
Oracle® Database
SQL Translation and Migration Guide

Release 18c
E83924-02
May 2018

Oracle Database SQL Translation and Migration Guide, Release 18c

E83924-02

Copyright © 2011, 2018, Oracle and/or its affiliates. All rights reserved.

Primary Author: Tanmay Choudhury

Contributors: Tulika Das, Peter Castro, Christopher Jones, Shoaib Lari, Tom Laszewski, Aman Manglik,
Robert Pang, Rajendra Pingte, Jeff D. Smith, Andrei Souleimanian

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xi

Related Documents xi

Documentation Accessibility xi

Conventions xi

1 Introduction to Tools and Products that Support Migration

Oracle Database Features for Migration Support 1-1

SQL Translation Framework 1-1

Support for MySQL Applications 1-1

Restrictions on SQL Statement Translation 1-2

Support for Identity Columns 1-2

Creating Identity Columns 1-3

Implicit Statement Results 1-3

JDBC Support for Implicit Results 1-3

OCI Support for Implicit Results 1-4

ODBC Support for Implicit Results 1-5

Enhanced SQL to PL/SQL Bind Handling 1-6

Invoking a Subprogram with a Nested Table Parameter 1-7

Native SQL Support for Query Row Limits and Row Offsets 1-7

Limiting Bulk Selection 1-7

JDBC Driver Support for Application Migration 1-8

ODBC Driver Support for Application Migration 1-8

Other Oracle Products that Enable Migration 1-9

OEM Tuning and Performance Packs 1-9

Oracle GoldenGate 1-9

Oracle Database Gateways 1-9

Oracle SQL Developer 1-9

Migration Support for Other Database Vendors 1-10

Application Support in Third-Party Databases 1-10

Third-Party Database Version Support 1-10

iii

2 SQL Translation Framework Overview

Architecture of SQL Translation Framework 2-2

How to Use SQL Translation Framework 2-2

When to Use SQL Translation Framework 2-3

3 SQL Translation Framework Configuration

Installing and Configuring SQL Translation Framework with Oracle SQL Developer 3-1

Overview of Oracle SQL Developer Migration Support 3-1

Setting Up Oracle SQL Developer 3.2 for Windows 3-2

Setting Up Oracle SQL Developer 3.2 Startup 3-2

Starting Oracle SQL Developer 3-2

Creating a Connection to Oracle Database 3-3

Testing SQL Translation 3-4

Creating a Translation Profile and Installing SQL Translator 3-5

Installing SQL Translator 3-5

Creating a Translation Profile 3-8

Using the SQL Translator Profile 3-8

Installing and Configuring SQL Translation Framework from Command Line 3-10

Installing Oracle Sybase Translator 3-10

Setting up a SQL Translation Profile 3-10

Setting Up a Database Service to Use the SQL Translation Profile 3-11

Setting Up a Database Service in Oracle Real Application Clusters 3-11

Testing Sybase SQL Translation Using the SQL Translation Profile 3-11

Granting Necessary Permissions for Installing the SQL Translator 3-12

4 SQL Translation of JDBC and ODBC Applications

SQL Translation of JDBC Applications 4-1

SQL Translation Profile 4-1

Error Message Translation 4-1

Converting JDBC Standard Parameter Markers 4-2

Executing the Translated Oracle Dialect Query 4-2

Error Translation 4-3

Using JDBC Driver for SQL Translation 4-3

SQL Translation of ODBC Applications 4-4

SQL Translation profile 4-4

Error Message Translation 4-5

Translating Error Messages 4-5

iv

5 Example: Application Migration Using SQL Translation Framework

Migrating a Sybase JDBC Application 5-1

Application Overview 5-1

Setting Up Migration 5-2

Capturing Migration 5-3

Setting Migration Preferences 5-6

Converting Migration 5-7

Generating a Migration 5-9

Creating a Target Oracle User 5-10

Moving the Data 5-10

Generating Migration Reports 5-11

6 MySQL Client Library Driver for Oracle

Introduction to MySQL Client Library Driver for Oracle 6-1

Connecting to MySQL 6-2

Installation and First Use of MySQL Client Library Driver for Oracle 6-2

Overview of Migration with MySQL Client Library Driver for Oracle 6-2

Using MySQL Client Library Driver for Oracle 6-3

Relinking the Application with the liboramysql Driver 6-3

Connecting to Oracle Database 6-5

Supported Platforms 6-5

Error Handling 6-5

Globalization 6-5

Expected Differences 6-5

7 API Reference for Oracle MySQL Client Library Driver

Mapping Data Types 7-1

Mapping Oracle Data Types to MySQL Data Types 7-1

Data Type Conversions for MySQL Program Variable Data Types 7-2

MYSQL_TYPE_BLOB 7-3

MYSQL_TYPE_DATE 7-3

MYSQL_TYPE_DATETIME 7-4

MYSQL_TYPE_DOUBLE 7-4

MYSQL_TYPE_FLOAT 7-4

MYSQL_TYPE_LONG 7-4

MYSQL_TYPE_LONG_BLOB 7-4

MYSQL_TYPE_LONGLONG 7-4

MYSQL_TYPE_MEDIUM_BLOB 7-5

MYSQL_TYPE_NEWDECIMAL 7-5

v

MYSQL_TYPE_SHORT 7-5

MYSQL_TYPE_STRING 7-5

MYSQL_TYPE_TIME 7-6

MYSQL_TYPE_TIMESTAMP 7-6

MYSQL_TYPE_TINY 7-6

MYSQL_TYPE_TINY_BLOB 7-6

MYSQL_TYPE_VAR_STRING 7-6

Data Type Conversions for MySQL External Data Types (LOB Data Type
Descriptors) 7-7

Data Type Conversions for Datetime and Interval Data Types 7-7

Error Handling 7-7

Available Oracle Support for MySQL APIs 7-8

my_init() 7-9

mysql_affected_rows() 7-10

mysql_autocommit() 7-10

mysql_change_user() 7-10

mysql_character_set_name() 7-10

mysql_close() 7-11

mysql_commit() 7-11

mysql_connect() 7-11

mysql_create_db() 7-11

mysql_data_seek() 7-11

mysql_debug() 7-11

mysql_debug_info() 7-12

mysql_drop_db() 7-12

mysql_dump_debug_info() 7-12

mysql_eof() 7-12

mysql_errno() 7-12

mysql_error() 7-12

mysql_escape_string() 7-13

mysql_fetch_field() 7-13

mysql_fetch_field_direct() 7-13

mysql_fetch_fields() 7-13

mysql_fetch_lengths() 7-14

mysql_fetch_row() 7-14

mysql_field_count() 7-14

mysql_field_seek() 7-14

mysql_field_tell() 7-14

mysql_free_result() 7-14

mysql_get_character_set_info() 7-15

mysql_get_client_info() 7-15

vi

mysql_get_client_version() 7-15

mysql_get_host_info() 7-15

mysql_get_proto_info() 7-15

mysql_get_server_info() 7-15

mysql_get_server_version() 7-16

mysql_get_ssl_cipher() 7-16

mysql_hex_string() 7-16

mysql_info() 7-16

mysql_init() 7-16

mysql_insert_id() 7-17

mysql_kill() 7-17

mysql_library_end() 7-17

mysql_library_init() 7-17

mysql_list_dbs() 7-17

mysql_list_fields() 7-18

mysql_list_processes() 7-18

mysql_list_tables() 7-18

mysql_more_results() 7-18

mysql_next_result() 7-19

mysql_num_fields() 7-19

mysql_num_rows() 7-19

mysql_options() 7-19

mysql_ping() 7-19

mysql_query() 7-19

mysql_read_query_result() 7-20

mysql_real_connect() 7-20

mysql_real_escape_string() 7-20

mysql_real_query() 7-20

mysql_refresh() 7-21

mysql_reload() 7-21

mysql_rollback() 7-21

mysql_row_seek() 7-21

mysql_row_tell() 7-21

mysql_select_db() 7-21

mysql_send_query() 7-22

mysql_server_end() 7-22

mysql_server_init() 7-22

mysql_set_character_set() 7-22

mysql_set_local_infile_default() 7-22

mysql_set_local_infile_handler() 7-22

mysql_set_server_option() 7-23

vii

mysql_shutdown() 7-23

mysql_sqlstate() 7-23

mysql_ssl_set() 7-23

mysql_stat() 7-23

mysql_stmt_affected_rows() 7-24

mysql_stmt_attr_get() 7-24

mysql_stmt_attr_set() 7-24

mysql_stmt_bind_param() 7-24

mysql_stmt_bind_result() 7-24

mysql_stmt_close() 7-24

mysql_stmt_data_seek() 7-25

mysql_stmt_errno() 7-25

mysql_stmt_error() 7-25

mysql_stmt_execute() 7-25

mysql_stmt_fetch() 7-25

mysql_stmt_fetch_column() 7-25

mysql_stmt_field_count() 7-26

mysql_stmt_free_result() 7-26

mysql_stmt_init() 7-26

mysql_stmt_insert_id() 7-26

mysql_stmt_next_result() 7-26

mysql_stmt_num_rows() 7-26

mysql_stmt_param_count() 7-27

mysql_stmt_param_metadata() 7-27

mysql_stmt_prepare() 7-27

mysql_stmt_reset() 7-27

mysql_stmt_result_metadata() 7-27

mysql_stmt_row_seek() 7-27

mysql_stmt_row_tell() 7-27

mysql_stmt_send_long_data() 7-28

mysql_stmt_sqlstate() 7-28

mysql_stmt_store_result() 7-28

mysql_store_result() 7-28

mysql_thread_end() 7-28

mysql_thread_id() 7-29

mysql_thread_init() 7-29

mysql_thread_safe() 7-29

mysql_use_result() 7-29

mysql_warning_count() 7-29

viii

8 API Reference for SQL Translation of JDBC Applications

Translation Properties 8-1

sqlTranslationProfile 8-1

sqlErrorTranslationFile 8-2

OracleTranslatingConnection Interface 8-2

SqlTranslationVersion 8-3

createStatement() 8-3

prepareCall() 8-6

prepareStatement() 8-9

getSQLTranslationVersions() 8-12

Error Translation Configuration File 8-13

Glossary

Index

ix

List of Tables

1-1 Supported Applications in Databases 1-10

1-2 Supported Database Versions for Migration Using Oracle SQL Developer 1-10

7-1 Mapping Oracle Data Types to MySQL Data Types 7-1

7-2 Converting MySQL Program Variable Data Types to Oracle Column Data Types 7-2

7-3 Data Type Conversions for LOB Data Type Descriptors 7-7

7-4 Data Conversions for Datetime and Internal Data Type 7-7

8-1 Translation Properties 8-1

8-2 OracleTranslatingConnection Enumeration 8-2

8-3 OracleTranslatingConnection Methods 8-3

x

Preface

This guide describes the installation, configuration, and administration tasks for all
activities related to migrating applications developed for non-Oracle databases, such
as DB2, MySQL, Sybase, and legacy applications, to Oracle Database. This guide
also provides migration scenarios that users may implement in sequence.

Audience
This guide is for database administrators and application developers who are
interested in migrating from databases other than Oracle to an Oracle Database.

Related Documents
For more information, see the following documents in the Oracle Database
documentation set:

• Oracle Database SQL Language Reference

• Oracle Database Administrator's Guide

• Oracle Database Development Guide

• Oracle Database Reference

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

xi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Convention Meaning

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

xii

1
Introduction to Tools and Products that
Support Migration

Before migrating your application to Oracle Database, you must be aware of several
key points that are described in Oracle Database Concepts.

When discussing the migration of a database-centered enterprise, it is useful to keep
in mind that the actual migration of database schema and data is only a part of the
process. The migration of a core business solution often involves several databases
and applications that work together to deliver the product and services that drive the
revenue of an organization. For more information about preparing a migration plan,
see Oracle SQL Developer User's Guide.

Oracle Database Features for Migration Support
Oracle Database 12c introduced a large set of features that collectively enhance the
migration process of non-Oracle database applications to Oracle Database.

SQL Translation Framework
A key part of migrating non-Oracle databases to Oracle Database involves the
conversion of non-Oracle SQL statements to SQL statements that are acceptable to
Oracle Database. The conversion of the non-Oracle SQL statements of the
applications is a manual and tedious process. To minimize the effort, or to eliminate
the necessity for converting these statements, Oracle Database 12c introduces a new
feature called SQL Translation Framework. SQL Translation Framework receives
these SQL statements from client applications, and then translates them at run-time.

The SQL Translation Profile registers the SQL Translater inside the database so it can
handle the SQL translation for non-Oracle client application. If an error occurs while a
SQL statement is executed, then the SQL Translator can translate the Oracle error
code and the ANSI SQLSTATE into the vendor-specific values expected by the
application. The translated statements are then saved in the SQL Translation Profile,
to be examined and edited at the user’s discretion.

The advantages of SQL Translation Framework follow:

• The translation of SQL statements, Oracle error codes, and ANSI SQLSTATE is
automatic.

• The translations are centralized and examinable.

• The user has the option to extract translations and insert them back into the
application.

Support for MySQL Applications
Oracle Database driver for MySQL eases migration of applications initially developed
to work with MySQL database. This feature has two key benefits:

1-1

• It enables the enterprise to reuse the same application to use data stored in both
MySQL Database and Oracle Database

• It reduces the cost and complexity of migrating MySQL applications to Oracle
Database

Oracle Database supports all MySQL functions in the client interface with the same
semantics.

Restrictions on SQL Statement Translation
SQL Translation has the following limitations when translating SQL statements:

• SQL Translation ignores the following SQL constructs:

– The ENGINE specification for a table is not used; there is only one storage
engine, namely Oracle.

– The ENUM and SET types are used as VARCHAR2. These values are not converted
to their index value if they are retrieved in a numeric context.

• SQL Translation generates an error when attempting to handle the following SQL
constructs; the application must be recoded.

– Oracle does not support spatial datatypes, such as GEOMETRY, POINT,
LINESTRING, POLYGON, GEOMETRYCOLLECTION, MULTILINESTRING, MULTIPOINT, and
MULTIPOLYGON.

Oracle does not support MySQL-specific NLS commands.

• The following SQL commands give Oracle-specific output or have Oracle-specific
effect:

– SHOW DATABASES shows only one database, namely oracle.

– SHOW ENGINES shows the Oracle engine only.

– CREATE PROCEDURE must follow Oracle PL/SQL specification in Oracle Database
12c.

• The following data types have different behavior In Oracle Database than what is
expected in the native database:

– Columns of ENUM data types are created as VARCHAR2(4000). No validation is
performed for insertion.

– Columns of SET data types are created as VARCHAR2(64). No validation is
performed for insertion.

For further details, see MySQL Client Library Driver for Oracle and API Reference for
Oracle MySQL Client Library Driver .

Support for Identity Columns
Oracle Database 12c implements ANSI-compliant IDENTITY columns. Migration from
database systems that use identity columns is simplified and can take advantage of
this new functionality.

This feature implements auto increment by enhancing DEFAULT or DEFAULT ON NULL
semantics for use by SEQUENCE.NEXTVAL and SYS_GUID, supports built-in functions and
implicit return of default values.

Chapter 1
Oracle Database Features for Migration Support

1-2

Creating Identity Columns
Example 1-1 creates a table with an identity column, which is generated by default.
When explicit nulls are inserted into the identity column, the sequence generator
creates values by default. For further details, see Oracle Database SQL Language
Reference.

Example 1-1 How to create an identity column

CREATE TABLE t1 (c1 NUMBER GENERATED BY DEFAULT ON NULL AS IDENTITY,
 c2 VARCHAR2(10));
INSERT INTO t1(c2) VALUES (‘abc');
INSERT INTO t1 (c1, c2) VALUES (null, ‘xyz');
SELECT c1, c2 FROM t1;

Implicit Statement Results
Starting with Oracle Database 12c Release 2 (12.2), Oracle implicitly returns to the
client application the results of SQL statements executed within a stored procedure,
bypassing the explicit use REF CURSORs. This feature eliminates the overhead of re-
writing the client-side code.

Implicit statement results enable the user to write a stored procedure, where each
intended query (the statement after the FOR keyword) is part of the OPEN cursor variable.
When code is migrated to Oracle Database from other vendors environments, the
PL/SQL layer adds the equivalent capability and enables SELECT statements to pass
the results to the client. The stored procedures can then return the results directly to
the client with the DBMS_SQL.RETURN_RESULT procedure. The SQL*Plus FORMAT command
and its variations may be invoked to customize the output.

For information about the DBMS_SQL package, see Oracle Database PL/SQL Packages
and Types Reference. For information about how to use format output, SQL*Plus
User's Guide and Reference.

JDBC Support for Implicit Results
Starting with Oracle Database 12c Release 2 (12.2), JDBC applications provide
support for implicit results through the following new functions:

• getMoreResults

• getMoreResults(int)

• getResultSet

You can use these methods to retrieve and process the implicit results returned by
PL/SQL procedures or blocks, as demonstrated in Example 1-2.

For more information, see Oracle Database JDBC Developer's Guide

Processing Implicit Results in JDBC
Example 1-2 Retrieving and Processing Implicit Results from PL/SQL Blocks

Suppose you have a procedure called foo:

 create procedure foo as
 c1 sys_refcursor;

Chapter 1
Oracle Database Features for Migration Support

1-3

 c2 sys_refcursor;
begin
 open c1 for select * from hr.employees;
 dbms_sql.return_result(c1); --return to client
 -- open 1 more cursor
 open c2 for select * from hr.departments;
 dbms_sql.return_result (c2); --return to client
end;

The following code demonstrates how to retrieve the implicit results returned by
PL/SQL procedures using the JDBC getMoreResults methods:

String sql = "begin foo; end;";
...
Connection conn = DriverManager.getConnection(jdbcURL, user, password);
 try {
 Statement stmt = conn.createStatement ();
 stmt.executeQuery (sql);

 while (stmt.getMoreResults())
 {
 ResultSet rs = stmt.getResultSet();
 System.out.println("ResultSet");
 while (rs.next())
 {
 /* get results */
 }
 }
 }

OCI Support for Implicit Results
Starting with Oracle Database 12c Release 2 (12.2), Oracle Call Interface (OCI)
provides support for implicit results through a new function, OCIStmtGetNextResult(). It
is called iteratively by C applications to retrieve each implicit result from stored
procedures and anonymous blocks. Implicit results consume rows directly from a
stored procedure without going through a RefCursor.

See Also:

Oracle Call Interface Programmer's Guide

Processing Implicit Results in OCI
Example 1-3 shows how to use the OCIStmtGetNextResult() function to retrieve and
process the implicit results returned by either a PL/SQL stored procedure or an
anonymous block:

Example 1-3 Using OCIStmtGetNextResult() to Process Implicit Results

OCIStmt *stmthp;
 ub4 rsetcnt;
 void *result;
 ub4 rtype;
 char *sql = "begin foo; end;";

Chapter 1
Oracle Database Features for Migration Support

1-4

 OCIHandleAlloc((void *)envhp, (void **)&stmthp,
 OCI_HTYPE_STMT, 0, (void **)0);

 /* Prepare and execute the PL/SQL procedure. */
 OCIStmtPrepare(stmthp, errhp, (oratext *)sql, strlen(sql),
 OCI_NTV_SYNTAX, OCI_DEFAULT);
 OCIStmtExecute(svchp, stmthp, errhp, 1, 0,
 (const OCISnapshot *)0,
 (OCISnapshot *)0, OCI_DEFAULT);

 /* Now check if any implicit results are available. */
 OCIAttrGet((void *)stmthp, OCI_HTYPE_STMT, &rsetcnt, 0,
 OCI_ATTR_IMPLICIT_RESULT_COUNT, errhp);

 /* Loop and retrieve the implicit result-sets.
 * ResultSets are returned in the same order as in the PL/SQL
 * procedure/block.
 */
 while (OCIStmtGetNextResult(stmthp, errhp, &result, &rtype,
 OCI_DEFAULT) == OCI_SUCCESS)
{ /* Check the type of implicit ResultSet, currently
 * only supported type is OCI_RESULT_TYPE_SELECT
*/ if (rtype == OCI_RESULT_TYPE_SELECT)
{ OCIStmt *rsethp = (OCIStmt *)result;
 /* Perform normal OCI actions to define and fetch rows. */
 } else
 printf("unknown result type %d\n", rtype);
 /* The result set handle should not be freed by the user. */
 } OCIHandleFree(stmthp, OCI_HTYPE_STMT); /* All implicit result-sets are also
freed. */

ODBC Support for Implicit Results
Starting with Oracle Database 12c, ODBC applications provide support for implicit
results through a new function, SQLMoreResults(). ODBC driver is enhanced to make
use of the following new OCI APIs that enhance the migration process:

• OCIStmtGetNextResult() function

• OCI_ATTR_IMPLICIT_RESULT_COUNT attribute

• OCI_RESULT_TYPE_SELECT attribute

ODBC support for implicit results enables the migration of Sybase and SQL Server
applications that use multiple result sets bundled in the stored procedures. Oracle
achieves this by sending the statements or procedures to the server, where the non-
Oracle SQL is translated to Oracle syntax.

Processing Implicit Results in ODBC
Example 1-4 and Example 1-5 demonstrate how to retrieve implicit results in ODBC.

Example 1-4 Using ODBC to return implicit results with
DBMS_SQL.RETURN_RESULT

create or replace procedure foo
is
c1 sys_refcursor;
c2 sys_refcursor;
begin

Chapter 1
Oracle Database Features for Migration Support

1-5

 open c1 for select employee_id, first_name from employees where employee_id=7369;
 dbms_sql.return_result(c1);
 open c2 for select department_id, department_name from departments where rownum
<=2;
 dbms_sql.return_result(c2);
end;
/

Example 1-5 Using ODBC to return implicit results with SQLMoreResults

SQLLEN enind,jind;
SQLUINTEGER eno = 0;
SQLCHAR empname[STR_LEN] = "";
//Allocate HENV, HDBC, HSTMT handles
rc = SQLPrepare(hstmt, "begin foo(); end;", SQL_NTS);
rc = SQLExecute(hstmt);
//Bind columns for the first SELECT query in the procedure foo()
rc = SQLBindCol (hstmt, 1, SQL_C_ULONG, &eno, 0, &jind);
rc = SQLBindCol (hstmt, 2, SQL_C_CHAR, empname, sizeof (empname),
&enind);
…
//so on for all the columns that needs to be fetched as per the SELECT
//query in the procedure.
//Fetch all results for first SELECT query
while ((rc = SQLFetch (hstmt)) != SQL_NO_DATA)
{
//do something
}
//Again check if there are any results available by calling
//SQLMoreResults. SQLMoreResults will return SQL_SUCCESS if any
//results are available else returns errors appropriately as explained
//in MSDN ODBC spec.
rc = SQLMoreResults (hstmt);
if(rc == SQL_SUCCESS)
{
//If the columns for the second SELECT query are different the rebind
//the columns for the second SELECT SQL statement.
rc = SQLBindCol (hstmt, 1,…);
rc = SQLBindCol (hstmt, 2,…);
…
//Fetch the second result set
while ((rc = SQLFetch (hstmt)) != SQL_NO_DATA)
//do something
}
SQLFreeStmt(hstmt,SQL_DROP);
SQLDisconnect (hdbc);

SQLFreeConnect (hdbc);
SQLFreeEnv (henv);

Enhanced SQL to PL/SQL Bind Handling
In earlier releases of Oracle Database, a SQL expression could not invoke a PL/SQL
function that had a formal parameter or return type that was not a SQL data type.

Starting with Oracle Database 12c, a PL/SQL anonymous block, a SQL CALL
statement, or a SQL query can invoke a PL/SQL function that has parameters of the
following types:

• Boolean

Chapter 1
Oracle Database Features for Migration Support

1-6

• Record declared in a package specification

• Collection declared in a package specification

The SQL TABLE operator is also enhanced, so that you can query on PL/SQL
collections of locally scoped types as an argument to TABLE operator. Here, the
collections can be of nested table types, VARRAY, or PL/SQL index table that are
indexed by PLS_INTEGER.

This feature extends the flexibility of the TABLE operator, and enables easy migration of
non-Oracle stored procedure code to PL/SQL.

Invoking a Subprogram with a Nested Table Parameter
Example 1-6 shows how to dynamically call a subprogram with a nested table formal
parameter. See Oracle Database PL/SQL Language Reference for more information
on this topic.

Example 1-6 Invoking a subprogram with a nested table formal parameter

CREATE OR REPLACE PACKAGE pkg AUTHID CURRENT_USER AS

 TYPE names IS TABLE OF VARCHAR2(10);

 PROCEDURE print_names (x names);
END pkg;
/
CREATE OR REPLACE PACKAGE BODY pkg AS
 PROCEDURE print_names (x names) IS
 BEGIN
 FOR i IN x.FIRST .. x.LAST LOOP
 DBMS_OUTPUT.PUT_LINE(x(i));
 END LOOP;
 END;
END pkg;
/
DECLARE
 fruits pkg.names;
 dyn_stmt VARCHAR2(3000);
BEGIN
 fruits := pkg.names('apple', 'banana', 'cherry');

 dyn_stmt := 'BEGIN print_names(:x); END;';
 EXECUTE IMMEDIATE dyn_stmt USING fruits;
END;

Native SQL Support for Query Row Limits and Row Offsets
Starting with Oracle Database 12c, Oracle provides a row limiting clause that enables
native SQL support for query row limits and row offsets. If your application has queries
that limit the number of rows returned or offset the starting row of the results, this
feature significantly reduces SQL complexity for such queries.

Limiting Bulk Selection
Example 1-7 shows how to limit bulk selection with the FETCH FIRST clause. See Oracle
Database SQL Language Reference for more information on this topic.

Chapter 1
Oracle Database Features for Migration Support

1-7

Example 1-7 How to limit bulk selection

DECLARE
 TYPE SalList IS TABLE OF employees.salary%TYPE;
 sals SalList;
BEGIN
 SELECT salary BULK COLLECT INTO sals FROM employees
 WHERE ROWNUM <= 50;

 SELECT salary BULK COLLECT INTO sals FROM employees
 SAMPLE (10);

 SELECT salary BULK COLLECT INTO sals FROM employees
 FETCH FIRST 50 ROWS ONLY;
END;
/

JDBC Driver Support for Application Migration
Many applications that you want to migrate to Oracle Database from other databases
have Java applications that use JDBC to connect to the database. To facilitate SQL
translation, Oracle Database 12c introduces a new set of JDBC APIs that are specific
to SQL translation.

See Also:

• "SQL Translation of JDBC Applications"

• API Reference for SQL Translation of JDBC Applications

• Complete documentation of the oracle.jdbc package in Oracle Database
JDBC Java API Reference

• http://www.oracle.com/technetwork/database/enterprise-edition/

jdbc-112010-090769.html for an updated list of JDBC drivers

ODBC Driver Support for Application Migration
ODBC driver supports the migration of third-party applications to Oracle Databases by
using the SQL Translation Framework. This enables non-Oracle database SQL
statements to run against Oracle Database. See "How to Use SQL Translation
Framework" before beginning to migrate third-party ODBC application to Oracle
Database.

To use this feature with an ODBC application, you must specify the service name,
which was created as part of SQL Translation Framework setup, as the ServerName=
entry in the .odbc.ini file.

If you require support for translation of Oracle errors (ORA errors) to your the native
database, once your application starts running against Oracle Database, then you
must enable the SQLTranslateErrors=T entry in the .odbc.ini file. See "SQL Translation
of ODBC Applications" for more information on this topic.

Chapter 1
Oracle Database Features for Migration Support

1-8

http://www.oracle.com/technetwork/database/enterprise-edition/jdbc-112010-090769.html
http://www.oracle.com/technetwork/database/enterprise-edition/jdbc-112010-090769.html

Other Oracle Products that Enable Migration
Oracle recommends the use of several Oracle products as part of an overall migration
strategy.

OEM Tuning and Performance Packs
For every type of migration, a few of the SQL statements used in the application must
change, and some indexes must be re-built. Oracle SQL Tuning and Performance
Packs provide guidance for the optimization step of the application migration.

Oracle GoldenGate
Oracle GoldenGate is a comprehensive software package for enabling the replication
of data in heterogeneous data environments. The product set enables high availability
solutions, real-time data integration, transactional change data capture, data
replication, transformations, and verification between operational and analytical
enterprise systems.

Oracle GoldenGate enables the exchange and manipulation of data at the transaction
level among multiple, heterogeneous platforms across the enterprise. Its modular
architecture provides the flexibility to extract and replicate selected data records,
transactional changes, and changes to DDL (data definition language) across a variety
of topologies.

When you migrate very large databases, the actual process of copying data from one
database to another is time-consuming. During this time, the enterprise must continue
delivering services using the old solution, which changes some of the data. These run-
time changes must be captured and propagated to Oracle Database. Oracle
GoldenGate captures these changes and enables side-by-side testing to ensure that
the new solution performs as planned.

Oracle Database Gateways
Oracle Database Gateways address the needs of disparate data access. In a
heterogeneously distributed environment, Gateways make it possible to integrate with
any number of non-Oracle systems from an Oracle application. They enable
integration with data stores such as IBM DB2, Microsoft SQL Server and Excel,
transaction managers like IBM CICS and message queuing systems like IBM
WebSphere MQ.

For more information about Oracle Database Gateways, see http://www.oracle.com/
technetwork/database/gateways/index.html

Oracle SQL Developer
Oracle SQL Developer, as described in Oracle SQL Developer User's Guide, has a
large suite of features that enable migration, including the following features:

• Support for database migration, such as schema, data, and server-side objects,
from non-Oracle databases to Oracle Database (Migration Wizard)

Chapter 1
Other Oracle Products that Enable Migration

1-9

http://www.oracle.com/technetwork/database/gateways/index.html
http://www.oracle.com/technetwork/database/gateways/index.html

• Support for application migration, including SQL statement pre-processing and
data type translation support (Application Migration Assistant)

Migration Support for Other Database Vendors
Oracle provides migration support for applications running on various databases.

Application Support in Third-Party Databases
Table 1-1 provides information about the applications supported in several third-party
databases. Note that while translation framework is available for DB2 LUW, a
translator for DB2 is not available.

Table 1-1 Supported Applications in Databases

Application SQL
Server

DB2 LUW DB2
AS400

Sybase
ASE

Teradata Informix

Oracle SQL Developer Yes Yes No Yes Yes No

Oracle Migration Workbench No No Yes No No Yes

SQL Translation Framework
(SQL Translation Profile)

Yes Yes Yes Yes Yes Yes

SQL Translation Framework
(SQL Translator)

yes Partial No Yes No No

Third-Party Database Version Support
Table 1-2 lists the supported database versions for migration using Oracle SQL
Developer; this is not a comprehensive list. SQL translation may not work properly for
every database.

Table 1-2 Supported Database Versions for Migration Using Oracle SQL
Developer

RDBMS Supported Versions

SQL Server 7.0, 2000, 2005,2008

Sybase Adaptive Server
(ASE)

12, 15

Access 97, 2000, 2002 and 2003

MySQL 3,4,5

DB2 AS400 V4R3, V4R5

DB2 LUW 8, 9

Teradata 12

Informix 7.3, 9.1, 9.2, 9.3, 9.4

Chapter 1
Migration Support for Other Database Vendors

1-10

2
SQL Translation Framework Overview

Various client-side applications, designed to work with non-Oracle Databases, cannot
be used with Oracle Database without significant alterations. This is because SQL
dialect varies among vendors of database technologies and different vendors use
different syntaxes to express SQL queries and statements.

Starting with Oracle Database 12c, there is a new mechanism called SQL Translation
Framework. It translates the SQL statements of a client program from a foreign (non-
Oracle) SQL dialect into the SQL dialect used by the Oracle Database SQL compiler.

In addition to translating non-Oracle SQL statements, the SQL Translation Framework
may be used to substitute an Oracle SQL statement with another Oracle statement to
address a semantic or performance issue. In this way, you can address an application
issue without patching the client application.

The SQL translation framework consists of two basic components: SQL Translator,
and SQL Translation Profile.

The SQL Translator

The SQL Translator is a software component, provided by Oracle or third-party
vendors, which can be installed in Oracle Database. It translates the SQL statements
of a client program before they are processed by the Oracle Database SQL compiler.
If an error results from translated SQL statement execution, then Oracle Database
SQL compiler generates an Oracle error message.

The SQL Translator automatically translates non-Oracle SQL to Oracle SQL, thereby
enabling the existing client-side application code to run largely unchanged against an
Oracle Database. This reduces the cost of migration to Oracle Database storage
significantly. As a corollary, the translation feature may be used in other scenarios,
where it may be expedient to intervene between the original SQL statement submitted
by the client and its actual execution.

The SQL Translation Profile

The SQL Translation Profile is a database object that contains the set of captured non-
Oracle SQL statements, and their translations or translation errors. The SQL
Translation Profile is used to review, approve, and modify translations. A profile is
associated to a single translator. However, a translator can be used in one or more
SQL Translation Profiles. Typically, there is one SQL Translation Profile per
application, otherwise applications can share translated queries. You can export
profiles among various databases.

The following figure illustrates the run-time overview the SQL Translation Framework.

2-1

Figure 2-1 SQL Translation Framework at Runtime

SQL Translation

Framework

Non-Oracle SQL

Results
Application

Oracle Database

SQL Translator

SQL

Translation

Profile

Architecture of SQL Translation Framework
The key component of SQL Translation Framework is the SQL Translation Profile. The
profile is a collection of non-Oracle statements that are processed through the
translator. The application determines which profile to use when connecting to the
Oracle Database. The translator handles the actual translation work.

In most cases, the non-Oracle SQL statements and errors are translated by a SQL
Translator registered in the profile. The translator may be supplied by Oracle or by a
third-party vendor. If the translator does not have a translation for a particular SQL
statement or error, then you may register your own custom translation. You may also
wish to register your own custom translation to override the default translator and to
customize your translation results.

How to Use SQL Translation Framework
Perform the following steps to use SQL Translation Framework:

1. Install a SQL Translator, either from Oracle or a third-party vendor, in Oracle
Database.

2. Create a SQL Translation Profile and register the SQL Translator with the profile.

3. Create a Database service and specify the SQL Translation Profile as a service
attribute to which the application can connect.

Note that setting the SQL Translation Profile at the service level ensures that
everything running through that listener service is translated automatically.

The translator can also be activated at connection level by using the ALTER SESSION
statement or the LOGON triggers.

4. Link the application with an Oracle driver to connect the application to Oracle
Database. You must also change the connection settings to connect to the
Database service with the SQL Translation Profile.

Chapter 2
Architecture of SQL Translation Framework

2-2

5. Test all functionality of the application against Oracle Database. As the application
runs, the SQL Translation Profile translates SQL statements of the application
from the third-party SQL dialect to semantically-equivalent Oracle syntax and
register them in the profile.

If the translator does not have a translation for a particular SQL statement or error,
then you may register your own translation to fill its place.

6. Verify the custom translations and edit them, if required. Alternatively, register new
ones to ensure that the application performs as intended, until testing is complete.

Oracle recommends establishing a test environment and rigorously testing the
application, ideally through a regression test suite.

7. Set up the server-side application objects and data in the production Oracle
Database for deployment to a production environment.

8. Create a database service with the profile set as a service attribute and change
the connection settings of the application, so that it connects to the database
service in the production database. The application is expected to run as tested.

Oracle recommends that the application be monitored to guard against the possibility
of errors due to unavailability of translation of any SQL statement. You must first
disable the automatic translation of new and unseen SQL statements in the profile;
when any such statement is encountered, it raises an error that is logged. In cases of
alerts for mis-translation, you must make adjustments to the profile.

See Also:

• The new DBMS_SQL_TRANSLATOR PL/SQL package and updated DBMS_SQL
and DBMS_SERVICE PL/SQL packages in the Oracle Database PL/SQL
Packages and Types Reference.

• Updated GRANT and REVOKE statements and new system privileges in the
Oracle Database SQL Language Reference.

• Oracle Database PL/SQL Packages and Types Reference

• Oracle Database Administrator's Guide

When to Use SQL Translation Framework
Use SQL Translation to migrate a client application that uses SQL statements with
vendor-proprietary SQL syntax.

Currently, SQL Translators are available only for Sybase and SQL Server, and there is
limited support for DB2.

SQL Translation Framework is designed for use with open API applications, such as
ODBC or JDBC, and applications that use SQL statements that may be translated into
semantically-equivalent Oracle syntax. These applications must relink to the Oracle
ODBC or JDBC driver and then execute through the translation service.

Following are the possible scenarios for the connection mechanism:

Chapter 2
When to Use SQL Translation Framework

2-3

• If the application uses ODBC, JDBC, OLE DB or .NET driver, or data provider to
connect to the database, then the driver or data provider for Oracle must be
replaced.

• If the application uses MySQL client library to connect to MySQL, then the library
with Mysql Client Library Driver for Oracle must be replaced.

• No direct translator is available for DB2. For more information, refer to "Migration
Support for Other Database Vendors".

If the application uses IBM DRDA network protocol to connect to DB2, then the
database connection settings must be changed to connect to Oracle through
DRDA Application Server for Oracle.

• If the application uses a vendor-proprietary C client API (the case of Sybase), then
the API calls must be replaced with appropriate Oracle OCI APIs.

Chapter 2
When to Use SQL Translation Framework

2-4

3
SQL Translation Framework Configuration

The SQL Translation Framework may be installed and configured using Oracle SQL
Developer, or from the command line interface. In either case, the user must have the
necessary permissions to install SQL Translator.

Installing and Configuring SQL Translation Framework with
Oracle SQL Developer

You can use the DBA Navigator in Oracle SQL Developer 3.2 to install and manage
the translator and translation profile.

Overview of Oracle SQL Developer Migration Support
The SQL Translation framework is installed as part of Oracle Database installation.
However, it must be configured to recognize the non-Oracle SQL dialect of the
application and you must install at least one translator to fully utilize the framework.

Before using the SQL Translation feature, you must migrate your data, schema, stored
procedures, triggers, and views. Oracle implements database schema migration and
data migration through Oracle SQL Developer functionality. Oracle SQL Developer
simplifies the process of migrating a non-Oracle database to an Oracle Database
through the use of Migration Wizard. The Migration wizard provides convenient and
comprehensive guidance through the phases involved in migrating a database.

Oracle SQL Developer captures information from the source non-Oracle database and
displays it in a captured model, which is a representation of the structure of the source
database. This representation is stored in a migration repository, which is a collection
of schema objects that Oracle SQL Developer uses to store migration information.

The information in the repository is used to generate the converted model, which is a
representation of the structure of the destination database as it will be implemented in
the Oracle database. You can then use the information in the captured model and the
converted model to compare database objects, identify conflicts with Oracle reserved
words, and manage the migration progress. When you are ready to migrate, generate
the Oracle schema objects, and then migrate the data.

This section describes how to perform the subsequent tasks that enable automatic
run-time migration. These examples use SQL Translator with a JDBC application that
runs against a Sybase database; they can be easily adapted for other client/database
configurations. Note that Oracle SQL Developer is shipped with an installed Sybase
translator.

See Oracle SQL Developer User's Guide for more information.

3-1

Setting Up Oracle SQL Developer 3.2 for Windows
Oracle SQL Developer 3.2 is shipped with Oracle Database 11g JDBC drivers and
there is no client for Windows in this release. If you are using a Windows system, then
you must enable Oracle SQL Developer 3.2 to use Oracle Database 12c JDBC driver,
so that all the features of the current release are enabled. Perform the following steps
to achieve this:

• Rename the sqldeveloper\jdbc\lib folder to sqldeveloper\jdbc\lib_11g.

• Create a new empty folder as sqldeveloper\jdbc\lib.

• Unzip Oracle Database 12c JDBC JAR files into the new sqldeveloper\jdbc\lib
folder.

See Oracle Database JDBC Developer's Guide for more information about Oracle
Database 12c JDBC files.

Setting Up Oracle SQL Developer 3.2 Startup
Oracle SQL Developer automatically uses JDBC drivers found in any ORACLE_HOME
\client directory. To override this behavior and make Oracle SQL Developer use
JDBC drivers in the sqldeveloper\jdbc\lib directory, create a new sqldeveloper.bat file
in the sqldeveloper directory:

set ORACLE_HOME=%CD%
start sqldeveloper.exe

Starting Oracle SQL Developer
Run the sqldeveloper.bat file to run Oracle SQL Developer.

To check the JDBC driver configuration:

1. Select About from Help menu.

2. Select Properties. It must display the configuration as shown in Figure 3-1:

Chapter 3
Installing and Configuring SQL Translation Framework with Oracle SQL Developer

3-2

Figure 3-1 Checking JDBC Configuration for Oracle SQL Developer

Creating a Connection to Oracle Database
Create a connection to the Database with the credentials as shown in Figure 3-2:

Figure 3-2 Creating an Oracle Database Connection

You can use the following command to check the database you are connected to and
the JDBC driver being used:

show jdbc

Setting Up Migration Preferences

You must set up the migration preferences in the following way:

Chapter 3
Installing and Configuring SQL Translation Framework with Oracle SQL Developer

3-3

1. Select Preferences from the Tools menu.

2. Select Generation Options from Migration option on the left panel, as shown in
Figure 3-3.

Figure 3-3 Setting Up Migration Preferences in Oracle SQL Developer

Testing SQL Translation
Perform the following steps to determine whether Sybase SQL Translator is properly
installed or not:

1. Open Oracle SQL Developer.

2. From the Tools menu, select Migration, and then select Translation Scratch
Editor.

3. In the Scratch Editor toolbar, select Sybase T_SQL To PL/SQL option, which is
the Sybase translator.

Chapter 3
Installing and Configuring SQL Translation Framework with Oracle SQL Developer

3-4

4. In the left panel of the Scratch Editor, enter the following query in Sybase SQL
dialect:

select top 10 * from dual

5. Click the Translate icon.

The translated query text is displayed in the right panel of the editor.

Creating a Translation Profile and Installing SQL Translator
Oracle SQL Developer is installed with Oracle Database 12c. It loads Java classes of
the Sybase Translator, approximately 15 MB, into Oracle Database. Due to the size
and the number of Java classes loaded, Oracle recommends you to install the
translator locally, and not over a WAN.

If the translator is installed under a user profile that has a pre-existing migration
repository, the translator picks up the context of the database, such as name changes.
Therefore, you must create a new user with the following specifications:

• CONNECT, RESOURCE, and CREATE VIEW privileges

• Access to storage in the SYSTEM and/or USER tablespace

Installing SQL Translator
To install SQL Translator:

1. Log into the database using ADMIN privileges.

2. At the command line, enter the following commands.

GRANT CONNECT, RESOURCE, CREATE VIEW TO TranslUser identified by TranslUser;
ALTER USER TranslUser QUOTA UNLIMITED ON SYSTEM;

3. From the View menu, select DBA.

Chapter 3
Installing and Configuring SQL Translation Framework with Oracle SQL Developer

3-5

4. In the DBA Navigator, right-click Connections and select Add Connection.

5. In the Select Connection box, select the connection if you want to use an existing
connection. If you want to create a new connection, then add the information for
transluser discussed in step 2.

Chapter 3
Installing and Configuring SQL Translation Framework with Oracle SQL Developer

3-6

6. Click Connect.

7. In the DBA navigator, right-click the connection created in the preceding steps,
and select Install SQL Translator.

The Install SQL Translator dialog box opens.

You must have special permissions to install the SQL Translator and create a SQL
Translation Profile. You will be prompted to provide the SYS password, so that
these privileges can be granted. Refer to "Granting Necessary Permissions for
Installing the SQL Translator" for more information about these privileges.

8. Create a SQL Translation Profile, following steps described in "Creating a
Translation Profile ".

9. Verify that the user has sufficient privileges to run the translation profile.

You may have to login as SYS user to grant additional privileges.

10. Install SQL Translator.

Chapter 3
Installing and Configuring SQL Translation Framework with Oracle SQL Developer

3-7

11. To ensure that both the Profile and Translator are properly installed, verify whether
the appropriate package and Java class files are present or not in the Connections
pane.

Creating a Translation Profile
To create a translation profile:

1. From the SQL Translator drop-down box, select Sybase or SQL Translator.

2. Check Create New Profile.

3. Enter SYBASE_PROFILE in Profile Name field.

4. In Profile Schema, select the name of the user created in section "Creating a
Translation Profile and Installing SQL Translator".

5. Click Apply.

Using the SQL Translator Profile
To test the SQL Translation Profile, use SQL Worksheet:

1. Right-click the SYBASE_PROFILE node.

2. Select Open SQL Worksheet with Profile.

3. Enter a T-SQL statement that you want to translate.

Chapter 3
Installing and Configuring SQL Translation Framework with Oracle SQL Developer

3-8

4. Click SYBASE_PROFILE and select the SQL Translation tab to inspect the profile and
view the translated statement.

An alternative way to view the profile SQL in a better way when you double-click
on it, the fingerprint and template open in a Translation Scratch Editor as shown in
the following images:

Chapter 3
Installing and Configuring SQL Translation Framework with Oracle SQL Developer

3-9

Installing and Configuring SQL Translation Framework from
Command Line

There are several processes that you must complete to successfully install and
configure the SQL Translation Framework from command line interface.

Installing Oracle Sybase Translator
To install Oracle Sybase Translator, Use Oracle SQL Developer as described in
"Installing and Configuring SQL Translation Framework with Oracle SQL Developer".

Setting up a SQL Translation Profile
Perform the following steps to set up a SQL Translation Profile through a command-
line interface:

1. Login as a system user.

> sqlplus system/<password>

2. Grant create privileges to the standard user.

Chapter 3
Installing and Configuring SQL Translation Framework from Command Line

3-10

This allows the standard user to create a SQL Translation Profile.

 SQL> grant create sql translation profile to <user>;

3. Login as a standard user.

sqlplus <user>/<password>

4. Invoke the methods of DBMS_SQL_TRANSLATOR PL/SQL package to create and
configure the translation profile.

SQL> exec dbms_sql_translator.create_profile('sybase_profile')
SQL> exec dbms_sql_translator.set_attribute('sybase_profile',
 dbms_sql_translator.attr_translator,
 'migration_repo.sybase_tsql_translator')

5. Grant all privileges for the SQL Translation Profile to Oracle Sybase translation
schema.

SQL> grant all on sql translation profile sybase_profile to migration_repo;

Setting Up a Database Service to Use the SQL Translation Profile
This section describes how to add a database service in a standard environment and
in an Oracle Real Application Clusters environment.

Setting Up a Database Service in a Standard Environment

To set up a database service in a standard environment:

1. Login as a DBA

2. Issue the following commands to use the DBMS_SERVICE PL/SQL package to create
and invoke the database service:

SQL> declare
 params dbms_service.svc_parameter_array;
begin
 params('SQL_TRANSLATION_PROFILE') := 'user.sybase_profile';
 dbms_service.create_service('sybase_service', 'network_name', params);
 dbms_service.start_service('sybase_service');
end;
/

Setting Up a Database Service in Oracle Real Application Clusters
To set up a database service in Oracle Real Application Clusters:

1. Add the database service:

srvctl add service -db db_name -service sybase_service
-sql_translation_profile user.sybase_profile

2. Start the database service:

srvctl start service -db db_name -service sybase_service

Testing Sybase SQL Translation Using the SQL Translation Profile
Perform the following steps to test the translation:

Chapter 3
Installing and Configuring SQL Translation Framework from Command Line

3-11

1. Login as a standard user:

sqlplus user/password

2. Specify the SQL Translation Profile at the SQL prompt:

SQL> alter session set sql_translation_profile = sybase_profile;

3. Force the database to treat SQL*Plus as a foreign SQL application:

SQL> alter session set events = '10601 trace name context forever, level 32';

4. Run a SQL query that uses Sybase SQL dialect. For example:

select top 3 * from emp;

5. The query returns the following results:

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO
--
7369 SMITH CLERK 7902 17-DEC-80 800 20
7499 ALLEN SALESMAN 7698 20-FEB-81 1600 300 30
7521 WARD SALESMAN 7698 22-FEB-81 1250 500 30

Granting Necessary Permissions for Installing the SQL
Translator

This section discusses the privileges that you must have to install the SQL Translator.
The SYBASE_PROFILE created here has the following two users:

• MIGREP, where the translator is installed

• TARGET_USER, where the profile is installed

To grant privileges necessary for installing the SQL Translator:

1. Connect as SYS to grant the required privileges:

connect sys/oracle as sysdba

2. Allow MIGREP to create a view and have access to unlimited quota:

GRANT connect, resource, create view to MIGREP;
ALTER USER MIGREP QUOTA UNLIMITED ON USERS;

3. Allow TARGET_USER to create a view and have access to unlimited quota:

GRANT connect, resource, create view to TARGET_USER;
ALTER USER MIGREP QUOTA UNLIMITED ON TARGET_USER;

4. Allow MIGREP to load a SQL Translator:

BEGIN
 DBMS_JAVA.GRANT_PERMISSION(UPPER('MIGREP'), 'SYS:java.lang.RuntimePermission',
'getClassLoader', '');
END;
/

5. Allow TARGET_USER to create profiles:

GRANT CREATE SQL TRANSLATION PROFILE TO TARGET_USER;

6. Allow TARGET_USER to explicitly alter the session to use a profile:

GRANT ALTER SESSION TO TARGET_USER;

Chapter 3
Granting Necessary Permissions for Installing the SQL Translator

3-12

This privilege is not granted in SQL Developer by default.

7. Allow the translator to make reference to the profile:

CONNECT TARGET_USER/TARGET_USER;
GRANT ALL ON SQL TRANSLATION PROFILE SYBASE_PROFILE TO MIGREP;

8. Allow the profile to make reference to the translator:

CONNECT MIGREP/MIGREP;
GRANT EXECUTE ON SYBASE_TSQL_TRANSLATOR TO TARGET_USER;

Chapter 3
Granting Necessary Permissions for Installing the SQL Translator

3-13

4
SQL Translation of JDBC and ODBC
Applications

Oracle provides SQL Translation mechanisms for use with JDBC and ODBC
applications.

SQL Translation of JDBC Applications
Consider the concepts necessary to understanding how to use SQL Translator with a
JDBC application.

SQL Translation Profile
A SQL Translation Profile is a database schema object that directs how SQL
statements in non-Oracle dialects are translated into Oracle SQL dialects. It also
directs how Oracle error codes and SQLSTATES are translated into the SQL dialect of
other vendors.

When you want to migrate a client application written for a non-Oracle SQL database
to Oracle, you can create a SQL Translation Profile and configure it to translate the
SQL statements and errors for the application. At runtime, the application sets the
profile for the connection in Oracle Database to translate its SQL statements and
errors. This profile is set using the oracle.jdbc.sqlTranslationProfile property.

When necessary, you can register custom translations of SQL statements and errors
with the SQL Translation Profile on the Server. When a SQL statement or error is
translated, then first, the custom translation is looked up and then, the translator is
invoked only if no match is found.

See "Architecture of SQL Translation Framework" and "Setting up a SQL Translation
Profile".

Error Message Translation
You may prefer receiving error messages in the form of messages that used to be
thrown by the native database. You must then use the error message translation file,
which translates error messages when there is no valid connection to the database.
Once a connection to the database is established, the JDBC driver bypasses this file
completely and all errors are handled by the translator on the server. Similar to query
translation, you can also register custom error translations on the server.

The error message translation file is not written by a specific component. You must
provide the file for translation and specify the name of the file. You can also provide
the file path as the value of the corresponding connection property.

The error message translation file is in XML format; it contains a series of error
translations. Each error translation contains the following information:

4-1

Translation Error Type

ORA error number positive integer

Oracle error message String

Translated error code positive integer

Translated SQL State positive integer

Converting JDBC Standard Parameter Markers
Before submitting the SQL statements for translation., the JDBC driver internally
converts the JDBC standard parameter markers (?) into Oracle style parameter
markers of the format :b<n>.

Here, the naming format for the parameter markers is :b<n>, where n is an incremental
number to specify the position of the (?) marker in the JDBC PreparedStatement.

Consider the UPDATE employees SET salary = salary * ? WHERE employee_id = ?
PreparedStatement statement, where, the first parameter marker (?) will become :b1
and the second parameter marker (?) will become :b2.

After conversion, the driver sends the following query to the server for translation:

UPDATE employees SET salary = salary * :b1 WHERE employee_id = :b2

Note that any query that contains "?" as a parameter marker fails during the
connection translation phase if you change the value of the processEscapes property to
FALSE. For a successful translation, you must retain the default value of the
processEscapes property.

Converting parameter markers helps the driver to automatically reorder any parameter
changes that occurred at translation. At the time of conversion, any custom translation
that must be registered on the server should be registered from the Oracle style
parameter marker version; the server receives the statements. Note that, the custom
translation must have the same number of parameter markers in the Oracle style as in
the original query.

For more information about supported JDBC APIs, API Reference for SQL Translation
of JDBC Applications .

Executing the Translated Oracle Dialect Query
After the JDBC standard parameter markers are converted into Oracle style parameter
markers, the driver makes a round-trip to the server for translating the query into
Oracle dialect. Once the translated query is received by the server, any reordering in
the parameters in handled transparently by the driver, and the query is executed as a
normal query.

If a query cannot be translated due to the unavailability of translation, then the server
can either raise an error or return a NULL, based on the value of the
DBMS_SQL_TRANSLATOR.ATTR_RAISE_TRANSLATION_ERROR profile attribute. If the server
returns a NULL, then the original untranslated query is assumed to be the query
translated by the driver and executed.

The driver keeps the translation in the local caches to save the future round-trip.

Chapter 4
SQL Translation of JDBC Applications

4-2

Note that the JDBC driver can support the translation errors (when the query cannot
be translated due to the unavailability of translation) set by either value of the
DBMS_SQL_TRANSLATOR.ATTR_RAISE_TRANSLATION_ERROR attribute. However, the value must
be set on the server before the connection is established. Because a change in the
value of this attribute in the middle of a session may result in inconsistent behavior,
Oracle recommends that you do not flip the value of this attribute during a session.
See Oracle Database PL/SQL Packages and Types Reference for more information
about the TRANSLATE_SQL procedure.

Error Translation
If any SQLException is thrown during the query execution, the driver transparently
makes a trip to the server and translates the exception from Oracle codes to the
original vendor-specific code. So, the resulting SQLException has both vendor-specific
code and SQLSTATE along with the Oracle-specific SQLException as the cause.

Similar to query translation, custom error translations can also be registered on the
server and given priority over standard translation. The
DBMS_SQL_TRANSLATOR.ATTR_RAISE_TRANSLATION_ERROR attribute has the same effect on
custom error translation as on query translation.

Note that the errors are translated only after a connection to the server is established.
So, for errors that occur before the connection to the server is established, Error
Message Translation is used.

Using JDBC Driver for SQL Translation
Example 4-1 demonstrates how to use a JDBC driver for SQL translation. You must
first grant the CREATE SQL TRANSLATION PROFILE privilege to HR as follows:

conn system/manager;
grant create sql translation profile to HR;
exit

Now, connect to the database as HR and execute the following SQL statements:

drop table sample_tab;
create table sample_tab (c1 number, c2 varchar2(100));
insert into sample_tab values (1, 'A');
insert into sample_tab values (1, 'A');
insert into sample_tab values (1, 'A');
commit;
exec dbms_sql_translator.drop_profile('FOO');
exec dbms_sql_translator.create_profile('FOO');
exec dbms_sql_translator.register_sql_translation('FOO','select row of select c1,
c2 from sample_tab
where c1=:b1 and c2=:b2','select c1, c2 from sample_tab where c1=:b1 and c2=:b2');

Now, you can run the following program that translates SQL statements that use JDBC
standard parameter markers.

Example 4-1 Translating Non-Oracle SQL Statements to Oracle SQL Dialect
Using JDBC Driver

public class SQLTransPstmt
{
 static String url="jdbc:oracle:thin:@localhost:5521:jvx1";
 static String user="HR", pwd="hr";

Chapter 4
SQL Translation of JDBC Applications

4-3

 static String PROFILE = "FOO";
 static String primitiveSql = "select row of select c1, c2 from sample_tab where
c1=? and c2=?";

// Note that this query contains JDBC style parameter markers
// But the preceding custom translation registered in SQL is using Oracle style
markers

 public static void main(String[] args) throws Exception
 {
 OracleDataSource ods = new OracleDataSource();
 ods.setURL(url);

 Properties props = new Properties();
 props.put("user", user);
 props.put("password", pwd);

 // The Following connection property makes the connection translating
 props.put(OracleConnection.CONNECTION_PROPERTY_SQL_TRANSLATION_PROFILE, PROFILE);
 ods.setConnectionProperties(props);
 Connection conn = ods.getConnection();
 System.out.println("connection for SQL translation: "+conn);

 try{
 // Any statements created using a translating connection are
 // automatically translating. If you want to get a non-translating
 // statement out of a translating connection please have a look at
 // the oracle.jdbc.OracleTranslatingConnection Interface.
 // Refer to "OracleTranslatingConnection Interface"
 // for more information
 PreparedStatement trStmt = conn.prepareStatement(primitiveSql);
 trStmt.setInt(1, 1);
 trStmt.setString(2, "A");
 System.out.println("executeQuery for: "+primitiveSql);
 ResultSet trRs = trStmt.executeQuery();
 while (trRs.next())
 System.out.println("C1:"+trRs.getInt(1)+", C2:"+trRs.getString(2));
 trRs.close();

 trStmt.close();
 }catch (Exception e) {
 e.printStackTrace();
 }

 conn.close();
 }
}

SQL Translation of ODBC Applications
Consider the concepts necessary to understanding how to use SQL Translator with an
ODBC application.

SQL Translation profile
For ODBC applications, the SQL Translation Profile is set at the service level. So, you
do not require to set it in the .odbc.ini file.

Chapter 4
SQL Translation of ODBC Applications

4-4

Error Message Translation
You may prefer receiving error messages in the form of messages that used to be
thrown by the native database. In such cases, when the application is set to run on
Oracle Database, you must set the SQLTranslateErrors=T entry in the .odbc.ini file to
translate the ORA errors to their native form.

Translating Error Messages
Example 4-2 demonstrates how to use the ODBC driver in SQL translation. The SQL
statement used in the example uses Sybase TOP N syntax.

Note that you must set the ServerName= entry in the .odbc.ini file with the Database
service name created in "How to Use SQL Translation Framework" section. Also, set
the 'SQLTranslateErros=T entry in the .odbc.ini file, if you require translation of Oracle
errors to native database errors.

Example 4-2 Translating Non-Oracle SQL to Oracle SQL Dialect Using ODBC
Driver

int main()
{
 HENV m_henv; /* environment handle */
 HDBC m_hdbc; /* connection handle */
 HSTMT m_hstmt; /* statement handle */
 int retCode; /* return code */
 char dbdsn[100]; /* Initialize with the DSN name of connection */
 const char szUID[10];/*Initialize with appropriate Username of DB */
 const char szPWD[10]; /* Initialize with appropriate Password */

 char query1[100]="select top 3 col1 from babel_tab3 order by col1";
 SQLLEN paramInd = SQL_NTS;
 SQLUINTEGER no = 0;

 //Allocate HENV, HDBC, HSTMT handles
 retCode = SQLAllocHandle (SQL_HANDLE_ENV, SQL_NULL_HANDLE, &m_henv);
 if (retCode != SQL_SUCCESS && retCode != SQL_SUCCESS_WITH_INFO)
 {
 printf ("SQLAllocHandle failed \n");
 printSQLError (1, m_henv);
 }

 retCode = SQLSetEnvAttr (m_henv, SQL_ATTR_ODBC_VERSION, (void *) SQL_OV_ODBC3,
 SQL_IS_INTEGER);
 if (retCode != SQL_SUCCESS && retCode != SQL_SUCCESS_WITH_INFO)
 {
 printf ("SQLSetEnvAttr failed\n");
 printSQLError (1, m_henv);
 }

 retCode = SQLAllocHandle (SQL_HANDLE_DBC, m_henv, &m_hdbc);
 if (retCode != SQL_SUCCESS && retCode != SQL_SUCCESS_WITH_INFO)
 {
 printf ("SQLAllocHandle failed\n");
 printSQLError (2, m_hdbc);
 }

 retCode = SQLConnect (m_hdbc, (SQLCHAR *) dbdsn,SQL_NTS,

Chapter 4
SQL Translation of ODBC Applications

4-5

 (SQLCHAR *) szUID, SQL_NTS,
 (SQLCHAR *) szPWD, SQL_NTS);
 if (retCode != SQL_SUCCESS && retCode != SQL_SUCCESS_WITH_INFO)
 {
 printf ("SQLConnect failed to connect\n");
 printSQLError (2, m_hdbc);
 }

 retCode = SQLAllocHandle (SQL_HANDLE_STMT, m_hdbc, &m_hstmt);
 if (retCode != SQL_SUCCESS && retCode != SQL_SUCCESS_WITH_INFO)
 {
 printf ("SQLAllocHandle with SQL_HANDLE_STMT failed\n");
 printSQLError (3, m_hstmt);
 }

 /* Prepare and Execute the Sybase Top-N syntax SQL statements */

 retCode = SQLPrepare (m_hstmt, (SQLCHAR *) query1, SQL_NTS);
 if (retCode != SQL_SUCCESS && retCode != SQL_SUCCESS_WITH_INFO)
 {
 printf ("SQLPrepare failed\n");
 printSQLError (3, m_hstmt);
 }

 retCode=SQLExecute(m_hstmt);
 if (retCode != SQL_SUCCESS && retCode != SQL_SUCCESS_WITH_INFO)
 {
 printf ("SQLExecute-failed\n");
 printSQLError (3, m_hstmt);
 }

 while (retCode = SQLFetch(m_hstmt)!=SQL_NO_DATA)
 {
 retCode=SQLGetData(m_hstmt,1,SQL_C_ULONG, &no, 0, ¶mInd);
 if (retCode != SQL_SUCCESS && retCode != SQL_SUCCESS_WITH_INFO)
 {
 printf ("SQLFetch failed\n");
 printSQLError (3, m_hstmt);
 }
 printf("Value is %d\n",no);
 }

 retCode = SQLCloseCursor (m_hstmt);
 if (retCode != SQL_SUCCESS && retCode != SQL_SUCCESS_WITH_INFO)
 printf ("SQLCloseCursor failed\n");

 printf ("cleanup()\n");
 retCode = SQLFreeHandle (SQL_HANDLE_STMT, m_hstmt);
 if (retCode != SQL_SUCCESS && retCode != SQL_SUCCESS_WITH_INFO)
 {
 printf ("SQLFreeHandle failed\n");
 printSQLError (3, m_hstmt);
 }

 retCode = SQLDisconnect (m_hdbc);
 if (retCode != SQL_SUCCESS && retCode != SQL_SUCCESS_WITH_INFO)
 {
 printf ("SQLDisconnect failed\n");
 printSQLError (2, m_hdbc);
 }

Chapter 4
SQL Translation of ODBC Applications

4-6

 retCode = SQLFreeHandle (SQL_HANDLE_DBC, m_hdbc);
 if (retCode != SQL_SUCCESS && retCode != SQL_SUCCESS_WITH_INFO)
 {
 printf ("SQLFreeHandle failed\n");
 printSQLError (2, m_hdbc);
 }

 retCode = SQLFreeHandle (SQL_HANDLE_ENV, m_henv);
 if (retCode != SQL_SUCCESS && retCode != SQL_SUCCESS_WITH_INFO)
 {
 printf ("SQLFreeHandle failed\n");
 printSQLError (1, m_henv);
 }
}

Chapter 4
SQL Translation of ODBC Applications

4-7

5
Example: Application Migration Using SQL
Translation Framework

Consider an example of migrating a Sybase JDBC Application, and the information
contained in the migration reports: how it may be used to tune the migration for optimal
results.

Migrating a Sybase JDBC Application
Figure 5-1 illustrates how an application that is coded to query a Sybase database
may use SQL Translation Framework to query information stored in Oracle Database
instead.

Figure 5-1 Sybase Application Running Against Oracle Database

Sybase SQL

Translation Profile

Custom Error-Code

Mappings

Oracle

Custom SQL

Translations

Auto

Translator

Sybase SQL

Translation Profile

Custom Error-Code

Mappings

App Tables

and

Stored

Procs

Oracle

ODBC/JDBC

Driver

Sybase

App

Application Overview
The Sybase database used in this example has three tables and five procedures and
includes the following features:

• IDENTITY columns

• INSERT statements into tables with IDENTITY columns

• VARCHAR columns with size greater than 4000 characters

• Multiple implicit result sets returned from procedures

A Java application connects to this Sybase database using JDBC.

5-1

Setting Up Migration
The migration process has four phases - Capture, Convert, Generate, and Data Move.
It is best practice to complete each phase of the migration process, review any issues
on the Summary page, and then continue to the next phase. The Migration Wizard
enables you to complete each step in turn and then return back to the wizard to
complete further steps. To do this, after completing each phase, select the Proceed to
Summary Page check box and click Next.

Perform the following steps to set up migration:

1. Download the JDBC driver JTDS 1.2.

2. Add JTDS as a third-party JDBC driver as follows:

a. Select Preferences from the Tools menu.

b. Select Third Party JDBC Driver from the Database option on the right panel,
as shown in Figure 5-2.

Figure 5-2 Setting JTDS JDBC Driver

3. Click Add Entry.

The Select Path Entry box is displayed.

4. Select the jtds-1.2.jar file and click Select.

5. Click OK.

6. Connect to the Oracle Database where you want to migrate the information.

7. Verify that the connection is using Oracle Database 12c JDBC drivers, with the
following command:

show jdbc

8. Create a new user migrep in Oracle database, for the migration repository, with the
following command:

GRANT CONNECT,RESOURCE,CREATE VIEW to migrep INDENTIFIED BY migrep;
ALTER USER migrep QUOTA UNLIMITED to users;

Chapter 5
Migrating a Sybase JDBC Application

5-2

9. Connect to the database as the migrep user and associate the migration repository
with the user, as shown in Figure 5-3.

Figure 5-3 Associating a User with Migration Repository

10. Create a connection to the Sybase database, in this example, simpledemo12c, as
shown in Figure 5-4.

Figure 5-4 Creating a Connection to the Sybase Database

Capturing Migration
Perform the following steps to capture migration:

1. Right-click on the simpledemo12c Sybase database and select the Migrate to Oracle
option, as shown in Figure 5-5.

Chapter 5
Migrating a Sybase JDBC Application

5-3

Figure 5-5 Starting Capture Phase of Migration Process

This opens the Migration Wizard, as shown in Figure 5-6.

Click Next.

Figure 5-6 Migration Wizard Introduction Screen

2. Choose the Migration Repository, as shown in Figure 5-7.

Click Next.

Chapter 5
Migrating a Sybase JDBC Application

5-4

Figure 5-7 Choosing the Migration Repository

3. Enter a project name and specify an output directory to place files, as shown in
Figure 5-8.

Click Next.

Figure 5-8 Specifying Project Name and Output Directory

4. Select the database connection and the mode, as shown in Figure 5-9.

Click Next.

Chapter 5
Migrating a Sybase JDBC Application

5-5

Figure 5-9 Selecting the Database Connection and Mode

5. Select the database, in this case, simpledemo12c, by moving it from Available
Databases to Selected Databases, as shown in Figure 5-10.

Click Proceed to Summary Page to review the Capture phase before moving to
the next phase of the migration process.

Click Next.

Figure 5-10 Selecting the Database to be Migrated

The capture phase saves a snapshot of the selected database at this point of time.
Only the object definitions are captured, not the actual table data. This captured
snapshot can be viewed in the Migration Projects navigator.

Note that the snapshot is not a connection to the database, and it only enables you to
browse through the information saved in the Migration Repository.

Setting Migration Preferences

Before starting the conversion phase, you must set the migration preferences. Perform
the following steps to achieve this:

1. From the Tools menu, select Preferences, then Migration, and then Translators.
Select the Generate Compound Triggers option.

Chapter 5
Migrating a Sybase JDBC Application

5-6

Figure 5-11 Setting Migration Preferences

2. From the Tools menu, select Preferences, then Migration, and then Generation
Options. Select the Use all Oracle Database 12c features in Migration option.

Figure 5-12 Setting Migration Preferences

Converting Migration
Perform the following steps to start convert phase of the migration process:

1. Right-click the Capture Model node and choose Convert, as shown in
Figure 5-13.

Chapter 5
Migrating a Sybase JDBC Application

5-7

Figure 5-13 Starting Convert Phase of Migration Process

The Migration Wizard is opened at the Convert phase, as shown in Figure 5-14.

Figure 5-14 Converting the Migrated Data

2. Select Proceed to Summary Page and click Next.

3. Click Finish.

During the convert phase, object names are resolved to valid Oracle names. Data
types are converted to Oracle Database types and T-SQL defined objects like stored
procedures, views, and so on are converted to Oracle PL/SQL. A converted model is
created that can be browsed in the Migration Projects navigator. The converted
procedures can be reviewed in the converted model.

Chapter 5
Migrating a Sybase JDBC Application

5-8

Note that the converted model is not an actual Oracle database, but a prototype of an
Oracle Database. The information is still stored only in the Migration Repository tables.

Generating a Migration
The migration generation phase creates the objects in the target Oracle Database. A
script is created and it is run against a selected Oracle connection in the following two
ways:

• In offline mode, the script is opened in a SQL Worksheet and you have to select
the connection and run it manually.

• In online mode, you must provide the target connection in the wizard and the
wizard runs the script automatically.

The following steps demonstrate how to perform the generate phase of the migration
process in offline mode:

1. Right-click on Converted Database Objects in the Migration Projects panel and
select Generate Target.

2. Select offline as the database mode in the Migration Wizard, as shown in
Figure 5-15.

Click Next.

Figure 5-15 Selecting the Database Mode

3. Choose a connection in the target Oracle Database, as shown in Figure 5-16.

Chapter 5
Migrating a Sybase JDBC Application

5-9

Figure 5-16 Creating Oracle Database Connection for Target User
dbo_simpledemo12c

The database objects are not created under the connection selected in this step.
However, this connection must have enough privileges to create other users and
objects.

Creating a Target Oracle User
Create a connection to the newly created user (described in step 3), as shown in
Figure 5-17. At this point, the Sybase database objects are migrated to Oracle
Database, but the data is not migrated till now.

Figure 5-17 Targeting an Oracle User

Moving the Data
Perform the following steps to move the data to Oracle Database:

1. Right-click the Converted Database Objects node and select Move Data, as
shown in Figure 5-18.

Click Next.

Chapter 5
Migrating a Sybase JDBC Application

5-10

Figure 5-18 Moving the Data from Sybase Database to Oracle Database

2. Select online as the data move mode in the Move Data screen.

You can select offline as the data move mode if the migration process involves
large amount of data.

3. Click Next. The Summary screen appears.

4. Click Finish.

You can browse the database objects to verify the data is moved to Oracle
database.

See Also:

Oracle SQL Developer User's Guide

Generating Migration Reports
Oracle SQL Developer provides a number of reports on the migration process to help
identify tasks and issues to resolve. Click or double-click on the migrated project in the
Migration Projects navigator. A report will appear on the right panel with a number of
tabs and children reports, as shown in Figure 5-19.

Chapter 5
Generating Migration Reports

5-11

Figure 5-19 Generating Migration Reports

The Analysis report provides information about the size of the migrated database like
the number of objects, line sizes, and so on, as shown in Figure 5-20.

Figure 5-20 Migration Analysis Report

The Target Status report provides information about the status of the migrated objects
in the Target database. First, select a target connection with enough privileges to view
the status of other schema objects and then select refresh. Objects that are present in
the converted model, but are missing from the target Oracle Database, are listed as
missing. These objects can be either valid or invalid.

Chapter 5
Generating Migration Reports

5-12

Figure 5-21 Target Status Report

The Data Quality tab provides information about the number of rows in the target
Oracle Database compared with the source database. Perform the following steps to
compare the databases:

1. Select a converted model, a source connection, and a target connection.

2. Click Analyse.

3. Click Refresh.

This performs a count(*) function on each table in the source and the target
database. So, it is advisable not to perform this operation on production data.

Chapter 5
Generating Migration Reports

5-13

6
MySQL Client Library Driver for Oracle

Consider the specifics of MySQL Client Library Driver for Oracle Database, and its use
in migrating applications from MySQL to Oracle.

See Also:

API Reference for Oracle MySQL Client Library Driver for more information
about MySQL programmatic support

Introduction to MySQL Client Library Driver for Oracle
MySQL Client Library Driver for Oracle Database 12c, liboramysql, is a drop-in
replacement for MySQL Commercial Connector/C 6.0 client library. The liboramysql
driver implements a similar API, enabling C-based applications and tools developed
for MySQL to connect to Oracle Database. The driver may be used to migrate
applications from MySQL to Oracle Database with minimal changes to the application
code.

The liboramysql driver uses Oracle Call Interface (OCI) to connect to Oracle
Database.

Figure 6-1 MySQL Application Code Using liboramysql Driver to Connect to
Oracle

libmysqlclient

Oracle DBMySQL DB

Application
using

MySQL’s C API

OCI

liboramysql

Application
using

MySQL’s C API

The C code snippet in Example 6-1 demonstrates how to connect to MySQL and how
to insert a row into a table. After updating the connection credentials, this code can run
unchanged against Oracle Database when the executable is linked using the
liboramysql library, instead of the libmysqlclient library.

6-1

Although the database schema and data must be migrated to Oracle separately, and
although the liboramysql library does not translate SQL statements, considerable
amount of effort is conserved when migrating to Oracle Database because no changes
have to be made to the application code.

Custom C applications can use the liboramysql library to easily migrate to Oracle
Database.

Additionally, you can migrate applications using programming languages that abstract
the use of the libmysqlclient library and provide MySQL extensions or adapters.
These languages include PHP, Perl, Python, and Ruby. Although native Oracle
adapters already exist for many programming languages implemented in C, migrating
an application to a native Oracle adapter often requires extensive application code
changes.

Connecting to MySQL
Example 6-1 Connecting to MySQL and Inserting a New Row

c = mysql_init(NULL);
mysql_real_connect(c, "myhost", "myun", "mypw", "mydb", 0, NULL, 0);
mysql_query(c, "insert into mytable values (1,2)");
mysql_close(c);

Installation and First Use of MySQL Client Library Driver for
Oracle

The MySQL Client Library Driver for Oracle is provided as a file in the liboramysql.so
shared library for Linux and as the oramysql.dll dynamic link library (DLL) for
Windows. The driver is also packaged as part of the Oracle Instant Client Basic and
Basic Lite packages for download from OTN. See http://www.oracle.com/technetwork/
topics/linuxsoft-082809.html and http://www.oracle.com/technetwork/topics/
winsoft-085727.html.

The driver must be installed in the same directory as the Oracle Client Shared Library,
that is, libclntsh.so for Linux and oci.dll for Windows. Typically, you must set the
operating system environment variable (LD_LIBRARY_PATH on Linux or PATH on Windows)
to include this installation directory.

For ORACLE_HOME installations, the driver library is installed in the $ORACLE_HOME/lib
directory for Linux and the %ORACLE_HOME%\bin directory for Windows. For Instant Client
ZIP files, the library is in the instantclient_12_1 directory. For Instant Client RPM
installations, the library is in the /usr/lib/oracle/12.1/client/lib or /usr/lib/oracle/
12.1/client64/lib directory on 32-bit and 64-bit Linux platforms, respectively.

Overview of Migration with MySQL Client Library Driver for
Oracle

Migrating a C-based MySQL application to Oracle Database involves the following
steps:

1. Confirm that the application runs against MySQL Database.

This ensures that the migration process starts at a known baseline of functionality.

Chapter 6
Installation and First Use of MySQL Client Library Driver for Oracle

6-2

http://www.oracle.com/technetwork/topics/linuxsoft-082809.html
http://www.oracle.com/technetwork/topics/linuxsoft-082809.html
http://www.oracle.com/technetwork/topics/winsoft-085727.html
http://www.oracle.com/technetwork/topics/winsoft-085727.html

2. Replace the libmysqlclient library with the liboramysql library.

The application must be relinked to use the liboramysql library instead of the
libmysqlclient library.

3. Migrate the application schema to Oracle Database.

The schema must be migrated to use Oracle DDL and types. Oracle SQL
Developer assists in this process.

See Oracle SQL Developer User's Guide for further details.

4. Review all SQL statements used by the application.

If necessary, change the SQL statements of the application to use Oracle syntax,
or implement a SQL Translator to automatically perform the conversion at
application run time. Rewrite any logic that depends on MySQL features that are
not supported by Oracle Database.

See SQL Translation of JDBC and ODBC Applications .

5. Update the connection string of the application to connect to Oracle
Database.

Use Oracle Easy Connect syntax or a tnsnames.ora connect identifier in the host
parameter of the connection call.

6. Test the application with Oracle Database.

Verify the application against Oracle Database.

Using MySQL Client Library Driver for Oracle
The liboramysql API is compatible with MySQL Commercial Connector/C 6.0. MySQL
Driver for Oracle Database, liboramysql, translates MySQL API calls to Oracle Call
Interface (OCI) calls, and between Oracle and MySQL data types.

Existing MySQL-based applications may be relinked to use the liboramysql driver,
making Oracle Database the new data source. Note that the liboramysql driver
supports connections only to Oracle Database. Simultaneous connections to both
MySQL Database and Oracle Database in the same application are not possible.

See API Reference for Oracle MySQL Client Library Driver for details on data type
mapping and API compatibility. Additional information may also be found in Oracle
SQL Developer User's Guide.

The liboramysql driver does not translate SQL statements. You must rewrite the
statements that are not valid for Oracle Database. You can do this directly in the
application, or by using a SQL Translator. The application schema and data must also
be migrated separately. Oracle SQL Developer automates this process.

Whenever cross-version OCI connectivity exists for older versions of Oracle Database,
you can use the liboramysql driver to connect to these older versions.

Relinking the Application with the liboramysql Driver
The fundamental step of using the liboramysql library is to relink the application to use
the new library. The liboramysql library is compatible with the libmysqlclient.so library
from MySQL Commercial Connector/C 6.0.2 package, so you must build and verify
version-sensitive applications with MySQL Commercial Connector/C 6.0.2 before
migrating to Oracle Database.

Chapter 6
Using MySQL Client Library Driver for Oracle

6-3

The installation scripts of public software compiled from source code typically expect
MySQL components to follow a predefined system directory structure. You can use the
setuporamysql.sh script in the demo directory of Instant Client SDK to achieve this.

Depending on the application, you can use one or more of the following ways to relink
the application with the liboramysql library:

• Build directly with the liboramysql library.

You can update your build scripts to use the liboramysql library and build custom
applications directly with this Oracle library.

• Use the liboramysql library to emulate a MySQL Commercial Connector/C
directory

The setuporamysql.sh library in the Instant Client SDK shows how a directory
structure emulating a MySQL Commercial Connector/C installation can be
created. You may build applications using this emulated directory.

• Use the LD_PRELOAD environment variable.

Preconfigured programs may be able to use the LD_PRELOAD environment variable
to link with the liboramysql library. However, changing the value of this
environment variable may not work if the program uses the dlopen() method.

• Duplicate the liboramysql library.

Perform the following steps to rename the liboramysql library to the MySQL client
library name used by the application:

1. Use the ldd command to identify the MySQL library with which the application
is linked:

$ ldd yourprogram
...
libmysqlclient.so.16 => /usr/lib/libmysqlclient.so.16 (0x00007f9004e7f000)
...

2. Create the following symbolic link as the Oracle software owner user:

$ ln -s $ORACLE_HOME/lib/liboramysql12.so $ORACLE_HOME/lib/libmysqlclient.so.
16

3. Add $ORACLE_HOME/lib to the LD_LIBRARY_PATH environment variable for any
application that formerly used the libmysqlclient library:

$ export LD_LIBRARY_PATH=$ORACLE_HOME/lib

• Replace the system MySQL client library.

Rename the target system MySQL client library and link the new library in its
place. Because this option affects every application on the system that uses
MySQL, and should be done only if absolutely necessary.

mv /usr/lib64/libmysqlclient.so.16 /usr/lib64/libmysqlclient.so.16.backup
ln -s $ORACLE_HOME/lib/liboramysql12.so /usr/lib64/libmysqlclient.so.16

If MySQL applications are not rebuilt from the source code, then you must first link the
applications against the libmysqlclient.so library from MySQL Commercial
Connector/C 6.0.2 package. This ensures binary compatibility with the data structures
in the liboramysql library.

Chapter 6
Using MySQL Client Library Driver for Oracle

6-4

Connecting to Oracle Database
To connect to Oracle Database with the liboramysql library, use Oracle Easy Connect
syntax or a tnsnames.ora connect identifier in the host parameter of the connection call:

mysql_real_connect(c, "localhost/pdborcl", "myun", "mypw", NULL, 0, NULL, 0);

Supported Platforms
MySQL Client Library Driver for Oracle is available on platforms that support the
Oracle Instant Client.

See the list of supported platforms on the Oracle Support Certification site: https://
support.oracle.com

Error Handling
All errors generated by OCI client code or the Oracle server are passed to the
application when either the mysql_errno() method or the mysql_error() method is
invoked after an error.

Globalization
The date format expected by the application may be set using NLS_DATE_FORMAT
environment variable of Oracle Database, or changed with the equivalent ALTER
SESSION command after connecting. The NLS_DATE_FORMAT environment variable is only
used if NLS_LANG is also set in the environment.

Expected Differences
Some APIs in the liboramysql library necessarily return different results because of the
underlying differences between MySQL Database and Oracle Database. Existing
applications that use these APIs may require logic changes. For details of these
differences, see API Reference for Oracle MySQL Client Library Driver .

Chapter 6
Using MySQL Client Library Driver for Oracle

6-5

https://support.oracle.com
https://support.oracle.com

7
API Reference for Oracle MySQL Client
Library Driver

Consider the APIs that support migration from MySQL, the mapping of data types,
support for specific MySQL APIs within Oracle, and error handling for migrated
applications..

For documentation of MySQL C APIs, refer to MySQL 5.5 documentation.

Mapping Data Types
Oracle database types are described in the Internal Data Types section of Oracle Call
Interface Programmer's Guide.

MySQL data types are fully described in MySQL documentation.

MySQL C APIs use MYSQL_TYPE_symbols to process data to and from MySQL
database. These type symbols are mapped to MySQL data types in the server.

For instance, MYSQL_TYPE_VAR_STRING is mapped to VARCHAR in the server.

Mapping Oracle Data Types to MySQL Data Types
This table shows the value of the type field in MYSQL_FIELD parameter returned from
mysql_fetch_field_* calls. The Oracle database type is mapped to a MySQL C API
data type.

For example: A VARCHAR2 column is represented by MYSQL_TYPE_VAR_STRING.

It is recommended that users use this table when migrating MySQL applications to
Oracle. The MySQL Client Library driver for Oracle will perform Data type conversions
between MySQL and Oracle.

Table 7-1 Mapping Oracle Data Types to MySQL Data Types

Oracle Data Type Maps to MySQL Data Type

CHAR MYSQL_TYPE_VAR_STRING

NCHAR MYSQL_TYPE_VAR_STRING

NVARCHAR2 MYSQL_TYPE_VAR_STRING

VARCHAR2 MYSQL_TYPE_VAR_STRING

NUMBER MYSQL_TYPE_NEWDECIMAL

LONG MYSQL_TYPE_BLOB

CLOB MYSQL_TYPE_BLOB

NCLOB MYSQL_TYPE_BLOB

DATE MYSQL_TYPE_DATETIME

7-1

Table 7-1 (Cont.) Mapping Oracle Data Types to MySQL Data Types

Oracle Data Type Maps to MySQL Data Type

RAW MYSQL_TYPE_VAR_STRING

BLOB MYSQL_TYPE_BLOB

LONG RAW MYSQL_TYPE_BLOB

ROWID MYSQL_TYPE_VAR_STRING

UROWID MYSQL_TYPE_VAR_STRING

BINARY FLOAT MYSQL_TYPE_FLOAT

BINARY DOUBLE MYSQL_TYPE_DOUBLE

User-defined type (object type, VARRAY, Nested
Table)

Not supported

REF Not supported

BFILE MYSQL_TYPE_BLOB

TIMESTAMP MYSQL_TYPE_DATETIME

TIMESTAMP WITH TIME ZONE MYSQL_TYPE_DATETIME

TIMESTAMP WITH LOCAL TIME ZONE MYSQL_TYPE_DATETIME

INTERVAL YEAR TO MONTH MYSQL_TYPE_VAR_STRING

INTERVAL DAY TO SECOND MYSQL_TYPE_VAR_STRING

Data Type Conversions for MySQL Program Variable Data Types
The calls to mysql_stmt_bind_param() and mysql_stmt_bind_result() may be used to
convert between C program variables and database column values. Similarly, OCI
provides rich conversion support from server data types to many client data types.

Input conversions from a C program value to a database column value are handled by
invoking mysql_stmt_bind_param(). Output to a C program value is handled through a
call to mysql_stmt_bind_result().

Table 7-2 summarizes viable conversions between MySQL program variable data
types and Oracle column data types. The possible values in the table are:

• I: input conversion is supported

• O: output conversion is supported

• I/O: both input and output conversion is supported

• -: conversion is not supported.

Be sure to read the corresponding notes for each data type before finalizing
conversion choices.

Table 7-2 Converting MySQL Program Variable Data Types to Oracle Column Data Types

MySQL Program
Variable Data Types

CHAR VARCHAR2 NUMBER LONG ROWID UROWID DATE RAW LONG
RAW

MYSQL_TYPE_TINY I/O I/O I/O I - - - - -

Chapter 7
Mapping Data Types

7-2

Table 7-2 (Cont.) Converting MySQL Program Variable Data Types to Oracle Column Data
Types

MySQL Program
Variable Data Types

CHAR VARCHAR2 NUMBER LONG ROWID UROWID DATE RAW LONG
RAW

MYSQL_TYPE_SHORT I/O I/O I/O I - - - - -

MYSQL_TYPE_LONG I/O I/O I/O I - - - - -

MYSQL_TYPE_LONGL
ONG

I/O I/O I/O I - - - - -

MYSQL_TYPE_FLOAT I/O I/O I/O I - - - - -

MYSQL_TYPE_DOUBLE I/O I/O I/O I - - - - -

MYSQL_TYPE_DATE I/O I/O - I - - I/O - -

MYSQL_TYPE_TIME I/O I/O - I - - I/O - -

MYSQL_TYPE_DATETI
ME

I/O I/O - I - - I/O - -

MYSQL_TYPE_TIMEST
AMP

I/O I/O - I - - I/O - -

MYSQL_TYPE_STRING I/O I/O I/O I/O I/O I/O I/O I/O I/O

MYSQL_TYPE_VAR_ST
RING

O O O O O O O O O

MYSQL_TYPE_BLOB I/O I/O - I/O - - - I/O I/O

MYSQL_TYPE_TINY_BL
OB

O O - O - - - O O

MYSQL_TYPE_MEDIUM
_BLOB

O O - O - - - O O

MYSQL_TYPE_LONG_B
LOB

O O - O - - - O O

MYSQL_TYPE_NEWDE
CIMAL

O O O - - - - - -

MYSQL_TYPE_BLOB
• CHAR and VARCHAR2: Conversion is valid for input or output. On input, column value

is stored in hexadecimal format.

• LONG: Conversion is valid for input or output. On input, column value is stored in
hexadecimal format.

• RAW: Conversion is valid for input or output.

• LONG RAW: Conversion is valid for input or output.

• Conversion is not supported for NUMBER, ROWID, UROWID, and DATE.

MYSQL_TYPE_DATE
• CHAR and VARCHAR2: Conversion is valid for input or output. For input, host string

must be in Oracle DATE character format. For output, column value is returned in
Oracle DATE format.

Chapter 7
Mapping Data Types

7-3

• DATE: Conversion is valid for input or output.

• LONG: Conversion valid for input to database column value.

• Conversion not supported for NUMBER, ROWID, UROWID, RAW, and LONG RAW.

MYSQL_TYPE_DATETIME
• CHAR and VARCHAR2: Conversion is valid for input or output. For input, host string

must be in Oracle DATE character format. For output, column value is returned in
Oracle DATE format.

• DATE: Conversion is valid for input or output.

• LONG: Conversion valid for input to database column value.

• Conversion not supported for NUMBER, ROWID, UROWID, RAW, and LONG RAW.

MYSQL_TYPE_DOUBLE
• CHAR and VARCHAR2: Conversion is valid for input or output. For output, column value

must represent a valid number.

• NUMBER: Conversion is valid for input or output.

• LONG: Conversion valid for input to database column value.

• Conversion not supported for ROWID, UROWID, DATE, RAW, and LONG RAW.

MYSQL_TYPE_FLOAT
• CHAR and VARCHAR2: Conversion is valid for input or output. For output, column value

must represent a valid number.

• NUMBER: Conversion is valid for input or output.

• LONG: Conversion valid for input to database column value.

• Conversion not supported for ROWID, UROWID, DATE, RAW, and LONG RAW.

MYSQL_TYPE_LONG
• CHAR and VARCHAR2: Conversion is valid for input or output. For output, column value

must represent a valid number.

• NUMBER: Conversion is valid for input or output.

• LONG: Conversion valid for input to database column value.

• Conversion not supported for ROWID, UROWID, DATE, RAW, and LONG RAW.

MYSQL_TYPE_LONG_BLOB
• CHAR, VARCHAR2, LONG, RAW, and LONG RAW: Conversion is valid for output.

• Conversion is not supported for NUMBER, ROWID, UROWID, and DATE.

MYSQL_TYPE_LONGLONG
• CHAR and VARCHAR2: Conversion is valid for input or output. For output, column value

must represent a valid number.

Chapter 7
Mapping Data Types

7-4

• NUMBER: Conversion is valid for input or output.

• LONG: Conversion valid for input to database column value.

• Conversion not supported for ROWID, UROWID, DATE, RAW, and LONG RAW.

MYSQL_TYPE_MEDIUM_BLOB
• CHAR, VARCHAR2, LONG, RAW, and LONG RAW: Conversion is valid for output.

• Conversion is not supported for NUMBER, ROWID, UROWID, and DATE.

MYSQL_TYPE_NEWDECIMAL
• CHAR and VARCHAR2: Conversion is valid for output. Column value must represent a

valid number.

• NUMBER: Conversion is valid for output to C program value.

• Conversion is not supported for LONG, ROWID, UROWID, DATE, RAW, and LONG RAW.

MYSQL_TYPE_SHORT
• CHAR and VARCHAR2: Conversion is valid for input or output. For output, column value

must represent a valid number.

• NUMBER: Conversion is valid for input or output.

• LONG: Conversion valid for input to database column value.

• Conversion not supported for ROWID, UROWID, DATE, RAW, and LONG RAW.

MYSQL_TYPE_STRING
• CHAR and VARCHAR2: Conversion is valid for input or output.

• NUMBER: Conversion is valid for input or output. For input, the host string must
represent a valid number.

• LONG: Conversion valid for input or output.

• ROWID: Conversion is valid for input or output. For input, the host string must be in
Oracle ROWID format. For output, column value is returned in Oracle ROWID format.

• UROWID: Conversion is valid for input or output. For input, the host string must be in
Oracle UROWID format. For output, column value is returned in Oracle UROWID format.

• DATE: Conversion is valid for input or output. For input, host string must be in
Oracle DATE character format. For output, column value is returned in Oracle DATE
format.

• RAW: Conversion is valid for input or output. For input, host string must be in
hexadecimal format.

• LONG RAW: Conversion is valid for input or output. For input, host string must be in
hexadecimal format.

Chapter 7
Mapping Data Types

7-5

MYSQL_TYPE_TIME
• CHAR and VARCHAR2: Conversion is valid for input or output. For input, host string

must be in Oracle DATE character format. For output, column value is returned in
Oracle DATE format.

• DATE: Conversion is valid for input or output.

• LONG: Conversion valid for input to database column value.

• Conversion not supported for NUMBER, ROWID, UROWID, RAW, and LONG RAW.

MYSQL_TYPE_TIMESTAMP
• CHAR and VARCHAR2: Conversion is valid for input or output. For input, host string

must be in Oracle DATE character format. For output, column value is returned in
Oracle DATE format.

• DATE: Conversion is valid for input or output.

• LONG: Conversion valid for input to database column value.

• Conversion not supported for NUMBER, ROWID, UROWID, RAW, and LONG RAW.

MYSQL_TYPE_TINY
• CHAR and VARCHAR2: Conversion is valid for input or output. For output, column value

must represent a valid number.

• NUMBER: Conversion is valid for input or output.

• LONG: Conversion valid for input to database column value.

• Conversion not supported for ROWID, UROWID, DATE, RAW, and LONG RAW.

MYSQL_TYPE_TINY_BLOB
• CHAR, VARCHAR2, LONG, RAW, and LONG RAW: Conversion is valid for output.

• Conversion is not supported for NUMBER, ROWID, UROWID, and DATE.

MYSQL_TYPE_VAR_STRING
• CHAR and VARCHAR2: Conversion is valid for output to C program value.

• NUMBER: Conversion is valid for output to C program value.

• LONG: Conversion is valid for output to C program value.

• ROWID: Conversion is valid for output to C program value. On output, column value
is returned in Oracle ROWID format.

• UROWID: Conversion is valid for output to C program value. On output, column value
is returned in Oracle UROWID format.

• DATE: Conversion is valid for output to C program value. On output, column value is
returned in Oracle DATE format.

• RAW: Conversion is valid for output to C program value.

• LONG RAW: Conversion is valid for output to C program value.

Chapter 7
Mapping Data Types

7-6

Data Type Conversions for MySQL External Data Types (LOB Data
Type Descriptors)

The external data types Table 7-3 may be converted to the specified Oracle internal
data types.

Table 7-3 Data Type Conversions for LOB Data Type Descriptors

MySQL External Data Types ORACLE INTERNAL
CLOB/NCLOB

ORACLE INTERNAL
BLOB

MYSQL_TYPE_BIT I/O I/O

MYSQL_TYPE_STRING I/O I/O

MYSQL_TYPE_VAR_STRING O O

MYSQL_TYPE_BLOB I/O I/O

MYSQL_TYPE_TINY_BLOB O O

MYSQL_TYPE_MEDIUM_BLOB O O

MYSQL_TYPE_LONG_BLOB O O

Data Type Conversions for Datetime and Interval Data Types
When working with a DATETIME or INTERVAL columns, it is possible to use one of the
character data types to define a host variable used in a FETCH or INSERT operation The
driver automatically converts between the character data type and DATETIME or INTERVAL
data type.

Table 7-4 lists external data types that may be converted to the specified internal
Oracle data types.

Table 7-4 Data Conversions for Datetime and Internal Data Type

External/Internal
Types

VARCHAR
, CHAR

DATE TS TSTZ TSLTZ INTERVAL
YEAR TO
MONTH

INTERVAL
DAY TO
SECOND

MYSQL_TYPE_STRING I/O I/O I/O I/O I/O I/O I/O

MYSQL_TYPE_VAR_STRIN
G

O O O O O O O

MYSQL_TYPE_DATE I/O I/O I/O I/O I/O - -

MYSQL_TYPE_TIME I/O I/O I/O I/O I/O - -

MYSQL_TYPE_DATETIME I/O I/O I/O I/O I/O - -

MYSQL_TYPE_TIMESTAMP I/O I/O I/O I/O I/O - -

Error Handling
All errors generated by OCI or Oracle server pass to the application when methods
mysql_errno() or mysql_error() are invoked after an error. The application receives an

Chapter 7
Error Handling

7-7

Oracle-specific error. Oracle error messages are more specific then MySQL error
codes, and are therefore more pertinent to resolving the error condition.

The errors that are generated by the driver itself are in an error range reserved for the
MySQL driver in the OCI error space.

The mysql_sqlstate() call attempts to map the error to the appropriate SQLSTATE
whenever possible. In most cases, it returns HY000, which corresponds to the general
error state.

Possible SQLSTATE values are:

• 00000 success

• HY000 all other errors

However, this also means that client applications that expect more specific SQLSTATE
errors must be partially re-written.

Available Oracle Support for MySQL APIs
Oracle MySQL driver implements the APIs listed in MySQL C API documentation.
Please note the following:

• Some MySQL functions have changed behavior, typically due to not having an
equivalent behavior in Oracle; the description notes the changed behavior.

• Some MySQL functions are not supported; the description marks them
accordingly. The driver returns an error for these functions, and prompts the
application to work around the unsupported functionality.

Supported MySQL APIs are grouped functionally here, and here are links to more
extensive information. However, we do not provide full documentation of function
behavior and parameters, leaving it to the original MySQL C API documentation.

Client Library Initialization and Termination

The following interfaces support client library initialization and termination:
mysql_library_end(), mysql_library_init(), mysql_server_end(), and mysql_server_init().

Connection Management

The following interfaces support connection management: my_init(),
mysql_change_user(), mysql_close(), mysql_connect(),
mysql_get_character_set_info(), mysql_get_ssl_cipher(), mysql_init(),
mysql_options(), mysql_ping(), mysql_real_connect(), mysql_select_db(),
mysql_set_character_set(), andmysql_ssl_set().

Error Reporting

The following interfaces support error reporting: mysql_errno(), mysql_error(),
andmysql_sqlstate()

Statement Construction and Execution

The following interfaces support statement construction and execution:
mysql_affected_rows(), mysql_escape_string(), mysql_hex_string(), mysql_kill(),
mysql_query(), mysql_real_escape_string(), mysql_real_query(), and mysql_reload().

Chapter 7
Available Oracle Support for MySQL APIs

7-8

Result Set Processing

The following interfaces support result set processing: mysql_data_seek(),
mysql_eof(), mysql_fetch_field(), mysql_fetch_field_direct(), mysql_fetch_fields(),
mysql_fetch_lengths(), mysql_fetch_row(), mysql_field_count(), mysql_field_seek(),
mysql_field_tell(), mysql_free_result(), mysql_insert_id(), mysql_list_dbs(),
mysql_list_fields(), mysql_list_processes(), mysql_list_tables(), mysql_more_results(),
mysql_next_result(), mysql_num_fields(), mysql_num_rows(), mysql_row_seek(),
mysql_row_tell(), mysql_store_result(), and mysql_use_result().

Prepared Statements

The following interfaces support statement preparation: mysql_stmt_affected_rows(),
mysql_stmt_attr_get(), mysql_stmt_attr_set(), mysql_stmt_bind_param(),
mysql_stmt_bind_result(), mysql_stmt_close(), mysql_stmt_data_seek(),
mysql_stmt_errno(), mysql_stmt_error(), mysql_stmt_execute(), mysql_stmt_fetch(),
mysql_stmt_fetch_column(), mysql_stmt_field_count(), mysql_stmt_free_result(),
mysql_stmt_init(), mysql_stmt_insert_id(), mysql_stmt_next_result(),
mysql_stmt_num_rows(), mysql_stmt_param_count(), mysql_stmt_param_metadata(),
mysql_stmt_prepare(), mysql_stmt_reset(), mysql_stmt_result_metadata(),
mysql_stmt_row_seek(), mysql_stmt_row_tell(), mysql_stmt_send_long_data(),
mysql_stmt_sqlstate(), and mysql_stmt_store_result().

Transaction Control

The following interfaces support transaction control: mysql_autocommit(),
mysql_commit(), and mysql_rollback().

Information Routines

The following interfaces support information routines: mysql_character_set_name(),
mysql_get_client_info(), mysql_get_client_version(), mysql_get_host_info(),
mysql_get_proto_info(), mysql_get_server_info(), mysql_get_server_version(),
mysql_info(), mysql_stat(), mysql_thread_id(), and mysql_warning_count().

Administrative Routines

The following interfaces support administrative routines: mysql_refresh(),
mysql_set_server_option(), mysql_set_local_infile_default(),
mysql_set_local_infile_handler(), and mysql_shutdown().

Miscellaneous Routines

The following interfaces support all remaining routines: mysql_create_db(),
mysql_debug(), mysql_debug_info(), mysql_drop_db(), mysql_dump_debug_info(),
mysql_read_query_result(), mysql_send_query(), mysql_thread_end(),
mysql_thread_init(), and mysql_thread_safe().

my_init()
This function is a no-op function. It is called by my_init macro in my_sys.h file. All
initializations are done by the mysql_library_init().

Return Value

0

Chapter 7
Available Oracle Support for MySQL APIs

7-9

mysql_affected_rows()
Returns the number of rows processed for INSERT, UPDATE, and DELETE statements
executed.

For UPDATE statements, note that the semantics of MySQL do not report rows where the
new value is the same as the old value. In contrast, Oracle reports that rows are
affected, even if the new value is the same as the old value. This function implements
Oracle semantics. Therefore, existing applications that rely on this call may have to
make programmatic changes.

For SELECT statement, the return is (my_ulonglong) -1.

Return Value

A number of rows that were processed by DML statement; >0. 0 indicates no updates
were made by the statement. -1 indicates that the statement was a query (SELECT), or
an error.

mysql_autocommit()
Sets auto commit mode to ON or OFF.

Return Value

0, if the auto commit mode is changed successfully. Non-zero if an error occurred in
the process.

mysql_change_user()
Changes the user, including user name, password, and database on the same or
different host. In Oracle Database 12c, change of the database is not supported, so
the value entered for the db parameter is ignored.

A call to mysql_change_user() rolls back any active transactions, ends the current
session, and then re-establishes a new connection based on information stored in the
host parameter.

Existing applications must make necessary application logic changes to implement this
behavior in Oracle Database 12c.

Return Value

0 if connection can be reestablished with the original host for the supplied user name
and password. Non-zero if an error occurred.

mysql_character_set_name()
Not supported in Oracle Database 12c. Applications that rely on results of this call
must change their application logic.

Return Value

Empty string.

Chapter 7
Available Oracle Support for MySQL APIs

7-10

mysql_close()
Closes the connection and frees all associated data structures.

Return Value

none

mysql_commit()
Commits the transaction currently associated with the service context.

A mysql_commit() call supports the default mode in Oracle Database 12c. It therefore
ignores the completion type system variable.

Existing applications that use this API to perform MySQL-specific completion type
operations must change their application logic.

Return Value

0 if successful, non-zero otherwise.

mysql_connect()
Deprecated; use mysql_real_connect().

Return Value

Initialized MYSQL structure. NULL if an error occurred.

mysql_create_db()
Not supported in Oracle Database 12c. Applications that rely on results of this call
must change their application logic.

Return Value

0 if successful; non-zero if an invalid MYSQL structure is passed in.

mysql_data_seek()
Seeks to a row in a result set based on the value specified in the offset parameter.

Offset value, being a row number, can range from 0 to mysql_num_rows(result) -1.

Return Value

None

mysql_debug()
Not supported in Oracle Database 12c. Applications that rely on results of this call
must change their application logic.

Chapter 7
Available Oracle Support for MySQL APIs

7-11

mysql_debug_info()
Not supported in Oracle Database 12c. Applications that rely on results of this call
must change their application logic.

Return Value

0 if successful; non-zero if invalid MYSQL structure.

mysql_drop_db()
Not supported in Oracle Database 12c. Applications that rely on results of this call
must change their application logic.

Return Value

0 if successful; non-zero if invalid MYSQL structure.

mysql_dump_debug_info()
Not supported in Oracle Database 12c. Applications that rely on results of this call
must change their application logic.

Return Value

0 if successful; non-zero if an invalid MYSQL structure is passed in.

mysql_eof()
DEPRECATED. Use mysql_errno() or mysql_error() instead.

Determines if the last row of a result set has been read.

Return Value

1 if fetched the last row; otherwise 0.

mysql_errno()
Returns Oracle error number of the last error on the connection or the global context.

If the previous call did not have an established connection, pass in NULL; this returns
the last error number on global context.

Return Value

Last error number on the MYSQL connection, or the last error number on the global
context.

mysql_error()
Returns Oracle error messages for the last error on the connection or the global
context.

Chapter 7
Available Oracle Support for MySQL APIs

7-12

If the previous call did not have an established connection, pass in NULL; this returns
the last error message on global context.

Return Value

Last error message on the MYSQL connection, or the last error message on the global
context.

mysql_escape_string()
Encodes the string in the source (from parameter), places it in the destination (to
parameter), and appends a terminating NULL.

Supports encoding of only one character, '\' using the current character set in the
connection.

See mysql_real_escape_string().

Return Value

The length of the value placed into to, excluding the terminating NULL.

mysql_fetch_field()
Returns the definition of one column of a result set as a MYSQL_FIELD structure.

Only the following attributes of the MYSQL_FIELD structure are supported: flag, name,
name_length, org_name, org_name_length, type, and max_length.

• The flag attribute supports only the following values: NOT_NULL_FLAG, NUM_FLAG, and
BINARY_FLAG.

• The attribute org_name is set to have the same value as name attribute.

• The attribute org_name_length is set to have the same value as name_length
attribute.

Return value

The MYSQL_FIELD structure for the current column. NULL if no columns are left.

mysql_fetch_field_direct()
Retrieves the column's field definition for a specified field number as a MYSQL_FIELD
structure.

Return Value

Field definition for the specific field. NULL if an error occurred, or if field number fieldnr
is not in range.

mysql_fetch_fields()
Returns an array of all MYSQL_FIELD structures for a result set. Each MYSQL_FIELD
structure gives the field definition for one column of the result set.

Chapter 7
Available Oracle Support for MySQL APIs

7-13

Return Value

NULL if an error occurred.

mysql_fetch_lengths()
Returns an array of lengths of the column on the current row.

Return Value

An array of unsigned long integers that represent the size of each column. NULL if an
error occurred.

mysql_fetch_row()
Retrieves the next row of a result set.

Return Value

A MYSQL_ROW structure for the next row. NULL if there are no more rows to retrieve
or if an error occurred.

mysql_field_count()
Returns the number of columns in the result set for the recent query on the
connection.

Return Value

Number of fields in the result set within the MYSQL structure.; 0 if an error occurred.

mysql_field_seek()
Sets the field cursor to the specified offset.

Return Value

The offset to the field set

mysql_field_tell()
Returns the position of the field; used for the current field.

Return Value

Offset of the current field

mysql_free_result()
Frees the memory allocated for the result set.

Return Value

None

Chapter 7
Available Oracle Support for MySQL APIs

7-14

mysql_get_character_set_info()
Not supported in Oracle Database 12c. Applications that rely on results of this call
must change their application logic.

Return Value

None

mysql_get_client_info()
Returns MySQL version number defined by MYSQL_SERVER_VERSION macro in
mysql_version.h header file, in string format. The macro definition is used in the
mysql_version.h file that builds oramysql library; it is not the mysql_version.h file used
by the application.

Return Value

A character string that represents MySQL client library version.

mysql_get_client_version()
Returns current MySQL version, as defined by MYSQL_VEERSION_ID macro in the
mysql_version.h header file. The macro definition is used in the mysql_version.h file
that builds oramysql library; it is not the mysql_version.h file used by the application.

Return Value

An unsigned long integer for MySQL version stored in the MYSQL_VERSION_ID macro.
The macro definition is used in the mysql_version.h file that builds oramysql library; it
is not the mysql_version.h file used by the application.

mysql_get_host_info()
Returns the host name used to connect to the database.

Return Value

A character string of host name. NULL in case of an error.

mysql_get_proto_info()
This is a no-op under Oracle environment. Applications that rely on results of this call
must change their application logic.

Return Value

0

mysql_get_server_info()
Returns the Oracle server version in text string format, such as "12.1.0.1.0".

Chapter 7
Available Oracle Support for MySQL APIs

7-15

Applications that rely on results of this call must change their application logic.

Return Value

A character string that represents Oracle Server Number. NULL if an error occurred.

mysql_get_server_version()
Returns Oracle Database version number, such as 120100. This is in integer XXYYZZ
format, where XX represents the major version, YY represents the minor version, and ZZ
represents the version within the release level.

Return Value

Oracle Database version number. 0 if an error occurred.

mysql_get_ssl_cipher()
This is a no-op API. Applications that rely on results of this call must change their
application logic.

Return Value

NULL

mysql_hex_string()
Encodes string specified by from parameter to hexadecimal format. Each character is
encoded as two hexadecimal digits. The result is placed in the to parameter, with a
terminal NULL byte.

The to buffer should have a minimum size equal to length*2+1 bytes.

Return Value

Length of the value placed into to parameter, excluding the terminating NULL character.

mysql_info()
This is a no-op API. Applications that rely on results of this call must change their
application logic.

Return Value

NULL

mysql_init()
Allocates a MYSQL structure if NULL is passed. Otherwise, this call initializes the passed
in MYSQL structure.

Return Value

Initialized MYSQL structure. NULL if MYSQL structure cannot be allocated or initialized.

Chapter 7
Available Oracle Support for MySQL APIs

7-16

mysql_insert_id()
This is a no-op API. Applications that rely on results of this call must change their
application logic.

Return Value

0

mysql_kill()
This is a no-op API. Applications that rely on results of this call must change their
application logic.

Return Value

0, and non-zero if an invalid MYSQL structure is passed in.

mysql_library_end()
Terminates oramysql library.

Return Value

none

mysql_library_init()
Initializes oramysql library.

Return Value

0 if successful, non-zero in case of a failure to initialize MySQL library.

mysql_list_dbs()
Returns a list of database names that match the wild parameter on the server.

To use this API, the DBA creates the oramysql_dbs_view view, and grants privileges to
PUBLIC.

For Oracle Database 12c

For Oracle Database 12c, view oramysql_dbs_view is based on the V$DATABASE and
V$PDBS system objects.

When connecting to Oracle Database 12c and subsequent versions, use the following
SQL script to create the view oramysql_dbs_view in Oracle Database 12c:

create view oramysql_dbs_view(name) as select left.name from v$pdbs left
 union select right.name from v$database right;
create public synonym oramysql_dbs_view for oramysql_dbs_view;
grant select on oramysql_dbs_view to public;

Chapter 7
Available Oracle Support for MySQL APIs

7-17

If oramysql_dbs_view view does not exist when an application calls the mysql_list_dbs()
function, the information is retrieved from the V$ PDBS and V$ DATABASE tables.
However, this generates errors if the user does not have privileges to access these
tables.

For Oracle Databases prior to Oracle Database 12c

Use the following SQL script to create the view oramysql_dbs_view in the Oracle
Database:

create view oramysql_dbs_view(name) as select name form v$database;
create public synonym oramysql_dbs_view for oramysql_dbs_view;
grant select on oramysql_dbs_view to public;

If the view does not exist, the wild parameter is ignored, and the call executes the
following SQL statement:

select SYS_CONTEXT('USERENV', 'DB_NAME') from DUAL;

Return Value

NULL if an error occurs, a MYSQL_RES result set if successful.

mysql_list_fields()
Returns the column names that match the wild parameter for a specified table.

Return Value

NULL if an error occurred, a MySql result set if successful.

mysql_list_processes()
This is a no-op API. Applications that rely on results of this call must change their
application logic.

Return Value

NULL

mysql_list_tables()
This is a no-op function. Applications that rely on results of this call must change their
application logic.

Return Value

NULL

mysql_more_results()
Verifies if more results are available from the currently executing statement.

Return Value

TRUE if more results exist; FALSE if no more result sets exist.

Chapter 7
Available Oracle Support for MySQL APIs

7-18

mysql_next_result()
Gets the next result set.

Returns Value

0 if successful and there are more results; -1 if successful and there are no more
results; >0 if an error occurred.

mysql_num_fields()
Returns the number of columns in a result set.

Return Value

An unsigned integer that represents the number of columns in the result set; returns 0
if not successful.

mysql_num_rows()
Returns the number of rows in the result set.

Return Value

The number of rows in the result set; otherwise 0.

mysql_options()
This is a no-op function. Applications that rely on results of this call must change their
application logic.

Return Value

0 if successful, non-zero if an invalid MYSQL structure is passed in.

mysql_ping()
If the server cannot be accessed, returns an error with connection failure details.

Return Value

0 if success, non-zero if error occurred.

mysql_query()
Executes the SQL statement pointed to by the null-terminated string.

Return Value

0 if successful, non-zero if an error occurred.

Chapter 7
Available Oracle Support for MySQL APIs

7-19

mysql_read_query_result()
This is a no-op function; query results from mysql_send_query() are available when that
call completes.

Return Value

0

mysql_real_connect()
The db parameter is not used in Oracle Database 12c. Existing applications using this
parameter to connect to a db must supply the connection identifier or service name in
the host parameter. The connection string has the following format:

[//]host[:port][/service_name][:server][/instance_name]

For instance, the host parameter would appear as: ca-tools3.us.oracle.com/orcl3,
when connecting to host ca-tools3.us.oracle.com with SID orcl3.

The parameters db, port, unix_socket, and client_flag are not in use. When the user
must specify the port, it has to be in the syntax method used for host parameter.

Return Value

MYSQL structure initialized if successful. NULL in case initialization does not work.

mysql_real_escape_string()
Encodes the string in the source (from parameter) and the result is placed in the
destination (to parameter) and a terminating null byte is appended.

Note that only single-quote characters are escaped. Each single-quote is escaped
using Oracle semantics. The to buffer should have a minimum size of length*2+1
bytes. Each single quote in the original string is replaced by two consecutive single
quotes.

See mysql_escape_string().

Return Value

The length of the value placed into to buffer, excluding the terminating NULL. 0
otherwise.

mysql_real_query()
This function executes the query string.

Return Value

0 if successful, non-zero in case of an error.

Chapter 7
Available Oracle Support for MySQL APIs

7-20

mysql_refresh()
This is a no-op API. Applications that rely on results of this call must change their
application logic.

Return Value

0 if successful. Non-zero if an invalid MySQL structure was passed in.

mysql_reload()
Reloads the grant tables. This function is deprecated, and has not been implemented.
Use mysql_query() instead. Applications that rely on results of this call must change
their application logic.

mysql_rollback()
Rolls back the current transaction defined as the set of statements executed after the
last mysql_commit() or mysql_real_connect() call. If the application is running under
object mode, the modified or updated objects in the object cache for this transaction
are also rolled back.

A mysql_rollback() call supports the default mode in Oracle Database 12c. It therefore
ignores the completion type system variable.

Existing applications that use this API to perform MySQL-specific completion type
operations must change their application logic.

Return Value

Error if an attempt is made to roll back a global transaction that is not currently active.

mysql_row_seek()
Sets to a particular row and returns offset of previous row.

Return Value

Offset of previous row in MYSQL_ROW_OFFSET structure.

mysql_row_tell()
Gives the current row position in the result set.

Return Value

Offset of current row in MYSQL_ROW_OFFSET structure. NULL if an error occurred.

mysql_select_db()
This is a no-op API. Applications that rely on results of this call must change their
application logic.

Chapter 7
Available Oracle Support for MySQL APIs

7-21

Return Value

0

mysql_send_query()
Sends a query. This function is not asynchronous in oramysql library. Instead, the call
blocks until the query is executed.

Return Value

0 if successful, non-zero if an error occurred.

mysql_server_end()
Terminates and cleans up oramysql library.

Return Value

none

mysql_server_init()
Initializes the oramysql client library before any connections are created. The function
mysql_library_init() macro is defined to be mysql_server_init() in mysql.h header file.
This call is not thread-safe. Only one thread is expected to call it.

Return Value

0 if successful, non-zero if an error occurred.

mysql_set_character_set()
This is a no-op API. Applications that rely on results of this call must change their
application logic.

Return Value

0

mysql_set_local_infile_default()
This is a no-op API. Applications that rely on results of this call must change their
application logic.

Return Value

0

mysql_set_local_infile_handler()
This is a no-op API. Applications that rely on results of this call must change their
application logic.

Chapter 7
Available Oracle Support for MySQL APIs

7-22

Return Value

0

mysql_set_server_option()
This is a no-op API. Applications that rely on results of this call must change their
application logic.

Return Value

0

mysql_shutdown()
Helps shutdown an Oracle Database instance. Before using the mysql_shutdown API,
the C program must connect to server with SYSDBA or SYSOPER session.

The parameters mysql_shutdown_level and mysql_enum_shutdown_level are ignored.
Internally, the OCIDBShutdown() call is executed in the OCI_DEFAULT mode.

Return Value

0 if successful. Non-zero if an error occurred.

mysql_sqlstate()
Returns SQLSTATE string which is not null-terminated. There are many SQLSTATE codes in
MySQL which are not in use.

Return Value

SQLSTATE code: 00000 - Success, or HY000 - All other errors.

mysql_ssl_set()
This is a no-op API. Applications that rely on results of this call must change their
application logic.

Return Value

0 if successful. Non-zero if an invalid MYSQL structure was passed.

mysql_stat()
This is a no-op API. Applications that rely on results of this call must change their
application logic.

Return Value

A string of 4 blanks (" ") if successful. NULL if an invalid MYSQL structure was passed.

Chapter 7
Available Oracle Support for MySQL APIs

7-23

mysql_stmt_affected_rows()
This function returns the number of rows affected by the execution on the prepared
statement.

Return Value

Number of rows affected by the DML operation if successful. (my_ulonglong)-1 if an
error occurred, or a SELECT statement was executed.

mysql_stmt_attr_get()
This is a no-op API. Applications that rely on results of this call must change their
application logic.

Return Value

0

mysql_stmt_attr_set()
This is a no-op API. Applications that rely on results of this call must change their
application logic.

Return Value

0

mysql_stmt_bind_param()
This function binds all the parameters in the prepared statement.

Return Value

0 if parameters are bound successfully. Non-zero if an error occurred.

mysql_stmt_bind_result()
Binds program variables for all SELECT list columns of a prepared statement.

Return Value

0 if successful. Non-zero if an error occurred.

mysql_stmt_close()
Closes a MYSQL_STMT object.

Return Value

0

Chapter 7
Available Oracle Support for MySQL APIs

7-24

mysql_stmt_data_seek()
This function seeks to get data for a particular row.

Return Value

None

mysql_stmt_errno()
Returns error number for the last error that occurred on the MYSQL_STMT object.

Return Value

none

mysql_stmt_error()
This function returns error message for the last error that occurred on the MYSQL_STMT
object.

Return Value

A const *char error message.

mysql_stmt_execute()
This function executes the prepared statement.

Return Value

0 if the statement executed successfully; non-zero if an error occurred.

mysql_stmt_fetch()
This function fetches one row in program variables bound by the
mysql_stmt_bind_result call.

Return Value

0 if one row is successfully fetched. MYSQL_NO_DATA if no more rows/data exists.
MYSQL_DATA_TRUNCATED if data truncation occurred. 1 if an error occurred.

mysql_stmt_fetch_column()
This function fetches one column from the current result set row.

Return Value

0 if the value was fetched successfully. Non-zero if an error occurred.

Chapter 7
Available Oracle Support for MySQL APIs

7-25

mysql_stmt_field_count()
Fetches the number of fields in the MYSQL_STMT object.

Return Value

0 if an error occurred; otherwise, the number of fields in the result set associated with
the MYSQL_STMT object.

mysql_stmt_free_result()
Frees the result set associated with the MYSQL_STMT object.

Return Value

0

mysql_stmt_init()
Creates a new MYSQL_STMT object from the MYSQL connection object.

Return Value

MYSQL_STMT object if successful. NULL if an error occurred.

mysql_stmt_insert_id()
This is a no-op API. Applications that rely on results of this call must change their
application logic.

Return Value

0

mysql_stmt_next_result()
This function is not implemented. Applications that rely on results of this call must
change their application logic.

Return Value

0

mysql_stmt_num_rows()
Returns the number of rows in a stored result set. In case of a non-stored (unbuffered
result set), it returns the total number of rows fetched so far.

Return Value

0 if an error occurred in fetching the number of rows.

Chapter 7
Available Oracle Support for MySQL APIs

7-26

mysql_stmt_param_count()
Returns the number of bind parameters in the prepared statement.

Return Value

0 if an error occurred in returning the number of bind parameters.

mysql_stmt_param_metadata()
This function is cast to MySql result set (MYSQL_RES *) NULL

Return Value

NULL

mysql_stmt_prepare()
Prepares a statement in the MYSQL_STMT for execution.

Return Value

0 if successful, non-zero if an error occurred.

mysql_stmt_reset()
Resets the prepared statement in the MYSQL_STMT.

Return Value

0

mysql_stmt_result_metadata()
Returns the metadata for the result of a SELECT statement that is executed through a
MYSQL_STMT object.

Return Value

A result set that describes the metadata of the prepared SELECT statement. NULL if an
error occurred.

mysql_stmt_row_seek()
Seeks to a row position and returns the offset of the previous row.

Return Value

An offset of the previous row in MYSQL_ROW_OFFSET structure.

mysql_stmt_row_tell()
Gives the current row position in the result set.

Chapter 7
Available Oracle Support for MySQL APIs

7-27

Return Value

Current row position. NULL if an error occurred.

mysql_stmt_send_long_data()
Sends parameter data to the server in parts.

The function mysql_stmt_bind_param() must be called first, then
mysql_stmt_send_long_data(), followed by mysql_stmt_execute().

The function can be called multiple times to send parts of a character or binary data
value for a column.

Return Value

0 if the data is sent to the server successfully, non-zero if an error occurred.

mysql_stmt_sqlstate()
Returns SQLSTATE string for the recent prepared statement. There are many SQLSTATE
codes in MySQL that are not used.

Return Value

SQLSTATE codes: "00000" - Success, or "HY0000" - All other errors.

mysql_stmt_store_result()
Stores the result set from the last query.

If the last query was a SELECT, a result set is returned. If the last statement was a non-
SELECT or error, a NULL result set is returned.

Return Value

A valid result set if successful, NULL if an error occurred, or a non-SELECT statement.

mysql_store_result()
Stores the result set from the last query.

If the last query was SELECT, returns a result set.

If the last statement was a non-SELECT or an error, a NULL result set is returned.

Return Value

A valid result set if successful; otherwise, NULL for errors or non-SELECT statements.

mysql_thread_end()
This is a no-op API. Applications that rely on results of this call must change their
application logic.

Chapter 7
Available Oracle Support for MySQL APIs

7-28

Return Value

none

mysql_thread_id()
Returns Oracle session identifier (SID) for the connection. This is obtained internally
by executing the following SQL statement:

select SYS_CONTEXT('USERENV', 'SID') from DUAL;

Applications that rely on results of this call must change their application logic.

Return Value

Oracle session identifier (SID). 0 if an error occurs.

mysql_thread_init()
This is a no-op API. Applications that rely on results of this call must change their
application logic.

Return Value

0

mysql_thread_safe()
The oramysql library is thread-safe, so this function always returns TRUE.

Return Value

TRUE

mysql_use_result()
Initiates a result set retrieval.

Return Value

NULL if an error occurred, a valid result set if successful.

mysql_warning_count()
This is a no-op API. Applications that rely on results of this call must change their
application logic.

Return Value

0 if successful, non-zero if an error occurred.

Chapter 7
Available Oracle Support for MySQL APIs

7-29

8
API Reference for SQL Translation of
JDBC Applications

Consider the APIs that are part of the oracle.jdbc package, specifically the elements
of oracle.jdbc that assist in SQL translation. To successfully migrate JDBC
applications, it is important to understand the translation properties, interfaces, and the
error translation mechanisms.

See Also:

• Complete documentation of the oracle.jdbc package in Oracle Database
JDBC Java API Reference

Translation Properties
The translation properties are listed in Table 8-1

Table 8-1 Translation Properties

Property Description

sqlTranslationProfile Specifies the name of the transaction profile

sqlErrorTranslationFile Specifies the path of the SQL error translation file

sqlTranslationProfile
The property oracle.jdbc.sqlTranslationProfile specifies the name of the transaction
profile.

Declaration

oracle.jdbc.sqlTranslationProfile

Constant

OracleConnection.CONNECTION_PROPERTY_SQL_TRANSLATON_PROFILE

The value of the constant is oracle.jdbc.sqlTranslationProfile. This is also the
property name.

Property Value

The value is a string. There is no default value.

8-1

Remarks

The property sqlTranslationProfile can be set as either a system property or a
connection property. The property is required to use SQL translation. If this property is
set then all statements created by the connection have SQL translation enabled unless
otherwise specified.

sqlErrorTranslationFile
The property oracle.jdbc.sqlErrorTranslationFile specifies the path of the SQL error
translation file.

Declaration

oracle.jdbc.sqlErrorTranslationFile

Constant

Oracle.connection.CONNECTION_PROPERTY_SQL_ERROR_TRANSLATION_FILE.

Property Value

The value is a path name. It has no default value.

Exceptions

An error in establishing a connection results in a SQLException but without a valid
connection. However the SQL error translation file path is available either as a system
property or connection property and will be used to translate the error.

Remarks

This file is used only for translating errors which occur when connection establishment
fails. Once the connection is established this file is bypassed and is not considered
even if it contains the translation details for any error which occurs after the connection
is established. The property sqlErrorTranslationFile can be either a system property
or a connection property. The content of this file is used to translate Oracle
SQLExceptions into foreign SQLExceptions when there is no valid connection.

OracleTranslatingConnection Interface
This interface is only implemented by a Connection object that supports SQL
Translation. The main purpose of this interface is to get non-translating statements
(including preparedStatement and CallableStatement) from a translating connection.

The public interface oracle.jdbc.OracleTranslatingConnection defines the factory
methods for creating translating and non-translating Statement objects.

The OracleTranslatingConnection enumerations are listed in Table 8-2:

Table 8-2 OracleTranslatingConnection Enumeration

Name Description

SqlTranslationVersion Provides the Keys to the map

Chapter 8
OracleTranslatingConnection Interface

8-2

The OracleTranslatingConnection methods are listed in Table 8-3:

Table 8-3 OracleTranslatingConnection Methods

Name Description

createStatement() Creates a Statement object with option to translate or not
translate SQL.

prepareCall() Creates a CallableStatement object with option to translate or
not translate SQL.

prepareStatement() Creates a PreparedStatement object with option to translate or
not translate SQL.

getSQLTranslationVersions() Returns a map of all the translation versions of the query during
SQL Translation.

SqlTranslationVersion
The SqlTranslationVersion enumerated values specify the keys to the
getSQLTranslationVersions() method.

Syntax

 public enum SqlTranslationVersion {
 ORIGINAL_SQL,
 JDBC_MARKER_CONVERTED,
 TRANSLATED
 }

The following table lists all the SqlTranslationVersion enumeration values with a
description of each enumerated value.

Member Name Description

ORIGINAL_SQL Specifies the original vendor specific sql

JDBC_MARKER_CONVERTED
Specifies that JDBC parameter markers ('?') is replaced with
Oracle style parameter markers (':b<n>'). Hence consecutive '?'s
will be converted to :b1, :b2, :b3 and so on. This change is
required to take care of any changes in the order of parameters
during translation. This version is sent to the server for translation.
Hence any custom translations on the server must be registered
from this version and not the ORIGINAL_SQL version.

TRANSLATED
Specifies the translated query returned from the server

createStatement()
This group of methods create a Statement object, and specify whether the statement
supports SQL translation. If the value of parameter translating is TRUE, then the
returning statement supports translation and is identical to the corresponding version
in the java.sql.Connection interface without the translating argument. If the value is
FALSE, then the returning statement does not support translation.

Chapter 8
OracleTranslatingConnection Interface

8-3

Syntax Description

public Statement createStatement(
 boolean translating)
throws SQLException;

Creates a Statement object with option to
translate or not translate SQL.

public Statement createStatement(
 int resultSetType, int
resultSetConcurrency, boolean translating)
throws SQLException;

Creates a Statement object with the given
type and concurrency with option to translate
or not translate SQL.

public Statement createStatement(
 int resultSetType,
 int resultSetConcurrency,
 int resultSetHoldability,
 boolean translating)
throws SQLException;

Creates a Statement object with the given
type, concurrency, and holdability with option
to translate or not translate SQL.

Parameters

Parameter Description

resultSetType
Specifies the int value representing the result set type.

resultSetConcurrency
Specifies the int value representing the result set concurrency
type.

resultSetHoldability Specifies the int value representing the result set holdability type.

translating
Specifies whether or not the statement supports translation.

Return Value

The createStatement() method returns a Statement object.

Exceptions

The createStatement() method throws SQLException.

Example

Import the following packages before running the example:

import java.sql.*;
import java.util.Properties;

import oracle.jdbc.OracleConnection;
import oracle.jdbc.OracleTranslatingConnection;
import oracle.jdbc.pool.OracleDataSource;

Run the following SQL statements:

conn system/manager;
grant create sql translation profile to HR;

Chapter 8
OracleTranslatingConnection Interface

8-4

conn HR/hr;
drop table sample_tab;
create table sample_tab (c1 number, c2 varchar2(100));
insert into sample_tab values (1, 'A');
insert into sample_tab values (2, 'B');
commit;
exec dbms_sql_translator.drop_profile('FOO');
exec dbms_sql_translator.create_profile('FOO');
exec dbms_sql_translator.register_sql_translation('FOO','select row of (c1, c2)
from sample_tab','select c1, c2 from sample_tab');

Example 8-1 Using the createStatement() method

public class SQLTransStmt
{
 static String url="jdbc:oracle:thin:@localhost:5521:orcl";
 static String user="HR", pwd="hr";
 static String PROFILE = "FOO";
 static String primitiveSql = "select row of (c1, c2) from sample_tab";

 public static void main(String[] args) throws Exception
 {
 OracleDataSource ods = new OracleDataSource();
 ods.setURL(url);

 Properties props = new Properties();
 props.put("user", user);
 props.put("password", pwd);
 props.put(OracleConnection.CONNECTION_PROPERTY_SQL_TRANSLATION_PROFILE, PROFILE);
 ods.setConnectionProperties(props);
 Connection conn = ods.getConnection();
 System.out.println("connection for SQL translation: "+conn);

 try{
 OracleTranslatingConnection trConn = (OracleTranslatingConnection) conn;
 System.out.println("Call:
oracle.jdbc.OracleTranslatingConnection.createStatement(true)");
 Statement trStmt = trConn.createStatement(true);
 System.out.println("executeQuery for: "+primitiveSql);
 ResultSet trRs = trStmt.executeQuery(primitiveSql);
 while (trRs.next())
 System.out.println("C1:"+trRs.getInt(1)+", C2:"+trRs.getString(2));
 trRs.close();
 trStmt.close();
 }catch (Exception e) {
 e.printStackTrace();
 }

 try{
 OracleTranslatingConnection trConn = (OracleTranslatingConnection) conn;
 System.out.println("Call:
oracle.jdbc.OracleTranslatingConnection.createStatement(false)");
 Statement trStmt = trConn.createStatement(false);
 System.out.println("executeQuery for: "+primitiveSql);
 ResultSet trRs = trStmt.executeQuery(primitiveSql);
 while (trRs.next())
 System.out.println("C1:"+trRs.getInt(1)+", C2:"+trRs.getString(2));
 trRs.close();
 trStmt.close();
 }catch (Exception e) {
 System.out.println("expected Exception: "+e.getMessage());

Chapter 8
OracleTranslatingConnection Interface

8-5

 }

 try{
 OracleTranslatingConnection trConn = (OracleTranslatingConnection) conn;
 System.out.println("Call: oracle.jdbc.OracleTranslatingConnection.
createStatement(ResultSet.TYPE_SCROLL_SENSITIVE, ResultSet.CONCUR_UPDATABLE, true)");
 Statement trStmt = trConn.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,
ResultSet.CONCUR_UPDATABLE, true);
 System.out.println("executeQuery for: "+primitiveSql);
 ResultSet trRs = trStmt.executeQuery(primitiveSql);
 while (trRs.next())
 System.out.println("C1:"+trRs.getInt(1)+", C2:"+trRs.getString(2));
 System.out.println("move resultset back to 2nd row...");
 trRs.absolute(2);
 while (trRs.next())
 System.out.println("C1:"+trRs.getInt(1)+", C2:"+trRs.getString(2));
 trRs.close();
 trStmt.close();
 }catch (Exception e) {
 e.printStackTrace();
 }

 try{
 conn.setAutoCommit(false);
 OracleTranslatingConnection trConn = (OracleTranslatingConnection) conn;
 System.out.println("Call:
oracle.jdbc.OracleTranslatingConnection.createStatement(ResultSet.TYPE_SCROLL_SENSITI
VE, ResultSet.CONCUR_UPDATABLE,
 ResultSet.HOLD_CURSORS_OVER_COMMIT, true)");
 Statement trStmt = trConn.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,
ResultSet.CONCUR_UPDATABLE, ResultSet.HOLD_CURSORS_OVER_COMMIT, true);
 System.out.println("executeQuery for: "+primitiveSql);
 ResultSet trRs = trStmt.executeQuery(primitiveSql);
 trRs.last();
 System.out.println("C1:"+trRs.getInt(1)+", C2:"+trRs.getString(2));
 trRs.updateString(2, "Hello");
 trRs.updateRow();
 conn.commit();
 System.out.println("accept the update and list all of the rows again...");
 trRs.beforeFirst();
 while (trRs.next())
 System.out.println("C1:"+trRs.getInt(1)+", C2:"+trRs.getString(2));
 trRs.close();
 trStmt.close();
 }catch (Exception e) {
 e.printStackTrace();
 }

 conn.close();
 }
}

prepareCall()
This group of methods create a CallableStatement object, and specify whether the
statement supports SQL translation. If the value of parameter translating is TRUE, then
the returning statement supports translation. If the value is FALSE, then the returning
statement does not support translation.

Chapter 8
OracleTranslatingConnection Interface

8-6

Syntax Description

public CallableStatement prepareCall(
 String sql,
 boolean translating)
throws SQLException;

Creates a CallableStatement object with
option to translate or not translate SQL

public CallableStatement prepareCall(
 String sql,
 int resultSetType,
 int resultSetConcurrency,
 boolean translating)
throws SQLException;

Creates a CallableStatement object with
the given type and concurrency with option
to translate or not translate SQL

public CallableStatement prepareCall(
 String sql,
 int resultSetType,
 int resultSetConcurrency,
 int resultSetHoldability,
 boolean translating)
throws SQLException;

Creates a CallableStatement object with
the given type, concurrency, and holdability
with option to translate or not translate SQL

Parameters

Parameter Description

sql Specifies the String SQL statement value to be sent to the
database; may contain one or more parameters

resultSetType
Specifies the int value representing the result set type

resultSetConcurrency
Specifies the int value representing the result set concurrency
type

resultSetHoldability Specifies the int value representing the result set holdability type

translating
Specifies whether or not the statement supports translation

Return Value

The prepareCall() method returns a CallableStatement object.

Exceptions

The prepareCall() method throws SQLException.

Example

Import the following packages before running the example:

import java.sql.*;
import java.util.Properties;

import oracle.jdbc.OracleConnection;
import oracle.jdbc.OracleTranslatingConnection;
import oracle.jdbc.pool.OracleDataSource;

Chapter 8
OracleTranslatingConnection Interface

8-7

Run the following SQL statements:

conn system/manager;
grant create sql translation profile to HR;

conn HR/hr;

create or replace procedure sample_proc (p_num number, p_vchar in out varchar2) AS
begin
 p_vchar := 'p_num'||p_num||', p_vchar'||p_vchar;
end;
/

exec dbms_sql_translator.drop_profile('FOO');
exec dbms_sql_translator.create_profile('FOO');
exec dbms_sql_translator.register_sql_translation('FOO', 'exec
sample_proc(:b1, :b2)', '{call sample_proc(:b1, :b2)}');

Example 8-2 Using the prepareCall() method

public class SQLTransCstmt
{
 static String url="jdbc:oracle:thin:@localhost:5521:orcl";
 static String user="HR", pwd="hr";
 static String PROFILE = "FOO";
 static String primitiveSql = "exec sample_proc(:b1, :b2)";

 public static void main(String[] args) throws Exception
 {
 OracleDataSource ods = new OracleDataSource();
 ods.setURL(url);

 Properties props = new Properties();
 props.put("user", user);
 props.put("password", pwd);
 props.put(OracleConnection.CONNECTION_PROPERTY_SQL_TRANSLATION_PROFILE,
 PROFILE);
 ods.setConnectionProperties(props);
 Connection conn = ods.getConnection();
 System.out.println("connection for SQL translation: "+conn);

 try{
 OracleTranslatingConnection trConn = (OracleTranslatingConnection) conn;
 System.out.println(
 "Call: oracle.jdbc.OracleTranslatingConnection.prepareCall(sql, true)");
 CallableStatement trStmt = trConn.prepareCall(primitiveSql, true);
 trStmt.setInt("b1", 1);
 trStmt.setString("b2", "A");
 trStmt.registerOutParameter("b2", Types.VARCHAR);
 System.out.println("execute for: "+primitiveSql);
 trStmt.execute();
 System.out.println("out param: "+trStmt.getString("b2"));

 trStmt.close();
 }catch (Exception e) {
 e.printStackTrace();
 }

 try{
 OracleTranslatingConnection trConn = (OracleTranslatingConnection) conn;
 System.out.println(

Chapter 8
OracleTranslatingConnection Interface

8-8

 "Call: oracle.jdbc.OracleTranslatingConnection.prepareCall(sql, false)");
 CallableStatement trStmt = trConn.prepareCall(primitiveSql, false);
 trStmt.setInt(1, 1);
 trStmt.setString(2, "A");
 System.out.println("execute for: "+primitiveSql);
 ResultSet trRs = trStmt.executeQuery();
 while (trRs.next())
 System.out.println("C1:"+trRs.getInt(1)+", C2:"+trRs.getString(2));
 trRs.close();

 trStmt.close();
 }catch (Exception e) {
 System.out.println("expected Exception: "+e.getMessage());
 }

 conn.close();
 }
}

prepareStatement()
This group of methods create a PreparedStatement object, and specify whether the
statement supports SQL translation. If the value of parameter translating is TRUE, then
the returning statement supports translation. If the value is FALSE, then the returning
statement does not support translation.

Syntax Description

public PreparedStatement prepareStatement(
 String sql,
 boolean translating)
throws SQLException;

Creates a PreparedStatement object
with option to translate or not translate
SQL

public PreparedStatement prepareStatement(
 String sql,
 int resultSetType,
 int resultSetConcur,
 boolean translating)
throws SQLException;

Creates a PreparedStatement object
with the given type and concurrency
with option to translate or not translate
SQL

public PreparedStatement prepareStatement(
 String sql,
 int resultSetType,
 int resultSetConcur,
 int resultSetHold,
 boolean translating)
throws SQLException;

Creates a PreparedStatement object
with the given type, concurrency, and
holdability with option to translate or not
translate SQL

Parameter Description

sql Specifies the String SQL statement value to be sent to the
database; may contain one or more parameters

resultSetType
Specifies the int value representing the result set type

Chapter 8
OracleTranslatingConnection Interface

8-9

Parameter Description

resultSetConcur
Specifies the int value representing the result set concurrency
type

resultSetHold Specifies the int value representing the result set holdability type

translating
Specifies whether or not the statement supports translation

Return Value

The prepareStatement() method returns a PreparedStatement object.

Usage Notes

When the "?" placeholder is used with the prepareStatement() method, the driver
internally changes the "?" to Oracle-style parameters because the server side
translator can only work with Oracle-style markers. This is necessary to distinguish the
bind variables. If not, any change in the order of the bind variables will be
indistinguishable. The replaced oracle style markers follow the format :b<n> where <n>
is an incremental number. For example, exec sample_proc(?,?) becomes exec
sample_proc(:b1,:b2).

To further exemplify, consider a scenario of a vendor format where the vendor query
selecting top three rows is SELECT * FROM employees WHERE first_name=? AND
employee_id=? TOP 3. The query has to be converted to oracle dialect. In this case the
following translation is to be registered on the server:

From:

SELECT * FROM employees WHERE first_name=:b1 AND employee_id=:b2 TOP 3

To:

SELECT * FROM employees WHERE first_name=:b1 AND employee_id=:b2 AND ROWNUM <= 3

See SqlTranslationVersion and "SQL Translation of JDBC Applications" for more
information.

Exceptions

The prepareStatement() method throws SQLException.

Example

Import the following packages before running the example:

import java.sql.*;
import java.util.Properties;

import oracle.jdbc.OracleConnection;
import oracle.jdbc.OracleTranslatingConnection;
import oracle.jdbc.pool.OracleDataSource;

Run the following SQL statements:

conn system/manager;
grant create sql translation profile to HR;

Chapter 8
OracleTranslatingConnection Interface

8-10

conn HR/hr;
drop table sample_tab;
create table sample_tab (c1 number, c2 varchar2(100));
insert into sample_tab values (1, 'A');
insert into sample_tab values (1, 'A');
insert into sample_tab values (1, 'A');
commit;
exec dbms_sql_translator.drop_profile('FOO');
exec dbms_sql_translator.create_profile('FOO');
exec dbms_sql_translator.register_sql_translation('FOO','select row of select c1,
c2 from sample_tab
 where c1=:b1 and c2=:b2','select c1, c2 from sample_tab where c1=:b1 and c2=:b2');

Example 8-3 Using the prepareStatement() method

public class SQLTransPstmt
{
 static String url="jdbc:oracle:thin:@localhost:5521:orcl";
 static String user="HR", pwd="hr";
 static String PROFILE = "FOO";
 static String primitiveSql = "select row of select c1, c2 from sample_tab
 where c1=:b1 and c2=:b2";

 public static void main(String[] args) throws Exception
 {
 OracleDataSource ods = new OracleDataSource();
 ods.setURL(url);

 Properties props = new Properties();
 props.put("user", user);
 props.put("password", pwd);
 props.put(OracleConnection.CONNECTION_PROPERTY_SQL_TRANSLATION_PROFILE,
 PROFILE);
 ods.setConnectionProperties(props);
 Connection conn = ods.getConnection();
 System.out.println("connection for SQL translation: "+conn);

 try{
 OracleTranslatingConnection trConn = (OracleTranslatingConnection) conn;
 System.out.println("Call:
 oracle.jdbc.OracleTranslatingConnection.prepareStatement(sql, true)");
 PreparedStatement trStmt = trConn.prepareStatement(primitiveSql, true);
 trStmt.setInt(1, 1);
 trStmt.setString(2, "A");
 System.out.println("executeQuery for: "+primitiveSql);
 ResultSet trRs = trStmt.executeQuery();
 while (trRs.next())
 System.out.println("C1:"+trRs.getInt(1)+", C2:"+trRs.getString(2));
 trRs.close();
 trStmt.close();
 }catch (Exception e) {
 e.printStackTrace();
 }

 try{
 OracleTranslatingConnection trConn = (OracleTranslatingConnection) conn;
 System.out.println("Call:
 oracle.jdbc.OracleTranslatingConnection.prepareStatement(sql, false)");
 PreparedStatement trStmt = trConn.prepareStatement(primitiveSql, false);
 trStmt.setInt(1, 1);
 trStmt.setString(2, "A");

Chapter 8
OracleTranslatingConnection Interface

8-11

 System.out.println("executeQuery for: "+primitiveSql);
 ResultSet trRs = trStmt.executeQuery();
 while (trRs.next())
 System.out.println("C1:"+trRs.getInt(1)+", C2:"+trRs.getString(2));
 trRs.close();

 trStmt.close();
 }catch (Exception e) {
 System.out.println("expected Exception: "+e.getMessage());
 }

 try{
 OracleTranslatingConnection trConn = (OracleTranslatingConnection) conn;
 System.out.println("Call:
 oracle.jdbc.OracleTranslatingConnection.prepareStatement(
 sql, ResultSet.TYPE_SCROLL_SENSITIVE, ResultSet.CONCUR_UPDATABLE, true)");
 PreparedStatement trStmt = trConn.prepareStatement(
 primitiveSql, ResultSet.TYPE_SCROLL_SENSITIVE,
 ResultSet.CONCUR_READ_ONLY, true);
 trStmt.setInt(1, 1);
 trStmt.setString(2, "A");
 System.out.println("executeQuery for: "+primitiveSql);
 ResultSet trRs = trStmt.executeQuery();
 while (trRs.next())
 System.out.println("C1:"+trRs.getInt(1)+", C2:"+trRs.getString(2));

 System.out.println("trRs.beforeFirst and show resultSet again...");
 trRs.beforeFirst();
 while (trRs.next())
 System.out.println("C1:"+trRs.getInt(1)+", C2:"+trRs.getString(2));
 trRs.close();
 trStmt.close();
 }catch (Exception e) {
 e.printStackTrace();
 }

 conn.close();
 }
}

getSQLTranslationVersions()
Returns a map of all the translation versions of the query during SQL Translation. In
case of an exception, and if suppressExceptions is true, then the translated version in
the map is NULL.

Syntax

public Map<SqlTranslationVersion, String> getSqlTranslationVersions(
 String sql,
 boolean suppressExceptions)
throws SQL Exception;

Return Value

Map with all translation versions of a query. See SqlTranslationVersion enum for more
details about returning versions.

Chapter 8
OracleTranslatingConnection Interface

8-12

Exception

This method throws SQLException if there is a problem in query translation, provided
suppressExceptions is false.

Error Translation Configuration File
An XML configuration file (path) is provided as a value of the
oracle.jdbc.sqlErrorTranslationFile property. This file contains the translations
information for errors. These errors occur when a connection to the server cannot be
established and thus translation cannot happen on the server. Error messages are of
the type that define the state of the database that prevents the connection from being
established.

The structure of the configuration XML file is defined in the DTD as follows:

<!DOCTYPE LocalTranslationProfile[

<!ELEMENT LocalTranslationProfile (Exception+)>
<!ELEMENT Exception (ORAError, ErrorCode, SQLState)>
<!ELEMENT ORAError (#PCDATA)>
<!ELEMENT ErrorCode (#PCDATA)>
<!ELEMENT SQLState (#PCDATA)>
]>

where,

• ORAError is an int value and specifies the error code for the oracle error.

• ErrorCode is an int value and specifies the vendor error code, that is, the
translated code.

• SQLState is a String value and specifies the vendor SQL state.

Chapter 8
Error Translation Configuration File

8-13

Glossary

adapter
A real-time, proprietary tool used to enable access to data stored in one database from
another database. Adapters are commonly used to translate SQL, map data types,
and facilitate the integration of SQL statements, triggers, and stored procedures.

custom SQL translation
A scenario in which users can register their customer-specific translations of SQL
statements with the SQL Translation Profile. During the translation of non-Oracle
statements, the profile looks up the custom translations first. Then, if no match is
found, it invokes the SQL Translator.

data integration
The exchange of data between different databases, either asynchronously in real-time
transactions or synchronously as batch processes.

data integration framework
A set of tools and processes used to enable data exchanges between different
databases. Traditional frameworks include many nightly processes such as large
batch extractions and feeds, and bulk loading of data. Newer frameworks can include
small daily processes and feeds occurring in near real time.

database schema migration
The process of identifying and converting tables, columns, and other objects in a non-
Oracle schema to conform to the naming, size, and other conventions required by
Oracle Database.

error translation
A scenario in which users can register vendor-specific translations of error codes and
messages with the SQL Translation Profile. During SQL execution, client applications
rely on vendor-specific error codes and messages. When errors occur, the translated
error codes and messages are returned instead of the Oracle error codes and
messages.

migration
The process of modifying a non-Oracle application, including all of its components
(such as architecture, data, SQL code, and client) to use the Oracle RDBMS rather
than a proprietary database management system.

Glossary-1

migration repository
A data store in Oracle Database that Oracle SQL Developer uses to manage the
metadata for the source and target schema models during a migration. Multiple
migration repositories can be used to migrate from several databases to Oracle
Database at the same time.

Oracle Database Gateways
A set of Oracle products that support data integration with non-Oracle systems
synchronously using consistent APIs.

Oracle GoldenGate
An Oracle product that supports modular, transaction-level data integration between
diverse data sources that are stored in SQL Server, Sybase, DB2, Oracle, and other
databases.

Oracle SQL*Loader
A fast, flexible, and free Oracle utility that supports loading data from flat files into
Oracle Database. It supports several data formats and many different encodings. It
also supports parallel data loading.

Oracle SQL Developer Migration Wizard
An Oracle tool that enables the migration of a third-party database to an Oracle
database in batch mode. Migration includes data, schemas, objects, triggers, and
stored procedures.

SQL dialect
A variation or extension of SQL implemented by a database vendor. When migrating
client applications from third-party databases to Oracle, all non-Oracle SQL
statements must be translated into Oracle SQL. Because these non-Oracle SQL
statements are embedded within the source code of client applications, locating and
translating them is a time-consuming, manual task. This release enhances the Oracle
database to accept non-Oracle SQL statements from external vendors, and translate
them automatically at run time before execution.

SQL Translation Profile
A database schema object that directs how non-Oracle SQL statements are translated
into Oracle SQL dialects. This schema also contains translations of error codes,
SQLSTATEs, and error messages to be returned when errors occur during the SQL
execution.

When migrating a client application with non-Oracle SQL statements to Oracle, the
user creates a SQL Translation Profile and configures it to translate the SQL
statements and errors for the application. At run time, the application sets the
translation profile in the Oracle database to translate its SQL statements and errors.

SQL Translator
The SQL Translator is a software component, provided by Oracle or third-party
vendors, which can be installed in Oracle Database. It translates the SQL statements

Glossary

Glossary-2

of a client program before they are processed by the Oracle Database SQL compiler.
If an error results from translated SQL statement execution, then Oracle Database
SQL compiler generates an Oracle error message.

SQLSTATE
A status parameter defined by the ANSI SQL standard. It is a 5-character string that
indicates the status of a SQL operation. Some of these values are:

• 00XXX: Unqualified Successful Completion

• 01XXX: Warning

• 02XXX: No Data

• 07XXX: Dynamic SQL Error

• 08XXX: Connection Exception

• 09XXX: Triggered Action Exception

Glossary

Glossary-3

Index

A
administrative routines APIs, 7-8
ATTR_RAISE_TRANSLATION_ERROR, 4-2

C
client library initialization and termination APIs,

7-8
connection management APIs, 7-8
createStatement(), 8-3
creating identity columns, 1-3

D
data types,mapping, 7-1
datetime and interval data types, 7-7

E
enhanced SQL to PL/SQL bind handling, 1-6
error handling, 7-7
error reporting APIs, 7-8

F
features supporting migration, 1-1

G
getSQLTranslationVersions(), 8-12

I
identity columns, 1-2
implicit statement results, 1-3
information routines APIs, 7-8
interface

OracleTranslatingConnection, 8-2

J
JDBC API, 8-1

configuration file, 8-13

JDBC API (continued)
configuration file (continued)
SQLErrorTranslation.xml, 8-13

methods
createStatement(), 8-3
getSQLTranslationVersions(), 8-12
prepareCall(), 8-6
prepareStatement(), 8-9

OracleTranslatingConnection interface, 8-2
translation properties, 8-1

sqlErrorTranslationFile, 8-2
sqlTranslationProfile, 8-1

JDBC driver support for application migration, 1-8
JDBC support for implicit results, 1-3

L
liboramysql driver, 6-1
liboramysql library

connecting, 6-2
connecting to Oracle Database, 6-5
error handling, 6-5
expected differences, 6-5
globalization, 6-5
migration overview, 6-2
supported platforms, 6-5
usage, 6-3

M
mapping data types, 7-1

Oracle MySQL client library driver, 7-1
mapping Oracle data types to MySQL data types,

7-1
methods

createStatement(), 8-3
getSQLTranslationVersions(), 8-12
prepareCall(), 8-6
prepareStatement(), 8-9

Migrating a Sybase JDBC application, 5-1
capturing migration, 5-3
converting migration, 5-6, 5-7
generating migration, 5-9
moving the data, 5-10
setting up migration, 5-2

Index-1

migration support for other database vendors,
1-10

miscellaneous APIs, 7-8
my_init(), 7-9
MySQL APIs, 7-8
MySQL client library driver

installation, 6-2
mysql_affected_rows(), 7-10
mysql_autocommit(), 7-10
mysql_change_user(), 7-10
mysql_character_set_name(), 7-10
mysql_close(), 7-11
mysql_commit(), 7-11
mysql_connect(), 7-11
mysql_create_db(), 7-11
mysql_data_seek(), 7-11
mysql_debug_info(), 7-12
mysql_debug(), 7-11
mysql_drop_db(), 7-12
mysql_dump_debug_info(), 7-12
mysql_eof(), 7-12
mysql_errno(), 7-12
mysql_error(), 7-12
mysql_escape_string(), 7-13
mysql_fetch_field_direct(), 7-13
mysql_fetch_field(), 7-13
mysql_fetch_fields(), 7-13
mysql_fetch_lengths(), 7-14
mysql_fetch_row(), 7-14
mysql_field_count(), 7-14
mysql_field_seek(), 7-14
mysql_field_tell(), 7-14
mysql_free_result(), 7-14
mysql_get_character_set_info(), 7-15
mysql_get_client_info(), 7-15
mysql_get_client_version(), 7-15
mysql_get_host_info(), 7-15
mysql_get_proto_info(), 7-15
mysql_get_server_info(), 7-15
mysql_get_server_version(), 7-16
mysql_get_ssl_cipher(), 7-16
mysql_hex_string(), 7-16
mysql_info(), 7-16
mysql_init(), 7-16
mysql_insert_id(), 7-17
mysql_kill(), 7-17
mysql_library_end(), 7-17
mysql_library_init(), 7-17
mysql_list_dbs(), 7-17
mysql_list_fields(), 7-18
mysql_list_processes(), 7-18
mysql_list_tables(), 7-18
mysql_more_results(), 7-18
mysql_next_result(), 7-19
mysql_num_fields(), 7-19

mysql_num_rows(), 7-19
mysql_options(), 7-19
mysql_ping(), 7-19
mysql_query(), 7-19
mysql_read_query_result(), 7-20
mysql_real_connect(), 7-20
mysql_real_escape_string(), 7-20
mysql_real_query(), 7-20
mysql_refresh(), 7-21
mysql_reload(), 7-21
mysql_rollback(), 7-21
mysql_row_seek(), 7-21
mysql_row_tell(), 7-21
mysql_select_db(), 7-21
mysql_send_query(), 7-22
mysql_server_end(), 7-22
mysql_server_init(), 7-22
mysql_set_character_set(), 7-22
mysql_set_local_infile_default(), 7-22
mysql_set_local_infile_handler(), 7-22
mysql_set_server_option(), 7-23
mysql_shutdown(), 7-23
mysql_sqlstate(), 7-23
mysql_ssl_set(), 7-23
mysql_stat(), 7-23
mysql_stmt_affected_rows(), 7-24
mysql_stmt_attr_get(), 7-24
mysql_stmt_attr_set(), 7-24
mysql_stmt_bind_param(), 7-24
mysql_stmt_bind_result(), 7-24
mysql_stmt_close(), 7-24
mysql_stmt_data_seek(), 7-25
mysql_stmt_errno(), 7-25
mysql_stmt_error(), 7-25
mysql_stmt_execute(), 7-25
mysql_stmt_fetch_column(), 7-25
mysql_stmt_fetch(), 7-25
mysql_stmt_field_count(), 7-26
mysql_stmt_free_result(), 7-26
mysql_stmt_init(), 7-26
mysql_stmt_insert_id(), 7-26
mysql_stmt_next_result(), 7-26
mysql_stmt_num_rows(), 7-26
mysql_stmt_param_count(), 7-27
mysql_stmt_param_metadata(), 7-27
mysql_stmt_prepare(), 7-27
mysql_stmt_reset(), 7-27
mysql_stmt_result_metadata(), 7-27
mysql_stmt_row_seek(), 7-27
mysql_stmt_row_tell(), 7-27
mysql_stmt_send_long_data(), 7-28
mysql_stmt_sqlstate(), 7-28
mysql_stmt_store_result(), 7-28
mysql_store_result(), 7-28
mysql_thread_end(), 7-28

Index

Index-2

mysql_thread_id(), 7-29
mysql_thread_init(), 7-29
mysql_thread_safe(), 7-29
MYSQL_TYPE_BLOB data type, 7-3
MYSQL_TYPE_DATE data type, 7-3
MYSQL_TYPE_DATETIME data type, 7-4
MYSQL_TYPE_DOUBLE data type, 7-4
MYSQL_TYPE_FLOAT data type, 7-4
MYSQL_TYPE_LONG data type, 7-4
MYSQL_TYPE_LONG_BLOB data type, 7-4
MYSQL_TYPE_LONGLONG data type, 7-4
MYSQL_TYPE_MEDIUM_BLOB data type, 7-5
MYSQL_TYPE_NEWDECIMAL data type, 7-5
MYSQL_TYPE_SHORT data type, 7-5
MYSQL_TYPE_STRING data type, 7-5
MYSQL_TYPE_TIME data type, 7-6
MYSQL_TYPE_TIMESTAMP data type, 7-6
MYSQL_TYPE_TINY data type, 7-6
MYSQL_TYPE_TINY_BLOB data type, 7-6
MYSQL_TYPE_VAR_STRING data type, 7-6
mysql_use_result(), 7-29
mysql_warning_count(), 7-29

N
native SQL support for query row limits and row

offsets, 1-7

O
OCI support for implicit results, 1-4
ODBC driver support for application migration,

1-8
ODBC support for implicit results, 1-5
OEM tuning and performance packs, 1-9
Oracle Database Gateways, 1-9
Oracle GoldenGate, 1-9
Oracle MySQL client library driver, 7-1
Oracle SQL developer

migration support, 3-1
set up, 3-2

Oracle SQL Developer, 1-9
OracleTranslatingConnection interface, 8-2

createStatement() method, 8-3
getSQLTranslationVersions() method, 8-12
prepareCall() method, 8-6
prepareStatement() method, 8-9

P
permissions for installing the SQL translator, 3-12
prepareCall(), 8-6
prepared statements APIs, 7-8
prepareStatement(), 8-9
products supporting migration, 1-9

R
result set processing APIs, 7-8

S
SQL translation framework, 1-1

architecture, 2-2
configuration, 3-1, 3-10
installation, 3-1, 3-10
SQL translation profile, 2-1
SQL translator, 2-1
use, 2-2
when to use, 2-3

SQL translation of JDBC aplications, 4-1
SQL translation of JDBC applications, 4-1

error message translation, 4-1
error translation, 4-3
execution of translated Oracle dialect query,

4-2
parameter marker conversion, 4-2
SQL translation profile, 4-1

SQL translation of ODBC applications, 4-1, 4-4
error message translation, 4-5
SQL translation profile, 4-4

SQL translation profile
set up, 3-10

SQLErrorTranslation.xml, 8-13
sqlErrorTranslationFile, 8-2
sqlTranslationProfile, 8-1
SqlTranslationVersion enumerated values, 8-3
statement construction and execution APIs, 7-8

T
transaction control APIs, 7-8
translation properties

sqlErrorTranslationFile, 8-2
sqlTranslationProfile, 8-1

Index

3

	Contents
	List of Tables
	Preface
	Audience
	Related Documents
	Documentation Accessibility
	Conventions

	1 Introduction to Tools and Products that Support Migration
	Oracle Database Features for Migration Support
	SQL Translation Framework
	Support for MySQL Applications
	Restrictions on SQL Statement Translation

	Support for Identity Columns
	Creating Identity Columns

	Implicit Statement Results
	JDBC Support for Implicit Results
	Processing Implicit Results in JDBC

	OCI Support for Implicit Results
	Processing Implicit Results in OCI

	ODBC Support for Implicit Results
	Processing Implicit Results in ODBC

	Enhanced SQL to PL/SQL Bind Handling
	Invoking a Subprogram with a Nested Table Parameter

	Native SQL Support for Query Row Limits and Row Offsets
	Limiting Bulk Selection

	JDBC Driver Support for Application Migration
	ODBC Driver Support for Application Migration

	Other Oracle Products that Enable Migration
	OEM Tuning and Performance Packs
	Oracle GoldenGate
	Oracle Database Gateways
	Oracle SQL Developer

	Migration Support for Other Database Vendors
	Application Support in Third-Party Databases
	Third-Party Database Version Support

	2 SQL Translation Framework Overview
	Architecture of SQL Translation Framework
	How to Use SQL Translation Framework
	When to Use SQL Translation Framework

	3 SQL Translation Framework Configuration
	Installing and Configuring SQL Translation Framework with Oracle SQL Developer
	Overview of Oracle SQL Developer Migration Support
	Setting Up Oracle SQL Developer 3.2 for Windows
	Setting Up Oracle SQL Developer 3.2 Startup
	Starting Oracle SQL Developer

	Creating a Connection to Oracle Database
	Testing SQL Translation
	Creating a Translation Profile and Installing SQL Translator
	Installing SQL Translator
	Creating a Translation Profile

	Using the SQL Translator Profile

	Installing and Configuring SQL Translation Framework from Command Line
	Installing Oracle Sybase Translator
	Setting up a SQL Translation Profile
	Setting Up a Database Service to Use the SQL Translation Profile
	Setting Up a Database Service in Oracle Real Application Clusters

	Testing Sybase SQL Translation Using the SQL Translation Profile

	Granting Necessary Permissions for Installing the SQL Translator

	4 SQL Translation of JDBC and ODBC Applications
	SQL Translation of JDBC Applications
	SQL Translation Profile
	Error Message Translation
	Converting JDBC Standard Parameter Markers
	Executing the Translated Oracle Dialect Query
	Error Translation
	Using JDBC Driver for SQL Translation

	SQL Translation of ODBC Applications
	SQL Translation profile
	Error Message Translation
	Translating Error Messages

	5 Example: Application Migration Using SQL Translation Framework
	Migrating a Sybase JDBC Application
	Application Overview
	Setting Up Migration
	Capturing Migration
	Setting Migration Preferences
	Converting Migration
	Generating a Migration
	Creating a Target Oracle User

	Moving the Data

	Generating Migration Reports

	6 MySQL Client Library Driver for Oracle
	Introduction to MySQL Client Library Driver for Oracle
	Connecting to MySQL

	Installation and First Use of MySQL Client Library Driver for Oracle
	Overview of Migration with MySQL Client Library Driver for Oracle
	Using MySQL Client Library Driver for Oracle
	Relinking the Application with the liboramysql Driver
	Connecting to Oracle Database
	Supported Platforms
	Error Handling
	Globalization
	Expected Differences

	7 API Reference for Oracle MySQL Client Library Driver
	Mapping Data Types
	Mapping Oracle Data Types to MySQL Data Types
	Data Type Conversions for MySQL Program Variable Data Types
	MYSQL_TYPE_BLOB
	MYSQL_TYPE_DATE
	MYSQL_TYPE_DATETIME
	MYSQL_TYPE_DOUBLE
	MYSQL_TYPE_FLOAT
	MYSQL_TYPE_LONG
	MYSQL_TYPE_LONG_BLOB
	MYSQL_TYPE_LONGLONG
	MYSQL_TYPE_MEDIUM_BLOB
	MYSQL_TYPE_NEWDECIMAL
	MYSQL_TYPE_SHORT
	MYSQL_TYPE_STRING
	MYSQL_TYPE_TIME
	MYSQL_TYPE_TIMESTAMP
	MYSQL_TYPE_TINY
	MYSQL_TYPE_TINY_BLOB
	MYSQL_TYPE_VAR_STRING

	Data Type Conversions for MySQL External Data Types (LOB Data Type Descriptors)
	Data Type Conversions for Datetime and Interval Data Types

	Error Handling
	Available Oracle Support for MySQL APIs
	my_init()
	mysql_affected_rows()
	mysql_autocommit()
	mysql_change_user()
	mysql_character_set_name()
	mysql_close()
	mysql_commit()
	mysql_connect()
	mysql_create_db()
	mysql_data_seek()
	mysql_debug()
	mysql_debug_info()
	mysql_drop_db()
	mysql_dump_debug_info()
	mysql_eof()
	mysql_errno()
	mysql_error()
	mysql_escape_string()
	mysql_fetch_field()
	mysql_fetch_field_direct()
	mysql_fetch_fields()
	mysql_fetch_lengths()
	mysql_fetch_row()
	mysql_field_count()
	mysql_field_seek()
	mysql_field_tell()
	mysql_free_result()
	mysql_get_character_set_info()
	mysql_get_client_info()
	mysql_get_client_version()
	mysql_get_host_info()
	mysql_get_proto_info()
	mysql_get_server_info()
	mysql_get_server_version()
	mysql_get_ssl_cipher()
	mysql_hex_string()
	mysql_info()
	mysql_init()
	mysql_insert_id()
	mysql_kill()
	mysql_library_end()
	mysql_library_init()
	mysql_list_dbs()
	mysql_list_fields()
	mysql_list_processes()
	mysql_list_tables()
	mysql_more_results()
	mysql_next_result()
	mysql_num_fields()
	mysql_num_rows()
	mysql_options()
	mysql_ping()
	mysql_query()
	mysql_read_query_result()
	mysql_real_connect()
	mysql_real_escape_string()
	mysql_real_query()
	mysql_refresh()
	mysql_reload()
	mysql_rollback()
	mysql_row_seek()
	mysql_row_tell()
	mysql_select_db()
	mysql_send_query()
	mysql_server_end()
	mysql_server_init()
	mysql_set_character_set()
	mysql_set_local_infile_default()
	mysql_set_local_infile_handler()
	mysql_set_server_option()
	mysql_shutdown()
	mysql_sqlstate()
	mysql_ssl_set()
	mysql_stat()
	mysql_stmt_affected_rows()
	mysql_stmt_attr_get()
	mysql_stmt_attr_set()
	mysql_stmt_bind_param()
	mysql_stmt_bind_result()
	mysql_stmt_close()
	mysql_stmt_data_seek()
	mysql_stmt_errno()
	mysql_stmt_error()
	mysql_stmt_execute()
	mysql_stmt_fetch()
	mysql_stmt_fetch_column()
	mysql_stmt_field_count()
	mysql_stmt_free_result()
	mysql_stmt_init()
	mysql_stmt_insert_id()
	mysql_stmt_next_result()
	mysql_stmt_num_rows()
	mysql_stmt_param_count()
	mysql_stmt_param_metadata()
	mysql_stmt_prepare()
	mysql_stmt_reset()
	mysql_stmt_result_metadata()
	mysql_stmt_row_seek()
	mysql_stmt_row_tell()
	mysql_stmt_send_long_data()
	mysql_stmt_sqlstate()
	mysql_stmt_store_result()
	mysql_store_result()
	mysql_thread_end()
	mysql_thread_id()
	mysql_thread_init()
	mysql_thread_safe()
	mysql_use_result()
	mysql_warning_count()

	8 API Reference for SQL Translation of JDBC Applications
	Translation Properties
	sqlTranslationProfile
	sqlErrorTranslationFile

	OracleTranslatingConnection Interface
	SqlTranslationVersion
	createStatement()
	prepareCall()
	prepareStatement()
	getSQLTranslationVersions()

	Error Translation Configuration File

	Glossary
	adapter
	custom SQL translation
	data integration
	data integration framework
	database schema migration
	error translation
	migration
	migration repository
	Oracle Database Gateways
	Oracle GoldenGate
	Oracle SQL*Loader
	Oracle SQL Developer Migration Wizard
	SQL dialect
	SQL Translation Profile
	SQL Translator
	SQLSTATE

	Index

