes the credit status data to the database. If the credit status is empty, it is set to
indeterminate.

Arguments

Argument Description

Id [in] The ID of the quote or order.

Inbound Integration Object [in] The internal inbound integration object for Quote or Order.

Outbound Integration Object [in] The internal outbound integration object for Quote or Order.

Return Error [in] A flag for which, when set to “N”, the function will return an
OK regardless. (This is used for situations in which even if the
credit check errors out, you want to create the order.)

Argument Description

Credit Status As Of [in] The date that the status is valid.

Credit Status Code [in] The status code. A number from 1 to 6 or a value pre-LOV
lookup (such as Okay or Indeterminate).

Credit Status Message [in] A string describing credit status.

Id [in] The ID of the quote or order.

Return Error [in] A flag that, when set to “N”, the function will return an OK
regardless.
Siebel Order Management Infrastructure Guide Siebel 2018 299

Other Component Business Services for C/OM ■ ISS Disable Service
ISS Disable Service
ISS Disable business service is used to disable certain activities when using ISS Copy Service. This
service is used in the ReviseCopyQuote signal.

NOTE: For information about ISS Copy Service, see Chapter 13, “Copy Service.”

It includes the following methods:

■ “DisableCopyXAService Method” on page 300

■ “DisableCheckCanInsert Method” on page 300

■ “RestoreServiceState Method” on page 301

DisableCopyXAService Method
This method disables the generation of XA attribute copy on the business component.

Arguments

DisableCheckCanInsert Method
This method skips the CanInsert check on the business component when new records are inserted.

Arguments

Argument Description

InstanceName [in] ISS business component instance name.

BusCompName [in] Name of the business component inside the ISS instance business
object. The BusComp class must be derived from CSSBCOrderMgmtBase.

Argument Description

EnableCanInsert [in] Y or N. When Y, the business component will skip the CanInsert check.

InstanceName [in] ISS business component instance name.

BusCompName [in] Name of the business component inside the ISS instance business
object. The BusComp class must be derived from CSSBCOrderMgmtBase.
Siebel Order Management Infrastructure Guide Siebel 2018300

Other Component Business Services for C/OM ■ ISS Package Product Service
RestoreServiceState Method
This method restores the business component state modified by DisableCopyXAService or
SkipCheckCanInsert methods.

Arguments

ISS Package Product Service
The ISS Package Product business service allows you to collect any number of simple products into
a single package or to remove simple products from a package when in the Quote Line Items or Order
Line Items views. After selecting one or more related simple products, you can then collect them into
one package and treat the package as one line item. Later, you can also separate a packaged
collection into its separate pieces and treat the separate pieces as separate line items.

NOTE: You cannot package customizable products. When you package simple products, they get
collected into one product called a Package. You cannot package Packages.

It includes the following methods:

■ “MergeIntoOnePackage Method” on page 301

■ “RemoveFromPackage Method” on page 301

MergeIntoOnePackage Method
This method collects simple products in one package.

RemoveFromPackage Method
This method takes one or more simple products out of a package.

Argument Description

InstanceName [in] ISS business component instance name.

BusCompName [in] Name of the business component inside the ISS instance
business object. The BusComp class must be derived from
CSSBCOrderMgmtBase.
Siebel Order Management Infrastructure Guide Siebel 2018 301

Other Component Business Services for C/OM ■ ISS Payment Profile Service
ISS Payment Profile Service
The ISS Payment Profile business service provides the functions to update the existing profile from
a Quote or Order, or to create a new payment profile from the current Quote or Order for the current
account.

It includes the following methods:

■ “SaveAsPaymentProfile Method” on page 302

■ “UpdatePaymentProfile Method” on page 302

SaveAsPaymentProfile Method
In the Quote or Order screen, Payment, and then the Payment Detail view, click Create Profile to
bring up a pop-up applet in which the user can specify a name for the payment profile.

UpdatePaymentProfile Method
In the Quote or Order screen, Payment, and then the Payment Detail view, click Update Profile to
update the existing associated profile.

ISS Promotion Agreement Manager
The ISS Promotion Agreement Manager business service provides a set of methods that deal with
commitments associated with the promotion process to be implemented in workflows.

This business service is used to check commitment compliance, and to generate agreements,
agreement items, and covered assets for promotions that require a commitment from the customer.

It includes the following methods:

■ “CalculateDates Method” on page 303

■ “CheckCommitmentCompliance Method” on page 303

■ “FilterCurrentDocument Method” on page 304

■ “FilterPAC Method” on page 304

■ “GetPromotionDetails Method” on page 305

■ “InvokeCopyService Method” on page 306

■ “SetProfileAttributes Method” on page 306

■ “RemoveProfileAttributes Method” on page 307

■ “SetOldAssetDetails Method” on page 307
Siebel Order Management Infrastructure Guide Siebel 2018302

Other Component Business Services for C/OM ■ ISS Promotion Agreement Manager
CalculateDates Method
This method is used to calculate the Start and End dates for a new agreement.

Arguments

CheckCommitmentCompliance Method
The CheckCommitmentCompliance method allows the user to verify commitment compliance on all
records in the current document. This method is invoked in the Verify Promotion workflow process.
This method returns a property set of promotions that have violated an active agreement.

Arguments

Argument Description

Root Product Id [in] The row ID of the promotion record.

Promotion Source Instance Id [in] Promotion instance upgrade integration ID. This is relevant
only in the case of a promotion upgrade. (Optional)

Start Date [out] The start date of the new agreement.

End Date [out] The end date of the new agreement.

Effective Date [out] The effective date of the new agreement.

Old Agreement Id [out] Row ID of the agreement for the original promotion. This
is relevant only for promotion upgrades, when the input
argument Promotion Source Instance Id is passed in.

Old Agreement Item Id [out] Row ID of the agreement line item of the agreement for
the original promotion. This is relevant only for promotion
upgrades, when the input argument Promotion Source Instance
Id is passed in.

Old Promotion Id [out] Row ID of the original promotion. This is relevant only for
promotion upgrades, when the input argument Promotion
Source Instance Id is passed in.

Argument Description

Active Document Type [in] The type of document that is currently active, for example,
Quote or Order.

Advance To [in] Date for which the penalty amount is calculated.

Buscomp Name [in] Name of the business component.

Buscomp Additional SearchSpec [in] Additional search specification that may be applied to the
business component.

Sort Specification [in] Sort specification for the business component.
Siebel Order Management Infrastructure Guide Siebel 2018 303

Other Component Business Services for C/OM ■ ISS Promotion Agreement Manager
FilterCurrentDocument Method
This method takes as input the property set of violated promotions returned by the
CommitmentComplianceCheck method and removes from the property set all promotions that exist
in the current document with an action code set to Delete.

Arguments

FilterPAC Method
This method assumes that Projected Assets Cache has been initialized. This method queries the
Projected Assets Cache based on the search specification passed in as an input argument. If the
promotion in the violated promotions list does not exist in the Projected Assets Cache, then assume
it is already deleted and remove it from the violated promotions list.

Promotions Violated Flag [out] A flag (Y or N) to indicate whether there are any
promotions that violate an active agreement. "Y" indicates
existence of promotions violating active agreements after
filtering on the current document is done. "N" indicates absence
of promotions violating any active agreements.

Violated Promotions [out] List of promotion violations, if Promotions Violated flag is
'Y'.

Argument Description

Buscomp Name [in] Name of the business component.

Buscomp Additional SearchSpec [in] Additional search specification that may be applied to the
business component.

Active Document Id [in] Row ID of the active document, for example, Quote or
Order.

Promotions Violated Flag [out] A flag (Y or N) to indicate whether there are any
promotions that violate an active agreement. "Y" indicates
existence of promotions violating active agreements after
filtering on the current document is done. "N" indicates absence
of promotions violating any active agreements.

Violated Promotions [in] List of promotion violations.

Violated Promotions [out] List of promotion violations, if Promotions Violated flag is
'Y'

Argument Description
Siebel Order Management Infrastructure Guide Siebel 2018304

Other Component Business Services for C/OM ■ ISS Promotion Agreement Manager
Arguments

GetPromotionDetails Method
This method is used in workflows to load promotion-related fields from the input SiebelMessage. This
method returns a promotion status that is used in the workflows for branching.

Arguments

Argument Description

Asset Cache Key [in] Cache key assuming that Projected Assets Cache has been
initialized.

Search Expression [in] Search specification to be used for querying Projected
Assets Cache.

Violated Promotions [in] List of promotion violations.

Violated Promotions [out] List of promotion violations, if Promotions Violated flag is
'Y'.

Argument Description

SiebelMessage [in] Contains a single complex Open Order line item.

Account Id [out] Row ID of the Account associated to the Order.

Asset Integration Id [out] Asset integration ID that is used to open order items for
an asset.

Contact Id [out] Row ID of the Contact associated with the Order.

Old Promotion Id [out] Row ID of the existing Promotion that is already an Asset.
This is set in the SetOldAssetDetails method. This argument is
used in the case of a Promotion Upgrade.

Old Promotion Instance Id [out] Promotion Instance Integration ID of the old promotion
that is already an asset. This is set in the SetOldAssetDetails
method. This argument is used in the case of a Promotion
Upgrade.

Product Type [out] Type of the Root Product on the line item. For example,
Product or Promotion.

Promotion Id [out] Row ID of the Promotion associated with the line item.

Promotion Instance Id [out] Promotion Instance Integration ID of the line item. This
indicates the promotion instance with which the line item is
associated.

Promotion Rule Id [out] Row ID of the promotion component rule that this line
item references.
Siebel Order Management Infrastructure Guide Siebel 2018 305

Other Component Business Services for C/OM ■ ISS Promotion Agreement Manager
InvokeCopyService Method
The InvokeCopyService method invokes the ISS Copy Service business service to copy the promotion
details set up in Promotion Administration—such as Charge Plans, Terms and Conditions, Conditional
Charges, Related Assets—to the corresponding Charge Plans, Terms and Conditions, Conditional
Charges, Covered Assets in the Agreement that has been created for the corresponding Account for
this promotion.

Arguments

SetProfileAttributes Method
This method saves the Start, End, and Effective dates for the new agreement to be created for the
promotion in the user profile.

Promotion Source Instance Id [out] Promotion Instance Upgrade Integration ID on the line
item. This is relevant only in the case of a promotion upgrade.

Root Product Id [out] Row ID of the root product or promotion.

Root Product Name [out] Name of the root product or promotion.

Status [out] Promotion Status returned by this method. This argument
is used in workflows for branching.

Argument Description

DestBusCompName [in] Name of the destination business component.

DestBusObjName [in] Name of the destination business object.

DestinationSearchSpec [in] Search specification used for the destination business
component.

Map Object Name [in] Name of the data map object that has been set up to do the
field-level copy from the source business component to the
destination business component.

SourceBusCompName [in] Name of the source business component.

SourceBusObjName [in] Name of the source business object.

SourceSearchSpec [in] Search specification used for the source business
component.

Argument Description
Siebel Order Management Infrastructure Guide Siebel 2018306

Other Component Business Services for C/OM ■ ISS Promotion CP Admin Service
Arguments

RemoveProfileAttributes Method
This method clears the Start Date, End Date, and Effective Date from the user profile.

SetOldAssetDetails Method
This method is invoked in workflows to maintain the Row Id of the current asset, the Integration Id
of the current asset, the Row Id of the promotion associated with the current asset, the Promotion
Instance Id of the current asset, and so on, in internal storage, so these IDs can be used for further
evaluation by the GetPromotionDetails method.

Arguments

ISS Promotion CP Admin Service
The ISS Promotion CP Admin business service allows you to add more constraints for a customizable
product (CP) when the CP is covered by a promotion. In the process of defining a promotion, you
can change cardinality or add more domain and attribute constraints for a CP when the CP is covered
by a promotion rule. At run time, the constraints will be checked against the CP when it is covered
by the promotion. The CP constraints are cached along with the promotion definition.

NOTE: When you make changes to the CP constraints under a promotion, you must clear the cached
promotion information.

It includes the following methods:

■ “ClearCache Method” on page 308

■ “GetPromotionConstraints Method” on page 308

Argument Description

Promotion Start Date [in] Start date of the promotion agreement.

Promotion End Date [in] End date of the promotion agreement.

Promotion Effective Date [in] Effective date of the promotion agreement.

Argument Description

SiebelMessage [in] Contains a single complex Open Order line item.
Siebel Order Management Infrastructure Guide Siebel 2018 307

Other Component Business Services for C/OM ■ ISS Promotion Edit UI Service
ClearCache Method
This method clears cached promotion information.

Arguments

GetPromotionConstraints Method
This method retrieves CP constraints for a promotion rule.

ISS Promotion Edit UI Service
The Promotion Edit UI business service provides a specialized user interface that displays promotions
or products grouped by each promotion rule. This service helps to generate required data structures
and to render this Promotion Edit UI.

This is the entry point function to invoke the Promotion Edit UI session from the product catalog.

NOTE: The business component that invokes this service must support the AddtoCart operation.

It includes the following methods:

■ “ApplyEditPromotion Method” on page 308

■ “EditPromotion Method” on page 309

ApplyEditPromotion Method
The ApplyEditPromotion function triggers the AddtoCart operation on the Promotion Selection
Catalog business component, then retrieves the LastItemId value from the profile attributes, and
continues the rest of the Edit UI rendering operations.

NOTE: The product type for the selected record must be set to Promotion.

Arguments

Argument Description

Prod Prom Id [in] String

Prod Prom Rule Id [in] String

CfgRequest [out] Hierarchy

Argument Description

Promotion Def [in] The Promotion Def Id of the selected promotion record.

Return View [in] Returns the view name when the user completes an Edit UI session.
Siebel Order Management Infrastructure Guide Siebel 2018308

Other Component Business Services for C/OM ■ ISS Promotion Management Service
EditPromotion Method
This method is an entry function to enter a Promotion Edit UI session.

NOTE: The product type for the selected record must be set to Promotion.

Arguments

ISS Promotion Management Service
The ISS Promotion Management business service is used to handle product promotions at run time,
such as Apply Promotion, Integrity Check, Recommend Promotion, and so on. This service also
provides functions to integrate with Unified Messaging and to support Asset-Based Ordering, such as
Load Message and Load Promotion-Related Assets.

It includes the following methods:

■ “ApplyPromotion Method” on page 310

■ “ClearAssociation Method” on page 310

■ “ClearMessages Method” on page 310

■ “CollectAssetList Method” on page 311

■ “GetContext Method” on page 311

■ “GetResponseType Method” on page 311

■ “InitializePAC Method” on page 312

■ “IntegrityCheck Method” on page 312

■ “LoadMessage Method” on page 313

■ “LoadPromRelatedAssets Method” on page 313

■ “MsgResponse Method” on page 313

■ “RecommendPromotion Method” on page 314

Argument Description

Promotion Def [in] The Promotion Def Id of the selected promotion record.

Promotion Instance [in] The Promotion Instance Id of the selected promotion record.

Return View [in] Returns the view name when the user completes an Edit UI session.
Siebel Order Management Infrastructure Guide Siebel 2018 309

Other Component Business Services for C/OM ■ ISS Promotion Management Service
ApplyPromotion Method
This method applies the promotion in the current document.

Arguments

ClearAssociation Method
This method dissociates items with a promotion.

Arguments

ClearMessages Method
This method clears previous UMS messages related to promotion.

Argument

Argument Description

Active Document Id [in] String

Prod Prom Id [in] String

Prod Prom Instance Id [in] String

Qty [in] String

Target Document [in] String

Argument Description

Active Document Id [in] String

Index [in] String

Prod Prom Instance Id [in] String

Target Document [in] String

List [in] Hierarchy

Argument Description

Promotion Messages [in] String
Siebel Order Management Infrastructure Guide Siebel 2018310

Other Component Business Services for C/OM ■ ISS Promotion Management Service
CollectAssetList Method
This method collects assets selected by the user and assets not selected but covered by selected
promotions.

Arguments

GetContext Method
This method retrieves the current active document type and document ID.

Arguments

GetResponseType Method
This method retrieves the user's response type (for example: Accept or Reject) for a UMS message.

Argument

Argument Description

Active Document Id [in] String

Target Document [in] String

All Asset List [out] Hierarchy

Promotion Instance List [out] Hierarchy

Promotion Num [out] String

SIS Delete Num [out] String

SIS Select Num SIS Delete Num

SIS Select Num [out] Hierarchy

Unselected Prom Related List [out] Hierarchy

Unused Selected List [out] Hierarchy

Argument Description

Active Document Id [out] String

Target Document [out] String

Argument Description

Message Response [out] String
Siebel Order Management Infrastructure Guide Siebel 2018 311

Other Component Business Services for C/OM ■ ISS Promotion Management Service
InitializePAC Method
This method loads the projected asset for a contact or account based on ABO Type.

Arguments

IntegrityCheck Method
This method executes an integrity check for promotions in the current document. It returns a flag
indicating whether there are violations, and if so, a list of all violations.

Arguments

Argument Description

ABO Type [in] String

Account Id [in] String

Active Document Id [in] String

Asset Cache Key [in] String

Asset Cache Key [out] String

Contact Id [in] String

Target Document [in] String

Argument Description

ABO Type [in] String

Account Id [in] String

Active Document Id [in] String

Contact Id [in] String

Target Document [in] String

Integrity Violation Flag [out] String

Violation List [out] Hierarchy
Siebel Order Management Infrastructure Guide Siebel 2018312

Other Component Business Services for C/OM ■ ISS Promotion Management Service
LoadMessage Method
This method invokes the UMS business service to display promotion-related UMS messages.

Arguments

LoadPromRelatedAssets Method
This method loads assets covered by a promotion, but not selected by the user.

Arguments

MsgResponse Method
This method executes the response actions defined for a UMS message

Argument Description

Account Id [in] String

Active Document Id [in] String

Charge Amount [in] String

Commitment End Date [in] String

Commitment Start Date [in] String

Contact Id [in] String

Message Type [in] String

Prod Prom Id [in] String

Prod Prom Name [in] String

Recommendation List [in] Hierarchy

Target Document [in] String

Violated Promotions [in] Hierarchy

Violation List [in] Hierarchy

Argument Description

Account Id [in] String

List Type [in] String

Prod Prom Instance Id [in] String

Unselected Prom Related List [out] Hierarchy
Siebel Order Management Infrastructure Guide Siebel 2018 313

Other Component Business Services for C/OM ■ ISS Revenue Synchronization Service
RecommendPromotion Method
This method recommends promotions to the user based on items in the current document. It returns
a flag indicating whether there is any promotion to recommend, and if so, a list of recommended
promotions.

Arguments

ISS Revenue Synchronization Service
The ISS Revenue Synchronization business service is used to synchronize opportunity products with
quote items. The Quote method creates a new quote based on the current opportunity. The
UpdateOppty method updates the source opportunity after the quote is modified.

It includes the following methods:

■ “Quote Method” on page 314

■ “UpdateOppty Method” on page 314

Quote Method
This method is used to implement Auto Quote functionality that generates a quote based on the
active opportunity. The quote line items will be created according to the opportunity products for
which the Auto Quote flag is checked. The Quote method is invoked by a C/OM signal at Opportunity,
Quote buscomp.

UpdateOppty Method
This method updates the opportunity with the current data in the line items of the quote or order.
The method is invoked by a C/OM signal.

Argument Description

Account Id [in] String

Active Document Id [in] String

Any Recommendation [out] String

Asset Cache Key [in] String

Asset Cache Key [out] String

Match Percentage [in] String

Recommendation List [out] Hierarchy

Target Document [in] String

Top Number [in] String
Siebel Order Management Infrastructure Guide Siebel 2018314

Other Component Business Services for C/OM ■ ISS Sequence Service
ISS Sequence Service
The ISS Sequence business service is used to re-sequence all line items with sequential line
numbers.

It includes the following method: “Sequence Method” on page 315.

Sequence Method
This method re-sequences all line items with sequential line numbers.

ISS Service Product Service
The ISS Service Product business service adds a service product to the Quote, Order, or Agreement
header and associates it to a regular product. This means that this service product pertains only to
the product to which it is associated.

It includes the following method: “Service Method” on page 315.

Service Method
This method creates a service (covered) product to cover the selected product.

ISS Shipping Calculation Service
The ISS Shipping Calculation business service calculates the shipping charges for a quote or order
based on a combination of factors including source location, destination, shipping carrier, shipping
method, and weight.

It includes the following method: “CalculateShippingCost Method” on page 315.

CalculateShippingCost Method
The sole method in this business service performs a look-up of the shipping zone that corresponds
to each line item of the quote or order based on the source location, destination, shipping carrier,
and shipping method. This result is, in turn, used to perform a look-up of the shipping rate that
corresponds to the shipping zone and weight.
Siebel Order Management Infrastructure Guide Siebel 2018 315

Other Component Business Services for C/OM ■ ISS Shipping Cost Service
ISS Shipping Cost Service
The ISS Shipping Cost business service calculates the shipping charges for an eSales quote or order
based on factors including shipping carrier and shipping method.

It includes the following method:

■ “CalculateShippingCost Method” on page 316

CalculateShippingCost Method
The sole method in this business service uses a customer-defined eScript to look up and calculate
the shipping charges.

ISS Smart Part Number Generation
Service
The ISS Smart Part Number Generation business service generates the Smart Part Number (SPN) for
a product based on attribute values of its product class.

You can define SPNs for a product class using the Administration - Product screen, Product Class,
and then the Part Number Definitions view of the run-time client. A product class can have two types
of part number definitions: Dynamic and Predefined.

When the user picks a product for a Quote item or for an Order item, the SPN of the chosen product
is generated by the ISS Smart Part Number Generation Service. The business service gets pointers
for the item business component and for the attributes business component, then it traverses its
attributes and saves all attribute name-value pairs into a property set that includes the ID and
Integration ID of the product. The service also calls other business services to generate the SPN for
the product with the property set, and then it saves the SPN value to the Quote or Order item
business component.

It includes the following method: “GeneratePartNumber Method” on page 316.

GeneratePartNumber Method
This method generates the Smart Part Number (SPN) for a product based on the attribute values of
its product class.
Siebel Order Management Infrastructure Guide Siebel 2018316

Other Component Business Services for C/OM ■ ISS Spread Discount Service
ISS Spread Discount Service
The ISS Spread Discount business service spreads the discount among selected Quote, Order, or
Agreement line items, or among all Quote, Order, or Agreement line items. The upper limit for
currency code precision is 6 decimals.

The ISS Spread Discount Service includes the following method: “SpreadDiscount Method” on
page 317.

SpreadDiscount Method
This method specifies the input and output hierarchical property sets. The Spread Discount Driver
Workflow Process (Spread Discount step) provides an example of this method’s usage.

ISS Tax Calculation Service
The ISS Tax Calculation business service is used to calculate tax for a quote or an order.

It includes the following methods:

■ “TaxCalculation Method” on page 317

■ “InternalTaxCalculation Method” on page 317

TaxCalculation Method
This method prepares the appropriate parameters and invokes the Tax Calculator business service
to call third-party TaxWare software.

InternalTaxCalculation Method
This method calculates the tax amount based on the tax rate and total defined from Quote or Order.
Siebel Order Management Infrastructure Guide Siebel 2018 317

Other Component Business Services for C/OM ■ ISS Template Service
ISS Template Service
A favorite is an object that has a structure similar to a quote or an order. The ISS Template business
service allows the user to store the current quote or order as a favorite. It can also retrieve all the
items or selected items from a favorite to add to the quote or order.

It includes the following methods:

■ “SaveAsTemplate Method” on page 318

■ “OrderTemplate Method” on page 318

■ “OrderTemplateSelectItems Method” on page 318

SaveAsTemplate Method
This method allows the user to click on the Save as Favorite menu item in Quote or Order to bring
up a pop-up applet that prompts the user to specify a name for the template.

OrderTemplate Method
This method copies the saved favorite items into the current quote or order.

OrderTemplateSelectItems Method
This method copies selected favorite items into the current quote or order.
Siebel Order Management Infrastructure Guide Siebel 2018318

Index
A
action expressions

for PSP procedures 70
PSP-specific functions 70
row set variables 73

actions
creating for signals 33
PSP-supported action expression

constructs 70
row set variables used in action

expressions 73
Aggregate method 75
APIs

Approvals Manager business service 157
Compound Product Validation Engine business

service 251
Context business service 296
Copy Service business service 258
for variable maps 56
ISS ATP business service 296
ISS Credit Card Transaction business

service 298
ISS Credit Check business service 299
ISS Disable business service 300
ISS Package Product business service 301
ISS Payment Profile business service 302
ISS Promotion Agreement Manager business

service 302
ISS Promotion CP Admin business

service 307
ISS Promotion Edit UI business service 308
ISS Promotion Management business

service 309
ISS Revenue Synchronization business

service 314
ISS Sequence business service 315
ISS Service Product business service 315
ISS Shipping Calculation business

service 315
ISS Shipping Cost business service 316
ISS Smart Part Number Generation business

service 316
ISS Spread Discount business service 317
ISS Tax Calculation business service 317
ISS Template business service 318
Order Entry Toolkit business service 226
Product Manipulation Toolkit business service

Projected Asset Cache business service 245
PSP Waterfall 119
Row Set Transformation Toolkit 74
UMS business service 128

Apply method
overview 182
Set Product Instance method, about and

arguments 218
approval items, defining 158
approval processing 155, 158
approval stages, defining 158
Approvals Manager 155
Approvals Manager business service

approval stage, approving or declining 161
business service step, configuring 161
CreateNewApprovalTasks method 157
defining approval items and stages 158
GetApprovalStatus method 157
methods 157
SetApprovalDecision method 157
start step, configuring 160
workflow, about invoking 159

Approvals Manager business service,
invoking from a workflow 159

assets, Delta method 170
Assign New Service IDs method, about and

arguments 205
automating approval processing 159

B
Billing Account field, about using to roll

down values 230
Business Component-based method, about

using to invoke method from
workflow 222

business services
about 15
active business objects, use of 269
calculation expressions in Data Transfer

Utilities 272
data map component advanced options 279
data map components 279
data map fields 281
data map objects 278
data maps, about 278
Data Transfer method 290
Data Transfer Utilities, about 269
Siebel Order Management Infrastructure Guide Siebel 2018 319

Index ■ C
dynamic enabling of commands 276
event-based commands, configuring 274
invocation context 270
named parameters, using in Data Transfer

Utilities 271
recursive invocation 271
well-positioned buscomps 270

buttons, invoking signals from 38

C
cache refresh key, defining 106
calculation expressions

about 272
curly bracket pair {field} 272
named parameters 272

Cancel button, about Get Cfg Button Click
Information method 221

cart, about ViewCart method 233
Clear Cache button, configuring 108
commands

dynamic enabling, about 276
event-based commands, configuring 274
Mock Event Sink mode 277
Srf mode 276

Compound Product Validation Engine
business service

about and table of methods 251
Find Future Date method 252
Format Violation method 253
Validate method 253
ValidateComplexProduct method 254
ValidateComplexProductAll method 255
ValidateComplexProductFromPropertySet

method 256
Conditional Action method 76
Context business service

about 296
GetRowSetData method 296
methods 296
SyncRowSetData method 296

Context Service business service, variable
map methods 56

controls, using for invoking signals 38
Convert Product Instance method, about and

arguments 204
copy maps, about configuring 258
Copy Service business service

about 257
components 258
configuring copy maps, about 258
Copy method 260
GetFieldValueFromInstance method 259
LoadInstanceFromBC method 259

methods 258
PopAndReleaseInstance method 260
RefreshBCFromInstance method 261
SetFieldValueFromInstance method 260

CreateAccount method 227
CreateOrder method 228
custom transform, creating for a custom PSP

application 97

D
data map objects, migrating 283
Data Transfer method

arguments and descriptions 290
FAFireEventxx method 291
GetActiveViewProp method 292
QueueMethod 292
TryMockMethod 292

Data Transfer Utilities
about 269
active business objects 269
calculation expressions in DTU, about 272
data map component advanced options 279
data map components 279
data map fields 281
data map objects 278
data maps, about 278
Data Transfer method 290
invocation context 270
named parameters, using in DTU 271
recursive invocation 271
well-positioned buscomps 270

data validation
activating data validation rule sets 149
Data Validation Manager business

service 139
defining error messages 141
defining rule set arguments 145
defining rule sets 142
defining validation rule actions 148
defining validation rules 145
implementation roadmap 140
invoking the Data Validation Manager

business service 149
invoking the Data Validation Manager

business service, from a runtime
event 150

invoking the Data Validation Manager
business service, from a
workflow 152

process of administering data validation
rules 140

viewing validation history 153
Data Validation Manager
Siebel Order Management Infrastructure Guide Siebel 2018320

Index ■ E
about 139
implementation roadmap 140
invoking 149
invoking from a runtime event 150
invoking from a workflow 152

data validation rule sets
activating 149
defining 142
defining arguments 145

data validation rules, administering 140
Delta method

delta orders, detailed description 170
Set Product Instance method, about and

arguments 218
Done button, about Get Cfg Button Click

Information method 221
Dynamic Look-Up method 77
Dynamic Subprocedure method 78

E
error message, about Set Exception Error

Message method 215
event-based commands, configuring 274
Explode method 197
Explode Siebel Object method 200
exploding

Explode method, about and arguments 197
Explode Siebel Object method, about and

argument 200

F
FAFireEventxxx method 291
Find Orders method 201

G
Get Cfg Button Click Information method,

about and arguments 221
Get Instance method, about and

arguments 203
Get Profile Attribute method, about and

arguments 202
GetActiveViewProp method 292
GetBCCount method, about and

arguments 229
GotoView method, about and

arguments 229

H
Hierarchical Look-Up method 79
Hierarchical method 81

I
integration object

Merge method, about using to merger
components 207

Update Multi Object List, about and
arguments 220

integration, with variable maps 44
Invoke BC method, about and

arguments 222
Is Module Licensed method, about and

arguments 207
ISS Approval business service

See Approvals Manager business service 155
ISS ATP business service

CSSISSFulfillmentService ATPRunCheck
method 297

CSSISSFulfillmentService
SetATPInputArgument method 297

methods 296
ISS Copy business service

See Copy Service business service
ISS Credit Card Transaction business service

AuthCharge method 298
Authorization method 298
Charge method 298
methods 298
Refund method 298
Reverse method 298

ISS Credit Check business service
CreditCheckRunCheck method 299
methods 299
SetCreditCheckResults method 299

ISS Disable business service
DisableCheckCanInsert method 300
DisableCopyXAService method 300
methods 300
RestoreServiceState method 301

ISS integration objects
configuring 45
using with variable maps 44

ISS Package Product business service
MergeIntoOnePackage method 301
methods 301
RemoveFromPackage method 301

ISS Payment Profile business service
methods 302
SaveAsPaymentProfile method 302
UpdatePaymentProfile method 302

ISS Promotion Agreement Manager business
service

CalculateDates method 303
CheckCommitmentCompliance method 303
FilterCurrentDocument method 304
Siebel Order Management Infrastructure Guide Siebel 2018 321

Index ■ L
FilterPAC method 304
GetPromotionDetails method 305
InvokeCopyService method 306
methods 302
RemoveProfileAttributes method 307
SetOldAssetDetails method 307
SetProfileAttributes method 306

ISS Promotion CP Admin business service
ClearCache method 308
GetPromotionConstraints method 308
methods 307

ISS Promotion Edit UI business service
ApplyEditPromotion method 308
EditPromotion method 309
methods 308

ISS Promotion Management business service
ApplyPromotion method 310
ClearAssociation method 310
ClearMessages method 310
CollectAssetList method 311
GetContext method 311
GetResponseType method 311
InitializePAC method 312
IntegrityCheck method 312
LoadMessage method 313
LoadPromRelatedAssets method 313
methods 309
MsgResponse method 313
RecommendPromotion method 314

ISS Revenue Synchronization business
service

methods 314
Quote method 314
UpdateOppty method 314

ISS Sequence business service
methods 315
Sequence method 315

ISS Service Product business service
methods 315
Service method 315

ISS Shipping Calculation business service
CalculateShippingCost method 315
methods 315

ISS Shipping Cost business service
CalculateShippingCost method 316
methods 316

ISS Smart Part Number Generation business
service

GeneratePartNumber method 316
methods 316

ISS Spread Discount business service
methods 317
SpreadDiscount method 317

ISS Tax Calculation business service

InternalTaxCalculation method 317
methods 317
TaxCalculation method 317

ISS Template business service
methods 318
OrderTemplate method 318
OrderTemplateSelectItems method 318
SaveAsTemplate method 318

L
licensed, Is Module Licensed method 207
logging, PSP 98
Logical Delete method, about and

arguments 202

M
Merge method 82
Merge method, about and arguments 207
message responses

about 134
attaching business services 135
logging 134

message types
creating 129
migrating 136

messages
display, configuring 132
implementing a custom message-generation

engine 133
suppressing duplicates 136
suppressing duplicates, about 135

migration
data map objects 283
signals 39
Unified Messaging, message types 136
variable maps 55

Mock Event Sink mode 277
multilingual substituted text, implementing

with Unified Messaging 133

O
OET

See order entry toolkit business service
methods

Order Entry Toolkit business service
methods

about and table 226
CreateAccount method 227
CreateOrder method 228
GetBCCount method 229
GotoView method 229
SelectPrimary method 230
SetLIAccounts method 230
Siebel Order Management Infrastructure Guide Siebel 2018322

Index ■ P
SubmitOrder method 231
ValidatePayment method 232
ValidateQuote method 233
ViewCart method 233

Order Item Processed Flag, setting the root
order line item 221

order management, setting up; Siebel
Customer Order Management 226

P
payment method, about ValidatePayment

method 232
Pending Order, about Submit Order

method 231
performance tuning

PSP 101
Unified Messaging 137

PMT
See Product Manipulation Toolkit business

service
product instance, about Synchronize method

and arguments 219
Product Manipulation Toolkit business

service
about and table of methods 163
Apply method 182
Assign New Service IDs 205
Convert Product Instance 204
Delta method 170
Explode method 197
Explode Siebel Object 200
Find Orders method 201
Get Cfg Button Click Information

method 221
Get Instance method 203
Get Profile Attribute, about and

arguments 202
Invoke BC method 222
Is Module Licensed method 207
Logical Delete method 202
Merge method 207
Quote to Revenue method 208
Reconfigure Product Instance method 212
Refresh Business Component method 222
Reset method 213
Retrieve Next Object from List method 214
Set Action method 215
Set Exception Error Message method 215
Set Field Value method 216
Set Multiple Field Values method 217
Set Output Header method 218
Set Product Instance method 218
Set Profile Attribute method 219

Synchronize method 219
Trim method 194
Update Multi Object List method 220
Update Order Line Item Completed Flag

method 221
user properties 167

Product Selection and Pricing Engine
See PSP Engine

Projected Asset Cache business service
about
Initialize method 245
methods 245
Query method 246
Reset method 248
Retrieve method 248

PSP application, creating custom 97
PSP Cache

about 103
enabling PSP Cache 104
optimizing 105
setting cache size 104

PSP Driver Workflow 66
PSP Dynamic Look-Up Transform Cache 111
PSP engine

about 57
components 62
performance tuning 101
troubleshooting 99
using Unified Messaging 137

PSP engine components
controller workflow 62
custom business services 66
PSP procedures 64
Row Set Transformation Toolkit Business

Service 65
Siebel Tools 65
Siebel Workflow 65
variable maps 64

PSP engine performance tuning
cache refresh key 106
Clear Cache button, configuring 108
PSP Cache 103
PSP Cache performance 111
PSP Cache, optimizing 105
PSP Dynamic Look-Up Transform Cache 111
PSP Generic Cache 105

PSP engine, logging 98
PSP procedures

actions 69
conditions 69
configuring 90
creating 91
creating, best practices 91
invoking from an external application 98
Siebel Order Management Infrastructure Guide Siebel 2018 323

Index ■ Q
PSP Waterfall
about 113
about configuring waterfall output 115
adding new fields to an existing

waterfall 116
business service methods 119
creating new waterfall output 117

Q
Query method 83
QueueMethod 292
Quote To Revenue method 208

R
Reconfigure Product Instance method 212
recursion, using with signals 39
Refresh Business Component method, about

and arguments 222
Reset method, about and arguments 213
Retrieve Next Object from List method,

about and arguments 214
Row Set Look-Up method 84
Row Set Transformation Toolkit

Aggregate method 75
Conditional Action method 76
Dynamic Look-Up method 77
Dynamic Subprocedure method 78
Hierarchical Look-Up method 79
Hierarchical method 81
Merge method 82
methods 74
Query method 83
Row Set Look-Up method 84
Rule Set Look-Up method 85
Simple Look-Up method 88
Split method 89

Rule Set Look-Up method 85

S
script, using for invoking signals 38
See service-oriented architecture
Select Primary method, about and

arguments 230
Service Account field, about using to roll

down values 230
service-oriented architecture

about 16
how Siebel C/OM can be integrated with other

SOA applications 19
how Siebel C/OM can be used with SOA

applications 20
how Siebel C/OM is built 18

Set Action method, about and

arguments 215
Set Exception Error Message method, about

and arguments 215
Set Field Value method, about and

arguments 216
Set Multiple Field Values method, about and

arguments 217
Set Output Header method, about and

arguments 218
Set Product Instance method, about and

arguments 218
Set Profile Attribute method, about and

arguments 219
SetLIAccounts method, about and

arguments 230
shopping cart, about ViewCart method 233
Siebel Query Language functions, PSP-

specific functions for action
expressions 70

signal actions
creating 33
modifying signal properties 37

signal properties, modifying for signal
actions 37

signals
about 31
invoking from controls 38
invoking from custom script 38
migrating 39
using recursion 39

Simple Look-Up method 88
SOA

See service-oriented architecture
SOA applications, integration with Siebel C/

OM 19
SOA applications, using with Siebel C/

OM 20
source types for variables 45

Business Object 49
Business Service 49
Instance 51

Split method 89
Srf mode 276
SubmitOrder method, about and

arguments 231
Synchronize method, about and

arguments 219

T
Trim method 194
troubleshooting PSP 99
TryMockMethod 292
Siebel Order Management Infrastructure Guide Siebel 2018324

Index ■ U
U
UMS business service

about Unified Messaging 121
methods 128

Unified Messaging
about 121
attaching business services to message

responses 135
components 123
configuring the display of messages 132
creating message types 129
custom messages 133
logging message responses 134
message responses, about 134
migrating message types 136
multilingual substituted text 133
performance tuning 137
suppressing duplicate messages 136
suppressing duplicate messages, about 135
UMS business service methods 128
using with the PSP engine 137

Update Multi Object List method, about and
arguments 220

Update Order Line Item Completed Flag,
about and arguments 221

user profiles, about Set Profile Attribute
method and arguments 219

V
ValidatePayment method, about and

arguments 232
ValidateQuote method, about and

arguments 233
variable maps

about 41
about using 49
and CP instance property sets 51
and ISS integration objects 44
components 43
creating 52
defining which one to use 54
methods 56
populating variables 49
querying 49
supported source types

variables
supported source types 45

variable maps, migrating 55
view, about GotoView method 229
ViewCart method, about and arguments 233
VORD Projected Asset Cache business

service
See Projected Asset Cache business service

W
waterfall output, about configuring 115
waterfalls

about 113
about configuring 115
adding new fields 116
creating new waterfall output 117
PSP Waterfall business service methods 119
Siebel Order Management Infrastructure Guide Siebel 2018 325

Index ■ W
Siebel Order Management Infrastructure Guide Siebel 2018326

	Contents
	1 What’s New in This Release
	What’s New in Siebel Order Management Infrastructure Guide, Siebel 2018
	What’s New in Siebel Order Management Infrastructure Guide, Siebel Innovation Pack 2017, Rev. A

	2 Service-Oriented Architecture
	About Business Services
	About Service-Oriented Architecture
	How Siebel C/OM Is Built on a Service- Oriented Architecture
	How Siebel C/OM Can Be Integrated with Other SOA Applications
	Outbound Integration of C/OM Services
	Calling an External Service from C/OM
	Web Service Performance

	How Siebel C/OM Can Be Used with SOA

	Web Services for Customer Order Management
	Web Services in Version 8.1
	New Web Services
	New Self Service Web Services
	New Communications, Media, and Utilities Web Services
	Modified Web Services
	Consolidated Web Services

	Workflows to Activate for Customer Order Management

	3 Signals
	About the Signals Mechanism
	Components of the Signals Mechanism
	Signals Administration
	Signal Dispatcher
	Signal Sources
	Signal Actions

	Creating Signal Actions
	Modifying Signal Properties for Signal Actions
	Example of Signal Properties Settings for a CanInvoke Check

	Invoking Signals from Controls and Custom Script
	Invoking Signals from a Button
	Invoking Signals from a Script

	Using Recursion with Signals
	Migrating Signals Between Environments

	4 Variable Maps
	About Variable Maps
	Concepts of Variable Maps
	Variable Map Types
	Working with Variable Maps

	Components of Variable Maps
	About Using ISS Integration Objects with the Variable Map Mechanism
	Configuring ISS Integration Objects

	Supported Source Types for Variables
	Business Object
	Business Service
	Instance
	Mapping Integration Objects

	About Using Variable Maps
	Querying with the Business Object Source Type
	Using the Business Service Source Type to Populate Variables
	Invoking a Business Service to Populate Variables
	Invoking a Business Service to Populate a Child Property Set
	Using a Single Invocation to Populate Multiple Variables or Child Variable Maps

	Using the Instance Source Type for the Customizable Product Instance Property Sets
	Creating Variable Maps
	Updating an Existing Variable Map
	Configuring a Custom Mode User Property for a Business Component
	Behavior of the On Null Property When Defining Variables in a Variable Map

	Defining the Variable Map Used by a PSP Procedure
	Example of Variable Map Methods in Use

	Migrating Variable Maps Between Environments

	Variable Map Methods of the Context Service Business Service

	5 PSP Engine
	About the Product Selection and Pricing Engine
	Advantages of PSP Usage
	PSP Concepts
	How PSP Procedures Are Built
	About Row Sets

	Components of the PSP Engine
	Controller Workflow
	Variable Maps
	PSP Procedures
	PSP, Siebel Workflow, and Siebel Tools
	Row Set Transformation Toolkit Business Service
	Custom Business Services

	PSP Driver Workflow
	Conditions and Actions for PSP Procedures
	PSP-Supported Action Expression Constructs
	PSP-Specific Functions Used in Action Expressions
	Using the Four-Parameter GetXA Signature
	LookUpMessage API

	Row Set Variables Used in Action Expressions
	Conditions and Action Variables Vary by Transform

	About Temporary Variables
	Row Set Transformation Toolkit Methods
	Aggregate Method
	Arguments
	Example

	Conditional Action Method
	Arguments
	Example

	Dynamic Look-Up Method
	Arguments
	Example

	Dynamic Subprocedure Method
	Arguments
	Example

	Hierarchical Look-Up Method
	Arguments
	Implementing Aggregate Functions
	Example

	Hierarchical Method
	Arguments
	Example

	Merge Method
	Arguments
	Example

	Query Method
	Arguments
	Example

	Row Set Look-Up Method
	Arguments
	Example

	Rule Set Look-Up Method
	Arguments
	Example

	Simple Look-Up Method
	Arguments
	Example

	Split Method
	Arguments
	Example

	Configuring PSP Procedures
	Creating PSP Procedures
	Best Practices for Configuring PSP Procedures
	Configuring Eligibility, Compatibility, and Pricing
	Eligibility, Compatibility, and Pricing Using the Configurator in an ABO Environment
	Enabling Asset Based Ordering for a Siebel Developer Web Client
	Enabling Asset Based Ordering for a Siebel Application Object Manager

	Eligibility, Compatibility, and Pricing Using the Configurator in a Non-ABO Environment
	Disabling Asset Based Ordering for a Siebel Developer Web Client
	Disabling Asset Based Ordering for a Siebel Application Object Manager

	Eligibility, Compatibility, and Pricing Using the Line Item UI
	Configuring an Additional Field For Use in Eligibility, Compatibility, and Pricing

	Creating a Custom PSP Application
	Creating a Custom Transform

	Calling a PSP Procedure from an External Application
	About Logging of PSP
	Troubleshooting PSP
	Tuning Performance of PSP

	About Troubleshooting of PSP
	PSP Cache Event
	PSP Data Event
	PSP Parser Event
	PSP Transform Event
	PSP Pricer Service Event

	About Tuning Performance of PSP
	Preconfigured PSP Procedures
	General Design Guidelines
	SQL Queries
	Logging of Performance
	Transforms Involving Database Queries
	Enabling PSP Cache
	Setting Cache Size
	Using the PSP Generic Cache
	Optimizing PSP Cache
	Defining a Cache Refresh Key
	Search Specification and Cache Refresh Key
	Row Set Transformation Toolkit Methods for PSP Cache Refresh

	Configuring a Clear Cache Button
	Clear Cache Button for BusComps without a Cache Refresh Key
	Clear Cache Button for BusComps with a Cache Refresh Key

	About Using the PSP Dynamic Look-Up Transform Cache
	About PSP Cache Performance Statistics

	6 PSP Waterfall
	About Waterfalls
	A PSP Procedure Generates Waterfall Output Each Time It Executes
	A Controller Workflow Invokes the PSP Waterfall Business Service
	Waterfalls and Performance
	Configuration of Waterfalls

	About Configuring Waterfall Output
	Adding New Fields to an Existing Waterfall
	Creating a New Waterfall
	Populating Child Waterfall Property Sets
	Exposing the Waterfall Output
	Saving Waterfall Data
	SyncToDB Input Arguments

	7 Unified Messaging
	About Unified Messaging
	Concepts of Unified Messaging
	Message Types Administration

	Components of Unified Messaging
	Registered Message Display Services
	Update Messages Method
	Process Response Method

	Custom Message Display Services
	Payload Variables
	Message Property Set
	Message List Property Set
	Message Responses
	Message Translations

	Unified Messaging Service Business Service Methods
	Creating Message Types
	Configuring the Display of Messages
	Adding a Message Applet to a View
	Adding a Message Icon to a View

	Implementing Multilingual Substituted Text
	Implementing a Custom Message- Generation Engine
	About Working with Message Responses
	Logging Message Responses
	Attaching a Business Service to a Message Response

	About Suppressing Duplicate Messages
	Suppress Repetition Flag
	Suppression Scope

	Suppressing Duplicate Messages
	Migrating Message Types Between Environments
	Tuning Performance of Unified Messaging
	Using Unified Messaging with the PSP Engine
	Example of a LookUpMessage Call

	8 Data Validation Manager
	About Data Validation Manager
	Roadmap for Implementing Data Validation Processing
	Process of Administering Data Validation Rules
	Defining Error Messages for Data Validation
	Defining a Data Validation Rule Set
	Defining a New Validation Rule Set
	Revising an Existing Validation Rule Set
	Exporting a Validation Rule Set
	Importing a Validation Rule Set

	Defining Rule Set Arguments
	Defining Validation Rules
	Defining Validation Rule Actions
	Activating a Data Validation Rule Set

	Process of Invoking the Data Validation Manager Business Service
	Invoking Data Validation Manager from a Runtime Event
	Invoking Data Validation Manager from a Workflow
	Viewing a Validation History

	9 Approvals Manager
	About Approval Processing
	Approval Item
	Approval Stage
	Approval Types

	ISS Approval Business Service Methods
	CreateNewApprovalTasks Method
	GetApprovalStatus Method
	SetApprovalDecision Method

	Defining Approval Items and Approval Stages
	About Invoking the Approvals Manager Business Service from a Workflow
	Configuring the Start Step for a Workflow That Invokes the Approvals Manager Business Service
	Configuring the Business Service Step for a Workflow That Invokes the Approvals Manager Business ...
	Approving or Declining Approval Stages (End User)

	10 Asset-Based Ordering Methods Reference
	Product Manipulation Toolkit Business Service Methods
	User Properties Used by PMT Methods
	Delta Method
	Arguments
	Returns
	Remarks
	User Properties
	Before Invocation
	Processing
	Increasing Quantities of an Asset Component
	Action Field in the Quote and Order Attribute Tables
	Action Codes Reset Upon Delta Line Item or Attribute Changes
	Alias Action Codes
	Old Value Support
	Service Item Unique Keys (Asset Integration Id)
	Action Types
	Examples
	Generating a Delta Quote to Update an Asset
	Generating a Delta Quote to Add a New Asset
	Generating a Delta Quote to Disconnect an Asset
	Generating a Delta Property Set to Add More Assets
	Identifying Changes in Product Structure
	Related Information

	Apply Method
	Arguments
	Returns
	Remarks
	Input Arguments
	Creating a hybrid asset order
	Service Item Unique Keys
	Exception Handling
	Examples
	Add, Update, Delete a Complex Order
	Process a new installation
	Ignores Instructions to Process Absent Items
	Ignores Instructions to Add an Already Existing Item
	Process Instructions to Update the Parent of a Component
	Related Information

	Trim Method
	Arguments
	Returns
	Remarks
	Examples
	Trimming Pending and Failed Items
	Trimming Orphaned Items
	Related Information

	Explode Method
	Arguments
	Returns
	Remarks
	Excluded Fields
	User Properties
	Copying Components Whose Quantity Exceeds 1
	Related Information

	Explode Siebel Object Method
	Arguments
	User Properties
	Related Information

	Find Orders Method
	Arguments
	Related Information

	Logical Delete Method
	Arguments
	Remarks
	Related Information

	Get Profile Attribute Method
	Arguments
	Returns
	Related Information

	Get Instance Method
	Arguments
	Returns
	Related Information

	Convert Product Instance Method
	Arguments
	Returns
	Remarks
	Related Information

	Assign New Service IDs Method
	Arguments
	Returns
	User Properties
	Related Information

	Is Fully Ex Method
	Arguments
	Returns
	Remarks
	Related Information

	Is Module Licensed Method
	Arguments
	Returns
	Related Information

	Merge Method
	Arguments
	Returns
	Remarks
	Related Information

	Quote To Revenue Method
	Arguments
	Returns
	Remarks
	User Properties
	Adding Revenue
	Determining Revenue Amount
	Determining Revenue Dates
	Determining Number of Revenue Items
	Determining Frequency of Revenue Line Items
	Determining Annually Recurring Charges
	Determining Quarterly Recurring Charges
	Determining Monthly Recurring Charges
	Determining Weekly Recurring Charges
	Determining Daily Recurring Charges

	Reconfigure Product Instance Method
	Arguments
	Returns
	User Properties
	Getting an Updated Asset
	Related Information

	Reset Method
	Arguments
	Returns
	Remarks
	Related Information

	Retrieve Next Object From List Method
	Arguments
	Remarks
	Related Information

	Set Action Method
	Arguments
	Returns
	Remarks
	Related Information

	Set Exception Error Message Method
	Arguments
	Dependencies
	Related Information

	Set Field Value Method
	Arguments
	Returns
	Remarks
	Related Information

	Set Multiple Field Values Method
	Arguments
	Returns
	Related Information

	Set Output Header Method
	Arguments
	Returns
	Related Information

	Set Product Instance Method
	Arguments
	Returns
	Related Information

	Set Profile Attribute Method
	Arguments
	Returns
	Related Information

	Synchronize Method
	Arguments
	Returns
	Remarks
	Related Information

	Update Multi Object List Method
	Arguments
	Returns
	Remarks
	Related Information

	Update Order Line Item Completed Flag Method
	Arguments
	Returns
	Related Information

	Get Cfg Button Click Information Method
	Arguments
	Related Information

	Refresh Business Component Method
	Arguments
	Related Information

	Invoke BC Method
	Arguments

	Iterate Process For Selected Rows Method
	Arguments
	Related Information

	Get Selected Row Count Method
	Arguments
	Related Information

	Get First Selected Row Values Method
	Arguments
	Related Information

	Ungroup Method
	Arguments
	Related Information

	Order Entry Toolkit Business Service Methods
	CreateAccount Method
	Arguments
	Returns
	User Properties
	Related Information

	CreateOrder Method
	Arguments
	Returns
	Dependencies

	GetBCCount Method
	Arguments
	Returns
	Related Information

	GotoView Method
	Arguments

	SelectPrimary Method
	Arguments
	Returns
	Related Information

	SetLIAccounts Method
	Arguments
	Returns
	Related Information

	SubmitOrder Method
	Arguments
	User Properties

	ValidatePayment Method
	Arguments
	Returns
	Related Information

	ValidateQuote Method
	Arguments
	Dependency

	ViewCart Method
	Arguments
	Remarks
	Related Information

	Account Administration Toolkit Business Service Methods
	PickAccount Method
	Arguments
	User Properties

	SetPrimary Method
	Arguments
	User Properties

	AssociateAccountToUser Method
	Arguments
	User Properties

	EstablishMtoM Method
	Arguments

	Invoke BC Method
	Arguments

	Complex Product AutoMatch Business Service Method
	Auto Match
	Arguments
	Examples
	Service Profile Upgraded from SCE 6.x
	Service Profile Imported from a Legacy System

	11 Projected Asset Cache
	About Projected Asset Cache
	Retrieve Data
	Build the Future Requested State

	Projected Asset Cache Business Service Methods
	Initialize Method
	Arguments
	Related Information

	Query Method
	Arguments
	Related Information

	Reset Method
	Argument
	Related Information

	Retrieve Method
	Arguments

	Using the VORD Projected Asset Cache Business Service

	12 Compound Product Validation
	About Compound Product Validation Engine Business Service
	Compound Product Validation Engine Business Service Methods
	FindFutureDate Method
	Arguments
	Related Information

	Format Violation Method
	Arguments
	Related Information

	Validate Method
	Arguments
	Related Information

	ValidateComplexProduct Method
	Arguments
	Related Information

	ValidateComplexProductAll Method
	Arguments
	Related Information

	ValidateComplexProductFromPropertySet Method
	Arguments
	Related Information

	13 Copy Service
	About Copy Service
	Configuring Copy Maps

	Copy Service Methods
	GetFieldValueFromInstance Method
	Arguments

	LoadInstanceFromBC Method
	Arguments

	SetFieldValueFromInstance Method
	Arguments

	PopAndReleaseInstance Method
	Arguments

	Copy Method
	Arguments

	RefreshBCFromInstance Method
	Arguments

	CleanupEAI Method
	Syntax
	Input Arguments
	Usage
	Invoked From

	CleanupInstance Method
	Syntax
	Input Arguments
	Usage
	Invoked From

	LoadEAI Method
	Syntax
	Input Arguments
	Output Arguments
	Usage
	Invoked From

	SetupLineNumbers Method
	Syntax
	Input Arguments
	Usage
	Invoked From

	SetupSyncUpsert Method
	Syntax
	Input Arguments
	Usage
	Invoked From

	StoreEAI Method
	Syntax
	Input Arguments
	Usage
	Invoked From

	CheckEligibilityHelper Method
	Syntax
	Input Arguments
	Output Arguments
	Usage
	Invoked From

	CalculatePriceHelper Method
	Syntax
	Input Arguments
	Output Arguments
	Usage
	Invoked From

	14 Data Transfer Utilities Business Service
	About Data Transfer Utilities
	Considerations for Data Transfer Utilities
	Use of Active Business Objects
	Invocation Context
	Well-Positioned Buscomps
	Example of Buscomp That is Not Well-Positioned

	Recursive Invocation

	Using Named Parameters in DTU
	Calculation Expressions in DTU
	Curly Bracket Pair {field}
	Named Parameter

	Using DTU with Order Management Signals
	About Working with Hierarchical Business Components
	ISS Copy Service and the Data Transfer Utility
	Configuring Event-Based Commands for DTU
	Dynamic Enabling of Commands for DTU
	Srf Mode
	Mock Event Sink

	Performance Tuning for DTU

	About Data Maps
	Data Map Objects
	Data Map Components
	Data Map Component Advanced Options
	Data Map Fields
	Data Map Field Advanced Options
	Migrating Data Map Objects Between Environments

	Example of Defining Data Maps to Use with the DTU
	Finding the Data Map Object
	Mapping Headers
	Mapping Line Items
	Mapping the Extended Attributes

	Examples of Invoking the DTU
	Example of Invoking the DTU from a Signal: Auto Sales Order
	Example of Invoking DTU from a Workflow: Auto Order Web Service
	Example of Using DTU Services

	Data Transfer Utilities Methods
	DataTransfer Method
	FAFireEventxxx Method
	GetActiveViewProp Method
	Arguments

	TryMockMethod Method
	Arguments

	QueueMethod Method
	Arguments

	15 Other Component Business Services for C/OM
	Context Service Business Service
	GetRowSetData Method
	SyncRowSetData Method

	ISS ATP Service
	CSSISSFulfillmentService::SetATPInputArgument Method
	Arguments
	Example Arguments

	CSSISSFulfillmentService::ATPRunCheck Method
	Arguments
	Example Arguments

	ISS Credit Card Transaction Service
	AuthCharge Method
	Authorization Method
	Charge Method
	Refund Method
	Reverse Method

	ISS Credit Check Service
	CreditCheckRunCheck Method
	Arguments

	SetCreditCheckResults Method
	Arguments

	ISS Disable Service
	DisableCopyXAService Method
	Arguments

	DisableCheckCanInsert Method
	Arguments

	RestoreServiceState Method
	Arguments

	ISS Package Product Service
	MergeIntoOnePackage Method
	RemoveFromPackage Method

	ISS Payment Profile Service
	SaveAsPaymentProfile Method
	UpdatePaymentProfile Method

	ISS Promotion Agreement Manager
	CalculateDates Method
	Arguments

	CheckCommitmentCompliance Method
	Arguments

	FilterCurrentDocument Method
	Arguments

	FilterPAC Method
	Arguments

	GetPromotionDetails Method
	Arguments

	InvokeCopyService Method
	Arguments

	SetProfileAttributes Method
	Arguments

	RemoveProfileAttributes Method
	SetOldAssetDetails Method
	Arguments

	ISS Promotion CP Admin Service
	ClearCache Method
	Arguments

	GetPromotionConstraints Method

	ISS Promotion Edit UI Service
	ApplyEditPromotion Method
	Arguments

	EditPromotion Method
	Arguments

	ISS Promotion Management Service
	ApplyPromotion Method
	Arguments

	ClearAssociation Method
	Arguments

	ClearMessages Method
	Argument

	CollectAssetList Method
	Arguments

	GetContext Method
	Arguments

	GetResponseType Method
	Argument

	InitializePAC Method
	Arguments

	IntegrityCheck Method
	Arguments

	LoadMessage Method
	Arguments

	LoadPromRelatedAssets Method
	Arguments

	MsgResponse Method
	RecommendPromotion Method
	Arguments

	ISS Revenue Synchronization Service
	Quote Method
	UpdateOppty Method

	ISS Sequence Service
	Sequence Method

	ISS Service Product Service
	Service Method

	ISS Shipping Calculation Service
	CalculateShippingCost Method

	ISS Shipping Cost Service
	CalculateShippingCost Method

	ISS Smart Part Number Generation Service
	GeneratePartNumber Method

	ISS Spread Discount Service
	SpreadDiscount Method

	ISS Tax Calculation Service
	TaxCalculation Method
	InternalTaxCalculation Method

	ISS Template Service
	SaveAsTemplate Method
	OrderTemplate Method
	OrderTemplateSelectItems Method

	Index

