Oracle® Database
Database Globalization Support Guide

18c
E83721-06
July 2022

ORACLE"

Oracle Database Database Globalization Support Guide, 18c
E83721-06

Copyright © 1996, 2022, Oracle and/or its affiliates.

Primary Author: Rajesh Bhatiya

Contributors: Dan Chiba, Winson Chu, Claire Ho, Gary Hua, Simon Law, Geoff Lee, Peter Linsley, Qianrong
Ma, Keni Matsuda, Meghna Mehta, Valarie Moore, Cathy Shea, Shige Takeda, Linus Tanaka, Makoto
Tozawa, Barry Trute, Ying Wu, Peter Wallack, Chao Wang, Huaging Wang, Sergiusz Wolicki, Simon Wong,
Michael Yau, Jianping Yang, Qin Yu, Tim Yu, Weiran Zhang, Yan Zhu

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software" or "commercial computer software documentation” pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use,
reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or
adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government's use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface
Intended Audience XVi
Documentation Accessibility XVi
Diversity and Inclusion XVii
Related Documentation XVil
Conventions XVii
Changes in This Release for Oracle Database Globalization Support
Guide
Changes in Oracle Database 18c Xviii
Changes in Oracle Database 12c¢ Release 2 (12.2) XiX
Changes in Oracle Database 12c Release 1 (12.1) XX
1 Overview of Globalization Support
1.1 Globalization Support Architecture 1-1
1.1.1 Locale Data on Demand 1-1
1.1.2 Architecture to Support Multilingual Applications 1-2
1.1.3 Using Unicode in a Multilingual Database 1-4
1.2 Globalization Support Features 1-5
1.2.1 Language Support 1-5
1.2.2 Territory Support 1-5
1.2.3 Date and Time Formats 1-6
1.2.4 Monetary and Numeric Formats 1-6
1.2.5 Calendar Systems 1-6
1.2.6 Linguistic Sorting 1-7
1.2.7 Character Set Support 1-7
1.2.8 Character Semantics 1-7
1.2.9 Customization of Locale and Calendar Data 1-8
1.2.10 Unicode Support 1-8

ORACLE

2 Choosing a Character Set

2.1 Character Set Encoding 2-1
2.1.1 What is an Encoded Character Set? 2-1
2.1.2 Which Characters Are Encoded? 2-2

2.1.2.1 Phonetic Writing Systems 2-3
2.1.2.2 Ideographic Writing Systems 2-3
2.1.2.3 Punctuation, Control Characters, Numbers, and Symbols 2-3
2.1.2.4 Writing Direction 2-3
2.1.3 What Characters Does a Character Set Support? 2-4
2.1.3.1 ASCIl Encoding 2-5
2.1.4 How are Characters Encoded? 2-6
2.1.4.1 Single-Byte Encoding Schemes 2-7
2.1.4.2 Multibyte Encoding Schemes 2-7
2.1.5 Naming Convention for Oracle Database Character Sets 2-8
2.1.6 Subsets and Supersets 2-9

2.2 Length Semantics 2-9

2.3 Choosing an Oracle Database Character Set 2-11
2.3.1 Current and Future Language Requirements 2-13
2.3.2 Client Operating System and Application Compatibility 2-13
2.3.3 Character Set Conversion Between Clients and the Server 2-13
2.3.4 Performance Implications of Choosing a Database Character Set 2-14
2.3.5 Restrictions on Database Character Sets 2-14

2.3.5.1 Restrictions on Character Sets Used to Express Names 2-14
2.3.6 Database Character Set Statement of Direction 2-15
2.3.7 Choosing Unicode as a Database Character Set 2-16
2.3.8 Choosing a National Character Set 2-16
2.3.9 Summary of Supported Data Types 2-16

2.4 Choosing a Database Character Set for a Multitenant Container Database 2-18

2.5 Changing the Character Set After Database Creation 2-20

2.6 Monolingual Database Scenario 2-21
2.6.1 Character Set Conversion in a Monolingual Scenario 2-22

2.7 Multilingual Database Scenario 2-23

3 Setting Up a Globalization Support Environment

3.1 Setting NLS Parameters 3-1
3.2 Choosing a Locale with the NLS_LANG Environment Variable 3-4
3.2.1 Specifying the Value of NLS_LANG 3-5
3.2.2 Overriding Language and Territory Specifications 3-6
3.2.3 Locale Variants 3-7
3.2.4 Should the NLS_LANG Setting Match the Database Character Set? 3-8

ORACLE iv

3.3 Character Set Parameter

3.3.1 NLS_OS_CHARSET Environment Variable

3.4 NLS Database Parameters
3.4.1 NLS Data Dictionary Views
3.4.2 NLS Dynamic Performance Views
3.4.3 OCINIsGetInfo() Function

3.5 Language and Territory Parameters
3.5.1 NLS_LANGUAGE
3.5.2 NLS_TERRITORY

3.5.2.1 Overriding Default Values for NLS_LANGUAGE and NLS_TERRITORY

During a Session
3.6 Date and Time Parameters
3.6.1 Date Formats
3.6.1.1 NLS_DATE_FORMAT
3.6.1.2 NLS_DATE_LANGUAGE
3.6.2 Time Formats
3.6.2.1 NLS_TIMESTAMP_FORMAT
3.6.2.2 NLS_TIMESTAMP_TZ_ FORMAT
3.7 Calendar Definitions
3.7.1 Calendar Formats
3.7.1.1 First Day of the Week
3.7.1.2 First Calendar Week of the Year

3.7.1.3 Number of Days and Months in a Year

3.7.1.4 First Year of Era
3.7.2 NLS_CALENDAR
3.8 Numeric and List Parameters
3.8.1 Numeric Formats
3.8.2 NLS_NUMERIC_CHARACTERS
3.8.3 NLS_LIST_SEPARATOR
3.9 Monetary Parameters
3.9.1 Currency Formats
3.9.2 NLS _CURRENCY
3.9.3 NLS_ISO_CURRENCY
3.9.4 NLS_DUAL_CURRENCY
3.9.5 Oracle Database Support for the Euro
3.9.6 NLS_MONETARY_CHARACTERS
3.9.7 NLS_CREDIT
3.9.8 NLS _DEBIT
3.10 Linguistic Sort Parameters
3.10.1 NLS_SORT
3.10.2 NLS_COMP

ORACLE

3-9
3-9
3-9
3-9
3-10
3-10
3-11
3-11
3-13

3-16
3-17
3-17
3-18
3-19
3-20
3-21
3-22
3-23
3-23
3-23
3-24
3-25
3-25
3-25
3-26
3-26
3-27
3-28
3-28
3-29
3-29
3-30
3-31
3-32
3-32
3-33
3-33
3-33
3-34
3-35

3.11 Character Set Conversion Parameter 3-35

3.11.1 NLS_NCHAR_CONV_EXCP 3-35
3.12 Length Semantics 3-36
3.12.1 NLS_LENGTH_SEMANTICS 3-36

4 Datetime Data Types and Time Zone Support

4.1 Overview of Datetime and Interval Data Types and Time Zone Support 4-1
4.2 Datetime and Interval Data Types 4-1
4.2.1 Datetime Data Types 4-2
4.2.1.1 DATE Data Type 4-3

4.2.1.2 TIMESTAMP Data Type 4-4

4.2.1.3 TIMESTAMP WITH TIME ZONE Data Type 4-5

4214 TIMESTAMP WITH LOCAL TIME ZONE Data Type 4-6

4.2.1.5 Inserting Values into Datetime Data Types 4-7

4.2.1.6 Choosing a TIMESTAMP Data Type 4-10

4.2.2 Interval Data Types 4-10
4.2.2.1 INTERVAL YEAR TO MONTH Data Type 4-11

4.2.2.2 INTERVAL DAY TO SECOND Data Type 4-11

4.2.2.3 Inserting Values into Interval Data Types 4-12

4.3 Datetime and Interval Arithmetic and Comparisons 4-12
4.3.1 Datetime and Interval Arithmetic 4-12
4.3.2 Datetime Comparisons 4-13
4.3.3 Explicit Conversion of Datetime Data Types 4-13

4.4 Datetime SQL Functions 4-13
4.5 Datetime and Time Zone Parameters and Environment Variables 4-16
45.1 Datetime Format Parameters 4-16
4.5.2 Time Zone Environment Variables 4-17
4.5.3 Daylight Saving Time Session Parameter 4-17
4.5.4 Daylight Saving Time Upgrade Parameter 4-18

4.6 Choosing a Time Zone File 4-18
4.7 Upgrading the Time Zone File and Timestamp with Time Zone Data 4-21
4.7.1 Upgrading the Time Zone Data Using the utltz_* Scripts 4-23
4.7.1.1 Prepare Window 4-23

4.7.1.2 Upgrade Window 4-24

4.7.2 Upgrading the Time Zone Data Using the DBMS_DST Package 4-26
4.7.2.1 Prepare Window 4-27

4.7.2.2 Upgrade Window 4-28

4.7.2.3 Upgrade Example 4-29

4.7.2.4 Upgrade Error Handling 4-35

4.8 Clients and Servers Operating with Different Versions of Time Zone Files 4-36

ORACLE vi

4.9 Setting the Database Time Zone 4-36

4,10 Setting the Session Time Zone 4-37
4.11 Converting Time Zones With the AT TIME ZONE Clause 4-38
4.12 Support for Daylight Saving Time 4-39

4.12.1 Examples: The Effect of Daylight Saving Time on Datetime Calculations 4-40

5 Linguistic Sorting and Matching

5.1 Overview of Oracle Database Collation Capabilities 5-2
5.2 Using Binary Collation 5-2
5.3 Using Linguistic Collation 5-3
5.3.1 Monolingual Collation 5-3
5.3.2 Multilingual Collation 5-4
5.3.2.1 Multilingual Collation Levels 5-5

5.3.3 UCA Collation 5-6
5.3.3.1 UCA Comparison Levels 5-7

5.3.3.2 UCA Collation Parameters 5-8

5.4 Linguistic Collation Features 5-9
5.4.1 Base Letters 5-10
5.4.2 Ignorable Characters 5-10
5.4.2.1 Primary Ignorable Characters 5-10

5.4.2.2 Secondary Ignorable Characters 5-11

5.4.2.3 Tertiary Ignorable Characters 5-11

5.4.3 Variable Characters and Variable Weighting 5-12
5.4.4 Contracting Characters 5-13
5.4.5 Expanding Characters 5-14
5.4.6 Context-Sensitive Characters 5-14
5.4.7 Canonical Equivalence 5-14
5.4.8 Reverse Secondary Sorting 5-15
5.4.9 Character Rearrangement for Thai and Laotian Characters 5-15
5.4.10 Special Letters 5-16
5.4.11 Special Combination Letters 5-16
5.4.12 Special Uppercase Letters 5-16
5.4.13 Special Lowercase Letters 5-17

5.5 Case-Insensitive and Accent-Insensitive Linguistic Collation 5-17
5.5.1 Examples: Case-Insensitive and Accent-Insensitive Collation 5-18
5.5.2 Specifying a Case-Insensitive or Accent-Insensitive Collation 5-19
5.5.3 Examples: Linguistic Collation 5-21

5.6 Performing Linguistic Comparisons 5-22
5.6.1 Collation Keys 5-24
5.6.2 Restricted Precision of Linguistic Comparison 5-24

ORACLE vii

5.6.3 Avoiding ORA-12742 Error 5-25
5.6.4 Examples: Linguistic Comparison 5-26
5.7 Using Linguistic Indexes 5-29
5.7.1 Supported SQL Operations and Functions for Linguistic Indexes 5-30
5.7.2 Linguistic Indexes for Multiple Languages 5-31
5.7.3 Requirements for Using Linguistic Indexes 5-32
5.7.3.1 Set NLS_SORT Appropriately 5-32

5.7.3.2 Specify NOT NULL in a WHERE Clause If the Column Was Not
Declared NOT NULL 5-32
5.7.3.3 Use a Tablespace with an Adequate Block Size 5-32
5.7.3.4 Example: Setting Up a French Linguistic Index 5-33
5.8 Searching Linguistic Strings 5-33
5.9 SQL Regular Expressions in a Multilingual Environment 5-34
5.9.1 Character Range '[x-y]' in Regular Expressions 5-34
5.9.2 Collation Element Delimiter '[. .]' in Regular Expressions 5-35
5.9.3 Character Class '[: :]' in Regular Expressions 5-35
5.9.4 Equivalence Class '[= =]' in Regular Expressions 5-35
5.9.5 Examples: Regular Expressions 5-35
5.10 Column-Level Collation and Case Sensitivity 5-37
5.10.1 About Data-Bound Collation 5-38
5.10.2 Default Collations 5-40
5.10.3 Enabling Data-Bound Collation 5-41
5.10.4 Specifying a Data-Bound Collation 5-41
5.10.4.1 Effective Schema Default Collation 5-42
5.10.4.2 Specifying Data-Bound Collation for a Schema 5-43
5.10.4.3 Specifying Data-Bound Collation for a Table 5-44
5.10.4.4 Specifying Data-Bound Collation for a View and a Materialized View 5-45
5.10.4.5 Specifying Data-Bound Collation for a Column 5-46
5.10.4.6 Specifying Data-Bound Collation for PL/SQL Units 5-49
5.10.4.7 Specifying Data-Bound Collation for SQL Expressions 5-50
5.10.5 Viewing the Data-Bound Collation of a Database Object 5-53
5.10.6 Case-Insensitive Database 5-54
5.10.7 Effect of Data-Bound Collation on Other Database Objects 5-54
5.10.8 Effect of Data-Bound Collation on Distributed Queries and DML Operations 5-59
5.10.9 Effect of Data-Bound Collation on PL/SQL Types and User-Defined Types 5-60
5.10.10 Effect of Data-Bound Collation on Oracle XML DB 5-61

6 Supporting Multilingual Databases with Unicode
6.1 What is the Unicode Standard? 6-1
6.2 Features of the Unicode Standard 6-2
6.2.1 Code Points and Supplementary Characters 6-2
ORACLE viii

6.2.2 Unicode Encoding Forms 6-2
6.2.2.1 UTF-8 Encoding Form 6-3

6.2.2.2 UTF-16 Encoding Form 6-3

6.2.2.3 UCS-2 Encoding Form 6-4

6.2.2.4 UTF-32 Encoding Form 6-4

6.2.2.5 CESU-8 Encoding Form 6-4

6.2.2.6 Examples: UTF-16, UTF-8, and UCS-2 Encoding 6-5

6.2.3 Support for the Unicode Standard in Oracle Database 6-5

6.3 Implementing a Unicode Solution in the Database 6-6
6.3.1 Enabling Multilingual Support for a Database 6-7
6.3.2 Enabling Multilingual Support with Unicode Data Types 6-9
6.3.3 How to Choose Between Unicode Solutions 6-10

6.4 Unicode Case Studies 6-11
6.5 Designing Database Schemas to Support Multiple Languages 6-12
6.5.1 Specifying Column Lengths for Multilingual Data 6-12
6.5.2 Storing Data in Multiple Languages 6-14
6.5.3 Storing Documents in Multiple Languages in LOB Data Types 6-15
6.5.4 Creating Indexes for Searching Multilingual Document Contents 6-16
6.5.4.1 Creating Multilexers 6-16

6.5.4.2 Creating Indexes for Documents Stored in the CLOB Data Type 6-17

6.5.4.3 Creating Indexes for Documents Stored in the BLOB Data Type 6-17

7 Programming with Unicode

7.1 Overview of Programming with Unicode 7-1
7.1.1 Database Access Product Stack and Unicode 7-1

7.2 SQL and PL/SQL Programming with Unicode 7-3
7.2.1 SQL NCHAR Data Types 7-4
7.2.1.1 The NCHAR Data Type 7-4

7.2.1.2 The NVARCHAR2 Data Type 7-4

7.2.1.3 The NCLOB Data Type 7-5

7.2.2 Implicit Data Type Conversion Between NCHAR and Other Data Types 7-5
7.2.3 Exception Handling for Data Loss During Data Type Conversion 7-6
7.2.4 Rules for Implicit Data Type Conversion 7-6
7.2.5 SQL Functions for Unicode Data Types 7-7
7.2.6 Other SQL Functions 7-8
7.2.7 Unicode String Literals 7-9
7.2.8 NCHAR String Literal Replacement 7-9
7.2.9 Using the UTL_FILE Package with NCHAR Data 7-10

7.3 OCI Programming with Unicode 7-11
7.3.1 OCIEnvNIsCreate() Function for Unicode Programming 7-11

ORACLE

7.3.2 OCI Unicode Code Conversion
7.3.2.1 Data Integrity
7.3.2.2 OCI Performance Implications When Using Unicode
7.3.2.3 OCI Unicode Data Expansion
7.3.3 Setting UTF-8 to the NLS_LANG Character Set in OCI
7.3.4 Binding and Defining SQL CHAR Data Types in OCI
7.3.5 Binding and Defining SQL NCHAR Data Types in OCI
7.3.6 Handling SQL NCHAR String Literals in OCI
7.3.7 Binding and Defining CLOB and NCLOB Unicode Data in OCI
7.4 Pro*C/C++ Programming with Unicode
7.4.1 Pro*C/C++ Data Conversion in Unicode
7.4.2 Using the VARCHAR Data Type in Pro*C/C++
7.4.3 Using the NVARCHAR Data Type in Pro*C/C++
7.4.4 Using the UVARCHAR Data Type in Pro*C/C++
7.5 JDBC Programming with Unicode
7.5.1 Binding and Defining Java Strings to SQL CHAR Data Types
7.5.2 Binding and Defining Java Strings to SQL NCHAR Data Types
7.5.2.1 New JDBC4.0 Methods for NCHAR Data Types
7.5.3 Using the SQL NCHAR Data Types Without Changing the Code
7.5.4 Using SQL NCHAR String Literals in JDBC
7.5.5 Data Conversion in JDBC
7.5.5.1 Data Conversion for the OCI Driver
7.5.5.2 Data Conversion for Thin Drivers
7.5.5.3 Data Conversion for the Server-Side Internal Driver
7.5.6 Using oracle.sgl.CHAR in Oracle Object Types
7.5.6.1 oracle.sql.CHAR
7.5.6.2 Accessing SQL CHAR and NCHAR Attributes with oracle.sql.CHAR
7.5.7 Restrictions on Accessing SQL CHAR Data with JDBC
7.5.7.1 Character Integrity Issues in a Multibyte Database Environment
7.6 ODBC and OLE DB Programming with Unicode
7.6.1 Unicode-Enabled Drivers in ODBC and OLE DB
7.6.2 OCI Dependency in Unicode
7.6.3 ODBC and OLE DB Code Conversion in Unicode
7.6.3.1 OLE DB Code Conversions
7.6.4 ODBC Unicode Data Types
7.6.5 OLE DB Unicode Data Types
7.6.6 ADO Access
7.7 XML Programming with Unicode
7.7.1 Writing an XML File in Unicode with Java
7.7.2 Reading an XML File in Unicode with Java

ORACLE

7-12
7-13
7-13
7-14
7-15
7-15
7-16
7-17
7-18
7-18
7-19
7-19
7-20
7-20
7-21
7-22
7-22
7-23
7-24
7-24
7-25
7-25
7-26
7-27
7-27
7-27
7-28
7-29
7-29
7-30
7-30
7-30
7-31
7-32
7-32
7-33
7-33
7-34
7-34
7-35

7.7.3 Parsing an XML Stream in Unicode with Java 7-35

8 Oracle Globalization Development Kit
8.1 Overview of the Oracle Globalization Development Kit 8-1
8.2 Designing a Global Internet Application 8-1
8.2.1 Deploying a Monolingual Internet Application 8-2
8.2.2 Deploying a Multilingual Internet Application 8-4
8.3 Developing a Global Internet Application 8-5
8.3.1 Locale Determination 8-6
8.3.2 Locale Awareness 8-6
8.3.3 Localizing the Content 8-7
8.4 Getting Started with the Globalization Development Kit 8-7
8.5 GDK Quick Start 8-9
8.5.1 Modifying the HelloWorld Application 8-10
8.6 GDK Application Framework for J2EE 8-16
8.6.1 Making the GDK Framework Available to J2EE Applications 8-18
8.6.2 Integrating Locale Sources into the GDK Framework 8-19
8.6.3 Getting the User Locale From the GDK Framework 8-21
8.6.4 Implementing Locale Awareness Using the GDK Localizer 8-22
8.6.5 Defining the Supported Application Locales in the GDK 8-23
8.6.6 Handling Non-ASCII Input and Output in the GDK Framework 8-24
8.6.7 Managing Localized Content in the GDK 8-26
8.6.7.1 Managing Localized Content in JSPs and Java Servlets 8-26
8.6.7.2 Managing Localized Content in Static Files 8-27
8.7 GDK Java API 8-28
8.7.1 Oracle Locale Information in the GDK 8-29
8.7.2 Oracle Locale Mapping in the GDK 8-30
8.7.3 Oracle Character Set Conversion in the GDK 8-30
8.7.4 Oracle Date, Number, and Monetary Formats in the GDK 8-32
8.7.5 Oracle Binary and Linguistic Sorts in the GDK 8-32
8.7.6 Oracle Language and Character Set Detection in the GDK 8-33
8.7.7 Oracle Translated Locale and Time Zone Names in the GDK 8-35
8.7.8 Using the GDK with E-Mail Programs 8-35
8.8 The GDK Application Configuration File 8-37
8.8.1 locale-charset-maps 8-37
8.8.2 page-charset 8-38
8.8.3 application-locales 8-38
8.8.4 locale-determine-rule 8-39
8.8.5 locale-parameter-name 8-40
8.8.6 message-bundles 8-41
ORACLE Xi

8.8.7 url-rewrite-rule 8-41

8.8.8 Example: GDK Application Configuration File 8-42

8.9 GDK for Java Supplied Packages and Classes 8-43
8.9.1 oracle.i18n.lcsd 8-43
8.9.1.1 LCSScan 8-44

8.9.2 oracle.il8n.net 8-45
8.9.3 oracle.il8n.servlet 8-45
8.9.4 oracle.il8n.text 8-45
8.9.5 oracle.i18n.util 8-46
8.10 GDK for PL/SQL Supplied Packages 8-46
8.11 GDK Error Messages 8-47

9 SQL and PL/SQL Programming in a Global Environment

9.1 Locale-Dependent SQL Functions with Optional NLS Parameters 9-1
9.1.1 Default Values for NLS Parameters in SQL Functions 9-2
9.1.2 Specifying NLS Parameters in SQL Functions 9-2
9.1.3 Unacceptable NLS Parameters in SQL Functions 9-4

9.2 Other Locale-Dependent SQL Functions 9-4
9.2.1 The CONVERT Function 9-4
9.2.2 SQL Functions for Different Length Semantics 9-5
9.2.3 LIKE Conditions for Different Length Semantics 9-6
9.2.4 Character Set SQL Functions 9-7

9.2.4.1 Converting from Character Set Number to Character Set Name 9-7
9.2.4.2 Converting from Character Set Name to Character Set Number 9-7
9.2.4.3 Returning the Length of an NCHAR Column 9-8
9.2.5 The NLSSORT Function 9-8
9.2.5.1 NLSSORT Syntax 9-9
9.2.5.2 Comparing Strings in a WHERE Clause 9-10
9.2.5.3 Controlling an ORDER BY Clause 9-11

9.3 Miscellaneous Topics for SQL and PL/SQL Programming in a Global Environment 9-11
9.3.1 SQL Date Format Masks 9-12
9.3.2 Calculating Week Numbers 9-12
9.3.3 SQL Numeric Format Masks 9-12
9.3.4 Loading External BFILE Data into LOB Columns 9-13

10 OCI Programming in a Global Environment

10.1 Using the OCI NLS Functions 10-1
10.2 Specifying Character Sets in OCI 10-2
10.3 Getting Locale Information in OCI 10-2

ORACLE Xii

10.4 Mapping Locale Information Between Oracle and Other Standards 10-3
10.5 Manipulating Strings in OCI 10-3
10.6 Classifying Characters in OCI 10-5
10.7 Converting Character Sets in OCI 10-6
10.8 OCI Messaging Functions 10-7
10.9 Imsgen Utility 10-7
11 Character Set Migration
11.1 Overview of Character Set Migration 11-1
11.1.1 Data Truncation 11-2
11.1.1.1 Additional Problems Caused by Data Truncation 11-2
11.1.2 Character Set Conversion Issues 11-3
11.1.2.1 Replacement Characters that Result from Using the Export and Import
Utilities 11-3
11.1.2.2 Invalid Data That Results from Setting the Client's NLS_LANG
Parameter Incorrectly 11-4
11.1.2.3 Conversion from Single-byte to Multibyte Character Set and Oracle
Data Pump 11-6
11.2 Changing the Database Character Set of an Existing Database 11-6
11.2.1 Migrating Character Data Using the Database Migration Assistant for Unicode 11-6
11.2.2 Migrating Character Data Using a Full Export and Import 11-7
11.3 Repairing Database Character Set Metadata 11-8
11.3.1 Example: Using CSREPAIR 11-9
11.4 The Language and Character Set File Scanner 11-9
11.4.1 Syntax of the LCSSCAN Command 11-10
11.4.2 Examples: Using the LCSSCAN Command 11-11
11.4.3 Getting Command-Line Help for the Language and Character Set File
Scanner 11-12
11.4.4 Supported Languages and Character Sets 11-12
11.4.5 LCSSCAN Error Messages 11-12
12 Customizing Locale Data
12.1 Overview of the Oracle Locale Builder Utility 12-1
12.1.1 Configuring Unicode Fonts for the Oracle Locale Builder 12-1
12.1.2 The Oracle Locale Builder User Interface 12-2
12.1.3 Oracle Locale Builder Pages and Dialog Boxes 12-3
12.1.3.1 Existing Definitions Dialog Box 12-3
12.1.3.2 Session Log Dialog Box 12-4
12.1.3.3 Preview NLT Tab Page 12-5
12.1.3.4 Open File Dialog Box 12-5

ORACLE

Xiii

12.2 Creating a New Language Definition with Oracle Locale Builder 12-6

12.3 Creating a New Territory Definition with the Oracle Locale Builder 12-9
12.4 Displaying a Code Chart with the Oracle Locale Builder 12-15
12.5 Creating a New Character Set Definition with the Oracle Locale Builder 12-19
12.5.1 Character Sets with User-Defined Characters 12-19
12.5.2 Oracle Database Character Set Conversion Architecture 12-20
12.5.3 Unicode Private Use Area 12-21
12.5.4 User-Defined Character Cross-References Between Character Sets 12-21
12.5.5 Guidelines for Creating a New Character Set from an Existing Character Set 12-21
12.5.6 Example: Creating a New Character Set Definition with the Oracle Locale
Builder 12-22
12.6 Creating a New Linguistic Sort with the Oracle Locale Builder 12-26
12.6.1 Changing the Sort Order for All Characters with the Same Diacritic 12-29
12.6.2 Changing the Sort Order for One Character with a Diacritic 12-32
12.7 Generating and Installing NLB Files 12-34
12.8 Upgrading Custom NLB Files from Previous Releases of Oracle Database 12-36
12.9 Deploying Custom NLB Files to Oracle Installations on the Same Platform 12-36
12.10 Deploying Custom NLB Files to Oracle Installations on Another Platform 12-37
12.11 Adding Custom Locale Definitions to Java Components with the GINSTALL Utility 12-38
12.12 Customizing Calendars with the NLS Calendar Utility 12-38

A Locale Data

A.1 Languages A-1
A.2 Translated Messages A-4
A.3 Territories A-5
A.4 Character Sets A-6
A.4.1 Recommended Database Character Sets A-7
A.4.2 Other Character Sets A-10
A.4.3 Character Sets that Support the Euro Symbol A-14
A.4.4 Client-Only Character Sets A-15
A.4.5 Universal Character Sets A-17
A.4.6 Character Set Conversion Support A-18
A.4.7 Binary Subset-Superset Pairs A-18
A.5 Language and Character Set Detection Support A-20
A.6 Linguistic Collations A-22
A.7 Calendar Systems A-27
A.8 Time Zone Region Names A-28
A.9 Obsolete Locale Data A-36
A.9.1 Obsolete Linguistic Sorts A-36
A.9.2 Obsolete Territories A-37
A.9.3 Obsolete Languages A-37

ORACLE Xiv

A.9.4 Obsolete Character Sets and Replacement Character Sets

A-37

A.9.5 AL24UTFFSS Character Set Desupported A-39
A.9.6 Updates to the Oracle Database Language and Territory Definition Files A-39
Unicode Character Code Assignments
B.1 Unicode Code Ranges B-1
B.2 UTF-16 Encoding B-2
B.3 UTF-8 Encoding B-2
Collation Derivation and Determination Rules for SQL Operations
C.1 Collation Derivation C-1
C.2 Collation Determination C-4
C.3 SQL Operations and Their Derivation- and Determination-relevant Arguments C-6

Glossary

Index

ORACLE"

XV

Preface

Preface

This book describes Oracle globalization support for Oracle Database. It explains how
to set up a globalization support environment, choose and migrate a character set,
customize locale data, do linguistic sorting, program in a global environment, and
program with Unicode.

This preface contains these topics:

* Intended Audience

* Documentation Accessibility
* Diversity and Inclusion

* Related Documentation

e Conventions

Intended Audience

Oracle Database Globalization Support Guide is intended for database administrators,
system administrators, and database application developers who perform the following
tasks:

e Set up a globalization support environment
» Choose, analyze, or migrate character sets
* Sort data linguistically

e Customize locale data

* Write programs in a global environment

e Use Unicode

To use this document, you must be familiar with relational database concepts, basic
Oracle Database concepts, and the operating system environment under which you
are running Oracle.

Documentation Accessibility

ORACLE

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/

XVi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info

Preface

lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you
are hearing impaired.

Diversity and Inclusion

Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and
partners, we are working to remove insensitive terms from our products and documentation.
We are also mindful of the necessity to maintain compatibility with our customers' existing
technologies and the need to ensure continuity of service as Oracle's offerings and industry
standards evolve. Because of these technical constraints, our effort to remove insensitive
terms is ongoing and will take time and external cooperation.

Related Documentation

Many of the examples in this book use the sample schemas of the seed database, which is
installed by default when you install Oracle. Refer to Oracle Database Sample Schemas for
information on how these schemas were created and how you can use them yourself.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which you
supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

ORACLE Vi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Changes in This Release for Oracle Database Globalization Support Guide

Changes in This Release for Oracle
Database Globalization Support Guide

This preface contains:

e Changes in Oracle Database 18c
e Changes in Oracle Database 12c Release 2 (12.2)
e Changes in Oracle Database 12c Release 1 (12.1)

Changes in Oracle Database 18c

The following are changes in Oracle Database Globalization Support Guide for Oracle
Database 18c:

New Features

e Support for Unicode 9.0, a major version of the Unicode Standard that supersedes
all its previous versions.

See "Unicode Support".

e You can now partition a table by range, list, or reference independently of the
declared collation of the partitioning key column. Before Oracle Database 18c,
only the collations BINARY, USING NLS COMP, USING NLS SORT, and
USING NLS SORT CS were allowed in partitioning keys. Thus, you can now partition
a table by character values in a case-insensitive way by declaring a case-
insensitive collation for the table partitioning key column.

See "Effect of Data-Bound Collation on Other Database Objects".

* In Oracle Call Interface (OCI), you can now pass a collation for a bind variable in a
query or a DML statement using the value of the OCI_ATTR COLLATION ID
attribute. By setting a collation of a bind variable, you can control the collation
used to compare the value of the bind variable in comparison conditions and other
SQL operations to which the bind variable is an argument. Controlling the collation
with the OCI attribute is preferable over inserting the COLLATE operator into a
SQL statement text. The latter increases the risk of introducing a SQL injection
issue.

See "Collation Derivation".

» The new overloaded functions VALIDATE CHARACTER ENCODING are added to the
PL/SQL package UTL_I18N to validate the character encoding of VARCHAR?2,
NVARCHAR2, CLOB, and NCLOB data.

See "GDK for PL/SQL Supplied Packages".
See also Oracle Database PL/SQL Packages and Types Reference.

ORACLE XViii

Changes in This Release for Oracle Database Globalization Support Guide

Support for additional languages and territories.

— Additional languages supported in this release:
BASQUE, TURKMEN, and URDU.
See "Languages".

— Additional territories supported in this release:

ANGOLA, ANTIGUA AND BARBUDA, ARUBA, BARBADOS, BOTSWANA, CAYMAN ISLANDS,
CURACAO, DOMINICA, DOMINICAN REPUBLIC, GHANA, GRENADA, GUYANA, HAITI,
JAMAICA, LIECHTENSTEIN, MACAO, MALAWI, MAURITIUS, MOLDOVA, MOZAMBIQUE,
NAMIBIA, SAINT KITTS AND NEVIS, SAINT LUCIA, SIERRA LEONE, SOUTH SUDAN,
SURINAME, SWAZILAND, TRINIDAD AND TOBAGO, TURKMENISTAN, and ZIMBABWE.

See "Territories".

Changes in Oracle Database 12c Release 2 (12.2)

New Features

ORACLE

The following are changes in Oracle Database Globalization Support Guide for Oracle
Database 12c¢ Release 2 (12.2).

Support for Unicode 7.0, a major version of the Unicode Standard that supersedes all
previous versions of the standard.

See "Unicode Support"

Unicode character set AL32UTF8 is now used as the default database character set when
a database is created using Oracle Universal Installer (OUI) or Oracle Database
Configuration Assistant (DBCA). The AL32UTF8 character set is Oracle's implementation
of the industry standard UTF-8 encoding, which supports most of the written languages of
the world. Making the AL32UTF8 character set the default character set for new database
deployments enables the database to support multilingual globalized applications out-of-
the-box.

See "Enabling Multilingual Support for a Database"

Support for pluggable databases (PDBs) with different database character sets in a
multitenant container database (CDB). In the earlier Oracle Database release, it was
mandatory to have the same database character set for all the PDBs in a CDB.

See "Choosing a Database Character Set for a Multitenant Container Database”

The column-level collation feature allows you to declare character comparison rules on
the column level. The collation declared for a column is automatically applied to all the
collation-sensitive SQL operations referencing that column. This enables applications to
consistently apply language-specific comparison rules to exactly the data that needs
these rules. Implementing this feature simplifies application migration to Oracle Database
from non-Oracle database systems that support column-level collation declaration.

See "Column-Level Collation and Case Sensitivity"

The column-level collation feature also allows you to declare a case-insensitive collation
for a table or a schema, so that all the columns in a table or a schema can be always
compared in a case-insensitive way. Thus, using this feature, you can now easily create
the whole database as a case-insensitive database.

See "Case-Insensitive Database"

XiX

Changes in This Release for Oracle Database Globalization Support Guide

Deprecated Features

The Unicode Collation Algorithm (UCA) 6.1 collations (UCA0610_*) are
deprecated in this release. They can be desupported and unavailable in a future
release. Oracle recommends the use of UCA 7.0 collations (UCAQ0700_*) instead.

See Table A-17 for the list of UCA collations supported in this release.

Changes in Oracle Database 12c Release 1 (12.1)

The following are changes in Oracle Database Globalization Support Guide for Oracle
Database 12c Release 1 (12.1).

New Features

Support for Unicode 6.2, a major version of the Unicode Standard that supersedes
all previous versions of the standard.

Support for new locales.

See " Locale Data".

Support for the Unicode Collation Algorithm

See " Linguistic Sorting and Matching".

The Database Migration Assistant for Unicode (DMU)

The Database Migration Assistant for Unicode (DMU) is an intuitive and user-
friendly GUI product that helps you streamline the migration process through an
interface that minimizes the manual workload and ensures that the migration tasks
are carried out correctly and efficiently. It replaces the CSSCAN and CSALTER utilities
as the supported method for migrating databases to Unicode.

See "Migrating Character Data Using the Database Migration Assistant for
Unicode" and Oracle Database Migration Assistant for Unicode Guide for more
details.

Desupported Features

Some features previously described in this document (the cSSCAN and CSALTER utilities)
are desupported in Oracle Database 12c Release 1 (12.1). See Oracle Database
Upgrade Guide for a list of desupported features.

ORACLE

XX

Overview of Globalization Support

This chapter provides an overview of globalization support for Oracle Database. This chapter
discusses the following topics:

e Globalization Support Architecture

e Globalization Support Features

1.1 Globalization Support Architecture

The globalization support in Oracle Database enables you to store, process, and retrieve
data in native languages. It ensures that database utilities, error messages, sort order, and
date, time, monetary, numeric, and calendar conventions automatically adapt to any native
language and locale.

In the past, Oracle referred to globalization support capabilities as National Language
Support (NLS) features. NLS is actually a subset of globalization support. NLS is the ability to
choose a national language and store data in a specific character set. Globalization support
enables you to develop multilingual applications and software products that can be accessed
and run from anywhere in the world simultaneously. An application can render content of the
user interface and process data in the native users' languages and locale preferences.

1.1.1 Locale Data on Demand

ORACLE

Oracle Database globalization support is implemented with the Oracle NLS Runtime Library
(NLSRTL). NLSRTL provides a comprehensive suite of language-independent functions that
perform proper text and character processing and language-convention manipulations.
Behavior of these functions for a specific language and territory is governed by a set of
locale-specific data that is identified and loaded at run time.

The locale-specific data is structured as independent sets of data for each locale that Oracle
Database supports. The data for a particular locale can be loaded independently of other
locale data.

The advantages of this design are as follows:

* You can manage memory consumption by choosing the set of locales that you need.

* You can add and customize locale data for a specific locale without affecting other
locales.

The following figure shows how locale-specific data is loaded at run time. In this example,
French data and Japanese data are loaded into the multilingual database, but German data
is not.

1-1

Chapter 1
Globalization Support Architecture

Figure 1-1 Loading Locale-Specific Data to the Database

Multilingual
Database
A
/s
O
(s)
X

German French Japanese
Data Data Data

The locale-specific data is stored in the $ORACLE HOME/nls/data directory. The
ORA_NLS10 environment variable should be defined only when you need to change the
default directory location for the locale-specific data files, for example, when the
system has multiple Oracle Database homes that share a single copy of the locale-
specific data files.

A boot file is used to determine the availability of the NLS objects that can be loaded.
Oracle Database supports both system and user boot files. The user boot file gives
you the flexibility to tailor what NLS locale objects are available for the database. Also,
new locale data can be added and some locale data components can be customized.

See Also:

Customizing Locale Data

1.1.2 Architecture to Support Multilingual Applications

ORACLE

Oracle Database enables multitier applications and client/server applications to
support languages for which the database is configured.

The locale-dependent operations are controlled by several parameters and
environment variables on both the client and the database server. On the database
server, each session that is started on behalf of a client may run in the same or a
different locale as other sessions, and can have the same or different language
requirements specified.

Oracle Database has a set of session-independent NLS parameters that are specified
when you create a database. Two of the parameters specify the database character
set and the national character set, which is an alternative Unicode character set that
can be specified for NCHAR, NVARCHAR2, and NCLOB data. The parameters specify the
character set that is used to store text data in the database. Other parameters, such
as language and territory, are used to evaluate and check constraints.

1-2

ORACLE

Chapter 1
Globalization Support Architecture

If the client session and the database server specify different character sets, then the
database converts character set strings automatically.

From a globalization support perspective, all applications are considered to be clients, even if
they run on the same physical machine as the Oracle Database instance. For example, when
SQL*Plus is started by the UNIX user who owns the Oracle Database software from the
Oracle home in which the RDBMS software is installed, and SQL*Plus connects to the
database through an adapter by specifying the ORACLE SID parameter, SQL*Plus is
considered a client. Its behavior is ruled by client-side NLS parameters.

Another example of an application being considered a client occurs when the middle tier is an
application server. The different sessions spawned by the application server are considered
to be separate client sessions.

When a client application is started, it initializes the client NLS environment from environment
settings. All NLS operations performed locally are executed using these settings. Examples
of local NLS operations are:

» Display formatting in Oracle Developer applications
e User OCI code that executes NLS OCI functions with OCI environment handles

When the application connects to a database, a session is created on the server. The new
session initializes its NLS environment from NLS instance parameters specified in the
initialization parameter file. These settings can be subsequently changed by an ALTER
SESSION statement. The statement changes only the session NLS environment. It does not
change the local client NLS environment. The session NLS settings are used to process SQL
and PL/SQL statements that are executed on the server. For example, use an ALTER SESSION
statement to set the NLS_LANGUAGE initialization parameter to Italian:

ALTER SESSION SET NLS LANGUAGE=Italian;

Enter a SELECT statement:

SQL> SELECT last name, hire date, ROUND(salary/8,2) salary FROM employees;

You should see results similar to the following:

LAST NAME HIRE DATE SALARY
Sciarra 30-SET-05 962.5
Urman 07-MAR-06 975
Popp 07-DIC-07 862.5

Note that the month name abbreviations are in ltalian.

Immediately after the connection has been established, if the NLS_LANG environment setting is
defined on the client side, then an implicit ALTER SESSION statement synchronizes the client
and session NLS environments.

" See Also:

e OCI Programming in a Global Environment

e Setting Up a Globalization Support Environment

1-3

Chapter 1
Globalization Support Architecture

1.1.3 Using Unicode in a Multilingual Database

Unicode, the universal encoded character set, enables you to store information in any
language by using a single character set. Unicode provides a unique code value for
every character, regardless of the platform, program, or language. Oracle
recommends using AL32UTF8 as the database character set. AL32UTF8 is the proper
implementation of the UTF-8 encoding form of the Unicode standard.

" Note:

Starting with Oracle Database 12¢ Release 2, if you use Oracle Universal
Installer (OUI) or Oracle Database Configuration Assistant (DBCA) to create
a database, the default database character set used is the Unicode character
set AL32UTF8.

Unicode has the following advantages:

e Simplifies character set conversion and linguistic sort functions.
e Improves performance compared with native multibyte character sets.
e Supports the Unicode data type based on the Unicode standard.

To help you migrate to a Unicode environment, Oracle provides the Database
Migration Assistant for Unicode (DMU). The DMU is an intuitive and user-friendly GUI
that helps streamline the migration process through an interface that minimizes the
workload and ensures that all migration issues are addressed, along with guaranteeing
that the data conversion is carried out correctly and efficiently. The DMU offers many
advantages over past methods of migrating data, some of which are:

* It guides you through the workflow.

» It offers suggestions for handling certain problems, such as failures during the
cleansing of the data.

* It supports selective conversion of data.

» It offers progress monitoring.

See Also:

e Supporting Multilingual Databases with Unicode
e Programming with Unicode
e "Enabling Multilingual Support with Unicode Data Types"

e Oracle Database Migration Assistant for Unicode Guide

ORACLE 1-4

Chapter 1
Globalization Support Features

1.2 Globalization Support Features

This section provides an overview of the standard globalization features in Oracle Database:
e Language Support

e Territory Support

» Date and Time Formats

* Monetary and Numeric Formats

e Calendar Systems

e Linguistic Sorting

» Character Set Support

e Character Semantics

* Customization of Locale and Calendar Data

e Unicode Support

1.2.1 Language Support

Oracle Database enables you to store, process, and retrieve data in native languages. The
languages that can be stored in a database are all languages written in scripts that are
encoded by Oracle-supported character sets. Through the use of Unicode databases and
data types, Oracle Database supports most contemporary languages.

Additional support is available for a subset of the languages. The database can, for example,
display dates using translated month names, and can sort text data according to cultural
conventions.

When this document uses the term language support, it refers to the additional language-
dependent functionality, and not to the ability to store text of a specific language. For
example, language support includes displaying dates or sorting text according to specific
locales and cultural conventions. Additionally, for some supported languages, Oracle
Database provides translated error messages and a translated user interface for the
database utilities.

¢ See Also:

* Setting Up a Globalization Support Environment
e "Languages" for the list of Oracle Database language names and abbreviations

< "Translated Messages" for the list of languages into which Oracle Database
messages are translated

1.2.2 Territory Support

ORACLE

Oracle Database supports cultural conventions that are specific to geographical locations.
The default local time format, date format, and numeric and monetary conventions depend on
the local territory setting. Setting different NLS parameters enables the database session to

1-5

Chapter 1
Globalization Support Features

use different cultural settings. For example, you can set the euro (EUR) as the primary
currency and the Japanese yen (JPY) as the secondary currency for a given database
session, even when the territory is defined as AMERICA.

¢ See Also:

e Setting Up a Globalization Support Environment

e "Territories" for a list of territories that are supported by Oracle Database

1.2.3 Date and Time Formats

Different conventions for displaying the hour, day, month, and year can be handled in
local formats. For example, in the United Kingdom, the date is displayed using the DD-
MON-YYYY format, while Japan commonly uses the YYyy-MM-DD format.

Time zones and daylight saving support are also available.

¢ See Also:

e Setting Up a Globalization Support Environment
e Datetime Data Types and Time Zone Support

e Oracle Database SQL Language Reference

1.2.4 Monetary and Numeric Formats

Currency, credit, and debit symbols can be represented in local formats. Radix
symbols and thousands separators can be defined by locales. For example, in the US,
the decimal point is a dot (.), while it is a comma (,) in France. Therefore, the

amount $1,234 has different meanings in different countries.

¢ See Also:

Setting Up a Globalization Support Environment

1.2.5 Calendar Systems

Many different calendar systems are in use around the world. Oracle Database
supports eight different calendar systems:

e Gregorian
» Japanese Imperial
* ROC Official (Republic of China)

ORACLE 1-6

Chapter 1
Globalization Support Features

e Thai Buddha
* Persian

* English Hijrah
* Arabic Hijrah
» Ethiopian

¢ See Also:

e Setting Up a Globalization Support Environment

e "Calendar Systems" for more information about supported calendars

1.2.6 Linguistic Sorting
Oracle Database provides linguistic definitions for culturally accurate sorting and case

conversion. The basic definition treats strings as sequences of independent characters. The
extended definition recognizes pairs of characters that should be treated as special cases.

Strings that are converted to upper case or lower case using the basic definition always retain
their lengths. Strings converted using the extended definition may become longer or shorter.

¢ See Also:

Linguistic Sorting and Matching

1.2.7 Character Set Support

Oracle Database supports a large number of single-byte, multibyte, and fixed-width encoding
schemes that are based on national, international, and vendor-specific standards.

" See Also:

e Choosing a Character Set

e "Character Sets" for a list of supported character sets

1.2.8 Character Semantics

Oracle Database provides character semantics. It is useful for defining the storage
requirements for multibyte strings of varying widths in terms of characters instead of bytes.

ORACLE 1-7

Chapter 1
Globalization Support Features

¢ See Also:

"Length Semantics"

1.2.9 Customization of Locale and Calendar Data

You can customize locale data such as language, character set, territory, or linguistic
sort using the Oracle Locale Builder.

You can customize calendars with the NLS Calendar Utility.

¢ See Also:

e Customizing Locale Data

e "Customizing Calendars with the NLS Calendar Utility"

1.2.10 Unicode Support

Unicode is an industry standard that enables text and symbols from all languages to
be consistently represented and manipulated by computers.

Oracle Database has complied with the Unicode standard since Oracle 7.
Subsequently, Oracle Database 10g Release 2 (10.2) supports Unicode 4.0. Oracle
Database 11g supports Unicode 5.0. Oracle Database 12c¢ Release 1 (12.1) supports
Unicode 6.2. Oracle Database 12¢ Release 2 (12.2) supports Unicode 7.0. Oracle
Database 18c supports Unicode 9.0.

You can store Unicode characters in an Oracle database in two ways:

* You can create a Unicode database that enables you to store UTF-8 encoded
characters as SQL CHAR data types VARCHAR?2, CHAR, LONG (deprecated), and CLOB.

* You can support multilingual data in specific columns by using SQL NCHAR data
types NVARCHAR2, NCHAR, and NCLOB. You can store Unicode characters into
columns of the NCHAR data types regardless of how the database character set has
been defined. The NCHAR data types are exclusively Unicode data types.

" Note:

Starting with Oracle Database 12¢ Release 2 (12.2), if you use Oracle
Universal Installer (OUI) or Oracle Database Configuration Assistant
(DBCA) to create a database, then the default database character set
used is the Unicode character set AL32UTF8.

ORACLE 1-8

Chapter 1
Globalization Support Features

See Also:

Supporting Multilingual Databases with Unicode

ORACLE" 1-9

Choosing a Character Set

This chapter explains how to choose a character set. The following topics are included:

Character Set Encoding

Length Semantics

Choosing an Oracle Database Character Set

Choosing a Database Character Set for a Multitenant Container Database
Changing the Character Set After Database Creation

Monolingual Database Scenario

Multilingual Database Scenario

2.1 Character Set Encoding

When computer systems process characters, they use numeric codes instead of the
graphical representation of the character. For example, when the database stores the letter 2,
it actually stores a numeric code that the computer system interprets as the letter. These
numeric codes are especially important in a global environment because of the potential need
to convert data between different character sets.

This section discusses the following topics:

What is an Encoded Character Set?

Which Characters Are Encoded?

What Characters Does a Character Set Support?

How are Characters Encoded?

Naming Convention for Oracle Database Character Sets

Subsets and Supersets

2.1.1 What is an Encoded Character Set?

You specify an encoded character set when you create a database. Choosing a character set
determines what languages can be represented in the database. It also affects:

How you create the database schema

How you develop applications that process character data
How the database works with the operating system
Database performance

Storage required for storing character data

A group of characters (for example, alphabetic characters, ideographs, symbols, punctuation
marks, and control characters) can be encoded as a character set. An encoded character set
assigns a unique numeric code to each character in the character set. The numeric codes are

ORACLE

2-1

Chapter 2
Character Set Encoding

called code points or encoded values. The following table shows examples of
characters that have been assigned a hexadecimal code value in the ASCII character
set.

Table 2-1 Encoded Characters in the ASCII Character Set
]

Character Description Hexadecimal Code Value
! Exclamation Mark 21
Number Sign 23
$ Dollar Sign 24
1 Number 1 31
2 Number 2 32
3 Number 3 33
A Uppercase A 41
B Uppercase B 42
C Uppercase C 43
a Lowercase a 61
b Lowercase b 62
c Lowercase c 63

The computer industry uses many encoded character sets. Character sets differ in the
following ways:

The number of characters available to be used in the set

* The characters that are available to be used in the set (also known as the
character repertoire)

* The scripts used for writing and the languages that they represent
* The code points or values assigned to each character
* The encoding scheme used to represent a specific character

Oracle Database supports most national, international, and vendor-specific encoded
character set standards.

See Also:

"Character Sets" for a complete list of character sets that are supported by
Oracle Database

2.1.2 Which Characters Are Encoded?

ORACLE

The characters that are encoded in a character set depend on the writing systems that
are represented. A writing system can be used to represent a language or a group of
languages. Writing systems can be classified into two categories:

e Phonetic Writing Systems
e ldeographic Writing Systems

2-2

Chapter 2
Character Set Encoding

This section also includes the following topics:
* Punctuation, Control Characters, Numbers, and Symbols

e Writing Direction

2.1.2.1 Phonetic Writing Systems

Phonetic writing systems consist of symbols that represent different sounds associated with a
language. Greek, Latin, Cyrillic, and Devanagari are all examples of phonetic writing systems
based on alphabets. Note that alphabets can represent multiple languages. For example, the
Latin alphabet can represent many Western European languages such as French, German,
and English.

Characters associated with a phonetic writing system can typically be encoded in one byte
because the character repertoire is usually smaller than 256 characters.

2.1.2.2 ldeographic Writing Systems

Ideographic writing systems consist of ideographs or pictographs that represent the meaning
of a word, not the sounds of a language. Chinese and Japanese are examples of ideographic
writing systems that are based on tens of thousands of ideographs. Languages that use
ideographic writing systems may also use a syllabary. Syllabaries provide a mechanism for
communicating additional phonetic information. For instance, Japanese has two syllabaries:
Hiragana, normally used for grammatical elements, and Katakana, normally used for foreign
and onomatopoeic words.

Characters associated with an ideographic writing system typically are encoded in more than
one byte because the character repertoire has tens of thousands of characters.

2.1.2.3 Punctuation, Control Characters, Numbers, and Symbols

In addition to encoding the script of a language, other special characters must be encoded:
* Punctuation marks such as commas, periods, and apostrophes

* Numbers

e Special symbols such as currency symbols and math operators

» Control characters such as carriage returns and tabs

2.1.2.4 Writing Direction

ORACLE

Most Western languages are written left to right from the top to the bottom of the page. East
Asian languages are usually written top to bottom from the right to the left of the page,
although exceptions are frequently made for technical books translated from Western
languages. Arabic and Hebrew are written right to left from the top to the bottom.

Numbers reverse direction in Arabic and Hebrew. Although the text is written right to left,
numbers within the sentence are written left to right. For example, "l wrote 32 books" would
be written as "skoob 32 etorw I". Regardless of the writing direction, Oracle Database stores
the data in logical order. Logical order means the order that is used by someone typing a
language, not how it looks on the screen.

Writing direction does not affect the encoding of a character.

2-3

Chapter 2
Character Set Encoding

2.1.3 What Characters Does a Character Set Support?

ORACLE

Different character sets support different character repertoires. Because character sets
are typically based on a particular writing script, they can support multiple languages.
When character sets were first developed, they had a limited character repertoire.
Even now there can be problems using certain characters across platforms. The
following CHAR and VARCHAR characters are represented in all Oracle Database
character sets and can be transported to any platform:

* Uppercase and lowercase English characters A through Z and a through z
e Arabic digits 0 through 9

e The following punctuation marks: % '' () *+-,./\:;<>=1_&~{}|"?$#@

"[1

e The following control characters: space, horizontal tab, vertical tab, form feed

If you are using characters outside this set, then take care that your data is supported
in the database character set that you have chosen.

Setting the NLS LANG parameter properly is essential to proper data conversion. The
character set that is specified by the NLS LANG parameter should reflect the setting for
the client operating system. Setting NLS_LANG correctly enables proper conversion from
the client operating system character encoding to the database character set. When
these settings are the same, Oracle Database assumes that the data being sent or
received is encoded in the same character set as the database character set, so
character set validation or conversion may not be performed. This can lead to corrupt
data if conversions are necessary.

During conversion from one character set to another, Oracle Database expects client-
side data to be encoded in the character set specified by the NLS LANG parameter. If
you put other values into the string (for example, by using the CHR or CONVERT SQL
functions), then the values may be corrupted when they are sent to the database
because they are not converted properly. If you have configured the environment
correctly and if the database character set supports the entire repertoire of character
data that may be input into the database, then you do not need to change the current
database character set. However, if your enterprise becomes more globalized and you
have additional characters or new languages to support, then you may need to choose
a character set with a greater character repertoire. Oracle recommends that you use
Unicode databases and data types.

See Also:

e Supporting Multilingual Databases with Unicode

e Oracle Database SQL Language Reference for more information about
the CONVERT SQL functions

e Oracle Database SQL Language Reference for more information about
the CHR SQL functions

e "Displaying a Code Chart with the Oracle Locale Builder"

2-4

2.1.3.1 ASCII Encoding

Table 2-2 shows how the ASCII character set is encoded. Row and column headings denote
hexadecimal digits. To find the encoded value of a character, read the column number
followed by the row number. For example, the code value of the character A is Ox41.

Chapter 2
Character Set Encoding

Table 2-2 7-Bit ASCII Character Set
. ___|]
- 0 1 2 3 4 5 6 7

0 NUL DLE SP 0 @ P p

1 SOH DC1 ! 1 A Q a q

2 STX DC2 2 B R b r

3 ETX DC3 # 3 C S c s

4 EOT DC4 $ 4 D T d t

5 ENQ NAK % 5 E u e u

6 ACK SYN & 6 F \% f v

7 BEL ETB 7 G w g w

8 BS CAN (8 H X h X

9 TAB EM) 9 [Y i y

A LF SuB * J z j z

B VT ESC + : K [k {

c FF FS : < L \ ! |

D CR GS - = M] m }

E SO RS . > N A n ~

F S us / ? o) 0 DEL

As languages

evolve to meet the needs of people around the world, new character sets are

created to support the languages. Typically, these new character sets support a group of
related languages based on the same script. For example, the ISO 8859 character set series
was created to support different European languages. Table 2-3 shows the languages that

are supported

by the 1ISO 8859 character sets.

Table 2-3 1SO 8859 Character Sets

Standard Languages Supported

ISO 8859-1 Western European (Albanian, Basque, Breton, Catalan, Danish, Dutch, English,
Faeroese, Finnish, French, German, Greenlandic, Icelandic, Irish Gaelic, Italian,
Latin, Luxemburgish, Norwegian, Portuguese, Rhaeto-Romanic, Scottish
Gaelic, Spanish, Swedish)

ISO 8859-2 Eastern European (Albanian, Croatian, Czech, English, German, Hungarian,
Latin, Polish, Romanian, Slovak, Slovenian, Serbian)

ISO 8859-3 Southeastern European (Afrikaans, Catalan, Dutch, English, Esperanto,
German, Italian, Maltese, Spanish, Turkish)

ISO 8859-4 Northern European (Danish, English, Estonian, Finnish, German, Greenlandic,
Latin, Latvian, Lithuanian, Norwegian, Sami, Slovenian, Swedish)

ORACLE

2-5

Chapter 2
Character Set Encoding

Table 2-3 (Cont.) ISO 8859 Character Sets
]

Standard Languages Supported

ISO 8859-5 Eastern European (Cyrillic-based: Bulgarian, Byelorussian, Macedonian,
Russian, Serbian, Ukrainian)

ISO 8859-6 Arabic

ISO 8859-7 Greek

ISO 8859-8 Hebrew

ISO 8859-9 Western European (Albanian, Basque, Breton, Catalan, Cornish, Danish,

Dutch, English, Finnish, French, Frisian, Galician, German, Greenlandic, Irish
Gaelic, Italian, Latin, Luxemburgish, Norwegian, Portuguese, Rhaeto-Romanic,
Scottish Gaelic, Spanish, Swedish, Turkish)

ISO 8859-10 Northern European (Danish, English, Estonian, Faeroese, Finnish, German,
Greenlandic, Icelandic, Irish Gaelic, Latin, Lithuanian, Norwegian, Sami,
Slovenian, Swedish)

ISO 8859-13 Baltic Rim (English, Estonian, Finnish, Latin, Latvian, Norwegian)

ISO 8859-14 Celtic (Albanian, Basque, Breton, Catalan, Cornish, Danish, English, Galician,
German, Greenlandic, Irish Gaelic, Italian, Latin, Luxemburgish, Manx Gaelic,
Norwegian, Portuguese, Rhaeto-Romanic, Scottish Gaelic, Spanish, Swedish,
Welsh)

ISO 8859-15 Western European (Albanian, Basque, Breton, Catalan, Danish, Dutch, English,
Estonian, Faroese, Finnish, French, Frisian, Galician, German, Greenlandic,
Icelandic, Irish Gaelic, Italian, Latin, Luxemburgish, Norwegian, Portuguese,
Rhaeto-Romanic, Scottish Gaelic, Spanish, Swedish)

Historically, character sets have provided restricted multilingual support, which has
been limited to groups of languages based on similar scripts. More recently, universal
character sets have emerged to enable greatly improved solutions for multilingual
support. Unicode is one such universal character set that encompasses most major
scripts of the modern world.

¢ See Also:

Supporting Multilingual Databases with Unicode

2.1.4 How are Characters Encoded?

Different types of encoding schemes have been created by the computer industry. The
character set you choose affects what kind of encoding scheme is used. This is
important because different encoding schemes have different performance
characteristics. These characteristics can influence your database schema and
application development. The character set you choose uses one of the following
types of encoding schemes:

* Single-Byte Encoding Schemes
e Multibyte Encoding Schemes

ORACLE 2-6

2.1.4.1 Single-Byte Encoding Schemes

Figure 2-1

2.1.4.2 Multibyte Encoding Schemes

Multibyte encoding schemes are needed to support ideographic scripts used in Asian

ORACLE

Chapter 2
Character Set Encoding

Single-byte encoding schemes are efficient. They take up the least amount of space to
represent characters and are easy to process and program with because one character can
be represented in one byte. Single-byte encoding schemes are classified as one of the

following types:

e 7-bit encoding schemes

Single-byte 7-bit encoding schemes can define up to 128 characters and normally

support just one language. One of the most common single-byte character sets, used
since the early days of computing, is ASCII (American Standard Code for Information

Interchange).

e 8-bit encoding schemes

Single-byte 8-bit encoding schemes can define up to 256 characters and often support a
group of related languages. One example is ISO 8859-1, which supports many Western
European languages. The following figure shows the ISO 8859-1 8-bit encoding scheme.

o
—_

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
HT
NL
VT
NP
CR
SO
SI

MMUOW>»OOoONOOOR~WN—=2O

DLE
DCH
DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM
SuUB
ESC
FS
GS
RS
us

ISO 8859-1 8-Bit Encoding Scheme

N

O©CoOo~NOOOPr~WN-—=O

NV AT

(6]

OZZIrX&C~"IOMMUOT>e

o

>— T N<XXS<C-HODIOT

ODB_X‘_'_':T(Q—"CD [oRN ol e N

! TN X s < FTwmw SO0

DEL

v 0N 4

o =v =

RN

—_
'y

—i = — = [T}: [TP [Th M) m o : v > >

-
N

DU LKLCCCCCQX 0000020

—_
w

- T T 0@ 000 D0 D DD O

—
N

<< oo r O 01O OO St Ox

languages like Chinese or Japanese because these languages use thousands of characters.

These encoding schemes use either a fixed number or a variable number of bytes to

represent each character.

e Fixed-width multibyte encoding schemes

In a fixed-width multibyte encoding scheme, each character is represented by a fixed
number of bytes. The number of bytes is at least two in a multibyte encoding scheme.

e Variable-width multibyte encoding schemes

2-7

2.1.5 Naming

Chapter 2
Character Set Encoding

A variable-width encoding scheme uses one or more bytes to represent a single
character. Some multibyte encoding schemes use certain bits to indicate the
number of bytes that represents a character. For example, if two bytes is the
maximum number of bytes used to represent a character, then the most significant
bit can be used to indicate whether that byte is a single-byte character or the first
byte of a double-byte character.

Shift-sensitive variable-width multibyte encoding schemes

Some variable-width encoding schemes use control codes to differentiate between
single-byte and multibyte characters with the same code values. A shift-out code
indicates that the following character is multibyte. A shift-in code indicates that the
following character is single-byte. Shift-sensitive encoding schemes are used
primarily on IBM platforms. Note that ISO-2022 character sets cannot be used as
database character sets, but they can be used for applications such as a mail
server.

Convention for Oracle Database Character Sets

Oracle Database uses the following naming convention for its character set names:

<region><number of bits used to represent a character><standard character set name>[S|C]

The parts of the names that appear between angle brackets are concatenated. The

optional s or C is used to differentiate character sets that can be used only on the
server (S) or only on the client (C).

< Note:
Keep in mind that:

e You should use the server character set (S) on the Macintosh platform.
The Macintosh client character sets are obsolete. On EBCDIC platforms,
use the server character set (s) on the server and the client character set
(C) on the client.

 UTF8 and UTFE are exceptions to the naming convention.

The following table shows examples of Oracle Database character set names.

Table 2-4 Examples of Oracle Database Character Set Names
]

Oracle Database
Character Set Name

Description Region Number of Bits Standard Character
Used to Represent Set Name
a Character

UST7ASCII
WES8IS08859P1

JA16SJIS

U.S. 7-bit ASCII us 7 ASCII

Western European 8- WE (Western 8 1SO8859 Part 1
bit ISO 8859 Part 1 Europe)

Japanese 16-bit JA 16 SJIS

Shifted Japanese
Industrial Standard

ORACLE

2-8

Chapter 2
Length Semantics

2.1.6 Subsets and Supersets

When discussing character set conversion or character set compatibility between databases,
Oracle documentation sometimes uses the terms superset, subset, binary superset, or binary
subset to describe relationship between two character sets. The terms subset and superset,
without the adjective "binary", pertain to character repertoires of two Oracle character sets,
that is, to the sets of characters supported (encoded) by each of the character sets. By
definition, character set A is a superset of character set B if A supports all characters that B
supports. Character set B is a subset of character set A if A is a superset of B.

The terms binary subset and binary superset restrict the above subset-superset relationship
by adding a condition on binary representation (binary codes) of characters of the two
character sets. By definition, character set A is a binary superset of character set B if A
supports all characters that B supports and all these characters have the same binary
representation in A and B. Character set B is a binary subset of character set A if Ais a
binary superset of B.

When character set A is a binary superset of character set B, any text value encoded in B is
at the same time valid in A without need for character set conversion. When A is a non-binary
superset of B, a text value encoded in B can be represented in A without loss of data but may
require character set conversion to transform the binary representation.

Oracle Database does not maintain a list of all subset-superset pairs, but it does maintain a
list of binary subset-superset pairs that it recognizes in various situations, such as checking
compatibility of a transportable tablespace or a pluggable database.

See Also:

"Binary Subset-Superset Pairs" for the list of binary subset-superset pairs
recognized by Oracle Database

2.2 Length Semantics

ORACLE

In single-byte character sets, the number of bytes and the number of characters in a string
are the same. In multibyte character sets, a character or code point consists of one or more
bytes. Calculating the number of characters based on byte lengths can be difficult in a
variable-width character set. Calculating column lengths in bytes is called byte semantics,
while measuring column lengths in characters is called character semantics.

Character semantics is useful for defining the storage requirements for multibyte strings of
varying widths. For example, in a Unicode database (AL32UTF8), suppose that you need to
define a VARCHAR2 column that can store up to five Chinese characters together with five
English characters. Using byte semantics, this column requires 15 bytes for the Chinese
characters, which are three bytes long, and 5 bytes for the English characters, which are one
byte long, for a total of 20 bytes. Using character semantics, the column requires 10
characters.

The following expressions use byte semantics:
e VARCHAR2 (20 BYTE)

U SUBSTRB (string, 1, 20)

2-9

ORACLE

Chapter 2
Length Semantics

Note the BYTE qualifier in the VARCHAR2 expression and the B suffix in the SQL function
name.

The following expressions use character semantics:
e VARCHAR2 (10 CHAR)
o SUBSTR (string, 1, 10)

Note the CHAR qualifier in the VARCHAR2 expression.

The length semantics of character data type columns, user-defined type attributes, and
PL/SQL variables can be specified explicitly in their definitions with the BYTE or CHAR
qualifier. This method of specifying the length semantics is recommended as it
properly documents the expected semantics in creation DDL statements and makes
the statements independent of any execution environment.

If a column, user-defined type attribute or PL/SQL variable definition contains neither
the BYTE nor the CHAR qualifier, the length semantics associated with the column,
attribute, or variable is determined by the value of the session parameter

NLS_LENGTH SEMANTICS. If you create database objects with legacy scripts that are too
large and complex to be updated to include explicit BYTE and/or CHAR qualifiers,
execute an explicit ALTER SESSION SET NLS LENGTH SEMANTICS statement before
running each of the scripts to assure the scripts create objects in the expected
semantics.

The NLS_LENGTH SEMANTICS initialization parameter determines the default value of the
NLS_LENGTH SEMANTICS session parameter for new sessions. Its default value is BYTE.
For the sake of compatibility with existing application installation procedures, which
may have been written before character length semantics was introduced into Oracle
SQL, Oracle recommends that you leave this initialization parameter undefined or you
set it to BYTE. Otherwise, created columns may be larger than expected, causing
applications to malfunction or, in some cases, cause buffer overflows.

Byte semantics is the default for the database character set. Character length
semantics is the default and the only allowable kind of length semantics for NCHAR data
types. The user cannot specify the CHAR or BYTE qualifier for NCHAR definitions.

Consider the following example:

CREATE TABLE employees

(employee id NUMBER (4)

, last name NVARCHAR2Z (10)
, job_id NVARCHAR?2 (9)

, manager id NUMBER (4)

, hire date DATE

, salary NUMBER(7,2)

, department id NUMBER (2)
) .

’

last_name can hold up to 10 Unicode code points, independent of whether the NCHAR
character setis ALI6UTF16 or UTF8. When the NCHAR character set is ALI6UTF16,
these stored 10 code points may occupy up to 20 bytes. When the NCHAR character set
is UTF8, they may occupy up to 30 bytes.

The following figure shows the number of bytes needed to store different kinds of
characters in the UTF-8 character set. The ASCII character requires one byte, the
non-ASCII Latin, Greek, Cyrillic, Arabic, and Hebrew characters require two bytes, the

2-10

Chapter 2
Choosing an Oracle Database Character Set

Asian characters require three bytes, and the supplementary character requires four bytes of
storage.

Figure 2-2 Bytes of Storage for Different Kinds of Characters

Latin Small Letter E (ASCII Latin)
Latin Small Letter A with Circumflex (Non-ASCII Latin)
Greek Small Letter Delta
Cyrillic Small Letter Ya
Arabic Letter Hah
Hebrew Letter Alef
Devanagari Letter AA (Hindi)
Hangul Syllable Sios Ye Rieulpieup (Korean)

CJK Ideograph “Letter”
(Chinese, Japanese)

Musical Symbol G Clef
(Supplementary character)

elas|alc]xlama=]4

|
I

/ P y ’ s 4 / | \ \
|

7/ z 7z 7/ 7/ / / / | \ N\
[65]C3]A2]|CE[B4| D1|8F [D8|AD]| D7]90 [E0|A4]86] EC [85|BB|E5|AD[97]|F0[9D|84]9E]

1 2 2 2 2 2 3 3 3 4
byte bytes bytes bytes bytes bytes bytes bytes bytes bytes
" See Also:

e "SQL Functions for Different Length Semantics" for more information about the
SUBSTR and SUBSTRB functions

* "Length Semantics" for more information about the NLS LENGTH SEMANTICS
initialization parameter

e Supporting Multilingual Databases with Unicode for more information about
Unicode and the NCHAR data type

e Oracle Database SQL Language Reference for more information about the
SUBSTRB and SUBSTR functions and the BYTE and CHAR qualifiers for character
data types

2.3 Choosing an Oracle Database Character Set

ORACLE

Oracle Database uses the database character set for:

* Data stored in SQL CHAR data types (CHAR, VARCHAR?2, CLOB, and LONG)

« Identifiers such as table names, column names, and PL/SQL variables

2-11

ORACLE

Chapter 2
Choosing an Oracle Database Character Set

» Entering and storing SQL and PL/SQL source code

The character encoding scheme used by the database is defined as part of the CREATE
DATABASE statement. All SQL CHAR data type columns (CHAR, CLOB, VARCHAR2, and
LONG), including columns in the data dictionary, have their data stored in the database
character set. In addition, the choice of database character set determines which
characters can name objects in the database. SQL NCHAR data type columns (NCHAR,
NCLOB, and NVARCHAR?) use the national character set.

After the database is created, you cannot change the character sets, with some
exceptions, without re-creating the database.

Consider the following questions when you choose an Oracle Database character set
for the database:

e What languages does the database need to support now?

e What languages does the database need to support in the future?
e Is the character set available on the operating system?

* What character sets are used on clients?

e How well does the application handle the character set?

e What are the performance implications of the character set?

* What are the restrictions associated with the character set?

The Oracle Database character sets are listed in "Character Sets". They are named
according to the languages and regions in which they are used. Some character sets
that are named for a region are also listed explicitly by language.

If you want to see the characters that are included in a character set, then:

e Check national, international, or vendor product documentation or standards
documents

e Use Oracle Locale Builder

This section contains the following topics:

e Current and Future Language Requirements

e Client Operating System and Application Compatibility

» Character Set Conversion Between Clients and the Server

e Performance Implications of Choosing a Database Character Set
* Restrictions on Database Character Sets

e Choosing a National Character Set

e Summary of Supported Data Types

2-12

Chapter 2
Choosing an Oracle Database Character Set

¢ See Also:

— "UCS-2 Encoding Form"

— "Choosing a National Character Set"

— "Changing the Character Set After Database Creation"”
— Locale Data

— Customizing Locale Data

2.3.1 Current and Future Language Requirements

Several character sets may meet your current language requirements. Consider future
language requirements when you choose a database character set. If you expect to support
additional languages in the future, then choose a character set that supports those languages
to prevent the need to migrate to a different character set later. You should generally select
the Unicode character set AL32UTF8, because it supports most languages of the world.

" Note:

Starting from Oracle Database 12c¢ Release 2, if you use Oracle Universal Installer
(OUI) or Oracle Database Configuration Assistant (DBCA) to create a database,
then the default database character set used is the Unicode character set
AL32UTF8.

2.3.2 Client Operating System and Application Compatibility

The database character set is independent of the operating system because Oracle
Database has its own globalization architecture. For example, on an English Windows
operating system, you can create and run a database with a Japanese character set.
However, when an application in the client operating system accesses the database, the
client operating system must be able to support the database character set with appropriate
fonts and input methods. For example, you cannot insert or retrieve Japanese data on the
English Windows operating system without first installing a Japanese font and input method.
Another way to insert and retrieve Japanese data is to use a Japanese operating system
remotely to access the database server.

2.3.3 Character Set Conversion Between Clients and the Server

ORACLE

If you choose a database character set that is different from the character set on the client
operating system, then the Oracle Database can convert the operating system character set
to the database character set. Character set conversion has the following disadvantages:

e Potential data loss
* Increased overhead

Character set conversions can sometimes cause data loss. For example, if you are
converting from character set A to character set B, then the destination character set B must
have the same character set repertoire as A. Any characters that are not available in

2-13

Chapter 2
Choosing an Oracle Database Character Set

character set B are converted to a replacement character. The replacement character
is often specified as a question mark or as a linguistically related character. For
example, & (a with an umlaut) may be converted to a. If you have distributed
environments, then consider using character sets with similar character repertoires to
avoid loss of data.

Character set conversion may require copying strings between buffers several times
before the data reaches the client. The database character set should always be a
superset or equivalent of the native character set of the client's operating system. The
character sets used by client applications that access the database usually determine
which superset is the best choice.

If all client applications use the same character set, then that character set is usually
the best choice for the database character set. When client applications use different
character sets, the database character set should be a superset of all the client
character sets. This ensures that every character is represented when converting from
a client character set to the database character set.

" See Also:

Character Set Migration

2.3.4 Performance Implications of Choosing a Database Character Set

For best performance, choose a character set that avoids character set conversion
and uses the most efficient encoding for the languages desired. Single-byte character
sets result in better performance than multibyte character sets, and they also are the
most efficient in terms of space requirements. However, single-byte character sets limit
how many languages you can support.

2.3.5 Restrictions on Database Character Sets

ASCII-based character sets are supported only on ASCII-based platforms. Similarly,
you can use an EBCDIC-based character set only on EBCDIC-based platforms.

The database character set is used to identify SQL and PL/SQL source code. In order
to do this, it must have either EBCDIC or 7-bit ASCII as a subset, whichever is native
to the platform. Therefore, it is not possible to use a fixed-width, multibyte character
set as the database character set. Currently, only the ALL6UTF16 character set cannot
be used as a database character set.

2.3.5.1 Restrictions on Character Sets Used to Express Names

The following table lists the restrictions on the character sets that can be used to
express names.

Table 2-5 Restrictions on Character Sets Used to Express Names

Name Single-Byte Variable Width Comments
Column names Yes Yes -
Schema objects Yes Yes -

ORACLE 2-14

Chapter 2
Choosing an Oracle Database Character Set

Table 2-5 (Cont.) Restrictions on Character Sets Used to Express Names

Name Single-Byte Variable Width Comments

Comments Yes Yes -

Database link names Yes No -

Database names Yes No -

File names Yes No -

(data file, log file, control file,

initialization parameter file)

Instance names Yes No -

Directory names Yes No -

Keywords Yes No Can be expressed in
English ASCII or
EBCDIC characters only

Recovery Manager file names Yes No -

Rollback segment names Yes No The
ROLLBACK SEGMENTS
parameter does not
support NLS

Stored script names Yes Yes -

Tablespace names Yes No -

For a list of supported string formats and character sets, including LOB data (LOB, BLOB, CLOB,
and NCLOB), see Table 2-7.

2.3.6 Database Character Set Statement of Direction

A list of character sets has been compiled in Table A-4 and Table A-5 that Oracle strongly
recommends for usage as the database character set. Other Oracle-supported character sets
that do not appear on this list can continue to be used in Oracle Database 18c, but may be
desupported in a future release. Starting with Oracle Database 11g Release 1, the choice for
the database character set is limited to this list of recommended character sets in common
installation paths of Oracle Universal Installer and Oracle Database Configuration Assistant.
Customers are still able to create new databases using custom installation paths and migrate
their existing databases even if the character set is not on the recommended list. However,
Oracle suggests that customers migrate to a recommended character set as soon as
possible. At the top of the list of character sets that Oracle recommends for all new system
deployment, is the Unicode character set AL32UTFS8.

ORACLE

" Note:

Starting with Oracle Database 12c Release 2, if you use Oracle Universal Installer
or Oracle Database Configuration Assistant (DBCA) to create a database, then the
default database character set used is AL32UTFS8.

2-15

Chapter 2
Choosing an Oracle Database Character Set

2.3.7 Choosing Unicode as a Database Character Set

Oracle recommends using Unicode for all new system deployments. Migrating legacy
systems to Unicode is also recommended. Deploying your systems today in Unicode
offers many advantages in usability, compatibility, and extensibility. Oracle Database
enables you to deploy high-performing systems faster and more easily while utilizing
the advantages of Unicode. Even if you do not need to support multilingual data today,
nor have any requirement for Unicode, it is still likely to be the best choice for a new
system in the long run and will ultimately save you time and money as well as give you
competitive advantages in the long term.

¢ See Also:

Supporting Multilingual Databases with Unicode

2.3.8 Choosing a National Character Set

The term national character set refers to an alternative character set that enables
you to store Unicode character data in a database that does not have a Unicode
database character set. Another reason for choosing a national character set is that
the properties of a different character encoding scheme may be more desirable for
extensive character processing operations.

SQL NCHAR, NVARCHAR2, and NCLOB data types support Unicode data only. You can use
either the UTF8 or the AL16UTF16 character set. The default is ALLGUTF16.

Oracle recommends using SQL CHAR, VARCHAR2, and CLOB data types in AL32UTF8
database to store Unicode character data. Use of SQL NCHAR, NVARCHAR2, and NCLOB
should be considered only if you must use a database whose database character set
is not AL32UTFS8.

¢ See Also:

Supporting Multilingual Databases with Unicode

2.3.9 Summary of Supported Data Types

ORACLE

The following table lists the data types that are supported for different encoding
schemes.

Table 2-6 SQL Data Types Supported for Encoding Schemes

Data Type Single Byte Multibyte Non- Multibyte Unicode
Unicode

CHAR Yes Yes Yes

VARCHAR2 Yes Yes Yes

2-16

Chapter 2
Choosing an Oracle Database Character Set

Table 2-6 (Cont.) SQL Data Types Supported for Encoding Schemes
|

Data Type Single Byte Multibyte Non- Multibyte Unicode
Unicode
NCHAR No No Yes
NVARCHAR2 No No Yes
BLOB Yes Yes Yes
CLOB Yes Yes Yes
LONG Yes Yes Yes
NCLOB No No Yes
¢ Note:

BLOBs process characters as a series of byte sequences. The data is not subject to
any NLS-sensitive operations.

The following table lists the SQL data types that are supported for abstract data types.

Table 2-7 Abstract Data Type Support for SQL Data Types
]

Abstract Data Type CHAR NCHAR BLOB CLOB NCLOB
Object Yes Yes Yes Yes Yes
Collection Yes Yes Yes Yes Yes

You can create an abstract data type with the NCHAR attribute as follows:

SQL> CREATE TYPE tpl AS OBJECT (a NCHAR(10));
Type created.

SQL> CREATE TABLE tl (a tpl);

Table created.

¢ See Also:

e Oracle Database Object-Relational Developer's Guide for more information
about Oracle objects

e Database PL/SQL Language Reference for more information about Oracle
collections

ORACLE 2-17

Chapter 2
Choosing a Database Character Set for a Multitenant Container Database

2.4 Choosing a Database Character Set for a Multitenant
Container Database

Starting with Oracle Database 12¢ Release 2 (12.2), pluggable databases (PDBs) in a
multitenant container database (CDB) can have different database character sets and
different national character sets. The databases or PDB candidates that can be
plugged into a CDB can be traditional independent databases or existing PDBs
unplugged from other CDBs or newly created PDBs in the CDB.

ORACLE

¢ Note:

The character set of the CDB root is considered as the character set of the
whole CDB.

The following scenarios may occur depending upon the database character set of the
PDB candidate that needs to be plugged into a CDB:

» If the PDB candidate is an application PDB to be plugged into an application root:

If the database character set of the PDB candidate is the same as the
database character set of the application root, the plug-in operation succeeds
(as far as the database character set is concerned).

If the database character set of the PDB candidate is plug compatible with the
database character set of the application root, that is, the database character
set of the PDB candidate is a binary subset of the database character set of
the application root and both are single-byte or both are multibyte, then the
database character set of the PDB candidate is automatically changed to the
database character set of the application root when the PDB candidate is
opened for the first time and the plug-in operation succeeds.

If the database character set of the PDB candidate is not plug compatible with
the database character set of the application root (when none of the above
two scenarios apply), then the plug-in operation succeeds. But in this case the
newly plugged-in PDB can be opened only in the restricted mode for
performing administrative tasks and cannot be used for production. Unless you
migrate the database character set of the new PDB to the database character
set of the application root, the new PDB is unusable.

- |If the PDB candidate is to be plugged directly into the CDB root:

If the database character set of the PDB candidate is the same as the
database character set of the CDB, then the plug-in operation succeeds (as
far as the database character set is concerned).

If the database character set of the CDB is AL32UTF8, then the plug-in
operation succeeds regardless of the database character set of the PDB
candidate.

If the database character set of the PDB candidate is plug compatible with the
database character set of the CDB, that is, the database character set of the
PDB candidate is a binary subset of the database character set of the CDB
and both are single-byte or both are multibyte, then the database character set

2-18

ORACLE

Chapter 2
Choosing a Database Character Set for a Multitenant Container Database

of the PDB candidate is automatically changed to the database character set of the
CDB when the PDB candidate is opened for the first time and the plug-in operation
succeeds.

If the database character set of the PDB candidate is not plug compatible with the
database character set of the CDB, that is, when none of the last three scenarios
mentioned above apply, then the plug-in operation succeeds. But, in this case the
newly plugged-in PDB can be opened only in the restricted mode for performing
administrative tasks and cannot be used for production. Unless you migrate the
database character set of the new PDB to the database character set of the CDB, the
new PDB is unusable.

See Also:

e "Subsets and Supersets" for more information about binary subset and binary
superset of a character set.

The following scenarios may occur depending upon the national character set of the PDB
candidate that needs to be plugged into a CDB:

» If the PDB candidate is an application PDB to be plugged into an application root:

If the national character set of the PDB candidate is the same as the national
character set of the application root, then the plug-in operation succeeds (as far as
the national character set is concerned).

If the national character set of the PDB candidate is not the same as the national
character set of the application root, then the plug-in operation succeeds. But, in this
case the newly plugged-in PDB can be opened only in the restricted mode for
performing administrative tasks and cannot be used for production. Unless you
migrate the national character set of the new PDB to the national character set of the
application root, the new PDB is unusable.

» If the PDB candidate is to be plugged directly into the CDB root, then the plug-in
operation succeeds (as far as the national character set is concerned).

2-19

Chapter 2
Changing the Character Set After Database Creation

< Note:

When a PDB character set is different from the CDB character set, there
may be data truncation, if the column widths of CDB views and v$ views
are not able to accommodate the PDB data that has expanded in length
during the character set conversion.

As UTF8 and AL32UTF8 have different maximum character widths (three
versus four bytes per character), the automatic change of UTF8 to
AL32UTF8 during plug-in operation will change implicit maximum byte
lengths of columns with character length semantics. This change may
fall, if there are functional indexes, virtual columns, bitmap join indexes,
domain indexes, partitioning keys, sub-partitioning keys, or cluster keys
defined on those columns. The plug-in operation may also fail, if a
character length semantics column is part of an index key, and the index
key exceeds the size limit (around 70% of the index block size) after the
character set change. You must make sure that all the offending objects
are removed from a database before it is plugged into a CDB. You can
recreate those offending objects in the database after the database is
plugged into a CDB.

Because of these restrictions, Oracle recommends the following when selecting
character sets for CDBs:

For all new multitenant deployments, use AL32UTF8 as the database character set
and AL16UTF16 as the national character set for a CDB.

Migrate your existing databases to AL32UTF8 database character set before
consolidation and then consolidate the databases into one or more AL32UTF8
CDBs, depending on your needs. You can use the Oracle Database Migration
Assistant for Unicode software to migrate a non-CDB to AL32UTEF8 database
character set.

¢ See Also:

Oracle Database Concepts and Oracle Multitenant Administrator's Guide
for more information about CDBs, PDBs, and application containers.

Oracle Database Migration Assistant for Unicode Guide for more
information about migrating a non-Unicode database character set to a
Unicode database character set.

2.5 Changing the Character Set After Database Creation

ORACLE

You may want to change the database character set after the database has been

created. For example, you may find that the number of languages that must be

supported in your database has increased, and you therefore want to migrate to

Unicode character set AL32UTF8.

2-20

Chapter 2
Monolingual Database Scenario

As character type data in the database must be converted to Unicode, in most cases, you will
encounter challenges when you change the database character set to AL32UTF8. For
example, CHAR and VARCHAR2 column data may exceed the declared column length. Character
data may be lost when it is converted to Unicode if it contains invalid characters.

Before changing the database character set, it is important to identify all problems and
carefully plan the data migration. Oracle recommends using the Database Migration Assistant
for Unicode to change the database character set to AL32UTF8.

Note:

Starting from Oracle Database 12c Release 2, if you use Oracle Universal Installer
(OUI) or Oracle Database Configuration Assistant (DBCA) to create a database,
then the default database character set used is the Unicode character set
AL32UTF8.

See Also:

Oracle Database Migration Assistant for Unicode Guide for more information about
how to change character sets

2.6 Monolingual Database Scenario

ORACLE

The simplest example of a database configuration is a client and a server that run in the
same language environment and use the same character set. This monolingual scenario has
the advantage of fast response because the overhead associated with character set
conversion is avoided. The following figure shows a database server and a client that use the
same character set. The Japanese client and the server both use the JAL6EUC character
set.

Figure 2-3 Monolingual Database Scenario

Japanese
Server
(JA16EUC)

Unix
(JA16EUC)

You can also use a multitier architecture. The following figure shows an application server
between the database server and the client. The application server and the database server
use the same character set in a monolingual scenario. The server, the application server, and
the client use the JA16EUC character set.

2-21

Chapter 2
Monolingual Database Scenario

Figure 2-4 Multitier Monolingual Database Scenario

°

o

o
o

Japanese
Server
(JA16EUC)

Application
Server
(JA16EUC)

Il

2.6.1 Character Set Conversion in a Monolingual Scenario

ORACLE

Character set conversion may be required in a client/server environment if a client
application resides on a different platform than the server and if the platforms do not
use the same character encoding schemes. Character data passed between client and
server must be converted between the two encoding schemes. Character conversion
occurs automatically and transparently through Oracle Net.

You can convert between any two character sets. The following figure shows a server
and one client with the JA16EUC Japanese character set. The other client uses the
JA16SJIS Japanese character set.

Figure 2-5 Character Set Conversion

Japanese
Server
(JA16EUC)

Unix

(JA16EUC)
Character

Conversion

Windows <2
(JA16SJIS)

When a target character set does not contain all of the characters in the source data,
replacement characters are used. If, for example, a server uses US7ASCII and a
German client uses WE8IS0O8859P1, then the German character ? is replaced with ?
and i is replaced with a.

Replacement characters may be defined for specific characters as part of a character
set definition. When a specific replacement character is not defined, a default
replacement character is used. To avoid the use of replacement characters when
converting from a client character set to a database character set, the server character
set should be a superset of all the client character sets.

The following figure shows that data loss occurs when the database character set
does not include all of the characters in the client character set. The database

2-22

Chapter 2
Multilingual Database Scenario

character set is US7ASCII. The client's character set is WEBMSWIN1252, and the language
used by the client is German. When the client inserts a string that contains &, the database
replaces 8 with 2, resulting in lost data.

Figure 2-6 Data Loss During Character Conversion

American
Database

Server
(US7ASCII)

Character
Conversion

B

German ;l@'\

Windows
(WE8SMSWIN1252)

If German data is expected to be stored on the server, then a database character set that
supports German characters should be used for both the server and the client to avoid data
loss and conversion overhead.

When one of the character sets is a variable-width multibyte character set, conversion can
introduce noticeable overhead. Carefully evaluate your situation and choose character sets to
avoid conversion as much as possible.

2.7 Multilingual Database Scenario

If you need multilingual support, then use Unicode AL32UTF8 for the server database
character set.

" Note:

Starting from Oracle Database 12c¢ Release 2, if you use Oracle Universal Installer
(OUI) or Oracle Database Configuration Assistant (DBCA) to create a database,
then the default database character set used is the Unicode character set
AL32UTF8.

Unicode has two major encoding schemes:

* UTF-16: Each character is either 2 or 4 bytes long.
» UTF-8: Each character takes 1 to 4 bytes to store.

ORACLE 2-23

Chapter 2
Multilingual Database Scenario

Oracle Database provides support for UTF-8 as a database character set and both
UTF-8 and UTF-16 as national character sets.

Character set conversion between a UTF-8 database and any single-byte character
set introduces very little overhead.

Conversion between UTF-8 and any multibyte character set has some overhead.
There is no data loss from conversion, with the following exceptions:

* Some multibyte character sets do not support user-defined characters during
character set conversion to and from UTF-8.

* Some Unicode characters are mapped to more than one character in another
character set. For example, one Unicode character is mapped to three characters
in the JA16SJIS character set. This means that a round-trip conversion may not
result in the original JA16SJIS character.

The following figure shows a server that uses the AL32UTF8 Oracle Database
character set that is based on the Unicode UTF-8 character set.

Figure 2-7 Multilingual Support Scenario in a Client/Server Configuration

French <& German
Client Client
(WEB8ISO8859P1) (WESDEC)

Character Character
Conversion Conversion

Unicode
Database
(AL32UTF8)

No Character Character
Conversion Conversion

]]

Ja&anese Jaglanese
ient ient
(AL32UTF8) (JA16SJIS)

There are four clients:

* A French client that uses the WE8ISO8859P1 Oracle Database character set
A German client that uses the WE8SDEC character set

* A Japanese client that uses the AL32UTF8 character set

ORACLE 2-24

ORACLE

Chapter 2
Multilingual Database Scenario

* A Japanese client that used the JA16SJIS character set

Character conversion takes place between each client and the server except for the
AL32UTF8 client, but there is no data loss because AL32UTF8 is a universal character set. If
the German client tries to retrieve data from one of the Japanese clients, then all of the
Japanese characters in the data are lost during the character set conversion.

The following figure shows a Unicode solution for a multitier configuration.

Figure 2-8 Multitier Multilingual Support Scenario in a Multitier Configuration

French
Client

Browser

German
Client

Unicode (UTF-8) | 1w
Database
(AL32UTF8)
) E—
Apglication
(

°

o

)
o

erver
UTF-8

=

Japanese
(UTF-8) Client

Browser

The database, the application server, and each client use the AL32UTF8 character set. This
eliminates the need for character conversion even though the clients are French, German,
and Japanese.

See Also:

Supporting Multilingual Databases with Unicode

2-25

Setting Up a Globalization Support
Environment

This chapter tells how to set up a globalization support environment. It includes the following
topics:

Setting NLS Parameters

Choosing a Locale with the NLS_LANG Environment Variable
Character Set Parameter

NLS Database Parameters
Language and Territory Parameters
Date and Time Parameters

Calendar Definitions

Numeric and List Parameters
Monetary Parameters

Linguistic Sort Parameters

Character Set Conversion Parameter

Length Semantics

3.1 Setting NLS Parameters

NLS (National Language Support) parameters determine the locale-specific behavior on both
the client and the server. NLS parameters can be specified in the following ways:

ORACLE

As initialization parameters on the server

You can include parameters in the initialization parameter file to specify a default session
NLS environment. These settings have no effect on the client side; they control only the
server's behavior. For example:

NLS_TERRITORY = "CZECH REPUBLIC"
As environment variables on the client

You can use NLS environment variables, which may be platform-dependent, to specify
locale-dependent behavior for the client and also to override the default values set for the
session in the initialization parameter file. For example, on a UNIX system:

% setenv NLS SORT FRENCH
With the ALTER SESSION statement

You can use NLS parameters that are set in an ALTER SESSION statement to override the
default values that are set for the session in the initialization parameter file or set by the
client with environment variables.

SQL> ALTER SESSION SET NLS SORT = FRENCH;

3-1

ORACLE

Chapter 3
Setting NLS Parameters

¢ See Also:

Oracle Database SQL Language Reference for more information about
the ALTER SESSION statement

* In SQL functions

You can use NLS parameters explicitly to hardcode NLS behavior within a SQL
function. This practice overrides the default values that are set for the session in
the initialization parameter file, set for the client with environment variables, or set
for the session by the ALTER SESSION statement. For example:

TO _CHAR(hiredate, 'DD/MON/YYYY', 'nls date language = FRENCH')

¢ See Also:

Oracle Database SQL Language Reference for more information about
SQL functions, including the To_CHAR function

Table 3-1 shows the precedence order of the different methods of setting NLS
parameters. Higher priority settings override lower priority settings. For example, a
value specified in the initialization parameter file can be overridden by a value explicitly
set in a SQL function.

Default values have the lowest priority. They are set at the time of database creation
and cannot be changed. They can be overridden by any other method, with the
following exception: Default values are always used when evaluating expressions in
virtual columns, CHECK constraints, and fine-grained auditing (FGA) rules. These
expressions must have deterministic results for the duration of their existence and
cannot depend on NLS parameter settings that may change.

Table 3-1 Methods of Setting NLS Parameters and Their Priorities
|

Priority Method

1 (highest) Explicitly set in SQL functions

2 Set by an ALTER SESSION statement

3 Set as an environment variable

4 Specified in the initialization parameter file

5 (lowest) Default value specified when the database was created

Table 3-2 lists the available NLS parameters. Because the SQL function NLS
parameters can be specified only with specific functions, the table does not show the
SQL function scope. This table shows the following values for Scope:

| = Initialization Parameter File
E = Environment Variable
A = ALTER SESSION

3-2

Table 3-2 NLS Parameters

Chapter 3

Setting NLS Parameters

Parameter Description Default Scope
NLS_CALENDAR Calendar system Gregorian I, E, A
NLS_COMP SQL, PL/SQL operator BINARY I, E, A
comparison
NLS_CREDIT Credit accounting symbol Derived from E
NLS TERRITORY
NLS_CURRENCY Local currency symbol Derived from I, E, A
NLS TERRITORY
NLS_DATE_FORMAT Date format Derived from I, E, A
NLS TERRITORY
NLS_DATE_LANGUAGE Language for day and Derived from I, E, A
month names NLS LANGUAGE
NLS_DEBIT Debit accounting symbol Derived from E
NLS TERRITORY
NLS_DUAL_CURRENCY Dual currency symbol Derived from I,E, A
NLS TERRITORY
NLS_ISO_CURRENCY ISO international currency Derived from I, E, A
symbol NLS TERRITORY
NLS_LANG Language, territory, AMERICAN AMERICA. E
character set USTASCIT
NLS_LANGUAGE Language Derived from NLS LANG I, A
NLS LENGTH_SEMANTICS How strings are treated BYTE I, E, A
NLS_LIST_SEPARATOR Character that separates Derived from E
items in a list NLS TERRITORY
NLS_MONETARY_CHARACTERS Monetary symbol for dollar Derived from E
and cents (or their NLS TERRITORY
equivalents)
NLS NCHAR_CONV_EXCP Reports data loss duringa FALSE I, A
character type conversion
NLS NUMERIC_CHARACTERS Decimal character and Derived from I, E, A
group separator NLS TERRITORY
NLS_SORT Collation Derived from I, E, A
NLS LANGUAGE
NLS TERRITORY Territory Derived from NLS LANG I, A
NLS_TIMESTAMP_FORMAT Timestamp Derived from I,E, A
NLS TERRITORY
NLS_TIMESTAMP_TZ_FORMAT Timestamp with time zone Derived from I, E, A

NLS TERRITORY

ORACLE

3-3

Chapter 3
Choosing a Locale with the NLS_LANG Environment Variable

3.2 Choosing a Locale with the NLS_LANG Environment
Variable

A locale is a linguistic and cultural environment in which a system or program is
running. Setting the NLS_LANG environment parameter is the simplest way to specify
locale behavior for Oracle Database software. It sets the language and territory used
by the client application and the database server. It also sets the client's character set,
which is the character set for data entered or displayed by a client program.

NLS_LANG is set as an environment variable on UNIX platforms. NLS_LANG is set in the
registry on Windows platforms.

The NLS LANG parameter has three components: language, territory, and character set.
Specify it in the following format, including the punctuation:

NLS LANG = language territory.charset

For example, if the Oracle Universal Installer does not populate NLS_LANG, then its
value by default is AMERICAN AMERICA.US7ASCII. The language is AMERICAN, the
territory is AMERICA, and the character set is US7ASCII. The values in NLS_LANG and
other NLS parameters are case-insensitive.

Each component of the NLS_LANG parameter controls the operation of a subset of
globalization support features:

* language

Specifies conventions such as the language used for Oracle Database messages,
sorting, day names, and month names. Each supported language has a unique
name; for example, AMERICAN, FRENCH, or GERMAN. The language argument
specifies default values for the territory and character set arguments. If the
language is not specified, then the value defaults to AMERICAN.

e territory

Specifies conventions such as the default date, monetary, and numeric formats.
Each supported territory has a unique name; for example, AMERICA, FRANCE, or
CANADA. If the territory is not specified, then the value is derived from the language
value.

e charset

Specifies the character set used by the client application (normally the Oracle
Database character set that corresponds to the user's terminal character set or the
OS character set). Each supported character set has a unique acronym, for
example, USTASCII, WEBIS08859P1, WESDEC, WESMSWIN1252, or JA16EUC. Each
language has a default character set associated with it.

ORACLE 3-4

Chapter 3
Choosing a Locale with the NLS_LANG Environment Variable

< Note:

All components of the NLS_LANG definition are optional; any item that is not
specified uses its default value. If you specify territory or character set, then you
must include the preceding delimiter (underscore (_) for territory, period (.) for
character set). Otherwise, the value is parsed as a language name.

For example, to set only the territory portion of NLS_LANG, use the following
format: NLS_LANG= JAPAN

The three components of NLS_LANG can be specified in many combinations, as in the
following examples:

NLS LANG = AMERICAN AMERICA.WESMSWIN1252
NLS LANG = FRENCH CANADA.WE8ISO8859P1

NLS LANG = JAPANESE JAPAN.JA16EUC

Note that illogical combinations can be set but do not work properly. For example, the
following specification tries to support Japanese by using a Western European character set:

NLS LANG = JAPANESE JAPAN.WE8IS08859P1

Because the WE8ISO8859P1 character set does not support any Japanese characters, you
cannot store or display Japanese data if you use this definition for NLS LANG.

The rest of this section includes the following topics:
» Specifying the Value of NLS_LANG

* Overriding Language and Territory Specifications

e Locale Variants

¢ See Also:

— Locale Data for a complete list of supported languages, territories, and
character sets

— Your operating system documentation for information about additional
globalization settings that may be necessary for your platform

3.2.1 Specifying the Value of NLS _LANG

ORACLE

In a UNIX operating system C-shell session, you can specify the value of NLS_LANG by
entering a statement similar to the following example:

% setenv NLS LANG FRENCH FRANCE.WE8ISO8859P1

Because NLS_LANG is an environment variable, it is read by the client application at startup
time. The client communicates the information defined by NLS LANG to the server when it
connects to the database server.

3-5

Chapter 3
Choosing a Locale with the NLS_LANG Environment Variable

The following examples show how date and number formats are affected by the
NLS LANG parameter.

Example 3-1 Setting NLS_LANG to American_America.WE8ISO8859P1

Set NLS_LANG so that the language is AMERICAN, the territory is AMERICA, and the Oracle
Database character set is WE81S08859P1:

% setenv NLS LANG American America.WE8IS08859P1

Enter a SELECT statement:

SQL> SELECT last name, hire date, ROUND(salary/8,2) salary FROM employees;

You should see results similar to the following output:

LAST NAME HIRE DATE SALARY
Sciarra 30-SEP-05 962.5
Urman 07-MAR-06 975
Popp 07-DEC-07 862.5

Example 3-2 Setting NLS_LANG to French_France.WE8ISO8859P1

Set NLS_LANG so that the language is FRENCH, the territory is FRANCE, and the Oracle
Database character set is WE8I1S08859P1:

% setenv NLS LANG French France.WE8ISO8859P1

Then the query shown in Example 3-1 returns the following output:

LAST NAME HIRE DATE SALARY
Sciarra 30/09/05 962,5
Urman 07/03/06 975
Popp 07/12/07 862,5

Note that the date format and the number format have changed. The numbers have
not changed, because the underlying data is the same.

3.2.2 Overriding Language and Territory Specifications

ORACLE

The NLS_LANG parameter sets the language and territory environment used by both the
server session (for example, SQL command execution) and the client application (for
example, display formatting in Oracle Database tools). Using this parameter ensures
that the language environments of both the database and the client application are
automatically the same.

The language and territory components of the NLS LANG parameter determine the
default values for other detailed NLS parameters, such as date format, numeric
characters, and linguistic sorting. Each of these detailed parameters can be set in the
client environment to override the default values if the NLS LANG parameter has already
been set.

3-6

Chapter 3
Choosing a Locale with the NLS_LANG Environment Variable

If the NLS_LANG parameter is not set, then the server session environment remains initialized
with values of NLS_LANGUAGE, NLS_TERRITORY, and other NLS instance parameters from the

initialization parameter file. You can modify these parameters and restart the instance to
change the defaults.

You might want to modify the NLS environment dynamically during the session. To do so, you
can use the ALTER SESSION Statement to change NLS_LANGUAGE, NLS TERRITORY, and other
NLS parameters.

< Note:

You cannot modify the setting for the client character set with the ALTER SESSION
statement.

The ALTER SESSION statement modifies only the session environment. The local client NLS
environment is not modified, unless the client explicitly retrieves the new settings and
modifies its local environment.

¢ See Also:

e "Overriding Default Values for NLS_LANGUAGE and NLS_TERRITORY During
a Session"

e Oracle Database SQL Language Reference

3.2.3 Locale Variants

ORACLE

Before Oracle Database 10g, Oracle defined language and territory definitions separately.
This resulted in the definition of a territory being independent of the language setting of the
user. Since Oracle Database 10g, some territories can have different date, time, number, and
monetary formats based on the language setting of a user. This type of language-dependent
territory definition is called a locale variant.

For the variant to work properly, both NLS_TERRITORY and NLS_LANGUAGE must be specified.

The following table shows the territories that have been enhanced to support variations.

Table 3-3 Oracle Database Locale Variants

Oracle Database Territory Oracle Database Language
BELGIUM DUTCH

BELGIUM FRENCH

BELGIUM GERMAN

CANADA FRENCH

CANADA ENGLISH

DJIBOUTI FRENCH

DJIBOUTI ARABIC

3-7

Chapter 3
Choosing a Locale with the NLS_LANG Environment Variable

Table 3-3 (Cont.) Oracle Database Locale Variants
]

Oracle Database Territory Oracle Database Language
FINLAND FINLAND

FINLAND SWEDISH

HONG KONG TRADITIONAL CHINESE
HONG KONG ENGLISH

INDIA ENGLISH

INDIA ASSAMESE

INDIA BANGLA

INDIA GUJARATI

INDIA HINDI

INDIA KANNADA

INDIA MALAYALAM

INDIA MARATHI

INDIA ORIYA

INDIA PUNJABI

INDIA TAMIL

INDIA TELUGU
LUXEMBOURG GERMAN
LUXEMBOURG FRENCH
SINGAPORE ENGLISH
SINGAPORE MALAY

SINGAPORE SIMPLIFIED CHINESE
SINGAPORE TAMIL
SWITZERLAND GERMAN
SWITZERLAND FRENCH
SWITZERLAND ITALIAN

3.2.4 Should the NLS_LANG Setting Match the Database Character
Set?

The NLS LANG character set should reflect the setting of the operating system
character set of the client. For example, if the database character set is AL32UTF8
and the client is running on a Windows operating system, then you should not set
AL32UTFS8 as the client character set in the NLS_LANG parameter because there are no
UTF-8 WIN32 clients. Instead, the NLS_LANG setting should reflect the code page of the
client. For example, on an English Windows client, the code page is 1252. An
appropriate setting for NLS_LANG iS AMERICAN AMERICA.WE8MSWIN1252.

Setting NLS_LANG correctly enables proper conversion from the client operating system
character set to the database character set. When these settings are the same, Oracle
Database assumes that the data being sent or received is encoded in the same
character set as the database character set, so character set validation or conversion

ORACLE 3-8

Chapter 3
Character Set Parameter

may not be performed. This can lead to corrupt data if the client code page and the database
character set are different and conversions are necessary.

¢ See Also:

Oracle Database Installation Guide for Microsoft Windows for more information
about commonly used values of the NLS_LANG parameter in Windows

3.3 Character Set Parameter

Oracle provides an environment variable, NLS_0S_CHARSET, for handling the situation where
the client OS character set is different from the Oracle NLS client character set.

3.3.1 NLS_OS_CHARSET Environment Variable

The NLS_0S_CHARSET environment variable should be set on Oracle client installations if the
client OS character set is different from the Oracle NLS client character set specified by the
NLS_LANG environment variable. The client OS character set is the character set used to
represent characters in the OS fields like machine name, program executable name and
logged on user name. On UNIX platforms, this is usually the character set specified in the
LANG environment variable or the LC_ALL environment variable. An example of setting
NLS_0S_CHARSET would be if the locale charset specified in LANG or LC_ALL in a Linux client
could be zh CN (simplified Chinese) and the Oracle client application charset specified in
NLS_LANG could be UTF8. In this case, the NLS_0S_CHARSET variable must be set to the
equivalent Oracle charset zZHT16GBK.

The NLS_0S_CHARSET environment variable must be set to the Oracle character set name
corresponding to the client OS character set.

If NLS_LANG corresponds to the OS character set, NLS_0S_CHARSET does not need to be set.
NLS_0S_CHARSET does not need to be set and is ignored on Windows platforms.

3.4 NLS Database Parameters

When a new database is created during the execution of the CREATE DATABASE statement, the
NLS-related database configuration is established. The current NLS instance parameters are
stored in the data dictionary along with the database and national character sets. The NLS
instance parameters are read from the initialization parameter file at instance startup.

You can find the values for NLS parameters by using:

* NLS Data Dictionary Views
* NLS Dynamic Performance Views
e OCINIsGetInfo() Function

3.4.1 NLS Data Dictionary Views

Applications can check the session, instance, and database NLS parameters by querying the
following data dictionary views:

ORACLE 3-9

Chapter 3
NLS Database Parameters

NLS_SESSION PARAMETERS shows the NLS parameters and their values for the
session that is querying the view. It does not show information about the character
set.

NLS INSTANCE PARAMETERS shows the current NLS instance parameters that have
been explicitly set and the values of the NLS instance parameters.

NLS DATABASE PARAMETERS shows the values of the NLS parameters for the
database. The values are stored in the database.

3.4.2 NLS Dynamic Performance Views

Applications can check the following NLS dynamic performance views:

V$SNLS VALID VALUES lists values for the following NLS parameters:

NLS LANGUAGE

NLS SORT

NLS TERRITORY
NLS CHARACTERSET

VSNLS PARAMETERS shows current values of the following NLS parameters:

NLS_CHARACTERSET
NLS_NCHAR_ CHARACTERSET
NLS_NUMERIC_ CHARACTERS
NLS_DATE_FORMAT
NLS_DATE_LANGUAGE
NLS_TIME TZ FORMAT
NLS_TIMESTAMP FORMAT
NLS_TIMESTAMP TZ FORMAT
NLS_CALENDAR
NLS_LANGUAGE
NLS_CURRENCY
NLS_ISO_CURRENCY
NLS_TERRITORY

NLS_SORT

NLS_COMP

NLS_LENGTH SEMANTICS
NLS_NCHAR CONV_EXP

See Also:

Oracle Database Reference

3.4.3 OCINIsGetlnfo() Function

ORACLE

User applications can query client NLS settings with the 0CIN1sGetInfo () function.

3-10

Chapter 3
Language and Territory Parameters

¢ See Also:

"Getting Locale Information in OCI" for the description of 0OCIN1sGetInfo ()

3.5 Language and Territory Parameters

This section contains information about the following parameters:

* NLS_LANGUAGE
* NLS_TERRITORY

3.5.1 NLS_LANGUAGE

ORACLE

Property Description

Parameter type String

Parameter scope Initialization parameter and ALTER SESSION
Default value Derived from NLS LANG

Range of values Any valid language name

NLS_LANGUAGE specifies the default conventions for the following session characteristics:

« Language for server messages

* Language for day and month names and their abbreviations (specified in the SQL
functions TO_CHAR and TO_DATE)

* Symbols for equivalents of AM, PM, AD, and BC. (A.M., P.M., A.D., and B.C. are valid
only if NLS LANGUAGE is set to AMERICAN.)

o Default sorting sequence for character data when ORDER BY is specified. (GROUP BY uses a
binary sort unless ORDER BY is specified.)

e Writing direction
- Affirmative and negative response strings (for example, YES and NO)

The value specified for NLS LANGUAGE in the initialization parameter file is the default for all
sessions in that instance. For example, to specify the default session language as French,
the parameter should be set as follows:

NLS LANGUAGE = FRENCH

Consider the following server message:

ORA-00942: table or view does not exist

When the language is French, the server message appears as follows:

ORA-00942: table ou vue inexistante

Messages used by the server are stored in binary-format files that are placed in
the SORACLE HOME/product name/mesg directory, or the equivalent for your operating system.

3-11

Chapter 3
Language and Territory Parameters

Multiple versions of these files can exist, one for each supported language, using the
following file name convention:

<product id><language abbrev>.MSB

For example, the file containing the server messages in French is called oraf.msb,
because ORA is the product ID (<product_id>) and F is the language abbreviation
(<language_ abbrev>) for French. The product name is rdbus, S0 it is in

the $ORACLE HOME/rdbms/mesg directory.

If NLS_LANG is specified in the client environment, then the value of NLS_LANGUAGE in
the initialization parameter file is overridden at connection time.

Messages are stored in these files in one specific character set, depending on the
language and the operating system. If this character set is different from the database
character set, then message text is automatically converted to the database character
set. If necessary, it is then converted to the client character set if the client character
set is different from the database character set. Hence, messages are displayed
correctly at the user's terminal, subject to the limitations of character set conversion.

The language-specific binary message files that are actually installed depend on the
languages that the user specifies during product installation. Only the English binary
message file and the language-specific binary message files specified by the user are
installed.

The default value of NLS LANGUAGE may be specific to the operating system. You can
alter the NLS LANGUAGE parameter by changing its value in the initialization parameter
file and then restarting the instance.

" See Also:

Your operating system-specific Oracle Database documentation for more
information about the default value of NLS LANGUAGE

All messages and text should be in the same language. For example, when you run an
Oracle Developer application, the messages and boilerplate text that you see originate
from three sources:

* Messages from the server
» Messages and boilerplate text generated by Oracle Forms
* Messages and boilerplate text generated by the application

NLS_LANGUAGE determines the language used for the first two kinds of text. The
application is responsible for the language used in its messages and boilerplate text.

The following examples show behavior that results from setting NLS LANGUAGE to
different values.

ORACLE 3-12

Chapter 3
Language and Territory Parameters

¢ See Also:

"Overriding Default Values for NLS_LANGUAGE and NLS_TERRITORY During a
Session" for more information about using the ALTER SESSION statement

Example 3-3 NLS_LANGUAGE=ITALIAN
Use the ALTER SESSION statement to set NLS LANGUAGE to Italian:

SQL> ALTER SESSION SET NLS LANGUAGE=Italian;

Enter a SELECT statement:

SQL> SELECT last name, hire date, ROUND(salary/8,2) salary FROM employees;

You should see results similar to the following output:

LAST NAME HIRE DATE SALARY
Sciarra 30-SET-05 962.5
Urman 07-MAR-06 975
Popp 07-DIC-07 862.5

Note that the month name abbreviations are in Italian.
Example 3-4 NLS_LANGUAGE=GERMAN
Use the ALTER SESSION statement to change the language to German:

SQL> ALTER SESSION SET NLS LANGUAGE=German;

Enter the same SELECT statement:

SQL> SELECT last name, hire date, ROUND(salary/8,2) salary FROM employees;

You should see results similar to the following output:

LAST NAME HIRE DATE SALARY
Sciarra 30-SEP-05 962.5
Urman 07-MRZ-06 975
Popp 07-DEZ-07 862.5

Note that the language of the month abbreviations has changed.

3.5.2 NLS_TERRITORY

ORACLE

Property Description

Parameter type String

Parameter scope Initialization parameter and ALTER SESSION
Default value Derived from NLS LANG

3-13

ORACLE

Chapter 3
Language and Territory Parameters

Property Description

Range of values Any valid territory name

NLS_TERRITORY specifies the conventions for the following default date and numeric
formatting characteristics:

* Date format

» Decimal character and group separator
* Local currency symbol

e ISO currency symbol

* Dual currency symbol

» First day of the week

* Credit and debit symbols

* ISO week flag

e List separator

The value specified for NLS TERRITORY in the initialization parameter file is the default
for the instance. For example, to specify the default as France, the parameter should
be set as follows:

NLS TERRITORY = FRANCE

When the territory is FRANCE, numbers are formatted using a comma as the decimal
character.

You can alter the NLS_TERRITORY parameter by changing the value in the initialization
parameter file and then restarting the instance. The default value of NLS TERRITORY
can be specific to the operating system.

If NLS_LANG is specified in the client environment, then the value of NLS_TERRITORY in
the initialization parameter file is overridden at connection time.

The territory can be modified dynamically during the session by specifying the new
NLS_TERRITORY value in an ALTER SESSION statement. Modifying NLS_TERRITORY resets
all derived NLS session parameters to default values for the new territory.

To change the territory to France during a session, issue the following ALTER SESSION
statement:

SQL> ALTER SESSION SET NLS TERRITORY = France;

The following examples show behavior that results from different settings of
NLS TERRITORY and NLS LANGUAGE.

¢ See Also:

"Overriding Default Values for NLS_LANGUAGE and NLS_TERRITORY
During a Session" for more information about using the ALTER SESSION
statement

3-14

ORACLE

Chapter 3
Language and Territory Parameters

Example 3-5 NLS_LANGUAGE=AMERICAN, NLS_TERRITORY=AMERICA
Enter the following SELECT statement:

SQL> SELECT TO CHAR(salary, 'L99G999D99') salary FROM employees;

When NLS_TERRITORY is set to AMERICA and NLS LANGUAGE is set to AMERICAN, results similar
to the following should appear:

SALARY

$24,000.00
$17,000.00
$17,000.00

Example 3-6 NLS_LANGUAGE=AMERICAN, NLS_TERRITORY=GERMANY
Use an ALTER SESSION statement to change the territory to Germany:

SQL> ALTER SESSION SET NLS TERRITORY = Germany;
Session altered.

Enter the same SELECT statement as before:

SQL> SELECT TO_CHAR(salary, 'L99G999D99') salary FROM employees;

You should see results similar to the following output:

SALARY

€24.000,00
€17.000,00
€17.000,00

Note that the currency symbol has changed from $ to €. The numbers have not changed
because the underlying data is the same.

Example 3-7 NLS_LANGUAGE=GERMAN, NLS_TERRITORY=GERMANY
Use an ALTER SESSION statement to change the language to German:

SQL> ALTER SESSION SET NLS LANGUAGE = German;
Session wurde gedndert.

Note that the server message now appears in German.
Enter the same SELECT statement as before:

SQL> SELECT TO CHAR(salary, 'L99G999D99') salary FROM employees;

You should see the same results as in Example 3-6:

SALARY

€24.000,00
€17.000,00
€17.000,00

Example 3-8 NLS_LANGUAGE=GERMAN, NLS_TERRITORY=AMERICA

Use an ALTER SESSION statement to change the territory to America:

3-15

Chapter 3
Language and Territory Parameters

SQL> ALTER SESSION SET NLS TERRITORY = America;
Session wurde gedndert.

Enter the same SELECT statement as in the other examples:

SQL> SELECT TO_CHAR(salary, 'L99G999D99') salary FROM employees;

You should see results similar to the following output:

SALARY

$24,000.00
$17,000.00
$17,000.00

Note that the currency symbol changed from € to $ because the territory changed from
Germany to America.

3.5.2.1 Overriding Default Values for NLS_LANGUAGE and NLS_TERRITORY
During a Session

ORACLE

Default values for NLS_LANGUAGE and NLS_TERRITORY and default values for specific
formatting parameters can be overridden during a session by using the ALTER SESSTON
statement.

Example 3-9 NLS_LANG=ITALIAN_ITALY.WESDEC

Set the NLS_LANG environment variable so that the language is Italian, the territory is
Italy, and the character set is WESDEC:

% setenv NLS LANG Italian Italy.WE8DEC

Enter a SELECT statement:

SQL> SELECT last name, hire date, ROUND(salary/8,2) salary FROM employees;

You should see results similar to the following output:

LAST NAME HIRE DATE SALARY
Sciarra 30-SET-05 962,5
Urman 07-MAR-06 975
Popp 07-DIC-07 862,5

Note the language of the month abbreviations and the decimal character.
Example 3-10 Change Language, Date Format, and Decimal Character

Use ALTER SESSION statements to change the language, the date format, and the
decimal character:

SQL> ALTER SESSION SET NLS LANGUAGE=german;
Session wurde gedndert.
SQL> ALTER SESSION SET NLS DATE FORMAT='DD.MON.YY';

Session wurde gedndert.

3-16

Chapter 3
Date and Time Parameters

SQL> ALTER SESSION SET NLS NUMERIC CHARACTERS='.,';
Session wurde gedndert.

Enter the SELECT statement shown in Example 3-9:

SQL> SELECT last name, hire date, ROUND(salary/8,2) salary FROM employees;

You should see results similar to the following output:

LAST_NAME HIRE DATE SALARY
Sciarra 30.SEP.05 962.5
Urman 07.MRZ.06 975
Popp 07.DEZ.07 862.5

Note that the language of the month abbreviations is German and the decimal character is a
period.

The behavior of the NLS_LANG environment variable implicitly determines the language
environment of the database for each session. When a session connects to a database, an
ALTER SESSION statement is automatically executed to set the values of the database
parameters NLS_LANGUAGE and NLS_TERRITORY to those specified by the language and
territory arguments of NLS LANG. If NLS_LANG is not defined, then no implicit ALTER SESSION
statement is executed.

When NLS_LANG is defined, the implicit ALTER SESSION is executed for all instances to which
the session connects, for both direct and indirect connections. If the values of NLS
parameters are changed explicitly with ALTER SESSTON during a session, then the changes are
propagated to all instances to which that user session is connected.

3.6 Date and Time Parameters

Oracle Database enables you to control the display of date and time. This section contains
the following topics:

e« Date Formats

* Time Formats

3.6.1 Date Formats

ORACLE

Different Oracle Database date formats are shown in the following table.

Table 3-4 Date Formats
|

Country Description Example
Estonia dd.mm.yyyy 28.02.2003
Germany dd-mm-rr 28-02-03
Japan rr-mm-dd 03-02-28
UK dd-mon-rr 28-Feb-03

3-17

Chapter 3
Date and Time Parameters

Table 3-4 (Cont.) Date Formats

___|
Country Description Example

us dd-mon-rr 28-Feb-03

This section includes the following parameters:

* NLS_DATE_FORMAT
* NLS_DATE_LANGUAGE

3.6.1.1 NLS_DATE_FORMAT

ORACLE

Property Description

Parameter type String

Parameter scope Initialization parameter, environment variable, and ALTER
SESSION

Default value Derived from NLS TERRITORY

Range of values Any valid date format mask

The NLS_DATE FORMAT parameter defines the default date format to use with the

TO CHAR and TO DATE functions. The NLS_TERRITORY parameter determines the default
value of NLS_DATE FORMAT. The value of NLS DATE FORMAT can be any valid date
format mask. For example:

NLS DATE FORMAT = "MM/DD/YYYY"

To add string literals to the date format, enclose the string literal with double quotes.
Note that when double quotes are included in the date format, the entire value must be
enclosed by single quotes. For example:

NLS DATE FORMAT = '"Date: "MM/DD/YYYY'

* Changing its value in the initialization parameter file and then restarting the
instance

° Using an ALTER SESSION SET NLS DATE FORMAT statement

¢ See Also:

Oracle Database SQL Language Reference for more information about
date format elements and the ALTER SESSION statement

If a table or index is partitioned on a date column, and if the date format specified by
NLS_DATE FORMAT does not specify the first two digits of the year, then you must use
the TO_DATE function with a 4-character format mask for the year.

For example:

TO DATE('11-jan-1997', 'dd-mon-yyyy')

3-18

Chapter 3
Date and Time Parameters

¢ See Also:

Oracle Database SQL Language Reference for more information about partitioning
tables and indexes and using TO DATE

Example 3-11 Setting the Date Format to Display Roman Numerals

To set the default date format to display Roman numerals for the month, include the following
line in the initialization parameter file:

NLS DATE FORMAT = "DD RM YYYY"

Enter the following SELECT statement:

SQL> SELECT TO CHAR(SYSDATE) currdate FROM DUAL;

You should see the following output if today's date is February 12, 1997:

CURRDATE

12 IT 1997

The value of NLS_DATE FORMAT is stored in the internal date format. Each format element
occupies two bytes, and each string occupies the number of bytes in the string plus a
terminator byte. Also, the entire format mask has a two-byte terminator. For example,
"MM/DD/YY" occupies 14 bytes internally because there are three format elements (month,
day, and year), two 3-byte strings (the two slashes), and the two-byte terminator for the
format mask. The format for the value of NLS DATE FORMAT cannot exceed 24 bytes.

You can alter the default value of NLS _DATE FORMAT by:

3.6.1.2 NLS_DATE_LANGUAGE

ORACLE

Property Description

Parameter type String

Parameter scope Initialization parameter, environment variable, ALTER SESSION, and
SQL functions

Default value Derived from NLS LANGUAGE

Range of values Any valid language name

The NLS DATE LANGUAGE parameter specifies the language for the day and month names
produced by the TO CHAR and TO DATE functions. NLS DATE LANGUAGE overrides the language
that is specified implicitly by NLS LANGUAGE. NLS_DATE LANGUAGE has the same syntax as the
NLS_LANGUAGE parameter, and all supported languages are valid values.

NLS_DATE LANGUAGE also determines the language used for:

* Month and day abbreviations returned by the T0 CHAR and TO_DATE functions
* Month and day abbreviations used by the default date format (NLS_DATE FORMAT)

» Abbreviations for AM, PM, AD, and BC

3-19

Chapter 3
Date and Time Parameters

¢ See Also:

Oracle Database SQL Language Reference

Example 3-12 NLS_DATE_LANGUAGE=FRENCH, Month and Day Names
As an example of how to use NLS DATE LANGUAGE, set the date language to French:

SQL> ALTER SESSION SET NLS DATE LANGUAGE = FRENCH;

Enter a SELECT statement:

SQL> SELECT TO CHAR(SYSDATE, 'Day:Dd Month yyyy') FROM DUAL;

You should see results similar to the following output:

TO_CHAR (SYSDATE, 'DAY:DDMONTHYYYY')

When numbers are spelled in words using the TO_CHAR function, the English spelling is
always used. For example, enter the following SELECT statement:

SQL> SELECT TO CHAR(TO DATE('12-Oct.-2001"),'Day: ddspth Month') FROM DUAL;

You should see results similar to the following output:

TO_CHAR(TO_DATE('12-0CT.-2001"), 'DAY:DDSPTHMONTH'")

Vendredi: twelfth Octobre

Example 3-13 NLS_DATE_LANGUAGE=FRENCH, Month and Day
Abbreviations

Month and day abbreviations are determined by NLS DATE LANGUAGE. Enter the
following SELECT statement:

SQL> SELECT TO CHAR(SYSDATE, 'Dy:dd Mon yyyy') FROM DUAL;

You should see results similar to the following output:

TO CHAR(SYSDATE, 'DY:DDMO

Ve:07 Déc. 2001

Example 3-14 NLS_DATE_LANGUAGE=FRENCH, Default Date Format

The default date format uses the month abbreviations determined by
NLS_DATE LANGUAGE. For example, if the default date format is DD-MON-YYYY, then
insert a date as follows:

SQL> INSERT INTO tablename VALUES ('l2-Févr.-1997');

3.6.2 Time Formats

Different Oracle Database time formats are shown in the following table.

ORACLE 3-20

Chapter 3
Date and Time Parameters

Table 3-5 Time Formats
|

Country Description Example
Estonia hh24:mi:ss 13:50:23
Germany hh24:mi:ss 13:50:23
Japan hh24:mi:ss 13:50:23
UK hh24:mi:ss 13:50:23
us hh:mi:ssxff am 1:50:23.555 PM

This section contains information about the following parameters:

« NLS_TIMESTAMP_FORMAT
« NLS_TIMESTAMP_TZ_FORMAT

¢ See Also:

Datetime Data Types and Time Zone Support

3.6.2.1 NLS_TIMESTAMP_FORMAT

ORACLE

Property Description

Parameter type String

Parameter scope Initialization parameter, environment variable, and ALTER
SESSION

Default value Derived from NLS TERRITORY

Range of values Any valid datetime format mask

NLS_TIMESTAMP FORMAT defines the default date format for the TIMESTAMP and TIMESTAMP WITH
LOCAL TIME ZONE data types. The following example shows a value for
NLS_TIMESTAMP FORMAT:

NLS TIMESTAMP FORMAT = 'YYYY-MM-DD HH:MI:SS.FF'

Example 3-15 Timestamp Format

SQL> SELECT TO TIMESTAMP ('11-nov-2000 01:00:00.336', 'dd-mon-yyyy hh:mi:ss.ff') FROM
DUAL;

You should see results similar to the following output:

TO_TIMESTAMP ('11-NOV-200001:00:00.336", 'DD-MON-YYYYHH:MI:SS.FF"')

2000-11-11 01:00:00.336000000

You can specify the value of NLS_TIMESTAMP FORMAT by setting it in the initialization parameter
file. You can specify its value for a client as a client environment variable.

You can also alter the value of NLS TIMESTAMP FORMAT by:

3-21

Chapter 3
Date and Time Parameters

* Changing its value in the initialization parameter file and then restarting the
instance

e Using the ALTER SESSION SET NLS TIMESTAMP FORMAT statement

¢ See Also:

Oracle Database SQL Language Reference for more information about
the TO_TIMESTAMP function and the ALTER SESSION statement

3.6.2.2 NLS_TIMESTAMP_TZ_FORMAT

Property Description

Parameter type String

Parameter scope Initialization parameter, environment variable, and ALTER
SESSION

Default value Derived from NLS TERRITORY

Range of values Any valid datetime format mask

NLS TIMESTAMP Tz FORMAT defines the default date format for the TIMESTAMP and
TIMESTAMP WITH LOCAL TIME ZONE data types. It is used with the TO CHAR and
TO TIMESTAMP TZ functions.

You can specify the value of NLS TIMESTAMP Tz FORMAT by setting it in the initialization
parameter file. You can specify its value for a client as a client environment variable.

Example 3-16 Setting NLS_TIMESTAMP_TZ_FORMAT

The format value must be surrounded by quotation marks. For example:

NLS TIMESTAMP TZ FORMAT = 'YYYY-MM-DD HH:MI:SS.FF TZH:TZM'

The following example of the To_TIMESTAMP TZ function uses the format value that was
specified for NLS TIMESTAMP TZ FORMAT:

SQL> SELECT TO TIMESTAMP TZ('2000-08-20, 05:00:00.55 America/Los Angeles', 'yyyy-
mm-dd hh:mi:ss.ff TZR') FROM DUAL;

You should see results similar to the following output:

TO TIMESTAMP TZ('2000-08-20,05:00:00.55AMERICA/LOS ANGELES', 'YYYY-MM-DDHH:M

2000-08-20 05:00:00.550000000 -07:00

You can change the value of NLS TIMESTAMP TZ FORMAT by:

* Changing its value in the initialization parameter file and then restarting the
instance

e Using the ALTER SESSION statement.

ORACLE 3-22

3.7 Calendar Definitions

" See Also:

This section includes the following topics:

e Calendar Formats
e NLS_CALENDAR

3.7.1 Calendar Formats

The following calendar information is stored for each territory:

» First Day of the Week

e First Calendar Week of the Year

* Number of Days and Months in a Year

e First Year of Era

3.7.1.1 First Day of the Week

Chapter 3
Calendar Definitions

— Oracle Database SQL Language Reference for more information about the
TO TIMESTAMP TZ function and the ALTER SESSION statement

— "Choosing a Time Zone File" for more information about time zones

Some cultures consider Sunday to be the first day of the week. Others consider Monday to
be the first day of the week. A German calendar starts with Monday, as shown in the following

table.

Table 3-6 German Calendar Example: March 1998

Mo Di Mi Do Fr Sa So
3 4 5 6 7 8
10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31 - - - - -

The first day of the week is determined by the NLS_TERRITORY parameter.

See Also:
"NLS_TERRITORY"

ORACLE

3-23

Chapter 3
Calendar Definitions

3.7.1.2 First Calendar Week of the Year

ORACLE

Some countries use week numbers for scheduling, planning, and bookkeeping. Oracle
Database supports this convention. In the ISO standard, the week number can be
different from the week number of the calendar year. For example, 1st Jan 1988 is in
ISO week number 53 of 1987. An ISO week always starts on a Monday and ends on a
Sunday.

e If January 1 falls on a Friday, Saturday, or Sunday, then the ISO week that
includes January 1 is the last week of the previous year, because most of the days
in the week belong to the previous year.

e If January 1 falls on a Monday, Tuesday, Wednesday, or Thursday, then the 1ISO
week is the first week of the new year, because most of the days in the week
belong to the new year.

To support the ISO standard, Oracle Database provides the IW date format element. It
returns the ISO week number.

The following table shows an example in which January 1 occurs in a week that has
four or more days in the first calendar week of the year. The week containing January
1 is the first ISO week of 1998.

Table 3-7 First ISO Week of the Year: Example 1, January 1998
|

Mo Tu We Th Fr Sa Su ISO Week

- - - 1 2 3 4 First ISO week of 1998

5 6 7 8 9 10 11 Second ISO week of 1998
12 13 14 15 16 17 18 Third ISO week of 1998
19 20 21 22 23 24 25 Fourth 1ISO week of 1998
26 27 28 29 30 31 - Fifth 1ISO week of 1998

The following table shows an example in which January 1 occurs in a week that has
three or fewer days in the first calendar week of the year. The week containing
January 1 is the 53rd ISO week of 1998, and the following week is the first ISO week
of 1999.

Table 3-8 First ISO Week of the Year: Example 2, January 1999
|

Mo Tu We Th Fr Sa Su ISO Week

- - - - 1 2 3 Fifty-third 1ISO week of
1998

4 5 6 7 8 9 10 First ISO week of 1999

11 12 13 14 15 16 17 Second ISO week of 1999

18 19 20 21 22 23 24 Third ISO week of 1999

25 26 27 28 29 30 31 Fourth ISO week of 1999

The first calendar week of the year is determined by the NLS TERRITORY parameter.

3-24

Chapter 3
Calendar Definitions

¢ See Also:
"NLS_TERRITORY"

3.7.1.3 Number of Days and Months in a Year

Oracle Database supports six calendar systems in addition to Gregorian, the default:

Japanese Imperial—uses the same number of months and days as Gregorian, but the
year starts with the beginning of each Imperial Era.

ROC Official—uses the same number of months and days as Gregorian, but the year
starts with the founding of the Republic of China.

Persian—has 31 days for each of the first six months. The next five months have 30 days
each. The last month has either 29 days or 30 days (leap year).

Thai Buddha—uses a Buddhist calendar
Arabic Hijrah—has 12 months with 354 or 355 days
English Hijrah—has 12 months with 354 or 355 days

Ethiopian—has 12 months of 30 days each, then a 13th month that is either five or six
days (leap year). The sixth day of the 13th month is added every four years.

The calendar system is specified by the NLS CALENDAR parameter.

¢ See Also:

"NLS_CALENDAR"

3.7.1.4 First Year of Era

The Islamic calendar starts from the year of the Hegira.

ORACLE

The Japanese Imperial calendar starts from the beginning of an Emperor's reign. For
example, 1998 is the tenth year of the Heisei era. It should be noted, however, that the
Gregorian system is also widely understood in Japan, so both 98 and Heisei 10 can be used
to represent 1998.

3.7.2 NLS_CALENDAR

Property Description

Parameter type String

Parameter scope Initialization parameter, environment variable, ALTER SESSION, and SQL
functions

Default value Gregorian

Range of values Any valid calendar format name

3-25

Chapter 3
Numeric and List Parameters

Many different calendar systems are in use throughout the world. NLS CALENDAR
specifies which calendar system Oracle Database uses.

NLS_CALENDAR can have one of the following values:

e Arabic Hijrah

* English Hijrah

» Ethiopian

e Gregorian

» Japanese Imperial

* Persian

* ROC Official (Republic of China)
e Thai Buddha

See Also:

Locale Data for a list of calendar systems, their default date formats, and
the character sets in which dates are displayed

Example 3-17 NLS_CALENDAR='English Hijrah'
Set NLS CALENDAR to English Hijrah.

SQL> ALTER SESSION SET NLS CALENDAR='English Hijrah';

Enter a SELECT statement to display SYSDATE:

SQL> SELECT SYSDATE FROM DUAL;

You should see results similar to the following output:

SYSDATE

3.8 Numeric and List Parameters

This section includes the following topics:
* Numeric Formats

* NLS_NUMERIC_CHARACTERS

* NLS_LIST_SEPARATOR

3.8.1 Numeric Formats

ORACLE

The database must know the number-formatting convention used in each session to
interpret numeric strings correctly. For example, the database needs to know whether
numbers are entered with a period or a comma as the decimal character (234.00 or
234,00). Similarly, applications must be able to display numeric information in the
format expected at the client site.

3-26

Chapter 3
Numeric and List Parameters

Examples of numeric formats are shown in the following table.

Table 3-9 Examples of Numeric Formats
]

Country Numeric Formats
Estonia 1234 567,89
Germany 1.234.567,89
Japan 1,234,567.89
UK 1,234,567.89
usS 1,234,567.89

Numeric formats are derived from the setting of the NLS TERRITORY parameter, but they can
be overridden by the NLS NUMERIC CHARACTERS parameter.

¢ See Also:
"NLS_TERRITORY"

3.8.2 NLS_NUMERIC_CHARACTERS

ORACLE

Property Description

Parameter type String

Parameter scope Initialization parameter, environment variable, ALTER SESSION, and SQL
functions

Default value Default decimal character and group separator for a particular territory

Range of values Any two valid numeric characters

This parameter specifies the decimal character and group separator. The group separator is
the character that separates integer groups to show thousands and millions, for example. The
group separator is the character returned by the G number format mask. The decimal
character separates the integer and decimal parts of a number. Setting

NLS_NUMERIC CHARACTERS overrides the values derived from the setting of NLS_TERRITORY.

Any character can be the decimal character or group separator. The two characters specified
must be single-byte, and the characters must be different from each other. The characters
cannot be any numeric character or any of the following characters: plus (+), hyphen (-), less
than sign (<), greater than sign (>). Either character can be a space.

Example 3-18 Setting NLS_NUMERIC_CHARACTERS

To set the decimal character to a comma and the grouping separator to a period, define
NLS NUMERIC CHARACTERS as follows:

SQL> ALTER SESSION SET NLS NUMERIC CHARACTERS = ",.";
SQL statements can include numbers represented as numeric or text literals. Numeric literals

are not enclosed in quotes. They are part of the SQL language syntax and always use a dot
as the decimal character and never contain a group separator. Text literals are enclosed in

3-27

Chapter 3
Monetary Parameters

single quotes. They are implicitly or explicitly converted to numbers, if required,
according to the current NLS settings.

The following SELECT statement formats the number 4000 with the decimal character
and group separator specified in the ALTER SESSION statement:

SQL> SELECT TO_CHAR(4000, '9G999D99') FROM DUAL;

You should see results similar to the following output:

TO_CHAR (4

4.000,00

You can change the default value of NLS NUMERIC CHARACTERS by:

» Changing the value of NLS NUMERIC CHARACTERS in the initialization parameter file
and then restarting the instance

* Using the ALTER SESSION statement to change the parameter's value during a
session

See Also:

Oracle Database SQL Language Reference for more information about
the ALTER SESSION statement

3.8.3NLS_LIST SEPARATOR

Property Description

Parameter type String

Parameter scope Environment variable

Default value Derived from NLS_TERRITORY
Range of values Any valid character

NLS_LIST SEPARATOR specifies the character to use to separate values in a list of
values (usually , or . or; or :). Its default value is derived from the value of

NLS TERRITORY. For example, a list of numbers from 1 to 5 can be expressed as
1,2,3,450r1.23.450r1;2;3;4,5 or 1:2:3:4:5.

The character specified must be single-byte and cannot be the same as either the
numeric or monetary decimal character, any numeric character, or any of the following
characters: plus (+), hyphen (-), less than sign (<), greater than sign (>), period (.).

3.9 Monetary Parameters

This section includes the following topics:

* Currency Formats
* NLS_CURRENCY
* NLS_ISO_CURRENCY

ORACLE 3-28

Chapter 3
Monetary Parameters

* NLS_DUAL_CURRENCY

* NLS_MONETARY_CHARACTERS
* NLS_CREDIT

« NLS_DEBIT

3.9.1 Currency Formats

Different currency formats are used throughout the world. Some typical ones are shown in the
following table.

Table 3-10 Currency Format Examples
]

Country Example
Estonia 1 234,56 kr
Germany 1.234,56€
Japan ©1,234.56
UK £1,234.56
us $1,234.56

3.9.2 NLS_CURRENCY

ORACLE

Property Description

Parameter type String

Parameter scope Initialization parameter, environment variable, ALTER SESSION, and SQL
functions

Default value Derived from NLS TERRITORY

Range of values Any valid currency symbol string

NLS_CURRENCY specifies the character string returned by the L number format mask, the local
currency symbol. Setting NLS_CURRENCY overrides the setting defined implicitly by
NLS_ TERRITORY.

Example 3-19 Displaying the Local Currency Symbol

Connect to the sample order entry schema:

SQL> connect oe/oe
Connected.

Enter a SELECT statement similar to the following example:

SQL> SELECT TO CHAR(order total, 'L099G999D99') "total" FROM orders
WHERE order_id > 2450;

You should see results similar to the following output:

$078,279.60
$006,653.40

3-29

Chapter 3
Monetary Parameters

$014,087.50
$010,474.60
$012,589.00
$000,129.00
$003,878.40
$021,586.20

You can change the default value of NLS CURRENCY by:

e Changing its value in the initialization parameter file and then restarting the
instance

e Using an ALTER SESSION statement

" See Also:

Oracle Database SQL Language Reference for more information about
the ALTER SESSION statement

3.9.3NLS_ISO_CURRENCY

ORACLE

Property Description

Parameter type String

Parameter scope Initialization parameter, environment variable, ALTER SESSION, and
SQL functions

Default value Derived from NLS TERRITORY

Range of values Any valid string

NLS ISO CURRENCY specifies the character string returned by the C number format
mask, the ISO currency symbol. Setting NLS_ISO CURRENCY overrides the value defined
implicitly by NLS TERRITORY.

Local currency symbols can be ambiguous. For example, a dollar sign ($) can refer to
US dollars or Australian dollars. ISO specifications define unique currency symbols for
specific territories or countries. For example, the ISO currency symbol for the US
dollar is USD. The ISO currency symbol for the Australian dollar is AUD.

More ISO currency symbols are shown in the following table.

Table 3-11 ISO Currency Examples

Country Example

Estonia 1234 567,89 EEK
Germany 1.234.567,89 EUR
Japan 1,234,567.89 JPY
UK 1,234,567.89 GBP
us 1,234,567.89 USD

3-30

Chapter 3
Monetary Parameters

NLS ISO CURRENCY has the same syntax as the NLS TERRITORY parameter, and all supported
territories are valid values.

Example 3-20 Setting NLS_ISO_CURRENCY
This example assumes that you are connected as oe/oe in the sample schema.

To specify the ISO currency symbol for France, set NLS ISO CURRENCY as follows:

SQL> ALTER SESSION SET NLS ISO CURRENCY = FRANCE;

Enter a SELECT statement:

SQL> SELECT TO CHAR(order total, 'C099G999D99') "TOTAL" FROM orders
WHERE customer id = 146;

You should see results similar to the following output:

EUR017,848.20
EUR027,455.30
EUR029,249.10
EUR013,824.00
EUR000,086.00

You can change the default value of NLS ISO CURRENCY by:

» Changing its value in the initialization parameter file and then restarting the instance

e Using an ALTER SESSION statement

¢ See Also:

Oracle Database SQL Language Reference for more information about the
ALTER SESSION statement

3.9.4 NLS_DUAL_CURRENCY

ORACLE

Property Description

Parameter type String

Parameter scope Initialization parameter, environmental variable, ALTER SESSION, and
SQL functions

Default value Derived from NLS TERRITORY

Range of values Any valid symbol

Use NLS_DUAL_CURRENCY to override the default dual currency symbol defined implicitly by
NLS TERRITORY.

NLS_DUAL CURRENCY was introduced to support the euro currency symbol during the euro
transition period. See Table A-8 for the character sets that support the euro symbol.

3-31

Chapter 3
Monetary Parameters

3.9.5 Oracle Database Support for the Euro

Twelve members of the European Monetary Union (EMU) have adopted the euro as
their currency. Setting NLS_TERRITORY to correspond to a country in the EMU (Austria,
Belgium, Finland, France, Germany, Greece, Ireland, Italy, Luxembourg, the
Netherlands, Portugal, and Spain) results in the default values for NLS CURRENCY and
NLS DUAL CURRENCY being set to EUR.

During the transition period (1999 through 2001), Oracle Database support for the
euro was provided in Oracle Database 8i and later as follows:

* NLS_CURRENCY was defined as the primary currency of the country
* NLS ISO CURRENCY was defined as the ISO currency code of a given territory

* NLS DUAL CURRENCY was defined as the secondary currency symbol (usually the
euro) for a given territory

Beginning with Oracle Database 9i Release 2, the value of NLS IS0 CURRENCY results
in the ISO currency symbol being set to EUR for EMU member countries who use the
euro. For example, suppose NLS ISO CURRENCY is set to FRANCE. Enter the following
SELECT Statement:

SQL> SELECT TO CHAR(order total, 'C099G999D99"') "TOTAL" FROM orders
WHERE customer id=116;

You should see results similar to the following output:

EUR006,394.80
EUR011,097.40
EUR014,685.80
EUR000,129.00

Customers who must retain their obsolete local currency symbol can override the
default for NLS_DUAL CURRENCY or NLS_CURRENCY by defining them as parameters in the
initialization file on the server and as environment variables on the client.

Note:

NLS_LANG must also be set on the client for NLS CURRENCY or
NLS_DUAL CURRENCY to take effect.

It is not possible to override the 1ISO currency symbol that results from the value of
NLS ISO_CURRENCY.

3.9.6 NLS_MONETARY_CHARACTERS

Property Description
Parameter type String
Parameter scope Environment variable

ORACLE 3-32

Chapter 3
Linguistic Sort Parameters

Property Description
Default value Derived from NLS TERRITORY
Range of values Any valid character

NLS MONETARY CHARACTERS specifies the character that separates groups of numbers in

monetary expressions. For example, when the territory is America, the thousands separator
is a comma, and the decimal separator is a period.

3.9.7 NLS_CREDIT

Property Description

Parameter type String

Parameter scope Environment variable

Default value Derived from NLS TERRITORY

Range of values Any string, maximum of 9 bytes (not including null)

NLS_CREDIT sets the symbol that displays a credit in financial reports. The default value of this
parameter is determined by NLS_TERRITORY. For example, a space is a valid value of
NLS CREDIT.

This parameter can be specified only in the client environment.

It can be retrieved through the 0CIN1sGetInfo () function.

3.9.8 NLS_DEBIT

Property Description

Parameter type String

Parameter scope Environment variable

Default value Derived from NLS_TERRITORY

Range of values Any string, maximum or 9 bytes (not including null)

NLS DEBIT sets the symbol that displays a debit in financial reports. The default value of this
parameter is determined by NLS_TERRITORY. For example, a minus sign (-) is a valid value of
NLS DEBIT.

This parameter can be specified only in the client environment.

It can be retrieved through the 0CIN1sGetInfo () function.

3.10 Linguistic Sort Parameters

You can choose how to sort data by using linguistic sort parameters.
This section includes the following topics:

* NLS_SORT

ORACLE 3-33

Chapter 3
Linguistic Sort Parameters

* NLS_COMP

¢ See Also:

Linguistic Sorting and Matching

3.10.1 NLS_SORT

Property Description

Parameter type String

Parameter scope Initialization parameter, environment variable, ALTER SESSION,
and SQL functions

Default value Derived from NLS LANGUAGE

Range of values BINARY or any valid linguistic collation name

NLS_SORT specifies a set of matching and comparison rules for character data. It
overrides the default value that is derived from NLS LANGUAGE.

NLS_SORT contains either of the following values:

NLS_SORT = BINARY | collation name

BINARY specifies the binary collation. collation name specifies a linguistic named
collation.

Example 3-21 Setting NLS_SORT
To specify the German linguistic collation, set NLS SORT as follows:

NLS_SORT = German

" Note:

When the NLS_SORT parameter is set to BINARY, the optimizer can, in some
cases, satisfy the ORDER BY clause without doing a sort operation by choosing
an index scan.

When NLS_SORT is set to a linguistic collation, a sort operation is needed to
satisfy the ORDER BY clause, if there is no linguistic index for the linguistic
collation specified by NLS_SORT.

If a linguistic index exists for the linguistic collation specified by NLS SORT,
then the optimizer can, in some cases, satisfy the ORDER BY clause without
doing a sort operation by choosing an index scan.

You can alter the default value of NLS_SORT by:

e Changing its value in the initialization parameter file and then restarting the
instance

ORACLE 3-34

Chapter 3
Character Set Conversion Parameter

e Using an ALTER SESSION statement

¢ See Also:

— Linguistic Sorting and Matching

— Oracle Database SQL Language Reference for more information about the
ALTER SESSION statement

— "Linguistic Sorts" for a list of linguistic collation names

3.10.2 NLS_COMP

Property Description

Parameter type String

Parameter scope Initialization parameter, environment variable, and ALTER SESSION
Default value BINARY

Range of values BINARY , LINGUISTIC, or ANSI

The value of NLS_COMP affects the comparison behavior of SQL operations whose determined
collation is USING NLS_COMP.

¢ See Also:

e "Using Linguistic Collation"
e "Using Linguistic Indexes"
e "Performing Linguistic Comparisons"

* "About Data-Bound Collation" for more information about the pseudo-collation
USING NLS COMP

3.11 Character Set Conversion Parameter

This section includes the following topic:

« NLS_NCHAR_CONV_EXCP

3.11.1 NLS_NCHAR_CONV_EXCP

Property Description

Parameter type String

Parameter scope Initialization parameter and ALTER SESSION
Default value FALSE

ORACLE' 3.35

Chapter 3
Length Semantics

Property Description

Range of values TRUE or FALSE

NLS_NCHAR CONV_EXCP determines whether an error is reported when there is data loss
during an implicit or explicit character type conversion between NCHAR/NVARCHAR data
and CHAR/VARCHAR? data. The default value results in no error being reported.

¢ See Also:

Character Set Migration for more information about data loss during
character set conversion

3.12 Length Semantics

This section includes the following topic:

* NLS_LENGTH_SEMANTICS

3.12.1 NLS_LENGTH_SEMANTICS

ORACLE

Property Description

Parameter type String

Parameter scope Environment variable, initialization parameter, and ALTER SESSION
Default value BYTE

Range of values BYTE or CHAR

By default, the character data types CHAR and VARCHAR?2 are specified in bytes, not
characters. Hence, the specification CHAR (20) in a table definition allows 20 bytes for
storing character data.

This works well if the database character set uses a single-byte character encoding
scheme because the number of characters is the same as the number of bytes. If the
database character set uses a multibyte character encoding scheme, then the number
of bytes no longer equals the number of characters because a character can consist of
one or more bytes. Thus, column widths must be chosen with care to allow for the
maximum possible number of bytes for a given number of characters. You can
overcome this problem by switching to character semantics when defining the column
size.

NLS_LENGTH SEMANTICS enables you to create CHAR, VARCHAR2, and LONG columns
using either byte or character length semantics. NCHAR, NVARCHAR2, CLOB, and NCLOB
columns are always character-based. Existing columns are not affected.

You may be required to use byte semantics in order to maintain compatibility with
existing applications.

3-36

ORACLE

Chapter 3
Length Semantics

NLS LENGTH SEMANTICS does not apply to tables created in the SYS schema. The data
dictionary always uses byte semantics. Tables owned by sYs always use byte semantics if
the length qualifier BYTE or CHAR is not specified in the table creation DDL.

Note that if the NLS LENGTH SEMANTICS environment variable is not set on the client, then the
client session defaults to the value for NLS_LENGTH SEMANTICS on the database server. This
enables all client sessions on the network to have the same NLS LENGTH SEMANTICS behavior.
Setting the environment variable on an individual client enables the server initialization
parameter to be overridden for that client.

Note that if the NLS LENGTH SEMANTICS environment variable is not set on the client or the
client connects through the Oracle JDBC Thin driver, then the client session defaults to the
value for the NLS_LENGTH SEMANTICS initialization parameter of the instance to which the client
connects. For compatibility reasons, Oracle recommends that this parameter be left
undefined or set to BYTE.

" Note:

Oracle strongly recommends that you do NOT set the NLS LENGTH SEMANTICS
parameter to CHAR in the instance or server parameter file. This may cause many
existing installation scripts to unexpectedly create columns with character length
semantics, resulting in run-time errors, including buffer overflows.

See Also:

"Length Semantics"

3-37

Datetime Data Types and Time Zone Support

This chapter includes the following topics:

e Overview of Datetime and Interval Data Types and Time Zone Support
« Datetime and Interval Data Types

« Datetime and Interval Arithmetic and Comparisons

e Datetime SQL Functions

« Datetime and Time Zone Parameters and Environment Variables

e Choosing a Time Zone File

e Upgrading the Time Zone File and Timestamp with Time Zone Data

e Clients and Servers Operating with Different Versions of Time Zone Files
e Setting the Database Time Zone

e Setting the Session Time Zone

e Converting Time Zones With the AT TIME ZONE Clause

e Support for Daylight Saving Time

4.1 Overview of Datetime and Interval Data Types and Time
Zone Support

Businesses conduct transactions across different time zones. Oracle Database datetime and
interval data types and time zone support make it possible to store consistent information
about the time of events and transactions.

Note:

This chapter describes Oracle Database datetime and interval data types. It does
not attempt to describe ANSI data types or other kinds of data types unless noted.

4.2 Datetime and Interval Data Types

The datetime data types are DATE, TIMESTAMP, TIMESTAMP WITH TIME ZONE, and TIMESTAMP
WITH LOCAL TIME ZONE. Values of datetime data types are sometimes called datetimes.

The interval data types are INTERVAL YEAR TO MONTH and INTERVAL DAY TO SECOND. Values
of interval data types are sometimes called intervals.

ORACLE 41

Chapter 4
Datetime and Interval Data Types

Both datetimes and intervals are made up of fields. The values of these fields
determine the value of the data type. The fields that apply to all Oracle Database
datetime and interval data types are:

° YEAR

e MONTH
e DAY

e HOUR

e MINUTE
e SECOND

TIMESTAMP WITH TIME ZONE also includes these fields:

e TIMEZONE HOUR
° TIMEZONE MINUTE
°* TIMEZONE REGION
° TIMEZONE ABBR

TIMESTAMP WITH LOCAL TIME ZONE does not store time zone information internally, but
you can see local time zone information in SQL output if the TZH:TzZM or TZR TZD
format elements are specified.

The following sections describe the datetime data types and interval data types in
more detail:

» Datetime Data Types

* Interval Data Types

¢ See Also:

— Oracle Database SQL Language Reference for the valid values of
the datetime and interval fields

— Oracle Database SQL Language Reference for information about
format elements

4.2.1 Datetime Data Types

ORACLE

This section includes the following topics:

* DATE Data Type

« TIMESTAMP Data Type

e TIMESTAMP WITH TIME ZONE Data Type

e TIMESTAMP WITH LOCAL TIME ZONE Data Type
* Inserting Values into Datetime Data Types

e Choosing a TIMESTAMP Data Type

4-2

Chapter 4
Datetime and Interval Data Types

4.2.1.1 DATE Data Type

The DATE data type stores date and time information. Although date and time information can
be represented in both character and number data types, the DATE data type has special
associated properties. For each DATE value, Oracle Database stores the following
information: century, year, month, date, hour, minute, and second.

You can specify a date value by:
» Specifying the date value as a literal
» Converting a character or numeric value to a date value with the To_DATE function

A date can be specified as an ANSI date literal or as an Oracle Database date value.

An ANSI date literal contains no time portion and must be specified in exactly the following
format:

DATE 'YYYY-MM-DD'

The following is an example of an ANSI date literal:

DATE '1998-12-25"

Alternatively, you can specify an Oracle Database date value as shown in the following
example:

TO_DATE ('1998-DEC-25 17:30', 'YYYY-MON-DD HH24:MI', 'NLS_ DATE LANGUAGE=AMERICAN')

The default date format for an Oracle Database date value is derived from the

NLS_DATE FORMAT and NLS DATE LANGUAGE initialization parameters. The date format in the
example includes a two-digit number for the day of the month, an abbreviation of the month
name, the four digits of the year, and a 24-hour time designation. The specification for
NLS_DATE LANGUAGE is included because 'DEC' is not a valid value for MoN in all locales.

Oracle Database automatically converts character values that are in the default date format
into date values when they are used in date expressions.

If you specify a date value without a time component, then the default time is midnight. If you
specify a date value without a date, then the default date is the first day of the current month.

Oracle Database DATE columns always contain fields for both date and time. If your queries
use a date format without a time portion, then you must ensure that the time fields in the DATE
column are set to midnight. You can use the TRUNC (date) SQL function to ensure that the
time fields are set to midnight, or you can make the query a test of greater than or less than
(<, <=, >=, or >) instead of equality or inequality (= or !=). Otherwise, Oracle Database may
not return the query results you expect.

ORACLE 4.3

Chapter 4
Datetime and Interval Data Types

¢ See Also:

e Oracle Database SQL Language Reference for more information about
the DATE data type

« "NLS_DATE_FORMAT"
* "NLS_DATE_LANGUAGE"

e Oracle Database SQL Language Reference for more information about
literals, format elements such as M, and the TO DATE function

4.2.1.2 TIMESTAMP Data Type

The TIMESTAMP data type is an extension of the DATE data type. It stores year, month,
day, hour, minute, and second values. It also stores fractional seconds, which are not
stored by the DATE data type.

Specify the TIMESTAMP data type as follows:

TIMESTAMP [(fractional seconds precision)]

fractional seconds precision is optional and specifies the number of digits in the
fractional part of the sECOND datetime field. It can be a number in the range 0 to 9. The
default is 6.

For example, '26-JUN-02 09:39:16.78"' shows 16.78 seconds. The fractional
seconds precision is 2 because there are 2 digits in '78".

You can specify the TIMESTAMP literal in a format like the following:

TIMESTAMP 'YYYY-MM-DD HH24:MI:SS.FF'

Using the example format, specify TIMESTAMP as a literal as follows:
TIMESTAMP '1997-01-31 09:26:50.12'
The value of NLS_TIMESTAMP FORMAT initialization parameter determines the timestamp

format when a character string is converted to the TIMESTAMP data type.
NLS_DATE LANGUAGE determines the language used for character data such as MON.

See Also:

e Oracle Database SQL Language Reference for more information about
the TIMESTAMP data type

* "NLS_TIMESTAMP_FORMAT"
* "NLS_DATE_LANGUAGE"

ORACLE 4-4

Chapter 4
Datetime and Interval Data Types

4.2.1.3 TIMESTAMP WITH TIME ZONE Data Type

TIMESTAMP WITH TIME ZONE is a variant of TIMESTAMP that includes a time zone region name or
time zone offset in its value. The time zone offset is the difference (in hours and minutes)
between local time and UTC (Coordinated Universal Time, formerly Greenwich Mean Time).
Specify the TIMESTAMP WITH TIME ZONE data type as follows:

TIMESTAMP [(fractional seconds precision)] WITH TIME ZONE

fractional seconds precision is optional and specifies the number of digits in the
fractional part of the SECOND datetime field.

You can specify TIMESTAMP WITH TIME ZONE as a literal as follows:

TIMESTAMP '1997-01-31 09:26:56.66 +02:00'

Two TIMESTAMP WITH TIME ZONE values are considered identical if they represent the same
instant in UTC, regardless of the TIME ZONE offsets stored in the data. For example, the
following expressions have the same value:

TIMESTAMP '1999-01-15 8:00:00 -8:00"
TIMESTAMP '1999-01-15 11:00:00 -5:00"

You can replace the UTC offset with the TzR (time zone region) format element. The following
expression specifies Anerica/Los Angeles for the time zone region:

TIMESTAMP '1999-01-15 8:00:00 America/Los_Angeles'

To eliminate the ambiguity of boundary cases when the time switches from Standard Time to
Daylight Saving Time, use both the TZR format element and the corresponding TzD format
element. The TzD format element is an abbreviation of the time zone region with Daylight
Saving Time information included. Examples are psT for U. S. Pacific Standard Time and pDT
for U. S. Pacific Daylight Time. The following specification ensures that a Daylight Saving
Time value is returned:

TIMESTAMP '1999-10-29 01:30:00 America/Los_Angeles PDT'
If you do not add the TzD format element, and the datetime value is ambiguous, then Oracle
Database returns an error if you have the ERROR_ON_OVERLAP TIME session parameter set to

TRUE. If ERROR_ON_OVERLAP TIME is set to FALSE (the default value), then Oracle Database
interprets the ambiguous datetime as Standard Time.

The default date format for the TIMESTAMP WITH TIME ZONE data type is determined by the
value of the NLS TIMESTAMP TZ FORMAT initialization parameter.

ORACLE 4.5

Chapter 4
Datetime and Interval Data Types

¢ See Also:

e Oracle Database SQL Language Reference for more information about
the TIMESTAMP WITH TIME ZONE data type

* "TIMESTAMP Data Type" for more information about fractional seconds
precision

e "Support for Daylight Saving Time"
e "NLS_TIMESTAMP_TZ_FORMAT"

e Oracle Database SQL Language Reference for more information about
format elements

e Oracle Database SQL Language Reference for more information about
setting the ERROR_ON OVERLAP TIME session parameter

4.2.1.4 TIMESTAMP WITH LOCAL TIME ZONE Data Type

ORACLE

TIMESTAMP WITH LOCAL TIME ZONE is another variant of TIMESTAMP. It differs from
TIMESTAMP WITH TIME ZONE as follows: data stored in the database is normalized to
the database time zone, and the time zone offset is not stored as part of the column
data. When users retrieve the data, Oracle Database returns it in the users' local
session time zone. The time zone offset is the difference (in hours and minutes)
between local time and UTC (Coordinated Universal Time, formerly Greenwich Mean
Time).

Specify the TIMESTAMP WITH LOCAL TIME ZONE data type as follows:

TIMESTAMP [(fractional seconds precision)] WITH LOCAL TIME ZONE

fractional seconds precision is optional and specifies the number of digits in the
fractional part of the SECOND datetime field.

There is no literal for TIMESTAMP WITH LOCAL TIME ZONE, but TIMESTAMP literals and
TIMESTAMP WITH TIME ZONE literals can be inserted into a TIMESTAMP WITH LOCAL TIME
ZONE column.

The default date format for TIMESTAMP WITH LOCAL TIME ZONE is determined by the
value of the NLS TIMESTAMP FORMAT initialization parameter.

¢ See Also:

e Oracle Database SQL Language Reference for more information about
the TIMESTAMP WITH LOCAL TIME ZONE data type

« "TIMESTAMP Data Type" for more information about fractional seconds
precision

* "NLS_TIMESTAMP_FORMAT"

4-6

Chapter 4
Datetime and Interval Data Types

4.2.1.5 Inserting Values into Datetime Data Types

ORACLE

You can insert values into a datetime column in the following ways:

* Insert a character string whose format is based on the appropriate NLS format value
* Insert a literal

* Insert a literal for which implicit conversion is performed

e Usethe TO TIMESTAMP, TO TIMESTAMP TZ, Or TO DATE SQL function

The following examples show how to insert data into datetime data types.

¢ See Also:

"Datetime SQL Functions” for more information about the TO_TIMESTAMP or
TO TIMESTAMP TZ SQL functions

Example 4-1 Inserting Data into a DATE Column

Set the date format.

SQL> ALTER SESSION SET NLS DATE FORMAT='DD-MON-YYYY HH24:MI:SS';

Create a table table dt with columns ¢_id and ¢ dt. The c¢_id column is of NUMBER data type
and helps to identify the method by which the data is entered. The ¢_dt column is of DATE
data type.

SQL> CREATE TABLE table dt (c_id NUMBER, c_dt DATE);

Insert a date as a character string.

SQL> INSERT INTO table dt VALUES (1, '01-JAN-2003'");

Insert the same date as a DATE literal.

SQL> INSERT INTO table dt VALUES (2, DATE '2003-01-01");

Insert the date as a TIMESTAMP literal. Oracle Database drops the time zone information.

SQL> INSERT INTO table dt VALUES(3, TIMESTAMP '2003-01-01 00:00:00 America/
Los Angeles');

Insert the date with the TO_DATE function.

SQL> INSERT INTO table dt VALUES(4, TO DATE('01-JAN-2003', 'DD-MON-YYYY'));

Display the data.

SQL> SELECT * FROM table dt;

1 01-JAN-2003 00:00:00
2 01-JAN-2003 00:00:00
3 01-JAN-2003 00:00:00
4 01-JAN-2003 00:00:00

4-7

ORACLE

Chapter 4
Datetime and Interval Data Types

Example 4-2 Inserting Data into a TIMESTAMP Column

Set the timestamp format.

SQL> ALTER SESSION SET NLS TIMESTAMP FORMAT='DD-MON-YY HH:MI:SSXFF';

Create a table table ts with columns c_idand ¢ _ts. The c_id column is of NUMBER
data type and helps to identify the method by which the data is entered. The c_ts
column is of TIMESTAMP data type.

SQL> CREATE TABLE table ts(c_id NUMBER, c_ts TIMESTAMP);

Insert a date and time as a character string.

SQL> INSERT INTO table ts VALUES (1, '01-JAN-2003 2:00:00');

Insert the same date and time as a TIMESTAMP literal.

SQL> INSERT INTO table ts VALUES(2, TIMESTAMP '2003-01-01 2:00:00");

Insert the same date and time as a TIMESTAMP WITH TIME ZONE literal. Oracle Database
converts it to a TIMESTAMP value, which means that the time zone information is
dropped.

SQL> INSERT INTO table ts VALUES (3, TIMESTAMP '2003-01-01 2:00:00 -08:00');

Display the data.

SQL> SELECT * FROM table ts;

C_ID C TS
1 01-JAN-03 02:00:00.000000 AM

01-JAN-03 02:00:00.000000 AM
3 01-JAN-03 02:00:00.000000 AM

Note that the three methods result in the same value being stored.
Example 4-3 Inserting Data into the TIMESTAMP WITH TIME ZONE Data Type

Set the timestamp format.

SQL> ALTER SESSION SET NLS TIMESTAMP TZ FORMAT='DD-MON-RR HH:MI:SSXFF AM TZR';

Set the time zone to '-07:00".

SQL> ALTER SESSION SET TIME ZONE='-7:00';

Create a table table tstz with columns ¢_id and c¢_tstz. The ¢_id column is of
NUMBER data type and helps to identify the method by which the data is entered. The
c_tstz column is of TIMESTAMP WITH TIME ZONE data type.

SQL> CREATE TABLE table tstz (c_id NUMBER, c_tstz TIMESTAMP WITH TIME ZONE);

Insert a date and time as a character string.

SQL> INSERT INTO table tstz VALUES (1, '01-JAN-2003 2:00:00 AM -07:00");

Insert the same date and time as a TIMESTAMP literal. Oracle Database converts it to a
TIMESTAMP WITH TIME ZONE literal, which means that the session time zone is appended
to the TIMESTAMP value.

4-8

Chapter 4
Datetime and Interval Data Types

SQL> INSERT INTO table tstz VALUES (2, TIMESTAMP '2003-01-01 2:00:00');

Insert the same date and time as a TIMESTAMP WITH TIME ZONE literal.

SQL> INSERT INTO table tstz VALUES (3, TIMESTAMP '2003-01-01 2:00:00 -8:00');

Display the data.

SQL> SELECT * FROM table tstz;

01-JAN-03 02:00.00:000000 AM -07:00
01-JAN-03 02:00:00.000000 AM -07:00
3 01-JAN-03 02:00:00.000000 AM -08:00

Note that the time zone is different for method 3, because the time zone information was
specified as part of the TIMESTAMP WITH TIME ZONE literal.

Example 4-4 Inserting Data into the TIMESTAMP WITH LOCAL TIME ZONE Data Type

Consider data that is being entered in Denver, Colorado, U.S.A., whose time zone is UTC-7.

SQL> ALTER SESSION SET TIME ZONE='-07:00';

Create a table table tsltz with columns c_id and c_tsltz. The c_id column is of NUMBER
data type and helps to identify the method by which the data is entered. The ¢ _tsltz column
is of TIMESTAMP WITH LOCAL TIME ZONE data type.

SQL> CREATE TABLE table tsltz (c_id NUMBER, c_tsltz TIMESTAMP WITH LOCAL TIME ZONE);

Insert a date and time as a character string.

SQL> INSERT INTO table tsltz VALUES(1, '01-JAN-2003 2:00:00');

Insert the same data as a TIMESTAMP WITH LOCAL TIME ZONE literal.

SQL> INSERT INTO table tsltz VALUES (2, TIMESTAMP '2003-01-01 2:00:00");

Insert the same data as a TIMESTAMP WITH TIME ZONE literal. Oracle Database converts the
data to a TIMESTAMP WITH LOCAL TIME ZONE value. This means the time zone that is entered
(-08:00) is converted to the session time zone value (-07:00).

SQL> INSERT INTO table tsltz VALUES (3, TIMESTAMP '2003-01-01 2:00:00 -08:00');

Display the data.

SQL> SELECT * FROM table tsltz;

C_ID C_TSLTZ

1 01-JAN-03 02.00.00.000000 AM
01-JAN-03 02.00.00.000000 AM

3 01-JAN-03 03.00.00.000000 AM

Note that the information that was entered as UTC-8 has been changed to the local time
zone, changing the hour from 2 to 3.

ORACLE 4-9

Chapter 4
Datetime and Interval Data Types

4.2.1.6 Choosing a TIMESTAMP Data Type

Use the TIMESTAMP data type when you need a datetime value to record the time of an
event without the time zone. For example, you can store information about the times
when workers punch a time card in and out of their assembly line workstations.
Because this is always a local time it is then not needed to store the timezone part.
The TIMESTAMP data type uses 7 or 11 bytes of storage.

Use the TIMESTAMP WITH TIME ZONE data type when the datetime value represents a
future local time or the time zone information must be recorded with the value.
Consider a scheduled appointment in a local time. The future local time may need to
be adjusted if the time zone definition, such as daylight saving rule, changes.
Otherwise, the value can become incorrect. This data type is most immune to such
impact.

The TIMESTAMP WITH TIME ZONE data type requires 13 bytes of storage, or two more
bytes of storage than the TIMESTAMP and TIMESTAMP WITH LOCAL TIME ZONE data types
because it stores time zone information. The time zone is stored as a time zone region
name or as an offset from UTC. The data is available for display or calculations without
additional processing. A TIMESTAMP WITH TIME ZONE column cannot be used as a
primary key. If an index is created on a TIMESTAMP WITH TIME ZONE column, it becomes
a function-based index.

The TIMESTAMP WITH LOCAL TIME ZONE data type stores the timestamp without time
zone information. It normalizes the data to the database time zone every time the data
is sent to and from a client. It requires 11 bytes of storage.

The TIMESTAMP WITH LOCAL TIME ZONE data type is appropriate when the original time
zone is of no interest, but the relative times of events are important and daylight saving
adjustment does not have to be accurate. The time zone conversion that this data type
performs to and from the database time zone is asymmetrical, due to the daylight
saving adjustment. Because this data type does not preserve the time zone
information, it does not distinguish values near the adjustment in fall, whether they are
daylight saving time or standard time. This confusion between distinct instants can
cause an application to behave unexpectedly, especially if the adjustment takes place
during the normal working hours of a user.

Note that some regions, such as Brazil and Israel, that update their Daylight Saving
Transition dates frequently and at irregular periods, are particularly susceptible to time
zone adjustment issues. If time information from these regions is key to your
application, you may want to consider using one of the other datetime types.

4.2.2 Interval Data Types

ORACLE

Interval data types store time durations. They are used primarily with analytic
functions. For example, you can use them to calculate a moving average of stock
prices. You must use interval data types to determine the values that correspond to a
particular percentile. You can also use interval data types to update historical tables.

This section includes the following topics:

* INTERVAL YEAR TO MONTH Data Type
* INTERVAL DAY TO SECOND Data Type

* Inserting Values into Interval Data Types

4-10

Chapter 4
Datetime and Interval Data Types

" See Also:

Oracle Database Data Warehousing Guide for more information about analytic
functions, including moving averages and inverse percentiles

4.2.2.1 INTERVAL YEAR TO MONTH Data Type

INTERVAL YEAR TO MONTH stores a period of time using the YEAR and MONTH datetime fields.
Specify INTERVAL YEAR TO MONTH as follows:

INTERVAL YEAR [(year precision)] TO MONTH

year precision is the number of digits in the YEAR datetime field. Accepted values are O to 9.
The default value of year precisionis 2.

Interval values can be specified as literals. There are many ways to specify interval literals.
The following is one example of specifying an interval of 123 years and 2 months. The year
precision is 3.

INTERVAL '123-2' YEAR(3) TO MONTH

See Also:

Oracle Database SQL Language Reference for more information about specifying
interval literals with the INTERVAL YEAR TO MONTH data type

4.2.2.2 INTERVAL DAY TO SECOND Data Type

INTERVAL DAY TO SECOND stores a period of time in terms of days, hours, minutes, and
seconds. Specify this data type as follows:

INTERVAL DAY [(day precision)] TO SECOND [(fractional seconds precision)]

day precision is the number of digits in the DAY datetime field. Accepted values are 0 to 9.
The default is 2.

fractional seconds precision is the number of digits in the fractional part of the SECOND
datetime field. Accepted values are 0 to 9. The default is 6.

The following is one example of specifying an interval of 4 days, 5 hours, 12 minutes, 10
seconds, and 222 thousandths of a second. The fractional second precision is 3.

INTERVAL '4 5:12:10.222' DAY TO SECOND (3)

Interval values can be specified as literals. There are many ways to specify interval literals.

¢ See Also:

Oracle Database SQL Language Reference for more information about specifying
interval literals with the INTERVAL DAY TO SECOND data type

ORACLE 4-11

Chapter 4
Datetime and Interval Arithmetic and Comparisons

4.2.2.3 Inserting Values into Interval Data Types

You can insert values into an interval column in the following ways:

* Insert an interval as a literal. For example:

INSERT INTO tablel VALUES (INTERVAL '4-2' YEAR TO MONTH) ;

This statement inserts an interval of 4 years and 2 months.

Oracle Database recognizes literals for other ANSI interval types and converts the
values to Oracle Database interval values.

¢ Use the NUMTODSINTERVAL, NUMTOYMINTERVAL, TO DSINTERVAL, and TO YMINTERVAL
SQL functions.

¢ See Also:

"Datetime SQL Functions"

4.3 Datetime and Interval Arithmetic and Comparisons

This section includes the following topics:
o Datetime and Interval Arithmetic
» Datetime Comparisons

» Explicit Conversion of Datetime Data Types

4.3.1 Datetime and Interval Arithmetic

ORACLE

You can perform arithmetic operations on date (DATE), timestamp (TIMESTAMP,
TIMESTAMP WITH TIME ZONE, and TIMESTAMP WITH LOCAL TIME ZONE) and interval
(INTERVAL DAY TO SECOND and INTERVAL YEAR TO MONTH) data. You can maintain the
most precision in arithmetic operations by using a timestamp data type with an interval
data type.

You can use NUMBER constants in arithmetic operations on date and timestamp values.
Oracle Database internally converts timestamp values to date values before doing
arithmetic operations on them with NUMBER constants. This means that information
about fractional seconds is lost during operations that include both date and timestamp
values. Oracle Database interprets NUMBER constants in datetime and interval
expressions as number of days.

Each DATE value contains a time component. The result of many date operations
includes a fraction. This fraction means a portion of one day. For example, 1.5 days is
36 hours. These fractions are also returned by Oracle Database built-in SQL functions
for common operations on DATE data. For example, the built-in MONTHS BETWEEN SQL
function returns the number of months between two dates. The fractional portion of the
result represents that portion of a 31-day month.

Oracle Database performs all timestamp arithmetic in UTC time. For TIMESTAMP WITH
LOCAL TIME ZONE data, Oracle Database converts the datetime value from the database

4-12

Chapter 4
Datetime SQL Functions

time zone to UTC and converts back to the database time zone after performing the
arithmetic. For TIMESTAMP WITH TIME ZONE data, the datetime value is always in UTC, so no
conversion is necessary.

¢ See Also:

e Oracle Database SQL Language Reference for detailed information about
datetime and interval arithmetic operations

e "Datetime SQL Functions" for information about which functions cause implicit
conversion to DATE

4.3.2 Datetime Comparisons

When you compare date and timestamp values, Oracle Database converts the data to the
more precise data type before doing the comparison. For example, if you compare data of
TIMESTAMP WITH TIME ZONE data type with data of TIMESTAMP data type, Oracle Database
converts the TIMESTAMP data to TIMESTAMP WITH TIME ZONE, using the session time zone.

The order of precedence for converting date and timestamp data is as follows:
1. DATE

2. TIMESTAMP

3. TIMESTAMP WITH LOCAL TIME ZONE

4. TIMESTAMP WITH TIME ZONE

For any pair of data types, Oracle Database converts the data type that has a smaller number
in the preceding list to the data type with the larger number.

4.3.3 Explicit Conversion of Datetime Data Types

If you want to do explicit conversion of datetime data types, use the CAST SQL function. You
can explicitly convert DATE, TIMESTAMP, TIMESTAMP WITH TIME ZONE, and TIMESTAMP WITH
LOCAL TIME ZONE to another data type in the list.

¢ See Also:

Oracle Database SQL Language Reference

4.4 Datetime SQL Functions

ORACLE

Datetime functions operate on date (DATE), timestamp (TIMESTAMP, TIMESTAMP WITH TIME
ZONE, and TIMESTAMP WITH LOCAL TIME ZONE) and interval (INTERVAL DAY TO SECOND,
INTERVAL YEAR TO MONTH) values.

Some of the datetime functions were designed for the Oracle Database DATE data type. If you
provide a timestamp value as their argument, then Oracle Database internally converts the

4-13

ORACLE

Chapter 4
Datetime SQL Functions

input type to a DATE value. Oracle Database does not perform internal conversion for
the ROUND and TRUNC functions.

The following table shows the datetime functions that were designed for the Oracle

Database DATE data type.

Table 4-1 Datetime Functions Designhed for the DATE Data Type

Function Description
ADD MONTHS Returns the date d plus n months
LAST DAY Returns the last day of the month that contains date

MONTHS BETWEEN
NEW TIME

NEXT DAY

ROUND (date)

TRUNC (date)

Returns the number of months between datel and date2

Returns the date and time in zone?2 time zone when the date and
time in zonel time zone are date

Note: This function takes as input only a limited number of time
zones. You can have access to a much greater number of time
zones by combining the FROM _TZ function and the datetime
expression.

Returns the date of the first weekday named by char that is later
than date

Returns date rounded to the unit specified by the fmt format
model

Returns date with the time portion of the day truncated to the unit
specified by the fmt format model

The following table describes additional datetime functions.

Table 4-2 Additional Datetime Functions

Datetime Function

Description

CURRENT DATE

CURRENT TIMESTAMP

DBTIMEZONE

EXTRACT (datetime)

FROM_TZ

LOCALTIMESTAMP

NUMTODSINTERVAL
NUMTOYMINTERVAL
SESSIONTIMEZONE
SYS EXTRACT UTC

Returns the current date in the session time zone in a value in the
Gregorian calendar, of the DATE data type

Returns the current date and time in the session time zone as a
TIMESTAMP WITH TIME ZONE value

Returns the value of the database time zone. The value is a time
zone offset or a time zone region name

Extracts and returns the value of a specified datetime field from a
datetime or interval value expression

Converts a TIMESTAMP value at a time zone to a TIMESTAMP WITH
TIME ZONE value

Returns the current date and time in the session time zone in a
value of the TIMESTAMP data type

Converts number n to an INTERVAL DAY TO SECOND literal
Converts number nto an INTERVAL YEAR TO MONTH literal
Returns the value of the current session's time zone

Extracts the UTC from a datetime with time zone offset

4-14

Chapter 4
Datetime SQL Functions

Table 4-2 (Cont.) Additional Datetime Functions
|

Datetime Function

Description

SYSDATE

SYSTIMESTAMP

TO_CHAR (datetime)

TO_DSINTERVAL

TO_NCHAR (datetime)

TO_TIMESTAMP

TO_TIMESTAMP T7Z

TO_YMINTERVAL

TZ_OFFSET

Returns the date and time of the operating system on which the
database resides, taking into account the time zone of the
database server's operating system that was in effect when the
database was started

Returns the system date, including fractional seconds and time
zone of the system on which the database resides

Converts a datetime or interval value of DATE, TIMESTAMP,
TIMESTAMP WITH TIME ZONE, or TIMESTAMP WITH LOCAL TIME
ZONE data type to a value of VARCHAR? data type in the format
specified by the fmt date format

Converts a character string of CHAR, VARCHAR?2, NCHAR, or
NVARCHAR? data type to a value of INTERVAL DAY TO SECOND
data type

Converts a datetime or interval value of DATE, TIMESTAMP,
TIMESTAMP WITH TIME ZONE, TIMESTAMP WITH LOCAL TIME
ZONE, INTERVAL MONTH TO YEAR, or INTERVAL DAY TO
SECOND data type from the database character set to the national
character set

Converts a character string of CHAR, VARCHAR2, NCHAR, or
NVARCHAR? data type to a value of TIMESTAMP data type

Converts a character string of CHAR, VARCHAR2, NCHAR, or
NVARCHAR? data type to a value of the TIMESTAMP WITH TIME
ZONE data type

Converts a character string of CHAR, VARCHAR?2, NCHAR, or
NVARCHAR? data type to a value of the INTERVAL YEAR TO MONTH
data type

Returns the time zone offset that corresponds to the entered value,
based on the date that the statement is executed

The following table describes the functions related to the Daylight Saving Time (DST)

upgrade process.

Table 4-3 Time Zone Conversion Functions

Time Zone Function

Description

ORA_DST AFFECTED

ORA DST CONVERT

ORA DST ERROR

Enables you to verify whether the data in a column is affected by
upgrading the DST rules from one version to another version

Enables you to upgrade your TSTZ column data from one version to
another

Enables you to verify that there are no errors when upgrading a datetime
value

ORACLE

4-15

Chapter 4
Datetime and Time Zone Parameters and Environment Variables

¢ See Also:

e Oracle Database SQL Language Reference for more information about
the Oracle Database datetime functions

e "Support for Daylight Saving Time" for more information about the
Daylight Saving Time functionality of Oracle Database

e "Daylight Saving Time Session Parameter" for information about the
session parameter ERROR ON_OVERLAP TIME related to Daylight Saving
Time

e "Daylight Saving Time Upgrade Parameter" for information about the
initialization parameter DST UPGRADE INSERT CONV that is used during the
Daylight Saving Time upgrade process

4.5 Datetime and Time Zone Parameters and Environment

Variables

This section includes the following topics:

o Datetime Format Parameters

» Time Zone Environment Variables

o Daylight Saving Time Session Parameter

» Daylight Saving Time Upgrade Parameter

4.5.1 Datetime Format Parameters

ORACLE

The following table contains the names and descriptions of the datetime format
parameters.

Table 4-4 Datetime Format Parameters

__|
Parameter Description

NLS DATE FORMAT Defines the default date format to use with the TO CHAR
and TO DATE functions

NLS TIMESTAMP FORMAT Defines the default timestamp format to use with the
TO _CHAR and TO_TIMESTAMP functions

NLS TIMESTAMP TZ FORMAT Defines the default timestamp with time zone format to use
with the TO CHAR and TO_TIMESTAMP TZ functions

Their default values are derived from NLS_TERRITORY.

You can specify their values by setting them in the initialization parameter file. If you
change the values in the initialization parameter file, you must restart the instance for
the change to take effect. You can also specify their values for a client as client
environment variables. For Java clients, the value of NLS TERRITORY is derived from
the default locale of JRE. The values specified in the initialization parameter file are
not used for JDBC sessions.

4-16

Chapter 4
Datetime and Time Zone Parameters and Environment Variables

To change their values during a session, use the ALTER SESSION Statement.

¢ See Also:

e "Date and Time Parameters" for more information, including examples
* "NLS_DATE_FORMAT"

e "NLS_TIMESTAMP_FORMAT"

e "NLS_TIMESTAMP_TZ_FORMAT"

4.5.2 Time Zone Environment Variables

The time zone environment variables are:

* ORA TZFILE, which enables you to specify a time zone on the client and Oracle Database
server. Note that when you specify ORA TZFILE on Oracle Database server, the only time
when this environment variable takes effect is during the creation of the database.

* ORA_SDTZ, which specifies the default session time zone.

" See Also:

— "Choosing a Time Zone File"

— "Setting the Session Time Zone"

4.5.3 Daylight Saving Time Session Parameter

ERROR ON OVERLAP TIME is a session parameter that determines how Oracle Database
handles an ambiguous datetime boundary value. Ambiguous datetime values can occur
when the time changes between Daylight Saving Time and standard time.

The possible values are TRUE and FALSE. When ERROR_ON_OVERLAP TIME iS TRUE, then an
error is returned when Oracle Database encounters an ambiguous datetime value. When
ERROR_ON OVERLAP TIME is FALSE, then ambiguous datetime values are assumed to be the
standard time representation for the region. The default value is FALSE.

¢ See Also:

e "Support for Daylight Saving Time"

e Oracle Database SQL Language Reference

ORACLE 4-17

Chapter 4
Choosing a Time Zone File

4.5.4 Daylight Saving Time Upgrade Parameter

DST UPGRADE INSERT CONV is an initialization parameter that is only used during the
upgrade window of the Daylight Saving Time (DST) upgrade process. It is only
applicable to tables with TIMESTAMP WITH TIME ZONE columns because those are the
only ones that are modified during the DST upgrade.

During the upgrade window of the DST patching process (which is described in the
DBMS DST package), tables with TIMESTAMP WITH TIMEZONE data undergo conversion to
the new time zone version. Columns in tables that have not yet been converted will still
have the TIMESTAMP WITH TIMEZONE reflecting the previous time zone version. In order
to present the data in these columns as though they had been converted to the new
time zone version when you issue SELECT statements, Oracle adds by default
conversion operators over the columns to convert them to the new version. Adding the
conversion operator may, however, slow down queries and disable usage of indexes
on the TIMESTAMP WITH TIMEZONE columns. Hence, Oracle provides a parameter,

DST UPGRADE INSERT CONV, that specifies whether or not internal operators are
allocated on top of TIMESTAMP WITH TIMEZONE columns of tables that have not been
upgraded. By default, its value is TRUE. If users know that the conversion process will
not affect the TIMESTAMP WITH TIMEZONE columns, then this parameter can be set to
FALSE.

Oracle strongly recommends that you set this parameter to TRUE throughout the DST
patching process. By default, this parameter is set to TRUE. However, if set to TRUE,
query performance may be degraded on unconverted tables. Note that this only
applies during the upgrade window.

" See Also:

e Oracle Database Reference

e Oracle Database PL/SQL Packages and Types Reference

4.6 Choosing a Time Zone File

ORACLE

The Oracle Database time zone files contain the valid time zone names. The following
information is also included for each time zone:

» Offset from Coordinated Universal Time (UTC)
* Transition times for Daylight Saving Time
* Abbreviations for standard time and Daylight Saving Time

Oracle Database supplies multiple versions of time zone files, and there are two types
of file associated with each version: a large file, which contains all the time zones
defined in the database, and a small file, which contains only the most commonly used
time zones. The large version files are named as timezlrg version number.dat and
the small version files are named as timezone version number.dat, where

version number is the version number of the time zone file. The time zone files are
stored in the SORACLE HOME/oracore/zoneinfo directory and the default time zone file

4-18

ORACLE

Chapter 4
Choosing a Time Zone File

is a large time zone file having the highest version number. In Oracle Database 18c, the
default time zone file is SORACLE_HOME/oracore/zoneinfo/timezlrg 31.dat.

Examples of time zone files are:

SORACLE HOME/oracore/zoneinfo/timezlrg 4.dat -- large version 4
SORACLE HOME/oracore/zoneinfo/timezone 4.dat -- small version 4
SORACLE HOME/oracore/zoneinfo/timezlrg 5.dat -- large version 5
SORACLE HOME/oracore/zoneinfo/timezone 5.dat -- small version 5

During the database creation process, you choose the time zone version for the server. This
version is fixed, but you can, however, go through the upgrade process to achieve a higher
version. You can use different versions of time zone files on the client and server, but Oracle
recommends that you do not. This is because there is a performance penalty when a client
on one version communicates with a server on a different version. The performance penalty
arises because the TIMESTAMP WITH TIME ZONE (TSTZ) data is transferred using a local
timestamp instead of UTC.

On the server, Oracle Database always uses a large file. On the client, you can use either a
large or a small file. If you use a large time zone file on the client, then you should continue to
use it unless you are sure that no information will be missing if you switch to a smaller one. If
you use a small file, you have to make sure that the client does not query data that is not
present in the small time zone file. Otherwise, you get an error.

You can enable the use of a specific time zone file on the client or on the server. If you want
to enable a time zone file on the server, there are two situations. One is when you want to
upgrade the time zone to the target version. See "Upgrading the Time Zone File and
Timestamp with Time Zone Data" for more information. Another is when you want to create a
new database. In this case, you can set the ORA TZFILE environment variable to point to the
time zone file of your choice.

To enable a specific time zone file on a client, you can set ORA TZFILE to whatever time zone
file you want. If ORA TZFILE is not set, Oracle Database automatically picks up and uses the
file with the latest time zone version.

¢ See Also:

Oracle Call Interface Programmer's Guide for more information on how to upgrade
Daylight Saving Time on a client

Note:

Oracle Database time zone data is derived from the public domain information
available on The IANA Functions website. Oracle Database time zone data may not
reflect the most recent data available on this website.

You can obtain a list of time zone names and time zone abbreviations from the time zone file
that is installed with your database by entering the following statement:

SELECT TZNAME, TZABBREV
FROM V$TIMEZONE NAMES
ORDER BY TZNAME, TZABBREV;

4-19

ORACLE

Chapter 4
Choosing a Time Zone File

For the default time zone file, this statement results in output similar to the following:

TZNAME TZABBREV
Africa/Abidjan GMT
Africa/Abidjan LMT
Africa/Algiers CEST
Africa/Algiers CET
Africa/Algiers LMT
Africa/Algiers PMT
Africa/Algiers WET
Africa/Algiers WEST
WET LMT
WET WEST
WET WET

2137 rows selected.

In the above output, 2 time zone abbreviations are associated with the Africa/Abidjan
time zone, and 6 abbreviations are associated with the Africa/Algiers time zone. The
following table shows some of the time zone abbreviations and their meanings.

Time Zone Abbreviation Meaning

LMT Local Mean Time

PMT Paris Mean Time

WET Western European Time

WEST Western European Summer Time
CET Central Europe Time

CEST Central Europe Summer Time
EET Eastern Europe Time

EEST Eastern Europe Summer Time

Note that an abbreviation can be associated with multiple time zones. For example,
CET is associated with both Africa/Algiers and Africa/Casablanca, as well as time
zones in Europe.

If you want a list of time zones without repeating the time zone name for each
abbreviation, use the following query:

SELECT UNIQUE TZNAME
FROM VSTIMEZONE NAMES;

For example, version 11 contains output similar to the following:

TZNAME
Africa/Addis Ababa
Africa/Bissau
Africa/Ceuta
Turkey
US/East-Indiana
US/Samoa

4-20

Chapter 4
Upgrading the Time Zone File and Timestamp with Time Zone Data

The default time zone file contains more than 350 unique time zone names. The small time
zone file contains more than 180 unique time zone names.

See Also:

e "Time Zone Region Names" for a list of valid Oracle Database time zone names

* SORACLE HOME/oracore/zoneinfo/timezdif.csv provided with your Oracle
Database software installation for a full list of time zones changed in each
version of the time zone file.

e Oracle Database Upgrade Guide for upgrade information

4.7 Upgrading the Time Zone File and Timestamp with Time
Zone Data

ORACLE

The time zone files that are supplied with the Oracle Database are updated periodically to
reflect changes in transition rules for various time zone regions. To find which time zone file
your database currently uses, query the V$TIMEZONE FILE view.

" Note:

Each Oracle Database release includes a time zone file that is current at the time of
the release and a number of older version files. Between Oracle Database releases,
new time zone file versions may be provided in patch sets or individual patches to
reflect the changes in transition rules for various time zone regions. Older time zone
file versions allow you to run upgraded databases without a need to immediately
upgrade the time zone file to the most current version.

Daylight Saving Time (DST) Transition Rules Changes

Governments can and do change the rules for when Daylight Saving Time takes effect or how
it is handled. When this occurs, Oracle provides a new set of transition rules for handling
timestamp with time zone data.

Transition periods for the beginning or ending of Daylight Saving Time can potentially
introduce problems (such as data loss) when handling timestamps with time zone data.
Oracle has provided the PL/SQL package DBMS DST and the utltz * scripts to deal with this
transition.

The changes to DST transition rules may affect existing data of TIMESTAMP WITH TIME ZONE
data type, because of the way Oracle Database stores this data internally. When users enter
timestamps with time zone, Oracle Database converts the data to UTC, based on the
transition rules in the time zone file, and stores the data together with the ID of the original
time zone on disk. When data is retrieved, the reverse conversion from UTC takes place. For
example, in the past, under version 2 transition rules, the value TIMESTAMP '2007-11-02
12:00:00 America/Los_Angeles' was stored as UTC value '2007-11-02 20:00:00" plus the
time zone ID for 'America/Los Angeles'. The time in Los Angeles was stored as UTC minus
eight hours (PST). Under version 3 of the transition rules, the offset for the same day is minus

4-21

ORACLE

Chapter 4
Upgrading the Time Zone File and Timestamp with Time Zone Data

seven hours (PDT). Beginning with year 2007, the DST has been in effect longer (until
the first Sunday of November, which was November 4th in 2007). Now, when users
retrieve the same timestamp and the new offset is added to the stored UTC time, they
receive TIMESTAMP '2007-11-02 13:00:00 America/Los_Angeles'. There is a one
hour difference compared to the data previous to version 3 taking effect.

" Note:

For any time zone region whose transition rules have been updated, the
upgrade process discussed throughout this section affects only timestamps
that point to the future relative to the effective date of the corresponding DST
rule change. For example, no timestamp before year 2007 is affected by the
version 3 change to the 'America/Los_Angeles' time zone region.

Preparing to Upgrade the Time Zone File and Timestamp with Time Zone Data

Before you actually upgrade any data, that is TIMESTAMP WITH TIME ZONE (TSTZ) data
in a database, you should verify what the impact of the upgrade is likely to be. In
general, you can consider the upgrade process to have two separate sub-processes —
prepare and upgrade. To prepare for the upgrade, you start a prepare window, which is
the time when you check how much data has to be updated in the database. To
upgrade, you start an upgrade window, which is the time when changes to the data
actually occur.

While not required, Oracle strongly recommends that you perform the prepare step. In
addition to finding out how much data will have to be modified during the upgrade, thus
giving you an estimate of how much time the upgrade will take, you will also see any
semantic errors that you may encounter.

Upgrading the Time Zone File and Timestamp with Time Zone Data in a
Multitenant Environment

The following guidelines apply when upgrading the time zone file and timestamp with
time zone data in a multitenant environment:

* Each container in a multitenant environment has its own time zone file. Therefore,
to perform a time zone data upgrade across an entire CDB, you must upgrade the
CDB root and each PDB separately. Note that Oracle allows different containers to
have different time zone file versions, so you have the option of upgrading only a
subset of containers in a CDB.

* When performing a time zone data upgrade in a CDB (using either the utltz *
scripts or the DBMS_DST package), you must perform the Prepare Window steps
and the Upgrade Window steps completely in one container before moving on to
the next container.

* A new PDB is always assigned the time zone version of PDBSSEED.

* PDBS$SEED is always assigned the time zone version at the time of CDB creation.
The time zone version of PDBSSEED cannot be changed.

Methods to Upgrade the Time Zone File and Timestamp with Time Zone Data

You can upgrade the time zone data in your database based on the latest released
time zone file using either of the following methods:

4-22

Chapter 4
Upgrading the Time Zone File and Timestamp with Time Zone Data

* Upgrading the Time Zone Data Using the utltz_* Scripts
* Upgrading the Time Zone Data Using the DBMS_DST Package

The upgrade method that uses the ut1tz * scripts is introduced starting with Oracle
Database 18c and is easier to implement as compared to the method that uses the DBMS_DST
package.

4.7.1 Upgrading the Time Zone Data Using the utltz_* Scripts

This section contains the following topics related to the time zone data upgrade using the
utltz * scripts.

* Prepare Window

e Upgrade Window

< Note:

This upgrade method of using the utltz * scripts is introduced starting with Oracle
Database 18c and is easier to implement as compared to the other upgrade method
that uses the DBMS DST package for upgrading the time zone data in a database.

See Also:
"Upgrading the Time Zone Data Using the DBMS_DST Package"

4.7.1.1 Prepare Window

ORACLE

During the prepare window, you can run any of the following scripts present in
the SORACLE HOME/rdbms/admin directory to check how much data will need to be updated in
the database during the time zone data upgrade:

°* utltz countstats.sql

This script shows the optimizer statistics of num rows of all the tables having TIMESTAMP
WITH TIME ZONE (TSTZ) data.

" Note:

Run the utltz countstats.sgl script only when the database optimizer
statistics are up to date, else run the utltz countstar.sql script. If you run the
utltz countstats.sql script, then you need not run the utltz countstar.sql
script.

° utltz countstar.sql

This script shows the result of the count (*) operation for all the tables having TIMESTAMP
WITH TIME ZONE (TSTZ) data.

4-23

Chapter 4
Upgrading the Time Zone File and Timestamp with Time Zone Data

< Note:

The utltz_countstar.sql script may take a considerable amount of
time to complete its execution.

The DBMS_SCHEDULER table generally contains a large amount of time zone data. In
case the data in this table is not needed, then delete it using the following command
before you run the upgrade steps. Stop the main jobs before running this command as
it may not delete all the data from the DBMS SCHEDULER table, if some of the main jobs
in a chain of jobs are still running.

exec dbms_scheduler.purge log;

The other tables that may contain a large amount of time zone data are the

SYS.WRI$ OPTSTAT HISTGRM HISTORY and SYS.WRI$ OPTSTAT HISTHEAD HISTORY
tables. In case you do not need this data, then you may delete it using the following
commands:

-- check the number of rows in the tables
select count (*) from SYS.WRI$_OPTSTAT_HISTGRM_HISTORY;
select count (*) from SYS.WRI$_OPTSTAT_HISTHEAD_HISTORY;

-- check the data retention period of the stats

-- the default value is 31

select systimestamp - dbms stats.get stats history availability from
dual;

-- disable stats retention
exec dbms stats.alter stats history retention(0);

-- remove all the stats
exec DBMS STATS.PURGE STATS (systimestamp);

-- check the result of the purge operation

select count(*) from SYS.WRI$S OPTSTAT HISTGRM HISTORY;
select count(*) from SYS.WRI$S OPTSTAT HISTHEAD HISTORY;

You may set the data retention period back to its original value using the following
command once the time zone data upgrade is completed:

exec dbms_stats.alter stats history retention(31);

4.7.1.2 Upgrade Window

During the upgrade window, you can run the following scripts present in
the SORACLE HOME/rdbms/admin directory to upgrade the time zone data in the
database:

ORACLE 4-24

Chapter 4
Upgrading the Time Zone File and Timestamp with Time Zone Data

1. Runthe utltz upg check.sql script from the SORACLE HOME directory:

spool utltz upg check.log
Qutltz upg check.sql
spool off

The following information is displayed on the screen after successful execution of the
script:

INFO: A newer RDBMS DST version than the one currently used is found.
INFO: Note that NO DST update was yet done.

INFO: Now run utltz upg apply.sgl to do the actual RDBMS DST update.
INFO: Note that the utltz upg apply.sql script will

INFO: restart the database 2 times WITHOUT any confirmation or prompt.

The script also writes the following information in the alert.log file:

utltz upg check sucessfully found newer RDBMS DSTv new time zone version and
took number of minutes minutes to run.

If the utltz upg check.sql script displays the following error, check the previous
message displayed on the screen and proceed accordingly.

ORA-20xxx: Stopping script - see previous message...

2. Runtheutltz upg apply.sql script from the $ORACLE HOME directory after the
utltz upg check.sql scriptis executed successfully:

spool utltz upg apply.log
@utltz upg apply.sql
spool off

¢ Note:
The following are the prerequisites for running the utltz upg apply.sql script:

e In an RAC environment, the RAC database must be started as a single
database instance.

¢ |n a multitenant environment, all the PDBs must be shut down before
running the utltz upg apply.sql script on the CDB.

* No application should query or insert time zone data in the database during
the time zone upgrade process.

 Theutltz upg apply.sql script automatically restarts the database
multiple times during its execution.

* Theutltz upg apply.sql script generally takes less time to execute than
the utltz upg check.sql script.

ORACLE 4-25

Chapter 4
Upgrading the Time Zone File and Timestamp with Time Zone Data

The following information is displayed on the screen after the successful execution
of the utltz upg apply.sql script:

INFO: The RDBMS DST update is successfully finished.
INFO: Make sure to exit this sglplus session.
INFO: Do not use it for timezone related selects.

The Tz VERSION column in the Registry$database table now gets updated with
the new time zone version.

If the script displays the following error message, then check the previous
message displayed on the screen and proceed accordingly.

ORA-20xxx: Stopping script - see previous message...

< Note:

If you want to see what is happening when the scripts utltz upg check.sqgl
and utltz upg apply.sql are being executed, run the following commands:

set PAGES 1000

-- query the VSSESSION LONGOPS view
select TARGET, TO_CHAR(START_TIME,'HH24:MI:SS - DD-MM-YY'),
TIME REMAINING, SOFAR, TOTALWORK, SID, SERIAL#, OPNAME
from VSSESSION LONGOPS
where sid in
(select SID from V$SSESSION where CLIENT INFO = 'upg tzv')
and
SOFAR < TOTALWORK
order by START TIME;

-- query the VSSESSION and VSSQLAREA views
select S.SID, S.SERIAL#, S.SQL ID, S.PREV SQL ID,

S.EVENT#, S.EVENT, S.P1TEXT, S.P1, S.P2TEXT,

S.P2, S.P3TEXT, S.P3, S.TIME REMAINING MICRO,

S.SEQ#, S.BLOCKING SESSION, BS.PROGRAM "Blocking
Program",

Q01.SQL TEXT "Current SQL", Q2.SQL TEXT "Previous SQL"
from VSSESSION S, VS$SQLAREA Q1, VSSQLAREA Q2, VS$SESSION BS
where S.SQL ID = Q1.SQL ID(+) and

S.PREV_SQL ID = Q2.SQL ID(+) and
S.BLOCKING SESSION = BS.SID(+) and
S.CLIENT INFO = 'upg tzv';

4.7.2 Upgrading the Time Zone Data Using the DBMS_DST Package

This section contains the following topics related to the time zone data upgrade using
the DBMS DST package.

* Prepare Window

ORACLE 4-26

Chapter 4
Upgrading the Time Zone File and Timestamp with Time Zone Data

Upgrade Window
Upgrade Example
Upgrade Error Handling

¢ See Also:

"Upgrading the Time Zone Data Using the utltz_* Scripts"

4.7.2.1 Prepare Window

During the prepare window, you can get the information about the data that will be affected
during the time zone upgrade process using the following steps:

ORACLE

1.

Install the desired version of time zone files to which you will be later migrating

into SORACLE_HOME/oracore/zoneinfo. If the desired version is version number, then you
must add the file timezlrg version number.dat. You can add the file

timezone version number.dat at your discretion later. These files can be found on My
Oracle Support. The desired version should be the latest version available, unless the
latest version contains relevant DST rule changes that were rolled back by the
appropriate government after the version had been released.

You can optionally create the following tables:

e an error table that contains the errors generated during the upgrade process by using
the DBMS DST.CREATE ERROR TABLE procedure. If you do not explicitly create this
table, then the default table used is sys.dst$error table.

e atable that contains the affected timestamp with time zone information by using the
DBMS DST.CREATE AFFECTED TABLE procedure. If you do not explicitly create this
table, then the default table used is sys.dst$affected tables.

e atrigger table that stores the disabled TSTZ table triggers information by using the
DBMS DST.CREATE TRIGGER TABLE procedure. If you do not explicitly create this table,
then the default table used is sys.dst$trigger table. Note that during the upgrade
window, Oracle Database first disables the triggers on a TSTZ table and then
performs the upgrade of its affected TSTZ data. Oracle Database saves the
information about those triggers in the sys.dst$trigger table table. After
completing the upgrade of the affected TSTZ data in the table, the disabled triggers
are enabled by reading their information from the sys.dst$trigger table table and
then their information is removed from the sys.dst$trigger table table. If any fatal
error occurs, such as an unexpected instance shutdown during the upgrade window,
you should check the sys.dsts$trigger table table to see if any trigger has not been
restored to its previous active state before the upgrade.

Execute the procedure DBMS DST.BEGIN PREPARE (new version), Where new versionis
the time zone file version you chose in Step 1.

Collect information about affected data by executing the procedure

DBMS DST.FIND AFFECTED TABLES, optionally passing the names of custom tables created
in Step 2 as parameters. Verify the affected columns by querying

sys.dst$affected tables or the corresponding custom table. Also, it is particularly
important to check sys.dst$affected tables.error count or the corresponding

error count column in the custom table for possible errors. If the error count is greater

4-27

Chapter 4
Upgrading the Time Zone File and Timestamp with Time Zone Data

than 0, you can check what kind of errors you might expect during the upgrade by
checking sys.dst$error table or the corresponding custom error table. See
"Upgrade Error Handling".

End the prepare window by executing the procedure DBMS DST.END PREPARE.

" Note:
e Only one DBA should run the prepare window at one time. Also, make

sure to correct all errors before running the upgrade.

e You can find the matrix of available patches for updating your time zone
files by going to Oracle Support and reading Document ID 412160.1.

See Also:

Oracle Database PL/SQL Packages and Types Reference for more
information about DBMS DST package

4.7.2.2 Upgrade Window

During the upgrade window, you can upgrade the time zone data using the following
steps:

ORACLE

1.

If you have not already done so, download the desired version of

timezlrg version number.dat and install it in $ORACLE HOME/oracore/zoneinfo.
In addition, you can optionally download timezone version number.dat from My
Oracle Support and put it in the same location.

Shut down the database. In Oracle RAC, you must shut down all instances.

Start up the database in the UPGRADE mode. Note that, in Oracle RAC, only one
instance should be started. See Oracle Database Upgrade Guide for more
information about the UPGRADE mode.

Execute the procedure DBMS DST.BEGIN UPGRADE (new version). Optionally, you
can have two other parameters that you can specify to TRUE, if you do not want to
ignore semantic errors during the upgrade of dictionary tables that contain
timestamp with time zone data. If you specify TRUE for either or both of these
parameters, the errors are populated into sys.dstSerror table. In this case, you
might want to truncate the error table before you execute the BEGIN UPGRADE
procedure. See Oracle Database PL/SQL Packages and Types Reference for
more information.

If the BEGIN UPGRADE procedure fails, the error "ORA-56927: Starting an upgrade
window failed"is displayed.

After BEGIN UPGRADE procedure finishes executing with errors, check
sys.dst$error_ table to determine if the dictionary conversion was successful. If
successful, there will not be any rows in the table. If there are errors, correct those
errors manually and rerun the BEGIN UPGRADE procedure. See "Upgrade Error
Handling".

4-28

Chapter 4
Upgrading the Time Zone File and Timestamp with Time Zone Data

6. Restart the database in normal mode.

7. Truncate the error and trigger tables (by default, sys.dst$error table and
sys.dst$trigger table).

8. Upgrade the TSTZ data in all tables by executing the procedure
DBMS DST.UPGRADE DATABASE.

9. Verify that all tables have been upgraded by querying the DBA TSTZ TABLES view, as
shown in "Upgrade Example". Then check dst$error table to see if there are any
errors. If there are errors, correct the errors and rerun the DBMS DST.UPGRADE TABLE
procedure for the relevant tables. Or, if you do not think those errors are important, then
rerun the DBMS DST.UPGRADE TABLE procedure with the parameters set to ignore errors.

10. End the upgrade window by executing the procedure DBMS DST.END UPGRADE.

" Note:

Tables containing timestamp with time zone columns need to be in a state where
they can be updated. So, as an example, the columns cannot have validated and
disabled check constraints as this prevents updating.

Oracle recommends that you use the parallel option if a table size is greater than 2
Gigabytes. Oracle also recommends that you allow Oracle to handle any semantic
errors that may arise.

Note that, when you execute the CREATE statements for error, trigger, or affected
tables, you must pass the table name only, not the schema name. This is because
the tables are created in the schema from which the CREATE statements are
executed.

See Also:

Oracle Database PL/SQL Packages and Types Reference for more information
about DBMS DST package

4.7.2.3 Upgrade Example

ORACLE

This example illustrates updating DST behavior to Oracle Database 119, release 2 for which
the default time zone version is 14. First, assume that your current database is using time
zone version 3, and also assume you have an existing table t, which contains timestamp with
time zone data.

Connect to the database as the user scott and execute the following statements:

DROP TABLE t;
CREATE TABLE t (c NUMBER, mark VARCHAR(25), ts TIMESTAMP WITH TIME ZONE);

INSERT INTO t VALUES (1, 'not affected',
to timestamp tz('22-sep-2006 13:00:00 america/los_angeles',
'dd-mon-yyyy hh24:mi:ss tzr tzd'));
INSERT INTO t VALUES (4, 'affected err exist',
to timestamp tz('ll-mar-2007 00:30:00 america/st_johns',

4-29

ORACLE

Chapter 4
Upgrading the Time Zone File and Timestamp with Time Zone Data

'dd-mon-yyyy hh24:mi:ss tzr tzd'));
INSERT INTO t VALUES (6, 'affected no err',
to timestamp tz('ll-mar-2007 01:30:00 america/st johns',
'dd-mon-yyyy hh24:mi:ss tzr tzd'));
INSERT INTO t VALUES (14, 'affected err dup',
to timestamp tz('21-sep-2006 23:30:00 egypt',
'dd-mon-yyyy hh24:mi:ss tzr tzd'));
COMMIT;

Then, optionally, you can start a prepare window to check the affected data and
potential semantic errors where there is an overlap or non-existing time. To do this,
you should start a window for preparation to migrate to time zone version 14. It is
assumed that you have the necessary privileges. These privileges are controlled with
the DBMS DST package.

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference for more
information about the DBMS DST package

As an example, first, prepare the window.

connect / as sysdba
set serveroutput on
EXEC DBMS DST.BEGIN PREPARE (14);

A prepare window has been successfully started.

PL/SQL procedure successfully completed.

Note that the argument 14 causes the time zone version 14 to be used in this
statement. After this window is successfully started, you can check the status of the
DST in DATABASE PROPERTIES as shown in the following example:

SELECT property name, SUBSTR(property value, 1, 30) value
FROM database properties

WHERE property name LIKE 'DST %'

ORDER BY property name;

You will see the output similar to the following:

PROPERTY NAME VALUE
DST PRIMARY TT VERSION 3

DST SECONDARY TT VERSION 14

DST UPGRADE STATE PREPARE

Next, you can execute DBMS DST.FIND AFFECTED TABLES to find all the tables in the
database that are affected if you upgrade from version 3 to version 14. This table
contains the table owner, table name, column name, row count, and error count. Here,
you have the choice of using the defaults for error tables (sys.dstS$error table)and
affected tables (sys.dst$affected table) or you can create your own. In this
example, we create our own tables by using DBMS DST.CREATE_ERROR TABLE and

4-30

ORACLE

Chapter 4
Upgrading the Time Zone File and Timestamp with Time Zone Data

DBMS DST.CREATE AFFECTED TABLE and then pass to FIND AFFECTED TABLES as shown below.

Connect to the database as the user scott and execute the following statements:

EXEC DBMS_DST.CREATE AFFECTED TABLE('my affected tables');
EXEC DBMS_DST.CREATE ERROR TABLE ('my error table');

Itis a good idea to make sure that there are no rows in these tables. You can do this by
truncating the tables:

TRUNCATE TABLE my affected tables;
TRUNCATE TABLE my error table;

Then, you can execute FIND AFFECTED TABLES to see which tables are impacted during the
upgrade:

connect / as sysdba

BEGIN
DBMS DST.FIND AFFECTED TABLES (affected tables => 'scott.my affected tables',
log errors => TRUE,
log errors table => 'scott.my error table');
END;
/

Then, check the affected tables:

SELECT * FROM scott.my affected tables;

TABLE OWNER TABLE NAME COLUMN NAM ROW_COUNT ERROR COUNT

Then, check the error table:

SELECT * FROM scott.my error table;

TABLE _OWNER TABLE NAME COLUMN NAME ROWID ERROR NUMBER
SCOTT T TS AAAPW3AABAAANZOAAB 1878
SCOTT T TS AAAPW3AABAAANZOAAE 1883

These errors can be corrected as described in "Upgrade Error Handling". Then, end the
prepare window, as in the following statement:

EXEC DBMS DST.END PREPARE;
A prepare window has been successfully ended.

PL/SQL procedure successfully completed.

After this, you can check the DST status in DATABASE PROPERTIES:

SELECT property name, SUBSTR(property value, 1, 30) value
FROM database properties

WHERE property name LIKE 'DST %'

ORDER BY property name;

4-31

ORACLE

Chapter 4
Upgrading the Time Zone File and Timestamp with Time Zone Data

PROPERTY NAME VALUE
DST PRIMARY TT VERSION 3
DST_SECONDARY TT VERSION 0

DST UPGRADE_STATE NONE

Next, you can use the upgrade window to upgrade the affected data. To do this, first,
start an upgrade window. Note that the database must be opened in UPGRADE mode
before you can execute DBMS DST.BEGIN UPGRADE. In Oracle RAC, only one instance
can be started. BEGIN UPGRADE upgrades all dictionary tables in one transaction, so the
invocation will either succeed or fail as one whole. During the procedure's execution,
all user tables with TSTZ data are marked as an upgrade in progress. See Oracle
Database Upgrade Guide for more information.

Also, only SYSDBA can start an upgrade window. If you do not open the database in
UPGRADE mode and invoke BEGIN UPGRADE, you will see the following error:

EXEC DBMS DST.BEGIN UPGRADE (14);
BEGIN DBMS DST.BEGIN UPGRADE (14); END;

*

ERROR at line 1:

ORA-56926: database must be in UPGRADE mode in order to start an upgrade window
ORA-06512: at "SYS.DBMS SYS ERROR", line 79

ORA-06512: at "SYS.DBMS DST", line 1021

ORA-06512: at line 1

So, BEGIN UPGRADE upgrades system tables that contain TSTZ data and marks user
tables (containing TSTZ data) with the UPGRADE IN PROGRESS property. This can be
checked in DBA TSTZ TABLES, and is illustrated later in this example.

There are two parameters in BEGIN UPGRADE that are for handling semantic errors:
error on overlap time (error number ORA-1883) and error on nonexisting time
(error number ORA-1878). If the parameters use the default setting of FALSE, Oracle
converts the data using a default conversion and does not signal an error. See
"Upgrade Error Handling" for more information regarding what they mean, and how to
handle errors.

The following call can automatically correct semantic errors based on some default

values when you upgrade the dictionary tables. If you do not ignore semantic errors,
and you do have such errors in the dictionary tables, BEGIN UPGRADE will fail. These

semantic errors are populated into sys.dst$error table.

EXEC DBMS DST.BEGIN UPGRADE (14);
An upgrade window has been successfully started.

PL/SQL procedure successfully completed.

After this, you can check the DST status in DATABASE PROPERTIES, as in the following:

SELECT property name, SUBSTR(property value, 1, 30) value
FROM database properties

WHERE property name LIKE 'DST %'

ORDER BY property name;

PROPERTY NAME VALUE

4-32

ORACLE

Chapter 4
Upgrading the Time Zone File and Timestamp with Time Zone Data

DST PRIMARY TT VERSION 14
DST_SECONDARY TT VERSION 3
DST UPGRADE_STATE UPGRADE

Then, check which user tables are marked with UPGRADE IN PROGRESS:

SELECT owner, table name, upgrade in progress FROM dba tstz tables;

OWNER TABLE NAME UPGRADE_IN PROGRESS
SYS WRIS$ OPTSTAT AUX HISTORY NO
SYS WRI$ OPTSTAT OPR NO
SYS OPTSTAT HIST CONTROL$ NO
SYS SCHEDULER$ JOB NO
SYS KET$ AUTOTASK STATUS NO
SYS AQ$ ALERT QT S NO
SYS AQ$_KUPCSDATAPUMP QUETAB S NO
DBSNMP MGMT DB FEATURE_LOG NO
WMSYS ~ WMSVERSIONED TABLES NO
SYS WRI$ OPTSTAT IND HISTORY NO
SYS OPTSTAT USER_PREFS$ NO
SYS FGR$_FILE GROUP FILES NO
SYS SCHEDULER$ WINDOW NO
SYS WRRS REPLAY DIVERGENCE NO
SCOTT T YES
IX AQ$_ORDERS_QUEUETABLE_S YES

In this output, dictionary tables (in the sYS schema) have already been upgraded by
BEGIN UPGRADE. User tables, such as SCOTT.T, have not been and are in progress.

Now you can perform an upgrade of user tables using DBMS DST.UPGRADE DATABASE. All
tables must be upgraded, otherwise, you will not be able to end the upgrade window using
the END_UPGRADE procedure. Before this step, you must restart the database in normal mode.
An example of the syntax is as follows:

VAR numfail number;

BEGIN
DBMS_DST . UPGRADE_DATABASE (:numfail,

parallel => TRUE,
log errors => TRUE,
log errors table => 'SYS.DSTSERROR_ TABLE',
log triggers table => 'SYS.DSTSTRIGGER TABLE',
error_on overlap time => TRUE,
error_on nonexisting time => TRUE);

DBMS OUTPUT.PUT LINE ('Number of tables failed to upgrade:'|| :numfail);

END;

/

If there are any errors, you should correct them and use UPGRADE TABLE on the individual
tables. In that case, you may need to handle tables related to materialized views, such as
materialized view base tables, materialized view log tables, and materialized view container
tables. There are a couple of considerations to keep in mind when upgrading these tables.
First, the base table and its materialized view log table have to be upgraded atomically. Next,
the materialized view container table has to be upgraded after all its base tables and the

4-33

ORACLE

Chapter 4

Upgrading the Time Zone File and Timestamp with Time Zone Data

materialized view log tables have been upgraded. In general, Oracle recommends that
you handle semantic errors by letting Oracle Database take the default action.

For the sake of this example, let us assume there were some errors in SCOTT.T after
you ran UPGRADE DATABASE. In that case, you can check these errors by using the

following query:

SELECT * FROM sys.dstSerror table;

TABLE OWNER

TABLE NAME COLUMN NAME

ROWID ERROR NUMBER
AAAO2XAABAAANrgAAD 1878
AAAO2XAABAAANrgAAE 1878

In the output, you can see the errors having number 1878. This error means that an

error has occurred for a non-existing time.

To continue with this example, assume that SCOTT.T has a materialized view log
scott.mlog$ t, and that there is a single materialized view on SCOTT.T. Then, assume

that this 1878 error has been corrected.

Finally, you can upgrade the table, materialized view log and materialized view as

follows:

VAR numfail number;

BEGIN
DBMS DST.UPGRADE TABLE (:numfail,
table list =>
parallel =>
continue after_errors =>
log errors =>
log errors table =>
error_on_overlap time =>
error on nonexisting time =>
log triggers table =>
atomic_upgrade =>

DBMS OUTPUT.PUT LINE ('Number of tables
END;

/

VAR numfail number;

BEGIN

DBMS DST.UPGRADE TABLE (:numfail,

table list =>
parallel =>
continue after errors =>
log errors =>
log errors table =>
error_on_overlap time =>
error on nonexisting time =>
log triggers table =>
atomic_upgrade =>

DBMS OUTPUT.PUT LINE('Number of tables failed to upgrade:'|

END;
/

'SCOTT.t, SCOTT.mlog$ T',
TRUE,

FALSE,

TRUE,
'SYS.DSTSERROR_TABLE',
FALSE,

TRUE,

'SYS.DSTSTRIGGER TABLE',
TRUE) ;

failed to upgrade:'|| :numfail);

'SCOTT.MYMV T',

TRUE,

FALSE,

TRUE,
'SYS.DSTSERROR_TABLE',
FALSE,

TRUE,

'SYS.DSTSTRIGGER TABLE',
TRUE) ;

:numfail) ;

The atomic upgrade parameter enables you to combine the upgrade of the table with

its materialized view log.

4-34

Chapter 4
Upgrading the Time Zone File and Timestamp with Time Zone Data

After all the tables are upgraded, you can invoke END UPGRADE to end an upgrade window as
shown below:

VAR numfail number;
BEGIN
DBMS DST.END UPGRADE (:numfail);
DBMS OUTPUT.PUT LINE ('Number of tables failed to upgrade:'|| :numfail);
END;
/

The upgrade window ends if all the affected tables are upgraded successfully, else the output
shows how many tables did not upgrade successfully.

4.7.2.4 Upgrade Error Handling

ORACLE

There are three major semantic errors that can occur during an upgrade. The first is when an
existing time becomes a non-existing time, the second is when a time becomes duplicated,
and the third is when a duplicate time becomes a non-duplicate time.

As an example of the first case, consider the change from Pacific Standard Time (PST) to
Pacific Daylight Saving Time (PDT) in 2007. This change takes place on Mar-11-2007 at 2AM
according to version 3 (and any later version up to at least 32) when the clock moves forward
one hour to 3AM and produces a gap between 2AM and 3AM. In version 2, this time change
occurs on Apr-01-2007. If you upgrade the time zone file from version 2 to version 3, any time
in the interval between 2AM and 3AM on Mar-11-2007 is not valid, and raises an error
(ORA-1878) if ERROR_ON NONEXISTING TIME is set to TRUE. Therefore, there is a non-existing
time problem. When ERROR_ON_NONEXISTING TIME is set to FALSE, which is the default value
for this parameter, the error is not reported and Oracle preserves UTC time in this case. For
example, "Mar-11-2007 02:30 PST" in version 2 becomes "Mar-11-2007 03:30 PDT" in
version 3 as they both are translated to the same UTC timestamp.

An example of the second case occurs when changing from PDT to PST. For example, in
version 3 for 2007, the change occurs on Nov-04-2007, when the time falls back from 2AM to
1AM. This means that times in the interval <1AM, 2AM> on Nov-04-2007 can appear twice,
once with PST and once with PDT. In version 2, this transition occurs on Oct-28-2007 at
2AM. Thus, any timestamp within <1AM, 2AM> on Nov-04-2007, which is uniquely identified
in version 2, results in an error (ORA-1883) in version 3, if ERROR ON OVERLAP TIME is set to
TRUE. If you leave this parameter on its default setting of FALSE, then the UTC timestamp
value is preserved and no error is raised. In this situation, if you change the version from 2 to
3, timestamp "Nov-04-2007 01:30 PST" in version 2 becomes "Nov-04-2007 01:30 PST" in
version 3.

The third case happens when a duplicate time becomes a non-duplicate time. Consider the
transition from PDT to PST in 2007, for example, where <1AM, 2AM> on Oct-28-2007 in
version 2 is the overlapped interval. Then both "Oct-28-2007 01:30 PDT" and "Oct-28-2007
01:30 PST" are valid timestamps in version 2. If ERROR _ON OVERLAP TIME is set to TRUE, an
ORA-1883 error is raised during an upgrade from version 2 to version 3. If

ERROR_ON OVERLAP TIME is set to FALSE (the default value of this parameter), however, the
LOCAL time is preserved and no error is reported. In this case, both "Oct-28-2007 01:30
PDT" and "Oct-28-2007 01:30 PST" in version 2 convert to the same "Oct-28-2007 01:30
PDT" in version 3. Note that setting ERROR_ON_OVERLAP TIME to FALSE can potentially cause
some time sequences to be reversed. For example, a job (Job A) scheduled at "Oct-28-2007
01:45 PDT" in version 2 is supposed to be executed before a job (Job B) scheduled at
"Oct-28-2007 01:30 PST". After the upgrade to version 3, Job A is scheduled at "Oct-28-2007
01:45 PDT" and Job B remains at "Oct-28-2007 01:30 PDT", resulting in Job B being

4-35

Chapter 4
Clients and Servers Operating with Different Versions of Time Zone Files

executed before Job A. Even though unchained scheduled jobs are not guaranteed to
be executed in a certain order, this issue should be kept in mind when setting up
scheduled jobs.

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference for more
information regarding how to use these parameters

4.8 Clients and Servers Operating with Different Versions of
Time Zone Files

In Oracle Database 11g, Release 11.2 and later, you can use different versions of time
zone file on the client and the server. This mode of operation was not supported in the
earlier Oracle Database releases. Both client and server must be Oracle Database
119, Release 11.2 or later to operate in such a mixed mode.

¢ See Also:

Oracle Call Interface Programmer's Guide for the ramifications of working in
the mixed mode

OCl, JDBC, Pro*C, and SQL*Plus clients can now continue to communicate with the
database server without having to update client-side time zone files. For other
products, if not explicitly stated in the product-specific documentation, it should be
assumed that such clients cannot operate with a database server with a different time
zone file than the client. Otherwise, computations on the TIMESTAMP WITH TIMEZONE
values that are region ID based may give inconsistent results on the client. This is due
to different daylight saving time (DST) rules in effect for the time zone regions affected
between the different time zone file versions at the client and on the server.

Note if an application connects to different databases directly or via database links, it is
recommended that all databases be on the same time zone file version. Otherwise,
computations on the TIMESTAMP WITH TIMEZONE values on these different databases
may give inconsistent results. This is due to different DST rules in effect for the time
zone regions affected between the different time zone file versions across the different
database servers.

4.9 Setting the Database Time Zone

ORACLE

Set the database time zone when the database is created by using the SET TIME ZONE
clause of the CREATE DATABASE statement. If you do not set the database time zone,
then it defaults to the time zone of the server's operating system.

The time zone may be set to a named region or an absolute offset from UTC. To set
the time zone to a named region, use a statement similar to the following example:

4-36

Chapter 4
Setting the Session Time Zone

CREATE DATABASE db0l
SET TIME ZONE='Europe/London';

To set the time zone to an offset from UTC, use a statement similar to the following example:

CREATE DATABASE db01
SET TIME ZONE='-05:00";

The range of valid offsets is -12:00 to +14:00.

" Note:

The database time zone is relevant only for TIMESTAMP WITH LOCAL TIME ZONE
columns. Oracle recommends that you set the database time zone to UTC (0:00) to
avoid data conversion and improve performance when data is transferred among
databases. This is especially important for distributed databases, replication, and
exporting and importing.

You can change the database time zone by using the SET TIME ZONE clause of the ALTER
DATABASE statement. For example:

ALTER DATABASE SET TIME ZONE='Europe/London';
ALTER DATABASE SET TIME ZONE='-05:00';

The ALTER DATABASE SET TIME ZONE statement returns an error if the database contains a
table with a TIMESTAMP WITH LOCAL TIME ZONE column and the column contains data.

The change does not take effect until the database has been shut down and restarted.

You can find out the database time zone by entering the following query:

SELECT dbtimezone FROM DUAL;

4.10 Setting the Session Time Zone

ORACLE

You can set the default session time zone with the ORA_SDTZ environment variable. When
users retrieve TIMESTAMP WITH LOCAL TIME ZONE data, Oracle Database returns it in the
users' session time zone. The session time zone also takes effect when a TIMESTAMP value is
converted to the TIMESTAMP WITH TIME ZONE Oor TIMESTAMP WITH LOCAL TIME ZONE data

type.

Note:

Setting the session time zone does not affect the value returned by the SYSDATE and
SYSTIMESTAMP SQL function. SYSDATE returns the date and time of the operating
system on which the database resides, taking into account the time zone of the
database server's operating system that was in effect when the database was
started.

4-37

Chapter 4
Converting Time Zones With the AT TIME ZONE Clause

The ORA_SDTZ environment variable can be set to the following values:

* Operating system local time zone ('0S_TZ')

» Database time zone ('DB_Tz')

* Absolute offset from UTC (for example, '-05:00")

* Time zone region name (for example, 'Europe/London')

To set ORA_SDTZ, use statements similar to one of the following in a UNIX environment
(C shell):

setenv ORA SDTZ 'OS TZ'
setenv ORA SDTZ 'DB TZ'
setenv ORA SDTZ 'Europe/London'
setenv ORA SDTZ '-05:00'

o° o oe

oe

When setting the ORA_SDTZ variable in a Microsoft Windows environment -- in the
Registry, among system environment variables, or in a command prompt window -- do
not enclose the time zone value in quotes.

You can change the time zone for a specific SQL session with the SET TIME ZONE
clause of the ALTER SESSION statement.

TIME ZONE can be set to the following values:

» Default local time zone when the session was started (1ocal)
o Database time zone (dbtimezone)

» Absolute offset from UTC (for example, '+10:00")

» Time zone region name (for example, 'Asia/Hong Kong')
Use ALTER SESSION statements similar to the following:

ALTER SESSION SET TIME ZONE=local;

ALTER SESSION SET TIME ZONE=dbtimezone;
ALTER SESSION SET TIME ZONE='Asia/Hong Kong';
ALTER SESSION SET TIME ZONE='+10:00';

You can find out the current session time zone by entering the following query:

SELECT sessiontimezone FROM DUAL;

4.11 Converting Time Zones With the AT TIME ZONE

Clause

ORACLE

A datetime SQL expression can be one of the following:

* A datetime column
* A compound expression that yields a datetime value

A datetime expression can include an AT LOCAL clause or an AT TIME ZONE clause. If
you include an AT LOCAL clause, then the result is returned in the current session time
zone. If you include the AT TIME ZONE clause, then use one of the following settings
with the clause:

4-38

Chapter 4
Support for Daylight Saving Time

* Time zone offset: The string ' (+|-) HH:MM' specifies a time zone as an offset from UTC.
For example, '-07:00"' specifies the time zone that is 7 hours behind UTC. For example,
if the UTC time is 11:00 a.m., then the time in the '-07:00"' time zone is 4:00 a.m.

e DBTIMEZONE: Oracle Database uses the database time zone established (explicitly or by
default) during database creation.

e SESSIONTIMEZONE: Oracle Database uses the session time zone established by default or
in the most recent ALTER SESSION statement.

* Time zone region name: Oracle Database returns the value in the time zone indicated by
the time zone region name. For example, you can specify Asia/Hong Kong.

* An expression: If an expression returns a character string with a valid time zone format,
then Oracle Database returns the input in that time zone. Otherwise, Oracle Database
returns an error.

The following example converts the datetime value in the Anerica/New York time zone to the
datetime value in the America/Los_Angeles time zone.

¢ See Also:

Oracle Database SQL Language Reference

Example 4-5 Converting a Datetime Value to Another Time Zone

SELECT FROM_TZ(CAST(TO_DATE('1999—12—01 11:00:00",
'YYYY-MM-DD HH:MI:SS') AS TIMESTAMP), 'America/New_YorkW
AT TIME ZONE 'America/Los Angeles' "West Coast Time"
FROM DUAL;

West Coast Time

01-DEC-99 08.00.00.000000 AM AMERICA/LOS ANGELES

4.12 Support for Daylight Saving Time

ORACLE

Oracle Database automatically determines whether Daylight Saving Time is in effect for a
specified time zone and returns the corresponding local time. Normally, date/time values are
sufficient to allow Oracle Database to determine whether Daylight Saving Time is in effect for
a specified time zone. The periods when Daylight Saving Time begins or ends are boundary
cases. For example, in the Eastern region of the United States, the time changes from
01:59:59 a.m. to 3:00:00 a.m. when Daylight Saving Time goes into effect. The interval
between 02:00:00 and 02:59:59 a.m. does not exist. Values in that interval are invalid. When
Daylight Saving Time ends, the time changes from 02:00:00 a.m. to 01:00:01 a.m. The
interval between 01:00:01 and 02:00:00 a.m. is repeated. Values from that interval are
ambiguous because they occur twice.

To resolve these boundary cases, Oracle Database uses the TZR and TzD format elements.
TZR represents the time zone region in datetime input strings. Examples are 'Australia/
North', 'UTC', and 'Singapore'. TZD represents an abbreviated form of the time zone region
with Daylight Saving Time information. Examples are 'pST' for U. S. Pacific Standard Time
and 'pDT' for U. S. Pacific Daylight Time. To see a list of valid values for the TZR and TzZD
format elements, query the TzZNAME and TZABBREV columns of the V$TIMEZONE NAMES dynamic
performance view.

4-39

Chapter 4
Support for Daylight Saving Time

¢ See Also:

e Oracle Database SQL Language Reference for more information
regarding the session parameter ERROR ON OVERLAP TIME

e "Time Zone Region Names" for a list of valid time zones

4.12.1 Examples: The Effect of Daylight Saving Time on Datetime
Calculations

ORACLE

The TIMESTAMP data type does not accept time zone values and does not calculate
Daylight Saving Time.

The TIMESTAMP WITH TIME ZONE and TIMESTAMP WITH LOCAL TIME ZONE data types
have the following behavior:

* If atime zone region is associated with the datetime value, then the database
server knows the Daylight Saving Time rules for the region and uses the rules in
calculations.

» Daylight Saving Time is not calculated for regions that do not use Daylight Saving
Time.

The rest of this section contains examples that use datetime data types. The examples
use the global orders table. It contains the orderdatel column of TIMESTAMP data
type and the orderdate2 column of TIMESTAMP WITH TIME ZONE data type. The

global orders table is created as follows:

CREATE TABLE global orders (orderdatel TIMESTAMP(0),
orderdate?2 TIMESTAMP(0) WITH TIME ZONE);
INSERT INTO global orders VALUES ('28-0CT-00 11:24:54 pM',
'28-0CT-00 11:24:54 PM America/New York');

¢ Note:

If you have created a global orders table for the previous examples, then
drop the global orders table before you try Example 4-7 through
Example 4-8.

Example 4-6 Comparing Daylight Saving Time Calculations Using TIMESTAMP
WITH TIME ZONE and TIMESTAMP

SELECT orderdatel + INTERVAL '8' HOUR, orderdate2 + INTERVAL '8' HOUR
FROM global orders;

The following output results:

ORDERDATE1+INTERVAL'8'HOUR ORDERDATE2+INTERVAL'8'HOUR

29-0CT-00 07.24.54.000000 AM 29-0CT-00 06.24.54.000000 AM AMERICA/NEW YORK

4-40

ORACLE

Chapter 4
Support for Daylight Saving Time

This example shows the effect of adding 8 hours to the columns. The time period includes a
Daylight Saving Time boundary (a change from Daylight Saving Time to standard time). The
orderdatel column is of TIMESTAMP data type, which does not use Daylight Saving Time
information and thus does not adjust for the change that took place in the 8-hour interval. The
TIMESTAMP WITH TIME ZONE data type does adjust for the change, so the orderdate2 column
shows the time as one hour earlier than the time shown in the orderdatel column.

Example 4-7 Comparing Daylight Saving Time Calculations Using TIMESTAMP WITH
LOCAL TIME ZONE and TIMESTAMP

The TIMESTAMP WITH LOCAL TIME ZONE data type uses the value of TIME ZONE that is set for
the session environment. The following statements set the value of the TIME ZONE session
parameter and create a global orders table. The global orders table has one column of
TIMESTAMP data type and one column of TIMESTAMP WITH LOCAL TIME ZONE data type.

ALTER SESSION SET TIME_ZONE:'America/New_York';
CREATE TABLE global orders (orderdatel TIMESTAMP(0),
orderdate2 TIMESTAMP (0) WITH LOCAL TIME ZONE);
INSERT INTO global_orders VALUES ('28-0CT-00 11:24:54 pPM',
'28-0CT-00 11:24:54 PM');

Add 8 hours to both columns.

SELECT orderdatel + INTERVAL '8' HOUR, orderdate2 + INTERVAL '8' HOUR
FROM global orders;

Because a time zone region is associated with the datetime value for orderdate2, the Oracle
Database server uses the Daylight Saving Time rules for the region. Thus the output is the
same as in Example 4-6. There is a one-hour difference between the two calculations
because Daylight Saving Time is not calculated for the TIMESTAMP data type, and the
calculation crosses a Daylight Saving Time boundary.

Example 4-8 Daylight Saving Time Is Not Calculated for Regions That Do Not Use
Daylight Saving Time

Set the time zone region to UTC. UTC does not use Daylight Saving Time.

ALTER SESSION SET TIME ZONE='UTC';

Truncate the global orders table.

TRUNCATE TABLE global orders;

Insert values into the global orders table.

INSERT INTO global orders VALUES ('28-0CT-00 11:24:54 pM',
TIMESTAMP '2000-10-28 23:24:54 ');

Add 8 hours to the columns.

SELECT orderdatel + INTERVAL '8' HOUR, orderdate2 + INTERVAL '8' HOUR
FROM global orders;

The following output results.

ORDERDATE1+INTERVAL'S8'HOUR ORDERDATEZ2+INTERVAL'8'HOUR

29-0CT-00 07.24.54.000000000 AM 29-0CT-00 07.24.54.000000000 AM UTC

4-41

Chapter 4
Support for Daylight Saving Time

The times are the same because Daylight Saving Time is not calculated for the UTC
time zone region.

ORACLE 4-42

Linguistic Sorting and Matching

ORACLE

This chapter explains the mechanism of linguistic sorting and searching of character data or
strings in Oracle Database. The process of determining the mutual ordering of strings
(character values) is called a collation. For any two strings, the collation defines whether the
strings are equal or whether one precedes the other in the sorting order. In the Oracle
documentation, the term sort is often used in place of collation.

Determining equality is especially important when a set of strings, such as a table column, is
searched for values that equal a specified search term or that match a search pattern. SQL
operators and functions used in searching are =, LIKE, REGEXP_LIKE, INSTR, and

REGEXP INSTR. This chapter uses the term matching to mean determining the equality of
entire strings using the equality operator = or determining the equality of substrings of a string
when the string is matched against a pattern using LIKE, REGEXP LIKE Oor REGEXP_INSTR. Note
that Oracle Text provides advanced full-text searching capabilities for the Oracle Database.

The ordering of strings in a set is called sorting. For example, the ORDER BY clause uses
collation to determine the ordering of strings to sort the query results, while PL/SQL uses
collations to sort strings in associative arrays indexed by VARCHAR?2 values, and the functions
MIN, MAX, GREATEST, and LEAST use collations to find the smallest or largest character value.

There are many possible collations that can be applied to strings to determine their ordering.
Collations that take into consideration the standards and customs of spoken languages are
called linguistic collations. They order strings in the same way as dictionaries, phone
directories, and other text lists written in a given language. In contrast, binary collation orders
strings based on their binary representation (character encoding), treating each string as a
simple sequences of bytes.

¢ See Also:

e Oracle Text Application Developer's Guide

The following topics explain linguistic sorting and matching:

* Overview of Oracle Database Collation Capabilities

* Using Binary Collation

» Using Linguistic Collation

* Linguistic Collation Features

* Case-Insensitive and Accent-Insensitive Linguistic Collation
e Performing Linguistic Comparisons

* Using Linguistic Indexes

e Searching Linguistic Strings

* SQL Regular Expressions in a Multilingual Environment

5-1

Chapter 5
Overview of Oracle Database Collation Capabilities

e Column-Level Collation and Case Sensitivity

5.1 Overview of Oracle Database Collation Capabilities

5.2 Using

ORACLE

Different languages have different collations. In addition, different cultures or countries
that use the same alphabets may sort words differently. For example, in Danish, 4 is
after z, while Y and U are considered to be variants of the same letter.

Collation can be case-sensitive or case-insensitive. Case refers to the condition of
being uppercase or lowercase. For example, in a Latin alphabet, 2 is the uppercase
glyph for a, the lowercase glyph.

Collation can ignore or consider diacritics. A diacritic is a mark near or through a
character or combination of characters that indicates a different sound than the sound
of the character without the diacritic. For example, the cedilla (,) in facade is a
diacritic. It changes the sound of c.

Collation order can be phonetic or it can be based on the appearance of the character.
For example, collation can be based on the number of strokes in East Asian
ideographs. Another common collation issue is combining letters into a single
character. For example, in traditional Spanish, ch is a distinct character that comes
after ¢, which means that the correct order is: cerveza, colorado, cheremoya. This
means that the letter ¢ cannot be sorted until Oracle Database has checked whether
the next letter is an h.

Oracle Database provides the following types of collation:
* Binary

* Monolingual

e Multilingual

* Unicode Collation Algorithm (UCA)

While monolingual collation achieves a linguistically correct order for a single
language, multilingual collation and UCA collation are designed to handle many
languages at the same time. Furthermore, UCA collation conforms to the Unicode
Collation Algorithm (UCA) that is a Unicode standard and is fully compatible with the
international collation standard 1SO 14651. The UCA standard provides a complete
linguistic ordering for all characters in Unicode, hence all the languages around the
world. With wide deployment of Unicode application, UCA collation is best suited for
sorting multilingual data.

Binary Collation

One way to sort character data is based on the numeric values of the characters
defined by the character encoding scheme. This is called a binary collation. Binary
collation is the fastest type of sort. It produces reasonable results for the English
alphabet because the ASCII and EBCDIC standards define the letters Ato Z in
ascending numeric value.

5-2

5.3 Using

Chapter 5
Using Linguistic Collation

< Note:

In the ASCII standard, all uppercase letters appear before any lowercase letters. In
the EBCDIC standard, the opposite is true: all lowercase letters appear before any
uppercase letters.

When characters used in other languages are present, a binary collation usually does not
produce reasonable results. For example, an ascending ORDER BY query returns the character
strings ABC, ABZ, BCD, ABC, when A has a higher numeric value than B in the character
encoding scheme. A binary collation is not usually linguistically meaningful for Asian
languages that use ideographic characters.

Linguistic Collation

To produce a collation sequence that matches the alphabetic sequence of characters,
another sorting technique must be used that sorts characters independently of their numeric
values in the character encoding scheme. This technique is called a linguistic collation. A
linguistic collation operates by replacing characters with numeric values that reflect each
character's proper linguistic order.

This section includes the following topics:

* Monolingual Collation
e Multilingual Collation
* UCA Collation

5.3.1 Monolingual Collation

ORACLE

Oracle Database compares character strings in two steps for monolingual collation. The first
step compares the major value of the entire string from a table of major values. Usually,
letters with the same appearance have the same major value. The second step compares the
minor value from a table of minor values. The major and minor values are defined by Oracle
Database. Oracle Database defines letters with diacritic and case differences as having the
same major value but different minor values.

Each major table entry contains the Unicode code point and major value for a character.
The Unicode code point is a 16-bit binary value that represents a character.

The following table illustrates sample values for sorting a, 2, &, 4, and b.

Table 5-1 Sample Glyphs and Their Major and Minor Sort Values
]

Glyph Major Value Minor Value
a 15 5

A 15 10

a 15 15

A 15 20

b 20 5

5-3

Chapter 5
Using Linguistic Collation

< Note:

Monolingual collation is not available for non-Unicode multibyte database
character sets. If a monolingual collation is specified when the database
character set is non-Unicode multibyte, then the default sort order is the
binary sort order of the database character set. One exception is
UNICODE BINARY. This collation is available for all character sets.

¢ See Also:

"What is the Unicode Standard?"

5.3.2 Multilingual Collation

Oracle Database provides multilingual collation so that you can sort data in more than
one language in one sort. This is useful for regions or languages that have complex
sorting rules and for multilingual databases. Note that Oracle Database supports all of
the collations defined in the previous releases.

For Asian language data or multilingual data, Oracle Database provides a sorting
mechanism based on the ISO 14651 standard. For example, Chinese characters can
be ordered by the number of strokes, PinYin, or radicals.

In addition, multilingual collation can handle canonical equivalence and supplementary
characters. Canonical equivalence is a basic equivalence between characters or
sequences of characters. For example, ¢ is equivalent to the combination of c and , .
Supplementary characters are user-defined characters or predefined characters in
Unicode that require two code points within a specific code range. You can define up
to 1.1 million code points in one multilingual sort.

For example, Oracle Database supports a monolingual French sort (FRENCH), but you
can specify a multilingual French collation (FRENCH M). M represents the ISO 14651
standard for multilingual sorting. The sorting order is based on the GENERIC M sorting
order and can sort diacritical marks from right to left. Multilingual linguistic sort is
usually used if the tables contain multilingual data. If the tables contain only French,
then a monolingual French sort might have better performance because it uses less
memory. It uses less memory because fewer characters are defined in a monolingual
French sort than in a multilingual French sort. There is a trade-off between the scope
and the performance of a sort.

¢ See Also:

e "Canonical Equivalence"

e "Code Points and Supplementary Characters”

ORACLE 5-4

Chapter 5
Using Linguistic Collation

5.3.2.1 Multilingual Collation Levels

Oracle Database evaluates multilingual collation at three levels of precision:

e Primary Level Collation
e Secondary Level Collation

e Tertiary Level Collation

5.3.2.1.1 Primary Level Collation

A primary level collation distinguishes between base letters, such as the difference between
characters a and b. It is up to individual locales to define whether a is before b, b is before a,
or if they are equal. The binary representation of the characters is completely irrelevant. If a
character is an ignorable character, then it is assigned a primary level order (or weight) of
zero, which means it is ignored at the primary level. Characters that are ignorable on other
levels are given an order of zero at those levels.

For example, at the primary level, all variations of bat come before all variations of bet. The
variations of bat can appear in any order, and the variations of bet can appear in any order:

Bat
bat
BAT
BET
Bet
bet

¢ See Also:

"Ignorable Characters"

5.3.2.1.2 Secondary Level Collation

A secondary level collation distinguishes between base letters (the primary level collation)
before distinguishing between diacritics on a given base letter. For example, the character A
differs from the character A only because it has a diacritic. Thus, A and A are the same on the
primary level because they have the same base letter (2) but differ on the secondary level.

The following list has been sorted on the primary level (resume comes before resumes) and
on the secondary level (strings without diacritics come before strings with diacritics):

resume
résumé
Résumé
Resumes
resumes
résumés

ORACLE 5-5

Chapter 5
Using Linguistic Collation

5.3.2.1.3 Tertiary Level Collation

A tertiary level collation distinguishes between base letters (primary level collation),
diacritics (secondary level collation), and case (upper case and lower case). It can also
include special characters such as +, -, and *.

The following are examples of tertiary level collations:

* Characters a and & are equal on the primary and secondary levels but different on
the tertiary level because they have different cases.

» Characters a and 2 are equal on the primary level and different on the secondary
and tertiary levels.

e The primary and secondary level orders for the dash character - is 0. That is, it is
ignored on the primary and secondary levels. If a dash is compared with another
character whose primary level weight is honzero, for example, u, then no result for
the primary level is available because u is not compared with anything. In this
case, Oracle Database finds a difference between - and u only at the tertiary level.

The following list has been sorted on the primary level (resume comes before resumes)
and on the secondary level (strings without diacritics come before strings with
diacritics) and on the tertiary level (lower case comes before upper case):

resume
Resume
résumé
Résumé
resumes
Resumes
résumés
Résumés

5.3.3 UCA Collation

ORACLE

Unicode Collation Algorithm (UCA) is a Unicode standard that is fully compatible with
the international collation standard 1ISO 14651. UCA defines a Default Unicode
Collation Element Table (DUCET) that provides a reasonable default ordering for all
languages that are not tailored. To achieve the correct ordering for a particular
language, DUCET can be tailored to meet the linguistic requirements for that
language. There are tailorings of DUCET for various languages provided in the
Unicode Common Locale Data Repository.

Oracle Database 18c provides UCA collation that fully conforms to UCA 7.0. In
addition to the collation based on DUCET, it provides tailored collations for a number
of commonly used languages. For example, you can specify UCA collation

UCA0700 SCHINESE to sort multilingual data containing Simplified Chinese. The
collation will make Simplified Chinese data appear in the PinYin order.

For sorting multilingual data, Oracle recommends the latest supported version of UCA
collations.

This section describes the following topics:

* UCA Comparison Levels

¢ UCA Collation Parameters

5-6

Chapter 5
Using Linguistic Collation

¢ See Also:

The Unicode Consortium website for more information about Unicode Collation
Algorithm and related terminologies

5.3.3.1 UCA Comparison Levels

Similar to multilingual collation, UCA collations employ a multilevel comparison algorithm to
evaluate characters. This can go up to four levels of comparison:

* Primary Level
* Secondary Level
o Tertiary Level

* Quaternary Level

5.3.3.1.1 Primary Level

The primary level is used to distinguish between base letters, which is similar to the
comparison used in the primary level collation of the multilingual collation.

¢ See Also:

"Primary Level Collation" for examples of base letter differences

5.3.3.1.2 Secondary Level

The secondary level is used to distinguish between diacritics if base letters are the same,
which is similar to what is used in the secondary level collation of the multilingual collation to
distinguish between diacritics.

" See Also:

"Secondary Level Collation" for examples of diacritic differences

5.3.3.1.3 Tertiary Level

The tertiary level is used to distinguish between cases on a given base letter with the same
diacritic, which is similar to what is used in the tertiary level collation of the multilingual
collation to distinguish between cases. Moreover, UCA DUCET collation treats punctuations
with primary or quaternary significance based on how variable characters are weighted,
which is different from the tertiary level collation of the multilingual collation that treat
punctuations with tertiary level of significance.

ORACLE .

Chapter 5
Using Linguistic Collation

¢ See Also:

"Tertiary Level Collation" for examples of characters with case differences

5.3.3.1.4 Quaternary Level

The quaternary level is used to distinguish variable characters from other characters, if
variable characters are weighted as shifted. It is also used to distinguish Hiragana
from Katakana with the same base and case. An example is illustrated in the following
figure.

Figure 5-1 Hiragana and Katakana Collation
& =,7 (& and 7 are equal on the first three levels)

& <,7 (& is less than 7 on the quaternary level)

¢ See Also:

"UCA Collation Parameters"

5.3.3.2 UCA Collation Parameters

ORACLE

The following table illustrates the collation parameters and options that are supported
in UCA collations in this release.

Table 5-2 UCA Collation Parameters
]

Attribute Options Collation Modifier
strength primary _ATor Sl
secondary _CIor S2
tertiary S3
quaternary 34 (Only applicable

when the alternate
attribute is set to

shifted)
alternate non-ignorable _VN
shifted VS
blanked VB
backwards on _BY
off _BN
normalization on NY

5-8

Chapter 5
Linguistic Collation Features

Table 5-2 (Cont.) UCA Collation Parameters

Attribute Options Collation Modifier

caselevel off _EN

caseFirst upper _FU (Only valid for

off Danish)

_FN (Only valid for other
languages)

hiraganaQuaternary on _HY

(Deprecated in UCA 7.0) off _HN

numeric off _DN

match-style minimal MN

The parameter strength represents UCA comparison level.
The parameter alternate controls how variable characters are weighted.
The parameter backwards controls if diacritics are to be sorted backward.

The parameter hiraganaQuaternary is applicable to the UCA collations for the Japanese
language only. It has no effect on other collations. If it is set to “on” (_1Y), then the
corresponding Hiragana and Katakana characters have different quaternary weights.
Otherwise, they have the same weights. The hiraganaQuaternary parameter is deprecated
in UCA 7.0.

You can configure the preceding four UCA parameters using the options listed in Table 5-2.
The options for the other parameters listed in Table 5-2 are currently fixed based on tailored
languages and are not configurable.

¢ See Also:

e "UCA Comparison Levels"

e The Unicode Consortium website for a complete description of UCA collation
parameters and options

5.4 Linguistic Collation Features

ORACLE

This section contains information about different features that a linguistic collation can have:

* Base Letters

* Ignorable Characters

e Contracting Characters

* Expanding Characters

* Context-Sensitive Characters

» Canonical Equivalence

5-9

Chapter 5
Linguistic Collation Features

* Reverse Secondary Sorting

* Character Rearrangement for Thai and Laotian Characters
e Special Letters

* Special Combination Letters

» Special Uppercase Letters

e Special Lowercase Letters

You can customize linguistic collations to include the desired characteristics.

¢ See Also:

Customizing Locale Data

5.4.1 Base Letters

Base letters are defined in a base letter table, which maps each letter to its base letter.
For example, a, A, &, and 4 all map to a, which is the base letter. This concept is
particularly relevant for working with Oracle Text.

¢ See Also:

Oracle Text Reference

5.4.2 Ignorable Characters

In multilingual collation and UCA collation, certain characters may be treated as
ignorable. Ignorable characters are skipped, that is, treated as non-existent, when
two character values (strings) containing such characters are compared in a sorting or
matching operation. There are three kinds of ignorable characters: primary, secondary,
and tertiary.

* Primary Ignorable Characters
e Secondary Ignorable Characters

e Tertiary Ignorable Characters

5.4.2.1 Primary Ignorable Characters

ORACLE

Primary ignorable characters are ignored when the multilingual collation or UCA
collation definition applied to the given comparison has the accent-insensitivity
modifier AI, for example, GENERIC M AI or UCA0700 DUCET AI.

Primary ignorable characters are comprised of diacritics (accents) from various
alphabets (Latin, Cyrillic, Greek, Devanagari, Katakana, and so on) and also of
decorating modifiers, such as an enclosing circle or enclosing square. These
characters are non-spacing combining characters, which means they combine with the
preceding character to form a complete accented or decorated character ("non-

5-10

Chapter 5
Linguistic Collation Features

spacing” means that the character occupies the same character position on screen or paper
as the preceding character). For example, the character "Latin Small Letter e" followed by the
character "Combining Grave Accent" forms a single letter "&", while the character "Latin
Capital Letter A" followed by the "Combining Enclosing Circle" forms a single character "(A)".
Because non-spacing characters are defined as ignorable for accent-insensitive sorts, these
sorts can treat, for example, réle as equal to role, naive as equal to naive, and (2) (B) (C)
as equal to ARC.

Primary ignorable characters are called non-spacing characters when viewed in a multilingual
collation definition in the Oracle Locale Builder utility.

5.4.2.2 Secondary Ignorable Characters

Secondary ignorable characters are ignored when the applied definition has either the
accent-insensitivity modifier AT or the case-insensitivity modifier CI.

In multilingual collation, secondary ignorable characters are comprised of punctuation
characters, such as the space character, new line control codes, dashes, various quote
forms, mathematical operators, dot, comma, exclamation mark, various bracket forms, and so
on. In accent-insensitive (_AI) and case-insensitive (_CI) sorts, these punctuation characters
are ignored so that multi-lingual can be treated as equal to multilingual and e-mail can
be treated as equal to email.

Secondary ignorable characters are called punctuation characters when viewed in a
multilingual collation definition in the Oracle Locale Builder utility.

There are no secondary ignorable characters defined in the UCA DUCET, however.
Punctuations are treated as variable characters in the UCA.

5.4.2.3 Tertiary Ignorable Characters

Tertiary ignorable characters are generally ignored in linguistic comparison. They are mainly
comprised of control codes, format characters, variation selectors, and so on.

Primary and secondary ignorable characters are not ignored when a standard, case- and
accent-sensitive sort is used. However, they have lower priority when determining the order
of strings. For example, multi-lingual is sorted after multilingual in the GENERIC M sort,
but it is still sorted between multidimensional and multinational. The comparisond < 1 <
n of the base letters has higher priority in determining the order than the presence of the
secondary ignorable character HYPHEN (U+002D).

You can see the full list of non-spacing characters and punctuation characters in a
multilingual collation definition when viewing the definition in the Oracle Locale Builder.
Generally, neither punctuation characters nor non-spacing characters are included in
monolingual collation definitions. In some monolingual collation definitions, the space
character and the tabulator character may be included. The comparison algorithm
automatically assigns a minor value to each undefined character. This makes punctuation
characters non-ignorable but, as in the case of multilingual collations, considered with lower
priority when determining the order of compared strings. The ordering among punctuation
characters in monolingual collations is based on their Unicode code points and may not
correspond to user expectations.

ORACLE 5-11

Chapter 5
Linguistic Collation Features

¢ See Also:

"Case-Insensitive and Accent-Insensitive Linguistic Collation”

5.4.3 Variable Characters and Variable Weighting

ORACLE

There are characters defined with variable collation elements in the UCA. These
characters are called variable characters and are comprised of white space
characters, punctuations, and certain symbols.

Variable characters can be weighted differently in UCA collations to adjust the effect of
these characters in a sorting or comparison, which is called variable weighting. The
collation parameter, alternate, controls how it works. The following options on
variable weighting are supported in UCA collations in this release:

o blanked

Variable characters are treated as ignorable characters. For example, SPACE
(U+0020) is ignored in comparison.

* non-ignorable

Variable characters are treated as if they were not ignorable characters. For
example, SPACE (U+0020) is not ignored in comparison at primary level.

e shifted

Variable characters are treated as ignorable characters on the primary, secondary
and tertiary levels. In addition, a new quaternary level is used for all characters.
The quaternary weight of a character depends on if the character is a variable,
ignorable, or other. For example, SPACE (U+0020) is assigned a quaternary
weight differently from A (U+0041) because SPACE is a variable character while A
is neither a variable nor an ignorable character.

¢ See Also:

"UCA Collation Parameters"

Examples of Variable Weighting

This section includes different examples of variable weighting.

Example 5-1 UCA DUCET Order When Variable is Weighed as Blanked
The following list has been sorted using UCA0700 DUCET VB:

blackbird
Blackbird
Black-bird
Black bird
BlackBird

Blackbird, Black-bird, and Black bird have the same collation weight because
SPACE(U+0020) and HYPHEN(U+002D) are treated as ignorable characters.

5-12

Chapter 5
Linguistic Collation Features

Selecting only the distinct entries illustrates this behavior (note that only Blackbird is shown
in the result):

blackbird
Blackbird
BlackBird

Blackbird, Black-bird, and Black bird are sorted after blackbird due to case difference on
the first letter B (U+0042), but before BlackBird due to case difference at the second b
(U+0062).

Example 5-2 UCA DUCET Order When Variable is Weighed as Non-lghorable
The following list has been sorted using UCA0700 DUCET VN:

Black bird
Black-bird
blackbird
Blackbird
BlackBird

Black bird and Black-bird are sorted before blackbird because both SPACE (U+0020)
and HYPHEN (U+002D) are not treated as ignorable characters but they are smaller than b
(U+0062) at the primary level. Black bird is sorted before Black-bird because SPACE
(U+0020) is small than HYPHEN (U+002D) at the primary level.

Example 5-3 UCA DUCET Order When Variable is Weighed as Shifted
The following list has been sorted using UCA0700 DUCET:

blackbird
Black bird
Black-bird
Blackbird
BlackBird

blackbird is sorted before Black bird and Black-bird because both SPACE (U+0020) and
HYPHEN (U+002D) are ignored at the first three levels, and there is a case difference on the
first letter b (U+0062). Black-bird is sorted before Blackbird is because HYPHEN (U+002D)
has a small quaternary weight than the letter b (U+0062) in Blackbird.

5.4.4 Contracting Characters

ORACLE

Collation elements usually consist of a single character, but in some locales, two or more
characters in a character string must be considered as a single collation element during
sorting. For example, in traditional Spanish, the string ch is composed of two characters.
These characters are called contracting characters in multilingual collation and special
combination letters in monolingual collation.

Do not confuse a composed character with a contracting character. A composed character
like & can be decomposed into a and ', each with their own encoding. The difference
between a composed character and a contracting character is that a composed character can
be displayed as a single character on a terminal, while a contracting character is used only
for sorting, and its component characters must be rendered separately.

5-13

Chapter 5
Linguistic Collation Features

5.4.5 Expanding Characters

In some locales, certain characters must be sorted as if they were character strings.
An example is the German character 8 (sharp s). It is sorted exactly the same as the
string ss. Another example is that ¢ sorts as if it were oe, after od and before of. These
characters are known as expanding characters in multilingual collation and special
letters in monolingual collation. Just as with contracting characters, the replacement
string for an expanding character is meaningful only for sorting.

5.4.6 Context-Sensitive Characters

In Japanese, a prolonged sound mark that resembles an em dash — represents a
length mark that lengthens the vowel of the preceding character. The sort order
depends on the vowel that precedes the length mark. This is called context-sensitive
collation. For example, after the character ka, the — length mark indicates a long a and
is treated the same as a, while after the character ki, the — length mark indicates a
long i and is treated the same as i. Transliterating this to Latin characters, a sort
might look like this:

kaa

ka— -- kaa and ka— are the same

kai -- kai follows ka- because i is after a
kia -- kia follows kai because i is after a
kii -- kii follows kia because i is after a
ki— -- kii and ki— are the same

5.4.7 Canonical Equivalence

ORACLE

Canonical equivalence is an attribute of a multilingual collation and describes how
equivalent code point sequences are sorted. If canonical equivalence is applied in a
particular multilingual collation, then canonically equivalent strings are treated as
equal.

One Unicode code point can be equivalent to a sequence of base letter code points
plus diacritic code points. This is called the Unicode canonical equivalence. For
example, 4 equals its base letter a and an umlaut. A linguistic flag,

CANONICAL EQUIVALENCE = TRUE, indicates that all canonical equivalence rules defined
in Unicode need to be applied in a specific multilingual collation. Oracle Database-
defined multilingual collations include the appropriate setting for the canonical
equivalence flag. You can set the flag to FALSE to speed up the comparison and
ordering functions if all the data is in its composed form.

For example, consider the following strings:

* 4a (a umlaut followed by a)

* a"b (a followed by umlaut followed by b)

e &c (a umlaut followed by c)

If CANONICAL EQUIVALENCE=FALSE, then the sort order of the strings is:
a’b

da
ac

5-14

Chapter 5
Linguistic Collation Features

This occurs because a comes before & if canonical equivalence is not applied.

If CANONICAL EQUIVALENCE=TRUE, then the sort order of the strings is:
aa

a'b

ac

This occurs because 4 and a~ are treated as canonically equivalent.

You can use Oracle Locale Builder to view the setting of the canonical equivalence flag in
existing multilingual collations. When you create a customized multilingual collation with
Oracle Locale Builder, you can set the canonical equivalence flag as desired.

¢ See Also:

"Creating a New Linguistic Sort with the Oracle Locale Builder" for more information
about setting the canonical equivalence flag

5.4.8 Reverse Secondary Sorting

In French, sorting strings of characters with diacritics first compares base letters from left to
right, but compares characters with diacritics from right to left. For example, by default, a
character with a diacritic is placed after its unmarked variant. Thus Edit comes before Edit in
a French sort. They are equal on the primary level, and the secondary order is determined by
examining characters with diacritics from right to left. Individual locales can request that the
characters with diacritics be sorted with the right-to-left rule. Set the REVERSE_SECONDARY
linguistic flag to TRUE to enable reverse secondary sorting.

¢ See Also:

"Creating a New Linguistic Sort with the Oracle Locale Builder" for more information
about setting the reverse secondary flag

5.4.9 Character Rearrangement for Thai and Laotian Characters

In Thai and Lao, some characters must first change places with the following character
before sorting. Normally, these types of characters are symbols representing vowel sounds,
and the next character is a consonant. Consonants and vowels must change places before
sorting. Set the SWAP WITH NEXT linguistic flag for all characters that must change places
before sorting.

¢ See Also:

"Creating a New Linguistic Sort with the Oracle Locale Builder" for more information
about setting the SWAP WITH NEXT flag

ORACLE 5-15

Chapter 5
Linguistic Collation Features

5.4.10 Special Letters

Special letters is a term used in monolingual collation. They are called expanding
characters in multilingual collation.

¢ See Also:

"Expanding Characters"

5.4.11 Special Combination Letters

Special combination letters is the term used in monolingual collations. They are
called contracting letters in multilingual collation.

¢ See Also:

"Contracting Characters”

5.4.12 Special Uppercase Letters

One lowercase letter may map to multiple uppercase letters. For example, in
traditional German, the uppercase letters for 3 are Ss.

These case conversions are handled by the NLS_UPPER, NLS_LOWER, and NLS_INITCAP
SQL functions, according to the conventions established by the linguistic collations.
The UPPER, LOWER, and INITCAP SQL functions cannot handle these special characters,
because their casing operation is based on binary mapping defined for the underlying
character set, which is not linguistic sensitive.

The NLS _UPPER SQL function returns its first argument string in which all lowercase
letters have been mapped to their uppercase equivalents. The following example
shows the result of the NLS_UPPER function when NLS_SORT iS set to XGERMAN:

SELECT NLS UPPER ('groRe') "Uppercase" FROM DUAL;

GROSSE

¢ See Also:

Oracle Database SQL Language Reference

ORACLE 5-16

Chapter 5
Case-Insensitive and Accent-Insensitive Linguistic Collation

5.4.13 Special Lowercase Letters

Oracle Database supports special lowercase letters. One uppercase letter may map to
multiple lowercase letters. An example is the Turkish uppercase 1 becoming a small, dotless
i.

5.5 Case-Insensitive and Accent-Insensitive Linguistic Collation

An SQL operation in an Oracle Database is generally sensitive to the case and the accents
(diacritics) of characters. However, sometimes you may need to perform case-insensitive or
accent-insensitive comparison or matching.

In previous versions of the database, case-insensitive queries could be achieved by using the
NLS_UPPER and NLS_LOWER SQL functions. The functions change the case of strings based on
a specific linguistic collation definition. This enables you to perform case-insensitive searches
regardless of the language being used. For example, create a table called test1 as follows:

SQL> CREATE TABLE testl(word VARCHARZ2(12));
SQL> INSERT INTO testl VALUES ('GROSSE');
SQL> INSERT INTO testl VALUES ('GrofBe');
SQL> INSERT INTO testl VALUES ('grofe');
SQL> SELECT * FROM testl;

GROSSE
GroRe
grofRe

Perform a case-sensitive search for GROSSE as follows:

SQL> SELECT word FROM testl WHERE word='GROSSE';

GROSSE

Perform a case-insensitive search for GROSSE using the NLS_UPPER function:

SELECT word FROM testl
WHERE NLS UPPER(word, 'NLS SORT = XGERMAN') = 'GROSSE';

GROSSE
GrofRe
groRe

Oracle Database provides case-insensitive and accent-insensitive options for collation. It
provides the following types of linguistic collations:

» Linguistic collations that use information about base letters, diacritics, punctuation, and
case. These are the standard linguistic collations that are described in "Using Linguistic
Collation".

ORACLE 5-17

Chapter 5
Case-Insensitive and Accent-Insensitive Linguistic Collation

* Monolingual collations that use information about base letters, diacritics, and
punctuation, but not case, and multilingual and UCA collations that use information
about base letters and diacritics, but not case or punctuation. This type of sort is
called case-insensitive.

* Monolingual collations that use information about base letters and punctuation
only, and multilingual and UCA collations that use information about base letters
only. This type of sort is called accent-insensitive. (Accent is another word for
diacritic.) Like case-insensitive sorts, an accent-insensitive sort does not use
information about case.

Accent- and case-insensitive multilingual collations ignore punctuation characters as
described in "Ignorable Characters".

The rest of this section contains the following topics:

e Examples: Case-Insensitive and Accent-Insensitive Collation
e Specifying a Case-Insensitive or Accent-Insensitive Collation

e Examples: Linguistic Collation

¢ See Also:

"NLS_SORT"
"NLS_COMP"

5.5.1 Examples: Case-Insensitive and Accent-Insensitive Collation

ORACLE

The following examples show:

» A collation that uses information about base letters, diacritics, punctuation, and
case

* A case-insensitive collation
* An accent-insensitive collation

Example 5-4 Linguistic Collation Using Base Letters, Diacritics, Punctuation,
and Case Information

The following list has been sorted using information about base letters, diacritics,
punctuation, and case:

blackbird
black bird
black-bird
Blackbird
Black-bird
blackbird
blackbird

Example 5-5 Case-Insensitive Linguistic Collation

The following list has been sorted using information about base letters, diacritics, and
punctuation, ignoring case:

5-18

Chapter 5
Case-Insensitive and Accent-Insensitive Linguistic Collation

black bird
black-bird
Black-bird
blackbird
Blackbird
blackbird
bléackbird

black-bird and Black-bird have the same value in the collation, because the only different
between them is case. They could appear interchanged in the list. Blackbird and blackbird
also have the same value in the collation and could appear interchanged in the list.

Example 5-6 Accent-Insensitive Linguistic Collation

The following list has been sorted using information about base letters only. No information
about diacritics, punctuation, or case has been used.

blackbird
bléackbird
blackbird
Blackbird
BlackBird
Black-bird
Black bird

5.5.2 Specifying a Case-Insensitive or Accent-Insensitive Collation

ORACLE

Use the NLS_SORT session parameter to specify a case-insensitive or accent-insensitive
collation:

* Append CI to an Oracle Database collation name for a case-insensitive collation.

* Append AI to an Oracle Database collation name for an accent-insensitive and case-
insensitive collation.

For example, you can set NLS_SORT to the following types of values:

UCA0700 SPANISH AT
FRENCH M AI
XGERMAN CI

Binary collation can also be case-insensitive or accent-insensitive. When you specify
BINARY CI as a value for NLS_SORT, it designates a collation that is accent-sensitive and case-
insensitive. BINARY AI designates an accent-insensitive and case-insensitive binary collation.
You may want to use a binary collation if the binary collation order of the character set is
appropriate for the character set you are using.

For example, with the NLS_LANG environment variable set to
AMERICAN AMERICA.WE8IS08859P1, create a table called test2 and populate it as follows:

SQL> CREATE TABLE test2 (letter VARCHAR2 (10));
SQL> INSERT INTO test2 VALUES ('&');

SQL> INSERT INTO test2 VALUES('a');

SQL> INSERT INTO test2 VALUES ('A');

SQL> INSERT INTO test2 VALUES('Z')
SQL> SELECT * FROM test2;

1o

Ty .
’

LETTER

5-19

Chapter 5
Case-Insensitive and Accent-Insensitive Linguistic Collation

Z

The default value of NLS SORT is BINARY. Use the following statement to do a binary
collation of the characters in table test2:

SELECT * FROM test2 ORDER BY letter;

To change the value of NLS_SORT, enter a statement similar to the following:

ALTER SESSION SET NLS SORT=BINARY CI;

The following table shows the collation orders that result from setting NLS_SORT to
BINARY, BINARY CI, and BINARY AL

BINARY BINARY_CI BINARY_AI
A a a
Z A a
a Z A
a a Z

When NLS_SORT=BINARY, uppercase letters come before lowercase letters. Letters with
diacritics appear last.

When the collation considers diacritics but ignores case (BINARY CI), the letters with
diacritics appear last.

When both case and diacritics are ignored (BINARY AI), 4 is sorted with the other
characters whose base letter is a. All the characters whose base letter is a occur
before z.

You can use binary collation for better performance when the character set is
US7ASCII or another character set that has the same collation order as the binary
collation.

The following table shows the collation orders that result from German collation for the

table.
GERMAN GERMAN_CI GERMAN_AI
a a a
A A a
a a A
Z Z Z

A German collation places lowercase letters before uppercase letters, and & occurs
before z. When the collation ignores both case and diacritics (GERMAN AI), & appears
with the other characters whose base letter is a.

ORACLE 5-20

Chapter 5
Case-Insensitive and Accent-Insensitive Linguistic Collation

5.5.3 Examples: Linguistic Collation

The examples in this section demonstrate a binary collation, a monolingual collation, and a
UCA collation. To prepare for the examples, create and populate a table called test3. Enter
the following statements:

SQL> CREATE TABLE test3 (name VARCHAR2 (20));
SQL> INSERT INTO test3 VALUES ('Diet');

SQL> INSERT INTO test3 VALUES('A voir');
SQL> INSERT INTO test3 VALUES ('Freizeit');

Example 5-7 Binary Collation
The ORDER BY clause uses a binary collation.
SQL> SELECT * FROM test3 ORDER BY name;

You should see the following output:

Diet

Freizeit

A voir

Note that a binary collation results in A voir being at the end of the list.
Example 5-8 Monolingual German Collation

Use the NLSSORT function with the NLS_SORT parameter set to german to obtain a German
collation.

SQL> SELECT * FROM test3 ORDER BY NLSSORT (name, 'NLS SORT=german');

You should see the following output:

A voir
Diet
Freizeit

Note that A voir is at the beginning of the list in a German collation.
Example 5-9 Comparing a Monolingual German Collation to a UCA Collation

Insert the character string shown in the following figure into test. It is a D with a crossbar
followed by 1.

Figure 5-2 Example Character String

bn

Perform a monolingual German collation by using the NLSSORT function with the NLS_SORT
parameter set to german.

SELECT * FROM test2 ORDER BY NLSSORT (name, 'NLS SORT=german');

The output from the German collation shows the new character string last in the list of entries
because the characters are not recognized in a German collation.

Perform a UCA collation by entering the following statement:

ORACLE 5-21

Chapter 5
Performing Linguistic Comparisons

SELECT * FROM test2
ORDER BY NLSSORT (name, 'NLS SORT=UCA0700 DUCET');

The output shows the new character string after Diet, following the UCA order.

¢ See Also:

"The NLSSORT Function"

« "NLS_SORT" for more information about setting and changing the
NLS_SORT parameter

5.6 Performing Linguistic Comparisons

ORACLE

Starting with Oracle Database 12c Release 2 (12.2), a collation-sensitive operation
determines the collation to use from the collations associated with its arguments.

A collation can be declared for a table column or a view column when the column is
created. This associated collation is then passed along the column values to the
operations processing the column. An operation applies a set of precedence rules to
determine the collation to use based on the collations of its arguments. Similarly, an
operation returning a character value derives collation for the return value from the
collations of its arguments.

" See Also:

"Column-Level Collation and Case Sensitivity" for more information about the
collation architecture in Oracle Database.

If a collation-sensitive operation determines that the collation it should apply is the
pseudo-collation USING NLS_COMP, then the NLS COMP and NLS_SORT parameters are
referenced to determine the actual named collation to use. In this case, the collation is
determined in the same way as it is determined in Oracle Database 12¢ Release 1
(12.1) and earlier releases.

The NLS_COMP setting determines how NLS_SORT is handled by the SQL operations.
There are three valid values for NLS_COMP:

e BINARY

Most SQL operations compare character values using binary collation, regardless
of the value set in NLS_SORT. This is the default setting.

e LINGUISTIC

All SQL operations compare character values using collation specified in
NLS_SORT. For example, NLS COMP=LINGUISTIC and NLS SORT=BINARY CI means
the collation-sensitive SQL operations will use binary comparison, but will ignore
character case.

e ANSI

5-22

A limited set of SQL operations honors the NLS SORT setting. ANSI is available for

backward compatibility.

The following table shows how different SQL or PL/SQL operations behave with these

different settings.

Table 5-3 Linguistic Comparison Behavior with NLS_COMP Settings

Chapter 5

Performing Linguistic Comparisons

SQL or PL/SQL Operation: BINARY LINGUISTIC ANSI
Set Operators: - - -
UNION, INTERSECT, MINUS Binary Honors NLS_SORT Binary
Scalar Functions: - - -
DECODE Binary Honors NLS_SORT Binary
INSTRx Binary Honors NLS_SORT Binary
LEAST, GREATEST Binary Honors NLS_SORT Binary
MAX, MIN Binary Honors NLS SORT Binary
NULLIF Binary Honors NLS_SORT Binary
REPLACE Binary Honors NLS_SORT Binary
TRIM, LTRIM, RTRIM Binary Honors NLS_SORT Binary
TRANSLATE Binary Honors NLS_SORT Binary

NLS INITCAP

NLS LOWER, NLS UPPER
NLSSORT

REGEXP_COUNT
REGEXP_INSTR

REGEXP REPLACE
REGEXP_SUBSTR
Conditions:

= 1=, >, <, >= <=
BETWEEN, NOT BETWEEN
IN, NOT IN

REGEXP LIKE

LIKE

CASE Expression:

CASE

Analytic Function Clauses:

DISTINCT
OVER (ORDER BY)
OVER (PARTITION BY)

Subquery Clauses:
DISTINCT, UNIQUE
GROUP BY

ORACLE

Honors NLS_SORT
Honors NLS_SORT
Honors NLS SORT
Honors NLS SORT
Honors NLS_SORT
Honors NLS SORT
Honors NLS_SORT
Binary
Binary
Binary
Binary
Binary
Binary
Honors NLS_SORT
Honors NLS SORT
Honors NLS_SORT
Binary
Binary

Honors NLS_SORT
Honors NLS_SORT
Honors NLS SORT
Honors NLS_SORT
Honors NLS_SORT
Honors NLS SORT
Honors NLS_SORT
Honors NLS_SORT
Honors NLS SORT
Honors NLS_SORT
Honors NLS_SORT
Honors NLS_SORT

Honors NLS_SORT
Honors NLS SORT
Honors NLS SORT
Honors NLS_SORT
Honors NLS SORT
Honors NLS SORT

Honors NLS_SORT
Honors NLS_SORT
Honors NLS SORT
Honors NLS_SORT
Honors NLS_SORT
Honors NLS SORT
Honors NLS_SORT
Honors NLS_SORT
Honors NLS SORT
Honors NLS_SORT
Honors NLS_SORT
Binary

Binary

Honors NLS_SORT
Honors NLS SORT
Honors NLS_SORT
Binary

Binary

5-23

Chapter 5
Performing Linguistic Comparisons

Table 5-3 (Cont.) Linguistic Comparison Behavior with NLS_COMP Settings

SQL or PL/SQL Operation: BINARY LINGUISTIC ANSI
ORDER BY Honors NLS_SORT Honors NLS_SORT Honors NLS_SORT
¢ See Also:

"NLS_COMP" and "NLS_SORT" for more information about these
parameters.

5.6.1 Collation Keys

When the comparison conditions =, I=, >, <, >=, <=, BETWEEN, NOT BETWEEN, IN, NOT IN,
the query clauses ORDER BY or GROUP BY, or the aggregate function COUNT (DISTINCT)
are evaluated according to linguistic rules, the compared argument values are first

transformed to binary values called collation keys and then compared byte by byte,
like RAW values.

If a monolingual collation is applied, collation keys contain concatenated major values
for characters of the source value followed by concatenated minor values for those
characters. If a multilingual collation is applied, collation keys contain concatenated
primary, then secondary, and then tertiary values. If a UCA collation is applied,
collation keys contain concatenated primary, secondary, tertiary, and possibly
guaternary values. The case-insensitive and accent-insensitive multilingual and UCA
collations may omit quaternary, tertiary, and secondary values.

The collation keys are the same values that are returned by the NLSSORT function. That
is, activating the linguistic behavior of these SQL operations is equivalent to including
their arguments into calls to the NLSSORT function.

¢ See Also:

"The NLSSORT Function”

5.6.2 Restricted Precision of Linguistic Comparison

ORACLE

As collation keys are values of the data type RAW and the maximum length of a RaW
value depends on the value of the initialization parameter, MAX STRING SIZE, the
maximum length of a collation key is controlled by the parameter as well.

When MAX STRING SIZE is setto STANDARD, the maximum length of a collation key is
restricted to 2000 bytes. If a full source string yields a collation key longer than the
maximum length, the collation key generated for this string is calculated for a
maximum prefix (initial substring) of the value for which the calculated result does not
exceed 2000 bytes.

5-24

Chapter 5
Performing Linguistic Comparisons

For monolingual collation, the prefix is typically 1000 characters. For multilingual collation, the
prefix is typically 500 characters. For UCA collations, the prefix is typically 300 characters.
The exact length of the prefix may be higher or lower and depends on the particular collation
and the particular characters contained in the source string. The implication of this method of
collation key generation is that SQL operations using the collation keys to implement the
linguistic behavior will return results that may ignore trailing parts of long arguments. For
example, two strings starting with the same 1000 characters but differing somewhere after
the 1000th character will be grouped together by the GROUP BY clause.

When MAX STRING SIZE is set to EXTENDED, the maximum length of a collation key is
restricted to 32767 bytes. With this setting, collation key generation is switched to precise
mode. If a full source string yields a collation key longer than the maximum length, the
database raises the ORA-12742 error message instead of generating a truncated key.

5.6.3 Avoiding ORA-12742 Error

In the precise mode, that is, when the initialization parameter MAX STRING SIZE is set to
EXTENDED, generation of a collation key may fail with ORA-12742 error, if the buffer reserved for
the collation key is too small. This can happen in any of the following two cases:

* The length of the generated key is longer than 32767 bytes

e The expansion ratio used to calculate the collation key length from the source string
length is too low for a given combination of collation and source string

The first case may happen for long source strings in any linguistic collation because collation
keys are mostly longer than the source strings for which they are created. To avoid ORA-12742
error in this case, make sure that lengths of the collated values are never longer than the
following limits:

* 21844 bytes for the collation BINARY CI
* 4094 bytes for a monolingual or multilingual collation
* 1560 bytes for a UCA collation

The second case may happen for strings of any length in all UCA0610 and UCA0620 collations
and in the collations UCA0700 DUCET and UCA0700_ ROOT. This case happens because the
pessimistic expansion ratio for the listed UCA collations is very high. Using the pessimistic
expansion ratio for calculation of the pessimistic collation key length would strongly reduce
the maximum length of a linguistically indexable column. Therefore, a lower ratio is used for
these collations, which works for all source strings except those containing one or more of the
four specific rare compatibility characters - one Japanese, one Korean, and two Arabic. The
presence of these specific characters in a string may cause the collation key generation for
the string to fail with ORA-12742 error.

The UCA0700 collations other than UCA0700 DUCET and UCA0700_ROOT have been customized
to never generate collation keys longer than the chosen expansion ratio. In particular,
UCA0700 ORADUCET and UCA0700 ORAROOT collations are almost identical versions of the
corresponding UCA0700 DUCET and UCA0700_ROOT collations, in which the collation weights for
the four problematic characters have been shortened.

ORACLE 5-25

Chapter 5
Performing Linguistic Comparisons

< Note:

Oracle recommends that if you want to use UCA collations, then use only the
UCA0700 collations, except UCA0700_DUCET and UCA0700_ ROOT.

When a character value for which a collation key cannot be generated for a certain
collation is inserted into a column, any query comparing or sorting this character value
using this collation fails with ORA-12742 error. In certain application configurations, this
may cause a denial of service (DoS) attack vulnerability. It is therefore important to
follow these guidelines:

* Collate only column values limited in length, not using the problematic UCA
collations as described above or

» Dynamically verify that only safe values are inserted into a table or

» Assure that applications are designed in such a way that values entered by one
user cannot break queries issued by another user

You can dynamically verify safety of values inserted into a column by creating a CHECK
constraint on the column. For example, if you create a table as follows:

CREATE TABLE translation string
(
id NUMBER,
string VARCHAR2 (32767),
CONSTRAINT check string CHECK (VSIZE (NLSSORT (string COLLATE
UCA0700 DUCET)) != -1)
)i

then any insert or update of a character value in the string column will trigger the
collation key generation in the check constraint condition. Problematic values will
cause the DML to fail with ORA-12742 error. However, once successfully inserted or
updated, the value will never cause ORA-12742 error in a later query.

The check string constraint in the above example performs a pessimistic check over
all the collations. It may be over-pessimistic for many collations. If you know that one
or two specific collations will be used with a column, you can modify the check
constraint to force generation of collation keys only for those collations. However, in
that case, you have to restrict the collations that can be used in your application.

5.6.4 Examples: Linguistic Comparison

ORACLE

The following examples illustrate behavior with different NLS_coMPp settings.
Example 5-10 Binary Comparison Binary Collation

The following illustrates behavior with a binary setting:

SQL> ALTER SESSION SET NLS_COMP=BINZ—\RY;
SQL> ALTER SESSION SET NLS_SORT=BINZ—\RY;
SQL> SELECT ename FROM empl;

5-26

ORACLE

Chapter 5
Performing Linguistic Comparisons

Mc Calla
MCAfee
McCoye
Mccathye
McCafeé

5 rows selected

SQL> SELECT ename FROM empl WHERE ename LIKE 'McC%e';

1 row selected

Example 5-11 Linguistic Comparison Binary Case-Insensitive Collation
The following illustrates behavior with a case-insensitive setting:

SQL> ALTER SESSION SET NLS COMP=LINGUISTIC;
SQL> ALTER SESSION SET NLS SORT=BINARY CI;
SQL> SELECT ename FROM empl WHERE ename LIKE 'McC%e';

McCoye
Mccathye

2 rows selected

Example 5-12 Linguistic Comparison Binary Accent-Insensitive Collation

The following illustrates behavior with an accent-insensitive setting:

SQL> ALTER SESSION SET NLS COMP=LINGUISTIC;
SQL> ALTER SESSION SET NLS SORT=BINARY AI;
SQL> SELECT ename FROM empl WHERE ename LIKE 'McC%e';

McCoye
Mccathye
McCafeé

3 rows selected

Example 5-13 Linguistic Comparisons Returning Fewer Rows

Some operations may return fewer rows after applying linguistic rules. For example, with a
binary setting, McAfee and Mcafee are different:

SQL> ALTER SESSION SET NLS_COMP:BINARY;
SQL> ALTER SESSION SET NLS_SORT:BINARY;
SQL> SELECT DISTINCT ename FROM emp2;

McAfee
Mcafee
McCoy

5-27

ORACLE

Chapter 5
Performing Linguistic Comparisons

3 rows selected

However, with a case-insensitive setting, McAfee and Mcafee are the same:

SQL> ALTER SESSION SET NLS COMP=LINGUISTIC;
SQL> ALTER SESSION SET NLS SORT=BINARY CI;
SQL> SELECT DISTINCT ename FROM emp2;

2 rows selected

In this example, either McAfee or Mcafee could be returned from the DISTINCT
operation. There is no guarantee exactly which one will be picked.

Example 5-14 Linguistic Comparisons Using XSPANISH

There are cases where characters are the same using binary comparison but different
using linguistic comparison. For example, with a binary setting, the character c in
Cindy, Chad, and Clara represents the same letter C:

SQL> ALTER SESSION SET NLS COMP=BINARY;
SQL> ALTER SESSION SET NLS SORT=BINARY;
SQL> SELECT ename FROM emp3 WHERE ename LIKE 'C%';

3 rows selected

In a database session with the linguistic rule set to traditional Spanish, XSPANISH, ch is
treated as one character. So the letter c in Chad is different than the letter C in Cindy
and Clara:

SQL> ALTER SESSION SET NLS COMP=LINGUISTIC;
SQL> ALTER SESSION SET NLS SORT=XSPANISH;
SQL> SELECT ename FROM emp3 WHERE ename LIKE 'C%';

2 rows selected

And the letter ¢ in combination ch is different than the ¢ standing by itself:

SQL> SELECT REPLACE ('character', 'c', 't') "Changes" FROM DUAL;

Changes

charatter

5-28

5.7 Using

ORACLE

Chapter 5
Using Linguistic Indexes

Example 5-15 Linguistic Comparisons Using UCA0700_TSPANISH

The character ch behaves the same in the traditional Spanish ordering of the UCA collations
as that in XSPANISH:

SQL> ALTER SESSION SET NLS COMP = LINGUISTIC;
SQL> ALTER SESSION SET NLS SORT = UCA0700 TSPANISH;
SQL> SELECT ename FROM emp3 WHERE ename LIKE 'C%';

SQL> SELECT REPLACE ('character', 'c', 't') "Changes" FROM DUAL;

Changes

charatter

Linguistic Indexes

Linguistic collation is language-specific and requires more data processing than binary
collation. Using a binary collation for ASCII is accurate and fast because the binary codes for
ASCII characters reflect their linguistic order.

When data in multiple languages is stored in the database, you may want applications to
collate the data returned from a SELECT. . .ORDER BY statement according to different collation
sequences depending on the language. You can accomplish this without sacrificing
performance by using linguistic indexes. Although a linguistic index for a column slows down
inserts and updates, it greatly improves the performance of linguistic collation with the ORDER
BY clause and the WHERE clause.

You can create a function-based index that uses languages other than English. The index
does not change the linguistic collation order determined by NLS_SORT. The linguistic index
simply improves the performance.

The following statement creates an index based on a German collation:

CREATE TABLE my_table(name VARCHAR (20) NOT NULL) ;
CREATE INDEX nls index ON my table (NLSSORT (name, 'NLS SORT = German'));

The NOT NULL in the CREATE TABLE Statement ensures that the index is used.

After the index has been created, enter a SELECT statement similar to the following example:
SELECT * FROM my table WHERE name LIKE 'Hein%' ORDER BY name;

It returns the result much faster than the same SELECT statement without a linguistic index.

When a standard index is created on a column column with a named collation collation
other than BINARY, the created index is implicitly a functional, linguistic index created on the
expression:

NLSSORT (column, '"NLS SORT=collation')

5-29

The rest of this section contains the following topics:

¢ See Also:

Chapter 5
Using Linguistic Indexes

e Standard Indexes in the section “Effect of Data-Bound Collation on Other
Database Objects” for more information about the effect of column-level

collation on indexes

e Oracle Database Administrator's Guide for more information about

function-based indexes

Supported SQL Operations and Functions for Linguistic Indexes

Linguistic Indexes for Multiple Languages

Requirements for Using Linguistic Indexes

5.7.1 Supported SQL Operations and Functions for Linguistic Indexes

Linguistic index support is available for the following collation-sensitive SQL operations
and SQL functions:

ORACLE

Comparison conditions =, !=, >, <, >=, <=
Range conditions BETWEEN | NOT BETWEEN
IN | NOT IN

ORDER BY

GROUP BY

LIKE (LIKE, LIKE2, LIKE4, LIKEC)
DISTINCT

UNIQUE

UNION

INTERSECT

MINUS

The SQL functions in the following list cannot utilize linguistic index:

INSTR (INSTR, INSTRB, INSTR2, INSTR4, INSTRC)

MAX

MIN

REPLACE

TRIM

LTRIM

RTRIM

TRANSLATE

5-30

Chapter 5
Using Linguistic Indexes

5.7.2 Linguistic Indexes for Multiple Languages

There are four ways to build linguistic indexes for data in multiple languages:

ORACLE

Build a linguistic index for each language that the application supports. This approach
offers simplicity but requires more disk space. For each index, the rows in the language
other than the one on which the index is built are collated together at the end of the
sequence. The following example builds linguistic indexes for French and German.

CREATE INDEX french_index ON employees (NLSSORT(employee_id, 'NLS SORT=FRENCH')) ;
CREATE INDEX german_index ON employees (NLSSORT(employee_id, 'NLS SORT=GERMAN')) ;

Oracle Database chooses the index based on the NLS_SORT session parameter or the
arguments of the NLSSORT function specified in the ORDER BY clause. For example, if the
NLS_SORT session parameter is set to FRENCH, then Oracle Database uses french index.
When it is set to GERMAN, Oracle Database uses german_index.

Build a single linguistic index for all languages. This requires a language column

(LANG coL in "Example: Setting Up a French Linguistic Index") to be used as a parameter
of the NLSSORT function. The language column contains NLS_LANGUAGE values for the data
in the column on which the index is built. The following example builds a single linguistic
index for multiple languages. With this index, the rows with the same values for

NLS LANGUAGE are sorted together.

CREATE INDEX i ON t (LANG COL, NLSSORT(col, 'NLS SORT=' || LANG COL));

Queries choose an index based on the argument of the NLSSORT function specified in the
ORDER BY clause.

Build a single linguistic index for all languages using one of the multilingual collations
such as GENERIC_M or FRENCH M. These indexes sort characters according to the rules
defined in ISO 14651. For example:

CREATE INDEX i ON t (NLSSORT(col, 'NLS SORT=GENERIC M'));

¢ See Also:
"Multilingual Collation" for more information
Build a single linguistic index for all languages using one of the UCA collations such as

UCA0700 ORADUCET or UCA0700 CFRENCH. These indexes sort characters in the order
conforming to ISO 14651 and UCA 7.0. For example:

CREATE INDEX i
ON t (NLSSORT(col, 'NLS SORT=UCA0700 ORADUCET'));

¢ See Also:

"UCA Collation" for more information

5-31

Chapter 5
Using Linguistic Indexes

5.7.3 Requirements for Using Linguistic Indexes

The following are requirements for using linguistic indexes:

* Set NLS_SORT Appropriately

e Specify NOT NULL in a WHERE Clause If the Column Was Not Declared NOT
NULL

e Use a Tablespace with an Adequate Block Size

This section also includes:

e Example: Setting Up a French Linguistic Index

5.7.3.1 Set NLS_SORT Appropriately

The NLS_SORT parameter should indicate the linguistic definition you want to use for the
linguistic collation. If you want a French linguistic collation order, then NLS_SORT should
be set to FRENCH. If you want a German linguistic collation order, then NLS_SORT should
be set to GERMAN.

There are several ways to set NLS_SORT. You should set NLS_SORT as a client
environment variable so that you can use the same SQL statements for all languages.
Different linguistic indexes can be used when NLS_SORT is set in the client
environment.

See Also:
"NLS_SORT"

5.7.3.2 Specify NOT NULL in a WHERE Clause If the Column Was Not
Declared NOT NULL

When you want to use the ORDER BY column name clause with a column that has a
linguistic index, include a WHERE clause like the following example:

WHERE NLSSORT(column_name) IS NOT NULL

This WHERE clause is not necessary if the column has already been defined as a NOT
NULL column in the schema.

5.7.3.3 Use a Tablespace with an Adequate Block Size

ORACLE

A collation key created from a character value is usually a few times longer than this
value. The actual length expansion depends on the particular collation in use and the
content of the source value, with the UCA-based collations expanding the most.

When creating a linguistic index, Oracle Database first calculates the estimated
maximum size of the index key by summing up the estimated maximum sizes of the
collation keys (NLSSORT results) for each of the character columns forming the index
key. In this calculation, the maximum size of a collation key for a character column with

5-32

Chapter 5
Searching Linguistic Strings

the maximum byte length n is estimated to be n*21+5 for UCA-based collations and n*8+10
for other collations.

The large expansion ratios can yield large maximum index key sizes, especially for
composite (multicolumn) keys. At the same time, the maximum key size of an index cannot
exceed around 70% of the block size of the tablespace containing the index. If it does, an
ORA-1450 error is reported. To avoid this error, you should store the linguistic index in a
tablespace with an adequate block size, which may be larger than the default block size of
your database. A suitable tablespace can be created with the CREATE TABLESPACE Statement,
provided the initialization parameter DB_nK CACHE SIZE corresponding to the required block
size n has been set appropriately.

" See Also:

e Oracle Database Administrator's Guide

5.7.3.4 Example: Setting Up a French Linguistic Index

The following example shows how to set up a French linguistic index. You may want to set
NLS_SORT as a client environment variable instead of using the ALTER SESSION statement.

ALTER SESSION SET NLS SORT='FRENCH';

CREATE INDEX test idx ON test4 (NLSSORT (name, 'NLS SORT=FRENCH'));
SELECT * FROM test4 ORDER BY col;

ALTER SESSION SET NLS COMP=LINGUISTIC;

SELECT * FROM test4 WHERE name > 'Henri';

" Note:

The SQL functions MAX () and MIN () cannot use linguistic indexes when NLS_COMP is
set to LINGUISTIC.

5.8 Searching Linguistic Strings

ORACLE

Searching and collation are related tasks. Organizing data and processing it in a linguistically
meaningful order is necessary for proper business processing. Searching and matching data
in a linguistically meaningful way depends on what collation order is applied.

For example, searching for all strings greater than c and less than f produces different results
depending on the value of NLS_SORT. In an ASCII binary collation, the search finds any strings
that start with d or e but excludes entries that begin with upper case D or E or accented e with
a diacritic, such as é. Applying an accent-insensitive binary collation returns all strings that
start with d, D, and accented e, such as £ or &. Applying the same search with NLS SORT set
to XSPANISH also returns strings that start with ch, because ch is treated as a composite
character that collates between ¢ and d in traditional Spanish. This chapter discusses the
kinds of collation that Oracle Database offers and how they affect string searches by SQL
and SQL regular expressions.

5-33

Chapter 5
SQL Regular Expressions in a Multilingual Environment

¢ See Also:

e "Linguistic Collation Features"

e "SQL Regular Expressions in a Multilingual Environment"

5.9 SQL Regular Expressions in a Multilingual Environment

Regular expressions provide a powerful method of identifying patterns of strings within
a body of text. Usage ranges from a simple search for a string such as San Francisco
to the more complex task of extracting all URLSs to finding all words whose every
second character is a vowel. SQL and PL/SQL support regular expressions in Oracle
Database.

Traditional regular expression engines were designed to address only English text.
However, regular expression implementations can encompass a wide variety of
languages with characteristics that are very different from western European text. The
implementation of regular expressions in Oracle Database is based on the Unicode
Regular Expression Guidelines. The REGEXP SQL functions work with all character sets
that are supported as database character sets and national character sets. Moreover,
Oracle Database enhances the matching capabilities of the POSIX regular expression
constructs to handle the unigue linguistic requirements of matching multilingual data.

Oracle Database enhancements of the linguistic-sensitive operators are described in
the following sections:

* Character Range '[x-y]' in Regular Expressions

* Collation Element Delimiter [. .]' in Regular Expressions
* Character Class T: :]' in Regular Expressions

» Equivalence Class '[= =]' in Regular Expressions

* Examples: Regular Expressions

See Also:

— Oracle Database Development Guide for more information about
regular expression syntax

— Oracle Database SQL Language Reference for more information
about REGEX SQL functions

5.9.1 Character Range '[x-y]' in Regular Expressions

ORACLE

According to the POSIX standard, a range in a regular expression includes all collation
elements between the start point and the end point of the range in the linguistic
definition of the current locale. Therefore, ranges in regular expressions are meant to
be linguistic ranges, not byte value ranges, because byte value ranges depend on the
platform, and the end user should not be expected to know the ordering of the byte
values of the characters. The semantics of the range expression must be independent

5-34

Chapter 5
SQL Regular Expressions in a Multilingual Environment

of the character set. This implies that a range such as [a-d] may include all the letters
between a and d plus all of those letters with diacritics, plus any special case collation
element such as ch in Traditional Spanish that is sorted as one character.

Oracle Database interprets range expressions as specified by the NLS_SORT parameter to
determine the collation elements covered by a given range. For example:

Expression: [a-d]e

NLS SORT: BINARY

Does not match: cheremoya

NLS SORT: XSPANISH
Matches: >>che<<remoya

5.9.2 Collation Element Delimiter '[. .]' in Regular Expressions

This construct is introduced by the POSIX standard to separate collating elements. A
collating element is a unit of collation and is equal to one character in most cases. However,
the collation sequence in some languages may define two or more characters as a collating
element. The historical regular expression syntax does not allow the user to define ranges
involving multicharacter collation elements. For example, there was no way to define a range
from a to ch because ch was interpreted as two separate characters.

By using the collating element delimiter [. .], you can separate a multicharacter collation
element from other elements. For example, the range from a to ch can be written as [a-
[.ch.]]. It can also be used to separate single-character collating elements. If you use [. .]
to enclose a multicharacter sequence that is not a defined collating element, then it is
considered as a semantic error in the regular expression. For example, [.ab.] is considered
invalid if ab is not a defined multicharacter collating element.

5.9.3 Character Class [:]' in Regular Expressions

In English regular expressions, the range expression can be used to indicate a character
class. For example, [a-z] can be used to indicate any lowercase letter. However, in non-
English regular expressions, this approach is not accurate unless a is the first lowercase
letter and z is the last lowercase letter in the collation sequence of the language.

The POSIX standard introduces a new syntactical element to enable specifying explicit
character classes in a portable way. The [: :] syntax denotes the set of characters
belonging to a certain character class. The character class definition is based on the
character set classification data.

5.9.4 Equivalence Class '[= =] in Regular Expressions

Oracle Database also supports equivalence classes through the [= =] syntax as
recommended by the POSIX standard. A base letter and all of the accented versions of the
base constitute an equivalence class. For example, the equivalence class [=a=] matches a
as well as 4. The current implementation does not support matching of Unicode composed
and decomposed forms for performance reasons. For example, & (a umlaut) does not match
'a followed by umlaut'.

5.9.5 Examples: Regular Expressions

The following examples show regular expression matches.

ORACLE 5-35

ORACLE

Chapter 5
SQL Regular Expressions in a Multilingual Environment

Example 5-16 Case-Insensitive Match Using the NLS_SORT Value

Case sensitivity in an Oracle Database regular expression match is determined at two
levels: the NLS_SORT initialization parameter and the run-time match option. The
REGEXP functions inherit the case-sensitive behavior from the value of NLS_SORT by
default. The value can also be explicitly overridden by the run-time match option 'c'
(case-sensitive) or 'i' (case-insensitive).

Expression: catalog(ue)?
NLS SORT: GENERIC M CI
Matches:

>>Catalog<<
>>catalogue<<
>>CATALOG<K

Oracle Database SQL syntax:

SQL> ALTER SESSION SET NLS SORT='GENERIC M CI';
SQL> SELECT col FROM test WHERE REGEXP LIKE (col, 'catalog(ue)?');

Example 5-17 Case Insensitivity Overridden by the Run-time Match Option

Expression: catalog(ue)?
NLS SORT: GENERIC M CI
Match option: 'c'
Matches:

>>catalogue<<

Does not match:

Catalog
CATALOG

Oracle Database SQL syntax:

SQL> ALTER SESSION SET NLS SORT='GENERIC M CI';
SQL> SELECT col FROM test WHERE REGEXP LIKE (col,'catalog(ue)?','c');

Example 5-18 Matching with the Collation Element Operator [..]

Expression: ["“-a-[.ch.]]+ /*with NLS SORT set to xspanish*/
Matches:

>>driver<<
Does not match:

cab

Oracle Database SQL syntax:
SQL> SELECT col FROM test WHERE REGEXP LIKE(col,'["-a-[.ch.]]+');
Example 5-19 Matching with the Character Class Operator [::]

This expression looks for 6-character strings with lowercase characters. Note that
accented characters are matched as lowercase characters.

5-36

Chapter 5
Column-Level Collation and Case Sensitivity

Expression: [[:lower:]]{6}
Database character set: WE8IS08859P1
Matches:

>>maltre<<
>>mobile<<
>>pajaro<<
>>zuriick<<

Oracle Database SQL syntax:

SQL> SELECT col FROM test WHERE REGEXP LIKE (col,'[[:lower:]]{6}");

Example 5-20 Matching with the Base Letter Operator [==

Expression: r[[=e=]]sum[[=e=]]
Matches:

>>resume<<
>>résumé<<
>>résume<<
>>resumé<<

Oracle Database SQL syntax:

SQL> SELECT col FROM test WHERE REGEXP LIKE (col,'r[[=e=]]sum[[=e=]]");

See Also:

e Oracle Database Development Guide for more information about regular
expression syntax

e Oracle Database SQL Language Reference for more information about REGEX
SQL functions

5.10 Column-Level Collation and Case Sensitivity

ORACLE

The column-level collation feature specifies a collation for a character column in its definition.
This feature applies linguistic processing only where needed and achieves consistent
handling of particular column data in all SQL statements. Oracle supports case-insensitive
and accent-insensitive collations. By assigning such collation to a column, you can easily
force all comparisons of column values to be case-insensitive or accent-insensitive or both.

The collations declared at a column-level are part of the more general data-bound collation
architecture, where collation becomes an attribute of data, analogous to the data type. The
declared collation is passed along the column to SQL operations and is used together with
collations of other operation arguments to determine the collation to use by the operation.

The column-level collation feature is based on the ISO SQL standard and it simplifies
application migration to Oracle Database from other database systems that support this
feature. This feature is backward-compatible with the mechanism of controlling linguistic
behavior for SQL and PL/SQL operations using the session parameters NLS_COMP and
NLS SORT.

This section contains the following topics:

5-37

Chapter 5
Column-Level Collation and Case Sensitivity

* About Data-Bound Collation

» Default Collations

* Enabling Data-Bound Collation

* Specifying a Data-Bound Collation

* Viewing the Data-Bound Collation of a Database Object

* Case-Insensitive Database

» Effect of Data-Bound Collation on Other Database Objects

» Effect of Data-Bound Collation on Distributed Queries and DML Operations
» Effect of Data-Bound Collation on PL/SQL Types and User-Defined Types
» Effect of Data-Bound Collation on Oracle XML DB

5.10.1 About Data-Bound Collation

ORACLE

In Oracle Database 12c¢ Release 1 (12.1) and earlier releases, the two session
parameters NLS_SORT and NLS_COMP determine the rules by which character type data
is compared and matched. The collation specified using these two session parameters
is called the session collation. The value of NLS_coMP decides which operations are
controlled by the collation specified in the value of NLS_SORT and which operations use
the BINARY collation. All collation-sensitive operations selected by the value of
NLS_coMP in all SQL and PL/SQL statements executed in the session use the same
collation.

Starting with Oracle Database 12c¢ Release 2 (12.2), a new mechanism has been
added to apply collations for SQL operations in a much more granular way. A collation
is an attribute of data, similar to the data type. A collation can be declared for a
character data container, such as table column, and is passed to all SQL operations
that operate on that column. Each collation-sensitive operation combines declared
collations of its arguments to determine the collation to use for the operation
processing. Furthermore, an operation that returns a character value combines
collations of its arguments to derive a collation for the result. The operator COLLATE
allows overriding a collation in any place in an expression.

This type of collation, which is associated with a particular data, is called the data-
bound collation . A data-bound collation can be applied only to the values of character
data types — VARCHAR?2, CHAR, LONG, NVARCHAR2, NCHAR, CLOB, and NCLOB.

5-38

ORACLE

Chapter 5
Column-Level Collation and Case Sensitivity

< Note:

The data-bound collation of a table column is also used for the following operations
that always used binary collation earlier to the Oracle Database 12c Release 2
(12.2):

e Index key ordering for standard (that is, non-functional) indexes on the column,
including indexes of primary keys, unique constraints, and bitmap indexes.

* Range, list, and reference partitioning on a column.

< Enforcement of a foreign key constraint on a column that points to a primary
key or unigue key column in another table.

There are two types of data-bound collations:

Named Collation: This collation is a particular set of collating rules specified by a
collation name. Named collations are the same collations that are specified as values for
the NLS_SORT parameter. A named collation can be either a binary collation or a linguistic
collation.

— Examples of binary named collation are: BINARY, BINARY CI (case-insensitive binary
collation), and BINARY AI (accent-insensitive and case-insensitive binary collation).

— Examples of linguistic named collation are: GENERIC M, GENERIC M AI, FRENCH,
POLISH, UCA0700 CFRENCH, and so on.

Pseudo-collation: This collation does not directly specify the collating rules for a
character data type. Instead, it instructs collation-sensitive operations to check the values
of the NLS_SORT and NLS_COMP session parameters for the actual named collation to use.
Pseudo-collations are the bridge between the new declarative method of specifying
collations and the old method that uses session parameters.

The following are the supported pseudo-collations:

— USING NLS_COMP: Operations that use the USING NLS COMP pseudo-collation behave
the same as in Oracle Database 12¢ (12.1) and earlier releases, that is, they use the
session collation. The particular named collation applied by the SQL or PL/SQL
operation is either BINARY or determined by the value of NLS_SORT, NLS_COMP, and the

operation itself.

— USING NLS SORT, USING NLS SORT CI, USING NLS SORT AI, and USING NLS SORT CS:
If one of these collations is determined as the collation to use for an operation, the
operation applies the collation named by the value of NLS_SORT parameter without
considering the value of NLS_COMP parameter. Additionally:

* If the pseudo-collation is USING NLS_SORT CI and the value of NLS_SORT does not
endin CIor AI,thenthe name of collation to apply is constructed by
appending CI to the value of NLS_SORT.

* If the pseudo-collation is USING NLS SORT AI and the value of NLS_SORT does not
endin CIor AI, then the name of collation to apply is constructed by
appending AI to the value of NLS_SORT. If the value of NLS_SORT ends in (I,
then the suffix CIis changedto AI.

* If the pseudo-collation is USING NLS_SORT CS and the value of NLS_SORT ends in
_CI or AI,then the name of collation to apply is constructed by stripping this
suffix from the NLS_SORT value.

5-39

Chapter 5
Column-Level Collation and Case Sensitivity

* Otherwise, the name of collation to apply is the value of NLS SORT.

" Note:

— Suffix CI stands for case insensitivity. Suffix _Al stands for case and
accent insensitivity. Suffix Cs stands for case and accent sensitivity.

— The pseudo-collation USING NLS SORT CI forces the use of the case-
insensitive version of the collation specified in the NLS_SORT
parameter value.

— The pseudo-collation USING NLS SORT AI forces the use of the case-
insensitive and accent-insensitive version of the collation specified in
the NLS_SORT parameter value.

— The pseudo-collation USING NLS SORT Cs forces the use of the case-
sensitive and accent-sensitive version of the collation specified in the
NLS_SORT parameter value.

— The only collation supported by CLOB and NCLOB columns is the
pseudo-collation USING NLS COMP.

5.10.2 Default Collations

Starting with Oracle Database 12c Release 2 (12.2), each table column with a
character data type has a declared data-bound collation. If collation for a column is not
specified explicitly in the DDL statement that creates the column (in the CREATE TABLE
or ALTER TABLE ADD statement), then the containing table’s default collation is used for
the column. If the DDL statement creating a table does not specify a default collation,
then the default collation of the schema owning the table is used as the default
collation for the table. Specify default collation for a schema in the CREATE USER
statement that creates the owner of the schema. If the CREATE USER statement does
not specify the default collation for a schema, then the collation USING NLS COMP is
used.

Collations are inherited only when database objects are created. For example,
changing the table default collation does not change the collations of existing
character columns of a table. Only new columns added to the table after the change
inherit the new default collation. Similarly, changing the schema default collation does
not change the default collations of tables in a schema. Only new tables created in the
schema after the change inherit the new default collation.

The session parameter DEFAULT COLLATION overrides the schema default collation as
described in the section "Effective Schema Default Collation".

ORACLE 5-40

Chapter 5
Column-Level Collation and Case Sensitivity

< Note:

After upgrading to Oracle Database 12c¢ Release 2 (12.2) or later, all the columns,
tables, and schemas in the upgraded database have the USING NLS COMP collation.
This ensures that all the collation-sensitive operations in the database behave the
same as before the upgrade, that is, all the operations use session collation.

5.10.3 Enabling Data-Bound Collation

To enable the data-bound collation feature, set the following database initialization parameter
values:

MAX STRING SIZE=EXTENDED

COMPATIBLE>=12.2

< Note:

< If the data-bound collation feature is not enabled, collations cannot be specified
for database objects and value for the DEFAULT COLLATION session parameter
cannot be set.

< Until the data-bound collation feature is enabled, all user-defined database
objects have the data-bound collation USING NLS_coMp. However, Oracle-
supplied database objects are not guaranteed to use only this collation.

e Even if the data-bound collation feature is not enabled, the COLLATE operator
and the COLLATION (), NLS COLLATION ID(), and NLS COLLATION NAME ()
functions can be used in SQL statements.

* Once the data-bound collation feature is enabled, it cannot be disabled, that is,
you cannot set the value for the MAX STRING SIZE parameter back to STANDARD
and the value for the COMPATIBLE parameter back to the earlier Oracle
Database release.

e The data-bound collation feature cannot be used in a multitenant container
database root (CDB root), because, for a CDB root, the actual value of the
MAX STRING SIZE initialization parameter is ignored and its value is always
assumed to be STANDARD. However, if the MAX STRING SIZE parameter value is
not specified for a PDB, then the PDB uses the MAX STRING SIZE parameter
value specified for the CDB root.

5.10.4 Specifying a Data-Bound Collation

A data-bound collation can be specified for:

ORACLE

Table columns
Cluster columns
Tables

Schemas through the owning user

5-41

Chapter 5
Column-Level Collation and Case Sensitivity

* Views and materialized views
» PL/SQL units, such as procedures, functions, packages, types, and triggers

* SQL expressions

Note:

e A collation cannot be specified for a cluster, but it can be specified for
key columns in a cluster.

e A collation cannot be specified for a whole database.

5.10.4.1 Effective Schema Default Collation

The effective schema default collation is a default collation assigned to a database
object created in a particular schema using a DDL statement in a particular user
session, when a default collation for the object is not explicitly declared in the DDL
statement. The effective schema default collation is a combination of the
corresponding schema default collation and the value of the DEFAULT COLLATION
parameter for the session.

If a value is specified for the DEFAULT COLLATION parameter in a session, then the
effective schema default collation for that session for a schema is the value of the
DEFAULT COLLATION parameter. If a value is not specified for the DEFAULT COLLATION
parameter in a session, then the effective schema default collation for that session is
the value of the corresponding schema default collation.

You can specify a value for the parameter DEFAULT COLLATION with the ALTER SESSION
statement:

SQL> ALTER SESSION SET DEFAULT COLLATION=collation name;

Both named collations and pseudo-collations can be specified as the value for
collation name.

You can remove the collation assigned to the DEFAULT COLLATION parameter by
assigning it the value NONE:

SQL> ALTER SESSION SET DEFAULT COLLATION=NONE;

The current value of the DEFAULT COLLATION parameter can be checked in a session
by using the statement:

SQL> SELECT SYS CONTEXT ('USERENV', 'SESSION DEFAULT COLLATION') FROM
DUAL;

ORACLE 5-42

Chapter 5
Column-Level Collation and Case Sensitivity

< Note:

e Oracle recommends that you specify a default collation for a database object
during its creation using a DDL statement, when you want the object’s default
collation to be independent of the default collation of the enclosing schema. You
should use the parameter DEFAULT COLLATION only when dealing with legacy
scripts that do not specify the collation explicitly.

* A session default collation specified by the DEFAULT COLLATION parameter does
not get propagated to any remote sessions connected to the current session
using DB links.

5.10.4.2 Specifying Data-Bound Collation for a Schema

ORACLE

You can specify a default data-bound collation for a schema using the DEFAULT COLLATION
clause in the CREATE USER and ALTER USER statements. The schema default collation
determines the effective schema default collation that is assigned as the default collation for
all the tables, views, materialized views, PL/SQL units, and user-defined types (UDTs)
created in that schema, if these database objects do not have explicitly declared default
collations.

If a schema default collation is not specified explicitly in the CREATE USER statement, then it is
set to USING_NLS_COMP collation. You can change the schema default collation with the ALTER
USER statement. The change does not affect the existing database objects and affects only
the database objects that are subsequently created, replaced, or compiled in the schema.

" Note:

e Ifthe DEFAULT COLLATION parameter is specified for a session, then it overrides
the default collation of a schema referenced in that session.

» If a schema has a default collation declaration other than USING NLS COMP, then
PL/SQL units, including user-defined types, can be created in that schema, only
if the session parameter DEFAULT COLLATION is set to USING NLS COMP or the
PL/SQL unit creation DDL contains the DEFAULT COLLATION USING NLS COMP
clause.

« A schema default collation cannot be changed for an Oracle-supplied database
user.

Example: Applying a default collation to a schema

CREATE USER hrsys
IDENTIFIED BY password
DEFAULT TABLESPACE hr ts 1
DEFAULT COLLATION BINARY
ACCOUNT LOCK
-- the clauses after password can be in any order

/

5-43

Chapter 5
Column-Level Collation and Case Sensitivity

This statement creates a new database user hrsys with its schema. The default
collation of the schema is set to BINARY. All database objects created in the schema
that do not contain the DEFAULT COLLATION clause have their default collation set to
BINARY, unless the session parameter DEFAULT COLLATION overrides it.

Example: Changing the default collation of a schema

ALTER USER hrsys DEFAULT COLLATION USING NLS COMP
/

This statement changes the default collation of the hrsys schema to the pseudo-
collation USING NLS_COMP. After this statement is executed, all the database objects
created in the schema that do not contain the DEFAULT COLLATION clause have their
default collation set to USING NLS_COMP, unless the session parameter

DEFAULT COLLATION overrides it. The default collations of the existing database objects
are not affected.

You can change the default collation for a schema at any time.

¢ See Also:

« "Effective Schema Default Collation"

5.10.4.3 Specifying Data-Bound Collation for a Table

ORACLE

You can specify a default data-bound collation for a table using the DEFAULT

COLLATION clause in the CREATE TABLE and ALTER TABLE statements. The table default
collation is assigned to a character column of the table, when an explicit collation is not
declared for that column. If a default collation is not explicitly declared for a table in the
CREATE TABLE statement, then the table collation is set to effective schema default
collation.

You can change the default collation of a table using the ALTER TABLE statement. The
change does not affect the existing table columns and affects only those columns that
are subsequently added to the table or are updated using the ALTER TABLE statement.

Example: Applying a default collation to a table while creating a table

CREATE TABLE employees
(

emp_code VARCHAR2 (10) PRIMARY KEY,
first name VARCHARZ (100),

last name VARCHAR2 (200),

job_code VARCHAR2 (5) COLLATE BINARY,

dep code NUMBER

)

DEFAULT COLLATION BINARY_CI
-- other CREATE TABLE clauses
/

5-44

Chapter 5
Column-Level Collation and Case Sensitivity

The columns emp _code, first name, and last name inherit the table default collation
BINARY CI. The column job code is declared explicitly with the collation BINARY. The primary
key constraint declared on the column emp_code will not allow rows having the emp code
values of abcde123 and ABCDE123 in the table simultaneously.

Example: Changing the default collation of a table

ALTER TABLE employees DEFAULT COLLATION USING NLS COMP
/

This statement changes the default collation of the table employees to the pseudo-collation
USING_NLS_COMP. Any new VARCHAR2, CHAR, NVARCHAR2, NCHAR, and LONG columns added to
the table after the ALTER TABLE statement is executed, inherits the new collation, unless
these columns are declared with an explicit collation or belong to a foreign key. The collations
of the existing columns are not affected.

The default collation of a table can be changed at any time.

See Also:

» "Effective Schema Default Collation"

5.10.4.4 Specifying Data-Bound Collation for a View and a Materialized View

ORACLE

You can specify a default data-bound collation for a view and a materialized view by using the
DEFAULT COLLATION clause in the CREATE VIEW and CREATE MATERIALIZED VIEW statements
respectively.

The default collation of a view or a materialized view is used as the derived collation of all the
character literals included in the defining query of that view or materialized view. The default
collation of a view or a materialized view can only be changed by recreating that view or
materialized view.

Note:

« If a default collation is not specified for a view or a materialized view, then it is
set to effective schema default collation.

e A default collation for a view or a materialized view is not used by the view
columns. The collations of the view columns are derived from the view’s
defining subquery. The CREATE VIEW Or CREATE MATERIALIZED VIEW Statement
fails with an error or is created invalid, if any of the character columns of that
view or materialized view is based on an expression in the defining subquery
that has no derived collation.

e The CREATE VIEW Or CREATE MATERIALIZED VIEW statement fails with an error, if
its default collation is other than USING NLS COMP, and the defining query uses a
WITH plsql_declarations clause.

5-45

Chapter 5
Column-Level Collation and Case Sensitivity

Example: Applying a collation to a view

CREATE VIEW employees j polish sort
(emp code, first name, last name, job code, dep code)
DEFAULT COLLATION BINARY
AS
SELECT * FROM employees
WHERE last name LIKE 'j%'
ORDER BY last name COLLATE POLISH
/

Assuming the definition of the table employees is as in the CREATE TABLE example
above, the view employees j polish sort selects all employees with the last name
starting with lowercase or uppercase ‘i’ and sorts them using the named collation
POLISH. This collation properly orders accented letters for the Polish language. For
example, it orders ‘6’ between ‘o’ and ‘p’. The BINARY and BINARY CI collations
order it after ‘z’. Without the operator COLLATE, the ORDER BY clause would order the
query result based on the collation of the column last name, which is BINARY CI.

The default collation of the view, which is BINARY collation, is used only to derive the
collation of the character literal ' j%'. However, collation of a literal has lower priority
than collation of a column. The collation of the column last name, which is BINARY CI,
takes precedence and is used by the operator LIKE.

¢ See Also:

« "Effective Schema Default Collation"

5.10.4.5 Specifying Data-Bound Collation for a Column

ORACLE

A data-bound collation can be explicitly specified for columns of character data types
VARCHAR2, CHAR, LONG, CLOB, NVARCHAR2, NCHAR, and NCLOB using:

e The COLLATE clause of a standard or a virtual column definition in a CREATE TABLE
or ALTER TABLE statement.

— If the column collation is not specified explicitly with the COLLATE clause for a
column, then the default collation of the table is used for that column, except
for the cases documented below.

— If a column has the data type of CLOB or NCLOB, then its specified collation must
be USING NLS COMP. The default collation of CLOB and NCLOB columns is always
USING NLS COMP and it does not depend on the table default collation.

— There are no operators allowed on LONG data type values in SQL, other than
conversion to CLOB data type. Therefore, collation of LONG columns is not used
in SQL statements. However, the LONG data type is identical to
VARCHAR? (32767) in PL/SQL, and hence needs collation specification in PL/
SQL. Therefore, collation specification for LONG columns is supported by
Oracle, so that it can be passed to PL/SQL units through $TYPE and $ROWTYPE
attributes.

5-46

ORACLE

Chapter 5
Column-Level Collation and Case Sensitivity

< Note:

Only the USING NLS COMP collation is supported for columns referenced
using the $TYPE and $ROWTYPE attributes in PL/SQL units.

— If neither the collation nor the data type is specified explicitly for a virtual column, or a
column is created by a CREATE TABLE AS SELECT statement, then the collation is
derived from the defining expression of the column, except when the column belongs
to a foreign key. If the defining expression of a column has no derived collation, an
error is reported.

— If a column belongs to a foreign key, its explicit collation specification must specify
the same collation that is declared for the corresponding column of the referenced
primary key or unique constraint. If a column belongs to a foreign key and has no
explicit collation specification, its collation is assigned from the corresponding column
of the referenced primary key or unique constraint. If a column belongs to two or
more foreign key constraints referencing primary key or unique constraints with
different collation specifications, an error is reported.

Example: Adding a column with collation declaration

ALTER TABLE employees ADD gender VARCHARZ (1) COLLATE BINARY CI
/

This statement adds a new column named gender to the table employees and requests it
to be collated using the collation BINARY CI. Without the COLLATE clause, the column
employees.gender would inherit the default collation of the table.

Example: Changing the collation of a column

ALTER TABLE employees MODIFY job code COLLATE BINARY CI
/

This statement changes the collation of the column employees.job code to BINARY CI.
The statement would fail, if the column were included in an index key, partitioning key,
foreign key, or a virtual column expression.

5-47

ORACLE

Chapter 5
Column-Level Collation and Case Sensitivity

< Note:

The COLLATE clause can be applied to a column during its modification
only when:

— the column to be modified is of a character data type and is not
going to be changed to a non-character data type

— the column to be modified is not of a character data type and is
going to be changed to a character data type, and the column is one
of the following:

* aprimary key column
* aunique key column
* a partition key column

* acolumn having a standard index applied to it

The COLLATE clause of a key column definition in a CREATE CLUSTER Statement.

— If the column collation is not specified explicitly with the COLLATE clause for a
cluster column, then the effective schema default collation for the CREATE
CLUSTER statement is used for that column.

— The collations of cluster key columns must match the collations of the
corresponding columns in the tables created in the cluster.

Example: Applying a collation to a column in a cluster

CREATE CLUSTER clul

(
id VARCHAR2 (10) COLLATE BINARY CI,
category VARCHAR2? (20)

)

SIZE 8192 HASHKEYS 1000000

-- other CREATE CLUSTER clauses
/

The collation for the column category is inherited from the effective schema
default collation at the time of CREATE CLUSTER execution. Unless the schema
containing the cluster clul is defined with a different explicit collation or a different
collation is set in the DEFAULT COLLATION session parameter, this effective schema
default collation is the pseudo-collation USING NLS_COMP.

A CREATE TABLE statement defining a table to be added to the hash cluster clul
must specify two of the table’s columns in the CLUSTER clause. The first column
must be of data type VARCHAR2 (10) and must be declared with the collation
BINARY CI, and the second column must be of data type VARCHARZ (20) and must
be declared with the collation inherited by the cluster column clul.category from
the effective schema default collation. The two collations are not used by the hash
cluster itself.

5-48

Chapter 5
Column-Level Collation and Case Sensitivity

< Note:

* Declared collations of columns involved in creation of various database objects,
such as indexes, constraints, clusters, partitions, materialized views, and zone
maps undergo certain restrictions that are further described in the section
"Effect of Data-Bound Collation on Other Database Objects".

e The declared collation of a column can be modified with the ALTER TABLE
MODIFY statement, except for the cases described in the section "Effect of Data-
Bound Collation on Other Database Objects".

5.10.4.6 Specifying Data-Bound Collation for PL/SQL Units

ORACLE

A data-bound collation can be specified for the following PL/SQL units using the DEFAULT
COLLATION clause in their CREATE [OR REPLACE] statement:

* Procedures
* Functions

e Packages
Types

e Triggers

Varray and nested table types do not have explicitly declared default collations, as they do
not have PL/SQL methods or multiple attributes to apply the default collation. Package and
type bodies do not have their own collations, and they use the default collations of their
specifications.

Starting with Oracle Database 12c¢ Release 2 (12.2), the CREATE [OR REPLACE] PROCEDURE |
FUNCTION | PACKAGE | TYPE | TRIGGER statement succeeds, only if the effective schema
default collation is the pseudo-collation USING NLS_COMP or the DEFAULT COLLATION

USING NLS COMP clause in the CREATE statement overrides the effective schema default
collation. This restriction includes varrays and nested tables with scalar elements of character
data types.

If an ALTER COMPILE statement is issued with the REUSE SETTINGS clause, the stored default
collation of the database object being compiled is not changed. The compilation of a
database object fails, if the object does not satisfy the requirements described in the section
“Effect of Data-Bound Collation on PL/SQL Types and User-Defined Types”. For example, the
compilation of a database object fails when the stored default collation is not USING NLS COMP
or the $TYPE attribute is applied to a column with a named collation in the PL/SQL code.

If an ALTER COMPILE statement is issued without the REUSE SETTINGS clause, the stored
default collation of the database object being compiled is compared with the effective schema
default collation for the object owner at the time of the execution of the statement. If they are
not equal and the PL/SQL unit does not contain the DEFAULT COLLATION clause, then an error
is reported and the statement fails without compiling the object. If they are equal, then the
compilation proceeds. The compilation fails, if the object does not satisfy the requirements
described in the section “Effect of Data-Bound Collation on PL/SQL Types and User-Defined
Types”.

Starting with Oracle Database 12¢ Release 2 (12.2), all character data containers in
procedures, functions, and methods, such as variables, parameters, and return values,

5-49

Chapter 5
Column-Level Collation and Case Sensitivity

behave as if their data-bound collation is the pseudo-collation USING NLS COMP. Also,
all character attributes behave as if their data-bound collation is the pseudo-collation
USING NLS_coMp and all the relational table columns storing object attributes are
assigned the pseudo-collation USING NLS_COMP.

Note:

If a default collation is not specified for a PL/SQL unit, then it is set to the
effective schema default collation.

¢ See Also:

« "Effective Schema Default Collation"

- "Effect of Data-Bound Collation on PL/SQL Types and User-Defined
Types"

5.10.4.7 Specifying Data-Bound Collation for SQL Expressions

During an SQL expression evaluation, each character argument to an operator and
each character result of an operator has an associated data-bound collation. The
collations of an operator’s arguments determine the collation used by the operator, if
the operator is collation-sensitive. The derived collation of an SQL expression result is
relevant for a consumer of the result, which may be another SQL operator in the
expression tree or a top-level consumer, such as an SQL statement clause in a SELECT
statement. You can override the derived collation of an expression node, such as a
simple expression or an operator result, by using the COLLATE operator. The collation
derivation and collation determination rules are used while evaluating an SQL
expression.

This section contains the following topics:

* Collation Derivation

e Collation Determination

* Expression Evaluation and the COLLATE Operator

¢ COLLATION Function

e NLS_COLLATION_ID and NLS_COLLATION_NAME Functions

5.10.4.7.1 Collation Derivation

ORACLE

The process of determining the collation of a character result of an SQL operation is
called collation derivation. Such operation may be an operator, column reference,
character literal, bind variable reference, function call, CASE expression, or a query
clause.

5-50

Chapter 5
Column-Level Collation and Case Sensitivity

¢ See Also:

"Collation Derivation and Determination Rules for SQL Operations" for more
information about collation derivation.

5.10.4.7.2 Collation Determination

Collation determination is the process of selecting the right collation to apply during the
execution of a collation-sensitive operation. A collation-sensitive operation can be an SQL
operator, condition, built-in function call, CASE expression or a query clause.

¢ See Also:

"Collation Derivation and Determination Rules for SQL Operations" for more
information about collation determination.

5.10.4.7.3 Expression Evaluation and the COLLATE Operator

You can override the derived collation of any expression node, that is, a simple expression or
an operator result, with the COLLATE operator. The COLLATE operator does for collations what
the CAST operator does for data types. The COLLATE operator must specify a collation or a
pseudo-collation by name. Dynamic collation specification in the form of an expression is not
allowed. This is different from how collations are specified for the SQL functions NLSSORT,
NLS_UPPER, NLS_LOWER, and NLS INITCAP.

Starting with Oracle Database 12¢ Release 2 (12.2), the syntax of SQL expressions used in
SELECT and DML statements allows changing the collation of a character value expression.
The syntax of compound expression clause is as follows:

{ (expr)

| { + |1 - | PRIOR } expr

| expr { * | / | + 1 -] |l } expr
| expr COLLATE collation name

}

collation name is the name the collation to be assigned to the value of the expression expr.
The name must be enclosed in double-quotes, if it contains the space character. The
COLLATE operator overrides the collation that the database derives using the standard
collation derivation rules for expr. The COLLATE operator can be applied only to the
expressions of the data types VARCHAR?2, CHAR, LONG, NVARCHAR2, and NCHAR. There
is no implicit conversion of the argument of COLLATE to a character data type. The
COLLATE operator has the same precedence as other unary operators, but it is a postfix
operator and it is evaluated only after all the prefix operators are evaluated.

ORACLE 5-51

Chapter 5
Column-Level Collation and Case Sensitivity

¢ See Also:

* "Enabling Data-Bound Collation"

e "Collation Derivation and Determination Rules for SQL Operations"

5.10.4.7.4 COLLATION Function

Starting with Oracle Database 12¢ Release 2 (12.2), the function COLLATION returns
the derived data-bound collation of a character expression.

COLLATION(expr);

expr is an expression of a character data type. The COLLATION function returns the
name of the derived collation of expr as a VARCHAR?2 value. This function returns
pseudo-collations as well. The UCA collation names are returned in the long,
canonical format with all collation parameters included in the collation name. This
function returns NULL value, if the collation of the expression is undefined due to any
collation conflict in the expression tree.

< Note:

e The COLLATION function returns only the data-bound collations, and not
the dynamic collations set by the NLS SORT parameter. Thus, for a
column declared as COLLATE USING NLS SORT, the function returns the
character value "USING NLS SORT", and not the actual value of the
session parameter NLS_SORT. You can use the built-in function
SYS CONTEXT ('USERENV', 'NLS_SORT') to get the actual value of the
session parameter NLS_SORT.

e The coLLATION function used in SQL is evaluated during the compilation
of the SQL statement.

5.10.4.7.5 NLS_COLLATION_ID and NLS_COLLATION_NAME Functions

ORACLE

Starting with Oracle Database 12¢ Release 2 (12.2), the two functions

NLS COLLATION IDand NLS COLLATION NAME allow numeric collation IDs, as stored in
data dictionary, to be translated to collation names and collation names translated to
collation IDs.

The syntax for the NLS COLLATION ID function is:

NLS COLLATION ID(expr);

expr iS an expression that must evaluate to a VARCHAR? value. The value of expr is
taken as a collation name or pseudo-collation name, and the corresponding collation
ID is returned by the function. The NULL value is returned, if the collation name is
invalid.

5-52

Chapter 5
Column-Level Collation and Case Sensitivity

The syntax for the NLS _COLLATION NAME function is:

NLS_COLLATION NAME(expr [,flag]);

expr is an expression that must evaluate to a NUMBER value. The value of expr is taken as a
collation ID, and the corresponding collation name or pseudo-collation name is returned by
the function. The NULL value is returned, if the collation ID is invalid.

The optional parameter f1ag must evaluate to a VARCHAR? value. The value of the flag
parameter must be 's', 's', 'L', or '1'. The default value of the f1ag parameteris 'L'. This
parameter determines the behavior of the function for UCA collations. The flag parameter
values 's' and 's' mean that the UCA collation names are returned in the short format, that
is, the format in which all the UCA collation parameters with default values are omitted. The
flag parameter values 'L' and '1' mean that the UCA collation names are returned in the
long, canonical format, that is, the format in which all the UCA collation parameters are
included, even if they have default values. For example, uCA0700 DUCET and

UCA0700 DUCET S4 VS BN NY EN FN HN DN MN are short and long names of the same
collation respectively.

¢ See Also:
"UCA Collation"

5.10.5 Viewing the Data-Bound Collation of a Database Object

ORACLE

You can view the data-bound collation information for a database object or a column using
the following data dictionary views:

Data dictionary views for viewing the default collation of an object
DBA|USER_USERS.DEFAULT COLLATION

DBA|ALL|USER TABLES.DEFAULT COLLATION

DBA|ALL|USER VIEWS.DEFAULT COLLATION

DBA|ALL|USER MVIEWS.DEFAULT COLLATION

DBA|ALL|USER _OBJECTS.DEFAULT COLLATION

Data dictionary views for viewing the collation of a table, a view, or a cluster column
{DBA|ALL|USER} TAB COLS.COLLATION

{DBA|ALL|USER} TAB COLUMNS.COLLATION

Data dictionary views to view the collation association between a virtual column and
an original column

The data dictionary views contain the following columns that show the collation association
between a virtual column and an original columns whose linguistic behavior the virtual
column implements:

{DBA|ALL|USER} TAB COLS.COLLATED COLUMN ID

5-53

Chapter 5
Column-Level Collation and Case Sensitivity

{DBA|ALL|USER} PART KEY COLUMNS.COLLATED COLUMN ID

{DBA|ALL|USER} SUBPART KEY COLUMNS.COLLATED COLUMN ID

" Note:

The name of a UCA collation is stored in the data dictionary views in the form
of a long canonical format with all its parameters, including the parameters
with the default values. For example, the UCA collation UCA0700 DUCET is
stored in these views as UCA0700 DUCET S4 VS BN NY EN FN HN DN MN.

5.10.6 Case-Insensitive Database

Oracle Database supports case-insensitive collations, such as BINARY CI, BINARY AI,
GENERIC M CI, GENERIC M AI, UCA0700 DUCET CI, and UCA0700 DUCET AI. By applying
such collations to SQL operations, an application can perform string comparisons and
matching in a case-insensitive way.

Starting with Oracle Database 12¢ Release 2 (12.2), you can declare a column to be
always compared as case-insensitive by specifying a case-insensitive data-bound
collation (collation having suffix CI or AT) in the column definition. The column
collation, if not specified explicitly, is inherited from the table default collation, which in
turn is inherited from the schema default collation. This way, you can easily declare all
the character columns in a database as case-insensitive by default, and use explicit
collation declarations only for columns that require a case-sensitive collation.

" See Also:

¢ "About Data-Bound Collation"

5.10.7 Effect of Data-Bound Collation on Other Database Objects

ORACLE

This section describes the affect on the following database objects, when they
reference a column implementing a data-bound collation:

* Persistent Objects

* Standard Indexes

* Bitmap Join Indexes

* Primary and Unique Constraints
* Foreign Key Constraints

» Partitioning and Sharding

* Index-organized Tables (I0Ts)

* Clusters

e Table Clustering and Zone Maps

e Oracle Text Indexes and Other Domain Indexes

5-54

ORACLE

Chapter 5
Column-Level Collation and Case Sensitivity

» Other Specific Table Types

Persistent Objects

A database object with content stored persistently in the database, such as index, partition,
primary key, unique key, referential constraint, cluster, or zone map, cannot have its content
collated persistently based on transient, possibly changing values of session parameters
NLS COMP and NLS_SORT. Therefore, when a pseudo-collation is declared for a key column of
such an object, the values of the column are collated and grouped as described below.

Collation Group Key Column Collation Collation Used

Group 1 USING NLS_COMP BINARY
USING NLS SORT
USING NLS_SORT CS

Group 2 USING NLS_SORT CI BINARY CI
Group 3 USING NLS_SORT AI BINARY AI

Standard Indexes

Standard indexes, that is, B-tree indexes defined on a column declared with a collation not
from Group 1, automatically become functional indexes on the function NLSSORT. This
functionality is applicable to bitmap indexes as well. The NLSSORT function uses the collation
of the index key column, if it is a named collation, or the collation BINARY CI or BINARY AI, as
described in the section "Persistent Objects".

Note:

An index defined on a column declared with a collation from Group 1 is created as
a standard binary index.

For example, the SQL statements:
CREATE TABLE my table
(
my column VARCHARZ2(100) COLLATE POLISH,

);

CREATE [UNIQUE|BITMAP] INDEX my index ON my table(my column);

are equivalent to:
CREATE TABLE my table
(
my column VARCHAR2 (100) COLLATE POLISH,

):

5-55

ORACLE

Chapter 5
Column-Level Collation and Case Sensitivity

CREATE [UNIQUE|BITMAP] INDEX my_index ON
my table (NLSSORT (my column, 'NLS SORT=POLISH'));

A compound index key comprising columns that have collations from Group 1 as well
as not from Group 1 contains both NLSSORT-based expressions and plain columns.

For example, the SQL statements:

CREATE TABLE my table

(
id VARCHAR2 (20) COLLATE USING NLS COMP,
my column VARCHAR2 (100) COLLATE POLISH,

)i

CREATE [UNIQUE|BITMAP] INDEX my index ON my table(id, my_ column);

are equivalent to:

CREATE TABLE my table

(
id VARCHAR2 (20) COLLATE USING NLS COMP,
my column VARCHARZ(100) COLLATE POLISH,

):

CREATE [UNIQUE|BITMAP] INDEX my_index ON my_table(id,
NLSSORT (my column, 'NLS SORT=POLISH'));

You can change the collation of an index key column with the ALTER TABLE MODIFY
statement only among collations of the same group as defined in the section
"Persistent Objects". For example, you can change the collationBINARY to
USING NLS SORT, but not to USING NLS SORT CI or to any other named collation. To
change the collation to another value, the index must be dropped first.

Bitmap Join Indexes

A bitmap join index definition can only reference columns with collations BINARY,
USING NLS COMP, USING NLS SORT, and USING NLS SORT CS. For any of these
collations, index keys are collated and the join condition is evaluated using the BINARY
collation.

The collation of a bitmap join index key column or a column referenced in the bitmap
index join condition can be changed with the ALTER TABLE MODIFY Statement only
among collations permitted in the index definition.

Primary and Unique Constraints

Primary and unique constraints defined on a column declared with a named collation
use that collation to determine the uniqueness of the value to be inserted in that
column. In this case, a primary constraint or a unique constraint is implemented by
using a unique functional index instead of a binary unique index. Primary and unique
constraints on columns declared with any of the pseudo-collations use a variant of the
binary collation as described in the section "Persistent Objects".

5-56

ORACLE

Chapter 5
Column-Level Collation and Case Sensitivity

The collation of a primary or a unique key column can be changed with the ALTER TABLE
MODIFY statement only among collations of the same group as defined in the section and only
if no foreign key constraint references the primary or unique key. To change the collation to
another value, the constraint must be dropped first.

Foreign Key Constraints

Foreign key constraints use the collation of the referenced primary or unique key columns
when comparing key values. The comparison between a foreign key value and a referenced
primary key value is not necessarily binary. Foreign constraints on columns declared with any
of the pseudo-collations use a variant of the binary collation as described in the section
"Persistent Objects". The collation of a foreign key column cannot be changed with the ALTER
TABLE MODIFY statement. To change the collation, the constraint must be dropped first.

¢ Note:

The collation of a foreign key column must be the same as the collation of the
referenced column. This requirement is checked when the foreign key constraint is
defined.

Partitioning and Sharding

Range, list, hash, and referential partitioning use the collations of the columns building the
partitioning key to determine the ordering of values for the purpose of assigning them to
proper partitions and sub-partitions, and for partition pruning.

In Oracle Database 18c, partitioning and partition set key columns with character data types
used as sharding keys must have the collation BINARY, USING NLS_COMP, USING NLS_SORT, Of
USING NLS SORT CS. The same collations are required for partitioning key columns in tables

that:

e are of XMLType or
e contain columns of XMLType or
» are defined with the FOR EXCHANGE WITH TABLE clause

The collation of a partitioning key column can be changed with the ALTER TABLE MODIFY
statement only among the collations of the same group described in the section "Persistent
Objects".

¢ Note:

Data-bound collation does not affect system partitioning.

Index-organized Tables (IOTs)

An index-organized table stores columns of its primary key plus zero or more columns in its
primary key index, and the rest of the columns in a heap-organized overflow segment.

Starting with Oracle Database 12¢ Release 2 (12.2), primary key columns of an IOT must
have the collation BINARY, USING NLS COMP, USING NLS SORT, or USING NLS SORT CS. For all
these collations, the index key values are collated with BINARY collation.

5-57

ORACLE

Chapter 5
Column-Level Collation and Case Sensitivity

The collation of a primary key column of an IOT can be changed with the ALTER TABLE
MODIFY statement to any of the above mentioned collations only.

Clusters

Oracle Database supports hash clusters and index clusters. Index clusters have an
index, and the key value ordering for character key columns in this index is sensitive to
collation. Hash clusters are not collation-sensitive in general because table rows are
grouped based on a numerical hash function. However, the value of a user-defined
hash function may depend on the collations of key columns referenced by the function.

Additionally, the SORT clause on hash cluster columns instructs Oracle Database to
sort the rows of a cluster on those columns after applying the hash function when
performing a DML operation. To ensure that hash and index processing is consistent
for all the tables of a cluster, key columns of both hash and index clusters having
declared collations must match the collations of corresponding columns of tables
stored in that cluster.

< Note:

e Starting with Oracle Database 12c¢ Release 2 (12.2), creation of an index
clusters with key columns declared with a collation other than BINARY,
USING NLS COMP, USING NLS SORT, Or USING NLS SORT CS is not
supported. The same restriction applies to columns of hash clusters that
have the SORT clause. Key columns of hash clusters without the SORT
clause can have any collation.

e Hash clusters and index clusters have no default collation. Cluster keys
usually have very few columns and new columns cannot be added to a
cluster using the ALTER CLUSTER command. Therefore, default collations
are not useful for clusters. The default collation for a column in a cluster
is always derived from the effective schema default collation.

e Collation of a table column corresponding to a cluster key cannot be
modified with ALTER TABLE MODIFY statement.

¢ See Also:

"Effective Schema Default Collation"

Table Clustering and Zone Maps

The data-bound collation feature is not supported for table clustering and zone maps.
Clustering and zone maps can only be applied to table columns declared with BINARY
or USING NLS COMP collation. For all these collations, column values are clustered
based on the BINARY collation.

Oracle Text Indexes and Other Domain Indexes

The data-bound collation feature is not supported for Oracle Text indexes and other
domain indexes. Domain indexes can be created only on table columns declared with
collation BINARY, USING NLS COMP, USING NLS SORT, Or USING NLS SORT CS. Oracle

5-58

Chapter 5
Column-Level Collation and Case Sensitivity

Text does not use data-bound collation in its processing. Oracle Text has its own mechanisms
to specify matching behavior.

Other Specific Table Types

The default table collation and column collations can be specified for temporary and external
tables as well.

Note:

User-defined types (UDTs) support only the pseudo-collation USING NLS COMP.
Therefore, nested tables, which are always based on a user-defined collection type,
also support USING NLS_COMP collation only.

See Also:

e "Specifying Data-Bound Collation for a Table"

e "Specifying Data-Bound Collation for a Column"

5.10.8 Effect of Data-Bound Collation on Distributed Queries and DML

Operations

ORACLE

Distributed queries and DML operations may involve one or more database nodes of different
Oracle Database releases, such as, 12.2, 12.1, and earlier. Evaluation of different parts of a
guery may happen in different nodes and determination of particular nodes evaluating
particular operators is subject to optimizer decisions. Moreover, a local node is generally
aware only of nodes that it directly accesses through database links. Indirect or multi-hop
nodes, which are remote nodes accessed through synonyms referenced in the query and
defined in directly connected nodes, are not visible to a local node.

Considering the above scenario and the requirement that query results must be deterministic
and cannot depend on optimizer decisions, Oracle defines the following behavior for queries
and subqueries:

e |f an Oracle Database 12.2 node with the data-bound collation feature enabled connects
to another Oracle Database 12.2 node with the data-bound collation feature enabled, all
data-bound collation related behavior is supported.

» If an Oracle Database 12.1 node or an earlier Oracle Database release node connects to
an Oracle Database 12.2 node, the Oracle Database 12.2 node recognizes that the query
is coming from an earlier Oracle Database release. If such a query references columns
with a declared collation other than USING NLS COMP, an error is reported. However, if the
remote Oracle Database 12.2 node receives a DML statement, the statement is
evaluated, even if it references columns with a declared collation other than
USING NLS_COMP.

* If alocal Oracle Database 12.2 node connects to a remote database node of earlier
Oracle Database release, the local database node assumes that any character data
coming from the remote database node has the declared collation of USING NLS COMP.
The local database node makes sure that the new SQL operators, such as COLLATE and

5-59

Chapter 5
Column-Level Collation and Case Sensitivity

NLS_COLLATION NAME, are not sent to the remote database node. If an SQL
statement has to be executed on the remote node (for example, a DML operation
on a remote table), and if it contains the new SQL operators or a reference to a
local column with collation other than USING NLS COMP, then an error is reported.

" Note:

The above rules are applied recursively when additional databases are
accessed through database links defined in remote nodes and referenced
through synonyms.

5.10.9 Effect of Data-Bound Collation on PL/SQL Types and User-
Defined Types

Oracle Database provides limited data-bound collation support for PL/SQL types and
user-defined types (UDTs). Only those features are provided in Oracle Database that
are needed to maintain forward compatibility of PL/SQL code, with the possible future
extension of data-bound collation architecture to PL/SQL without limiting the use of
PL/SQL with database objects that use the data-bound collation feature.

The following features related to PL/SQL units and UDTs are provided in Oracle
Database for data-bound collation support:

A PL/SQL procedure, function, package, trigger, or UDT can be created as a valid
object, only if the effective schema default collation at the time of its creation is
USING NLS COMP, or its definition contains an explicit DEFAULT COLLATION
USING NLS COMP clause. If the resulting default object collation is different from
USING NLS COMP, the database object is created as invalid with a compilation error.

¢ See Also:

"Effective Schema Default Collation"

¢ The new SQL operators COLLATE, COLLATION, NLS COLLATION ID, and
NLS COLLATION NAME used in embedded SQL are accepted and passed to the
SQL engine, but their functionality is not available in PL/SQL code.

* The database columns with declared collations other than USING NLS COMP can be
referenced in embedded SQL, but not in PL/SQL expressions.

e The DML row-level triggers cannot reference fields of OLD, NEW, or PARENT pseudo-
records, or correlation names that correspond to columns with declared collation
other than USING _NLS COMP.

e The PL/SQL variables referenced in embedded SQL statements have the pseudo-
collation USING NLS_coMP and the coercibility level 2.

* The $TYPE attribute is not allowed on character columns with a declared collation
other than the pseudo-collation USING NLS COMP. Similarly, the SROWTYPE attribute
is not allowed on tables, views, cursors, or cursor variables with at least one
character column with a declared collation other than USING NLS_COMP. The
columns with collations other than USING NLS COMP can be selected into INTO

ORACLE 5-60

Chapter 5
Column-Level Collation and Case Sensitivity

clause variables declared without those attributes. PL/SQL variables always have the
default collation USING NLS_COMP. Thus, whatever is the collation of the selected columns,
it is always overridden with the pseudo-collation USING NLS COMP for PL/SQL processing.

e The cursor FOR LOOP statements are not allowed on cursors that return result set columns
with collation other than the pseudo-collation USING NLS COMP.

e Arelational column created to store an UDT attribute, whether of an object column or of
an object table, inherits the attribute’s collation property. However, as all UDTs are
created using the pseudo-collation USING NLS COMP, any relevant columns for UDT
attributes are also created with the pseudo-collation USING NLS_COMP.

* A WHEN condition in a trigger is evaluated by the SQL engine, and hence, it supports the
data-bound collation feature. A WHEN condition can reference a column with declared
collation other than USING NLS_COMP, and can use the new operators and functions.

5.10.10 Effect of Data-Bound Collation on Oracle XML DB

ORACLE

The XML Query standard xQuery defines features to specify collation for collation-sensitive
operators in XML Query expressions. An XQuery collation can be specified for a particular
operator, similar to how collation is specified in the second parameter of the Oracle SQL
function NLS_UPPER, or as a default collation in the static context of an XQuery expression.
XQuery does not provide any mechanism to declare collation for a data container or data
source. Therefore, the declared collations of any relational database columns passed as
arguments in the PASSING clause of the XMLQuery , XMLExists, Or XMLTable operator are
ignored by Oracle XML DB.

5-61

Supporting Multilingual Databases with
Unicode

This chapter illustrates how to use the Unicode Standard in an Oracle Database environment.
This chapter includes the following topics:

* What is the Unicode Standard?

* Features of the Unicode Standard

* Implementing a Unicode Solution in the Database
* Unicode Case Studies

» Designing Database Schemas to Support Multiple Languages

6.1 What is the Unicode Standard?

The Unicode Standard is a character encoding system that defines every character in most of
the spoken languages in the world.

To overcome the limitations of existing character encodings, several organizations began
working on the creation of a global character set in the late 1980s. The need for this became
even greater with the development of the World Wide Web in the mid-1990s. The Internet has
changed how companies do business, with an emphasis on the global market that has made
a universal character set a major requirement.

A global character set needs to fulfill the following conditions:
* Contain all major living scripts
e Support legacy data and implementations

* Be simple enough that a single implementation of an application is sufficient for
worldwide use

A global character set should also have the following capabilities:

e Support multilingual users and organizations
» Conform to international standards
e Enable worldwide interchange of data

The Unicode Standard, which is now in wide use, meets all of the requirements and
capabilities of a global character set. It provides a unique code value for every character,
regardless of the platform, program, or language. It also defines a number of character
properties and processing rules that help implement complex multilingual text processing
correctly and consistently. Bi-directional behavior, word breaking, and line breaking are
examples of such complex processing.

The Unicode Standard has been adopted by many software and hardware vendors. Many
operating systems and browsers now support the standard. The Unicode Standard is
required by other standards such as XML, Java, JavaScript, LDAP, and WML. It is also
synchronized with the ISO/IEC 10646 standard.

ORACLE 6-1

Chapter 6
Features of the Unicode Standard

Oracle Database introduced the Unicode Standard character encoding as the now
obsolete database character set AL24UTFFSS in Oracle Database 7. Since then,
incremental improvements have been made in each release to synchronize the
support with the new published version of the standard. Oracle Database 18c supports
Unicode version 9.0.

¢ See Also:

The Unicode Consortium website for more information about the Unicode
Standard

6.2 Features of the Unicode Standard

This section contains the following topics:
e Code Points and Supplementary Characters
e Unicode Encoding Forms

e Support for the Unicode Standard in Oracle Database

6.2.1 Code Points and Supplementary Characters

The first version of the Unicode Standard was a 16-bit, fixed-width encoding that used
two bytes to encode each character. This enabled 65,536 characters to be
represented. However, more characters need to be supported, especially additional
CJK ideographs that are important for the Chinese, Japanese, and Korean markets.

The current definition of the Unicode Standard assigns a number to each character
defined in the standard. These numbers are called code points, and are in the range 0
to 10FFFF hexadecimal. The Unicode notation for representing character code points
is the prefix "U+" followed by the hexadecimal code point value. The code point value
is left-padded with non-significant zeros to the minimum length of four. Characters with
code points U+0000 to U+FFFF are called Basic Multilingual Plane characters.
Characters with code points U+10000 to U+10FFFF are called supplementary
characters.

Adding supplementary characters has increased the complexity of the Unicode 16-bit,
fixed-width encoding form; however, this is still far less complex than managing
hundreds of legacy encodings used before Unicode.

6.2.2 Unicode Encoding Forms

ORACLE

The Unicode Standard defines a few encoding forms, which are mappings from
Unicode code points to code units. Code units are integer values processed by
applications. Code units may have 8, 16, or 32 bits. The standard encoding forms are:
UTF-8, UTF-16, and UTF-32. There are also two compatibility encodings mentioned in
the standard and its associated technical reports: UCS-2 and CESU-8. Conversion
between different Unicode encodings is a simple bit-wise operation that is defined in
the standard.

This section contains the following topics:

6-2

Chapter 6
Features of the Unicode Standard

* UTF-8 Encoding Form

* UTF-16 Encoding Form

* UCS-2 Encoding Form

* UTF-32 Encoding Form

 CESU-8 Encoding Form

* Examples: UTF-16, UTF-8, and UCS-2 Encoding

6.2.2.1 UTF-8 Encoding Form

UTF-8 is the 8-bit encoding form of Unicode. It is a variable-width encoding and a strict
superset of ASCII. This means that each and every character in the ASCII character set is
available in UTF-8 with the same byte representation. One Unicode character can be
represented by 1 byte, 2 bytes, 3 bytes, or 4 bytes in the UTF-8 encoding form. Characters
from the European and Middle Eastern scripts are represented in either 1 or 2 bytes.
Characters from most Asian scripts are represented in 3 bytes. Supplementary characters
are represented in 4 bytes.

UTF-8 is the Unicode encoding used for HTML and most Internet browsers.
The benefits of UTF-8 are as follows:

» Compact storage requirement for European scripts because it is a strict superset of
ASCII

» Ease of migration between ASCIl-based character sets and UTF-8

See Also:

"Code Points and Supplementary Characters"
— Table B-2

6.2.2.2 UTF-16 Encoding Form

ORACLE

UTF-16 is the 16-bit encoding form of Unicode. One character can be represented by either
one 16-bit integer value (two bytes) or two 16-bit integer values (four bytes) in UTF-16. All
characters from the Basic Multilingual Plane, which are most characters used in everyday
text, are represented in two bytes. Supplementary characters are represented in four bytes.
The two code units (integer values) encoding a single supplementary character are called a
surrogate pair.

UTF-16 is the main Unicode encoding used for internal processing by Java since version
J2SE 5.0 and by Microsoft Windows since version 2000.

The benefits of UTF-16 over UTF-8 are as follows:

* More compact storage for Asian scripts because most of the commonly used Asian
characters are represented in two bytes.

» Better compatibility with Java and Microsoft clients

6-3

Chapter 6
Features of the Unicode Standard

¢ See Also:

"Code Points and Supplementary Characters"
— Table B-1

6.2.2.3 UCS-2 Encoding Form

UCS-2 is not an official Unicode encoding form. The name originally comes from older
versions of the ISO/IEC 10646 standard, before the introduction of the supplementary
characters. Therefore, it is currently used to refer to the UTF-16 encoding form
stripped from support for supplementary characters and surrogate pairs. That is,
surrogate pairs are processed in UCS-2 as two separate characters. Applications
supporting UCS-2 but not UTF-16 should not process text containing supplementary
characters, as they may incorrectly split surrogate pairs when dividing text into
fragments. They are also generally incapable of displaying such text.

UCS-2 is the Unicode encoding used for internal processing by Java before version
J2SE 5.0 and by Microsoft Windows NT.

6.2.2.4 UTF-32 Encoding Form

UTF-32 is the 32-bit encoding form of Unicode. Each Unicode code point is
represented by a single 32-bit, fixed-width integer value. If is the simplest encoding
form, but very space inefficient. For English text, it quadruples the storage
requirements compared to UTF-8 and doubles when compared to UTF16. Therefore,
UTF-32 is sometimes used as an intermediate form in internal text processing, but it is
generally not used for information interchange.

In Java, since version J2SE 5.0, selected APIs have been enhanced to operate on
characters in the 32-bit form, stored as int values.

6.2.2.5 CESU-8 Encoding Form

ORACLE

CESU-8 is not part of the core Unicode Standard. It is described in the Unicode
Technical Report #26 published by The Unicode Consortium. CESU-8 is a
compatibility encoding form identical to UTF-8 except for its representation of
supplementary characters. In CESU-8, supplementary characters are represented as
surrogate pairs, as in UTF-16. To obtain the CESU-8 encoding of a supplementary
character, encode the character in UTF-16 first and then treat each of the surrogate
code units as a code point with the same value. Then, apply the UTF-8 encoding rules
(bit transformation) to each of the code points. This will yield two three-byte
representations, six bytes in total.

CESU-8 has only two benefits:

e It has the same binary sorting order as UTF-16.

e It uses the same number of codes per character (one or two). This is important for
character length semantics in string processing.

In general, the CESU-8 encoding form should be avoided as much as possible.

6-4

Chapter 6
Features of the Unicode Standard

¢ See Also:

Unicode Technical Report #26 “Compatibility Encoding Scheme for UTF-16: 8-Bit
(CESU-8)” published on The Unicode Consortium website

6.2.2.6 Examples: UTF-16, UTF-8, and UCS-2 Encoding

The following table shows some characters and their character codes in UTF-16, UTF-8, and
UCS-2 encoding. The last character is a treble clef (a music symbol), a supplementary

character.
Character | UTF-16 UTF-8 UCS-2
A 0041 41 0041
c 0063 63 | 0063
O O0F6 C3B6 | O0F6
3] 4E9C E4 BA9C | 4E9C
é D834 DD1E FO9D 84 9E | N/A

6.2.3 Support for the Unicode Standard in Oracle Database

Oracle Database began supporting the Unicode character set as a database character set in
release 7. Table 6-1 summarizes the Unicode character sets supported by Oracle Database.

Table 6-1 Unicode Character Sets Supported by Oracle Database

Character Set Supported in Unicode Unicode Version Database National
RDBMS Encoding Character Character
Release Form Set Set
AL24UTFFSS 7.2t0 8i UTF-8 1.1 Yes No
UTF8 8.0to 18c CESU-8 Oracle Database release 8.0 through Yes Yes
Oracle8i Release 8.1.6: 2.1 (Oracle9i
Oracle8i Database release 8.1.7 and Database
later: 3.0 and later
versions
only)
UTFE 8.0to 18c UTF-EBCDIC Oracle8i Database releases 8.0 Yes! No

through 8.1.6: 2.1

For Oracle8i Database release 8.1.7
and later: 3.0

ORACLE 6-5

Chapter 6
Implementing a Unicode Solution in the Database

Table 6-1 (Cont.) Unicode Character Sets Supported by Oracle Database
]

Character Set Supported in Unicode Unicode Version Database National
RDBMS Encoding Character Character
Release Form Set Set

AL32UTF8 9ito 18c UTF-8 Oracle9i Database release 1: 3.0 Yes No

Oracle9i Database release 2: 3.1
Oracle Database 10g, release 1: 3.2
Oracle Database 10g, release 2: 4.0
Oracle Database 11g: 5.0

Oracle Database 12c, release 1: 6.2
Oracle Database 12c, release 2: 7.0
Oracle Database 18c: 9.0

AL16UTF16 9i to 18c UTF-16 Oracle9i Database release 1: 3.0 No Yes

Oracle9i Database release 2: 3.1
Oracle Database 10g, release 1: 3.2
Oracle Database 10g, release 2: 4.0
Oracle Database 11g: 5.0

Oracle Database 12c, release 1: 6.2
Oracle Database 12c, release 2: 7.0
Oracle Database 18c: 9.0

1 UTF-EBCDIC is a compatibility encoding form specific to EBCDIC-based systems, such as IBM z/OS or Fujitsu BS2000. It is
described in the Unicode Technical Report #16. Oracle character set UTFE is a partial implementation of the UTF-EBCDIC
encoding form, supported on ECBDIC-based platforms only. Oracle Database does not support five-byte sequences of the this
encoding form, limiting the supported code point range to U+000 - U+3FFFF. The use of the UTFE character set is discouraged.

6.3 Implementing a Unicode Solution in the Database

Unicode characters can be stored in an Oracle database in two ways:

* You can create a database that enables you to store UTF-8 encoded characters as
SQL CHAR data types (CHAR, VARCHAR2, CLOB, and LONG).

* You can store Unicode data in either the UTF-16 or CESU-8 encoding form in SQL
NCHAR data types (NCHAR, NVARCHAR?2, and NCLOB). The SQL NCHAR data types are
called Unicode data types because they are used only for storing Unicode data.

Note:

You can combine both Unicode solutions, if required by different applications
running in a single database.

The following sections explain how to use the two Unicode solutions and how to
choose between them:

e Enabling Multilingual Support for a Database
e Enabling Multilingual Support with Unicode Data Types

ORACLE 6-6

Chapter 6
Implementing a Unicode Solution in the Database

How to Choose Between Unicode Solutions

6.3.1 Enabling Multilingual Support for a Database

The database character set specifies the encoding to be used in the SQL CHAR data types as
well as the metadata such as table names, column names, and SQL statements. A Unicode
Standard-enabled database is a database with a Unicode Standard-compliant character set
as the database character set. There are two database Oracle character sets that implement
the Unicode Standard.

ORACLE

AL32UTF8

The AL32UTF8 character set implements the UTF-8 encoding form and supports the
latest version of the Unicode standard. It encodes characters in one, two, three, or four
bytes. Supplementary characters require four bytes. It is for ASCII-based platforms.

AL32UTF8 is the recommended database character set for any new deployment of
Oracle Database as it provides the optimal support for multilingual applications, such as
Internet websites and applications for multinational companies.

UTF8

The UTF8 character set implements the CESU-8 encoding form and encodes characters
in one, two, or three bytes. It is for ASClI-based platforms.

Supplementary characters inserted into a UTF8 database are stored in the CESU-8
encoding form. Each character is represented by two three-byte codes and hence
occupies six bytes of memory in total.

The properties of characters in the UTF8 character set are not guaranteed to be updated
beyond version 3.0 of the Unicode Standard.

Oracle recommends that you switch to AL32UTF8 for full support of the supplementary
characters and the most recent versions of the Unicode Standard.

6-7

ORACLE

Chapter 6
Implementing a Unicode Solution in the Database

< Note:

e Specify a database character set when you create a database. Oracle
recommends using AL32UTF8 as the database character set.
AL32UTF8 is the proper implementation of the Unicode encoding UTF-8.
Starting with Oracle Database 12c Release 2, AL32UTF8 is used as the
default database character set while creating a database using Oracle
Universal Installer (OUI) as well as Oracle Database Configuration
Assistant (DBCA).

Do not use UTF8 as the database character set as it is not a proper
implementation of the Unicode encoding UTF-8. If the UTF8 character
set is used where UTF-8 processing is expected, then data loss and
security issues may occur. This is especially true for Web related data,
such as XML and URL addresses.

 AL32UTF8 and UTF8 character sets are not compatible with each other
as they have different maximum character widths. AL32UTF8 has a
maximum character width of 4 bytes, whereas UTF8 has a maximum
character width of 3 bytes.

e Ifthe CHARACTER SET clause is not specified in the CREATE DATABASE
statement explicitly, then the database character set defaults to
US7ASCII (except on EBCDIC platforms).

Example 6-1 Creating a Database with a Unicode Character Set

To create a database with the AL32UTF8 character set, use the CREATE DATABASE
statement and include the CHARACTER SET AL32UTF8 clause. For example:

CREATE DATABASE sample

CONTROLFILE REUSE
LOGFILE

GROUP 1 ('diskx:logl.log', 'disky:logl.log') SIZE 50K,
GROUP 2 ('diskx:log2.log', 'disky:log2.log') SIZE 50K

MAXLOGFILES 5

MAXLOGHISTORY 100

MAXDATAFILES 10

MAXINSTANCES 2

ARCHIVELOG

CHARACTER SET AL32UTF8

NATIONAL CHARACTER SET AL16UTF16
DATAFILE

'diskl:dfl.dbf' AUTOEXTEND ON,
'disk2:df2.dbf"' AUTOEXTEND ON NEXT 10M MAXSIZE UNLIMITED

DEFAULT TEMPORARY TABLESPACE temp ts

UNDO TABLESPACE undo_ts
SET TIME ZONE = '+00:00';

6-8

Chapter 6
Implementing a Unicode Solution in the Database

6.3.2 Enabling Multilingual Support with Unicode Data Types

ORACLE

An alternative to storing Unicode data in the database is to use the SQL NCHAR data types
(NCHAR, NVARCHAR2, NCLOB). You can store Unicode characters in columns of these data types
regardless of how the database character set has been defined. The NCHAR data type is
exclusively a Unicode data type, which means that it stores data encoded in a Unicode
encoding form.

Oracle recommends using SQL CHAR, VARCHAR?2, and CLOB data types in AL32UTF8 database
to store Unicode character data. SQL NCHAR, NVARCHAR?2, and NCLOB data types are not
supported by some database features. Most notably, Oracle Text and XML DB do not support
these data types.

You can create a table using the NVARCHAR2 and NCHAR data types. The column length
specified for the NCHAR and NVARCHAR2 columns always equals the number of characters
instead of the number of bytes:

CREATE TABLE product information
(product id NUMBER (6)
, product name NVARCHAR?2 (100)
, product description VARCHARZ (1000));

The encoding used in the SQL NCHAR data types is the national character set specified for the
database. You can specify one of the following Oracle character sets as the national
character set:

* AL16UTF16

This is the default character set and recommended for SQL NCHAR data types. This
character set encodes Unicode data in the UTF-16 encoding form. It supports
supplementary characters, which are stored as four bytes.

e UTF8

When UTF8 is specified for SQL NCHAR data types, the data stored in the SQL data types
is in CESU-8 encoding form. The UTF8 character set is deprecated.

You can specify the national character set for the SQL NCHAR data types when you create a
database using the CREATE DATABASE statement with the NATIONAL CHARACTER SET clause.
The following statement creates a database with WEBISO8859P1 as the database character
set and AL16UTF16 as the national character set.

Example 6-2 Creating a Database with a National Character Set

CREATE DATABASE sample

CONTROLFILE REUSE
LOGFILE

GROUP 1 ('diskx:logl.log', 'disky:logl.log') SIZE 50K,
GROUP 2 ('diskx:log2.log', 'disky:log2.log') SIZE 50K

MAXLOGFILES 5
MAXLOGHISTORY 100
MAXDATAFILES 10
MAXINSTANCES 2

ARCHIVELOG

CHARACTER SET WE8IS08859P1

6-9

Chapter 6
Implementing a Unicode Solution in the Database

NATIONAL CHARACTER SET AL16UTF16
DATAFILE

'diskl:dfl.dbf' AUTOEXTEND ON,
'disk2:df2.dbf"' AUTOEXTEND ON NEXT 10M MAXSIZE UNLIMITED

DEFAULT TEMPORARY TABLESPACE temp ts
UNDO TABLESPACE undo ts
SET TIME ZONE = '+00:00';

6.3.3 How to Choose Between Unicode Solutions

ORACLE

Oracle recommends that you deploy all new Oracle databases in the database
character set AL32UTF8 and you use SQL VARCHARZ, CHAR, and CLOB data types to
store character data. The SQL NVARCHAR2, NCHAR, and NCLOB data types should be
considered only if:

e You have an existing database with a non-Unicode database character set and a
legacy application, for which the business costs of migrating to Unicode would be
inacceptable, and you need to add support for multilingual data in a small part of
the application or in a small new module for which a separate database would not
make much sense, or

* You need to create an application that has to support multilingual data and which
must be installable in any of Oracle database deployed by your customers.

For the database character set in a Unicode Standard-enabled database, always
select AL32UTF8. For the national character set, select ALL6UTF16. If you consider
choosing the deprecated UTF8 because of the lower storage requirements for English
character data, first consider other options, such as data compression or increasing
disk storage. Later migration to ALI6UTF16 may be expensive, if a lot of data
accumulates in the database.

< Note:

e Oracle recommends using AL32UTF8 as the database character set.
AL32UTF8 is the proper implementation of the Unicode encoding UTF-8.
Starting with Oracle Database 12c Release 2, AL32UTF8 is used as the
default database character set while creating a database using Oracle
Universal Installer (OUI) as well as Oracle Database Configuration
Assistant (DBCA).

* Do not use UTF8 as the database character set as it is not a proper
implementation of the Unicode encoding UTF-8. If the UTF8 character
set is used where UTF-8 processing is expected, then data loss and
security issues may occur. This is especially true for Web related data,
such as XML and URL addresses.

e AL32UTF8 and UTF8 character sets are not compatible with each other
as they have different maximum character widths. AL32UTF8 has a
maximum character width of 4 bytes, whereas UTF8 has a maximum
character width of 3 bytes.

6-10

Chapter 6
Unicode Case Studies

6.4 Unicode Case Studies

ORACLE

This section describes typical scenarios for storing Unicode characters in an Oracle
database:

e Scenario 1: Unicode Solution with a Unicode Standard-Enabled Database

e Scenario 2: Unicode Solution with Unicode Data Types

Scenario 1: Unicode Solution with a Unicode Standard-Enabled Database

An American company running a Java application would like to add German and French
support in the next release of the application. They would like to add Japanese support at a
later time. The company currently has the following system configuration:

e The existing database has a database character set of US7ASCII.

e All character data in the existing database is composed of ASCII characters.
e PL/SQL stored procedures are used in the database.

e The database is about 300 GB, with very little data stored in CLOB columns.
e There is a nightly downtime of 4 hours.

In this case, a typical solution is to choose AL32UTF8 for the database character set because
of the following reasons:

* The database is very large and the scheduled downtime is short. Fast migration of the
database to a Unicode character set is vital. Because the database is in US7ASCII, the
easiest and fastest way of enabling the database to support the Unicode Standard is to
switch the database character set to AL32UTF8 by using the Database Migration
Assistant for Unicode (DMU). No data conversion is required for columns other than CL0OB
because US7ASCII is a subset of AL32UTF8.

» Because most of the code is written in Java and PL/SQL, changing the database
character set to AL32UTF8 is unlikely to break existing code. Unicode support is
automatically enabled in the application.

Scenario 2: Unicode Solution with Unicode Data Types

A European company that runs its legacy applications mainly on Windows platforms wants to
add a new small Windows application written in Visual C/C++. The new application will use
the existing database to support Japanese and Chinese customer names. The company
currently has the following system configuration:

e The existing database has a database character set of WESMSWIN1252.

e All character data in the existing database is composed of Western European characters.
¢ The database is around 500 GB with a lot of CLOB columns.

e Support for full-text search and XML storage is not required in the new application

A typical solution is to take the following actions:

» Use NCHAR and NVARCHAR? data types to store Unicode characters

* Keep WEBMSWIN1252 as the database character set

* Use AL16UTF16 as the national character set

6-11

Chapter 6
Designing Database Schemas to Support Multiple Languages

The reasons for this solution are:

Migrating the existing database to a Unicode database requires data conversion
because the database character set is WEBMSWIN1252 (a Windows Latin-1
character set), which is not a subset of AL32UTF8. Also, a lot of data is stored in
CLOB columns. All CLOB values in a database, even if they contain only ASCI|
characters, must be converted when migrating from a single-byte database
character set, such as US7ASCII or WESBMSWIN1252 to AL32UTF8. As a result,
there will be a lot of overhead in converting the data to AL32UTFS8.

The additional languages are supported in the new application only. It does not
depend on the existing applications or schemas. It is simpler to use the Unicode
data type in the new schema and keep the existing schemas unchanged.

Only customer name columns require Unicode character set support. Using a
single NCHAR column meets the customer's requirements without migrating the
entire database.

The new application does not need database features that do not support SQL
NCHAR data types.

The lengths of the SQL NCHAR data types are defined as number of characters.
This is the same as how they are treated when using wchar_t strings in Windows
C/C++ programs. This reduces programming complexity.

Existing applications using the existing schemas are unaffected.

6.5 Designing Database Schemas to Support Multiple

Languages

In addition to choosing a Unicode solution, the following issues should be taken into
consideration when the database schema is designed to support multiple languages:

Specifying Column Lengths for Multilingual Data
Storing Data in Multiple Languages
Storing Documents in Multiple Languages in LOB Data Types

Creating Indexes for Searching Multilingual Document Contents

6.5.1 Specifying Column Lengths for Multilingual Data

When you use NCHAR and NVARCHAR?2 data types for storing multilingual data, the
column size specified for a column is defined in number of characters. (This number of
characters means the number of encoded Unicode code points, except that
supplementary Unicode characters represented through surrogate pairs count as two
characters.)

The following table shows the maximum size of the NCHAR and NVARCHAR? data types
for the ALL6UTF16 and UTF8 national character sets.

ORACLE

6-12

Chapter 6
Designing Database Schemas to Support Multiple Languages

Table 6-2 Maximum Data Type Size for the AL1L6UTF16 and UTF8 National Character Sets

|
National Character Set Maximum Column Size of Maximum Column Size of Maximum Column Size of

NCHAR Data Type NVARCHAR2 Data Type = NVARCHARZ2 Data Type
(When (When
MAX_STRING_SIZE = MAX_STRING_SIZE =
STANDARD) EXTENDED)

AL16UTF16
UTF8

1000 characters 2000 characters 16383 characters
2000 characters 4000 characters 32767 characters

ORACLE

This maximum size in characters is a constraint, not guaranteed capacity of the data type.
The maximum capacity is expressed in bytes.

For the NCHAR data type, the maximum capacity is 2000 bytes. For NVARCHAR2, it is 4000
bytes, if the initialization parameter MAX STRING SIZE is set to STANDARD, and 32767 bytes, if
the initialization parameter MAX STRING SIZE iS set to EXTENDED

When the national character set is ALI6UTF16, the maximum number of characters never
occupies more bytes than the maximum capacity, as each character (in an Oracle sense)
occupies exactly 2 bytes. However, if the national character set is UTF8, the maximum
number of characters can be stored only if all these characters are from the Unicode Basic
Latin range, which corresponds to the ASCII standard.

Other Unicode characters occupy more than one byte each in UTF8 and presence of such
characters in a 4000 character string makes the string longer than the maximum 4000 bytes.
If you want national character set columns to be able to hold the declared number of
characters in any national character set, do not declare NCHAR columns longer than
2000/3=666 characters and NVARCHAR2 columns longer than 4000/3=1333 or 32767/3=10922
characters, depending on the MAX STRING SIZE initialization parameter.

When you use CHAR and VARCHAR?2 data types for storing multilingual data, the maximum
length specified for each column is, by default, in number of bytes. If the database needs to
support Thai, Arabic, or multibyte languages such as Chinese and Japanese, then the
maximum lengths of the CHAR, VARCHAR, and VARCHAR2 columns may need to be extended.
This is because the number of bytes required to encode these languages in UTF8 or
AL32UTF8 may be significantly larger than the number of bytes for encoding English and
Western European languages. For example, one Thai character in the Thai character set
requires 3 bytes in UTF8 or AL32UTF8. Application designers should consider using an
extended character data type or CLOB data type if they need to store data larger than 4000
bytes.

¢ See Also:

e Oracle Database SQL Language Reference

e Oracle Database Reference for more information about extending character
data types by setting MAX STRING SIZE to the value of EXTENDED

6-13

Chapter 6
Designing Database Schemas to Support Multiple Languages

6.5.2 Storing Data in Multiple Languages

ORACLE

The Unicode character set includes characters of most written languages around the
world, but it does not contain information about the language to which a given
character belongs. In other words, a character such as a does not contain information
about whether it is a Swedish or German character. In order to provide information in
the language a user desires, data stored in a Unicode database should be tagged with
the language information to which the data belongs.

There are many ways for a database schema to relate data to a language. The
following sections discuss example steps to achieve this goal.

Store Language Information with the Data

For data such as product descriptions or product names, you can add a language
column (language id) of CHAR or VARCHARZ data type to the product table to identify the
language of the corresponding product information. This enables applications to
retrieve the information in the desired language. The possible values for this language
column are the 3-letter abbreviations of the valid NLS_LANGUAGE values of the
database.

" See Also:

Locale Data for a list of NLS LANGUAGE values and their abbreviations

You can also create a view to select the data of the current language. For example:

ALTER TABLE scott.product information ADD (language id VARCHAR2 (50)):

CREATE OR REPLACE VIEW product AS
SELECT product id, product name
FROM product information
WHERE language id = SYS CONTEXT ('USERENV', 'LANG');

Select Translated Data Using Fine-Grained Access Control

Fine-grained access control enables you to limit the degree to which a user can view
information in a table or view. Typically, this is done by appending a WHERE clause.
When you add a WHERE clause as a fine-grained access policy to a table or view,
Oracle automatically appends the WHERE clause to any SQL statements on the table at
run time so that only those rows satisfying the WHERE clause can be accessed.

You can use this feature to avoid specifying the desired language of a user in the
WHERE clause in every SELECT statement in your applications. The following WHERE
clause limits the view of a table to the rows corresponding to the desired language of a
user:

WHERE language id = SYS CONTEXT ('userenv', 'LANG')

Specify this WHERE clause as a fine-grained access policy for product information as
follows:

CREATE FUNCTION funcl (sch VARCHAR2 , obj VARCHARZ2)
RETURN VARCHARZ2 (100) ;

6-14

Chapter 6
Designing Database Schemas to Support Multiple Languages

BEGIN

RETURN 'language id = SYS CONTEXT (''userenv'', ''LANG'')';
END

/

DBMS RLS.ADD POLICY ('scott', 'product information', 'lang policy', 'scott', 'funcl',
'select');

Then any SELECT statement on the product information table automatically appends the
WHERE clause.

¢ See Also:

Oracle Database Development Guide for more information about fine-grained
access control

6.5.3 Storing Documents in Multiple Languages in LOB Data Types

You can store documents in multiple languages in CLOB, NCLOB, or BLOB data types and set up
Oracle Text to enable content search for the documents.

Data in cLOB columns is stored in the AL16UTF16 character set when the database character
set is multibyte, such as UTF8 or AL32UTF8. This means that the storage space required for
an English document doubles when the data is converted. Storage for an Asian language
document in a CLOB column requires less storage space than the same document in a LONG
column using AL32UTFS8, typically around 30% less, depending on the contents of the
document.

Documents in NCLOB format are also stored in the AL1I6UTF16 character set regardless of the
database character set or national character set. The storage space requirement is the same
as for cLOB data. Document contents are converted to UTF-16 when they are inserted into a
NCLOB column. If you want to store multilingual documents in a non-Unicode database, then
choose NCLOB. However, content search on NCLOB with Oracle Text is not supported.

Documents in BLOB format are stored as they are. No data conversion occurs during insertion
and retrieval. However, SQL string manipulation functions (such as LENGTH or SUBSTR) and
collation functions (such as NLS_SORT and ORDER BY) cannot be applied to the BLOB data type.

The following table lists the advantages and disadvantages of the CLOB, NCLOB, and BLOB data
types when storing documents:

Table 6-3 Comparison of LOB Data Types for Document Storage

Data Types Advantages Disadvantages
CLOB e Content search support with Oracle Text « Depends on database character set
e String manipulation support - Data conversion is necessary for
insertion
e Cannot store binary documents
NCLOB * Independent of database character set e« No content search support
e String manipulation support « Data conversion is necessary for
insertion
e Cannot store binary documents
ORACLE 6-15

Chapter 6
De