Pro*C/C++
Programmer's Guide

18c
E84344-01
February 2018

ORACLE"

Pro*C/C++ Programmer's Guide, 18c

E84344-01

Copyright © 1996, 2018, Oracle and/or its affiliates. All rights reserved.
Primary Author: Celin Cherian

Contributing Authors: Jack Melnick, Neelam Singh, Tim Smith, Paul Lane

Contributors: Bill Bailey, Subhranshu Banerjee, Julie Basu, Beethoven Chang, Michael Chiocca, Nancy
Ikeda, Alex Keh, Thomas Kurian, Shiao-Yen Lin, Valarie Moore, Vidya Nagaraj, Ajay Popat, Ekkehard
Rohwedder, Pamela Rothman, Gael Stevens

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface
Intended Audience XXXV
Documentation Accessibility XXXV
Related Documents XXXV
Conventions XXXV
Changes in This Release for Pro*C/C++ Programmer's Guide
Changes in Pro*C/C++ Release 18c, Version 18.1 XXXVi
Changes in Pro*C/C++ 12c Release 2 (12.2) XXXVi
Part | Introduction and Concepts
1 Introduction
1.1 Whatis an Oracle Precompiler? 1-1
1.2 Why Use the Oracle Pro*C/C++ Precompiler 1-2
1.3 Why Use SQL 1-3
1.4 Why Use PL/SQL 1-3
1.5 Pro*C/C++ Precompiler Benefits 1-3
1.6 Directory Structure 1-5
1.6.1 Known Problems, Restrictions, and Workarounds 1-6
1.7 Library Files 1-6
1.8 Frequently Asked Questions 1-6
1.8.1 Whatis a VARCHAR? 1-7
1.8.2 Does Pro*C/C++ Generate Calls to the Oracle Call Interface? 1-7
1.8.3 Why Not Code Using SQLLIB Calls and Not Use Pro*C/C++? 1-7
1.8.4 Can | Call A PL/SQL Stored Procedure From a Pro*C/C++ Program? 1-7
1.8.5 Can | Write C++ Code, and Precompile It Using Pro*C/C++? 1-8
1.8.6 Can | Use Bind Variables Anywhere in a SQL Statement? 1-8
1.8.7 | Am Confused By Character Handling in Pro*C/C++. 1-8
1.8.8 Is There Anything Special About Character Pointers? 1-8

ORACLE

1.8.9 Why Does SPOOL Not Work in Pro*C/C++? 1-9
1.8.10 Where Can | Find The On-line Versions of the Example Programs? 1-9
1.8.11 How Can | Compile and Link My Application? 1-9
1.8.12 Does Pro*C/C++ Now Support Using Structures As Host Variables? 1-9
1.8.13 Is It Possible to Have Recursive Functions In Pro*C/C++ If | Use
Embedded SQL In the Function? 1-10
1.8.14 Can | Use Any Release of Pro*C/C++ with Any Version of the Oracle
Server? 1-10
1.8.15 When My Application Runs, | Keep Getting an Ora-1405 Error
(Fetched Column Value Is NULL). 1-10
1.8.16 Are All SQLLIB Functions Private? 1-10
1.8.17 How Does Oracle Support The New Object Types? 1-11
1.8.18 Compatibility, Upgrading, and Migration 1-11
2 Precompiler Concepts
2.1 Key Concepts of Embedded SQL Programming 2-1
2.1.1 Embedded SQL Statements 2-1
2.1.1.1 Executable Statements and Directives 2-2
2.1.2 Embedded SQL Syntax 2-3
2.1.3 Static Versus Dynamic SQL Statements 2-3
2.1.4 Embedded PL/SQL Blocks 2-4
2.1.5 Host and Indicator Variables 2-4
2.1.6 Oracle Datatypes 2-5
2.1.7 Arrays 2-5
2.1.8 Datatype Equivalencing 2-5
2.1.9 Private SQL Areas, Cursors, and Active Sets 2-5
2.1.10 Transactions 2-6
2.1.11 Errors and Warnings 2-6
2.1.12 SQL99 Syntax Support 2-6
2.2 Steps in Developing an Embedded SQL Application 2-6
2.3 Guidelines for Programming 2-7
2.3.1 Comments 2-7
2.3.2 Constants 2-8
2.3.3 Declare Section 2-8
2.3.4 Delimiters 2-9
2.3.5 File Length 2-9
2.3.6 Function Prototyping 2-9
2.36.1 ANSI_C 2-9
23.6.2 KR_C 2-10
23.6.3 CPP 2-10
2.3.7 Hint Length 2-10

ORACLE

2.3.8 Host Variable Names 2-10

2.3.9 Line Continuation 2-10
2.3.10 Line Length 2-11
2.3.11 MAXLITERAL Default Value 2-11
2.3.12 Operators 2-11
2.3.13 Statement Terminator 2-11

2.4 Conditional Precompilation 2-12
2.4.1 Symbol Definition 2-12
2.4.2 Example SELECT Statement 2-12

2.5 Precompile Separately 2-13
2.5.1 Guidelines 2-13
2.5.1.1 Referencing Cursors 2-13

2.5.1.2 Specifying MAXOPENCURSORS 2-13

2.5.1.3 Use a Single SQLCA 2-13

2.6 Compile and Link 2-14
2.7 Example Tables 2-14
2.7.1 Example Data 2-14

2.8 Example Program: A Simple Query 2-15
2.9 Example Program: A Simple Query using SQL99 Syntax 2-17

3 Database Concepts

3.1 Connect to the Database 3-1
3.1.1 Using the ALTER AUTHORIZATION Clause to Change Passwords 3-2
3.1.1.1 Standard CONNECT 3-2

3.1.1.2 Change Password on CONNECT 3-3

3.1.2 Connecting Using Oracle Net Services 3-3
3.1.3 Automatic Connects 3-3
3.1.3.1 The AUTO_CONNECT Precompiler Option 3-4

3.1.3.2 SYSDBA or SYSOPER System Privileges 3-4

3.2 Advanced Connection Options 3-4
3.2.1 Some Preliminaries 3-4
3.2.2 Concurrent Logons 3-5
3.2.3 Default Databases and Connections 3-6
3.2.4 Explicit Connections 3-6
3.2.4.1 Single Explicit Connection 3-7

3.2.4.2 Multiple Explicit Connections 3-9

3.2.4.3 Ensuring Data Integrity 3-10

3.2.5 Implicit Connections 3-11
3.2.5.1 Single Implicit Connections 3-11

3.2.5.2 Multiple Implicit Connections 3-12

ORACLE Y

3.3 Definitions of Transactions Terms 3-12

3.4 How Data Integrity Is Ensured 3-13
3.5 How to Begin and End Transactions 3-13
3.6 Using the COMMIT Statement 3-14
3.6.1 WITH HOLD Clause in DECLARE CURSOR Statements 3-15
3.6.2 CLOSE_ON_COMMIT Precompiler Option 3-15

3.7 Using the SAVEPOINT Statement 3-15
3.8 The ROLLBACK Statement 3-17
3.8.1 Statement-Level Rollbacks 3-18

3.9 The RELEASE Option 3-19
3.10 The SET TRANSACTION Statement 3-19
3.11 Override Default Locking 3-20
3.11.1 Using FOR UPDATE OF 3-20
3.11.1.1 Restrictions 3-20

3.11.2 Using LOCK TABLE 3-21
3.12 Fetch Across COMMITs 3-21
3.13 Distributed Transactions Handling 3-22
3.14 Guidelines 3-22
3.14.1 Designing Applications 3-23
3.14.2 Obtaining Locks 3-23
3.14.3 Using PL/SQL 3-23

4 Datatypes and Host Variables

4.1 Oracle Datatypes 4-1
4.1.1 Internal Datatypes 4-1
4.1.2 External Datatypes 4-3

4.1.2.1 VARCHAR2 4-3
4.1.2.2 NUMBER 4-4
4.1.2.3 INTEGER 4-5
4.1.2.4 FLOAT 4-5
4125 STRING 4-5
4.1.2.6 VARNUM 4-5
4.1.2.7 LONG 4-6
4128 VARCHAR 4-6
4.1.29 ROWID 4-6
4.1.2.10 DATE 4-7
41211 RAW 4-7
4.1.2.12 VARRAW 4-7
4.1.2.13 LONG RAW 4-7
4.1.2.14 UNSIGNED 4-8

ORACLE vi

4.1.2.15 LONG VARCHAR
41.2.16 LONG VARRAW
41.2.17 CHAR

41.2.18 CHARZ

41.2.19 CHARF

41.3

Additional External Datatypes

4.1.3.1 Datetime and Interval Datatypes

4.1.3.2 ANSIDATE

4.1.3.3 TIMESTAMP

4.1.3.4 TIMESTAMP WITH TIME ZONE

4.1.35 TIMESTAMP WITH LOCAL TIME ZONE

4.1.3.6 INTERVAL YEAR TO MONTH

4.1.3.7 INTERVAL DAY TO SECOND

4.1.3.8 Avoiding Unexpected Results Using Datetime
4.2 Host Variables

421

Host Variable Declaration

4.2.1.1 Storage-Class Specifiers
4.2.1.2 Type Qualifiers

4.2.2

Host Variable Referencing

4.2.2.1 Restrictions
4.3 Indicator Variables

4.3.1
4.3.2
4.3.3
4.3.4

The INDICATOR Keyword

Example of INDICATOR Variable Usage
INDICATOR Variable Guidelines

Oracle Restrictions

4.4 VARCHAR Variables

4.4.1
4.4.2
4.4.3
4.4.4
4.4.5
4.4.6
4.4.7

VARCHAR Variable Declaration

VARCHAR Variable Referencing

Return NULLs to a VARCHAR Variable

Insert NULLs Using VARCHAR Variables

Pass VARCHAR Variables to a Function

Find the Length of the VARCHAR Array Component
Example Program: Using sqlvcp()

4.5 Cursor Variables

45.1
45.2
45.3

Declare a Cursor Variable
Allocate a Cursor Variable
Open a Cursor Variable

4.5.3.1 Opening in a Standalone Stored Procedure
45.3.2 Return Types

45.4
455

ORACLE

Closing and Freeing a Cursor Variable
Cursor Variables with the OCI (Release 7 Only)

4-8

4-8
4-9
4-9
4-9

4-9
4-10
4-10
4-10
4-11
4-11
4-11
4-11
4-12
4-13
4-14
4-14
4-15
4-15
4-15
4-16
4-16
4-17
4-17
4-17
4-18
4-19
4-19
4-19
4-20
4-20
4-23
4-23
4-24
4-24
4-26
4-26
4-26
4-27

Vii

4.5.6 Restrictions (Cursor Variables) 4-28
457 Example: cv_demo.sql and samplell.pc 4-28
45.7.1 cv_demo.sql 4-29

4.5.7.2 samplell.pc 4-29

4.6 CONTEXT Variables 4-31
4.7 Universal ROWIDs 4-32
4.7.1 SQLRowidGet() 4-33

4.8 Host Structures 4-34
4.8.1 Host Structures and Arrays 4-35
4.8.2 PL/SQL Records 4-35
4.8.3 Nested Structures and Unions 4-35
4.8.4 Host Indicator Structures 4-36
4.8.5 Example Program: Cursor and a Host Structure 4-37

4.9 Pointer Variables 4-39
4.9.1 Pointer Variable Declaration 4-39
4.9.2 Pointer Variable Referencing 4-39
4.9.3 Structure Pointers 4-40
4,10 Globalization Support 4-40
4.11 NCHAR Variables 4-42
4.11.1 CHARACTER SET [IS]NCHAR_CS 4-42
4.11.2 Environment Variable NLS_NCHAR 4-43
4.11.3 CONVBUFSZ Clause in VAR 4-43
4.11.4 Character Strings in Embedded SQL 4-43
4.11.5 Strings Restrictions 4-44
4.11.6 Indicator Variables 4-44

5 Advanced Topics

5.1 Character Data 5-1
5.1.1 Precompiler Option CHAR_MAP 5-1
5.1.2 Inline Usage of the CHAR_MAP Option 5-2
5.1.3 Effect of the DBMS and CHAR_MAP Options 5-2
5.1.3.1 On Input 5-3

5.1.3.2 On Input 5-4

5.1.3.3 On Output 5-4

5.1.4 VARCHAR Variables and Pointers 5-6
5.1.4.1 On Input 5-6

5.1.4.2 On Output 5-7

5.1.5 Unicode Variables 5-7
5.1.5.1 Restrictions on Unicode Variable Usage 5-8

5.2 Datatype Conversion 5-9

ORACLE

viii

5.3 Datatype Equivalencing 5-9

5.3.1 Host Variable Equivalencing 5-9
5.3.2 User-Defined Type Equivalencing 5-10
5.3.2.1 REFERENCE Clause 5-11

5.3.3 CHARF External Datatype 5-11
5.3.4 The EXEC SQL VAR and TYPE Directives 5-12
5.3.5 Example: Datatype Equivalencing (sample4.pc): 5-12

5.4 The C Preprocessor 5-22
5.4.1 How the Pro*C/C++ Preprocessor Works 5-22
5.4.2 Preprocessor Directives 5-22
5.4.2.1 Directives Ignored 5-23

5.4.3 ORA_PROC Macro 5-23
5.4.4 Location of Header File Specification 5-24
5.4.5 Some Preprocessor Examples 5-24
5.4.5.1 About Using #define 5-25

5.4.5.2 Other Preprocessor Restrictions 5-25

5.4.6 SQL Statements Not Allowed in #include 5-26
5.4.7 Include the SQLCA, ORACA, and SQLDA 5-26
5.4.8 EXEC SQL INCLUDE and #include Summary 5-27
5.4.9 Defined Macros 5-27
5.4.10 Include Files 5-27

5.5 Precompiled Header Files 5-28
5.5.1 Precompiled Header File Creation 5-28
5.5.2 Use of the Precompiled Header Files 5-29
5.5.3 Examples 5-29
5.5.3.1 Redundant File Inclusion 5-29

5.5.3.2 Multiple Precompiled Header Files 5-30

5.5.4 List of Header Files 5-31
5.5.5 Effects of Options 5-31
5.5.5.1 DEFINE and INCLUDE Options 5-31

5.5.5.2 CODE and PARSE Options 5-32

5.5.6 Usage Notes 5-34

5.6 The Oracle Preprocessor 5-34
5.6.1 Symbol Definition 5-34
5.6.2 An Oracle Preprocessor Example 5-35

5.7 Evaluation of Numeric Constants 5-35
5.7.1 Numeric Constants in Pro*C/C++ 5-35
5.7.2 Numeric Constant Rules and Examples 5-36

5.8 SQLLIB Extensions for OCI Release 8 Interoperability 5-36
5.8.1 Runtime Context in the OCI Release 8 Environment 5-37
5.8.2 Parameters in the OCI Release 8 Environment Handle 5-37

ORACLE iX

5.9 Interface to OCI Release 8 5-37
5.9.1 SQLEnvGet() 5-38
5.9.2 SQLSvcCtxGet() 5-38
5.9.3 Embedded OCI Release 8 Calls 5-39

5.10 Embedded OCI Release 7 Calls 5-40
5.10.1 Set Up the LDA 5-41
5.10.2 Remote and Multiple Connections 5-41

5.11 New Names for SQLLIB Public Functions 5-42

5.12 X/Open Application Development 5-44
5.12.1 Oracle-Specific Issues 5-46

5.12.1.1 Connecting to Oracle 5-46
5.12.1.2 Transaction Control 5-46
5.12.1.3 OCI Calls (Release 7 Only) 5-46
5.12.1.4 Linking 5-46

Embedded SQL

6.1 Host Variables 6-1
6.1.1 Output versus Input Host Variables 6-1

6.2 Indicator Variables 6-2
6.2.1 Insert NULLs 6-3
6.2.2 Returned NULLs 6-4
6.2.3 Fetch NULLs 6-4
6.2.4 Test for NULLs 6-4
6.2.5 Truncated Values 6-5

6.3 The Basic SQL Statements 6-5
6.3.1 The SELECT Statement 6-6

6.3.1.1 Available Clauses 6-7
6.3.2 The INSERT Statement 6-7
6.3.2.1 About Using Subqueries 6-7
6.3.3 The UPDATE Statement 6-8
6.3.4 The DELETE Statement 6-8
6.3.5 The WHERE Clause 6-9

6.4 The DML Returning Clause 6-9

6.5 Cursors 6-9
6.5.1 The DECLARE CURSOR Statement 6-10
6.5.2 The OPEN Statement 6-11
6.5.3 The FETCH Statement 6-12
6.5.4 The CLOSE Statement 6-13

6.6 Scrollable Cursors 6-13
6.6.1 About Using Scrollable Cursors 6-13

ORACLE

6.6.1.1 DECLARE SCROLL CURSOR

6-13

6.6.1.2 OPEN for Scrollable Cursors 6-13
6.6.1.3 FETCH for Scrollable Cursors 6-14
6.6.1.4 CLOSE for Scrollable Cursors 6-14
6.6.2 The CLOSE_ON_COMMIT Precompiler Option 6-14
6.6.3 The PREFETCH Precompiler Option 6-15
6.7 Optimizer Hints 6-16
6.7.1 Issuing Hints 6-16
6.8 Fix Execution Plan 6-16
6.8.1 SQL File 6-18
6.8.1.1 Examples 6-19
6.8.2 LOG File 6-20
6.9 The CURRENT OF Clause 6-21
6.9.1 Restrictions (FOR UPDATE OF) 6-21
6.10 The Cursor Statements 6-22
6.11 A Complete Example Using Non-Scrollable Cursor 6-22
6.12 A Complete Example Using Scrollable Cursor 6-23
6.13 Positioned Update 6-25
Embedded PL/SQL
7.1 Advantages of PL/SQL 7-1
7.1.1 Better Performance 7-1
7.1.2 Integration with Oracle 7-2
7.1.3 Cursor FOR Loops 7-2
7.1.4 Procedures and Functions 7-2
7.1.5 Packages 7-3
7.1.6 PL/SQL Tables 7-3
7.1.7 User-Defined Records 7-4
7.2 Embedded PL/SQL Blocks 7-5
7.3 Host Variables 7-5
7.3.1 Example: Using Host Variables with PL/SQL 7-6
7.3.2 Complex Example 7-7
7.3.3 VARCHAR Pseudotype 7-8
7.3.4 Restriction 7-9
7.4 Indicator Variables 7-9
7.4.1 NULLs Handling 7-10
7.4.2 Truncated Values 7-10
7.5 Host Arrays 7-11
7.5.1 ARRAYLEN Statement 7-13
7.5.2 Optional Keyword EXECUTE 7-13

ORACLE

Xi

7.6 Cursor Usage in Embedded PL/SQL 7-15

7.7 Stored PL/SQL and Java Subprograms 7-15
7.7.1 About Creating Stored Subprograms 7-16
7.7.2 About Calling a Stored PL/SQL or Java Subprogram 7-17

7.7.2.1 Anonymous PL/SQL Block 7-17
7.7.2.2 Remote Access 7-20
7.7.2.3 The CALL Statement 7-21
7.7.2.4 CALL Example 7-21
7.7.3 About Getting Information about Stored Subprograms 7-22

7.8 External Procedures 7-22
7.8.1 Restrictions on External Procedures 7-23
7.8.2 About Creating the External Procedure 7-24
7.8.3 SQLExtProcError() 7-24

7.9 About Using Dynamic SQL 7-25

8 Host Arrays

8.1 Why Use Arrays? 8-1
8.2 About Declaring Host Arrays 8-1
8.2.1 Restrictions (Declaring Host Arrays) 8-2
8.2.2 Maximum Size of Arrays 8-2

8.3 About Using Arrays in SQL Statements 8-2
8.3.1 About Referencing Host Arrays 8-2
8.3.2 About Using Indicator Arrays 8-3
8.3.3 Oracle Restrictions (for Host Arrays) 8-3
8.3.4 ANSI Restriction and Requirements 8-3

8.4 About Selecting into Arrays 8-4
8.4.1 Cursor Fetches 8-4
8.4.2 About Using sglca.sqlerrd[2] 8-5
8.4.3 Number of Rows Fetched 8-6
8.4.4 Scrollable Cursor Fetches 8-6
8.4.5 Sample Program 3: Host Arrays 8-6
8.4.6 Sample Program: Host Arrays Using Scrollable Cursor 8-8
8.4.6.1 scdemo2.pc 8-9

8.4.7 Host Array Restrictions 8-11
8.4.8 About Fetching NULLs 8-11
8.4.9 About Fetching Truncated Values 8-11

8.5 About Inserting with Arrays 8-12
8.5.1 About Inserting with Arrays Restrictions 8-12

8.6 About Updating with Arrays 8-12
8.6.1 About Updating with Arrays Restrictions 8-13

ORACLE Xii

8.7 About Deleting with Arrays 8-13
8.7.1 About Deleting with Arrays Restrictions 8-14

8.8 About Using the FOR Clause 8-14
8.8.1 FOR Clause Restrictions 8-15
8.8.1.1 Ina SELECT Statement 8-15

8.8.1.2 With the CURRENT OF Clause 8-15

8.9 About Using the WHERE Clause 8-16
8.10 Arrays of Structs 8-16
8.10.1 Arrays of Structs Usage 8-17
8.10.2 Restrictions on Arrays of Structs 8-17
8.10.3 About Declaring an Array of Structs 8-18
8.10.4 Variables Guidelines 8-19
8.10.5 About Declaring a Pointer to an Array of Structs 8-20
8.10.6 Examples 8-20
8.10.6.1 Example 1: A Simple Array of Structs of Scalars 8-20
8.10.6.2 Example 2: Using Mixed Scalar Arrays with An Array of Structs 8-21
8.10.6.3 Example 3: Using Multiple Arrays of Structs with a Cursor 8-22
8.10.6.4 Example 4: Individual Array and Struct Member Referencing 8-22
8.10.6.5 Example 5: Using Indicator Variables, a Special Case 8-23
8.10.6.6 Example 6: Using a Pointer to an Array of Structs 8-24

8.11 About Mimicking CURRENT OF 8-25
8.12 About Using Additional Array Insert/Select Syntax 8-25
8.13 About Using Implicit Buffered Insert 8-30
8.14 Scrollable Cursors 8-34

9 Handling Runtime Errors

9.1 The Need for Error Handling 9-1
9.2 Error Handling Alternatives 9-1
9.2.1 Status Variables 9-2
9.2.2 The SQL Communications Area 9-2

9.3 The SQLSTATE Status Variable 9-3
9.3.1 About Declaring SQLSTATE 9-3
9.3.2 SQLSTATE Values 9-4
9.3.3 About Using SQLSTATE 9-11
9.3.3.1 If You Declare SQLSTATE 9-11

9.3.3.2 If You Do not Declare SQLSTATE 9-11

9.4 About Declaring SQLCODE 9-11
9.5 Key Components of Error Reporting Using the SQLCA 9-12
9.5.1 Status Codes 9-12
9.5.2 Warning Flags 9-12

ORACLE

Xiii

9.5.3 Rows-Processed Count 9-12

9.5.4 Parse Error Offsets 9-12
9.5.5 Error Message Text 9-13

9.6 Using the SQL Communications Area (SQLCA) 9-13
9.6.1 About Declaring the SQLCA 9-13
9.6.2 SQLCA Contents 9-14
9.6.3 SQLCA Structure 9-16
9.6.3.1 sqlcaid 9-16

9.6.3.2 sglcabc 9-16

9.6.3.3 sglcode 9-16

9.6.3.4 sglerrm 9-16

9.6.3.5 sqglerrp 9-17

9.6.3.6 sqglerrd 9-17

9.6.3.7 sglwarn 9-17

9.6.3.8 sqlext 9-18

9.6.4 PL/SQL Considerations 9-18

9.7 About Getting the Full Text of Error Messages 9-18
9.8 About Using the WHENEVER Directive 9-20
9.8.1 WHENEVER Conditions 9-20
9.8.1.1 SQLWARNING 9-20

9.8.1.2 SQLERROR 9-20

9.8.1.3 NOT FOUND 9-20

9.8.2 WHENEVER Actions 9-21
9.8.2.1 CONTINUE 9-21

9.8.2.2 DO 9-21

9.8.2.3 DO BREAK 9-21

9.8.24 DO CONTINUE 9-21

9.8.2.5 GOTO label_name 9-21

9.8.2.6 STOP 9-21

9.8.3 WHENEVER Examples 9-21
9.8.4 Use of DO BREAK and DO CONTINUE 9-22
9.8.5 Scope of WHENEVER 9-23
9.8.6 Guidelines for WHENEVER 9-24
9.8.6.1 Placing the Statements 9-24

9.8.6.2 Handling End-of-Data Conditions 9-24

9.8.6.3 About Avoiding Infinite Loops 9-24

9.8.6.4 About Maintaining Addressability 9-25

9.8.6.5 About Returning After an Error 9-26

9.9 About Obtaining the Text of SQL Statements 9-26
9.9.1 Restrictions (using SQLStmtGetText()) 9-28
9.9.2 Example Program 9-28

ORACLE Xiv

9.10 About Using the Oracle Communications Area (ORACA) 9-28
9.10.1 About Declaring the ORACA 9-29
9.10.2 About Enabling the ORACA 9-29
9.10.3 ORACA Contents 9-29
9.10.4 About Choosing Runtime Options 9-31
9.10.5 Structure of the ORACA 9-31

9.10.5.1 oracaid 9-31
9.10.5.2 oracabc 9-31
9.10.5.3 oracchf 9-31
9.10.5.4 oradbgf 9-32
9.10.5.5 orahchf 9-32
9.10.5.6 orastxtf 9-32
9.10.5.7 Diagnostics 9-32
9.10.5.8 orastxt 9-32
9.10.5.9 orasfnm 9-33
9.10.5.10 oraslInr 9-33
9.10.5.11 Cursor Cache Statistics 9-33
9.10.5.12 orahoc 9-33
9.10.5.13 oramoc 9-33
9.10.5.14 oracoc 9-33
9.10.5.15 oranor 9-33
9.10.5.16 oranpr 9-34
9.10.5.17 oranex 9-34
9.10.6 ORACA Example 9-34
10 Precompiler Options

10.1 The Precompiler Command 10-1
10.1.1 Case Sensitivity 10-2

10.2 Precompiler Options 10-2
10.2.1 Environment Variables 10-3
10.2.2 Configuration Files 10-3
10.2.3 Precedence of Option Values 10-4
10.2.4 Macro and Micro Options 10-6
10.2.5 What Occurs During Precompilation? 10-6
10.2.6 Scope of Options 10-7
10.2.7 Pro*C/C++ Precompiler Issues for Windows Platforms 10-7

10.2.7.1 Configuration File 10-7
10.2.7.2 CODE 10-7
10.2.7.3 DBMS 10-7
10.2.7.4 INCLUDE 10-7

ORACLE

XV

10.2.7.5 PARSE
10.3 Quick Reference
10.4 Entering Options

10.4.1 On the Command Line

10.4.2 Inline
10.4.2.1 Uses for EXEC ORACLE
10.4.2.2 Scope of EXEC ORACLE

10.4.3 Column Properties Support

10.5 About Using the Precompiler Options

10.5.1 AUTO_CONNECT

10.5.2 CHAR_MAP

10.5.3 CINCR

10.5.4 CLOSE_ON_COMMIT

10.5.5 CMAX

10.5.6 CMIN

10.5.7 CNOWAIT

10.5.8 CODE

10.5.9 COMMON_PARSER

10.5.10 COMP_CHARSET

10.5.11 CONFIG

10.5.12 CPOOL

10.5.13 CPP_SUFFIX

10.5.14 CTIMEOUT

10.5.15 DB2_ARRAY

10.5.16 DBMS

10.5.17 DEF_SQLCODE

10.5.18 DEFINE

10.5.19 DURATION

10.5.20 DYNAMIC

10.5.21 ERRORS

10.5.22 ERRTYPE

10.5.23 EVENTS

10.5.24 FIPS

10.5.25 HEADER

10.5.26 HOLD_CURSOR

10.5.27 IMPLICIT_SVPT

10.5.28 INAME

10.5.29 INCLUDE

10.5.30 INTYPE

10.5.31 LINES

10.5.32 LNAME

ORACLE

10-7

10-8
10-10
10-10
10-11
10-11
10-11
10-12
10-13
10-13
10-13
10-14
10-14
10-15
10-15
10-16
10-16
10-17
10-17
10-18
10-18
10-19
10-19
10-20
10-20
10-21
10-22
10-23
10-23
10-24
10-24
10-24
10-25
10-26
10-26
10-27
10-28
10-28
10-30
10-30
10-31

XVi

10.5.33 LTYPE 10-32
10.5.34 MAX_ROW_INSERT 10-32
10.5.35 MAXLITERAL 10-32
10.5.36 MAXOPENCURSORS 10-33
10.5.37 MODE 10-34
10.5.38 NATIVE_TYPES 10-35
10.5.39 NLS _CHAR 10-35
10.5.40 NLS_LOCAL 10-35
10.5.41 OBJECTS 10-36
10.5.42 ONAME 10-36
10.5.43 ORACA 10-37
10.5.44 OUTLINE 10-37
10.5.45 OUTLNPREFIX 10-38
10.5.46 PAGELEN 10-38
10.5.47 PARSE 10-39
10.5.48 PLAN_BASELINE 10-39
10.5.49 PLAN_PREFIX 10-40
10.5.50 PLAN_RUN 10-40
10.5.51 PLAN_FIXED 10-40
10.5.52 PLAN_ENABLED 10-41
10.5.53 MEMFORPREFETCH 10-41
10.5.54 PREFETCH 10-42
10.5.55 RELEASE_CURSOR 10-42
10.5.56 RUNOUTLINE 10-43
10.5.57 SELECT_ERROR 10-44
10.5.58 STMT_CACHE 10-44
10.5.59 SYS_INCLUDE 10-45
10.5.60 THREADS 10-46
10.5.61 TYPE_CODE 10-46
10.5.62 UNSAFE_NULL 10-47
10.5.63 USERID 10-47
10.5.64 UTF16_CHARSET 10-48
10.5.65 VARCHAR 10-48
10.5.66 VERSION 10-49
11 Multithreaded Applications
11.1 What are Threads? 11-1
11.2 Runtime Contexts in Pro*C/C++ 11-2
11.3 Runtime Context Usage Models 11-3
11.3.1 Multiple Threads Sharing a Single Runtime Context 11-3

ORACLE

XVii

11.3.2 Multiple Threads Sharing Multiple Runtime Contexts 11-4
11.4 User Interface Features for Multithreaded Applications 11-5
11.4.1 THREADS Option 11-5
11.4.2 Embedded SQL Statements and Directives 11-6
11.4.2.1 EXEC SQL ENABLE THREADS 11-6
11.4.2.2 EXEC SQL CONTEXT ALLOCATE 11-6
11.4.2.3 EXEC SQL CONTEXT USE 11-6
11.4.2.4 EXEC SQL CONTEXT FREE 11-8

11.4.3 CONTEXT USE Examples 11-8
11.4.4 Programming Considerations 11-9
11.5 Multithreaded Example 11-9
11.6 Connection Pooling 11-15
11.6.1 About Using the Connection Pooling Feature 11-16
11.6.1.1 How to Enable Connection Pooling 11-16
11.6.1.2 Command Line Options for Connection Pooling 11-17
11.6.1.3 Example 11-18
11.6.1.4 Performance Tuning 11-18

11.6.2 Demo Program:1 11-19
11.6.2.1 Example 11-20

11.6.3 Demo Program:2 11-23
11.6.3.1 Case 1: By varying CMIN 11-24
11.6.3.2 Case 2: By varying CMAX 11-25
11.6.3.3 Example 11-25

Part Il Applications
12 C++ Applications

12.1 Understanding C++ Support 12-1
12.1.1 No Special Macro Processing 12-1
12.2 Precompiling for C++ 12-2
12.2.1 Code Generation 12-2
12.2.2 About Parsing Code 12-3
12.2.3 Output Filename Extension 12-4
12.2.4 System Header Files 12-4
12.3 Example Programs 12-4
12.3.1 cppdemol.pc 12-4
12.3.2 cppdemo2.pc 12-7
12.3.3 cppdemo3.pc 12-10

ORACLE

XViii

13 Oracle Dynamic SQL

13.1 What is Dynamic SQL?

13.2 Advantages and Disadvantages of Dynamic SQL
13.3 When to Use Dynamic SQL

13.4 Requirements for Dynamic SQL Statements

13.5 How Dynamic SQL Statements are Processed
13.6 Methods for Using Dynamic SQL

13.6.1
13.6.2
13.6.3
13.6.4
13.6.5

Method 1
Method 2
Method 3
Method 4
Guidelines

13.6.5.1 About Avoiding Common Errors
13.7 Using Method 1

13.7.1

Example Program: Dynamic SQL Method 1

13.8 Using Method 2

13.8.1
13.8.2

The USING Clause
Example Program: Dynamic SQL Method 2

13.9 Using Method 3

13.9.1
13.9.2
13.9.3
13.9.4
13.9.5
13.9.6

PREPARE (Dynamic SQL)

DECLARE (Dynamic SQL)

OPEN (Dynamic SQL)

FETCH (Dynamic SQL)

CLOSE (Dynamic SQL)

Example Program: Dynamic SQL Method 3

13.10 Using Method 4

13.10.1
13.10.2
13.10.3
13.10.4
13.10.5

13.11 About Using the DECLARE STATEMENT Statement

13.11.1

Need for the SQLDA

The DESCRIBE Statement

What is a SQLDA?

About Implementing Oracle Method 4
Restriction

About Using Host Arrays

13.12 About Using PL/SQL

13.12.1
13.12.2
13.12.3
13.12.4

With Method 1
With Method 2
With Method 3
With Oracle Method 4

13.13 Dynamic SQL Statement Caching

ORACLE

13-1
13-2
13-2
13-2
13-3
13-3
13-4
13-4
13-4
13-4
13-5
13-5
13-6
13-7
13-10
13-11
13-11
13-14
13-15
13-15
13-15
13-16
13-16
13-16
13-19
13-20
13-20
13-20
13-21
13-22
13-22
13-22
13-23
13-23
13-23
13-23
13-24
13-24

XiX

14 ANSI Dynamic SQL

14.1 Basics of ANSI Dynamic SQL 14-1
14.1.1 Precompiler Options 14-2
14.2 Overview of ANSI SQL Statements 14-2
14.2.1 Example Code 14-5
14.3 Oracle Extensions 14-6
14.3.1 Reference Semantics 14-6
14.3.2 About Using Arrays for Bulk Operations 14-7
14.3.3 Support for Arrays of Structs 14-8
14.3.4 Support for Object Types 14-9
14.4 ANSI Dynamic SQL Precompiler Options 14-9
14.5 Full Syntax of the Dynamic SQL Statements 14-10
14.5.1 ALLOCATE DESCRIPTOR 14-10
14.5.2 DEALLOCATE DESCRIPTOR 14-11
145.3 GET DESCRIPTOR 14-11
14.5.4 SET DESCRIPTOR 14-14
1455 Use of PREPARE 14-17
145.6 DESCRIBE INPUT 14-17
14.5.7 DESCRIBE OUTPUT 14-18
145.8 EXECUTE 14-19
1459 Use of EXECUTE IMMEDIATE 14-20
14.5.10 Use of DYNAMIC DECLARE CURSOR 14-20
145.11 OPEN Cursor 14-20
145.12 FETCH 14-21
14.5.13 CLOSE a Dynamic Cursor 14-22
14.5.14 Differences From Oracle Dynamic Method 4 14-22
14.5.15 Restrictions (ANSI Dynamic SQL) 14-23
14.6 Example Programs 14-23
14.6.1 ansidynl.pc 14-23
14.6.2 ansidyn2.pc 14-29

15 Oracle Dynamic SQL: Method 4

15.1 Meeting the Special Requirements of Method 4 15-1
15.1.1 What Makes Method 4 Special? 15-2
15.1.2 What Information Does Oracle Need? 15-2
15.1.3 Where Is the Information Stored? 15-2
15.1.4 How is the SQLDA Referenced? 15-3
15.1.5 How is the Information Obtained? 15-3

15.2 Understanding the SQLDA 15-3
15.2.1 Purpose of the SQLDA 15-4

ORACLE XX

15.2.2
15.2.3
15.2.4

Multiple SQLDAs
Declaring a SQLDA
Allocating a SQLDA

15.3 About Using the SQLDA Variables

1531
15.3.2
15.3.3
15.3.4
15.3.5
15.3.6
15.3.7
15.3.8
15.3.9
15.3.10
15.3.11
15.3.12

The N Variable
The V Variable
The L Variable
The T Variable
The | Variable
The F Variable
The S Variable
The M Variable
The C Variable
The X Variable
The Y Variable
The Z Variable

15.4 Some Preliminaries

154.1

Converting Data

15.4.1.1 Internal Datatypes
15.4.1.2 External Datatypes

15.4.2

Coercing Datatypes

15.4.2.1 Extracting Precision and Scale

15.4.3

Handling NULL/Not NULL Datatypes

15.5 The Basic Steps
15.6 A Closer Look at Each Step

15.6.1
15.6.2
15.6.3
15.6.4
15.6.5
15.6.6
15.6.7
15.6.8
15.6.9
15.6.10
15.6.11
15.6.12
15.6.13
15.6.14
15.6.15
15.6.16

ORACLE

Declare a Host String
Declare the SQLDAs
Allocate Storage Space for the Descriptors
Set the Maximum Number to DESCRIBE
Put the Query Text in the Host String
PREPARE the Query from the Host String
DECLARE a Cursor
DESCRIBE the Bind Variables
Reset Number of Placeholders
Get Values and Allocate Storage for Bind Variables
OPEN the Cursor
DESCRIBE the Select List
Reset Number of Select-List Items
Reset Length/Datatype of Each Select-list Iltem
FETCH Rows from the Active Set
Get and Process Select-List Values

15-4
15-4
15-4
15-5
15-6
15-6
15-6
15-7
15-8
15-8
15-8
15-8
15-9
15-9
15-9
15-9
15-9
15-9
15-10
15-10
15-11
15-12
15-14
15-15
15-16
15-17
15-17
15-17
15-18
15-20
15-21
15-21
15-21
15-22
15-22
15-24
15-25
15-26
15-27
15-28
15-29

XXi

15.6.17 Deallocate Storage 15-30
15.6.18 CLOSE the Cursor 15-31
15.6.19 About Using Host Arrays 15-31
15.6.20 samplel2.pc 15-33
15.7 Example Program: Dynamic SQL Method 4 15-33
15.8 Sample Program : Dynamic SQL Method 4 using Scrollable Cursors 15-44
16 LOBs
16.1 What are LOBs? 16-1
16.1.1 Internal LOBs 16-1
16.1.2 External LOBs 16-2
16.1.3 Security for BFILEs 16-2
16.1.4 LOBs versus LONG and LONG RAW 16-2
16.1.5 LOB Locators 16-3
16.1.6 Temporary LOBs 16-3
16.1.7 LOB Buffering Subsystem 16-3
16.2 How to Use LOBs in Your Program 16-4
16.2.1 Three Ways to Access LOBs 16-4
16.2.2 LOB Locators in Your Application 16-5
16.2.3 Initializing a LOB 16-6
16.2.3.1 Internal LOBs 16-6
16.2.3.2 External LOBs 16-6
16.2.3.3 Temporary LOBs 16-7
16.2.3.4 Freeing LOBs 16-7
16.3 Rules for LOB Statements 16-7
16.3.1 For All LOB Statements 16-7
16.3.2 For the LOB Buffering Subsystem 16-8
16.3.3 For Host Variables 16-9
16.4 LOB Statements 16-9
16.4.1 APPEND 16-9
16.4.2 ASSIGN 16-10
16.4.3 CLOSE (for LOBSs) 16-11
16.4.4 COPY 16-11
16.4.5 CREATE TEMPORARY 16-12
16.4.6 DISABLE BUFFERING 16-13
16.4.7 ENABLE BUFFERING 16-13
16.4.8 ERASE 16-13
16.4.9 FILE CLOSE ALL 16-14
16.4.10 FILE SET 16-14
16.4.11 FLUSH BUFFER 16-15
ORACLE XXii

16.4.12 FREE TEMPORARY 16-16

16.4.13 LOAD FROM FILE 16-16
16.4.14 OPEN (for LOBs) 16-17
16.4.15 READ 16-18
16.4.16 TRIM 16-19
16.4.17 WRITE 16-20
16.4.18 DESCRIBE 16-21
16.5 LOBs and the Navigational Interface 16-23
16.5.1 Transient Objects 16-23
16.5.2 Persistent Objects 16-23
16.5.3 Navigational Interface Example 16-24
16.6 LOB Program Examples 16-25
16.6.1 READ a BLOB, Write a File Example 16-25
16.6.2 Read a File, WRITE a BLOB Example 16-26
16.6.3 lobdemol.pc 16-28
17 Objects
17.1 Introduction to Objects 17-1
17.1.1 Object Types 17-1
17.1.2 REFs to Object Types 17-2
17.1.3 Type Inheritance 17-2
17.2 About Using Object Types in Pro*C/C++ 17-3
17.2.1 NULL Indicators 17-3
17.3 The Object Cache 17-4
17.3.1 Persistent Versus Transient Copies of Objects 17-4
17.4 Associative Interface 17-4
17.4.1 When to Use the Associative Interface 17-4
17.4.2 ALLOCATE 17-5
17.4.3 FREE 17-5
17.4.4 CACHE FREE ALL 17-5
17.4.5 Accessing Objects Using the Associative Interface 17-6
17.5 Navigational Interface 17-7
17.5.1 When to Use the Navigational Interface 17-8
17.5.2 Rules Used in the Navigational Statements 17-8
17.5.3 OBJECT CREATE 17-9
17.5.4 OBJECT DEREF 17-10
1755 OBJECT RELEASE 17-10
17.5.6 OBJECT DELETE 17-10
17.5.7 OBJECT UPDATE 17-11
17.5.8 OBJECT FLUSH 17-11

ORACLE XXiii

17.5.9 Navigational Access to Objects 17-11
17.6 Converting Object Attributes and C Types 17-13
17.6.1 OBJECT SET 17-13
17.6.2 OBJECT GET 17-14
17.7 Object Options Set/Get 17-16
17.7.1 CONTEXT OBJECT OPTION SET 17-16
17.7.2 CONTEXT OBJECT OPTION GET 17-17
17.8 New Precompiler Options for Objects 17-17
17.8.1 VERSION 17-17
17.8.2 DURATION 17-18
17.8.3 OBJECTS 17-18
17.8.4 INTYPE 17-18
17.8.5 ERRTYPE 17-19
17.8.6 SQLCHECK Support for Objects 17-19
17.8.7 Type Checking at Runtime 17-19
17.9 An Object Example in Pro*C/C++ 17-19
17.9.1 Associative Access 17-20
17.9.2 Navigational Access 17-20
17.10 Example Code for Type Inheritance 17-21
17.11 Example Code for Navigational Access 17-29
17.12 About Using C Structures 17-35
17.13 About Using REFs 17-35
17.13.1 Generating a C Structure for a REF 17-35
17.13.2 Declaring REFs 17-36
17.13.3 Using REFs in Embedded SQL 17-36
17.14 About Using OClIDate, OCIString, OCINumber, and OCIRaw 17-36
17.14.1 Declaring OClIDate, OCIString, OCINumber, OCIRaw 17-36
17.14.2 Use of the OCI Types in Embedded SQL 17-37
17.14.3 Manipulating the OCI Types 17-37
17.15 Summarizing the New Database Types in Pro*C/C++ 17-37
17.16 Restrictions on Using Oracle Datatypes in Dynamic SQL 17-40
18 Collections
18.1 Collections 18-1
18.1.1 Nested Tables 18-1
18.1.2 Varrays 18-2
18.1.3 C and Collections 18-2
18.2 Descriptors for Collections 18-2
18.2.1 Declarations for Host and Indicator Variables 18-3
18.2.2 About Manipulating Collections 18-3

ORACLE

XXIV

18.2.2.1 Autonomous Collection Access 18-3
18.2.2.2 Collection Element Access 18-3

18.2.3 Rules for Access 18-4
18.2.3.1 Autonomous Access 18-4
18.2.3.2 Element Access 18-4

18.2.4 Indicator Variables 18-4
18.2.4.1 Autonomous Bindings 18-4
18.2.4.2 Element Bindings 18-4

18.3 OBJECT GET and SET 18-5
18.4 Collection Statements 18-6
18.4.1 COLLECTION GET 18-6
18.4.2 COLLECTION SET 18-8
18.4.3 COLLECTION RESET 18-9
18.4.4 COLLECTION APPEND 18-9
18.4.5 COLLECTION TRIM 18-10
18.4.6 COLLECTION DESCRIBE 18-11
18.4.6.1 Notes on the Table 18-12

18.4.7 Rules for the Use of Collections 18-13
18.5 Collection Example Code 18-13
18.5.1 Type and Table Creation 18-13
18.5.2 GET and SET Example 18-15
18.5.3 DESCRIBE Example 18-16
18.5.4 RESET Example 18-17
18.5.5 Example Program:coldemol.pc 18-18

19 The Object Type Translator

19.1 OTT Overview 19-1
19.2 What is the Object Type Translator 19-1
19.2.1 About Creating Types in the Database 19-3
19.2.2 About Invoking OTT 19-3
19.2.2.1 Command Line 19-4
19.2.2.2 Configuration File 19-4
19.2.2.3 INTYPE File 19-4

19.2.3 The OTT Command Line 19-4
19.2.3.1 OTT 19-5
19.2.3.2 Userid 19-5
19.2.3.3 INTYPE 19-5
19.2.3.4 OUTTYPE 19-5
19.2.3.5 CODE 19-5
19.2.3.6 HFILE 19-6

ORACLE

XXV

19.2.3.7 INITFILE 19-6

19.2.3.8 INITFUNC 19-6
19.2.4 The INTYPE File 19-6
19.2.5 OTT Datatype Mappings 19-8

19.2.5.1 Mapping Object Datatypes to C 19-9

19.2.5.2 OTT Type Mapping Example 19-10
19.2.6 NULL Indicator Structs 19-12
19.2.7 OTT Support for Type Inheritance 19-13

19.2.7.1 Substitutable Object Attributes 19-15
19.2.8 The OUTTYPE File 19-16

19.3 AUsing OTT with OCI Applications 19-17
19.3.1 About Accessing and Manipulating Objects with OCI 19-18
19.3.2 About Calling the Initialization Function 19-19
19.3.3 Tasks of the Initialization Function 19-20

19.4 About Using OTT with Pro*C/C++ Applications 19-20

19.5 OTT Reference 19-23
19.5.1 OTT Command Line Syntax 19-24
19.5.2 OTT Parameters 19-24

19.5.2.1 USERID 19-25

19.5.2.2 INTYPE 19-25

19.5.2.3 OUTTYPE 19-25

19.5.2.4 CODE 19-26

19.5.25 INITFILE 19-26

19.5.2.6 INITFUNC 19-26

19.5.2.7 HFILE 19-26

19.5.2.8 CONFIG 19-27

19.5.2.9 ERRTYPE 19-27

19.5.2.10 CASE 19-27

19.5.2.11 SCHEMA_NAMES 19-28

19.5.2.12 TRANSITIVE 19-28
19.5.3 Where OTT Parameters Can Appear 19-28
19.5.4 Structure of the INTYPE File 19-29

19.5.4.1 INTYPE File Type Specifications 19-29
19.5.5 Nested #include File Generation 19-30
19.5.6 SCHEMA_NAMES Usage 19-32
19.5.7 Default Name Mapping 19-33
19.5.8 Restriction 19-34

19.5.8.1 File Name Comparison 19-35

ORACLE XXVi

20 User Exits

20.1 What Is a User Exit? 20-1
20.2 Why Write a User Exit? 20-1
20.3 About Developing a User Exit 20-2
20.4 About Writing a User Exit 20-2
20.4.1 Requirements for Variables 20-3
20.5 EXEC TOOLS Statements 20-3
20.5.1 About Writing a Toolset User Exit 20-3
20.5.2 EXEC TOOLS SET 20-3
20.5.3 EXEC TOOLS GET 20-4
20.5.4 EXEC TOOLS SET CONTEXT 20-4
20.5.5 EXEC TOOLS GET CONTEXT 20-4
20.5.6 EXEC TOOLS MESSAGE 20-5
20.6 About Calling a User Exit 20-5
20.7 About Passing Parameters to a User Exit 20-5
20.8 About Returning Values to a Form 20-6
20.8.1 The IAP Constants 20-6
20.8.2 About Using WHENEVER 20-6
20.9 An Example of Using User Exits 20-7
20.10 About Precompiling and Compiling a User Exit 20-7
20.11 Example Program: A User Exit 20-7
20.12 About Using the GENXTB Utility 20-9
20.13 About Linking a User Exit into SQL*Forms 20-10
20.14 Guidelines 20-10
20.14.1 About Naming the Exit 20-10
20.14.2 About Connecting to Oracle 20-10
20.14.3 About Issuing I/O Calls 20-10
20.14.4 About Using Host Variables 20-10
20.14.5 About Updating Tables 20-11
20.14.6 About Issuing Commands 20-11

Part Il Appendixes

A Reserved Words, Keywords, and Namespaces

A.1 Reserved Words and Keywords A-1
A.2 Oracle Reserved Namespaces A-4

ORACLE XXVii

B Performance Tuning

B.1 What Causes Poor Performance? B-1
B.2 How Can Performance Be Improved? B-2
B.3 About Using Host Arrays B-2
B.4 About Using Embedded PL/SQL B-3
B.5 About Optimizing SQL Statements B-4
B.5.1 Optimizer Hints B-4
B.5.2 Trace Facility B-4
B.6 About Statement Caching B-5
B.7 About Using Indexes B-5
B.8 About Taking Advantage of Row-Level Locking B-5
B.9 About Eliminating Unnecessary Parsing B-5
B.9.1 About Handling Explicit Cursors B-6
B.9.1.1 Cursor Control B-6

B.9.2 About Using the Cursor Management Options B-7
B.9.2.1 SQL Areas and Cursor Cache B-7

B.9.2.2 Resource Use B-8

B.9.2.3 Infrequent Execution B-9

B.9.2.4 Frequent Execution B-9

B.9.2.5 Embedded PL/SQL Considerations B-10

B.9.2.6 Parameter Interactions B-10

B.10 About Avoiding Unnecessary Reparsing B-10
B.11 About Using Connection Pooling B-11
B.12 About Using Oracle Connection Manager in Traffic Director Mode B-11

C Syntactic and Semantic Checking

C.1 What Is Syntactic and Semantic Checking? C-1
C.2 About Controlling the Type and Extent of Checking C-1
C.3 About Specifying SQLCHECK=SEMANTICS C-2
C.3.1 About Enabling a Semantic Check C-2
C.3.1.1 About Connecting to the Oracle server C-3

C.3.1.2 About Using DECLARE TABLE C-3

C.3.1.3 About Using DECLARE TYPE C-4

C.4 About Specifying SQLCHECK=SYNTAX C-4
C.5 About Entering the SQLCHECK Option C-4

D System-Specific References

D.1 System-Specific Information D-1
D.1.1 Location of Standard Header Files D-1

ORACLE XXViii

D.1.2 About Specifying Location of Included Files for the C Compiler D-1
D.1.3 ANSI C Support D-1
D.1.4 Struct Component Alignment D-1
D.1.5 Size of an Integer and ROWID D-1
D.1.6 Byte Ordering D-1
D.1.7 About Connecting to the Oracle Server D-2
D.1.8 About Linking in an XA Library D-2
D.1.9 Location of the Pro*C/C++ Executable D-2
D.1.10 System Configuration File D-2
D.1.11 INCLUDE Option Syntax D-2
D.1.12 About Compiling and Linking D-2
D.1.13 User Exits D-2
E Embedded SQL Statements and Directives
E.1 Summary of Precompiler Directives and Embedded SQL Statements E-3
E.2 About The Statement Descriptions E-6
E.3 How to Read Syntax Diagrams E-6
E.3.1 Required Keywords and Parameters E-7
E.3.2 Optional Keywords and Parameters E-8
E.3.3 Syntax Loops E-8
E.3.4 Multipart Diagrams E-8
E.3.5 Oracle Names E-9
E.3.6 Statement Terminator E-9
E.4 ALLOCATE (Executable Embedded SQL Extension) E-9
E.5 ALLOCATE DESCRIPTOR (Executable Embedded SQL) E-11
E.6 CACHE FREE ALL (Executable Embedded SQL Extension) E-12
E.7 CALL (Executable Embedded SQL) E-12
E.8 CLOSE (Executable Embedded SQL) E-14
E.9 COLLECTION APPEND (Executable Embedded SQL Extension) E-14
E.10 COLLECTION DESCRIBE (Executable Embedded SQL Extension) E-15
E.11 COLLECTION GET (Executable Embedded SQL Extension) E-17
E.12 COLLECTION RESET (Executable Embedded SQL Extension) E-17
E.13 COLLECTION SET (Executable Embedded SQL Extension) E-18
E.14 COLLECTION TRIM (Executable Embedded SQL Extension) E-18
E.15 COMMIT (Executable Embedded SQL) E-19
E.16 CONNECT (Executable Embedded SQL Extension) E-20
E.17 CONTEXT ALLOCATE (Executable Embedded SQL Extension) E-22
E.18 CONTEXT FREE (Executable Embedded SQL Extension) E-23
E.19 CONTEXT OBJECT OPTION GET (Executable Embedded SQL Extension) E-24
E.20 CONTEXT OBJECT OPTION SET (Executable Embedded SQL Ext) E-25

ORACLE

XXiX

E.21
E.22
E.23
E.24
E.25
E.26
E.27
E.28
E.29
E.30
E.31
E.32
E.33
E.34
E.35
E.36
E.37
E.38
E.39
E.40
E.41
E.42
E.43
E.44
E.45
E.46
E.47
E.48
E.49
E.50
E.51
E.52
E.53
E.54
E.55
E.56
E.57
E.58
E.59
E.60
E.61

ORACLE

CONTEXT USE (Oracle Embedded SQL Directive)
DEALLOCATE DESCRIPTOR (Embedded SQL Statement)
DECLARE CURSOR (Embedded SQL Directive)

DECLARE DATABASE (Oracle Embedded SQL Directive)
DECLARE STATEMENT (Embedded SQL Directive)

DECLARE TABLE (Oracle Embedded SQL Directive)

DECLARE TYPE (Oracle Embedded SQL Directive)

DELETE (Executable Embedded SQL)

DESCRIBE (Executable Embedded SQL Extension)

DESCRIBE DESCRIPTOR (Executable Embedded SQL)
ENABLE THREADS (Executable Embedded SQL Extension)
EXECUTE ... END-EXEC (Executable Embedded SQL Extension)
EXECUTE (Executable Embedded SQL)

EXECUTE DESCRIPTOR (Executable Embedded SQL)
EXECUTE IMMEDIATE (Executable Embedded SQL)

FETCH (Executable Embedded SQL)

FETCH DESCRIPTOR (Executable Embedded SQL)

FREE (Executable Embedded SQL Extension)

GET DESCRIPTOR (Executable Embedded SQL)

INSERT (Executable Embedded SQL)

LOB APPEND (Executable Embedded SQL Extension)

LOB ASSIGN (Executable Embedded SQL Extension)

LOB CLOSE (Executable Embedded SQL Extension)

LOB COPY (Executable Embedded SQL Extension)

LOB CREATE TEMPORARY (Executable Embedded SQL Extension)
LOB DESCRIBE (Executable Embedded SQL Extension)

LOB DISABLE BUFFERING (Executable Embedded SQL Extension)
LOB ENABLE BUFFERING (Executable Embedded SQL Extension)
LOB ERASE (Executable Embedded SQL Extension)

LOB FILE CLOSE ALL (Executable Embedded SQL Extension)
LOB FILE SET (Executable Embedded SQL Extension)

LOB FLUSH BUFFER (Executable Embedded SQL Extension)
LOB FREE TEMPORARY (Executable Embedded SQL Extension)
LOB LOAD (Executable Embedded SQL Extension)

LOB OPEN (Executable Embedded SQL Extension)

LOB READ (Executable Embedded SQL Extension)

LOB TRIM (Executable Embedded SQL Extension)

LOB WRITE (Executable Embedded SQL Extension)

OBJECT CREATE (Executable Embedded SQL Extension)
OBJECT DELETE (Executable Embedded SQL Extension)
OBJECT DEREF (Executable Embedded SQL Extension)

E-26
E-27
E-28
E-29
E-30
E-32
E-33
E-34
E-37
E-38
E-40
E-41
E-42
E-43
E-45
E-46
E-48
E-50
E-51
E-53
E-56
E-56
E-57
E-57
E-58
E-58
E-59
E-59
E-60
E-60
E-61
E-61
E-62
E-62
E-63
E-63
E-64
E-64
E-65
E-66
E-67

XXX

E.62 OBJECT FLUSH (Executable Embedded SQL Extension) E-68

E.63 OBJECT GET (Executable Embedded SQL Extension) E-68
E.64 OBJECT RELEASE (Executable Embedded SQL Extension) E-69
E.65 OBJECT SET (Executable Embedded SQL Extension) E-70
E.66 OBJECT UPDATE (Executable Embedded SQL Extension) E-71
E.67 OPEN (Executable Embedded SQL) E-72
E.68 OPEN DESCRIPTOR (Executable Embedded SQL) E-74
E.69 PREPARE (Executable Embedded SQL) E-76
E.70 REGISTER CONNECT (Executable Embedded SQL Extension) E-77
E.71 ROLLBACK (Executable Embedded SQL) E-78
E.72 SAVEPOINT (Executable Embedded SQL) E-81
E.73 SELECT (Executable Embedded SQL) E-82
E.74 SET DESCRIPTOR (Executable Embedded SQL) E-85
E.75 TYPE (Oracle Embedded SQL Directive) E-87
E.76 UPDATE (Executable Embedded SQL) E-89
E.77 VAR (Oracle Embedded SQL Directive) E-91
E.78 WHENEVER (Embedded SQL Directive) E-94

F Sample Programs

F.1 Sample Program Descriptions F-1
F.2 Building the Demonstration Tables F-6
F.3 About Building the Sample Programs F-7

F.3.1 Using pcmake.bat F-7
F.4 Using Microsoft Visual Studio F-7
F.5 Setting the Path for the Sample .pre Files F-8

G Integrating Pro*C/C++ into Microsoft Visual Studio .NET

G.1 Integrating Pro*C/C++ within Microsoft Visual Studio .NET Projects G-1
G.1.1 Specifying the Location of the Pro*C/C++ Executable G-1
G.1.2 Specifying the Location of the Pro*C/C++ Header Files G-2

G.2 Adding .pc Files to a Project G-2
G.2.1 Adding References to .c Files to a Project G-3
G.2.2 Adding the Pro*C/C++ Library to a Project G-3
G.2.3 Specifying Custom Build Options G-4

G.3 Adding Pro*C/C++ to the Tools Menu G-5

Index

ORACLE XXXi

List of Tables

1-1 precomp Directory Structure

2-1 Embedded SQL Statements

2-2 Embedded SQL Statements

4-1 Oracle Internal Datatypes

4-2 Oracle External Datatypes

4-3 DATE Format

4-4 C Datatypes for Host Variables

4-5 C to Oracle Datatype Compatibility

4-6 Globalization Support Parameters

5-1 CHAR_MAP Settings

5-2 Default Type Assignments

5-3 Header Files

5-4 SQLLIB Public Functions -- New Names

7-1 Legal Datatype Conversions

8-1 Valid Host Arrays for SELECT INTO

8-2 Host Arrays Valid in an UPDATE

8-3 DB2 Array Syntax vs. Oracle Precompiler Syntax
9-1 Predefined Class Codes

9-2 SQLSTATE Status Codes

9-3 SQL Function Codes

10-1 How Macro Option Values Set Micro Option Values
10-2 Precompiler Options

10-3 DBMS and MODE Interaction

11-1 Command Line Options for Connection Pooling
12-1 Values and Effects of the PARSE Option

13-1 Methods for Using Dynamic SQL

14-1 ANSI SQL Datatypes

14-2 DYNAMIC Option Settings

14-3 TYPE_CODE Option Settings

14-4 Definitions of Descriptor Item Names for GET DESCRIPTOR
14-5 Oracle Extensions to Definitions of Descriptor Item Names for GET DESCRIPTOR
14-6 Descriptor Iltem Names for SET DESCRIPTOR
14-7 Oracle Extensions to Descriptor ltem Names for SET DESCRIPTOR
15-1 Oracle Internal Datatypes

15-2 Oracle External Datatypes and Datatype Codes
ORACLE

1-5
2-2
2-2
4-1
4-3
4-7

4-12
4-12
4-41
5-2
5-10
5-31
5-42
7-12
8-11
8-13
8-27
9-5
9-6
9-27
10-6
10-8
10-20
11-17
12-3
13-3
14-3
14-9

14-10

14-12

14-13

14-15

14-16

15-10

15-11

XXXIi

15-3 Precision and Scale Values for SQL Datatypes

16-1 LOB Access Methods

16-2 Source LOB and Precompiler Datatypes

16-3 LOB Attributes

17-1 Valid Choices for CONTEXT OBJECT OPTION Values

17-2 Using New Database Types in Pro*C/C++

17-3 Using New C Datatypes in Pro*C/C++

18-1 Object and Collection Attributes

18-2 Collection and Host Array Allowable Type Conversions

18-3 Attributes of a COLLECTION DESCRIBE

19-1 Object Datatype Mappings for Object Type Attributes

19-2 Object Datatype Mappings for Collection Types

A-1 Oracle Reserved Namespaces

B-1 HOLD_CURSOR and RELEASE _CURSOR Interactions

E-1 Functional Summary of the Embedded SQL Statements and Directives
E-2 Precompiler Directives and Embedded SQL Statements and Clauses
F-1 Sample Programs

ORACLE

15-13
16-4
16-19
16-22
17-16
17-37
17-39
18-5
18-5
18-12
19-9
19-10
A-4
B-10
E-3
E-3
F-1

XXXiii

Preface

Preface

This document is a comprehensive user's guide and reference to the Pro*C/C++. It
shows you how to use the database language SQL and Oracle's procedural extension,
PL/SQL, in conjunction with Pro*C/C++ to manipulate data in an Oracle database. It
explores a full range of topics, from underlying concepts to advanced programming
techniques, and provides code examples.

This Preface contains these topics:
* Intended Audience

e Documentation Accessibility

* Related Documents

e Conventions

Intended Audience

The Pro*C/C++ Programmer's Guide is intended for programmers, systems analysts,
project managers, and other Oracle users who perform, or are interested in learning
about, the following tasks:

» Design and develop software applications in the Oracle environment.
e Convert existing software applications to run in an Oracle environment.
* Manage the development of software applications.

To use this document, you need a working knowledge of applications programming in
C and C++, and familiarity with the use of the Structured Query Language (SQL).

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents

For more information, see these Oracle resources:

ORACLE XXXIV

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Preface

e Oracle Database SQL Language Reference
e Oracle C++ Call Interface Programmer's Guide
* Oracle Call Interface Programmer's Guide

Many of the examples in this book use the sample schemas of the seed database,
which is installed by default when you install Oracle. Refer to Oracle Database Sample
Schemas for information on how these schemas were created and how you can use
them yourself.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

ORACLE S

Changes in This Release for Pro*C/C++ Programmer's Guide

Changes in This Release for Pro*C/C++
Programmer's Guide

This preface lists changes in Pro*C/C++ Programmer's Guide.

Changes in Pro*C/C++ Release 18c, Version 18.1

New Features

The following feature is new in this release:

e Support for Oracle Connection Manager in Traffic Director Mode

Oracle Connection Manager in Traffic Director Mode is a proxy that is placed
between supported database clients and database instances for improved high
availability, connection multiplexing, and load balancing.

See About Using Oracle Connection Manager in Traffic Director Mode for more
information.

Changes in Pro*C/C++ 12c Release 2 (12.2)

New Features

The following features are new in this release:

e Pro*C/C++ now supports identifier lengths of 128 bytes. In previous releases, the
identifier length limit was 30 bytes.

e Pro*C/C++ now supports Oracle Instant Client - Basic Light version.

e Pro*C/C++ now introduces a new command line option “trim_password”, to
prevent authentication issues caused by password strings that contain trailing
blank space.

e High Availability features such as Transaction Guard are implemented in the OCI
layer. For more information, see the Call Interface Programmer’s Guide.

ORACLE XXXVi

Introduction and Concepts

Part | contains the following chapters:

e Introduction

e Precompiler Concepts

e Database Concepts

e Datatypes and Host Variables
e Advanced Topics

Embedded SQL

e Embedded PL/SQL

* Host Arrays

e Handling Runtime Errors

e Precompiler Options

e Multithreaded Applications

ORACLE

Introduction

This chapter introduces you to the Oracle Pro*C/C++ Precompiler. You look at its role
in developing application programs that manipulate Oracle data and find out what it
enables your applications to do. This chapter contains the following topics:

What is an Oracle Precompiler?

Why Use the Oracle Pro*C/C++ Precompiler
Why Use SQL

Why Use PL/SQL

Pro*C/C++ Precompiler Benefits

Frequently Asked Questions

1.1 What is an Oracle Precompiler?

An Oracle Precompiler is a programming tool that enables the user to embed SQL
statements in a high-level source program. As Figure 1-1 shows, the precompiler
accepts the source program as input, translates the embedded SQL statements into
standard Oracle runtime library calls, and generates a modified source program that
you can compile, link, and execute in the usual way.

ORACLE

1-1

Chapter 1
Why Use the Oracle Pro*C/C++ Precompiler

Figure 1-1 Embedded SQL Program Development

System Editor

Source
Program With embedded SQL statements

Pro*C/C++
Precompiler

Modified
Source With all SQL statements replaced by library calls
Program

Object
Program
Oracle
Runtime
To resolve calls Library
(SQLLIB)

Source
Program

1.2 Why Use the Oracle Pro*C/C++ Precompiler

ORACLE

The Oracle Pro*C/C++ Precompiler lets you use the power and flexibility of SQL in
your application programs. A convenient, easy to use interface lets your application
access Oracle directly.

Unlike many application development tools, Pro*C/C++ lets you create highly
customized applications. For example, you can create user interfaces that incorporate
the latest windowing and mouse technology. You can also create applications that run
in the background without the need for user interaction.

Furthermore, Pro*C/C++ helps you fine-tune your applications. It allows close
monitoring of resource use, SQL statement execution, and various runtime indicators.
With this information, you can change program parameters for maximum performance.

Although precompiling adds a step to the application development process, it saves
time. The precompiler, not you, translates each embedded SQL statement into calls to
the Oracle runtime library (SQLLIB). The Pro*C/C++ precompiler also analyzes host
variables, defines mappings of structures into columns, and, with SQLCHECK=FULL,
performs semantic analysis of the embedded SQL statements.

1-2

Chapter 1
Why Use SQL

1.3 Why Use SQL

If you want to access and manipulate Oracle data, you need SQL. Whether you use
SQL interactively through SQL*Plus or embedded in an application program depends
on the job at hand. If the job requires the procedural processing power of C or C++, or
must be done on a regular basis, use embedded SQL.

SQL has become the database language of choice because it is flexible, powerful, and
easy to learn. Being non-procedural, it lets you specify what you want done without
specifying how to do it. A few English-like statements make it easy to manipulate
Oracle data one row or many rows at a time.

You can execute any SQL (not SQL*Plus) statement from an application program. For
example, you can

 CREATE, ALTER, and DROP database tables dynamically
* SELECT, INSERT, UPDATE, and DELETE rows of data
¢ COMMIT or ROLLBACK transactions

Before embedding SQL statements in an application program, you can test them
interactively using SQL*Plus. Usually, only minor changes are required to switch from
interactive to embedded SQL.

1.4 Why Use PL/SQL

An extension to SQL, PL/SQL is a transaction processing language that supports
procedural constructs, variable declarations, and robust error handling. Within the
same PL/SQL block, you can use SQL and all the PL/SQL extensions.

The main advantage of embedded PL/SQL is better performance. Unlike SQL,
PL/SQL provides the ability to group SQL statements logically and send them to
Oracle in a block rather than one by one. This reduces network traffic and processing
overhead.

Related Topics
e Embedded PL/SQL

1.5 Pro*C/C++ Precompiler Benefits

As Figure 1-2 shows, Pro*C/C++ offers many features and benefits, which help you to
develop effective, reliable applications.

ORACLE 1-3

ORACLE

Chapter 1
Pro*C/C++ Precompiler Benefits

Figure 1-2 Features and Benefits

Event Runtime Object Types ANSI/ISO SQL

Handling Diagnostics Compliance
National Dynamic
Character Sets SQL
Conditional Threads
Precompilation Support

Pro*C/C++
Precompiler Automatic

Array Datatype
Operations Conversion

Concurrent Support for
Connects PL/SQL
Syntax and
Semantic Separate Datatype Runtime
Checking Precompilation | Equivalencing Options

Pro*C/C++ enables:

Writing applications in C or C++.

Following the ANSI/ISO standards for embedding SQL statements in a high-level
language.

Taking advantage of dynamic SQL, an advanced programming technique that lets
your Program accept or build any valid SQL statement at runtime.

Designing and developing highly customized applications.
Writing shared server process applications.

Automatically converting between Oracle internal datatypes and high-level
language datatypes.

Improved performance by embedding PL/SQL transaction processing blocks in
your application program.

Specifying useful precompiler options inline and on the command line and change
their values during precompilation.

The use of datatype equivalencing to control the way Oracle interprets input data
and formats output data.

Separately precompiling several program modules, then link them into one
executable Program.

1-4

Chapter 1
Directory Structure

Complete checking of the syntax and semantics of embedded SQL data
manipulation statements and PL/SQL blocks.

Concurrent access to Oracle databases on multiple nodes using Oracle Net.
The use of arrays as input and output program variables.

Conditionally precompiling sections of code in your host program so that it can run
in different environments.

Direct interface with SQL*Forms through the use of user exits written in a high-
level language.

Handling errors and warnings with the SQL Communications Area (SQLCA) and
the WHENEVER or DO statement.

The use of an enhanced set of diagnostics provided by the Oracle
Communications Area (ORACA).

Working with user-defined object types in the database.

The use of collections (varrays and nested tables) in the database.
The use of LOBs (Large Objects) in the database.

The use of National Character Set data stored in the database.
The use of OCI (Oracle Call Interface) functions in your program.
The use of multi-threaded applications.

Microsoft Visual Studio .NET 2002/2003 support.

Pro*C/C++ is a full-featured tool that supports a professional approach to embedded
SQL programming.

Note:

Pro*C/C++ does not support 16-bit code generation.

1.6 Directory Structure

When you install Oracle software, a directory structure is created on your hard drive
for the Oracle products. A main Oracle directory contains the Oracle subdirectories
and files that are necessary to run Pro*C/C++.

ORACLE

When you install Pro*C/C++, Oracle Universal Installer creates a directory called
\ preconp in the ORACLE_BASE\ ORACLE_HOME directory. This subdirectory contains the
Pro*C/C++ executable files, library files, and sample programs listed in Table 1-1.

Table 1-1 precomp Directory Structure

Directory Name Contents

\adm n Configuration files

\ deno\ proc Sample programs for Pro*C/C++
\ deno\ sq SQL scripts for sample programs
\ doc\ proc Readme files for Pro*C/C++

1-5

Chapter 1
Library Files

Table 1-1 (Cont.) precomp Directory Structure

Directory Name Contents
\lib\nmsve Library files for Pro*C/C++
\ mesg Message files
\public Header files
Note:

The \ preconp directory can contain files for other products, such as
Pro*COBOL.

1.6.1 Known Problems, Restrictions, and Workarounds

Although all Windows operating systems allow spaces in file names and directory
names, the Oracle Pro*C/C++ and Oracle Pro*COBOL precompilers will not
precompile files that include spaces in the filename or directory name. For example,
do not use the following formats:

* proc inane=test one.pc

e proc inanme=d:\dir1\second dir\sanplel.pc

1.7 Library Files

When linking Pro*C/C++ applications, you use library files. The Pro*C/C++ library files
are installed as follows:

ORACLE_HOVE\ preconp\ LI B\orasql 12.1i b
ORACLE_HOVE\ preconp\ LI B\ ot t cl asses. zi p

ORACLE_HOVE\ preconp\ LI B\ nsvc\ orasgx12.1ib

Pro*C/C++ application program interface (API) calls are implemented in DLL files
provided with your Pro*C/C++ software. To use the DLLs, you must link your
application with the import libraries (.lib files) that correspond to the Pro*C/C++ DLLs.
Also, you must ensure that the DLL files are installed on the computer that is running
your Pro*C/C++ application.

Microsoft provides you with three libraries: libc.lib, libcnt.lib, and nsvert.lib. The
Oracle DLLs use the nsvcert. |ib runtime library. You must link the applications with
nsvert. i b instead of the other two Microsoft libraries.

1.8 Frequently Asked Questions

This section presents some questions that are frequently asked about Pro*C/C++, and
about Oracle in relation to Pro*C/C++. The answers are more informal than the

ORACLE 1-6

Chapter 1
Frequently Asked Questions

documentation in the rest of this Guide, but do provide references to places where you
can find the reference material.

1.8.1 What is a VARCHAR?

Here is a short description of VARCHARS:

VARCHAR Description

VARCHAR2 A kind of column in the database that contains variable-length
character data. This is what Oracle calls an "internal datatype",
because it is a possible column type.

VARCHAR An Oracle "external datatype" (datatype code 9). You use this only
if you are doing dynamic SQL Method 4, or datatype
equivalencing.

VARCHAR[N] This is a Pro*C/C++ "pseudotype” that you can declare as a host

varchar[n] variable in your Pro*C/C++ program. It is actually generated by
Pro*C/C++ as a struct, with a 2-byte length element, and a [n]-byte
character array.

Related Topics

» Datatypes and Host Variables

* ANSI Dynamic SQL

e Oracle Dynamic SQL: Method 4

1.8.2 Does Pro*C/C++ Generate Calls to the Oracle Call Interface?

No. Pro*C/C++ generates data structures and calls to its runtime library: SQLLIB.

1.8.3 Why Not Code Using SQLLIB Calls and Not Use Pro*C/C++?

SQLLIB is not externally documented, is unsupported, and might change from release
to release. Also, Pro*C/C++ is an ANSI/ISO compliant product, that follows the
standard requirements for embedded SQL.

SQLLIB is not an API. While it has user-callable functions, it is primarily a runtime
library for the precompiler suite of languages.

If you need to do API coding for the database, either use the Oracle Call Interface, the
client side API for the Oracle RDBMS, or mix OCI and Pro*C/C++.

Related Topics
* SQLLIB Extensions for OCI Release 8 Interoperability

1.8.4 Can | Call A PL/SQL Stored Procedure From a Pro*C/C++

Program?

ORACLE

Certainly. See Embedded PL/SQL. There is a demo program, "About Calling a Stored
PL/SQL or Java Subprogram".

1-7

Chapter 1
Frequently Asked Questions

1.8.5 Can | Write C++ Code, and Precompile It Using Pro*C/C++?

Yes. See C++ Applications.

1.8.6 Can | Use Bind Variables Anywhere in a SQL Statement?

For example, | would d like to be able to input the name of a table in my SQL
statements at runtime. But when | use host variables, | get precompiler errors.

In general, you can use host variables at anywhere in a SQL or PL/SQL, statement
where expressions are allowed.

However, the following SQL statement, where table_name is a host variable, is illegal:

EXEC SQL SELECT enane, sal INTO :name, :salary FROM :tabl e_name;

To solve your problem, you need to use dynamic SQL. There is a demo program that
you can adapt to do this, "Example Program: Dynamic SQL Method 1".

Related Topics
* Host Variable Referencing

e Oracle Dynamic SQL

1.8.7 | Am Confused By Character Handling in Pro*C/C++.

There are many options, but we can simplify. First of all, if you need compatibility with
previous precompiler releases, and Oracle7, the safest thing to do is use VARCHAR[N]
host variables.

The default datatype for all other character variables in Pro*C/C++ is CHARZ. Briefly,
this means that you must null-terminate the string on input, and it is both blank-padded
and null-terminated on output.

In release 8.0, the CHAR_MAP precompiler option was introduced to specify the
default mapping of char variables.

If neither VARCHAR nor CHARZ works for your application, and you need total C-like
behavior (null termination, absolutely no blank-padding), use the TYPE command and
the C typedef statement, and use datatype equivalencing to convert your character
host variables to STRING. There is an example program that shows how to use the
TYPE command starting on "Example Program: Using sqlvcp()".

Related Topics

* VARCHAR Variable Declaration
* CHARZ

* Precompiler Option CHAR_MAP

* User-Defined Type Equivalencing

1.8.8 Is There Anything Special About Character Pointers?

Yes. When Pro*C/C++ binds an input or output host variable, it must know the length.
When you use VARCHAR([N], or declare a host variable of type char[n], Pro*C/C++

ORACLE 1-8

Chapter 1
Frequently Asked Questions

knows the length from your declaration. But when you use a character pointer as a
host variable, and use nal | oc() to define the buffer in your program, Pro*C/C++ has no
way of knowing the length.

On output you must not only allocate the buffer, but pad it out with some non-null
characters, then null-terminate it. On input or output, Pro*C/C++ calls strl en() for the
buffer to get the length.

Related Topics

* Pointer Variables

1.8.9 Why Does SPOOL Not Work in Pro*C/C++?

SPOOL is a special command used in SQL*Plus. It is not an embedded SQL
command.

Related Topics
» Key Concepts of Embedded SQL Programming

1.8.10 Where Can | Find The On-line Versions of the Example
Programs?

Each Oracle installation should have a deno directory. If the directory is not there, or it
does not contain the example programs, see your system or database administrator.

1.8.11 How Can | Compile and Link My Application?

Compiling and linking are very platform specific. Your system-specific Oracle
documentation has instructions on how to link a Pro*C/C++ application. On UNIX
systems, there is a makefile called deno_proc. nk in the denmo directory. To link, say, the
demo program samplel.pc, you would enter the command line

meke -f denmo_proc. nk sanpl el

If you need to use special precompiler options, you can run Pro*C/C++ separately,
then do the make. Or, you can create your own custom makefile. For example, if your
program contains embedded PL/SQL code, you can enter

proc cv_dempo userid=username/ password sql check=semantics
meke -f deno_proc.nk build OBJS=sanpl el. 0 EXE=sanpl el

On VMS systems, there is a script called LNPROC that you use to link your Pro*C/C++
applications.

1.8.12 Does Pro*C/C++ Now Support Using Structures As Host
Variables?

How does this work with the array interface?

You can use arrays inside a single structure, or an array of structures with the array
interface.

ORACLE 1-9

Chapter 1
Frequently Asked Questions

Related Topics
e Host Structures

* Pointer Variables

1.8.13 Is It Possible to Have Recursive Functions In Pro*C/C++ If |
Use Embedded SQL In the Function?

Yes. However, for embedded SQL, you must use cursor variables.

1.8.14 Can | Use Any Release of Pro*C/C++ with Any Version of the
Oracle Server?

When you run a precompiler or OCI application against a database server, Oracle
recommends that the release of the database server software be equal to or higher
than the client software release, but this configuration is not strictly required. For
example, if your Oracle Database client software is release 8.1.7, then it is
recommended that your Oracle Database server software be release 8.1.7 or higher to
run a precompiler application on the client against the server.

More information about upgrading your applications can be found in the Oracle
Database Upgrade Guide.

1.8.15 When My Application Runs, | Keep Getting an Ora-1405 Error
(Fetched Column Value Is NULL).

You are selecting a NULL into a host variable that does not have an associated
indicator variable. This is not in compliance with the ANSI/ISO standards, and was
changed beginning with Oracle?.

If possible, rewrite your program using indicator variables, and use indicators in future
development.

Alternatively, if precompiling with MODE=ORACLE and DBMS=V7 or V8, specify
UNSAFE_NULL=YES on the command line to disable the ORA-01405 message.

Related Topics
e Indicator Variables
e UNSAFE_NULL

1.8.16 Are All SQLLIB Functions Private?

No. There are some SQLLIB functions that you can call to get information about your
program, or its data. The SQLLIB public functions are shown here:

SQLLIB Public Description
Functions
SQLSQLDAAIloc() Used to allocate a SQL descriptor array (SQLDA) for dynamic SQL

Method 4. See "How is the SQLDA Referenced? ".

ORACLE 1-10

Chapter 1
Frequently Asked Questions

SQLLIB Public Description

Functions

SQLCDAFromResultSetC Used to convert a Pro*C/C++ cursor variable to an OCI cursor data
ursor() area. See "New Names for SQLLIB Public Functions".
SQLSQLDAFree() Used to free a SQLDA allocated using SQLSQLDAAIlloc(). See

"New Names for SQLLIB Public Functions".

SQLCDAToResultSetCurs Used to convert an OCI cursor data area to a Pro*C/C++ cursor

or() variable. See "New Names for SQLLIB Public Functions".
SQLErrorGetText() Returns a long error message. See "sqglerrm ".
SQLStmtGetText() Used to return the text of the most recently executed SQL

statement. See "About Obtaining the Text of SQL Statements ".

SQLLDAGetNamed() Used to obtain a valid Logon Data Area for a named connection,
when OCI calls are used in a Pro*C/C++ program. See "New
Names for SQLLIB Public Functions".

SQLLDAGetCurrent() Used to obtain a valid Logon Data Area for the most recent
connection, when OCI calls are used in a Pro*C/C++ program. See
"New Names for SQLLIB Public Functions".

SQLColumnNullCheck() Returns an indication of NULL status for dynamic SQL Method 4.
See "Handling NULL/Not NULL Datatypes ".

SQLNumberPrecV6() Returns precision and scale of numbers. See "Extracting Precision
and Scale ".

SQLNumberPrecV7() A variant of SQLNumberPrecV6(). See "Extracting Precision and
Scale ".

SQLVarcharGetLength() Used for obtaining the padded size of a VARCHAR[n]. See "Find
the Length of the VARCHAR Array Component ".

SQLENnvGet() Returns the OCI environment handle for a given SQLLIB runtime
context. See "SQLEnvGet()".

SQLSvcCixGet() Returns the OCI service context for the database connection. See
SQLSvcCtxGet().

SQLRowidGet() Returns the universal ROWID of the last row inserted. See
"SQLRowidGet()".

SQLEXxtProcError() Returns control to PL/SQL when an error occurs in an external C

procedure. See "SQLEXxtProcError()".

In the preceding list, the functions are thread-safe SQLLIB public functions. Use these
functions in all new applications. For more information about these thread-safe public
functions (including their old names), see the table "New Names for SQLLIB Public
Functions".

1.8.17 How Does Oracle Support The New Object Types?

See the chapters Objects and The Object Type Translator for how to use Object types
in Pro*C/C++ applications.

1.8.18 Compatibility, Upgrading, and Migration

Pro*C/C++ adopts a similar compatibility rule to OCI-based applications. This
compatibility is subject to the same limitations that OCI imposes on backward
compatibility.

ORACLE 1-11

ORACLE

Chapter 1
Frequently Asked Questions

The additional "array insert" and "array select" syntax will help migrating DB2
precompiler applications to the Pro*C/C++ application. This is because you will not
need to change DB2 array INSERT and SELECT syntax to that of Oracle Pro*C/C++.

The "Implicit Buffered Insert" feature supported by Pro*C/C++ helps you to migrate
DB2 precompiler applications to Pro*C/C++ applications without using the array syntax
of Pro*C/C++ for better performance.

1-12

Precompiler Concepts

This chapter explains how embedded SQL programs do their work. You examine the
special environment in which they operate and the impact of this environment on the
design of your applications. After covering the key concepts of embedded SQL
programming and the steps you take in developing an application, this chapter uses a
simple program to illustrate the main points.

This chapter contains the following topics:

Key Concepts of Embedded SQL Programming
Steps in Developing an Embedded SQL Application
Guidelines for Programming

Example Tables

Example Program: A Simple Query

Example Program: A Simple Query using SQL99 Syntax

2.1 Key Concepts of Embedded SQL Programming

This section lays the conceptual foundation on which later chapters build. This section
contains these topics:

Embedded SQL Statements

Embedded SQL Syntax

Static Versus Dynamic SQL Statements
Embedded PL/SQL Blocks

Host and Indicator Variables

Oracle Datatypes

Arrays

Datatype Equivalencing

Private SQL Areas_ Cursors_ and Active Sets
Transactions

Errors and Warnings

SQL99 Syntax Support

2.1.1 Embedded SQL Statements

The term embedded SQL refers to SQL statements placed within an application
program. Because it houses the SQL statements, the application program is called a
host program, and the language in which it is written is called the host language. For

ORACLE

2-1

Chapter 2
Key Concepts of Embedded SQL Programming

example, Pro*C/C++ provides the ability to embed certain SQL statements in a C or C
++ host program.

To manipulate and query Oracle data, you use the INSERT, UPDATE, DELETE, and
SELECT statements. INSERT adds rows of data to database tables, UPDATE
modifies rows, DELETE removes unwanted rows, and SELECT retrieves rows that
meet your search condition.

The powerful SET ROLE statement lets you dynamically manage database privileges.
A role is a named group of related system and object privileges, or a named group of
related system or object privileges granted to users or other roles. Role definitions are
stored in the Oracle data dictionary. Your applications can use the SET ROLE
statement to enable and disable roles as needed.

Only SQL statements—not SQL*Plus statements—are valid in an application program.
(SQL*Plus has additional statements for setting environment parameters, editing, and
report formatting.)

2.1.1.1 Executable Statements and Directives

Embedded SQL includes all the interactive SQL statements plus others that allow you
to transfer data between Oracle and a host program. There are two types of
embedded SQL statements: executable statements and directives. Executable
statements result in calls to the runtime library SQLLIB. You use them to connect to
Oracle, to define, query, and manipulate Oracle data, to control access to Oracle data,
and to process transactions. They can be placed wherever C or C++ language
executable statements can be placed.

Directives, on the other hand, do not result in calls to SQLLIB and do not operate on
Oracle data. You use them to declare Oracle objects, communications areas, and SQL
variables. They can be placed wherever C or C++ variable declarations can be placed.

Table 2-1 groups the various embedded SQL statements (not a complete list):

Table 2-1 Embedded SQL Statements
|

DIRECTIVE PURPOSE

ARRAYLEN* To use host arrays with PL/SQL
BEGIN DECLARE To declare host variables (optional)
SECTION*

END DECLARE SECTION*

DECLARE* To name Oracle schema objects
INCLUDE* To copy in files

TYPE* To equivalence datatypes

VAR* To equivalence variables
WHENEVER* To handle runtime errors

Table 2-2 Embedded SQL Statements
|

EXECUTABLE PURPOSE
STATEMENT
ALLOCATE* To define and control Oracle data

ORACLE 2-2

2.1.2 Embedded SQL Syntax

Chapter 2
Key Concepts of Embedded SQL Programming

Table 2-2 (Cont.) Embedded SQL Statements
|

EXECUTABLE
STATEMENT

PURPOSE

ALTER
ANALYZE
DELETE

INSERT

SELECT
UPDATE
COMMIT
ROLLBACK
SAVEPOINT
SET TRANSACTION
DESCRIBE*
EXECUTE*
PREPARE*
ALTER SESSION
SET ROLE

*Has no interactive
counterpart

To process transactions

To use dynamic SQL

To control sessions

In your application program, you can freely mix complete SQL statements with
complete C statements and use C variables or structures in SQL statements. The only
special requirement for building SQL statements into your host program is that you
begin them with the keywords EXEC SQL and end them with a semicolon. Pro*C/C++
translates all EXEC SQL statements into calls to the runtime library SQLLIB.

Many embedded SQL statements differ from their interactive counterparts only through
the addition of a new clause or the use of program variables. The following example
compares interactive and embedded ROLLBACK statements:

ROLLBACK WAORK:

EXEC SQL ROLLBACK WORK;

- interactive
- enbedded

These statements have the same effect, but you would use the first in an interactive
SQL environment (such as when running SQL*Plus), and the second in a Pro*C/C++

program.

2.1.3 Static Versus Dynamic SQL Statements

Most application programs are designed to process static SQL statements and fixed
transactions. In this case, you know the makeup of each SQL statement and
transaction before runtime; that is, you know which SQL commands will be issued,
which database tables might be changed, which columns will be updated, and so on.

ORACLE

2-3

Chapter 2
Key Concepts of Embedded SQL Programming

However, some applications might be required to accept and process any valid SQL
statement at runtime. So, you might not know until runtime all the SQL commands,
database tables, and columns involved.

Dynamic SQL is an advanced programming technique that lets your program accept or
build SQL statements at run time and take explicit control over datatype conversion.

2.1.4 Embedded PL/SQL Blocks

Pro*C/C++ treats a PL/SQL block like a single embedded SQL statement. You can
place a PL/SQL block anywhere in an application program that you can place a SQL
statement. To embed PL/SQL in your host program, you simply declare the variables
to be shared with PL/SQL and bracket the PL/SQL block with the keywords EXEC
SQL EXECUTE and END-EXEC.

From embedded PL/SQL blocks, you can manipulate Oracle data flexibly and safely
because PL/SQL supports all SQL data manipulation and transaction processing
commands.

2.1.5 Host and Indicator Variables

ORACLE

Host variables are the key to communication between Oracle and your program. A
host variable is a scalar or aggregate variable declared in C and shared with Oracle,
meaning that both your program and Oracle can reference its value.

Your program uses input host variables to pass data to Oracle. Oracle uses output
host variables to pass data and status information to your program. The program
assigns values to input host variables; Oracle assigns values to output host variables.

Host variables can be used anywhere a SQL expression can be used. In SQL
statements, host variables must be prefixed with a colon () to set them apart from the
SQL keywords.

You can also use a C struct to contain a number of host variables. When you name
the structure in an embedded SQL statement, prefixed with a colon, Oracle uses each
of the components of the struct as a host variable.

You can associate any host variable with an optional indicator variable. An indicator
variable is a short integer variable that "indicates" the value or condition of its host
variable. You use indicator variables to assign NULLSs to input host variables and to
detect NULLSs or truncated values in output host variables. A NULL is a missing,
unknown, or inapplicable value.

In SQL statements, an indicator variable must be prefixed with a colon and
immediately follow its associated host variable. The keyword INDICATOR can be
placed between the host variable and its indicator for additional clarity.

If the host variables are packaged in a struct, and you want to use indicator variables,
you simply create a struct that has an indicator variable for each host variable in the
host structure, and name the indicator struct in the SQL statement, immediately
following the host variable struct, and prefixed with a colon. You can also use the
INDICATOR keyword to separate a host structure and its associated indicator
structure.

2-4

Chapter 2
Key Concepts of Embedded SQL Programming

2.1.6 Oracle Datatypes

Typically, a host program inputs data to Oracle, and Oracle outputs data to the
program. Oracle stores input data in database tables and stores output data in
program host variables. To store a data item, Oracle must know its datatype, which
specifies a storage format and valid range of values.

Oracle recognizes two kinds of datatypes: internal and external. Internal datatypes
specify how Oracle stores data in database columns. Oracle also uses internal
datatypes to represent database pseudocolumns, which return specific data items but
are not actual columns in a table.

External datatypes specify how data is stored in host variables. When your host
program inputs data to Oracle, if necessary, Oracle converts between the external
datatype of the input host variable and the internal datatype of the target database
column. When Oracle outputs data to your host program, if necessary, Oracle converts
between the internal datatype of the source database column and the external
datatype of the output host variable.

2.1.7 Arrays

Pro*C/C++ lets you define array host variables (called host arrays) and arrays of
structures and operate on them with a single SQL statement. Using the array
SELECT, FETCH, DELETE, INSERT, and UPDATE statements, you can query and
manipulate large volumes of data with ease. You can also use host arrays inside a
host variable struct.

2.1.8 Datatype Equivalencing

Pro*C/C++ adds flexibility to your applications by letting you equivalence datatypes.
That means you can customize the way Oracle interprets input data and formats
output data.

On a variable-by-variable basis, you can equivalence supported C datatypes to the
Oracle external datatypes. You can also equivalence user-defined datatypes to Oracle
external datatypes.

2.1.9 Private SQL Areas, Cursors, and Active Sets

ORACLE

To process a SQL statement, Oracle opens a work area called a private SQL area.
The private SQL area stores information needed to execute the SQL statement. An
identifier called a cursor lets you name a SQL statement, access the information in its
private SQL area, and, to some extent, control its processing.

For static SQL statements, there are two types of cursors: implicit and explicit. Oracle
implicitly declares a cursor for all data definition and data manipulation statements,
including SELECT statements (queries) that return only one row. However, for queries
that return more than one row, to process beyond the first row, you must explicitly
declare a cursor (or use host arrays).

The set of rows returned is called the active set; its size depends on how many rows
meet the query search condition. You use an explicit cursor to identify the row
currently being processed, called the current row.

2-5

Chapter 2
Steps in Developing an Embedded SQL Application

Imagine the set of rows being returned to a terminal screen. A screen cursor can point
to the first row to be processed, then the next row, and so on. In the same way, an
explicit cursor "points" to the current row in the active set. This allows your program to
process the rows one at a time.

2.1.10 Transactions

A transaction is a series of logically related SQL statements (two UPDATES that credit
one bank account and debit another, for example) that Oracle treats as a unit, so that
all changes brought about by the statements are made permanent or undone at the
same time.

All the data manipulation statements executed since the last data definition, COMMIT,
or ROLLBACK statement was executed make up the current transaction.

To help ensure the consistency of your database, Pro*C/C++ lets you define
transactions using the COMMIT, ROLLBACK, and SAVEPOINT statements.

COMMIT makes permanent any changes made during the current transaction.
ROLLBACK ends the current transaction and undoes any changes made since the
transaction began. SAVEPOINT marks the current point in the processing of a
transaction; used with ROLLBACK, it undoes part of a transaction.

2.1.11 Errors and Warnings

When you execute an embedded SQL statement, it either succeeds or fails, and might
result in an error or warning. You need a way to handle these results. Pro*C/C++
provides two error handling mechanisms: the SQL Communications Area (SQLCA)
and the WHENEVER statement.

The SQLCA is a data structure that you include (or hard-code) in your host program. It
defines program variables used by Oracle to pass runtime status information to the
program. With the SQLCA, you can take different actions based on feedback from
Oracle about work just attempted. For example, you can check to see if a DELETE
statement succeeded and, if so, how many rows were deleted.

With the WHENEVER statement, you can specify actions to be taken automatically
when Oracle detects an error or warning condition. These actions are: continuing with
the next statement, calling a function, branching to a labeled statement, or stopping.

2.1.12 SQL99 Syntax Support

2.2 Steps

ORACLE

The SQL standard enables the portability of SQL applications across all conforming
software products. Oracle features are compliant with the ANSI/ISO SQL99 standard,
including ANSI compliant joins. Pro*C/C++ supports all SQL99 features that are
supported by Oracle database, which means that the SQL99 syntax for the SELECT,
INSERT, DELETE, and UPDATE statements and the body of the cursor in a
DECLARE CURSOR statement are supported.

In Developing an Embedded SQL Application

Figure 2-1 shows the embedded SQL application development process.

2-6

Chapter 2
Guidelines for Programming

Figure 2-1 Embedded SQL Application Development Process

Steps Results

Design ———» | Specs |
Program

” Modified
Precompile ——(Source
Program

Compile

L (Object
Program
Executable

— (e

Execute

no
Ship to Customer

As you can see, precompiling results in a modified source file that can be compiled
normally. Though precompiling adds a step to the traditional development process,
that step lets you write very flexible applications.

2.3 Guidelines for Programming

This section deals with embedded SQL syntax, coding conventions, and C-specific
features and restrictions. Topics are arranged alphabetically for quick reference.

2.3.1 Comments

You can place C-style Comments (/* ... */) in a SQL statement wherever blanks can be
placed (except between the keywords EXEC SQL). Also, you can place ANSI-style
Comments (-- ...) within SQL statements at the end of a line, as the following example
shows:

ORACLE .

Chapter 2
Guidelines for Programming

EXEC SQL SELECT ENAME, SAL
INTO : enp_name, :salary -- output host variables
FROM EMP
WHERE DEPTNO = : dept _nunber;

You can use C++ style Comments (//) in your Pro*C/C++ source if you precompile
using the CODE=CPP precompiler option.

2.3.2 Constants

An L or | suffix specifies a long integer constant, a U or u suffix specifies an unsigned
integer constant, a 0X or Ox prefix specifies a hexadecimal integer constant, and an F
or f suffix specifies a float floating-point constant. These forms are not allowed in SQL
statements.

2.3.3 Declare Section

ORACLE

A Declare Section contains the host variable declarations and is of the form:

EXEC SQL BEG N DECLARE SECTI N,
/* Declare all host variables inside this section: */
char *uid = "usernane/ password";

EXEC SQL END DECLARE SECTI ON;

A Declare Section begins with the statement:

EXEC SQL BEG N DECLARE SECTI ON,

and ends with the statement:

EXEC SQL END DECLARE SECTI ON;

Between these two statements only the following are allowed:
» Host-variable and indicator-variable declarations

* Non-host C/C++ variables

« EXEC SQL DECLARE statements

« EXEC SQL INCLUDE statements

« EXEC SQL VAR statements

« EXEC SQL TYPE statements

e EXEC ORACLE statements

e C/C++ comments

A Declare Section is required when MODE=ANSI or CODE=CPP (in a C++
application) or PARSE=NONE or PARTIAL.

More than one Declare Section is allowed. They can be in different code modules.

Related Topics
* About Parsing Code

2-8

Chapter 2
Guidelines for Programming

2.3.4 Delimiters

While C uses single quotes to delimit single characters, as in

ch = getchar();

switch (ch)

{

case 'U: update(); break;
case 'I': insert(); break;

SQL uses single quotes to delimit character strings, as in

EXEC SQL SELECT ENAME, SAL FROM EMP WHERE JOB = ' MANAGER ;

While C uses double quotes to delimit character strings, as in

printf("\nG Day, mate!");

SQL uses double quotes to delimit identifiers containing special or lowercase
characters, as in

EXEC SQL CREATE TABLE "Enp2" (enpno nunber(4), ...);

2.3.5 File Length

Pro*C/C++ cannot process arbitrarily long source files. There is a limit to the number
of lines allowed. The following aspects of the source file are contributing factors to the
file-size constraint:

e Complexity of the embedded SQL statements (for example, the number of bind
and define variables).

e Whether a database name is used (for example, connecting to a database with an
AT clause).

¢ Number of embedded SQL statements.

To prevent problems related to this limitation, use multiple program units to sufficiently
reduce the size of the source files.

2.3.6 Function Prototyping

The ANSI C standard (X3.159-1989) provides for function prototyping. A function
prototype declares a function and the data types of its arguments, so that the C
compiler can detect missing or mismatched arguments.

The CODE option, which you can enter on the command line or in a configuration file,
determines the way that the precompiler generates C or C++ code.

2.3.6.1ANSI_C

When you precompile your program with CODE=ANSI_C, the precompiler generates
fully prototyped function declarations. For example:

extern void sqlora(long *, void *);

ORACLE 2-9

Chapter 2
Guidelines for Programming

2.3.6.2KR_C

2.3.6.3 CPP

When you precompile with the option CODE=KR_C (KR for "Kernighan and Ritchie"),
the precompiler generates function prototypes in the same way that it does for
ANSI_C, except that function parameter lists are commented out. For example:

extern void sqlora(/*_ long *, void * _*/);
So, make sure to set the precompiler option CODE to KR_C if you use a C compiler
that does not support ANSI C. When the CODE option is set to ANSI_C, the

precompiler can also generate other ANSI-specific constructs; for example, the const
type qualifier.

When you compile with CODE=CPP you will generate C++ compatible function
prototypes. Use this option setting with C++ compilers.

Related Topics

e C++ Applications

2.3.7 Hint Length

Maximum length of a sql hint in an embedded sqgl statement is limited to 256
characters. Any hint exceeding this limit will be truncated.

2.3.8 Host Variable Names

Host variable names can consist of upper or lowercase letters, digits, and
underscores, but must begin with a letter. They can be any length, but only the first 31
characters are significant to Pro*C/C++. Your C compiler or linker might require a
shorter maximum length, so check your C compiler user's guide.

For portability, you may wish to restrict the length of host variable names to 18 or
fewer characters (the length mandated by the SQL standard).

Related Topics

* Reserved Words, Keywords, and Namespaces

2.3.9 Line Continuation

ORACLE

You can continue SQL statements from one line to the next. You must use a
backslash (\) to continue a string literal from one line to the next, as the following
example shows:

EXEC SQL | NSERT | NTO dept (deptno, dnanme) VALUES (50, ' PURCHAS\
ING);

In this context, the precompiler treats the backslash as a continuation character.

2-10

Chapter 2
Guidelines for Programming

2.3.10 Line Length

The maximum line length is 1299 for lines consisting of only ASCII characters, or 324
for multibyte characters.

2.3.11 MAXLITERAL Default Value

The precompiler option MAXLITERAL lets you specify the maximum length of string
literals generated by the precompiler. The MAXLITERAL default value is 1024. Specify
a smaller value if required. For example, if your C compiler cannot handle string literals
longer than 512 characters, you then specify MAXLITERAL=512. Check your C
compiler user's guide.

2.3.12 Operators

The logical operators and the "equal to" relational operator are different in C and SQL,
as the following list shows. These C operators are not allowed in SQL statements:

SQL Operator C Operator
NOT !

AND &&

OR |

The following C operators also not allowed in SQL statements:

Type C Operator

address &

bitwise & |, "N~

compound assignment +=, -=, *=, and so on.
conditional ?:

decrement -

increment ++

indirection *

modulus %

shift >> <<

2.3.13 Statement Terminator

Embedded SQL statements are always terminated by a semicolon, as the following
example shows:

EXEC SQL DELETE FROM emp WHERE deptno = :dept _nunber;

ORACLE 2-11

Chapter 2
Conditional Precompilation

2.4 Conditional Precompilation

Conditional precompilation includes (or excludes) sections of code in your host
program based on certain conditions. For example, you might want to include one
section of code when precompiling under UNIX and another section when
precompiling under VMS. Conditional precompilation lets you write programs that can
run in different environments.

Conditional sections of code are marked by statements that define the environment
and actions to take. You can code C or C++ statements as well as EXEC SQL
statements in these sections. The following statements let you exercise conditional
control over precompilation:

EXEC ORACLE DEFI NE synbol ; -- define a synbol

EXEC ORACLE | FDEF synbol ; -- if synmbol is defined
EXEC ORACLE | FNDEF synbol ; -- if synmbol is not defined
EXEC ORACLE ELSE; -- otherwi se

EXEC ORACLE ENDI F; -- end this control block

All EXEC ORACLE statements must be terminated with a semi-colon.

2.4.1 Symbol Definition

You can define a symbol in two ways. Either include the statement:

EXEC ORACLE DEFI NE synbol ;

in your host program or define the symbol on the command line using the syntax:

. DEFI NE=synbol ...

where synbol is not case-sensitive.

Note:

The #define preprocessor directive is not the same as the EXEC ORACLE
DEFINE statement.

Some port-specific symbols are predefined for you when Pro*C/C++ is installed on
your system. For example, predefined operating symbols include CMS, MVS, MS-
DOS, UNIX, and VMS.

2.4.2 Example SELECT Statement

ORACLE

In the following example, the SELECT statement is precompiled only when the symbol
site2 is defined:

EXEC ORACLE | FDEF site2;
EXEC SQL SELECT DNAME
I NTO : dept _name
FROM DEPT
VWHERE DEPTNO= : dept _nunber;
EXEC ORACLE ENDI F;

2-12

Chapter 2
Precompile Separately

You can "comment out" C, C++, or embedded SQL code by placing it between IFDEF
and ENDIF and not defining the symbol.

2.5 Precompile Separately

You can precompile several C or C++ program modules separately, then link them into
one executable program. This supports modular programming, which is required when
the functional components of a program are written and debugged by different
programmers. The individual program modules need not be written in the same
language.

2.5.1 Guidelines

The following guidelines will help you avoid some common problems.

2.5.1.1 Referencing Cursors

Cursor names are SQL identifiers, whose scope is the precompilation unit. Hence,
cursor operations cannot span precompilation units (files). That is, you cannot
DECLARE a cursor in one file, and OPEN or FETCH from it in another file. So, when
doing a separate precompilation, make sure all definitions and references to a given
cursor are in one file.

2.5.1.2 Specifying MAXOPENCURSORS

When you precompile the program module that CONNECTS to Oracle, specify a value
for MAXOPENCURSORS that is high enough for any of the program modules. If you
use MAXOPENCURSORS for another program module, one that does not do a
CONNECT, then that value for MAXOPENCURSORS is ignored. Only the value in
effect for the CONNECT is used at runtime.

2.5.1.3 Use a Single SQLCA

If you want to use just one SQLCA, you must declare it as global in one of the program
modules and as external in the other modules. Use the extern storage class, and the
following define in your code:

#define SQLCA STORAGE CLASS extern

which tells the precompiler to look for the SQLCA in another program module. Unless
you declare the SQLCA as external, each program module uses its own local SQLCA.

Note:

All source files in an application must be uniquely named, or else an error will
be generated.

ORACLE 2-13

Chapter 2
Compile and Link

2.6 Compile and Link

To get an executable program, you must compile the output . ¢ source files produced
by the precompiler, then link the resulting object modules with modules needed from
SQLLIB and system-specific Oracle libraries. If you are mixing precompiler code and
OCIl calls, be sure to also link in the OCI runtime library (Ii boci . a on UNIX systems).

The linker resolves symbolic references in the object modules. If these references
conflict, the link fails. This can happen when you try to link third-party software into a
precompiled program. Not all third-party software is compatible with Oracle. So, linking
your program shared might cause an obscure problem. In some cases, linking
standalone or two-task might solve the problem.

Compiling and linking are system dependent. On most platforms, example makefiles
or batch files are supplied that you can use to precompile, compile, and link a Pro*C/C
++ application. See your system-specific documentation.

2.7 Example Tables

Most programming examples in this guide use two example database tables: DEPT
and EMP. Their definitions follow:

CREATE TABLE DEPT
(DEPTNO NUMBER(2) NOT NULL,

2.7.1 Example Data

ORACLE

DNAME VARCHAR2(14) ,
LCC VARCHAR2(13))
CREATE TABLE EMP
(EMPNO NUMBER(4) NOT NULL,
ENAME VARCHAR2('10) ,
JOB VARCHAR2(9) ,
MR NUMBER(4) ,
HI REDATE DATE,
SAL NUMBER(7, 2),
Cow NUMBER(7, 2) ,
DEPTNO NUMBER(2))
Respectively, the DEPT and EMP tables contain the following rows
of data:
DEPTNO DNAME LCC
10 ACCOUNTI NG NEW YORK
20 RESEARCH DALLAS
30 SALES CH CAGO
40 OPERATI ONS BOSTON
EMPNO ENAME JOB MGR H REDATE SAL COW DEPTNO
7369 SMTH CLERK 7902 17- DEC-80 800 20
7499 ALLEN SALESMAN 7698 20-FEB-81 1600 300 30
7521 WARD SALESVAN 7698 22-FEB-81 1250 500 30
7566 JONES MANACGER 7839 02-APR-81 2975 20
7654 MARTIN SALESMAN 7698 28-SEP-81 1250 1400 30

2-14

Chapter 2
Example Program: A Simple Query

7698 BLAKE MANAGER 7839 01-MAY-81 2850 30
7782 CLARK MANAGER 7839 09-JUN-81 2450 10
7788 SCOTT ANALYST 7566 19-APR-87 3000 20
7839 KING PRESI DENT 17-NOv-81 5000 10
7844 TURNER SALESMAN 7698 08-SEP-81 1500 30
7876 ADAMS CLERK 7788 23-MAY-87 1100 20
7900 JAMES CLERK 7698 03- DEC- 81 950 30
7902 FORD ANALYST 7566 03-DEC-81 3000 20
7934 MLLER CLERK 7782 23-JAN-82 1300 10

2.8 Example Program: A Simple Query

ORACLE

One way to get acquainted with Pro*C/C++ and embedded SQL is to study a program
example. The following program is also available on-line in the file sanpl el. pc in your
Pro*C/C++ deno directory.

The program connects to Oracle, then loops, prompting the user for an employee
number. It queries the database for the employee's hame, salary, and commission,
displays the information, and then continues the loop. The information is returned to a
host structure. There is also a parallel indicator structure to signal whether any of the
output values SELECTed might be NULL.

Precompile example programs using the precompiler option MODE=ORACLE.

Note:

For simplicity in demonstrating this feature, this example does not perform the
password management techniques that a deployed system normally uses. In a
production environment, follow the Oracle Database password management
guidelines, and disable any sample accounts. See Oracle Database Security
Guide for password management guidelines and other security
recommendations.

sanpl el. pc

Pronpts the user for an enpl oyee nunber,

then queries the enp table for the enployee's
name, salary and conmission. Uses indicator
variables (in an indicator struct) to deternine
if the comission is NULL.

I T T I

/

#incl ude <stdio. h>
#include <string. h>

/* Define constants for VARCHAR | engths. */
#define UNAME_LEN 20
#define PWD_LEN 40

/* Declare variables. No declare section is needed if MODE=ORACLE. */

VARCHAR user nanme[UNAMVE_LEN] ;
/* VARCHAR i s an Oracle-supplied struct */

2-15

Chapter 2
Example Program: A Simple Query

var char passwor d[PWD_LEN] ;
[* varchar can be in lower case also. */
/*
Define a host structure for the output values of a SELECT statenent.
*|
struct {
VARCHAR enp_nane[UNAME_LEN ;
fl oat sal ary;
fl oat commi ssi on;
} enprec;
/*
Define an indicator struct to correspond to the host output struct. */
struct
{
short enp_nane_i nd;
short sal _ind;
short comm.i nd;
} enprec_ind;
/* Input host variable. */
i nt enp_nunber ;
i nt total _queri ed;

/* Include the SQL Communications Area.
You can use #include or EXEC SQL | NCLUDE. */
#include <sql ca. h>

/* Declare error handling function. */
voi d sql _error();

mai n()
{
char tenp_char[32];

/* Connect to ORACLE--
* Copy the usernane into the VARCHAR
*/
strncpy((char *) usernane.arr, "SCOTT', UNAME_LEN);
/* Set the Iength conponent of the VARCHAR */
usernane.len = strlen((char *) usernanme.arr);
/* Copy the password. */
strncpy((char *) password.arr, "TIGER', PWD _LEN);
password.len = strlen((char *) password.arr);
/* Register sql _error() as the error handler. */
EXEC SQL WHENEVER SQLERRCR DO sql _error (" ORACLE error--\n");

/* Connect to ORACLE. Programwill call sql_error()
* if an error occurs when connecting to the default database.
*/
EXEC SQL CONNECT : usernane | DENTI FI ED BY : passwor d;
printf("\nConnected to ORACLE as user: 9%\n", username.arr);
/* Loop, selecting individual enployee's results */
total _queried = 0;
for (:7)

/* Break out of the inner |oop when a
* 1403 ("No data found") condition occurs.

*
/
EXEC SQL WHENEVER NOT FOUND DO br eak;
for (:7)
{
enp_nunber = 0;

ORACLE 2-16

Chapter 2
Example Program: A Simple Query using SQL99 Syntax

printf("\nEnter enployee nunber (0 to quit): ");
gets(tenp_char);
enp_nunber = atoi (tenp_char);
if (enp_nunber == 0)
br eak;
EXEC SQL SELECT enane, sal, NvL(comm O0)
I NTO : enprec | NDI CATCR : enprec_ind
FROM EMP
WHERE EMPNO = : enp_nunber;
[* Print data. */
printf("\n\nEnmpl oyee\t Sal ary\t\tComi ssion\n");
printf("-------- \t------ ViVt - - \n");
[* Null-terminate the output string data. */
enprec. enp_nane. arr[enprec. enp_nane.len] = "\0";
printf("%8s\tue.2f\t\t",
enprec. enp_nane. arr, enprec.salary);
if (enprec_ind.coomind == -1)
printf("NULL\n");
el se
printf("9%.2f\n", enprec.conmission);

total _queried++;
} I* end inner for (;;) */
if (enp_nunber == 0) break;
printf("\nNot a valid enployee nunber - try again.\n");
} I* end outer for(;;) */

printf("\n\nTotal rows returned was %.\n", total _queried);
printf("\nG day.\n\n\n");

/* Disconnect from ORACLE. */
EXEC SQL COW T WORK RELEASE;
exit(0);

}

voi d sql _error(nsg)

char *nsg;

{
char err_nsg[128];
int buf _len, msg_len;

EXEC SQL WHENEVER SQLERROR CONTI NUE;
printf("\n%\n", nsg);
buf Ien = sizeof (err_nsg);
sqgl gl m{err_nsg, &buf_len, &msg_len);
if (msg_len > buf_|en)
msg_len = buf _|en;
printf("%*s\n", nsg_len, err_nsg);
EXEC SQL ROLLBACK RELEASE;
exit(1);

}

2.9 Example Program: A Simple Query using SQL99 Syntax

This program is similar to the previous example, but uses SQL99 syntax for SELECT,
INSERT, DELETE and UPDATE statements and the body of the cursor in a DECLARE
CURSOR statement is supported.

Precompile example programs using the precompiler option MODE=ORACLE.

ORACLE 2:17

ORACLE

Chapter 2
Example Program: A Simple Query using SQL99 Syntax

-

I . R

sql 99. pc

Pronpts the user for an enpl oyee nunber,
then queries the enp table for the enployee's
nane, salary and departnent.

/
#incl ude <stdio. h>
#include <string. h>
#include <stdlib. h>
#include <sql da. h>
#incl ude <sqlcpr. h>

/* Define constants for VARCHAR | engths. */

#define UNAME_LEN 30

#define PWD_LEN 40

/* Declare variables. No declare section is needed i f MODE=ORACLE. */

VARCHAR user nane[UNAME_LEN ;

/* VARCHAR is an Oracle-supplied struct */

var char passwor d[PAD_LEN] ;

/* varchar can be in |ower case also. */

/* Define a host structure for the output values of a SELECT statenment. */

struct{
VARCHAR enp_name[UNAME_LEN] ;
fl oat sal ary;
VARCHAR dept _name[UNAME_LEN] ;
} enprec;

/* Define an indicator struct to correspond to the host output struct. */
struct{

short enp_nane_i nd;
short sal _ind;
short dept _nane;
} emprec_ind;
/* Input host variable. */
i nt enp_nunber ;
i nt total _queried;

/* Include the SQL Comunications Area. You can use #include or EXEC SQL
I NCLUDE. */

#include <sql ca. h>
/* Declare error handling function. */
voi d sql _error(msg)
char *nsg;
{
char err_msg[128];
size_t buf_len, msg_len;
EXEC SQL WHENEVER SQLERROR CONTI NUE;
printf("\n%\n", nsg);
buf Ien = sizeof (err_nsg);
sqgl gl m{err_nsg, &buf_len, &msg_len);
printf("%*s\n", nmsg_len, err_nsg);
EXEC SQL ROLLBACK RELEASE;
exit (EXI T_FAI LURE) ;
}

voi d main(){
char tenp_char[32];

2-18

Chapter 2
Example Program: A Simple Query using SQL99 Syntax

/* Connect to ORACLE-- * Copy the usernane into the VARCHAR */
strncpy((char *) usernane.arr, "scott", UNAME_LEN);
/* Set the length component of the VARCHAR */
usernane. |l en = (unsigned short) strlen((char *) username.arr);
/* Copy the password. */
strncpy((char *) password.arr, "tiger", PW_LEN);
password. | en = (unsigned short) strlen((char *) password.arr);
/* Register sql _error() as the error handler. */
EXEC SQL WHENEVER SQLERRCR DO sql _error (" ORACLE error--\n");
/* Connect to ORACLE. Programwill call sql_error() * if an error occurs
when connecting to the default database. */
EXEC SQL CONNECT : usernane | DENTI FI ED BY : passwor d;
printf("\nConnected to ORACLE as user: 9%\n", usernanme.arr);
I* Loop, selecting individual enployee's results */
total _queried = 0;
for (;;) |
enp_nunber = 0;
printf("\nEnter enployee nunber (0 to quit): ");
gets(tenp_char);
enp_nunber = atoi (tenp_char);
if (emp_nunber == 0)
br eak;
/* Branch to the notfound |abel when the * 1403 ("No data found") condition
occurs. */
EXEC SQL WHENEVER NOT FCUND GOTO not f ound;

/* The fol lowing query uses SQ99 syntax - RIGHT QUTER JO N */
EXEC SQL SELECT e.enane, e.sal, d.dname
I NTO : enprec | NDI CATCR : enprec_ind
FROM EMP e RI GHT QUTER JO N dept d
ON e. deptno = d. deptno
WHERE e. EMPNO = : enp_nunber;
[* Print data. */
printf("\n\nEnpl oyee Salary Department Nane\n");
printf("-------- semie i \n");
/* Null-terminate the output string data. */
enprec. enp_nane. arr[enprec. enp_nane.len] = "\0";
enprec. dept _nane. arr[enprec. dept _nane.len]="\0";
printf("% % . 2f % ", enprec. enp_nare. arr,
enprec. sal ary, enprec.dept_nane.arr);
total _queried++;
conti nue;

not f ound:
printf("\nNot a valid enployee nunber - try again.\n");
1

printf("\n\nTotal rows returned was %.\n", total _queried);
printf("\nG day.\n\n\n");
/* Disconnect from ORACLE. */
EXEC SQ ROLLBACK WORK RELEASE;
exi t (EXI T_SUCCESS);
}

ORACLE 2-19

Database Concepts

This chapter explains some basic database concepts and how to perform transaction
processing. You learn the basic techniques that safeguard the consistency of your
database, including how to control if changes to Oracle data are made permanent or
undone.

This chapter contains the following topics:

* Connect to the Database

e Advanced Connection Options

» Definitions of Transactions Terms

* How Transactions Guard Your Database
* How to Begin and End Transactions
e Using the COMMIT Statement

e Using the SAVEPOINT Statement

* The ROLLBACK Statement

* The RELEASE Option

 The SET TRANSACTION Statement
e Override Default Locking

* Fetch Across COMMITs

» Distributed Transactions Handling

e Guidelines

3.1 Connect to the Database

ORACLE

The complete syntax of the CONNECT statement will be discussed in the next few
sections. Here it is:

EXEC SQL CONNECT { :user |DENTIFIED BY :ol dpswd | :usr_psw }
[[AT { dbnane | :host_variable }] USING :connect_string]
[{ALTER AUTHORI ZATION :newpswd | |N{ SYSDBA | SYSOPER } MXE}] :

Your Pro*C/C++ program must connect to the database before querying or
manipulating data. To log on, simply use the CONNECT statement

EXEC SQL CONNECT :usernane | DENTI FI ED BY : password ;

where username and password are char or VARCHAR host variables.
Or, you can use the statement

EXEC SQL CONNECT : usr_pwd;

3-1

Chapter 3
Connect to the Database

where the host variable usr_pwd contains your username and password separated by
a slash character (/).

These are simplified subsets of the CONNECT statement.

The CONNECT statement must be the first SQL statement executed by the program.
That is, other SQL statements can physically but not logically precede the CONNECT
statement in the precompilation unit.

To supply the Oracle username and password separately, you define two host
variables as character strings or VARCHARS. (If you supply a username containing
both username and password, only one host variable is needed.)

Make sure to set the username and password variables before the CONNECT is
executed, or it will fail. Your program can prompt for the values, or you can hard-code
them as follows:

char *usernane
char *password

" SCoTT";
"TIGER';

EXEC SQ. WHENEVER SQLERRCR . ..
EXEC SQL CONNECT : usernane | DENTIFI ED BY : password;

However, you cannot hard-code a username and password into the CONNECT
statement. You also cannot use quoted literals. For example, both of the following
statements are invalid:

EXEC SQL CONNECT SCOTT | DENTI FI ED BY Tl GER;
EXEC SQL CONNECT ' SCOTT' | DENTIFIED BY "TIGER ;

Hard coding usernames and passwords is not recommended practise.

Related Topics
CONNECT (Executable Embedded SQL Extension)

3.1.1 Using the ALTER AUTHORIZATION Clause to Change

Passwords

Pro*C/C++ provides client applications with a convenient way to change a user
password at runtime through a simple extension to the EXEC SQL CONNECT
statement.

This section describes the possible outcomes of different variations of the ALTER
AUTHORIZATION clause.

3.1.1.1 Standard CONNECT

ORACLE

If an application issues the following statement
EXEC SQL CONNECT ..; /* No ALTER AUTHORI ZATI ON cl ause */
it performs a normal connection attempt. The possible results include the following:

* The application will connect without issue.

* The application will connect, but will receive a password warning. The warning
indicates that the password has expired but is in a grace period which will allow

3-2

Chapter 3
Connect to the Database

Logons. At this point, the user is encouraged to change the password before the
account becomes locked.

* The application will fail to connect. Possible causes include the following:
— The password is incorrect.

— The account has expired, and is possibly in a locked state.

3.1.1.2 Change Password on CONNECT

The following CONNECT statement
EXEC SQL CONNECT .. ALTER AUTHORI ZATI ON : newpswd;

indicates that the application wants to change the account password to the value
indicated by newpswd. After the change is made, an attempt is made to connect as user/
newpswd. This can have the following results:

e The application will connect without issue
e The application will fail to connect. This could be due to either of the following:

— Password verification failed for some reason. In this case the password
remains unchanged.

— The account is locked. Changes to the password are not permitted.

3.1.2 Connecting Using Oracle Net Services

To connect using an Oracle Net Services driver, substitute a service name, as defined
in your t nsnanes. or a configuration file or in Oracle Names.

If you are using Oracle Names, the name server obtains the service name from the
network definition database.

See Oracle Net Services Administrator's Guide for more information about Oracle Net
Services.

3.1.3 Automatic Connects

ORACLE

You can automatically connect to Oracle with the username

CLUSTERS$user name

where username is the current operating system username, and CLUSTERS$username
is a valid Oracle database username. (The actual value for CLUSTERS is defined in
the INIT.ORA parameter file.) You simply pass to the Pro*C/C++ Precompiler a slash
character, as follows:

char *oracleid ="/";
EXEC SQ. CONNECT : oracl ei d;

This automatically connects you as user CLUSTERS$username. For example, if your
operating system username is RHILL, and CLUSTERS$RHILL is a valid Oracle
username, connecting with '/ automatically logs you on to Oracle as user
CLUSTERS$RHILL.

3-3

Chapter 3
Advanced Connection Options

You can also pass a '/ in a string to the precompiler. However, the string cannot
contain trailing blanks. For example, the following CONNECT statement will fail:

char oracleid[10] ="/ "

EXEC SQL CONNECT : oracl ei d;

3.1.3.1 The AUTO_CONNECT Precompiler Option

If AUTO_CONNECT=YES, and the application is not already connected to a database
when it processes the first executable SQL statement, it attempts to connect using the
userid

CLUSTER$<user nane>

where username is your current operating system user or task name and
CLUSTERS$username is a valid Oracle userid. The default value of AUTO_CONNECT
is NO.

When AUTO_CONNECT=NO, you must use the CONNECT statement in your
program to connect to Oracle.

3.1.3.2 SYSDBA or SYSOPER System Privileges

Append the following optional string after all other clauses to log on with either
SYSDBA or SYSOPER system privileges:

[IN{ SYSDBA | SYSOPER } MODE]

For example:

EXEC SQL CONNECT ... IN SYSDBA MODE ;

Here are the restrictions that apply to this option:

e This option is not permitted when using the AUTO_CONNECT=YES precompiler
option setting.

e This option is not permitted when using the ALTER AUTHORIZATION keywords in
the CONNECT statement.

Related Topics
e Using the ALTER AUTHORIZATION Clause to Change Passwords

3.2 Advanced Connection Options

This section describes the available options for advanced connections.

3.2.1 Some Preliminaries

The communicating points in a network are called nodes. Oracle Net lets you transmit
information (SQL statements, data, and status codes) over the network from one node
to another.

ORACLE 3-4

Chapter 3
Advanced Connection Options

A protocol is a set of rules for accessing a network. The rules establish such things as
procedures for recovering after a failure and formats for transmitting data and checking
errors.

The Oracle Net syntax for connecting to the default database in the local domain is
simply to use the service name for the database.

If the service name is not in the default (local) domain, you must use a global
specification (all domains specified). For example:

HR. US. CRACLE. COM

3.2.2 Concurrent Logons

ORACLE

Pro*C/C++ supports distributed processing through Oracle Net. Your application can
concurrently access any combination of local and remote databases or make multiple
connections to the same database. In Figure 3-1, an application program
communicates with one local and three remote Oracle databases. ORA2, ORA3, and
ORA4 are simply logical names used in CONNECT statements.

Figure 3-1 Connecting through Oracle Net

Application Local
Database
Oracle Net

\

Remote Remote
Oracle Oracle
Remote Database

Oracle
Database

3-5

Chapter 3
Advanced Connection Options

By eliminating the boundaries in a network between different machines and operating
systems, Oracle Net provides a distributed processing environment for Oracle tools.
This section shows you how Pro*C/C++ supports distributed processing through
Oracle Net. You learn how your application can

» Directly or indirectly access other databases
* Concurrently access any combination of local and remote databases
* Make multiple connections to the same database

For details on installing Oracle Net and identifying available databases, see Identifying
and Accessing the Database and your system-specific Oracle documentation.

3.2.3 Default Databases and Connections

Each node has a default database. If you specify a database name, but no domain in
your CONNECT statement, you connect to the default database on the named local or
remote node.

A default connection is made by a CONNECT statement that has no AT clause. The
connection can be to any default or nondefault database at any local or remote node.
SQL statements without an AT clause are executed against the default connection.
Conversely, a nondefault connection is made by a CONNECT statement that has an
AT clause. SQL statements with an AT clause are executed against the nondefault
connection.

All database names must be unique, but two or more database names can specify the
same connection. That is, you can have multiple connections to any database on any
node.

3.2.4 Explicit Connections

ORACLE

Usually, you establish a connection to Oracle as follows:

EXEC SQL CONNECT : usernane | DENTI FI ED BY : passwor d;

You can also use

EXEC SQ. CONNECT : usr_pwd;
where usr_pwd contains usernamel/password.

You can automatically connect to Oracle with the userid

CLUSTERS$user nane

where username is your current operating system user or task name and
CLUSTERS$username is a valid Oracle userid. You simply pass to the precompiler a
slash (/) character, as follows:

char oracleid ="'/";
EXEC SQ. CONNECT : oracl ei d;

This automatically connects you as user CLUSTERS$username.

If you do not specify a database and node, you are connected to the default database
at the current node. If you want to connect to a different database, you must explicitly
identify that database.

3-6

Chapter 3
Advanced Connection Options

With explicit connections, you connect to another database directly, giving the
connection a name that will be referenced in SQL statements. You can connect to
several databases at the same time and to the same database multiple times.

3.2.4.1 Single Explicit Connection

In the following example, you connect to a single nondefault database at a remote
node:

/* decl are needed host variables */

char username[10] = "scott";
char password[10] = "tiger";
char db_string[20] = "NYNON';

/* give the database connection a unique nane */
EXEC SQL DECLARE DB_NAME DATABASE;

/* connect to the nondefault database */
EXEC SQL CONNECT : username | DENTI FI ED BY : password
AT DB_NAME USING :db_string;

The identifiers in this example serve the following purposes:

e The host variables username and password identify a valid user.

e The host variable db_string contains the Oracle Net syntax for connecting to a
nondefault database at a remote node.

e The undeclared identifier DB_ NAME names a nondefault connection; it is an
identifier used by Oracle, not a host or program variable.

The USING clause specifies the network, machine, and database associated with
DB_NAME. Later, SQL statements using the AT clause (with DB_NAME) are executed
at the database specified by db_string.

Alternatively, you can use a character host variable in the AT clause, as the following
example shows:

/* declare needed host variables */

char username[10] = "scott";
char password[10] = "tiger";
char db_nane[10] = "oraclel";
char db_string[20] = "NYNON';

/* connect to the nondefault database using db_name */
EXEC SQL CONNECT : usernane | DENTI FI ED BY : password
AT :db_nane USING :db_string;

If db_name is a host variable, the DECLARE DATABASE statement is not needed.
Only if DB_NAME is an undeclared identifier must you execute a DECLARE
DB_NAME DATABASE statement before executing a CONNECT ... AT DB_NAME
statement.

3.2.4.1.1 SQL Operations

If granted the privilege, you can execute any SQL data manipulation statement at the
nondefault connection. For example, you might execute the following sequence of
statements:

ORACLE .

Chapter 3
Advanced Connection Options

EXEC SQL AT DB_NAME SELECT ...
EXEC SQL AT DB_NAME | NSERT ...
EXEC SQL AT DB_NAME UPDATE ...

In the next example, db_name is a host variable:

EXEC SQL AT :db_nane DELETE ...

If db_name is a host variable, all database tables referenced by the SQL statement
must be defined in DECLARE TABLE statements. Otherwise, the precompiler issues a
warning.

Related Topics
* About Using DECLARE TABLE
e DECLARE TABLE (Oracle Embedded SQL Directive)

3.2.4.1.2 PL/SQL Blocks

You can execute a PL/SQL block using the AT clause. The following example shows
the syntax:

EXEC SQL AT :db_name EXECUTE
begin
/* PL/SQL bl ock here */
end;
END- EXEC;

3.2.4.1.3 Cursor Control

ORACLE

Cursor control statements such as OPEN, FETCH, and CLOSE are exceptions—they
never use an AT clause. If you want to associate a cursor with an explicitly identified
database, use the AT clause in the DECLARE CURSOR statement, as follows:

EXEC SQL AT :db_name DECLARE enp_cursor CURSOR FOR ...
EXEC SQL OPEN enp_cursor ...

EXEC SQL FETCH enp_cursor ...

EXEC SQL CLOSE enp_cursor;

If db_name is a host variable, its declaration must be within the scope of all SQL
statements that refer to the DECLAREd cursor. For example, if you OPEN the cursor
in one subprogram, then FETCH from it in another subprogram, you must declare
db_name globally.

When OPENing, CLOSing, or FETCHing from the cursor, you do not use the AT
clause. The SQL statements are executed at the database named in the AT clause of
the DECLARE CURSOR statement or at the default database if no AT clause is used
in the cursor declaration.

The AT :host_variable clause provides the ability to change the connection associated
with a cursor. However, you cannot change the association while the cursor is open.
Consider the following example:

EXEC SQL AT :db_name DECLARE enp_cursor CURSOR FOR ...
strcpy(db_nanme, "oraclel");

EXEC SQL OPEN enp_cursor,

EXEC SQL FETCH enp_cursor INTO...

strcpy(db_nanme, "oracle2");

3-8

Chapter 3
Advanced Connection Options

EXEC SQ. OPEN enp_cursor; /* illegal, cursor still open */
EXEC SQL FETCH enp_cursor INTO...

This is illegal because emp_cursor is still open when you try to execute the second
OPEN statement. Separate cursors are not maintained for different connections; there
is only one emp_cursor, which must be closed before it can be reopened for another
connection. To debug the last example, simply close the cursor before reopening it, as
follows:

EXEC SQL CLOSE enp_cursor; -- close cursor first
strcpy(db_nane, "oracle2");

EXEC SQL OPEN enp_cursor;

EXEC SQL FETCH enp_cursor INTO...

3.2.4.1.4 Dynamic SQL

Dynamic SQL statements are similar to cursor control statements in that some never
use the AT clause.

For dynamic SQL Method 1, you must use the AT clause if you want to execute the
statement at a nondefault connection. An example follows:

EXEC SQL AT :db_name EXECUTE | MVEDI ATE : sql _stnt;

For Methods 2, 3, and 4, you use the AT clause only in the DECLARE STATEMENT
statement if you want to execute the statement at a nondefault connection. All other
dynamic SQL statements such as PREPARE, DESCRIBE, OPEN, FETCH, and
CLOSE never use the AT clause. The next example shows Method 2:

EXEC SQL AT :db_name DECLARE sql _stnt STATEMENT;
EXEC SQL PREPARE sqgl _stnmt FROM :sql _string;
EXEC SQ. EXECUTE sql _stnt;

The following example shows Method 3:

EXEC SQL AT :db_nanme DECLARE sql _stnt STATEMENT;
EXEC SQL PREPARE sql _stnt FROM :sql _string;

EXEC SQ. DECLARE enp_cursor CURSOR FOR sql _stnt;
EXEC SQL OPEN enp_cursor ...

EXEC SQL FETCH enp_cursor INTO ...

EXEC SQL CLOSE enp_cursor;

3.2.4.2 Multiple Explicit Connections

ORACLE

You can use the AT db_name clause for multiple explicit connections, just as you can
for a single explicit connection. In the following example, you connect to two
nondefault databases concurrently:

/* declare needed host variables */

char username[10] = "scott";
char password[10] = "tiger";
char db_stringl[20] = "NYNONL";
char db_string2[20] = "CH NON';

/* give each database connection a uni que nanme */
EXEC SQ. DECLARE DB_NAME1 DATABASE;

EXEC SQ. DECLARE DB_NAME2 DATABASE;

/* connect to the two nondefault databases */

3-9

Chapter 3
Advanced Connection Options

EXEC SQL CONNECT : usernane | DENTIFI ED BY : password
AT DB_NAMEL USING :db_stringl;

EXEC SQL CONNECT : usernane | DENTIFI ED BY : password
AT DB_NAME2 USING :db_string2;

The identifiers DB_NAME1 and DB_NAME2 are declared and then used to name the
default databases at the two nondefault nodes so that later SQL statements can refer
to the databases by name.

Alternatively, you can use a host variable in the AT clause, as the following example
shows:

[* decl are needed host variables */
char username[10] = "scott";

char password[10] “tiger";
char db_nane[20];
char db_string[20];
int n_defs = 3; [* number of connections to nake */
for (i =0; i < n_defs; i++4)
{
/* get next database name and OracleNet string */
printf("Database nane: ");
get s(db_nane);
printf("OracleNet) string: ");
gets(db_string);
/* do the connect */
EXEC SQL CONNECT : usernanme | DENTI FI ED BY : password
AT :db_name USING :db_string;
}

You can also use this method to make multiple connections to the same database, as
the following example shows:

strepy(db_string, "NYNON');
for (i =0; i < ndefs; i+4)

{
/* connect to the nondefault database */
printf("Database nane: ");
gets(db_nane);
EXEC SQL CONNECT : usernane | DENTI FI ED BY : password
AT :db_name USING :db_string;

You must use different database names for the connections, even though they use the
same OracleNet string. However, you can connect twice to the same database using
just one database name because that name identifies both the default and nondefault
databases.

3.2.4.3 Ensuring Data Integrity

ORACLE

Your application program must ensure the integrity of transactions that manipulate
data at two or more remote databases. That is, the program must commit or roll back
all SQL statements in the transactions. This might be impossible if the network fails or
one of the systems crashes.

For example, suppose you are working with two accounting databases. You debit an
account on one database and credit an account on the other database, then issue a

3-10

Chapter 3
Advanced Connection Options

COMMIT at each database. It is up to your program to ensure that both transactions
are committed or rolled back.

3.2.5 Implicit Connections

Implicit connections are supported through the Oracle distributed query facility, which
does not require explicit connections, but only supports the SELECT statement. A
distributed query allows a single SELECT statement to access data on one or more
nondefault databases.

The distributed query facility depends on database links, which assign a name to a
CONNECT statement rather than to the connection itself. At run time, the embedded
SELECT statement is executed by the specified Oracle Server, which implicitly
connects to the nondefault database(s) to get the required data.

3.2.5.1 Single Implicit Connections

In the next example, you connect to a single nondefault database. First, your program
executes the following statement to define a database link (database links are usually
established interactively by the DBA or user):

EXEC SQ. CREATE DATABASE LINK db_link
CONNECT TO username | DENTI FI ED BY password
USI NG ' NYNON ;

Then, the program can query the nondefault EMP table using the database link, as
follows:

EXEC SQ. SELECT ENAME, JOB INTO :enp_nane, :job_title
FROM enp@lb_I i nk
VWHERE DEPTNO = : dept _nunber;

The database link is not related to the database name used in the AT clause of an
embedded SQL statement. It simply tells Oracle where the nondefault database is
located, the path to it, and what Oracle username and password to use. The database
link is stored in the data dictionary until it is explicitly dropped.

In our example, the default Oracle Server logs on to the nondefault database through
Oracle Net using the database link db_link. The query is submitted to the default
Server, but is "forwarded" to the nondefault database for execution.

To make referencing the database link easier, you can interactively create a synonym
as follows:

EXEC SQL CREATE SYNONYM enp FOR emp@b_| i nk;

Then, your program can query the nondefault EMP table, as follows:

EXEC SQ. SELECT ENAME, JOB INTO :enp_nane, :job_title
FROM enp
VHERE DEPTNO = : dept _nunber;

This provides location transparency for emp.

ORACLE 3-11

Chapter 3
Definitions of Transactions Terms

3.2.5.2 Multiple Implicit Connections

In the following example, you connect to two nondefault databases concurrently. First,
you execute the following sequence of statements to define two database links and
create two synonyms:

EXEC SQL CREATE DATABASE LINK db_linkl
CONNECT TO usernamel | DENTI FI ED BY passwordl
USI NG ' NYNON ;
EXEC SQL CREATE DATABASE LINK db_link2
CONNECT TO username2 | DENTI FI ED BY passwor d2
USI NG ' CHI NON ;
EXEC SQL CREATE SYNONYM enp FOR emp@lb_| i nk1;
EXEC SQL CREATE SYNONYM dept FOR dept @lb_| i nk2;

Then, your program can query the nondefault EMP and DEPT tables, as follows:

EXEC SQL SELECT ENAME, JOB, SAL, LCC
FROM enp, dept
VHERE enp. DEPTNO = dept . DEPTNO AND DEPTNO = : dept _nunber;

Oracle executes the query by performing a join between the nondefault EMP table at
db_link1 and the nondefault DEPT table at db_link2.

3.3 Definitions of Transactions Terms

ORACLE

Before delving into the subject of transactions, you should know the terms defined in
this section.

The jobs or tasks that Oracle manages are called sessions. A user session is invoked
when you run an application program or a tool such as SQL*Forms, and connect to the
database.

Oracle allows user sessions to work simultaneously and share computer resources. To
do this, Oracle must control concurrency, the accessing of the same data by many
users. Without adequate concurrency controls, there might be a loss of data integrity.
That is, changes to data or structures might be made in the wrong order.

Oracle uses locks (sometimes called enqueues) to control concurrent access to data.
A lock gives you temporary ownership of a database resource such as a table or row
of data. Thus, data cannot be changed by other users until you finish with it.

You need never explicitly lock a resource, because default locking mechanisms
protect Oracle data and structures. However, you can request data locks on tables or
rows when it is to your advantage to override default locking. You can choose from
several modes of locking such as row share and exclusive.

A deadlock can occur when two or more users try to access the same database
object. For example, two users updating the same table might wait if each tries to
update a row currently locked by the other. Because each user is waiting for resources
held by another user, neither can continue until Oracle breaks the deadlock. Oracle
signals an error to the participating transaction that had completed the least amount of
work, and the "deadlock detected while waiting for resource" Oracle error code is
returned to sqlcode in the SQLCA.

When a table is being queried by one user and updated by another at the same time,
Oracle generates a read-consistent view of the table's data for the query. That is, once

3-12

Chapter 3
How Data Integrity Is Ensured

a query begins and as it proceeds, the data read by the query does not change. As
update activity continues, Oracle takes snapshots of the table's data and records
changes in a rollback segment. Oracle uses information in the rollback segment to
build read-consistent query results and to undo changes if necessary.

3.4 How Data Integrity Is Ensured

Oracle is transaction oriented. That is, Oracle uses transactions to ensure data
integrity. A transaction is a series of one or more logically related SQL statements you
define to accomplish some task. Oracle treats the series of SQL statements as a unit
so that all the changes brought about by the statements are either committed (made
permanent) or rolled back (undone) at the same time. If your application program fails
in the middle of a transaction, the database is automatically restored to its former (pre-
transaction) state.

The coming sections show you how to define and control transactions. Specifically,
you learn how to:

» Connect to the database.

* Make concurrent connections.

e Begin and end transactions.

e Use the COMMIT statement to make transactions permanent.

e Use the SAVEPOINT statement with the ROLLBACK TO statement to undo parts
of transactions.

* Use the ROLLBACK statement to undo whole transactions.
e Specify the RELEASE option to free resources and log off the database.
e Use the SET TRANSACTION statement to set read-only transactions.

 Use the FOR UPDATE clause or LOCK TABLE statement to override default
locking.

For details about the SQL statements discussed in this chapter, see Oracle Database
SQL Language Reference.

3.5 How to Begin and End Transactions

ORACLE

You begin a transaction with the first executable SQL statement (other than
CONNECT) in your program. When one transaction ends, the next executable SQL
statement automatically begins another transaction. Thus, every executable statement
is part of a transaction. Because they cannot be rolled back and need not be
committed, declarative SQL statements are not considered part of a transaction.

You end a transaction in one of the following ways:

* Code a COMMIT or ROLLBACK statement, with or without the RELEASE option.
This explicitly makes permanent or undoes changes to the database.

» Code a data definition statement (ALTER, CREATE, or GRANT, for example),
which issues an automatic COMMIT before and after executing. This implicitly
makes permanent changes to the database.

3-13

3.6 Using

ORACLE

Chapter 3
Using the COMMIT Statement

A transaction also ends when there is a system failure or your user session stops
unexpectedly because of software problems, hardware problems, or a forced interrupt.
Oracle rolls back the transaction.

If your program fails in the middle of a transaction, Oracle detects the error and rolls
back the transaction. If your operating system fails, Oracle restores the database to its
former (pre-transaction) state.

the COMMIT Statement

If you do not subdivide your program with the COMMIT or ROLLBACK statement,
Oracle treats the whole program as a single transaction (unless the program contains
data definition statements, which issue automatic COMMITS).

You use the COMMIT statement to make changes to the database permanent. Until
changes are COMMITted, other users cannot access the changed data; they see it as
it was before your transaction began. Specifically, the COMMIT statement

* Makes permanent all changes made to the database during the current transaction
* Makes these changes visible to other users

» Erases all savepoints (see the next section)

* Releases all row and table locks, but not parse locks

» Closes cursors referenced in a CURRENT OF clause or, when MODE=ANSI,
closes all explicit cursors for the connection specified in the COMMIT statement

e Ends the transaction

The COMMIT statement has no effect on the values of host variables or on the flow of
control in your program.

When MODE=ORACLE, explicit cursors that are not referenced in a CURRENT OF
clause remain open across COMMITSs. This can boost performance.

Because they are part of normal processing, COMMIT statements should be placed
inline, on the main path through your program. Before your program terminates, it
must explicity COMMIT pending changes. Otherwise, Oracle rolls them back. In the
following example, you commit your transaction and disconnect from Oracle:

EXEC SQL COWM T WORK RELEASE;

The optional keyword WORK provides ANSI compatibility. The RELEASE option frees
all Oracle resources (locks and cursors) held by your program and logs off the
database.

You need not follow a data definition statement with a COMMIT statement because
data definition statements issue an automatic COMMIT before and after executing. So,
whether they succeed or fail, the prior transaction is committed.

Related Topics
e Fetch Across COMMITs

3-14

Chapter 3
Using the SAVEPOINT Statement

3.6.1 WITH HOLD Clause in DECLARE CURSOR Statements

Any cursor that has been declared with the clause WITH HOLD after the word
CURSOR remains open after a COMMIT. The following example shows how to use
this clause:

EXEC SQL
DECLARE C1 CURSOR W TH HOLD
FOR SELECT ENAME FROM ENP
WHERE ENPNO BETVEEN 7600 AND 7700
END- EXEC.

The cursor must not be declared for UPDATE. The WITH HOLD clause is used in DB2
to override the default, which is to close all cursors on commit. Pro*COBOL provides
this clause in order to ease migrations of applications from DB2 to Oracle. When
MODE=ANSI, Oracle uses the DB2 default, but all host variables must be declared in
a Declare Section. To avoid having a Declare Section, use the precompiler option
CLOSE_ON_COMMIT described next.

Related Topics
¢ DECLARE CURSOR (Embedded SQL Directive)

3.6.2 CLOSE_ON_COMMIT Precompiler Option

The precompiler option CLOSE_ON_COMMIT is available to override the default
behavior of MODE=ANSI (if you specify MODE=ANSI on the command line, any
cursors not declared with the WITH HOLD clause are closed on commit):

CLOSE_ON.COM T = {YES | NO}

The default is NO. This option must be entered only on the command line or in a
configuration file.

Note:

Use this option carefully; applications may be slowed if cursors are opened and
closed many times because of the need to re-parse for each OPEN statement.

Related Topics

e CLOSE_ON_COMMIT
Related Topics

* Macro and Micro Options
e CLOSE_ON_COMMIT

3.7 Using the SAVEPOINT Statement

ORACLE

You use the SAVEPOINT statement to mark and name the current point in the
processing of a transaction. Each marked point is called a savepoint. For example, the
following statement marks a savepoint named start_delete:

3-15

ORACLE

Chapter 3
Using the SAVEPOINT Statement

EXEC SQL SAVEPO NT start_del ete;

Savepoints let you divide long transactions, giving you more control over complex
procedures. For example, if a transaction performs several functions, you can mark a
savepoint before each function. Then, if a function fails, you can easily restore the
Oracle data to its former state, recover, then reexecute the function.

To undo part of a transaction, you use savepoints with the ROLLBACK statement and
its TO SAVEPOINT clause. In the following example, you access the table MAIL_LIST
to insert new listings, update old listings, and delete (a few) inactive listings. After the
delete, you check the third element of sglerrd in the SQLCA for the number of rows
deleted. If the number is unexpectedly large, you roll back to the savepoint
start_delete, undoing just the delete.

for (5;)
{
printf("Customer nunber? ");
gets(tenp);
cust _nunber = atoi (tenmp);
printf("Custonmer nanme? ");
gets(cust _nane);
EXEC SQL I NSERT INTO mail _l'ist (custno, cname, stat)
VALUES (:cust_nunber, :cust_name, 'ACTIVE);

for (5;)
{

printf("Customer nunber? ");

gets(tenp);

cust _nunber = atoi (tenmp);

printf("New status? ");

gets(new_status);

EXEC SQL UPDATE mai | _Ii st
SET stat = :new status
VHERE custno = :cust_nunber;

}
/* mark savepoint */
EXEC SQL SAVEPO NT start_del ete;

EXEC SQL DELETE FROM mail _|i st
VWHERE stat = ' | NACTI VE';
if (sqlca.sqlerrd[2] < 25) /* check number of rows deleted */
printf("Nunber of rows deleted is %l\n", sqlca.sqlerrd[2]);
el se
{
printf("Undoing deletion of %l rows\n", sqlca.sqlerrd[2]);
EXEC SQL WHENEVER SQLERROR GOTO sql _error;
EXEC SQL ROLLBACK TO SAVEPQOI NT start_del ete;

}

EXEC SQL WHENEVER SQLERROR CONTI NUE;
EXEC SQL COW T WORK RELEASE;
exit(0);

sql _error:

EXEC SQL WHENEVER SQLERROR CONTI NUE;
EXEC SQL ROLLBACK WORK RELEASE;
printf("Processing error\n");
exit(1);

3-16

Chapter 3
The ROLLBACK Statement

Rolling back to a savepoint erases any savepoints marked after that savepoint. The
savepoint to which you roll back, however, is not erased. For example, if you mark five
savepoints, then roll back to the third, only the fourth and fifth are erased.

If you give two savepoints the same name, the earlier savepoint is erased. A COMMIT
or ROLLBACK statement erases all savepoints.

Related Topics
e About Using the WHENEVER Directive

3.8 The ROLLBACK Statement

ORACLE

You use the ROLLBACK statement to undo pending changes made to the database.
For example, if you make a mistake, such as deleting the wrong row from a table, you
can use ROLLBACK to restore the original data. The TO SAVEPOINT clause lets you
roll back to an intermediate statement in the current transaction, so you do not have to
undo all your changes.

If you start a transaction that does not complete (a SQL statement might not execute
successfully, for example), ROLLBACK lets you return to the starting point, so that the
database is not left in an inconsistent state. Specifically, the ROLLBACK statement

* Undoes all changes made to the database during the current transaction
» Erases all savepoints

* Ends the transaction

* Releases all row and table locks, but not parse locks

e Closes cursors referenced in a CURRENT OF clause or, when MODE=ANSI,
closes all explicit cursors

The ROLLBACK statement has no effect on the values of host variables or on the flow
of control in your program.

When MODE=ORACLE, explicit cursors not referenced in a CURRENT OF clause
remain open across ROLLBACKS.

Specifically, the ROLLBACK TO SAVEPOINT statement
* Undoes changes made to the database since the specified savepoint was marked
» Erases all savepoints marked after the specified savepoint

* Releases all row and table locks acquired since the specified savepoint was
marked

" Note:

You cannot specify the RELEASE option in a ROLLBACK TO SAVEPOINT
statement.

Because they are part of exception processing, ROLLBACK statements should be
placed in error handling routines, off the main path through your program. In the
following example, you roll back your transaction and disconnect from Oracle:

EXEC SQL ROLLBACK WORK RELEASE;

3-17

Chapter 3
The ROLLBACK Statement

The optional keyword WORK provides ANSI compatibility. The RELEASE option frees
all resources held by your program and disconnects from the database.

If a WHENEVER SQLERROR GOTO statement branches to an error handling routine
that includes a ROLLBACK statement, your program might enter an infinite loop if the
ROLLBACK fails with an error. You can avoid this by coding WHENEVER
SQLERROR CONTINUE before the ROLLBACK statement, as shown in the following
example:

EXEC SQ. WHENEVER SQLERRCR GOTO sql _error;

for (5;)
{
printf("Enpl oyee nunber? ");
gets(tenp);
enp_nunber = atoi (tenmp);
printf("Enpl oyee nane? ");
get s(enp_nane);
EXEC SQL I NSERT | NTO enp (enpno, enane)
VALUES (:enp_number, :enp_nane);

sql _error:

EXEC SQL WHENEVER SQLERROR CONTI NUE;
EXEC SQL ROLLBACK WORK RELEASE;
printf("Processing error\n");
exit(1);

Oracle automatically rolls back transactions if your program terminates abnormally.

Related Topics
* The RELEASE Option

3.8.1 Statement-Level Rollbacks

ORACLE

Before executing any SQL statement, Oracle marks an implicit savepoint (not available
to you). Then, if the statement fails, Oracle automatically rolls it back and returns the
applicable error code to sqlcode in the SQLCA. For example, if an INSERT statement
causes an error by trying to insert a duplicate value in a unique index, the statement is
rolled back.

Oracle can also roll back single SQL statements to break deadlocks. Oracle signals an
error to one of the participating transactions and rolls back the current statement in
that transaction.

Only work started by the failed SQL statement is lost; work done before that statement
in the current transaction is saved. Thus, if a data definition statement fails, the
automatic commit that precedes it is not undone.

Before executing a SQL statement, Oracle must parse it, that is, examine it to make
sure it follows syntax rules and refers to valid database objects. Errors detected while
executing a SQL statement cause a rollback, but errors detected while parsing the
statement do not.

3-18

Chapter 3
The RELEASE Option

3.9 The RELEASE Option

Oracle automatically rolls back changes if your program terminates abnormally.
Abnormal termination occurs when your program does not explicitly commit or roll
back work and disconnect from Oracle using the RELEASE option. Normal termination
occurs when your program runs its course, closes open cursors, explicitly commits or
rolls back work, disconnects from Oracle, and returns control to the user.

Your program will exit gracefully if the last SQL statement it executes is either

EXEC SQL COMWM T WORK RELEASE,;

or

EXEC SQL ROLLBACK WORK RELEASE;

where the token WORK is optional. Otherwise, locks and cursors acquired by your
user session are held after program termination until Oracle recognizes that the user
session is no longer active. This might cause other users in a multiuser environment to
wait longer than necessary for the locked resources.

3.10 The SET TRANSACTION Statement

ORACLE

You use the SET TRANSACTION statement to begin a read-only transaction.
Because they allow "repeatable reads," read-only transactions are useful for running
multiple queries against one or more tables while other users update the same tables.
An example of the SET TRANSACTION statement follows:

EXEC SQL SET TRANSACTI ON READ ONLY;

The SET TRANSACTION statement must be the first SQL statement in a read-only
transaction and can appear only once in a transaction. The READ ONLY parameter is
required. Its use does not affect other transactions.

Only the SELECT, COMMIT, and ROLLBACK statements are allowed in a read-only
transaction. For example, including an INSERT, DELETE, or SELECT FOR UPDATE
OF statement causes an error.

During a read-only transaction, all queries refer to the same snapshot of the database,
providing a multitable, multiquery, read-consistent view. Other users can continue to
guery or update data as usual.

A COMMIT, ROLLBACK, or data definition statement ends a read-only transaction.
(Recall that data definition statements issue an implicit COMMIT.)

In the following example, as a store manager, you check sales activity for the day, the
past week, and the past month by using a read-only transaction to generate a
summary report. The report is unaffected by other users updating the database during
the transaction.

EXEC SQL SET TRANSACTI ON READ ONLY;

EXEC SQL SELECT sun{sal eant) INTO :daily FROM sal es
VWHERE sal edate = SYSDATE;

EXEC SQL SELECT sun(sal eant) |NTO :weekly FROM sal es
WHERE sal edate > SYSDATE - 7;

3-19

Chapter 3
Override Default Locking

EXEC SQL SELECT sun{sal eant) |INTO :nonthly FROM sal es
VHERE sal edate > SYSDATE - 30;
EXEC SQL COMWM T WORK;
/* sinply ends the transaction since there are no changes
to make permanent */
[* format and print report */

3.11 Override Default Locking

By default, Oracle automatically locks many data structures for you. However, you can
request specific data locks on rows or tables when it is to your advantage to override
default locking. Explicit locking lets you share or deny access to a table for the
duration of a transaction or ensure multitable and multiquery read consistency.

With the SELECT FOR UPDATE OF statement, you can explicitly lock specific rows of
a table to make sure they do not change before an UPDATE or DELETE is executed.
However, Oracle automatically obtains row-level locks at UPDATE or DELETE time.
So, use the FOR UPDATE OF clause only if you want to lock the rows before the
UPDATE or DELETE.

You can explicitly lock entire tables using the LOCK TABLE statement.

3.11.1 Using FOR UPDATE OF

When you DECLARE a cursor that is referenced in the CURRENT OF clause of an
UPDATE or DELETE statement, you use the FOR UPDATE OF clause to acquire
exclusive row locks. SELECT FOR UPDATE OF identifies the rows that will be
updated or deleted, then locks each row in the active set. This is useful, for example,
when you want to base an update on the existing values in a row. You must make sure
the row is not changed by another user before your update.

The FOR UPDATE OF clause is optional. For example, instead of coding

EXEC SQL DECLARE enp_cursor CURSCR FOR
SELECT enane, job, sal FROM enp WHERE deptno = 20
FOR UPDATE COF sal ;

you can drop the FOR UPDATE OF clause and simply code

EXEC SQL DECLARE enp_cursor CURSCR FOR
SELECT enane, job, sal FROM enp WHERE deptno = 20;

The CURRENT OF clause signals the precompiler to add a FOR UPDATE clause if
necessary. You use the CURRENT OF clause to refer to the latest row FETCHed from
a cursor.

Related Topics
 The CURRENT OF Clause

3.11.1.1 Restrictions

ORACLE

If you use the FOR UPDATE OF clause, you cannot reference multiple tables.

An explicit FOR UPDATE OF or an implicit FOR UPDATE acquires exclusive row
locks. All rows are locked at the OPEN, not as they are FETCHed. Row locks are
released when you COMMIT or ROLLBACK (except when you ROLLBACK to a

3-20

Chapter 3
Fetch Across COMMITs

savepoint). Therefore, you cannot FETCH from a FOR UPDATE cursor after a
COMMIT.

3.11.2 Using LOCK TABLE

You use the LOCK TABLE statement to lock one or more tables in a specified lock
mode. For example, the statement in the following section, locks the EMP table in row
share mode. Row share locks allow concurrent access to a table; they prevent other
users from locking the entire table for exclusive use.

EXEC SQL LOCK TABLE EMP | N ROW SHARE MODE NOWAI T,

The lock mode determines what other locks can be placed on the table. For example,
many users can acquire row share locks on a table at the same time, but only one
user at a time can acquire an exclusive lock. While one user has an exclusive lock on
a table, no other users can INSERT, UPDATE, or DELETE rows in that table.

The optional keyword NOWAIT tells Oracle not to wait for a table if it has been locked
by another user. Control is immediately returned to your program, so it can do other
work before trying again to acquire the lock. (You can check sqglcode in the SQLCA to
see if the LOCK TABLE failed.) If you omit NOWAIT, Oracle waits until the table is
available; the wait has no set limit.

A table lock never keeps other users from querying a table, and a query never
acquires a table lock. So, a query never blocks another query or an update, and an
update never blocks a query. Only if two different transactions try to update the same
row will one transaction wait for the other to complete.

Any LOCK TABLE statement implicitly closes all cursors.
Table locks are released when your transaction issues a COMMIT or ROLLBACK.

Related Topics
* Lock Modes

3.12 Fetch Across COMMITs

ORACLE

If you want to intermix COMMITs and FETCHes, do not use the CURRENT OF clause.
Instead, SELECT the ROWID of each row, then use that value to identify the current
row during the update or delete. An example follows:

EXEC SQL DECLARE enp_cursor CURSOR FOR
SELECT enane, sal, ROAND FROM enp WHERE job = ' CLERK' ;

EXEC SQ. OPEN enp_cursor;

EXEC SQL WHENEVER NOT FOUND GOTO ...

for (:7)
EXEC SQL FETCH enp_cursor INTO :enp_nane, :salary, :row.d;
EXEC SQL UPDATE enp SET sal = :new salary

VHERE ROND = :row.id;
EXEC SQL COWM T;

3-21

Chapter 3
Distributed Transactions Handling

Note, however, that the FETCHed rows are not locked. So, you might get inconsistent
results if another user modifies a row after you read it but before you update or delete
it.

3.13 Distributed Transactions Handling

A distributed database is a single logical database comprising multiple physical
databases at different nodes. A distributed statement is any SQL statement that
accesses a remote node using a database link. A distributed transaction includes at
least one distributed statement that updates data at multiple nodes of a distributed
database. If the update affects only one node, the transaction is non-distributed.

When you issue a COMMIT, changes to each database affected by the distributed
transaction are made permanent. If instead you issue a ROLLBACK, all the changes
are undone. However, if a network or machine fails during the commit or rollback, the
state of the distributed transaction might be unknown or in doubt. In such cases, if you
have FORCE TRANSACTION system privileges, you can manually commit or roll back
the transaction at your local database by using the FORCE clause. The transaction
must be identified by a quoted literal containing the transaction 1D, which can be found
in the data dictionary view DBA_2PC_PENDING. Some examples follow:

EXEC S COWM T FORCE ' 22.31.83';
EXEC SQL ROLLBACK FORCE ' 25. 33.86';

FORCE commits or rolls back only the specified transaction and does not affect your
current transaction. You cannot manually roll back in-doubt transactions to a
savepoint.

The COMMENT clause in the COMMIT statement lets you specify a Comment to be
associated with a distributed transaction. If ever the transaction is in doubt, Oracle
stores the text specified by COMMENT in the data dictionary view
DBA_2PC_PENDING along with the transaction ID. The text must be a quoted literal
50 characters in length. An example follows:

EXEC SQ. COM T COMMENT ' I n-doubt trans; notify Order Entry';

" Note:

The COMMENT clause will be deprecated in a future release. Oracle
recommends that you use transaction naming instead.

Related Topics

» Transactions

3.14 Guidelines

The following guidelines will help you avoid some common problems.

ORACLE 3-22

Chapter 3
Guidelines

3.14.1 Designing Applications

When designing your application, group logically related actions together in one
transaction. A well-designed transaction includes all the steps necessary to
accomplish a given task—no more and no less.

Data in the tables you reference must be left in a consistent state. So, the SQL
statements in a transaction should change the data in a consistent way. For example,
a transfer of funds between two bank accounts should include a debit to one account
and a credit to another. Both updates should either succeed or fail together. An
unrelated update, such as a new deposit to one account, should not be included in the
transaction.

3.14.2 Obtaining Locks

If your application programs include SQL locking statements, make sure the Oracle
users requesting locks have the privileges needed to obtain the locks. Your DBA can
lock any table. Other users can lock tables they own or tables for which they have a
privilege, such as ALTER, SELECT, INSERT, UPDATE, or DELETE.

3.14.3 Using PL/SQL

ORACLE

If a PL/SQL block is part of a transaction, COMMITs and ROLLBACKS inside the block
affect the whole transaction. In the following example, the ROLLBACK undoes
changes made by the UPDATE and the INSERT:

EXEC SQL I NSERT I NTO EMP . ..
EXEC SQ. EXECUTE
BEG N
UPDATE enp ...
EXCEPTI ON
VHEN DUP_VAL_ON_I NDEX THEN
ROLLBACK;

END;
END- EXEC;

3-23

Datatypes and Host Variables

This chapter provides the basic information you need to write a Pro*C/C++ program.
This chapter contains the following topics:

e Oracle Datatypes

e Host Variables

e Indicator Variables
VARCHAR Variables
e Cursor Variables

e CONTEXT Variables
e Universal ROWIDs

* Host Structures

e Pointer Variables

e Globalization Support
« NCHAR Variables

This chapter also includes several complete demonstration programs that you can
study. These programs illustrate the techniques described. They are available on-line
in your deno directory, so you can compile and run them, and modify them for your own
uses.

4.1 Oracle Datatypes

Oracle recognizes two kinds of datatypes: internal and external. Internal datatypes
specify how Oracle stores column values in database tables, as well as the formats
used to represent pseudocolumn values such as NULL, SYSDATE, USER, and so on.
External datatypes specify the formats used to store values in input and output host
variables.

Related Topics
e Oracle Built-in Data Types

4.1.1 Internal Datatypes

ORACLE

For values stored in database columns, Oracle uses the internal datatypes shown in
Table 4-1

Table 4-1 Oracle Internal Datatypes

__|
Name Description

VARCHAR2 Variable-length character string, <= 4000 bytes.

4-1

Chapter 4
Oracle Datatypes

Table 4-1 (Cont.) Oracle Internal Datatypes

Name

Description

NVARCHAR?2 or
NCHAR VARYING

NUMBER

LONG
BINARY_FLOAT
BINARY_DOUBLE
TIMESTAMP

DATE
INTERVAL YEAR
INTERVAL DAY
RAW

LONG RAW
ROWID
UROWID
CHAR

NCHAR

CLOB

NCLOB

BLOB

BFILE

Variable-length single-byte or National Character string,<= 4000 bytes.

Numeric value having precision and scale, represented in a base-100
format.

Variable-length character string <=2**31-1 bytes.
32-bit floating point number, 4 bytes.
64-bit floating point number, 8 bytes.

Year, month, and day values of date, as well as hour, minute, and
second values of time, 7 or 11 bytes.

Fixed-length date + time value, 7 bytes.

Stores a period of time in years and months, 5 bytes.

Stores a period of time in days, hours, minutes, and seconds, 11 bytes.
Variable-length binary data, <=2000 bytes.

Variable-length binary data, <=2**31-1 bytes.

Binary value.

Binary value, <=4000 bytes.

Fixed-length character string, <=2000 bytes.

Fixed-length single-byte or National Character string, <= 2000 bytes.
Character data, <= 4 Gbytes.

National Character Set data, <= 4 Gbytes.

Binary data, <= 4 Gbhytes.

External file binary data, <= 4 Gbytes.

These internal datatypes can be quite different from C datatypes. For example, C has
no datatype that is equivalent to the Oracle NUMBER datatype. However, NUMBERS
can be converted between C datatypes such as float and double, with some
restrictions. For example, the Oracle NUMBER datatype allows up to 38 decimal digits
of precision, while no current C implementations can represent double with that
degree of precision.

The Oracle NUMBER datatype represents values exactly (within the precision limits),
while floating-point formats cannot represent values such as 10.0 exactly.

Use the LOB datatypes to store unstructured data (text, graphic images, video clips, or
sound waveforms). BFILE data is stored in an operating system file outside the
database. LOB types store locators that specify the location of the data.

NCHAR and NVARCHAR?2 are used to store multibyte character data.

Related Topics
+ LOBs

ORACLE 4-2

4.1.2 External Datatypes

ORACLE

Chapter 4
Oracle Datatypes

As shown in Table 4-2, the external datatypes include all the internal datatypes plus
several datatypes that closely match C constructs. For example, the STRING external
datatype refers to a C null-terminated string.

Table 4-2 Oracle External Datatypes

Name Description

VARCHAR2 Variable-length character string, <= 65535 bytes.

NUMBER Decimal number, represented using a base-100 format.

INTEGER Signed integer.

FLOAT Real number.

STRING Null-terminated variable length character string.

VARNUM Decimal number, like NUMBER, but includes representation length
component.

LONG Fixed-length character string, up to 2**31-1 bytes.

VARCHAR Variable-length character string, <= 65533 bytes.

ROWID Binary value, external length is system dependent.

DATE Fixed-length date/time value, 7 bytes.

VARRAW Variable-length binary data, <= 65533 bytes.

RAW Fixed-length binary data, <= 65535 bytes.

LONG RAW Fixed-length binary data, <= 2**31-1 bytes.

UNSIGNED Unsigned integer.

LONG VARCHAR
LONG VARRAW
CHAR

CHARZ

CHARF

Variable-length character string, <= 2**31-5 bytes.
Variable-length binary data, <= 2**31-5 bytes.

Fixed-length character string, <= 65535 bytes.

Fixed-length, null-terminated character string, <= 65534 bytes.

Used in TYPE or VAR statements to force CHAR to default to CHAR,
instead of VARCHAR2 or CHARZ.

Brief descriptions of the Oracle datatypes follow.

4.1.2.1 VARCHAR?

You use the VARCHAR?2 datatype to store variable-length character strings. The
maximum length of a VARCHAR?2 value is 64K bytes.

You specify the maximum length of a VARCHAR2(n) value in bytes, not characters.
So, if a VARCHARZ2(n) variable stores multibyte characters, its maximum length can
be less than n characters.

When you precompile using the option CHAR_MAP=VARCHAR?2, Oracle assigns the
VARCHAR?2 datatype to all host variables that you declare as char[n] or char.

4-3

Chapter 4
Oracle Datatypes

4.1.2.1.1 On Input

Oracle reads the number of bytes specified for the input host variable, strips any
trailing blanks, then stores the input value in the target database column. Be careful.
An uninitialized host variable can contain NULLs. So, always blank-pad a character
input host variable to its declared length, and do not null-terminate it.

If the input value is longer than the defined width of the database column, Oracle
generates an error. If the input value contains nothing but blanks, Oracle treats it like a
NULL.

Oracle can convert a character value to a NUMBER column value if the character
value represents a valid number. Otherwise, Oracle generates an error.

4.1.2.1.2 On Output

Oracle returns the number of bytes specified for the output host variable, blank-
padding if necessary. It then assigns the output value to the target host variable. If a
NULL is returned, Oracle fills the host variable with blanks.

If the output value is longer than the declared length of the host variable, Oracle
truncates the value before assigning it to the host variable. If there is an indicator
variable associated with the host variable, Oracle sets it to the original length of the
output value.

Oracle can convert NUMBER column values to character values. The length of the
character host variable determines precision. If the host variable is too short for the
number, scientific notation is used. For example, if you SELECT the column value
123456789 into a character host variable of length 6, Oracle returns the value
'1.2E08'". If a NULL is selected explicitly, the value in the host variable is indeterminate.
The value of the indicator variable needs to be checked for NULL-ness.

4.1.2.2 NUMBER

ORACLE

You use the NUMBER datatype to store fixed or floating-point numbers. You can
specify precision and scale. The maximum precision of a NUMBER value is 38. The
magnitude range is 1.0E-130 to 9.99...9E125 (38 nines followed by 88 zeroes). Scale
can range from -84 to 127.

NUMBER values are stored in a variable-length format, starting with an exponent byte
and followed by 19 mantissa bytes. The high-order bit of the exponent byte is a sign
bit, which is set for positive numbers. The low-order 7 bits represent the magnitude.

The mantissa forms a 38-digit number with each byte representing 2 of the digits in a
base-100 format. The sign of the mantissa is specified by the value of the first (left-
most) byte. If greater than 101 then the mantissa is negative and the first digit of the
mantissa is equal to the left-most byte minus 101.

On output, the host variable contains the number as represented internally by Oracle.
To accommodate the largest possible number, the output host variable must be 22
bytes long. Only the bytes used to represent the number are returned. Oracle does not
blank-pad or null-terminate the output value. If you need to know the length of the
returned value, use the VARNUM datatype instead.

There is seldom a need to use this external datatype.

4-4

Chapter 4
Oracle Datatypes

4.1.2.3 INTEGER

You use the INTEGER datatype to store numbers that have no fractional part. An
integer is a signed, 2-byte, 4-byte or 8-byte binary number. The order of the bytes in a
word is system dependent. You must specify a length for input and output host
variables. On output, if the column value is a real number, Oracle truncates any
fractional part.

4.1.2.4 FLOAT

You use the FLOAT datatype to store numbers that have a fractional part or that
exceed the capacity of the INTEGER datatype. The number is represented using the
floating-point format of your computer and typically requires 4 or 8 bytes of storage.
You must specify a length for input and output host variables.

Oracle can represent numbers with greater precision than most floating-point
implementations because the internal format of Oracle numbers is decimal. This can
cause a loss of precision when fetching into a FLOAT variable.

4.1.2.5 STRING

The STRING datatype is like the VARCHAR2 datatype, except that a STRING value is
always null-terminated. When you precompile using the option CHAR_MAP=STRING,
Oracle assigns the STRING datatype to all host variables that you declare as char[n]
or char.

4.1.2.5.1 On Input

Oracle uses the specified length to limit the scan for the null terminator. If a null
terminator is not found, Oracle generates an error. If you do not specify a length,
Oracle assumes the maximum length of 2000 bytes. The minimum length of a
STRING value is 2 bytes. If the first character is a null terminator and the specified
length is 2, Oracle inserts a null unless the column is defined as NOT NULL. If the
column is defined as NOT NULL, an error occurs. An all-blank value is stored intact.

4.1.2.5.2 On Output

Oracle appends a null byte to the last character returned. If the string length exceeds
the specified length, Oracle truncates the output value and appends a null byte. If a
NULL is SELECTed, Oracle returns a null byte in the first character position. If a NULL
is selected explicitly, the value in the host variable is indeterminate. The value of the
indicator variable needs to be checked for NULL-ness.

4.1.2.6 VARNUM

ORACLE

The VARNUM datatype is like the NUMBER datatype, except that the first byte of a
VARNUM variable stores the length of the representation.

On input, you must set the first byte of the host variable to the length of the value. On
output, the host variable contains the length followed by the number as represented
internally by Oracle. To accommodate the largest possible number, the host variable
must be 22 bytes long. After SELECTing a column value into a VARNUM host
variable, you can check the first byte to get the length of the value.

4-5

Chapter 4
Oracle Datatypes

Normally, there is little reason to use this datatype.

4.1.2.7 LONG

You use the LONG datatype to store fixed-length character strings.

The LONG datatype is like the VARCHAR2 datatype, except that the maximum length
of a LONG value is 2147483647 bytes or two gigabytes.

4.1.2.8 VARCHAR

You use the VARCHAR datatype to store variable-length character strings. VARCHAR
variables have a 2-byte length field followed by a <=65533-byte string field. However,
for VARCHAR array elements, the maximum length of the string field is 65530 bytes.
When you specify the length of a VARCHAR variable, be sure to include 2 bytes for
the length field. For longer strings, use the LONG VARCHAR datatype. If a NULL is
selected explicitly, the value in the host variable is indeterminate. The value of the
indicator variable needs to be checked for NULL-ness.

4.1.2.9 ROWID

ORACLE

Rows in Index-Organized tables do not have permanent physical addresses. The
logical ROWID is accessed using the same syntax as the physical ROWID. For this
reason, the physical ROWID includes a data object number (schema objects in the
same segment).

To support both logical and physical ROWIDs (as well as ROWIDs of non-Oracle
tables) the universal ROWID was defined.

You can use character host variables to store rowids in a readable format. When you
SELECT or FETCH a rowid into a character host variable, Oracle converts the binary
value to an 18-byte character string and returns it in the format

BBBBBBBB. RRRR. FFFF

where BBBBBBBB is the block in the database file, RRRR is the row in the block (the
first row is 0), and FFFF is the database file. These numbers are hexadecimal. For
example, the rowid

0000000E. 000A. 0007
points to the 11th row in the 15th block in the 7th database file.

Typically, you FETCH a rowid into a character host variable, then compare the host
variable to the ROWID pseudocolumn in the WHERE clause of an UPDATE or
DELETE statement. That way, you can identify the latest row fetched by a cursor.

Note:

If you need full portability or your application communicates with a non-Oracle
database using Oracle Open Gateway technology, specify a maximum length
of 256 (not 18) bytes when declaring the host variable. Though you can
assume nothing about the host variable's contents, the host variable will
behave normally in SQL statements.

4-6

Chapter 4
Oracle Datatypes

Related Topics
* Universal ROWIDs
e About Mimicking CURRENT OF

4.1.2.10 DATE

You use the DATE datatype to store dates and times in 7-byte, fixed-length fields. As
Table 4-3 shows, the century, year, month, day, hour (in 24-hour format), minute, and
second are stored in that order from left to right.

Table 4-3 DATE Format

Date Datatype Century Year Month Day Hour Minutes Second
Byte 1 2 3 4 5 6 7
Meaning Century Year Month Day Hour Minute Second
Example 119 194 10 17 14 24 13
17-OCT-1994 at

1:23:12 PM

The century and year bytes are in excess-100 notation. The hour, minute, and second
are in excess-1 notation. Dates before the Common Era (B.C.E.) are less than 100.
The epoch is January 1, 4712 B.C.E. For this date, the century byte is 53 and the year
byte is 88. The hour byte ranges from 1 to 24. The minute and second bytes range
from 1 to 60. The time defaults to midnight (1, 1, 1).

Normally, there is little reason to use the DATE datatype.

4.1.2.11 RAW

You use the RAW datatype to store binary data or byte strings. The maximum length
of a RAW value is 65535 bytes.

RAW data is like CHARACTER data, except that Oracle assumes nothing about the
meaning of RAW data and does no character set conversions when you transmit RAW
data from one system to another.

4.1.2.12 VARRAW

You use the VARRAW datatype to store variable-length binary data or byte strings.
The VARRAW datatype is like the RAW datatype, except that VARRAW variables
have a 2-byte length field followed by a data field <= 65533 bytes in length. For longer
strings, use the LONG VARRAW datatype.

When you specify the length of a VARRAW variable, be sure to include 2 bytes for the
length field. The first two bytes of the variable must be interpretable as an integer.

To get the length of a VARRAW variable, simply refer to its length field.

4.1.2.13 LONG RAW

You use the LONG RAW datatype to store binary data or byte strings. The maximum
length of a LONG RAW value is 2147483647 bytes or two gigabytes.

ORACLE 47

Chapter 4
Oracle Datatypes

LONG RAW data is like LONG data, except that Oracle assumes nothing about the
meaning of LONG RAW data and does no character set conversions when you
transmit LONG RAW data from one system to another.

4.1.2.14 UNSIGNED

You use the UNSIGNED datatype to store unsigned integers. An unsigned integer is a
binary number of 2 or 4 bytes. The order of the bytes in a word is system dependent.
You must specify a length for input and output host variables. On output, if the column
value is a floating-point number, Oracle truncates the fractional part.

4.1.2.15 LONG VARCHAR

You use the LONG VARCHAR datatype to store variable-length character strings.
LONG VARCHAR variables have a 4-byte length field followed by a string field. The
maximum length of the string field is 2147483643 (2**31 - 5) bytes. When you specify
the length of a LONG VARCHAR for use in a VAR or TYPE statement, do not include
the 4 length bytes.

4.1.2.16 LONG VARRAW

You use the LONG VARRAW datatype to store variable-length binary data or byte
strings. LONG VARRAW variables have a 4-byte length field followed by a data field.
The maximum length of the data field is 2147483643 bytes. When you specify the
length of a LONG VARRAW for use in a VAR or TYPE statement, do not include the 4
length bytes.

4.1.2.17 CHAR

You use the CHAR datatype to store fixed-length character strings. The maximum
length of a CHAR value is 65535 bytes.

4.1.2.17.1 On Input

Oracle reads the number of bytes specified for the input host variable, does not strip
trailing blanks, then stores the input value in the target database column.

If the input value is longer than the defined width of the database column, Oracle
generates an error. If the input value is all-blank, Oracle treats it like a character value.

4.1.2.17.2 On Output

ORACLE

Oracle returns the number of bytes specified for the output host variable, doing blank-
padding if necessary, then assigns the output value to the target host variable. If a
NULL is returned, Oracle fills the host variable with blanks.

If the output value is longer than the declared length of the host variable, Oracle
truncates the value before assigning it to the host variable. If an indicator variable is
available, Oracle sets it to the original length of the output value. If a NULL is selected
explicitly, the value in the host variable is indeterminate. The value of the indicator
variable needs to be checked for NULL-ness.

4-8

Chapter 4
Oracle Datatypes

4.1.2.18 CHARZ

When DBMS=V7 or V8, Oracle, by default, assigns the CHARZ datatype to all
character host variables in a Pro*C/C++ program. The CHARZ datatype indicates
fixed-length, null-terminated character strings. The maximum length of a CHARZ value
is 65534 bytes.

4.1.2.18.1 On Input

The CHARZ and STRING datatypes work the same way. You must null-terminate the
input value. The null terminator serves only to delimit the string; it does not become
part of the stored data.

4.1.2.18.2 On Output

CHARZ host variables are blank-padded if necessary, then null-terminated. The output
value is always null-terminated, even if data must be truncated. If a NULL is selected
explicitly, the value in the host variable is indeterminate. The value of the indicator
variable needs to be checked for NULL-ness.

4.1.2.19 CHARF

The CHARF datatype is used in EXEC SQL TYPE and EXEC SQL VAR statements.
When you precompile with the DBMS option set to V7 or V8, specifying the external
datatype CHAR in a TYPE or VAR statement equivalences the C type or variable to
the fixed-length, null-terminated datatype CHARZ.

However, you might not want either of these type equivalences, but rather an
equivalence to the fixed-length external type CHAR. If you use the external type
CHAREF, the C type or variable is always equivalenced to the fixed-length ANSI
datatype CHAR, regardless of the DBMS value. CHARF never allows the C type to be
equivalenced to VARCHAR2 or CHARZ. Alternatively, when you set the option
CHAR_MAP=CHARYF, all host variables declared as char[n] or char are equivalenced
to a CHAR string. If a NULL is selected explicitly, the value in the host variable is
indeterminate. The value of the indicator variable needs to be checked for NULL-ness.

4.1.3 Additional External Datatypes

This section describes additional external datatypes.

4.1.3.1 Datetime and Interval Datatypes

The datetime and interval datatypes are briefly summarized here.

Related Topics

e Oracle Database SQL Language Reference

4.1.3.2 ANSI DATE

The ANSI DATE is based on the DATE, but contains no time portion. (Therefore, it also has
no time zone.) ANSI DATE follows the ANSI specification for the DATE datatype. When
assigning an ANSI DATE to a DATE or a timestamp datatype, the time portion of the

ORACLE 4-9

Chapter 4
Oracle Datatypes

Oracle DATE and the timestamp are set to zero. When assigning a DATE or a timestamp
to an ANSI DATE, the time portion is ignored.

You are encouraged to instead use the TI MESTAVP datatype which contains both date
and time.

4.1.3.3 TIMESTAMP

The TI MESTAMP datatype is an extension of the DATE datatype. It stores the year, month,
and day of the DATE datatype, plus the hour, minute, and second values. It has no time
zone. The TI MESTAWP datatype has the form:

TI MESTAMP(fract i onal _seconds_preci si on)

where fractional _seconds_preci si on (which is optional) specifies the number of digits
in the fractional part of the SECOND datetime field and can be a number in the range 0 to
9. The default is 6.

4.1.3.4 TIMESTAMP WITH TIME ZONE

TI MESTAMP W TH TI ME ZONE (TSTZ) is a variant of TI MESTAMWP that includes an explicit time
zone displacement in its value. The time zone displacement is the difference (in hours
and minutes) between local time and UTC (Coordinated Universal Time—formerly
Greenwich Mean Time). The TI MESTAMP W TH TI ME ZONE datatype has the form:

TI MESTAMP(fractional _seconds_precision) WTH TI ME ZONE

where fractional _seconds_pr eci si on optionally specifies the number of digits in the
fractional part of the SECOND datetime field and can be a number in the range 0 to 9.
The default is 6.

Two TI MESTAMP W TH Tl ME ZONE values are considered identical if they represent the
same instant in UTC, regardless of the TI ME ZONE offsets stored in the data.

4.1.3.5 TIMESTAMP WITH LOCAL TIME ZONE

TI MESTAMP W TH LOCAL TI ME ZONE (TSLTZ) is another variant of TI MESTAMP that includes a
time zone displacement in its value. Storage is in the same format as for TI MESTANP.
This type differs from TI MESTAMP W TH TI ME ZONE in that data stored in the database is
normalized to the database time zone, and the time zone displacement is not stored
as part of the column data. When users retrieve the data, Oracle returns it in the users'
local session time zone.

The time zone displacement is the difference (in hours and minutes) between local
time and UTC (Coordinated Universal Time—formerly Greenwich Mean Time). The
TI MESTAMP W TH LOCAL TI ME ZONE datatype has the form:

TI MESTAMP(f ract i onal _seconds_precision) WTH LOCAL TI ME ZONE
where fractional _seconds_preci si on optionally specifies the number of digits in the

fractional part of the SECOND datetime field and can be a number in the range 0 to 9.
The default is 6.

ORACLE 4-10

Chapter 4
Host Variables

4.1.3.6 INTERVAL YEAR TO MONTH

| NTERVAL YEAR TO MONTH stores a period of time using the YEAR and MONTH datetime fields.
The | NTERVAL YEAR TO MONTH datatype has the form:

| NTERVAL YEAR(year _precision) TO MONTH

where the optional year _preci si on is the number of digits in the YEAR datetime field. The
default value of year _precisionis 2.

4.1.3.7 INTERVAL DAY TO SECOND

| NTERVAL DAY TO SECOND stores a period of time in terms of days, hours, minutes, and
seconds. The | NTERVAL DAY TO SECOND datatype has the form:

| NTERVAL DAY (day_precision) TO SECOND(fractional _seconds_preci sion)

where:

* day_precision is the number of digits in the DAY datetime field. It is optional.
Accepted values are 0 to 9. The default is 2.

fractional _seconds_preci si on is the number of digits in the fractional part of the SECOND
datetime field. It is optional. Accepted values are 0 to 9. The default is 6.

4.1.3.8 Avoiding Unexpected Results Using Datetime

Note:

To avoid unexpected results in your DML operations on datetime data, you can
verify the database and session time zones by querying the built-in SQL
functions DBTI MEZONE and SESSI ONTI MEZONE. If the time zones have not been set
manually, Oracle uses the operating system time zone by default. If the
operating system time zone is not a valid Oracle time zone, Oracle uses UTC
as the default value.

4.2 Host Variables

Host variables are the key to communication between your host program and Oracle.
Typically, a precompiler program inputs data from a host variable to Oracle, and
Oracle outputs data to a host variable in the program. Oracle stores input data in
database columns, and stores output data in program host variables.

A host variable can be any arbitrary C expression that resolves to a scalar type. But, a
host variable must also be an Ivalue. Host arrays of most host variables are also
supported.

ORACLE 4-11

Chapter 4
Host Variables

4.2.1 Host Variable Declaration

ORACLE

You declare a host variable according to the rules of the C programming language,
specifying a C datatype supported by the Oracle program interface. The C datatype
must be compatible with that of the source or target database column.

If MODE=ORACLE, you do not have to declare host variables in a special Declare
Section. However, if you do not use a Declare Section, the FIPS flagger warns you
about this, as the Declare Section is part of the ANSI SQL Standard. If CODE=CPP
(you are compiling C++ code) or PARSE=NONE or PARSE=PARTIAL, then you must
have a Declare Section.

Table 4-4 shows the C datatypes and the pseudotypes that you can use when
declaring host variables. Only these datatypes can be used for host variables.

Table 4-4 C Datatypes for Host Variables
|

C Datatype or Pseudotype Description

char single character

char[n] n-character array (string)

int integer

short small integer

long large integer

long long very large (8-byte) integer

float floating-point number (usually single precision)
double floating-point number (always double precision)
VARCHAR[N] variable-length string

Table 4-5 shows the compatible Oracle internal datatypes.

Table 4-5 C to Oracle Datatype Compatibility
|

Internal Type C Type Description

VARCHAR2(Y) char single character

(Note 1)

CHAR(X) char[n] n-byte character array

(Note 1) VARCHAR[N] n-byte variable-length character array
int integer
short small integer
long large integer
long long very large (8-byte) integer
float floating-point number
double double-precision floating-point

number
NUMBER int integer

4-12

Chapter 4

Host Variables

Table 4-5 (Cont.) C to Oracle Datatype Compatibility
|

Internal Type C Type Description
NUMBER(P,S) short small integer
(Note 2) int integer

long large integer

float floating-point number

double double-precision floating-point

char number

char[n] single character

VARCHAR[N] n-byte character array

n-byte variable-length character array

DATE char[n] n-byte character array

VARCHAR(N] n-byte variable-length character array
LONG char[n] n-byte character array

VARCHARIN] n-byte variable-length character array
RAW(X) unsigned char[n] n-byte character array
(Note 1) VARCHAR([N] n-byte variable-length character array
LONG RAW unsigned char[n] n-byte character array

VARCHAR(N] n-byte variable-length character array
ROWID unsigned char[n] n-byte character array

VARCHARIN] n-byte variable-length character array
Notes:

1. X ranges from 1 to
2000. 1 is the default
value. Y ranges from
1 to 4000.

2. P ranges from 1 to

38. S ranges from -84
to 127.

One-dimensional arrays of simple C types can also serve as host variables. For
char[n] and VARCHARInN], n specifies the maximum string length, not the number of
strings in the array. Two-dimensional arrays are allowed only for char[m][n] and
VARCHAR[m][n], where m specifies the number of strings in the array and n specifies
the maximum string length.

Pointers to simple C types are supported. Pointers to char[n] and VARCHAR]N]
variables should be declared as pointer to char or VARCHAR (with no length
specification). Arrays of pointers, however, are not supported.

4.2.1.1 Storage-Class Specifiers

ORACLE

Pro*C/C++ lets you use the auto, extern, and static storage-class specifiers when
you declare host variables. However, you cannot use the register storage-class
specifier to store host variables, since the precompiler takes the address of host
variables by placing an ampersand (&) before them. Following the rules of C, you can
use the auto storage class specifier only within a block.

4-13

Chapter 4
Host Variables

To comply with the ANSI C standard, the Pro*C/C++ Precompiler provides the ability
to declare an extern char[n] host variable with or without a maximum length, as the
following examples shows:

extern char protocol [15];
extern char nsg[];

However, you should always specify the maximum length. In the last example, if msg
is an output host variable declared in one precompilation unit but defined in another,
the precompiler has no way of knowing its maximum length. If you have not allocated
enough storage for msg in the second precompilation unit, you might corrupt memory.
(Usually, "enough” is the number of bytes in the longest column value that might be
SELECTed or FETCHed into the host variable, plus one byte for a possible null
terminator.)

If you neglect to specify the maximum length for an extern char|[] host variable, the
precompiler issues a warning message. The precompiler also assumes that the host
variable will store a CHARACTER column value, which cannot exceed 255 characters
in length. So, if you want to SELECT or FETCH a VARCHAR2 or a LONG column
value of length greater than 255 characters into the host variable, you must specify a
maximum length.

4.2.1.2 Type Qualifiers

You can also use the const and volatile type qualifiers when you declare host
variables.

A const host variable must have a constant value, that is, your program cannot
change its initial value. A volatile host variable can have its value changed in ways
unknown to your program (for example, by a device attached to the system).

4.2.2 Host Variable Referencing

ORACLE

You use host variables in SQL data manipulation statements. A host variable must be
prefixed with a colon (:) in SQL statements but must not be prefixed with a colon in C
statements, as the following example shows:

char buf [15];
i nt enp_nunber ;
f1 oat sal ary;

.géis(buf);
enp_nunber = atoi (buf);

EXEC SQL SELECT sal INTO :salary FROM enp
VWHERE enpno = : enp_nunber;

Though it might be confusing, you can give a host variable the same name as an
Oracle table or column, as this example shows:

int enpno;
char enane[10] ;
fl oat sal ;

EXEC SQ. SELECT enane, sal INTO :enane, :sal FROM enp
VWHERE enpno = :enpno;

4-14

Chapter 4
Indicator Variables

4.2.2.1 Restrictions

A host variable name is a C identifier, hence it must be declared and referenced in the
same upper/lower case format. It cannot substitute for a column, table, or other Oracle
object in a SQL statement, and must not be an Oracle reserved word.

A host variable must resolve to an address in the program. For this reason, function
calls and numeric expressions cannot serve as host variables. The following code is
invalid.:

#define MAX_EMP_NUM 9000
int get_dept();

EXEC SQL | NSERT | NTO enp (enpno, ename, deptno) VALUES
(: MAX_EMP_NUM + 10, 'CHEN, :get_dept());

Related Topics

e Reserved Words, Keywords, and Namespaces

4.3 Indicator Variables

You can associate every host variable with an optional indicator variable. An indicator
variable must be defined as a 2-byte integer and, in SQL statements, must be prefixed
with a colon and immediately follow its host variable (unless you use the keyword
INDICATOR). If you are using Declare Sections, you must also declare indicator
variables inside the Declare Sections.

This applies to relational columns, not object types.

Related Topics
* Objects

4.3.1 The INDICATOR Keyword

To improve readability, you can precede any indicator variable with the optional
keyword INDICATOR. You must still prefix the indicator variable with a colon. The
correct syntax is:

host _variabl e | NDI CATOR :indicator_variable

which is equivalent to
:host _vari abl e:indicator_variabl e
You can use both forms of expression in your host program.

Possible indicator values, and their meanings, are:

Indicator Values Meanings
0 The operation was successful
-1 A NULL was returned, inserted, or updated.

ORACLE 4-15

Chapter 4
Indicator Variables

Indicator Values Meanings

-2 Output to a character host variable from a "long" type was
truncated, but the original column length cannot be determined.

>0 The result of a SELECT or FETCH into a character host variable

was truncated. In this case, if the host variable is a multibyte
character variable, the indicator value is the original column length
in characters. If the host variable is not a multibye character
variable, then the indicator length is the original column length in
bytes.

4.3.2 Example of INDICATOR Variable Usage

Typically, you use indicator variables to assign NULLSs to input host variables and
detect NULLSs or truncated values in output host variables. In the example later, you
declare three host variables and one indicator variable, then use a SELECT statement
to search the database for an employee number matching the value of host variable
emp_number. When a matching row is found, Oracle sets output host variables salary
and commission to the values of columns SAL and COMM in that row and stores a
return code in indicator variable ind_comm. The next statements use ind_comm to
select a course of action.

EXEC SQL BEG N DECLARE SECTI ON;
i nt enp_nunber;
float salary, conmission;
short commind; /* indicator variable */
EXEC SQL END DECLARE SECTI ON;
char tenp[16];
float pay; /* not used in a SQL statenent */

printf("Enpl oyee number? ");
gets(tenp);
enp_nunber = atof(temp);
EXEC SQL SELECT SAL, COWM
INTO : sal ary, :commission:ind_comm

FROM EMP
VWHERE EMPNO = : enp_nunber;

i f(ind_comm == -1) [* conmission is null */
pay = salary;

el se

pay = salary + comi ssion;

Related Topics

e Indicator Variables

4.3.3 INDICATOR Variable Guidelines

ORACLE

The following guidelines apply to declaring and referencing indicator variables. An
indicator variable must

* Be declared explicitly (in the Declare Section if present) as a 2-byte integer.
» Be prefixed with a colon (:) in SQL statements.

* Immediately follow its host variable in SQL statements and PL/SQL blocks (unless
preceded by the keyword INDICATOR).

4-16

Chapter 4
VARCHAR Variables

An indicator variable must not:

» Be prefixed with a colon in host language statements.
* Follow its host variable in host language statements.

 Be an Oracle reserved word.

4.3.4 Oracle Restrictions

When DBMS=V7 or V8, if you SELECT or FETCH a NULL into a host variable that has
no indicator, Oracle issues the following error message:

ORA-01405: fetched colum value is NULL

When precompiling with MODE=ORACLE and DBMS=V7 or V8 specified, you can
specify UNSAFE_NULL=YES to disable the ORA-01405 message.

Related Topics
UNSAFE_NULL

4.4 VARCHAR Variables

You can use the VARCHAR pseudotype to declare variable-length character strings.
When your program deals with strings that are output from, or input to, VARCHAR?2 or
LONG columns, you might find it more convenient to use VARCHAR host variables
instead of standard C strings. The datatype name VARCHAR can be uppercase or
lowercase, but it cannot be mixed case. In this Guide, uppercase is used to emphasize
that VARCHAR is not a native C datatype.

4.4.1 VARCHAR Variable Declaration

ORACLE

Think of a VARCHAR as an extended C type or pre-declared struct. For example, the
precompiler expands the VARCHAR declaration

VARCHAR usernane[20] ;

into the following struct with array and length members:

struct

{

unsi gned short len;
unsigned char arr[20];
} usernang;

The advantage of using VARCHAR variables is that you can explicitly reference the
length member of the VARCHAR structure after a SELECT or FETCH. Oracle puts the
length of the selected character string in the length member. You can then use this
member to do things such as adding the null (\0") terminator.

usernane. arr[usernane.len] = '\0'";

or using the length in a strncpy or printf statement; for example:

printf("Usernane is %*s\n", usernane.len, usernane.arr);

4-17

Chapter 4
VARCHAR Variables

You specify the maximum length of a VARCHAR variable in its declaration. The length
must lie in the range 1.65533. For example, the following declaration is invalid
because no length is specified:

VARCHAR nul | _string[]; /* invalid */

The length specification holds the current length of the value stored in the array
member.

You can declare multiple VARCHARS on a single line; for example:

VARCHAR enp_name[ENAME_LEN], dept _| oc[DEPT_NAME_LEN|;

The length specifier for a VARCHAR can be a #defined macro, or any complex
expression that can be resolved to an integer at precompile time.

You can also declare pointers to VARCHAR datatypes.

" Note:
Do not attempt to use a typedef statement such as:

typedef VARCHAR buf [64];

This causes errors during C compilation.

Related Topics
e VARCHAR Variables and Pointers

4.4.2 VARCHAR Variable Referencing

ORACLE

In SQL statements, you reference VARCHAR variables using the struct name
prefixed with a colon, as the following example shows:

int part _nunber;
VARCHAR part_desc[40];

mai n()
{
EXEC SQL SELECT pdesc I NTO : part_desc

FROM parts
VWHERE pnum = : part _nunber;

After the query is executed, part_desc.len holds the actual length of the character
string retrieved from the database and stored in part_desc.arr.

In C statements, you reference VARCHAR variables using the component names, as
the next example shows:

printf("\n\nEnter part description: ");
gets(part_desc.arr);
I* You nust set the length of the string

4-18

Chapter 4
VARCHAR Variables

before using the VARCHAR in an | NSERT or UPDATE */

part_desc.len = strlen(part_desc.arr);

4.4.3 Return NULLSs to a VARCHAR Variable

Oracle automatically sets the length component of a VARCHAR output host variable. If
you SELECT or FETCH a NULL into a VARCHAR, the server does not change the
length or array members.

Note:

If you select a NULL into a VARCHAR host variable, and there is no associated
indicator variable, an ORA-01405 error occurs at run time. Avoid this by coding
indicator variables with all host variables. (As a temporary fix, use the
UNSAFE_NULL=YES precompiler option.

Related Topics

DBMS

4.4.4 Insert NULLs Using VARCHAR Variables

If you set the length of a VARCHAR variable to zero before performing an UPDATE or
INSERT statement, the column value is set to NULL. If the column has a NOT NULL
constraint, Oracle returns an error.

4.4.5 Pass VARCHAR Variables to a Function

VARCHARSs are structures, and most C compilers permit passing of structures to a
function by value, and returning structures by copy out from functions. However, in
Pro*C/C++ you must pass VARCHARSs to functions by reference. The following
example shows the correct way to pass a VARCHAR variable to a function:

VARCHAR enp_nane[20] ;

enp_nane.len = 20;
SELECT enane | NTO : enp_name FROM enp
WHERE enpno = 7499;

print_enpl oyee_name(&enp_nane); /* pass by pointer */

print_enpl oyee_name(name)
VARCHAR *nane;

{

ORACLE

printf("name is %*s\n", name->len, name->arr);

4-19

Chapter 4
VARCHAR Variables

4.4.6 Find the Length of the VARCHAR Array Component

When the precompiler processes a VARCHAR declaration, the actual length of the
array element in the generated structure can be longer than that declared. For
example, on a Sun Solaris system, the Pro*C/C++ declaration

VARCHAR ny_varchar[12];

is expanded by the precompiler to

struct my_varchar

{

unsi gned short |en;
unsigned char arr[12];

b

However, the precompiler or the C compiler on this system pads the length of the
array component to 14 bytes. This alignment requirement pads the total length of the
structure to 16 bytes: 14 for the padded array and 2 bytes for the length.

The SQLVar char Get Lengt h() (replaces the non-threaded sql vep()) function—part of the
SQLLIB runtime library—returns the actual (possibly padded) length of the array
member.

You pass the SQLVar char Get Lengt h() function the length of the data for a VARCHAR
host variable or a VARCHAR pointer host variable, and SQ.Var char Get Lengt h() returns
the total length of the array component of the VARCHAR. The total length includes any
padding that might be added by your C compiler.

The syntax of SQLVar char Get Lengt h() is

SQ.Var char Get Length (dvoi d *context, unsigned |ong *datlen, unsigned |ong *totlen);
For single-threaded applications, use sqgl vep() . Put the length of the VARCHAR in the
dat | en parameter before calling sql vep() . When the function returns, the tot | en

parameter contains the total length of the array element. Both parameters are pointers
to unsigned long integers, so must be passed by reference.

Related Topics
* New Names for SQLLIB Public Functions

4.4.7 Example Program: Using sqlvcp()

ORACLE

The following example program shows how you can use the function in a Pro*C/C++
application. The example also uses the sql gl s() function. The example declares a
VARCHAR pointer, then uses the sql vep() function to determine the size required for
the VARCHAR buffer. The program FETCHes employee names from the EMP table
and prints them. Finally, the example uses the sql gl s() function to print out the SQL
statement and its function code and length attributes. This program is available on-line
as sql vep. pc in your deno directory.

/
The sql vep. pc program denmonstrates how you can use the
sglvep() function to determine the actual size of a
VARCHAR struct. The size is then used as an offset to
increment a pointer that steps through an array of

E R R

4-20

ORACLE

VARCHARSs.
This program al so demonstrates the use of the sqlgls()

sqlgls() is described in the "Error Handling" chapter of
The Programmer's Guide to the Oracle Pro*C/ C++ Preconpiler.

N e

/

#incl ude <stdio. h>
#include <sql ca. h>
#include <sqlcpr. h>

/* Fake a VARCHAR pointer type. */

struct my_vc_ptr
{
unsi gned short |en;
unsi gned char arr[32767];

b

/* Define a type for the VARCHAR pointer */
typedef struct my_vc_ptr ny_vc_ptr;
nmy_vc_ptr *vc_ptr;

EXEC SQL BEG N DECLARE SECTI ON;

VARCHAR *nanes;

int lint; /* for use in FETCH FOR clause */
char *username = "scott/tiger";

EXEC SQL END DECLARE SECTI ON;

voi d sql _error();

extern void sqglvep(), sqlgls();

mai n()

{
unsigned int vcplen, function_code, padlen, buflen;
int i;
char stnt_buf[120];

EXEC SQL WHENEVER SQLERROR DO sql _error();

EXEC SQL CONNECT : user nane;
printf("\nConnected.\n");

/* Find nunber of rows in table. */
EXEC SQL SELECT COUNT(*) INTO :limit FROM enp;

[* Declare a cursor for the FETCH statement. */
EXEC SQL DECLARE enp_name_cursor CURSOR FOR
SELECT enane FROM enp;

EXEC SQL FOR :linit OPEN enp_nanme_cursor;

/* Set the desired DATA length for the VARCHAR */
vepl en = 10;

[* Use SQLVCP to help find the Iength to malloc. */
sql vep(&vcpl en, é&padlen);
printf("Actual array length of VARCHAR is % d\n", padlen);

/* Alocate the nanes buffer for nanes.

function, to get the text of the last SQ statement executed.

Chapter 4
VARCHAR Variables

4-21

ORACLE

/*

*l

/*

/*

Chapter 4
VARCHAR Variables

Set the limt variable for the FOR clause. */
nanes = (VARCHAR *) mal | oc((sizeof (short) +
(int) padlen) * linmt);
if (names == 0)
{
printf("Mermory allocation error.\n");
exit(1);
}
Set the maxi num | engths before the FETCH.
Note the "trick" to get an effective VARCHAR *.

for (ve_ptr = (my_vc_ptr *) names, i =0; i </limt; i++)
{
vc_ptr->len = (short) padlen;
ve_ptr = (ny_ve_ptr *)((char *) vc_ptr +
padl en + sizeof (short));
}
Execute the FETCH */
EXEC SQL FOR :linit FETCH enp_name_cursor | NTO : nanes;

Print the results. */
printf("Enpl oyee nanes--\n");

for (ve_ptr = (my_vc_ptr *) nanes, i =0; i <limt; i++)
{
printf
("%*s\t(%)\n", vc_ptr->len, vc_ptr->arr, vc_ptr->len);
ve_ptr = (ny_ve_ptr *)((char *) vc_ptr +
padl en + sizeof (short));

}

Cet statistics about the npst recent

SQ statement using SQLAS. Note that

the nost recent statement in this exanple

is not a FETCH, but rather "SELECT ENAME FROM EMP"
(the cursor).

buflen = (long) sizeof (stnt_buf);

The returned val ue should be 1, indicating no error. */
sqgl gl s(stnt_buf, &buflen, &f unction_code);
if (buflen !=0)
{
[* Print out the SQ statenent. */
printf("The SQ statement was--\n%*s\n", buflen, stnt_buf);

[* Print the returned length. */
printf("The statement length is %d\n", buflen);

/* Print the attributes. */
printf("The function code is %d\n", function_code);

EXEC SQL COW T RELEASE;

exit(0);
}
el se
{
printf("The SQLAS function returned an error.\n");
EXEC SQL ROLLBACK RELEASE;
exit(1);
}

4-22

Chapter 4
Cursor Variables

}

voi d

sql _error()

{
char err_nsg[512];
int buf _len, msg_len;
EXEC SQL WHENEVER SQLERROR CONTI NUE;
buf Ien = sizeof (err_nmsg);
sql gl m{err_nsg, &buf len, &rsg_len);
printf("%*s\n", nmsg_len, err_nsg);
EXEC SQL ROLLBACK RELEASE;
exit(1);

}

Related Topics

* Handling Runtime Errors

4.5 Cursor Variables

You can use cursor variables in your Pro*C/C++ program for queries. A cursor variable
is a handle for a cursor that must be defined and opened on the Oracle server using
PL/SQL. See Cursor Variables for complete information about cursor variables.

The advantages of cursor variables are:

» Ease of maintenance

Queries are centralized, in the stored procedure that opens the cursor variable. If
you need to change the cursor, you only need to make the change in one place:
the stored procedure. There is no need to change each application.

e Convenient security

The user of the application is the username used when the Pro*C/C++ application
connects to the server. The user must have execute permission on the stored
procedure that opens the cursor but not read permission on the tables used in the
query. This capability can be used to limit access to the columns in the table, and
access to other stored procedures.

4.5.1 Declare a Cursor Variable

You declare a cursor variable in your Pro*C/C++ program using the Pro*C/C++
pseudotype SQL_CURSOR. For example:

EXEC SQL BEG N DECLARE SECTI ON,

sql _cursor enp_cursor; /* a cursor variable */
SQ._CURSOR dept _cursor; /* another cursor variable */
sql _cursor *ecp; /* a pointer to a cursor variable */

EXEC SQL END DECLARE SECTI ON;
ecp = &enp_cursor; /* assign a value to the pointer */

You can declare a cursor variable using the type specification SQL_CURSOR, in all
upper case, or sgl_cursor, in all lower case; you cannot use mixed case.

ORACLE 4-23

Chapter 4
Cursor Variables

A cursor variable is just like any other host variable in the Pro*C/C++ program. It has
scope, following the scope rules of C. You can pass it as a parameter to other
functions, even functions external to the source file in which you declared it. You can
also define functions that return cursor variables, or pointers to cursor variables.

Note:

A SQL_CURSOR is implemented as a C struct in the code that Pro*C/C++
generates. So you can always pass it by pointer to another function, or return a
pointer to a cursor variable from a function. But you can only pass it or return it
by value if your C compiler supports these operations.

4.5.2 Allocate a Cursor Variable

4.5.3 Open

ORACLE

Before you can use a cursor variable, either to open it or to FETCH it, you must
allocate the cursor. You do this using the new precompiler command ALLOCATE. For
example, to allocate the SQL_CURSOR emp_cursor that was declared in the example
earlier, you write the statement:

EXEC SQL ALLOCATE :enp_cursor;

Allocating a cursor does not require a call to the server, either at precompile time or at
runtime. If the ALLOCATE statement contains an error (for example, an undeclared
host variable), Pro*C/C++ issues a precompile-time error. Allocating a cursor variable
does cause heap memory to be used. For this reason, you can free a cursor variable
in a program loop. Memory allocated for cursor variables is not freed when the cursor
is closed, but only when an explicit CLOSE is executed, or the connection is closed:

EXEC SQ. CLCSE :enp_cursor;

Related Topics

* Closing and Freeing a Cursor Variable

a Cursor Variable

You must open a cursor variable on the Oracle database server. You cannot use the
embedded SQL OPEN command to open a cursor variable. You can open a cursor
variable either by calling a PL/SQL stored procedure that opens the cursor (and
defines it in the same statement). Or, you can open and define a cursor variable using
an anonymous PL/SQL block in your Pro*C/C++ program.

For example, consider the following PL/SQL package, stored in the database:

CREATE PACKAGE demp_cur_pkg AS
TYPE EnpNane |'S RECORD (name VARCHAR2(10));
TYPE cur_type IS REF CURSOR RETURN EnpNane;
PROCEDURE open_enp_cur (
curs IN QUT cur_type,
dept _numIN NUVBER) ;
END;

CREATE PACKAGE BODY demo_cur _pkg AS

CREATE PROCEDURE open_enp_cur (
curs IN QUT cur_type,

4-24

ORACLE

Chapter 4
Cursor Variables

dept_numIN NUMBER) | S

BEG N
OPEN curs FOR
SELECT enanme FROM enp
WHERE deptno = dept _num
CORDER BY ename ASC,
END;

END;

After this package has been stored, you can open the cursor curs by calling the
open_emp_cur stored procedure from your Pro*C/C++ program, and FETCH from the
cursor in the program. For example:

sql _cursor enp_cursor;
char enp_nane[11] ;

EXEC SQL ALLOCATE :enp_cursor; /* allocate the cursor variable */

/* Open the cursor on the server side. */
EXEC SQL EXECUTE
begin
deno_cur _pkg. open_enp_cur (: enp_cursor, :dept_num;
end;

EXEC SQL WHENEVER NOT FOUND DO br eak;

for (5;)

{
EXEC SQL FETCH :enp_cursor |NTO :enp_nane;
printf("%\n", enp_nane);

To open a cursor using a PL/SQL anonymous block in your Pro*C/C++ program, you
define the cursor in the anonymous block. For example:

sql _cursor enp_cursor;
int dept_num = 10;

EXEC SQL EXECUTE
BEG N
OPEN : enp_cursor FOR SELECT enane FROM enp
VHERE deptno = :dept_num
END;
END- EXEC;

The earlier examples show how to use PL/SQL to open a cursor variable. You can
also open a cursor variable using embedded SQL with the CURSOR clause:

sql _cursor enp_cursor;

EXEC ORACLE OPTI ON(sel ect _error=no);

EXEC SQL
SELECT CURSOR(SELECT enane FROM enp WHERE deptno = :dept_nun)
I NTO : enp_cursor FROM DUAL;

EXEC ORACLE OPTI ON(sel ect _error=yes);

In the statement earlier, the emp_cursor cursor variable is bound to the first column of
the outermost select. The first column is itself a query, but it is represented in the form

4-25

Chapter 4
Cursor Variables

compatible with a sql_cursor host variable since the CURSOR(...) conversion clause is
used.

Before using queries which involve the CURSOR clause, you must set the
SELECT_ERROR option to NO. This will prevent the cancellation of the parent cursor
and allow the program to run without errors.

4.5.3.1 Opening in a Standalone Stored Procedure

In the example earlier, a reference cursor was defined inside a package, and the
cursor was opened in a procedure in that package. But it is not always necessary to
define a reference cursor inside the package that contains the procedures that open
the cursor.

If you need to open a cursor inside a standalone stored procedure, you can define the
cursor in a separate package, and then reference that package in the standalone
stored procedure that opens the cursor. Here is an example:

PACKAGE dumy IS
TYPE EmpNarme 1S RECORD (name VARCHAR2(10));
TYPE enp_cursor _type 1S REF CURSOR RETURN EnpNane;
END,
- and then define a standal one procedure:
PROCEDURE open_enp_curs (
enp_cursor |N QUT dummy. enp_cursor_type;
dept_num IN NUMBER) | S
BEG N
OPEN enp_cursor FOR
SELECT ename FROM enp WHERE deptno = dept _num
END,
END,

4.5.3.2 Return Types

When you define a reference cursor in a PL/SQL stored procedure, you must declare
the type that the cursor returns.

Related Topics

e Cursor Variable Declaration

4.5.4 Closing and Freeing a Cursor Variable

ORACLE

Use the CLOSE command to close a cursor variable. For example, to close the
emp_cursor cursor variable that was OPENed in the examples earlier, use the
embedded SQL statement:

EXEC SQL CLCSE :enp_cursor;

The cursor variable is a host variable, and so you must precede it with a colon.

You can reuse ALLOCATEGd cursor variables. You can open, FETCH, and CLOSE as
many times as needed for your application. However, if you disconnect from the
server, then reconnect, you must re-ALLOCATE cursor variables.

Cursors are deallocated by the FREE embedded SQL statement. For example:

EXEC SQL FREE :enp_cursor;

4-26

Chapter 4
Cursor Variables

If the cursor is still open, it is closed and the memory allocated for it is released.

4.5.5 Cursor Variables with the OCI (Release 7 Only)

You can share a Pro*C/C++ cursor variable with an OCI function. To do so, you must
use the SQLLIB conversion functions, SQLCDAFronResul t Set Cursor () (formerly known
as sql cdat ()) and SQLCDAToResultSetCursor (formerly known as sql curt()). These
functions convert between OCI cursor data areas and Pro*C/C++ cursor variables.

The SQLCDAFr onResul t Set Cursor () function translates an allocated cursor variable to an
OCI cursor data area. The syntax is:

voi d SQLCDAFronResul t Set Cur sor (dvoi d *context, Cda_Def *cda, void *cur,
sword *retval);

where the parameters are:

Parameters Description

context A pointer to the SQLLIB runtime context.

cda A pointer to the destination OCI cursor data area.

cur A pointer to the source Pro*C/C++ cursor variable.

retval 0 if no error, otherwise a SQLLIB (SQL) error number.
¢ Note:

In the case of an error, the V2 and rc return code fields in the CDA also receive
the error codes. The rows processed count field in the CDA is not set.

For non-threaded or default context applications, pass the defined constant
SQL_SINGLE_RCTX as the context.

The SQLCDAToResul t Set Cur sor () function translates an OCI cursor data area to a
Pro*C/C++ cursor variable. The syntax is:

voi d SQLCDAToResul t Set Cursor (dvoid *context, void *cur, Cda_Def *cda,
int *retval);

where the parameters are:

Parameters Description

context A pointer to the SQLLIB runtime context.

cur A pointer to the destination Pro*C/C++ cursor variable.
cda A pointer to the source OCI cursor data area.

retval 0 if no error, otherwise an error code.

ORACLE 4-27

Chapter 4
Cursor Variables

Note:

The SQLCA structure is not updated by this routine. The SQLCA components
are only set after a database operation is performed using the translated
cursor.

For non-threaded applications, pass the defined constant SQL_SINGLE_RCTX
as the context.

ANSI and K&R prototypes for these functions are provided in the sgl 2oci . h header file.
Memory for both cda and cur must be allocated prior to calling these functions.

Related Topics

New Names for SQLLIB Public Functions

4.5.6 Restrictions (Cursor Variables)

The following restrictions apply to the use of cursor variables:

If you use the same cursor variable in Pro*C/C++ and OCI V7, then you must use
either SQLLDAGetCurrent() or SQLLDAGetName() immediately after connecting.

You cannot translate a cursor variable to an OCI release 8 equivalent.
You cannot use cursor variables with dynamic SQL.

You can only use cursor variables with the ALLOCATE, FETCH, FREE, and
CLOSE commands

The DECLARE CURSOR command does not apply to cursor variables.
You cannot FETCH from a CLOSEd cursor variable.
You cannot FETCH from a non-ALLOCATEd cursor variable.

If you precompile with MODE=ANS]I, it is an error to close a cursor variable that is
already closed.

You cannot use the AT clause with the ALLOCATE command, nor with the FETCH
and CLOSE commands if they reference a cursor variable.

Cursor variables cannot be stored in columns in the database.

A cursor variable itself cannot be declared in a package specification. Only the
type of the cursor variable can be declared in the package specification.

A cursor variable cannot be a component of a PL/SQL record.

4.5.7 Example: cv_demo.sgl and samplell.pc

The following example programs—a PL/SQL script and a Pro*C/C++ program—
demonstrate how you can use cursor variables. These sources are available on-line in
your deno directory. Also see another version of the same application, cv_deno. pc, in
the demo directory.

ORACLE

4-28

Chapter 4
Cursor Variables

4.5.7.1 cv_demo.sql

- PL/SQL source for a package that declares and
- opens a ref cursor

CONNECT SCOTT/ Tl GER;

CREATE OR REPLACE PACKAGE enp_denp_pkg as

TYPE enp_cur _type IS REF CURSOR RETURN enp%ROMYPE;

PROCEDURE open_cur (curs |N OUT enp_cur _type, dno | N NUMBER);

END enp_deno_pkg;

CREATE OR REPLACE PACKAGE BODY enp_denp_pkg AS

PROCEDURE open_cur (curs IN OUT enp_cur_type, dno I N NUMBER) IS
BEG N
OPEN curs FOR SELECT *
FROM enp WHERE deptno = dno
CORDER BY ename ASC,
END;

END enp_deno_pkg;

4.5.7.2 samplell.pc

ORACLE

/

O

/

Fetch fromthe EMP table, using a cursor variable.
The cursor is opened in the stored PL/ SQL procedure
open_cur, in the EMP_DEMO PKG package.

This package is available on-line inthe file
sanpl ell.sql, in the deno directory.

#include <stdio. h>
#incl ude <sqgl ca. h>
#include <stdlib. h>
#incl ude <sqgl da. h>
#incl ude <sql cpr.h>

/*

Error handling function. */

voi d sql _error(nsg)

{

char *nsg;

size_t clen, fc;
char cbuf[128];

clen = sizeof (chuf);
sql gl s((char *)chuf, (size_t *)&clen, (size_t *)é&fc);

printf("\n%\n", nsg);
printf("Statement is--\n%\n", chuf);
printf("Function code is %d\n\n", fc);

sql gl n{(char *)chuf, (size_t *) &clen, (size_t *) &clen);
printf ("\n%*s\n", clen, chuf);

EXEC SQL WHENEVER SQLERROR CONTI NUE;

EXEC SQL ROLLBACK WORK RELEASE;
exit (EXI T_FAI LURE) ;

4-29

ORACLE

Chapter 4
Cursor Variables

void main()

{

char tenp[32];

EXEC SQL BEG N DECLARE SECTI ON,

char *uid = "scott/tiger";
SQL_CURSOR enp_cursor;
int dept_num
struct
{ .
int enp_num
char enp_name[11] ;
char job[10];
int manager ;
char hire_date[10];
float salary;
float conm ssion;
int dept_num
} enp_info;

struct

{
short enp_num i nd;
short enp_name_i nd;
short job_ind;
short manager _ind;
short hire_date_ind;
short salary_ind;
short commi ssion_ind,;
short dept_num.ind;

} enp_info_ind;

EXEC SQL END DECLARE SECTI ON;

EXEC SQL WHENEVER SQLERRCR do sql _error("Oracle error");

/* Connect to Oracle. */
EXEC SQL CONNECT : ui d;

/* Allocate the cursor variable. */
EXEC SQL ALLOCATE : enp_cursor;

/* Exit the inner for (;;) |oop when NO DATA FOUND. */
EXEC SQL WHENEVER NOT FOUND DO br eak;

for (1)

{

printf("\nEnter department number (0 to exit): ");
gets(tenp);
dept _num = atoi (tenp);
if (dept_num <= 0)
break;

EXEC SQL EXECUTE
begin
enp_deno_pkg. open_cur (: enp_cursor, :dept_nun;
end;
END- EXEC;

printf("\nFor department %l--\n", dept_num;
printf("ENAMVE SAL cowin");

4-30

Chapter 4
CONTEXT Variables

printf(" """ --- .-._\n");

/* Fetch each rowin the EMP table into the data struct.
Note the use of a parallel indicator struct. */
for (;7)

{
EXEC SQL FETCH : enp_cur sor
INTO : enp_info | NDI CATOR : enp_info_ind;
printf("% ", enp_info.enp_nane);
printf("98.2f ", enp_info.salary);
if (enp_info_ind.commission_ind != 0)
printf(" NULL\ n");
el se
printf("98.2f\n", enp_info.comnssion);
}

}

/* Cose the cursor. */
EXEC SQL WHENEVER SQLERROR CONTI NUE;
EXEC SQL CLCSE :enp_cursor;

/* Disconnect fromQOracle. */
EXEC SQL ROLLBACK WORK RELEASE;
exit (EXI T_SUCCESS) ;

}

4.6 CONTEXT Variables

ORACLE

A runtime context, usually simply called a context, is a handle to a an area in client
memory which contains zero or more connections, zero or more cursors, their inline
options (such as MODE, HOLD_CURSOR, RELEASE_CURSOR, SELECT_ERROR,
and so on.) and other additional state information.

To define a context host variable use pseudo-type sql_context. For example:

sql _context ny_context ;

Use the CONTEXT ALLOCATE precompiler directive to allocate and initialize memory
for a context:

EXEC SQL CONTEXT ALLOCATE :context ;

where cont ext is a host variable that is a handle to the context. For example:

EXEC SQL CONTEXT ALLOCATE :ny_context ;

Use the CONTEXT USE precompiler directive to define which context is to be used by
the embedded SQL statements (such as CONNECT, INSERT, DECLARE CURSOR,
and so on.) from that point on in the source file, not in the flow of program logic. That
context is used until another CONTEXT USE statement is encountered. The syntax is:

EXEC SQL CONTEXT USE {:context | DEFAULT} :
The keyword DEFAULT specifies that the default (also known as global) context is to

be used in all the embedded SQL statements that are executed subsequently, until
another CONTEXT USE directive is encountered. A simple example is:

4-31

Chapter 4
Universal ROWIDs

EXEC SQL CONTEXT USE :ny_context ;

If the context variable ny_cont ext has not been defined and allocated already, an error
is returned.

The CONTEXT FREE statement frees the memory used by the context after it is no
longer needed:

EXEC SQ. CONTEXT FREE :context ;

An example is:

EXEC SQL CONTEXT FREE :my_context ;

The following example demonstrates the use of a default context in the same
application as a user-defined context:

CONTEXT USE Example

#include <sql ca. h>

#i ncl ude <oci extp. h>

mai n()

{
sql _context ctx1;
char *usrl = "scott/tiger";
char *usr2 = "systenf manager";

/* Establish connection to SCOTT in global runtime context */
EXEC SQL CONNECT :usrl;

/* Establish connection to SYSTEMin runtine context ctxl */
EXEC SQ.L CONTEXT ALLOCATE : ctx1;

EXEC SQL CONTEXT USE :ctx1;

EXEC SQL CONNECT : usr2;

/* Insert into the enp table fromschema SCOTT */

EXEC SQL CONTEXT USE DEFAULT;
EXEC SQL I NSERT I NTO enp (enmpno, enane) VALUES (1234, 'WALKER);

}

4.7 Universal ROWIDs

ORACLE

There are two kinds of table organization used in the database server: heap tables and
index-organized tables.

Heap tables are the default. The physical row address (ROWID) is a permanent
property that is used to identify a row in a heap table. The external character format of
the physical ROWID is an 18-byte character string in base-64 encoding.

An index-organized table does not have physical row addresses as permanent
identifiers. A logical ROWID is defined for these tables. When you use a SELECT
ROWID ... statement from an index-organized table the ROWID is an opaque structure
that contains the primary key of the table, control information, and an optional physical
"guess"”. You can use this ROWID in a SQL statement containing a clause such as
"WHERE ROWID = ..." to retrieve values from the table.

Universal ROWID can be used for both physical ROWID and logical ROWID. You can
use universal ROWIDs to access data in heap tables, or index-organized tables, since

4-32

Chapter 4
Universal ROWIDs

the table organization can change with no effect on applications. The column datatype
used for ROWID is UROWID(length), where | engt h is optional.

Use the universal ROWID in all new applications.
Use a universal ROWID variable this way:

e Declare it as type pointer to OCIRowid.

e Allocate memory for the universal ROWID variable.
* Use the universal ROWID as a host bind variable.
e Free the memory when finished.

For example:

OCl Rowi d *my_urowid ;

EXEC SQU ALLOCATE :ny_urowid ;
[* Bind ny_urowid as type SQLT_RDD -- no inplicit conversion */
EXEC SQL SELECT rowi d INTO :my_urowid FROM ny_table WHERE ... ;

EXEC SQ. UPDATE ny_table SET ... WHERE rowid = :my_urowi d ;
EXEC SQL FREE ny_urpwi d ;

You also have the option of using a character host variable of width between 19 (18
bytes plus the null-terminator) and 4001 as the host bind variable for universal
ROWID. Character-based universal ROWIDs are supported for heap tables only for
backward compatibility. Because universal ROWID can be variable length, there can
be truncation.

Use the character variable this way:

/* nis based on table characteristics */
int n=4001 ;
char ny_urow d_char[n] ;

EXEC SQL ALLOCATE :ny_urow d_char ;

/* Bind ny_urowid_char as SQLT_STR */

EXEC SQL SELECT rowi d I NTO : my_urowi d_char FROM ny_table WHERE ... ;
EXEC ORACLE OPTI ON(CHAR_MAP=STRI NG) ;

EXEC SQL UPDATE ny_table SET ... WHERE rowid = :ny_urowi d_char ;
EXEC SQL FREE :ny_urow d_char ;

Related Topics
- Positioned Update

* Logical Storage Structures

4.7.1 SQLRowidGet()

ORACLE

A SQLLIB function, SQLRowidGet(), provides the ability to retrieve a pointer to the
universal ROWID of the last row inserted, updated, or selected. The function prototype
and its arguments are:

voi d SQLRowi dGet (dvoid *rctx, OCIRowid **urid) ;

rctx (IN)

4-33

Chapter 4
Host Structures

is a pointer to a runtime context. For the default context or a non-threaded case, pass
SQL_SINGLE_RCTX.

urid (OUT)

is a pointer to a universal ROWID pointer. When a normal execution finishes, this will
point to a valid ROWID. In case of an error, NULL is returned.

Note:

The universal ROWID pointer must have been previously allocated to call
SQLRowidGet(). Use FREE afterward on the universal ROWID.

4.8 Host Structures

ORACLE

You can use a C structure to contain host variables. You reference a structure
containing host variables in the INTO clause of a SELECT or a FETCH statement, and
in the VALUES list of an INSERT statement. Every component of the host structure
must be a legal Pro*C/C++ host variable, as defined in Table 4-4.

When a structure is used as a host variable, only the name of the structure is used in
the SQL statement. However, each of the members of the structure sends data to
Oracle, or receives data from Oracle on a query. The following example shows a host
structure that is used to add an employee to the EMP table:

typedef struct

{
char enp_nanme[11]; /* one greater than colum length */
int enp_nunber;
int dept _nunber;
float salary;
} enp_record,;

/* define a new structure of type "emp_record" */
enp_record new_enpl oyee;

strcpy(new_enpl oyee. enp_nane, "CHEN');
new_enpl oyee. enp_nunber = 9876;
new_enpl oyee. dept _nunber = 20;
new_enpl oyee. sal ary = 4250. 00;

EXEC SQL | NSERT I NTO enp (enane, enpno, deptno, sal)
VALUES (: new_enpl oyee);

The order that the members are declared in the structure must match the order that
the associated columns occur in the SQL statement, or in the database table if the
column list in the INSERT statement is omitted.

For example, the following use of a host structure is invalid, and causes a runtime
error:

struct

{
int enpno;
float salary; /* struct conponents in wong order */
char enp_nane[10];

4-34

Chapter 4
Host Structures

} enp_record;

SELECT enpno, ename, sal
INTO : enp_record FROM enp;

The example is wrong because the components of the structure are not declared in
the same order as the associated columns in the select list. The correct form of the
SELECT statement is:

SELECT enpno, sal, ename /* reverse order of sal and enane */
INTO : enp_record FROM enp;

4.8.1 Host Structures and Arrays

An array is a collection of related data items, called elements, associated with a single
variable name. When declared as a host variable, the array is called a host array.
Likewise, an indicator variable declared as an array is called an indicator array. An
indicator array can be associated with any host array.

Host arrays can increase performance by letting you manipulate an entire collection of
data items with a single SQL statement. With few exceptions, you can use host arrays
wherever scalar host variables are allowed. Also, you can associate an indicator array
with any host array.

You can use host arrays as components of host structures. In the following example, a
structure containing arrays is used to INSERT three new entries into the EMP table:

struct

{
char enp_nane[3][10];
int enp_nunber[3];
int dept_nunber[3];

} enp_rec;

strcpy(enp_rec.emp_nanme[0], "ANQUETIL");
strcpy(enp_rec.emp_nanmge[1], "MERCKX');
strcpy(enp_rec.emp_nane[2], "H NAULT");

enp_rec. enp_nunber[0] = 1964; enp_rec.dept_nunber[0]
enp_rec. enp_nunber[1] = 1974; enp_rec.dept _nunber[1]
enp_rec. enp_nunber[2] = 1985; enp_rec.dept _nunber[2]

TTT!
L ANCANCA

EXEC SQL | NSERT | NTO enp (enane, enpno, deptno)
VALUES (:enp_rec);

Related Topics
* Host Arrays

4.8.2 PL/SQL Records

You cannot bind a C struct to a PL/SQL record.

4.8.3 Nested Structures and Unions

You cannot nest host structures. The following example is invalid:

ORACLE 4-35

Chapter 4
Host Structures

struct
{
int enmp_nunber;
struct
{
float salary;
float conm ssion;
} sal _info; [* INVALID */
int dept_nunber;
} enp_record;

EXEC SQ. SELECT enpno, sal, comm deptno
INTO : enp_record
FROM enp;

Also, you cannot use a C union as a host structure, nor can you nest a union in a
structure that is to be used as a host structure.

4.8.4 Host Indicator Structures

When you need to use indicator variables, but your host variables are contained in a
host structure, you set up a second structure that contains an indicator variable for
each host variable in the host structure.

For example, suppose you declare a host structure student_record as follows:

struct
{
char s_nane[32];
int s_id;
char grad_date[9];
} student _record;

If you want to use the host structure in a query such as

EXEC SQ. SELECT student _nane, student_idno, graduation_date
I NTO : student _record
FROM col | ege_enrol | nent
VWHERE st udent _i dno = 7200;

and you need to know if the graduation date can be NULL, then you must declare a
separate host indicator structure. You declare this as

struct

{
short s _name_ind; /* indicator variables nust be shorts */
short s_id_ind;
short grad_date_ind;

} student _record_ind;

Reference the indicator structure in the SQL statement in the same way that you
reference a host indicator variable:

EXEC SQ. SELECT student nane, student_idno, graduation_date
I NTO : student _record | NDI CATOR : student record_ind
FROM col | ege_enrol | nent
WHERE st udent _idno = 7200;

ORACLE 4-36

Chapter 4
Host Structures

When the query completes, the NULL/NOT NULL status of each selected component
is available in the host indicator structure.

Note:

This Guide conventionally names indicator variables and indicator structures by
appending _ind to the host variable or structure name. However, the names of
indicator variables are completely arbitrary. You can adopt a different
convention, or use no convention at all.

4.8.5 Example Program: Cursor and a Host Structure

ORACLE

The demonstration program in this section shows a query that uses an explicit cursor,
selecting data into a host structure. This program is available in the file sanpl e2. pc in
your deno directory.

/
sanpl e2. pc

This program connects to ORACLE, declares and opens a cursor,
fetches the names, salaries, and commissions of all
sal espeopl e, displays the results, then closes the cursor.

R

/

#include <stdio.h>
#include <sql ca. h>

#define UNAME_LEN 20
#define PWD_LEN 40
/*

* Use the preconpiler typedef'ing capability to create

* null-terminated strings for the authentication host

* variables. (This isn't really necessary--plain char *'s
* does work as well. This is just for illustration.)

*/

typedef char asciiz[PW_LEN];

EXEC SQL TYPE asciiz IS STRING PWD_LEN) REFERENCE;

asciiz user nane;

asciiz passwor d;

struct enp_info

{
asciiz enp_nane;
fl oat sal ary;
fl oat conmi ssi on;
¥

/* Declare function to handl e unrecoverable errors. */
voi d sql _error();

mai n()

{

4-37

ORACLE

Chapter 4
Host Structures

struct enmp_info *enp_rec_ptr;

/* Alocate nenory for enp_info struct. */
if ((emp_rec_ptr =

(struct emp_info *) malloc(sizeof(struct enp_info))) == 0)
{

fprintf(stderr, "Menory allocation error.\n");

exit(1);
}

/* Connect to ORACLE. */
strcpy(usernane, "SCOTT");
strcpy(password, "TIGER');

EXEC SQL WHENEVER SQLERRCR DO sql _error (" ORACLE error--");

EXEC SQL CONNECT : usernane | DENTI FI ED BY : passwor d;
printf("\nConnected to ORACLE as user: 9%\n", usernane);

/* Declare the cursor. All static SQL explicit cursors
* contain SELECT commands. 'sal espeople’ is a SQ identifier,
* not a (C) host variable.
*/
EXEC SQ. DECLARE sal espeopl e CURSOR FOR
SELECT ENAME, SAL, COW
FROM EMP
WHERE JOB LI KE ' SALES% ;

/* Open the cursor. */
EXEC SQ. OPEN sal espeopl €;

/* CGet ready to print results. */
printf("\n\nThe conpany's sal espeople are--\n\n");
printf("Sal esperson Salary Comm ssion\n");
printf("-----mmmanaaiiie i \n");

/* Loop, fetching all sal esperson's statistics.
* Cause the programto break the | oop when no nore
* data can be retrieved on the cursor.

*

/
EXEC SQL WHENEVER NOT FOUND DO br eak;
for (53)
{

EXEC SQL FETCH sal espeopl e INTO :enp_rec_ptr;
printf("% 11s9%0.2f%3. 2f\n", enp_rec_ptr->enp_nane,
enp_rec_ptr->sal ary, enp_rec_ptr->comm ssion);

}

/* Cose the cursor. */
EXEC SQ. CLCSE sal espeopl ¢;

printf("\nArrivederci.\n\n");

EXEC SQL COMWM T WORK RELEASE;
exit(0);

voi d

4-38

Chapter 4
Pointer Variables

sql _error(nsg)

char *nsg;

{
char err_msg[512];
int buf _len, nsg_len;

EXEC SQL WHENEVER SQLERROR CONTI NUE;
printf("\n%\n", nsg);

[* Call sqlglm{) to get the conplete text of the
* error nessage.
*/
buf Ien = sizeof (err_nsg);
sql gl m{err_nsg, &buf len, &rsg_len);
printf("%*s\n", nsg_len, err_nsg);

EXEC SQL ROLLBACK RELEASE:
exit(1);
}

4.9 Pointer Variables

C supports pointers, which "point" to other variables. A pointer holds the address
(storage location) of a variable, not its value.

4.9.1 Pointer Variable Declaration

You define pointers as host variables following the normal C practice, as the next
example shows:

int *int_ptr;
char *char_ptr;

4.9.2 Pointer Variable Referencing

ORACLE

In SQL statements, prefix pointers with a colon, as shown in the following example:

EXEC SQL SELECT intcol INTO :int_ptr FROM...

Except for pointers to character strings, the size of the referenced value is given by the
size of the base type specified in the declaration. For pointers to character strings, the
referenced value is assumed to be a NULL-terminated string. Its size is determined at
run time by calling the strlen() function.

You can use pointers to reference the members of a struct. First, declare a pointer
host variable, then set the pointer to the address of the desired member, as shown in
the example later. The datatypes of the struct member and the pointer variable must
be the same. Most compilers will warn you of a mismatch.

struct

{ . .
int i
char c;

} structvar;

int *i_ptr;

char *c_ptr;

4-39

Chapter 4
Globalization Support

mai n()
{
i_ptr = &structvar.i;
c_ptr = &structvar.c;
[* Use i _ptr and c_ptr in SQ statenents. */

Related Topics
* Globalization Support

4.9.3 Structure Pointers

You can use a pointer to a structure as a host variable. The following example

» Declares a structure

» Declares a pointer to the structure

» Allocates memory for the structure

» Uses the struct pointer as a host variable in a query

» Dereferences the struct components to print the results

struct EMP_REC

{
int enmp_nunber;

float salary;
b
char *name = "H NAULT";

struct EMP_REC *sal rec;
sal _rec = (struct EMP_REC *) malloc(sizeof (struct EMP_REQ));

EXEC SQL SELECT enpno, sal INTO :sal _rec
FROM enp
VWHERE ename = :nane;

printf("Enmpl oyee nunber and salary for %: ", name);
printf("%l, %\n", sal _rec->enp_nunber, sal _rec->salary);

In the SQL statement, pointers to host structures are referred to in exactly the same
way as a host structure. The "address of" notation (&) is not required; in fact, it is an
error to use it.

4.10 Globalization Support

ORACLE

Although the widely-used 7- or 8-bit ASCII and EBCDIC character sets are adequate

to represent the Roman alphabet, some Asian languages, such as Japanese, contain
thousands of characters. These languages can require at least 16 bits (two bytes) to

represent each character. How does Oracle deal with such dissimilar languages?

Oracle provides Globalization Support, which lets you process single-byte and
multibyte character data and convert between character sets. It also lets your
applications run in different language environments. With Globalization Support,
number and date formats adapt automatically to the language conventions specified
for a user session. Thus, Globalization Support allows users around the world to
interact with Oracle in their native languages.

4-40

ORACLE

Chapter 4
Globalization Support

You control the operation of language-dependent features by specifying various
Globalization Support or NLS parameters. Default values for these parameters can be
set in the Oracle initialization file. The following table shows what each Globalization
Support parameter specifies.

Table 4-6 Globalization Support Parameters
|

Globalization Support Parameter Specifies

NLS_LANGUAGE language-dependent conventions
NLS_TERRITORY territory-dependent conventions
NLS_DATE_FORMAT date format

NLS_DATE_LANGUAGE language for day and month names
NLS_NUMERIC_CHARACTERS decimal character and group separator
NLS_CURRENCY local currency symbol
NLS_ISO_CURRENCY ISO currency symbol

NLS_SORT sort sequence

The main parameters are NLS_LANGUAGE and NLS_TERRITORY.
NLS_ LANGUAGE specifies the default values for language-dependent features, which
include:

e Language for server messages
* Language for day and month names
e Sort sequence

NLS_TERRITORY specifies the default values for territory-dependent features, which
include

* Date format

» Decimal character

e Group separator

* Local currency symbol
e ISO currency symbol

You can control the operation of language-dependent Globalization Support features
for a user session by specifying the parameter NLS_LANG as follows:

NLS_LANG = <l anguage>_<territory>. <character set>

where language specifies the value of NLS_LANGUAGE for the user session, territory
specifies the value of NLS_TERRITORY, and character set specifies the encoding
scheme used for the terminal. An encoding scheme (usually called a character set or
code page) is a range of numeric codes that corresponds to the set of characters a
terminal can display. It also includes codes that control communication with the
terminal.

You define NLS_LANG as an environment variable (or the equivalent on your system).
For example, on UNIX using the C shell, you might define NLS_LANG as follows:

setenv NLS_LANG French_France. WE8I SO8859P1

4-41

Chapter 4
NCHAR Variables

During an Oracle database session you can change the values of Globalization
Support parameters. Use the ALTER SESSION statement as follows:

ALTER SESSI ON SET <gl obal i zati on support_paraneter> = <val ue>

Pro*C/C++ fully supports all the Globalization Support features that allow your
applications to process foreign language data stored in an Oracle database. For
example, you can declare foreign language character variables and pass them to
string functions such as INSTRB, LENGTHB, and SUBSTRB. These functions have
the same syntax as the INSTR, LENGTH, and SUBSTR functions, respectively, but
operate on a byte-by-byte basis rather than a character-by-character basis.

You can use the functions NLS_INITCAP, NLS LOWER, and NLS_UPPER to handle
special instances of case conversion. And, you can use the function NLSSORT to
specify WHERE-clause comparisons based on linguistic rather than binary ordering.
You can even pass globalization support parameters to the TO_CHAR, TO_DATE,
and TO_NUMBER functions.

4.11 NCHAR Variables

Three internal database datatypes can store National Character Set data. They are
NCHAR, NCLOB, and NVARCHAR2Z (also known as NCHAR VARYING). You use
these datatypes only in relational columns.

4.11.1 CHARACTER SET [IS]NCHAR_CS

ORACLE

To specify which host variables hold National Character Set data, insert the clause
"CHARACTER SET [IS] NCHAR_CS" in character variable declarations. Then you are
able to store National Character Set data in those variables. You can omit the token
IS. NCHAR_CS is the name of the National Character Set.

For example:

char character set is nchar_cs *str = "<Japanese_string>";

In this example, <Japanese_string> consists of Unicode characters that are in the
National Character Set AL16UTF16, as defined by the variable NLS_NCHAR.

You can accomplish the same thing by entering NLS_CHAR=str on the command line,
and coding in your application:

char *str = "<Japanese_string>"

Pro*C/C++ treats variables declared this way as of the character set specified by the
environment variable NLS_NCHAR. The variable size of an NCHAR variable is
specified as a byte count, the same way that ordinary C variables are.

To select data into str, use the following simple query:

EXEC SQL
SELECT ENAME I NTO :str FROM EMP WHERE DEPT = n' <Japanese_stringl>';

Or, you can use str in the following SELECT:

EXEC SQL
SELECT DEPT INTO :dept FROM DEPT_TAB WHERE ENAME = :str;

4-42

Chapter 4
NCHAR Variables

4.11.2 Environment Variable NLS_NCHAR

Pro*C/C++ supports National Character Sets with database support when
NLS_LOCAL=NO. When NLS_LOCAL=NO, and the new environmental variable
NLS_NCHAR is set to a valid National Character Set, the database server supports
NCHAR.

NLS_NCHAR specifies the character set used for National Character Set data
(NCHAR, NVARCHAR2, NCLOB). If it is not specified, the character set defined or
indirectly defined by NLS_LANG will be used.

NLS_NCHAR must have a valid National Character Set specification (not a language
name, that is set by NLS_LANG) at both precompile-time and runtime. SQLLIB
performs a runtime check when the first SQL statement is executed. If the precompile-
time and runtime character sets are different, SQLLIB will return an error code.

4.11.3 CONVBUFSZ Clause in VAR

You can override the default assignments by equivalencing host variables to Oracle
external datatypes, using the EXEC SQL VAR statement, This is called host variable
equivalencing.

The EXEC SQL VAR statement can have an optional clause: CONVBUFSZ (<si ze>). You
specify the size, <si ze>, in bytes, of the buffer in the Oracle runtime library used to
perform conversion of the specified host variable between character sets.

The new syntax is:

EXEC SQL VAR host _variable 1S datatype [CONWBUFSZ [IS] (size)] ;

or

EXEC SQL VAR host _variable [CONVBUFSZ [IS] (size)];

where datatype is:

type_name [({ length | precision, scale })]

Related Topics
* VAR (Oracle Embedded SQL Directive)

4.11.4 Character Strings in Embedded SQL

ORACLE

A multibyte character string in an embedded SQL statement consists of a character
literal that identifies the string as multibyte, immediately followed by the string. The
string is enclosed in the usual single quotes.

For example, an embedded SQL statement such as

EXEC SQL SELECT enpno | NTO : enp_num FROM enp
WHERE enane = N <Japanese_string>';

contains a multibyte character string (<Japanese_string> could actually be Kaniji),
since the N character literal preceding the string identifies it as a multibyte string.

Since Oracle is case-insensitive, you can use "n" or "N" in the example.

4-43

Chapter 4
NCHAR Variables

4.11.5 Strings Restrictions

You cannot use datatype equivalencing (the TYPE or VAR commands) with multibyte
character strings.

Dynamic SQL method 4 is not available for multibyte character string host variables in
Pro*C/C++.

4.11.6 Indicator Variables

You can use indicator variables with host character variables that are multibyte
characters (as specified using the NLS_CHAR option).

ORACLE 4-44

Advanced Topics

This chapter discusses advanced techniques in Pro*C/C++ and contains the following
topics:

* Character Data

¢ Datatype Conversion

- Datatype Equivalencing

e The C Preprocessor

e Precompiled Header Files

e The Oracle Preprocessor

« Evaluation of Numeric Constants

e SQLLIB Extensions for OCI Release 8 Interoperability
* Interface to OCI Release 8

* Embedded OCI Release 7 Calls

* New Names for SQLLIB Public Functions
e X/Open Application Development

5.1 Character Data

This section explains how the Pro*C/C++ Precompiler handles character host
variables. There are four host variable character types:

* Character arrays

* Pointers to strings

* VARCHAR variables

* Pointers to VARCHARS

Do not confuse VARCHAR (a host variable data structure supplied by the precompiler)
with VARCHAR?2 (an Oracle internal datatype for variable-length character strings).

5.1.1 Precompiler Option CHAR_MAP

ORACLE

The CHAR_MAP precompiler option is available to specify the default mapping of
char[n] and char host variables. Oracle maps them to CHARZ. CHARZ implements the
ANSI Fixed Character format. Strings are fixed-length, blank-padded and null-
terminated. VARCHAR?2 values (including nulls) are always fixed-length and blank-
padded. Table 5-1 shows the possible settings of CHAR_MAP:

5-1

Chapter 5
Character Data

Table 5-1 CHAR_MAP Settings
|

CHAR_MAP Setting Is Default for Description
VARCHAR?2 - All values (including null) are fixed-length
blank-padded.
CHARZ DBMS=V7, Fixed-length blank-padded, then null-
DBMS=V8 terminated. Conforms to the ANSI Fixed
Character type.
STRING New format null-terminated. Conforms to ASCII format

used in C programs.

CHARF Previously, only Fixed-length blank-padded. null is left
through VAR or unpadded.
TYPE declarations.

The default mapping is CHAR_MAP=CHARZ, which was the case in previous versions
of Pro*C/C++.

Use CHAR_MAP=VARCHAR?2 instead of the old DBMS=V6_CHAR, which is obsolete.

5.1.2 Inline Usage of the CHAR_MAP Option

Unless you declared a char or char[n] variable otherwise, the inline CHAR_MAP option
determines its mapping. The following code fragment illustrates the results of setting
this option inline in Pro*C/C++:

char ch_array[5];

strncpy(ch_array, "12345", 5);

[* char_map=charz is the default in Oracle7 and Oracle8 */
EXEC ORACLE OPTI ON (char _map=charz);

/* Select retrieves a string "AB" fromthe database */
SQ SELECT ... INTO:ch_array FROM ... WHERE ... ;

/* ch_array == { "A, "B, "', "', "\0" } ¥/

strncpy (ch_array, "12345", 5);

EXEC ORACLE OPTI ON (char_map=string) ;

/* Select retrieves a string "AB" fromthe database */
EXEC SQL SELECT ... INTO:ch_array FROM... WHERE ... ;
/* ch_array == { "A", 'B, "\0", "4, '5 } */

strncpy(ch_array, "12345", 5);

EXEC ORACLE OPTI ON (char_map=charf);

/* Select retrieves a string "AB" fromthe database */
EXEC SQL SELECT ... INTO:ch_array FROM... WHERE ... ;
[* ch_array == { "A, 'B, "', ", K

5.1.3 Effect of the DBMS and CHAR_MAP Options

ORACLE

The DBMS and CHAR_MAP options determine how Pro*C/C++ treats data in
character arrays and strings. These options allow your program to observe
compatibility with ANSI fixed-length strings, or to maintain compatibility with previous
releases of Oracle and Pro*C/C++ that use variable-length strings.

The DBMS option affects character data both on input (from your host variables to the
Oracle table) and on output (from an Oracle table to your host variables).

5-2

Chapter 5
Character Data

Character Array and the CHAR_MAP Option

The mapping of character arrays can also be set by the CHAR_MAP option
independent of the DBMS option. DBMS=V7 or DBMS=V8 both use
CHAR_MAP=CHARZ, which can be overridden by specifying either
CHAR_MAP=VARCHAR2 or STRING or CHARF.

Related Topics

e Precompiler Options

5.1.3.1 On Input

ORACLE

Character Array

On input, the DBMS option determines the format that a host variable character array
must have in your program. When the CHAR_MAP=VARCHARZ2, host variable
character arrays must be blank padded, and should not be null-terminated. When the
DBMS=V7 or V8, character arrays must be null-terminated (\0").

When the CHAR_MAP option is set to VARCHAR?2 trailing blanks are removed up to
the first non-blank character before the value is sent to the database. An un-initialized
character array can contain null characters. To make sure that the nulls are not
inserted into the table, you must blank-pad the character array to its length. For
example, if you execute the statements:

char enp_nane[10] ;

strcpy(enp_nane, "M LLER"); /* WRONG Note no bl ank-paddi ng */
EXEC SQ. | NSERT | NTO enp (enpno, ename, deptno) VALUES
(1234, :emp_nane, 20);

you will find that the string "MILLER" was inserted as "MILLER\O\O\0\O" (with four null
bytes appended to it). This value does not meet the following search condition:

. WHERE enanme = 'MLLER ;

To INSERT the character array when CHAR_MAP is set to VARCHARZ2, you should
execute the statements

strncpy(enp_nane, "M LLER ", 10); /* 4 trailing blanks */
EXEC SQ. | NSERT | NTO enp (enpno, ename, deptno) VALUES
(1234, :enmp_nane, 20);

When DBMS=V7 or V8, input data in a character array must be null-terminated. So,
make sure that your data ends with a null.

char enp_nane[11]; /* Note: one greater than colum size of 10 */
strcpy(enp_nane, "M LLER"); /* No bl ank-padding required */

EXEC SQ. | NSERT | NTO enp (enpno, ename, deptno) VALUES
(1234, :enp_nane, 20);

Character Pointer

The pointer must address a null-terminated buffer that is large enough to hold the input
data. Your program must allocate enough memory to do this.

5-3

Chapter 5
Character Data

5.1.3.2 On Input

The following example illustrates all possible combinations of the effects of the
CHAR_MAP option settings on the value retrieved from a database into a character
array.

Assume a database

TABLE strdbase (..., strval VARCHAR2(6));

which contains the following strings in the column strval:

-- string of length 0

" AB" -- string of length 2
"KING' -- string of length 4
"QUEEN' -- string of length 5
"MLLER" -- string of length 6

In a Pro*C/C++ program, initialize the 5-character host array str with X' characters and
use for the retrieval of all the values in column strval:

char str[5] = {'X, 'X, "X ,'X, "X}
short str_ind;

EXEC SQL SELECT strval INTO :str:str_ind WHERE ... ;

with the following results for the array, str, and the indicator variable, str_ind, as
CHAR_MAP is set to VARCHAR2, CHARF, CHARZ and STRING:

strval = AB KI NG " QUEEN M LLER

VARCHAR2 -1"AB "0 "KING" O "QUEEN'" 0 "MLLE" 6
CHARF XXX -1 "AB " 0 "KING" 0 "QUEEN' 0 "MLLE' 6
CHARZ " 0" -1 "AB 0" 0 "KIN&" 0 "QUEE0" 5 "MLLO" 6
STRING "OXXXX' -1 "ABOXX" 0 "KIN&" 0 "QUEE0" 5 "MLLO" 6

where 0 stands for the null character, "\0'.

5.1.3.3 On Output

ORACLE

Character Array

On output, the DBMS and CHAR_MAP options determines the format that a host
variable character array will have in your program. When CHAR_MAP=VARCHAR?2,
host variable character arrays are blank padded up to the length of the array, but
never null-terminated. When DBMS=V7 or V8 (or CHAR_MAP=CHARZ), character
arrays are blank padded, then null-terminated in the final position in the array.

Consider the following example of character output:

CREATE TABLE test _char (C_col CHAR(10), V_col VARCHAR2(10));
I NSERT | NTO test_char VALUES (' MLLER, "KING);

A precompiler program to select from this table contains the following embedded SQL:

char nanel[10];

5-4

ORACLE

Chapter 5
Character Data

char nanme2[10];

EXEC SQ. SELECT C col, V_col INTO :nanel, :name2
FROM t est _char;

If you precompile the program with CHAR_MAP=VARCHAR2, name1 will contain:
"M LLER####"

that is, the name "MILLER" followed by 4 blanks, with no null-termination. (If namel
had been declared with a size of 15, there are 9 blanks following the name.)

name2 will contain:

" KI NGH##HH" /* 6 trailing blanks */

If you precompile the program with DBMS=V7 or V8, namel will contain:

"M LLER###\ 0" /* 3 trailing blanks, then a null-term nator */

that is, a string containing the name, blank-padded to the length of the column,
followed by a null terminator. name2 will contain:

" KI NGH####\ 0"

In summary, if CHAR_MAP=VARCHAR?2, the output from either a CHARACTER
column or a VARCHAR?2 column is blank-padded to the length of the host variable
array. If DBMS=V7 or V8, the output string is always null-terminated.

Character Pointer

The DBMS and CHAR_MAP options do not affect the way character data are output to
a pointer host variable.

When you output data to a character pointer host variable, the pointer must point to a
buffer large enough to hold the output from the table, plus one extra byte to hold a null
terminator.

The precompiler runtime environment calls strl en() to determine the size of the output
buffer, so make sure that the buffer does not contain any embedded nulls (\0"). Fill
allocated buffers with some value other than "\0', then null-terminate the buffer, before
fetching the data.

Note:

C pointers can be used in a Pro*C/C++ program that is precompiled with
DBMS=V7 or V8 and MODE=ANSI. However, pointers are not legal host
variable types in a SQL standard compliant program. The FIPS flagger warns
you if you use pointers as host variables.

The following code fragment uses the columns and table defined in the previous
section, and shows how to declare and SELECT into character pointer host variables:

char *p_nanel;
char *p_nane2;

5-5

Chapter 5
Character Data

p_nanel = (char *) malloc(11);
p_name2 = (char *) malloc(11);
strcpy(p_nanel, "
strcpy(p_nanme2, "0123456789");

— — — —

EXEC SQL SELECT C col, V_col INTO :p_nanel, :p_name2
FROM t est _char;

When the SELECT statement mentioned earlier is executed with any DBMS or
CHAR_MAP setting, the value fetched is:

"M LLER### 0" /* 4 trailing blanks and a null terminator */

" KI NGH#####\ 0" [* 6 blanks and null */

5.1.4 VARCHAR Variables and Pointers

The following example shows how VARCHAR host variables are declared:

VARCHAR enp_nanel[10]; /* VARCHAR variable */
VARCHAR *enp_nane2; /* pointer to VARCHAR */

5.1.4.1 On Input

ORACLE

VARCHAR Variables

When you use a VARCHAR variable as an input host variable, your program need
only place the desired string in the array member of the expanded VARCHAR
declaration (emp_namel.arr in our example) and set the length member
(emp_namel.len). There is no need to blank-pad the array. Exactly emp_namel.len
characters are sent to Oracle, counting any blanks and nulls. In the following example,
you set emp_namel.len to 8:

strepy((char *)enmp_nanmel.arr, "VAN HORN');
enp_nanel.len = strlen((char *)enp_nanel.arr);

Pointer to a VARCHAR

When you use a pointer to a VARCHAR as an input host variable, you must allocate
enough memory for the expanded VARCHAR declaration. Then, you must place the
desired string in the array member and set the length member, as shown in the
following example:

enp_nane2 = mal | oc(sizeof (short) + 10) /* len + arr */
strcpy((char *)emp_nanme2->arr, "M LLER");
enp_nane2->l en = strlen((char *)enp_name2->arr);

Or, to make emp_name2 point to an existing VARCHAR (emp_namel in this case),
you could code the assignment

enp_nane2 = &enp_nanel,

then use the VARCHAR pointer in the usual way, as in

EXEC SQL I NSERT | NTO EMP (EMPNO, ENAME, DEPTNO)
VALUES (:enp_nunber, :enp_nane2, :dept_nunber);

5-6

Chapter 5
Character Data

5.1.4.2 On Output

VARCHAR Variables

When you use a VARCHAR variable as an output host variable, the program interface
sets the length member but does not null-terminate the array member. As with
character arrays, your program can null-terminate the arr member of a VARCHAR
variable before passing it to a function such as printf() orstrlen(). An example
follows:

enp_nanel.arr[enp_namel.len] ="'\0";
printf("%", enp_nanel.arr);

Or, you can use the length member to limit the printing of the string, as in:

printf("%*s", enp_namel.len, enp_nanel.arr);

An advantage of VARCHAR variables over character arrays is that the length of the
value returned by Oracle is available immediately. With character arrays, you might
need to strip the trailing blanks yourself to get the actual length of the character string.

VARCHAR Pointers

When you use a pointer to a VARCHAR as an output host variable, the program
interface determines the variable's maximum length by checking the length member
(emp_nameZ2->len in our example). So, your program must set this member before
every fetch. The fetch then sets the length member to the actual number of characters
returned, as the following example shows:

enp_nanme2->len = 10; /* Set maximumlength of buffer. */
EXEC SQL SELECT ENAME | NTO : enp_nanme2 WHERE EMPNO = 7934;
printf("%l characters returned to enp_nane2", enp_nanme2->len);

5.1.5 Unicode Variables

ORACLE

Pro*C/C++ allows fixed-width Unicode data (character set Unicode Standard Version
3.0, known simply as UCS-16) in host char variables. UCS-16 uses 2 bytes for each

character, so it is an unsigned 2-byte datatype. SQL statement text in UCS-16 is not
supported yet.

In the following example code a host variable, enpl oyee, of the Unicode type utext is
declared to be 20 Unicode characters long. A table enp is created containing the
column enane, which is 60 bytes long, so that database character sets in Asian
languages, where multibyte characters are up to three bytes long, will be supported.

utext enpl oyee[20] ; /* Unicode host variable */
EXEC SQL CREATE TABLE enmp (enane CHAR(60));

/* ename is in the current database character set

*|

EXEC SQL I NSERT I NTO enp (enane) VALUES ('test') ;

/* "test' in NLS_LANG encoding converted to database character set */

EXEC SQL SELECT * |INTO : enpl oyee FROM enp ;

/* Database character set converted to Unicode */

A public header file, sglucs2.h, must be included in your application code. It does the
following:

5-7

Chapter 5
Character Data

* Contains the statement:

#incl ude <oratypes. h>

» Defines a "Unicode varchar", uvarchar, as:

struct uvarchar

{

ub2 len;
utext arr[1] ;

b

typedef struct uvarchar uvarchar ;

» Defines a "Unicode long varchar", ulong_varchar, as:

struct ul ong_varchar

{
ub4 len ;

utext arr[1] ;

}

typedef struct ulong_varchar ulong_varchar ;

The default datatype of utext is the same as the default for any character variables,
CHARZ, which is blank-padded and null-terminated.

Use the CHAR_MAP precompiler option to change the default datatype, as follows:

#include <sql ca. h>
#i ncl ude <sql ucs2. h>

mai n()

{
utext enployeel[20] ;

/* Change to STRING dat at ype: */
EXEC ORACLE OPTI ON (CHAR MAP=STRING ;
utext enpl oyee2[20] ;

EXEC SQL CREATE TABLE enp (ename CHAR(60)) ;

/***

Initializing enployeel or enployee2 i s conpiler-dependent.
**/

EXEC SQL I NSERT I NTO enp (enane) VALUES (:enpl oyeel) ;

EXEC SQL SELECT enane | NTO : enpl oyee2 FROM enp;
/* enpl oyee2 is now not blank-padded and is null-termnated */

5.1.5.1 Restrictions on Unicode Variable Usage

ORACLE

e Static and dynamic SQL cannot contain Unicode in the SQL statement text. The
following is not permitted:

#include oratypes.h
utext sqlstnt[100] ;

/* If sqglstnt contains a SQL statenent: */

EXEC SQL PREPARE s1 FROM :sqglstnt ;
EXEC SQL EXECUTE | MVEDI ATE : sql stnt ;

5-8

Chapter 5
Datatype Conversion

* You cannot use type equivalencing for utext variables. The following code is not
permitted:

typedef utext utext_5 ;
EXEC SQL TYPE utext_5 IS STRING ;

« CONVBUFSZ cannot be used as a conversion buffer size. Use the CHAR_MAP
option instead.

e Oracle dynamic SQL method 4 does not support Unicode.

» Object types do not support Unicode.

Related Topics

¢ CONVBUFSZ Clause in VAR
* ANSI Dynamic SQL

* Objects

5.2 Datatype Conversion

At precompile time, a default external datatype is assigned to each host variable. For
example, the precompiler assigns the INTEGER external datatype to host variables of
type short int and int.

At run time, the datatype code of every host variable used in a SQL statement is
passed to Oracle. Oracle uses the codes to convert between internal and external
datatypes.

Before assigning a SELECTed column (or pseudocolumn) value to an output host
variable, Oracle must convert the internal datatype of the source column to the
datatype of the host variable. Likewise, before assigning or comparing the value of an
input host variable to a column, Oracle must convert the external datatype of the host
variable to the internal datatype of the target column.

Conversions between internal and external datatypes follow the usual data conversion
rules. For example, you can convert a CHAR value of "1234" to a C short value. You
cannot convert a CHAR value of "65543" (hnumber too large) or "10F" (number not
decimal) to a C short value. Likewise, you cannot convert a char [n] value that contains
any alphabetic characters to a NUMBER value.

5.3 Datatype Equivalencing

Datatype equivalencing lets you control the way Oracle interprets input data, and the
way Oracle formats output data. It provides the ability to override the default external
datatypes that the precompiler assigns. On a variable-by-variable basis, you can map
(or make equivalent) supported C host variable datatypes to Oracle external
datatypes. You can also map user-defined datatypes to Oracle external datatypes.

5.3.1 Host Variable Equivalencing

By default, the Pro*C/C++ Precompiler assigns a specific external datatype to every
host variable.

Table 5-2 lists the default assignments:

ORACLE 5-9

Chapter 5
Datatype Equivalencing

Table 5-2 Default Type Assignments

C Type, or Pseudotype Oracle External Type Notes

char VARCHAR2 (CHAR_MAP=VARCHAR?2)

char[n] CHARZ (DBMS=V7, V8 default)

char* STRING (CHAR_MAP=STRING)
CHARF (CHAR_MAP=CHARF)

int, int* INTEGER -

short, short* INTEGER -

long, long* INTEGER -

long long, long long* INTEGER -

float, float* FLOAT -

double, double* FLOAT -

VARCHAR*, VARCHAR[N] VARCHAR -

With the VAR statement, you can override the default assignments by equivalencing
host variables to Oracle external datatypes. The syntax you use is

EXEC SQL VAR host _variable IS type_name [(length)];

where host_variable is an input or output host variable (or host array) declared earlier,
type_name is the name of a valid external datatype, and length is an integer literal
specifying a valid length in bytes.

Host variable equivalencing is useful in several ways. For example, suppose you want
to SELECT employee names from the EMP table, then pass them to a routine that
expects null-terminated strings. You need not explicitly null-terminate the names.
Simply equivalence a host variable to the STRING external datatype, as follows:

char enp_nane[11];
EXEC SQ. VAR enp_name |'S STRING 11);

The length of the ENAME column in the EMP table is 10 characters, so you allot the
new emp_name 11 characters to accommodate the null terminator. When you
SELECT a value from the ENAME column into emp_name, the program interface null-
terminates the value for you.

You can use any external datatypes except NUMBER (for example, VARNUM).

Related Topics

e External Datatypes

5.3.2 User-Defined Type Equivalencing

ORACLE

You can also map (or make equivalent) user-defined datatypes to Oracle external
datatypes. First, define a new datatype structured like the external datatype that suits
your needs. Then, map your new datatype to the external datatype using the TYPE
statement.

With the TYPE statement, you can assign an Oracle external datatype to a whole
class of host variables. The syntax you use is:

5-10

Chapter 5
Datatype Equivalencing

EXEC SQL TYPE user _type IS type_nanme [(length)] [REFERENCE];

Suppose you need a variable-length string datatype to hold graphics characters. First,
declare a struct with a short length component followed by a 65533-byte data
component. Second, use typedef to define a new datatype based on the struct. Then,
equivalence your new user-defined datatype to the VARRAW external datatype, as
shown in the following example:

struct screen

{

short len;
char buff[4000];

b

typedef struct screen graphics;

EXEC SQL TYPE graphics |'S VARRAW 4000) ;
graphics crt; —host variable of type graphics

You specify a length of 4000 bytes for the new graphics type because that is the
maximum length of the data component in your struct. The precompiler allows for the
len component (and any padding) when it sends the length to the Oracle server.

5.3.2.1 REFERENCE Clause

You can declare a user-defined type to be a pointer, either explicitly, as a pointer to a
scalar or struct type, or implicitly, as an array, and use this type in an EXEC SQL
TYPE statement. In this case, you must use the REFERENCE clause at the end of the
statement, as shown in the following example:

typedef unsigned char *ny_raw

EXEC SQL TYPE ny_raw | S VARRAW 4000) REFERENCE;
my_raw graphi cs_buffer;

graphi cs_buffer = (nmy_raw) malloc(4004);

In this example, you allocated additional memory over the type length (4000). This is
necessary because the precompiler also returns the length (the size of a short), and
can add padding after the length due to word alignment restrictions on your system. If
you do not know the alignment practices on your system, make sure to allocate
sufficient extra bytes for the length and padding (9 should usually be sufficient).

Related Topics

» Example Program: Using sqlvcp()

5.3.3 CHARF External Datatype

ORACLE

CHAREF is a fixed-length character string. You can use this datatype in VAR and TYPE
statements to equivalence C datatypes to the fixed-length SQL standard datatype
CHAR, regardless of the setting of the DBMS or CHAR_MAP option.

When DBMS=V7 or V8, specifying the external datatype CHARACTER in a VAR or
TYPE statement equivalences the C datatype to the fixed-length datatype CHAR
(datatype code 96). However, when CHAR_MAP=VARCHARZ2, the C datatype is
equivalenced to the variable-length datatype VARCHAR2 (code 1).

5-11

Chapter 5
Datatype Equivalencing

Now, you can always equivalence C datatypes to the fixed-length SQL standard type
CHARACTER by using the CHARF datatype in the VAR or TYPE statement. When
you use CHARF, the equivalence is always made to the fixed-length character type,
regardless of the setting of the DBMS or CHAR_MAP option.

5.3.4 The EXEC SQL VAR and TYPE Directives

You can code an EXEC SQL VAR ... or EXEC SQL TYPE ... statement anywhere in
your program. These statements are treated as executable statements that change the
datatype of any variable affected by them from the point that the TYPE or VAR
statement was made to the end of the scope of the variable. If you precompile with
MODE=ANSI, you must use Declare Sections. In this case, the TYPE or VAR
statement must be in a Declare Section.

Related Topics
* TYPE (Oracle Embedded SQL Directive)
* VAR (Oracle Embedded SQL Directive)

5.3.5 Example: Datatype Equivalencing (sample4.pc):

ORACLE

The demonstration program in this section shows you how you can use datatype
equivalencing in your Pro*C/C++ programs. This program is available as sanpl e4. pc in
the deno directory.It demonstrates the use of type equivalencing using the LONG
VARRAW external datatype. In order to provide a useful example that is portable
across different systems, the program inserts binary files into and retrieves them from
the database.

This program uses LOB embedded SQL statements.

Please read the introductory comments for an explanation of the program's purpose.
/***

sanpl e4. pc

This program denonstrates the use of type equival encing using the
LONG VARRAW ext ernal datatype. In order to provide a useful exanple
that is portable across different systens, the programinserts
binary files into and retrieves themfromthe database. For
exanpl e, suppose you have a file called "hello" in the current
directory. You can create this file by conmpiling the follow ng
source code

#include <stdio. h>

int main()
{
printf("Hello Wrld!\n")
}
VWhen this programis run, we get
$hello
Hello Wrld

Here is some sanple output froma run of sanpled

$sanpl e4
Connect ed.

5-12

Chapter 5
Datatype Equivalencing

Do you want to create (or re-create) the EXECUTABLES table (y/n)? y
EXECUTABLES tabl e successfully dropped. Now creating new table...
EXECUTABLES tabl e created.

Sample 4 Menu. Wuld you like to:

(I)nsert a new executable into the database
(Ryetrieve an executable fromthe database
(L)ist the executables stored in the database
(D)elete an executable fromthe database
(Quit the program

Enter i, r, I, or q |

Execut abl es Length (bytes)

Total Executables: 0

Sample 4 Menu. Wuld you like to:

(I)nsert a new executable into the database
(Ryetrieve an executable fromthe database
(L)ist the executables stored in the database
(D)el ete an executable fromthe database
(Quit the program

Enter i, r, |, or q: i

Enter the key under which you will insert this executable: hello
Enter the filenane to insert under key 'hello'.

If the file is not in the current directory, enter the full
path: hello

Inserting file "hello" under key '"hello'...

I nserted.

Sample 4 Menu. Wuld you like to:

(I)nsert a new executable into the database
(Ryetrieve an executable fromthe database
(L)ist the executables stored in the database
(D)el ete an executable fromthe database
(Quit the program

Enter i, r, |, or q: |
Execut abl es Length (bytes)
hel | o 5508

Total Executables: 1

Sample 4 Menu. Wuld you like to:

(I)nsert a new executable into the database
(Ryetrieve an executable fromthe database
(L)ist the executables stored in the database
(D)el ete an executable fromthe database
(Quit the program

Enter i, r, |, or q: r

Enter the key for the executable you wish to retrieve: hello

Enter the file to wite the executable stored under key hello into. If you
don't want the file in the current directory, enter the

full path: hl

Retrieving executable stored under key 'hello' to file "hl'...

ORACLE 5-13

ORACLE

Chapter 5
Datatype Equivalencing

Retrieved.

Sample 4 Menu. Wuld you like to:

(I')nsert a new executable into the database
(Ryetrieve an executable fromthe database
(L)ist the executables stored in the database
(D)el ete an executabl e fromthe database
(Quit the program

Enter i, r, I, or q. ¢
& now have the binary file "hl' created, and we can run it:

$hl
Hel 1o Worl d!

***/

#i ncl ude <oci.h>

#include <string. h>
#incl ude <stdio. h>
#include <sql ca. h>
#include <stdlib. h>
#include <sqlcpr. h>

/* Oracle error code for 'table or view does not exist'. */
#define NON_EXI STENT -942
#define NOT_FOUND 1403

/* This is the definition of the |ong varraw structure.
* Note that the first field, len, is a long instead

* of a short. This is becuase the first 4

* bytes contain the length, not the first 2 bytes.

*/
typedef struct |ong_varraw {
ubd len;

text buf[1];
} long_varraw,

/* Type Equival ence long_varraw to LONG VARRAW

* All variables of type long_varraw fromthis point
*oninthe file will have external type 95 (LONG VARRAW
* associated with them

*/

EXEC SQ. TYPE | ong_varraw | S LONG VARRAW REFERENCE;

[* This program s functions declared. */
#if defined(__STDC)

voi d do_connect (void);

void create_tabl e(void);

void sql _error(char *);

voi d |ist_executabl es(void);

voi d print_nenu(void);

void do_insert(varchar *, char *);

void do_retrieve(varchar *, char *);

voi d do_del ete(varchar *);

ub4 read_file(char *, OClBlobLocator *);

void wite_file(char *, OClIBlobLocator *);
#el se

voi d do_connect(/*_ void _*/);

5-14

Chapter 5
Datatype Equivalencing

void create_table(/*_ void _*/);

void sql _error(/*_ char * _*/);

void |ist_executables(/*_void _*/);

void print_menu(/*_ void _*/);

void do_insert(/*_ varchar *, char * _*/);

void do_retrieve(/*_ varchar *, char * _*/);

void do_delete(/*_ varchar * _*/);

ub4 read_file(/*_ char *, OCIBlobLocator * _*/);

void wite file(/*_ char *, OCIBlobLocator * _*/);
#endi f

void main()

{
char reply[20], filenane[100];

varchar key[20];
short ok = 1;

/* Connect to the database. */
do_connect ();

printf("Do you want to create (or re-create) the EXECUTABLES table (y/n)? ");
gets(reply);

if ((reply[0] =="y") [| (reply[0] =="Y"))
create_table();

[* Print the nenu, and read in the user's selection. */
print_nenu();
gets(reply);

whil e (ok)
{
switch(reply[0]) {
case 'I': case 'i'
/* User selected insert - get the key and file nane. */
printf("Enter the key under which you will insert this executable: ");

key.len = strlen(gets((char *)key.arr));
printf("Enter the filename to insert under key '%*s'.\n",
key.len, key.arr);
printf("If the file is not in the current directory, enter the full\n");
printf("path: ");
gets(filenane);
do_insert((varchar *)g&key, filenane);
br eak;
case 'R : case 'r':
I* User selected retrieve - get the key and file name. */
printf("Enter the key for the executable you wish to retrieve: ");
key.len = strlen(gets((char *)key.arr));
printf("Enter the file to wite the executabl e stored under key ");
printf("%*s into. |If you\n", key.len, key.arr);
printf("don't want the file in the current directory, enter the\n");
printf("full path: ");
gets(filenane);
do_retrieve((varchar *)&key, filenanme);
br eak;
case 'L': case 'l'
/* User selected list - just call the list routine. */
l'ist_executables();
br eak;
case 'D: case 'd":
I* User selected delete - get the key for the executable to delete. */

ORACLE 5-15

ORACLE

printf("Enter the key for the executable you wish to delete:

key.len = strlen(gets((char *)key.arr));
do_del ete((varchar *)é&key);
br eak;

case 'Q: case 'q':

/* User selected quit - just end the loop. */

ok = 0;
break;

defaul t:
/* Invalid selection. */
printf("Invalid selection.\n");
break;

}

if (ok)
{

[* Print the nenu again. */
print_nenu();
gets(reply);

}

EXEC SQL COMM T WORK RELEASE;
}

/* Connect to the database. */
voi d do_connect ()

{

/* Note this declaration: uid is a char * pointer, so Oracle
will do astrlen() onit at runtime to deternmine the |ength.

*|
char *uid = "scott/tiger";

EXEC SQL WHENEVER SQLERRCR DO sql _error("do_connect (): CONNECT");

EXEC SQL CONNECT : ui d;

printf("Connected.\n");

/* Creates the executables table. */
voi d create_tabl e()

{

EXEC SQL WHENEVER SQLERRCR CONTI NUE;

/* W are going to check for errors ourselves for this statenent. */

EXEC SQ. DROP TABLE EXECUTABLES;
if (sqlca. sqlcode == 0)

{

printf("EXECUTABLES tabl e successfully dropped.

printf("Now creating new table...\n");

else if (sqlca.sqglcode == NON_EXI STENT)
{
printf("EXECUTABLES tabl e does not exist.
printf("Now creating new table...\n");
}
el se
sql _error("create_table()");

"),

")

Chapter 5

Datatype Equivalencing

")

5-16

Chapter 5
Datatype Equivalencing

/* Reset error handler. */
EXEC SQL WHENEVER SQLERROR DO sql _error("create_tabl e(): CREATE TABLE");

EXEC SQ. CREATE TABLE EXECUTABLES
(name VARCHAR2(30), |ength NUMBER(10), binary BLOB) ;

printf("EXECUTABLES table created.\n");
}

/* QOpens the binary file identified by 'filename' for reading, and wites
it intointo a Binary LOB. Returns the actual length of the file read.
*/
ub4 read_file(filenane, blob)
char *filename;
OCl Bl obLocat or *bl ob;

{
| ong_varraw *| vr;
ub4 buf si ze;
ub4 ant;
ub4 filelen, remainder, nbytes;
ub4 offset = 1;
bool ean |ast = FALSE;
FILE *in_fd;

[* Open the file for reading. */
in_fd = fopen(filename, "r");
if (in_fd == (FILE *)0)

return (ub4)o;

/* Determine Total File Length - Total Amount to Wite to BLOB */
(void) fseek(in_fd, OL, SEEK END);
am = filelen = (ub4)ftell(in_fd);

/* Determine the Buffer Size and Allocate the LONG VARRAW Qbj ect */
buf si ze = 2048;
lvr = (long_varraw *)mal | oc(si zeof (ub4) + bufsize);

nbytes = (filelen > bufsize) ? bufsize : filelen;

/* Reset the File Pointer and Performthe Initial Read */

(void) fseek(in_fd, OL, SEEK SET);

[vr->len = fread((void *)lvr->buf, (size_t)1, (size_t)nbytes, in_fd);
remai nder = filelen - nbytes;

EXEC SQL WHENEVER SQLERRCR DO sql _error("read_file(): WRITE");

if (remainder == 0)
{
/* Wite the BLOBin a Single Piece */
EXEC SQL LOB WRI TE ONE : ant
FROM : 1 vr WTH LENGTH : nbytes | NTO : bl ob AT :offset;

el se
{
/* Wite the BLOBin Miltiple Pieces using Standard Polling */
EXEC SQ. LOB WRI TE FIRST : ant
FROM :1vr WTH LENGTH : nbytes | NTO : bl ob AT :offset;
do {

if (remminder > bufsize)

ORACLE 5-17

ORACLE

/

Chapter 5
Datatype Equivalencing

nbytes = bufsi ze;

el se
{
nbytes = renmai nder;
| ast = TRUE;
1

if ((lvr->en = fread(
(void *)Ivr->buf, (size_t)1, (size_t)nbytes, in_fd)) != nbytes)
last = TRUE;

if (last)
{
/* Wite the Final Piece */
EXEC SQL LOB WRI TE LAST : ant
FROM : 1vr WTH LENGTH : nbytes | NTO : bl ob;

el se
{
/* Wite an InterimPiece - Still Mre to Wite */
EXEC SQL LOB WRI TE NEXT : ant
FROM : 1vr WTH LENGTH : nbytes | NTO : bl ob;

1
renai nder -= nbytes;

} while (!last && !feof(in_fd));
}

/* Close the file, and return the total file size. */
fclose(in_fd);

free(lvr);

return filelen;

* Generic error handler. The 'routine' paraneter should contain the name
of the routine executing when the error occured. This would be specified
in the ' EXEC SQL WHENEVER SQLERROR DO sql _error()' statement.

*/

voi d sql _error(routine)

{

char *routine;

char nessage_buffer[512];
size_t buffer_size;
size_t message_| ength;

/* Turn off the call to sql _error() to avoid a possible infinite |oop */
EXEC SQ. WHENEVER SQLERROR CONTI NUE;

printf("\nOracle error while executing 9%!\n", routine);

/* Use sqglglm) to get the full text of the error message. */
buf fer_size = sizeof (message_buffer);

sql gl m message_buffer, &buffer_size, &message_| ength);
printf("%*s\n", nmessage_| ength, nessage_buffer);

EXEC SQL ROLLBACK WORK RELEASE:
exit(1);

5-18

Chapter 5
Datatype Equivalencing

/* Opens the binary file identified by 'filename' for witing, and copies
the contents of the Binary LOBinto it.

*/

void wite_file(filename, blob)
char *filename;
OCl Bl obLocat or *bl ob;

{
FILE *out _fd, /* File descriptor for the output file */
ub4 ant;
ub4 buf si ze;

| ong_varraw *| vr;

/* Determine the Buffer Size and Allocate the LONG VARRAW Qbj ect */
buf si ze = 2048;
[vr = (long_varraw *)mal | oc(si zeof (ub4) + bufsize);

/* Open the output file for Witing */
out_fd = fopen(filename, "w');

if (out_fd == (FILE *)0)

return;
ant = 0; /* Initialize for Standard Pol ling (Possibly) */
[vr->len = bufsize; /* Set the Buffer Length */

EXEC SQL WHENEVER SQLERROR DO sql _error("wite_file(): READ");

/* READ the BLOB using a Standard Polling Loop */
EXEC SQL WHENEVER NOT FOUND DO br eak;
whi l e (TRUE)
{
EXEC SQL LOB READ :anmt FROM:blob INTO :lvr WTH LENGTH : buf si ze;
(void) fwite((void *)lvr->buf, (size_t)1, (size_t)lvr->len, out_fd);

}

EXEC SQL WHENEVER NOT FOUND CONTI NUE;

/* Wite the Final Piece (or First and Only Piece if not Polling) */
(void) fwite((void *)lvr->buf, (size_t)lvr->len, (size_t)1, out_fd);

/* Close the Qutput File and Return */
fclose(out _fd);

free(lvr);

return;

/* Inserts the binary file identified by file into the
* executables table identified by key.
*/
voi d do_insert(key, file)
varchar *key;
char *file;
{
OCl Bl obLocat or *bl ob;
ub4 | oblen, fillen;

EXEC SQL ALLOCATE : bl ob;

EXEC SQL WHENEVER SQLERROR DO sql _error("do_insert(): | NSERT/ SELECT");

ORACLE 5-19

ORACLE

Chapter 5
Datatype Equivalencing

EXEC SQL SAVEPO NT PREI NSERT;
EXEC SQL | NSERT
I NTO execut abl es (nane, length, binary) VALUES (:key, 0, enpty_blob());

EXEC SQL SELECT binary INTO : bl ob
FROM execut abl es WHERE nane = :key FOR UPDATE;

printf(
"Inserting file "9%' under key '%*s'...\n", file, key->len, key->arr);

fillen = read_file(file, blob);
EXEC SQL LOB DESCRIBE : bl ob GET LENGTH I NTO : | obl en;

if ((fillen ==20) || (fillen !=loblen))
{
printf("Problemreading file "9%'\n", file);
EXEC SQL ROLLBACK TO SAVEPO NT PREI NSERT;
EXEC SQL FREE : bl ob;
return,

}

EXEC SQL WHENEVER SQLERROR DO sql _error("do_insert(): UPDATE");
EXEC SQL UPDATE execut abl es
SET length = :loblen, binary = :blob WHERE name = :key;

EXEC SQL COWM T WORK;
EXEC SQL FREE : bl ob;

EXEC SQL COM T;
printf("Inserted.\n");

/* Retrieves the executable identified by key into file */
void do_retrieve(key, file)

{

varchar *key;
char *file;

COCl Bl obLocat or *bl ob;

printf("Retrieving executable stored under key '%*s' to file "9%'...\n",
key->l en, key->arr, file);

EXEC SQL ALLOCATE : bl ob;

EXEC SQL WHENEVER NOT FCUND conti nue;
EXEC SQL SELECT binary INTO : bl ob FROM execut abl es WVHERE nane = : key;

if (sqlca.sqlcode == NOT_FOUND)

printf("Key '%*s' not found'\n", key->len, key->arr);
el se

wite_file(file, blob);

printf("Retrieved.\n");
}

EXEC SQL FREE : bl ob;

5-20

ORACLE

Chapter 5
Datatype Equivalencing

/* Delete an executable fromthe database */

voi d do_del et e(key)
varchar *key;

{
EXEC SQL WHENEVER SQLERROR DO sql _error("do_del ete(): DELETE");
EXEC SQL DELETE FROM execut abl es WHERE nane = : key;

if (sqlca.sqlcode == NOT_FOUND)

printf("Key '%*s' not found'\n", key->len, key->arr);
el se

printf("Deleted.\n");

/* List all executables currently stored in the database */
voi d |ist_executables()

{
char key[21];
ub4 length;
EXEC SQL WHENEVER SQLERROR DO sql _error("list_executabl es");

EXEC SQL DECLARE key_cursor CURSOR FOR
SELECT name, |ength FROM execut abl es;

EXEC SQL OPEN key_cursor;

printf("\nExecutabl es Length (bytes)\n");
Primtf (" \n");
EXEC SQL WHENEVER NOT FOUND DO br eak;
while (1)
{
EXEC SQ. FETCH key_cursor INTO :key, :length;
printf("% 9%40d\n", key, length);
1

EXEC SQL WHENEVER NOT FOUND CONTI NUE;
EXEC SQL CLOSE key_cursor;

printf("\nTotal Executables: %l\n", sqlca.sqlerrd[2]);

/* Prints the menu selections. */
voi d print_nenu()

{
printf("\nSanple 4 Menu. Would you like to:\n");
printf("(l)nsert a new executable into the database\n");
printf("(Ryetrieve an executable fromthe database\n");
printf("(L)ist the executables stored in the database\n");
printf("(D)elete an executable fromthe database\n");
printf("(Quit the programn\n");

(ll

printf("Enter i, r, I, or q. ");

}

Related Topics
+ LOBs

5-21

Chapter 5
The C Preprocessor

5.4 The C Preprocessor

Pro*C/C++ supports most C preprocessor directives. Some of the things that you can
do using the Pro*C/C++ preprocessor are:

« Define constants and macros using the #define directive, and use the defined
entities to parameterize Pro*C/C++ datatype declarations, such as VARCHAR

» Read files required by the precompiler, such as sql ca. h, using the #include
directive

» Define constants and macros in a separate file, and have the precompiler read this
file using the #include directive

5.4.1 How the Pro*C/C++ Preprocessor Works

The Pro*C/C++ preprocessor recognizes most C preprocessor commands, and
effectively performs the required macro substitutions, file inclusions, and conditional
source text inclusions or exclusions. The Pro*C/C++ preprocessor uses the values
obtained from preprocessing, and alters the source output text (the generated . ¢
output file).

An example should clarify this point. Consider the following program fragment:

#include "ny_header. h"

VARCHAR name[VC_LEN ; /* a Pro*C-supplied datatype */
char anot her _nane[VC_LEN]; /* a pure C datatype */

Suppose the file ny_header. h in the current directory contains, among other things, the
line

#define VC_LEN 20

The precompiler reads the file ny_header. h, and uses the defined value of VC_LEN
(20), declares the structure of name as VARCHAR[20].

char is a native type. The precompiler does not substitute 20 in the declaration of
another_name[VC_LEN].

This does not matter, since the precompiler does not need to process declarations of
C datatypes, even when they are used as host variables. It is left up to the C
compiler's preprocessor to actually include the file my_header . h, and perform the
substitution of 20 for VC_LEN in the declaration of another_name.

5.4.2 Preprocessor Directives

ORACLE

The preprocessor directives that Pro*C/C++ supports are:
» #define, to create macros for use by the precompiler and the C or C++ compiler
» #include, to read other source files for use by the precompiler

» #if, to precompile and compile source text based on evaluation of a constant
expression to 0

5-22

Chapter 5
The C Preprocessor

» #ifdef, to precompile and compile source text conditionally, depending on the
existence of a defined constant

» #ifndef, to exclude source text conditionally
* #endif, to end an #if or #ifdef or #ifndef command

* #else, to select an alternative body of source text to be precompiled and compiled,
in case an #if or #ifdef or #ifndef condition is not satisfied

» #elif, to select an alternative body of source text to be precompiled and compiled,
depending on the value of a constant or a macro argument

5.4.2.1 Directives Ignored

Some C preprocessor directives are not used by the Pro*C/C++ preprocessor. Most of
these directives are not relevant for the precompiler. For example, #pragma is a
directive for the C compiler—the precompiler does not process it. The C preprocessor
directives not processed by the precompiler are:

e #, to convert a preprocessor macro parameter to a string constant

* ##, to merge two preprocessor tokens in a macro definition

e #error, to produce a compile-time error message

° #pragma, to pass implementation-dependent information to the C compiler
* #line, to supply a line number for C compiler messages

While your C compiler preprocessor may support these directives, Pro*C/C++ does
not use them. Most of these directives are not used by the precompiler. You can use
these directives in your Pro*C/C++ program if your compiler supports them, but only in
C or C++ code, not in embedded SQL statements or declarations of variables using
datatypes supplied by the precompiler, such as VARCHAR.

5.4.3 ORA_PROC Macro

ORACLE

Pro*C/C++ predefines a C preprocessor macro called ORA_PROC that you can use to
avoid having the precompiler process unnecessary or irrelevant sections of code.
Some applications include large header files, which provide information that is
unnecessary when precompiling. By conditionally excluding such header files based
on the ORA_PROC macro, the precompiler never reads the file.

The following example uses the ORA_PROC macro to exclude the irrel evant. h file:

#ifndef ORA PRCC
#include <irrelevant. h>
#endi f

Because ORA_PROC is defined during precompilation, the i rrel evant. h file is never
included.

The ORA_PROC macro is available only for C preprocessor directives, such as #ifdef
or #ifndef. The EXEC ORACLE conditional statements do not share the same
namespaces as the C preprocessor macros. Therefore, the condition in the following
example does not use the predefined ORA_PROC macro:

EXEC ORACLE | FNDEF ORA_PRCC
<section of code to be ignored>
EXEC ORACLE ENDIF;

5-23

Chapter 5
The C Preprocessor

ORA_PROC, in this case, must be set using either the DEFINE option or an EXEC
ORACLE DEFINE statement for this conditional code fragment to work properly.

5.4.4 Location of Header File Specification

The Pro*C/C++ Precompiler for each system assumes a standard location for header
files to be read by the preprocessor, such as sql ca. h, oraca. h, and sql da. h. For
example, on most UNIX systems, the standard location is $ORACLE_HOVE/ pr econp/

publ i c. For the default location on your system, see your system-specific Oracle
documentation. If header files that you need to include are not in the default location,
you must use the INCLUDE= option, on the command line or as an EXEC ORACLE
option.

To specify the location of system header files, such as stdi o. h oriostream h, where
the location might be different from that hard-coded into Pro*C/C++ use the
SYS_INCLUDE precompiler option.

Related Topics

e Precompiler Options

5.4.5 Some Preprocessor Examples

ORACLE

You can use the #define command to create named constants, and use them in place
of "magic numbers" in your source code. You can use #defined constants for
declarations that the precompiler requires, such as VARCHAR[const]. For example,
instead of code with bugs, such as:

VARCHAR enp_nane[10] ;
VARCHAR dept _| oc[14] ;

);.mjch |ater in the code ... */
f42()

[* did you renember the correct size? */
VARCHAR new_dept _| oc[10];

}

you can code:

#define ENAME_LEN 10
#define LOCATION_LEN 14
VARCHAR new_enp_name[ENAVE_LEN] ;

/* nuch later in the code ... */
f42()

VARCHAR new_dept _| oc[LOCATI ON_LEN| ;
}

You can use preprocessor macros with arguments for objects that the precompiler
must process, just as you can for C objects. For example:

#define ENAME_LEN 10
#define LOCATI ON_LEN 14

5-24

Chapter 5
The C Preprocessor

#define MX(AB) ((A) > (B) 2 (A : (B))

f43()
{
/* need to declare a tenporary variable to hold either an
enpl oyee nane or a departnent |ocation */
VARCHAR nane_| oc_t enp[MAX(ENAME_LEN, LOCATI ON_LEN)];

}

You can use the #include, #ifdef and #endif preprocessor directives to conditionally
include a file that the precompiler requires. For example:

#i f def ORACLE_MODE
#include <sql ca. h>
#el se

| ong SQLCODE,
#endi f

5.4.5.1 About Using #define

There are restrictions on the use of the #define preprocessor directive in Pro*C/C++
You cannot use the #define directive to create symbolic constants for use in
executable SQL statements. The following invalid example demonstrates this:

#define RESEARCH DEPT 40
EXEC SQ. SELECT enpno, sal
INTO : enp_nunber, :salary /* host arrays */

FROM enp
WHERE deptno = RESEARCH DEPT; /* |NVALIDH */

The only declarative SQL statements where you can legally use a #defined macro are
TYPE and VAR statements. So, for example, the following uses of a macro are legal in
Pro*C/C++

#define STR_LEN 40
typedef char asciiz[STR LEN];
EXEC SQL TYPE asciiz IS STRING STR_LEN) REFERENCE;

EXEC SQL VAR password |S STRI NG STR_LEN);

5.4.5.2 Other Preprocessor Restrictions

ORACLE

The preprocessor ignores directives # and ## to create tokens that the precompiler
must recognize. You can use these commands (if your compiler supports them) in
pure C code that the precompiler does not have to process. Using the preprocessor
command ## is not valid in this example:

#define MAKE_COL_NAME(A) col ## A

EXEC SQL SELECT MAKE COL_NAME(1), MAKE COL_NAME(2)
INTO :x, @y
FROM t abl el;

The example is incorrect because the precompiler ignores ##.

5-25

Chapter 5
The C Preprocessor

5.4.6 SQL Statements Not Allowed in #include

5.4.7 Includ

#ifn
#def

ORACLE

Because of the way the Pro*C/C++ preprocessor handles the #include directive, as
described in the previous section, you cannot use the #include directive to include
files that contain embedded SQL statements. You use #include to include files that
contain purely declarative statements and directives; for example, #defines, and
declarations of variables and structures required by the precompiler, such as in

sqgl ca. h.

e the SQLCA, ORACA, and SQLDA

You can include the sql ca. h, oraca. h, and sql da. h declaration header files in your
Pro*C/C++ program using either the C/C++ preprocessor #include command, or the
precompiler EXEC SQL INCLUDE command. For example, you use the following
statement to include the SQL Communications Area structure (SQLCA) in your
program with the EXEC SQL option:

EXEC SQ | NCLUDE sqgl ca;

To include the SQLCA using the C/C++ preprocessor directive, add the following code:

#include <sql ca. h>

When you use the preprocessor #include directive, you must specify the file extension
(such as . h).

Note:

If you need to include the SQLCA in multiple places, using the #include
directive, you should precede the #include with the directive #undef SQLCA.
This is because sgl ca. h starts with the lines

ef SQLCA
ifne SQLCA 1

and then declares the SQLCA struct only in the case that SQLCA is not
defined.

When you precompile a file that contains a #include directive or an EXEC SQL
INCLUDE statement, you have to tell the precompiler the location of all files to be
included. You can use the INCLUDE= option, either in the command line, or in the
system configuration file, or in the user configuration file.

The default location for standard preprocessor header files, such as sql ca. h, oraca. h,
and sql da. h, is preset in the precompiler. The location varies from system to system.
See your system-specific Oracle documentation for the default location on your
system.

When you compile the . ¢ output file that Pro*C/C++ generates, you must use the
option provided by your compiler and operating system to identify the location of
included files.

5-26

Chapter 5
The C Preprocessor

For example, on most UNIX systems, you can compile the generated C source file
using the command

cc -0 progname -1 $ORACLE_HOVE/ sql lib/public ... filenane.c ...

On VAX/OPENVMS systems, you pre-pend the include directory path to the value in
the logical VAXCS$INCLUDE.

Related Topics
¢ Handling Runtime Errors

e Precompiler Options

5.4.8 EXEC SQL INCLUDE and #include Summary

When you use an EXEC SQL INCLUDE statement in your program, the precompiler
includes the source text in the output (. ¢) file. Therefore, you can have declarative and
executable embedded SQL statements in a file that is included using EXEC SQL
INCLUDE.

When you include a file using #include, the precompiler merely reads the file, and
keeps track of #defined macros.

Note:

VARCHAR declarations and SQL statements are not allowed in included
(#i ncl ude) files. For this reason, you cannot use SQL statements in files
included using the Pro*C/C++ preprocessor #i ncl ude directive.

5.4.9 Defined Macros

If you define macros on the C compiler's command line, you might also have to define
these macros on the precompiler command line, depending on the requirements of
your application. For example, if you compile with a UNIX command line such as

cc -DDEBUG ...

you should precompile using the DEFINE= option, namely

proc DEFI NE=DEBUG . ..

5.4.10 Include Files

ORACLE

The location of all included files that need to be precompiled must be specified on the
command line, or in a configuration file.

For example, if you are developing under UNIX, and your application includes files in
the directory / hone/ proj ect 42/ i ncl ude, you must specify this directory both on the
Pro*C/C++ command line and on the cc command line. You use commands like these:

proc i name=ny_app. pc i ncl ude=/ hone/ proj ect 42/include ...
cc -1/ home/ project42/include ... nmy_app.c

5-27

Chapter 5
Precompiled Header Files

or you include the appropriate macros in a makefile. For complete information about
compiling and linking your Pro*C/C++ application, see your system-specific Oracle
documentation.

Related Topics
e INCLUDE

5.5 Precompiled Header Files

Precompiled header files save time and resources by precompiling header files that
contain many #i ncl ude statements. The two steps in using this feature are:

* The precompiled header file is created first,

* The precompiled header is then automatically used in subsequent precompilation
of your application.

Use this capability with large applications that have many modules.
The precompiler option, HEADER=hdr, specifies

* That precompiled headers are to be used,

* That the file extension for the output file to be generated is hdr.

This option can only be entered in a configuration file or on the command line. There is
no default value for HEADER, but the input header must have a . h extension.

5.5.1 Precompiled Header File Creation

ORACLE

Assume that you have a header file called t op. h. Then you can precompile it,
specifying that HEADER=hdr :

proc HEADER=hdr | NAME=t op. h

Note:

You must provide the ".h' extension. You cannot use an absolute path element

or relative path elements such as '/, "..", and so on., in the INAME value.

Pro*C/C++ precompiles the given input file, t op. h, and generates a new precompiled
header file, t op. hdr, in the same directory. The output file, t op. hdr, can be moved to a
directory that the #i ncl ude statement will cause to be searched.

Note:

Do not use the ONAME option to name the output file; it is ignored when used
with HEADER.

5-28

Chapter 5
Precompiled Header Files

5.5.2 Use of the Precompiled Header Files

Use the same value of the HEADER option with an application file that is to be
precompiled. If simple.pc contains:

#include <top. h>

and top.h contains:

#incl ude <a. h>
#i ncl ude <b. h>
#incl ude <c. h>

then precompile this way:

proc HEADER=hdr | NAME=si npl e. pc

When Pro*C/C++ reads the #i ncl ude t op. h statement, it will search for a
corresponding 'top.hdr' file and instantiate the data from that file instead of
precompiling 'top.h' again.

Note:

A precompiled header file will always be used instead of its input header file
even if the input (. h) file appears first in the standard search hierarchy of the
include directories.

5.5.3 Examples

This section includes examples demonstrating several different cases.

5.5.3.1 Redundant File Inclusion

The following two cases illustrate two possibilities for redundant file inclusion.

5.5.3.1.1 Case 1: Top-Level Header File Inclusion

ORACLE

A precompiled header file will only be instantiated once regardless of how many times
the file is included using a #include directive.

Suppose we precompile a top-level header file, top.h, with the value of HEADER set to
'hdr' as before. Next, we code multiple #include directives for that header file in a
program:

#include <top. h>
#include <top. h>

mai n() {}

When the first #include for top.h is encountered, the precompiled header file, top.hdr,
will be instantiated. The second inclusion of that same header file will be redundant
and thus, will be ignored.

5-29

Chapter 5
Precompiled Header Files

5.5.3.1.2 Case 2: Nested Header File Inclusion

Suppose the file a.h contains the following statement:

#incl ude <b. h>

and that we precompile that header file specifying HEADER as before. Pro*C/C++ will
precompile both a.h and b.h generating a.hdr as a result.

Now suppose we precompile this Pro*C/C++ program:

#incl ude <a. h>
#incl ude <b. h>

mai n() {}

When the #include for a.h is encountered, the a.hdr precompiled header file will be
instantiated instead of precompiling a.h again. This instantiation will also contain the
entire contents of b.h.

Now, because b.h was included in the precompilation of a.h, and a.hdr was
instantiated, the subsequent #include of b.h in our program is redundant and thus, will
be ignored.

5.5.3.2 Multiple Precompiled Header Files

ORACLE

Pro*C/C++ is capable of instantiating more than one different precompiled header file
in a single precompilation. However, one pitfall to avoid occurs when two or more
precompiled header files share common header files.

For example, suppose topA.h contains the following lines:

#i ncl ude <a. h>
#incl ude <c. h>

and that topB.h contains the following lines:

#i ncl ude <b. h>
#incl ude <c. h>

Notice how topA.h and topB.h both include the same common header file, c.h.
Precompiling topA.h and topB.h with the same HEADER value will yield topA.hdr and
topB.hdr. Both, however, will contain the entire contents of c.h.

Now suppose we have a Pro*C/C++ program:

#incl ude <topA h>
#incl ude <topB. h>

mai n() {}

Both precompiled header files, topA.hdr and topB.hdr will be instantiated as before.
However, because each shares the common header file, c.h, the contents of that file
will be instantiated twice.

Pro*C/C++ cannot determine when such commonality is occurring among precompiled
header files. Try to have each precompiled header file contain a unique set of included
headers. Sharing headers should be avoided as much as possible because it will
ultimately slow down precompilation and utilize more memory, thus undermining the
basic intent of using precompiled header files.

5-30

Chapter 5
Precompiled Header Files

5.5.4 List of Header Files

Table 5-3 Header Files

The ORACLE_BASE\ ORACLE_HOVE\ pr econp\ publ i ¢ directory contains the Pro*C/C++ header
files. Table 5-3 lists and describes the header files.

Header Files Description

oraca. h Contains the Oracle Communications Area (ORACA), which helps you to diagnose
runtime errors and to monitor your program's use of various Oracle Database 10g
resources.

sql 2oci . h Contains SQLLIB functions that enable the Oracle Call Interface (OCI) environment
handle and OCI service context to be obtained in a Pro*C/C++ application.

sqlapr.h Contains ANSI prototypes for externalized functions that can be used in conjunction
with OCI.

sglca.h Contains the SQL Communications Area (SQLCA), which helps you to diagnose
runtime errors. The SQLCA is updated after every executable SQL statement.

sqlcpr.h Contains platform-specific ANSI prototypes for SQLLIB functions that are generated
by Pro*C/C++. By default, Pro*C/C++ does not support full-function prototyping of
SQL programming calls. If you need this feature, include sql cpr. h before any EXEC
SQL statements in your application source file.

oraca.h Contains the Oracle Communications Area (ORACA), which helps you to diagnose
runtime errors and to monitor your program's use of various Oracle Database 10g
resources.

sqgl 2oci . h Contains SQLLIB functions that enable the Oracle Call Interface (OCI) environment
handle and OCI service context to be obtained in a Pro*C/C++ application.

sqlapr.h Contains ANSI prototypes for externalized functions that can be used in conjunction

with OCI.

5.5.5 Effects of Options

The following precompiler options are used with the precompilation of the application.

5.5.5.1 DEFINE and INCLUDE Options

During any precompilation using precompiled headers, you must use the same values
for DEFINE and INCLUDE as when you created the precompiled header files. If the
values of DEFINE or INCLUDE change, you must re-create the precompiled header

If development environments change, you must also re-create the precompiled header

5.5.5.1.1 Single User Scenario

ORACLE

Consider a single user. If the values of either the DEFINE or the INCLUDE options
were to change, then the contents of the precompiled header files may no longer be
suitable for use in subsequent Pro*C/C++ precompilations.

5-31

Chapter 5
Precompiled Header Files

Because the values of the DEFINE and INCLUDE; DEFINE or INCLUDE options have
changed, the contents of the precompiled header file may no longer be consistent with
what a standard precompilation would result in had the corresponding .h file in the
#include directive been processed normally.

In short, if the values of the DEFINE and INCLUDE; DEFINE or INCLUDE options
change, any precompiled header files must be re-created and Pro*C/C++ programs
which use them re-precompiled.

Related Topics
 DEFINE
« INCLUDE

5.5.5.1.2 Multiple User Scenario

Consider two users, A and B, who develop in totally separate environments, thus
having completely different values for their DEFINE and INCLUDE options.

User A precompiles a common header file, common.h, creating a precompiled header
file common.hdrA. User B also precompiles the same header file creating
common.hdrB. However, given that the two environments are different, specifically
with respect to the values of the DEFINE and INCLUDE options used by both users, it
is not guaranteed that both user A's and B's versions of common.hdr will be the same.

To summarize

A> proc HEADER=hdr A DEFI NE=<A macr0s> | NCLUDE=<A dirs> common. h
B> proc HEADER=hdr B DEFI NE=<B macros> | NCLUDE=<B dirs> comuon. h

The generated precompiled header files common.hdrA may not equal common.hdrB
because of the different environments in which they where created. This means that
neither user A nor user B would be guaranteed that using the common.hdr created by
the other user would result in correct precompilation of the Pro*C/C++ programs in
their respective development environments.

Therefore, care should be taken when sharing or exchanging precompiled header files
between different users and different users' development environments.

5.5.5.2 CODE and PARSE Options

Pro*C/C++ does not search for C++ header files with extensions such as hpp or h++.
So do not use CODE=CPP when precompiling header files. You may use the CPP
value when precompiling the application, as long as the source code only includes . h
header files.

You can only use the values FULL or PARTIAL for the option PARSE when creating
the precompiled header files, or when precompiling the modules. The value FULL is
considered to be of higher value than PARTIAL. The value of PARSE used should be
the same or lower when precompiling modules as when you created the precompiled
header files.

ORACLE 5-32

ORACLE

Chapter 5
Precompiled Header Files

Note:

Precompiling the precompiled header file with PARSE=FULL and then
precompiling modules with PARSE=PARTIAL requires that the host variables
be declared inside a Declare Section. C++ code will only be understood when
PARSE=PARTIAL.

Suppose we precompile a header file with PARSE set to PARTIAL as follows:

proc HEADER=hdr PARSE=PARTIAL file.h

and then try to precompile a program that includes that header file using PARSE set to
FULL:

proc HEADER=hdr PARSE=FULL program pc

Because file.h was precompiled using a PARTIAL setting for the PARSE option, not all
of the header file would have been processed. It would therefore be possible for an
error to occur during the precompilation of the Pro*C/C++ program if a reference was
made to something in the unprocessed portion.

To illustrate, suppose that file.h contained the following code:

#define LENGTH 10
typedef int nyint;

and that our program.pc contained the following short program:

#include <file. h>
mai n()
{
VARCHAR ename[LENGTH| ;

myint enpno = ...;
EXEC SQ. SELECT enane | NTO :ename WHERE JOB = : enpno;

}

Because PARSE was set to PARTIAL when precompiling file.h, only the LENGTH
macro would have been processed leaving the typedef unseen.

The VARCHAR declaration and subsequent use as a host variable would succeed.
However, the use of the empno host variable would not because the nyi nt type
declaration would never have been processed by Pro*C/C++.

Precompiling the header file with the PARSE option set to FULL and then precompiling
the program with PARSE set to PARTIAL would work. However, the host variables
would have to be declared inside an explicit DECLARE SECTION.

Related Topics

e About Parsing Code
« CODE

* PARSE

5-33

Chapter 5
The Oracle Preprocessor

5.5.6 Usage Notes

The file format of the generated output file of a precompiled header is not guaranteed
to remain fixed from one release to the next. Pro*C/C++ has no way of determining
which version of the precompiler was used to generate the precompiled header file
output.

Because of this, it is strongly recommended that, in order to avoid the possibility of
errors or other strange behavior during a precompilation that uses precompiled header
files, those files be regenerated by re-precompiling the corresponding header files
when upgrading to newer releases of Pro*C/C++.

The generated output from the precompilation of a header file is completely non-
portable. This means that you cannot transfer the output file from the precompilation of
a header file from one platform to another and use that file during the subsequent
precompilation of another header file or Pro*C/C++ program.

5.6 The Oracle Preprocessor

Conditional sections of code are marked by EXEC ORACLE directives that define the
environment and actions to take. You can code C statements as well as embedded
SQL statements and directives in these sections. The following EXEC ORACLE
directives let you exercise conditional control over precompilation:

EXEC ORACLE DEFI NE synbol ; -- define a synbol

EXEC ORACLE | FDEF synbol ; -- if synbol is defined
EXEC ORACLE | FNDEF synbol ; -- if synbol is not defined
EXEC ORACLE ELSE; -- otherw se

EXEC ORACLE ENDI F; -- end this block

All EXEC ORACLE statements must be terminated with a semi-colon.

5.6.1 Symbol Definition

ORACLE

You can define a symbol in two ways. Either include the statement:

EXEC ORACLE DEFI NE synbol ;

in your host program or define the symbol on the command line using the syntax

. I NAME=fi | ename ... DEFI NE=synbol

where symbol is not case-sensitive.

Note:

The #def i ne preprocessor directive is not the same as the EXEC ORACLE
DEFINE command.

Some port-specific symbols are predefined for you when the Pro*C/C++ precompiler is
installed on your system.

5-34

Chapter 5
Evaluation of Numeric Constants

5.6.2 An Oracle Preprocessor Example

In the following example, the SELECT statement is precompiled only when the symbol
site2 is defined:

EXEC ORACLE | FDEF site2;
EXEC SQL SELECT DNAME
I NTO : dept _name
FROM DEPT
VHERE DEPTNO = : dept _nunber;
EXEC ORACLE ENDI F;

Blocks of conditions can be nested as shown in the following example:

EXEC ORACLE | FDEF outer;
EXEC ORACLE | FDEF i nner;

EXEC ORACLE ENDI F;
EXEC ORACLE ENDI F;

You can "Comment out" C or embedded SQL code by placing it between IFDEF and
ENDIF and not defining the symbol.

5.7 Evaluation of Numeric Constants

Previously, Pro*C/C++ allowed only numeric literals and simple constant expressions
involving numeric literals to be used when declaring the sizes of host variables (such
as char or VARCHAR), as in the following examples:

#define LENGTH 10
VARCHAR V[LENGTH] ;
char c[LENGTH + 1];

You can now also use numeric constant declarations such as:

const int length = 10;
VARCHAR v[| ength] ;
char c[length + 1];

This is highly desirable, especially for programmers who use ANSI or C++ compilers
that support such constant declarations.

Pro*C/C++ has always determined the values of constant expressions that can be
evaluated, but it has never allowed the use of a numeric constant declaration in any
constant expression.

Pro*C/C++ supports the use of numeric constant declarations anywhere that an
ordinary numeric literal or macro is used, given the macro expands to some numeric
literal.

This is used primarily for declaring the sizes of arrays for bind variables to be used in a
SQL statement.

5.7.1 Numeric Constants in Pro*C/C++

In Pro*C/C++, normal C scoping rules are used to find and locate the declaration of a
numeric constant declaration.

ORACLE 5-35

Chapter 5
SQLLIB Extensions for OCI Release 8 Interoperability

const int g = 30; /* dobal declaration to both function_1()
and function_2() */
voi d function_1()
{
const int a =10; /* Local declaration only to function_1() */
char x[a];
exec sql select ename into :x fromenp where job = ' PRESI DENT';

}

voi d function_2()

{
const int a =20; /* Local declaration only to function_2() */
VARCHAR v[a];
exec sql select ename into :v fromenp where job = ' PRESI DENT';

}
void main()

char n{g]; [* The global ¢ */
exec sql select ename into :mfromenp where job = ' PRESI DENT';

}

5.7.2 Numeric Constant Rules and Examples

Variables which are of specific static types need to be defined with static and
initialized. The following rules must be kept in mind when declaring numeric constants
in Pro*C/C++:

e The const qualifier must be used when declaring the constant

e Aninitializer must be used to initialize the value of the constant. This initializer
must be precompile-time evaluable.

Any attempt to use an identifier that does not resolve to a constant declaration with a
valid initializer is considered an error.

The following shows examples of what is not permitted and why:

int a

int b =10;
volatile c;
volatile d = 10;
const e;

const f = b;

VARCHAR vi[a]; /* No const qualifier, mssing initializer */

VARCHAR v2[b]; /* No const qualifier */
VARCHAR v3[c]; /* Not a constant, missing initializer */
VARCHAR v4[d]; /* Not a constant */
VARCHAR v5[e] ; [* Mssing initializer */

VARCHAR v6[f]; /* Bad initializer.. b is not a constant */

5.8 SQLLIB Extensions for OCI Release 8 Interoperability

ORACLE

An OCI environment handle will be tied to the Pro*C/C++ runtime context, which is of
the sql_context type. That is, one Pro*C/C++ runtime context maintained by SQLLIB
during application execution will be associated with at most one OCI environment
handle. Multiple database connections are allowed for each Pro*C/C++ runtime

5-36

Chapter 5
Interface to OCI Release 8

context, which will be associated to the OCI environment handle for the runtime
context.

Note:

Precompiler applications can extract OCI handles and call OCI functions
directly. However, non-blocking mode is not supported because the
precompilers are unable to handle the "still executing" error that might be
returned.

5.8.1 Runtime Context in the OCI Release 8 Environment

An EXEC SQL CONTEXT USE statement specifies a runtime context to be used in a
Pro*C/C++ program. This context applies to all executable SQL statements that
positionally follow it in a given Pro*C/C++ file until another EXEC SQL CONTEXT USE
statement occurs. If no EXEC SQL CONTEXT USE appears in a source file, the
default "global" context is assumed. Thus, the current runtime context, and therefore
the current OCI environment handle, is known at any point in the program.

The runtime context and its associated OCI environment handle are initialized when a
database logon is performed using EXEC SQL CONNECT in Pro*C/C++.

When a Pro*C/C++ runtime context is freed using the EXEC SQL CONTEXT FREE
statement, the associated OCI environment handle is terminated and all of its
resources, such as space allocated for the various OCI handles and LOB locators, are
de-allocated. This command releases all other memory associated with the Pro*C/C++
runtime context. An OCI environment handle that is established for the default "global”
runtime remains allocated until the Pro*C/C++ program terminates.

5.8.2 Parameters in the OCI Release 8 Environment Handle

An OCI environment established through Pro*C/C++ will use the following parameters:

» The callback functions used by the environment for allocating memory, freeing
memory, writing to a text file, and flushing the output buffer will be trivial functions
that call malloc(), free(), fprintf(stderr, ...), and fflush(stderr) respectively.

* The language will be obtained from the Globalization Support variable
NLS_LANG.

* The error message buffer will be allocated in thread-specific storage.

5.9 Interface to OCI Release 8

ORACLE

SQLLIB library provides routines to obtain the OCI environment and service context
handles for database connections established through a Pro*C/C++ program. Once
the OCI handles are obtained, the user can call various OCI routines, for example, to
perform client-side DATE arithmetic, execute navigational operations on objects and
so on. These SQLLIB functions are described later, and their prototypes are available
in the public header file sgl 2oci . h.

A Pro*C/C++ user who mixes embedded SQL and calls in the other Oracle
programmatic interfaces must exercise reasonable care. For example, if a user

5-37

Chapter 5
Interface to OCI Release 8

terminates a connection directly using the OCI interface, SQLLIB state is out-of-sync;
the behavior for subsequent SQL statements in the Pro*C/C++ program is undefined
in such cases.

Note:

Pro*C/C++, the Oracle Call Interface (OCI) release 8, and XA are not
compatible.

The new SQLLIB functions that provide interoperability with the Oracle OCI are
declared in header file sql 2oci . h:

* SQEnvGet(), to return a pointer to an OCI environment handle associated with a
given SQLLIB runtime context. Used for both single and shared server
environments.

e SQSvcCxGet (), to return an OCI service context handle for a Pro*C/C++ database
connection. Used for both single and shared server environments.

» Pass the constant SQL_SI NGLE_RCTX, defined as (dvoi d *) 0, when you include
sgl2oci.h, as the first parameter in either function, when using single threaded
runtime contexts.

Related Topics
* Objects

5.9.1 SQLEnvGet()

The SQLLIB library function SQLEnvGet () (SQLLIB OCI Environment Get) returns the
pointer to the OCI environment handle associated with a given SQLLIB runtime
context. The prototype for this function is:

sword SQLEnvGet (dvoid *rctx, OClEnv **oeh);

where:
Terms Description
Description Sets oeh to the OCIEnv corresponding to the runtime context
Parameters retx (IN) pointer to a SQLLIB runtime context
oeh (OUT) pointer to OCIEnv
Returns SQL_SUCCESS on success
SQL_ERROR on failure
Notes The usual error status variables in Pro*C/C++ such as SQLCA and

SQLSTATE will not be affected by a call to this function

5.9.2 SQLSvcCtxGet()

ORACLE

The SQLLIB library function SQLSvcCt xGet () (SQLLIB OCI Service Context Get) returns
the OCI service context for the Pro*C/C++ database connection. The OCI service
context can then be used in direct calls to OCI functions. The prototype for this
function is:

5-38

Chapter 5
Interface to OCI Release 8

sword SQLSvcCtxGet (dvoid *rctx, text *dbname,
shb4 dbnanel en, OCl SveCtx **svc);

where:
Terms Description
Description Sets svc to the OCI Service Context corresponding to the runtime
context
Parameters retx (IN) = pointer to a SQLLIB runtime context
dbname (IN) = buffer containing the "logical" name for this
connection
dbnamelen (IN) = length of the dbname buffer
svc (OUT) = address of an OCISvcCtx pointer
Returns SQL_SUCCESS on success
SQL_ERROR on failure
Notes 1. The usual error status variables in Pro*C/C++ such as SQLCA

and SQLSTATE will not be affected by a call to this function
2. dbname is the same identifier used in an AT clause in an
embedded SQL statement.

3. If dbname is a null pointer or dbnamelen is 0, then the default
database connection is assumed, as in a SQL statement with no
AT clause.

4. A value of -1 for dbnamelen is used to indicate that dbname is a
zero-terminated string.

5.9.3 Embedded OCI Release 8 Calls

ORACLE

To embed OCI release 8 calls in your Pro*C/C++ program:
1. Include the public header sql2oci.h

2. Declare an environment handle (type OCIEnv *) in your Pro*C/C++ program:

QOCl Env *oeh;

3. Optionally, declare a service context handle (type OCISvcCtx *) in your Pro*C/C++
program if the OCI function you wish to call requires the Service Context handle.

QCl SveCt x *svc;

4. Declare an error handle (type OCIError *) in your Pro*C/C++ program:

OClError *err;

5. Connect to Oracle using the embedded SQL statement CONNECT. Do not connect
using OCI.

EXEC SQL CONNECT ...

6. Obtain the OCI Environment handle that is associated with the desired runtime
context using the SQLEnvGet function.

For single threaded applications:

retcode = SQLEnvGet (SQ_SI NGLE_RCTX, &oeh);

5-39

Chapter 5
Embedded OCI Release 7 Calls

or for shared server applications:

sqgl _context ctxl;

EXEC SQL CONTEXT ALLOCATE : ctx1,;
EXEC SQL CONTEXT USE :ctx1;

EXEC SQL CONNECT :uid | DENTI FI ED BY : pwd;
retcode = SQLEnvGet (ctx1, &oeh);

7. Allocate an OCI error handle using the retrieved environment handle:

retcode = OCl Handl eAl | oc((dvoid *)oeh, (dvoid **)&err,
(ub4) OCI _HTYPE_ERROR, (ub4)0, (dvoid **)0);

8. Optionally, if needed by the OCI call you use, obtain the OCIServiceContext handle
using the SQLSvcCtxGet call:

For single threaded applications:
retcode = SQLSvcCt xGet (SQL_SINGLE_RCTX, (text *)dbname, (ub4)dbnlen, &svc);
or, for shared server environment applications:

sql _context ctx1,;

EXEC SQL ALLOCATE : ctx1;
EXEC SQL CONTEXT USE :ctx1,

EXEC SQL CONNECT :uid | DENTI FIED BY :pwd AT :dbnane
USI NG : hst;

retcode = SQLSvcCt xCGet (ctx1, (text *)dbnane, (ub4)strlen(dbname), é&svc);

Note:

A null pointer may be passed as the dbname if the Pro*C/C++ connection is not
named with an AT clause.

5.10 Embedded OCI Release 7 Calls

ORACLE

Note:

The Logon Data Area (LDA) is no longer supported. The ability to embed OCI
Release 7 calls in your Pro*C/C++ program is not supported.

To embed OCI release 7 calls in your Pro*C/C++ program, take the following steps:

* Declare an OCI Logon Data Area (LDA) in your Pro*C/C++ program (outside the
Declare Section if you precompile with MODE=ANSI). The LDA is a structure
defined in the OCI header file oci . h. For details, see the Oracle Call Interface
programmer's Guide for Release 7.

5-40

Chapter 5
Embedded OCI Release 7 Calls

» Connect to Oracle using the embedded SQL statement CONNECT, not the OCI
orlon() oronblon() calls.

e Call the SQLLIB runtime library function sql | da() to set up the LDA.SQLLIB
function

That way, the Pro*C/C++ Precompiler and the OCI "know" that they are working
together. However, there is no sharing of Oracle cursors.

You need not worry about declaring the OCI Host Data Area (HDA) because the
Oracle runtime library manages connections and maintains the HDA for you.

5.10.1 Set Up the LDA

You set up the LDA by issuing the OCI call
sql I da(& da);
where Ida identifies the LDA data structure.

If the setup fails, the Ida_rc field in the /da is set to 1012 to indicate the error.

5.10.2 Remote and Multiple Connections

ORACLE

A call to sgl I da() sets up an LDA for the connection used by the most recently
executed SQL statement. To set up the different LDAs needed for additional
connections, you must call sql I da() with a different LDA immediately after each
CONNECT. In the following example, you connect to two nondefault databases
concurrently:

#i ncl ude <oci df n. h>
Lda_Def |dail;
Lda_Def |da2;

char usernane[10], password[10], db_stringl[20], dbstring2[20];

strcpy(usernane, "scott");

strcpy(password, “"tiger");

strepy(db_stringl, "NYNON');

strepy(db_string2, "CH NON');

/* give each database connection a uni que name */

EXEC SQL DECLARE DB_NAMEL DATABASE;

EXEC SQL DECLARE DB_NAME2 DATABASE;

/* connect to first nondefault database */

EXEC SQL CONNECT : usernane | DENTIFI ED BY : password;
AT DB_NAMEL USING :db_stringl;

/* set up first LDA */

sql I da(& dal);

/* connect to second nondefault database */

EXEC SQ. CONNECT : usernane | DENTIFI ED BY : password;
AT DB_NAME2 USING : db_string2;

/* set up second LDA */

sql I da(& da2);

DB_NAME1 and DB_NAME?2 are not C variables; they are SQL identifiers. You use
them only to name the default databases at the two nondefault nodes, so that later
SQL statements can refer to the databases by name.

5-41

Chapter 5
New Names for SQLLIB Public Functions

5.11 New Names for SQLLIB Public Functions

The names of SQLLIB functions are listed in Table 5-4. You can use these SQLLIB
functions for both threaded and nonthreaded applications. Previously, for example,
sgl gl () was documented as the nonthreaded or default context version of this
function, while sql gl nt () was the threaded or nondefault context version, with context
as the first argument. The names sql gl () and sql gl nt () are still available. The new
function SQLEr r or Get Text () requires the same arguments as sql gl nt (). For
nonthreaded or default context applications, pass the defined constant
SQL_SINGLE_RCTX as the context.

Each standard SQLLIB public function is thread-safe and accepts the runtime context
as the first argument. For example, the syntax for SQLEr r or Get Text () is:

voi d SQLError Get Text (dvoi d *context, char *message_buffer,
size t *buffer_size,
size_t *message_| ength);

In summary, the old function names will continue to work in your existing applications.
You can use the new function names in the new applications that you will write.

Table 5-4 lists all the SQLLIB public functions and their corresponding syntax. Cross-
references to the nonthreaded or default-context usages are provided to help you find
more complete descriptions.

Table 5-4 SQLLIB Public Functions -- New Names
|

Old Name New Function Prototype Cross-reference
sqlaldt() struct SQLDA *SQLSQLDAA | oc(dvoi d See also "Allocating a SQLDA " .
*cont ext,
unsi gned i nt maxi mum vari abl es,
unsi gned i nt maxi mum nane_| engt h,
unsi gned i nt
mexi mum i nd_nane_| engt h) ;
sql cdat () voi d SQLCDAFT onResul t Set Qur sor (dvoi d See also "Cursor Variables with the OCI
* cont ext (Release 7 Only)".
Cda_Def *cda,
voi d *cursor,
sword *return_val ue);
sqlclut() voi d SQLSQLDAFree(dvoid *cont ext See also"Deallocate Storage " .
struct SQLDA
*descri pt or _nane);
sql curt() voi d SQLCDAToResul t Set Qur sor (dvoi d See also "Cursor Variables with the OCI
*cont ext (Release 7 Only)" .
voi d *cursor,
Cda_Def *cda,
sword *return_val ue)
ORACLE 5-42

Table 5-4 (Cont.) SQLLIB Public Functions -- New Names

Old Name

New Function Prototype

Chapter 5
New Names for SQLLIB Public Functions

Cross-reference

sql gl nt ()

sqgl gl st ()

sql 1d2t ()

sql I dat ()

sql nult ()

sql pret ()

sql pr2t ()

sql vept ()

N A

ORACLE

voi d SQLErrorGet Text (dvoid *context,
unsi gned char *nessage_buf fer,

size_t *buffer_size,

size_t *nessage_length);

voi d SQLSt nt Get Text (dvoi d
*cont ext,

char *statenment _buffer,
size_t “*statenent_|ength,
size_t *sqlfc);

voi d SQLLDAGet Nane(dvoid *context,
Lda_Def *Ida,

text *cnane,

int *cnane_| ength);

voi d SQLLDAGet Current(dvoid
*cont ext,
Lda_Def *lda);

voi d SQLCol umNul | Check(dvoi d
*cont ext,

unsi gned short *val ue_type,
unsi gned short *type_code,
int *nul | _status);

voi d SQLNumber PrecV6(dvoi d
*cont ext,

unsigned long *length,
int *preci sion,
int *scal e);

voi d SQLNumber PrecV7(dvoid
*cont ext,

unsigned long *length,
int *preci sion,
int *scal e);

voi d SQ.Var char Get Lengt h(dvoi d
*cont ext,

unsigned long *data_length,
unsigned long *total length);

sword SQLEnvGet (dvoi d *context,
OCl Env **oeh);

See also "About Getting the Full Text of
Error Messages ".

See also "About Obtaining the Text of
SQL Statements ".

See also "OCI Calls (Release 7 Only)"

See also "Remote and Multiple
Connections "

See also "Handling NULL/Not NULL
Datatypes ".

See also "Extracting Precision and Scale

See also "Extracting Precision and Scale

See also "Find the Length of the
VARCHAR Array Component ".

See "SQLEnvGet()".

5-43

Chapter 5
X/Open Application Development

Table 5-4 (Cont.) SQLLIB Public Functions -- New Names

Old Name New Function Prototype Cross-reference
N'A sword SQLSvcCt xGet (dvoi d *context, See "SQLSveCxGet()".
text *dbnare,
int dbnanel en,
OCl SveCt x **syc);
N'A voi d SQLRowi dGet (dvoi d *cont ext, See "SQLRowidGet()".
OCl Rowi d **urid);
N A See "SQLExtProcError()" for a discussion

. N
voi d SQLExtProcError (dvoid *context, of its use in external procedures.

char *msg,
size_t msgl en);
" Note:

For the specific datatypes used in the argument lists for these functions, refer
to your platform-specific version of the sql cpr. h header file.

Related Topics

* Interface to OCI Release 8

5.12 X/Open Application Development

ORACLE

X/Open applications run in a distributed transaction processing (DTP) environment. In
an abstract model, an X/Open application calls on resource managers (RMs) to
provide a variety of services. For example, a database resource manager provides
access to data in a database. Resource managers interact with a transaction manager
(TM), which controls all transactions for the application.

5-44

ORACLE

Chapter 5
X/Open Application Development

Figure 5-1 Hypothetical DTP Model

TX Interface
Application Program

A
XA Interface Resource
Transaction Manager
Manager
v
XA Interface Resource

> Manager

} }

Other
Resources

Oracle Server

Figure 5-1 shows one way that components of the DTP model can interact to provide
efficient access to data in an Oracle database. The DTP model specifies the XA
interface between resource managers and the transaction manager. Oracle supplies
an XA-compliant library, which you must link to your X/Open application. Also, you
must specify the native interface between your application program and the resource
managers.

The DTP model that specifies how a transaction manager and resource managers
interact with an application program is described in the X/Open guide Distributed
Transaction Processing Reference Model and related publications, which you can
obtain by writing to

The Open Group
1010 El Camino Real, Suite 380
Menlo Park, CA 94025-4345 USA

http:// ww. opennc. or g/

For instructions on using the XA interface, see your Transaction Processing (TP)
Monitor user's guide.

5-45

Chapter 5
XI/Open Application Development

5.12.1 Oracle-Specific Issues

You can use the precompiler to develop applications that comply with the X/Open
standards. However, you must meet the following requirements.

5.12.1.1 Connecting to Oracle

The X/Open application does not establish and maintain connections to a database.
Instead, the transaction manager and the XA interface, which is supplied by Oracle,
handle database connections and disconnections transparently. So, normally an X/
Open-compliant application does not execute CONNECT statements.

5.12.1.2 Transaction Control

The X/Open application must not execute statements such as COMMIT, ROLLBACK,
SAVEPOINT, and SET TRANSACTION that affect the state of global transactions. For
example, the application must not execute the COMMIT statement because the
transaction manager handles commits. Also, the application must not execute SQL
data definition statements such as CREATE, ALTER, and RENAME because they
issue an implicit COMMIT.

The application can execute an internal ROLLBACK statement if it detects an error
that prevents further SQL operations. However, this might change in later releases of
the XA interface.

5.12.1.3 OCI Calls (Release 7 Only)

OCI Calls Release 7 are no longer supported.

Note:

The Logon Data Area (LDA) is no longer supported in Oracle9i. The ability to
embed OCI Release 7 calls in your Pro*C/C++ program will be phased out by
the next major Oracle release.

If you want your X/Open application to issue OCI calls, you must use the runtime
library routine sql | d2(), which sets up an LDA for a specified connection established
through the XA interface. For a description of the sql 1 d2() call, see the Oracle Call
Interface Programmer's Guide for Release 7.

The following OCI calls cannot be issued by an X/Open application: OCOM, OCON,
OCOF, ONBLON, ORLON, OLON, OLOGOF.

Related Topics

e Interface to OCI Release 8

5.12.1.4 Linking

To get XA functionality, you must link the XA library to your X/Open application object
modules. For instructions, see your system-specific Oracle documentation.

ORACLE 5-46

Embedded SQL

This chapter helps you to understand and apply the basic techniques of embedded
SQL programming. This chapter contains the following topics:

* Host Variables

* Indicator Variables

e The Basic SQL Statements
e The DML Returning Clause
* Cursors

* Scrollable Cursors

e Optimizer Hints

* Fix Execution Plan

* The CURRENT OF Clause
* The Cursor Statements

e A Complete Example Using Non-Scrollable Cursor

A Complete Example Using Scrollable Cursor

6.1 Host Variables

Oracle uses host variables to pass data and status information to your program; your
program uses host variables to pass data to Oracle.

6.1.1 Output versus Input Host Variables

Depending on how they are used, host variables are called output or input host
variables.

Host variables in the INTO clause of a SELECT or FETCH statement are called output
host variables because they hold column values output by Oracle. Oracle assigns the
column values to corresponding output host variables in the INTO clause.

All other host variables in a SQL statement are called input host variables because
your program inputs their values to Oracle. For example, you use input host variables
in the VALUES clause of an INSERT statement and in the SET clause of an UPDATE
statement. They are also used in the WHERE, HAVING, and FOR clauses. Input host
variables can appear in a SQL statement wherever a value or expression is allowed.

ORACLE 6-1

Chapter 6
Indicator Variables

Note:

In an ORDER BY clause, you can use a host variable, but it is treated as a
constant or literal, and hence the contents of the host variable have no effect.
For example, the SQL statement

EXEC SQL SELECT ename, enpno | NTO :nane,:nunber FROM enp ORDER BY :ord,;

appears to contain an input host variable :ord. However, the host variable in
this case is treated as a constant, and regardless of the value of :ord, no
ordering is done.

You cannot use input host variables to supply SQL keywords or the names of
database objects. Thus, you cannot use input host variables in data definition
statements such as ALTER, CREATE, and DROP. In the following example, the
DROP TABLE statement is invalid:

char table_nane[30];

printf("Table name? ");
gets(tabl e_nane);

EXEC SQL DROP TABLE :table_nane; -- host variable not allowed

If you need to change database object names at runtime, use dynamic SQL.

Before Oracle executes a SQL statement containing input host variables, your
program must assign values to them. An example follows:

int enp_nunber ;
char tenp[20] ;
VARCHAR enp_nane[20] ;

/* get values for input host variables */
printf("Enpl oyee nunber? ");

gets(tenp);

enp_nunber = atoi (tenmp);

printf("Enpl oyee name? ");
gets(enp_nane.arr);

enp_nane.len = strlen(enp_nane.arr);

EXEC SQL | NSERT | NTO EMP (EMPNO, ENAME)
VALUES (:enp_nurber, :enp_nane);

Notice that the input host variables in the VALUES clause of the INSERT statement
are prefixed with colons.

Related Topics
e Oracle Dynamic SQL

6.2 Indicator Variables

You can associate any host variable with an optional indicator variable. Each time the
host variable is used in a SQL statement, a result code is stored in its associated
indicator variable. Thus, indicator variables let you monitor host variables.

ORACLE 6-2

Chapter 6
Indicator Variables

Note:

You cannot use multiple indicator variables with a single host variable within
PL/SQL blocks. Doing so results in a "not all variables bound" error.

You use indicator variables in the VALUES or SET clauses to assign NULLSs to input
host variables. Use indicator variables in the INTO clause to detect NULLs or
truncated values in output host variables.

On Input

The values your program can assign to an indicator variable have the following
meanings:

Variable Description

-1 Oracle will assign a NULL to the column, ignoring the value of the
host variable.

>=0 Oracle will assign the value of the host variable to the column.

On Output

The values Oracle can assign to an indicator variable have the following meanings:

Variable Description

-1 The column value is NULL, so the value of the host variable is
indeterminate.

0 Oracle assigned an intact column value to the host variable.

>0 Oracle assigned a truncated column value to the host variable. The

integer returned by the indicator variable is the original length of
the column value, and SQLCODE in SQLCA is set to zero.

-2 Oracle assigned a truncated column variable to the host variable,
but the original column value could not be determined (a LONG
column, for example).

Remember, an indicator variable must be defined as a 2-byte integer and, in SQL
statements, must be prefixed with a colon and must immediately follow its host
variable.

6.2.1 Insert NULLs

ORACLE

You can use indicator variables to INSERT NULLs. Before the INSERT, for each
column you want to be NULL, set the appropriate indicator variable to -1, as shown in
the following example:

set ind_comm = -1;

EXEC SQL I NSERT I NTO enp (enpno, conm
VALUES (: enp_nunber, :commission:ind_com);

The indicator variable ind_comm specifies that a NULL is to be stored in the COMM
column.

6-3

Chapter 6
Indicator Variables

You can hard code the NULL instead, as follows:

EXEC SQL I NSERT I NTO enmp (enpno, conm
VALUES (:enp_nunmber, NULL);

While this is less flexible, it might be more readable. Typically, you insert NULLs
conditionally, as the next example shows:

printf("Enter enployee nunber or O if not available: ");
scanf ("%l", &enp_nunber);

if (enp_nunber == 0)
i nd_enmpnum = -1;
el se
i nd_empnum = 0;

EXEC SQ. | NSERT | NTO enp (enpno, sal)
VALUES (:enp_nunber:ind_enpnum :salary);

6.2.2 Returned NULLS

You can also use indicator variables to manipulate returned NULLSs, as the following
example shows:

EXEC SQ. SELECT enane, sal, comm
INTO : enp_name, :salary, :conmission:ind_conm

FROM enp

VWHERE enpno = : enp_nunber;
if (ind_comm == -1)

pay = salary; /* commission is NULL; ignore it */
el se

pay = salary + comi ssion;

6.2.3 Fetch NULLs

When DBMS=V7 or DBMS=VS, if you SELECT or FETCH NULLSs into a host variable
not associated with an indicator variable, Oracle issues the following error message:

ORA-01405: fetched col um value is NULL

Related Topics
- DBMS

6.2.4 Test for NULLs

ORACLE

You can use indicator variables in the WHERE clause to test for NULLs, as the
following example shows:

EXEC SQ. SELECT enane, sal

INTO : enp_nane, :salary

FROM enp

VHERE : commi ssion | NDI CATCR :ind_comm | S NULL ...

However, you cannot use a relational operator to compare NULLs with each other or

with other values. For example, the following SELECT statement fails if the COMM
column contains one or more NULLSs:

6-4

Chapter 6
The Basic SQL Statements

EXEC SQ. SELECT enane, sal
INTO : enp_nane, :salary
FROM enp

WHERE conm = : conmi ssi on;

The next example shows how to compare values for equality when some of them
might be NULLs:

EXEC SQL SELECT enane, sal
I NTO : enp_nane, :salary
FROM enp
VWHERE (comm = :conmmi ssion) OR ((conm S NULL) AND
(: commission | NDI CATCR :ind_conm IS NULL));

6.2.5 Truncated Values

When DBMS=V7 or V8, if you SELECT or FETCH a truncated column value into a
host variable not associated with an indicator variable, a warning is generated instead
of an error.

6.3 The Basic SQL Statements

ORACLE

Executable SQL statements let you query, manipulate, and control Oracle data and
create, define, and maintain Oracle objects such as tables, views, and indexes. This
chapter focuses on the statements that query and manipulate data.

When executing a data manipulation statement such as INSERT, UPDATE, or
DELETE, your only concern, besides setting the values of any input host variables, is
whether the statement succeeds or fails. To find out, you simply check the SQLCA.
(Executing any SQL statement sets the SQLCA variables.) You can check in the
following two ways:

* Implicit checking with the WHENEVER statement
» Explicit checking of SQLCA variables

When executing a SELECT statement (query), however, you must also deal with the
rows of data it returns. Queries can be classified as follows:

* Queries that return no rows (that is, merely check for existence)
* Queries that return only one row
e Queries that return more than one row

Queries that return more than one row require explicitly declared cursors or the use of
host arrays (host variables declared as arrays).

" Note:

Host arrays let you process "batches" of rows.

This chapter assumes the use of scalar host variables.

The following embedded SQL statements let you query and manipulate Oracle data:

6-5

Chapter 6
The Basic SQL Statements

Embedded SQL Description

Statements

SELECT Returns rows from one or more tables.
INSERT Adds new rows to a table.

UPDATE Modifies rows in a table.

DELETE Removes unwanted rows from a table.

The following embedded SQL statements let you define and manipulate an explicit
cursor:

Embedded SQL Description

Statements

DECLARE Names the cursor and associates it with a query.

OPEN Executes the query and identifies the active set.

FETCH Advances the cursor and retrieves each row in the active set, one
by one.

CLOSE Disables the cursor (the active set becomes undefined).

The following sections, you first learn how to code INSERT, UPDATE, DELETE, and
single-row SELECT statements. Then, you progress to multirow SELECT statements.

Related Topics

» Handling Runtime Errors

* Host Arrays

 Embedded SQL Statements and Directives

e Oracle Database SQL Language Reference

6.3.1 The SELECT Statement

ORACLE

Querying the database is a common SQL operation. To issue a query you use the
SELECT statement. In the following example, you query the EMP table:

EXEC SQ. SELECT enane, job, sal + 2000
INTO :enp_nane, :job_title, :salary
FROM enp

VWHERE enpno = :enp_nunber;

The column names and expressions following the keyword SELECT make up the
select list. The select list in our example contains three items. Under the conditions
specified in the WHERE clause (and following clauses, if present), Oracle returns
column values to the host variables in the INTO clause.

The number of items in the select list should equal the number of host variables in the
INTO clause, so there is a place to store every returned value.

In the simplest case, when a query returns one row, its form is that shown in the last
example. However, if a query can return more than one row, you must FETCH the
rows using a cursor or SELECT them into a host-variable array. Cursors and the
FETCH statement are discussed later in this chapter.

6-6

Chapter 6
The Basic SQL Statements

If a query is written to return only one row but might actually return several rows, the
result of the SELECT is indeterminate. Whether this causes an error depends on how
you specify the SELECT_ERROR option. The default value, YES, generates an error if
more than one row is returned.

Related Topics

* Host Arrays

6.3.1.1 Available Clauses

You can use all of the following standard SQL clauses in your

SELECT statements:

« INTO
* FROM
* WHERE

« CONNECT BY

* START WITH

* GROUP BY

* HAVING

« ORDER BY

« FOR UPDATE OF

Except for the INTO clause, the text of embedded SELECT statements can be
executed and tested interactively using SQL*Plus. In SQL*Plus, you use substitution
variables or constants instead of input host variables.

6.3.2 The INSERT Statement

Use the INSERT statement to add rows to a table or view. In the following example,
you add a row to the EMP table:

EXEC SQL I NSERT I NTO enp (enpno, enane, sal, deptno)
VALUES (:enp_nunber, :enmp_nane, :salary, :dept_nunber);

Each column you specify in the column list must belong to the table named in the
INTO clause. The VALUES clause specifies the row of values to be inserted. The
values can be those of constants, host variables, SQL expressions, SQL functions
such as USER and SYSDATE, or user-defined PL/SQL functions.

The number of values in the VALUES clause must equal the number of names in the
column list. However, you can omit the column list if the VALUES clause contains a
value for each column in the table, in the order that they are defined in the table.

Related Topics
* INSERT (Executable Embedded SQL)

6.3.2.1 About Using Subqueries

A subquery is a nested SELECT statement. Subqueries let you conduct multipart
searches. They can be used to

ORACLE .

Chapter 6
The Basic SQL Statements

e Supply values for comparison in the WHERE, HAVING, and START WITH clauses
of SELECT, UPDATE, and DELETE statements

» Define the set of rows to be inserted by a CREATE TABLE or INSERT statement
» Define values for the SET clause of an UPDATE statement

The following example uses a subquery in an INSERT statement to copy rows from
one table to another:

EXEC SQL I NSERT | NTO enmp2 (enpno, enane, sal, deptno)
SELECT enpno, enane, sal, deptno FROM enp
WHERE j ob= :job_title ;

This INSERT statement uses the subquery to obtain intermediate results.

6.3.3 The UPDATE Statement

Use the UPDATE statement to change the values of specified columns in a table or
view. In the following example, we update the SAL and COWcolumns in the EMP table:

EXEC SQL UPDATE enp
SET sal = :salary, comm = :conmmi ssion
VWHERE enpno = : enp_nunber;

Use the optional WHERE clause to specify the conditions under which rows are
updated.

The SET clause lists the names of one or more columns for which you must provide
values. You can use a subquery to provide the values, as the following example
shows:

EXEC SQL UPDATE enp
SET sal = (SELECT AVG(sal)*1.1 FROM enp WHERE deptno = 20)
VWHERE enpno = :enp_nunber;

The UPDATE statement has an optional ret urni ng cl ause, like the INSERT and
DELETE statements. It is only allowed after the optional WHERE condition.

Related Topics
 The WHERE Clause
 UPDATE (Executable Embedded SQL)

6.3.4 The DELETE Statement

ORACLE

Use the DELETE statement to remove rows from a table or view. In the following
example, you delete all employees in a given department from the EMP table:

EXEC SQL DELETE FROM enp
VWHERE deptno = :dept_nunber ;

We have used the optional WHERE clause to specify the condition under which rows
are deleted.

The returning cl ause option can be used in DELETE statements also. It is allowed
after the optional WHERE condition. In the earlier example, it is good practice to
record the field values of each employee that is deleted.

6-8

Chapter 6
The DML Returning Clause

Related Topics
 DELETE (Executable Embedded SQL)

6.3.5 The WHERE Clause

Use the WHERE clause to SELECT, UPDATE, or DELETE only those rows in a table
or view that meet your search condition. The WHERE-clause search condition is a
Boolean expression, which can include scalar host variables, host arrays (not in
SELECT statements), subqueries, and user-defined stored functions.

If you omit the WHERE clause, all rows in the table or view are processed. If you omit
the WHERE clause in an UPDATE or DELETE statement, Oracle sets sql warn[4] in
the SQLCA to 'W' to warn that all rows were processed.

6.4 The DML Returning Clause

The INSERT, UPDATE, and DELETE statements can have an optional DML returning
clause which returns column value expressions expr, into host variables hv, with host
indicator variables iv. The DML returning clause looks like this:

{RETURNING | RETURN} {expr [,expr]}
INTO {:hv [[INDICATOR]:iv] [, :hv [[INDI CATOR]:iv]]}

The number of expressions must equal the number of host variables. This clause

eliminates the need for selecting the rows after an INSERT or UPDATE, and before a
DELETE when you need to record that information for your application. The ret urni ng
cl ause eliminates inefficient network round trips, extra processing, and server memory.

Oracle Dynamic SQL Method 4 does not support the DML returning clause; but ANSI
Dynamic SQL Method 4 does. Support for DML statements with a DML returning
clause that affects more than a single row is not supported by ANSI DYNAMIC SQL.

Related Topics
* ANSI Dynamic SQL

6.5 Cursors

ORACLE

When a query returns multiple rows, you can explicitly define a cursor to

* Process beyond the first row returned by the query
« Keep track of which row is currently being processed

Or, you can use host arrays.

A cursor identifies the current row in the set of rows returned by the query. This allows
your program to process the rows one at a time. The following statements let you
define and manipulate a cursor:

« DECLARE CURSOR

- OPEN
- FETCH
- CLOSE

6-9

Chapter 6
Cursors

First you use the DECLARE CURSOR statement to name the cursor and associate it
with a query.

The OPEN statement executes the query and identifies all the rows that meet the
guery search condition. These rows form a set called the active set of the cursor. After
OPENIng the cursor, you can use it to retrieve the rows returned by its associated

query.

Rows of the active set are retrieved one by one (unless you use host arrays). You use
a FETCH statement to retrieve the current row in the active set. You can execute
FETCH repeatedly until all rows have been retrieved.

When done FETCHing rows from the active set, you disable the cursor with a CLOSE
statement, and the active set becomes undefined.

The following sections show you how to use these cursor control statements in your
application program.

Related Topics

* Host Arrays

6.5.1 The DECLARE CURSOR Statement

ORACLE

You use the DECLARE CURSOR statement to define a cursor by giving it a name and
associating it with a query, as the following example shows:

EXEC SQL DECLARE enp_cursor CURSCR FOR
SELECT enane, enpno, sal
FROM enp
VHERE deptno = :dept_nunber;

The cursor name is an identifier used by the precompiler, not a host or program
variable, and should not be defined in the Declare Section. Therefore, cursor names
cannot be passed from one precompilation unit to another. Cursor names cannot be
hyphenated. They can be any length, but only the first 31 characters are significant.
For ANSI compatibility, use cursor names no longer than 18 characters.

The precompiler option CLOSE_ON_COMMIT is provided for use in the command line
or in a configuration file. Any cursor not declared with the WITH HOLD clause is
closed after a COMMIT or ROLLBACK when CLOSE_ON_COMMIT=YES.

If MODE is specified at a higher level than CLOSE_ON_COMMIT, then MODE takes
precedence. The defaults are MODE=ORACLE and CLOSE_ON_COMMIT=NO. If you
specify MODE=ANSI then any cursors not using the WITH HOLD clause will be closed
on COMMIT. The application will run more slowly because cursors are closed and re-
opened many times. Setting CLOSE_ON_COMMIT=NO when MODE=ANSI results in
performance improvement. To see how macro options such as MODE affect micro
options such as CLOSE_ON_COMMIT, see "Precedence of Option Values".

The SELECT statement associated with the cursor cannot include an INTO clause.
Rather, the INTO clause and list of output host variables are part of the FETCH
statement.

Because it is declarative, the DECLARE CURSOR statement must physically (not just
logically) precede all other SQL statements referencing the cursor. That is, forward
references to the cursor are not allowed. In the following example, the OPEN
statement is misplaced:

6-10

Chapter 6
Cursors

EXEC SQL OPEN enp_cursor;
* -- M SPLACED OPEN STATEMENT
EXEC SQL DECLARE enp_cursor CURSCR FOR
SELECT enane, enpno, sal
FROM enp
WHERE enane = :enp_nane;

The cursor control statements (DECLARE, OPEN, FETCH, CLOSE) must all occur
within the same precompiled unit. For example, you cannot DECLARE a cursor in file
A, then OPEN it in file B.

Your host program can DECLARE as many cursors as it needs. However, in a given
file, every DECLARE statement must be unique. That is, you cannot DECLARE two
cursors with the same name in one precompilation unit, even across blocks or
procedures, because the scope of a cursor is global within a file.

For users of MODE=ANSI or CLOSE_ON_COMMIT=YES, the WITH HOLD clause
can be used in a DECLARE section to override the behavior defined by the two
options. With these options set, the behavior will be for all cursors to be closed when a
COMMIT is issued. This can have performance implications due to the overhead of re-
opening the cursor to continue processing. The careful use of WITH HOLD can speed
up programs that need to conform to the ANSI standard for precompilers in most
respects.

If you will be using many cursors, you might want to specify the MAXOPENCURSORS
option.

Related Topics

* WITH HOLD Clause in DECLARE CURSOR Statements
« CLOSE_ON_COMMIT

* Precompiler Options

* Performance Tuning

6.5.2 The OPEN Statement

ORACLE

You use the OPEN statement to execute the query and identify the active set. In the
following example, you OPEN a cursor named emp_cursor:

EXEC SQL OPEN enp_cursor;

OPEN zeroes the rows-processed count kept by the third element of SQLERRD in the
SQLCA. However, none of the rows are visible to the application at this point. That is
handled by the FETCH statement.

OPEN positions the cursor just before the first row of the active set. It also zeroes the
rows-processed count kept by the third element of SQLERRD in the SQLCA.
However, none of the rows is actually retrieved at this point. That will be done by the
FETCH statement.

Once you OPEN a cursor, the query's input host variables are not re-examined until
you reOPEN the cursor. Thus, the active set does not change. To change the active
set, you must reOPEN the cursor.

6-11

Chapter 6
Cursors

Generally, you should CLOSE a cursor before reOPENing it. However, if you specify
MODE=0ORACLE (the default), you need not CLOSE a cursor before reOPENIng it.
This can increase performance.

The amount of work done by OPEN depends on the values of three precompiler
options: HOLD CURSOR, RELEASE_CURSOR, and MAXOPENCURSORS.

Related Topics

e About Using the Precompiler Options

6.5.3 The FETCH Statement

ORACLE

You use the FETCH statement to retrieve rows from the active set and specify the
output host variables that will contain the results. Recall that the SELECT statement
associated with the cursor cannot include an INTO clause. Rather, the INTO clause
and list of output host variables are part of the FETCH statement. In the following
example, you FETCH INTO three host variables:

EXEC SQL FETCH enp_cursor
INTO : enp_nane, :enp_nunber, :salary;

The cursor must have been previously DECLAREd and OPENed. The first time you
execute FETCH, the cursor moves from before the first row in the active set to the first
row. This row becomes the current row. Each subsequent execution of FETCH
advances the cursor to the next row in the active set, changing the current row. The
cursor can only move forward in the active set. To return to a row that has already
been FETCHed, you must reOPEN the cursor, then begin again at the first row of the
active set.

If you want to change the active set, you must assign new values to the input host
variables in the query associated with the cursor, then reOPEN the cursor. When
MODE=ANSI, you must CLOSE the cursor before reOPENIng it.

As the next example shows, you can FETCH from the same cursor using different sets
of output host variables. However, corresponding host variables in the INTO clause of
each FETCH statement must have the same datatype.

EXEC SQL DECLARE enp_cursor CURSCR FOR
SELECT enane, sal FROM enp WHERE deptno = 20;

EXEC SQL OPEN enp_cursor;

EXEC SQL WHENEVER NOT FOUND GOTO . ..

for (:;)

{
EXEC SQL FETCH enp_cursor |INTO :enp_nanel, :salaryl;
EXEC SQL FETCH enp_cursor |INTO :enp_nane2, :salary2;
EXEC SQL FETCH enp_cursor |NTO :enp_nane3, :salary3;

}

If the active set is empty or contains no more rows, FETCH returns the "no data found"
error code to sqlcode in the SQLCA, or to the SQLCODE or SQLSTATE status
variables. The status of the output host variables is indeterminate. (In a typical
program, the WHENEVER NOT FOUND statement detects this error.) To reuse the
cursor, you must reOPEN it.

6-12

Chapter 6
Scrollable Cursors

Itis an error to FETCH on a cursor under the following conditions:
- Before OPENiIng the cursor

« After a "no data found" condition

e After CLOSEing it

6.5.4 The CLOSE Statement

When done FETCHing rows from the active set, you CLOSE the cursor to free the
resources, such as storage, acquired by OPENing the cursor. When a cursor is
closed, parse locks are released. What resources are freed depends on how you
specify the HOLD_CURSOR and RELEASE_CURSOR options. In the following
example, you CLOSE the cursor named emp_cursor:

EXEC SQL CLOSE enp_cursor;

You cannot FETCH from a closed cursor because its active set becomes undefined. If
necessary, you can reOPEN a cursor (with new values for the input host variables, for
example).

When MODE=ORACLE, issuing a COMMIT or ROLLBACK closes cursors referenced
in a CURRENT OF clause. Other cursors are unaffected by COMMIT or ROLLBACK
and if open, remain open. However, when MODE=ANSI, issuing a COMMIT or
ROLLBACK closes all explicit cursors.

Related Topics

» Database Concepts

6.6 Scrollable Cursors

A scrollable cursor is a work area where Oracle executes SQL statements and stores
information that is processed during execution.

When a cursor is executed, the results of the query are placed into a a set of rows
called the result set. The result set can be fetched either sequentially or non-
sequentially. Non-sequential result sets are called scrollable cursors.

A scrollable cursor enables users to access the rows of a database result set in a
forward, backward, and random manner. This enables the program to fetch any row in
the result set. See Oracle Call Interface Programmer's Guide, Release 9.2.0.

6.6.1 About Using Scrollable Cursors

The following statements let you define and manipulate a scrollable cursor.

6.6.1.1 DECLARE SCROLL CURSOR

You can use the DECLARE <cursor name> SCROLL CURSOR statement to name the
scrollable cursor and associate it with a query.

6.6.1.2 OPEN for Scrollable Cursors

You can use the OPEN statement in the same way as in the case of a non-scrollable
cursor.

ORACLE 6-13

Chapter 6
Scrollable Cursors

6.6.1.3 FETCH for Scrollable Cursors

You can use the FETCH statement to fetch required rows in a random manner. An
application can fetch rows up or down, first or last row directly, or fetch any single row
in a random manner.

The following options are available with the FETCH statement.
1. FETCH FIRST
Fetches the first row from the result set.
2. FETCH PRIOR
Fetches the row prior to the current row.
3. FETCH NEXT

Fetches the next row from the current position. This is same as the non-scrollable
cursor FETCH.

4. FETCH LAST
Fetches the last row from the result set.
5. FETCH CURRENT
Fetches the current row.
6. FETCH RELATIVE n
Fetches the nth row relative to the current row, where n is the offset.
7. FETCH ABSOLUTE n
Fetches the nth row, where n is the offset from the start of the result set.
The following example describes how to FETCH the last record from a result set.

EXEC SQL DECLARE enp_cursor SCROLL CURSOR FOR
SELECT enane, sal FROM enp WHERE dept no=20;

EXEC SQL OPEN enp_cursor;

EXEC SQ. FETCH LAST enp_cursor |INTO :enp_nane, :sal;
EXEC SQL CLOSE enp_cursor;

6.6.1.4 CLOSE for Scrollable Cursors

You can use the CLOSE statement in the same way as in the case of a non-scrollable
cursor.

" Note:

You cannot use scrollable cursors for REF cursors.

6.6.2 The CLOSE_ON_COMMIT Precompiler Option

The CLOSE_ON_COMMIT micro precompiler option provides the ability to choose
whether or not to close all cursors when a COMMIT is executed and the macro option

ORACLE 6-14

Chapter 6
Scrollable Cursors

MODE=ANSI. When MODE=ANSI, CLOSE_ON_COMMIT has the default value YES.
Explicitly setting CLOSE_ON_COMMIT=NO results in better performance because
cursors will not be closed when a COMMIT is executed, removing the need to re-open
the cursors and incur extra parsing.

6.6.3 The PREFETCH Precompiler Option

The precompiler option PREFETCH allows for more efficient queries by pre-fetching a
given number of rows. This decreases the number of server round trips needed and
reduces overall memory usage. The number of rows set by the PREFETCH option
value is used for all queries involving explicit cursors, subject to the standard
precedence rules. When used inline, the PREFETCH option must precede any of
these cursor statements:

« EXEC SQL OPEN cursor
 EXEC SQL OPEN cursor USING host_var_list
e EXEC SQL OPEN cursor USING DESCRIPTOR desc_name

When an OPEN is executed, the value of PREFETCH gives the number of rows to be
pre-fetched when the query is executed. You can set the value from 0 (no pre-
fetching) to 65535. The default value is 1.

Note:

The default value of the PREFETCH option is 1 - return a single row for each
round-trip. If you choose not to use the PREFETCH option, using the command
line, you must explicitly disable it by setting the PREFETCH option to O.

PREFETCH is automatically disabled when LONG or LOB columns are being
retrieved.

Note:

PREFETCH is used primarily to enhance the performance of single row
fetches. PREFETCH has no effect when array fetches are used.

" Note:

The PREFETCH option should be used wisely, and on a case-by-case basis.
Select an appropriate PREFETCH value that will optimize performance of a
specific FETCH statement. To accomplish this, use the inline prefetch option
instead of the command line prefetch option.

ORACLE 6-15

Chapter 6
Optimizer Hints

Note:

The performance of many large applications can be improved simply by using
indicator variables with host variables in FETCH statements.

To enable precompiler applications to obtain the maximum advantage from the
use of the PREFETCH option on single row fetches, it is strongly
recommended that you use indicator variables.

6.7 Optimizer Hints

The Pro*C/C++ Precompiler supports optimizer hints in SQL statements. An optimizer
hint is a suggestion to the Oracle SQL optimizer that can override the optimization
approach that would normally be taken. You can use hints to specify the

e Optimization approach for a SQL statement
e Access path for each referenced table

e Join order for a join

e Method used to join tables

Hints allow you to choose between rule-based and cost-based optimization. With cost-
based optimization, you can use further hints to maximize throughput or response
time.

6.7.1 Issuing Hints

You can issue an optimizer hint inside a C or C++ style comment, immediately after a
SELECT, DELETE, or UPDATE command. You indicate that the comment contains
one or more hints by following the comment opener with a plus sign, leaving no space
between the opener and the '+'. For example, the following statement uses the
ALL_ROWS hint to let the cost-based approach optimize the statement for the goal of
best throughput:

EXEC SQ. SELECT /*+ ALL_ROAS (cost-based) */ enpno, enane, sal, job
I NTO : enp_rec FROM enp
WHERE deptno = :dept_nunber;

As shown in this statement, the comment can contain optimizer hints as well as other
comments.

6.8 Fix Execution Plan

ORACLE

In application development environments where modules are developed in one
environment, and then integrated and deployed into another, the performance of the
applications are affected. At times, the performance of the precompiler applications
are affected by changes in the database environment. These may include changes in
the optimizer statistics, changes to the optimizer settings, or changes to parameters
affecting the sizes of memory structures.

To fix execution plans for SQL's used in Pro*C/C++ in the development environment,
you need to use the outline feature of Oracle at the time of precompiling. An outline is

6-16

ORACLE

Chapter 6
Fix Execution Plan

implemented as a set of optimizer hints that are associated with the SQL statement. If
you enable the use of the outline for the statement, Oracle automatically considers the
stored hints and tries to generate an execution plan in accordance with those hints. In
this way, you can ensure that the performance is not affected when the modules are
integrated or deployed into different environments.

You can use the following SQL statements to create outlines in Pro*C/C++:

e SELECT
e DELETE
e UPDATE

e INSERT ... SELECT
e CREATE TABLE ... AS SELECT

If the outline option is set, then the precompiler generates two files, a SQL file and a
LOG file at the end of successful precompilation. Command line options out | i ne and
out I nprefix control the generation of the outlines.

Each generated outline name is unique. Because the file names used in the
application are unique, this information is used in generating the outline name. In
addition, the category name is also prefixed.

Caution:

Oracle allows only 128 bytes for the outline name. If you exceed the limit, the
precompiler will flag an error. You can restrict the length of the outline name by
using the out | nprefi x option.

Example 6-1 Generating a SQL File Containing Outlines

You need to precompile the following program by using the outline option to generate
SQL files containing the outlines for all the outline-supported SQL statements in this
program.

-
I L S I

—

out | ndeno. pc

Qutlines will be created for the follow ng SQL operati ons,

1. CREATE ... SELECT
2. INSERT ... SELECT
3. UPDATE
4. DELETE
5. SELECT

#incl ude <stdio. h>
#include <string. h>
#include <stdlib. h>
#include <sql da. h>
#include <sqlcpr. h>
#include <sql ca. h>

[* Error handling function. */

void sql _error(char *nsg)

{

6-17

Chapter 6
Fix Execution Plan

exec sgl whenever sglerror continue;

printf("\n%\n", nsg);
printf("%70s\n", sqglca.sqlerrmsqlerrnc);
exec sql rollback rel ease;

exit (EXI T_FAI LURE) ;
}

int main()

{
varchar ename[10] ;
varchar job[9];
float sal, comm

exec sql begin declare section;
char *uid = "scott/tiger";
exec sql end declare section;

exec sgl whenever sglerror do sql _error("ORACLE error--\n");
exec sql connect :uid,;

exec sgl insert into bonus
sel ect enane, job, sal, conmfromenp where job |ike ' SALESVAN ;

exec sql update bonus set sal = sal * 1.1 where sal < 1500;

exec sql declare cl cursor for

sel ect enane, job, sal, commfrom bonus order by sal;
exec sql open cl;
printf ("Contents of updated BONUS table\n\n");

printf ("ENAME JOB SALARY COW SSION\n\n");
exec sql whenever not found do break;

while (1)

{

exec sgl fetch cl into :ename, :job, :sal, :comm
ename. arr[enane. len]="\0";
job.arr[job.len]="\0";
printf ("%9s %9s 98.2f 8. 2f\n", enane.arr,
job.arr, sal, comj;
1

exec sql close cl,;
exec sgl whenever not found do sql _error("ORACLE error--\n");

exec sql delete from bonus;

exec sql create table outlndemo_tab as
sel ect enpno, enane, sal fromenp where deptno = 10;

/* Qutline will not be created for this DDL statement */
exec sql drop table outlndeno_tab;

exec sgl rollback work rel ease;
exi t (EXI T_SUCCESS);
}

6.8.1 SQL File

The generated file name has the following format:

ORACLE 6-18

Chapter 6
Fix Execution Plan

<filename>_<filetype>.sql
In Pro*C, for the file "abc.pc”, the generated SQL file will be abc_pc.sql.

Generated file format

If the outlnprefix option is not used, then the format of the unique identifier used as
outline name and comment is:

<category_nane> <fil ename> <fil etype>_<sequence no.>

If the outlnprefix option is used (outinprefix=<prefix_name>), then the format of the
unique identifier used as outline name and comment is:

<prefix_name>_<sequence no. >

If outline=yes, which is the default category, then <category _name> will be DEFAULT
and outline name will be:

DEFAULT_<fi | ename>_<fi| et ype>_<sequence no. >

or
<prefix_nanme>_<sequence no.>
The allowed range for <sequence no. > is 0000 to 9999.

SQL in the generated precompiled file will have the comment appended to it as it
appears in the outline for that SQL.

6.8.1.1 Examples

ORACLE

Consider the following examples.

Example 1
If abc.pc has the statements

EXEC SQL select * fromenp where enpno=:var;
EXEC SQL select * from dept;

and if outline=mycatl and outlnprefix is not used, then:

Contents of abc_pc.sql

create or replace outline mycatl abc_pc_0000 for category mycatl on sel ect * from
enp where enpno=:bl /* nycatl_abc_pc_0000 */;

create or replace outline mycatl_abc_pc_0001 for category mycatl on sel ect * from
dept /* mycatl_abc_pc_0001 */;

Contents of abc.c
sqlstmstnt = select * fromenp where enpno=:bl /* nycat1l_abc_pc_0000 */;
sqlstmstnm = select * fromdept /* nycatl_abc_pc_0001 */;

Example 2

If abc.pc has the statements

6-19

Chapter 6
Fix Execution Plan

EXEC SQL select * fromenp where enpno=:var;
EXEC SQL select * from dept;

and if outline=mycat1 and outlnprefix=myprefix, then:

Contents of abc_pc.sql

create or replace outline myprefix_0000 for category mycatl on sel ect * fromenp
where enpno=: bl /* nyprefix_0000 */;

create or replace outline myprefix_0001 for category mycatl on sel ect * from dept /*
myprefix_0001 */;

Contents of abc.c

sglstmstnm = select * fromenp where enpno=:bl /* nyprefix_0000 */;
sglstmstm = select * fromdept /* nyprefix_0001 */;

Example 3

If abc.pc has the statements

EXEC SQL select * fromenp where enpno=:var;
EXEC SQL select * from dept;

and if outline=yes and outlnprefix=myprefix, then:

Contents of abc_pc.sql

create or replace outline myprefix_0000 on sel ect * from enp where enmpno=: bl /*
myprefix_0000 */;

create or replace outline myprefix_0001 on sel ect * fromdept /* nyprefix_0001 */;
Contents of abc.c
sqlstmstnm = "select * fromenp where enpno=:bl /* nyprefix_0000 */;

sqlstmstnt = "select * fromdept /* nmyprefix_0001 */";

6.8.2 LOG File

The generated file name has the following format:
<filename> <filetype>.|og
In Pro*C, for the file "abc.pc”, the generated LOG file will be abc_pc.log.

Consider the following example.

Example 1
If abc.pc has the statements

EXEC SQL select * from enp;

Contents of abc_pc.log

CATEGORY <Cat egory_nane>
Source SQ_0

ORACLE 6-20

Chapter 6
The CURRENT OF Clause

SELECT * FROM enp
QUTLI NE NAME
abc_pc_0000
OUTLINE SQL_0
Select * fromenp /* abc_pc_0000 */

6.9 The CURRENT OF Clause

You use the CURRENT OF cursor_name clause in a DELETE or UPDATE statement
to refer to the latest row FETCHed from the named cursor. The cursor must be open

and positioned on a row. If no FETCH has been done or if the cursor is not open, the
CURRENT OF clause results in an error and processes no rows.

The FOR UPDATE OF clause is optional when you DECLARE a cursor that is
referenced in the CURRENT OF clause of an UPDATE or DELETE statement. The
CURRENT OF clause signals the precompiler to add a FOR UPDATE clause if
necessary.

In the following example, you use the CURRENT OF clause to refer to the latest row
FETCHed from a cursor named emp_cursor:

EXEC SQL DECLARE enp_cursor CURSCR FOR
SELECT enane, sal FROM enp WHERE job = ' CLERK
FOR UPDATE OF sal ;

EXEC SQL OPEN enp_cursor;
EXEC SQL WHENEVER NOT FOUND GOTO ...
for (5;) {
EXEC SQ. FETCH enp_cursor | NTO :enp_nane, :salary;

EXEC SQ. UPDATE enp SET sal = :new salary
VHERE CURRENT OF enp_cursor;

}

Related Topics
* Using FOR UPDATE OF

6.9.1 Restrictions (FOR UPDATE OF)

ORACLE

You cannot use CURRENT OF clause on an index-organized table.

Explicit FOR UPDATE OF clauses or implicit FOR UPDATE clauses acquire exclusive
row locks. All rows are locked at the OPEN, not as they are FETCHed, and are
released when you COMMIT or ROLLBACK. Therefore, you cannot FETCH from a
FOR UPDATE cursor after a COMMIT. If you try to do this, Oracle returns a 1002 error
code.

Also, you cannot use host arrays with the CURRENT OF clause. For an alternative,
see also "About Mimicking CURRENT OF ",

Furthermore, you cannot reference multiple tables in an associated FOR UPDATE OF
clause, which means that you cannot do joins with the CURRENT OF clause.

Finally, you cannot use dynamic SQL with the CURRENT OF clause.

6-21

Chapter 6
The Cursor Statements

6.10 The Cursor Statements

The following example shows the typical sequence of cursor control statements in an
application program:

/* define a cursor */
EXEC SQ. DECLARE enp_cursor CURSCR FOR
SELECT enane, job
FROM enp
VHERE enpno = : enp_nunber
FOR UPDATE CF j ob;

/* open the cursor and identify the active set */
EXEC SQ. OPEN enp_cursor;,

/* break if the last row was already fetched */
EXEC SQL WHENEVER NOT FOUND DO br eak;

/* fetch and process data in a loop */
for (53)

EXEC SQL FETCH enp_cursor |INTO :enp_nane, :job_title;

/* optional host-language statenents that operate on
the FETCHed data */

EXEC SQL UPDATE enp
SET job = :new job_title
WHERE CURRENT OF enp_cursor;
1

/* disable the cursor */
EXEC SQ. CLOSE enp_cursor;
EXEC SQ. COW T WORK RELEASE;

6.11 A Complete Example Using Non-Scrollable Cursor

ORACLE

The following complete program illustrates the use of a cursor and the FETCH
statement. The program prompts for a department number, then displays the names of
all employees in that department.

All FETCHes except the final one return a row and, if no errors were detected during
the FETCH, a success status code. The final FETCH fails and returns the "no data
found" Oracle error code to sqica.sqglcode. The cumulative number of rows actually
FETCHed is found in sql errd[2] in the SQLCA.

#include <stdio. h>

/* declare host variables */
char userid[12] = "SCOTT/ Tl GER';
char enp_nane[10] ;

int enp_nunber;

int dept_nunber;

char tenp[32];

void sql _error();

6-22

Chapter 6
A Complete Example Using Scrollable Cursor

/* include the SQL Communications Area */
#include <sql ca. h>

mai n()
{ enp_nunber = 7499;
/* handle errors */
EXEC SQL WHENEVER SQLERRCR do sql _error("Cracle error");

/* connect to Oracle */
EXEC SQL CONNECT : useri d;
printf("Connected.\n");

/* declare a cursor */
EXEC SQL DECLARE enp_cursor CURSCR FOR
SELECT enane
FROM enp
VHERE deptno = :dept _nunber;

printf("Departnent nunber? ");

gets(tenp);
dept _nunmber = atoi(tenp);

/* open the cursor and identify the active set */
EXEC SQL OPEN enp_cursor;

printf("Enployee Nane\n");
printf("------------- \n");
/* fetch and process data in a |oop

exit when no nore data */

EXEC SQ. WHENEVER NOT FOUND DO br eak;

while (1)

{
EXEC SQL FETCH enp_cursor |NTO : enp_nang;
printf("%\n", enp_name);

}
EXEC SQL CLOSE enp_cursor;
EXEC SQ. COMWM T WORK RELEASE;
exit(0);

}

voi d
sql _error(nsg)
char *nsg;

char buf[500];
int buflen, nsglen;

EXEC SQL WHENEVER SQLERROR CONTI NUE;
EXEC SQL ROLLBACK WORK RELEASE;
buflen = sizeof (buf);
sql gl n{buf, &buflen, &nsglen);
printf("%\n", nsg);
printf("%.s\n", msglen, buf);
exit(l1);

}

6.12 A Complete Example Using Scrollable Cursor

ORACLE

The following program illustrates the use of scrollable cursor and the various options
used by the FETCH statement.

6-23

ORACLE

Chapter 6
A Complete Example Using Scrollable Cursor

#i ncl ude <stdio. h>

/* declare host variables */
char userid[12]="SCOTT/ Tl GER";
char enp_nane[10] ;

voi d sql _error();

/* include the SQL Communications Area */
#i ncl ude<sql ca. h>

mai n()
{
/* handle errors */
EXEC SQL WHENEVER SQLERRCR do sql _error("Oracle error");

/* connect to Oracle */
EXEC SQL CONNECT : useri d;
printf("Connected.\n");

/* declare a scrollable cursor */
EXEC SQL DECLARE enp_cursor SCROLL CURSOR FOR
SELECT enane FROM enp;

/* open the cursor and identify the active set */
EXEC SQ.L OPEN enp_cursor;

/* Fetch the last row */
EXEC SQL FETCH LAST enp_cursor |NTO : enp_nang;

/* Fetch row number 5 */
EXEC SQ. FETCH ABSCLUTE 5 enp_cursor | NTO :enp_nang;

[* Fetch row nunber 10 */
EXEC SQL FETCH RELATIVE 5 enp_cursor |NTO : enp_nang;

[* Fetch row nunber 7 */
EXEC SQ FETCH RELATIVE -3 enp_cursor |NTO :enp_nang;

[* Fetch the first row */
EXEC SQL FETCH FI RST enp_cursor | NTO :enp_nang;

/* Fetch row nunber 2*/
EXEC SQL FETCH ny_cursor INTO :enp_nane;

/* Fetch row nunber 3 */
EXEC SQL FETCH NEXT ny_cursor |NTO :enp_nanme;

[* Fetch row nunber 3 */
EXEC SQL FETCH CURRENT ny_cursor | NTO : enp_nane;

[* Fetch row nunber 2 */
EXEC SQL FETCH PRI OR ny_cursor | NTO : enp_nang;

}

voi d

sql _error(nsg)
char *nsg;

char buf[500];
int buflen, nsglen;

6-24

Chapter 6
Positioned Update

EXEC SQL WHENEVER SQLERROR CONTI NUE;
EXEC SQL ROLLBACK TRANSACTI ON;
buflen = sizeof (buf);
sql gl m(buf, &buflen, &nmesglen);
printf("%\n", nsg);
printf("%.s\n", nsglen, buf);
exit(1);
}

6.13 Positioned Update

ORACLE

The following skeletal example demonstrates positioned update using the universal
ROWID.

#i ncl ude <oci . h>
OCl Rowi d *urow d;

EXEC SQL ALLOCATE : urowi d;
EXEC SQL DECLARE cur CURSOR FOR
SELECT rowid, ... FROM ny_table FOR UPDATE CF .. .;
EXEC SQL OPEN cur;
EXEC SQL FETCH cur INTO :urowid, ...;
/* Process data */

EXEC SQL UPDATE ny_table SET ... WHERE CURRENT CF cur;

EXEC SQ. CLOSE cur;
EXEC SQL FREE : urowid;

Related Topics
e Universal ROWIDs

6-25

Embedded PL/SQL

This chapter shows you how to improve performance by embedding PL/SQL
transaction processing blocks in your program. This chapter contains the following
topics:

Advantages of PL/SQL

Embedded PL/SQL Blocks

Host Variables

Indicator Variables

Host Arrays

Cursor Usage in Embedded PL/SQL
Stored PL/SQL and Java Subprograms
External Procedures

About Using Dynamic SQL

Related Topics

Embedded PL/SQL

7.1 Advantages of PL/SQL

This section looks at some of the features and benefits offered by PL/SQL, such as:

Better Performance
Integration with Oracle
Cursor FOR Loops
Procedures and Functions
Packages

PL/SQL Tables

User-Defined Records

Related Topics

Oracle Database PL/SQL Language Reference

7.1.1 Better Performance

PL/SQL can help you reduce overhead, improve performance, and increase
productivity. For example, without PL/SQL, Oracle must process SQL statements one
at a time. Each SQL statement results in another call to the Server and higher
overhead. However, with PL/SQL, you can send an entire block of SQL statements to
the Server. This minimizes communication between your application and Oracle.

ORACLE

7-1

Chapter 7
Advantages of PL/SQL

7.1.2 Integration with Oracle

PL/SQL is tightly integrated with the Oracle Server. For example, most PL/SQL
datatypes are native to the Oracle data dictionary. Furthermore, you can use the
%TYPE attribute to base variable declarations on column definitions stored in the data
dictionary, as the following example shows:

job_title enp.job%YPE;

That way, you need not know the exact datatype of the column. Furthermore, if a
column definition changes, the variable declaration changes accordingly and
automatically. This provides data independence, reduces maintenance costs, and
allows programs to adapt as the database changes.

7.1.3 Cursor FOR Loops

With PL/SQL, you need not use the DECLARE, OPEN, FETCH, and CLOSE
statements to define and manipulate a cursor. Instead, you can use a cursor FOR
loop, which implicitly declares its loop index as a record, opens the cursor associated
with a given query, repeatedly fetches data from the cursor into the record, then closes
the cursor. An example follows:

DECLARE

BEG N
FOR enmprec IN (SELECT enpno, sal, conm FROM enp) LOCP
| F enprec.comm/ enprec.sal > 0.25 THEN ...

END LOCP;
END;

Notice that you use dot notation to reference components in the record.

7.1.4 Procedures and Functions

ORACLE

PL/SQL has two types of subprograms called procedures and functions, which aid
application development by letting you isolate operations. Generally, you use a
procedure to perform an action and a function to compute a value.

Procedures and functions provide extensibility. That is, they let you tailor the PL/SQL
language to suit your needs. For example, if you need a procedure that creates a new
department, just write your own as follows:

PROCEDURE cr eat e_dept
(new_dname | N CHAR(14),

new_| oc I'N CHAR(13),

new_deptno OUT NUMBER(2)) IS
BEG N

SELECT dept no_seq. NEXTVAL | NTO new _deptno FROM dual ;

I NSERT | NTO dept VALUES (new _deptno, new dname, new_|oc);
END create_dept;

When called, this procedure accepts a new department name and location, selects the

next value in a department-number database sequence, inserts the new number,
name, and location into the dept table, then returns the new number to the caller.

7-2

Chapter 7
Advantages of PL/SQL

You use parameter modes to define the behavior of formal parameters. There are
three parameter modes: IN (the default), OUT, and IN OUT. An IN parameter lets you
pass values to the subprogram being called. An OUT parameter lets you return values
to the caller of a subprogram. An IN OUT parameter lets you pass initial values to the
subprogram being called and return updated values to the caller.

The datatype of each actual parameter must be convertible to the datatype of its
corresponding formal parameter. Table 7-1 shows the legal conversions between
datatypes.

7.1.5 Packages

PL/SQL lets you bundle logically related types, program objects, and subprograms into
a package. With the Procedural Database Extension, packages can be compiled and
stored in an Oracle database, where their contents can be shared by many
applications.

Packages usually have two parts: a specification and a body. The specification is the
interface to your applications; it declares the types, constants, variables, exceptions,
cursors, and subprograms available for use. The body defines cursors and
subprograms; it implements the specification. In the following example, you "package"
two employment procedures:

PACKAGE enp_actions IS -- package specification
PROCEDURE hi re_enpl oyee (enpno NUMBER, enane CHAR ...);

PROCEDURE fire_enpl oyee (enp_id NUMBER);
END enp_acti ons;

PACKAGE BODY enp_actions IS -- package body
PROCEDURE hi re_enpl oyee (enmpno NUMBER, enanme CHAR, ...) IS
BEG N
I NSERT | NTO emp VALUES (enpno, enane, ...);
END hi re_enpl oyee;

PROCEDURE fire_enpl oyee (enmp_id NUMBER) IS
BEG N
DELETE FROM enp WHERE enpno = enp_i d;
END fire_enpl oyee;
END enp_acti ons;

Only the declarations in the package specification are visible and accessible to
applications. Implementation details in the package body are hidden and inaccessible.

7.1.6 PL/SQL Tables

ORACLE

PL/SQL provides a composite datatype named TABLE. Objects of type TABLE are
called PL/SQL tables, which are modeled as (but not the same as) database tables.
PL/SQL tables have only one column and use a primary key to give you array-like
access to rows. The column can belong to any scalar type (such as CHAR, DATE, or
NUMBER), but the primary key must belong to type BINARY_INTEGER,
PLS_INTEGER or VARCHAR?2.

You can declare PL/SQL table types in the declarative part of any block, procedure,
function, or package. In the following example, you declare a TABLE type called
NumTabTyp:

7-3

Chapter 7
Advantages of PL/SQL

DECLARE
TYPE NuniabTyp |'S TABLE OF NUMBER
| NDEX BY Bl NARY_I NTECER,

BEG N

END;

Once you define type NumTabTyp, you can declare PL/SQL tables of that type, as the
next example shows:

numtab NunifabTyp;

The identifier num_tab represents an entire PL/SQL table.

You reference rows in a PL/SQL table using array-like syntax to specify the primary
key value. For example, you reference the ninth row in the PL/SQL table named
num_tab as follows:

numtab(9) ...

7.1.7 User-Defined Records

ORACLE

You can use the %ROWTYPE attribute to declare a record that represents a row in a
table or a row fetched by a cursor. However, you cannot specify the datatypes of
components in the record or define components of your own. The composite datatype
RECORD lifts those restrictions.

Objects of type RECORD are called records. Unlike PL/SQL tables, records have
uniquely named components, which can belong to different datatypes. For example,
suppose you have different kinds of data about an employee such as name, salary,
hire date, and so on. This data is dissimilar in type but logically related. A record that
contains such components as the name, salary, and hire date of an employee would
let you treat the data as a logical unit.

You can declare record types and objects in the declarative part of any block,
procedure, function, or package. In the following example, you declare a RECORD
type called DeptRecTyp:

DECLARE

TYPE Dept RecTyp 1S RECORD
(deptno NUMBER(4) NOT NULL, -- default is NULL allowed
dname CHAR(9),
| oc CHAR(14));

Notice that the component declarations are like variable declarations. Each component
has a unigue name and specific datatype. You can add the NOT NULL option to any
component declaration and so prevent the assigning of NULLSs to that component.

Once you define type DeptRecTyp, you can declare records of that type, as the next
example shows:

dept _rec Dept RecTyp;
The identifier dept_rec represents an entire record.

You use dot notation to reference individual components in a record. For example, you
reference the dname component in the dept_rec record as follows:

7-4

Chapter 7
Embedded PL/SQL Blocks

dept _rec.dnane ...

7.2 Embedded PL/SQL Blocks

The Pro*C/C++ Precompiler treats a PL/SQL block like a single embedded SQL
statement. So, you can place a PL/SQL block anywhere in a program that you can
place a SQL statement.

To embed a PL/SQL block in your Pro*C/C++ program, simply bracket the PL/SQL
block with the keywords EXEC SQL EXECUTE and END-EXEC as follows:

EXEC SQL EXECUTE
DECLARE

BEG N
END;
END- EXEC;

The keyword END-EXEC must be followed by a semicolon.
After writing your program, you precompile the source file in the usual way.

When the program contains embedded PL/SQL, you must use the
SQLCHECK=SEMANTICS command-line option, since the PL/SQL must be parsed by
the Oracle Server. SQLCHECK=SEMANTICS requires the USERID option also, to
connect to a server.

Related Topics
e About Using the Precompiler Options

7.3 Host Variables

ORACLE

Host variables are the key to communication between a host language and a PL/SQL
block. Host variables can be shared with PL/SQL, meaning that PL/SQL can set and
reference host variables.

For example, you can prompt a user for information and use host variables to pass
that information to a PL/SQL block. Then, PL/SQL can access the database and use
host variables to pass the results back to your host program.

Inside a PL/SQL block, host variables are treated as global to the entire block and can
be used anywhere a PL/SQL variable is allowed. Like host variables in a SQL
statement, host variables in a PL/SQL block must be prefixed with a colon. The colon
sets host variables apart from PL/SQL variables and database objects.

" Note:

To use VARCHAR, CHARZ, or STRING types as output host variables in
PL/SQL blocks, you must initialize the length before entering the block. Set the
length to the declared (maximum) length of the VARCHAR, CHARZ, or
STRING.

7-5

Chapter 7
Host Variables

Related Topics

* Pointer Variables

7.3.1 Example: Using Host Variables with PL/SQL

ORACLE

The following example illustrates the use of host variables with PL/SQL. The program
prompts the user for an employee number, then displays the job title, hire date, and
salary of that employee.

char usernane[100], password[20];

char job_title[20], hire_date[9], tenp[32];
int enmp_nunber;

float salary;

#include <sgl ca. h>

printf("Username? \n");
get s(usernane);
printf("Password? \n");
get s(password);

EXEC SQL WHENEVER SQLERRCR GOTO sql _error;

EXEC SQL CONNECT : usernane | DENTIFI ED BY : password;
printf("Connected to Oracle\n");
for (51)
{
printf("Enployee Nunber (0 to end)? ");
gets(tenp);
enp_nunber = atoi (tenp);

if (emp_nunber == 0)

{
EXEC SQL COMW T WORK RELEASE;
printf("Exiting programn");
br eak;
}
R R LE L begin PL/SQ block ----------------- */
EXEC SQL EXECUTE
BEG N
SELECT job, hiredate, sal
INTO :job_title, :hire_date, :salary
FROM enp
VHERE enpno = : enp_nunber;
END,
END- EXEC;
A LR end PL/SQ block ---------mnmmunn- */

printf("Nunber Job Title Hre Date Salary\n");
printf(ecc-cemeem e \n");
printf("%d 9.8s 99.9s 9%.2f\n",
enp_nunber, job_title, hire_date, salary);

}

exit(0);
sql _error:

EXEC SQL WHENEVER SQLERRCR CONTI NUE;
EXEC SQL ROLLBACK WORK RELEASE;

7-6

Chapter 7
Host Variables

printf("Processing error\n");
exit(1);

Notice that the host variable emp_number is set before the PL/SQL block is entered,
and the host variables job_title, hire_date, and salary are set inside the block.

7.3.2 Complex Example

In the example later, you prompt the user for a bank account number, transaction type,
and transaction amount, then debit or credit the account. If the account does not exist,

ORACLE

you raise an exception. When the transaction is complete, you display its status.

#include <stdio.h>
#include <sgl ca. h>

char usernane[20] ;
char password[20] ;
char status[80];
char tenp[32];

int acct_num
doubl e trans_ant;
void sql _error();

mai n()

{

char trans_type;

strcpy(password, "TIGER');
strcpy(usernane, "SCOTT");

EXEC SQL WHENEVER SQLERRCR DO sql _error();
EXEC SQL CONNECT : usernane | DENTI FI ED BY : passwor d;
printf("Connected to Oracle\n");

for (53)
{
printf("Account Number (0 to end)? ");

gets(tenp);
acct_num = atoi (tenp);

i f(acct_num == 0)

EXEC SQL COW T WORK RELEASE;
printf("Exiting programn");
br eak;

}

printf("Transaction Type - Dyebit or Qredit? ");

gets(tenp);
trans_type = tenp[0];

printf("Transaction Amunt? ");

gets(tenp);
trans_anm = atof(tenp);

R L begin PL/SQ block ------------------- */
EXEC SQL EXECUTE
DECLARE

Chapter 7
Host Variables

ol d_bal NUMBER(9, 2) ;
err_msg CHAR(70);
nonexi stent EXCEPTI ON,

BEG N
;trans_type := UPPER(:trans_type);
IF :trans_type = 'C THEN -- credit the account
UPDATE accts SET bal = bal + :trans_ant
WHERE acctid = :acct_num

| F SQLYRONCOUNT = 0 THEN -- no rows affected
RAI SE nonexi stent;
ELSE
;status := 'Credit applied;
END | F;
ELSIF :trans_type = 'D THEN -- debit the account

SELECT bal INTO ol d_bal FROM accts
WHERE acctid = :acct_num
IF old_bal >=:trans_ant THEN -- enough funds
UPDATE accts SET bal = bal - :trans_ant
VWHERE acctid = :acct_num
;status := '"Debit applied;

ELSE
;status := "Insufficient funds';
END | F;
ELSE
;status := "Invalid type: ' || :trans_type;
END I F;
COWM T,
EXCEPTI ON
VHEN NO_DATA FOUND OR nonexi stent THEN
;status := 'Nonexistent account';

WHEN OTHERS THEN
err_msg := SUBSTR(SQLERRM 1, 70);

:status := "Error: ' || err_nsg;
END;
END- EXEC,
R R TR end PL/SQL block ----------------------- */
printf("\nStatus: %\n", status);
}
exit(0);
}
voi d
sql _error()
{
EXEC SQL WHENEVER SQLERROR CONTI NUE;
EXEC SQL ROLLBACK WORK RELEASE;
printf("Processing error\n");
exit(1);
}

7.3.3 VARCHAR Pseudotype

You can use the VARCHAR datatype to declare variable-length character strings. If
the VARCHAR is an input host variable, you must tell Oracle what length to expect.
Therefore, set the length component to the actual length of the value stored in the
string component.

ORACLE 7-8

Chapter 7
Indicator Variables

If the VARCHAR is an output host variable, Oracle automatically sets the length
component. However, to use a VARCHAR (as well as CHARZ and STRING) output
host variable in your PL/SQL block, you must initialize the length component before
entering the block. So, set the length component to the declared (maximum) length of
the VARCHAR, as shown here:

i nt enp_nunber ;

varchar enp_nane[10];

float sal ary;

enp_nane.len = 10; /* initialize length conponent */

EXEC SQL EXECUTE

BEG N
SELECT ename, sal INTO :enp_nane, :salary
FROM enp
WHERE enpno = :enp_nunber;
END;
END- EXEC;

7.3.4 Restriction

Do not use C pointer or array syntax in PL/SQL blocks. The PL/SQL compiler does not
understand C host-variable expressions and is, therefore, unable to parse them. For
example, the following is invalid-

EXEC SQL EXECUTE
BEG N
(X[5].name := "SCOTT ;

END;
END- EXEC;

To avoid syntax errors, use a place-holder (a temporary variable), to hold the address
of the structure field to populate structures as shown in the following valid example:

nane = x[5].nane ;
EXEC SQL EXECUTE
BEG N
‘nane := ...;

END;
END- EXEC;

7.4 Indicator Variables

ORACLE

PL/SQL does not need indicator variables because it can manipulate NULLs. For
example, within PL/SQL, you can use the IS NULL operator to test for NULLs, as
follows:

IF variable I'S NULL THEN ...

And, you can use the assignment operator (:=) to assign NULLSs, as follows:

variable := NULL;

7-9

Chapter 7
Indicator Variables

However, a host language such as C needs indicator variables because it cannot
manipulate NULLs. Embedded PL/SQL meets this need by letting you use indicator
variables to

* Accept NULLs input from a host program
e Output NULLs or truncated values to a host program

When used in a PL/SQL block, indicator variables are subject to the following rules:

* You cannot refer to an indicator variable by itself; it must be appended to its
associated host variable.

e If you refer to a host variable with its indicator variable, you must always refer to it
that way in the same block.

In the following example, the indicator variable ind_comm appears with its host
variable commission in the SELECT statement, so it must appear that way in the IF
statement:

EXEC SQL EXECUTE
BEG N
SELECT enane, comm
I NTO : enp_name, :conmission :ind_conm
FROM enp
VWHERE enpno = : enp_nunber;
I'F :comission :ind_comm|S NULL THEN ...

END;
END- EXEC;

Notice that PL/SQL treats :commission :ind_comm like any other simple variable.
Though you cannot refer directly to an indicator variable inside a PL/SQL block,
PL/SQL checks the value of the indicator variable when entering the block and sets
the value correctly when exiting the block.

7.4.1 NULLs Handling

When entering a block, if an indicator variable has a value of -1, PL/SQL automatically
assigns a NULL to the host variable. When exiting the block, if a host variable is NULL,
PL/SQL automatically assigns a value of -1 to the indicator variable. In the next
example, if ind_sal had a value of -1 before the PL/SQL block was entered, the
salary_missing exception is raised. An exception is a named error condition.

EXEC SQL EXECUTE

BEG N
IF :salary :ind_sal 1S NULL THEN
RAI SE sal ary_mi ssi ng;

END I F;

END;
END- EXEC;

7.4.2 Truncated Values

PL/SQL does not raise an exception when a truncated string value is assigned to a
host variable. However, if you use an indicator variable, PL/SQL sets it to the original

ORACLE 7-10

Chapter 7
Host Arrays

length of the string. In the following example, the host program will be able to tell, by
checking the value of ind_name, if a truncated value was assigned to emp_name:

EXEC SQL EXECUTE
DECLARE

new_nane CHAR(10);
BEG N

:enp_nane: i nd_nane : = new_nane;

END;
END- EXEC;

7.5 Host Arrays

You can pass input host arrays and indicator arrays to a PL/SQL block. They can be
indexed by a PL/SQL variable of type BINARY_INTEGER or PLS_INTEGER,;
VARCHAR?2 key types are not permitted. Normally, the entire host array is passed to
PL/SQL, but you can use the ARRAYLEN statement (discussed later) to specify a
smaller array dimension.

Furthermore, you can use a procedure call to assign all the values in a host array to
rows in a PL/SQL table. Given that the array subscript range is m .. n, the
corresponding PL/SQL table index range is always 1 .. n - m + 1. For example, if the
array subscript range is 5 .. 10, the corresponding PL/SQL table index range is 1 .. (10
-5+1)orl.. 6.

In the following example, you pass an array named salary to a PL/SQL block, which
uses the array in a function call. The function is named median because it finds the
middle value in a series of numbers. Its formal parameters include a PL/SQL table
named num_tab. The function call assigns all the values in the actual parameter salary
to rows in the formal parameter num_tab.

float salary[100];
/* popul ate the host array */

EXEC SQL EXECUTE
DECLARE
TYPE NunfTabTyp |'S TABLE OF REAL
| NDEX BY Bl NARY_| NTEGER,
medi an_sal ary REAL;
n Bl NARY | NTEGER,

FUNCTI ON nedi an (num tab NunifabTyp, n | NTEGER)

RETURN REAL 1S
BEG N

- conpute nedian
END;
BEG N

n := 100;

medi an_sal ary := median(:salary, n);

END;
END- EXEC;

ORACLE 7-11

Chapter 7
Host Arrays

Note:

In dynamic SQL Method 4, you cannot bind a host array to a PL/SQL
procedure with a parameter of type "table.”

You can also use a procedure call to assign all row values in a PL/SQL table to
corresponding elements in a host array.

Table 7-1 shows the legal conversions between row values in a PL/SQL table and
elements in a host array. For example, a host array of type LONG is compatible with a
PL/SQL table of type VARCHAR2, LONG, RAW, or LONG RAW. Notably, it is not
compatible with a PL/SQL table of type CHAR.

Table 7-1 Legal Datatype Conversions

PL/ISQL CHAR DATE LONG LONG NUMBE RAW ROWID VARCHA
Table-> RAW R R2
Host Array

CHARF X - - - - - - -
CHARZ X - - - - - - -
DATE - X - - - - - -
DECIMAL - - - -
DISPLAY - - - -
FLOAT - - - -
INTEGER - - - -
LONG X - X -

LONG - - X X - X - X
VARCHAR

LONG - - - X - X - -
VARRAW

NUMBER - - - - X - - -
RAW - - - X - X - -
ROWID - - - - - - X -
STRING - - X X - X - X
UNSIGNED
VARCHAR
VARCHAR2
VARNUM
VARRAW

X X X X

' X X]

' X X '
x x
' X X]
' X X]

X
X

Note:

The Pro*C/C++ Precompiler does not check your usage of host arrays. For
instance, no index range-checking is done.

ORACLE 7-12

Chapter 7
Host Arrays

Related Topics
* Using Method 4
e Stored PL/SQL and Java Subprograms

7.5.1 ARRAYLEN Statement

Suppose you must pass an input host array to a PL/SQL block for processing. By
default, when binding such a host array, the Pro*C/C++ Precompiler uses its declared
dimension. However, you might not want to process the entire array. In that case, you
can use the ARRAYLEN statement to specify a smaller array dimension. ARRAYLEN
associates the host array with a host variable, which stores the smaller dimension. The
statement syntax is

EXEC SQL ARRAYLEN host _array (dimension) [EXECUTE];

where dimension is a 4-byte integer host variable, not a literal or expression.
EXECUTE is an optional keyword.

The ARRAYLEN statement must appear along with, but somewhere after, the
declarations of host_array and dimension. You cannot specify an offset into the host
array. However, you might be able to use C features for that purpose. The following
example uses ARRAYLEN to override the default dimension of a C host array named
bonus:

float bonus[100];

int dinmension;

EXEC SQL ARRAYLEN bonus (di nension);
/* popul ate the host array */

dinmension = 25; /* set smaller array dinension */
EXEC SQL EXECUTE
DECLARE
TYPE NunfTabTyp |'S TABLE OF REAL
| NDEX BY Bl NARY_| NTEGER,
medi an_bonus REAL;
FUNCTI ON nedi an (num tab NunfTabTyp, n | NTEGER)
RETURN REAL IS
BEG N
- conpute nedian
END;
BEG N
medi an_bonus : = nedi an(: bonus, :dinmension);

END;
END- EXEC;
Only 25 array elements are passed to the PL/SQL block because ARRAYLEN reduces
the array from 100 to 25 elements. As a result, when the PL/SQL block is sent to

Oracle for execution, a much smaller host array is sent along. This saves time and, in
a networked environment, reduces network traffic.

7.5.2 Optional Keyword EXECUTE

Host arrays used in a dynamic SQL method 2 EXEC SQL EXECUTE statement may
have two different interpretations based on the presence or absence of the optional
keyword EXECUTE.

ORACLE 7-13

ORACLE

Chapter 7
Host Arrays

By default (if the EXECUTE keyword is absent on an ARRAYLEN statement):

e The host array is considered when determining the number of times a PL/SQL
block will be executed. (The minimum array dimension is used.)

* The host array must not be bound to a PL/SQL index table.
If the keyword EXECUTE is present:

e The host array must be bound to an index table.

e The PL/SQL block will be executed one time.

e All host variables specified in the EXEC SQL EXECUTE statement must either
— Be specified in an ARRAYLEN ... EXECUTE statement
— Be scalar.

For example, given the following PL/SQL procedure:

CREATE OR REPLACE PACKACE pkg AS
TYPE tab |'S TABLE OF NUMBER(5) | NDEX BY BI NARY_| NTEGER,
PROCEDURE procl (parml tab, parn2 NUMBER, parnB tab);
END;

The following Pro*C/C++ function demonstrates how host arrays can be used to
determine how many times a given PL/SQL block is executed. In this case, the
PL/SQL block will be executed 3 times resulting in 3 new rows in the enp table.

funcl()

{
int enpno_arr[5] = {1111, 2222, 3333, 4444, 5555};
char *enane_arr[3] = {"MCKEY", "M NNIE", "GOOFY"};
char *stntl = "BEG N I NSERT I NTO enp(enpno, ename) VALUES :bl, :b2; END;";

EXEC SQ. PREPARE s1 FROM :stnt1;
EXEC SQL EXECUTE s1 USING :enpno_arr, :ename_arr;

The following Pro*C/C++ function demonstrates how to bind a host array to a PL/SQL
index table through dynamic method 2. Note the presence of the
ARRAYLEN...EXECUTE statement for all host arrays specified in the EXEC SQL
EXECUTE statement.

func2()
{
int ii =2;
int int_tab[3] ={1,2,3};
int dim= 3;
EXEC SQL ARRAYLEN int_tab (dinm EXECUTE,

char *stnt2 = "begin pkg.procl(:vl, :v2, :v3); end; "

EXEC SQ. PREPARE s2 FROM :stnt2;
EXEC SQL EXECUTE s2 USING :int_tab, :ii, :int_tab;

However the following Pro*C/C++ function will result in a precompile-time warning
because there is no ARRAYLEN...EXECUTE statement forint _arr.

7-14

Chapter 7
Cursor Usage in Embedded PL/SQL

func3()
{

int int_arr[3];

int int_tab[3] ={1,2,3};

int dim= 3;

EXEC SQL ARRAYLEN int_tab (dinm EXECUTE,

char *stnt3 = "begin pkg.procl(:vl, :v2, :v3); end;, "

EXEC SQ. PREPARE s3 FROM :stnt 3;
EXEC SQL EXECUTE s3 USING :int_tab, :int_arr, :int_tab;
}

Related Topics
* Using Method 2
* Host Arrays

7.6 Cursor Usage in Embedded PL/SQL

The maximum number of cursors your program can use simultaneously is determined
by the database initialization parameter OPEN_CURSORS. While executing an
embedded PL/SQL block, one cursor. the parent cursor, is associated with the entire
block and one cursor, the child cursor, is associated with each SQL statement in the
embedded PL/SQL block. Both parent and child cursors count toward the OPEN_CURSORS
limit.

The following calculation shows how to determine the maximum number of cursors
used. The sum of the cursors used must not exceed OPEN_CURSORS.

SQL statenent cursors

PL/ SQL parent cursors

PL/ SQ child cursors
+ 6 cursors for overhead

Sum of cursors in use

If your program exceeds the limit imposed by OPEN_CURSCRS, Oracle gives you an error.

Related Topics
e Embedded PL/SQL Considerations

7.7 Stored PL/SQL and Java Subprograms

ORACLE

Unlike anonymous blocks, PL/SQL subprograms (procedures and functions) and Java
methods can be compiled separately, stored in an Oracle database, and invoked.

A subprogram explicitly created using an Oracle tool such as SQL*Plus is called a
stored subprogram. Once compiled and stored in the data dictionary, it is a database
object, which can be re-executed without being recompiled.

When a subprogram within a PL/SQL block or stored procedure is sent to Oracle by
your application, it is called an inline subprogram. Oracle compiles the inline
subprogram and caches it in the System Global Area (SGA) but does not store the
source or object code in the data dictionary.

7-15

Chapter 7
Stored PL/SQL and Java Subprograms

Subprograms defined within a package are considered part of the package, and thus
are called packaged subprograms. Stored subprograms not defined within a package
are called standalone subprograms.

Related Topics

» Java Applications on Oracle Database

7.7.1 About Creating Stored Subprograms

You can embed the SQL statements CREATE FUNCTION, CREATE PROCEDURE,
and CREATE PACKAGE in a host program, as the following example shows:

EXEC SQL CREATE
FUNCTI ON sal _ok (salary REAL, title CHAR)
RETURN BOOLEAN AS
mn_sal REAL;
max_sal REAL;
BEG N
SELECT | osal, hisal INTO min_sal, max_sal
FROM sal s
VHERE job = title;
RETURN (salary >= nmin_sal) AND
(salary <= max_sal);
END sal _ok;
END- EXEC;

Notice that the embedded CREATE {FUNCTION | PROCEDURE | PACKAGE}
statement is a hybrid. Like all other embedded CREATE statements, it begins with the
keywords EXEC SQL (not EXEC SQL EXECUTE). But, unlike other embedded
CREATE statements, it ends with the PL/SQL terminator END-EXEC.

In the example later, you create a package that contains a procedure hamed
get_employees, which fetches a batch of rows from the EMP table. The batch size is
determined by the caller of the procedure, which might be another stored subprogram
or a client application.

The procedure declares three PL/SQL tables as OUT formal parameters, then fetches
a batch of employee data into the PL/SQL tables. The matching actual parameters are
host arrays. When the procedure finishes, it automatically assigns all row values in the
PL/SQL tables to corresponding elements in the host arrays.

EXEC SQL CREATE OR REPLACE PACKAGE enp_actions AS
TYPE CharArrayTyp |'S TABLE OF VARCHAR2(10)
I NDEX BY BI NARY_| NTEGER;
TYPE NumArrayTyp | S TABLE OF FLOAT
| NDEX BY BI NARY_| NTEGER;
PROCEDURE get _enpl oyees(

dept _nunber IN | NTEGER,
batch _size IN | NTEGER,
f ound IN QUT | NTEGER,

done_fetch QUT | NTEGER,
enp_nane aut Char ArrayTyp,
job_title QUT Char ArrayTyp,

sal ary aut NumAr rayTyp) ;
END enp_acti ons;
END- EXEC;

EXEC SQL CREATE OR REPLACE PACKAGE BODY enp_actions AS

CURSOR get _enp (dept _nunber IN INTEGER) IS

ORACLE 7-16

Chapter 7
Stored PL/SQL and Java Subprograms

SELECT enane, job, sal FROM enp
VWHERE deptno = dept _nunber;

PROCEDURE get _enpl oyees(

dept _nunber IN | NTEGER,
batch_size IN | NTEGER,
f ound IN QUT | NTEGER,
done_fetch QUT | NTEGER,

enp_name our Char ArrayTyp,
job_title QUT Char ArrayTyp,
sal ary OJT NumArrayTyp) 1S

BEG N
I F NOT get_enmp% SOPEN THEN
OPEN get _enp(dept _nunber);

END | F;
done_fetch : = 0;
found : = 0;

FOR i IN 1..batch_size LOOP
FETCH get _enp | NTO enp_nane(i),
job_title(i), salary(i);
| F get_enp%NOTFOUND THEN

CLOSE get _enp;
done_fetch : = 1;
EXIT,
ELSE
found : = found + 1;
END | F;
END LOOP;
END get _enpl oyees;
END enp_acti ons;
END- EXEC;

You specify the REPLACE clause in the CREATE statement to redefine an existing
package without having to drop the package, re-create it, and re-grant privileges on it.
For the full syntax of the CREATE statement see SQL Statements: COMMIT to
CREATE JAVA.

If an embedded CREATE {FUNCTION | PROCEDURE | PACKAGE} statement fails,
Oracle generates a warning, not an error.

7.7.2 About Calling a Stored PL/SQL or Java Subprogram

To call a stored subprogram from your host program, you can use either an
anonymous PL/SQL block, or the CALL embedded SQL statement.

7.7.2.1 Anonymous PL/SQL Block

In the following example, you call a standalone procedure named raise_salary:

EXEC SQL EXECUTE
BEG N
rai se_salary(:enp_id, :increase);
END;
END- EXEC;

Notice that stored subprograms can take parameters. In this example, the actual
parameters emp_id and increase are C host variables.

ORACLE 7-17

ORACLE

Chapter 7
Stored PL/SQL and Java Subprograms

In the next example, the procedure raise_salary is stored in a package named
emp_actions, so you must use dot notation to fully qualify the procedure call:

EXEC SQL EXECUTE
BEG N
enp_actions.raise_salary(:enp_id, :increase);
END;
END- EXEC;

An actual IN parameter can be a literal, scalar host variable, host array, PL/SQL
constant or variable, PL/SQL table, PL/SQL user-defined record, procedure call, or
expression. However, an actual OUT parameter cannot be a literal, procedure call, or
expression.

You must use precompiler option SQLCHECK=SEMANTICS with an embedded
PL/SQL block.

In the following example, three of the formal parameters are PL/SQL tables, and the
corresponding actual parameters are host arrays. The program calls the stored
procedure get_employees repeatedly, displaying each batch of employee data, until
no more data is found. This program is available on-line in the deno directory, in the file
sanpl e9. pc. A SQL script to create the CALLDEMO stored package is available in the
file cal | denvo. sql .

/***

Sanple Program9: Calling a stored procedure

This program connects to ORACLE using the SCOTT/ Tl GER
account. The program decl ares several host arrays, then
calls a PL/SQL stored procedure (GET_EMPLOYEES in the
CALLDEMO package) that fills the table OUT paraneters. The
PL/ SQL procedure returns up to AS|ZE val ues.

Sanpl €9 keeps cal ling GET_EMPLOYEES, getting ASIZE arrays
each time, and printing the values, until all rows have been
retrieved. GET_EMPLOYEES sets the done_flag to indicate "no
more data."

***/

#incl ude <stdio. h>
#include <string. h>

EXEC SQ. | NCLUDE sql ca. h;

typedef char asciz[20];
typedef char vc2_arr[11];

EXEC SQL BEG N DECLARE SECTI ON,
[* User-defined type for null-termnated strings */
EXEC SQL TYPE asciz |S STRING 20) REFERENCE;

[* User-defined type for a VARCHAR array el ement. */
EXEC SQL TYPE vc2_arr |'S VARCHAR2(11) REFERENCE;

asciz user nane;

asci z passwor d;

int dept _no; [* which department to query? */
vc2_arr enp_nane[10]; [* array of returned names */
vc2_arr job[10];

fl oat sal ary[10] ;

int done_f | ag;

7-18

Chapter 7
Stored PL/SQL and Java Subprograms

int array_size;
int numret; [* nunber of rows returned */
EXEC SQL END DECLARE SECTI ON,

| ong SQLCODE;
void print_rows(); /* produces program out put */
voi d sql _error(); /* handl es unrecoverable errors */
mai n()
{

int i

char tenp_buf[32];

/* Connect to ORACLE. */
EXEC SQL WHENEVER SQLERROR DO sql _error();
strcpy(usernane, "scott");
strcpy(password, "tiger");
EXEC SQL CONNECT : usernane | DENTI FI ED BY : passwor d;
printf("\nConnected to ORACLE as user: 9%\n\n", usernane);
printf("Enter departnent nunber: ");
gets(tenp_buf);
dept_no = atoi (temp_buf);/* Print colum headers. */
printf("\n\n");
printf("9% 10.10s% 10. 10s%\n", "Enpl oyee", "Job", "Salary");
printf("% 10.10s% 10. 10s%\n", "-------- B e "),

/* Set the array size. */
array_size = 10;

done_flag = 0;
numret = 0;

/* Array fetch | oop.

* The | oop continues until the OUT parameter done _flag is set.
* Pass in the departnent nunmber, and the array size--

* get nanes, jobs, and salaries back.

for (i7)
{
EXEC SQL EXECUTE
BEG N cal | den. get _enpl oyees
(:dept_no, :array_size, :numret, :done_flag,
;enp_nane, :job, :salary);
END;
END- EXEC,

print_rows(numret);

if (done_flag)
break;

}

/* Disconnect fromthe database. */
EXEC SQL COMM T WORK RELEASE;
exit(0);

}

ORACLE 7-19

Chapter 7
Stored PL/SQL and Java Subprograms

voi d
print_rows(n)
int n;
{ . .
int i;
if (n==0)
{
printf("No rows retrieved.\n");
return;
}
for (i =0; i <n; i+4)
printf("9%0.10s%0.10s%. 2f\n",
enp_nane[i], job[i], salary[i]);
}
/* Handl e errors. Exit on any error. */
voi d
sql _error()
{

char nmsg[512];
int buf _len, nmsg_len;

EXEC SQL WHENEVER SQLERRCR CONTI NUE;

buf _Ien = sizeof (msg);
sql gl m{nsg, &buf len, &rsg_len);

printf("\nORACLE error detected:");
printf("\n%*s \n", nsg_len, nsQ);

EXEC SQL ROLLBACK WORK RELEASE:
exit(1);
}

Remember, the datatype of each actual parameter must be convertible to the datatype
of its corresponding formal parameter. Also, before a stored procedure is exited, all
OUT formal parameters must be assigned values. Otherwise, the values of
corresponding actual parameters are indeterminate.

SQLCHECK=SEMANTICS is required when using an anonymous PL/SQL block.

Related Topics
* About Creating Stored Subprograms

7.7.2.2 Remote Access

ORACLE

PL/SQL lets you access remote databases using database links. Typically, database
links are established by your DBA and stored in the Oracle data dictionary. A database
link tells Oracle where the remote database is located, the path to it, and what Oracle
username and password to use. In the following example, you use the database link
dallas to call the raise_salary procedure:

EXEC SQL EXECUTE
BEG N
rai se_salary@al | as(:enmp_id, :increase);

7-20

Chapter 7
Stored PL/SQL and Java Subprograms

END;
END- EXEC;

You can create synonyms to provide location transparency for remote subprograms,
as the following example shows:

CREATE PUBLI C SYNONYM rai se_sal ary
FOR rai se_sal ary@al | as;

7.7.2.3 The CALL Statement

The concepts presented earlier for the embedded PL/SQL block also hold true for the
CALL statement. The CALL embedded SQL statement has the form:

EXEC SQL
CALL [schema.] [package.]stored_proc[@b_link](argl, ...)
[INTO :ret_var [[INDICATOR]:ret_ind]] ;

where

schema

the schema containing the procedure

package

the package containing the procedure

stored_proc

is the Java or PL/SQL stored procedure to be called
db_link

is the optional remote database link

argl...

is the list of arguments (variables, literals, or expressions) passed,
ret_var

is the optional host variable which receives the result
ind_var

the optional indicator variable for ret_var.

You can use either SQLCHECK=SYNTAX, or SEMANTICS with the CALL statement.

7.7.2.4 CALL Example

If you have created a PL/SQL function f act (stored in the package mat hpkg) that takes
an integer as input and returns its factorial in an integer:

EXEC SQL CREATE OR REPLACE PACKAGE BODY mat hpkg as
function fact(n IN I NTEGER) RETURN | NTEGER AS
BEG N
IF (n <=0) then return 1;
ELSE return n * fact(n - 1);
END | F;
END fact;

ORACLE 7-21

Chapter 7
External Procedures

END mat hpkge;
END- EXEC.

then to use fact in a Pro*C/C++ application using the CALL statement:

int num fact;

EXEC SQ. CALL mat hpkge. fact(:num INTO :fact ;

" See Also:

e "CALL (Executable Embedded SQL)" for more information about the CALL
statement.

e Oracle Database Advanced Application Developer's Guide, for a complete
explanation of passing arguments and other issues.

7.7.3 About Getting Information about Stored Subprograms

Note:

The Logon Data Area (LDA) is no longer supported in Oracle. The ability to
embed OCI Release 7 calls in your Pro*C/C++ program will be phased out by
the next major Oracle release.

Datatypes and Host Variables described how to embed OCI calls in your host
program. After calling the library routine SQLLDA to set up the LDA, use the OCI call
odessp to get useful information about a stored subprogram. When you call odessp,
you must pass it a valid LDA and the name of the subprogram. For packaged
subprograms, you must also pass the name of the package. odessp returns
information about each subprogram parameter such as its datatype, size, position, and
S0 on.

You can also use the DESCRIBE_PROCEDURE stored procedure, in the
DBMS_DESCRIBE package.

7.8 External Procedures

ORACLE

PL/SQL can call C functions which are external procedures. External procedures (also
known as external procedures) are stored in dynamic link libraries (DLL) or, for
example, in .so libraries under Solaris.

If the external procedure executes on the server-side, it can call back into the server to
execute SQL and PL/SQL in the same transaction. External procedures on the server
execute faster than on the client and can interface the database server with external
systems and data sources.

7-22

Chapter 7
External Procedures

In order to execute a server-side external C function, the REGISTER CONNECT
embedded SQL statement must be used inside that function. The syntax of the
statement is:

EXEC SQL REGQ STER CONNECT USI NG : epctx [RETURNI NG : host _context] ;

where epct x is the external procedure context (of type pointer to OCl Ext ProcCont ext).
epct x is passed to the procedure by PL/SQL.

host _cont ext is a runtime context returned by the external procedure. Currently, it is
the default (global) context.

The REGISTER CONNECT statement will return the set of OCI handles (OCIEnv,
OCISvcCtx, and OCIError) that are associated with the current Oracle connection and
transaction. These handles are then used to define the Pro*C/C++ default unnamed
connection for the global SQLLIB runtime context. The REGISTER CONNECT
statement is therefore used instead of a CONNECT statement.

Subsequent embedded SQL statements will use this set of OCI handles. They execute
against the global SQLLIB runtime context and the unnamed connection, even those
that are in separately precompiled units. Uncommitted changes are not seen. In the
future, a (nondefault) runtime context can be returned in the optional RETURNING
clause.

There cannot already be any active default connection for the global runtime context.
A runtime error is returned if you try to use REGISTER CONNECT when a connection
already exists.

In real-world cases, the external procedure should be one that you can reuse from
many different applications.

Related Topics

e Oracle Call Interface Programmer's Guide

7.8.1 Restrictions on External Procedures

ORACLE

Follow these rules for external procedures:

» External procedures can only be in C. C++ external procedures are not supported.

* When you are connected to the external procedure context, any additional
connection is not permitted and results in a runtime error.

* Multithreaded external procedures are not supported. Executing an EXEC SQL
ENABLE THREADS statement is not permitted and will return a runtime error.
Pro*C/C++ does support multithreading in an application not using the external
procedure method we are describing.

* You cannot use DDL statements. They result in runtime errors.

* You cannot use transaction control statements, such as EXEC SQL COMMIT, and
EXEC SQL ROLLBACK.

* You cannot use object navigation statements such as EXEC SQL OBJECT
* You cannot use polling EXEC SQL LOB statements.

* You cannot use EXEC TOOLS statements. They will result in runtime errors.

7-23

Chapter 7
External Procedures

7.8.2 About Creating the External Procedure

Here is a simple example to create the external procedure ext p1.

To store an external C procedure, compile and link the code to a library such as a
DLL.

Reference to NT removed user comment 9561
Then use the following SQL command once to register the external procedure ext p1:

CREATE OR REPLACE PROCEDURE ext pl
AS EXTERNAL NAME "ext p1"

LI BRARY nylib

W TH CONTEXT

PARAVETERS(CONTEXT)

Where mylib is the name of the library storing procedure extpl. WITH CONTEXT
means to implicitly call this procedure with argument of type OCl Ext ProcCont ext*. The
context is omitted in your call, but is passed to the procedure anyway. The keyword
CONTEXT appears in the CREATE statement, however, as a place marker.

This context parameter is the one referenced in the EXEC SQL REGISTER
CONNECT statement inside ext p1.

The external procedure is called from SQL*Plus this way:

SQ>

BEG N
I NSERT | NTO enp VALUES(9999, ' JOHNSON , ' SALESMAN , 7782, sysdate, 1200, 150, 10);
ext pl;

END;

Here is the listing of ext p1. pc:

voi d extpl (epctx)

OCl Ext ProcCont ext *epct x;

{

char nane[15];
EXEC SQL REG STER CONNECT USI NG : epct x;
EXEC SQL WHENEVER SQLERROR goto err;
EXEC SQ. SELECT enane I NTO :nane FROM enp WHERE enpno = 9999;
return;

err: SQLExtProcError(SQ_SI NGLE_RCTX, sql ca. sql errm sqlerrnt, sqlca.sqlerrmsqglerrm);
return;

}

Related Topics

e External Subprograms

7.8.3 SQLEXxtProcError()

ORACLE

The SQLLIB function SQLExt ProcError () provides the ability to return control to PL/SQL
when an error occurs in an external C procedure. The function and its arguments are:

SQLEXxtProcError (ctx, msg, msglen)

where:

7-24

Chapter 7
About Using Dynamic SQL

ctx (IN) sql_context *

This is the target SQLLIB runtime context of the REGISTER CONNECT statement,
which has to be executed before this function is invoked. Only the global runtime
context is supported now.

msg (OUT) char *

The text of the error message.
msglen (OUT) size_t

The length in bytes of the message.

SQLLIB calls the OCI service function OCIExtProcRaiseExcpWithMsg when this
function is executed.

The message is from the structure sql errmin the SQLCA.
Here is an example showing use of SQLExt ProcError():

voi d extpl (epctx)
CCl Ext ProcCont ext *epct x;

{
char nane[15];
EXEC SQL REG STER CONNECT USI NG : epct x;
EXEC SQL WHENEVER SQLERRCR goto err;
EXEC SQL SELECT enane I NTO :name FROM enp WHERE snpno = 9999;
return;

err:
SQLExt ProcError (SQ_SINGLE_RCTX, sglca.sqlerrmsqlerrnt,
sqglca.sqlerrmsqglerrnm);

printf("\n%s\n", sqlca.sqlerrmsqglerrm, sqglca.sqlerrmsqglerrnc);
return;

}

Related Topics
e SQLCA Structure

7.9 About Using Dynamic SQL

Recall that the precompiler treats an entire PL/SQL block like a single SQL statement.
Therefore, you can store a PL/SQL block in a string host variable. Then, if the block
contains no host variables, you can use dynamic SQL Method 1 to EXECUTE the
PL/SQL string. Or, if the block contains a known number of host variables, you can
use dynamic SQL Method 2 to PREPARE and EXECUTE the PL/SQL string. If the
block contains an unknown number of host variables, you must use dynamic SQL
Method 4.

¢ Note:

In dynamic SQL Method 4, you cannot bind a host array to a PL/SQL
procedure with a parameter of type "table."

ORACLE 7-25

Chapter 7
About Using Dynamic SQL

Related Topics

e ANSI Dynamic SQL

* Oracle Dynamic SQL

e Oracle Dynamic SQL: Method 4
* Using Method 4

ORACLE 7-26

Host Arrays

This chapter looks at using arrays to simplify coding and improve program
performance. You will learn how to manipulate Oracle data using arrays, how to
operate on all the elements of an array with a single SQL statement, and how to limit
the number of array elements processed. The chapter contains the following topics:

Why Use Arrays?

e About Declaring Host Arrays

e About Using Arrays in SQL Statements
e About Selecting into Arrays

e About Inserting with Arrays

e About Updating with Arrays

e About Deleting with Arrays

e About Using the FOR Clause

e About Using the WHERE Clause

e Arrays of Structs

e About Mimicking CURRENT OF

e About Using sqlca.sqlerrd[2]

e About Using Additional Array Insert/Select Syntax

e About Using Implicit Buffered Insert

8.1 Why Use Arrays?

Arrays reduce programming time and result in improved performance.

With arrays, you manipulate an entire array with a single SQL statement. Thus, Oracle
communication overhead is reduced markedly, especially in a networked environment.
A major portion of runtime is spent on network round trips between the client program
and the server database. Arrays reduce the round trips.

For example, suppose you want to insert information about 300 employees into the
EMP table. Without arrays your program must do 300 individual INSERTs—one for
each employee. With arrays, only one INSERT needs to be done.

8.2 About Declaring Host Arrays

ORACLE

The following example declares three host arrays, each with a maximum of 50
elements:

char enmp_name[50] [10];
int enp_nunber[50];
float salary[50];

8-1

Chapter 8
About Using Arrays in SQL Statements

Arrays of VARCHARSs are also allowed. The following declaration is a valid host
language declaration:

VARCHAR v_array[10] [30];

8.2.1 Restrictions (Declaring Host Arrays)

You cannot declare host arrays of pointers, except for object types.

Except for character arrays (strings), host arrays that might be referenced in a SQL
statement are limited to one dimension. So, the two-dimensional array declared in the
following example is invalid:

int hi_lo_scores[25][25]; /* not allowed */

8.2.2 Maximum Size of Arrays

The maximum number of array elements in a SQL statement that is accessible in one
fetch is 32K (or possibly greater, depending on the platform and the available
memory). If you try to access a number that exceeds the maximum, you get a
"parameter out of range" runtime error. If the statement is an anonymous PL/SQL
block, the number of array elements accessible is limited to 32512 divided by the size
of the datatype.

8.3 About Using Arrays in SQL Statements

You can use host arrays as input variables in the INSERT, UPDATE, and DELETE
statements and as output variables in the INTO clause of SELECT and FETCH
statements.

The embedded SQL syntax used for host arrays and simple host variables is nearly
the same. One difference is the optional FOR clause, which lets you control array
processing. Also, there are restrictions on mixing host arrays and simple host variables
in a SQL statement.

The following sections illustrate the use of host arrays in data manipulation
statements.

8.3.1 About Referencing Host Arrays

ORACLE

If you use multiple host arrays in a single SQL statement, their number of elements
should be the same. Otherwise, an "array size mismatch" warning message is issued
at precompile time. If you ignore this warning, the precompiler uses the smallest
number of elements for the SQL operation.

In this example, only 25 rows are Inserted

int enmp_nunber [50] ;

char enmp_nane[50][10];

int dept _nunber[25];

/* Popul ate host arrays here. */

EXEC SQL I NSERT I NTO enp (enpno, enane, deptno)
VALUES (:enp_nunber, :enmp_nane, :dept_number);

8-2

Chapter 8
About Using Arrays in SQL Statements

It is possible to subscript host arrays in SQL statements, and use them in a loop to
INSERT or fetch data. For example, you could INSERT every fifth element in an array
using a loop such as:

for (i =0; i <50; i +=5)
EXEC SQL | NSERT I NTO enp (enpno, deptno)
VALUES (:enp_nunber[i], :dept_nunber[i]);

However, if the array elements that you need to process are contiguous, you should
not process host arrays in a loop. Simply use the non-scripted array names in your
SQL statement. Oracle treats a SQL statement containing host arrays of element
number n like the same statement executed n times with n different scalar variables.

8.3.2 About Using Indicator Arrays

You can use indicator arrays to assign NULLSs to input host arrays, and to detect NULL
or truncated values (character columns only) in output host arrays. The following
example shows how to INSERT with indicator arrays:

i nt enp_nunber[50] ;

int dept _nunber [50] ;

float comm ssion[50];

short comm.ind[50]; /* indicator array */

/* Popul ate the host and indicator arrays. To insert a null
into the comm colum, assign -1 to the appropriate
element in the indicator array. */

EXEC SQL | NSERT | NTO enp (enpno, deptno, comm
VALUES (:enp_number, :dept_nunber,
: conmi ssion | NDI CATCR : comm i nd) ;

8.3.3 Oracle Restrictions (for Host Arrays)

Mixing scalar host variables with host arrays in the VALUES, SET, INTO, or WHERE
clause is not allowed. If any of the host variables is an array, all must be arrays.

You cannot use host arrays with the CURRENT OF clause in an UPDATE or DELETE
statement.

8.3.4 ANSI Restriction and Requirements

ORACLE

The array interface is an Oracle extension to the ANSI/ISO embedded SQL standard.
However, when you precompile with MODE=ANSI, array SELECTs and FETCHes are
still allowed. The use of arrays can be flagged using the FIPS flagger precompiler
option, if desired.

When doing array SELECTs and FETCHes, always use indicator arrays. That way,
you can test for NULLs in the associated output host array.

If DBMS=V7 or DBMB=v8 and you SELECT or FETCH a NULL column value into a host array that
is not associated with an indicator array, then Oracle stops processing, sets sqgl errd[2]
to the number of rows processed, and returns an error message. When DBVS=V7 or
DBMS=v8, Oracle does not consider truncation to be an error.

Also, if your SELECT or FETCH results in any warning such as ORA- 24347 due to usage of
NULL, and if any column does not have an indicator array, Oracle stops processing.

8-3

Chapter 8
About Selecting into Arrays

Note:

Use indicator variables for all the columns in the SELECT or FETCH. If all columns
do not have indicators, then the precompiler option unsaf e_nul | =yes can be
used as an alternative.

8.4 About Selecting into Arrays

You can use host arrays as output variables in the SELECT statement. If you know the
maximum number of rows the SELECT will return, simply declare the host arrays with
that number of elements. In the following example, you select directly into three host
arrays. Knowing the SELECT will return no more than 50 rows, you declare the arrays
with 50 elements:

char enp_name[50][20];
int enp_nunber [50] ;
float salary[50];

EXEC SQL SELECT ENAME, EMPNO, SAL
INTO : enp_name, :enp_nunber, :salary
FROM EMP
WHERE SAL > 1000;

In the preceding example, the SELECT statement returns up to 50 rows. If there are
fewer than 50 eligible rows or you want to retrieve only 50 rows, this method will
suffice. However, if there are more than 50 eligible rows, you cannot retrieve all of
them this way. If you reexecute the SELECT statement, it just returns the first 50 rows
again, even if more are eligible. You must either declare a larger array or declare a
cursor for use with the FETCH statement.

If a SELECT INTO statement returns more rows than the number of elements you
declared, Oracle issues an error message unless you specify SELECT_ERROR=NO.

See Also:

"Precompiler Options " for more information about the SELECT_ERROR
option.

8.4.1 Cursor Fetches

ORACLE

If you do not know the maximum number of rows a SELECT will return, you can
declare and open a cursor, then fetch from it in "batches."

Batch fetches within a loop let you retrieve a large number of rows with ease. Each
FETCH returns the next batch of rows from the current active set. In the following
example, you fetch in 20-row batches:

int enp_nunber[20];
float salary[20];

8-4

Chapter 8
About Selecting into Arrays

EXEC SQL DECLARE enp_cursor CURSCR FOR
SELECT enpno, sal FROM enp;

EXEC SQL OPEN enp_cursor;

EXEC SQ. WHENEVER NOT FQUND do break;
for (57)

{
EXEC SQL FETCH enp_cursor
INTO : enp_nunber, :salary;
[* process batch of rows */

Do not forget to check how many rows were actually returned in the last fetch, and
process them.

Related Topics

* Number of Rows Fetched

8.4.2 About Using sglca.sglerrd[2]

ORACLE

For INSERT, UPDATE, DELETE, and SELECT INTO statements, sql ca. sql errd[2]
records the number of rows processed. For FETCH statements, it records the
cumulative sum of rows processed.

When using host arrays with FETCH, to find the number of rows returned by the most
recent iteration, subtract the current value of sql ca. sgl errd[2] from its previous value
(stored in another variable). In the following example, you determine the number of
rows returned by the most recent fetch:

int enp_nunber[100];
char enp_name[100] [20] ;

int rows_to_fetch, rows_before, rows_this_tineg;
EXEC SQL DECLARE enp_cursor CURSOR FOR
SELECT enpno, enane
FROM enp
VWHERE deptno = 30;
EXEC SQL OPEN enp_cursor;
EXEC SQL WHENEVER NOT FOUND CONTI NUE;
[* initialize |oop variables */
rows_to_fetch = 20; /* nunber of rows in each "batch" */
rows_bhefore = 0; /* previous value of sqlerrd[2] */
rows_this_tinme = 20;

while (rows_this_time == rows_to_fetch)

{
EXEC SQL FOR :rows_to_fetch
FETCH enp_cur sor
I NTO : enp_nunber, :enp_nane;
rows_this_time = sqglca.sqlerrd[2] - rows_before;
rows_hefore = sqlca.sqlerrd[2];

8-5

Chapter 8
About Selecting into Arrays

sgl ca. sql errd[2] is also useful when an error occurs during an array operation.
Processing stops at the row that caused the error, so sql errd[2] gives the number of
rows processed successfully.

8.4.3 Number of Rows Fetched

Each FETCH returns, at most, the total number of rows in the array. Fewer rows are
returned in the following cases:

* The end of the active set is reached. The "no data found" Oracle error code is
returned to SQLCODE in the SQLCA. For example, this happens if you fetch into
an array of number of elements 100 but only 20 rows are returned.

« Fewer than a full batch of rows remain to be fetched. For example, this happens if
you fetch 70 rows into an array of 20 number elements because after the third
FETCH, only 10 rows remain to be fetched.

* An error is detected while processing a row. The FETCH fails and the applicable
Oracle error code is returned to SQLCODE.

The cumulative number of rows returned can be found in the third element of sqlerrd in
the SQLCA, called sql errd[2] in this guide. This applies to each open cursor. In the
following example, notice how the status of each cursor is maintained separately:

EXEC SQ. OPEN cursor1;

EXEC SQ. OPEN cursor2;

EXEC SQL FETCH cursorl INTO :array_of_20;

/* now running total in sqglerrd[2] is 20 */

EXEC SQL FETCH cursor2 INTO :array_of_30;

/* now running total in sqlerrd[2] is 30, not 50 */
EXEC SQL FETCH cursorl INTO :array_of_20;

/* now running total in sqlerrd[2] is 40 (20 + 20) */
EXEC SQL FETCH cursor2 INTO :array_of_30;

/* now running total in sqglerrd[2] is 60 (30 + 30) */

8.4.4 Scrollable Cursor Fetches

You can also use host arrays with scrollable cursors. With scrollable cursors

sgl ca. sql errd[2] represents the maximum (absolute) row humber processed. Since an
application can arbitrarily position the fetches in scrollable mode, it need not be the
total number of rows processed.

While using host arrays with the FETCH statement in scrollable mode, you cannot
subtract the current value of sql ca. sql errd[2] from its previous value to find the
number of rows returned by the most recent iteration. The application program
determines the total number of rows in the result set by executing a FETCH LAST.
The value of sql ca. sql errd[2] provides the total number of rows in the result set.

Related Topics

e Sample Program: Host Arrays Using Scrollable Cursor

8.4.5 Sample Program 3: Host Arrays

ORACLE

The demonstration program in this section shows how you can use host arrays when
writing a query in Pro*C/C++. Pay particular attention to the use of the "rows
processed count" in the SQLCA (sql ca. sql errd[2]). This program is available on-line
in the file sanpl e3. pc in your deno directory.

8-6

Chapter 8
About Selecting into Arrays

/*

* sanpl e3. pc

* Host Arrays

*

* This program connects to ORACLE, declares and opens a cursor,
* fetches in batches using arrays, and prints the results using
* the function print_rows().

*

/

#incl ude <stdio. h>
#include <string. h>

#include <sql ca. h>

#define NAME_LENGTH 20
#define ARRAY_LENGTH 5
/* Another way to connect. */
char *username = "SCOTT";
char *password = "TI GER';

/* Declare a host structure tag. */

struct

{
i nt enp_nunber [ARRAY_LENGTH] ;
char enp_nane[ARRAY_LENGTH] [NAVE_LENGTH] ;
float salary[ARRAY_LENGTH];

} enp_rec;
/* Declare this programs functions. */
void print_rows(); /* produces program output */
voi d sql _error(); /* handl es unrecoverable errors */
mai n()
{

int numret; [* nunmber of rows returned */

/* Connect to ORACLE. */
EXEC SQL WHENEVER SQLERRCR DO sql _error (" Connect error:");

EXEC SQL CONNECT : usernane | DENTI FI ED BY : passwor d;

printf("\nConnected to ORACLE as user: 9%\n", usernane);

EXEC SQL WHENEVER SQLERROR DO sql _error("Oracle error:");
/* Declare a cursor for the FETCH */
EXEC SQL DECLARE c1 CURSOR FOR
SELECT enpno, ename, sal FROM enp;
EXEC SQL OPEN cl;

/* Initialize the nunber of rows. */
numret = 0;

/* Array fetch | oop - ends when NOT FOUND becones true. */
EXEC SQL WHENEVER NOT FOUND DO br eak;

for (1)

EXEC SQL FETCH c1 INTO : enp_rec;

ORACLE .

Chapter 8
About Selecting into Arrays

[* Print however many rows were returned. */
print_rows(sqlca.sglerrd[2] - numret);
numret = sqlca.sqlerrd2]; /* Reset the nunber. */
}
/* Print remaining rows fromlast fetch, if any. */
if ((sqlca.sqglerrd[2] - numret) > 0)
print_rows(sqlca.sglerrd[2] - numret);

EXEC SQL CLOSE c1,
printf("\nAu revoir.\n\n\n");

/* Disconnect fromthe database. */
EXEC SQL COMM T WORK RELEASE;

exit(0);
}
voi d
print_rows(n)
int n;
{
int i;
printf("\nNunber Enpl oyee Salary");
printf("\n------ c------o Ll \n");
for (i =0; i <n; i+4)
printf("% 9d% 15.15s99. 2f\n", enp_rec. enp_nunber[i],
enp_rec.enp_nane[i], enp_rec.salary[i]);
}
voi d
sql _error(nsg)
char *nsg;
{
EXEC SQL WHENEVER SQLERROR CONTI NUE;
printf("\n%", nsg);
printf("\n%.70s \n", sqlca.sqlerrmsqlerrnc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(1);
}

2 See Also:

" Handling Runtime Errors" for more information about SQLCA

8.4.6 Sample Program: Host Arrays Using Scrollable Cursor

This program describes how to use host arrays with scrollable cursors. This program is
available on-line in the file scdemo2. pc in your demo directory.

ORACLE 8-8

Chapter 8
About Selecting into Arrays

Note:

Note that we do a FETCH LAST to determine the number of rows in the result
set.

8.4.6.1 scdemoz2.pc

/
A Sanpl e programto denonstrate the use of scrollable
cursors with host arrays.

This programuses the hr/hr schema. Make sure
that this schema exists before executing this program

I e

#include <stdio. h>
#include <string. h>
#include <stdlib.h>
#include <sql ca. h>

#define ARRAY_LENGTH 4
[* user and passwd */

char *username = "hr";
char *password = "hr";

/* Declare a host structure tag. */
struct enmp_rec_array
{
int enp_nunber;
char enp_nang[20];
float salary;
} enp_rec[ARRAY_LENGTH;

[* Print the result of the query */

voi d print_rows()

{
int i;
for (i=0; i<ARRAY_LENGTH, i++)
printf ("%l % 98.2f\n", enp_rec[i].enp_nunber,
enp_rec[i].emp_nanme, enp_rec[i].salary);
}

/* Oacle error handler */
void sql _error(char *nsg)
{
EXEC SQL WHENEVER SQLERROR CONTI NUE;

printf("\n%", nsg);
printf("\n%.70s \n", sqlca.sqlerrmsqlerrnc);

ORACLE 8-9

ORACLE

Chapter 8
About Selecting into Arrays

EXEC SQL ROLLBACK WORK RELEASE;
exit (EXI T_FAI LURE) ;

void main()

int noOfRows; /* Nunber of rows in the result set */

[* Error handler */
EXEC SQL WHENEVER SQLERROR DO sql _error (" Connect error:");

/* Connect to the data base */
EXEC SQL CONNECT : usernane | DENTI FI ED BY : passwor d;

[* Error handle */
EXEC SQL WHENEVER SQLERROR DO sql _error("Oracle error:");

/* declare the cursor in scrollable node */
EXEC SQL DECLARE c1 SCROLL CURSOR FOR
SELECT enpl oyee_id, first_nane, salary FROM enpl oyees;

EXEC SQL OPEN cl;
EXEC SQL WHENEVER SQLERROR DO sql _error("Fetch Error:");

[* This is a dumy fetch to find out the nunber of rows
inthe result set */
EXEC SQL FETCH LAST cl1 INTO :enp_rec;

/* The nunber of rows in the result set is given by
the value of sqlca.sqlerrd[2] */

noOf Rows = sqlca. sqlerrd[2];
printf("Total nunber of rows in the result set %:\n",
noCf Rows) ;

/* Fetch the first ARRAY_LENGTH nunber of rows */
EXEC SQL FETCH FIRST c1 INTO :enp_rec;

prl ntf("******************** EFAULT \n")’
print_rows();

/* Fetch the next set of ARRAY_LENGTH rows */
EXEC SQL FETCH NEXT c1 I NTO :enp_rec;
printf("******************** NEXT \n")-
print_rows();

/* Fetch a set of ARRAY_LENGTH rows fromthe 3rd row onwards */
EXEC SQL FETCH ABSCLUTE 3 c1 INTO :enp_rec;
printf("******************** ABSO_UTE 3 : \n")’

print_rows();

/* Fetch the current ARRAY_LENGTH set of rows */
EXEC SQL FETCH CURRENT c1 I NTO :enp_rec;

prl ntf("******************** CLJRRENI’ \n")’
print_rows();

[* Fetch a set of ARRAY_LENGTH rows fromthe 2nd of f set
fromthe current cursor position */

EXEC SQL FETCH RELATIVE 2 c1 INTO :enp_rec;

printf("******************** RELATI VE 2 \n");

print_rows();

8-10

Chapter 8
About Selecting into Arrays

/* Again Fetch the first ARRAY_LENGTH nunber of rows */
EXEC SQL FETCH ABSCLUTE 0 c1 INTO :enp_rec;
printf("******************** ABSO_UTE 0 : \n")’
print_rows();

/* close the cursor */
EXEC SQL CLCSE ci;

/* Disconnect fromthe database. */
EXEC SQL COWM T WORK RELEASE;
exit (EXI T_SUCCESS);

}

8.4.7 Host Array Restrictions

Using host arrays in the WHERE clause of a SELECT statement is not allowed except
in a subquery. For an example, see "About Using the WHERE Clause ".

Also, you cannot mix simple host variables with host arrays in the INTO clause of a
SELECT or FETCH statement. If any of the host variables is an array, all must be
arrays.

Table 8-1 shows which uses of host arrays are valid in a SELECT INTO statement:

Table 8-1 Valid Host Arrays for SELECT INTO
|

INTO Clause WHERE Clause Valid?
array array no
scalar scalar yes
array scalar yes
scalar array no

8.4.8 About Fetching NULLs

When doing array SELECTs and FETCHes, always use indicator arrays. That way,
you can test for NULLs in the associated output host array.

When DBMS = V7 or DBMS=v8, if you SELECT or FETCH a NULL column value into
a host array that is not associated with an indicator array, Oracle stops processing,
sets sql errd[2] to the number of rows processed, and issues an error message.

Also, if your SELECT or FETCH results in any warning such as ORA-24347 due to
usage of NULL, and if any column does not have an indicator array, Oracle stops
processing. Use indicator variables in all the columns in the SELECT or FETCH.If all
columns do not have indicators, the precompiler option unsaf e_nul | =yes could be used
as an alternative.

8.4.9 About Fetching Truncated Values

When DBMS=V7, truncation results in a warning message, but Oracle continues
processing.

ORACLE 8-11

Chapter 8
About Inserting with Arrays

Again, when doing array SELECTs and FETCHes, always use indicator arrays. That
way, if Oracle assigns one or more truncated column values to an output host array,
you can find the original lengths of the column values in the associated indicator array.

8.5 About Inserting with Arrays

You can use host arrays as input variables in an INSERT statement. Just make sure
your program populates the arrays with data before executing the INSERT statement.

If some elements in the arrays are irrelevant, you can use the FOR clause to control
the number of rows inserted.

An example of inserting with host arrays follows:

char enp_nane[50] [20];

int enp_nunber[50] ;

float salary[50];

/* popul ate the host arrays */

EXEC SQL I NSERT I NTO EMP (ENAME, EMPNO, SAL)
VALUES (:enp_name, :enp_nunber, :salary);

The cumulative number of rows inserted can be found in the rows-processed count,
sql ca.sqlerrd[2] .

In the following example, the INSERT is done one row at a time. This is much less
efficient than the previous example, since a call to the server must be made for each
row inserted.

for (i =0; i <array_size; i++)
EXEC SQL I NSERT INTO enmp (enane, enpno, sal)
VALUES (:enp_name[i], :enp_nunber[i], :salary[i]);
Related Topics

* About Using the FOR Clause

8.5.1 About Inserting with Arrays Restrictions

You cannot use an array of pointers in the VALUES clause of an INSERT statement;
all array elements must be data items.

Mixing scalar host variables with host arrays in the VALUES clause of an INSERT
statement is not allowed. If any of the host variables is an array, all must be arrays.

8.6 About Updating with Arrays

ORACLE

You can also use host arrays as input variables in an UPDATE statement, as the
following example shows:

int enp_nunber[50];

float salary[50];

/* popul ate the host arrays */

EXEC SQL UPDATE enp SET sal = :salary
WHERE EMPNO = : enp_nunber;

The cumulative number of rows updated can be found in sql errd[2] . This number
does not include rows processed by an update cascade.

8-12

Chapter 8
About Deleting with Arrays

If some elements in the arrays are irrelevant, you can use the embedded SQL FOR
clause to limit the number of rows updated.

The last example showed a typical update using a unique key (EMP_NUMBER). Each
array element qualified just one row for updating. In the following example, each array
element qualifies multiple rows:

char job_title [10][20];
float conm ssion[10];

EXEC SQ. UPDATE enp SET conm = :comni SSion
VHERE job = :job_title;

8.6.1 About Updating with Arrays Restrictions

Mixing simple host variables with host arrays in the SET or WHERE clause of an
UPDATE statement is not recommended. If any of the host variables is an array, all
should be arrays. Furthermore, if you use a host array in the SET clause, use one of
equal number of elements in the WHERE clause.

You cannot use host arrays with the CURRENT OF clause in an UPDATE statement.

Table 8-2 shows which uses of host arrays are valid in an UPDATE statement:

Table 8-2 Host Arrays Valid in an UPDATE
|

SET Clause WHERE Clause Valid?
array array yes
scalar scalar yes
array scalar no
scalar array no

Related Topics
* About Mimicking CURRENT OF

8.7 About Deleting with Arrays

ORACLE

You can also use host arrays as input variables in a DELETE statement. It is like
executing the DELETE statement repeatedly using successive elements of the host
array in the WHERE clause. Thus, each execution might delete zero, one, or more
rows from the table.

An example of deleting with host arrays follows:

int enp_nunber[50];
/* popul ate the host array */

EXEC SQL DELETE FROM enp
VWHERE enpno = : enp_nunber;

8-13

Chapter 8
About Using the FOR Clause

The cumulative number of rows deleted can be found in sqgl errd[2] . The number does
not include rows processed by a delete cascade.

The last example showed a typical delete using a unique key (EMP_NUMBER). Each
array element qualified just one row for deletion. In the following example, each array
element qualifies multiple rows:

char job_title[10][20];

/* popul ate the host array */

EXEC SQL DELETE FROM enp
VWHERE job = :job_title;

8.7.1 About Deleting with Arrays Restrictions

Mixing simple host variables with host arrays in the WHERE clause of a DELETE
statement is not allowed. If any of the host variables is an array, all must be arrays.

You cannot use host arrays with the CURRENT OF clause in a DELETE statement.

¢ See Also:
"About Mimicking CURRENT OF " for an alternative.

8.8 About Using the FOR Clause

ORACLE

You can use the optional embedded SQL FOR clause to set the number of array
elements processed by any of the following SQL statements:

- DELETE
« EXECUTE
- FETCH

* INSERT

« OPEN

« UPDATE

The FOR clause is especially useful in UPDATE, INSERT, and DELETE statements.
With these statements you might not want to use the entire array. The FOR clause lets
you limit the elements used to just the number you need, as the following example
shows:

char enp_nanme[100] [20] ;
float salary[100];
int rows_to_insert;

/* popul ate the host arrays */
rows_to_insert = 25; /* set FOR-clause variable */
EXEC SQL FOR :rows_to_insert /* will process only 25 rows */
I NSERT | NTO enp (enane, sal)
VALUES (:enp_name, :salary);

8-14

Chapter 8
About Using the FOR Clause

The FOR clause can use an integer host variable to count array elements, or an
integer literal. A complex C expression that resolves to an integer cannot be used. For
example, the following statement that uses an integer expression is illegal:

EXEC SQL FOR :rows_to_insert + 5 I* illegal */
I NSERT | NTO enp (ename, enpno, sal)
VALUES (:enp_nane, :enp_nunber, :salary);

The FOR clause variable specifies the number of array elements to be processed.
Make sure the number does not exceed the smallest array dimension. Internally, the
value is treated as an unsigned quantity. An attempt to pass a negative value through
the use of a signed host variable will result in unpredictable behavior.

8.8.1 FOR Clause Restrictions

Two restrictions keep FOR clause semantics clear: you cannot use the FOR clause in
a SELECT statement or with the CURRENT OF clause.

8.8.1.1 In a SELECT Statement

If you use the FOR clause in a SELECT statement, you get an error message.

The FOR clause is not allowed in SELECT statements because its meaning is unclear.
Does it mean "execute this SELECT statement n times"? Or, does it mean "execute
this SELECT statement once, but return n rows"? The problem in the former case is
that each execution might return multiple rows. In the latter case, it is better to declare
a cursor and use the FOR clause in a FETCH statement, as follows:

EXEC SQL FOR :linit FETCH enp_cursor INTO...

8.8.1.2 With the CURRENT OF Clause

ORACLE

You can use the CURRENT OF clause in an UPDATE or DELETE statement to refer
to the latest row returned by a FETCH statement, as the following example shows:

EXEC SQL DECLARE enp_cursor CURSCR FOR
SELECT enane, sal FROM enp WHERE enpno = :enp_nunber;

EXEC SQL OPEN enp_cursor,
EXEC SQL FETCH enp_cursor INTO :enp_nane, :salary;

EXEC SQL UPDATE enp SET sal = :new salary
WHERE CURRENT OF enp_cursor;

However, you cannot use the FOR clause with the CURRENT OF clause. The
following statements are invalid because the only logical value of limit is 1 (you can
only update or delete the current row once):

EXEC SQL FOR :linit UPDATE enp SET sal = :new sal ary
WHERE CURRENT OF enp_cursor;

EXEC SQL FOR :linit DELETE FROM enp
WHERE CURRENT OF enp_cursor;

8-15

Chapter 8
About Using the WHERE Clause

8.9 About Using the WHERE Clause

Oracle treats a SQL statement containing host arrays of number of elements n like the
same SQL statement executed n times with n different scalar variables (the individual
array elements). The precompiler issues an error message only when such treatment
would be ambiguous.

For example, assuming the declarations

int mgr_nunber[50];
char job_title[50][20];

it would be ambiguous if the statement

EXEC SQL SELECT ngr INTO : nmgr_nunber FROM enp
VWHERE job = :job_title;

were treated like the imaginary statement

for (i =0; i <50; i++)
SELECT ngr INTO :mgr_nunber[i] FROM enp
WHERE job = :job_title[i];

because multiple rows might meet the WHERE-clause search condition, but only one
output variable is available to receive data. Therefore, an error message is issued.

On the other hand, it would not be ambiguous if the statement

EXEC SQL UPDATE enp SET ngr = :ngr_nunber
WHERE enpno IN (SELECT enpno FROM enp
VWHERE job = :job_title);

were treated like the imaginary statement

for (i =0; i <50; i++)
UPDATE enp SET ngr = :nmgr_nunber[i]
VWHERE enpno | N (SELECT enpno FROM enp
WHERE job = :job_title[i]);

because there is a mgr_number in the SET clause for each row matching job_title in
the WHERE clause, even if each job_title matches multiple rows. All rows matching

each job_title can be SET to the same mgr_number. Therefore, no error message is
issued.

8.10 Arrays of Structs

ORACLE

Using arrays of scalars, you can perform multirow operations involving a single column
only. Using structs of scalars allows users to perform single row operations involving
multiple columns.

In order to perform multirow operations involving multiple columns, however, you
previously needed to allocate several parallel arrays of scalars either separately or
encapsulated within a single struct. In many cases, it is easier to reorganize this data
structure more conveniently as a single array of structs instead.

Pro*C/C++ supports the use of arrays of structs which enable an application
programmer to perform multirow, multicolumn operations using an array of C structs.

8-16

Chapter 8
Arrays of Structs

With this enhancement, Pro*C/C++ can handle simple arrays of structs of scalars as
bind variables in embedded SQL statements for easier processing of user data. This
makes programming more intuitive, and allows users greater flexibility in organizing
their data.

In addition to supporting arrays of structs as bind variables, Pro*C/C++ also supports
arrays of indicator structs when used in conjunction with an array of structs
declaration.

" Note:

Binding structs to PL/SQL records and binding arrays of structs to PL/SQL
tables of records are not part of this new functionality. Arrays of structs may
also not be used within an embedded PL/SQL block.

Since arrays of structs are intended to be used when performing multirow operations
involving multiple columns, it is generally anticipated that they will be used in the
following ways.

e As output bind variables in SELECT statements or FETCH statements.
e Asinput bind variables in the VALUES clause of an INSERT statement.
Related Topics

* Restrictions on Arrays of Structs

8.10.1 Arrays of Structs Usage

The notion of an array of structs is not new to C programmers. It does, however,
present a conceptual difference for data storage when it is compared to a struct of
parallel arrays.

In a struct of parallel arrays, the data for the individual columns is stored contiguously.
In an array of structs, on the other hand, the column data is interleaved, whereby
each occurrence of a column in the array is separated by the space required by the
other columns in the struct. This space is known as a stride.

8.10.2 Restrictions on Arrays of Structs

The following restrictions apply to the use of arrays of structs in Pro*C/C++:

e Arrays of structs (just as with ordinary structs) are not permitted inside an
embedded PL/SQL block.

e Use of arrays of structs in WHERE or FROM clauses is prohibited.

e Arrays of structs are not permitted with Oracle Dynamic SQL Method 4. They are
permitted with ANSI Dynamic SQL.

e Arrays of structs are not permitted in the SET clause of an UPDATE statement.

The syntax for declaring an array of structs does not change. There are, however, a
few things to keep in mind when using an array of structs.

ORACLE 8-17

Chapter 8
Arrays of Structs

Related Topics
* ANSI Dynamic SQL

8.10.3 About Declaring an Array of Structs

ORACLE

When declaring an array of structs which will be used in a Pro*C/C++ application, the
programmer must keep in mind the following important points:

* The struct must have a structure tag. For example, in the following code segment

struct person {
char nane[15];
int age;

} peopl e[10];

the per son variable is the structure tag. This is so the precompiler can use the name of
the struct to compute the size of the stride.

* The members of the struct must not be arrays. The only exception to this rule is for
character types such as char or VARCHAR since array syntax is used when
declaring variables of these types.

* char and VARCHAR members may not be two-dimensional.

* Nested structs are not permitted as members of an array of structs. This is not a
new restriction, since nested structs have not been supported by previous
releases of Pro*C/C++.

* The size of just the struct may not exceed the maximum value that a signed 4-byte
guantity may represent. This is typically two gigabytes.

Given these restrictions regarding the use of arrays of structs, the following declaration
is legal in Pro*C/C++

struct department {
int deptno;
char dnane[15];
char |oc[14];

} dept[4];

while the following declaration is illegal.

struct { /* the struct is nissing a structure tag */
int enpno[15] ; [* struct nenbers may not be arrays */
char ename[15][10]; /* character types may not be 2-di mensional */
struct nested {
int salary; /* nested struct not permtted in array of structs */
} sal _struct;
} bad[15];

It is also important to note that you cannot apply datatype equivalencing to either the
array of structs itself or to any of the individual fields within the struct. For example,
assuming enpno is not declared as an array in the earlier illegal struct, the following is
illegal:

exec sql var bad[3].enpno is integer(4);
The precompiler has no way to keep track of individual structure elements within the

array of structs. One could do the following, on the other hand, to achieve the desired
effect.

8-18

Chapter 8
Arrays of Structs

typedef int nyint;
exec sql type nyint is integer(4);

struct equiv {
nyint enpno; /* now legally considered an integer(4) datatype */

} ok[15];
This should come as no surprise since equivalencing individual array items has not

been supported by previous releases of Pro*C/C++. For example, the following scalar
array declarations illustrate what is legal and what is not.

int enpno[15];
exec sgl var enpno[3] is integer(4); /* illegal */

myint enpno[15]; /* legal */

In summary, you may not equivalence any individual array item.

8.10.4 Variables Guidelines

ORACLE

Indicator variables for an array of structs declaration work in much the same way as a
normal struct declaration. An indicator array of structs declaration must abide by the
rules for an array of structs as follows:

e The number of fields in the indicator struct must be less than or equal to the
number of fields in the corresponding array of structs.

e The order of the fields must match the order of the corresponding members of the
array of structs.

e The datatype for all elements in the indicator struct must be short.

e The size of the indicator array must be at least the same size as the host variable
declaration. It may be larger, but it may not be smaller.

These rules generally reflect the rules for using structs as implemented in prior
releases of Pro*C/C++. The array restriction is also the same as that previously used
for arrays of scalars.

Given these rules, assume the following struct declaration:

struct departnment {
int deptno;
char dnane[15];
char loc[14];

} dept[4];

The following is a legal indicator variable struct declaration:

struct department_ind {
short deptno_ind,;
short dnane_ind;
short loc_ind;

} dept_ind[4];

while the following is illegal as an indicator variable

struct{ /* mssing indicator structure tag */
int deptno_ind; [* indicator variable not of type short */
short dname_ind[15];/* array el ement forbidden in indicator struct */

8-19

Chapter 8
Arrays of Structs

short loc_ind[14]; /* array elenment forbidden in indicator struct */
} bad_ind[2]; /* indicator array size is smaller than host array */
Related Topics
* ANSI Dynamic SQL

8.10.5 About Declaring a Pointer to an Array of Structs

In some cases, it may be desirable to declare a pointer to an array of structs. This
allows pointers to arrays of structs to be passed to other functions or used directly in
an embedded SQL statement.

" Note:

The length of the array referenced by a pointer to an array of structs cannot be
known during precompilation. For this reason, an explicit FOR clause must be
used when a bind variable whose type is a pointer to an array of structs is used
in any embedded SQL statement.

Remember that FOR clauses may not be used in an embedded SQL SELECT
statement. Therefore, to retrieve data into a pointer to an array of structs, an explicit
cursor and FETCH statement must be used with the FOR clause.

8.10.6 Examples

The following examples demonstrate different uses of the array of structs functionality
in Pro*C/C++.

8.10.6.1 Example 1: A Simple Array of Structs of Scalars

Given the following structure declaration,
struct department {
int deptno;

char dnane[15];
char |oc[14];

} ny_dept[4];
a user could then select the dept data into ny_dept as follows:

exec sql select * into :my_dept from dept;

or the user could populate ny_dept first and then bulk insert it into the dept table:

exec sql insert into dept values (:ny_dept);

To use an indicator variable, a parallel indicator array of structs could be declared.

struct deptartment_ind {
short deptno_ind,;
short dnane_ind;
short loc_ind;

} ny_dept _ind[4];

ORACLE 8-20

Chapter 8
Arrays of Structs

Data is then be selected using the same query except for the addition of the indicator
variable:

exec sgl select * into :my_dept indicator :my_dept_ind from dept;

Similarly, the indicator could be used when inserting the data as well:

exec sql insert into dept values (:ny_dept indicator :my_dept_ind);

8.10.6.2 Example 2: Using Mixed Scalar Arrays with An Array of Structs

ORACLE

As in prior releases of Pro*C/C++, when using multiple arrays for bulk handling of user
data, the size of the arrays must be the same. If they are not, the smallest array size is
chosen leaving the remaining portions of the arrays unaffected.

Given the following declarations,

struct enpl oyee {
int enpno;
char enane[11];
} enp[14];

float sal[14];
float commi 14];

it is possible to select multiple rows for all columns in one simple query:

exec sql select enpno, enane, sal, comminto :enp, :sal, :commfrom enp;

We also want to know whether the column values for the commissions are NULL or
not. A single indicator array could be used given the following declaration:

short comm.ind[14] ;

exec sql select enpno, enane, sal, comm
into :enp, :sal, :commindicator :conm.ind fromenp;

You cannot declare a single indicator array of structs that encapsulate all indicator
information from the query. Therefore:

struct enployee_ind { /* exanple of illegal usage */
short enpno_i nd;
short enane_i nd;
short sal _ind;
short conm.ind;
} illegal _ind[15];

exec sql select enpno, enane, sal, comm
into :enp, :sal, :commindicator :illegal _ind fromenp;

is illegal (as well as undesirable). The earlier statement associates the indicator array
with the conmcolumn only, not the entire SELECT...INTO list.

Assuming the array of structs and the sal , coomand conm i nd arrays were populated
with the desired data, insertion is straightforward:

exec sql insert into enp (enpno, enane, sal, conm
values (:enp, :sal, :commindicator :comm.ind);

8-21

Chapter 8
Arrays of Structs

8.10.6.3 Example 3: Using Multiple Arrays of Structs with a Cursor

For this example, we make the following declarations:

struct enpl oyee {
int enpno;
char enane[11];
char job[10];

} enp[14];

struct conpensation {
int sal;
int comm

} wage[14];

struct conpensation_ind {
short sal _ind,
short conm.ind;

} wage_ind[14];

Our program could then make use of these arrays of structs as follows:

exec sql declare c cursor for
sel ect enpno, enane, job, sal, comm from enp;

exec sql open c;

exec sql whenever not found do break;
whil e(1)
{
exec sql fetch c into :enp, :wage indicator :wage_ind;
. process batch rows returned by the fetch ...

}

printf("% rows selected.\n", sqlca.sqlerrd[2]);

exec sql close c;

8.10.6.3.1 About Using the FOR clause

Alternatively, we could have used the FOR clause to instruct the fetch on how many
rows to retrieve. Recall that the FOR clause is prohibited when using the SELECT
statement, but not the INSERT or FETCH statements.

We add the following to our original declarations
int limt = 10;
and code our example accordingly.

exec sql for :limt
fetch ¢ into :enmp, :wage indicator :wage_ind;

8.10.6.4 Example 4: Individual Array and Struct Member Referencing

Prior releases of Pro*C/C++ allowed array references to single structures in an array
of structs. The following is therefore legal since the bind expression resolves to a
simple struct of scalars.

ORACLE 8-22

Chapter 8
Arrays of Structs

exec sql select * into :dept[3] fromenp;

Users can reference an individual scalar member of a specific struct in an array of
structs as the following example shows.

exec sgl select dnane into :dept[3].dnane fromdept where ...;

Naturally, this requires that the query be a single row query so only one row is
selected into the variable represented by this bind expression.

8.10.6.5 Example 5: Using Indicator Variables, a Special Case

ORACLE

Prior releases of Pro*C/C++ required that an indicator struct have the same number of
fields as its associated bind struct. This restriction has been relaxed when using
structs in general. By following the previously mentioned guidelines for indicator arrays
of structs it is possible to construct the following example.

struct enpl oyee {
float comm
float sal;
int enpno;
char enane[10] ;
} enp[14];

struct enployee_ind {
short conm
} enp_ind[14];

exec sql select comm sal, enpno, ename
into :enp indicator :enp_ind fromenp;

The mapping of indicator variables to bind values is one-to-one. They map in
associative sequential order starting with the first field.

Be aware, however, that if any of the other fields has a fetched value of NULL and no
indicator is provided, the following error is raised:

ORA- 1405: fetched col um val ue is NULL

As an example, such is the case if sal was nullable because there is no indicator for
sal .

Suppose we change the array of structs as follows,

struct enployee {
int enpno;
char enane[10];
float sal;
float comm

} enp[15];

but still used the same indicator array of structs.

Because the indicators map in associative sequential order, the conmindicator maps to
the enpno field leaving the conmbind variable without an indicator once again leading to
the ORA-1405 error.

To avoid the ORA-1405 when using indicator structs that have fewer fields than their
associative bind variable structs, the nullable attributes should appear first and in
sequential order.

8-23

Chapter 8
Arrays of Structs

We could easily change this into a single-row fetch involving multiple columns by using
non-array structs and expect it to work as though the indicator struct was declared as
follows.

struct enpl oyee_ind {
short comm
short sal;
short enpno;
short enane;

} enp_ind;

Because Pro*C/C++ no longer requires that the indicator struct have the same number
of fields as its associated value struct, the earlier example is now legal in Pro*C/C++
whereas previously it was not.

Our indicator struct could now look like the following simple struct.

struct enployee_ind {
short comm
} enp_ind;

Using the non-array enp and enp_i nd structs we are able to perform a single row fetch
as follows.

exec sgl fetch comm sal, enpno, enane
into :enp indicator :enp_ind fromenp;

Note once again how the commindicator maps to the conmbind variable in this case as
well.

8.10.6.6 Example 6: Using a Pointer to an Array of Structs

ORACLE

This example demonstrates how to use a pointer to an array of structs.
Given the following type declaration:

typedef struct dept {
int deptno;
char dnane[15];
char loc[14];

} dept;

we can perform a variety of things, manipulating a pointer to an array of structs of that
type. For example, we can pass pointers to arrays of structs to other functions.

voi d insert_data(d, n)

dept *d;
int n;
{
exec sql for :ninsert into dept values (:d);
}
void fetch data(d, n)
dept *d;
int n;
{
exec sql declare c cursor for select deptno, dnane, |oc from dept;
exec sql open c;
exec sql for :n fetch c into :d;
exec sql close c;
}

8-24

Chapter 8
About Mimicking CURRENT OF

Such functions are invoked by passing the address of the array of structs as these
examples indicate.

dept d[4];
dept *dptr = &d[0];
const int n = 4;

fetch_data(dptr, n);
insert_data(d, n); /* W are treating '&[0]"' as being equal to 'd" */

Or we can simply use such pointers to arrays of structs directly in some embedded
SQL statement.

exec sql for :ninsert into dept values (:dptr);

The most important thing to remember is the use of the FOR clause.

8.11 About Mimicking CURRENT OF

You use the CURRENT OF cursor clause in a DELETE or UPDATE statement to refer
to the latest row FETCHed from the cursor. However, you cannot use CURRENT OF
with host arrays. Instead, select the ROWID of each row, then use that value to
identify the current row during the update or delete.

For example:

char enp_nane[20][10];
char job_title[20][10];
char old_title[20][10];
char row.id[20][19];

EXEC SQL DECLARE enp_cursor CURSOR FOR
SELECT enane, job, rowi d FROM enp FOR UPDATE;

EXEC SQL OPEN enp_cursor;
EXEC SQL WHENEVER NOT FOUND do br eak;
for (:7)

{
EXEC SQL FETCH enp_cursor
INTO :enp_nane, :job title, :row.d;
EXEC SQL DELETE FROM enp
VWHERE job = :old_title ANDrowid = :row.d;
EXEC SQL COW T WORK;
}

Related Topics
* The CURRENT OF Clause

8.12 About Using Additional Array Insert/Select Syntax

The Oracle precompiler also supports the DB2 insert and fetch syntax for the host
tables. The supported additional array insert and fetch syntax are shown in the
following figures, respectively.

ORACLE 8-25

Chapter 8

About Using Additional Array Insert/Select Syntax

Figure 8-1 Additional Insert Syntax

P»—— INSERT INTO —|:TABLE NAME

Y

VIEW NAME (COL NAME)
»——VALUES EXP >
——HOST VAR ARR——
—— NULL/DEFAULT —— FOR ——— HOST VARS ——— ROWS
L INTEGER —
Figure 8-2 Additional Fetch Syntax
» FETCH FETCH ORIENTATION L J CURSOR NAME ———————
FROM
» >
INTO HOST VAR ARR

—FOR——F——HOS VARS T ROWS —
— INTEGER

INTO DESCRIPTOR NAME

The optional ROWSET and ROWSET STARTING AT clauses are used in the fetch-
orientation (FIRST, PRIOR, NEXT, LAST, CURRENT, RELATIVE and ABSOLUTE).
Consider the following examples:

FIRST ROWSET

PRIOR ROWSET

NEXT ROWSET

LAST ROWSET

CURRENT ROWSET

ROWSET STARTING AT RELATIVEN
ROWSET STARTING AT ABSOLUTEN

Examples of the DB2 array insert/fetch syntax and their comparison with the
corresponding Oracle precompiler syntax are shown in Table 8-3:

ORACLE

8-26

ORACLE

Chapter 8
About Using Additional Array Insert/Select Syntax

Table 8-3 DB2 Array Syntax vs. Oracle Precompiler Syntax
|

DB2 Array Syntax Oracle Precompiler Syntax
EXEC SQL EXEC SQL FOR : num rows
I NSERT | NTO dsn8810. act I NSERT | NTO dsn8810. act
(actno, actkwd, actdesc) (actno, actkwd, actdesc)
VALUES (:hval, :hva2, :hva3) VALUES (:hval, :hva2, :hva3);

FOR : NUM_ROAS RO\,

EXEC SQL EXEC SQL
FETCH NEXT ROASET FROM cl FOR :twenty
FOR 20 ROAS FETCH c1
INTO : hva_enpno, :hva_l astnane, INTO : hva_enpno, :hva_l astnane,
hva_sal ary; chva_sal ary;

In DB2 syntax, a row-set positioned cursor should be first declared before retrieving
row sets of data. To enable a cursor to fetch row sets, the 'WITH ROWSET
POSITIONING' clause has to be used in the DECLARE CURSOR statement, which is
not required and relevant in the Oracle precompiler syntax, as shown in the following
table.

DB2 Array Syntax Oracle Precompiler Syntax

EXEC SQL EXEC SQL

DECLARE c1 CURSCR DECLARE c1 CURSOR FOR
W TH ROWBET POSI TI ONI NG FOR SELECT enpno, |astname, salary
SELECT enpno, |astnane, salary FROM dsn8810. enp;

FROM dsn8810. enp;

This DB2 array syntax support can be enabled with the precompiler option db2_array,
whose default option is no. The DB2 array syntax support cannot be used together with
the Oracle precompiler syntax; only one of the syntax, only on of the syntax, either
Oracle precompiler or DB2 syntax, is supported at a time.

Example 8-1 Inserting and Fetching Rows by Using the DB2 Array Syntax

This program inserts INSCNT rows into the EMP table by using the DB2 array insert
syntax, and then fetches the inserted rows by using the DB2 array fetch syntax.

/*
* db2ar rdeno. pc
*/

#include <stdio.h>
#include <string. h>
#include <stdlib.h>
#include <sql da. h>
#incl ude <sql cpr.h>
#include <sql ca. h>

/* Nunber of rows to be inserted in one shot */
#define | NSCNT 100
/* Nunber of rows to be fetched in one shot */
#define FETCHCNT 20

8-27

Chapter 8
About Using Additional Array Insert/Select Syntax

/* Define a host structure
for inserting data into the table
and for fetching data fromthe table */
struct enprec
{ .
int enpno;
varchar ename[10] ;
varchar job[9];
int ngr;
char hiredate[10];
float sal;
float comm
int deptno;
¥
typedef struct enprec enpdat a;

/* Function prototypes */

voi d sql _error(char *);

voi d insertdata();

void fetchdata();

voi d printenpdata(enpdata *);

void main()

{

exec sql begin declare section;
char *uid = "scott/tiger";
exec sql end declare section;

exec sgl whenever sglerror do sql _error("ORACLE error--\n");
exec sql connect :uid,;

printf("Inserting %l rows into EMP table using DB2 array insert syntax.\n",
| NSCNT) ;

insertdata();

printf("\nFetching data using DB2 array fetch syntax.\n");

fetchdata();

exec sgl rollback work rel ease;
exi t (EXI T_SUCCESS);
}

I* Inserting data into the table using DB2 array insert syntax*/
void insertdata()
{ . .

int i, cnt;

char *str;

enpdata enp_i n[| NSCNT] ;

/* To store tenporary strings */
str = (char *)malloc (25 * sizeof(char));

I* Fill the array elenents to insert */

for (i = 0; i < INSCNT; i++)

{
enp_in[i].enpno = i+1;
sprintf(str, "EMP_903d", i+1);
strcpy (enmp_in[i].ename.arr, str);
enp_in[i].enane.len = strlen (enp_in[i].ename.arr);
sprintf(str, "JOB 9%93d", i+1);

ORACLE 8-28

ORACLE

Chapter 8
About Using Additional Array Insert/Select Syntax

strcpy (enmp_in[i].job.arr, str);
enp_in[i].job.len = strlen (enp_in[i].job.arr);
enp_in[i].ngr = i+1001;
sprintf(str, "%2d-MAY-06", (i9%30)+1);
strcpy (enmp_in[i].hiredate, str);
enp_in[i].sal = (i+l) * 10;
enp_in[i].coom= (i+l) * 0.1;
enp_in[i].deptno = 10;
1

free (str);

/* Inserting data using DB2 array insert syntax */
exec sql insert into enp values (:enp_in) FOR :INSCNT rows;

exec sql select count(*) into :cnt fromenp where enane |ike 'EMP_%;
printf ("Nunber of rows successfully inserted into enp table: %\ n", cnt);

}

/* Fetches data fromthe table using DB2 array fetch syntax*/
voi d fetchdata()

{
enpdata enp_out [FETCHCNT] ;

/* Declares scrollable cursor to fetch data */

exec sgl declare cl scroll cursor with rowset positioning for
sel ect empno, ename, job, ngr, hiredate, sal, conm deptno
fromenp where enane like 'EMP_% order by enpno;

exec sql open cl;

exec sql whenever not found do break;

whi | e(1)

{
/* Fetches data using DB2 array fetch syntax */
exec sql fetch next rowset fromcl for : FETCHCNT rows into :enp_out;
printenpdat a(enp_out);

exec sql whenever not found do sql _error("ORACLE ERROR');

exec sql close cl,;

}

[* Prints the fetched enpl oyee data */
voi d printenpdata(enpdata *enp_out)
{
int i;
for (i=0; i<FETCHCNT; i++)
{
enp_out[i].enane.arr[enp_out[i].enane.len] = "'\0";
enp_out[i].job.arr[enp_out[i].job.len] ="'\0";
printf("Empno=%, Ename=%, Job=%, Myr=%, Hiredate=%, Sal=%.2f,\n"
"Comme9%. 2f, Deptno=%l\n", enp_out[i].enpno, enp_out[i].enane.arr,
enp_out[i].job.arr, emp_out[i].ngr, enp_out[i].hiredate,
enp_out[i].sal, enp_out[i].comm enmp_out[i].deptno);
1
}

[* Error handling function. */
void sql _error(char *nsg)

{

8-29

Chapter 8
About Using Implicit Buffered Insert

exec sgl whenever sglerror continue;

printf("\n%\n", nsg);
printf("%70s\n", sqglca.sqlerrmsqlerrnc);
exec sql rollback rel ease;

exit (EXI T_FAI LURE) ;
}

8.13 About Using Implicit Buffered Insert

ORACLE

For improved performance, Pro*C/C++ application developers can reference host
arrays in their embedded SQL statements. This provides a means to execute an array
of SQL statements with a single round-trip to the database. Despite the significant
performance improvements afforded by array execution, some developers choose not
to use this capability because it is not ANSI standard. For example, an application
written to exploit array execution in Oracle cannot be precompiled using IBM's
precompiler.

One workaround is to use buffered INSERT statements, which enable you to gain
performance benefits while retaining ANSI standard embedded SQL syntax.

The command line option "max_row_insert" controls the number of rows to be buffered
before executing the INSERT statement. By default it is zero and the feature is
disabled. To enable this feature, specify any number greater than zero.

If insert bufering is enabled, precompiler runtime will flag the corresponding cursor
and:

» Allocate or re-allocate extra memory to hold bind values (first execute only).
e Copy bind values from program host variables to internal runtime bind structures.
* Increment the rows buffered count.

* Flush the buffered INSERT statements if MAX_INSERT_ROWS have been
buffered.

* If MAX_INSERT_ROWS has not been hit, then return after copying the values to
the internal bind buffers without flushing.

If a new embedded SQL statement is executed and results in a flush of the buffered
insert statements:

* Flush the buffers.
e Continue with the call that prompted the flush.

The application is informed of the error through the standard precompiler error
mechanisms such as the sglca in Pro*C.

The "implicit_svpt" option controls whether an implicit savepoint is taken prior to the
start of a new batched insert.

* If yes, a savepoint is taken prior to the start of a new batch of rows. If an error
occurs on the insert, an implicit "rollback to savepoint” is executed.

* If no, there is no implicit savepoint taken. If an error occurs on the buffered insert,
then it is reported back to the application, but no rollback is executed. Errors are
reported asynchronously for buffer inserts. Errors for inserted rows are not
reported when the INSERT statement is executed in the application.

8-30

ORACLE

Chapter 8
About Using Implicit Buffered Insert

— Some errors for inserted rows are reported later, when the first statement
other than the INSERT is executed. This may include DELETE, UPDATE,
INSERT (into different tables), COMMIT, and ROLLBACK. Any statement that
closes the buffered insert statement can report an error. In such cases, the
statement that reports the error is not executed. You need to first handle the
error and also reexecute the statement on which the buffered insert error is
reported. Otherwise, you may rollback the transaction and reexecute it.

For example, consider using a COMMIT statement to close a buffered insert
loop. COMMIT can report an error because of a duplicate key from an earlier
insert. In this scenario, the commit is not executed. You should first handle the
error and then reexecute COMMIT. Otherwise, you can rollback the
transaction and reexecute it.

— Some errors are reported on the insert itself, and may reflect an error of a
previously inserted row. In such cases, no further inserts are executed. You
need to handle the errors of the previously inserted row and continue inserting
the current insert, which is a long process. Instead, you may rollback and
reexecute the transaction.

For example, consider that the limit of internal buffer is 10 rows and the
application is inserting 15 rows in a loop. Suppose there is an error on the 8th
row. The error is reported when the 11th row insert happens and the insert is
no more executed further.

The following are some of the possible errors that you might face during buffered
insert:

* ORA-00001: duplicate key in index

* ORA-01400: mandatory (not null) column is missing or Null during insert
* ORA-01401: inserted value too large for column

* ORA-01438: value larger than specified precision allows for this column

Example 8-2 Inserting Buffered Rows into a Table

This program inserts LOOPCNT number of rows into the EMP table. At loop
counter=5, this program attempts to insert an invalid empno. Without the
max_row_insert option, the program inserts all rows except the invalid row. When the
max_row_insert option is set to LOOPCNT, only the first four rows are inserted.

Using the max_row_insert option, when the erroneous statement is removed, the
program performs the same way an array insert program would.

/*

* bufinsdeno. pc

*|

#include <stdio. h>
#include <string.h>
#include <stdlib. h>
#incl ude <sqgl da. h>
#incl ude <sql cpr.h>
#incl ude <sqgl ca. h>

/* Nunber of rows to be inserted into the table */
#define LOOPCNT 100

/* Define a host structure

for inserting data into the table
and for fetching data fromthe table */

8-31

ORACLE

Chapter 8

About Using Implicit Buffered Insert

struct enprec

{

int enpno;
varchar ename[10] ;
varchar job[9];
int ngr;

char hiredate[10];
float sal;

float comm

int deptno;

¥
typedef struct enprec buffinstyp;

/* Function prototypes */

voi d sql _error();

voi d insertdata();

void fetchdata();

voi d printenpdata(buffinstyp);

void main()

{

exec sql begin declare section;
char *uid = "scott/tiger";
exec sql end declare section;

exec sgl whenever sglerror do sql _error();
exec sql connect :uid,;

printf("\nlnserting % rows into EMP table.\n", LOOPCNT);
insertdata();

printf("\nFetching inserted data fromEM table.\n");
fetchdata();

exec sql delete fromenp where enpno < 1000;

exec sgl comit work rel ease;
exi t (EXI T_SUCCESS);
}

/* Inserting data into the table */
voi d insertdata()
{ . .

int i, cnt;

char *str;

buffinstyp enp_in;

/* To store tenporary strings */
str = (char *)malloc (25 * sizeof(char));

/*
* \Wien max_row_insert option is set to LOOPCNT and when the errorneous
* statement is renoved, all the rows will be inserted into the database in
* one stretch and hence maxi num performance gain will be achieved.

*/

for (i = 1; i <= LOOPCNT; i++)

if (i '=05)
enp_in.enmpno = i;
el se

[* Errorneous statement. In enp table, enmpno is defined as nunber(4). */

8-32

ORACLE

}
/

Chapter 8

About Using Implicit Buffered Insert

enp_i n. enpno = 10000;

sprintf(str, "EMP_9%03d", i);

strcpy (enp_in.enane.arr, str);
enp_in.enane.len = strlen (enp_in.enane.arr);
sprintf(str, "JOB 9%93d", i);

strcpy (enmp_in.job.arr, str);
enp_in.job.len = strlen (emp_in.job.arr);
enp_in.mgr = i+1001;

sprintf(str, "992d- MAY-06", (i%30));
strcpy (enmp_in.hiredate, str);

enp_in.sal = (i) * 10;

enp_in.comm= (i) * 0.1;

enp_i n. deptno = 10;

exec sgl insert into enp values (:enp_in);

1

free (str);

exec sql commit;

exec sql select count(*) into :cnt fromenp where enane |ike 'EMP_%;

printf ("Nunber of rows successfully inserted into enp table: %\n", cnt);

* Fetches data fromthe table*/

voi d fetchdata()

{

}
/

buf finstyp enp_out;

/* Declares cursor to fetch only the rows that are inserted */
exec sql declare cl cursor for
sel ect empno, ename, job, ngr, hiredate, sal, conm deptno
fromenp where enane like 'EMP_% order by enpno;

exec sql open cl;
exec sql whenever not found do break;

whi | e(1)
{

/* Fetches single row at each call */
exec sgl fetch cl into :enmp_out;
printenpdat a(enp_out);

exec sgl whenever not found do sqgl _error();

exec sql close cl;

* Prints the fetched enpl oyee data */

voi d printenpdata(buffinstyp enp_out)

{

}

enp_out. enane. arr[enp_out.enanme.len] = "\0';

enp_out.job.arr[enp_out.job.len] = "\0";

printf("Enpno=%, Ename=%, Job=%, Myr=%, H redate=%, Sal=%.2f,\n"
"Comme%. 2f, Deptno=%l\n", enp_out.enpno, enp_out.enane.arr,

enp_out.job.arr, enp_out.nmgr, enp_out.hiredate, enp_out.sal,

enp_out.conm enp_out.deptno);

8-33

Chapter 8
Scrollable Cursors

[* Error handling function. */
voi d sql _error()

{
printf("Error %\n", sqlca.sqlerrmsqglerrnt);
printf(" Rows Processed: %l\n", sqlca.sqlerrd[2]);
printf(" Rows Rolled Back: %\ n", sqlca.sqlerrd[0]);
}

8.14 Scrollable Cursors

ORACLE

A scrollable cursor is a work area where Oracle executes SQL statements and stores
information that is processed during execution.When a cursor is executed, the results
of the query are placed into a a set of rows called the result set. The result set can be
fetched either sequentially or non-sequentially. Non-sequential result sets are called
scrollable cursors. A scrollable cursor enables users to access the rows of a database
result set in a forward, backward, and random manner. This enables the program to
fetch any row in the result set.

8-34

Handling Runtime Errors

An application program must anticipate runtime errors and attempt to recover from
them. This chapter provides an in-depth discussion of error reporting and recovery.
You learn how to handle errors and status changes using the SQLSTATE status
variable, as well as the SQL Communications Area (SQLCA) and the WHENEVER
directive. You also learn how to diagnose problems using the Oracle Communications
Area (ORACA). This chapter contains the following topics:

e The Need for Error Handling

e Error Handling Alternatives

e The SQLSTATE Status Variable

e About Declaring SQLCODE

e Key Components of Error Reporting Using the SQLCA

e Using the SQL Communications Area (SQLCA)

e About Getting the Full Text of Error Messages

e About Using the WHENEVER Directive

e About Obtaining the Text of SQL Statements

e About Using the Oracle Communications Area (ORACA)

9.1 The Need for Error Handling

A significant part of every application program must be devoted to error handling. The
main reason for error handling is that it allows your program to continue operating in
the presence of errors. Errors arise from design faults, coding mistakes, hardware
failures, invalid user input, and many other sources.

You cannot anticipate all possible errors, but you can plan to handle certain kinds of
errors that are meaningful to your program. For the Pro*C/C++ Precompiler, error
handling means detecting and recovering from SQL statement execution errors. You
can also prepare to handle warnings such as "value truncated" and status changes
such as "end of data.” It is especially important to check for error and warning
conditions after every SQL data manipulation statement, because an INSERT,
UPDATE, or DELETE statement might fail before processing all eligible rows in a
table.

9.2 Error Handling Alternatives

ORACLE

There are several alternatives that you can use to detect errors and status changes in
the application. This chapter describes these alternatives, however, no specific
recommendations are made about what method you should use. The method is, after
all, dictated by the design of the application program or tool that you are building.

9-1

Chapter 9
Error Handling Alternatives

0.2.1 Status Variables

You can declare a separate status variable, SQLSTATE or SQLCODE, examine its
value after each executable SQL statement, and take appropriate action. The action
might be calling an error-reporting function, then exiting the program if the error is
unrecoverable. Or, you might be able to adjust data or control variables and retry the
action.

Related Topics
e The SQLSTATE Status Variable
* About Declaring SQLCODE

9.2.2 The SQL Communications Area

Another alternative that you can use is to include the SQL Communications Area
structure (sqglca) in your program. This structure contains components that are filled in
at runtime after the SQL statement is processed by Oracle.

Note:

In this guide, the sqlca structure is commonly referred to using the acronym for
SQL Communications Area (SQLCA). When this guide refers to a specific
component in the C struct, the structure name (sqlca) is used.

The SQLCA is defined in the header file sql ca. h, which you include in your program
using either of the following statements:

« EXEC SQL INCLUDE SQLCA;
e #include <sqglca.h>

Oracle updates the SQLCA after every executable SQL statement. (SQLCA values are
unchanged after a declarative statement.) By checking Oracle return codes stored in
the SQLCA, your program can determine the outcome of a SQL statement. This can
be done in the following two ways:

e Implicit checking with the WHENEVER directive
e Explicit checking of SQLCA components

You can use WHENEVER directives, code explicit checks on SQLCA components, or
do both.

The most frequently-used components in the SQLCA are the status variable
(sqlca.sqglcode), and the text associated with the error code (sqlca.sqlerrm.sqlerrmc).
Other components contain warning flags and miscellaneous information about the
processing of the SQL statement.

ORACLE 9-2

Chapter 9
The SQLSTATE Status Variable

Note:

SQLCODE (upper case) always refers to a separate status variable, not a
component of the SQLCA. SQLCODE is declared as a integer. When referring
to the component of the SQLCA named sqlcode, the fully-qualified hame
sqlca.sqlcode is always used.

When more information is needed about runtime errors than the SQLCA provides, you
can use the ORACA. The ORACA is a C struct that handles Oracle communication. It
contains cursor statistics, information about the current SQL statement, option
settings, and system statistics.

Related Topics
e About Using the Oracle Communications Area (ORACA)
» Using the SQL Communications Area (SQLCA)

9.3 The SQLSTATE Status Variable

The precompiler command line option MODE governs ANSI/ISO compliance. When
MODE=ANSI, declaring the SQLCA data structure is optional. However, you must
declare a separate status variable named SQLCODE. The SQL standard specifies a
similar status variable named SQLSTATE, which you can use with or without
SQLCODE.

After executing a SQL statement, the Oracle Server returns a status code to the
SQLSTATE variable currently in scope. The status code indicates whether the SQL
statement executed successfully or raised an exception (error or warning condition).
To promote interoperability (the ability of systems to exchange information easily), the
SQL standard predefines all the common SQL exceptions.

Unlike SQLCODE, which stores only error codes, SQLSTATE stores error and
warning codes. Furthermore, the SQLSTATE reporting mechanism uses a
standardized coding scheme. Thus, SQLSTATE is the preferred status variable.
SQLCODE was a deprecated feature of SQL-92 that was retained only for
compatibility with SQL-89. SQLCODE has been removed from all editions of the SQL
standard subsequent to SQL-92.

9.3.1 About Declaring SQLSTATE

When MODE=ANSI, you must declare SQLSTATE or SQLCODE. Declaring the
SQLCA is optional. When MODE=ORACLE, if you declare SQLSTATE, it is not used.

Unlike SQLCODE, which stores signed integers and can be declared outside the
Declare Section, SQLSTATE stores 5-character null-terminated strings and must be
declared inside the Declare Section. You declare SQLSTATE as

char SQLSTATE[6]; /* Upper case is required. */

ORACLE 9-3

Chapter 9
The SQLSTATE Status Variable

< Note:

SQLSTATE must be declared with a dimension of exactly 6 characters.

9.3.2 SQLSTATE Values

SQLSTATE status codes consist of a 2-character class code immediately followed by
a 3-character subclass code. Aside from class code 00 ("successful completion”,) the
class code denotes a category of exceptions. And, aside from subclass code 000 ("not
applicable",) the subclass code denotes a specific exception within that category. For
example, the SQLSTATE value '22012' consists of class code 22 ("data exception")
and subclass code 012 ("division by zero").

Each of the five characters in a SQLSTATE value is a digit (0..9) or an uppercase
Latin letter (A..Z). Class codes that begin with a digit in the range 0..4 or a letter in the
range A..H are reserved for predefined conditions (those defined in the SQL standard).
All other class codes are reserved for implementation-defined conditions. Within
predefined classes, subclass codes that begin with a digit in the range 0..4 or a letter
in the range A..H are reserved for predefined subconditions. All other subclass codes
are reserved for implementation-defined subconditions. Figure 9-1 shows the coding
scheme.

Figure 9-1 SQLSTATE Coding Scheme

First Char in Class Code

b..4 5..0 A..H 1..2
0.4
First Char °--°

in Subclass

Code A..H
1..Z

B predefined || Implementation defined

Table 9-1 shows the classes predefined by SQL92.

ORACLE" 9-4

ORACLE

Chapter 9
The SQLSTATE Status Variable

Table 9-1 Predefined Class Codes

Class Condition

00 success completion

01 warning

02 no data

07 dynamic SQL error

08 connection exception

09 triggered action exception

0A feature not supported

oD invalid target type specification

OE invalid schema name list specification

OF locator exception

oL invalid grantor

oM invalid SQL-invoked procedure reference
oP invalid role specification

0s invalid transform group name specification
oT target table disagrees with cursor specification
ou attempt to assign to non-updatable column
ov attempt to assign to ordering column

ow prohibited statement encountered during trigger execution
0z diagnostics exception

21 cardinality violation

22 data exception

23 integrity constraint violation

24 invalid cursor state

25 invalid transaction state

26 invalid SQL statement name

27 triggered data change violation

28 invalid authorization specification

2A direct SQL syntax error or access rule violation
2B dependent privilege descriptors still exist
2C invalid character set name

2D invalid transaction termination

2E invalid connection name

2F SQL routine exception

2H invalid collation name

30 invalid SQL statement identifier

33 invalid SQL descriptor name

34 invalid cursor name

35 invalid condition number

9-5

ORACLE

Table 9-1 (Cont.) Predefined Class Codes
|

Chapter 9
The SQLSTATE Status Variable

Class Condition
36 cursor sensitivity exception
37 dynamic SQL syntax error or access rule violation
38 external routine exception
39 external routine invocation exception
3B savepoint exception
3C ambiguous cursor name
3D invalid catalog name
3F invalid schema name
40 transaction rollback
42 syntax error or access rule violation
44 with check option violation
HZ remote database access
" Note:

The class code HZ is reserved for conditions defined in International Standard
ISO/IEC DIS 9579-2, Remote Database Access.

Table 9-2 shows how SQLSTATE status codes and conditions are mapped to Oracle
errors. Status codes in the range 60000 to 99999 are implementation-defined.

Table 9-2 SQLSTATE Status Codes
|

Code Condition Oracle Error(s)

00000 successful completion ORA-00000

01000 warning -

01001 cursor operation conflict -

01002 disconnect error -

01003 NULL value eliminated in set function -

01004 string data-right truncation -

01005 insufficient item descriptor areas --

01006 privilege not revoked -

01007 privilege not granted -

01008 implicit zero-bit padding -

01009 search condition too long for info schema -

0100A query expression too long for info schema -

02000 no data ORA-01095
ORA-01403

9-6

Chapter 9
The SQLSTATE Status Variable

Table 9-2 (Cont.) SQLSTATE Status Codes

Code Condition Oracle Error(s)

07000 dynamic SQL error -

07001 using clause does not match parameter specs -

07002 using clause does not match target specs --

07003 cursor specification cannot be executed --

07004 using clause required for dynamic parameters -

07005 prepared statement not a cursor specification --

07006 restricted datatype attribute violation -

07007 using clause required for result components -

invalid descriptor count

07008 invalid descriptor count SQL-02126

07009 invalid descriptor index -

08000 connection exception -

08001 SQL-client unable to establish SQL-connection --

08002 connection name is use -

08003 connection does not exist SQL-02121

08004 SQL-server rejected SQL-connection --

08006 connection failure -

08007 transaction resolution unknown --

0A000 feature not supported ORA-03000..03099

0A001 multiple server transactions -

21000 cardinality violation ORA-01427
SQL-02112

22000 data exception --

22001 string data - right truncation ORA-01406

22002 NULL value-no indicator parameter SQL-02124

22003 numeric value out of range ORA-01426

22005 error in assignment --

22007 invalid datetime format --

22008 datetime field overflow ORA-01800..01899

22009 invalid time zone displacement value -

22011 substring error -

22012 division by zero ORA-01476

22015 interval field overflow -

22018 invalid character value for cast --

22019 invalid escape character ORA-00911

22021 character not in repertoire -

22022 indicator overflow ORA-01411

ORACLE o

Chapter 9
The SQLSTATE Status Variable

Table 9-2 (Cont.) SQLSTATE Status Codes
|

Code Condition Oracle Error(s)

22023 invalid parameter value ORA-01025
ORA-04000..04019

22024 unterminated C string ORA-01479
ORA-01480

22025 invalid escape sequence ORA-01424
ORA-01425

22026 string data-length mismatch ORA-01401

22027 trim error -

23000 integrity constraint violation ORA-1400,
ORA-02290..02299

24000 invalid cursor state ORA-001002
ORA-001003
SQL-02114
SQL-02117

25000 invalid transaction state SQL-02118

26000 invalid SQL statement name --

27000 triggered data change violation -

28000 invalid authorization specification -

2A000 direct SQL syntax error or access rule violation --

2B000 dependent privilege descriptors still exist -

2C000 invalid character set name -

2D000 invalid transaction termination -

2E000 invalid connection name -

33000 invalid SQL descriptor name -

34000 invalid cursor name --

35000 invalid condition number -

37000 dynamic SQL syntax error or access rule violation -

3C000 ambiguous cursor name -

3D000 invalid catalog name --

3F000 invalid schema name --

40000 transaction rollback ORA-02091
ORA-02092

40001 serialization failure --

40002 integrity constraint violation -

40003 statement completion unknown --

ORACLE 9-8

Chapter 9
The SQLSTATE Status Variable

Table 9-2 (Cont.) SQLSTATE Status Codes

Code Condition Oracle Error(s)

42000 syntax error or access rule violation ORA-00022
ORA-00251
ORA-00900..00999
ORA-01031

ORA-01490..01493
ORA-01700..01799
ORA-01900..02099
ORA-02140..02289
ORA-02420..02424
ORA-02450..02499
ORA-03276..03299
ORA-04040..04059
ORA-04070..04099

44000 with check option violation ORA-01402

60000 system error ORA-00370..00429
ORA-00600..00899
ORA-06430..06449
ORA-07200..07999
ORA-09700..09999

61000 shared server and detached process errors ORA-00018..00035
ORA-00050..00068
ORA-02376..02399
ORA-04020..04039

62000 shared server and detached process errors ORA-00100..00120
ORA-00440..00569
63000 Oracle*XA and two-task interface errors ORA-00150..00159

ORA-02700..02899
ORA-03100..03199
ORA-06200..06249

SQL-02128
64000 control file, database file, and redo file errors; ORA-00200..00369
archival and media recovery errors ORA-01100..01250
65000 PL/SQL errors ORA-06500..06599
66000 Oracle Net driver errors ORA-06000..06149

ORA-06250..06429
ORA-06600..06999
ORA-12100..12299
ORA-12500..12599
67000 licensing errors ORA-00430..00439
69000 SQL*Connect errors ORA-00570..00599
ORA-07000..07199

ORACLE 9-9

ORACLE

Table 9-2 (Cont.) SQLSTATE Status Codes
|

Chapter 9

The SQLSTATE Status Variable

Code Condition Oracle Error(s)

72000 SQL execute phase errors ORA-00001
ORA-01000..01099
ORA-01401..01489
ORA-01495..01499
ORA-01500..01699
ORA-02400..02419
ORA-02425..02449
ORA-04060..04069
ORA-08000..08190
ORA-12000..12019
ORA-12300..12499
ORA-12700..21999

82100 out of memory (could not allocate) SQL-02100

82101 inconsistent cursor cache (UCE/CUC mismatch) SQL-02101

82102 inconsistent cursor cache (no CUC entry for UCE) SQL-02102

82103 inconsistent cursor cache (out-or-range CUC ref) SQL-02103

82104 inconsistent cursor cache (no CUC available) SQL-02104

82105 inconsistent cursor cache (no CUC entry in cache) SQL-02105

82106 inconsistent cursor cache (invalid cursor number) SQL-02106

82107 program too old for runtime library; re-precompile ~ SQL-02107

82108 invalid descriptor passed to runtime library SQL-02108

82109 inconsistent host cache (out-or-range SIT ref) SQL-02109

82110 inconsistent host cache (invalid SQL type) SQL-02110

82111 heap consistency error SQL-02111

82113 code generation internal consistency failed SQL-02115

82114 reentrant code generator gave invalid context SQL-02116

82117 invalid OPEN or PREPARE for this connection SQL-02122

82118 application context not found SQL-02123

82119 unable to obtain error message text SQL-02125

82120 Precompiler/SQLLIB version mismatch SQL-02127

82121 NCHAR error; fetched number of bytes is odd SQL-02129

82122 EXEC TOOLS interface not available SQL-02130

82123 runtime context in use SQL-02131

82124 unable to allocate runtime context SQL-02132

82125 unable to initialize process for use with threads SQL-02133

82126 invalid runtime context SQL-02134

HZ000 remote database access --

9-10

Chapter 9
About Declaring SQLCODE

9.3.3 About Using SQLSTATE

The following rules apply to using SQLSTATE with SQLCODE or the SQLCA when
you precompile with the option setting MODE=ANSI. SQLSTATE must be declared
inside a Declare Section; otherwise, it is ignored.

9.3.3.1If You Declare SQLSTATE

» Declaring SQLCODE is optional. If you declare SQLCODE inside the Declare
Section, the Oracle Server returns status codes to SQLSTATE and SQLCODE
after every SQL operation. However, if you declare SQLCODE outside of the
Declare Section, Oracle returns a status code only to SQLSTATE.

* Declaring the SQLCA is optional. If you declare the SQLCA, Oracle returns status
codes to SQLSTATE and the SQLCA. In this case, to avoid compilation errors, do
not declare SQLCODE.

9.3.3.2 If You Do not Declare SQLSTATE

e You must declare SQLCODE inside or outside the Declare Section. The Oracle
Server returns a status code to SQLCODE after every SQL operation.

» Declaring the SQLCA is optional. If you declare the SQLCA, Oracle returns status
codes to SQLCODE and the SQLCA.

You can learn the outcome of the most recent executable SQL statement by checking
SQLSTATE explicitly with your own code or implicitly with the WHENEVER
SQLERROR directive. Check SQLSTATE only after executable SQL statements and
PL/SQL statements.

9.4 About Declaring SQLCODE

ORACLE

When MODE=ANSI, and you have not declared a SQLSTATE status variable, you
must declare a long integer variable named SQLCODE inside or outside the Declare
Section. An example follows:

[* declare host variables */
EXEC SQL BEG N DECLARE SECTI N,
int enp_nunber, dept_nunber
char enp_nane[20] ;

EXEC SQL END DECLARE SECTI ON;

/* declare status variabl e--nust be upper case */
| ong SQLCODE

When MODE=ORACLE, if you declare SQLCODE, it is not used.

You can declare more than one SQLCODE. Access to a local SQLCODE is limited by
its scope within your program.

After every SQL operation, Oracle returns a status code to the SQLCODE currently in
scope. So, your program can learn the outcome of the most recent SQL operation by
checking SQLCODE explicitly, or implicitly with the WHENEVER directive.

When you declare SQLCODE instead of the SQLCA in a particular compilation unit,
the precompiler allocates an internal SQLCA for that unit. Your host program cannot

9-11

Chapter 9
Key Components of Error Reporting Using the SQLCA

access the internal SQLCA. If you declare the SQLCA and SQLCODE, Oracle returns
the same status code to both after every SQL operation.

9.5 Key Components of Error Reporting Using the SQLCA

Error reporting depends on variables in the SQLCA. This section highlights the key
components of error reporting. The next section takes a close look at the SQLCA.

9.5.1 Status Codes

Every executable SQL statement returns a status code to the SQLCA variable
sqlcode, which you can check implicitly with the WHENEVER directive or explicitly with
your own code.

A zero status code means that Oracle executed the statement without detecting an
error or exception. A positive status code means that Oracle executed the statement
but detected an exception. A negative status code means that Oracle did not execute
the SQL statement because of an error.

9.5.2 Warning Flags

Warning flags are returned in the SQLCA variables sql warn[0] through sql warn[7],
which you can check implicitly or explicitly. These warning flags are useful for runtime
conditions not considered errors by Oracle. If no indicator variable is available, Oracle
issues an error message.

9.5.3 Rows-Processed Count

The number of rows processed by the most recently executed SQL statement is
returned in the SQLCA variable sqgl ca. sgl errd[2], which you can check explicitly.

Strictly speaking, this variable is not for error reporting, but it can help you avoid
mistakes. For example, suppose you expect to delete about ten rows from a table.
After the deletion, you check sql ca. sgl errd[2] and find that 75 rows were processed.
To be safe, you might want to roll back the deletion and examine your WHERE-clause
search condition.

9.5.4 Parse Error Offsets

ORACLE

Before executing a SQL statement, Oracle must parse it to make sure it follows syntax
rules and refers to valid database objects. If Oracle finds an error, an offset is stored in
the SQLCA variable sql ca. sql errd[4], which you can check explicitly. The offset
specifies the character position in the SQL statement at which the parse error begins.
As in a normal C string, the first character occupies position zero. For example, if the
offset is 9, the parse error begins at the 10th character.

The parse error offset is used for situations where a separate prepare/parse is
performed. This is typical for dynamic SQL statements.

Parse errors may arise from missing, misplaced, or misspelled keywords, invalid
options, and the like. For example, the dynamic SQL statement:

"UPDATE enp SET jib = :job_title WHERE enpno = :enp_nunber"

9-12

Chapter 9
Using the SQL Communications Area (SQLCA)

causes the parse error

ORA-00904: invalid col um nane

because the column name JOB is misspelled. The value of sql ca. sgl errd[4] is 15
because the erroneous column name JIB begins at the 16th character.

If your SQL statement does not cause a parse error, Oracle sets sql ca. sqgl errd[4] to
zero. Oracle also sets sql ca. sql errd[4] to zero if a parse error begins at the first
character (which occupies position zero). So, check sqgl ca. sql errd[4] only if
sglca.sqlcode is negative, which means that an error has occurred.

9.5.5 Error Message Text

The error code and message for Oracle errors are available in the SQLCA variable
SQLERRMC. At most, the first 70 characters of text are stored. To get the full text of
messages longer than 70 characters, you use the sql gl n() function.

Related Topics
e About Getting the Full Text of Error Messages

9.6 Using the SQL Communications Area (SQLCA)

The SQLCA is a data structure. Its components contain error, warning, and status
information updated by Oracle whenever a SQL statement is executed. Thus, the
SQLCA always reflects the outcome of the most recent SQL operation. To determine
the outcome, you can check variables in the SQLCA.

Your program can have more than one SQLCA. For example, it might have one global
SQLCA and several local ones. Access to a local SQLCA is limited by its scope within
the program. Oracle returns information only to the SQLCA that is in scope.

Note:

When your application uses Oracle Net to access a combination of local and
remote databases concurrently, all the databases write to one SQLCA. There is
not a different SQLCA for each database.

Related Topics

* Advance