
62

Start

Oracle Health Insurance Back

Office

HTTP Service Layer (HSL)

Installation & Configuration Manual

Version 1.8

Part number: E97070-01

August 3rd, 2018

Copyright © 2016, 2018, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use

and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license

agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit,

distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering,

disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If

you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf

of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS

Programs, software, databases, and related documentation and technical data delivered to U.S. Government

customers are “commercial computer software” or “commercial technical data” pursuant to the applicable

Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication,

disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the

applicable Government contract, and, to the extent applicable by the terms of the Government contract, the

additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007).

Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not

developed or intended for use in any inherently dangerous applications, including applications which may

create a risk of personal injury. If you use this software in dangerous applications, then you shall be

responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use of

this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this

software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of

their respective owners.

This software and documentation may provide access to or information on content, products, and services from

third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties

of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will

not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,

products, or services.

Where an Oracle offering includes third party content or software, we may be required to include related

notices. For information on third party notices and the software and related documentation in connection with

which they need to be included, please contact the attorney from the Development and Strategic Initiatives

Legal Group that supports the development team for the Oracle offering. Contact information can be found on

the Attorney Contact Chart.

The information contained in this document is for informational sharing purposes only and should be

considered in your capacity as a customer advisory board member or pursuant to your beta trial agreement

only. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in

making purchasing decisions. The development, release, and timing of any features or functionality described

in this document remains at the sole discretion of Oracle.

This document in any form, software or printed matter, contains proprietary information that is the exclusive

property of Oracle. Your access to and use of this confidential material is subject to the terms and conditions

of your Oracle Software License and Service Agreement, which has been executed and with which you agree

to comply. This document and information contained herein may not be disclosed, copied, reproduced, or

distributed to anyone outside Oracle without prior written consent of Oracle. This document is not part of your

license agreement nor can it be incorporated into any contractual agreement with Oracle or its subsidiaries or

affiliates.

cta13681.doc HTTP Service Layer Installation & Configuration Manual iii

CHANGE HISTORY

Release Version Changes

10.16.2.2.0 1.0  Creation

10.16.2.2.0 1.1  Revision

10.17.1.0.0 1.2  Changed grant instructions

10.17.2.0.0 1.3  Documented hsl.<app>.developermode and hsl.developermode

 Added reference to Doc[2] (Back Office HTTP Service Layer User
Manual)

10.17.2.1.0 1.4  Extended set of relevant properties.

10.17.2.2.0 1.5  Minor revision of ‘Creating a HSL database account’

 Revised ‘Security Configuration’

 Removed ‘Restricting access with custom roles’ from Security Aspects

 Renamed ‘Security Aspects’ to ‘Additional Security Aspects’ and revised
contents.

 Added ‘Deployment Validation’

 Added ‘Appendix C - Testing with SoapUI’

 Added ‘Appendix D – Generating a WADL file’

 Extended set of relevant properties for HSL_CLA.war deployment.

10.17.2.3.0 1.6  Added paragraph ‘Examining the Log File’

 Added JDK version specific information regarding JSSE configuration.

10.18.1.0.0 1.7  Added Appendix E – Authentication and Authorization

 Added Appendix F – HSL_AUN and HSL_AUZ Services

 Revised 2.1 including diagram

 Revised introduction and document title

10.18.1.2.0 1.8  Added Appendix G – PSL services

 Use setUserOverrides.sh instead of modifying startManagedWebLogic.sh
and Server Start arguments. Support for FMW 12.2.1.3.

cta13681.doc HTTP Service Layer Installation & Configuration Manual iv

RELATED DOCUMENTS

A reference in the text (doc[x]) is a reference to another document about a subject that
is related to this document.
Below is a list of related documents:

Doc[1] Object Authorisation within OHI Back Office (CTA 13533)

Doc[2] Back Office HTTP Service Layer User Manual (CDO 15195)

cta13681.doc HTTP Service Layer Installation & Configuration Manual v

Contents

1 Introduction ...8

1.1 Licenses ..8

2 Architectural overview ..9

2.1 Services components ..9

3 Installation of HSL services ...11

3.1.1 Terminology .. 11
3.2 Sizing/load aspects ..11

3.2.1 Deployment choices.. 12
3.3 Database installation ..12

3.3.1 Creating a HSL database account ... 12
3.4 WLS Preparation ...13

3.4.1 Requirements ... 14
3.4.2 Creating a domain .. 15
3.4.3 Creating Managed Server(s) .. 18
3.4.4 Creating a machine definition ... 19
3.4.5 Creating a data source .. 20

3.5 Security Configuration ...26
3.5.1 Set up security realm .. 26
3.5.2 Setup Weblogic user for accessing HSL application .. 27
3.5.3 Enable SSL.. 28
3.5.4 Configure JSSE .. 29

..3.5.4.1 JDK 1.8.0_162 and above ... 29

..3.5.4.2 JDK 1.8.0_151 .. 1.8.0_161 .. 29

..3.5.4.3 Below JDK 1.8.0_151 .. 30
3.5.5 Setting up a key store ... 30
3.5.6 Configure Managed Server logging level .. 31
3.5.7 Set user lockout ... 32

3.6 (Re)deployment of the HSL Application ...33
3.6.1 Deploy to a single Managed Server.. 33

..3.6.1.1 Deploy WAR files .. 33

..3.6.1.2 Specifiy configuration file ... 35
3.6.2 Deploy to multiple Managed Servers .. 36
3.6.3 Deploy to cluster ... 36
3.6.4 Deploy for multiple environments (DTAP) .. 37
3.6.5 Validate deployment .. 37

3.7 Additional Security Aspects..38
3.7.1 Deploying HSL Application for use with any weblogic user 38
3.7.2 Using a custom security policy for a deployed application 39

4 Deployment validation ..40

4.1 Testing with Curl ..40
4.2 Template Listing ...41
4.3 getDatabaseInfo ..41
4.4 Get Online Swagger definition ...42

4.4.1 Saving the Swagger definition to a file .. 43
4.4.2 Viewing the Swagger definition ... 43

4.5 Troubleshooting ..44

5 Configuration Files for HSL services..46

cta13681.doc HTTP Service Layer Installation & Configuration Manual 6

5.1 Back Office HSL properties file ..46
5.1.1 hsl.jndiname .. 46
5.1.2 hsl.<app>.jndiname .. 46
5.1.3 hsl.usercontext ... 47
5.1.4 hsl.<app>.usercontext .. 47
5.1.5 hsl.developermode ... 47
5.1.6 hsl.<app>.developermode ... 47
5.1.7 hsl.<app>.logfile ... 48
5.1.8 hsl.<app>.loglevel... 48
5.1.9 hsl.<app>.log.limit .. 48
5.1.10 hsl.<app>log.count ... 48
5.1.11 hsl.<app>.log.append .. 49
5.1.12 Activating changes to hsl.properties .. 49
5.1.13 Troubleshooting hsl.properties ... 49
5.1.14 Example hsl.properties file .. 49
5.1.15 Keeping hsl.properties up to date .. 50

5.2 Examining the Log File ..50
5.2.1 Changing the log format .. 51

6 Upgrading HSL services ..53

7 Appendix A – Service Information ...55

8 Appendix B – Removing a WLS domain ...56

9 Appendix C – Testing with SoapUI ..57

9.1 Create REST project and import Swagger definiton57
9.2 Create a request ..57

10 Appendix D - Generating a WADL file ..59

10.1 Create a REST project in SoapUI for your HSL application59
10.2 Open the Service Viewer for the REST Project ...59
10.3 Export WADL from your REST project ...59

11 Appendix E – Authentication and Authorization ...61

11.1 HTTP OPTIONS method ...61
11.2 OAUTH 2.0 token authentication and validation ..61

11.2.1 WAR File Deployment ... 61
11.2.2 Configuration .. 62
11.2.3 Which Authorization Method? ... 62
11.2.4 Access Token Validation .. 62
11.2.5 Place Holders ... 63
11.2.6 POST Example ... 63
11.2.7 GET example ... 63
11.2.8 Setting user context ... 64
11.2.9 Overriding User Context with Back Office Parameter 64

12 Appendix F - HSL_AUN and HSL_AUZ Services ..65

12.1.1 Disclaimer .. 65
12.2 Use of JWT ...65

12.2.1 Payload ... 65
12.2.2 Token Verification .. 66

12.3 HSL Properties for Signature Encryption ..66
12.4 HSL_AUN Authentication Service...66

12.4.1 HSL properties .. 66
12.5 HSL_AUZ Authorization Service ...66

12.5.1 postVerify operation ... 66

13 Appendix G – PSL services ..67

13.1 Installation of PSL services ..67
13.1.1 WLS Domain ... 67
13.1.2 Data source .. 67
13.1.3 WLS Managed Server Parameters .. 67

13.2 Configuration of PSL.properties ...68

cta13681.doc HTTP Service Layer Installation & Configuration Manual 7

cta13681.doc HTTP Service Layer Installation & Configuration Manual 8

1 Introduction

The OHI Back Office HTTP Service Layer is an optional component to provide so-
called Use Case services.

Use Case services constitute a group of specific operations aiming to support use
cases that are common for Dutch healthcare payers. Examples of typical use cases:
requesting a new policy, adding an insured member, changing insured products,
changing payment method etc.

OHI BO Use Case Services are implemented through the HTTP Service Layer (HSL).

The services in this service layer are based on RESTful Services technology which has
the following advantages for current web application frameworks (like AngularJS
and Oracle JET):

 accessible through HTTP (for example through Javascript)

 Supports (Javascript friendly) JSON as input and output formats

 standardized interface language through using HTTP verbs (GET, POST,
PUT, PATCH, DELETE)

 standardized set of exceptions through HTTP error codes

This HTTP Service Layer is intended to ease integration in a Service Oriented
environment.

This document describes the generic technical details regarding the HTTP Service
Layer, how to install and update it and how to change configuration settings.

1.1 Licenses

Customers are required to have the appropriate license for using the HTTP Service
Layer. Customers who have acquired a Connect to Back Office (C2B license or an OHI
SOAP ServicelLayer (SVL) license are currently permitted to install and use the web
service component of the HTTP Service Layer. This is valid until further notice.

The corresponding PL/SQL services may not be used when no Connect to Back
Office license, SOAP Service Layer license or HTTP Service Layer license has been
obtained.

For further information please consult your OHI sales representative.

cta13681.doc HTTP Service Layer Installation & Configuration Manual 9

2 Architectural overview

This chapter gives a high level architectural overview of the current HTTP Service
Layer implementation.

2.1 Services components

The functionality of each service is implemented through a PL/SQL service package.
The service interface is provided through a Java layer.
Jersey, JAX-RS and MOXy are used to serialize and deserialize JSON objects and for
input validation.
JDBC is used to map Java objects to SQL objects and vice versa.
The PL/SQL service package performs the required operations, using operation
parameters and inbound objects to communicate with the OHI Back Office database.

WLS runtime process

Service WAR

SQL types model Java class model

Java service class

J
D

B
C

Java libraries

Including Jersey, MOXy and JAX-RS

WLS libraries

PL/SQL service

package

Request

JSON

Response

JSON

Metadata

JSON/YAML

Remote Authorization

Service

cta13681.doc HTTP Service Layer Installation & Configuration Manual 10

The high level schema below shows how the services are deployed. It also shows the
database connection to OHI which uses a database account with restricted access to
execute the HSL service implementation in PL/SQL.

Weblogic Server

Database server

HSL database account
with limited privileges

OHI object schema owner

PL/SQL code for HSL
SQL types for HSL

Managed server: OHIBOWebservices (example name)

Datasource HSL_POL.war
HSL_REL.war
HSL_CLA.war
HSL_C2B.war

JDBC Connectionpool

cta13681.doc HTTP Service Layer Installation & Configuration Manual 11

3 Installation of HSL services

This chapter describes the steps to (re)install the HSL services.

This chapter contains the following parts to separate the various work areas:

 Sizing/load aspects

 Database installation

 WLS preparation

 Security configuration

 (Re)deployment of the HSL application

 Additional Security aspects

3.1.1 Terminology

Note the following use of terminology:

 HSL stands for HTTP Service Layer. The underlying technology is based on
RESTful service technology.

 A HSL service has one or more service operations.

 Each HSL service resides in its own HSL application.

 A HSL application is packaged as a WAR file, which is deployed to the WebLogic
application server.

3.2 Sizing/load aspects

From the “Introduction” and the “Architectural overview” chapters it should be clear
that the HSL services are implemented through PL/SQL in the database.

The Java layer providing the REST interface handles request and response messages.
It validates an incoming request, calls the PL/SQL service implementation to perform
the required operation and transforms the result into a response message.

This choice means that the larger part of the processing is carried out on the database
server and only a small part is handled on the application server.
Since the architecture for HSL is similar to the SVL services, the distribution of loads
on the application and database server is expected to be comparable.
Based on the SVL services it may be assumed that for heavy processing only 1 CPU
thread will be busy processing HSL service requests if 10 CPU threads are needed for
the database processing for these requests.

Based on SVL experience, most of the simpler service operations on a well-sized and
well-performing production environment should not take more than 0.1 up to 0.5
second in total elapsed time when measured on the WebLogic Server. Of this elapsed
time most of the time should be spent by the database server handling the call, as
mentioned before.

More complicated calls and service calls that return large data sets may take more
time but usually should not exceed response times of more than a few seconds. As an
example, if it would be offered, a typical premium calculation call should be executed

cta13681.doc HTTP Service Layer Installation & Configuration Manual 12

within a second and a large set of claim lines (several hundreds) should usually be
returned within 5 to 10 seconds.

3.2.1 Deployment choices

The overall load on the OHI application resulting from HSL service calls is customer
specific and may change over time.

HSL services are likely to be used by customer-facing applications. Although it may
technically be possible to deploy HSL services to the application server running the
Forms GUI for internal users, you should be aware of the peak loads from HSL
services during commercial campaigns. These loads may well exceed your normal
capacity. You should devise your own strategy to cope with these extra loads. This
strategy may include using separate application servers for internet users, using a
separate database with cached data for information requests, throttling inbound
requests, etc.

If you choose to install HSL services on the application server for the Forms GUI it is
advisable to actively monitor the respective loads of Forms processes, SVL processes
and HSL processes. This allows you to pick up trends to help you refine your
infrastructure strategy.

Especially if you have multiple applications using the same HSL services, it may help
to use a service bus to create a ‘separation of concerns’. The service bus allows you to
map the HSL interface specification to a customer-specific interface which means less
maintenance on the client applications when deploying a new version of a HSL
service. As long as the mapping on the service bus is synchronized with the HSL
service interface, the code client applications can remain the same.

Stringent requirements for high availability and failover are also reasons to consider a
service bus as a go-between.

3.3 Database installation

All database components of the HTTP Service Layer are owned by the OHI Back
Office schema and are installed through the OHI Back Office release installation
procedure.

To use the database components of the HTTP service layer, one or more database
accounts must be created with HTTP Service Layer access privileges.

Before creating the account(s), check if you are licensed to use the HTTP Service
Layer.

Please check if you have a database object (package) HSL_UTIL_PCK in the OHI Back
Office schema. If not, something went wrong regarding the installation of the HTTP
Service Layer code. If this is incorrect please contact the OHI Support department.

If the package is present in your database you can continue with the database part of
the installation.

3.3.1 Creating a HSL database account

The OHI Back Office schema owns the PL/SQL code to implement the HTTP Service
Layer but may not be used to execute the services.

The use of a separate database account to access the HTTP Service Layer components
reduces the risk of accessing unauthorized OHI data and makes that account
accountable for HSL actions. The HSL account(s) need a minimum of object privileges
to the HSL database objects.

cta13681.doc HTTP Service Layer Installation & Configuration Manual 13

One or more HSL accounts can be created:

 Default HSL account for use with WebLogic application server
This account is configured in the HSL properties file as the default account for
HSL service requests.

 Optional additional HSL accounts for use with WebLogic application server.
These may be configured in the HSL properties file for one or more specific
services.

 Additional HSL account for use with bespoke PL/SQL code development by the
customer. Please follow the directions in Doc[1].

The following steps are needed to setup a HTTP Service Layer database account:

1. Create a schema owner, for example HSL_USER. Determine the password
policy, temporary tablespace, etc. according to your company standards but
beware there is no interactive login which might show expiration messages
for the password due to the enforced password policy.

2. Grant create session system privilege to this account.

3. Grant the HTTP Service Layer object privileges: logon as the OHI Back Office
schema owner, enable server output, and run

alg_security_pck.HSL_grants

(pi_owner => ‘<ohibo_owner>’

,pi_grantee => ‘<hsl_user_account>’

)

Example:

execute

alg_security_pck.HSL_grants

(pi_owner => 'OZG_OWNER'

,pi_grantee => 'HSL_USER');

IMPORTANT: This command needs be run only once. While installing
subsequent OHI BO updates, the privileges of the HSL user accounts are
automatically updated.
However, if you run into ORA-01403 errors during an execution your first
check should be to run this command in sqlplus, enabling server output
before running, and see whether missing grant privileges were granted.

3.4 WLS Preparation

When the database account has been created and granted successfully, a WebLogic
Server environment (software home) must be prepared for deploying the HSL
application.

We expect that you are familiar with the WebLogic concepts like ‘Domain’, ‘
Managed Server’, ‘Cluster’, etc.

These are your options:

 Use the same WebLogic environment which is used for servicing the OHI Back
Office user interface and batches. In this case you should create a new WebLogic
domain (with a new Admin Server) for the HSL applications to prevent
interference with the GUI application.

cta13681.doc HTTP Service Layer Installation & Configuration Manual 14

 Deploy the HSL applications in a separate WebLogic environment (possibly on a
separate server). This allows you to separately upgrade or patch the different
WebLogic environments, or implement a workload distribution.

Deploy HSL applications to multiple environments for better scalability. Be sure
to deploy each HSL application only once in a Managed Server or a cluster of
Managed Servers.

 For testing purposes you may want to have multiple versions within the same
domain. In that case you should have a separate Managed Server for each
deployment.

Some remarks about installing in a separate WebLogic environment:

 The OHI Back Office GUI application (Forms) installation requires a
WebLogic Server “Infrastructure” installation. That means the domain
created for Forms needs to have its own database schemas with OPSS and
Audit database tables (created by RCU). For the HTTP Service Layer domain
these schemas are not required provided you do not select more components
during the domain configuration than described.

 When installing in a separate WebLogic Server environment, use a different
Installer: use the “Generic” installer instead of the “FMW Infrastructure”
installer. When installing in a separate WebLogic environment make sure the
correct components are installed when creating the Domain. You need at
least:

o Weblogic Advanced Web Services for JAX-WS Extension -

12.2.1.x.0 [oracle_common]

o Weblogic JAX-WS SOAP/JMS Extension -

12.2.1.x.0 [oracle_common]

where x is 2 or 3, depending on your WebLogic version.

When you have not installed these components your web services will
respond with ‘There are error messages.’ All info in the
functionalFaultType will contain question marks (???).

The instructions in the following paragraphs cover the setup of a new domain
including the setting up of Managed Servers, a machine definition, data sources, etc.

This will support the following scenarios:

 Creating a separate domain with a single Managed Server

 Creating a separate domain with a cluster of 2 Managed Servers

 Adding a Managed Server to an existing domain

3.4.1 Requirements

The following requirements/limitations must be taken into account:

 A certified WebLogic Server version including JAX-WS (SOAP/JMS)
extensions. The HSL services must be deployed on a single Managed Server
or a cluster of Managed Servers (the ‘target’).

 The HSL services may not be deployed on a Managed Server which is also
used for hosting the OHI GUI application (Forms). The Managed Server may
not belong to a cluster used for deploying the GUI application.

cta13681.doc HTTP Service Layer Installation & Configuration Manual 15

 One deployment can only service one single OHI Back Office environment (it
connects to a specific connection pool which accesses a specific OHI Back
Office ‘instance’).

If the HSL application must be deployed more than once (for servicing different OHI
Back Office environments) each deployment should be on its own Managed Server or
Cluster.

HSL can be deployed on the same Managed Servers as C2B or SVL.

3.4.2 Creating a domain

Before creating a Domain, be sure to understand the difference between a “FMW
Infrastructure” and a “Generic” WebLogic installation, and the consequences. Make
sure the environment variable DOMAIN_HOME is not set.

If you create the new Weblogic Domain from the same software home as the Forms
Domain, you have to choose the same “Domain Mode” (Development or Production),
to avoid errors during startup of the new Managed Server(s).

For creating a new WebLogic domain please use the Configuration Wizard (typically
in the common/bin folder of the WebLogic Server home, so for example
$MW_HOME/oracle_common/common/bin/config.sh)

Specify the domain location. This is inside the Weblogic Home by default, but you
can specify a location outside the WebLogic Home. The last part of the location will
be the Domain Name.

When creating a new domain select at least the options as shown below.

cta13681.doc HTTP Service Layer Installation & Configuration Manual 16

In the next screens, specify the username and password for the domain administrator
account. When prompted for developer or production mode choose production mode
and pick a JDK.

In this documentation we choose to configure only the Administration Server using
the wizard. The Administration Server can be used as the starting point for additional
configuration options you may want to choose later:

cta13681.doc HTTP Service Layer Installation & Configuration Manual 17

For the Administration Server a free port number must be specified. Enable SSL to
support secure connections. An example using non default ports is shown below.

cta13681.doc HTTP Service Layer Installation & Configuration Manual 18

3.4.3 Creating Managed Server(s)

Start the Administration Server (of the existing or newly created domain) using the
startWebLogic.sh script (this is present in the root folder of the domain folder, which
you created through the Configuration Wizard).

When it is started logon to the console and choose the Servers option in the left panel:

In the Change Center choose Lock & Edit to get into editing mode.

This enables the New option in the ‘Summary of Servers’ overview:

You need to provide a name and listening port for the Managed Server. For easy
reference you may want to include the domain name in the name of the Managed
Server, for example ‘ms_ohi_hsl’.

At this point you should decide whether or not to make the Managed Server part of a
Cluster.

cta13681.doc HTTP Service Layer Installation & Configuration Manual 19

If no Cluster exists you can create one; if there is an existing Cluster you can make the
Managed Server a member of the Cluster.

3.4.4 Creating a machine definition

It is recommended to create a machine definition to make it easier to start up
Managed Servers:

You can now assign Managed Servers to the new machine definition. In the example
below Managed Server ms_ohi_hsl is assigned to Machine1.

If you start a Node Manager you can use the console to start the Managed Servers.

You need to associate the machine with the Node Manager so that the Node Manager
can start the Managed Server within the domain of the machine definition.

Do this in the Node Manager tab for the machine definition like in the example
below:

cta13681.doc HTTP Service Layer Installation & Configuration Manual 20

Make sure the listen address is the actual listen address that is used by the Node
Manager. This is passed as first parameter to the
$WL_HOME/server/bin/startNodeManager.sh shell script. The correct value
can be found as ListenAddress in the file nodemanager.properties.

This address can be changed in the file nodemanager.properties which is located in
the <domain home>/nodemanager folder. This is necessary when you have a node
manager per domain.

You need to create a boot.properties file for the new Managed Server for the domain
in the domain home Managed Server ../data/nodemanager.

This is done automatically when you start the Managed Server in the console (after
you have started the AdminServer for the domain).

When you are running in Development Mode, a boot.properties file is automatically
created for the AdminServer.

Because you are running in Production Mode, you need to create the file yourself, in
the $DOMAIN_HOME/servers/AdminServer/security folder. This file is used when
the AdminServer is started by the script startWebLogic.sh. If the file is not present,
the script prompts for the username/password. The same goes for the Managed
Servers when you start them through a script.

3.4.5 Creating a data source

The HSL application needs a data source to connect with the OHI Back Office
database.

To create a data source, navigate in the Domain Structure panel on the left to the data
sources option. Choose ‘Lock & Edit’ so you are able to create a new data source.

cta13681.doc HTTP Service Layer Installation & Configuration Manual 21

Create a new ‘Generic data source’:

Choose a name for the data source to reflect its purpose. For example, you may want
to reference the database name: DS_OHI_prd.

Next specify a JNDI name. The JNDI name will be used in the properties file for
starting the HSL application.

Specify ‘Oracle’ as the database type.

An example:

cta13681.doc HTTP Service Layer Installation & Configuration Manual 22

Next you need to specify a database driver. Use “Oracle’s Driver (Thin) for Service
connections; Versions: Any”. If you are using RAC (or considering to use RAC)
choose the thin RAC driver. Do not use the XA driver.

cta13681.doc HTTP Service Layer Installation & Configuration Manual 23

Choose the following Transaction Options:

 ‘Supports Global Transactions’;

 ‘One-Phase Commit’ (this is why you don’t need the XA driver)

Example:

cta13681.doc HTTP Service Layer Installation & Configuration Manual 24

Next specify the connection details like the example on the page below. Be sure to use
values which are valid for your environment.

cta13681.doc HTTP Service Layer Installation & Configuration Manual 25

On the next page the result of your answers will be shown. You can test the
connection with the data shown (the table name is not relevant).

When you navigate to the next page you can select the targets where the data source
should be deployed to. In the example below only the Managed Server shown will be
used for deploying the data source to.

Press Activate Changes to conclude your configuration.

At this point, go back to your data source and re-open the connection pool tab.

Navigate to the ‘Advanced’ part.

cta13681.doc HTTP Service Layer Installation & Configuration Manual 26

Ensure that the option ‘Wrap Data Types’ is unchecked. This setting is needed for
passing CLOB objects to and from the database and when activated slows down
execution. Press Lock & Edit and uncheck this option and Save and Activate the
change.

Example:

3.5 Security Configuration

All HSL applications are preconfigured to use basic authentication and SSL
encryption.

The following steps are needed to set up minimal security for the HSL application:

 Set up security realm

 Setup Weblogic user for accessing HSL application

 Enable SSL

 Configure JSSE

 Configure key store

 Configure logging level

 Configure user lockout

Before you can install HSL applications, you need to decide on the security model
you want to use. The options are:

1. Use the predefined default user restuser and the predefined policy. During
deployment, choose the security model indicated with ‘DD Only’.

2. Use the default policy and create your own roles to restrict access to the web
services. During deployment, choose the security model indicated with
‘Custom Roles’

3. Use a custom security model to overrule the default of each web service. See
paragraph 3.7 “Additional Security Aspects”. During deployment, choose the
security model indicated with ‘Custom Roles and Policies’.

If you want to use OAUTH 2.0 token authentication and validation (as an alternative
to Basic Authentication) you need to choose Custom Roles and Policies’. See Appendix
E – Authentication and Authorization for details.

3.5.1 Set up security realm

Create a security realm if this has not already been done (normally realm ‘myrealm’
will already be present).

The security realm ‘myrealm’ as shown below will be used to configure the security at
application level.

cta13681.doc HTTP Service Layer Installation & Configuration Manual 27

If there are no other security realms, this will be the default security realm.

3.5.2 Setup Weblogic user for accessing HSL application

Each operation of an HSL application requires basic authentication. This means that
each call must be made as an authenticated Weblogic user.

The name of the default Weblogic user to access the HSL application is defined in a
preconfigured deployment descriptor in the WAR file. This default name is ‘restuser’.

So if you deploy the HSL application with the default security model (DD Only) you
will need to create the Weblogic user ‘restuser’ and authenticate as ‘restuser’ when
invoking the HSL application.

To set up the Weblogic user ‘restuser’, select ‘Users and Groups’ for your security
realm:

Add ‘restuser’ to the pool of Weblogic users:

cta13681.doc HTTP Service Layer Installation & Configuration Manual 28

Note that if you do not want to authenticate an HSL application using the predefined
weblogic user ‘restuser’, you can choose to deploy using ‘Custom Roles and Policies’.
See ‘Additional Security Aspects’ below.

3.5.3 Enable SSL

The HSL services are preconfigured to use a default policy which uses SSL. Therefore
you need to enable SSL for every Managed Server to which you deploy the HSL
application.

Go to the Managed Server configuration and enable SSL in the ‘Configuration >
General’ tab:

cta13681.doc HTTP Service Layer Installation & Configuration Manual 29

3.5.4 Configure JSSE

To use SSL with WebLogic you need to configure the use of Java Secure Socket
Extension (JSSE) as this is the only supported SSL implementation. The RSA JSSE
provider is not installed as part of Weblogic Server since WLS 12.1.1 but needs to be
provided by the JVM.

It depends on the JDK version whether additional configuration action is required.

For more generic information about Oracle’s JDK and JRE cryptographic algorithms
please visit: https://www.java.com/en/configure_crypto.html

For more information regarding the changes in the specific JDK 8 releases as
mentioned below:

http://www.oracle.com/technetwork/java/javase/8all-relnotes-2226344.html

..3.5.4.1 JDK 1.8.0_162 and above

No action is needed.

..3.5.4.2 JDK 1.8.0_151 .. 1.8.0_161

Only a small configuration change in your JDK is required.

https://www.java.com/en/configure_crypto.html
http://www.oracle.com/technetwork/java/javase/8all-relnotes-2226344.html

cta13681.doc HTTP Service Layer Installation & Configuration Manual 30

Uncomment the following line in <JDK_HOME>/jre/lib/security/java.security:

#crypto.policy=unlimited

Remove the hash (#) from this line to enable the RSA JSSE provider.

..3.5.4.3 Below JDK 1.8.0_151

To configure the use of RSA JSSE, follow the instruction at Using the RSA JSSE
Provider in WebLogic Server in paragraph “Using the RSA JSSE Provider in
WebLogic Server”.

The installation means that you have to replace two jar files within the JDK
installation that is used by WebLogic. These files are JDK version specific and contain
the stronger encryption methods that are needed.

As summarized during an OHI presentation:

Typically the name of the downloaded file will be jce_policy-8.zip.

3.5.5 Setting up a key store

For testing purposes you may want to use the built-in keystore as shown below in the
‘Configuration > Keystores’ tab for the Managed Server:

https://docs.oracle.com/middleware/1221/wls/SECMG/ssl_jsse_impl.htm#23SECMG662
https://docs.oracle.com/middleware/1221/wls/SECMG/ssl_jsse_impl.htm#23SECMG662

cta13681.doc HTTP Service Layer Installation & Configuration Manual 31

Note that in a production environment it is not safe to use the demo keystore.

For more information about configuring keystores please read the WebLogic
documentation. As a starter you can use this address: Oracle® Fusion Middleware
Administering Security for Oracle WebLogic Server 12.2.1 - 29 Configuring Keystores

It contains references to pages which describe in more detail how to obtain private
keys, digital certificates, etc.

You should take action and not rely on the demo keystore!

3.5.6 Configure Managed Server logging level

The standard logging level for a Managed Server regarding security issues is
intentionally non-informative to discourage fraudulent users.

A typical security-related error message looks like:

Got ‘Unknown exception, internal system processing error.’

If you are trying to setup the HSL application to work with SSL and basic
authentication in a non-production environment you can configure verbose logging
with the following start parameter for the Managed Server:

-Dweblogic.wsee.security.debug=true

https://docs.oracle.com/middleware/1221/wls/SECMG/identity_trust.htm#23SECMG365
https://docs.oracle.com/middleware/1221/wls/SECMG/identity_trust.htm#23SECMG365

cta13681.doc HTTP Service Layer Installation & Configuration Manual 32

Until WebLogic 12.1.2, you had to specify start up options for WebLogic servers
(admin and managed servers) in multiple locations:

 Via the console: for each server, in the tab “Server Start” in the field “Arguments”

 In file $DOMAIN_HOME/bin/startManagedWebLogic.sh for managed servers

 In file $DOMAIN_HOME/bin/startWebLogic.sh for admin servers

WebLogic 12.1.2 introduced a better way to pass start up parameters to the WebLogic
servers. See document “How To Customize Env Parameters Via 'setUserOverrides.sh' File
(In WLS 12.1.2.0.0 ~ 12.2.1.3.0) (Doc ID 2138183.1)” on My Oracle Support for details.

This can replace the previous methods and will be described here.

Create a new file $DOMAIN_HOME/bin/setUserOverrides.sh and add the following
text:

#!/bin/bash

echo Adding Settings from UserOverrides.sh

global settings (for all servers)

this will decrease start up times

JAVA_OPTIONS="-Djava.security.egd="file:/dev/./urandom" ${JAVA_OPTIONS}"

export JAVA_OPTIONS

CONFIG_JVM_ARGS="-Djava.security.egd=file:/dev/./urandom ${CONFIG_JVM_ARGS}"

export CONFIG_JVM_ARGS

specify additional java command line options for the Admin Server

#if ["${SERVER_NAME}" = "${AS_NAME}"]

#then

#fi

#export JAVA_OPTIONS

specify additional java command line options for specific servers

if ["${SERVER_NAME}" = "ms_ohi_hsl"]
then

 # add settings for HSL

 # Custom Setting for ms_ohi_hsl to set debug level for SSL

 JAVA_OPTIONS="-Dweblogic.wsee.security.debug="true" ${JAVA_OPTIONS}"

fi

export JAVA_OPTIONS

Replace the server name ms_ohi_hsl with your server name.

When startup times of your service calls are important and the security of the
connection is less important you may consider to specify an alternative for retrieving
cryptographically strong random numbers (included above):

JAVA_OPTIONS="-Djava.security.egd="file:/dev/./urandom" ${JAVA_OPTIONS}"

Restart the Managed Server to get the new verbose messages later on.

3.5.7 Set user lockout

While setting up HSL services for testing you may want to disable user lockout.
In a production environment you should enable user lockout to discourage
fraudulent use. Navigate to the Security Realm and use the ‘Configuration > User
Lockout’ tab.

cta13681.doc HTTP Service Layer Installation & Configuration Manual 33

3.6 (Re)deployment of the HSL Application

HSL applications are deployed through WAR (Web Application Archive) files.
Each HSL service application has its own WAR file, for example HSL_POL.war or
HSL_REL.war.

The WAR file of a HSL application resides in the $OZG_BASE/java directory on the
application server containing the OHI Back Office software release.
You can copy this to another location if required.

Ensure that the .war file is located on the WLS Admin Server host (this is the server
running the WLS Administration Console).

Note that you cannot use an older WAR file with a newer OHI Back Office release
and vice versa.

The following scenarios are discussed:

 Deploy to a single Managed Server

 Deploy to multiple Managed Servers

 Deploy to a cluster

 Deploy for DTAP (development, test, acceptance, production)

3.6.1 Deploy to a single Managed Server

..3.6.1.1 Deploy WAR files

Repeat the following tasks for each HSL WAR file.

cta13681.doc HTTP Service Layer Installation & Configuration Manual 34

In the Domain Structure pane, select the Deployments branch. This will show the
applications that have already been deployed

If you want to shorten this list, use ‘Customize this table’ to exclude the libraries.

Select ‘Lock & Edit’ to enter editing mode, this will enable the ‘Install’ button which
you need to use next.

In the new window, locate the .war files on the WLS server, select one and press
‘Next’:

Note: See Appendix E to decide if you need to install HSL_AUN and HSL_AUZ too.

Select ‘Install this deployment as an application’, press ‘Next’ and select the target(s)
for deployment. In the example below only Managed Server ms_ohi_hsl is chosen.

Press ‘Next’ and decide about a deployment name and security model. At this
moment the version of the .war file is also shown (can contain up to 4 digits like any
application source).

cta13681.doc HTTP Service Layer Installation & Configuration Manual 35

Select ‘Custom Roles’ if you want to use the default policy and create your own roles
to restrict access to the web services. Select ‘Custom Roles and Policies’ if you want to
overrule the default of each web service.

Regarding source accessibility, select ‘Copy this application….’ if you want to remove
the WAR file from its current location.

Finish the configuration.

Beware that – in Production mode - you need to Activate your changes in order to
enable the web services. At that moment the deployment will show status ‘Prepared’.

By selecting the deployment in the Control tab and pressing Start  Servicing all
requests the State will change to ‘Active’ (assuming your Managed Server is in
‘Running’ state, the hsl.properties file has been specified and can be found).

..3.6.1.2 Specifiy configuration file

Before using the web services, implement the following actions as described below.
These actions have to be executed only once. There is no need to repeat them when
you update a deployment or delete and install it again.

Add a line to the file $DOMAIN_HOME/bin/setUserOverrides.sh you created
earlier. Add the line to the part for the HSL server, as indicated below:

cta13681.doc HTTP Service Layer Installation & Configuration Manual 36

specify additional java command line options for specific servers

if ["${SERVER_NAME}" = "ms_ohi_hsl"]
then

 # add settings for HSL

 # Custom Setting for ms_ohi_hsl to set debug level for SSL

 JAVA_OPTIONS="-Dweblogic.wsee.security.debug="true" ${JAVA_OPTIONS}"

 # Set location for HSL properties file

 JAVA_OPTIONS="-Dhsl.properties="/u01/app/oracle/product/OHI/vohi/hsl.properties"

${JAVA_OPTIONS}"

fi

export JAVA_OPTIONS

 Make sure to keep the parts with ${JAVA_OPTIONS} on the same line

This example uses a properties file with the name hsl.properties which is located in
the $OZG_BASE folder of your OHI Back Office application server environment, but
you can specify any name and location.

The contents of this file are discussed in a Chapter 5 ”Configuration files for HSL
services”).

When completed, (re)start the Managed Server. This can be done from the WebLogic
Admin console, or from the command line with the following commands;

cd $DOMAIN_HOME/bin

./startManagedWebLogic.sh ms_ohi_hsl http://localhost:7061

The example above contains the Managed Server’s name as first parameter and the
listen address of the Admin Server of the domain as second parameter

Check in the <ManagedServer>.out file in the logs folder of your Managed Server
whether the command line contains the arguments as specified above.

If the file specified by hsl.properties cannot be read , messages as below will show up:

ERROR: logfile could not be set because of: null

3.6.2 Deploy to multiple Managed Servers

You may deploy the application to more than one target.

Example: if you choose to target the application to Managed Servers MS1 and MS2,
the application will be available on separate end points. The URLs of these end points
will only differ in port number.

If you choose this rather unlikely scenario, be aware that each Managed Server
should have different startup parameter values (hsl.properties).

3.6.3 Deploy to cluster

You may deploy the application on all the Managed Servers of a cluster. This may be
needed for better scalability. Be aware to use some form of load balancing to allow
the use of a single end point.

The best way to implement this type of deployment depends on your specific
situation.

If you are planning a load balanced environment with multiple Managed Servers in a
cluster it is vital that the configuration of every Managed Server is aligned with the
others.

cta13681.doc HTTP Service Layer Installation & Configuration Manual 37

If you deploy to the cluster, it is recommended to redirect the logging of all Managed
Servers to a single file.

3.6.4 Deploy for multiple environments (DTAP)

If you use several OHI-related environments to support the various DTAP (Develop-
Test-Accept-Production) stages you may want to have different versions of the HSL
application running at the same time.

To implement this you need to:

 Create a Managed Server for each of the DTAP stages.

 Create a data source for each OHI Back Office database and deploy that data
source only to the corresponding Managed Server.

 Create an hsl.properties file for each Managed Server.

 Configure each Managed Server to start up with the appropriate
hsl.properties.

 Deploy the appropriate version of the HSL application to its corresponding
Managed Server and give it a unique deployment name to identify its
deployment.

3.6.5 Validate deployment

Be aware that the URLs displayed in the Admin Console cannot be used to test or
validate the deployment.

Also note that, even with the correct URLs, you cannot use a browser to test, because
the request needs to send a Request Header “Accept:application/json”.

You may get no response, or a reply like this:

<exceptionResponse>

<internalStatus>Not Acceptable</internalStatus>

<message>Wrong value for Accept</message>

</exceptionResponse>

Instead, use curl, as described in chapter 4 “Deployment validation” or SoapUI, as
described in Appendix C “Testing with SoapUI”.

cta13681.doc HTTP Service Layer Installation & Configuration Manual 38

3.7 Additional Security Aspects

Since HSL services provide an additional channel to access OHI Back Office data, you
must prevent unauthorized use of the HSL applications.

Please consult the ‘Oracle Health Insurance Security Aspects’ guide for more
information about OHI Back Office security aspects.

In order to prevent the exposure of sensitive data or unauthorized changes to the OHI
Back Office data, access of the HSL applications should be limited to trusted systems
and interfaces. Otherwise people in your organization might be tempted to try to
misuse the functionality provided by the HSL services.

All HSL services are configured to use basic authentication as a minimal policy to
reduce the risk of unauthorized access and network sniffing. Basic authentication
requires HTTPS communication and providing username/password with each call.

The preconfigured deployment descriptor in the HSL applications requires
authentication by a Weblogic user ‘restuser’. See the instructions for creating this
user in ‘Security Configuration’ above.

By deploying HSL application with a custom security policy, you can overrule the use
of the standard ‘restuser’.

It is your responsibility as an administrator to secure the HSL services within your
organization.

This paragraph provides some pointers to get started:

 Deploying HSL Application for use with any weblogic user

 Using a custom security policy for a deployed application

3.7.1 Deploying HSL Application for use with any weblogic user

If you want to deploy a HSL application for use with another weblogic user than the
default ‘restuser’, you should deploy with the security model ‘Custom Roles and
Policies’:

cta13681.doc HTTP Service Layer Installation & Configuration Manual 39

You can now use any weblogic user to access the HSL application.

3.7.2 Using a custom security policy for a deployed application

The Weblogic console allows the administrator to specify a custom security policy for
HSL applications deployed using ‘Custom Roles and Policies’.
For example, a custom security policy can be used:

 to limit access to a specified list of named Weblogic users; or

 to limit access to a group of Weblogic users; or

 to limit access to Weblogic users with a specific role;

 or a combination of the above.

NOTE:

While preparing the 1.7 & 1.8 version of this manual we found that WLS 12c 12.2.1.2.0
allows the creation of custom security policies but does NOT enforce these policies at
runtime. This bug has not yet been fixed in WebLogic 12.2.1.2.0 and 12.2.1.3.0.

Effectively this means that ANY authenticated Weblogic user may access a HSL
application deployed with ‘Custom Roles and Policies’ disregarding the authorization
that has been configured.

cta13681.doc HTTP Service Layer Installation & Configuration Manual 40

4 Deployment validation

Especially when deploying a HSL application for the first time, it makes sense to
validate that the HSL application is in working order.

Before you begin, check in the WLS Admin Console that the deployment status of the
HSL application is active.

The following validation tests can be performed by the administrator:

 Template Listing

 getDatabaseInfo operation

 Get Online Swagger definition

Apart from the template listing, each of the validations requires a JDBC connection
between the HSL application and the OHI BO database, so you are not only testing
the deployment itself but also the integration between the HSL application and the
OHI database.

If a validation test fails see the paragraph ‘Troubleshooting’ below to find and resolve
the problem.

The validation tests described below assume that you test with ‘curl’.

4.1 Testing with Curl

An operation of the HSL application can be invoked with many HTTP client tools.
One of these tools is curl, which is present on any Linux/Unix server.
Assuming that you have terminal access to the Linux server running WLS, curl is a
good tool to run the deployment validation tests.

Use ‘curl --version’ to check the curl version. Ensure that you are running curl
7.35.0 or higher as that supports the required SSL implementation.

A typical invocation of a HSL operation using curl would look like this

curl -D - -X <verb> -k -H Accept:application/json --user <user>

<url>

Explanation of the used options and placeholders:

 -D -
Dump response headers to stdout

 -X <verb>
add HTTP verb (GET/PUT/POST/PATCH/DELETE)

 -k
Allow curl to run HTTP requests without checking SSL certificates.

 -H Accept:application/json
Add request header to require a response in application/json format.
This is required for every HSL operation.

 --user <user>
The username of the WLS user used for Basic Authentication.

cta13681.doc HTTP Service Layer Installation & Configuration Manual 41

The <user> must refer to an existing WLS user.
Note that curl will prompt for a password if it is not given at the command line.

 <url>
The path to the HSL operation.

The url format is https://server:port/application/path where

server This must be one of the managed servers listed in WLS
console as an active target for the HSL application.

port The SSL port of the managed server running the HSL
application.

Every HSL operation requires SSL and Basic Authentication.

application This is the name of the HSL application as listed on the WLS
deployment page.

For example, HSL_POL, HSL_REL, HSL_CLA or HSL_C2B.

path The path to this operation.
Each operation is uniquely identified by a <path> + <verb>
combination.

Path examples: ‘/dbinfo’ or ‘templates’ or ‘api/swagger.json’

In the following example, a template listing is requested from the HSL_POL
application on the local WLS host running a managed server at SSL port 7094:

curl -D - -k -–user restuser -H Accept:application/json

https://localhost:7094/HSL_POL/templates

4.2 Template Listing

This operation lists the templates which were used to generate the Java code for the
HSL application. The listing itself is irrelevant, but since the operation does not
require a JDBC connection with the OHI BO database, it is the simplest of all
deployment tests. If it fails the remaining deployment tests will also fail.

The template listing is invoked through

https://server:port/application/templates

In the following example we retrieve the template listing through curl for the
HSL_POL application. It is assumed that we run curl locally on the WLS server and
that the managed server running the HSL application can be accessed through SSL
port 7094.

curl -k -H Accept:application/json --user restuser

https://localhost:7094/HSL_POL/templates

The output is a JSON object listing template files and template versions used to
generate the Java code for the HSL application.

4.3 getDatabaseInfo

This operation provides information about the database connection between the HSL
application and the OHI BO database.
If you are familiar with OHI BO’s SVL services, note that the getDatabaseInfo

https://server:port/application/path
https://localhost:7094/HSL_POL/templates

cta13681.doc HTTP Service Layer Installation & Configuration Manual 42

operation is comparable with the ‘isAlive’ operation implemented in every SVL
service.

This operation requires a working database connection and invokes the PL/SQL
implementation package specific to the HSL application.

The getDatabaseInfo operation is invoked through

https://server:port/application/dbinfo

In the following example the getDatabaseInfo of the HSL_POL application running
on SSL port 7094 on our local WLS host is invoked through curl.

curl -k -H Accept:application/json --user restuser

https://localhost:7094/HSL_POL/dbinfo

The output is a JSON object with information about the database connection and the
PL/SQL package implementing the HSL application in the OHI BO database:

{

 "basePath": "https://localhost:7094/HSL_POL/pol",

 "database": "BDDEV1722",

 "instance": "CDB02",

 ”jndiName": "HSL_BDDEV1722",

 "plsqlPackage": "hsl_pol_sp_pck $Revision: 4.21 $",

 "user": "HSL_USER",

 "userContext": "MANAGER"

}

4.4 Get Online Swagger definition

Each HSL application has an operation to generate a Swagger definition which
documents the operations and the objects of the HSL service.
This documentation is not only useful to client application developers, but can also be
used as the basis for code generation.

The Swagger 2.0 standard is supported by many leading software vendors including
Oracle. It is documented on http://swagger.io.

The Swagger definition can be retrieved as follows:

 https:/server:port/application/api/swagger.json
Returns the Swagger definition in JSON format

 https:/server:port/application/api/swagger
Returns the Swagger definition in JSON format

 https:/server:port/application/api/swagger.yaml
Returns the Swagger definition in YAML format

In the following example we retrieve the online Swagger definition of the POL service
running on localhost at SSL port 7094:

curl -k -H Accept:application/json --user restuser

https://localhost:7094/HSL_POL/api/swagger.json

The output is a JSON object containing the Swagger definition of the deployed HSL
application.

For retrieving the YAML format beware that you specify x-yaml in the -H argument:

cta13681.doc HTTP Service Layer Installation & Configuration Manual 43

curl -k -H Accept:application/x-yaml --user restuser

https://localhost:7094/HSL_POL/api/swagger.yaml

4.4.1 Saving the Swagger definition to a file

By redirecting the output of the curl command to a file you can use the contents for
other purposes like viewing the Swagger definition in an editor.

In the example below we save the online Swagger definition of the POL service
running on localhost at SSL port 7094 to a file called ‘saved_swagger.json’:

curl -k --user restuser -H Accept:application/json

https://localhost:7094/HSL_POL/api/swagger.json >

saved_swagger.json

4.4.2 Viewing the Swagger definition

The online Swagger editor (http://editor.swagger.io) provides a user friendly
overview of the Swagger definition.

In the following example we use curl to retrieve the Swagger definition of the
HSL_POL service and save it to a file. Having opened the saved Swagger definition
we then copy its contents into the online Swagger Editor.

Assuming that the HSL_POL application is running on localhost at port 7094 the
following command can be used to save the Swagger definition to
‘saved_swagger.json’:

curl -k --user restuser -H Accept:application/json

https://localhost:7094/HSL_POL/api/swagger.json >

saved_swagger.json

Open ‘saved_swagger.json’ in a text editor (or browser) and copy the contents of the
entire file.

Open the online Swagger editor by browsing http://editor.swagger.io

Use ‘File > Clear Editor’ to clear the contents of the online editor (if any).
Right-click and paste the contents of the saved Swagger definition into the editor.

The screen will look like this:

https://localhost:7094/HSL_POL/api/swagger.json
https://localhost:7094/HSL_POL/api/swagger.json

cta13681.doc HTTP Service Layer Installation & Configuration Manual 44

You can now navigate through the paths, operations and type definitions of the HSL
service. More information about Swagger can be found on http://swagger.io

4.5 Troubleshooting

If the deployment validation fails, first check that the following items have been
configured correctly:

 hsl.properties configuration file
This sets the data source for your HSL application.

 hsl.properties startup parameter
This parameter tells the HSL application where to find the hsl.properties file.
If the hsl.properties parameter refers to a non-existing file, the HSL
application cannot be started by WLS and its state will be ‘Failed’.

 Data source configured in hsl.properties configuration file
This data source is used to create the JDBC connection between the HSL
application and the OHI BO database

 HSL database account
This account in the OHI BO database has access to the PL/SQL components
used by the HSL application.

Troubleshooting tips:

 Edit the hsl.properties file and set ‘developermode=true’ for your HSL
application.

 Restart the managed server for your application.
Error messages will now be included in the output (normally they are
suppressed from the output).

 Reproduce the request with curl. Be sure to use the ‘dumpheader’ option (-D)
to dump the response headers.

The table below may help you to pinpoint the problem:

http://swagger.io/

cta13681.doc HTTP Service Layer Installation & Configuration Manual 45

HTTP Message Problem Action

 WLS Console:
java.lang.RuntimeException:
Property file could not be
loaded.

The configuration file could not
be loaded when starting the
HSL application.

Restart application after ensuring
that the file referred to by the
‘hsl.properties’ file exists and can be
readable.

500 Unable to resolve ‘xyz' The jndiname property for this
application does not refer to a
valid data source

Examine hsl.properties and ensure
that the application’s jndiname
points to a valid datasource.

500 ORA-06550:line 1.. The required HSL objects
cannot be accessed by the
database user related to the data
source

Verify that the data source points to a
HSL database account.

Verify that the HSL database account
has access to the HSL objects (see
‘Creating a HSL database account’
above).

401 Missing Authentication
Scheme

No WLS user credentials
supplied for this request

Add WLS user credentials to the
request. The preconfigured WLS user
is ‘restuser’

401 Unauthorized Wrong WLS user credentials.
Wrong username and/or
password.

Add correct WLS user credentials to
the request

cta13681.doc HTTP Service Layer Installation & Configuration Manual 46

5 Configuration Files for HSL services

In the previous chapter a properties file was referenced in the web service application
server deployment description. This chapter provides more information about that
file.

5.1 Back Office HSL properties file

The location of the Back Office properties file for the HSL services is specified as a
start parameter for a Managed Server with:

 -Dhsl.properties=<filename>

This file contains properties to configure the various deployed HSL applications:

 Datasource to connect the HSL application to the OHI database

 Default OHI officer on whose behalf a request is executed

 Logging configuration.
Note that HSL services use Java Util Logging (JUL). You may find more
information about the configuration options of JUL on the internet.

5.1.1 hsl.jndiname

The JNDI name of the default data source to connect the HSL application to the OHI
database.

Default value: none

Example:

hsl.jndiname=HSL_BDDEV1622

Note that you must use // for each forward slash in the JNDI name.

Example:

hsl.jndiname=jdbc//DSVOHI

5.1.2 hsl.<app>.jndiname

The JNDI name of the data source to connect this HSL application to the OHI
database.

If not set, this value defaults to the value of the hsl.jndiname property

Setting hsl.<app>.jndiname allows you to use different datasources for different
HSL applications. A different datasource may connect to the same database using a
different account, or to a different database altogether.
As an example, you may want to use HSL_PRD for the REL service and HSL_RO
(‘read only’) for the POL service to avoid changes to the policies in the production
database.

Note that you must use // for each forward slash in the JNDI name.

Example:

hsl.rel.jndiname=HSL_BDDEV1622

cta13681.doc HTTP Service Layer Installation & Configuration Manual 47

5.1.3 hsl.usercontext

The OHI officer (Dutch: functionaris) on whose behalf a request is executed.

The user context is inserted in the call context which is included in the call to the
PL/SQL implementation procedure. Note that the PL/SQL implementation may set a
different OHI officer based on the request data.

This user context determines the user identity that is used for logging changes to the
data, and which language is used for messages. The value must be the Oracle
username of a registered BackOffice user (in Dutch: “Functionaris”).

NOTE: This value does not have to match the technical account (HSL_USER) used for
the DataSource. If you do want to use HSL_USER, make sure you register a
BackOffice user with that Oracle username.

NOTE: Do not use the value “MANAGER”. Records created and update by HSL
functionality should be recognizable as such. Using MANAGER will make it
impossible to distinguish those records from records created or updated by
batch procedures and conversion scripts.

The examples in this document use HSL_FUNC_USER.

5.1.4 hsl.<app>.usercontext

The OHI officer on whose behalf a request is executed for this application.

If not set, this value defaults to the value of the hsl.usercontext property

Setting hsl.<app>.usercontext allows you to set an OHI officer per HSL
application.

Example:

hsl.rel.usercontext=HSL_FUNC_USER

Note that the user context from the hsl.properties file may be overwritten at the HSL
application level. This should be documented in the functional specification(s) which
apply to the given HSL application.

5.1.5 hsl.developermode

For security reasons, a response for a failed request contains minimal information so
that potential hackers cannot use this information to misuse the HSL services.
The original error message is written to the log file and replaced with ‘Non-
disclosed’.

If hsl.developermode is set to ‘true’, the response for a failed request contains the
original error message.

Note that in production mode it is strongly advised to delete the
hsl.developermode property from the hsl.properties file.

See Doc[2] (‘Error Handling’) for the differences in error handling between developer
mode and non-developer mode.

5.1.6 hsl.<app>.developermode

The developer mode setting for this HSL application.

cta13681.doc HTTP Service Layer Installation & Configuration Manual 48

If not set, this value defaults to the value of the hsl.developermode property

5.1.7 hsl.<app>.logfile

The logfile for this HSL application.

Default value: hsl.<app>.log in the WLS domain directory.

Note:

 the directory referenced in hsl.<app>.logfile must exist

 the directory referenced in hsl.<app>.logfile must be writable to the OS user
running the WLS application server.

Example:

hsl.rel.logfile=/home/oracle/hsl.rel.log

5.1.8 hsl.<app>.loglevel

The severity level of which logging should be written.

Default value: SEVERE

Logging levels: SEVERE, WARNING, INFO, CONFIG, FINE, FINER or FINEST.

The following logging levels are currently used: SEVERE, FINE, FINER and FINEST.
The logging levels FINE, FINER and FINEST should only be used for debugging.

Example:

hsl.rel.loglevel=SEVERE

 WARNING: When setting the loglevel to FINE, FINER or

FINEST this may lead to extensive log messages being

recorded which can slow down the processing of service

requests considerably. Response times measured while using

such detailed log levels are clearly affected and should not be

considered as representative for regular use.

5.1.9 hsl.<app>.log.limit

The maximum size of the log file in bytes.

Default value: 1000000 (1Mb)

When the size of the log file reaches this limit, the log is rolled over to the next log
file.

Note that a value of 0 means ‘unlimited’.

Example:

hsl.rel.limit=5000000

5.1.10 hsl.<app>log.count

The number of log files to use in the log file rotation.

cta13681.doc HTTP Service Layer Installation & Configuration Manual 49

Default value: 1

A value of 1 means that only 1 log file is created and no log rotation takes place.
When the log.limit is reached, the log file is overwritten and its previous contents are
lost.

Set the log.count to 2 or higher to avoid overwriting the log file once it is full.

Example

hsl.rel.count=2

5.1.11 hsl.<app>.log.append

Configure if logging can be appended to existing log files.

Default value: true

If false, a new log file will be created when rotating log files.

Example:

hsl.rel.append=false

5.1.12 Activating changes to hsl.properties

To activate changes to hsl.properties you must restart the managed server.

5.1.13 Troubleshooting hsl.properties

Note the following if you have trouble starting up with a new hsl.properties file:

 an empty value for ANY property will block any HSL application from starting
up.
Example:
hsl.rel.jndiname=

 lines starting with ‘#’ are ignored.

 empty lines are ignored

 do not use whitespace characters in property lines. Whitespace characters are tabs
and spaces. Inserting whitespace characters may result in a malfunction in the
operation of HSL services.

5.1.14 Example hsl.properties file

The following properties file is for documentation purposes only, it needs to be
adjusted to your situation and requirements.

With the release of version 10.18.1.2.0 of OHI Back Office the six services below may
be used in your properties file.

hsl.cla.jndiname=jdbc//DSVOHI

hsl.cla.usercontext=HSL_FUNC_USER

The name of the logfile for logging messages

hsl.cla.logfile=/u01/app/oracle/product/OHI/vohi/HSL_CLA.log

SEVERE, WARNING, INFO, CONFIG, FINE, FINER, FINEST, OFF, ALL

hsl.cla.loglevel=SEVERE

hsl.cla.log.limit=1000000

hsl.cla.log.count=2

hsl.cla.log.append=true

cta13681.doc HTTP Service Layer Installation & Configuration Manual 50

hsl.pol.jndiname=jdbc//DSVOHI

hsl.pol.usercontext= HSL_FUNC_USER

The name of the logfile for logging messages

hsl.pol.logfile=/u01/app/oracle/product/OHI/vohi/HSL_POL.log

SEVERE, WARNING, INFO, CONFIG, FINE, FINER, FINEST, OFF, ALL

hsl.pol.loglevel=SEVERE

hsl.pol.log.limit=1000000

hsl.pol.log.count=2

hsl.pol.log.append=true

hsl.rel.jndiname=jdbc//DSVOHI

hsl.rel.usercontext= HSL_FUNC_USER

The name of the logfile for logging messages

hsl.rel.logfile=/u01/app/oracle/product/OHI/vohi/HSL_REL.log

SEVERE, WARNING, INFO, CONFIG, FINE, FINER, FINEST, OFF, ALL

hsl.rel.loglevel=FINEST

hsl.rel.log.limit=1000000

hsl.rel.log.count=2

hsl.rel.log.append=true

hsl.c2b.jndiname=jdbc//DSVOHI

hsl.c2b.usercontext= HSL_FUNC_USER

The name of the logfile for logging messages

hsl.c2b.logfile=/u01/app/oracle/product/OHI/vohi/HSL_C2B.log

SEVERE, WARNING, INFO, CONFIG, FINE, FINER, FINEST, OFF, ALL

hsl.c2b.loglevel=FINEST

hsl.c2b.log.limit=1000000

hsl.c2b.log.count=2

hsl.c2b.log.append=true

hsl.aun.jndiname=jdbc//DSVOHI

hsl.aun.usercontext= HSL_FUNC_USER

The name of the logfile for logging messages

hsl.aun.logfile=/u01/app/oracle/product/OHI/vohi/HSL_AUN.log

SEVERE, WARNING, INFO, CONFIG, FINE, FINER, FINEST, OFF, ALL

hsl.aun.loglevel=FINEST

hsl.aun.log.limit=1000000

hsl.aun.log.count=2

hsl.aun.log.append=true

hsl.aur.jndiname=jdbc//DSVOHI

hsl.aur.usercontext= HSL_FUNC_USER

The name of the logfile for logging messages

hsl.aur.logfile=/u01/app/oracle/product/OHI/vohi/HSL_AUR.log

SEVERE, WARNING, INFO, CONFIG, FINE, FINER, FINEST, OFF, ALL

hsl.aur.loglevel=FINEST

hsl.aur.log.limit=1000000

hsl.aur.log.count=2

hsl.aur.log.append=true

See Appendix F “HSL_AUN and HSL_AUZ Services” to determine if you need to add
the last two services.

5.1.15 Keeping hsl.properties up to date

As new HSL services are released through (patch) releases of OHI Back Office, you
will be notified to change the hsl.properties file if required through the means of
installation instructions. When a new version of this manual is released the example
properties file of the previous paragraph will be adjusted.

5.2 Examining the Log File

When encountering long-running HSL operations, examining the log file allows you
to break down the roundtrip into different components.

Ensure that the log level for the HSL application is set to FINE.

If the log level is set to FINEST, writing log messages alone may require significant
time and may account for much of the time spent in the HSL operation.

If you changed the log level you must restart the managed application server to
activate the new log properties.

cta13681.doc HTTP Service Layer Installation & Configuration Manual 51

Next, look up the long-running operation in the log file. The example shows log
messages of a fictitious operation:

Mar 08, 2018 5:09:39 PM com.oracle.insurance.ohibo.hpo.HpoService

getDossierRegels

FINE: begin getDossierRegels

Mar 08, 2018 5:09:39 PM com.oracle.insurance.ohibo.hpo.HpoService getLanguage

FINE: getLanguage() returns: nl-NL

Mar 08, 2018 5:09:39 PM com.oracle.insurance.ohibo.hpo.HpoService

getDossierRegels

FINE: expand=all

Mar 08, 2018 5:09:39 PM com.oracle.insurance.ohibo.hpo.HpoService

getDossierRegels

FINE: limit=10000

Mar 08, 2018 5:09:39 PM com.oracle.insurance.ohibo.hpo.HpoService

getDossierRegels

FINE: number=35

Mar 08, 2018 5:09:39 PM com.oracle.insurance.ohibo.hpo.HpoService

getDossierRegels

FINE: offset=0

Mar 08, 2018 5:09:39 PM com.oracle.insurance.ohibo.hpo.CCallContext

toJDBCObject

FINE: enter toJDBCObject

Mar 08, 2018 5:09:40 PM com.oracle.insurance.ohibo.hpo.CCallContext

toJDBCObject

FINE: leave toJDBCObject

Mar 08, 2018 5:09:41 PM com.oracle.insurance.ohibo.hpo.HpoService

getDossierRegels

FINE: Before calling PL/SQL operation

Mar 08, 2018 5:09:59 PM com.oracle.insurance.ohibo.hpo.HpoService

getDossierRegels

FINE: After calling PL/SQL operation

Mar 08, 2018 5:10:00 PM com.oracle.insurance.ohibo.exception.ExceptionUtil

handleReturnContext

FINE: start handleReturnContext

Mar 08, 2018 5:10:00 PM com.oracle.insurance.ohibo.exception.ExceptionUtil

handleReturnContext

FINE: end handleReturnContext

Mar 08, 2018 5:10:00 PM com.oracle.insurance.ohibo.hpo.HpoService

getDossierRegels

FINE: Before mapping SQL object to Java object

Mar 08, 2018 5:10:21 PM com.oracle.insurance.ohibo.hpo.HpoService

getDossierRegels

FINE: After mapping SQL object to Java object

Mar 08, 2018 5:10:21 PM com.oracle.insurance.ohibo.hpo.HpoService

getDossierRegels

FINE: http code=200

Mar 08, 2018 5:10:21 PM com.oracle.insurance.ohibo.hpo.HpoService

getDossierRegels

FINE: Before creating response

Mar 08, 2018 5:10:22 PM com.oracle.insurance.ohibo.hpo.HpoService

getDossierRegels

FINE: After creating response

Mar 08, 2018 5:10:22 PM com.oracle.insurance.ohibo.hpo.HpoService

getDossierRegels

FINE: end getDossierRegels

From this fragment we may derive the following information:

 Total roundtrip is about 43s (5:09:39 - 5:10:22)

 PL/SQL execution: 18s (5:09:41 - 5:09:59)

 Mapping SQL object to Java object:<1s

 Creating response with JSON string:<1s

5.2.1 Changing the log format

The default format for logging timestamps is not suitable for sub-second operations.
Logging timestamps in milliseconds since 01-01-1970 is needed if you want to analyse
sub-second operations.

To override the default format, create a configuration file with the following contents:

override default format for timestamps in milliseconds since 01-01-1970.

java.util.logging.SimpleFormatter.format=%1$tQ %2$s%n%4$s: %5$s%6$s%n

cta13681.doc HTTP Service Layer Installation & Configuration Manual 52

You now need to activate this configuration for the managed server to which the HSL
application is deployed:

 Start WebLogic Console

 Choose Environments > Servers > managed_server

 Add -Djava.util.logging.config.file=your_config_file to the Server
Start parameters. . Add a line to the file
$DOMAIN_HOME/bin/setUserOverrides.sh you created earlier. Add the line to
the part for the SVL server:

 JAVA_OPTIONS="-Djava.util.logging.config.file=”your_config_file” {JAVA_OPTIONS}"

 Restart the managed server.

 Call the HSL operation and check that the subsequent log messages show log
messages in milliseconds since 01-01-1970

The output should now look like:

1520867075960 com.oracle.insurance.ohibo.hpo.HpoService getDossierRegels

FINE: begin getDossierRegels

1520867075971 com.oracle.insurance.ohibo.hpo.HpoService getLanguage

FINE: getLanguage() returns: nl-NL

1520867075974 com.oracle.insurance.ohibo.hpo.HpoService getDossierRegels

FINE: expand=all

1520867075974 com.oracle.insurance.ohibo.hpo.HpoService getDossierRegels

FINE: limit=10000

1520867075975 com.oracle.insurance.ohibo.hpo.HpoService getDossierRegels

FINE: number=11

1520867075975 com.oracle.insurance.ohibo.hpo.HpoService getDossierRegels

FINE: offset=0

1520867075976 com.oracle.insurance.ohibo.hpo.CCallContext toJDBCObject

FINE: enter toJDBCObject

1520867075977 com.oracle.insurance.ohibo.hpo.CCallContext toJDBCObject

FINE: leave toJDBCObject

1520867075978 com.oracle.insurance.ohibo.hpo.HpoService getDossierRegels

FINE: Before calling PL/SQL operation

1520867092723 com.oracle.insurance.ohibo.hpo.HpoService getDossierRegels

FINE: After calling PL/SQL operation

1520867092728 com.oracle.insurance.ohibo.exception.ExceptionUtil

handleReturnContext

FINE: start handleReturnContext

1520867092729 com.oracle.insurance.ohibo.exception.ExceptionUtil

handleReturnContext

FINE: end handleReturnContext

1520867092730 com.oracle.insurance.ohibo.hpo.HpoService getDossierRegels

FINE: Before mapping SQL object to Java object

1520867093066 com.oracle.insurance.ohibo.hpo.HpoService getDossierRegels

FINE: After mapping SQL object to Java object

1520867093068 com.oracle.insurance.ohibo.hpo.HpoService getDossierRegels

FINE: http code=200

1520867093072 com.oracle.insurance.ohibo.hpo.HpoService getDossierRegels

FINE: Before creating response

1520867093073 com.oracle.insurance.ohibo.hpo.HpoService getDossierRegels

FINE: After creating response

1520867093074 com.oracle.insurance.ohibo.hpo.HpoService getDossierRegels

FINE: end getDossierRegels

This log output of a fictitious operation gives us the following information:

• Total roundtrip is 17114 ms (1520867093074 - 1520867075960)

• PL/SQL execution: 16745 ms (1520867092723 – 1520867075978)

• Mapping SQL object to Java object: 336 ms (1520867093066 - 1520867092730)

• Creating response with JSON string: 1 ms

cta13681.doc HTTP Service Layer Installation & Configuration Manual 53

6 Upgrading HSL services

Future OHI releases may include new WAR files for HSL services.

To deploy a new version of an existing HSL application, follow the steps below:

 Check your web service properties file (typically hsl.properties) and
implement necessary changes for your release. For information about the
contents please see the previous chapter.

 Logon to the Admin Server console of the domain where the web services are
deployed.

 Navigate to the deployments pane.

 Choose the ‘Lock & Edit’ option.

 If you already have a Retired version of the deployment, mark the check box
in front of the retired deployment and delete it.

 Navigate to the deployment that must be updated and mark the check box in
front of it.

 Press the Update button.

 Determine whether the same source path still applies (typically a new version
is delivered in the $OZG_BASE/java folder of your environment but your
organisation may have additional distribution methods implemented). When
the correct .war file is selected press Next.

 You now have two options for ‘retiring’ the previous version. Because
normally the Back Office application is not available during patching, you
can retire the previous version ‘immediately’, meaning using a timeout of 1
second:

Press ‘Finish’ to retire the previous version and continue.

 Choose ‘Activate Changes’.

 Refresh the screen a few seconds after having activated the changes.

 Inform the communities which use the web services of the availability and
publish the latest URI’s to the swagger definitions to them.

It the old deployment cannot be deleted when updating, stop the deployment with
the ‘Force’ option and deploy it again completely (using the ‘Install’ option for
deployments). In some cases (depending on the changes) you may need to repeat the
Deployment delete/install when the install results in errors. If the deployment keeps
failing, you may have to restart the Managed Server(s) as a last resort.

cta13681.doc HTTP Service Layer Installation & Configuration Manual 54

After this the deployment state of the web services should be Active again (be sure
the Managed Server(s) is/are running, otherwise start it/them to get this result).

If not, check whether your OHI database environment and deployed version are
correct, meaning that their version levels correspond with each other.

cta13681.doc HTTP Service Layer Installation & Configuration Manual 55

7 Appendix A – Service Information

The following URI provides version information about a running HSL application:

https://server:port/application/dbinfo

For example:

https://localhost:7002/HSL_POL/dbinfo

This will return a JSON object like below:

{

 "basePath": "https://localhost:7002/HSL_POL/pol",

 "database": "BTSPC12",

 "instance": "CDB02",

 "jndiName": "HSL_BTSPC12",

 "plsqlPackage": "hsl_pol_sp_pck $Revision: 4.39 $",

 "user": "HSL_USER",

 "userContext": "MANAGER"

}

Information:

 basePath
Format: https://server:port/application/context
This is the base URI for all operations in this service.

 database
The name of the database associated with the current database connection

 instance
Instance name of the database associated with the current database connection.

 jndiName
The JNDI name of the database connection (specified in the hsl.properties file)

 plsqlPackage
The PL/SQL package which implements the operations of the HSL service.
In this release, the revision number refers to the revision number of the code
template used to generate the PL/SQL package. In a future release this will point
to the minimum revision number of the compiled PL/SQL package.

 user
The database account used to log on to the database.

 user context
The default OHI officer on whose behalf service operations are performed, as
specified in the hsl.properties file.

https://localhost:7002/HSL_POL/dbinfo

cta13681.doc HTTP Service Layer Installation & Configuration Manual 56

8 Appendix B – Removing a WLS domain

In case you want to restructure your environment or recreate a domain you can
remove an existing domain.

In order to do this make sure all servers for the domain are stopped and make sure
there is no Node Manager process running which ‘guards’ this domain.

Next perform the following actions:

 Completely remove your domain directory including all contents.

 Remove any reference in start and stop scripts to this domain.

 Remove, if present, the domain from the <WebLogic
home>\oracle_common\common\nodemanager\nodemanager.domains.

 Remove the domain from the domain-registry.xml file which is located in the
Middleware home folder ($MW_HOME).

For more information please use the standard WebLogic documentation.

cta13681.doc HTTP Service Layer Installation & Configuration Manual 57

9 Appendix C – Testing with SoapUI

SoapUI is a tool for testing web services which can be downloaded from
http://www.soapui.org.

It is especially useful for functional testing of the HSL application.

WLS 12c has removed the support for the security protocols SSLv3 and TLS 1.1,
because they are now considered insecure.
This means you must access the HSL application with a client that uses TLS 1.2.

Unlike earlier versions, SoapUI 5.3 and 5.4 enable TLS 1.2 by default. The examples
below assume SoapUI 5.4 or higher.

9.1 Create REST project and import Swagger definiton

 Follow the instructions in ‘Get Online Swagger Definition (curl)’ to retrieve the
online Swagger definition from the HSL application and save the output to a file
(for example ‘saved_swagger.json’)

 Create a new REST project (empty value for URL)

 Choose ‘Project > Import Swagger’ and select the saved Swagger definition.

The operations of the HSL application are now discovered:

You may now create requests for the operations provided by this HSL application.

9.2 Create a request

Once you have imported the Swagger definition you may create a request for each of
the operations.

In the example below we create a request for the getDatabaseInfo operation:

 Double-click on ‘Request 1’ of the requested operation
(in our case /dbinfo > getDatabaseInfo).

http://www.soapui.org/

cta13681.doc HTTP Service Layer Installation & Configuration Manual 58

 Set the endpoint for the request to https://<server>:<port>
For example https://127.0.0.1:7094.

 Select ‘Headers’ and add a HTTP request header with Header value ‘Accept’ and
with Value value ‘application/json’.

 Add other HTTP request headers as required (not needed for this example)

 Select ‘Auth’ to add Basic Authentication for the WLS user.
If you deployed with the ‘DD Only’ deployment model the WLS user should be
‘restuser’.

 Set ‘preemptive authentication’.

 Run the request.

The request window should now look like this:

https://127.0.0.1:7094/

cta13681.doc HTTP Service Layer Installation & Configuration Manual 59

10 Appendix D - Generating a WADL file

A WADL (Web Application Description Language) file may be required by Oracle
Service Bus or other middleware to describe your HSL application.

The current HSL applications cannot be used to generate WADL files directly.

However, a WADL file can be easily generated from the online Swagger definition
using SoapUI.

This involves the following steps:

 Create a REST project in SoapUI for your HSL application

 Open the Service Viewer for the REST project

 Export WADL from your REST project

10.1 Create a REST project in SoapUI for your HSL application

Follow the instructions in ‘Testing with SoapUI’ to set up SoapUI for testing with
your HSL application.

10.2 Open the Service Viewer for the REST Project

Click on the ‘WADL Content’ to see the WADL description.
Your screen may look like this:

10.3 Export WADL from your REST project

Save the buffer to a WADL file.

Alternatively you may right-click on the service within the REST project (highlighted
in the screen shot below):

cta13681.doc HTTP Service Layer Installation & Configuration Manual 60

And select ‘Export WADL’ to create the WADL for this application.

cta13681.doc HTTP Service Layer Installation & Configuration Manual 61

11 Appendix E – Authentication and Authorization

In 10.18.1.0.0 the following changes were made to the security of the HSL services:

 No authentication needed for OPTIONS method

 OAUTH 2.0 token authentication and validation as an alternative to Basic
Authentication

11.1 HTTP OPTIONS method

The HTTP OPTIONS method is used by browsers as a pre-flight check to retrieve the
allowable methods for a given URL. This check, for which no authentication is
needed, is part of the CORS mechanism.

11.2 OAUTH 2.0 token authentication and validation

If Basic Authentication is used, the 'Authorization' header starts with 'Basic' followed
by a base64-encoded username/password combination for a valid Weblogic account.
Basic authentication is still the default mechanism for HSL services.

As an alternative for Basic Authentication, support for OAUTH 2.0 has been
developed for the HSL services:

 Authentication based on access-token

 Token validation using an Authorization Service

 Set OHI officer (optional)

If access-token authorization is used, the 'Authorization' header starts with 'Bearer'
followed by an encoded string which must be validated by a remote authorization
service.

The token validation using a remote authorization service has been indicated with a
dotted line in the HSL application architecture diagram:

WLS runtime process

Service WAR

SQL types model Java class model

Java service class

J
D

B
C

Java libraries

Including Jersey, MOXy and JAX-RS

WLS libraries

PL/SQL service

package

Request

JSON

Response

JSON

Metadata

JSON/YAML

Remote Authorization

Service

11.2.1 WAR File Deployment

In order to use access token validation (OAUTH2), the HSL application must be
deployed with ‘Custom Roles and Policies’.

cta13681.doc HTTP Service Layer Installation & Configuration Manual 62

11.2.2 Configuration

Authentication and authorization are configured through the hsl.properties file.
To implement the changes in the hsl.properties file, the managed server(s) associated
with the WAR file must be restarted.

11.2.3 Which Authorization Method?

The hsl.app.authorization property selects which authorization methods are
allowed for a HSL service. This value defaults to the vaule of hsl.authorization.

If hsl.authorization is not set, the default value of 'BASIC' is used to enforce
Basic Authentication

Allowed values:

 BASIC – use ‘Basic’ HTTP Authorization header with WLS credentials

 TOKEN – use ‘Bearer’ HTTP Authorization header with JWT token

 Or a combination of these.

11.2.4 Access Token Validation

To support the OAUTH2 access token validation, the HSL service must be configured
to call a remote authorization service, which validates:

 that the caller is a legitimate user of the system

 that the caller is authorized for the requested HSL service operation
(expressed through path+method)

The HSL service which is called by the client application now dynamically creates the
call to the remote authorization service.

The remote authorization should meet the following criteria:

 The authorization service can be invoked using the HTTP protocol.

 POST or GET is used as the default method to invoke remote authorization

 Basic authentication may be used to call the remote authorization service

 JSON is used to format the body parameter

To test this functionality, the HSL_AUN and HSL_AUZ services were developed. See
‘Appendix F’ for a description.

The following hsl.properties parameters are used to configure the call:

 hsl.app.tokenvalidation.url - defaults to the value of
hsl.tokenvalidation.url
The URL of the authorization service.

 hsl.app.tokenvalidation.method - defaults to the value of
hsl.tokenvalidation.method
Method to access the authorization service operation
Default value: POST

 hsl.app.tokenvalidation.headerparams - defaults to the value of
hsl.tokenvalidation.headerparams

cta13681.doc HTTP Service Layer Installation & Configuration Manual 63

A template with place holders which is used to add HTTP request headers
when calling the remote authorization service.

 hsl.app.tokenvalidation.queryparams - defaults to the value of
hsl.tokenvalidation.queryparameters
A template with placeholders which is used to construct a query string.

 hsl.app.tokenvalidation.bodyparam - defaults to the value of
hsl.tokenvalidation.bodyparam
A template with placeholders which is used to create a JSON string which is
used as a body parameter.

 hsl.app.tokenvalidation.authentication - defaults to the vaule of
hsl.tokenvalidation.authentication
Contents for the Authorization header which is used to authenticate the
request to the remote authorization service.

Note that the dynamically constructed request may be created from

 hsl.app.tokenvalidation.headerparams

 hsl.app.tokenvalidation.bodyparm

 hsl.app.tokenvalidation.queryparams

 or a combination of these.

11.2.5 Place Holders

The following placeholders are expanded before calling the remote authorization
service:

 #path#
Path to the service operation for which the token validation is desired. The
path value is derived from the HTTP request for the service operation.

 #method#
Method (GET,POST,PUT,PATCH,DELETE) of the service operation. The
method value is derived from the HTTP request for the service operation.

 #jwt#
Contents of the access token which must be passed to the remote
authorization service.
This is the contents of the 'Authorization' header of the original request after
removing the 'Bearer\s' prefix.

11.2.6 POST Example

hsl.tokenvalidation.authentication=Basic cmVzdHVzZXI6b3Blbnpvcmc5OQ==

hsl.tokenvalidation.bodyparam={ "method" : "#method#", "token" : "#jwt#" ,

"resource" : "#path#" }

hsl.tokenvalidation.method=post

hsl.tokenvalidation.url=https://ol6ohi.us.oracle.com:7110/HSL_AUZ/auz/v1/authorizati

on/verify

11.2.7 GET example

Fictitious example to configure a verify operation using the GET method:

hsl.hba.tokenvalidation.url=https://ol6ohi.ohi.oracle.com:7094/

HSL_HBA/hba/v1/authorization/verify

hsl.hba.tokenvalidation.method=get

cta13681.doc HTTP Service Layer Installation & Configuration Manual 64

hsl.hba.tokenvalidation.queryparams=?id=123&HTTPverb=#method#&t

oken=#jwt#&resource=#path#

hsl.hba.tokenvalidation.authentication=Basic

cmVzdHVzZXI6b3Blbnpvcmc5OQ==

hsl.hba.tokenvalidation.headerparams=hdr1:value1 hdr2:value2

11.2.8 Setting user context

Every operation of a REST service must be executed by a OHI officer account (Dutch:
functionaris). This is a registered user of the OHI BackOffice application).

The default account is set through hsl.app.usercontext (defaults to
hsl.usercontext).

If token validation is used, the usercontext is retrieved from the JWT access token.

The following configuration parameters are used:

 hsl.app.usercontext - defaults to the value of hsl.usercontext
The user context which must be used for executing an operation.

 hsl.app.usercontext.control - defaults to the value of
hsl.usercontext.control
Allowed values:

o PROPERTY
Use the value of hsl.app.usercontext to set the user context.

o TOKEN
Retrieve the user context from the access token. Note that
hsl.app.usercontext.claim must be set to indicate which field
contains the usercontext.

If hsl.app.usercontext.control is set to TOKEN, the following configuration
parameters control how the usercontext is retrieved:

 hsl.app.usercontext.token.type - defaults to the value of
hsl.usercontext.token.type
Set the type of token.
Allowed values: JWT

 hsl.app.usercontext.claim - defaults to the value of
hsl.usercontext.claim
Determines which field in the JWT token contains the usercontext.
Example: hsl.app.usercontext.claim=prn

11.2.9 Overriding User Context with Back Office Parameter

For several HSL services, a Back Office parameter (Dutch: functionaris) has been
created to override the user context.

If the Back Office parameter for setting the user context for a specific service has been
set it will overrule the user context as set at the start of the service operation!

If you want ensure that the user context is set by the hsl.app.usercontext parameter or
through the access token, you should remove the value of the ‘functionaris’ parameter
for the given service through the OHI BO application.

cta13681.doc HTTP Service Layer Installation & Configuration Manual 65

12 Appendix F - HSL_AUN and HSL_AUZ Services

Two new HSL services were developed for testing the OAUTH2 support of HSL
services:

 HSL_AUN
This service authenticates the username/password account of a database
account and, if successful, returns an access token in JWT format.

 HSL_AUZ
After verifying that the JWT-formatted access token was not compromised,
this service should verify that the OHI officer referenced in the token
(acquired from HSL_AUN) is authorized for the requested service operation.

The HSL_AUN and HSL_AUZ services may be used by customers to test the
OAUTH2 support in the HSL services.

12.1.1 Disclaimer

Note that HSL_AUN and HSL_AUZ are only for testing! You can use them as mock-
up services to imitate a real OAUTH2 implementation, but should NOT use them to
authenticate or authorize requests in a production environment.

Also note that at the time of writing the implementation of the ‘postVerify’ operation
in HSL_AUZ is incomplete.

12.2 Use of JWT

JWT (JSON Web Token) is emerging as a standard format for access tokens. A JWT is
a base64-encoded string consisting of three parts separated by ‘.’ characters:

 header
Contains encryption method and token type (JWT)

 payload
Contains principal and claims (priveleges)
The principal for HSL_AUN and HSL_AUZ is the ‘OHI officer’ (aka
‘functionaris’).

 signature
Checksum based on encrypted header + payload

12.2.1 Payload

The payload may contain the following attributes:

 exp - expirydate in number of seconds since 01-01-1970
When the token is issued this is the system date + one year.

 iss - token issuer
Hardcoded: www.oracle.com

 prn - the username of the OHI officer making the request.
Example: HSL_FUNC_USER

 name - The name of the OHI officer.
Example: “HSL Web Services”

http://www.oracle.com/

cta13681.doc HTTP Service Layer Installation & Configuration Manual 66

 claims – a list of modules which can be started by the OHI officer.

12.2.2 Token Verification

The JWT signature contains the encrypted concatenation of the header and payload
when the token was issued by HSL_AUN.

When verifying the access token, HSL_AUZ.postVerify recalculates the signature
using the header and payload. For this it uses the same algorithm as
HSL_AUN.postToken. If the new signature is different from the original signature,
the token verification will fail.

12.3 HSL Properties for Signature Encryption

The encryption algorithm used by HSL_AUN and HSL_AUZ is driven by the HSL
property hsl.token.validation.rotor=your_secret_key

Keep the value of hsl.token.validation.rotor secret. Although HSL_AUN
and HSL_AUZ are not currently in production mode, this may change in the future.

12.4 HSL_AUN Authentication Service

The HSL_AUN service has a single operation ‘postToken’ to

 log in to the (OHI Back Office) database using the username and password
passed through the ‘Credentials’ resource.

 Issue a access token in JWT format
The ‘claims’ attribute will contain a list of modules for which the principal
(OHI officer) is authorized.
Note: this list is currently empty!

12.4.1 HSL properties

In addition to the usual HSL properties (see ‘Back Office HSL properties file’ above),
set the following HSL properties before activating HSL_AUN:

 hsl.aun.authorization=NONE
Rationale: the postToken operation uses the username and password
supplied in the Credentials parameter to log into the OHI Back Office
database. The operation fails if the credentials are incorrect.

12.5 HSL_AUZ Authorization Service

This service has a single operation: postVerify.

12.5.1 postVerify operation

The postVerify operation verifies that:

 the access token has not expired.

 the access token has not been tampered with

The postVerify operation should also verify that the requested service operation
matches with an item in the claims list in the access token. This functionality has not
yet been implemented.

cta13681.doc HTTP Service Layer Installation & Configuration Manual 67

13 Appendix G – PSL services

NOTE: The PSL services are only provided to support a prototype product that will
only be delivered on request and for evaluation purposes. You do not need to install
it unless specifically requested to do so.

‘PSL’ stands for ‘Private Service Layer’. PSL services are created specifically to
support OHI BO applications. They use the same technology as the HSL services but
are not intended as an ‘API’, so may not be used to support custom client
applications.

Characteristics of PSL services:

 Specifically built to support OHI BO applications. This means that PSL
services are not intended to be called by customer applications. It also means
that contents or operation of PSL service operations may be changed by OHI
Back Office Development without notice.

 No online help documentation.

 Built on the same technology as HSL services.

 Configured through a ‘psl.properties’ file, similar to the ‘hsl.properties’ file
used for HSL services.

13.1 Installation of PSL services

Like HSL services, PSL services should be deployed through Weblogic Application
Server (WLS).

The chapter ‘Installation of HSL services’ applies also to the installation of PSL
services.

13.1.1 WLS Domain

You may use the same WLS domain for PSL services as for HSL and SVL services.

13.1.2 Data source

You may use the same data sources for PSL services as for the HSL services or create
specific data sources.

13.1.3 WLS Managed Server Parameters

Use the WLS admin console to revise the ‘Server Start’ parameters for starting the
managed server.

You will need to set -Dpsl.properties=filename

Example:

-Dpsl.properties=/ohi/envBase/vohi/conf/psl.properties

Add the line to file $DOMAIN_HOME/bin/setUserOverrides.sh:

JAVA_OPTIONS="-Dpsl.properties="/ohi/envBase/vohi/conf/psl.properties" ${JAVA_OPTIONS}"

cta13681.doc HTTP Service Layer Installation & Configuration Manual 68

The instructions for setting the psl.properties parameter are similar to those for
setting ‘hsl.properties’ as described in the ‘Installation of HSL services’ chapter.

13.2 Configuration of PSL.properties

The configuration of the psl.properties file is similar to that of
hsl.properties.

Note that all properties are prefixed with ‘psl’ instead of ‘hsl’.

Example:

psl.acl.jndiname=jdbc//DSVOHI

psl.acl.usercontext=PSL_FUNC_USER

The name of the logfile for logging messages

psl.acl.logfile=/u01/app/oracle/product/OHI/vohi/PSL_ACL.log

SEVERE, WARNING, INFO, CONFIG, FINE, FINER, FINEST, OFF, ALL

psl.acl.loglevel=SEVERE

psl.acl.log.limit=1000000

psl.acl.log.count=2

psl.acl.log.append=true

The value of the psl.acl.usercontext must be a registered OHI officer
(Dutch:functionaris)

